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The present paper is a direct continuation of an earlier paper@JETP83, 1 ~1996!# devoted to the
derivation of the macroscopic Einstein equations to within terms of second order in the
interaction constant. Ensemble averaging of the microscopic Einstein equations and the Liouville
equation for the random functions leads to a closed system of macroscopic Einstein
equations and kinetic equations for one-particle distribution functions. The macroscopic Einstein
equations differ from the classical equations in that their left-hand side contains additional
terms due to particle interaction. The terms are traceless tensors with zero divergence. An explicit
covariant expression for these terms is given in the form of momentum-space integrals of
expressions dependent on one-particle distribution functions of the interacting particles of the
medium. The given expressions are proportional to the cube of the Einstein constant and
the square of the particle number density. The latter relationship implies that interaction effects
manifest themselves in systems of very high density~the universe in the early stages of
its evolution, dense objects close to gravitational collapse, etc.!. © 1997 American Institute of
Physics.@S1063-7761~97!00110-8#

1. INTRODUCTION Here G̃i j is the Einstein tensor in a Riemannian space w
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The present paper is a direct continuation of an ear
paper~see Ref. 1! devoted to the derivation of macroscop
Einstein equations correct to second order in the interac
constant.

The macroscopic Einstein equations reduce to

Gi j 1w i j ;k
k 1m i j 5xTi j ,

where Gi j is the Einstein tensor,Ti j is the energy–
momentum tensor, andx is Einstein gravitational constan
The semicolon indicates a covariant derivative. The n
terms on the left-hand side are responsible for particle in
action and are traceless tensors with zero divergence. Be
we give a covariant expression for these terms in the form
momentum-space integrals of expressions dependent on
particle distribution functions of the interacting particles
the medium. The given expressions are proportional to
cube of the Einstein constant and the square of the par
number density. The latter implies that interaction effe
manifest themselves in systems of very high density~the
universe in the early stages of its evolution, dense obje
close to gravitational collapse, etc.! or in macrosystems con
sisting of highly massive objects~clusters of galaxies!.

2. MACROSCOPIC EINSTEIN EQUATIONS

The method of deriving the macroscopic Einstein eq
tions is discussed in Ref. 1. The notation used in the pre
paper coincides with that of Ref. 1.

Briefly, the method used to obtain the macroscopic E
stein equations consists in the following.

We start by writing the microscopic Einstein equation

G̃i j 5x T̃i j . ~1!
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metric g̃ i j , x58pk/c is Einstein’s constant~wherek is the
gravitational constant!, T̃i j is the microscopic energy–
momentum tensor,

T̃i j 5(
a

cE d4 p̃a

A2 g̃
p̃a

i ũa
j Na~qi , p̃ i !, ~2!

where g̃ is the determinant ofg̃ i j , p̃a
i is the momentum

of particles of speciesa, ũ a
i 5 p̃ a

i /Ag̃k j p̃ a
k p̃ a

j , and
Na(qi , p̃ a

i ) is the Klimontovich random function:2

Ña~qi , p̃ j !5(
i 51

na E d s̃d4~qi2q~ l !
i !d4~ p̃ j2 p̃ j

~ l !~ s̃ !!, ~3!

wherena is the number of particles belonging to speciesa,
s̃ is the canonical parameter along the particle trajector

d s̃5Ag̃ i j dqidqj , andq( l )
i and p̃ j

( l ) are the coordinates an
momentum of thel th particle of thea species, which are
found by solving the equations of motion~the geodesic equa
tions!. The functionÑa satisfies the Liouville equation

p̃ i
]Ña

]qi 1G̃ j ,ik p̃ j p̃k
]Ña

] p̃ i

50. ~4!

Next we write the metricg̃ i j as

g̃ i j 5gi j 1hi j , ~5!

wheregi j 5^ g̃ i j & is the ensemble average of the metric.1,2 In
the system of equations~1!, ~2!, and~4! we go from quanti-
ties measured in the metricg̃ i j to quantities measured in th
metric gi j . As a result Eqs.~1!, ~2!, and~4! become

Ri j 1¹mV i j
m2¹ jV im

m 1Vmn
m V i j

n 2V jn
m V im

n
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n 5^Vkl

n V is
l &, ~14!
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5x(
a
E A~2g!

aA
g̃

F gikg jm

2
1

2
g̃ i j g̃kmGpkpmNa , ~6!

pi
]Na

]qi 1G j ,ikpkpj
]Na

]pi
5

]

]pi
~V jk

mDmip
j pkNa!. ~7!

Herepi is the momentum measured in the metricgi j , Na is
a random function in the space with metricgi j ~the expres-
sion forNa can be obtained from~3! by dropping all tildes!,
Vk j

m5G̃k j
m2Gk j

m is the difference between the Christoff
symbols of the second kind for the metricsg̃ i j and gi j ,
D i j 5gi j 2uiuj , andui5pi /Aplp

l .
In the next step we must expand Eqs.~6! in power series

in thehi j to within second-order terms and find the ensem
averages of the resulting equations. If we limit ourselves
averaged equations correct to second order in the interac
constant, we arrive at a closed system of equations for
one-particle distribution functionf a(q,p)5^Na&/na and the
averaged metricgi j .

The equation forf a was derived in Refs. 1 and 3 and h
the following form:

ui
] f a

]qi 1G j ,ik

] f a

]pi
5(

b
E d4p

A~2g!
Ei j ~p,p8!

3S ] f a

]pj
f b82

] f b8

]pj8
f aD , ~8!

where

Ei j ~p,p8!5
2pk2Lnb

c6@~u,u8!221#3/2@2~u,u8!~p,p8!2~u,p!

3~u8,p8!#2$2gi j @~u,u8!221#2uiuj

2ui8uj81~u,u8!~uiuj81ui8uj !%, ~9!

with (u,u8)5ui8u
i , (u,u)5uiu

i , etc. Primed quantities refe
to particles belonging to speciesb, nonprimed to particles
belonging to speciesa, andL is an analog of the Coulomb
logarithm:3,4

L5E
kmin

k` dk

k
. ~10!

The equations for the averaged metricgi j reduce in Ref.
1 to the following form:

Ri j 1L i j 5x~Ti j 2
1
2Tgi j !, ~11!

where Ti j is the macroscopic energy–momentum tens
T5gi j Ti j is the trace of that tensor,Ri j is the Ricci tensor,
and L i j is an additional term on the right-hand side of t
Einstein equations, which emerges after the terms quad
in hi j are averaged over the ensemble,

L i j 5~dn
kd j

s2d j
kdn

s!@2 1
2¹kPis

n 1Qkis
n #1l i j . ~12!

Here

Pis
n 5^hl

nV is
l &, ~13!
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a

x

ma
E d4p

A~2g!
H 2

1

2
pipju

kum2
1

4
gi j p

kpm

2
1

2
pipjg

km1
1

4
ma

2c2gi j g
km1pip

kd j
m1pj p

kd i
m

2
1

2
ma

2c2d i
kd j

mJ ^Nahkm&. ~15!

Indices are raised and lowered using the metricgi j .
To simplify ~13! and ~14! still further, we only have to

calculatehi j and V i j
l inside the region determined by th

correlation radius and the corresponding correlation tim
Only distant collisions provide the main contribution to th
calculated macroscopic quantities. To allow for this con
bution it is enough to findhi j from the Einstein equations
linearized with respect to the metricgi j . Since we assume
that the metric inside the correlation region is constant,
can introduce a locally Lorentzian reference frame near
point at which we wish to calculate the values ofhi j .

Thus, subsequent calculations do not have a covar
form, but they are all done for the purpose of determining
components of the tensorL i j at some~arbitrary! point q in
the selected reference frame, in whichgi j 5h i j is the
Minkowski tensor. In this reference frame the intervalds2

has the form

ds25~dh!22~dq1!22~dq2!22~dq3!2.

The final result must be written in covariant form.
The expressions forhi j andV i j

l , derived from the Ein-
stein equations linearized with respect to the Minkow
metric ~which we still denote bygi j ! were found in Ref. 1:

hi j ~h,q!5(
b
E d4p8E d3q8E d3kE

2`

h
dh8

3e2 ik–~q2q8!hi j
~b!~h,h8,p8,k!Fb~h8,q8,p8!,

~16!

V jk
i ~h,q!5(

b
E d4p8E d3q8E d3kE

2`

h
dh8

3e2 ik–~q2q8!V jk
i ~b!~h,h8,p8,k!

3Fb~h8,q8,p8!, ~17!

whereq5(q1,q2,q3) is a three-dimensional radius vector
the given reference frame, andk5(k1 ,k2 ,k3). Here
Fb5Nb2nbf b ,

hi j
~b!~h,h8,p8,k!52

ixmbc2

~2p!3k S ui8uj82
1

2
gi j D $eik~h82h!

2e2 ik~h82h!%, ~18!

and

V jk
i ~b!~h,h8,p8,k!5

xmbc2

2~2p!3k H F S uj8uk82
1

2
gjkD k1

i
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2 u8u8 i2
1

d i k12 u8u8 i

ble

on

g ~x,x8!5E d3kEh dt ]
~plpmD f ~x!!

de-
S j 2 j D k S k

2
1

2
dk

i D kj
1Geik~h82h!2F S uj8uk8

2
1

2
gjkD k2

i 2S uj8u8 i2
1

2
d j

i D kk
2

2S uk8u8 i2
1

2
dk

i D kj
2Geik~h82h!J .

~19!

In ~18! and ~19! we introduced the following vectors:

ki
15~k,k!, ki

25~2k,k!,

where

k5A@~k1!21~k2!21~k3!2#5uku.

Obviously,ki
2(k)52ki

1(2k).
Substitution of~16!–~19! in ~13!–~15! yields the follow-

ing expressions forpis
n , Qkis

n , andl i j :

Pis
n 5(

bc
E d4p8E d4p9E d3q8E d3q9E

2`

h
dh8E

2`

h
dh9

3E d3k8E d3k9e2 ik8•~q2q8!e2 ik9•~q2q9!hl
n~b!

3~h,h8,p8,k8!V is
l ~c!~h,h9,p9,k9!nbncgbc~x8,x9!,

~20!

Qkis
n 5(

bc
E d4p8E d4p9E d3q8E d3q9E

2`

h
dh8

3E
2`

h
dh9E d3k8E d3k9e2 ik8•~q2q8!e2 ik9•~q2q9!

3Vkl
n~b!~h,h8,p8,k8!V is

l ~c!

3~h,h9,p9,k9!nbncgbc~x8,x9!, ~21!

l i j 52(
ab

x

ma
E d4pE d4p8E d3q8E

2`

h
dh8

3E d3k8e2 ik8•~q2q8!H 2
1

2
pipju

kum2
1

4
gi j p

kpm

2
1

2
pipjg

km1
1

4
ma

2c2gi j g
km1pip

kd j
m1pj p

kd i
m

2
1

2
ma

2c2d i
kd j

mJ hkm
~b!~h,h8,p8,k8!nanbgab~x,x8!. ~22!

In these expressions unprimed, primed, and dou
primed quantities refer to particles belonging to speciesa,
speciesb, and speciesc, respectively.

The quantitiesgab(x,x8) in ~20!–~22! are two-particle
correlation functions, which inside the correlation regi
have the following form:1,3

629 JETP 85 (4), October 1997
-

ab
2` p0 F]pi

i j a G
t

3E
2`

t dt8

u80 f b~x8!V lm
j ~b!~t,t8,p8,k!

3expF2 ik–~q2q8!1
i

c
~k–v!~h2t!

1
i

c
~k–v8!~t82h8!G1E d3kE

2`

h8 dt8

p80

3F ]

]pi8
~p8 l p8mD i j8 f b~x8!!G

t8

E
2`

t8 dt

u0 f a~x!

3V lm
j ~a!~t8,t,p,k!expF2 ik–~q82q!

1
i

c
~k–v8!~h82t8!1

i

c
~k–v!~t2h!G . ~23!

Heret8 indicates that into the corresponding expression
pendent on the primed coordinatesq8 and momentapi8 at
time h8 we must substitutet8 andq81v8(t82h8)/c for h8
andq8, respectively. The indext has a similar meaning.

If we now substitute~23! in ~20!–~22! and integrate with
respect toq8, q9, k8, and k9, we arrive at the following
expressions forPis

n , Qkis
n , andl i j :

Pis
n 5(

bc
nbnc~2p!6E d4p8E d4p9E

2`

h
dh8E

2`

h
dh9

3E d3kH E
2`

h8 dt8

p80 F ]

]pt8
~p8rp8mD t j8 f b~x8!!G

t8

3E
2`

t8 dt9

u90 f c~x9!V rm
j ~c!~t8,t9,p9,2k!

3expF i

c
~k–v9!~h92t9!1

i

c
~k–v8!~t82h8!G

1E
2`

h9 dt9

p09 F ]

]pt9
~p9rp9mD t j9 f c~x9!!G

t9

3E
2`

t9 dt8

u80 f b~x8!V rm
j ~b!~t9,t8,p8,k!

3expF i

c
~k–v9!~h92t9!1

i

c
~k•v8!~t82h8!G J

3hl
n~b!~h,h8,p8,2k!V is

l ~c!~h,h9,p9,k!, ~24!

Qkis
n 5(

bc
nbnc~2p!6E d4p8E d4p9E

2`

h
dh8E

2`

h
dh9

3E d3kH E
2`

h8 dt8

p80 F ]

]pt8
~p8rp8mD t j8 f b~x8!!G

t8

3E
2`

t8 dt9

u90 f c~x9!V rm
j ~c!~t8,t9,p9,2k!
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exp
i

~k–v9!~h92t9!1
i

~k–v8!~t82h8!

-
th
he
-
e

h

3d f2 u9 lu92
1

d l d f ~m u8mK ~1!~u8,u9!

r-
Fc c G
1E

2`

h9 dt9

p09 F ]

]pt9
~p9rp9mD t j9 f c~x9!!G

t9

E
2`

t9 dt8

u80

3 f b~x8!V rm
j ~b!~t9,t8,p8,k!expF i

c
~k–v9!~h92t9!

1
i

c
~k•v8!~t82h8!G J Vkl

n~b!~h,h8,p8,2k!V is
l ~c!

3~h,h9,p9,k!, ~25!

l i j 52(
bc

x~2p!3nbnc

mc
E d4p8E d4p9F2

1

2
pi9pj9u9ku9m

2
1

4
gi j p9kp9m2

1

2
pi9pj9g

km1
1

4
mc

2c2gi j g
km1pi9p9kd j

m

1pj9p9kd i
m2

1

2
mc

2c2d i
kd j

mG E
2`

h
dh8E d3khkm

~b!~h,h8,p,

2k!H E
2`

h8 dt8

p80 F ]

]pr8
~p8 l p8sDnr8 f b~x8!!G

t8

3E
2`

t8 dt9

u90 f c~x9!V ls
n~c!~t8,t9,p9,2k!

3expF i

c
~k–v9!~h2t9!1

i

c
~k–v8!~t82h8!G

1E
2`

h dt9

p90 F ]

]pr9
~p9 l p9sDnr9 f c~x9!!G

t8

3E
2`

t9 dt8

u80 f b~x8!V ls
n~b!~t9,t8,p8,k!

3expF i

c
~k–v9!~h2t9!1

i

c
~k–v8!~t82h8!G J . ~26!

To simplify ~24!–~26! still further, we proceed as fol
lows. First, we assume that inside the correlation region
distribution function changes little, so that in calculating t
integrals in~24!–~26! we can ignore, in the first approxima
tion, the dependence off on the temporal coordinate. W
substitute the explicit expressions forhi j

(b) and Vk j
i (b) ~Eqs.

~18! and ~19!! in ~24!–~26! and evaluate the integrals wit
respect tot8, t9, h8, h9, andk. Then the expression forPis

n

becomes

Pis
n 5(

bc

x3mbmcnbncc
6

8~2p!3 E d4p8

3E d4p9 f b~x8! f c~x9!@1210~u8u9!2#S u8nul82
1

2
d l

nD
3F S ui9us92

1

2
gisDgl f 2S u9 lui92

1

2
d i

l D
630 JETP 85 (4), October 1997
e

s S s 2 sD i G c f m

1mbu9mK f m
~2!~u8,u9!!2(

bc

x3mbmcnbncc
7

4~2p!3

3E d4p8E d4p9S u8nul82
1

2
d l

nD F S ui9us92
1

2
gisDgl f

2S u9 lui92
1

2
d i

l D ds
f2S u9 lus92

1

2
ds

l D d i
f G

3H F ~u8u9!2~d j
m1uj8u8m!2

1

2
~d j

m2uj8u8m!

22~u8u9!u8muj9G f c~x9!
] f b~x8!

]pj8
K f m

~1!~u8,u9!

1F ~u8u9!2~d j
m1uj9u9m!2

1

2
~d j

m2uj9u9m!

22~u8u9!u9muj8G f b~x8!
] f c~x9!

]pj9
K f m

~2!~u8,u9!J . ~27!

Here we have introduced the notationK f m
(1)(u8,u9) andK f m

(2)

3(u8,u9) for the tensors that in a locally Lorentzian refe
ence frame, in whichgi j 5h i j is the Minkowski tensor, have
the following form:

K f m
~1!~u8,u9!

5
1

u80u90 E d3k

k3 E
2`

h
dh8E

2`

h
dh9E

2`

h8
dt8E

2`

t8
dt9

3~eik~h82h!2e2 ik~h82h!!~kf
1eik~h92h!2kf

2e2 ik~h92h!!

3~km
1e2 ik~t92t8!2km

2eik~t92t8!!expF i

c
~k–v9!~h92t9!

1
i

c
~k–v8!~t82h8!G ,

K f m
~2!~u8,u9!

5
1

u80u90 E d3k

k3 E
2`

h
dh8E

2`

h
dh9E

2`

h9
dt9E

2`

t9
dt8

3~eik~h82h!2e2 ik~h82h!!~kf
1eik~h92h!2kf

2e2 ik~h92h!!

3~km
1e2 ik~t92t8!2km

2eik~t92t8!!expF i

c
~k–v9!~h92t9!

1
i

c
~k–v8!~t82h8!G .

After we carry out the integrals with respect tot8, t9,
h8, andh9 these expressions assume the form

K f m
~1!~u8,u9!

5
2pc5

u80u90 E d3k

k2 d~k–v92k–v8!

630A. V. Zakharov



3
kf

1km
1

1
kf

1km
21kf

2km
1
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te
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Ki j ~u8,u9!5Ki j ~u9,u8!,

x-
~kc2k–v9!~kc1k–v9!3 ~kc2k–v9!2~kc1k–v9!2

1
kf

2km
2

~kc2k–v9!3~kc1k–v9! J 5K f m~u8,u9!, ~28!

K f m
~2!~u8,u9!52K f m

~1!~u8,u9!52K f m~u8,u9!. ~29!

The above equalities hold only in a locally Lorentzia
reference frame. To obtain covariant expressions for the
sorsK f m

(1)(u8,u9) andK f m
(2)(u8,u9), we take into account the

following fact. The quantitiesK f m
(1)(u8,u9) and K f m

(2)(u8,u9)
appeared in~27! after the correlation functiongab(x8,x9)
was substituted in~20! and the result was integrated wit
respect toq8, q9, k8, andk9. But the expression~23! for the
two-particle correlation function is a sum of two term
which differ in that primed quantities referring to particles
speciesa are replaced by double-primed quantities referr
to particles of speciesb, and vice versa. It is after these term
were integrated with respect toq8, q9, k8, andk9 that K f m

(1)

3(u8,u9) andK f m
(2)(u8,u9) appeared in~27!. Obviously, the

two must be calculated in the same reference frame,
which it is convenient to take the center-of-mass refere
frame, in which

v85v, v952v, u805u905
1

A12v2/c2
5u0.

In this reference frame,

K005K0a50, Kab5
2p2c

vu0
2kmin

2 S dab2
vavb

v2 D . ~30!

Here v5Av1
21v2

21v3
2, whereva5va5ua/u0 are the spa-

tial components of the vectorv.
A covariant generalization of~30! has the form

Ki j ~u8u9!5
4p2

kmin
2 @~u8u9!221#3/2$2@~u8u9!221#gi j

2ui8uj82ui9uj91~u8u9!~ui8uj91ui9uj8!%.

~31!

The expressions forK f m
(1)(u8,u9) and K f m

(2)(u8,u9) di-
verge ask→0, i.e., for large impact parameters. The reas
is that we integrate over an infinite region, while actually w
should integrate only over the correlation region, where
metric is assumed to vary only weakly. This difficulty
resolved, just as it is when the kinetic equation is derived,
introduce a cutoff procedure in the divergent integ
*0

`k23dk.
We set the lower integration limit tokmin51/r max rather

than zero, wherer max is the size of the correlation region~the
correlation radius!. Then the above integral assumes t
value 1/2kmin

2 5(1/2)r max
2 . As the experience of deriving th

relativistic kinematic equation4,5 shows, more thorough in
vestigations suggest that the integrals become converge
r→`, with the contribution from the region wherer .r max

being infinitesimal. In Refs. 4 and 5 there are estimates
r max in the case where the average metricgi j is the metric of
the isotropic cosmological model.

The tensor~31! possesses the following properties:
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Ki j u8 i5Ki j u9 i50, Ki j 5K ji . ~32!

Because of this the expression forPis
n simplifies consider-

ably. The macroscopic Einstein equations incorporate notPis
n

but the tensorw i j
k 52 1

2(dn
kd j

s2d j
kdn

s). The expression for this
tensor can be written as follows:

w i j
k 52(

bc

x3mb
2mc

2nbncc
7

8~2p!3

3E d4p8

A~2g!
E d4p9

A~2g!
F1

2
gf kui9uj91u8k~u8u9!

3~d j
fui91d i

fuj9!G S ~u8u9!22
1

2DK f r~u8,u9!

3S f c~x9!
] f b~x8!

]pr8
2 f b~x8!

] f c~x9!

]pr9
D . ~33!

Note that

gi j w i j
k 50, w i j

i 50, w i j
k 5w j i

k . ~34!

Reasoning along similar lines, we can simplify the e
pression for the tensor

m i j 5~dn
kd j

s2d j
kdn

s!Qkis
n 1l i j , ~35!

which assumes the following form:

m i j 5(
bc

x3mbmchbhcc
6

16~2p!3

3E d4p8

A~2g!
E d4p9

A~2g!
f b~x8! f c~x9!~1210~u8u9!2!

3H u8quj8d i
r2u9ruj9d i

q1gqrF S ~u8u9!2

1
1

2Dui9uj91
1

2 S ~u8u9!22
1

2Dgi j 22~u8u9!ui8uj9G
2S ~u8u9!22

1

2D d i
qd j

r J ~mcu8mJrqm
~1! ~u8,u9!

1mbu9mJrqm
~2! ~u8,u9!!

2(
bc

x3mb
2mc

2nbncc
7

8~2p!3 E d4p8

A~2g!
E d4p9

A~2g!

3H u8quj8d i
r2u9ruj9d i

q1gqrF S ~u8u9!21
1

2Dui9uj9

1
1

2 S ~u8u9!22
1

2Dgi j 22~u8u9!ui8uj9G
2S ~u8u9!22

1

2D d i
qd j

r J H F S ~u8u9!22
1

2D d f
m

1S ~u8u9!21
1

2Duf8u8m22~u8u9!uf9u8mGJrqm
~1!
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3~u8,u9! f ~x9!
] f b~x8!

1 ~u8u9!22
1

dm

ce

as

spatial indices of the three-dimensional velocity vectorva

bol

te-

the

re
nce
c ]pf8
F S 2D f

1S ~u8u9!21
1

2Duf9u9m22~u8u9!uf8u9mGJrqm
~2!

3~u8,u9! f b~x8!
] f c~x9!

]pf9
J . ~36!

Here we have introduced the notationJrqm
(1) (u8,u9) and

Jrqm
(2) (u8,u9) for tensors that in a locally Lorentzian referen

frame have the form

Jlmn
~1! ~u8,u9!

5
1

u80u90 E d3k

k3 E
2`

h
dh8E

2`

h
dh9E

2`

h8
dt8E

2`

t8
dt9

3~kl
1e2 ik~h82h!2kl

2eik~h82h!!~km
1eik~h92h!

2km
2e2 ik~h92h!!~kn

2eik~t92t8!2kn
1e2 ik~t92t8!!

3expF i

c
~k–v9!~h92t9!1

i

c
~k–v8!~t82h8!G ,

Jlmn
~2! ~u8,u9!

5
1

u80u90 E d3k

k3 E
2`

h
dh8E

2`

h
dh9E

2`

h9
dt9E

2`

t9
dt8

3~kl
1e2 ik~h82h!2kl

2eik~h82h!!

3~km
1eik~h92h!2km

2e2 ik~h92h!!~kn
2eik~t92t8!

2kn
1e2 ik~t92t8!!expF i

c
~k–v9!~h92t9!

1
i

c
~k–v8!~t82h8!G .

After evaluating the integrals with respect toh8, h9, t8,
andt9, we arrive at

Jlmn
~1! ~u8,u9!

5
c4

u90u90 E/ d3k

k3

1

~k–v92k–v8!

3H kl
1km

1kn
1

~kc1k–v9!3 1
kl

1km
1kn

21kl
1km

2kn
11kl

2km
1kn

1

~kc1k–v9!2~kc2k–v9!

1
kl

1km
2kn

21kl
2km

1kn
21kl

2km
2kn

1

~kc1k–v9!~kc2k–v9!2 1
kl

2km
2kn

2

~kc2k–v9!3 J . ~37!

The expression forJlmn
(2) (u8,u9) can be derived from the

expression forJlmn
(1) (u8,u9) by replacingv8 with v9 and vice

versa. The slash indicates that the integral is calculated
principal value.

Just as we did in the previous case, we specify~37! in
the center-of-mass reference frame, wherev85v, v952v,
andu805u9051/A12v2/c25u0. In this reference frame the
components ofJlmn

(1) (u8,u9) have the following form~the
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a

are lowered using the three-dimensional Kronecker sym
dab!

J00052a~v !
v2

c2 , J00a52a~v !
va

c
,

J0ab52a~v !dab1b~v !S dab2
vavb

v2 D , ~38!

Jabg52
c2

v2 a~v !Fdab

vg

c
1dag

vb

c

1dbg

va

c
22

vavbvg

cv2 G1
c2

v2 b~v !

3F S dab2
vavb

v2 D vg

c
1S dag2

vavg

v2 D vb

c

1S dbg2
vbvg

v2 D va

c G . ~39!

The functionsa andb in ~38! and ~39! depend only on
the velocityv5Av1

21v2
21v3

2 and have the explicit form

a5
pc3

u0
2v3kmin

F2~v/c!~11v2/c2!

~12v2/c2!2 1 ln
12v/c

11v/cG , ~40!

b5
pc3

2u0
2v3kmin

F2~v/c!~322~v2/c2!13~v4/c4!!

~12v2/c2!2

13S 11
v2

c2D ln
12v/c

11v/cG . ~41!

Here we have introduced the following notation for the in
gral:

1

kmin
5E

kmin

` dk

k2 .

Reasoning in the same way as we did earlier, we set
lower integration limit tokmin51/r max.

A covariant generalization of these results, which we
obtained in the locally Lorentzian center-of-mass refere
frame, to arbitrary reference frames has the form

Ji jk
~1!~u8,u9!5Ji jk

~2!~u9,u8!5Ji jk~u8,u9!, ~42!

with

Ji jk~u8,u9!

5A@~gi j uk81gikuj81gjkui8!2z~gi j uk91gikuj91gjkui9!

2~ui8uj9uk91ui9uj8uk91ui9uj9uk8!13zui9uj9uk9#

1C@ui8uj8uk82z~ui8uj8uk91ui8uj9uk81ui9uj8uk8!

1z2~ui8uj9uk91ui9uj8uk91ui9uj9uk8!2z3ui9uj9uk9#, ~43!

wherez5(u8u9)5(u8 iui9),

A52
2p&

kmin
F z22

~z21!2~z11!1/2
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1
2z21

ln~z1Az221! , ~44!

s
s

n

po
en
io

ts
m

wk 52
x3mb

3mc
3c9

nal

,

o-

-

n-
-
s

ua-
sor,
ibu-
~z11!~z21!5/2 G
C52

2p&

kmin
F z26

~z21!3~z11!3/2

1
6z21

~z11!2~z21!7/2ln~z1Az221!G . ~45!

The tensorJi jk(u8,u9) satisfies the identity

Ji jk~u8,u9!u9k50. ~46!

By virtue of the properties~42! and ~46!, we can write
the expression~36! for m i j in the following covariant form:

m i j 52(
bc

x3mb
2mc

2nbncc
7

8~2p!3

3E d4p8

A~2g!
E d4p9

A~2g!
H F S z21

1

2D ~ui9uj91ui8uj8!

1S z22
1

2Dgi j 22z~ui8uj91ui9uj8!Ggqr

22S z22
1

2D d i
qd j

r J f c~x9!
]

]pf8
H f b~x8!F S z22

1

2D d f
m

1S z21
1

2Duf8u8m22zuf9u8mG J Jrqm~u8,u9!. ~47!

where we used the identity

]

]pf8
F S z22

1

2D d f
m1S z21

1

2Duf8u8m22zuf9u8mG
5S 5z22

1

2D u8m

mbc
.

Note that the tensorm i j is traceless:

gi j m i j 50. ~48!

From ~34! and ~48!, the macroscopic Einstein equation
for a system of self-gravitating particles can be written a

Gi j 1w i j ;k
k 1m i j 5xTi j , ~49!

where the semicolon stands for a covariant derivative i
space with the metricgi j , Gi j is the Einstein tensor of this
space, andTi j is the energy-momentum tensor.

The tensorsw i j
k andm i j are expressed via~33! and ~47!

in terms of one-particle distribution functionf b specified in
the eight-dimensional phase space in which all four com
nents of the four-dimensional momentum are independ
The transition to the seven-dimensional distribution funct
Fb is made according to the formula

nbf b~qi ,pj !5Fb~qi ,pa!d~Aglmplpm2mbc!.

Here the functionsFb depend only on the spatial componen
of momentum~we use greek indices to denote spatial co
ponents!.

By integrating~33! and ~47! with respect top08 and p09
we can reduce the tensorsw i j

k andm i j to the form
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-
t.

n

-

i j (
bc 8~2p!3

3E d3p8

p80A~2g!
E d3p9

p90A~2g!

3F1

2
gf kui9uj91u8k~u8u9!~d j

fui91d i
fuj9!G

3S ~u8u9!22
1

2DK f a~u8,u9!

3S Fc~x9!
]Fb~x8!

]pa8
2Fb~x8!

]Fc~x9!

]pa9
D , ~50!

m i j 52(
bc

x3mb
3mc

3c9

8~2p!3

3E d3p8

p80A~2g!
E d3p9

p90A~2g!

3H F S z21
1

2D ~ui9uj91ui8uj8!1S z22
1

2D
3gi j 22z~ui8uj91ui9uj8!Ggqr22S z22

1

2D d i
qd j

r J
3Fc~x9!

]

]pf8
H Fb~x8!F S z22

1

2D d f
m1S z21

1

2D
3uf8u8m22zuf9u8mG J Jrqm~u8,u9!. ~51!

Here

d3p8

p80A~2g!
and

d3p9

p90A~2g!

are the invariant volume elements in the three-dimensio
momentum space of particles of speciesb and c, respec-
tively. The greek indexa in ~50! assumes only the values 1
2, and 3~the spatial index!. The derivative with respect topf8
in ~51! should be calculated as if all four component of m
mentum are independent. The dependence ofp08 on pa8 is
taken into account only after differentiation with respectpf8
is completed.

The tensorsw i j
k andm i j must obey the additional condi

tion

gl j ~w i j ;k
k 1m i j ! ; l50, ~52!

since the divergences ofGi j andTi j vanish.
Equation~52! imposes certain restrictions on the depe

dence of the parameterkmin on the coordinates and the rela
tive velocity of particles~the latter can be expressed in term
of z!.

The right-hand side of the macroscopic Einstein eq
tions contains the macroscopic energy–momentum ten
which can be expressed in terms of the one-particle distr
tion functionsFb as follows:
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15k2r max
m2m2N N . ~56!

ies

om
te
e
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rgy
at
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s-

the
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of
lay
into
the
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of
g-

un-

8

Ti j 5(
b

E
p0A~2g!

pipjFb~p!. ~53!

The system of equations~49!–~53! must be augmented
by the kinetic equation forFb , which can be obtained from
~8! by integrating with respect top0 and has the form of Eq
~53! of Ref. 1

3. POSSIBLE APPLICATIONS OF THE THEORY

The equations of the gravitational field for continuu
media obtained here differ from the classical Einstein eq
tions by the presence of two additional terms,w i j ;k

k andm i j ,
on the left-hand side.

These terms are proportional to the cube of the Eins
constant and to the square of the particle number den
Hence these terms can play an important role only in c
tinuous media of very high density. Such densities are p
sible in the early stages of the evolution of the universe
inside objects close to gravitational collapse. Therefore,
natural to look for applications of the derived equations p
marily in the theory of early stages of the evolution of t
universe and in gravitational collapse theory.

Let us apply the derived macroscopic equations to a
dium that is in a state of local thermodynamic equilibriu
where each particle species is described by a general rel
istic distribution function of the type6

Fa~qi ,pa!5AaexpF2
c~v i p

i !

kBT G . ~54!

Herev i is the macroscopic 4-velocity of the medium,kB is
the Boltzmann constant,T is the temperature, andAa is a
normalization constant.

In this case the tensorw i j
k is identically equal to zero and

the tensorm i j has the form

m i j 52xe~ 4
3v iv j2

1
3gi j !. ~55!

If we move m i j from the left-hand side of the macro
scopic equations~49! to the right-hand side, the equation
become the ordinary Einstein equations with an additio
energy–momentum tensor that resembles the ener
momentum tensor of an ideal liquid with an equation of st
P5e/3 but with a negative ‘‘energy density.’’

In the nonrelativistic limitmc2@kBT the absolute value
of this energy density is~we drop all intermediate calcula
tions!
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HereNa andNb are the particle number densities of spec
a andb, respectively. In the ultrarelativistic limitmc2!kBT
the expression for this negative energy density differs fr
~56!. Here we will not write the corresponding formula. No
that atmc25kBT the result coincides in order of magnitud
with ~56!.

As noted in the Introduction, due to the smallness of
gravitational constant, the contribution of a negative ene
density to the total density of matter manifests itself only
high densities~in the early stages of the evolution of th
universe! or in macrosystems consisting of extremely ma
sive objects~clusters of galaxies!.

It must also be noted that the additional terms on
left-hand side of the macroscopic equations for the grav
tional field in continuous media have been obtained o
with allowance for a system of self-gravitating particles
the medium. In media where other types of interaction p
an important role these interactions must also be taken
account. For instance, electromagnetic interactions play
leading role in plasmas. Hence in deriving the equations
the gravitational field in a relativistic plasma~in particular, a
plasma at the radiation-dominated stage of the evolution
the universe!, we must primarily account for the electroma
netic interactions.
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Bose–Einstein condensation in a static scalar field from the standpoint of the Goursat

problem

A. A. Borgardt and D. Ya. Karpenko

Donetsk Physicotechnical Institute, Ukrainian National Academy of Sciences, 340114 Donetsk, Ukraine
~Submitted 31 December 1996!
Zh. Éksp. Teor. Fiz.112, 1167–1175~October 1997!

The Goursat problem, developed by the present authors in previous papers@Ukr. Fiz. Zh. ~Russ.
Ed.! 27, 1602~1982!; Differentsial’nye Uravneniya20, 302 ~1984!; J. Math. Phys.33, 233
~1996!#, is used to study the energy spectrum of a scalar relativistic particle in a static
axisymmetric external scalar field of an attractive nature. This is obviously a model. It is
shown that the problem formulated in this way has no unstable solutions, i.e., solutions increasing
with time, in contrast to the Cauchy problem, where such solutions appear when the square
of the particle frequency~energy! vanishes~in other words, in a Bose–Einstein condensation!
© 1997 American Institute of Physics.@S1063-7761~97!00210-2#

1. INTRODUCTION v2 mc 2 mV~r !
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S 1D2S D 2 Df~r !50, ~2!
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5-
The Goursat problem can only be applied to hyperbo
and hence relativistic, equations. In such a formulation
of the spatial coordinates~for the sake of definiteness w
assume it to bez, but the procedure is relativistically cova
riant! is singled out and the initial value of the wave functio
is specified along the characteristicsj5ct2z50 and
h5ct1z50 ~Ref. 4!. A solution is then sought in the time
like region, the two-dimensional Minkowski subspa
M (1)

2 , wherejh5c2t22z2>0, or in the space-like region
M(2)

2 , wherejh5c2t22z2<0. What is important is tha
this is the only formulation of the problem that distribut
the solutions of the wave equation among the regions
two-dimensional ~four-dimensional! Minkowski space,
which precludes violation of the uniqueness theorem, e
the emergence of two Green’s functions in electrodynami5

The Goursat problem, which is one-dimensional in
classical formulation, is generalized to the three-dimensio
wave equation in Refs. 1–3 and 6.

Here we apply this method to study the behavior o
relativistic particle in a static external scalar field, which
added to the square of the massm according to the rule

m2→m21
mV

c2 , ~1!

whereV is the external scalar field. Such fields are examin
by Schiff et al.,7 Bethe,8 Kokkedee,9 Migdal,10 and many
others. Equation~1! is probably as fundamental in nonele
tromagnetic interactions as the minimality princip
p→p1(e/c)A is in electromagnetic interactions.

If the external scalar fieldV is static, spherically sym-
metric (V5V(ur u)), and attractive, the Klein–Fock–Gordo
~KFG! equation may, if formulated in terms of the Cauc
problem, have solutions that increase in time~unstable solu-
tions!. Below we briefly summarize results obtained by su
an approach~a detailed description can be found in Ref. 1
Chap. 11, p. 103!. The KFG equation for a static fieldV(r )
has the form
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where the total wave function isc(r ,t)5exp(2ivt)f(r ).
Multiplying Eq. ~2! by f* and integrating over three

dimensional space, we obtain

v2

c2 5
p2

\2 1S mc

\ D 2

1
m V̄

\2 , ~3!

where

p25E ~dr !u¹fu2,

and V̄ is the mean value of the potential. Suppose thatV(r )
is a well of depth2V0 . Then Eq.~3! becomes

v2

c2 5
p2

\2 1
m2c2

\2 2
mV0

\2 . ~4!

We see that for certain values of the well parameters,v250
~in Ref. 10 this phenomenon is called Bose condensati!,
and further deepening of the well leads to negative value
v2. This means that there are solutions that increase in t
~are unstable!:

c~r ,t !5exp~ uvut !f~r !.

If we study what is known as helical motion~the particle
moves freely along thez axis, while in the plane perpendicu
lar to this axis there is an axisymmetric fieldV5V(xT) act-
ing on the particle, withxT5(x1

21x2
2)!, the solution of the

KFG equation formulated in terms of the Cauchy problem

c~r ,t !5expS 2 ivt1
ipzz

\ Df~x1 ,x2!. ~5!

The same line of reasoning can be used to show
there are certain values of the parameters of a tw
dimensional well~critical parameters! at which the square o
the frequency,v2, vanishes~Bose condensation sets in!;
thenv2 becomes negative and unstable solutions emerg

63505$10.00 © 1997 American Institute of Physics



We now show how helical motion shows up in our prob-
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wherek05mc/\, b5g2/\c is the coupling constant,nr is

the
ity

-

nd

the
ns-
lem. In contrast to the solution~5!, in the Goursat problem
the wave function of the KFG equation

S ]2

]z2 2
1

c2

]2

]t2 1DT2S mc

\ D 2

2
mV

\2 Dc~xT ,z,t !50, ~6!

with DT5]2/]x1
21]2/]x2

2, is an eigenfunction of the one
dimensional wave operator

L̂5
]2

]z2 2
]2

c2]t2 524
]2

]j]h
,

so that

L̂c5Q2c, cuj50,h505f~xT!. ~7!

The fundamental solution~the Riemann function! of the
one-dimensional wave equation

S 4
]2

]j]h
1Q2Dc~j,h!50

is well-known:

c~j,h!5J0~AjhQ2!5J0~A~c2t22z2!Q2!, ~8!

whereJ0(t) is the zeroth-order Bessel function of the fir
kind, andjhQ2>0.

If we considerQ2 an elliptic operator that is independe
of the characteristic variables~j,h! or (z,ct), i.e.,

Q25S mc

\ D 2

2DT1
mV~xT!

\2 ,

we can write the KFG equation in operator form:3

c~xT ,z,t !5J0SA~c2t22z2!S m2c2

\2 2DT1
mV

\2 D D u0&,

~9!

where u0&5cuct2z50,ct1z505f(xT) is the initial value of
the wave function along the characteristicsj5ct2z50 and
h5ct1z50.

In this paper we examine the axial analog of Keple
problem11 and a two-dimensional oscillator potential. Usin
such potentials, which allow for an analytic solution, as e
amples, we can study the features of the energy spec
that emerge in the Goursat problem.

2. AXIAL ANALOG OF KEPLER’S PROBLEM

Suppose that a relativistic particle moves in an axisy
metric fieldV(xT)52g2/xT , where the constantg is a free
parameter that determines the interaction of the particle
the external scalar field. The parameterQ2 in this case has
the form

Q25S mc

\ D 2

2DT2
mg2

xT\2 ,

and the eigenfunctions of transverse motion satisfy the eq
tion

S DT1
bk0

xT
Dfnr ,m~xT ,w!2S bk0

N D 2

fnr ,m~xT ,w!, ~10!
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the radial quantum number,m is the azimuthal quantum
number, n is the principal quantum number,N52n11,
n5nr1umu, xT5Ax1

21x2
2, andw is the polar angle.

Plugging ~10! into ~9!, we arrive at a solution of the
KFG equation in the form

c~xT ,z,t !5J0SA~c2t22z2!k0
2S 12

b2

N2D Dfnr ,m~xT ,w!.

~11!

We write the coupling constantb5g2/\c as b52nC11,
where we callnC the condensate quantum number. Then
solution ~11! assumes a form that is convenient for stabil
studies:

c~xT ,z,t !5J0SA~c2t22z2!S mnc

\ D 2

~n2nC! D
3fnr ,m~xT ,w!, ~12!

which contains the positive constant

mn
25m2

n1nC11

~n11/2!2 .

If g2/\c>1 ~strong coupling!, a finite number of lower
levels that satisfy the inequalityn2nC,0 emerge. To avoid
instability, we must go to subspaceM(2)

2 ~where
z22c2t2>0!, since stable solutions ‘‘migrate’’ to that sub
space.

Thus, in the case of strong coupling, the solution~12!
consists of two parts,

c5 (
n50

[nC]

c~2 !1 (
n5[nC] 11

`

c~1 !, ~13!

where@nC# is the integer part of the condensate number, a

c~2 !5J0~A~z22c2t2!~mnc/\!2~nC2n!!fnr ,m~xT ,w!,
~14!

c~1 !5J0~A~c2t22z2!~mnc/\!2~n2nC!!fnr ,m~xT ,w!,
~15!

fnr ,m5Cnmeimw2knxTF~2nr ,2umu11,2knxT!xT
umu , ~16!

kn5k0

nC11/2

n11/2
.

The time variable satisfies the inequalityutu<uzu/c in the
solution ~14! and the inequalityutu>uzu/c in the solution
~15!.

When the coupling is weak (g2/\c,1), the condensate
quantum number is negative and the subspaceM (2)

2 con-
tains no states.

We now establish how the solutions~14! and~15! in the
Goursat problem are related to the plane waves of
Cauchy problem. To this end we employ the Fourier tra
form of the Bessel functionsJ0 . In theM(1)

2 space we have

J0~A~c2t22z2!~mnc/\!2~n2nC!!
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dp
exp~ ipzz/\!sin~En~pz!utu/\!

, ~17!
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z En~pz!

whereEn(pz) is the particle~antiparticle! energy spectrum:

En~pz!5Ac2pz
21mn

2c4~n2nC!, n>@nC#11. ~18!

In the M(2)
2 space we have

J0~A~z22c2t2!~mnc/\!2~nC2n!!

5
1

pc E
2`

`

dE
exp~2 i E t/\!sin~pz~E !uzu/\!

pz~E !
, ~19!

where

pz~E !5pz,n~E !5
1

c
AE21mn

2c4~nC2n!, 0<n<@nC#.

~20!

Equations~18! and ~20! clearly show that the eigenva
ues of the one-dimensional wave operatorL̂ change sign
under a transition fromM(1)

2 to M(2)
2 and back.

Indeed, Eq.~18! implies thatE22c2pz
2>0 and Eq.~20!,

that E22c2pz
2<0. In the Goursat problem, the bounda

caseE25c2pz
2 corresponds to the emergence of a cond

sate.
The Fourier transform~17! suggests that the state of

particle ~antiparticle! in M (1)
2 is a linear combination of

plane waves that travel along thez axis and have an energ
defined by~18!. The group velocity of this packet is

vz5
dEn

dpz
5

c2pz

En
5

c2pz
2

Ac2pz
21mn

2c4~n2nC!
,c. ~21!

In the M (2)
2 space the state is a linear combination

standing waves with group velocity

vz5
dE

dpz
5

c2pz

En
5

c2pz
2

Ac2pz
22mn

2c4~nC2n!
.c. ~22!

What is most interesting here is the limitnC→n70. In
this case the external scalar field ‘‘consumes’’ the parti
mass, in Migdal’s terminology.10 The massless particl
moves along thez axis with velocityvz5c70. Note that a
strong attractive scalar field can compensate for the par
mass: a constant magnetic field or the field of a plane e
tromagnetic wave increases the particle mass. For insta
the energy levels of a relativistic particle in a constant m
netic field are

En5Ac2pz
21mn

2c4, mn
25m2S 11

H

HS
~2n11! D ,

whereHS5ueu\/m2c3 is a constant Schro¨dinger field. These
levels are always dependent on the massm.

A constant electric field can perhaps also compensate
particle mass. This question is discussed in terms of
Cauchy problem in Refs. 12–14 and in many other papers
terms of the Goursat problem this question merits sepa
study.15

The minimum value of the condensate quantum num
nC for the wave function inM(1)

2 at which particle mass is
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b5g /\c'3, i.e., atnC5120. In this case theM (2) space
contains only the ground state withn50, whose wave func-
tion is

c0
~2 !5C0 exp~23k0xT!J0~A8k0

2~z22c2t2!!. ~23!

In substituting~23! into the KFG equation, one must tak
into account a property of the Bessel functionsJ0 , namely

L̂J0~A8k0
2~z22c2t2!!528k0

2J0~A8k0
2~z22c2t2!!.

~24!

States withn>1 belong to the subspaceM (1)
2 , and in the

harmonic withn51 the mass is compensated. This is a co
densate state. The wave functions of the condensate stat
threefold degenerate~the multiplicity of degeneracy is
2n11!:

c1
~1 !5C1,0 exp~2k0xT!~122k0xT!

1C1,61exp~6 iw2k0xT!xT . ~25!

When dealing with the Goursat problem, it is convenie
to classify states not by energy but by the eigenvalues of
characteristic operatorL̂, i.e., by the difference

E22c2pz
25ET

2 .

For nC5120 we have the spectrum

ET,0
2 528m2c4, ET,1

2 50,

ET,2
2 5~16/25!m2c4,..., ET,`

2 5m2c4.

A spontaneous transition to an excited condensate s
is possible if the momentum of translational motion is los

If nC5n10 (n>0), the mass compensation effect
observed inM(2)

2 at a smaller value of the condensate qua
tum numbernC , at g2/\c'1, i.e., atnC510. The wave
function of the condensate ground state is

c0
~2 !5C0,0 exp~2k0xT!. ~26!

The state withn51 belongs toM(1)
2 , and the wave func-

tion of this state is

c1
~1 !5expS 2

k0xT

3 D S C1,0S 12
2

3
k0xTD

1C1,61 xT exp~6 iw! D J0~A~8k0
2/9!~c2t22z2!!.

~27!

When the solution~27! is inserted into the KFG equation, w
again take into account the properties of the Bessel funct
~cf. ~24!!:

L̂J0~A~c2t22z2! 8
9k0

2!5 8
9k0

2J0~A~c2t22z2! 8
9k0

2!. ~28!

The energy spectrum starts at zero:

ET,0
2 50, ET,1

2 5~8/9!m2c4,..., ET,`
2 5m2c4.

The condensate state may be lost when the velocity along
z axis drops to
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2 ,c.

Since the condensate and noncondensate states belo
different subspaces ofM2, and hence ofM4, one should
expect that a condensate state~even an excited one! is stable.
For instance, for a condensate state to set in atnC5120, the
particle must give up the momentum of translational mot

pz5
1

c
AE218m2c4>2&mc.

3. AXIAL OSCILLATOR POTENTIAL „TWO-DIMENSIONAL
OSCILLATOR …

Let the static scalar field be a two-dimensional oscilla
potential:

V~xT!52V01
mV2xT

2

4
, ~29!

where the depthV0 and the oscillator frequencyV are free
parameters of the problem. The wave function of transve
motion,f(xT), is an eigenfunction of the oscillator equatio

S DT2
m2V2xT

2

4\2 Dfnr ,m~xT ,w!

52
mV

\
~n11!Fnr ,m~xT ,w!, ~30!

wheren52nr1umu is the principal quantum number.
According to~9!, the solution of this equation is

c~xT ,z,t !5J0SA~c2t22z2!S mc

\ D 2S 11
\V~n11!2V0

mc2 D D
3fnr ,m~xT ,w!, ~31!

where

fnr ,m5Cn,m expS imw2
mVxT

2

4\ D
3FS 2nr ,umu11,

mVxT
2

2\ D xT
umu . ~32!

Again, it is convenient to introduce the condensate qu
tum numbernC , taking

V05mc21\V~nC11!. ~33!

Then the solution~31! assumes a form convenient for stab
ity studies:

c~xT ,z,t !5J0SA~c2t22z2!S meffc

\ D 2

~n2nC! D
3fnr ,m~xT ,w!, ~34!

where the effective massmeff
2 5m\V/c2 depends on the fre

quencyV of the external field.
For n>@nC#11 the energy spectrum inM(1)

2 is

En~pz!5Ac2pz
21meff

2 c4~n2nC!,
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spaceM(2), with momentum quantized along thez axis:

pz,n5
1

c
AE21meff

2 c4~nC2n!.

The subspace M (2)
2 contains no bound states

V0,mc21\V.
Since the energy spectrum is uniformly spaced, the tr

sition fromM (1)
2 to M (2)

2 and back is related to acquisitio
or loss of momentum along thez axis (nC5n60):

pz5
1

c
AEn71

2 6mc2\V. ~35!

We can now formulate a somewhat general conclusi
For there to be a purely relativistic effect of particle ma
compensation by an external attractive field, the coupl
constant or, more precisely, the condensate quantum num
nC must take on values that are close to positive integ
There will then be a finite number of bound states inM (2)

2 .
It is these states, considered in terms of the Cauchy prob
that lead to unstable wave functions~i.e., increasing with
time!.

4. CONCLUSION

We have discussed the problem of condensate state
terms of the Goursat problem rather than in terms of
ordinary Cauchy problem. The drawback of the Cauc
problem is that the initial conditions are specified in thre
dimensional space att50, i.e., on a hyperplane in the spac
of superluminal velocities, while a solution is sought insi
the light cone.

We have studied two exactly solvable and simple mo
els. The first is the axial analog of Kepler’s problem with
variable coupling constant~one free parameter!. The second,
more complicated, problem, which involves two free para
eters~the depth and width of the potential well!, is the two-
dimensional oscillator. We show that at a certain value of
coupling constant, a finite number of bound states appea
the M (2)

2 space, where the velocities are superlumin
These states correspond to the emergence of unstable s
in the Cauchy problem whenE2,0. This involves allowing
for the boson–boson interaction and introducing a nonlin
equation, which can be solved only numerically.10 The Gour-
sat problem resolves this difficulty.

In the Goursat problem the energy spectrum inM (2)
2

~see ~18! and ~20!! does not allow for states withE2,0,
although a state withE50 is possible. For this reason,
linear combination of plane waves~see ~19!! is always
stable. If we look atM (1)

2 , the energy spectrum there star
at @nC#11; these states are stable in both approaches
transition fromM (2)

2 to M(1)
2 is possible if there is a mass

less condensate state, but this must involve a loss in mom
tum pz sufficient for the transition between the hyperbol
belonging to different sectors in the (E ,pz) space.

The migration of levels is related to an increase in t
value of the coupling constant, and in this way it resemb
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‘‘Inversionless’’ stimulated emission of radiation by nonequilibrium ensembles of

ly
classical oscillators
A. V. Gaponov-Grekhov and M. D. Tokman

Institute of Applied Physics, Russian Academy of Sciences, 603600 Nizhni� Novgorod, Russia
~Submitted 18 February 1997!
Zh. Éksp. Teor. Fiz.112, 1176–1196~October 1997!

We find classical analogs of quantum systems capable of stimulated emission of radiation in the
absence of inversion. We show that cyclotron parametric instability in low-frequency
modulation of the distribution function of resonant particles can amplify a bichromatic high-
frequency field when amplification of each spectral component separately is impossible. We point
to similar modes for a Cherenkov resonance and a model system with lumped parameters.
Finally, we suggest using this effect for converting microwave radiation to a higher frequency.
© 1997 American Institute of Physics.@S1063-7761~97!00310-7#

1. INTRODUCTION fundamental aspect of this problem is that it obvious
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The contemporary physics of radiative processes in p
mas and microwave electronics devices is based on a
analogy between the emission mechanisms of ensemble
quantum and classical oscillators. ‘‘Maser’’ mechanisms
emission by aggregates of charged particles occupy ce
stage in the theory of instabilities in laboratory1 and cosmic2

plasmas, and in the physics of free-electron masers
lasers1! ~see Refs. 3 and 4!. Here the instability criteria of
‘‘classical’’ distribution functions of charged particle
against coherent radiation various sorts of electromagn
waves are a natural generalization of the population inv
sion condition in an elementary two-level quantum syste
while the relaxation of unstable distributions to a ‘‘plateau
in momentum space~when spontaneous emission and non
diative relaxation are unimportant! is a direct analog of the
process in which the level populations in a resonant tra
tion become equal as a result of the interaction of the qu
tum system and high-power radiation~see, e.g., Ref. 2!.

The question of how universal the requirement is t
there must be a population inversion is obviously one of
most important aspects of the theory of interaction of rad
tion and matter. It would seem that apart from instability
quasimonochromatic electromagnetic modes in an inve
system and ‘‘pure noise’’ emission by an equilibrium e
semble, there might in principle be ‘‘intermediate’’ possibi
ties. In other words, can a nonequilibrium but noninver
system relax to equilibrium2! as a result of the instability of a
nonmonochromatic electromagnetic field3!? In recent years
such regimes of emission have been found to exist in qu
tum systems~here and below in this regard we cite the r
view in Ref. 6!. It is found, in particular, that when one o
the levels in an elementary two-level system is split~Fig. 1!,
under certain conditions there can be parametric instabilit
the system, which leads to emission of bichromatic radiat
in the absence of ordinary population inversion. Here, n
ertheless, electrons in the upper energy level serve a
energy reservoir, as in the case of ordinary ‘‘maser’’ ins
bility.

The present paper is devoted to a search for a clas
analog of an unstable quantum ‘‘inversionless’’ system. T
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broadens our ideas about the classes of aggregates of ch
particles that are able to generate stimulated radiation.
interest from the application angle is related to a comm
problem of quantum and classical electronics: as lasing
quency increases, population inversion becomes more
more difficult.4!

The plan is as follows. In Sec. 2 we discuss, with t
thoroughness required by the problem of building a class
analog, the features of ‘‘inversionless’’ emission by a thre
level quantum system and give the simplest classical ana
a system consisting of three coupled oscillators with non
ear friction~see Fig. 2!. Having analyzed this model system
we conclude that the analog of the ‘‘inversionless’’ stim
lated emission of radiation by the quantum system for a c
sical ensemble of electrons is a parametric instability at re
nant frequencies common to two high-frequency modes
their beats. In Sec. 3 we develop a linear theory of cyclot
instability of this type, and in Sec. 4 we use a quasiline
theory to analyze the corresponding energy relations and
features of the relaxation of the distribution function wh
‘‘inversionless’’ instability develops. In the Conclusion~Sec.
5! we discuss the results, possible applications, and fu
research directions in this field.

2. SIMPLE MODELS OF ‘‘INVERSIONLESS’’ STIMULATED
EMISSION OF RADIATION

‘‘Inversionless’’ stimulated emission of radiation b
various quantum system is discussed in a large numbe
papers on quantum electronics~see, e.g., the review in Ref.
and the literature cited therein!. We discuss this problem in
the form and with the thoroughness that in our opinion
necessary for a consistent systematic, persuasive transitio
a classical model. In particular, we discuss in greater de
than in the cited papers the conditions for spatial synch
nism in ‘‘inversionless’’ radiation by a distributed system.

The most graphic example of a quantum system capa
of stimulated emission of radiation without ordinary inve
sion is what is known as the Lambda scheme.6 The scheme
represents a three-level system~see Fig. 1! with energy lev-
els E j ( j 51,2,3), two high-frequency transitions~3↔1 and

64010$10.00 © 1997 American Institute of Physics
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3↔2!, and one low-frequency transition (2↔1). Consider
how this system interacts with the bichromatic field

E5e Re@E1 exp~2 iv1t !1E2 exp~2 iv2t !#, ~1!

wheree is the unit polarization vector, and the frequenc
v1,2 are those of the high-frequency transition
\21(E32E2,1), which means they must also satisfy the R
man synchronism condition

v12v25v05
E22E1

\
. ~2!

The transition probability per unit time~the transition
rate! from level 3 to levels 1 and 2 is determined by the su
of the standard probabilities of the transitions 3↔1 and
3↔2 induced by resonant harmonics.8,9 At the same time,
for upward transitions, the standard transition probabilities
a system that is in a pure state are valid only if the init
condition corresponds to the definite energyE1 or E2 .

The situation is different when the wave function obe
the ‘‘superpositional’’ initial condition

c05a1c1~q!expS 2
i E1t

\ D1a2c2~q!expS 2
i E2t

\ D ,

where c1,2 are the energy-operator eigenfunctions cor
sponding toE1 and E2 , q is the set of generalized coord
nates of the quantum system, and the coefficientsa1,2 satisfy
the normalization conditionua1u21ua2u251. Then the tran-
sition probability calculated by the standard perturbat
technique exhibits an ‘‘interference’’ pattern, since we su
the perturbations of the complex-valued wave function a
not the partial transition probabilities.10 Assuming, for the
sake of definiteness, that level 3 is ‘‘smeared’’~e.g., due to

FIG. 1. Three-levelL scheme.

FIG. 2. Model system with lumped parameters.
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hood of the energyE35E21\v25E11\v1 , we get

W~↑ !5
p

\2 E dDH t~D!d~D!F (
p51

2

uapd3pEpu2

12 Re~a1a2* d31d32* E1E2* !G J ,

where di j is the matrix element of the projection of th
electric-dipole moment in the direction specified bye,

D5
E32E1

\
2v15

E32E2

\
2v25

E32E3
0

\
,

t~D! is the density of states that describes the smearing of
upper level~with dimensions of reciprocal frequency if th
normalization condition is*t(D)dD51!, and d ~D! is a
delta function. Obviously, if

a1,2Þ0, arg~a1a2* !5p2arg~d31d32* E1E2* !, ~3!

the transition probabilityW(↑) is necessarily less than th
sum of the ordinary probabilities of the 3↔1 and 3↔2 tran-
sitions with weightsua1u2 and ua2u2, respectively~see also
Ref. 10!. This illustrates that it is possible, at least in pri
ciple, to stimulate emission of radiation in a quantum osc
lator in the absence of population inversion. If before t
high-frequency field is turned on, the three-level atom is i
mixed state characterized by a density matrixr i j , we can
obtain the necessary condition~equivalent to~3!! for ‘‘inver-
sionless’’ stimulated emission by employing a techniq
suggested, for example, in Ref. 9:

r21Þ0, arg~r21!5p2v0t1arg~d31d32* E1E2* !. ~4!

Consider an ensemble of noninteracting three-level~for
the sake of clarity! atoms of the above type that is distribute
in space. One way to characterize this system is to introd
a set of density matricesr i j

k , where the superscriptk corre-
sponds to the atom whose center is at the point with rad
vector r5r k . For wave fields (E1,2→E1,2 exp(ik1,2–r )) in
the dipole approximation, the conditions~4! can be met by
all atoms along the propagation path of the waves only i

arg r21
k 5w02v0t1~k12k2!–r k , ~5!

wherew0 is a constant. The latter relationship shows that
‘‘inversionless’’ amplification to occur in a distributed en
semble, a certain condition of spatial synchronism must
met, in addition to the temporal synchronism condition~2!. It
is convenient to formulate this new condition for the stat
tical matrixr i j (r ,t), which depends on positionr and timet.
This matrix determines, among other things, the inhomo
neous dipole moment per unit volumed(r ,t) ~see also Ref.
9!:

d~r ,t !d3r 5N~r !dj i r i j ~r ,t !d3r , ~6!

where

r i j ~r ,t !5
1

N~r ! (
k

r i j
k d~r2r k!,

andN(r )5(kd(r2r k) is the number density of the atoms
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wavelengths 2p/k1,2, the definition~6! and the condition~5!
imply that the matrixr i j (r ,t) has a nonzero off-diagona
matrix element

r21~r ,t !5s21 exp~2 iv0t1 i k–r !

synchronized with the bichromatic field by the paramet
~Raman! resonance conditions~2!:

k12k25k. ~7!

Such a state of electrons at the low-frequency transitio
said to be coherent5! ~see Refs. 6 and 11!. Here the high-
frequency dipole moment per unit volume of the mediu
acquires ‘‘Raman’’ components, which couple the wave h
monics (v1 ,k1) and (v2 ,k2):

~d–e!comb5NE2 exp@2 i ~v1t2k1–r !#

3
1

\ E dD$t~D!j~D!d32d31* s21%

1NE1 exp@2 i ~v2t2k2–r !#

3
1

\ E dD$t~D!j~D!d32* d31s21* %,

wherej5P /D2 ipd(D), with P denoting a principal-value
integral, and the atomic density is assumed to be uniform
the absence of resonances, i.e., att(0)50, simultaneous am
plification of all high-frequency waves is forbidden by th
Manley–Rowe relations:6!

(
1,2

S d

dt
12g1,2DZ1,2

uE1,2u2

v1,2
50,

where

d

dt
5

]

]t
1vgr 1,2–“,

with vgr 1,2 and g1,2 the group velocities and the standa
linear damping constants of the modes, and

Z1,25F 1

v

]

]v
~v2«!G

v5v1,2

,

with « the real-valued dielectric constant of the medium.
It turns out that the restriction imposed by the Manle

Rowe relations is lifted when we allow for radiative pr
cesses related to ‘‘partial’’ resonances for the high-freque
modes. To illustrate this we take the simple example
which the frequenciesv1,2 are the centers of the correspon
ing resonance lines~i.e., the integrals in the principal-valu
sense in the expression for the ‘‘Raman’’ dipole moment
zero!. In this case the truncated equations for the t
coupled wave harmonics are

d

dt
E11g1E152G1s21E2 ,

d

dt
E21g2E252G2* s21* E1 , ~8!

where
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The system of equations~8! is unstable~which can easily be
verified! when

g1g2,G1G2* us21u2.

If linear dissipation of the wave is due entirely to res
nant absorption in the 3↔1 and 3↔2 transitions, the linear
damping factors can be expressed in terms of the corresp
ing population differences in levels7! 1, 2, and 3~see, e.g.,
Refs. 6 and 9!:

g1,25
4p2v1,2t~0!ud31,2u2N~n1,22n3!

\Z1,2
,

wheren1,2,3 are the level populations, withn11n21n351.
For our system with a ‘‘smeared’’ upper level, such an e
pression for the linear damping factors corresponds to
simplest possible probability distribution of the population
the upper level:ne3(D)5n3t(D). The instability condition
then reduces to the following inequality6,11:

~n12n3!~n22n3!,us21u2. ~9!

It is this inequality that demonstrates the possibility of stim
lated emission of radiation in a medium without populati
inversion in the ordinary sense of the word,8! i.e., when
n1 ,n2.n3 .

The medium we have just considered is of course n
equilibrium, if only because the off-diagonal elements of t
density matrix are nonzero.8,9 It is important to note, how-
ever, that the source of energy in ‘‘inversionless’’ emissi
of radiation is not the low-frequency polarization wave co
responding to this perturbation of the density matrix, but
electrons in the upper energy level9! ~see Ref. 6!. In this
sense were are indeed dealing with the maser genera
mechanism.

The simplest classical analog of the quantum lamb
scheme is the following oscillatory system with lumped p
rameters~Fig. 2!. Suppose that we have two high-frequen
radio circuits with natural frequenciesv1,251/AL1,2C1,2 and
negative resistanceRa,0. Individually, both circuits are un-
stable, but they are inductively coupled to a low-frequen
circuit with v051/AL0C0 and nonlinear resistanc
RN5R0(11bI 0), where I 0 is the current in the low-
frequency circuit. Suppose that the system is stable in
linear approximation (b50). If to simplify matters we as-
sume that coupling and dissipation are weak, or

M1,2

L1,2
,

M1,2

L0
, 2

Ra

2L1,2v1,2
,

R0

2L0v0
!1

~hereM1,2 are the respective mutual inductance coefficien!,
the ‘‘linear’’ stability conditions are

d1,25
M1,2

2 R0

2L1,2L0
2 1

Ra

2L1,2
.0.

If, however, low-frequency oscillations of the current in th
‘‘dissipative’’ circuit (I 0'Re@IL exp(2iv0t)#) modulate the
resistance,
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instability sets in under Raman resonance conditions:

ṽ12ṽ25v0 ,

where

ṽ1,25v1,2S 12
M1,2

2

2L1,2L0
D

are the frequencies of oscillation in the high-frequency c
cuits, slightly shifted due to inductive coupling. Here t
truncated equations for the complex-valued amplitudes of
currents in the high-frequency circuits,I 1,2, correspond ex-
actly to the system of equations~8! if we change the nota
tion, i.e., if

E1,2→I 1,2, g1,2→d1,2, G1,2→
1

L1,2
,

s21→
M2M1R0

4L0
2 bI L ,

and the instability condition becomes10!

S M1
2R0

2L1L0
2 1

Ra

2L1
D S M2

2R0

2L2L0
2 1

Ra

2L2
D ,

M1
2M2

2R0
2b2I L

2

16L0
4L1L2

.

Clearly, in this instructive example, the high-frequen
circuits model the 3↔1 and 3↔2 transitions, the negative
resistanceRa models the nonzero population of the upp
active level, and the low-frequency circuit models the 2↔1
transition. The resistance in the low-frequency circuit cor
sponds to the population of the lower active levels of
quantum system. Finally, modulation of the resistance in
low-frequency circuit due to the oscillations generated in
circuit models the effect of excitation of a coherent state
the 2↔1 transition on the absorptivity of the three-lev
lambda system.

The physical mechanism of instability in the propos
system with lumped parameters turns out to be extrem
interesting. It can be shown that an unstable solution co
sponds to an ‘‘optimal’’ relationship between the phase
beats of the high-frequency currents induced in the lo
frequency circuit and the nonlinearly modulate
resistance11!: the nodes of the beasts correspond to maxim
resistance, and the crests to minimum resistance. Cle
when the low-frequency oscillations are in antiphase with
current beats, absorption of the high-frequency oscillati
decreases on the average, with the result that negative r
tance can lead to a buildup of high-frequency oscillatio
even if the system is stable when the low-frequency circ
has positive constant resistance.

The physical mechanism we have just discussed s
gests an analog of ‘‘inversionless’’ emission of radiation
an ensemble of classical electron oscillators. From a ma
scopic point of view, the system of equations~8! corresponds
to the parametric interaction of modes in a medium w
modulated conductivity, where instability emerges beca
of the aforementioned synchronization of the beats in
high-frequency field with the low-frequency conductivity o
cillations. Such conductivity modulation in an ensemble
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of the distribution function of resonant particles under co
ditions of cyclotron or Cherenkov synchronism. An intere
ing case is that in which the distribution function is ‘‘inve
sionless’’ when averaging over generalized coordinates
the phase space and/or time. Just like an ensemble of q
tum oscillators, the classical system under investigation
capable of amplifying monochromatic radiation, but und
certain conditions it can impart energy to a pair of wav
with an ‘‘optimal’’ phase of beats with respect to the pha
of the low-frequency modulation.

Probably the main difference between ‘‘inversionles
generation in quantum and classical systems can be for
lated as follows. The motion of a classical particle cor
sponds to a large number of transitions between elemen
quantum states. Since a classical system is in princ
‘‘multilevel,’’ a pure lambda scheme cannot be realized in
Instead, this scheme is combined with all conceivable v
ants and modifications~see Ref. 6!. In particular, since low-
frequency modulation inevitably affects not only the abso
ing fraction of electrons but also the emitting particles, w
must mention the so-called inverse lambda scheme, in wh
the upper active level is split rather than the lower one, i
in contrast to the ordinary lambda scheme.

The constant of motion of system~8!,

Ẇ1Q50,

where

W5
uE1u2

2G1
2

uE2u2

2G2
, Q5g1

uE1u2

2G1
2g2

uE2u2

2G2
,

makes it possible to formally interpret the parametric ins
bility of the system ~8! as the interaction of two high
frequency modes with different signs of the energy.11 We
believe that such an interpretation is not very accurate, h
ever, the point being that in the absence of parametric c
pling, the electromagnetic waves involved are incapable
being amplified when additional linear absorption is intr
duced, i.e., not one of these waves possesses the nece
property of a mode with negative energy12! ~see Refs. 1 and
13!. In this regard we must mention the paper of Kiyash
et al.,14 who pointed out the possibility of explosive par
metric instability of waves with precisely positive energy
a medium with nonlinear conductivity. In the approximatio
of a given low-frequency pump, the system examined in R
14 corresponds to the system~8! with g1,250.

Thus, for a classical analog of ‘‘inversionless’’ emissio
of radiation by an ensemble of quantum oscillators, we ta
the parametric instability of electromagnetic waves with p
riodic modulation of the distribution function of ‘‘common’
resonant particles. Note that Shermanet al.15 and Nikonov
et al.16 suggest a modified version of the optical klystron17 as
an analog of an ‘‘inversionless’’ quantum device. They pr
pose using a two-section free-electron laser~or a Cherenkov
device! and assume that in the klystron gap the elect
paths are separated spatially in such a way that the tim
flight through the gap is different for the ‘‘emitting’’ and
‘‘absorbing’’ fractions of the electron velocity distributio
function. Here, for the ‘‘absorbing’’ electrons, the phase
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the time of flight byp(2n11), and for the ‘‘emitting’’ elec-
trons it changes by, 2pn. Thus the ‘‘absorbing’’ fraction of
the distribution function should contribute nothing to t
resonant interaction of the electron flux with the hig
frequency field. Without discussing the implementation
such a scheme in practice, we note that the requirement
the velocity spread can be loosened by tightening the
quirements on the spatial localization of the beam~otherwise
it is difficult to spatially separate the paths of electrons w
a small velocity difference!. In any event, the above schem
has no place for emission of the parametrically coup
different-frequency modes typical of quantum systems.

3. CYCLOTRON PARAMETRIC INSTABILITY INVOLVING
RESONANT PARTICLES „LINEAR THEORY …

Cyclotron radiation is a convenient classical analog
‘‘inversionless’’ generation in an ensemble of quantum
cillators, because in the quantum limit a system of discr
Landau levels corresponds to the motion of particles in
magnetic field.2,8 The obvious analog of the 3↔1 and 3↔2
transitions in this case is the resonance at theNth and
(N2L)th harmonics of the cyclotron frequency, while osc
lations of the distribution function at theLth harmonic of the
cyclotron frequency correspond to the ‘‘coherent’’ state
the low-frequency 2↔1 transition.

Consider two linearly polarized waves propagating p
pendicular to a constant magnetic fieldH05zH0 :

E5y0 Re (
j 51

2

Ej exp~ ik jx2 iv j t !, ~10!

wherev15v, v25v2V, k15k, k25k2k, andz0 andy0

are the corresponding unit vectors of the coordinate sys
(z,y,x). We assume that the frequency of the waves co
cides with the harmonics of the relativistic cyclotron fr
quency of particles with energyE05mc2g0 ~hereg0 is the
Lorentz factor!:

vR5
eH0

mcg0
5

v

N
5

v2V

N2L
5

V

L
. ~11!

If the perturbation of the energy of the resonant partic
is weak, orug2g0u!g0 , the motion of the particles in the
vicinity of cyclotron resonances can be described by
equations for a nonlinear pendulum~see Refs. 7, 18, and 19!.
The motion induced by the resonant harmonics in such
approximation is described by the following system of tru
cated equations18,20:

ẇ5F~u,t !, u̇5vH~w!,

r i5const, X5const, ~12!

where

vH5vRS 12
w

g0
D ,

F5Re (
j 51

2

gja j exp~ ik jX1 iN ju2 iv j t !. ~13!
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w5g2g0 is the perturbation of the relativistic gamma fact
due to the perturbation of the transverse momentump' ~the
longitudinal momentumpi5r imc does not change!, N15N,
N25N2L, and gj5(p'0 /mcg0)JNj

8 (x j ), with

p'05mcAg0
2212r i

2 and JNj
8 the derivative of the Besse

function with respect to the argumentx j5kj r H , where
r H5p'0 /mg0vR is the gyroradius of the resonant particle
Finally, a j5eEj /mc are the normalized wave amplitude
andX is the location of the center of the ‘‘Larmor circle.’’

Below we assume for simplicity that all electrons ha
the same longitudinal momentumr i ~the appropriate gener
alization is trivial!. Let us examine the distribution functio
f (u,w,X,t) specified by Liouville’s equation in the space
truncated variables:21

] f

]t
1vH

] f

]u
1F

] f

]w
50. ~14!

For the wave amplitudesa j we also use truncated equation
With a ‘‘quasivacuum’’ dispersion relation, we obtain

ȧ j52
2pe

mc
I j , ~15!

where the amplitudesI j of the resonant harmonics of th
current can be expressed in terms of the distribution func
~see, e.g., Ref. 20!:

I j5ecK E dw du@ f ~u,w,X,t !

3gj exp~2 iN ju2 ik jX1 iv j t !# L . ~16!

Here the angle brackets indicate time averaging over the
riod T52p/V, and averaging in the coordinateX over the
length l 52p/k.

Suppose that initially~at time t50! the distribution
function is modulated in cyclotron rotation angle~the gyro-
angle! u and positionX:

f i~ t50!5 f 0~w!1 f L~w!cos~w1Lu1kX!. ~17!

In the absence of a high-frequency field acting on the syst
the value of the distribution functionf i at subsequent time
is determined by replacingu with u2vHt in ~17!. Here the
distribution function averaged overu,

1

2p E
0

2p

f idu,

is ‘‘inversionless’’ at all times and at each pointX if ] f 0/]w
is negative in the energy range considered here. Since in
quantum limit the phaseu is not defined for a given energ
mc2(g01w), we are indeed dealing with the classical an
log of an ‘‘inversionless’’ state of the quantum system. T
modulation of the distribution function in gyro-angle with
period equal to 2p/L is an analog of the coherent state of t
low-frequency transition.

Now we examine times that are shorter that the ‘‘ball
tic’’ relaxation time of the modulated component of the d
tribution function:13!
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v t!
g0

, ~18!

t
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e

e
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Thus, we assume that the asymptotic solution corresponding
h
-
e-

-
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m.

the

in

that
R ^Dw&L

where

^Dw&;U f L

] f L /]w U ~19!

is the characteristic spread in the modulated componen
the initial energy distribution. We solve the linearized kine
equation

F ]

]t
1vH~w!G f̃ 52F~u,t !F] f 0

]w
1

] f L

]w

3cos~w1Lu1kX2LvHt !G ~20!

~condition~18! makes it possible to avoid differentiating th
phasew1Lu1kX2LvH(w)t with respect tow!. In an ap-
proximation in which the damping factors are not too larg
we can use the solution of Eq.~20! at fixed wave amplitudes
a1,2 ~see, e.g., Refs. 21 and 22!. Allowing for the initial
condition f̃ (t50)50 and the synchronism conditions~11!,
we arrive at the following expression for the resonant h
monics of the distribution function:

f̃ 52(
j 51

2

gja j exp@ i ~Nju1kjX2v j t !#ĵ~D j !
] f 0

]w

2
1

2
g2a2exp@ i ~Nu1kX2vt !#sĵ~D2!

] f L

]w
exp~ iw!

2
1

2
g1a1 exp$ i @~N2L !u1~k2k!X

2~v2V!t#%s* ĵ~D1!
] f L

]v
exp~2 iw!. ~21!

Here

ĵ~x!5
i

x
@12cos~xt!#1

sin~xt!

x
,

D15v2NvH~w!, D25v2V2~N2L !vH~w!,

s5exp@ i ~LvH2V!t#5expH i
LvR

g0
wtJ .

In view of the inequality~18!, in ~21! we can put

s5s* 51. ~22!

If

v1,2

g0
^Dw&t@1,

v1,2

g0
^Dw0&t@1 ~23!

~here^Dw0& is the scale of the stationary distributionf 0(w)!,
the operatorĵ tends to its standard form~see, e.g., Refs. 9
and 22!:

ĵ→
i P

x
1pd~x!. ~24!
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to Landau’s ‘‘bypass rule’’ is able to form in times muc
shorter than the ‘‘ballistic’’ relaxation time of the high
frequency modulation distribution function. Here the corr
sponding inequalities~18! and ~23! can only be satisfied si
multaneously if the problem contains an additional sm
parameter:

V

v
5

L

N
5h!1. ~25!

Plugging~16!, ~21!, ~22!, and ~24! into the wave excitation
equations~15! and allowing for~11!, we obtain

ȧ11~g l1 id l !a152aeiw~gn1 idn!a2 ,

ȧ21b~g l1 id l !a252e2 iw~gn1 idn!a1 , ~26!

where

g l52
2p2e2

m
g1

2E ] f 0

]w
d~v2NvH~w!!dw,

gn52
p2e2

m
g1g2E ] f L

]w
d~v2NvH~w!!dw,

d l52
2pe2

m
g1

2E P ] f 0 /]w

v2NvH~w!
dw, ~27!

dn52
pe2

m
g1g2E P ] f L /]w

v2NvH~w!
dw,

a5
1

12h
, b5

g2
2

g1
2 a. ~28!

The exponential solutions (a1,2;emt) of the system of equa
tions ~26! can be found from the characteristic equation

~m1g l1 id l !@m1b~g l1 id l !#5a~gn1 idn!2 ~29!

and a relationship that follows from~26!:

a1

a2
5K5

2aeiw~gn1 idn!

m1g l1 id l
. ~30!

In the simplest case, whered l5dn5014!, the system of equa
tions ~26! corresponds to Eqs.~8!, which describe ‘‘inver-
sionless’’ amplification of waves in the quantum syste
Wheng l,0, an unstable solution exists if

agn
2.bg l

2 ,

which reduces to a physically transparent analog of
‘‘quantum’’ condition ~9!:

1

2 U] f L

]wU
vH5v/N

.2S ] f 0

]w D
vH5v/N

. ~31!

This inequality guarantees the onset of strong ‘‘inversion’’
the phase space that is periodic in the variablesu, X, andt.

The solution of the characteristic equation~29! in gen-
eral form is cumbersome; nevertheless, there is no doubt
there are unstable solutions with Rem.0 when] f L /]w is
large. For instance, if

ugn1 idnu@u~12b!~g l1 id l !u,
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which differs from ~31! only in the coefficient on the left-
hand side:

1

2
→

11b

4Aa
.

Just as in the system with lumped parameters of Sec
an unstable solution of Eqs.~26! corresponds to a certai
‘‘optimum’’ synchronization of the beats of the high
frequency oscillations and the low-frequency modulation
the system. Indeed, let us use the following solution of s
tem ~26! ~a modified Manley–Rowe relation!:

S ]

]t
12g l D ua1u2

2a
1S ]

]t
12bg l D ua2u2

2

52Re~gna2a1* eiw!.

For an unstable solution this yields

2Re gnK* eiw5
Re m1g l

a
uKu21Re m1bg l.0. ~32!

If we allow for ~27!, Eq. ~32! yields

g1g2 ReFeiwK* S ] f L

]w D
vH~w!5v/N

G.0. ~33!

According to this condition, the nodes and the crests of
beats of the ‘‘effective force’’

F5Re@$a1g11a2g2 exp@2 i ~Lu1kX2Vt !#%

3exp@ i ~Nu1kX2vt !##

are at points with, respectively, a negative and positive
ergy derivative of the oscillating component of the distrib
tion function,

f̃ L' f L~w!cos~w1Lu1kX2Vt !.

Thus far we have said nothing about the ways in whic
modulated initial distribution~17! that satisfies~31! could be
formed. Without going into detailed analysis of the proble
we will demonstrate that such a distribution can be form

Suppose that at timet52T there exists a distribution
over the transverse energies of the ‘‘smeared-ring’’ type:

f 0~w!5
nb

Ap^Dw&
exp

~w2wb!2

^Dw&2 . ~34!

The resonance energymc2g0 satisfying the synchronism
condition ~11! corresponds to the valuew[g2g050. The
particle energyEb5mc2(g01wb) corresponds to the maxi
mum of the distribution function~at w5wb!. Let us see what
happens whenwb,0, i.e., when the resonant particles are
the stable ‘‘inversionless’’ slope of the unperturbed distrib
tion function.

Suppose that in the time interval fromt52T to t50 the
system is subjected to an electromagnetic wave field with
‘‘low’’ frequency V5LvR and wave vectork:

E05y0 Re@E0 exp~ ikx2 iVt !#.
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function att50 is

f̃ L5 f L exp~ iLu1 ikX!, ~35!

where

f L52g0a0

] f 0

]w E
2T

0

exp$ i @LvH~w!2V#t%dt,

a05
eE0

mc
, g05

p'0

g0mc
JL8~x0!, x05kr H .

The simplest case is the one in which the pump period
short, or

TvR!
g0

^Dw&L
. ~36!

In this approximation we arrive at the simple relationship

f L52g0a0T
] f 0

]w
.

Therefore, the instability criterion~31! is met if

T

2 Ug0a0

]2f 0

]w2U
w50

.2S ] f 0

]w D
w50

, ~37!

which implies that the inequality

^Dw&@
T

2
ua0g0u.uwbu

guarantees that an ‘‘inversionless’’ instability appears ev
in the linear approximation in the pump amplitude. The ca
wb50 corresponds to a ‘‘nonthreshold’’ instability, sinc
here the resonant particles are at the maximum of the di
bution function~34! and the linear damping factors of th
high-frequency waves vanish.

Above we examined the instability when the initial e
ergy distribution is of a highly nonequilibrium nature. Ne
ertheless, in the region where resonant particles can exis
system is indeed ‘‘inversionless’’ from the standpoint of t
standard linear theory. Here a resonance on the ‘‘invers
less’’ slope of the distribution function corresponds to t
generation of waves with a frequency higher than in the c
of a resonance with particles belonging to the inversion
gion. What is important here is that for initial distribution
that monotonically decrease with increasing energy, an ‘
versionless’’ instability can probably exist only if the tim
during which the low-frequency field is applied to the syste
is comparable to the period of particle ‘‘capture’’15! in the
field of a finite-amplitude wave,16!

Tb52p~LvRg0a0!21/2.

Concluding this section, we note that a similar param
ric instability involving resonant particles can occur, at lea
in principle, in a Cherenkov resonance. This follows fro
the formal equivalence of Eqs.~12! and the equations o
motion of charged particles in the field of longitudin
waves. However, the necessary conditions are met only if
longitudinal waves are retarded and exhibit no dispersion
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In this sense the cyclotron system considered here is m
promising, since ‘‘vacuum’’ electromagnetic modes are s
ficient for its realization.

4. QUASILINEAR THEORY OF CYCLOTRON PARAMETRIC
INSTABILITY INVOLVING RESONANT PARTICLES

Analysis of the energy relations in the given system
quires that we step outside the scope of linear theory. F
proper generalization, we use the machinery of the quas
ear theory of waves in plasmas. In that spirit~see, e.g., Refs
1 and 24!, we assume that in small neighborhoods of t
cyclotron frequenciesNvR and (N2L)vR the excited spec-
tra are those with the set of frequenciesv1p5vp and
v2p5vp(N2L)/N, wherep51,2,...,`. As in the standard
approach of the quasilinear theory, we consider a set of
monics with random phases. However, the complex am
tudesE1p andE2p of the pair of harmonics with frequencie
vp and vp(N2L)/N are related by~30!, since each such
pair is a linear solution of the second-order system~26!.
Moreover, building a quasilinear theory in this case is m
complicated because we must have a separate relation
for the low-frequency oscillations of the distribution functio
with frequencyV'LvR .

So as not to complicate the discussion with cumberso
formulas, we introduce simplifying~but actually unimpor-
tant! assumptions. First, we assume that the ‘‘coupling c
stants’’ in the equations of motion~12! and~13! are approxi-
mately equal,

g.g1,2@ug12g2u. ~38!

Allowing for the inequality~25!, in the system of equation
~26! we put

a.1, b.1 ~39!

and use simplified relationships for the instability grow
rate and the coupling constant that links the complex am
tudes of the amplified bichromatic radiation:

Re m5
2p2e2

m
g2E F] f 0

]w
1

1

2 U ] f L

]w UG
3d~v2NvH~w!!dw, ~40!

K5
a1

a2
5eiw sgn

] f L

]w
. ~41!

In addition, if we allow for the conditionuNvR2vpu!vR

and the inequalities~25! and ~18!, we can simplify the rela-
tionship that exists between the frequencies and wave
tors of the sets of resonant harmonics:

v1p2v2p.V, k1p2k2p.k. ~42!

Because of these simplifications, the kinetic equation~14!
reduces to the form

] f

]t
1vH~w!

] f

]u
52g(

p
Re$a1p exp~ iNu1 ikpX2 ivpt !
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~43!

We seek a solution averaged over the ensemble of ran
phaseswp5arga1p in the form

^ f &wp
5 f 0~w,t !1 f L~w,t !cos~w1Lu1kX2Vt !. ~44!

Note that the modulated component of the distribution fu
tion, ^ f &wp

, can have such a form only if the condition~18! is
met, i.e., when we can ignore the ‘‘ballistic term’’17!

i @LvH(w)2V# f L in the kinetic equation~43!. Next, in Eq.
~43! we use the usual perturbation method to find the bilin
corrections;a2, and average over the ensemble of rand
phaseswp . Allowing for ~18!, ~39!, and~41!, and replacing
the sum over the discrete spectrum by an integral over
continuous spectral intensity~see, e.g., Refs. 1 and 24!,

(
p

ua1pu2~••• !→E
v
ua1uv

2 ~••• !dv,

we arrive at the following equations for the distribution fun
tion:

] f 0

]t
5

]

]w FD~w!S ] f 0

]w
1

1

2 U ] f L

]w U D G , ~45!

] f L

]t
5

]

]w FD~w!S sgn
] f L

]w D ] f 0

]w G , ~46!

where

D~w!5g2pE
v
ua1uv

2 d~v2NvH~w!!dv. ~47!

The equations for the spectral intensitiesua1uv
2 and ua2uv

2

follow from linear theory. Using Eq.~40!, we get

]

]t
ua1uv

2 5
4p2e2g2

m
ua1uv

2 E S ] f 0

]w
1

1

2 U ] f L

]w U D
3d~v2NvH~w!!dw, ~48!

and Eq.~41! yields

ua1uv
2 .ua2uv2V

2 , ~49!

in view of which we can express the diffusion coefficie
D(w) in terms of the spectral intensityua1uv

2 .
The system of equations~45!–~48! satisfies the conser

vation laws

E
w

f 0~w!dw5const,

mc2E
w
~g01w! f 0~w!dw1I e5const, ~50!

where

I e5
m2c2

e2 E
v
S ua1uv

2

8p
1

ua2uv
2

8p Ddv5
m2c2

e2 E
v

ua1uv
2

4p
dv

~51!
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is the energy of the electromagnetic field. Moreover, Eq.~46!
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yields an extremely graphic relationship for the evolution
the amplitude of the modulated component of the ‘‘slow
distribution function:

]

]t E f L
2~w!dw52

1

2 E U] f L

]wUD~w!
] f 0

]w
dw. ~52!

On the basis of the above relationships of the quasilin
theory we can draw some analogies with the correspond
quantum system:

~1! From Eqs.~45! and ~48! it follows that in the ap-
proximation of fixed low-frequency modulation, the ‘‘slow
distribution function f 0(w) relaxes not to the ‘‘standard’
plateau but to a state with a negative derivative with resp
to w. This state corresponds to the threshold in the param
ric instability being discussed:

] f 0

]w
→2

1

2 U] f L

]wU ~53!

in the region whereD(w)Þ0. Therefore, in the ‘‘inversion-
less’’ generation process, a decrease in the energy of
electron ensemble is accompanied by the formation of a
tribution function with a sharper drop in energy in th
resonant-particle region. This effect corresponds to deple
of the upper active level in a quantum ‘‘inversionless
system.6

~2! Equation~52! implies that in an ‘‘inversionless’’ sys
tem, i.e, a system in which] f 0 /]w,0, the beats of the high
frequency field amplify the low-frequency modulation of th
distribution function. This effect has an analog in quantu
systems: the excitation and maintenance of the coherent
of a low-frequency transition by an external monochroma
field.6,11

Note that if we remain solely within the scope of Eq
~45!–~49!, the possibility of reaching some well-defined st
tionary regime is highly unlikely. The problem here is th
the stationary state defined by~53! for the average compo
nent of the distribution functionf 0 and the spectral intensi
ties ua1,2uv

2 applies only in an approximation in which th
amplitude of low-frequency modulation off L is constant. On
the other hand, the quantityf L(w), as Eqs.~46! and ~52!
imply, continues to increase even if condition~53! is met.18!

This tendency, to a certain extent, probably reflects the ‘‘
plosive’’ nature of parametric instability in media with non
linear conductivity, when amplification of a pair of high
frequency modes is accompanied by the amplification
low-frequency oscillations.14 The mechanisms by which sta
tionary states set in are most likely to be found outside
scope of our simple model~‘‘ballistic’’ relaxation of low-
frequency modulation, nonlinear shift of wave frequenci
particle ‘‘capture,’’ etc.!.

The conservation laws~50! suggest that in ‘‘inversion-
less’’ generation the high-frequency field receives ene
from the ‘‘slow’’ distribution function f 0(w), as it does in
ordinary maser instability. By themselves the equations
the quasilinear theory and the instability condition~31! do
not generally restrict the class of initial distribution functio
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specific method to modulate the distribution function of t
resonant particles.

5. CONCLUSION

We have found that cyclotron parametric instability i
volving resonant particles is a direct classical analog of ‘‘
versionless’’ generation in a three-level quantum syste
The way in which one can generalize this regime to the g
eration of a high-frequency signal formed by an arbitra
number of distinct harmonics is quite obvious. For the cl
sical system, however, there is the question of whether
energy emitted into the high-frequency modes in the ‘‘inv
sionless’’ regime can exceed the energy supplied to the
tem in the excitation of low-frequency modulation. This po
sibility becomes obvious when for the instability in questi
to develop we need only a linear regime of low-frequen
modulation of the initial distribution function~such an ex-
ample is discussed in Sec. 3!. In the general case, howeve
there is no single answer to this question. The answer
pends on the type of initial distribution function, the speci
pumping scheme, and the instability saturation mechani
The main avenues of research in this field should proba
be the following:

~1! Analyzing the efficiency of various schemes of pr
liminary low-energy pumping for various initial electron dis
tribution functions.

~2! Studying the scheme with a constant source of lo
frequency modulation.

~3! Building a self-consistent theory of ‘‘inversionless
instability that would allow for the evolution of the low
frequency modulation of the distribution function for th
resonant particles as a result of ‘‘ballistic’’ relaxation and t
effect of a bichromatic high-frequency field.

~4! Analyzing such nonlinear effects as the ‘‘capture’’
resonant particles in a high-power field and the nonlin
shift of frequencies and/or wave vectors of the hig
frequency modes.

Solving these problems will make it possible to establ
the feasibility of practical applications of the effect. Our r
sults suggest, at least, that cyclotron parametric instab
involving resonant particles can be used as a method
converting microwave radiation to a higher frequency,
example, the emission of high-order cyclotron harmonics
cited by pumping at low frequencies. In particular, to imp
ment quasistationary ‘‘inversionless’’ generation, an elect
beam can first be sent through a modulating section~where
electromagnetic oscillations at a low harmonic of the cyc
tron frequency have been excited! and then through an activ
cavity.

In comparison to standard cyclotron-frequen
multiplication,20 this regime would seem to have certain a
vantages, the point being that directM -fold frequency mul-
tiplication of the low-frequency pump requires a nonlinear
of the corresponding order~or a nonlinearity that is not a
power law!. At the same time, for the parametric instabili
described above, a quadratic nonlinearity is quite suffici
even at extremely high harmonics of the cyclotron fr
quency, while a nonlinearity of lower order naturally corr
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sponds to a lower-power low-frequency pump. In addition,
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the ‘‘inversionless’’ nature of this instability suggests th
such a conversion method is not very sensitive to the qua
of the electron beam.

In any case, we believe that studies of the phenom
associated with ‘‘inversionless’’ generation of stimulated
diation by aggregates of classical oscillators~electrons! com-
prise an interesting avenue of research in the physics of
interaction of radiation and matter.

The authors are grateful to A. A. Belyanin, V. V. Ko
charovski�, Vl. V. Kocharovski�, O. A. Kocharovskaya, A.
G. Litvak, M. I. Rabinovich, V. E. Semenov, I. D. Tokman
A. M. Fe�gin, and G. M. Fra�man for discussing the variou
aspects of the problems studied in this paper. Partial sup
for this work was provided by the Russian Fund for Fund
mental Research~Grant No. 96-15-96934!.

1!Classical microwave electronics successfully borrows not only the ‘‘ide
ogy’’ of quantum systems but also structural elements of quan
devices.4,5

2!Of course, there is the question of just what type of equilibrium this re
is. It would also be interesting to know to what extent the tendency of
energy to relax to a plateau is universal.

3!Obviously, this possibility exists only in nonlinear regimes, since in
linear system a nonmonochromatic perturbation cannot lead to new ef
due to the superposition principle.

4!In particular, in electron masers and lasers this tendency tightens th
quirements on the quality of the electron beams.7

5!In this case, naturally, there is a low-frequency polarization wave in
system.

6!Actually here we are dealing with ordinary Raman scattering.
7!In the approach based on phenomenological equations for the density

trix, the expressions for the coefficientsg1,2 and G1,2 contain a damping
constant instead ofpt(0), thenormalized density of states.6,11

8!In Ref. 6 the inequality~9! is obtained with a model that uses phenomen
logical equations for the density matrix.

9!At n350 the condition~9! cannot be met, sinceus21u2<n1n2 in view of a
property of the density matrix.8 On the other hand, the instability conditio
~9! is entirely independent of the dipole-moment matrix element of
low-frequency transition.

10!If there is no negative constant resistance (Ra50), the instability condi-
tion can be met only if there is extremely strong modulation (bI L.2),
whereupon the sign of the resistance in the circuit is manifestly alter
ing. This is a well-known property~see, e.g., Ref. 12! of oscillatory sys-
tems: modulation of an always-positive resistance~or, in a mechanical
system, the friction coefficient! does not lead to instability, since unde
such modulation no energy is supplied to the system.

11!If the combination-resonance conditions are satisfies but only the rea
elements in the low-frequency circuit are modulated, the Manley–Ro
relations(1,2(d/dt12d1,2)L1,2v1,2

21I 1,2
2 50 blocks instability development

12!For a wave with negative energy~in the ordinary sense of the word! any
dissipation is a ‘‘feedback’’ mechanism that makes it possible to ind
an energy excess in the nonequilibrium medium. In this sense, param
coupling to a wave with positive energy only acts as a kind of effect
dissipation. As for the instability of positive-energy waves discussed h
the fact that the high-frequency field is nonmonochromatic is most imp
tant for its realization.

13!Obviously, the corresponding quantum system must meet a symm
requirement: the time intervals in question must be short compared to
relaxation time of the coherent state of the low-frequency transition.

14!The frequency shiftsd l and bd l can be ‘‘removed,’’ for example, by
modifying the external electrodynamic system, anddn vanishes for a
w-odd perturbationf L(w).

15!As applied to cyclotron resonance, the capture effect is described
instance, in Refs. 19 and 21.

16!In a quantum system, a similar method of preliminary preparation of
necessary low-frequency coherence consists in applying ap/2-pulse of
low-frequency radiation to the system.23
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of the high-frequency field is much shorter than the time of ballis
‘‘smearing’’ of the modulated component of the distribution functionf L .

18!The inverse is also true: the condition that the modulation amplitude m
be stationary,] f 0 /]w50, which follows from~46! and~52!, is not valid

for the functionsf 0(w) and ua1,2uv
2 if ] f L /]wÞ0. As for the obvious

stationary regime in which] f 0 /]w5] f L /]w50 with D(w)Þ0, the con-

servation laws~50! imply that with an unstable ‘‘inversionless’’ initial
state the relaxation to such a stationary regime is forbidden by the co
tion I e.0.
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The generalized Bethe logarithm for tightly bound electrons

I. A. Go denko and L. N. Labzovski 

Physics Institute, St. Petersburg State University, 198904 St. Petersburg, Russia
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Zh. Éksp. Teor. Fiz.112, 1197–1208~October 1997!

We derive a closed relativistic expression that makes it possible to calculate the self-energy of
multiply charged ions in an external Coulomb field without resorting to a series expansion
in powers ofaZ. The expression contains the generalized Bethe logarithm for tightly bound
electrons. We do numerical calculations of the self-energy for the 1s1/2-electrons of
multiply charged hydrogenlike ions. The proposed method allows for self-energy calculations for
any values of the nuclear chargeZ. © 1997 American Institute of Physics.
@S1063-7761~97!00410-1#

1. INTRODUCTION Here Sn is the evolution operator innth-order perturbation
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Experimental achievements in measuring the Lamb s
in multiply charged ions1–3 require raising the accuracy o
theoretical calculations and, in particular, allowing for qua
tum mechanical corrections of ordera2, wherea is the fine-
structure constant. Various groups of researchers have
such calculations,4–6 whose main feature is the lack of
series expansion in powers ofaZ, whereZ is the atomic
number, or nuclear charge.

What remains to be calculated is the correction to
electron self-energy in the second order. The general
proach to calculating such corrections, including renorm
ization and removal of IR divergences, is discussed by L
zovsky and Mitrushenkov.7 However, it has been establishe
that not one of the methods used in self-energy calculat
in the lowest order8–10 is suitable here. In the present pap
we propose another calculation method, which, we belie
can be generalized in a natural way to second order.
method is used to calculate the first-order electron s
energy and is compared with the existing methods.11 In con-
trast to these, our method provides equally high accuracy
large and small values ofZ. One other special feature of th
method is that it actually produces a closed expression
the self-energy that contains the generalized Be
logarithm.12

All theoretical calculations use the relativistic system
units,m5\5c51, wherem is the electron mass.

2. THE NONREGULARIZED EXPRESSION FOR THE SELF-
ENERGY

The Feynman diagram corresponding to the unrenorm
ized expression for the electron self-energy is depicted
Fig. 1. According to the classification scheme in Ref. 13,
diagram is irreducible, so that its contribution to the ene
can be written

DEA5^FAuUnuFA&, ~1!

where Un is the effective potential energy operator
nth-order perturbation theory, which in Ref. 13 is defined

^FBuSnuFA&522p id~EA2EB!^FBuUnuFA&. ~2!
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theory, andEA andEB are the electron’s unperturbed ener
levels in the external field of the nucleus.

According to the Feynman rules, for an electron in
external field~the Furry scheme!, the contribution of diagram
~a! can be written

^FAuS2uFA&5e2E d4x1d4x2~C̄A~x2!

3gmS~x2 ,x1!gnCA~x1!!Dmn, ir~x1 ,x2!,

~3!

whereS(x1 ,x2) is the electron propagator,

S~x2 ,x1!5
1

2p i E2`

`

dv exp@ iv~ t12t2!#

3(
n

Cn~r2!C̄n
2~r1!

En~12 i0!1v
, ~4!

andDmn(x1 ,x2) is the photon propagator,

Dmn~x1 ,x2!5
4p

i

dmn

~2p!4 E exp@ ik–~r12r2!2vt#

3
1

k22v22 i0
d3k dv, ~5!

with k andv the wave vector and the frequency of the v
tual photon.

Integrating in~3! with respect to time and frequency, w
arrive at an expression for the electron’s nonregularized s
energy in the lowest order:

DEA
NR5

e2

2p i (
n

S 12a1–a2

r 12
I nA~r 12! D

AnnA

, ~6!

wherer 125ur12r2u, and we have used the notation

~Â!ABCD5E ~CA
1~r1!CB

1~r2!ÂCC~r1!

3CD~r2!!d3x1d3x2 . ~7!

The quantityI nA, ir(r 12) is defined as follows:
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I nA~r 12!5E
2`

`

dvE
2`

`

dk

3
k exp~ i uvur 12!

~v2k1 i0!~v1k2 i0!@bnA1v2 i sgn~En! 0#
, ~8!

where bnA5En2EA . Integrating this expression with re
spect tov andk, we obtain

I nA~r 12!52i
ubnAu
bnA

@ci~ ubnAur 12!sin~ ubnAur 12!

2si~ ubnAur 12!cos~ ubnAur 12!#1
p i

2 S 11
En

uEnu D
3S 12

ubnAu
bnA

Dexp~ i ubnAur 12!, ~9!

where si and ci are the sine and cosine integrals, respecti
For the positive part of the Dirac spectrum in the nonrela
istic limit we havebnA;(aZ)2 and r 12;(aZ)21. Hence a
series expansion of~11! in powers ofbnAr 12 is equivalent to
a series expansion inaZ, although the two do not coincid
~see below!. Allowing for the fact that in the limitaZ!1 the
expression for the electron self-energy is of orderva(aZ)4

~see Ref. 12!, we should assume that this expansion beg
with (bnAr 12)

3. However, the first term in the expansio
contains (bnAr 12)

0. Furthermore, this term yields a diverge
expression,

(
n

S 1

r 12
D

AnnA

5E d3r 1d3r 2CA
1~r1!d~r 12!

1

r 12
CA~r2!5`,

~10!

due to the completeness of the Dirac spectrum. This div
gence and the discrepancy between the expansion in po
of aZ and the nonrelativistic limit disappear in the process
renormalization.

3. RENORMALIZATION

Following Ref. 8, we use the Pauli–Villars renormaliz
tion scheme. To this end we write the photon propagato
the form

FIG. 1. Feynman diagram corresponding to the electron self-energy in
est order. Diagram~a! corresponds to the unrenormalized self-energy. T
double solid line represents the electron in the field of the nucleus and
wavy line, the photon. Diagram~b! corresponds to the counterterm su
tracted from the contribution of diagram~a!. The letterA stands for the state
of the electron in the atom.
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mn 1 2 i ~2p!4

3exp$ ik–~r12r2!2vt%

3F 1

k22v22 i0
2

1

k22v21L22 i0G .
~11!

Now we must subtract diagram~b! from diagram~a! ~see
Fig. 1!, with the former expressed as follows in the Feynm
gauge:

dmA
L5

e2

p S 3

4
ln L21

3

8D ~b!AA , ~12!

whereb is the Dirac matrix.
Plugging~11! into ~3!, we arrive atDEA

L instead of~6!,
and to calculate the energy shift we must find the limit

DEA5 lim
L→`

~DEA
L2dmA

L!. ~13!

By analogy with ~6!, the expression forDEA
L can be

written

DEA
L5

e2

2p i (
n

S 12a1–a2

r 12
I nA

L ~r 12! D
AnnA

. ~14!

In calculating~14! we split I nA
L into three terms:

I nA
L1522i

En

uEnu
L2E

0

` k sin~kr 12!dk

~k22bnA
2 !~k22bnA

2 1L2!
, ~15!

I nA
L252ibnA E

0

` sin~kr 12!dk

bnA
2 2k2

52i
bnA

ubnAu H sin~ ubnAur 12!ci~ ubnAur 12!

2cos~ ubnAur 12!Fsi~ ubnAur 12!1
p

2 G J , ~16!

I nA
L3522ibnAE

0

` k sin~kr 12!dk

~bnA
2 2k22L2!Ak21L2

. ~17!

The expression~16! is an analog ofI nA(r 12), which,
however, lacks the term~12! containing the divergence. Th
term ~15! contributes nothing to~14!, so that we must calcu
late I nA

L3 .

4. CALCULATION OF InA
L3

Let us first assume that in~17!

bnA
2

k21L2 ,1

for all bnA . This means that for any state of the Dirac spe
trum there exists aL such thatubnAu,L. Then the integrand
in ~17! can be expanded in a series:

-

he
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k sin~kr 12!
`

k sin~kr 12! bnA
2k

u-
lly

,

le

where@•••#k stands fork-fold commutator operation. Note

ta-

te,

n
to

n

t
-

~bnA
2 2k22L2!Ak21L2

5 (
k50 Ak21L2 S k21L2D .

~18!

Using the fact that

E
0

` k sin~kr 12!dk

~k21L2!g 5
~2g11!r 12

2 E
0

` k cos~kr 12!dk

~k21L2!g21

~19!

and comparing~17!, ~18!, and~19!, we find that

I nA
L3~r 12!522i (

k50

`

bnA
2k11 r 12

2k11 E
0

` cos~kr 12!dk

~k21L2!k11/2

522i (
k50

`

bnA
2k11 r 12

2k11

Ap

~2L!k

1

G~k11/2!

3r 12
k Kk~Lr 12!, ~20!

where Kk(x) is the Bessel function of an imaginary arg
ment. Expanding this function in a Taylor series, we fina
obtain

I nA
L3~r 12!524i (

k50

`

bnA
2k11 r 12

2k11

Ap

G~k11/2! S r 12

2L D k

3H 1

2 (
m50

k21

~21!m
~k2m21!!

m! ~Lr 12/2!k22m

1~21!k11 (
m50

`
~Lr 12/2!k12m

m! ~k1m!! F ln
Lr 12

2

2
1

2
c~m11!1

1

2
c~m1k11!G J , ~21!

where

c~x!5
d

dx
ln G~x!.

Before we plug~21! into ~14!, let us briefly explain the
further transformations.

5. CALCULATION OF MULTIPLE COMMUTATORS

The energy differencebnA in ~21! can be written in
terms of commutators by plugging~21! into ~14!. Indeed,

~bnAÔ!AnnA5~@ ĥ2 ,Ô# !AnnA52~@ ĥ1 ,Ô# !AnnA, ~22!

whereÔ is an arbitrary operator, andĥi is the Dirac Hamil-
tonian in thei -coordinate space:

ĥi5ai p̂i1bm2eU~r i !. ~23!

Here b is the Dirac matrix,eU(r ) is the potential energy
andpi52 i“ i .

By making use of formula~22! in expressions containing
bnA raised to any power it is possible to introduce multip
commutators. For instance, replacingbnA by a commutator
with ĥ2 , we obtain

~bnA
k Ô!AnnA5~@ ĥ2 ,@ ĥ2 ,...@ ĥ2 ,Ô#•••#k!AnnA, ~24!
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that the same can be done in thex1-space, the only difference
being that now we have (21)k as a factor in the final ex-
pression.

Note that the momentum operator in the multicommu
tor expression~24! lowers the power ofr 12. Let us examine
the expression

F5(
n

~@ ĥ2@ ĥ2•••@ ĥ2 ,~12a1–a2!r 12
2k#•••# l !AnnA. ~25!

Employing the fact that the Dirac spectrum is comple

(
n

Cna
1 ~r1!Cng~r2!5d~r12r2!dag ~26!

~a andg are spin indices!, we can write~25! in the form

F5E d3r 1d3r 2CA
1~r1!d~r12r2!

3$@ ĥ2@ ĥ2@•••@ ĥ2 ,r 12
2k#•••# l

2d12a1–@ ĥ2@ ĥ2@•••@ ĥ2 ,a2r 12
2k#•••# l%CA~r2!. ~27!

In the latter expression the Kronecker deltad12 refers to
Dirac’s a-matrixes. Only if l>2k is ~27! not identically
zero. Indeed, if after we write all the commutators in~27!
explicitly there remainsr 12 raised to a power greater tha
zero, thenF50. This simple reasoning makes it possible
leave in~21! only terms in whichm52k11.

6. EXPRESSION FOR THE SELF-ENERGY AND A SUM
RULE

Simplifying ~21! according to the rules formulated i
Sec. 5 and plugging~21! and ~16! into ~14!, we arrive at an
expression similar to~6! which, however, is of the correc
order in aZ in the nonrelativistic limit and has no diver
gences:

DEA5
e2

p
lim

L→`
H (

n
(
k50

`
~21!k

~2k11!!
@c~k11!

2c~k!#(
n

bnA
2k11~@12a1–a2#r 12

2k!AnnA

12S 12a1–a2

r 12
Fsin~bnAr 12!ci~bnAr 12!

2cos~bnAr 12!S si~bnAr 12!1
p

2 D G D
AnnA

22(
n

S 12a1–a2

r 12
sin~bnAr 12!ln

Lr 12

2 D
AnnA

2S 3

4
ln L21

3

8D ~b!AAJ . ~28!

The finiteness ofDEA implies

(
n

S 12a1–a2

r 12
sin~bnAr 12! D

AnnA

52
3

4
~b!AA . ~29!
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We call ~29! a sum rule since it is similar to the nonrel-
he

e

he

r.

.

ai

7. NUMERICAL CALCULATION OF THE SELF-ENERGY AND
PROOF OF THE SUM RULE

ine
he
e

u-
mn
11.
elf-

een
itly

re-
ed
for
ativistic sum rules for transition probabilities. Note that t
right-hand side of Eq.~29! is similar to the formula for the
width of level A ~see Ref. 13!:

Im~DEA!52
GA

2

5
e2

p (
n

S 12a1–a2

r 12
sin~bnAr 12! D

AnnA

, ~30!

with 0,En,EA .
We were unable to find an explicit analytic proof of th

validity of the sum rule~29!. In the Appendix we give a
direct numerical proof of this rule forZ51 andA51s1/2. In
Sec. 5 we implicitly prove the sum rule~29! for A51s1/2 and
an arbitrary value ofZ.

Assuming that the sum rule~29! holds, we can derive an
expression for the self-energy:

DEA5
e2

p H 2(
n

S 12a1–a2

r 12
Fsin~bnAr 12!S ln

1

2ubnAu

1 (
k51

`
~21!k11~bnAr 12!

2k

2k~2k!! D 2cos~bnAr 12!

3S si~bnAr 12!1
p

2 D2
1

2

3 (
k51

`
~21!k~bnAr 12!

2k11

~2k11!! (
p51

k
1

pG D
AnnA

2
3

8
~b!AAJ , ~31!

where thec-functions are written explicitly.
The nonrelativistic expression for the contribution of t

electron’s self-energy to the Lamb shift atA5ns1/2 has the
form12

DEA
NR5

2a

3p (
mSh

S r 12
2 bnA

3 ln
1

2ubnAu D
AnnA

1
e3

3pm2

5

6
^AuDUuA&

1
e

4pm2 K AUs–l
1

r

dU

dr UAL , ~32!

where summation is over the Schro¨dinger spectrum,s are
the Pauli matrices, andl is the angular momentum operato
The first term on the right-hand side of Eq.~32! is what is
known as the Bethe logarithm.

The first term on the right-hand side of Eq.~31! in the
nonrelativistic limitbnAr 12!1 becomes the Bethe logarithm
Note that actually the series expansion in powers ofbnAr 12

does not coincide with the expansion in powers inaZ, which
means there is no way in which we can analytically obt
the terms in~32! by passing to the appropriate limit in~31!.
Such passage to the limit is done numerically in Sec. 7.
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n

Equation~31! can be written in the form

DEA5 (
k50

`

~akXk1gkYk!2
3e2

8p
~b!AA , ~33!

where

Xk5
2e2

p (
n

~bnA
2k11~12a1–a2!r 12

2k!AnnA, ~34!

Yk5
2e2

p (
n

S bnA
2k11 ln

1

2ubnAu ~12a1–a2!r 12
2kD

AnnA

,

~35!

andak andgk are numerical coefficients:

ak5 (
p50

k
~21!p

~2p!!

~21!k2p

~2k22p11!~2k22p11!!

1 (
p50

k21
~21!p11

~2p11!!

~21!k2p21

~2k22p!~2k22p!!

2
1

2

~21!k

~2k11!! (
p51

k
1

p
, ~36!

gk5
~21!k

~2k11!!
. ~37!

The last term on the right-hand side of Eq.~33! can be writ-
ten with allowance for the sum rule; after we expand the s
in a Taylor series, it becomes similar to the first term. T
values of the coefficientsgk remains unchanged, while th
ak change:

DEA5 (
k50

`

~ãkXk1 g̃ kYk!, ~38!

where

ãk5ak1
1

2

~21!k

~2k11!!
, ~39!

g̃ k5gk . ~40!

Table I lists the values of the coefficientsãk and g̃ k ,
together with the values ofXk andYk calculated by formulas
~34! and~35! for the stateA51s1/2 for different values ofZ
via B-splines.14,15 Splines were used for approximate calc
lations of sums over the Dirac spectrum. The last colu
contains the values of the self-energy taken from Ref.
Table I shows that the new method of calculating the s
energy is equally good for all values ofZ.

In conclusion we note that the good agreement betw
our self-energy values and those obtained earlier implic
proves the validity of the sum rule. Since atZ51 the value
of the last term on the right-hand side of Eq.~33! is five
orders of magnitude larger than the self-energy and the
sults coincide to two decimal places, the sum rule is verifi
to seven significant figures. A similar result is achieved
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TABLE I. Numerical values ofDEA .
Z k 2Xk , Ry 2Yk , Ry ãk g̃k

DEA , Ry

Present work Ref. 11

0 125.424 229.825 1.50000 1.00000 417.9614
1 303.501 514.988 20.805556 20.166667 87.64321

92 2 474.773 781.293 0.121111 8.3331023 151.6543
3 14286.5 23335.9 28.6931023 21.9831024 22.74613
4 12379.0 23761.4 3.6231024 2.7631026 27.29876
5 18024.7 28277.2 21.0531025 22.5131028 27.10789 27.1072

0 86.5663 171.607 1.50000 1.00000 301.4567
1 218.195 381.149 20.805556 20.166667 62.16344

80 2 391.798 701.758 0.121111 8.3331023 115.4626
3 11389.0 19947.5 28.6931023 21.9831024 12.43219
4 7844.25 15669.4 3.6231024 2.7631026 15.31876
5 8322.33 15750.7 21.0531025 22.5131028 15.23057 15.2315

0 46.3909 71.8354 1.50000 1.00000 141.4217
1 100.495 184.462 20.805556 20.166667 29.72343

70 2 140.618 241.298 0.121111 8.3331023 48.76462
3 4542.50 7539.25 28.6931023 21.9831024 7.753638
4 4428.04 8238.59 3.6231024 2.7631026 9.381425
5 6842.79 10995.1 21.0531025 22.5131028 9.308960 9.3104

0 3.1931022 5.36331022 1.50000 1.00000 0.1014567
1 7.4331022 0.122431 20.805556 20.166667 2.116331022

10 2 0.103819 0.207066 0.121111 8.3331023 3.546231022

3 3.44458 5.37324 28.6931023 21.9831024 4.432131023

4 3.77247 6.94294 3.6231024 2.7631026 5.818731023

5 4.60871 6.92177 21.0531025 22.5131028 5.769931023 5.77531023

0 8.5431026 1.69331025 1.50000 1.00000 2.974531025

1 2.1731025 3.79531025 20.805556 20.166667 5.916331026

1 2 2.8131025 5.04231025 0.121111 8.3331023 9.746231026

3 9.7631024 1.71131023 28.6931023 21.9831024 9.103231027

4 1.0331023 2.06031023 3.6231024 2.7631026 1.289831026

5 1.3731023 2.59231023 21.0531025 22.5131028 1.275331026 1.29731026
Z592: (b)AA is two orders of magnitude larger, and from
he

.
f,
e
ss

he
n

id

Next we take the stateA51s1/2 of the hydrogen atom. In
r

the
t-
Table I we obtain four significant figures, which verifies t
sum rule to six decimal places.

The authors are grateful to A. V. Nefedov, A. O
Mitrushchenkov, Yu. Yu. Dmitriev, T. A. Fedorova, G. Sof
H. Persson, I. Lindgren, P. Mohr, and W. Janchur for num
ous discussions. This research was sponsored by the Ru
Fund for Fundamental Research~Grant No. 96-02-17167!.
Part of the work was done during the visit of one of t
authors ~I.A.G.! to the Technical University of Dresde
~Germany! under the REHE program.

APPENDIX: NUMERICAL PROOF OF THE SUM RULE

Here we prove Eq.~29! obtained forZ51 andA51s1/2,
which we do numerically by employingB-splines.14,15

We start by integrating over angles on the left-hand s
of Eq. ~29!. Then we write the result as

SA[(
n

S 12a1–a2

r 12
sin~bnAr 12! D

AnnA

5(
l 50

`

(
j 5 l 61/2

SA
~ l j ! . ~A1!
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r-
ian

e

this case (b)AA'1.000. The results of the calculations fo
l 50,...,4 arelisted in Table II.

Table II shows that the convergence ofSA in l is fairly
poor. For this reason we did an asymptotic estimate of
series~A1! for l .4. To this end we first integrated the lef
hand side of Eq.~29! over angular variables and to obtain

TABLE II. Numerical proof of the sum rule.

l j SA
( l j )

( l 8
l SA

( l 8 j ) 1/(b)AA ( l 8
l ( jSA

( l 8 j )

0 1/2 20.607 20.607 20.607
1 1/2 0.045
1 3/2 20.135 20.697 20.697
2 3/2 0.017
2 5/2 20.048 20.728 20.728
3 5/2 0.007
3 7/2 20.015 20.736 20.736
4 7/2 0.001
4 9/2 20.001 20.736 20.736

l>5 20.014 20.750 20.750
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wherelk'Z/uku!1, andnr is the radial quantum number.

in
we

are

t

H.
r,

,
R.

S.

v. A
ReF(
n,k

F~k,kA!

3(
l 50

` E
0

`

dr1E
0

`

dr2Flu l~r 1 ,r 2 ,bnk,nAkA
!

3@ f nAkA
~r 1! f nk~r 1!1gnAkA

~r 1!gnk~r 1!#

3@ f nAkA
~r 2! f nk~r 2!1gnAkA

~r 2!gnk~r 2!#

1u l 61~r 1 ,r 2 ,bnk,nAkA
!@Fl 1

gnAkA
~r 1! f nk~r 1!

1Fl 2
f nAkA

~r 1!gnk~r 1!#@Fl 3
gnAkA

~r 2! f nk~r 2!

1Fl 4
f nAkA

~r 2!gnk~r 2!#G , ~A2!

where F,Fl ,Fl 1
,...Fl 4

are numerical coefficients~some of
which are given below!, f nk(r ) andgnk(r ) are the large and
small radial components of the relativistic wave functio
un,k&, k56( j 11/2), andn is the principal quantum num
ber. The functionsu l have the form

u l~r 1 ,r 2,bnk,nAkA
!55

j l~bnk,nAkA
cr1!hl

~1!~bnk,nAkA
cr2!,

r 1,r 2 ,

j l~bnk,nAkA
cr2!hl

~1!~bnk,nAkA
cr1!,

r 1.r 2 ,
~A3!

where j l(z) andhl
(1)(z) are the spherical Bessel functions

the first and second kinds, respectively. All further calcu
tions were done in the atomic system of un
(\5e5m51), with c the speed of light. Forl @1 andZ;1
the spherical Bessel functions have the asymptotic form

j l;S eZ

2l D
lF11OS 1

l D G , hl
~1!~z!5 j 2 l~z!.

At Z51 the only component that is important
f nAkA

(r ). Hence in~A2! we are interested only in the coe
ficient F, Fl , Fl 1

, andFl 3
. For l n@1 we have

F'A 2

2uku11
, Fl'

~21! j nbnA

4 j n12
,

Fl 1
'

~21! l n

2uku11
, Fl 3

'
~21! l n

2uku13
.

We consider summation over the discrete and conti
ous parts of the Dirac spectrum separately. For the disc
spectrum the radial components of the wave functions h
the form12 (aZ!1)

1

r
f nk~r !'

~2lk!3/21uku

~2uku!!
A~n1uku!! ~n1uku!

2n~n2uku!!
r uku

3exp~2lkr !
uku12nr2k

2uku1nr
,

1

r
gnk~r !'0,
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Equation~A2! can then be integrated with respect tor 1 and
r 2 . The result is a convergent series inn andl , which can be
summed explicitly:

(
n

(
l 55

` S 12a1–a2

r 12
I nA

L1~r 12! D
AnnA

'3.88231022 a.u.

Both parts of the continuous spectrum were calculated
a similar manner. According to Ref. 12, for these parts
havegE2

(r ). f E1
(r ), and forE1 we have

1

r
@ f Ek~r !#'23/2Amc21E

E
expS p

n

2D uG~ uku1 in!u
G~2uku!

3~2pr ! ukuRe$exp@ i ~pr1j!#

3F~ uku2 in;2uku;22ipr !%,

where

p5
1

c
AE22~mc2!2, n5

ZaE

p
,

exp~2 i j!5A uku2 in

k2 imc2n/E

'H k2~ in/2!~mc2/E21!, k.0,

ik1~n/2!~mc2/E11!, k,0.

For the positive part of the continuous spectrum we
left with an expression with the coefficientFl 1

and for the
negative part, with the coefficientFl 3

. After integrating with
respect tor 1 andr 2 in ~A2! we again arrive at a convergen
series inn and l , which can also be summed explicitly:

(
n

(
l 55

` S 12a1–a2

r 12
I nA

L1~r 12! D
AnnA

'25.31731022 a.u.
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Two-level electron dynamics in a strong variable external field

p-
V. A. Burdov

N. I. Lobachevski� Nizhni� Novgorod State University, 603600 Nizhni� Novgorod, Russia
~Submitted 24 February 1997!
Zh. Éksp. Teor. Fiz.112, 1209–1225~October 1997!

This paper studies the quantum dynamics of an electron in a double-well potential subject to a
strong time-periodic nonharmonic external field. The quasienergy spectrum of the system
is calculated and an expression for the electron density distribution is derived. It is found that under
certain conditions imposed on the shape of the excitation, the electron wave packet gets
locked, into one potential well, as it were, and is unable to tunnel through the potential barrier.
© 1997 American Institute of Physics.@S1063-7761~97!00510-6#

1. INTRODUCTION as in Refs. 1–3: we can limit ourselves to the two-level a
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In recent years a large number of theoretical and exp
mental papers devoted to the study of various~including
time-dependent! processes in quantum wells and heterostr
tures have been written. For instance, an extremely inter
ing effect was discovered theoretically1–7: when a periodic
external field with a certain amplitude is applied to an el
tron in a symmetric double quantum well, the electron wa
function is localized in one of the wells. This localizatio
phenomenon is discussed in Refs. 1–3, 6 and 7, while
possibility of generating low-frequency dipole radiation in
system of quantum wells under conditions of localization
examined in Refs. 4 and 5.

Direct calculations of the wave function of the syste
and the system’s dipole moment in an external variable fi
of arbitrary amplitude are extremely difficult, so that mo
results in Refs. 1–7 are obtained numerically, and only
approximations of a strong2,6 or rapidly varying4,5 field mea-
surably simplify the problem. Furthermore, in all the afor
mentioned papers except Ref. 7, the solution is obtained
for a single initial condition, that amounts to electron loc
ization in a well, which does not provide a complete a
clear picture of the given phenomenon as a whole~in par-
ticular, the question of ‘‘stability’’ of such a solution remain
unresolved!.

Note that in all the cited papers only two types of tim
dependence of the external field are used: sinuso
dependence,1–6 and a symmetric sequence of rectangu
pulses6,7 ~exceptions of a sort are Ref. 3, which employs
harmonic excitation modulated up to timet50 by a slowly
increasing exponential, and Ref. 5, where there is a cons
external field in addition to a sinusoidal field!.

The topic of the present paper is the quantum dynam
of an electron in a symmetric structure consisting of t
quantum wells located in a time-periodic~but not necessarily
harmonic! strong external field of frequencyv. Attention is
focused on electron localization in one of the wells. In p
ticular, we show that this effect is not only typical of a sp
cial ~e.g., sinusoidal! time dependence of the external fiel
but can emerge over a much broader class of functions
scribing perturbations of a much more general form~at least
at high field amplitudes!. It is even unnecessary to speci
the form of the potential energy of the unperturbed syste
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proximation, assuming that the distance between the
lowest levels,E12E05\D, is much smaller than the dis
tance from this pair of levels to the next levelE2 .

In our calculations we assume the external field to be
strong that the matrix element of the perturbation opera
V01, is much larger than the characteristic energy scale
the problem,\D. At the same time, we must boundV01 from
above, since we intend to use the two-level approximati
Combining these conditions yields

\D!V01!E22E1 .

Staying within these limits, we can obtain analytic resu
without resorting to numerical calculations.

It is well known that the most convenient way to d
scribe the quantum evolution of a system in a periodic fi
is to invoke the formalism of quasienergies and quasiene
wave functions.8–10 However, finding the quasienergy value
is an extremely complicated problem, which cannot
solved in general form even for a two-level system. T
strong-field approximation makes it possible to surmo
these difficulties and find the quasienergies for any arbitr
time dependence of the perturbation.

2. HAMILTONIAN FORMALISM FOR A TWO-LEVEL SYSTEM

Since we are using the two-level approximation,
would seem natural to look for the wave function of a pa
ticle in a double-well potential and in the potential of a tim
periodic force field2F(t) in the form of an expansion in the
basis consisting of the two stationary statesx0,1(x) of the
unperturbed system with the lowest possible energiesE0,1. It
is clear, however, that the energy representation is unlik
to be the most convenient one, since the very idea of ene
stationary states loses all meaning in variable fields that
so strong. Besides, below we are chiefly interested in
electron density distribution in the wells and the possi
tunneling of charge through the separating barrier, while
level population dynamics is completely ignored.

For this reason, following Refs. 4–6, we introduce a n
orthonormal basisCL,R(x) constructed from the initial sta
tionary state vectors

65709$10.00 © 1997 American Institute of Physics
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Here we assume that the symmetric functionx0(x) is always
positive and the antisymmetric functionx1(x) is positive
when x.0. The basis functionsCL(x) and CR(x) intro-
duced in this manner are completely localized in the left a
the right well, respectively. We can now write the wa
function of the system as a linear combination of the vect
CL,R(x) with time-dependent coefficients:

C~x,t!5CL~t!expS i E e~t!dt DCL~x!

1CR~t!expS 2 i E e~t!dt DCR~x!. ~1!

Here we have introduced the dimensionless time varia
t5tD, and e~t! is a periodic function with dimensionles
periodT52pD/v, and it depends on the ratio between t
perturbation matrix element and the transition energy\D.
The normalization condition imposed on the wave funct
implies that squaring the modulus of each of the coefficie
CL(t) andCR(t) and adding the squares yields unity, wi
the square representing the probability of detecting an e
tron in the left or right well, respectively.

Choosing the origin of energy midway between the le
elsE0 andE1 , we arrive at a system of equations describi
the time evolution of the coefficientCL,R(t):

H i
dCL

dt
52

CR

2
expS 22i E e~t!dt D ,

i
dCR

dt
52

CL

2
expS 2i E e~t!dt D .

~2!

Since the field is assumed strong, the characteristic value
e~t! are much larger than unity.

We write Eqs.~2! in a more convenient form by intro
ducing the notation

p5122uCR~t!u2, q5arg$CL~t!%2arg$CR~t!%,

where by ‘‘arg’’ we mean the phase of the complex numb
This leads to a closed system of equations forp andq,

H dp

dt
5A12p2 sinS q12E e~t!dt D ,

dq

dt
52

p

A12p2
cosS q12E e~t!dt D ,

~3!

which proves to be Hamiltonian, with the Hamiltonian fun
tion

H~p,q,t!5A12p2 cosS q12E e~t!dt D .

Note that the Hamiltonian equations of motion~3! are
not a full-fledged analog of the system~2!: the solutions do
not uniquely determine the coefficientsCL,R(t) and hence
the wave functionC(x,t). However, the physically observ
able quantities, e.g., the various expectation values and p
abilities, are fully determined by these solutions. In contr
to Eqs.~2!, the Hamiltonian equations of motion are pure
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the number of such variables in system~2!, but the equations
are nonlinear. This complicates matters somewhat, but a
same time the Hamiltonian form of these equations ena
one to use the well-known and highly developed algorith
of the theory of Hamiltonian systems to solve them.

Obviously, the right-hand sides of Eq.~3! are rapidly
oscillating functions of time, since the characteristic oscil
tion amplitude ofe~t! is much larger than unity. Hence b
formally integrating Eqs.~3! with respect tot we can easily
see that the variations of the variablesp and q within any
finite time interval of orderT are small.

Now let us solve the equations of motion~3!. We must
bear in mind that the functione~t! consists of two parts: a
constant partē , which is the value ofe~t! averaged over one
period, and a variable partẽ (t), whose average is alread
zero. Integration of the variable partẽ (t) yields a periodic
function, which means we can expand the Hamilton
H(p,q,t) in Fourier series:

H~p,q,t!5A12p2 (
n52`

`

mn cos~q12 ē t2nVt1cn!,

~4!

whereV52p/T, andmn andcn are, respectively, the coef
ficients and phases in the Fourier series, with

mn exp$ icn%5
1

T E
0

T

dt expH i S nVt12E dt ẽ ~t! D J .

~5!

Below we derive explicit expressions for the coefficientsmn

and analyze their dependence on the perturbation amplit
The most interesting situation is the one in which t

Hamiltonian ~4! contains a slowly varying phase, which
possible if an integerl exists such thatd52 ē 2 lV is much
less thanV. In this case the dynamics of the system proves
be resonant, and the external field is most effective.

Introducing the resonance phaseu5q1td1c l , we try
to find a canonical transformation that will destroy all no
resonant rapidly varying terms~with a frequency that is an
integral multiple ofV! in the Hamiltonian. The procedure
which formally amounts to averaging the Hamiltonian ov
rapid oscillations of frequencyV, has come to be known a
resonant perturbation theory.11

As a result of averaging, the Hamiltonian function of th
system becomes

H5pd1m lA12p2 cosu,

and the equations of motion

H dp

dt
5m lA12p2 sin u,

du

dt
5d2m l

p

A12p2
cosu

~6!

lead to the solution

p~t!5h cosw1A12h2 sin~Ad21m l
2t2T1!sin w.

~7!

Here we have introduced the notation
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h5
Ad21m l

2
, cosw5

Ad21m l
2

,

sin w5
m l

Ad21m l
2

,

andT1 is the constant of integration.
The solution~7! describes slow resonant oscillations

the momentump in the vicinity of resonance. The slownes
of the variation ofp andu is guaranteed by the smallness
the Fourier coefficientsm l and the conditiond!V, whose
validity has been assumed from the start. An increased
leads, on the one hand, to more rapid variations inp andu;
but on the other, these variations prove to be small, an
the limit sinw→0 the momentump becomes a constant o
the motion.

3. QUASIENERGIES OF THE SYSTEM

We must now find the quasienergy spectrum of the s
tem. According to Floquet’s theorem, the solutions of t
Schrödinger equation in a periodic external field with perio
T are functions with the property

Un~x,t1T!5Un~x,t!exp$2 inT%,

where the constant numbern is called the quasienergy. Th
Floquet functions form an orthonormal basis, and the w
function of the system can be expanded in the basis fu
tions. As shown by Zel’dovich,8 the expansion coefficient
are time-independent. In our case of a two-level system,
number of quasienergies and quasienergy wave functions
creases to two, and it is easy to show that when the en
origin is midway between the levels, the quasienergies di
only in sign:n1,256n. Indeed, if we assume that the syste
of equations~2! has a solution consisting of a pair of Bloch
type functions that correspond to the quasienergyn,

CL~t!expS i E e~t!dt D5G~t!exp~2 int!,

CR~t!expS 2 i E e~t!dt D5F~t!exp~2 int!,

whereF(t) and G(t) are periodic function with periodT,
then the other pair of linearly independent solutions of t
system, as Eqs.~2! imply, consists of the functions

CL~t!expS i E e~t!dt D5F* ~t!exp~ int!,

CR~t!expS 2 i E e~t!dt D52G* ~t!exp~ int!,

corresponding to the quasienergy2n ~the asterisk denote
complex conjugation!.

Expanding the electron wave functionC(x,t) in the
quasienergy basis functionsU6(x,t),

C~x,t!5AU1~x,t!1BU2~x,t!, ~8!

and comparing the expansion with~1!, we find the genera
solution of the system of equations~2!,
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5AF~t!exp~2 int!2BG* ~t!exp~ int!,

CL~t!expS i E e~t!dt D
5AG~t!exp~2 int!1BF* ~t!exp~ int!,

and the expressions for the quasienergy functions:

U1~x,t!5exp~2 int!@ f ~t!exp$ iwF~t!%CR~x!

1g~t!exp$ iwG~t!%CL~x!#,

U2~x,t!5exp~ int!@ f ~t!exp$2 iwF~t!%CL~x!

2g~t!exp$2 iwG~t!%CR~x!#. ~9!

The functionsf (t) andg(t) introduced in~9! are the moduli
and thewF,G(t) are the phases of the complex functio
F(t) andG(t), respectively. Now, according to the defin
tion of p(t), we look for

p~t!5122a2f 2~t!22b2g2~t!

14ab f~t!g~t!cos~2nt2w~t!2g!, ~10!

whereg, a, andb denote the phase difference of the coef
cientsA andB and the moduli of these coefficients, and t
periodic function w~t! consists of two terms,
w(t)5wF(t)1wG(t).

Let us compare the expression~10! for the momentump
with the expression~7! obtained by solving the dynamica
equations of motion. Obviously, pure quasienergy states
respond to the case in which eitherA or B vanishes~depend-
ing on the state that must remain! in the expression~8! for
the wave function. In this case the squared moduli of
coefficientsCL,R(t) must be strictly periodic in time with a
period equal to that of the field. Naturally, the dynamic
variablep(t) defined earlier in terms ofCR(t) also becomes
a periodic function with the same period, a fact specified
~10!.

On the other hand, the solution~7! obtained via resonan
perturbation theory becomes a strictly periodic function~a
constant in our case! if h561. In the phase plane of th
dynamical system~6!, the pointsh561 correspond to two
stationary points, while any other value ofh corresponds to
slow periodic motion with a frequency that is the same for
phase trajectories and coincides, as Eq.~10! implies, with the
quasienergy difference 2n. Thus, we conclude that the value
h561 of the Hamiltonian correspond to pure quasiene
states of the quantum system.

Hence, by setting the coefficientB to zero in Eq.~10!
andh to 1 in ~7! ~and then settingA to zero in~10! andh to
21 in ~7!! we find f (t) and g(t), which determine the
quasienergy functionsU6(x,t):

f ~t!5sin
w

2
, g~t!5cos

w

2
. ~11!
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assume thatA and B are arbitrary, then by comparing Eq
~10! and~7! with allowance for the expressions we found f
f (t) andg(t), we obtain

a25
11h

2
, b25

12h

2
. ~12!

Obviously, according to the usual rules of quantum m
chanics, the squared moduli ofA andB can be interpreted a
the probability of one of the two quasienergy values. Th
we find that the probability of a definite quasienergy value
specified by the dimensionless Hamiltonianh of the dynami-
cal system~6!, and sinceh is a constant of the motion, th
phase trajectories of system~6! in the $p;u% plane are the
curves on which the quasienergy probabilities are consta

We now determine the quasienergy values of the tw
level system, to which end we go back to Eqs.~7! and~10!.
Direct comparison of the time dependence in the two exp
sions leads to

n656n56
1

2
Ad21m l

2. ~13!

As is known, quasienergies are defined to within the f
quency of the external fieldV. Thus the resulting values~13!
are quasienergies reduced to the ‘‘first Brillouin zone.’’

Let us discuss the dependence of the quasienergie
the parameters of the external perturbation. For this we
need the coefficientsmn , which are defined in~5!. First we
note that only the variable part of the perturbation affe
mn , while variations in the average value are only able
move the system away from resonance or closer to re
nance, with the condition for resonance,

d52 ē 2 lV50, ~14!

having a clear physical meaning. The constant componen
the perturbation moves the energy levels of stationary st
apart by a distance of approximately 2ē ~in strong fields!.
Hence to couple these levels in a resonant manner the sy
needs exactly the same energy as one quantum~or several
quanta! of the external field.

In calculating the integral~5!, to determine the Fourie
coefficientsmn we can use the method of stationary pha
provided that the equation

2 ẽ ~t !1nV50 ~15!

has a solution. Moreover, the points of stationary ph
must, as is known, be located far from one another~if there
are several such points!, so that integration near each point
done independently—in this case their contributions are
ditive.

For the sake of definiteness we assume that Eq.~15! has
only two solutions for givenn, t5t1,2(n), and consequently
the derivativesė1,2 ~of the functione~t!! at the pointst1,2(n)
have different signs. After doing the necessary calculati
we arrive at
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mn54p S ė1
1

u ė2u
1

Au ė1ė2u

3sinH E
t1~n!

t2~n!

dt~2 ẽ ~t !1nV!J D . ~16!

An estimate of themn under the assumption thatė1;u ė2u
yields mn;AV/e0, wheree0 is the characteristic amplitud
of variation of the functionẽ (t). If we assume that the
perturbation frequencyV is of order unity ande0@1, the
coefficientsmn prove to be small decreasing functions ofe0 .
In addition we note thatmn is an oscillating function ofe0

because of the sine in~16!.
If the numbern is not large enough for Eq.~15! to be-

come invalid, and yet its value is such that the points
stationary phase are too close to each other, the metho
stationary phase used in calculating the coefficientsmn must
be slightly modified. Since here the two regions in which t
phase changes only slowly begin to merge, the functionẽ (t)
can be approximated in~5! by a parabola symmetric abou
the pointt0 at which the two solutions of Eq.~15! merge,
which results in the following expression formn :

mn5
V

~ë0!1/3
Ai S 2 ẽ ~t0!1nV

~ë0!1/3 D .

Hereë0 stands for the second derivative att5t0 , and Ai(x)
is the Airy function of argumentx.

Note that this expression is also applicable to numbern
at which Eq.~15! has still no solution, but is close to becom
ing valid. In this case the argument of the Airy function
small and the value of the function is of order unity. Increa
ing the amplitudee0 of the external perturbation~i.e., actu-
ally the value ofu ẽ (t0)u! for any preassigned value ofn, we
can ensure that while the argument of the Airy function h
become negative it still continues to grow in absolute val
In this casemn proves to be an oscillating function ofe0 ,
with the size of oscillations slowly decreasing, and gradua
the function is transformed into the one discussed above~see
Eq. ~16!!.

If, on the other hand, we decrease the amplitude of va
tion of ẽ (t), the argument of the Airy function grows in th
positive direction, which leads to rapid exponential decay
the coefficientsmn as functions ofe0 . This situation corre-
sponds to a complete absence of solutions of Eq.~15! and
points of stationary phase in the integral~5!. Note, however,
that for all values of the argument of the Airy function, th
coefficientsmn prove to be small because of the small fac
of the Airy function, which is equal in order of magnitude
e0

21/3.
Returning to the expression~13! for the quasienergies, i

can be shown that the dependence of quasienergy on
amplitudee0 of the external field qualitatively follows the
behavior of the coefficientsm l and is an oscillating function
if the integral~5! contains points of stationary phase. In pa
ticular, when the average value of the perturbation is ide
cally zero or when the condition~14! is satisfied exactly, the
quasienergies are completely determined by the value ofm l .
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gral number of external field quanta ‘‘fit’’ into the interva
between two quasienergy levels, which corresponds to
crossing of the two quasienergy branches in the first B
louin zone.

For instance, if the perturbation is purely harmonic, E
~5! and ~13! yield a value for the quasienergy differenc
equal toJ0(2e0 /V), whereJ0(x) is the zeroth-order Besse
function with argumentx. Here quasienergy resonance o
curs at values ofe0 corresponding to the zeros of the Bess
function. Similar results are derived in Refs. 12 and 1
where the quasienergies are calculated with a low-freque
harmonic field in the WKB approximation.

When the integral~5! has no points of stationary phas
the quasienergies are essentially independent ofe0 , and only
in an exponentially narrow range of values ofē near
ē 5 lV/2 does the quasienergy also become a small expo
tially decreasing function ofe0 , as are the coefficientsm l ,
which, however, never vanish.

4. ELECTRON DENSITY DISTRIBUTION

Our analysis of the dynamical equations in Sec. 2 ma
it possible to study the time evolution of the electron dens
in a system with two quantum wells. We start by finding t
probability distribution density in the coordinate space at
arbitrary moment in time. Calculating the square of t
modulus of the wave function~1! and going from the expan
sion coefficientsCL,R(t) to the dynamical variablesp andq,
we arrive at the expression

r~x,t!5
11p~t!

2
CL

2~x!1
12p~t!

2
CR

2~x!, ~17!

which implies that changes in the shape of the electron w
function are determined entirely by the dependence ofp on
t. In deriving~17!, we dropped terms containing the produ
CL(x)CR(x), since as noted earlier, each of the two fun
tionsCL(x) andCR(x) is concentrated almost entirely in it
own well, so that their overlap can be ignored. The estim
of CL(x)CR(x) in Ref. 14 yields values of orde
A\D/E2!1, which supports the validity of the approxima
tion used in~17!.

In the general case, for arbitrary values of the Ham
tonian h and an anglew that varies from 0 top, Eq. ~17!
describes smooth harmonic spatial oscillations of the e
tron density, which according to~7! take place between th
two wells with a frequency equal to the difference 2n of the
quasienergy values.

We note here that there is a strong analogy between
behavior of a two-level system in a strong variable exter
field and the behavior in the absence of such a field, w
there is also a flow of charge from well to well according
a harmonic law with unit frequency. This analogy is n
accidental, and is due primarily to the fact that a perio
external field forces its own hierarchy of states on the qu
tum system, which leads to active replacement of station
states by quasienergy states and of energy levels by qua
ergy levels. As a result, the system’s spectrum still cons
of only two levels and the frequency of oscillations of t

661 JETP 85 (4), October 1997
e
l-

.

-
l
,
cy

n-

s
y

n

e

t
-

te

-

c-

he
l
n

t
c
-

ry
en-
ts

istic frequency scale, the transition frequency between
quasienergy levels.

We now examine some interesting limiting cases in
evolution of the electron wave packet. In particular, we d
cuss the possibility of a static distribution of electron dens
in a double quantum well and of complete localization of t
particle wave function in one of the wells.

First we assume that the parametersm l and d do not
vanish simultaneously, i.e., the quasienergy spectrum~13! is
nondegenerate and the two quasienergy valuesn6 corre-
spond to the pair of quasienergy functions~9!. To describe
the functionp(t) we can then use the expression~7!, which
becomes a constant either when sinw→0 or whenh→61.
Let us examine in detail what happens in this case with
wave function~8! of the system and the quasienergy fun
tions ~9!.

The parametersh and w are entirely independent, an
while the value of the Hamiltonianh, which is uniquely
determined by the initial condition, specifies according
~12! the weight of one of the two quasienergy states in
wave functionC(x,t), the value of the anglew affects only
the internal structure of the quasienergy functions, with
effect on the general structure of the expansion~8!.

Let us assume that initially the wave function of th
system coincides with one of the quasienergy functions,
the value ofh is either 1 or21 and one of the two expansio
coefficients in~8! vanishes. Since the coefficients in the e
pansion of the wave function in the quasienergy basis fu
tions are time-independent, at all subsequent times the
tem will also be in a quasienergy state fixed by the init
condition, and described by the functionU1(x,t) or
U2(x,t).

Thus the square of the modulus of the wave funct
C(x,t), which determines the probability distribution de
sity, coincides with the square of the modulus of one of
two functionsU6(x,t) in ~9!. In accordance with~11!, for
the distribution density in a pure quasienergy state we h

r~x,t!5CR,L
2 ~x!sin2

w

2
1CL,R

2 ~x!cos2
w

2
, ~18!

where the first indices correspond toU1(x,t), and the sec-
ond indices toU2(x,t).

From~18! it follows that the electron density distributio
for a pure quasienergy state remains constant, while the fu
tions U6(x,t) are time-dependent. Generally speaking,
the process of calculating the square of the modulus of
wave function~8!, the expression forr(x,t) can become
time-dependent, but only in the mixed terms containing
productCL(x)CR(x). As noted earlier, theses terms are e
tremely small, so that they can be dropped from~18!.

Note that the filling factor of the left and right wells in
quantum state with definite quasienergy depends
sin2(w/2) and cos2(w/2), i.e., on the offset from resonance,d,
and the value ofm l . Bearing in mind that the quasienergie
~13! are specified by the same parameters, we can say
the filling factor of the wells is determined by one of the
parameters~sayd! and the quasienergyn, so that it differs for
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We now discuss the other possibility of a static cha

distribution forming in a double-well structure, i.e., we a
sume that the Fourier coefficientm l vanishes, and with it
sinw. If, in addition, the offset from resonance is positiv
d.0, thenw is also zero. But ifd,0, thenw5p. Generally
speaking,m l can vanish only under certain conditions im
posed on the shape of the functione~t!. We return to this
question later. To ensure consistency of presentation,
now focus on the problem of finding the quasienergy fu
tions.

Suppose thatw is zero. Then, according to~11!, f (t)50
andg(t)51, and the quasienergy functionsU6(x,t) assume
the form

U6~x,t!5CL,R~x!expH 6 i S wG~t!2
d

2
t D J , ~19!

where forU1(x,t) we must take the subscript ‘‘L ’’ and for
U2(x,t) the subscript ‘‘R. ’’ Obviously, each of these two
functions turns out to be localized entirely in its own we
U1(x,t) in the left well andU2(x,t) in the right. But if
w5p, the functionf (t) becomes equal to unity whileg(t)
vanishes. In this case, too, the quasienergy functions

U6~x,t!5CR,L~x!expH 6 i S wF~t!1
d

2
t D J ~20!

are completely localized, but nowU1(x,t) is localized in
the right well andU2(x,t) in the left.

Although in both cases the functionsU6(x,t) also de-
pend on time, the dependence has no effect on the de
distributionr(x,t). Squaring the modulus of the wave fun
tion ~8!, we obtain only the sum of the squares of the mod
lus of each term separately, since now, withw50 or p, the
product of the quasienergy functions belonging to differ
quasienergies is again determined by the prod
CL(x)CR(x), which is extremely small under conditions
which the two-level approximation is valid. As a result w
again arrive at a static charge distribution,

r~x,t!5a2CL,R
2 ~x!1b2CR,L

2 ~x!, ~21!

where the first subscripts correspond tow50 and the second
to w5p. The coefficientsa2 andb2 yield the filling factor
of each of the two wells, and in turn are uniquely determin
by the Hamiltonianh of the dynamical system~see~12!!.

Either of the two cases of formation of a static char
distribution in a symmetric structure consisting of two qua
tum wells can serve as a starting point in solving the prob
of existence of quantum states completely localized wit
one well. For this to occur we must be sure, as can easily
seen, that both conditions needed for the functionr(x,t) to
be constant, i.e.,h561 and sinw50, are met simulta-
neously, and that they can be applied in arbitrary order.

Indeed, let us set the Hamiltonianh either to 1 or to21.
The wave function then becomes one of the quasiene
functionsU6(x,t). If we now require thatm l vanish, which
means that sinw also vanishes, we find, in accordance w
~19! and ~20!, that the quasienergy functions are localiz
entirely in one of the wells. Thus, the wave functionC(x,t)
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tions CL,R(x), and the density distribution becomes a co
stant function entirely localized either in the left or rig
well:

r~x,t!5CL,R
2 ~x!.

The subscript in this expression must be chosen in the
lowing manner: the subscript ‘‘L ’’ is chosen forh51 and
w50 or h521 andw5p. Otherwise we must select ‘‘R. ’’

Since, as noted earlier, each value of the Hamilton
corresponds to a definite initial condition and the coefficie
A and B in the expansion~8! do not change, we finally
conclude that a static charge distribution localized entirely
one of the two wells can be obtained if we can initially bui
a wave packet corresponding to a pure quasienergy s
Here the coefficientm l must vanish, which corresponds to
certain form of the time dependence of the external field~as
will be shown later! and furthermore, a definite value of th
perturbation amplitude.

We now turn to the case in which the quasienergy sp
trum ~13! is degenerate, i.e., we assume that the two quas
ergy values merge. This is possible only if the parameterd
andm l vanish simultaneously, which automatically nullifie
the quasienergy values. Braun and Miroshnichenko15 show
that quasienergy branches can cross only if there is some
of spatial symmetry in the problem, for example, what
known as generalized parity symmetry, for which the Sch¨-
dinger operator is invariant under the transformatio
x→2x andt→t1T/2. Here the quasienergy branches co
responding to different parities cross if the system has
higher-order symmetries. Since we are discussing quan
dynamics under conditions of quasienergy resonance, we
sume that the Hamiltonian possesses a symmetry that al
for quasienergy degeneracy.

In this case the quasienergy functions of the system
strictly periodic, with a period equal to that of the extern
field, T. Hence the dynamical variablep(t) defined earlier
in terms ofCR(t) also becomes a periodic function with th
same period. Sinceh, cosw, and sinw have lost all meaning
now, we should seek the solutionp(t) directly from the
system of equations~6!, where we must putm l5d50. The
solution, which proves to be a constant,p(t)5p(0), must
then be plugged into~17!. As a result we find that when th
quasienergy levels are degenerate, the density distribu
also remains constant in time,

r~x,t!5
11p~0!

2
CL

2~x!1
12p~0!

2
CR

2~x!, ~22!

and is determined entirely by the initial condition.
We would now like to establish the structure of the wa

function in the case of quasienergy resonance. Zel’dovi8

shows that when quasienergy branches cross, the choic
quasienergy functions becomes ambiguous, as illustrate
the following. Let us try to obtain the quasienergy functio
by passing to the limitsd→0 andm l→0 in ~9!. It turns out
that the final form of these functions then depends on
order in which these limits are taken, i.e., which of the tw
parametersd andm l vanishes first.
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exactly in resonance~14!, we find thatw5p/2 and, in ac-
cordance with~11!, that f (t)5g(t)51/&. We plug these
values into Eqs.~9! for the quasienergy functions and setm l

to zero. The result is

U1~x,t!5
1

&

@CR~x!exp$ iwF~t!%

1CL~x!exp$ iwG~t!%#,

U2~x,t!5
1

&

@CL~x!exp$2 iwF~t!%

2CR~x!exp$2 iwG~t!%#.

Each of the derived functionsU6(x,t) yields a spatially
symmetric distribution, with equal filling of the two wells.

Now let us change the order in which the limits a
taken. Herem l50, and hence sinw50. The anglew is either
0 or p. If we setw to zero, which means that cos(w/2)51
and sin(w/2)50, we arrive at Eqs.~19! for U6(x,t) in
which we must putd50. If we setw to p, i.e., cos(w/2)50
and sin(w/2)51, we arrive at~20!, where we must also pu
d50. In this case the functionsU6(x,t) prove to be local-
ized entirely in only one well.

Note that as a result of the above manipulations with
passage to limits, we obtained three different pairs
quasienergy functions. These three sets of basis function
not exhaust all possible sets, since there is an infinitude
ways in which, under conditions of degeneracy, we can
tain a pair of quasienergy functions that differs from all p
vious pairs. Thus, the choice of a pair of basis functions
the expansion~8! is really a question of taste. We note on
that it is easy to go from one set of basis functions to ano
in ~8! by redefining the expansion coefficients, and since
two basis vectors are quasienergy functions, the expan
coefficients always remain constant.

If for the quasienergy basis we take, for instance,
functions~19! with d50, obtained by taking the limitsm l50
andw→0, we can easily explain the localization of the ele
tron wave function in one of the two wells, provided that f
the initial condition we take a function that is localized e
tirely in a well, and thus essentially coincides with one of t
quasienergy functions. This is the initial condition in Re
1–3, where the possibility of localization under conditions
quasienergy resonance is mentioned for the first time. For
sake of definiteness we assume that the initial condition
the formC(x,0)5CL(x). Obviously, the expansion coeffi
cients in ~8! are A5exp$2iwG(0)% and B50, which yields
the solution

C~x,t!5CL~x!exp$ i ~wG~t!2wG~0!!%,

since bothA and B are constant. Naturally, such a wav
function can be localized only in the left well, with the de
sity distributionr(x) equal toCL

2(x) remaining unchanged
In total contrast to all of the above cases, in which t

functionr(x,t) is constant, is the situation corresponding
exact resonance~14! with equal populations of the quasien
ergy levels, i.e.,d5h50. Here we assume that the coef
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ing equal to unity. For simplicity we assume that bothA and
B in ~8! are purely real and positive, an assumption that in
way affects the generality of the result.

In this case each of the two quasienergy functions~9!
yields a symmetric coordinate distribution with a zero dipo
moment, which is not true of the system’s wave functi
C(x,t). Pluggingw5p/2 and A5B51/& into ~11!, ~9!,
and ~8! and grouping terms in the basis functionsCL,R(x),
we obtain

C~x,t!5CL~x!expF i

2
$wG~t!2wF~t!%Gcos

m lt2w~t!

2

2 iCR~x!expF i

2
$wF~t!2wG~t!%G

3sin
m lt2w~t!

2
. ~23!

If we were to assume thatA andB are complex, we would
have a common phase factor and constant phase shift, w
can easily be removed by changing the point from wh
time is measured.

Obviously, the wave function~23! describes oscillations
of the electron density with the maximum possible amplitu
and with frequencym l /2. Such a mode can be called th
maximally time-dependent mode: the entire wave packet
ternately shifts at an interval equal to half the period, fro
one well to the other, forming at these moments a distri
tion with a maximum dipole moment.

5. EFFECT OF THE TIME DEPENDENCE OF THE
PERTURBATION ON THE EVOLUTION OF THE ELECTRON
DENSITY

In this section we specify and discuss the conditions
der which the Fourier coefficientsm l can vanish. It turns out
that the situation here depends largely on the relations
between the average perturbationē and the maximum value
of the variable partẽ (t), which earlier was denoted bye0 .
We start with the case in which the perturbation is a mos
positive function andē . ẽ (t) for all values oft.

Earlier we noted that the constant component of the p
turbation, ē , moves the energy levels of the stationary sta
far apart, to a distance of approximately 2ē . On the other
hand, qualitatively we can think of the componentẽ (t) as a
small perturbation, since it is much smaller than the le
separation. It is well known, however, that even a small p
turbation can be effective if its frequency~or the frequency
of one of its harmonics! is close to the transition frequenc
between levels~see, e.g., the problem of resonant excitati
in Ref. 16!. In our case this corresponds to values of t
parameterd close to zero or at least comparable tom l , which
yields values of sinw equal to unity or close to this value
The temporal variation of the wave function leads to a pe
odic variation of the level populations and filling of the p
tential wells, with the maximum variation attained ath50
~see~23!!.
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of t, the Fourier coefficientm l is an exponentially smal
quantity~see Sec. 4!. For this reason the size of the resona
region ofd, which coincides in order of magnitude withm l ,
also proves to be exponentially small. An increase ind in
comparison tom l takes us outside the resonant region, wh
drives sinw down, and in the limit sinw!1 leads to the
onset of a charge distribution that is almost constant in tim
since thel th perturbation harmonic is now unable to res
nantly couple the two levels in the spectrum. Note that
though them l are extremely small, they never vanish, wi
the result that sinw is never exactly zero, and hence th
expressions~19!–~21! for the quasienergy functions and th
density distribution must be considered asymptotic exp
sions of some sort.

Now we go to the opposite case, in which the amplitu
of the variable component of the external field exceeds
average value of the field:e0. ē . Here, naturally, even
qualitatively we cannot assume, as we did earlier, that
variable part of the perturbation is small and that the act
of the external field reduces to resonant excitation of
two-level system by a singlel th harmonic. Under conditions
in which the amplitude of the variable component is larg
we must allow not only for single-quantum resonance p
cesses, but also for multiquantum resonance processe
situation automatically taken into account by the Fourier
efficient m l .

According to the inequalitye0. ē , when the time is
t1( l ) or t2( l ), the condition~15! with n5 l is met and the
integral~5! contains no points of stationary phase. Nowm l is
specified by~16!, which implies, in particular, thatm l van-
ishes only if two conditions are met. First, the derivativesė1

and ė2 must differ only in sign, remaining equal in absolu
value, and second,

E
t1~ l !

t2~ l !
dt~2 ẽ ~t !1 lV!52pS N2

1

4D , ~24!

where N is an arbitrary integer. In this case, the vario
resonant processes, both single-quantum and multiquan
quench one another. Here the value of sinw is zero and the
two-level system is not excited, which leads to the const
charge distribution~21! in the wells.

Obviously, the first condition determines the class
functions that describe the time dependence of the exte
field in which an electron can be localized in one of t
wells. Assuming thatė152 ė2 at all values of the perturba
tion’s amplitude and frequency, we conclude that the fu
tion e~t! in this case is symmetric aboutt5t0, where the
two solutions of Eq.~15! merge, while the Schro¨dinger equa-
tion is invariant asx→2x andt→t1T/2 ~generalized par-
ity!.

The symmetry ofe~t! about t0 is a necessary but no
sufficient condition form l to vanish. For a static charge dis
tribution to emerge, the perturbation amplitudee0 must have
a certain value, which is determined by~24!. Actually this
second condition specifies the relationship between the
ternal perturbation amplitudee0 and perturbation frequenc
V that makesm l vanish. For instance, when the perturbati
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solving the equationJ0(2e0 /V)50 ~see Ref. 2; this also
follows from ~24!!, which leads to linear behavior ofe0(V)
in the form e05xiV/2, where thexi are the roots of the
zeroth-order Bessel functionJ0(x).

It is clear, however, that under certain conditions it
unimportant whether these requirements are rigorously m
since any small deviations from the conditions lead
equally small variations of the space and time dependenc
the wave function and density distribution deviations th
have no significant effect on the behavior of the system.
instance, when the system is far from quasienergy resona
i.e., d is nonzero, slight deviations of the perturbation from
given shape and amplitude lead to the emergence of a fi
~but small in comparison tod! coefficient m l , which has
essentially no effect on the quasienergy functions~19! and
~20! and the wave function~8!, since sinw is much smaller
than unity. In this sense, obviously, we can speak of
resulting solutions of the Schro¨dinger equation and the cor
responding electron density configurations as be
‘‘stable.’’

But if the deviations from the specified conditions a
significant, the value of sinw may approach unity. In this
case the external field acts resonantly on the two-level s
tem whend is close to zero. Such action induces tunneli
oscillations of the charge from one well to the other, with t
maximum amplitude of such oscillations being reached wh
the populations of the quasienergy level become equal
accordance with~23!. This is precisely what happens in th
case of quasienergy resonance, where no matter how s
the emerging value ofm l is, the value of sinw automatically
becomes equal to unity, and the quasienergy functions
formly fill the two wells. Obviously, the solution of the
Schrödinger equation corresponding to quasienergy re
nance is now ‘‘unstable,’’ in the sense that the small
variation in the parameters of the system markedly alters
nature of the solution.

Thus, the ‘‘stability’’ of states localized in one of th
wells depends on the extent to which the constant compo
of the external field distorts the double-well potential. If th
offset from resonanced is large compared tom l , localized
states~built in this case from pure quasienergy states at v
ues of the amplitudee0 of the external field corresponding t
~24!! prove to be ‘‘stable’’ under small variations in the pe
turbation amplitude or initial condition. A decrease ind leads
to a narrowing of the stability region, and in the limitd50,
which corresponds to quasienergy resonance, the local
states are completely destroyed by the slightest change
e0 .

In conclusion, we note once more that localization of
electron wave packet in one of the wells is possible if t
time dependence of the periodic external field is described
a function symmetric with respect to any of its maxima
minima and if the external field is strong. Since there are
other restrictions on the type of the time dependence of
perturbation, we can say that the given phenomenon is
fairly general nature.
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Extraction of information from the periodic system of the elements as an inverse

g

problem
Yu. V. Tarbeev, N. N. Trunov, A. A. Lobashev, and V. V. Kukhar’

D. I. Mendeleev All-Russian Scientific-Research Institute of Metrology, 198005 St. Petersburg, Russia
~Submitted 12 March 1997!
Zh. Éksp. Teor. Fiz.112, 1226–1238~October 1997!

The inverse problem of recovering an effective atomic potential that is universal for all elements
of the periodic system is examined using a refined WKB method. The order of filling the
shells is shown to be given by a linear combination of the principal and orbital quantum numbers
with a coefficient that depends only on the asymptotic behavior of the potential. A relationship
between the atomic numbers of the elements which open the shells and a certain
functional ~the strength! of the potential is found. Narrow ranges for the asymptotic index and
strength of the potential are determined by comparison with data from the actual periodic
system. The self consistency of this approach is demonstrated by good agreement between the
calculated and actual atomic numbers of the elements. ©1997 American Institute of
Physics.@S1063-7761~97!00610-0#
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The periodic system of the elements discovered by D
Mendeleev in 1869 has been studied by physicists, chem
and scientists in other specialties in its fundamental and
plied aspects. Despite a variety of approaches, in reality
methods are used: either a phenomenological and/or s
empirical systematization is carried out, for example,
choosing a combination of quantum numbers which desc
the order of filling of the levels in most of the elements,1 or
the direct problem is solved, for example, by determining
electronic levels of the elements using a previously disc
ered form of the self consistent atomic potential. Tw
sources of difficulty are then inevitable. First, the poten
itself is calculated on the basis of approximate quantum
chanical methods, e.g., by different versions of the Thom
Fermi or Hartree–Fock methods. The resulting errors lea
‘‘exceptions to the rule,’’ such as deviations from the e
pirical rule for filling of shells.1 Second, studies of continu
ous variations, i.e., of the quantum numbers and level e
gies, etc., as functions of atomic number, will essentia
require exact solutions of the Schro¨dinger equation for a
given potential and this is a rare exception for realistic p
tentials.

Meanwhile, there is obvious interest in solving the i
verse problem: beginning with the information contained
the modern periodic table, find the effective potential
many-electron atoms corresponding to the true interac
with the maximum possible accuracy and the other cha
teristics of the interactions. Evidently, here all the inform
tion in the periodic table must be regarded as ‘‘regular’’ a
used to correct the approximations.

Like every somewhat complicated inverse problem, t
problem becomes well posed and constructive only w
additional limitations are imposed~on the allowable potentia
functions, etc.!.

The purpose of this article is to extract information, su
as limitations on the form of the effective one-electron p
tential, from the order of filling of the shells and the structu
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inverse problem is solved: we determine self-consistentl
linear combination of the quantum numbers which contr
the appearance and filling of new levels of outer electrons
all the elements with increasing atomic number and the
fective potential itself, for a class of self-similar solution
such as the often used Tietz approximation,2 but with an
additional parameter.

This approach has a certain simplicity and constructa
ity because of the following features:~1! exact solutions of
the Schro¨dinger equation are not required and~2! the prob-
lem breaks up into two parts, i.e., the class of quantum nu
bers and the order of filling of the levels are uniquely det
mined by the asymptotic behavior of the potential, while t
opening of new shells is controlled by a global parame
the strength of the potential.

This paper is organized as follows: in Sec. 2 a new ef-
fective quantum numberT, which depends on the asymptot
behavior of the potential and determines the order of filli
of the levels with given quantum numbers, is introduced
the basis of a WKB analysis of the appearance of levels
potential with a specified asymptotic behavior. In Sec.
limitations on the asymptotic behavior of the effectiv
atomic potential are obtained by analyzing the behavior
the shells as the periodic system of the elements is filled
In Sec. 4, parameters which completely characterize the
tential in this problem are established, and a description
given of the classes of equivalent potentials with the sa
order of filling of the shells and the same atomic numbers
the elements at which an atomic shell with given quant
numbersn and l begins to fill up. Section 5 is devoted t
determining the order of the elements for which electro
with a given orbital angular momentum first appear in a s
cific atomic model potential. This is a test of the self cons
tency of the approach developed here. The results are
cussed and the directions for future studies are pointed ou
the Conclusion.

Atomic units are used throughout this paper.

66607$10.00 © 1997 American Institute of Physics



2. WKB DETERMINATION OF THE QUANTUM NUMBER
WHICH DETERMINES THE ORDER OF FILLING OF THE
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LEVELS

In order to solve the proposed inverse problem we us
WKB method for levels with zero binding energy in an e
fective ~one-electron! atomic potential. In this section is su
ficient just to know the asymptotic behavior of the effecti
potentialU(r ,Q), whereQ is the nuclear charge, which ac
tually equals one of the integersZ that coincide with the
order of an element in the periodic table.~In the intermediate
calculations it is convenient to regardU as a continuous
function of Q.!

We shall use a new, extremely effective quasiclass
quantization condition for levels with zero energy,3,4

1

p E
0

`

drA22U~r ,Q!5Nl1S l 1
1

2D ~f01f`!2
1

2
, ~1!

where the phasesf0 and f` are determined by the
asymptotic behavior of the potentialU(r ,Q) at zero and at
infinity,

r→0: U;2
1

r 12s , s,1; f05
1

12s
;

r→`: U;2
1

r 11n , n.1; f`5
1

n21
, ~2!

with the Coulomb part explicitly separated from the asym
tote. It is this value ofn which is meant for the asymptot
throughout this paper.

We assume that the electrons move in a self consis
effective potentialU(r ,Q) with a Coulomb asymptote fo
r→0 (s50) and a power-law asymptote with the expone
n ~to be determined below! for r→`.

As applied to our problem, the quasiclassical quanti
tion condition ~1! makes it possible to determine the tim
when new levels appear with increasingQ as a function of
the power of the potential

F~Q!5
1

p E
0

`
A22U~r ,Q!dr ~3!

and its asymptotes~2!. Note thatF(Q) signifies the number
of half waves in the WKB wave function, neglecting th
centrifugal potentialWl5 l ( l 11)/r 2, while the additional
phasesf0 andf` account for bothWl and the exact form of
the wave functions in the regions of very small and ve
larger ~where the condition of quasiclassicality is not sat
fied!. Evidently, theNl th level ~in sequence! with orbital
angular momentuml and binding energyE50 appears forZ
such that

F~Z!5Nl1 l
n

n21
. ~4!

As Z and henceF(Z) increases, the binding energy of
level increases monotonically.~Throughout this paper we as
sume that the power of the potentialF(Z) is a monotonically
increasing function of the atomic numberZ.!
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pears for the principal quantum numbern5 l 11; thus,
Nl5n2 l . Let us introducen in Eq. ~4!:

F~Z!5T~n,l ,n!1
t~n!

2
, t~n!5

1

n21
. ~5!

Here we have introduced a class of quantum numberT
which are linear inn and l and depend parametrically onn :

T5n1 l t ~n!. ~6!

The systematics of filling the levels in the periodic table
therefore, completely determined by Eqs.~3!, ~5! and ~6!.
One extremely convenient advantage of this approach is
the problem is separated into two steps. The actual orde
filling the levels, which is determined by the increase inT, is
uniquely fixed by the parametern or t(n) and is independen
of the specific form ofU(r ,Z) provided that the asymptote
~2! do not change.

Let us consider~just in this paragraph! a potential with a
noncoulomb asymptote at zero (sÞ0) ~2!. Generalizing
condition~1! to this case, we find that the order in which th
levels are filled is determined only by the equivalency cla
of potentials with different specific forms and different pa
~s,n!, but the same

t~s,n!5
1

n21
1

s

12s
.

In our case, of course,s50 andt(n)5t(0,n). It is useful to
note, however, that the schemes for the appearance o
levels will be identical ift(n)5t(s1 ,n1). For example, they
are the same for a potential which has a Coulomb form at
center and falls off exponentially at infinity~s50, n5`!
and for a potential which is bounded at zero (s521) and
has an asymptote withn53. This equivalency can be used
make a few estimates on choosing an exactly solvable po
tial; more complicated equivalency classes are examine
Sec. 4.

We now illustrate the accuracy of the proposed WK
method for a model potential which has been used to so
this same problem of the order of appearance of the lev
Exact solutions have been given5,6 at zero energy for a spe
cific potential of the form

U52
v

r ~11r !2 ~7!

~the simplest form of the solution occurs forn2 l 51; see
Ref. 4, p. 464!. The appearance of the levels is controlled
the numberK5n1 l ~wheren is the principal quantum num
ber andl is the orbital quantum number!, chosen empirically
in Ref. 1, with

A2v5AS K1
1

2D 2

2
1

4
. ~8!

In the quasiclassical approximation for the potential~7!,
from our conditions~3! and~4! with n52 it is easy to obtain

A2v5K11/2. ~9!
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It can be seen that even forK;1 the relative difference is
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TABLE I. The changeT82T in the quantum numberT(n,l ,n) on going
from the shell (n,l ) to the next shell (n8,l 8).
small and decreases rapidly with increasingK as

1/8(K11/2)2. This is an estimate of the accuracy of th
approach we have developed. In practice, it turns out to
higher.

A potential of the form~7! is the same, to within con
stant factors, as the Tietz approximation2 for the self-
consistent atomic potential in the Thomas-Fermi method
that it was possible to treat,5,6 with some reservations, th
classification in terms of the numberK as a consequence o
the statistical model of the atom. It was proposed that
splitting of the levels inl be explained by a nonzero bindin
energy. Lacking exact solutions for arbitrary, slightly mod
fied potentials, we have not been able to estimate the a
racy and stability of these results5,6 before. The classification
in terms of the numberK has a number of disadvantages;
particular, the same value ofK corresponds to the end of on
period and the beginning of the next and for fixedK all the
levels with differentl appear to be degenerate, contrary
reality. In the classification with respect to the numberT
developed in the next section, these deficiencies are el
nated.

3. ANALYSIS OF THE FILLING OF SHELLS IN THE
PERIODIC SYSTEM IN TERMS OF THE NUMBER T AND
THE ASYMPTOTIC BEHAVIOR OF THE POTENTIAL

Let us use Eqs.~5! and ~6! to analyze the information
contained in the real periodic system. We begin with tho
consequences which require minimal information on the
tential. As potential is specified in more detail, both the nu
ber of consequences and the accuracy of the estimates
tained in them will increase.

The minimum requirements on the potential, which w
assume to be satisfied everywhere, are the following:

~1! F(Z) increases strictly monotonically with increa
ing Z. Here shell or other effects can, in general, disrupt
monotonic rise inU(r ,Z) in isolated regions of an atom.

~2! The potential has power law asymptotes~2! with
s50.

~3! With increasingZ the levels are filled in the sam
sequence in which they appear; in other words, a ne
manifested level remains the shallowest until it is filled asZ
increases. This assumption is natural in light of the smalln
of E in real atoms and, thereby, the small departure inZ
from the peakZ at which the level appears (E50) and is
filled. We are not interested in the possible competition
tween levels in filled shells asZ increases.

At this step, further specification of the potential is n
required.

As noted above, the order of the appearance and, in v
of condition 3, of the filling of the levels is completely de
termined by the parametern, i.e., by the numberT(n,l ,n).
Evidently, the values ofQ ~rounded off to the nearest intege
Z! obtained by solving Eq.~5! for the givenT(n,l ,n) deter-
mine when the (n,l ) shells open up and are then filled
T(n,l ,n) increases, so that the correspondence of (n,l ) and
T(n,l ) one-to-one. By analyzing the real order of filling o
the shells in the periodic system with increasingZ, we are
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able to find an interval of values ofn which will ensure the
required ordering, i.e., a strictly monotonic rise inT as new
shells are filled.

The conditions for a rise inT on going from one shell to
another~see Table I! require that the following inequalities
be satisfied:

D5
n22

n21
.0, 12kD.0, k51, 2, 3. ~10!

This yields limits onD andn,

0,D,1/3, 2,n,5/2. ~11!

The interval~11! can be narrowed by invoking specifi
additional information on the periodic system~see Sec. 5!. It
is natural to expect, as well, that the largest difference in
properties of the inert gases and alkali metals which beg
new period should be reflected in the magnitude of the
between periods, in the componentD. The requirement tha
D should exceed the other gaps from Eq.~10!, D.12kD,
can be satisfied fork53, which then yields

1

4
,D,

1

3
,

7

3
,n,

5

2
. ~12!

The more stringent limitations onn ~12! are in full agree-
ment with the result of Sec. 5 which follows from an analys
of the filling of the periodic system.~If we require the same
inequality fork52, we obtain the sole valueD51/3, which
probably exceeds the accuracy of the method; fork51 this
requirement is incompatible withD,1/3.!

It is easy to see from Eqs.~6! and ~11! and the real
periodic system that the integral part ofT specifies the num-
ber of the period in the periodic system,N5@T#. ~See Table
II as well. It shows values ofT(n,l ,n) for the case of a
specific model atomic potential.!

Besides their mutual ordering, the shells are charac
ized by a capacity 2(2l 11), i.e., the maximum number o
electrons which can be placed in them, as well as by the t
capacity

V~T!52(
n. l

(
l

~2l 11!, n1t~n!l<T. ~13!

Here the sum is taken over alln and l which satisfy the
inequality given here.~The values ofT are not, in general,
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integral.! Evidentl

TABLE II. The quantum numberT(n,l ,n) and the element numberZ(n,l ,n) as functions ofnk

5$2.30,2.35,2.40,2.45% calculated for the potential~22!, together with the total capacityV of the shells and

the corresponding elements of the periodic system with their atomic numbers.
y, the atomic number of an elementZ(T)

o

on
i

o

calculated forQ51, 2,...,Zmax ~whereZmax is the maximum

ar-
n-
ion

.
tal
at which an electron with given (n,l ) first appears, i.e., the
(n,l ) shell begins to be filled, and the capacityV(T) must
obey the relation

Z~T!<V~T!, ~14!

which ensures an adequate number of sites for the electr

4. RELATIONSHIP BETWEEN THE POTENTIAL AND THE
ATOMIC NUMBERS OF ELEMENTS FOR WHICH
NEW SHELLS ARE OPENED

Extracting further information requires an examinati
of some general properties of the potential besides
asymptotic behavior. Here it is important that in Eq.~5! and
the like, the potential only enters through a finite number
values of the powerF(Q), i.e., through the WKB phase
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number of an element in the periodic system!. For brevity we
write QP$Z%.

We anticipate the general analysis by a study of a p
ticular class of self-similar potentials in which the depe
dence on position shows up only through the combinat
x5Zgr . The general form of these potentials is

2U~r ,Z!5
Z11g

x
w~x!, ~15!

where the screening functionw(x) must satisfy the condition
w(0)51.

The importance of this class ofU originates, ultimately,
in the following fact: for largeT, on replacing the sum in Eq
~13! by an integral, we obtain the leading term of the to
shell capacity as a function ofT:
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V~T!;T3 11O
1

. ~16!
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Since the energies of the next filled levels are small for allT,
the deviation of Eq.~14! from equality should be small fo
all T, which requires the asymptotes

Z~T!;T3F11OS 1

TD G
or, according to Eq.~5!, for largeZ,

F;Z1/3. ~17!

Substituting Eq.~15! in Eq. ~3!, we obtain

F~Z!5Z~12g!/2G@w#, G@w#5
&

p E
0

`

dxAw~x!

x
,

~18!

so that the self similar potential satisfies condition~17! for
g51/3, and does this for allZ, which, however, imposes a
excessively rigid limitation on the form ofU at low Z. It is
clear that the real potential is asymptotically close to the
similar one, but differs slightly from it at moderate and lo
Z. On settingg51/3, from Eqs.~5! and ~18! we find, as
functionals ofw, the atomic numbersZ(n,l ) of the elements
at which electron levels with given (n,l ) first appear:

Z~n,l !5
1

G@w#3 S T~n,l ,n!1
t~n!

2 D 3

. ~19!

It is clear from Eqs.~18! and ~19! that the set of values
$F(Q)%, QP$Z% for the self similar potentials is determine
by a single parameter, the dimensionless power of the po
tial G@w# given by G@w#5F(Z51). Different w(x) can
yield the same values ofG. We shall refer to such potential
as equivalent.

The self-similar potential, therefore, is completely ch
acterized by a pair of numbers (G,n), where n is the
asymptotic index. All potentials can be divided into equiv
lence classes determined by points on the (G,n) plane.

Potentials in general are completely characterized b
set of 2Zmax numbers$F(Q),n(Q)%, QP$Z% and can be
subdivided into equivalence classes within each of which
all potentials with equal$F(Q),n(Q)%, QP$Z%. Equation
~19! generalizes to

Z~n,l !5F21S T~n,l ,n!1
t~n!

2 D , ~20!

where the functionF21 inverse toF exists because of th
strict monotonicity ofF.

We now bring together the conditions imposed on
function F:

1. F(Z) is a monotonically increasing function, so th
the natural relationship between the set$Z% and the set$n,l %
of shells is preserved.

2. The following boundary conditions are satisfied:Z51
maps onto the shell~1,0! and Z5Zmax maps onto the shel
~6,2!.

3. The functionF is matched to the capacity of the she
and to the total capacity by Eq.~14!.
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the set$Z% of elements into the set of shells$(n,l )% consist-
ing of 18 elements in the real periodic system. Since
solution of Eqs.~19! or ~20! is rounded off to integers, the
overall number of significantly different functionsF(Z) is
the same as the number of different sets of increas
integers $Z(1,0), Z(2,0), Z(2,1),...,Z(6,2)%, with Z(6,2)
,Zmax. The actual number of allowed functions, however,
much smaller owing to the above mentioned conditions
posed onF by the real structure of the periodic system a
by physical considerations. These questions will be inve
gated in a separate paper.

Note that the numberT(n,l ) introduces an ordering re
lation in the set of shells: (n,l ),(n8,l 8) if and only if
T(n,l ),T(n8,l 8).

5. SELF-CONSISTENT METHOD FOR DETERMINING THE
PERIOD IN THE PERIODIC SYSTEM AND THE
ATOMIC NUMBER OF AN ELEMENT WITH GIVEN n ,l

We shall carry out a further analysis of the parameters
the potential and its consistency with the real periodic sys
by strengthening condition~3! of Sec. 3. Specifically, we
identify the atomic numbers of the elements at which
new levels appear and are filled. First of all we find the lim
on the possible values ofG using a fact which follows from
the periodic system: the elementZmax for a calculation using
Eq. ~19! with this value ofG must fall into the~6,2! shell.
Given the interval of possible values ofn ~12! which follows
from the order of filling of the shells, we obtain the interv
of possible values of the right hand side of Eq.~5! for n56,
l 52. We setZmax5104 ~the element kurchatovium, Ku104

with a 6d27s2 electron configuration!. Then Eqs.~5!, ~18!,
~19!, and~12! yield the interval of possible values ofG:

1.630,G,1.685.

Thus, the parametersG andn of the effective self-consisten
self-similar potential are

G51.65860.028, n52.4260.08, ~21!

i.e., G is determined with a relative accuracy of61.7% and
n with an accuracy of63.5%. ~In the interval ~11!,
G51.71960.089.!

We now move on to determining theZ(n,l ) according to
Eq. ~19! which correspond to the givenT(n,l ,n) for the
self-similar potentials~15! with g51/3. This problem, as we
shall see, is a generalization and refinement of the old w
known problem of determining the atomic numberZ of an
element for which an electron with given orbital angular m
mentuml first appears.~See Tietz,2 as well as Abrahamson8

and the references cited there.!
As a screening function we take

wn~x!5
1

~11ax!n ~22!

with the two parametersa and n. Recall that the standard
Thomas-Fermi method7,9 leads to a similarly self-similar
~with g51/3! potential, while a function of the form~22!
with n52 ~the Tietz approximation7! yields a fair approxi-
mation of the potential for small and moderater . ~For r→`
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n53. Our range of allowable values ofn ~12! lies between
the n52 andn53 characteristic of the Thomas–Fermi p
tential for different ranges of variation of the position.! Us-
ing Eq. ~22! for all 0<r ,` with nÞ2 implies an indirect
accounting for the corrections to the standard Thomas–Fe
method.

Up to now we have not used any specific considerati
from the statistical model of the atom, so that the discuss
has been of an entirely general character. Now, however
apply a normalization condition forw to the total number of
electrons which follows from the Poisson equation with
electron density calculated in the simple quasiclass
approximation.7,9 In our variables~not including the conven-
tional factorb50.885!, this condition takes the form

8&

3p E
0

`

dxAxw3/2~x!51. ~23!

The normalization condition~23! makes it possible to elimi-
nate the parametera, by expressing it explicitly in terms o
n. For functionswn(x) of the form~22!, the functionalG@w#
is easily calculated:

G@wn#5G~n!5S 3

4p2D 1/3 BS 1

2
,

1

2
n2

1

2D
FBS 3

2
,

3

2
n2

3

2D G1/3, ~24!

whereB(u,v) is the beta function.
We now calculate the atomic numbersZ(n,l ) of the el-

ements for several values ofn in the case of the class o
self-similar potentials ~22! considered above. We se
n5$2.30,2.35,2.40,2.45%. The corresponding values ofG(n)
given by Eq. ~24! are G5$1.711,1.698,1.686,1.674%. The
pairs (Gk ,nk) can be seen to lie in the (G,n) plane inside a
triangle bounded by the condition~11! and the corresponding
condition for G: for k53,4 the pairs (Gk ,nk) essentially
satisfy the stronger condition~21!. For each pair (nk ,Gk) we
use Eq.~19! to calculate the numbersZ(n,l ) of the elements
for which an electron with the givenn,l first appears for all
the shells (n,l ). Note that, according to the results of th
preceding section, we are actually calculatingZ(n,l ), not
only for the model potential~22!, but also for all potentials
from the classes of equivalent self-similar potentials labe
by the given pairs (Gk ,nk). The results of these calculation
are shown in Table II~without rounding off to the neares
integerZ!. The table was constructed as follows: the ro
list the numberN of the period in the periodic system and th
columns, the quantum numberl . Each cell lists the values o
T(n,l ,nk) andZ(n,l ,nk) for thenk determined above~which
ranges upward fromnk52.3 tonk52.45!, the total capacities
V of the shells, and the symbols of the elements with th
atomic numbers for which electrons with the givenn, l first
actually appear~in the periodic table!. Also listed there are
the elements which form an exception from the empiri
rules1 ~denoted by asterisks!.

We then discuss the calculatedZ(n,l ). As can be seen
from Table II, there is good agreement between the ca
lated and actual values ofZ. TheZ for which electrons with
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tion, the atomic numbers of the elements in which the giv
l shows up later are also determined quite accurately.

Let us consider the atomic number of the elements
which d- and f -electrons appear. The calculatedZ(3,2) lie
between 21 (Sc21) and 24 (Cr24* ). The electronic configu-
ration of Cr is 4s13d5 and, therefore, it is an exception to th
ideal empirical rule for the filling of shells. A similar patter
occurs in the 5th period, where there are a whole serie
exceptions beginning with niobium Nb41 with 5s13d4. For
the f -elements, the calculatedZ(5,3) are close to 58, which
is the atomic number of cerium Ce58 with 6s25d14 f 1, while
Z(6,3) is close to 91~protactinium Pa91 with 5 f 26d17s2!. In
the 6- and 7th periods there are especially many misses~ex-
ceptions! in the order of filling thef - andd-shells. The cal-
culatedZ(5,2) lies between 64 and 66. Gadolinium Gd64,
4 f 75d16s2, with a d-electron is an exception in the lan
thanide series; the elements before and after gadolinium
not haved-electrons.~Note that ad-electron first appears in
the 6th period in La57, which is also an exception.! A similar
pattern occurs in the 7-th period: theZ(6,2) are close to 98
or 99 and there are exceptions containingd-electrons in the
actinide series, curium Cm96, 5f 76d17s2 and berkelium
Bk97, 5f 86d17s2. This indicates that the potential is suc
that the number ofd-electrons tends to increase in elemen
whose atomic numbers are close to the calculated val
Thus, we have also been able to explain the exceptions to
empirical filling rule.

The calculations ofZ(n,l ,n) for n,2.3 differ more
from the empirical values ofZ. These calculations agre
completely with the conclusion of the previous section to
effect that the asymptotic index of the potential,n, must be
fairly close to 2.5~12!, while the power parameter of th
self-similar potential lies within the interval~21!.

The above analysis shows that our approach is self c
sistent and gives good results for the atomic numbers
elements with specifiedn and l . The exceptions to the em
pirical shell filling rule are also explained by it. This analys
places rather severe restrictions on the magnitude of
asymptotic indexn and the power parameterG@w# of the
effective self-similar potential.

6. CONCLUSION

The basic results of the inverse problem examined ab
are the following: a quantum numberT(t), which is a linear
combination of the quantum numbers of the centrally sy
metric problem with a coefficientt lying within an extremely
narrow interval, has been determined. It uniquely~without
degeneracy! determines the appearance and filling of ne
levels for practically all the elements of the periodic syste
and ensures a substantial gap between periods. On lea
this interval, for example, on returning to the phenomen
logical numberK5n1 l , we find that the number of ele
ments which fall out of the classification~the ‘‘exceptions’’!
increases sharply. A unique relation has been established
tween the values oft and the asymptotic behavior of th
effective potential for the electrons. These results dep
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only on the asymptotic behavior of the potential, but not on
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its specific form, and do not require the invocation of ex
solutions.

The electron shells of atoms are represented as a se
which an ordering relation is introduced. By examining t
relationships between the power of the effective poten
F(Z) and the quantum numberT, we have obtained stron
limits on the parameters of the self-similar potentials.

Taking a simple generalization of the extremely go
and widely applied Tietz approximation, which provides
necessary and already known asymptotic behavior, as a
fective potential, we obtain an essentially exact corresp
dence between the calculated atomic numbers~elements! at
which new levels appear and the numbers in the actual p
odic system. It also provides a natural description of su
subtle points as the exceptions to the empirical filling rul
Note that exact solutions of the Schro¨dinger equation are no
required even at this stage. The above analysis shows tha
real atomic potential is close to self-similar.

Here we point out some possible ways of extending t
problem. By using a Thomas–Fermi–Dirac function inclu
ing exchange, correlation, gradient, and other correction
is possible to search for an effective potential among
class of multiparameter functions by a variational techniq
Then the given asymptotic behavior, which is closely rela
to the order of filling of the levels, i.e., to the real period
system, and the power of the potential, which is related to
atomic numbers of the elements at which certain elect
shells begin to fill, are preserved as additional conditio
These conditions, of course, affect the form of the soluti
In a variational search in the class of self-similar potenti
the imposition of limits on the powerG of the potential leads
to the corresponding isoparametric problem. For potent
of arbitrary form it is necessary to carry out an initial ana
sis of the restrictions on the functionF(Z) similar to that
carried out in this paper for the case of self-similar pote
tials. It seems probable that the allowableF(Z) will be close
to the function~18! for self-similar potentials.

It should be kept in mind that all the corrections in t
Thomas–Fermi–Dirac method9–11 are admittedly approxi-
mations, while the requirements for the asymptotic behav
of the potential are essentially exact. We emphasize o
again that the approach developed in this paper is valid to
same extent as the approximations used: the one-elec
approximation for the effective atomic potential, the WK
approximation, and the approximation of zero energy for
last filled level.
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tial reduces to a finite set of parameters. This is indir
evidence of the high symmetry of the problem of constru
ing the real periodic system. Reducing all the characteris
of the periodic system to an algebraic structure makes it p
sible to begin a constructive search for the explicit operat
and parameters of this symmetry. Group theoretical meth
which currently seem extremely formal may then beco
suitable for application to the periodic system.6,12,13

It is appropriate to begin this kind of study with sel
consistent potentials with extremely high symmetries;
number of parameters is just two instead of 2•102 in the
general case. Deviations from potentials of this type mus
treated as a breakdown of symmetry.

The most symmetric problem on which the refineme
could be based might be chosen differently: for example,
idealized version of the periodic system with zero energ
for filled levels, in whichEÞ0 and splitting of the atomic
numbers of the elements for which levels appear and
numbers at which they are filled are related as a consequ
of a breakdown of symmetry.

In general, including levels withEÞ0 in a WKB quan-
tization scheme~5! makes it possible to invoke the energi
of the ground and excited states as additional informatio
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Bifurcation in the rotational spectra of nonlinear symmetric triatomic molecules

s in
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A microscopic theory is proposed for bifurcation in the rotational spectra of nonlinear AB2-type
molecules. The theory is based on a study of small-amplitude vibrational and precessional
motion near the stationary states of a rotating molecule. Bifurcation leads to the formation of
fourfold clusters of levels in the upper parts of the rotational multiplets, disruption of the
symmetry of the molecule, and a transition from normal to local valence vibrations. The role of
the centrifugal force of inertia in the development of these effects is clarified. Bifurcation
and the accompanying phenomena are studied in the hydride molecules H2O, H2S, H2Se, and H2Te
using empirical molecular potentials. ©1997 American Institute of Physics.
@S1063-7761~97!00710-5#
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The cluster structure of molecular rotational spectra is
interesting phenomenon which has attracted the interes
researchers for over two decades.1–4 In the past, however
attention has mainly been devoted to highly symmetric m
ecules of the spherical top type. One of the authors of
present paper, together with Zhilinskii,5 predicted the pos-
sible formation of fourfold cluster states in the upper parts
the rotational multiplets of symmetric nonlinear triatom
molecules with the structure of an asymmetric top. The c
sical vibrational–rotational dynamics of these molecules
been studied using a model6 of rigid valence bonds. It was
shown that as the total angular momentumJ of the
molecule1! increases, local precession about the axis with
lowest moment of inertia evolves into delocalized precess
about two equivalent axes lying in the plane of the molecu
The change in the rotational dynamics is caused by bifu
tion at a critical pointJ5Jc . Bifurcation shows up as a
softening of the precessional mode, i.e., the upper level
the rotational multiplets come closer with increasingJ. Prior
to the prediction of this effect, experimental data showe
distinct convergence of levels in vibrational bands~ground
state andn2! of the H2O and H2S molecules.5,7 The observed
effect was so unusual from the standpoint of existing c
cepts of rotation in asymmetric-top molecules, that imme
ately after the appearance of Ref. 5 numerical calculation
the rotational spectrum of water using a model of rigid v
lence bonds were published8 which confirmed the level con
vergence effect.

The simplest theory of bifurcation proposed in Ref.
made it possible to estimate the critical angular momen
Jc .9,7 It turned out thatJc decreases as the mass of the c
tral core of the molecule increases. This result has been
in experimental studies of level clustering in the ground
brational state of the H2Se molecule.10,11 It was found that,
indeed, groups of four quasidegenerate levels~clusters! begin
to form in the upper parts of theJ-multiplets of this molecule
for J.Jc . An analogous effect has recently been obser
experimentally in H2Te.12 The MORBID method, which is
based on numerical solutions of the Schro¨dinger equation,
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H2Se, H2S, and H2Te. The variational program
MORBID17 can be used to find the energy levels of the co
plete vibrational–rotational Hamiltonian of a molecule in
isolated electronic state. Calculations using realistic pot
tials, bothab initio and fitted to experimental data, reprodu
well the observed energy levels of the rotational multipl
and can be used to follow the evolution of clusters in t
ground vibrational state of the H2Se, H2S, and H2Te mol-
ecules asJ increases. These calculations agree with classi
semiclassical, and model quantum mechanical estimate
the magnitude ofJc . At the same time, numerical calcula
tions of the rotational levels of the ground state band of
water molecule up toJ;40 using18 the potential of Jensen
et al.19 and subsequently20 with a more exact empirical po
tential have not revealed any distinct fourfold clusters. Th
results contradict estimates of the classical angular mom
tum for the H2O molecule given in Refs. 5 (Jc527– 28) and
8 (Jc526).

In this paper we eliminate the deficiency inherent in t
model of absolutely rigid bonds. Bifurcation in the rotation
spectrum of symmetric triatomic molecules is analyzed
the basis of the exact vibrational–rotational Hamiltonian o
tained in Sec. 2. Classical equations are used for
vibrational–rotational motion of the molecules, since we a
considering phenomena at largeJ and the de Broglie wave
lengths of the nuclei are much shorter than the molecu
dimensions. In Sec. 3 the stationary states of the system
found and in Secs. 4 and 5 the variations in the vibration
rotational dynamics of the system are studied as function
its total angular momentum. A method based on an exa
nation of small harmonic oscillations~classical and quantum
mechanical! near the stationary states of a rapidly rotati
molecule is used.21 The four-mode motion can be separat
into a slow precession near the stationary rotation axis
fast vibrations near an equilibrium configuration that do
not coincide with the configuration of the molecule in i
ground state. This approach differs from the widely us
Wilson–Decius–Cross theory22 in that the vibrational and
rotational degrees of freedom are separated near the sta

67309$10.00 © 1997 American Institute of Physics
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trifugal forces, this difference leads to some new pheno
ena: the precession of an AB2 molecule about the axis with
minimum moment of inertia becomes unstable at the bif
cation pointJc . At high J, the molecule rotates uniformly
about one of two equivalent~owing to theC2v symmetry!
axes located in the plane of the molecule between the p
cipal axes with the minimum and intermediate moments
inertia. Quantum delocalization of the precession can lea
fourfold clusters in the rotational multiplets which are t
spectroscopic manifestation of bifurcation. Another con
quence is an asymmetric deformation of the molecule by
centrifugal forces of inertia. As a result, one of the A2B
bonds becomes longer than the other, which in turn chan
the vibrational dynamics of the molecule: the normal valen
vibrationsn1 andn3 change into local vibrations of the tw
A2B bonds. The transition discussed in Section 5 is in
way related to the anharmonicity of the vibrations, as h
pens in the generally accepted theory,23 but is a consequenc
of the disruption of the symmetry of the molecule by t
bifurcation. As applications of the theory we consider t
hydrides H2O, H2S, H2Se, and H2Te, whose vibrational–
rotational motion is still adiabatic compared to the electro
motion ~despite the highJ! and have energies lower than th
dissociation energy of the molecules. In this series, the w
molecule occupies a special place, demonstrating that l
clustering is not, in general, a necessary consequence o
furcation.

2. THE CLASSICAL VIBRATIONAL–ROTATIONAL
HAMILTONIAN

Our derivation of the classical vibrational–rotation
Hamiltonian is, on the whole, close to that of Wilso
Decius, and Cross.22 The difference is that we do not us
normal coordinates, since we are considering configurat
which differ greatly from that of the molecular ground sta
The kinetic energy of a molecule in the rotating coordin
system has the form

T5
1

2 (
i j

v i I i j v j1(
i

v iL i1
1

2 (
l i

mlvl i
2 , ~1!

where the subscriptsi and j denote thex, y, andz axes of
this system,v i are the projections of the angular velocit
and I i j is the moment of inertia tensor of the molecule. T
position of the nucleusl with massml is given by the vector
rl (xl ,yl ,zl), its velocity isvl , andL5(lmlrl3vl is the
angular momentum of the vibrational motion of the nucle

Let us consider a triatomic molecule B1A2B3 with
nuclear massesm15m35m andm25M and define a rotat-
ing coordinate system as follows:24 place the molecule in the
xz plane~i.e.,yl50! so that the bisector of the valence ang

a5B1A2B3̂ is parallel to thex axis. Thez axis is directed
from nucleus B3 to nucleus B1, while thex axis is directed
from the center of mass to nucleus A2. In the following we
also introduce the internal coordinatesq15r 1 ~the A22B1

distance!, q25a and q35r 3 ~the A22B3 distance!. The in-
ternal coordinates are related to the projections of the ve
r as follows:
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1 M12m 2

x25
m~r 11r 3!

M12m
cos

a

2
,

x35
mr12~M1m!r 3

M12m
cos

a

2
,

z15
~M1m!r 11mr3

M12m
sin

a

2
, ~2!

z252
m~r 12r 3!

M12m
sin

a

2
,

z352
mr11~M1m!r 3

M12m
sin

a

2
.

With this choice of a rotating coordinate system, the nonz
components of the inertia tensor are

I xz5
m~M1m!

2~M12m!
~r 1

22r 3
2!sin a,

I xx5
m

M12m
@M ~r 1

21r 3
2!1m~r 11r 3!2#sin2

a

2
,

~3!

I zz5
m

M12m
@M ~r 1

21r 3
2!1m~r 12r 3!2#cos2

a

2
,

I yy5
m~M1m!

M12m
~r 1

21r 3
2!2

2m2

M12m
r 1r 3 cosa.

We write the components of the vectorL in the form
Li5(nGinq̇n , where only three elements of the mixed m
trix G are nonzero~the subscriptn refers to the internal co-
ordinates!:

Gy152
m2

M12m
r 3 sin a,

Gy25
m~M1m!

2~M12m!
~r 1

22r 3
2!, ~4!

Gy35
m2

M12m
r 1 sin a.

The kinetic energy~1! in the new coordinates is

T5
1

2 (
i j

v i I i j v j1(
in

v iGinq̇n1
1

2 (
nn8

q̇nann8q̇n8 ,

~5!

where the matrixa has the elements

a115a335
m~M1m!

M12m
,

a125a215
m2

2~M12m!
r 3 sin a,

a225
m

4~M12m!
@~M1m!~r 1

21r 3
2!12mr1r 3 cosa#,
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23 32 2~M12m! 1

a135a3152
m2

M12m
cosa. ~6!

In order to obtain the equations of motion in Ham
tonian form, we introduce the total angular momentumJ of
the molecule, which is related to its angular velocity by t
equation22

Ji5(
j

I i j v j1Li , ~7!

and the momenta

pn5
]T

]q̇n
5(

n
ann8q̇n81vyGyn , ~8!

conjugate to the internal coordinatesqn . It follows from the
last equation that the Coriolis force in the rotating molec
~given by the second term in Eq.~5!! is analogous to a mag
netic field, sincepÞ0 holds whenq̇50. Solving Eq.~7! for
v j , we find

v j5(
i

m̊ j i ~Ji2Li !. ~9!

wherem̊ is the inverse matrix ofI with elements

m̊xy5m̊yz50, m̊yy51/I yy ,

m̊xx5I zz/~ I zzI xx2I xz
2 !, ~10!

m̊xz52I xz /~ I zzI xx2I xz
2 !, m̊zz5I xx /~ I zzI xx2I xz

2 !.

Expressingq̇ in terms ofp andJ with the aid of Eqs.~8! and
~9!, we find the Hamiltonian of the rotating AB2 molecule
after some simple transformations:

H5
1

2 (
i j

Jim i j Jj2Jy(
n

uynpn1
1

2 (
nn8

pnbnn8pn8

1V~r 1 ,a,r 3!, ~11!

whereuyn5m̊yy(n8Gyn8bn8n andm is the matrixm̊ modified
by the Coriolis force. In our case, all the elementsm i j are

equal tom̊ i j ~10! exceptmyy5m̊yy(11(nGynuyn). The ma-
trix b is defined by the equation

b5~a2GTm̊G!21. ~12!

whereGT is the transposed matrix. The elements of the m
trix b are given by22

b115b335
1

M
1

1

m
, b125b2152

sin a

Mr 3
,

b225S 1

M
1

1

mD S 1

r 1
2 1

1

r 3
2D 2

2 cosa

Mr 1r 3
, ~13!

b235b3252
sin a

Mr 1
, b135b315

cosa

M
.
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interaction of the nuclei in the molecule, which is a symm
ric function with respect to interchange of identical nucle

The equations of motion for the Hamiltonian~11! have
the form

q̇n5(
n8

bnn8pn82Jyuyn , ~14!

ṗn52
1

2 (
i j

Ji

]m i j

]qn
Jj1Jy(

n8

]uyn8
]qn

pn8

2
1

2 (
n8n9

pn8

]bn8n9
]qn

pn92
]V

]qn
. ~15!

and

J̇i5(
jkl

ei jkJjmklJl1(
kn

eiykuynJkpn . ~16!

The last equation is obtained using the Poisson brac
$Ji ,Jj%5ei jkJk , whereei jk is the asymmetric unit tensor. I
is easy to see thatJ2 is a constant of motion for Eqs.~14!–
~16!. In addition, the Hamiltonian and the equations of m
tion are invariant with respect to theC2v(M ) group of the
AB2 molecule.25,26

3. STATIONARY STATES OF A ROTATING MOLECULE

First we shall find the stationary points of the equatio
of motion. Equating the time derivatives in Eqs.~14!–~16! to
zero, we obtain a system of nonlinear algebraic equati
which determine the configuration of the molecule and
axis of uniform rotation. In particular, Eq.~16! and the con-
dition thatJ2 be conserved yield the stationary angular m
mentumJs in the proper coordinate system. The three p
jections of this vector can satisfy the four equations if at le
one of them is equal to zero. Thus, there are two types
stationary states, axial and planar. For smallJ only the axial
statesSi exist: Jsi56J, i 5x, y, z, in which the molecule
rotates about one of the principal axes of inertia. Because
molecule is flat, the Coriolis force shows up only in theSy

state, which leads to a nonzero momentum with compone

pns5J(
n8

cnn8uyn8 . ~17!

As a result, the additional term in the expression formyy

vanishes and the rotation of the molecule about they axis is
characterized by the moment of inertiaI yy . The equilibrium
configuration of the molecule in stateSi is determined by the
equations

1

2

]m̊ i i

]qn
J21

]V

]qn
50, n51, 2, 3, ~18!

which are found from Eqs.~14! and ~15!. In the axial sta-
tionary state, the molecule has a symmetric configurat
with bond lengthsr 1s5r 3s5r s , a valence angleas , and
energies

Ei5
J2

2I i i ~r s ,as ,r s!
1V~r s ,as ,r s!. ~19!
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TABLE I. The changeDr n5r ns2r ne in bond lengths owing to the centrifu-
gal force in theSxz stationary state forJ520 ~it is assumed that the mol-

n

This state is doubly degenerate in the direction of the to
angular momentum. In the following we shall distinguish t
equilibrium configurations of rotating and nonrotating mo
ecules by the subscriptss ande.

We now consider the plane stationary stateSxz in which
the molecule rotates around one of two equivalent axes,z8 or
z9, located in thexz plane symmetrically with respect to th
x axis and forming anglesbs andp2bs , respectively, with
the z axis. The configuration of the molecule and the an
bs are determined by the equations

1

2 S ]m̊xx

]qn
sin2 bs1

]m̊xz

]qn
sin 2bs1

]m̊zz

]qn
cos2 bsD J2

1
]V

]qn
50, n51, 2, 3. ~20!

and

1

2
~m̊xx2m̊zz!sin 2bs1m̊xz cos 2bs50. ~21!

In theSxz state the molecule has an asymmetric configura
with unequal bond lengthsr 1s andr 3s . Of the two bonds, the
one which forms the larger angle with the rotation axis is
longer~for example,r 1s for the z8 axis!. As J increases it is
stretched by the centrifugal force and tends to be perpend
lar to the axis of rotation. The symmetry disruption effect
illustrated in Table I, which lists the amounts of change
the bond lengths in theSxz state relative to the equilibrium
value for the nonrotating molecule. These results were
tained by classical and quantum mechanical calculations
ing empirical potentials for the H2Se~Ref. 13! and H2S ~Ref.
15! molecules. The two methods appear to give appro
mately the same results.

Let us turn the coordinate system through an angleb
around they axis. Using Eq.~10! and noting thatI xxI zz2I xz

2

is invariant with respect to rotations, we find the relati
between the matrix elements of the inverse moment of ine
in the initial (xyz) and rotated (x8yz8) systems to be

m̊x8x85m̊xx cos2 b1m̊zz sin2 b2m̊xz sin 2b,

m̊x8z852
1

2
~m̊xx2m̊zz!sin 2b2m̊xz cos 2b, ~22!

m̊z8z85m̊xx sin2 b1m̊zz cos2 b1m̊xz sin 2b.

Comparing the expression form̊x8z8 with Eq. ~21!, we find
that thez8 axis~as well as thez9 axis! is the principal axis of
inertia of an asymmetric molecule with a moment of iner
of

ecule rotates about an axis approximately perpendicular to ther 1 bond!.

Molecule

Quantum mechanical calculation Classical calculatio

Dr 1 ,Å Dr 3 ,Å Dr 1 ,Å Dr 3 ,Å

H2Se 0.023@14# 0.004@14# 0.025 0.002
H2S 0.024@15# 0.009@15# 0.022 0.010
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Thus, the plane stateSxz with energy

Exz5
J2

2I z8z8
1V~r 1s ,as ,r 3s! ~24!

is fourfold degenerate. It has a lower symmetry than the a
state. This means that a transition from the axial sateSz into
the plane state with increasingJ is accompanied by aC2v
type bifurcation.7 Up to the bifurcation pointJc , a symmet-
ric molecule rotates around the axis with the minimum m
ment of inertiaI zz. In the regionJ.Jc , an asymmetric mol-
ecule rotates around the principal axis with an intermed
moment of inertiaI z8z8 . This ensures that the energy of
uniformly rotating molecule and its first derivative with re
spect toJ are continuous at the critical pointJc . A change in
the rotation regimes leads to an increase in the rotation
ergy in theSxz state compared to the stateSz , i.e., to an
increase in the energy of the upper level of the multiplet.

The equilibrium configuration of a uniformly rotatin
molecule is found according to Eqs.~18! and ~19! from re-
quiring the time-independence of the effective potential

Veff5
1

2 (
i j

Jim̊ i j Jj1V. ~25!

On the other hand, the effective potential in the equilibriu
configuration is equal to the energy of the correspond
stationary state, as this follows from Eqs.~19! and~24!. The
competition between the centrifugal and potential terms
Eq. ~25! determines the change in the molecular configu
tion asJ increases. Let us first examine the stateSz . Differ-
entiating Eq.~18! with respect toJ yields the following for-
mulas:

dr1

dJ
5

dr3

dJ
5

J

r sI zz
S ]2Veff

]r 1
2 D

s

21

,

da

dJ
52

J

I zz
S ]2Veff

]a2 D
s

21

tan
as

2
, ~26!

valid in the approximation

S ]2Veff

]qn
2 D

s

@U ]2Veff

]qn]qn8
U

s

, nÞn8, ~27!

which is satisfied for all the hydrides under consideratio
Thus, in the stationary stateSz the bond lengths increase
while the valence angle decreases, with increasingJ.

The approximation~27! is not applicable in theSxz state
and the change in the equilibrium configuration of the m
ecule asJ increases depends on the features of its molec
potential. The rate of change of the coordinates of the eq
librium configuration is determined by the equation

dqn

dJ
52(

n8
gnn8

21 S ]m̊z8z8
]qn8

D
s

, ~28!

whereg is the matrix of the second derivatives ofVeff at the
stationary point. For rotation about thez8 axis the bond
length r 1s increases, whiler 3s initially decreases and the
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FIG. 1. The dependence on angular momentum
in

-

s

id
J of the relative change in the valence angle
the stationary statesSz (J,Jc) andSxz (J.Jc)
corresponding to the upper level of the rota
tional multiplets of the ground state of the H2Se
~a! and H2O ~b! molecules. The smooth curve
are calculations according to Eqs.~18!, ~20!, and
~21! ~Jc513 for H2Se and 36 for H2O!; the
dashed curves are from the absolutely rig
bond model~Jc512 for H2Se and 27 for H2O!.
slowly increases with risingJ. For the heavy hydrides, how-
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down into two independent subsystems. The coupled preces-
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al,
the
ever, the changes in the angleas and the bondr 3s are insig-
nificant, i.e., these quantities are stabilized beyond the c
cal region. ~See Fig. 1!. In the rigid bond models,5,9 the
valence angle is independent ofJ for J.Jc and equals its
value at the critical point. It should be noted that the con
bution of the potential energy to the overall energy of t
molecule in theSz andSxz states is small. For the H2S, H2Se,
and H2Te molecules at the critical point, the rotational e
ergy forms more than 95% of the total energy. With incre
ing J, the contribution of the rotational energy decreases.
the same values ofJ as for the heavy hydrides, the potenti
energy fraction for the water molecule and the lighter m
ecules is greater. This circumstance, together with the
that the equilibrium angleae increases as the mass of th
central nucleus is reduced, leads to higher values of the c
cal momentumJc . For the water molecule the fraction o
potential energy increases to 20% beyond the critical reg
The stabilization is disrupted as a result: the angleas con-
tinues to decrease~see Fig. 1! and r 3s increases, whiler 1s

begins to decrease forJ.50.

4. PRECESSIONAL MOTION OF THE MOLECULE NEAR
STATIONARY STATES

The shift in the stationary rotation regimes of the A2
molecule with increasingJ can be traced by studying th
stability of the stationary states using the linearized eq
tions ~14!–~16! for small deviations in the internal coord
natesQn5qn2qns ~vibrations! and in the projections of the
angular momentumJi2Jis ~precession! from their stationary
values. Let us begin with the stationary stateSy in which the
vibrational motion is separated from the precession. Si
Jxs5Jzs50 holds in this state, while the momentumpns is
nonzero and given by Eq.~17!, the precession equation ha
the form

J̈x1J2~m̊xx2m̊yy!~m̊zz2m̊yy!Jx50, ~29!

with the moments of inertia taken in the stationary sta
Equation~29! coincides exactly with the precession equati
for a solid asymmetric top.27 The precession is stable, sinc
its frequency

Vy5JA~m̊xx2m̊yy!~m̊zz2m̊yy! ~30!

is real becausem̊xx and m̊zz are always greater thanm̊yy .
The linearized equations of motion in theSz state de-

scribe vibrational and precessional motion. Because of
symmetry of the molecule in this state, the equations br
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sion and asymmetric vibrations with coordina
Qa5(Q12Q3)/& obey the equations

Q̈a1F ~b112b13! f aa12J2uy1

]m̊xz

]q1
GQa1&J

3F ~b112b13!
]m̊xz

]q1
2~m̊zz2m̊xx!uy1GJx50,

~31!

J̈x1J2F ~m̊zz2m̊yy!~m̊zz2m̊xx!12uy1

]m̊xz

]q1
GJx

1&JFuy1f aa2J2~m̊zz2m̊yy!
]m̊xz

]q1
GQa50.

We have introduced the force constantf aa5 f 112 f 13 for the
asymmetric vibrations of the molecule using the matrix

f nn85S ]2Veff

]qn]qn8
D

s

. ~32!

The two remaining vibrational modes, which are ind
pendent of the rotation, will be examined below.

The precessional motion can be separated from
asymmetric vibrations in the adiabatic approximati
v3@Vz , which is valid up to the critical pointJc . In this
approximation the precession frequency about thez axis
equals

Vz5JA~m̊zz2m̊yy!H m̊zz2m̊xx1
J2

f aa
S ]m̊xz

]r a
D

s

2J , ~33!

where, according to Eqs.~3! and ~10!,

m̊zz2m̊xx5
2~M1m!

mMrs
2 sin as

S m

M1m
2cosasD . ~34!

For smallJ the last, nonadiabatic term in the curly bracke
of Eq. ~33! can be neglected. In this limit we obtain th
precession frequency of a solid asymmetric top. It is re
since we are considering precession about the axis with
smallest moment of inertia and the angleae is greater than
90° for all the hydrides being considered. With increasingJ,

as we have seen, the stationary angleas decreases,m̊zz ap-

proachesm̊xx , and the precession frequencyVz goes to zero
when

m̊zz2m̊xx1
Jc

2

f aa
S ]m̊xz

]r a
D

s

2

50. ~35!
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mentumJc beyond which the stationary stateSz becomes
unstable. The small nonadiabatic term in Eq.~35!, which
accounts for the deformability of the bonds, becomes imp

tant when the differencem̊zz2m̊xx is small. Since it is posi-
tive, the critical angular momentum is greater, while t
critical valence angle is less than the corresponding qua
ties in the rigid bond models. The critical angleac in the
latter case is given by

ac5cos21S m

M1mD . ~36!

Note that the nonadiabatic term in Eq.~35! originates exclu-
sively in the centrifugal inertia force. The Coriolis forc
which changes the precession frequency by an amoun
order (Vz /v3)2, has no effect on the critical angular mo
mentumJc , which is explained by the planar configuratio
of the molecule.

The higher the asymmetric mode frequencyn3 is, the
closerJc is to the value found9 in the approximation of ab-
solutely rigid bonds. Numerical calculations of the critic
angular momentum for these hydrides using realis
potentials13,15,16 are only slightly different from the previ
ously determined values ofJc . We foundJc59.3 for H2Te,
Jc512.5 for H2Se, andJc518.9 for H2S. The corresponding
values in the rigid bond models are 8.5, 11.4, and 16.9
appears that the lighter the molecule, the greater the dif
ence between these numbers. This difference is greates
the water molecule. The potential of Ref. 19 givesJc535.2,
which is much higher than theJc526.5 found in the ap-
proximation of rigid bonds.

For J.Jc the stationary stateSz becomes a saddle poin
on the energy surface. It determines the maximum dept
the valley ~a classically inaccessible region! separating the
two symmetric maximaSxz which develop as a result of th
bifurcation. Near one of the maxima, the linearized equati
of motion have a simple form in the coordinate system
tated about they axis by an anglebs ~or p2bs!. The Hamil-
tonian and the equations of motion in this system are gi
th
e

ar
r-

ti-

of

l
c

It
r-
for

of

s
-

n

and the elements of the matrixm̊ are related to the new
primed axes. In this system, the total angular moment
vector of the stateSxz is directed along thez8. The linearized
equations have the form

Q̈n1(
n8

F(
n9

bnn9 f n9n81J2uynS ]m̊x8z8
]qn8

D
s
GQn8

1JF(
n8

bnn8S ]m̊x8z8
]qn8

D
s

1~m̊x8x82m̊z8z8!uynGJx850,

~37!

J̈x81J2F ~m̊z8z82m̊yy!~m̊z8z82m̊x8x8!

1(
n

uynS ]m̊x8z8
]qn

D
s
GJx81J(

n
F(

n8
uyn8 f n8n

2J2~m̊z8z82m̊yy!S ]m̊x8z8
]qn

D
s
GQn50.

where the matrix elementsm̊ i 8 j 8 are given by Eqs.~22!. This
system of equations coincides in form with the lineariz
equations for theSz with the sole difference that the thre
vibrational and precessional motions are not separated ow
to the asymmetry of the molecule. Note that the force c
stant matrix f nn8 differs from the matrixgnn8 of Eq. ~28!.
The second derivatives of the effective potential in the fi
case are calculated for a fixed anglebs . These quantities are
related by

gnn85 f nn812@~m̊z8z82m̊x8x8!
2

14m̊x8z8
2

#21/2S ]m̊x8z8
]qn

D
bs

S ]m̊x8z8
]qn8

D
bs

, ~38!

where the subscriptbs indicates that the derivatives are take
for fixed values of this angle. Using the adiabatic appro
mation, we find the precession frequency for not too largeJ:
et
Vxz5JA~m̊z8z82m̊yy!F m̊z8z82m̊x8x81J2(
nn8

S ]m̊x8z8
]qn

D
s

f nn8
21 S ]m̊x8z8

]qn8
D

s
G . ~39!

It is easy to show that the frequency~39! goes to zero at the We now turn to the structure of the rotational multipl

h
s in

or

ugh
e

-

critical point Jc . Equation~39! is formally similar to Eq.
~33! for the precession frequency in theSz state, but the term
in square brackets, which is proportional toJ2, is not small.
It ensures that the frequencyVxz is real. At the critical point
Jc this frequency goes to zero, since the expression in
square brackets of Eq.~39! transforms into the left hand sid
of Eq. ~35!.

The precessional–vibrational motion near the station
stateSx obeys equations similar to Eq.~31! for the Sz state.
Precession about this axis is unstable.
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levels. Equations~19! and~24! can be used to estimate wit
good accuracy the energies of the lower and upper level
the multiplet for allJ, including those in theSz→Sxz transi-
tion region. The difference from experimental values
variational calculations for the H2O, H2S, H2Se, and H2Te
molecules is less than 10%. The separatrix passing thro
the saddle point corresponding to theSx state separates th
region of precessional motion localized about they or z axes
and, therefore, determines the formation ofK-doublets in the
lower and upper parts of the multiplets.3 Yet another separa
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trix of the Sz saddle arises as a result of the bifurcation.
separates the regions of precessional motion about theSxz

maxima and leads to clustering of theK-doublets. The depth
of the valley between these maxima equals the energy
ference between the stationary statesSxz andSz . As J rises,
this quantity increases in the H2S, H2Se, and H2Te mol-
ecules and this shows up as a reduction in the splitting of
clustered levels. This behavior can be seen in Fig. 2, wh
shows the energy of the upper multiplet levels of the H2Se
molecule as a function ofJ. The energies given there hav
been calculated with the aid of the MORBID variation
program17 and the harmonic approximation of Eqs.~33! and
~39! using the empirical potential from Ref. 13. The ha
monic approximation clearly reproduces the qualitative
havior of the upper levels. It is not, however, applicable n
the critical point and cannot describe level clustering.

The water molecule is a special case among the hydr
considered here. Calculations for this molecule with a n
optimized potential from Ref. 19 show that the depth of t
valley separating theSxz maxima grows very slowly as th
total angular momentum is increased. Figure 3 illustrates
qualitative difference between the models. While the val
rapidly becomes deeper with increasingJ in the model of
absolutely rigid bonds, in the calculations using Eqs.~20!
and ~21! its depth reaches a maximum atJ545 and then
begins to decrease. The valley vanishes atJ552. This is a
second critical pointJc8 in the rotational spectrum where th
two Sxz peaks merge into oneSz and forJ.Jc8 the molecule
is again rotating about thez axis. The two bifurcations are
clearly visible in Fig. 1 from the characteristic breaks in t
as(J) curve. The second critical point is too close to the fi

FIG. 2. Structure of the rotational levels of the upper parts of
J-multiplets of the ground vibrational state of the H2

80Se molecule. The
multiplet levels are determined by the approximate quantum numbers fo
projection of the angular momentum on the axes with the minimum (Ka)
and maximum (Kc) moments of inertia. The energy of a level is take
relative to the energy of the upper level of the multiplet~Ka5J, Kc50! and
equals the experimental~points! or theoretical~dashes! value from Ref. 14.
The smooth curves are a harmonic approximation with frequencies~33! and
~39!.
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for a significant valley to form. Its maximum depth is com
parable to the precession frequency. Thus, cluster le
similar to the levels in the heavy hydrides do not form in t
water molecule. This provides a physical explanation
some numerical calculations20 of the rotational spectrum o
water. It is desirable to determine the molecular poten
used there up to energies of order 10000 cm21, which corre-
sponds to the potential energy at the pointJc8 . Only then can
we speak of the behavior of this molecule near the sec
critical point.

A type-C2v bifurcation should also exist in the rotation
spectra of the excited vibrational states, since the adiab
approximation, and hence Eqs.~33! and~39!, remain valid in
this case. An analysis of experimental data5,9 indicates that
the upper levels of the rotational multiplets of then2 vibra-
tional state of the H2O and H2S molecules tend to cluster
Clusters have been found in rotational spectra of then1 /n3

vibrational states of the H2Se ~Refs. 13,14! H2S, ~Refs. 15!
and H2Te ~Ref. 16! molecules using quantum mechanic
variational calculations. Later, these clusters were obser
experimentally in H2Se, ~Ref. 28! and H2Te ~Ref. 29!.

5. VIBRATIONS OF A ROTATING MOLECULE

We now consider the change in the vibrational motion
a molecule during the transition at the critical pointJc . In
the Sz stationary state (J,Jc) the adiabatic approximation
gives the following equation of motion for the asymmetr
moden3 :

Q̈a1~b112b13! f aaQa50. ~40!

where, according to Eq.~13!, b13;(m/M )b11. The symmet-
ric n1 (Qsm5(Q11Q3)/&) and bendingn2 (Q2) modes do
not depend on the precession and obey the coupled equa

Q̈s1~b111b13! f ssQsm1~b111b13! f s2Q250,
~41!

Q̈21~b22f 221&b12f s2!Q21~b22f s21&b12f ss!Qsm50.

where f ss5 f 111 f 13 and f s25& f 12, with f 115 f 33 and
f 235 f 12 owing to the symmetry of the molecule in theSz

state.~See the definition of the force constants~32!.! Clearly,

he

FIG. 3. The depth of the valley separating the two equivalent maxima of
Sxz state on the rotational energy surface of the water molecule calcul
using Eqs.~19! and ~24! ~smooth curve! and in the approximation of abso
lutely rigid bonds~dashed curve!.
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TABLE II. Normalized amplitudes of the internal coordinates and compo-
nents of the total angular momentum of the four vibrational–precessional

TABLE III. Normalized amplitudes of the internal coordinates and compo-
nents of the total angular momentum of the four vibrational–precessional
the coupling takes place through the mixed derivatives
Veff and the nondiagonal elementb12. The parameters

b11f s2

b11f ss2b22f 22
,

b12f ss

b11f ss2b22f 22
. ~42!

which determine the mode coupling, are small owing to
condition~27! and the inequalitym/M!1. Thus, for the hy-
drides the mode interaction is weaker and this allows us
classify the molecular vibrations in theSz state according to
the standard scheme:22 the frequencyv1 corresponds to sym
metric valence vibrationsn1 , v3 to the asymmetricn3 mode,
and v2 to the bendingn2 mode. Unlike a nonrotating mol
ecule, the centrifugal force of inertia changes the freque
of all the vibrations. This is illustrated in Table II, which lis
the normalized coordinate amplitudesQ1 , Q2 , Q3 , and
Q45Jx /J for all four precessional–vibrational modes of th
H2Se molecule. These data were obtained by numeric
solving the linearized equations forJ510. It is clear from
the table that the interaction of the vibrational modes am
themselves and with the precessional motion is indeed sm

The character of the vibrational motion changes ra
cally after the critical pointJc . In theSxz state the molecule
becomes asymmetric, which leads to mixing of all three
brational modes among themselves and with precession
J that is not too large, the adiabatic approximation make
possible to separate the vibrational motion, for which,
cording to Eq.~37!, the equations have the form

Q̈n1 (
n8n9

bnn8 f n8n9Qn950. ~43!

They describe the coupled local vibrationsQ1 , Q2 , andQ3 .
And again, coupling takes place through the mixed deri
tives and nondiagonal elements of the matrixb. Since the
inequality

(
n9

bnn9 f n9n8
ubnn f nn2bn8n8 f n8n8u

!1, nÞn8, ~44!

is satisfied for all the hydrides, the three local modes
quasi-independent vibrations. This effect is illustrated
Table III, which shows the normalized amplitudes of t
vibrational–precessional motion of the H2Se molecule given
by Eq. ~37! for J540. The precession in the total angul
momentum corresponds to the dimensionless varia
Q45Jx8/J. It is clear that the precessional motion is mix
most strongly with bending vibrations.

modes of the H2Se molecule in the stationarySz state forJ510.

Frequency,
cm21

Normalized amplitudes

r 12r 1s , Å a2as , rad r 32r 3s , Å Jx /J

v152426 1* 20.032 1.000 0
v251082 20.014 1* 20.014 0
v352437 21.000 0 1* 0.004
Vz516 0.004 20.004 0 1*

Note. * The normalization condition isQn51.
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Therefore, beyond the critical region the standard pict
of the normal vibrations of symmetric triatomic molecules
not applicable. We note that the same result has been
tained in numerical calculations using the MORBI
program.14,15 Because of the asymmetry of the molecule, t
elastic coupling constants of the central nucleus with
hydrogen nuclei become different. The difference becom
greater asJ and the mass of the molecule increase, and
leads to a characteristic pattern in the vibrations for the lo
modes.23 Usually the local modes arise as a result of t
strong anharmonicity of the highly excited valence vibr
tions. In our case, the transition from normal to local vibr
tions takes place as a result of rotational excitation wh
disrupts the symmetry of the molecule owing to a bifurc
tion.

In the stationarySy state, the vibrational motion inde
pendent of precession is described by the equation

Q̈n1 (
n8n9

bnn8~Jhn8n9Q̇n91 f n8n9Qn9!50. ~45!

The Coriolis force leads to an additional interaction of t
vibrational modes which corresponds in Eq.~45! to the term
with the first derivative and the antisymmetric matrix

hnn85F]~m̊yyGyn!

]qn8
2

]~m̊yyGyn8!

]qn
G

s

. ~46!

Since the molecule has a symmetric configuration in theSy

state, only one element of this matrix,h12.21/2r s , is non-
zero. If in Eq.~46! we transform to the variablesQsm andQa

for the valence vibrations, use the smallness of the par
eters ~42!, and neglect the nondiagonal termsb12 and b13

compared to the diagonal termsb11 and b22, which are a
factor of M /m greater than the former, then the symmet
valence vibrations are separated, while the antisymme
and bending modes obey the coupled system of equatio

Q̈a1b11~&Jh12Q̇21 f aaQa!50,
~47!

Q̈21b22~2&Jh12Q̇a1 f 22Q2!50.

It is easy to see that the coupling parameter in th
vibrations is of orderv/(v32v2), wherev is the angular
rotation frequency of the molecule. Since the differen
in the frequencies of the two normal modes
v32v2;1000 cm21 for the heavy hydrides, the couplin

modes of the H2Se molecule in the stationarySxz state for J540 ~the
molecule rotates uniformly about an axis that forms an anglebs542° with
the z axis!.

Frequency
cm21

Normalized amplitudes

r 12r 1s , Å a2as , rad r 32r 3s , Å Jx8 /J

v152096 1* 0.030 0.015 0.004
v251272 20.022 1* 20.009 0.093
v352438 20.015 0.003 1* 20.002
Vxz5212 0 0.429 20.009 1*

Note. * The normalization condition isQn51.
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TABLE IV. Normalized vibration amplitudes of the H2Se molecule in the
stationarySy state forJ540.
parameter is small ifJ,100. For these angular momenta t
Coriolis force does not lead to significant distortion of t
fundamental modes. This is illustrated by Table IV, whi
lists the normalized vibration amplitudes obtained by n
merical solution of the exact equations~45!. The table does
not show the tiny phase shift in the coordinates of the nor
vibrations owing to the Coriolis interaction.
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Generation of one-photon states by a quantum dot
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A technique for preparation of a one-photon wave packet through action of a classical
electromagnetic field on a semiconducting quantum dot is proposed. We demonstrate that the
Coulomb repulsion between charge carriers allows one to select the frequency, amplitude,
and duration of an electromagnetic pulse so that one electron will transfer from an upper size-
quantized level of the valence band to a lower size-quantized level of the conduction
band with a probability close to unity. As a result of radiative recombination of the produced
electron–hole pair, exactly one photon is emitted~a one-photon wave packet!. This
source of one-photon states can be used in quantum systems of data transmission and in quantum
computers. ©1997 American Institute of Physics.@S1063-7761~97!00810-X#
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‘‘Classical’’ states of the electromagnetic field contai
ing a large~formally infinite! number of photons have b
now been studied in detail. This includes coherent and c
pressed states,1 in particular. In recent years, interest
‘‘constructing’’ nonclassical photon states has risen. For
ample, nonlocal two-photon interferometry2,3 and quantum
cryptosystems4–7 require so-called entangled photon state8

A line of research in modern quantum physics such as qu
tum cryptography is largely based on application of on
photon states, since the secrecy of quantum cryptogra
systems depends on the impossibility of cloning~copying! a
priori unknown quantum states.9

Presently the focus of studies in quantum cryptograp
has shifted from purely theoretical analysis of the problem
designing experimental facilities for quantum data transm
sion, for the time being over relatively short distances~30
km; see Ref. 5!. This effort requires reliable sources of on
photon states. Here, reliability means that the sources ge
ate only one-photon states~but not states with two or more
photons!.

What can be a source of such states? The simp
method of obtaining an ‘‘almost one-photon’’ state is to
ternate a coherent laser output originally containing ma
Fock states5 un& ~this technique was used in experiments
quantum cryptography based on phase coding6,7!. The field
at the output of an ideal laser above threshold can be
scribed as a coherent stateua& of the form

ua&5expS 2
uau2

2 D (
n50

`
an

An!
un&. ~1!

The coherent state attenuated downstream of an abso
medium corresponds to the limit of smalluau ~recall that the
intensity, i.e., the average number of photons, of a mo
chromatic coherent field is proportional touau2!. Expanding
Eq. ~1! in terms ofuau!1, we obtain
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uau D u0&1au1&1
&

u2&. ~2!

This equation shows that the largest contribution to the
herent state of the photon field is due to the vacuum com
nent (12uau2/2'1), whereas the contribution of the one
photon Fock componentu1& is small insofar asuau!1. The
latter condition means that the probability of detecting
single photon is also small.

It would seem that the situation could be improved
increasinguau, i.e., the intensity. But then, although the co
tribution of the vacuum component toua& would decrease
~see Eq.~2!!, the probability of emitting two photons~Fock
stateu2&! would markedly increase. In the quantum crypto
raphy this would destroy the security of the cryptosyste
since a fraction of photons could be ‘‘extracted’’ from th
line and used for eavesdropping.

Application of the attenuated state described by Eq.~2!
with uau!1 to quantum cryptography leads to another dif
culty. The problem is that a cryptosystem based on the p
ciple of phase coding6 ensures secrecy only if the states wi
phase shifts 0°/180° and 90°/270° are orthogonal to
another~see Ref. 6 for details!. The overlap of these state
however, is always nonzero, being proportional
exp(2uau2/2), and the smaller the value ofuau, the closer to
unity this overlap.

Note that in quantum cryptography, the requirement t
the one-photon state be monochromatic is not absolute
suffices to prepare a one-photon packet that can be desc
by the formula10–12

u1& f5 (
v50

`

f ~v!â1~v!u0&5 (
v50

`

f ~v!u1v&, ~3!

where â1(v) is the boson creation operator of monochr
matic stateu1v&. The one-photon nature of the wave pack
u1& f in Eq. ~3! means that only states with populationn51

68208$10.00 © 1997 American Institute of Physics



are included in the expansion ofu1& f in Fock statesu1v&,
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wherevR5u^cuV̂uv&u/2. Here^cuV̂uv& is the matrix element
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although they may have different frequencies. This state
the photon field is a ‘‘one-particle’’ quantum state, and
generates only a single activation of a light detector, or o
one transition in a detecting system~it cannot be split so as
to generate two detector outputs or two transitions!. In this
sense, the stateu1& f can be termed as a ‘‘single nonmon
chromatic photon.’’ The functionf (v) defines the spectrum
of the emitted wave packet, which formally contains an
finite number of modesu1v&, but with amplitudesf (v)
whose absolute values are smaller than unity. This func
is normalized,

(
v50

`

u f ~v!u251,

and is assumed to be centered about a certain carrier
quencyv0 .

The one-photon wave packet~3! can be produced in the
following manner. One electron, which is initially in a quas
stationary excited stateue& with energy«e , is transferred to
the ground stateug& with energy«g,«e as a result of inter-
action with the photon field, which is initially in the vacuum
state.

Thus, the problem of generating a one-photon state
be reduced to the problem of preparing a quasistationary
cited state of a single electron. This problem has been
cussed in the literature. For example, Imamoglu a
Yamamoto13 suggest a method for fabricating such a state
an Al–GaAs–GaAsp– i p– i – i n–n heterostructure by apply
ing an ac voltage with specially selected parameters. In
process, one electron and one hole resonantly tunnel f
the contacts~across the potential barriers! into the structure
and annihilate with emission of a photon. In their opinio
the effects of size quantization and Coulomb blocka
should suppress quantum fluctuations associated with th
jection of electrons and holes. This scheme, however,
other similar designs, imposes stringent requirements on
parameters of the nanostructure and applied electric field
that experimental implementation is questionable.

One can suggest another method for exciting a sin
electron to a quasistationary level, namely, to apply an
electromagnetic field to an isolated quantum dot with si
quantized levels in both the valence and conduction ba
At first sight, this suggestion seems trivial. Indeed, supp
that all levels of the valence band are occupied, and all c
duction band levels are vacant~which is usually the case in
semiconductor!. Let us denote by«v and«c the energies of
the upper~occupied! size-quantized leveluv& in the valence
band and the lower~vacant! level uc& in the conduction band
It is well known that a periodic perturbationV̂ cos(Vt) ~for
example, a classical ac electric field! with frequency
V5«c2«v ~hereinafter we take\51! leads to periodic os-
cillation of the probabilitiespv and pc of detecting an elec-
tron in levelsuv& and uc&.14–17 If pv(0)51 andpc(0)50 at
the initial moment, then

pc~ t !5sin2~vRt !, ~4!
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of the interband transition. It follows from Eq.~4! that one
can select the timeT during which the perturbation is on~for
example,T5p/2vR! so that the conditionpc(T)51 is sat-
isfied~so-calledp-pulse14–17!. Then at timeT, the electron is
in the quasistationary stateuc& with probability one.

This scheme, however, applies only when the levelsuv&
and uc& are nondegenerate. For example, suppose that
are doubly degenerate in the spin projection, and att50
level uv& contains not one but two electrons. One can ea
calculate the probability that the periodic perturbati
V̂ cos(Vt) has transferred only one electron~its spin projec-
tion is unimportant! to level uc&, whereas the other has re
mained in leveluv&:

pvc~ t !5
1

2
sin2~2vRt !. ~5!

It follows from Eq.~5! thatpvc<1/2, and one cannot be sur
that exactly one electron has been transferred to the qu
tationary stateuc& if levels uc& and uv& are degenerate~the
limitation pvc<1/2 is due to the ‘‘transfer of probability’’ to
the state with two electrons on leveluc&, i.e., pcc<1!.

Whereas the degeneracy in both angular momentum
its projection is usually lifted because a quantum dot is u
ally not spherically symmetric,18 spin degeneracy persists i
the absence of a magnetic field. To lift this degeneracy,
must apply a very strong magnetic field. Let us estimate
strengthH. Our estimate is based on the assumption that
longest experimentally attainable electron lifetime in the e
cited leveluc& of the quantum dot ist'10210–1029 s. The
perturbation duration timeT needed to transfer an electro
from the valence to conduction band should be much sho
thant, otherwise the probability of photon emission att,T
is high, and the emitted photon will be ‘‘lost’’ in the pertur
bation field. Thus, we should haveT'10212– 10211 s. But
in this case the perturbating field contains harmonics in
frequency rangedv'1/T'1011– 1012 s21. The bandwidth
dv should be much smaller than the Zeeman splitting ene
('mBH) of the size-quantized levelsuv& anduc&, since oth-
erwise the external field will still mix all the statesuv↑&,
uv↓&, uc↑&, and as beforeuc↓&, i.e., although the spin degen
eracy is formally lifted, its consequences persist. As a res
we have an estimateH@10 T, which is very difficult to
achieve experimentally.

In this paper we suggest an alternative approach to
problem. It is based on consideration of the Coulomb rep
sion between electrons with different spin projections t
occupy ~in the absence of interaction between them! the
same one-electron level~in a real quantum dot, Coulomb
repulsion is always present, and the smaller the dot the st
ger it is!. It is clear from qualitative considerations that if th
Coulomb repulsion~for example, in leveluc&! were infinite,
the transition of a second electron to this level would
forbidden, and one could generate the one-electron state
probability pvc51 at some timet5T. But if the Coulomb
repulsion energy is finite, this is not obvious.

Our aim is to check whether the transition of one ele
tron from the valence to conduction band is possible un

683Krasheninnikov et al.
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finite Coulomb interaction. It will be shown that for realist
parameters of the system~Coulomb repulsion energy, fre
quency and amplitude of applied periodic electric field, a
lifetime of the electron in the quasistationary state!, one can
select a pulse durationT such that the probability of driving
one electron to the conduction band is close to unity. Thu
is possible to design a source of one-photon wave packet
the basis of an isolated quantum dot without resorting
sophisticated techniques.

2. QUALITATIVE ESTIMATES. DESCRIPTION OF THE
MODEL

Let us first approximately estimate the splittingD« of the
doubly degenerate~in the spin projection! size-quantized
level uv& due to the Coulomb interaction between electro
in statesuv↑& and uv↓&:

D«'U5 K v↑U e2

«ur12r2u Uv↓ L '
e2

«a
~6!

is the matrix element of the Coulomb interaction,« is the
static dielectric constant, anda is the characteristic linea
dimension of the quantum dot. It follows from Eq.~6! that at
«'10 anda'10 nm, we haveU'10 meV. Our estimate o
U is in agreement with the experimental data to order
magnitude.19 A similar estimate is, naturally, obtained for th
splitting of level uc& in the conduction band due to the Co
lomb repulsion between electrons in statesuc↑& and uc↓&.

As was demonstrated in Introduction, it is possible
excite exactly one electron to the conduction band with pr
ability pvc51 only whenT!t and 1/T!D«. Thus, we ob-
tain from Eq.~6!

1/t!1/T!U. ~7!

Since 1/t'1023– 1022 meV, we have 1/T'0.1– 1 meV, so
condition~7! can be satisfied forU>1 – 10 meV, i.e., as fol-
lows from Eq.~6!, for a<10– 100 nm. The range of admis
sibleT can, of course be broadened. To this end, one sho
increaset and/or reducea. For our purposes, however, th
range ofT is sufficient, since condition~7! is then satisfied a
realistic values oft and a in semiconducting quantum dot
fabricated using contemporary technologies.

Note also that we would be satisfied, in principle, by t
situation in which the maximum value ofpvc(t) is not ex-
actly unity, but very close to it. Therefore, we determine t
time T of the external perturbation duration by the conditi

pvc~T!5max@pvc~ t !#. ~8!

In addition, let us agree to select the minimal value ofT
among those satisfying condition~8! ~otherwise the first of
the inequalities in Eq.~7! can be violated!.

Before proceeding to the description of our model, let
somewhat simplify the problem. Assume that both the
lence and conduction bands contain only one size-quant
level that is doubly degenerate in the spin projection. Gen
ally speaking, this is not so. Physically, this simplificatio
means that we take into account only electronic transiti
from the upper valence band level to the lower conduct
band level, and ignore low-lying~fully occupied! levels of
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band~the effect of these levels will be discussed below!. In
describing Coulomb repulsion, we use the Hubbard mode20

which is widely used in the theory of systems with stro
Coulomb correlations.21

Thus, taking into account the discussion above, we
press the model Hamiltonian of a semiconducting quant
dot in a periodic electric field as

Ĥ~ t !5(
s

~«vâvs
1 âvs1«câcs

1 âcs!1Uvn̂v↑n̂v↓

1Ucn̂c↑n̂c↓1E~ t !(
s

~dcvâcs
1 âvs1dvcâvs

1 âcs!,

~9!

whereâqs
1 (âqs) is the creation~annihilation! operator for an

electron with spin s5↑ or ↓ in size-quantized levels
uq&5uv& and uc& ~the subscriptv refers everywhere to the
valence band, and subscriptc to the conduction band!;
n̂qs5âqs

1 âqs is the particle number operator~population
number!; «q are energies of one-electron levels;Uq is the
Hubbard repulsion energy between two electrons in the s
level; dcv is the matrix element of optical dipole transition
(dvc5dcv* ); andE(t) is the external classical ac field.

Let us suppose that the external field is turned on att50
and turned off att5T, and has a carrier frequencyV, i.e.,

E~ t !5E0 cos~Vt !u~ t !u~T2t !,

whereE0 is the field amplitude,u(t) is the Heaviside step
function. The durationT of the applied field action and its
frequencyV are to be drived by maximizing the probabilit
that only one electron is transferred from the valence ban
the quasistationary level of the conduction band~Eq. ~8!!.

Since we consider two electrons with different spin pr
jections in two different one-electron energy levels, the to
number of two-electron states of the system is four. We
note these states by

u1&5uv↑,v↓&, u2&5uv↑,c↓&, u3&5uv↓,c↑&,

u4&5uc↑,c↓&, ~10!

where, for example,uv↑,c↓& means that the electron wit
s5↑ is in the valence band, and the electron withs5↓ is in
the conduction band, etc. For the system under considera
the set of states defined by Eq.~10! is complete, so the wave
function C(t) can be expressed at any moment as

C~ t !5(
i 51

4

Ai~ t !exp~2 iEi t !u i &, ~11!

where Ei are eigenvalues of the time-independent Sch¨-
dinger equationĤu i &5Ei u i & in the absence of an applie
field (t<0). With due account of Eq.~10!, we derive from
Eq. ~9!

E152«v1Uv , E25«v1«c , E35«v1«c ,

E452«c1Uc . ~12!

Note once again that we use the complete set of two-elec
states defined by Eq.~10! and schematically shown in Fig. 1
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The valuesAi(0) define the system wave function at th
initial moment~moreover,Ai(0)5Ai(t,0) since theu i & are
eigenstates of Hamiltonian~9! for t<0!. We assume that a
t<0 the semiconductor is in its usual state, namely, the
lence band is fully occupied and the conduction band
empty, i.e.,A1(0)51, A2(0)5A3(0)5A4(0)50. The prob-
ability pi(t) of detecting the system in stateu i & at an arbi-
trary time t is uAi(t)u2. We are interested in the value o
pvc(t)5p2(t)1p3(t), which is the probability~see Eq.~10!!
that both the valence and conduction bands contain one e
tron each~it follows from the normalization condition~11!
that, naturally,p1(t)1p2(t)1p3(t)1p4(t)51 at anyt!.

The coefficientsAi(t) in expansion~12! can be calcu-
lated by solving the time-dependent Schro¨dinger equation

i
]C~ t !

]t
5Ĥ~ t !C~ t !, ~13!

whereĤ(t) is given by Eq.~9!, i.e., it explicitly depends on
time when 0<t<T.

3. RESONANT APPROXIMATION

In order to solve the problem as formulated, we use
resonant approximation,14–17 which enables us to progres
reasonably far analytically and obtain an accurate solu
~in some limiting cases in analytic form!. One can, certainly,
go beyond the resonant approximation, but in this case
solution can be obtained only numerically and, as will
shown below, this will not lead to any significant changes
the results. In the resonant approximation, the Hamilton
~9! has the form

Ĥ~ t !5(
s

~«vâvs
1 âvs1«câcs

1 âcs!1Uvn̂v↑n̂v↓

1Ucn̂c↑n̂c↓1(
s

Fl2 exp~2 iVt !âcs
1 âvs

1
l*

2
exp~ iVt !âvs

1 âcsG , ~14!

where we have introduced the notationl5dcvE0 .
In what follows, we will obtain exact solutions. It i

noteworthy that, unlike the elementary case of a reson
transition between two one-electron levelsuv& and uc&,
which occurs at the frequencyV5«c2«v ,14 we consider all

FIG. 1. Diagram of energy levels of two-particle states of a semiconduc
quantum dot.
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system. Therefore the resonant frequency is different fr
«c2«v in the presence of finite Coulomb repulsion.

To solve the Schro¨dinger equation~13! with Hamil-
tonian ~14!, it is convenient to go to a representation with
time-independent Hamiltonian. To this end, we use the u
tary transformation

Û~ t !5expF2
iVt

2 (
s

~ âcs
1 âcs2âvs

1 âvs!G , ~15!

which was used in Ref. 16 to describe the interaction
tween an intense electromagnetic field and a semicondu

We replace the wave function C(t) with

C̃(t)5Û1(t)C(t). Substituting

C~ t !5Û~ t !C̃~ t ! ~16!

into the Schro¨dinger equation~13! for C(t), and taking into
account Eq.~15!, we obtain the Schro¨dinger equation for

C̃(t):

i
]C̃~ t !

]t
5 Ĥ̃C̃~ t !, ~17!

with the Hamiltonian

Ĥ̃5Û1~ t !Ĥ~ t !Û~ t !2 iÛ 1~ t !
]Û~ t !

]t

5(
s

F S «v1
V

2 D âvs
1 âvs1S «c2

V

2 D âcs
1 âcsG

1Uvn̂v↑n̂v↓1Ucn̂c↑n̂c↓1(
s

S l

2
âcs

1 âvs

1
l*

2
âvs

1 âcsD . ~18!

This Hamiltonian Ĥ̃ is independent of time; therefore th
general solution of the time-dependent Schro¨dinger equation
~17! for 0<t<T has the form

C̃~ t !5(
i 51

4

Bi exp~2 i Ẽ i t !u ĩ &, ~19!

whereu ĩ & andẼi are the eigenstates and eigenenergies of
time-independent Schro¨dinger equation

Ĥ̃u ĩ &5Ẽi u ĩ & ~20!

with HamiltonianH̃ in the form given by Eq.~18!. The co-
efficientsBi in Eq. ~19! should be derived from the initia
conditions~predetermined values ofAi(0) in Eq. ~11!! and
satisfy the normalization condition

(
i 51

4

uBi u251. ~21!

We seek solutions of Eq.~20! in the form

u ĩ &5 (
k51

4

Cikuk&, ~22!

g
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~10! for t<0. Substituting Eq.~22! into Eq.~20!, we obtain a
set of equations that determinesẼi andCik :

(
k51

4

Cik~^ i uĤ̃uk&2d ikẼi !50, ~23!

wherei 51,2,3,4,̂ i uĤ̃uk& are the matrix elements of Hami
tonian~18! in terms of the basis states~10!. The Hamiltonian

matrix ^ i uĤ̃uk& has the form

S 2«v1Uv1V l* /2 l* /2 0

l/2 «v1«c 0 l* /2

l/2 0 «v1«c l* /2

0 l/2 l/2 2«c1Uc2V
D .

From Eqs.~19! and ~22! we obtain

C̃~ t !5(
i 51

4

Di~ t !u i &, ~24!

where

Di~ t !5 (
k51

4

BkCki exp~2 i Ẽkt !. ~25!

Since C̃(0)5C(0) ~see Eqs.~15! and ~16!!, we have
Di(0)5Ai(0), where the coefficientsAi(0) determine the
state~11! for t<0. Therefore, we obtain from Eq.~25! an
equation to determine the coefficientsBi in terms of given
Ai(0):

Ai~0!5 (
k51

4

BkCki ,

whence

Bi5 (
k51

4

Ak~0!Cki
21 , ~26!

whereC21 is the matrix inverse ofC. From Eqs.~25! and
~26! we obtain

Di~ t !5 (
k51

4

(
l 51

4

Al~0!Cli
21Cki exp~2 i Ẽkt !. ~27!

Given Eq.~16! relating the functionC̃(t) to C(t), and tak-
ing into account that the operatorÛ(t) defined by Eq.~9! is
unitary, we obtain an expression for the probabilitypi(t) for
the transition to stateu i &:

pi~ t !5uDi~ t !u2. ~28!

In the case under investigation, A1(0)51,
A2(0)5A3(0)5A4(0)50 ~at time t50, all levels of the
valence band are occupied and the levels of the conduc
band are vacant; see Eq.~10!!, expression~27! for Di(t) can
be simplified somewhat. Nonetheless, the calculation
Di(t) still requires findingẼi and Cik from Eq. ~23!. This
eigenvalue problem reduces to the solution of a cubic a
braic equation. The resulting expressions forẼi andCik are
cumbersome and difficult to analyze, so it is more con
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before discussing numerical calculations, we consider an
portant limiting case that admits of an analytic soluti
which is in excellent agreement with the numerical soluti
~obtained using the scheme described above! in the param-
eter range of interest.

Suppose that the Coulomb repulsion between electr
in the conduction band is infinite,Uc5`. The two-electron
state u4&5uc↑,c↓& ~see Eq. ~10!!, whose energy is
E452«c1Uc5`, is then obviously always empty, i.e., th
coefficientA4(t) in Eq. ~11! is zero for all t. For the same
reason, the matrix elementsCi4 ( i 51 – 4) in Eq. ~22! are
also zero. Therefore, Eq.~23! can be solved by diagonalizin
a 333 matrix, which can be done analytically. Thus, havi
calculated the eigenvaluesẼi and the matrix of eigenvector
Cik , we obtain from Eqs.~27! and~28! the following expres-
sions for the transition probabilitiespi(t) from the state
C(0)5u1&5uv↑,v↓& to the stateu i &:

p1~ t !512S 12
d2

4vR
2 D sin2~vRt !,

p2~ t !5
1

2 S 12
d2

4vR
2 D sin2~vRt !,

p3~ t !5
1

2 S 12
d2

4vR
2 D sin2~vRt !,

p4~ t !50, ~29!

where

d5V2~«c2«v2Uv!, vR5
Ad212ulu2

2
. ~30!

From Eq. ~29! we derive the desired probabilit
pvc(t)5p2(t)1p3(t) for the transition of one electron to th
conduction band:

pvc~ t !5S 12
d2

4vR
2 D sin2~vRt !. ~31!

It follows from Eqs. ~30! and ~31! that pvc(T)51 at
d50 and

T5
p

2vR
. ~32!

The equalityd50 has a simple physical meaning: the fr
quencyV is equal toV r5E22E15E32E1 ~see Eq.~12!
and Fig. 1!, i.e., the difference between the energy of the p
of degenerate levelsu2& and u3&, and that of levelu1&. Only
these two-electron states are resonant atd50. Since
«c2«v'1 eV and Uv1Uc!«c2«v , we have
V r'1015 s21. When the frequency is offset from resonan
(dÞ0), the value ofpvc(T) derived from Eq.~8! deviates
from the maximum value by a quantity of orderudu2/ulu2,
i.e., the following inequality should hold:

udu!ulu. ~33!

It is clear that atd50 our results should also be vali
when Uc is finite ~the lower boundary will be determine
below!, since the system can then only be in statesu1&, u2&,
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if d50, the sumUv1Uc should be finite~i.e., Uc may be
zero!, which follows from the condition that the resona
frequenciesV r andV r85E42E25E42E3 ~Fig. 1! for tran-
sitions between the levelsu1&↔u2&,u3& and u4&↔u2&,u3&,
respectively, be different~at Uv5Uc50 we havepvc<1/2;
see Eq.~5!!. At dÞ0, the necessary condition for the valid
ity of Eq. ~31! for pvc(t) is obviously

udu!Uv1Uc , ~34!

and the important parameter is the sumUc1Uv , rather than
Uv andUc individually.

Inequalities~33! and ~34! do not specify the ratio be
tweenulu andUv1Uc . Since forudu!ulu we havevR'ulu,
by generalizing condition~7!, discussed in Sec. 2, we obta
ulu!Uv1Uc , i.e., it follows from Eqs.~7! and ~33! that

1/t,udu!ulu!Uv1Uc ~35!

~recall thatt is the radiative recombination time!. Thus, if
condition ~35! is satisfied, the ‘‘three-level approximation
should apply to electronic transitions in the investiga
four-level system under an applied an periodic perturbat

We emphasize that conditions~35! can be satisfied in a
real experiment. In fact, sinceUv1Uc>1 – 10 meV and
1/t'1023– 1022 meV ~see Sec. 2!, we should have
ulu'0.1– 1 meV~the upper boundary of this interval can b
increased by increasingUv1Uc , i.e., decreasing the quan
tum dot sizea, while the lower boundary is determined b
the lifetimet!. Recalling that the parameterulu is a product
of the optical dipole matrix elementudcvu and the electric
field amplitude E0, and noting that udcvu'ea, where
a'10– 100 nm, we obtainE0'102 V/cm, which can be
easily realized in experiment. As concerns the condit
udu!ulu, we haveudu<0.01 meV, i.e., the frequencyV of
the external source should be accurate to within 1010 s21.
Modern experimental methods make this possible.

We now compare the numerical solutions of Eqs.~23!–
~28! to the analytic solution of Eqs.~30!–~32! in the ‘‘three-
level approximation.’’ Let us take for definitenes
«c2«v'1 eV. Figure 2 showspvc as a function oft at d50,
ulu50.01 eV, andUv1Uc50.1 eV ~the numerical calcula-
tions indicate thatpvc(t) is only determined by the sum
Uv1Uc , at least whenUv1Uc!«c2«v!. Figure 2 demon-
strates that the analytic solution is in good agreement w
numerical calculations, as expected, since the selected va
of the system parameters satisfy~34!. The numerical calcu-
lations yieldpvc

max andT equal to 0.9935 and 1.4606•10213 s,
respectively, and the analytic solution yields 1 a
p/ulu&51.4622•10213 s, respectively.

Figures 3 and 4 illustrate the transition from the ‘‘regim
of noninteracting electrons’’ (Uv1Uc50, pvc

max51/2, and
T5p/2ulu51.0339•10213 s; see Eq.~5!! to the ‘‘regime of
strong Coulomb repulsion,’’ for whichUv1Uc@ulu ~Eq.
~35!!. This transition occurs whenUv1Uc'l; when
Uv1Uc>3l, the probabilitypvc

max is larger than 0.95 andT
is within 3.5% of its asymptotic value corresponding
Uv1Uc5`.

We now discuss the effect of an offset from resonan
(dÞ0) on pvc

max andT. The corresponding curves are give
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in Figs. 5 and 6 forUv1Uc50.1 eV and ulu50.01 eV,
which satisfy the second inequality in~35!. One can see tha
the analytic solution is in excellent agreement with the n
merical calculations even when the first inequality in~35! is
not satisfied. Here, of course,pvc

max'1 only whenudu!ulu.
Figures 7 and 8 showpvc

max and T calculated in the im-
mediate neighborhood of resonance forUv1Uc50.01 eV

FIG. 2. Probabilitypvc of one-electron transition from the valence band
the conduction band versus durationt of action of a periodic perturbation
with frequencyV5«c2«v2Uv (d50); «c2«v51 eV, Uv1Uc50.1 eV,
ulu50.01 eV. Numerical calculations with Eqs.~23!–~28! are plotted as
dots, and the analytic solution defined by Eqs.~30!–~32! in the ‘‘three-level
approximation’’ is shown by the solid line.

FIG. 3. Maximum probabilitypvc
max of one-electron transition from the va

lence band to the conduction band due to a periodic perturbation with
quencyV5«c2«v2Uv (d50) as a function of the sumUv1Uc of Cou-
lomb repulsion energies in the valence band and conduction b
«c2«v51 eV, ulu50.01 eV. The probability was calculated numerical
using Eqs.~23!–~28!.
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and ulu50.0001 eV. For udu<10210 s21, we have
pvc

max>0.998, i.e., the transition probability is essentially i
distinguishable from unity. In this region,T varies between
1.4607•10211 and 1.4622•10211 s, i.e., by 0.1%.

4. EFFECT OF NONRESONANT COMPONENTS

In the resonant approximation we neglected seve
‘‘nonresonant’’ harmonics of the applied periodic field~see
Sec. 3!. To assess their effect on the final result, we num
cally solved the time-dependent Schro¨dinger equation~13!
with Hamiltonian~9! using the explicit Runge–Kutta metho

FIG. 4. Time T corresponding to the maximum probabilitypvc
max of one-

electron transition from the valence band to the conduction band due
periodic perturbation with frequencyV5«c2«v2Uv (d50) as a function
of the sumUv1Uc of the Coulomb repulsion energies in the valence ba
and conduction band;«c2«v51 eV, ulu50.01 eV. The time was calcu
lated numerically using Eqs.~23!–~28!.

FIG. 5. Maximum probabilitypvc
max of a one-electron transition from th

valence band to the conduction band due to a periodic perturbation
frequencyV as a function ofd5V2V r , whereV r5«c2«v2Uv is the
resonant frequency;«c2«v51 eV, Uv1Uc50.1 eV, ulu50.01 eV. The
dots show numerical calculations using Eqs.~23!–~28!. The analytic solu-
tion of Eqs.~30!–~32! in the ‘‘three-level approximation’’ is plotted as
solid line.
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of order 7~8! based on the equations of Dormand and Prin
with automatic selection of the step size.22 We calculated the
coefficients Ai(t) in Eq. ~11! with initial conditions
Ai(0)5d i1, and determined the value o
pvc(t)5uA2(t)u21uA3(t)u2. As follows from our calcula-
tions, the functionpvc(t) determined in the nonresonant a
proximation in the parameter range of interest~see Eq.~35!!
coincides with that found analytically in the ‘‘three-leve
resonant approximation’’ based on Eqs.~30!–~32! to within
a fraction of a percent. It is noteworthy, however, that wh
nonresonant terms are taken into account, the probab
pvc

max peaks at a very small but finite offsetd. The good
agreement between the numerical and analytic results

a

th

FIG. 6. Time T corresponding to the maximum probabilitypvc
max of one-

electron transition from the valence band to the conduction band due
periodic perturbation with frequencyV as a function ofd5V2V r , where
V r5«c2«v2Uv is the resonant frequency; «c2«v51 eV,
Uv1Uc50.1 eV, ulu50.01 eV. The dots show numerical calculations u
ing Eqs.~23!–~28!. The analytic solution defined by Eqs.~30!–~32! in the
‘‘three-level approximation’’ is plotted as a solid line.

FIG. 7. Same as Fig. 5 withUv1Uc50.01 eV, ulu50.0001 eV.
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gests that the nonresonant summands in the Hamiltonian~9!
have little effect on system evolution. This result, howev
was predictable forulu!V.14

5. DISCUSSION OF RESULTS AND CONCLUSIONS

Thus, we have solved the problem of interaction b
tween an hf electric field and a quantum dot with two siz
quantized levels~one in the valence band and the other in t
conduction band! and two electrons, taking into accou
Coulomb repulsion between the electrons. In the param
range of interest, the problem has an easily interpretable
lytic solution ~30!–~32! in the so-called resonant three-lev
approximation~Sec. 3!. We have shown that neither takin
account of all two-electron levels of the quantum dot in t
resonant approximation~Sec. 3! nor numerically solving the
time-dependent Schro¨dinger equation with due account o
‘‘nonresonant’’ harmonics of the applied electric field~Sec.
4!, have any perceptible effect on the time dependence o
energy-level populations.

With regard to the form of the model Hamiltonian~9!, it
does not include terms corresponding to the Coulomb in
actionUvc between two electrons in different levelsuv& and
uc& ~if the valence band states are described in terms
holes, this interaction corresponds to excitonic effects!. If the
wave functions of the one-electron statesuv& and uc& have
different symmetry properties~as in GaAs/AlGaAs!, the in-
teraction energyUvc should be significantly less thanUv and
Uc . But even if it is not, it can be shown18 that Uvc leads
only to a shift in the resonant frequency, which becom
V r5«c2«v2Uv1Uvc , while the system dynamics rema
unchanged. The frequencyV r of a specific quantum do
should be determined empirically.

Thus, we have shown that it is possible, in theory,
select the parameters of an external perturbation~V, ulu, and
T! and of a quantum dot (Uv1Uc'e2/«a) so that the prob-
ability of driving one electron from the valence band to t
conduction band is extremely close to unity. Significant
the time of this transition,T510213– 10211 s, is several or-
ders of magnitude shorter than the recombination ti

FIG. 8. Same as Fig. 6 withUv1Uc50.01 eV, ulu50.0001 eV.
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T>t!, the quantum dot is in a quasistationary excited st
uv↑,c↓& or uv↓,c↑& with lifetime t, after which the
electron–hole pair will annihilate with generation of a on
photon wave packetu1& f ~Eq. ~3!! with spectral distribution
f (v) centered at the frequencyv05(2«c1Uv)2(«c1«v),
i.e., near the resonant frequencyV r5«c2«v2Uv of the ex-
ternal field applied to the quantum dot. The process of p
ton generation is certainly probabilistic, so we cannot g
the exact time when the photon is emitted. An importa
point is that if the recombination is radiative, only one ph
ton will be emitted. This source of one-photon states can
used in quantum systems for data transmission and proc
ing, including quantum cryptosystems.

In conclusion, note that the estimates of the requi
parameters of the quantum dot and external perturbation
vide evidence in favor of the feasibility of such a source
one-photon states. Moreover, if the external field freque
cannot be varied over a broad band, the source reson
condition can probably be achieved by varying the ene
difference between the size-quantized levels in the vale
and conduction bands via application of static electric a
magnetic fields to the quantum dot.
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the results of this work.
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Laser photoelectron projection microscopy of insulating samples with sub-wavelength

-

spatial resolution
S. K. Sekatski 

Institute of Spectroscopy, Russian Academy of Sciences, 142092 Troitsk, Moscow Region, Russia
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Operation of a laser-driven photoelectron projection microscope is analyzed in the case of low-
conductivity samples. Under certain conditions, even with ‘‘perfectly’’ insulating samples,
one can obtain photoelectron images with a high magnification factor and spatial resolution smaller
than the laser wavelength owing to the effect that the diple field of a sample polarized by a
strong external electric field has on the motion of emitted photoelectrons. The experimental
investigation of lithium fluoride and glass samples reported in this paper can be considered
a qualitative confirmation of the suggested model. ©1997 American Institute of Physics.
@S1063-7761~97!00910-4#
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The study of various characteristics of samples with
perhigh spatial resolution is a central problem of surfa
physics, microelectronics, biophysics, etc. Researchers
tention has been focused on experimental techniques
provide simultaneously high spatial resolution and spec
~chemical! selectivity, i.e., they allow one not only to visu
alize the surface topography, but also to identify various
crostructures observed in a sample. The ultimate goa
these studies is to identify individual molecules and ev
parts of complex molecules.

One of the feasible techniques that can be applied
such studies is resonant photoelectron~photoion! micros-
copy, which was suggested in 1975.1 Recently this technique
was implemented for the first successful experiments in
field and allowed the researchers to detect, in particular,
latedF2 color centers on a LiF surface.2,3

The underlying concept of the resonant laser photoe
tron microscopy2,3 ~Fig. 1a! is recording laser-induced pho
toelectron images of samples shaped as sharp needles
small curvature radiir of their tips. The conditions of lase
irradiation of tested samples~tips! are selected so that th
external photoeffect in the sample material due to the la
light is present,4 i.e., only selected centers in the samp
absorbing the incident light are ionized. If photoelectrons
detected by a position-sensitive detector placed at dista
L1 from the sample, one can obtain a high magnificat
factor of the order ofL1 /r and visualize individual absorbin
centers.

Projection photoelectron laser microscopy has an a
tional advantage because, unlike the traditional technique
field electron~field ion! microscopy, which is widely used in
studies of surface topography and electrophysical prope
of various metals, alloys, and some semiconductors wit
high spatial resolution~see Refs. 5 and 6, and referenc
therein!, this method can be also applied to studies of diel
tric materials. This can be done because the source of e
trons in this case is external photoeffect, and the exte
electric field only conveys them to the detector, theref
there is no need for the superhigh electric fields necessar

690 JETP 85 (4), October 1997 1063-7761/97/10069
-
e
t-
at

al

i-
of
n

to

is
o-

c-

ith

er

e
ce
n

i-
of

es
a

-
c-

al
e
or

aging gas atoms in traditional field electron~field ion! micro-
scopic techniques.5,6

If we feed to a metallic electrode supporting the nee
~Fig. 1! a voltageV of several kilovolts, the ohmic voltage
drop IR across the sample can take the most part of
voltage, whereas a voltage of 100–200 V at the tip~at that
area with radiusr from which electrons are emitted! is suf-
ficient for fairly efficient detection of emitted photoelectron
Given that the total resistance of a conic needle with
angle q0 is aboutR.r/pr tanq0, wherer is the needle
material resistivity, and the voltage drop across the need
about 3 kV, whereas the emitted current sufficient for reco
ing photoelectron images with high resolution and a go
signal-to-noise ratio is 0.1 pA, one can easily check t
high-resolution projection photoelectron imaging of mate
als with resistivities of up tor;1012V•cm ~and in some
case even higher! are feasible. This conclusion is supporte
by recent experimental investigations of dielectric tips fro
lithium fluoride containingF2 color centers.2,3

It obviously follows from this discussion that the poss
bility of imaging dielectric samples using the photoelectr
projection microscopy, hence recording all basic parame
of photoelectron images, depends on many parameters,
as the sample conductivity, applied high voltage, collec
photoemission current, etc., and investigation of this dep
dence is of considerable practical interest. One limiting c
corresponding to a relatively small sample resistivity is ve
similar to the case of metallic samples studied in a fi
electron/ion microscope, which has been investigated in
tail. This paper analyzes an opposite limiting case, nam
when samples are ‘‘perfectly’’ insulating and contain no fr
charges, which lead to concentration of electric lines of fo
around the tip.5,6 The only field-induced effect is sample po
larization~Fig. 1b!. It will be shown that a considerable mag
nification factor and a spatial resolution smaller than the
ser wavelength can be also achieved in this configurat
Experimental investigations of tips fabricated from lithiu
fluoride dielectric crystals and glass using the project
photoelectron microscopy technique can be considered
confirmation of theoretical results.

69007$10.00 © 1997 American Institute of Physics



n
FIG. 1. Diagram of a laser photoelectro
projection microscope:~a! conducting
sample; ~b! insulating sample~~1! di-
electric sample;~2! microchannel plate;
~3! luminescent screen!.
2. MOTION OF PHOTOELECTRONS IN ELECTRIC FIELD DUE
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TO POLARIZED DIELECTRIC SAMPLES

Let us consider a simple model illustrated by Fig. 2. A
insulating ball with radiusr 0 and dielectric permittivitye is
placed between the plates of a plane capacitor with dista
L between them and electric fieldE. In this field, the ball
obtains dipole momentp equal to7

p5r 0
3 e21

e12
E, ~1!

and the electric field outside the ball is calculated
Eext5E1Edip , whereEdip is

Edip5
3~pr !r

r 5 2
p

r 3 . ~2!

By considering the meridional plane of the ball and introdu
ing polar angleq ~Fig. 2!, one can easily obtain for compo
nentsEx andEy of the fieldEext outside the ball, i.e.,

Ex5
3

2
r 0

3 e21

e12
E

sin 2q

r 3 , ~3!

Ey5E1r 0
3 e21

e12
E

3 cos2 q21

r 3 . ~4!

Let us consider photoelectrons emitted with the init
kinetic energy equal to zero. At small anglesq we can as-
sume that the distancer (t) between a moving electron an
the ball center as a function of time is fully determined
the field componentEy . Besides, if we assume thatEy5E,
we can easily derive for the functionr (t) ~e andm are the
electron charge and mass!

t5A2~r 2r 0!m

eE
, ~5!

dr

dt
5A2~r 2r 0!eE

m
. ~6!

Then, using the equations

dvx

dt
5

eEx

m
,

dvx

dt
5

dvx

dr

dr

dt
,

substituting into them expressions~3! and ~6!, and integrat-
ing the resulting equation, we obtain the following expre
sion for the velocity componentvx of an electron moving in
the dipole field:
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vx5br 0
3qE

r 0 Ar 2r 0r 3
, ~7!

where

b[
3~e21!

e12
AeE

2m
,

and sin 2q is replaced with 2q. The expression for the inte
gral in Eq.~7! is given in reference books,8 and after substi-
tuting its value 3p/8r 0

5/2 we have

vx5
9p

8

e21

e12
r 0

1/2qAeE

2m
. ~8!

Almost all the velocityvx of an emitted electron is im-
parted in the close vicinity of the polarized ball, therefore t
resulting electron displacementD l along thex-axis can be
expressed as

D l 5vxt5
9p

8

e21

e12
qAr 0L, ~9!

where t5A2Lm/eE is the total electron transit time acros
the capacitor. Thus the microscope magnification factorM is

M5
D l

qr 0
5

9p

8

e21

e12
AL

r 0
. ~10!

After substituting into Eq.~9! e59, which is the dielectric
permittivity of lithium fluoride studied in the experiments9

L510 cm, andr 053 mm, one can see that the magnificatio
factor of the photoelectron microscope can be extrem
high ~about 470!. Note also that the magnification factorM

FIG. 2. Configuration for which motion of emitted electrons driven by t
field generated by a polarized ball has been calculated~this diagram is not
an accurately scaled drawing of the model!.
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case of conducting samples the corresponding functio
linear:

M5L/xr 0 , ~11!

wherex is a numerical factor depending on the system c
figuration and ranging between 1.5 and 2.5

Numerical calculations of the motion of photoelectro
with zero initial kinetic energy driven by the dipole fiel
confirm that the magnification factor is proportional to t
square root ofL/r 0 , whereas the absolute values ofM
proved to be a factor of about 1.5 smaller than those given
Eq. ~10! ~specifically, in the example discussed abo
M5310!, which is not surprising since the derivation of E
~10! contains a lot of simplifications. Moreover, the nume
cal calculations indicate that the magnification factorM de-
pends on the initial photoelectron coordinate or angleq, as
shown in Fig. 3. This dependence leads to ambiguities
resulting photoelectron images of a polarized dielectric b
Only the region of the sample surface where 0<q<0.57 rad
is mapped one-to-one, whereas in images of regions w
0.57<q<p/2 rad each point corresponds to two points
the sample surface. From the experimental viewpoint,
ambiguity can give rise to additional~noncentral! peaks in
photoelectron images of polarizing dielectric samples, a
this effect should be taken into account in interpretation
photoelectron images.

The magnification factor of the studied system can
increased considerably if after passing across a capa
is

-

y

in
l.

th

is

d
f

e
tor

with distance L between its plates photoelectrons pa
through a zero-field region with lengthL1@L, as shown in
Fig. 2. For example, numerical calculations of the photoel
tron motion in such a system in the case ofL51 cm,
L1530 cm, andr 0510mm yield at small anglesq the mag-
nification factorM5870. ~Numerical estimates indicate tha
the distortions due to the grid separating the regions ofL and
L1 are negligible if the mesh width is about ten micromete
or smaller.! The maximum value of the image coordinate
achieved at an angleqopt.1 rad and equals 5.6 mm.

The microscope spatial resolution is determined, as
the case of a projection photoelectron microscope with c

FIG. 3. Magnification factor of photoelectron images of a dielectric ball
a function of the angular coordinate of emitted electrons.
-
e.
FIG. 4. Photoelectron image of a LiF:F2 tip with
a magnification factor of about 105. The tip cur-
vature radius is 0.6mm, the applied potential 2.5
kV. The bright white spots on the pattern corre
spond to isolated color centers on the tip surfac
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FIG. 5. Photoelectron image of a LiF:F2 tip with
a magnification factor of about 2500. The tip ha
an elongated shape with a large curvature rad
of about 4mm, its potential is 500 V.
ducting samples, by the initial spread of the photoelectron
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kinetic energyDE0 . The numerical calculation of motion o
electrons with finiteDE0 has shown that a high resolutio
can be achieved only in the case of very small initial kine
energies of electrons corresponding to liquid-helium te
peratures. For example, under the conditions defined ab
at angleq50.5 rad, the electric field strength in the capa
tor E510 kV/cm, andDE0510 meV, the spatial resolution
can be about 0.8mm, whereas atDE051 meV the resolution
is as small as 0.26mm, etc.

3. EXPERIMENTAL OBSERVATION OF PHOTOELECTRON
IMAGES OF DIELECTRIC TIPS

The analysis discussed above indicates that a cons
able spatial magnification~and in some cases a spatial res
lution smaller than the light wavelength! can be achieved in
the technique of photoelectron microscopy of insulat
samples. Naturally, the situation discussed above, w
emitted photoelectrons are driven only by the dipole fi
generated by the polarized sample and the total free charg
the system is zero, is, in a sense, unrealistic. In the ana
of real photoelectron images of low-conductivity sampl
one should take into account both the dipole field compon
and the component due to free electron charges, and a
number of other factors not discussed in the paper~for ex-
ample, effects of the field penetration depth as a function
applied voltage and collected photocurrent, etc.!, which
make the problem extremely difficult. Moreover, the co
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of dielectric samples~Fig. 1! is notably different from the
model configuration given in Fig. 2.

Nonetheless, results of a set of experiments with lithiu
fluoride and glass samples can be considered, in our opin
as a qualitative confirmation of the discussed calculations
the first set of experiments~the results will be described in
detail elsewhere!, the photoelectron images of tips fabricate
from lithium fluoride crystals with different concentration
of color centers were studied under radiation from an arg
laser with a pumping power density 103– 104 W/cm2. The
samples were exposed to all spectral lines generated by
argon laser or to separate lines with wavelengths of 488
514 nm. LiF crystals with color centers were manufactur
at Institute of General Physics, Russian Academy of S
ences. Tips were fabricated by etching fragments of crys
in concentrated hydrochloric acid. Curvature radii of the t
ranged between 0.6 and 5mm, the voltage fed to the sample
was 0–4 kV. The detector was an assembly of a microch
nel plate, a luminescent screen, and a fiber-optic plate, wh
output was recorded by a CCD camera and fed to a c
puter, where the image was processed by a dedic
Argus-50 processor manufactured by Hamamatsu Photo
K. K. ~Japan!. The working area of the microchannel pla
was 32 mm in diameter, thus, given the separation betw
the tip and plate of 10 cm, the angle from which photoele
trons were collected was about 20°.

Depending on the experimental parameters, such as
tip potential, photoemission current etc., substantially diff

693S. K. Sekatski 
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FIG. 6. Photoelectron image of a tip fabricate
from KS-11 optical glass with a magnification
factor of about 2000.
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typical photoelectron image of a high spatial resolution d
playing isolatedF2 color centers is shown in Fig. 4. A
interpretation of such photoelectron images of LiF:F2 tips, as
well as a more detailed description of experiments, is bey
the scope of this paper and can be found elsewhere.2,3 The
photocurrent as a function of the light intensityI fed to the
tips is also not analyzed in this publication. Note only th
this function is clearly nonlinear, but its accurate measu
ments were difficult because the dynamic range of the
crochannel plate is limited, and the image shape depend
the total collected photocurrent. Another important point
that, in addition to high-resolution photoelectron imag
similar to that in Fig. 4 and, as follows from the analys
adequately described by formulas applicable to experim
with conducting tips, the low-resolution photoelectron im
ages similar to that shown in Fig. 5 were detected for so
samples at small voltages applied to the tip~about 500 V!.

Unlike Fig. 4, the magnification factor of the system
Fig. 5 is about an order of magnitude smaller, and the de
tor images the entire LiF tip, but not its small fraction. A
follows from comparison with images of the same samp
obtained by optical and electron microscopes, these l
resolution electron images, all in all, faithfully reproduce t
tip shape~such as the tip shown in Fig. 5, which is real
much longer in one direction!. Moreover, these images ofte
contain additional features~such as three photocurren
maxima in the case of Fig. 5!, which could not be detecte
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In our opinion, such photoelectron low-resolution im
ages should be considered as patterns which are largely
to the polarization component of the electric field genera
in the system. This assumption is supported by the follow
arguments.

Above all, note that the lithium fluoride resistivity a
room temperature is extremely high. As follows from o
measurements and data given in Refs. 10 and
r;1014– 1015V•cm. This value is much higher than the e
timate of the resistivity of samples suitable for studies
traditional projection photoelectron spectromicroscop
namely r;1012V•cm, i.e., generation of ‘‘polarization’’
photoelectron images of LiF tips is quite feasible under c
tain conditions.~The lithium fluoride resistivity rapidly drops
with temperature, and atT5250 °C it is r;109V•cm.11,12

This fact and expected effects of intense electric field a
photoconductivity allow one to image LiF sample surfac
with a high resolution under different conditions.3! Further-
more, the magnification factor in this case is within one ord
of magnitude different from the factor calculated by the si
plest model of a polarized ball~this model, as was noted
above, cannot be considered as qualitatively accurate! and
differs by more than one order of magnitude from the ma
nification typical of a conducting tip. Photoelectrons a
emitted not into a solid angle close top/2, as in the case o
a conducting tip, but into a relatively narrow angle~less than
10°!, which is in agreement with simple models of phot
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pper-vapor
FIG. 7. Photoelectron images of sections of the surface of a conical needle fabricated from KS-11 glass obtained by focusing radiation from a co
laser on the sample surface at some distance from the tip:~a! 0.3 mm;~b! 1.0 mm.
electron motion in fields generated by polarized dielectrics.
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An increase in the magnification factor with the decre
ing tip curvature radiusr and a growth in the total imag
dimension with increasingr ~Eq. ~9!! predicted by these
models have been detected in experiments. Finally, an
portant point is that low-resolution images were record
only when the tip potential was relatively low. A ‘‘spread
of images and transition to images similar to that in Fig
occurred abruptly when the potential was increased. This
havior is predicted by simple models that take into acco
the voltage drop across the needle as a function of the
current across the sample and applied voltage.

Similar results were obtained in another set of expe
ments conducted using tips fabricated by etching nee
shaped fragments of red KS-11 and KS-15 optical filters
concentrated hydrofluoric acid and illuminating them with
copper vapor laser. The curvature radii of these tips w
1–3 mm, the duration of optical pulses generated by
copper-vapor laser was 18 ns, the repetition rate was
kHz, and the pumping power density was 107– 108 W/cm2.
Both spectral lines with wavelengths of 511 and 572
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The resistivity of these glass samples at room tempe

ture is extremely high~up to r;1015V•cm! and rapidly
drops with temperature,13 which allows one, as with LiF tips
to obtain photoelectron images with either low or high res
lution. Images of each sort have been really observed in
periments. A typical example of a low-resolution image
given in Fig. 6. As in the case of LiF samples, the ima
faithfully reproduces the overall tip shape, and its over
dimension also depends on the tip curvature radius.

In order to dispel all doubts concerning the feasibility
the photoelectron projection microscopy of dielect
samples and the fidelity of the recorded images, Fig. 7 sh
images of glass tips recorded with a very low resolution.
this case, light generated by the copper-vapor laser was
cused not on the tip apex, but on the conical surface of
sample at a small distance~about 0.3–1 mm! from the tip. It
is beyond doubt that the graph shows the photoelectron
ages of rings on the conic sample surfaces exposed to
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laser light, and the magnification factor is different for dif-
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work and helpful discussions, to V. N. Konopski� for help in
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.

i.

,

os-
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-

v-
ferent curvature radii of the samples.

4. CONCLUSIONS

The main result of the reported work is the feasibility
photoelectron images of insulating tips with a fairly hig
magnification factor and spatial resolution, which is co
firmed by experiments with lithium fluoride and glass tips.
is clear that, in the limit of ‘‘perfectly’’ insulating tips the
magnification factor is much smaller than the spatial mag
fication factor characteristic of field-emission projectors w
metallic tips and is described by a different function~square
root! of the ratio between characteristic system dimensi
R/r 0 .

A detailed and consistent analysis of the transition
tween the regime of the photoelectron microscope us
electric field generated by free charges to the ‘‘polarizatio
regime should take into account all the electric field com
nents and the real system configuration, and demands a
tional experiments with samples of low conductivity. Th
research is of great interest, and remarkable progress in
field can be expected in the immediate future.
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Ionization self-channeling of whistler waves in a collisional magnetized plasma

s of
A. V. Kudrin, L. E. Kurina, and G. A. Markov

Nizhni� Novgorod State University, 603600 Nizhni� Novgorod, Russia
~Submitted 18 February 1997!
Zh. Éksp. Teor. Fiz.112, 1285–1298~October 1997!

An investigation is made of the self-interaction of whistler waves~whistlers! involving the
formation of waveguide channels in a collisional magnetoactive plasma as a result of its additional
ionization by the field of the propagating wave. Simplified equations are derived to describe
the behavior of the whistler field in a channel of enhanced plasma density in the presence of
electron collisions. Self-consistent distributions of the field and the plasma corresponding to
steady-state ionization self-channeling of whistlers are obtained by numerically solving the
equations for the field together with balance equations for the electron density and energy.
Our estimates indicate that this effect can be observed under laboratory conditions. ©1997
American Institute of Physics.@S1063-7761~97!01010-X#

1. INTRODUCTION The enhanced-density channels formed under condition
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Characteristic features of the formation of wavegu
channels in a magnetized plasma as a result of various
linear effects accompanying the propagation of high-pow
wave beams have been investigated by many authors~see,
for instance, Refs. 1–5 and the cited literature!. Recently,
these topics have attracted increased interest with the se
up of various new laboratory and ionospheric experiment
produce self-consistent plasma structures, with controlla
properties, that extend along an external magnetic field.6–10

Of particular interest as applied to an ionospheric plasm
the possible self-channeling of high-intensity electrom
netic waves in the whistler frequency range

~VHvH!1/2,v!vH!vp, ~1!

wherevH andvp are the electron gyrofrequency and plasm
frequency, respectively, andVH is the ion gyrofrequency. In
particular, this explains why whistler waves~whistlers!
found under natural conditions in near-Earth space pla
very important role in many fundamental and applied pro
lems in cosmic plasma physics.11 Studies of the propagatio
characteristics and self-interaction of high-power wa
beams in the whistler range are of considerable interest
the development of new methods of investigating the io
sphere and the magnetosphere by actively controlling
near-Earth plasma, and also for various other similar ap
cations~see Refs. 6 and 12!. Problems involving the efficien
excitation of whistlers and transferring their energy to
plasma are attracting increased attention because of the s
for using these waves in existing laboratory and technolo
cal plasma facilities, such as helicon plasma sources.13–16

Note that most theoretical studies dealing with se
interaction of whistler waves mainly consider broad co
sionless or weakly collisional channels on the wavelen
scale of the propagating wave, with a small transve
plasma density gradient. These channels~density ducts! are
usually formed in a magnetized plasma where the influe
of striction or thermal nonlinear effects predominates.5,7,10

However, the situations changes substantially when
background plasma is additionally ionized by a wave fie
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ionization nonlinearity usually have widths comparable
the whistler wavelength, and frequently exhibit an app
ciable radial density gradient.6 In addition, even in the colli-
sionless limit, the propagation constants of the wavegu
modes guided by these plasma formations are complex in
range~1! because of their leakage into the surrounding m
dium as small-scale quasielectrostatic waves.5,17 This un-
usual feature of whistler channeling means that any ma
ematical description of their ionization self-interactio
resulting in the formation of enhanced-density ducts prese
major difficulties. In particular, no theory of ionization sel
channeling of whistlers has yet been constructed for a pla
with comparatively low effective electron collision fre
quencyne , where the dominant mechanism of energy lo
from the channel is emission of quasielectrostatic waves
the background plasma. However, at high enough frequ
ciesne, corresponding to appreciable collisional damping
quasielectrostatic waves, this effect can be analyzed usi
simplified model~provided that the conditionne!vH is also
satisfied!. Here we consider the steady-state ionization s
channeling of whistler waves for this special case.

2. BASIC EQUATIONS

A description of the complete picture of ionization se
channeling of whistlers is fairly difficult to achieve. How
ever, the key issue of whether steady-state waveguide s
tures sustained by additional ionization of the backgrou
medium by trapped whistler waves can exist in a collisio
magnetized plasma, together with the most characteristic
tures of this effect, can be investigated if we neglect, to a fi
approximation, the dependence of the plasma channel
rameters and the absolute value of the wave field amplit
in this channel on the longitudinal coordinate, i.e., we co
fine our analysis to homogeneous plasma formations in
direction of the external magnetic fieldH05H0z0 . As we
shall confirm subsequently, this model is quite adequate
comparatively weak whistler absorption (ne!vH). We shall

69708$10.00 © 1997 American Institute of Physics
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field and the plasma. In this case, with these idealizations
transverse structure of the whistler field

1

2
@E~r!exp~ ivt2 ihz!1c.c.#,

1

2
@H~r!exp~ ivt2 ihz!1c.c.#

propagating alongH0 is described by the following equa
tions:

¹'
2 Ew2

Ew

r2 1S k0
4g2

h22k0
2«

2h21k0
2« DEw5

k0
4gh

h22k0
2«

dEz

dr
,

¹'
2 Ez1

h2

h22k0
2«

1

«

d«

dr

dEz

dr
2

h

«
~h22k0

2«!Ez

5
h

«
~h22k0

2«!
1

r

d

dr

rgEw

h22k0
2«

,

Er5
i

h22k0
2«

S h
dEz

dr
2k0

2gEwD ,

H5 ik0
21 ¹3E, ¹'

2 5
1

r

d

dr S r
d

dr D . ~2!

Herek05v/c is the wave number in vacuum,h5k0p is the
propagation constant of the whistler,r, w, z are cylindrical
coordinates, and«, g, h are the components of the plasm
permittivity tensor

«̂5S « 2 ig 0

ig « 0

0 0 h
D . ~3!

In the frequency range studied~1!, provided that

~VHvH!1/2!uv2 ineu!vH, ~4!

the components of the tensor~3! have the form18

«5
vp

2

vH
2 S 12 i

ne

v D , g52
vp

2

vvH
S 12 i

2nev

vH
2 D ,

h52
vp

2

v2 S 12 i
ne

v D 21

. ~5!

If the effective collision frequencyne is not too low, the
equations~2! can be simplified substantially. Before makin
the appropriate simplifications, we note that the field str
ture of the modes guided in the frequency range~1! by an
enhanced plasma density channel, has two different tr
verse scales—a large scale corresponding to the whi
waves sustained by the channel and a small scale co
sponding to the quasielectrostatic waves, which tran
some of the energy to the background plasma.5,17 As a result
of energy leakage, the propagation constantsp become com-
plex: p5p82 ip9. Note that in the collisionless limit, the
small-scale component predominates in the radial and lo
tudinal components of the electric field and is fairly app
ciable in the other components.19 In the presence of colli-
sions, an effect similar to the skin effect is observed for
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quencyne, the small-scale component of the field is conce
trated in a comparatively thin layer in the vicinity of th
plasma density gradientN(r). On the basis of some result
from Ref. 19, generalized to a collisional plasma, it is easy
establish that for the case

Im~k0ap~2h/«!1/2!

5k0ap8
vH

v~12ne
2/v2!

S ne

v
2

p9

p8D@1, ~6!

wherea is the characteristic scale of the plasma density d
tribution along the transverse coordinate, assuming also

upu2@4u«u, ~7!

the field structure in the central part of the channel is p
dominantly determined by the large-scale component. N
that if the densityN has a small gradient over the chann
radius, where (N/N021)2!min$1, k0ap8ne /v% and N0 is
the background plasma density, the attenuationp9 of the
dominant mode is given by

p9'
ne

2vH
p8. ~8!

Using this equation and condition~4!, inequality ~6! can be
simplified:

k0ap8
vHne

v21ne
2 @1. ~9!

Condition ~9! is obviously satisfied for large enough valu
of the parameter (vH /v)k0ap8, even if the effective colli-
sion frequencyne is low compared with the angular fre
quencyv. Thus, in the frequency range~1!, allowance for
the influence of electron collisions on the characteristics
the modes guided by enhanced-density channels can b
fundamental importance, and in particular, can apprecia
change the structure of the mode field, as compared wi
collisionless plasma.

This behavior is clearly illustrated by the results of t
field structure calculations plotted in Figs. 1 and 2, whi
were performed by solving the equations~2! for the simplest
model density profile

N~r!5N01~Ñ2N0!@12U~r2a!#, ~10!

and for two special cases,ne50 and ne50.25v, for the
parameters k0a50.12, vH /v58.8, vp0 /v556.5,
Ñ/N051.5, whereU is the Heaviside step function,Ñ is the
plasma density inside the channel, andvp0 is the plasma
frequency corresponding to the background densityN0 . In
both cases, only the lowest~dominant! mode can propagate
in the channel, for which the complex propagation const
is p521.102 i •1.3431022 at ne50 ~see Fig. 1! and p
521.182 i •0.79 atne50.25v ~see Fig. 2!. Note that these
graphs do not show the dependence of ReEr , Im Ew,z,
Im Hr , and ReHw,z on the transverse coordinater, which
have substantially lower absolute values compared with
corresponding quantities ImEr , ReEw,z, ReHr , and
Im Hw,z.

698Kudrin et al.



e
FIG. 1. Field structure of the dominant mod

without collisions: ne50, Ñ/N051.5,
vp0 /v556.5, vH /v58.8, andk0a50.12.
If conditions ~6! and ~7! are satisfied, the results of this
at

s

n

d

can be used to analyze the system~11!. Returning to the

-
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it

s
the
real

in

ned
mely
analysis allow us to use comparatively simple approxim
equations, easily derived from the rigorous equations~2!, to
describe the field in a collisional channel. For this purpo
we rewrite the equations~2! in the form

d2Ew

dz2 1
1

z

dEw

dz
2

Ew

z2 1~k0aq̂1!2Ew5k0ap
g

p22«

dEz

dz
,

x2S d2Ez

dz2 1
1

z

dEz

dz
1

p2

p22«

1

«

d«

dz

dEz

dz D2
«

p2h
q̂2

2Ez

52x
p22«

g8

1

z

d

dz S zg8Ew

p22« D , ~11!

where

q̂1
25

g2

p22«
2p21«, q̂2

252
h

«
~p22«!,

x5
v2 ine

vH

1

k0ap
, z5

r

a
,

g85Re g~ uRe gu@uIm gu!,

and allowance is made for the expressions~5!. Recalling that
k0ap8>1 for azimuthally symmetric whistler modes in a
enhanced-density channel,19 it is readily established that in
the special case~4! the following relations hold:uxu!1,
u«q̂2

2/p2hu.1 (uxu;uq̂1u/uq̂2u) so that a perturbation metho
e

e

dimensional coordinater, in the first order of perturbation
theory (x50) the first equation in this system gives

d2Ew

dr2 1
1

r

dEw

dr
2

Ew

r2 1k0
2S g82

p2 2p2DEw50. ~12!

Here we have

Er52 ig8p22Ew ~13!

andEz50. A nontrivial expression for the longitudinal com
ponent of the electric field is given by the next~first! order of
perturbation theory:

Ez52
1

k0ph

1

r

d

dr
~rg8Ew!. ~14!

In order to avoid misunderstanding, we note that in E
~12!–~14! we have neglected some small terms of ord
«/p2, ne /vH . Significantly, when deriving these formulas
is not assumed that the variation in densityN along the trans-
verse coordinate is small. Equation~12! and the expression
~13! and ~14! can be used to determine the structure of
large-scale components of the mode fields and also their
propagation constantsp5p8 ~when seekingp, small losses
of energy to radiation and dissipation are simply neglected
this approximation!1! Since in case~6!, the behavior of the
field in channels of enhanced plasma density is determi
by the large-scale components, these relations are extre
e
FIG. 2. Field structure of the dominant mod
with collisions: ne50.25v; the other param-
eters are the same as in Fig. 1.
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useful for analyzing the ionization self-interaction of whistler
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waves, resulting in the formation of these channels.
Equation~12! and expressions~13! and ~14! should be

analyzed together with the plasma energy and density
ance equations.21 We assume that in a plasma chann
formed by breakdown and additional ionization of the ba
ground medium by a whistler field,

nei!nem, demnem!v, deinei!n im . ~15!

Here,n im , nem, andnei are the frequencies of ion and ele
tron collisions with neutral molecules and ions, respectiv
(ne5nem1nei), and dem and dei are the average relativ
fractions of energy lost by the electrons in collisions w
neutral molecules and ions, respectively. The last inequa
in ~15! allows the ion heating to be neglected.21 Assuming
that the characteristic inhomogeneity scales of the field
plitude are fairly large, we can neglect the contribution
heat conduction to the formation of the electron tempera
profile Te and we can express the steady-state distributio
Te in the form

Te5Te01
e2

3mdemvH
2 F uEru21uEwu214

v

vH
Im~ErEw* !

1
vH

2

v21ne
2 uEzu2G , ~16!

wheree andm are the electron charge and mass, andTe0 is
the background electron temperature. The expressions~5! for
the components of the plasma permittivity tensor were u
to derive Eq.~16!.

The steady-state distribution of the plasma densityN
over the transverse coordinate will be described using
density balance equation21

1

r

d

dr S rD'

dN

dr D1~n i2na!N2aN21qext50, ~17!

whereD' is the coefficient of plasma diffusion across t
magnetic field,n i is the frequency of electron impact ioniza
tion of neutral molecules,na is the electron attachment fre
quency,a is the electron–ion recombination frequency,qext

is the intensity of the external ionization source sustain
the equilibrium densityN0 :

qext5~a0N01na02n i0!N0

~the zero subscript indicates background values of the ap
priate quantities!. Here it is assumed that, if the length of th
plasma channel in the direction of the external magnetic fi
is sufficiently great as is the case for this particular range
parameters, as we shall see subsequently, longitudinal d
sion of the plasma can be neglected. In this case, the tr
verse diffusion is ambipolar. The coefficientD' under the
conditions Te@Ti ~Ti is the ion temperature! and
vHVH@nemn im(11VH

2 /n im
2 ), which are assumed to be sa

isfied here, is given by21,22

D'5
Tene

mvH
2 . ~18!
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thermal diffusion. This is valid if the characteristic transver
scale of electron temperature variation exceeds the co
sponding scale of plasma density variation in the channe
if variations in the temperatureTe are fairly small. This con-
dition is satisfied, for instance, whenTe is close to the
‘‘breakdown’’ valueTe* which is determined by the relatio

n i~Te* !5na~Te* !1a~Te* !N0, ~19!

~in this case it is obvious thatqext50!.
Equations~12! and ~17! together with relations~13!,

~14!, and ~16! can be used to investigate steady-state s
consistent distributions of the field and the plasma formed
an unperturbed~background! plasma during the propagatio
of high-intensity whistler waves as a result of ionization no
linear effects. The results of solving these equations are
termined to a considerable extent by the dependences o
quantities contained in them on the temperatureTe and other
factors. Thus, we need to specify these dependences to
tain some results.

3. SELF-CONSISTENT DISTRIBUTIONS OF THE FIELD AND
THE PLASMA

Here we confine our analysis to ionization effects in
at typical discharge temperaturesTe<3 eV. In this case, the
temperature dependence of the quantities in expressions~16!
and ~17! can be described by the following mod
expressions:21,23

ne51.2331027NmTe
m ,

n i52.731028NmS Te

I D 1/2S 112
Te

I DexpS 2
I

Te
D ,

na5baNm , a5531027S 0.026

Te
D l

, ~20!

wherene , n i , andna are in reciprocal seconds,Te is mea-
sured in eV,a is in cm3

•s21, the concentration of neutra
moleculesNm is in cm23, and I is the effective ionization
potential of the neutral molecules, which is subsequently
sumed to beI 514 eV. The coefficient of attachmentba and
the values ofm, l, anddem can be considered to be indepe
dent of Te over this range of electron temperatur
ba57.2310212 cm3

•s21, m55/6, l51.2 ~Ref. 21!, and
dem50.01 ~Ref. 24!.

Despite the approximations and simplifications, E
~12! and~17! can in general only be solved numerically. Th
results of the numerical calculations will be preceded
some analytic reasoning.

We postulate that the relative changes in the plasma d
sity and the electron temperature are small quantities

n5
N2N0

N0
!1, Q5

Te2Te0

Te0
!1, ~21!

and the characteristic transverse dimensiona of the channel
is substantially greater than the diffusion leng
(D'0 /a0N0)1/2:

a2@D'0 /a0N0 . ~22!
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Note that when~21! holds, the latter condition is known to
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Ey~x!5 ñ1/2g21 sech~k0P ñ1/2x!, ~26!

ust
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be satisfied if

~k0P!2
D'0

a0N0
!1,

whereP is the normalized propagation constant of a whist
wave strictly along the external magnetic field in a homo
neous plasma of densityN5N0 ~in this approximation
P5vp0 /AvvH!. Provided that these conditions are satisfi
the diffusion term in Eq.~17! can be neglected, along wit
the contribution of the longitudinal field componentEz to
electron heating.2!

As a result, from Eqs.~16! and ~17! we obtain

n5
D0

a0N0
S 11

qext

a0N0
2D 21

Q, Q52
v2

vH
2

uEwu2

Ep
2 , ~23!

where

D05Te0

]

]Te
~n i2na2aN0! uTe5Te0

,

Ep
253Te0mdemv2/e2.

Here it is assumed that forn!1 we can setEr' iEw ~see Eq.
~13!!. For the dependences used~20!, the relationD0.0 is
clearly satisfied, so that heating and additional ionizat
lead to an increase in the plasma density in regions of str
field. In this case, Eq.~12! has the form

D'Ew2
Ew

r2 12~k0P!2S n22
p2P

P DEw50. ~24!

With the relations~23!, Eq. ~24! can be written as

D'Ew2
Ew

r2 12~k0P!2S g2uEwu222
p2P

P DEw50, ~25!

where

g252
v2

vH
2

D0

a0N0
S 11

qext

a0N0
2D 21 1

Ep
2 .

It is known ~see, for instance, Ref. 4! that an equation
like ~25! can have localized solutions satisfying the conditi
Ew→0 at the origin (r→0) and at infinity (r→`). Note
that although a similar equation has been used in many s
ies of whistler self-interaction in a collisionless magneto
tive plasma3! in the frequency range~1! being considered
this equation is only valid for enhanced-density channels
case~9!, i.e., when electron collisions are taken into accou
as is clear from the analysis described above. It can be
from Eq. ~25! and relations~23! that when the dominan
whistler mode undergoes self-channeling, the plasma ra
distribution is nonmonotonic, with a density minimum on t
axis r50 and an annular layer of enhanced density s
rounding the axial region. Curiously enough, for a plan
~two-dimensional! field distribution the plasma density o
the z axis has a maximum. The equation describing the
havior of the field in this case (]/]y50) can be obtained
from Eq. ~25! by making the substitutions
(D'2r22)→d2/dx2, Ew→Ey . The localized solution of
the corresponding equation is well-known:
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where ñ5n(0). We then havep5P(11 ñ /4), and

n~x!5 ñ sech2~k0P ñ1/2x!.

In the general case, as we have already noted, we m
be satisfied with the results of a numerical solution of E
~12! and ~17!. We introduce dimensionless quantities whi
are convenient for the following analysis:

j5rS a0N0

D'0
D 1/2

, Er,w,z5
Er,w,z

Ep
.

Adopting this notation, Eqs.~12! and~17! are transformed to
give

d2Ew

dj2 1
1

j

dEw

dj
2

Ew

j2 1L2FP4~11n!2

p2 2p2GEw50,

~11Q!11mS d2n

dj2 1
1

j

dn

dj D1~11m!~11Q!m
dn

dj

dQ

dj

2
~11n!2

~11Q!l 1L2
vH

2

v2

c2

be0~Te0 /m!
@~b i2ba!

3~11n!2~b i02ba!#1150, ~27!

Q5uEz8u
21

v2

vH
2 uEwu2

3F11
P4

p4 ~11n!214
v

vH

P2

p2 ~11n!G ,
Ez85

Ez

12 i ~11Q!mne0 /v

52
v

vH

1

pL~11n!j

d

dj
~j~11n!Ew!,

where

L5k0S D'0

a0N0
D 1/2

, b i5n iNm
21 ,

b i05n i0Nm
21 , be05ne0Nm

21 ,

and the remaining notation is as for Eq.~20!. The localized
solutions of Eqs.~27! bounded on ther50 axis should sat-
isfy the following conditions:

n→0, Ew→0 ~j→`!;

n→ ñ5const, Ew→0 ~j→0!. ~28!

The state of the background plasma is characterized by
dimensionless parametersvp0 /v, vH /v, ne0 /v, Te0 /I ,
andL.

An analysis of the system~27! shows that this has a
one-parameter family of localized solutions. The parame
is the relative change in the density on the channel a
ñ5n(0)5(N(0)2N0)/N0 . Figure 3 gives the curvesn(j)
and Q~j! obtained by solving this system numerically fo
three values ofñ : ñ50.5, ñ50.6, and ñ50.7 for given
values of vp0 /v556.5, vH /v58.8, ne0 /v50.08,
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FIG. 3. Self-consistent distribution o
relative perturbations of the densit
~a! and electron temperature
~b! for vp0/v556.5, vH /v58.8,
ne0 /v50.08, Te0 /I 50.03, and

L51.4631022: 1—ñ50.5, 2—

ñ50.6, and3—ñ50.7.
Te0 /I 50.03, andL51.4631022. The calculations show
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an

th
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distributions plotted in Fig. 3, the channel lengthL and its

r-

u-
s-

hese
he
of
las
le,

sfy
that for these values ofñ only the dominant mode undergoe
self-channeling, for which the real propagation const
takes the valuesp520.62 (ñ50.5), p520.68 (ñ50.6), and
p520.76 (ñ50.7). It can be seen from these data that
characteristic transverse scale of the electron tempera
distribution is appreciably greater than the correspond
scale of the plasma density variation, which justifies our
glect of the contribution of thermal diffusion to the formatio
of the density profile. Note that asñ increases, the width o
the radial distribution ofQ decreases, so that for larg
enoughñ ( ñ.2 – 3), allowance must be made for therm
diffusion. For small ñ ( ñ,0.5), the profilen(j) is non-
monotonic (ñ,nmax), as noted when analyzing the simp
fied equation~25!.

Figure 4 shows the behavior of the normalized fie
componentsEr,w,z5Er,w,z /Ep and Hr,w,z5Hr,w,z /Ep for
values of the parameters corresponding to curves3 in Fig. 3.
Taking the results of calculations of the field components
the basis, we can easily determine the plasma channel le
L;1/h9 by using the well-known energy formula25 for the
attenuation constanth9 of the waveguide mode,

h95k0p95q/2W',

whereW' is the power transferred across the channel cr
section andQ is the power loss per unit length. For th
t

e
re
g
-

l

s
gth

s

characteristic radiusa are related by4! L*avH /ne, so that
L@a and

UD i

]2N

]z2 Y D'D'N U ,
D i ,max

D'

a2

2L2 & 0.5,

whereD i is the plasma diffusion coefficient along the exte
nal magnetic field,D i ,max5Te/mne. The last inequality justi-
fies the use of the simplified form~17! of the plasma density
balance equation.

A comparison between the self-consistent field distrib
tions ~Fig. 4! calculated using the model with the field di
tributions obtained from the rigorous equations~2! for given
~‘‘frozen’’ ! profilesN(r) andne(r) obtained by solving the
nonlinear problem, revealed good agreement between t
distributions. This can be attributed to the fact that for t
results plotted in Figs. 3 and 4, the conditions of validity
the approximate description of the field based on formu
~12!–~14! are satisfied with a sufficient margin. For examp
for ñ50.7 ~k0a55.5L, ne(0)/v50.29@p9/p8! we have
~see Eq.~6!!

k0ap8
vHne~0!

v2 54.25.

We therefore claim that these localized solutions sati
in
FIG. 4. Self-consistent distribution of the
components of the whistler field forñ50.7.
The other parameters are the same as
Fig. 3.
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FIG. 5. Self-consistent distribution
of relative perturbations of the densit
~a! and electron temperature~b! for
vp0/v556.5, vH /v58.8, ne0 /v
50.25, Te0 /I 50.14, and L51.15:

1—ñ50.5, 2—ñ50.6, and3—ñ50.7.
all the constraints put forward above and describe ionization
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self-channeling of whistler waves in a magnetoactive co
sional plasma.

These results apply to the caseTe0,Te* (qextÞ0). With-
out going into details, we discuss another possible situa
whereTe05Te* (qext50). Figure 5 gives self-consistent dis
tributions n(j) and Q~j! for this case, corresponding t
ñ50.5 (p520.36), ñ50.6 (p520.52), and ñ50.7
(p520.68) ~ne0 /v50.25, Te0 /I 50.14, L50.15, and the
values ofvp0 /v and vH /v are as before!. It can be seen
from Fig. 5 that the relative variations in the temperatureQ
are considerably smaller than those for the similar cur
plotted in Fig. 3b. The field structure is approximately t
same as in the previous caseTe,Te* ~see Fig. 4! and thus is
not given.

These results can be used to estimate some paramete
ionization self-channeling of whistlers in a laborato
plasma. For example, the distributions plotted in Figs. 3 a
4 correspond toN05431010 cm23 (vp051.1331010 s21),
H05100 Oe (vH51.763109 s21), v523108 s21,
ne051.63107 s21, and Te050.4 eV ~in this case the re-
quired gas pressure at room temperature
p58.731023 Torr!. For the case ñ50.7 (N(0)56.8
31010 cm23, Te(0)51.9 eV, ne(0)55.83107 s21!, we ob-
tain the following values of the main parameters: whist
wavelength lw52p/(k0p).45 cm, channel radius
a.12 cm (n(a)50.5nmax), maximum field in discharge
uEumax.6.4 V/cm, and power transferred across chan
cross sectionW'.1.5 kW. These figures indicate that th
effect can be simulated in the laboratory in modern lar
scale plasma facilities~see Refs. 9 and 26!.

4. CONCLUSIONS

This analysis suggests that the additional ionization o
collisional magnetoactive plasma accompanying the hea
of its electrons by a fairly large-amplitude whistler field c
result in the formation of plasma waveguide structures wh
trap and guide the whistler waves generating these structu
It can be seen from these results that the ionization s
channeling of whistlers in a collisional plasma differs su
stantially from their self-interaction in a collisionless plasm
when the channels are formed as a result of the pondero
tive force generated by the whistler wave field.4,5 The effect
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helicons accompanying the heating of a solid-state plasm27

Finally, we note that our approach and also some s
cific results of this analysis are of interest not only for po
sible relevant experiments~both natural and model labora
tory experiments! in an ionospheric plasma, but also
identify the role that ionization self-interaction of whistle
might play in bounded systems such as helicon plas
sources and facilities using these sources.
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1!It should be noted that Eq.~12! essentially corresponds to the single-flu
electron magnetohydrodynamics approximation.20 However, the derivation
of expression~14! required for subsequent analysis involves going beyo
this approximation.

2!For a comparatively narrow channel (k0ap8;1), the contribution of the
Ez component to electron heating must be taken into account, as
become clear from the following reasoning.

3!See Ref. 4 in particular and the cited literature.
4!Here and subsequently the value ofa corresponds to the relative densit

perturbationn(a)5nmax/2.
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Cascade processes in a plasma oscillator

olar-
M. A. Krasil’nikov and M. V. Kuzelev

Moscow State University of Printing, 127550 Moscow, Russia

A. A. Rukhadze

Institute of General Physics, Russian Academy of Sciences, 117942 Moscow, Russia
~Submitted 25 February 1997!
Zh. Éksp. Teor. Fiz.112, 1299–1311~October 1997!

A theoretical and numerical analysis is made of the dynamics of nonlinear electron-beam
scattering of a wave reflected by the emitting device of a plasma oscillator. It is shown that a
counterpropagating plasma wave can interact nonlinearly with other waveguide modes of
the system and with charge-density beam waves, leading to changes in the operation of the
oscillator. It is established by means of a numerical simulation that the generation
efficiency is reduced as a result of scattering of the counterpropagating wave and stimulated
emission of a strong-potential plasma wave with phase velocityvph5v/kz!c. © 1997 American
Institute of Physics.@S1063-7761~97!01110-4#

1. The nonlinear dynamics of resonant stimulated Cˇ eren- the beam, accompanied by a change in frequency and p
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kov emission in a plasma waveguide of finite length w
investigated in Ref. 1. It was established that the partial
flection of a plasma wave concurrent with an electron be
leads to a change in the output signal level and substant
influences its temporal dynamics. It was observed that
counterpropagating wave can be scattered by beam elect
which can result in the evolution of a whole series of casc
processes. Here we propose to study these processes.

We assume that a section 0,z,L of metallic wave-
guide of radiusR is filled with a transversely homogeneou
plasma~vp is the Langmuir frequency of the plasma ele
trons!. Initially a thin electron beam with a certain rise tim
begins to be injected into the waveguide across the boun
z50. As a result of spontaneous Cˇ erenkov radiation, the in-
jected electron beam excites a concurrent plasma wave a
frequencyv;v0Avp

22k'
2 u2g2 ~Ref. 2!, where k' is the

transverse wave number, andu and g are the velocity and
relativistic factor of the electron beam. An emitting device
positioned near the boundaryz5L. Using the simplest
model of a horn—an abrupt plasma–vacuum interface—
coefficient of reflection of a concurrent plasma wave is giv
by1,2

k5
n~vp!2n~0!

n~vp!1n~0!
, ~1!

where n2(vp)512k'
2 c2/(v22vp

2). The reflected counter
propagating wave has the same frequency but propagat
the opposite direction. Near the boundaryz50 the counter-
propagating wave is almost completely transformed int
concurrent wave. If the starting conditions for oscillation a
satisfied for the system~in terms of beam currentJb , wave-
guide lengthL, and plasma frequencyvp!, the plasma oscil-
lator undergoes self-excitation.2

In the model adopted in Ref. 1, the role of the count
propagating wave was reduced to feedback, since the c
terpropagating wave, not being in Cˇ erenkov resonance with
the beam electrons, does not, on average, interact with th
However, the counterpropagating wave can be scattere
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ization, which can lead to changes in the oscillation regim
The main mechanism for these processes is nonlinear w
interaction.3

2. The oscillation spectra of a waveguide filled with
homogeneous plasma and a thin beam, located in a st
longitudinal magnetic field, can be determined from the f
lowing dispersion equations:4

Dn5k'n
2 1S kz

22
v2

c2 D S 12
vp

2

v2 2
vb

2/g3

~v2kzu!2 GnD , ~2!

wheren51,2,... is the transverse mode number,wn is the
eigenfunction of the empty waveguide,kz andv are the lon-
gitudinal wave number and the natural wave frequency,vb is
the Langmuir frequency of the beam electron
Gn5Sbwn

2(r b)/iwni2 is the geometric factor of the beam,Sb

is its cross-sectional area, andr b is its average radius. The
dispersion curves of the oscillations~2! for various n are
plotted in Fig. 1. Point 0 in the figure, corresponding to t
point of intersection of the plasma branch of the dispers
curve with the linev5kzu corresponds to exact Cˇ erenkov
resonance between the plasma wave and the beam elec
Point 1 corresponds to a counterpropagating wave having
same frequency as the concurrent wave (v15v0) but propa-
gating in the opposite direction (kz152kz0).

In addition to electromagnetic (v2.kz
2c2) and plasma

(v2,vp
2) oscillations, the system also contains charg

density beam waves. For an infinitely thin beam with a tra
verse profile defined by ad-function there are two of thes
waves: fast and slow. Their spectrum is determined by

v5kzu6Vb~kz!, ~3!

whereVb is the frequency of the beam oscillations; an a
curate expression forVb may be found in Ref. 2, for in-
stance. If the Raman resonance conditions are satisfied
teraction can take place between the counterpropaga
wave ~point 1 in Fig. 1!, another waveguide mode, and
charge-density beam wave. Raman resonance between
waves can be established if2,3

70507$10.00 © 1997 American Institute of Physics
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D1a5v12va2~kz12kza!u56Vb, ~4!

wherea is an index corresponding to the waveguide mo
Condition~4! implies that in the beam rest frame the produ
of the fields of the interacting waves yields beats at the
cillation frequency of the beam charge density. The plus
minus signs in Eq.~4! refer to phase matching with the fa
and slow charge-density beam wave, respectively.

If the frequencyVb is substantially lower than all the
other characteristic frequencies of the system, the freque
and wave number of the waveguide mode satisfying the re
nance conditions~4! can be determined graphically simp
by drawing the linev5kzu12v0 in Fig. 1. It is easy to see
that to within quantities of orderVb , va and kza are the
same asv2,3,4 and kz2,3,4 corresponding to the renumbere
points in Fig. 1, anda is then taken as one of these su
scripts.

3. We assume thatt0 is the characteristic time of varia
tion of the interacting wave amplitudes, andv (0) andkz

(0) are
the frequency and wave number of the charge-density b
wave, respectively. In addition to translational motion, t
beam electrons also participate in many types of vibratio
motion. If

max~ t0
22 ,Vb

2 ,D1a!!~v1,a2kz,1,au!2, ~kz
~0!u!2, ~5!

electron motion in the rest frame of the unperturbed be
can be divided into fast and slow components,5 where mo-
tion in the field of the concurrent plasma and Raman wav
and in the space charge field of the beam, enters into
discharge of the slow components.

To derive nonlinear equations describing the proces
in the system, we assume that the average width of the
diation spectrum is substantially less than the aver
frequency6–8 and use the method of slowly varyin
amplitudes.9 In addition, we analyze the plasma in the line
approximation, i.e., we describe it using linearized hydro
namic equations.10

4. We describe the electromagnetic fields in a system
charged particles completely magnetized along thez axis
using an equation for the scalar polarization potentialC
~Ref. 11!:

FIG. 1. Dispersion curves of a plasma waveguide~to determine the wave-
guide modes in Raman resonance with the charge-density beam wave!.
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whererp andrb are the densities of the charge induced in
medium consisting of plasma and beam electrons. We se
solution of Eq.~6! in the form

C5C01C11Ca1C1a , ~7!

where

C0,1,a~z,t,r'!5
1

2
@C0,1,a~z,t,r'!exp~2 iv0,1,at

1 ikz0,1,az!1c.c.# ~8!

are the polarization potentials, whereC0 , C1 , andCa are
the polarization potentials of the concurrent plasma wa
the counterpropagating plasma wave, and a wave at on
the frequenciesv2,3,4, respectively. In general, Eq.~7! must
take into account the contribution of all the wavegui
modes, not just one. However, a comparison of the cha
teristic times for nonlinear scattering of the waves indica
that in practice, it is sufficient to allow only for one mode,
is done subsequently. For the polarization potentialC1a of
the beam space charge we have

C1a~z,t,r'!5
1

2
@C1a~z,t,r'!

3exp~2 iv~0!t1 ikz
~0!z!1c.c.#. ~9!

We note thatCa andC1a are slow functions ofz and t.
Assuming that the electron beam has an infinitely th

cross section, we use the phase density of the beam elec
to calculate the charge density induced in the beam12:

rb~z,t !5ed~r'2r b!( F~z!d@z2zj #
nbSbl

N
, ~10!

wherer' is the coordinate in the transverse direction,r b is
the average transverse coordinate of the beam, andF(z)
describes the envelope of the beam current in the longit
nal direction. In addition, assuming that the method of la
particles13,14 is used subsequently to model the beam, in E
~10! we introduced the total number of these particles o
the lengthl. We then haveN5nbSbl, wherenb is the den-
sity of the electron beam per unit length, andzj is the coor-
dinate of the j th particle. The perturbation of the plasm
charge densityrp is determined from the hydrodynami
equation:

]2rp

]t2 52
vp

2

4p

]Ez

]z
, ~11!

whereEz is the longitudinal component of the electric fie
strength, which can be expressed in terms of the polariza
potential:10

Ez5S ]2

]z2 2
1

c2

]2

]t2DC. ~12!

If the functions~8! and~9! have the total spatial periodl
~l5(2p/kz0,1,a)n0,1,a , wheren0,1,a are integers denoting th
number of wavelengths with the appropriate subscript wit
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the lengthl!, after substituting the expression forC into the

,

m

s-
h

a

r

io

3exp~2 i D t1 ik ~0!z8!1c.c.G , ~17!

-
nto

f

e.
-

ent
n
s.

a

ge
field equation ~6!, multiplying by exp(iv0,1,at2 ikz0,1,az),
and averaging overz for the lengthl, we obtain reduced
equations for the slow amplitudes:

S ¹'
2 2

k~0!2

g2 1
vp

2

u2g2DC1a

52 i
m

e

vb
2

kz
~0! Sbd~r'2r b!

3
2

N (
j

exp~ iv~0!t2 ikz
~0!zj !Q1~zj2z,l!,

S 2 iD 0,1,a8 1
]D0,1,a8

]v0,1,a

]

]t
2

]D0,1,a8

]kz0,1,a

]

]zDC0,1,a

5
m

e

vb
2

kz0,1,a
Sbd~r'2r b!

3
2

N (
j

exp~ iv0,1,at2 ikz0,1,azj !Q1~zj2z,l!,

~13!

where

Q1~x,l!5H 0, x,2l/2,

1, 2l/2<x,l/2,

0, x>l/2,
J , ~14!

and the expression forD0,1,a8 is the same as Eq.~2! if we
substitute2k'n

2 →¹'
2 , neglecting the beam contribution

andv5v0,1,a andkz5kz0,1,a .
5. In accordance with the time scale introduced~5!, we

divide the vibrational motion of the electrons in the bea
rest frame into fast and slow:

vz j5u1v j81 ṽ j , zj5ut1zj81 z̃ j , ~15!

where z̃ j and ṽ j are the coordinate and velocity of fast o
cillations of the j th particle in the fields of the waves wit
frequenciesv1 and va , and zj8 and v j8 describe the slow
motion in the fields of the concurrent plasma wave, the be
space charge, and the Raman wave. If

ukz1,a z̃ j u!1, ~16!

the fast oscillations are linear in terms of the amplitudesC1

and Ca and take place within times of the orde
(v1,a2kz1,au)21 ~Ref. 2!.

Using a standard procedure for averaging the equat
of motion over time,15–17we obtain an equation for the slow
components:

dzj8

dt
5v j8 ,

dv j8

dt
52

ewj

2mg3 F Ĉ1a exp~ ikz
~0!zj8!1Ĉ0

3exp~ ikz0zj8!1 ikz
~0!

ewj

2mV2g3 Ĉ1Ĉa*
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where

wj5S 122g2
u2

c2

v j8

u D 3/2

,

Ĉ0,1,a5S kz0,1,a
2 2

v0,1,a
2

c2 22ikz0,1,a

]

]z

22i
v0,1,a

c2

]

]t DC0,1,a , ~18!

Ĉ1a5S kz
~0!2

2
v~0!2

c2 22ikz
~0!

]

]z
22i

v~0!

c2

]

]t
DC1a ,

V2'~v12kz1u!2'~v22kz2u!2'4v0
2 .

After expanding the amplitudeC1a of the beam space
charge wave in Eq.~13! in terms of the waveguide eigen
functions, we substitute the coefficients of the expansion i
Eq. ~17!. Using an expression for the frequencyVb of the
beam oscillations,2 we obtain an equation for the velocity o
the j th particle:

dv j8

dt
52F ewj

2mg3 Ĉ0 exp~ ik0zj8!1c.c.G
2

i

2

Vb
2

kz
~0! wj@r1a exp~ ikz

~0!zj8!2c.c.#

2 i S e

mD 2 kz
~0!

4V2g6 wj
2~Ĉ1Ĉa*

3exp~ ikz
~0!zj82 i D1at !2c.c.!, ~19!

where

r1a5
2

N (
j

exp~2 ikz
~0!zj8!Q1~ut1zj82z,l! ~20!

is the Raman harmonic of the beam charge density wav
The right-hand sides of Eqs.~13! should also be aver

aged over time in accordance with the time scale~5!, where
no rapidly oscillating terms are obtained for the concurr
plasma wave because the Cˇ erenkov resonance conditio
v05kz0u is satisfied for this wave. After averaging Eq
~13!, we obtain for the amplitude of the concurrent plasm
waveC0

]D0

]v0

]C0

]t
2

]D0

]kz0

]C0

]z
1 i ~k'1

2 1¹'
2 !C0

5
m

e

vb
2

kz0
Sbd~r'2r b!r, ~21!

where r is the fundamental harmonic of the beam char
density wave:

r5
2

N (
j

exp~ iv0t2 ikz0zj !Q1~zj2z,l!. ~22!
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For the amplitudes of the counterpropagating wave and

av

s
th
a

sm
na

a
r
a

er

w

av

]aa
1

vga ]aa
2 id a 52n r̂* ~122i L̂ !a e2 iDt,

em
the
pa-

a-
and

ap-

w-
the waveguide mode at frequencyva, we obtain, after drop-
ping the rapidly oscillating terms in Eq.~13!,

]D1

]v1

]C1

]t
2

]D1

]kz1

]C1

]z
1 i ~k'1

2 1¹'
2 !C1

52
i

2

vb
2

V2g3 Sbd~r'2r b!r̂1aĈa exp~ i D1at !, ~23!

]Da

]va

]Ca

]t
2

]Da

]kza

]Ca

]z
1 i ~k'1

2 1¹'
2 !Ca

52
i

2

vb
2

V2g3 Sbd~r'2r b!r̂1a* Ĉ1 exp~2 i D1at !,

where

r̂1a5
2

N (
j

wj exp~2 ikz
~0!zj8!Q1~ut2zj82z,l! ~24!

is the Raman harmonic of the beam charge density w
with allowance for the electron relativistic motion.

Since only one transverse mode~for instance, the domi-
nant n51 mode! is excited resonantly, and the other tran
verse modes are not initially perturbed, allowance for
nonresonant transverse modes can be made in accord
with perturbation theory,18 using the quantityvb

2/g3V2 as
the small parameter. It can be seen from Eqs.~21! and ~23!
that the nonresonant amplitudes of the concurrent pla
and other waves, as well as the derivatives of the reso
amplitudes, are of the order ofvb

2/g3V2, i.e., small. Thus, in
the expansion of the field equations in terms of the sm
parameter we confine ourselves to terms up to this orde
smallness, proportional to the amplitudes of the reson
transverse harmonics. To identify the resonant transv
harmonic, we expand the amplitudesC0,1,a in terms of the
waveguide eigenfunctionswn :

C0,1,a5 (
n51

`

A0,1,a
~n! wn . ~25!

6. For a more compact formulation of these equations
introduce the dimensionless variables:

x5kz
~0!z, t5v~0!t, D5

D1a

v~0! , l 5
kz0

kz
~0! ,

xj5kz
~0!zj , yj5

kz
~0!v j8

v~0! , k0,1,a
2 5kz

22
v0,1,a

2

c2 , ~26!

a0,1,a5
e

m

kz
~0!

g3 A k0,1,a
2 D

~vb
2/g3!VbG1

]D0,1,a
n51

]v0,1,a
w1~r b!A0,1,a

~1! .

As a result, we obtain a system of equations for the w
amplitudes~after first replacingiAa

(1) by Aa
(1)!:

]a0

]t
1

vg0

u

]a0

]x
5n0r,

]a1

]t
2

vg0

u

]a1

]x
2 id1a152n1ar̂1a~122i L̂ a!aaeiDt,

~27!
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wherevg0,1,a is the group velocity of the wavev0,1,a :

vg0,1,a5
v0,1,a

kz0,1,a

vp
22v0,1,a

2

vp
22v0,1,a

4 /kz0,1,a
2 c2 . ~28!

Note that in deriving the second equation in the syst
~27!, we assumed that the counterpropagating wave has
same frequency as the concurrent wave, but that it pro
gates in the opposite direction, i.e.,vg152vg0 . In the sys-
tem ~27!, r, r1a , and r̂1,a as before express the perturb
tions of the charge density by the concurrent plasma
Raman waves, and can be calculated using the Eqs.~22!,
~20!, and ~24!, respectively;L̂0,1,a is a differential operator
describing the rearrangement of the polarization of the
propriate wave:

L̂0,1,a5
1

k0,1,a
2 S kz0,1,a

]

]z
1

v0,1,a

c2

]

]t D , ~29!

and for the coefficientsn0 andn1a we have

n05
1

g4A~vb
2/g3!G1D

Vbu2
]D0

n51

]v0

,

n1a5
1

2
G1

vb
2/g3

V2v~0! U 1

k1
2

]D1
n51

]v1

1

ka
2

]Da
n51

]va
U21/2

. ~30!

The expressions ford1 and da, which determine the
nonlinear frequency shift of the waveguide modes2 have the
form

d1,a5
1

4 S vb
2

V2g3D 2 k1
2ka

2

k'1v~0!

G1
2~Gr121!

]D1,a
n51

]v1,a

ur̂1au2, ~31!

where expressions for the geometric factorGr1 of the beam
space charge can be found in Ref. 17.

7. Transforming to the rest frame, we obtain the follo
ing equations of motion for the beam electrons:

dxj

dt
5yj ,

dyj

dt
52wjn0g4S l

2
a01 iap1

]a0

]t Dexp@ i l ~xj2t!#

1
i

2
wjab1lgr exp@ i l ~xj2t!#

2
1

2
wjD

2r1a exp@ i ~xj2t!#

1
i

8
dbwj

2r̂1a exp@ i ~xj2t!2 iDt#

1wj
2n1aS 1

2
a1aa* 1a1L̂aaa* 2aa* L̂1a1D

3exp@ i ~xj2t!2 iDt#1c.c.. ~32!
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Here the amplitudes of all the waves are taken at the location
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of the j th particle, i.e., atx5xj . For the parametersabm and
apm we have

abm5
vb

2/g3

k'm
2 u2g2 , apm5

vp
2

k'm
2 u2g2 . ~33!

On the right-hand side of the second of Eqs.~32!, the
expressions for the forces acting on the particle contain te
corresponding to the harmonics of the concurrent plas
wave a0 and the beam space-charge density waver. These
harmonics correspond to the Cˇ erenkov resonance in the sy
tem. In addition, Eq.~32! allows for forces acting on the
particle from the Raman harmonics of the wavesa1aa* of the
plasma waveguide and the corresponding harmonic of
beam space-charge densityr1a . The value ofdb in Eq. ~32!
determines the correction to the rf space-charge force of
beam2 and ultimately gives the frequency shift of the charg
density beam wave:

db5S vb
2

V2g3D 2

G1
2~Gr121!

k1
2ka

2

k'1u2

Vb

k~0!2

3F ua1u2

]D1
n51

]v1

1
uaau2

]Da
n51

]va

G . ~34!

Equations~27! and~32! describe the nonlinear dynamic
of the interaction between the counterpropagating w
(v1 ,kz1) and the wave (va ,kza). The counterpropagating
wave was formed by reflection of the concurrent plas
wave produced by injection of a relativistic electron bea
into a waveguide of finite length filled with a transverse
homogeneous plasma.

For a low-density weakly relativistic beam (wj;1),
terms of the first approximation with respect to the parame
vb

2/g3V2 can be taken into account in Eqs.~27! and~32!. In
this case, the systems~27! and ~32! are slightly simplified

]a0

]t
1

vg0

u

]a0

]x
5n0r,

]a1

]t
2

vg0

u

]a1

]x
52n1ar1aaaeiDt,

]aa

]t
1

vga

u

]aa

]x
52n1ar1a* a1e2 iDt, ~35!

dyj

dt
52n0g4S l

2
a01 iap1

]a0

]t Dexp@ i l ~xj2t!#

1
i

2
ab1lgr exp@ i l ~xj2t!#2

i

2
D2r1a

3exp@ i ~xj2t!#1
1

2
n1aa1aa*

3exp@ i ~xj2t!2 iDt#1c.c.

These equations are subsequently analyzed numeric
The system~35! is supplemented by the boundary conditio
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a0~x50,t!5a1~x50,t!, ~36!

where k is the coefficient of conversion of the concurre
wave into the counterpropagating wave leaving the syste

To conclude our derivation of the basic equations,
clarify once again the role of the counterpropagating wave
the processes in the system. First, it performs feedback,
it couples some of the output signal back into the syste
Second, as a result of scattering by the electron beam,
companied by a change in frequency to a different mode,
counterpropagating wave can alter the mechanism, or at l
strongly influence the beam-plasma interaction.

8. In view of the complexity of~35!, the processes in a
system described by these relations subject to the boun
conditions~36! can only be described by numerical simul
tion.

We recall the dependence of the Cˇ erenkov radiation dy-
namics on the parameters of the system when the role of
counterpropagating wave is merely reduced to feedba1

The main parameter influencing the processes in the osc
tor when the length of the system and the reflection coe
cient are fixed, is the beam current or the coupling param
n0 of the beam electrons with the concurrent plasma wave
is known that a plasma oscillator system undergoes s
excitation when the beam current exceeds a cer
threshold2 determined by the length of the system and t
reflection coefficient. At electron beam currents belo
threshold, the perturbation of the plasma oscillations int
duced by the beam front decays with time, and the oscilla
does not turn on. At currents slightly above threshold,
moduli of the wave amplitudes exhibit a steady-state dis
bution corresponding to the optimum level of oscillation.
this case, the beam–plasma instability is stabilized near
emitting device.

Note that the saturation mechanism for homogene
plasma filling is trapping of beam electrons by the plas
wave. As the beam current increases, the coupling betw
the electron beam and the plasma wave field increases,
the amplitude of this wave undergoes more rapid spa
growth. The maximum amplitude corresponding to the po
of electron beam trapping is shifted inside the system an
lower output signal level is observed. The counterpropag
ing wave, providing feedback, leads to chaotic oscillations
the saturation point of the beam–plasma instability far ins
the system, and thus results in randomization of the ou
signal.

The spatial distribution of the moduli of the wave am
plitudes in a system withL'12 cm andn050.005 is shown
in Fig. 2. Since the maximum of the modulus of the conc
rent plasma wave amplitude is near the emitting device,
beam current is close to optimal in this case. After transit
processes have taken place in the waveguide, a given d
bution of wave amplitudes is established and will be co
served in the system, provided that any scattering of
counterpropagating wave by beam electrons is neglected
lowance for this scattering has the result that the dynamic
the generation of a plasma wave in Cˇ erenkov resonance with

709Krasil’nikov et al.



ra

at
e
v

ith
sm
e

r

he
on

v
h

he

s

it
a
g

o

p
u

ua0(z5L,t)u. Figure 3b gives the time dependence of the

f

pec-
t-

-state
he

f-
un-

istri-
es-
p-

ate
to

en-
c-
m
sient
dy-

es
ion

iated
is

-

ibu-
her
ves

rs in
nic

-

the beam is destroyed as a result of nonlinear wave inte
tion.

For the actual parameters of the system, the growth r
of the instability associated with nonlinear interaction b
tween the counterpropagating wave and one of the wa
guide modes (va ,kza) are small compared with the Cˇ eren-
kov instability growth rate. The small growth rates~or long
times required for the buildup of instability associated w
nonlinear interaction between the counterpropagating pla
wave and the (va ,kza) wave! make it possible to observ
this effect only in a limited number of cases. Since the
waveguide modes (a53,4) have fairly high group velocities
~except for the casekz3'0, vg3'0 near the cutoff fre-
quency!, the resulting local perturbations of the (va ,kza)
wave are removed fairly rapidly from the system. T
buildup of instability in this case requires long interacti
lengths greater than the length of the systemL.

In other words, processes involving the plasma wa
(v2 ,kz2) develop. Its extremely low group velocity and hig
coefficient of reflection from the emitting horn leads to t
buildup of oscillations at the frequencyv2 , trapped in the
bulk of the plasma. This may result in disruption of the o
cillator operating conditions as a result of Cˇ erenkov instabil-
ity, as was observed numerically. An analysis was made
the excitation of a plasma waveguide by a beam front w
possible Raman resonance between the counterpropag
plasma wave and the (v2 ,kz2) plasma wave, correspondin
to point 2 in Fig. 1.

Figure 3 gives the results of a numerical simulation
the processes in the system forn050.005,n1250.01. Figure
3a gives the time dependence of the modulus of the am
tude of the concurrent plasma wave at the outp

FIG. 2. Spatial distribution of the moduli of the wave amplitudesa0 ~solid
curve! anda1 ~dashed curve! for n050.005, and for the case where nonlin
ear wave interaction is neglected (n1250).
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average total kinetic losses of the beam

h~ t !512
Win1Wout

Winp
, ~37!

where Winp , Win , and Wout are the total kinetic losses o
large particles injected into the waveguide at timet, inside
the system and after emergence from the system, res
tively. Curves1 in Fig. 3 are plotted for the system neglec
ing emission of the plasma wave (v2 ,kz2), i.e., forn1250. It
can be seen that after transients have ended, a steady
distribution of wave amplitude moduli is established in t
system. Curves2 in Fig. 3 correspond to the casen1250.01
and D'0, i.e., they show how the emission regime is a
fected by taking into account interaction between the co
terpropagating plasma wave and the (v2 ,kz2) plasma wave
in Raman resonance. It is observed that a steady-state d
bution of the modulus of the concurrent plasma wave is
tablished. However the output amplitude of this wave is a
proximately a third lower than that for the casen1250 ~curve
1 in Fig. 3a!, and the time taken to establish this steady-st
distribution is considerably greater than the time taken
establish the steady-state distribution in the first case.

It can be seen from Fig. 3b that until steady-state g
eration of a wave in Cˇ erenkov resonance with the beam ele
trons is established (t,20 ns), the kinetic losses of the bea
for these cases are essentially the same. During the tran
processes for the nonlinear wave interaction until a stea
state output signal is established, corresponding to curve2 in
Fig. 3a (20 ns,t,40 ns), the beam on average los
slightly less energy than that neglecting stimulated emiss
of the waves at frequenciesv1 andv2 . During this period,
transient processes are observed in the system assoc
with redistribution of energy between the waves. At th
stage, the wave amplitudea2 begins to grow. After this
growth has ceased (t;50 ns), a dynamic equilibrium distri
bution of the moduli of the amplitudesa0 , a1 , and a2 is
established in the system—a steady-state amplitude distr
tion is observed. In this case, the kinetic losses are hig
than those for the steady-state distribution of the two wa
a0 and a1 ~see Fig. 2!, since additional losses result from
stimulated emission of the (v2 ,kz2) wave.

Thus, in the first stage, Cˇ erenkov instability builds up in
the system, the beam is modulated at the Cˇ erenkov reso-
nance frequency, and a counterpropagating wave appea
the resonator. In addition to the fundamental harmo
FIG. 3. Evolution of the output signal~a!
and total kinetic losses of the beam~b! for
n050.005: 1—n1250, 2—n1250.01.
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FIG. 4. Evolution of the spatial distribution
of the moduli of the wave amplitudesa0

~fine line!, a1 ~dashed curve!, anda2 ~heavy
line! for n050.005 andn1250.01.
(v0 ,kz0), the density-modulated beam also contains the Ra-
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3J. Weiland and H. Wilhelmsson,Coherent Nonlinear Interaction of Waves

uk
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rk

al

a

v,
man harmonic of the beam charge density wave, which s
sequently leads to stimulated emission of the (v2 ,kz2) wave.
The counterpropagating plasma wave, implementing fe
back in the oscillator as before, also participates in t
stimulated emission.

Figure 4 shows the evolution of the spatial distributi
of the wave amplitudes in the system. It can be seen
after the wave amplitudea2 has increased to a certain leve
it remains almost unchanged fort.40 ns. Thus, in addition
to the concurrent and counterpropagating plasma waves
system also contains spatially localized oscillations at
quencyv2 trapped in the bulk of the plasma~vg2'0, k;1!.

To conclude, it has been shown that the oscillation
gime in a waveguide of finite length filled with a homog
neous plasma is strongly influenced by nonlinear interac
between the counterpropagating plasma wave and ano
mode of the plasma waveguide~a highly potential plasma
mode, i.e., a wave with a phase velocity much lower than
velocity of light!, which are in Raman resonance. A nume
cal simulation has been used to show that the efficiency
the output radiation of the concurrent plasma wave is
duced because some of the energy lost by the beam is t
ferred to the (v2 ,kz2) wave trapped in the bulk of the
plasma.
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Diffusion and transport of a magnetic field in a turbulent medium with helicity
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An analysis is made of the relation between accurate formulas for the coefficients of turbulent
diffusion DT and the alpha effectaT for a magnetic field in the Lagrange and Euler
representations. It is shown that the quadratic term with respect toaT in the diffusion coefficient
derived by Moffatt and Kraichnan is incorrect and should be dropped. First, a numerical
solution of the nonlinear equation~DIA equation! for the Green function is presented, describing
the transport of a magnetic field for the case of incompressible, uniform, isotropic, steady-
state turbulence possessing helicity. These solutions are used to calculate the steady-state
coefficientsDT andaT for various values of the parametersj05u0t0 /R0 , a5H0 /u0

2p0 ,
t0 /t1 , andR0 /R1 , whereu0 , t0 , andR0 are the characteristic velocity, lifetime, and scale of
the turbulent pulsations, andH0 , t1 , andR1 are similar values describing the helicity of
the mediumh(1,2)5^u(1)•(¹3u(2))&, and the parametera characterizes the degree of helicity.
The DIA values ofDT andaT and the self-consistent values of these quantities calculated
using the Green tensor in the diffusion approximation are in qualitative agreement. It is shown that
the coefficient of turbulent diffusion is always positive for all the types of turbulence
studied. Nonsteady-state values ofDT(t) andaT(t) calculated by a self-consistent method are
given. © 1997 American Institute of Physics.@S1063-7761~97!01210-9#
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The problem of the transport and amplification of a ma
netic field in turbulent conducting media has been studied
magnetohydrodynamics, astrophysics, and geophysics
many years. A detailed review of works on various aspe
of this problem can be found in a number of books.1–4 In
view of the obvious complexity of the problem arising fro
the vector nature of the magnetic field, various plausible
sumptions as to the behavior of the average magnetic
^B(r ,t)& have been used in the calculations. In particular,
diffusion approximation has been widely used, where it
assumed that̂B(r ,t)& is a smooth function on the characte
istic scalesR0 and correlation timest0 of the turbulent ve-
locity field u(r ,t) of a conducting medium. The presence
an average nonzero helicityH05^u(r ,t)•(¹3u(r ,t))&Þ0
results in amplification of the initial magnetic field~the so-
called a effect!. Nonzero helicity of the turbulent motion
may be caused by the general rotational motion of the c
ducting medium~the rotation of the Earth, the sun, and
on!. The kinematic formulation of the problem, where t
magnetic field is assumed to be fairly weak, and does
influence the known turbulent motion of the liquid or gas,
only suitable for a turbulent medium with helicity over th
time interval before the energy of the growing magnetic fi
becomes equal to the kinetic energy of the moving gas
ments.

In the diffusion approximation, the evolution of^B(r ,t)&
in an isotropic turbulent medium is described by the we
known equation

S ]

]t
2Dm¹2D ^B~r ,t !&5¹3@aT~r ,t !^B~r ,t !&#

2¹3@DT~r ,t !^B~r ,t !&#, ~1!
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is the conductivity of the medium,Dt is the coefficient of
turbulent diffusion, andaT is a coefficient describing the
amplification of ^B(r ,t)& as a result of thea effect. The
estimatesDT>u0R0 and aT>u0 are usually used in appli
cations, leaving a high degree of arbitrariness in specific
culations of the average magnetic field evolution. Attem
to obtain more rigorous calculations ofDT andaT for given
ensembles of the turbulent velocityu(r ,t) in the Euler rep-
resentation are therefore of interest. The first accurate v
DT5u0t0/3 was obtained in Ref. 5 for a short-range tim
correlated velocity field ~the correlation function is
^ui(r ,t)uj (r 8,t8)&}d(t2t8)). A more general analysis o
the problem of calculatingDT , also allowing for the com-
pressibility of the medium, was presented in Ref. 6.

The molecular diffusion coefficient is usuallyDm!DT

and may be neglected when findingDT andaT . In this case,
it is easy to obtain accurate expressions forDT and aT by
using the Lagrange representation for the velocity fi
v(a,t), wherea is the coordinate of a liquid particle at zer
time t50. The transport equations for a scalar impurity w
concentrationn(r ,t)5^n&1n8 (^n8&50) and the equation
for the magnetic field inductionB(r ,t)5^B&1B8 (^B8&50)
in the caseDm50 have the form

]n~r ,t !/]t5¹•@u~r ,t !n~r ,t !#, ~2!

]B~r ,t !/]t5¹3@u~r ,t !B~r ,t !#, ¹•B50, ¹•u50.
~3!

The solution of these equations for a given Lagrange velo
field v(a,t) has the form1,4
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n~r ,t !5n0~r2X~a,t !!/D~a,t ![n0~a!/D~a,t !. ~4!

es
d
-

o

an
o

f a

w

on

hs
a

-

e

m

1a ~ t !E t
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Bi~r ,t !5
]xi

]aj
Bj

~0!~r2X~a,t !![
]xi

]aj
Bj

~0!~a!, ~5!

wherer5(x1 ,x2 ,x3) and

r5a1X~a,t ![a1E
0

t

dt v~a,t!,

]r /]t[u~r ,t ![v~a,t !, ~6!

Di j ~a,t !5]xi /]aj , D~a,t !5det Di j ,

Ḋ i j []Di j /]t, Ḋ/D5¹•u~r ,t !,

DspḊpq
2152

]vs

]aq
, dr5D~a,t !da. ~7!

As usual, summation is implied over repeated indic
The valuesn0(a) and B(0)(a) denote the concentration an
magnetic field at time zero. Equation~4! expresses conser
vation of the number of impurity particles (n(r ,t)dr
5n0(a)da) as these are transported along a flow tube
variable cross section. Expression~5! describes the variation
in the magnetic field frozen into an element of liquid in
incompressible medium as a result of convective transp
and also as a result of the deformations and rotation o
element of liquid or gas.

Defining a random field of Lagrange velocitiesv(a,t)
determines an ensemble of realizations of turbulent flo
over which the solutions~4! and ~5! must be averaged to
obtain equations for the average^n(r ,t)& and ^B(r ,t)&. For
fixed r and t the valuea[r2X(a,t) is a random quantity
and the problem reduces to averaging the known functi
n0(a) and B(0)(a) of the random argumenta with the ran-
dom weighting factors 1/D(a,t) andDi j (a,t). The transition
to the diffusion approximation presupposes thatn0(a) and
B(0)(a) are smooth over the characteristic lengt
R(0)>A^X2& and involves using a Taylor expansion as
series inX(a,t) ~Refs. 7 and 8!. As a result, we obtain ac
curate expressions forDT andaT .

For a scalar impurity field in an isotropic medium w
have

DT5
1

3 E
0

t

dt ^v~a,t !•v~a,t!/D~a,t !& ~8!

where the angle brackets denote averaging over the ense
of velocity realizations. Equation~8! was obtained for an
incompressible medium (D(a,t)[1 by Taylor9 as early as
1921. Equations forDT and aT for a magnetic field were
obtained much later:7,8

DT~ t !5
1

3 E
0

t

dt ^v~a,t !•v~a,t!&

1
1

6 E
0

t

dtE
0

t

dt8F K v~a,t !•v~a,t!
]v i~a,t8!

]ai
L

2 K v i~a,t !
]

]ai
~v~a,t!•v~a,t8!!L G
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aT~ t !52
1

3
ei jmE

0

t

dt K v i~a,t !
]v j~a,t!

]am
L

[2
1

3 E
0

t

dt ^v~a,t !•~¹3v~a,t!!&. ~10!

Here ei jn52ejin52ein j is a unit pseudotensor~e12351,
and so on!.

The first term in expression~9! is the same asDT for a
scalar impurity, and is due to pure convective transport of
impurity together with an element of liquid or gas. The se
ond term in expression~9! determines the contribution to th
diffusion made by the deformations and rotations of an e
ment of the medium. Particular mention should be made
the meaning of the third term in expression~9!, which is
proportional toaT

2 . This term appears as a result of allow
ance for the increase in the average magnetic field cause
the a effect. It was derived using the solution of Eq.~1!,
where the diffusion terms were dropped~terms containing
Dm and DT!. This approximate solution is only suitable
early times, whenaT}t andDT}t, i.e., the term containing
aT

2 gives a negligible correction}t3. We shall show subse
quently that at late times this term does not exist. The form
use of this term fort→` causesDT to increase without
bound (DT}a2t→`), i.e., produces a physically absurd r
sult.

We also note that Parker4 neglected the dependence
B(0)(a) on X(a,t) when averaging formula~5! and obtained,
for an isotropic medium wherê]xi /]aj&5d i j , the relation
^B(r ,t)&5^B(0)(a)&, which is exactly the same as the e
pression^n(r ,t)&5^n0(a)& for a scalar impurity in an in-
compressible medium. This led to the incorrect conclus
that DT for a magnetic field in an isotropic medium shou
be exactly the same asDT for a scalar impurity. Genera
reasoning suggests that averaging the more complex exp
sions contained in the second term in formula~9! will yield a
smaller contribution toDT than the first convective term
That is to say, we expect that the coefficient of turbule
diffusion of a magnetic field~in the absence of helicity! will
be close toDT for a scalar impurity.

Equations~9! and ~10! were used by Kraichnan8,10 to
calculateDT(t) andaT(t) for two models of turbulence with
a narrow energy spectrum. A numerical simulation of liqu
particle trajectories was performed up to timest54t0 , where
t05R0 /u051/u0p0 is the rotation time of the liquid vortex
The calculations confirmed thatDT is close to the coefficien
of turbulent diffusion of a scalar impurity for parameter va
ues j05u0t0 /R05u0t0p0<1. For the case of frozen an
helical turbulence, wheret0@t0 (j05t0t0→`), the values
of DT were found to be negative fromt>3t0 . Our calcula-
tions ~see below! performed in the Euler representation a
ways give positiveDT . The casej0→` is the most difficult
to simulate numerically and this appears to be why this
correct result was obtained in Ref. 10.
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Lagrange velocitiesv(a,t) in a turbulent medium, wherea
the correlation functions of the Euler velocity compone
u(r ,t) are usually measured. Transforming fromu(r ,t) to
v(a,t) involves solving a system of differential equation
and this problem has yet to be solved for the general c
Thus, we need to have accurate equations to calculateDT

andaT in the Euler representation. Such equations were
obtained for steady-state, uniform, and isotropic turbule
in Refs. 11 and 12.

For the coefficient of turbulent diffusionDT of a scalar
impurity in a compressible medium we have12

DT~ t1!5
1

3 E dRE
0

t1
dt2@^ui~1!G~1,2!ui~2!&

2^R•u~1!G~1,2!¹•u~2!&#. ~11!

Here and subsequently, we shall use the convenient nota

f ~1!5 f ~r1 ,t1!, f ~122!5 f ~r12r2 ,t12t2!,

dn5drndtp , R5r12r2 , t5t12t2

and so on. HereG(1,2)5G(r1 ,t1 ;r2 ,t2) is the Green func-
tion of Eq. ~3!. Its formal expression in Lagrange notatio
has the form

G~1,2!5
D~a,t2!

D~a,t1!
dS r12r22E

t2

t1
dt v~a,t! D . ~12!

Substituting this expression and the relation¹•u(r ,t)
5Ḋ(a,t)/D(a,t) into Eq. ~11!, we again obtain Eq.~8! for
the coefficient of turbulent diffusionDT of a scalar impurity
in a compressible medium.

Expressions forDT and aT in the Euler representatio
were derived in Ref. 12:

DT~ t1!5
1

6 E dR•E
0

t1
dt2@^ui~1!Gss~1,2!ui~2!&

2^us~1!Gis~1,2!ui~2!&1^Rsun~1!Gin~1,2!

3~¹ iun~2!!&2^Rsui~1!Gsn~1,2!

3~¹ iun~2!!&#, ~13!

aT~ t1!5eipt

1

3 E dR•E
0

t1
dt2^ui~1!Gpn~1,2!

3~¹ tun~2!!&. ~14!

The Green tensor function of the induction equation~4! may
be represented in the form

Gi j ~1,2!5Dis~a,t1!Ds j
21~a,t2!

3d F r12r22E
t2

t1
dt v~a,t!G . ~15!

Substituting this expression into Eqs.~13! and ~14!, and us-
ing the relation

Dsp
21~a,t !]vp~a,t !/]aj52Ḋs j

21~a,t !

~see Eq.~7!!, we again obtain Eq.~9! ~but without the last
term!! and Eq.~10!.
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Euler velocitiesu(r ,t), we need to know the Green functio
Gi j (1,2) in the Euler representation and its correlation fun
tions with the velocity components. The tensorGi j (1,2) is a
functional ofu(r ,t) and, unlike the Lagrange representati
~15!, cannot be found in explicit analytic form. A procedu
for renormalizing the integral equation forGi j was proposed
in Refs. 11 and 12. Substituting the iterations of the ren
malized equation forGi j into the basic equations~13! and
~14! gives asymptotically convergent series forDT andaT .
Averaging the series of iterations for the right-hand term
the induction equation~4! gives a hierarchy of nonlinea
equations directly for the average Green functi
^Gi j (1,2)[gi j (122)H(t12t2), where H(t)51 for t.0
and H(t)50 for t,0. The first of the equations in the h
erarchy, possessing quadratic nonlinearity, has been
scribed in the literature as the equation in the Direct Inter
tion Approximation—the DIA equation. A DIA equation fo
a scalar impurity was proposed in Ref. 13. An investigat
of the scalar DIA equation~see Refs. 14–17! showed that
this can be used to calculateDT for all values of the param-
eter j05u0t0 /R0 (0<j0,`). The difference between th
DIA value of DT and the accurate value increases monoto
cally from 0% for j0→0 to >10% for j0→` ~frozen tur-
bulence!. The DIA equation for the tensor̂Gi j (1,2)& in an
isotropic medium reduces to a system of two nonlinear eq
tions. Kraichnan8 gave a pessimistic assessment of the p
sibility of obtaining a numerical solution of this nonlinea
equation.

In the present paper we solve this system of equati
numerically for the first time and we obtain DIA expressio
for the steady-state values (t→`) of the coefficientsDT and
aT . Our values ofDT are always positive~the possibility of
negativeDT arises in the DIA solutions for purely compres
ible potential turbulence, whereui(r ,t)5¹ iw(r ,t)). At
present, the calculations ofDT andaT using the DIA equa-
tion are the most accurate and reliable. We shall also ma
detailed investigation of the dependence ofDT andaT on the
degree of helicity and its spatial and temporal scales. Th
relations will enable us to make a more accurate choice
DT andaT values, even when the correlation functions of t
velocity of the medium are only known approximately and
is even difficult to select the characteristic parametersR0 and
t0 .

2. HIERARCHY OF NONLINEAR EQUATIONS FOR THE
AVERAGE GREEN TENSOR AND TRANSITION TO THE
DIFFUSION APPROXIMATION

Using the method of obtaining the nonlinear equatio
for the Green functionsG(1,2) described in Refs. 11, 12, an
17, we obtain for the first three terms of the hierarchy~recall
that ^Gi j (1,2)&[Gi j (122))

S ]

]t1
2Dm¹1

2DGi j ~122!

5d i j d~R!d~t!1E d3^L̂ in~1!Gnm~123!
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3L̂ms~3!Gsr~324!L̂ rt~4!&Gt j~422!

1E d3E d4E d5@^L̂ in~1!Gnm~123!

3L̂ms~3!Gsr~324!L̂ rt~4!Gtq~425!

3L̂q f~5!&2^L̂ in~1!Gnm~123!^L̂ms~3!Gsr~324!

3L̂ rt~4!&Gtq~425!L̂q f~5!&2^L̂ in~1!Gnm~123!

3L̂ms~3!&Gsr~324!^L̂ rt~4!Gtq~425!

3L̂q f~5!&#Gf j~522!1.... ~16!

Here the tensor operator L̂mn(3)[¹m
(3)un(3)

2dnm¹s
((3)us(3) operates on all functions ofr3 and t3 to its

right. For Gaussian ensemblesu(r ,t) the second integra
term vanishes and the third reduces to a single term with
cross correlation function~in time!, whereLin(1) is aver-
aged withLrt(4) andLms(3) is averaged withLq f(5). Drop-
ping all the terms of the hierarchy except the second integ
we obtain the DIA equation. Using the equality

^Bi~r ,t !&5E dr 8^Gi j ~r2r 8;t !&Bj
~0!~r 8!, ~17!

we obtain from~16! an integrodifferential equation for th
average magnetic field̂B(r ,t)& in a steady-state, homoge
neous, isotropic medium, which can be expressed in the f

S ]

]t
2Dm¹2D ^B~r ,t !&

5¹3E dRE
0

t

dt@a~R,t!^B~r2R,t2t!&

2D~R,t!¹3^B~r2R,t2t!&#. ~18!

The form of the expression is general and does not dep
on the method of terminating the hierarchy of equations
^Gi j &.

A formal solution of Eq.~18! is easy to obtain by taking
the Fourier transform with respect tor and the Laplace trans
form with respect to the timet:

^B̃~p,s!&5E drE
0

`

dt exp~2st!exp~2 ipr !^B~r ,t !&.

~19!

Assuming that the magnetic field is solenoidalp•B̃(0)

3(p)50, we obtain

^B̃i~p,s!&[^G̃i j ~p,s!&B̃j
~0!~p!5G̃0~p,s!B̃i

~0!~p!

2 ieie jpeG̃1~p,s!B̃j
~0!~p!, ~20!

where

715 JETP 85 (4), October 1997
e

l,

m

nd
r

0 2 2 1 1 2p 1 2

G̃7~p,s!5~s1D̃~p,s!p27ã~p,s!p!21. ~21!

The expressions forD̃(p,s) andã(p,s) in the DIA approxi-
mation have the form

D̃~p,s!52 ipt@ T̃it i 2 T̃ti i 1 ipn~ S̃timn2 S̃itmn!#/2p2,
~22!

ã~p,s!52eimspspt@ T̃itm2 T̃tim1 ipn

3~ S̃timn2 S̃itmn!#/2p2, ~23!

where

Titm~R,t!5^ui~1!^Gtn~1,2!&¹m
~2!un~2!&,

Stinm~R,t!5^ut~1!^Gim~1,2!&un~2!&. ~24!

The correlation functions~24! are sharply peaked function
of R5r12r2 and t5t12t2 on the scales;R0 and times
;t0 ~or ;t05R0 /u0 for frozen turbulence wheret0@t0!.
For an inhomogeneous turbulent medium the functio
a~R,t! and D(R,t) depend parametrically on the avera
position r5(r11r2)/2 in the medium.

Expressions~18!–~24! hold in the general case, irrespe
tive of the DIA approximation. In this general case,^Gtn& in
expression~24! must be replaced by the nonaverage Gre
function Gtn , and the irreducible part must be taken. W
recall that the reducible expressions contain the molec
Green function, which separates out various average p
i.e., expressions of the type~for further details see Refs. 11
12, and 17!

E d3E d4^A~1,3!&Gm~324!^B~4,2!&.

The diffusion equation can be obtained from Eq.~18! if
we assume that̂B(r ,t)& is a smooth function and we expan
the integrand̂ B(r2R,t2t)& in powers ofR andt, retain-
ing the zeroth- and first-order terms. Finally we obtain

S ]

]t
2Dm¹2D ^B~r ,t !&52aT~ t !¹3^B~r ,t !&

2DT
~0!~ t !¹3¹3^B~r ,t !&

2bT~ t !¹3
]^B~r ,t !&

]t
, ~25!

where

DT
~0!~ t !5E dRE

0

t

dt D~R,t !

→DT
~0!~`!~12exp~2t/t0!!,

aT~ t !5E dRE
0

t

dt a~R,t !→aT~`!~12exp~2t/t0!!,

~26!
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1t0~12exp~2t/t0!!#.

The expressions after the arrows correspond to the m
whereD(R,t)}exp(2t/t0) anda(R,t)}exp(2t/t0). It is eas-
ily confirmed thatDT

(0)(t) and aT(t) are the same as th
expressions~13! and ~14!.

The situation is more complex for the term containi
bT(t). The term of the first order of smallnessaT(t)¹
3^B(r ,t)& is the dominant term on the right-hand side of E
~25! compared with the remaining terms of the second or
of smallness. Therefore Moffatt2,7 and Kraichnan8 replaced
]^B(r ,t)&/]t on the right-hand side by the approximate e
pression

]^B~r ,t !&
]t

>aT~ t !¹3^B~r ,t !& ~27!

and obtained the usual form~1! of the diffusion equation
where the coefficient of turbulent diffusion is

DT~ t !5DT
~0!~ t !1aT~ t !bT~ t !. ~28!

In the Lagrange representation, which was only used
Moffatt and Kraichnan, substitution of expression~27! yields
a slightly different expression:

DT~ t !5DT
~0!~ t !1aT~ t !E

0

t

dt aT~ t !. ~29!

This formula is the same as the more general expression~28!
for short timest!t0 ~or t!t0 for frozen turbulence!.

It can be seen from the~26! that for short times
DT

(0)'DT
(0)(`)t/t0 , we have aT'aT(`)t/t0 and

bT(t)'aT(`)t2/2t0 , i.e., the additional termaT(t)bT(t) in
Eq. ~28! is much smaller than the principal termDT

(0)(t).
However, at late times~t@t0 or t@t0 for the caset0@t0!,
the accurate solution~21! gives a diffusion equation, with the
diffusion coefficientDT(`)5DT

(0(`), which contradicts the
approximate expression~28! ~or ~29!!.

We can see that the diffusion equation only accurat
represents the solutions of the accurate integrodifferen
equation~18! if we set bT(t)[0, i.e., to derive the correc
diffusion equation we need to takêB(r2R,t2t)&
>^B(r ,t)&2(R•¹)^B(r ,t)& in the integral term of Eq.~18!.
This is clearly the frequently encountered case where i
meaningful to retain only the first term of the asympto
expansion of the function. Note that a similar expansion w
respect tot on the right-hand side of the equations in t
hierarchy~16! and allowance for the termt]Gi j /]t leads to
violation of the important normalization condition for th
Green function (G̃i j (p,t50)5d i j ). Thus, the quadratic
term with respect toaT(t) in expressions~9! and ~29! and
the similar term in expression~28! must be dropped.

3. DIA-EQUATION AND CALCULATION OF THE
COEFFICIENTS DT AND aT

The accurate equations~13! and~14! for the coefficients
DT and aT in the Euler representation contain correlati
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tives ¹num(r ,t) with the Green tensor functionGnm(1,2). It
was noted in the Introduction that using the solutions of t
DIA equation for the average Green function^G(1,2)& in-
stead of the accurate Green functionG(1,2) gives good re-
sults in calculations of the coefficient of turbulent diffusio
DT of a scalar impurity. It is important to note that the DIA
solutions can yieldDT for all possible values of the param
eterj05u0t0 /R0[u0p0t0 (0<j0,`). The coefficientDT

for a scalar impurity is determined by pure convective m
tion of the gas or liquid, and the deformations and rotatio
of the liquid elements make no contribution. The diffusion
a vector magnetic field is determined not only by the co
vective motion but also by the deformations and rotations
the liquid elements. This motion is more local, is describ
by complex correlation functions of the tensor¹num(r ,t),
and clearly makes a far smaller contribution toDT than the
long-range convective motion, i.e., in the absence of helic
the coefficients of turbulent diffusionDT of the magnetic
field and the scalar impurity should be similar. This qualit
tive reasoning suggests that for the case of magnetic fi
transport, the DIA equation will also make a major contrib
tion to the calculations ofDT and possibly also to the calcu
lations of the amplification coefficientaT . Here we confine
our calculations to the steady-state DIA values of the coe
cients DT(t) and aT(t), which corresponds tot@t0 or
t@t05R0 /u0 for the caset0@t0 .

The Fourier transform with respect toR and the Laplace
transform with respect to t of the function
^Gnm(1,2)&[H(t)gnm(R,t)& for an isotropic turbulent me-
dium has the form

g̃nm~p,s!5dnmg̃0~p,s!1 ienmkpkg̃1~p,s!

1pnpmg̃2~p,s!. ~30!

The functiong̃2(p,s) can be expressed in terms ofg̃0(p,s)

and g̃1(p,s) and because of the solenoidal nature of t
magnetic field (p•B(p)50), does not appear anywhere. Th
DIA equation for^Gnm(1,2)& reduces to a system of couple

nonlinear equations forg̃0(p,s)[( g̃2(p,s)1 g̃1(p,s))/2

and g̃1(p,s)[( g̃1(p,s)2 g̃2(p,s))/2p. This system can be
conveniently written in the form

g̃1~p,s!5H s1Dmp21
p

4 E
0

`

dqE
0

`

dtE
21

1

dm

3~12m2!exp~2st!@pE~q,t! g̃0~ up2qu,t!

2pEh~q,t! g̃1~ up2qu,t!

1~p21q22pqm!E~q,t! g̃1~ up2qu,t!

2Eh~q,t! g̃0~ up2qu,t!#J 21
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g̃ ~p,s!5 s1D p21
p E`

dqE`

dtE1

dm

-
r

io

r

e
a

ity

g̃ ~p,s!5 s1D p21
p2 E`

dqE`

dtE1
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2 H m 4 0 0 21

3~12m2!exp~2st!@pE~q,t! g̃0~ up2qu,t!

2pEh~q,t! g̃1~ up2qu,t!

2~p21q22pqm!E~q,t! g̃1~ up2qu,t!

1Eh~q,t! g̃0~ up2qu,t!#J 21

. ~31!

Herep•q5pqm5pq cosu is the scalar product of the vec
tors p andq and the expressionf̃ (p,t) denotes the Fourie
transform of the functionf (R,t) with respect toR. The gen-
eralized spectra of the energyE(p,t) and helicityEh(p,t)
are given by

^u~r ,t !•u~r ,t1t!&[E
0

`

dp E~p,t!,

~32!

^u~r ,t !•~¹3u~r ,t1t!&![E
0

`

dp Eh~p,t!.

For small p!p051/R0 and st!1, the equations~31!
yield the diffusion expressions

g̃7
diff~p,s!5@s1Dmp21DT

~0!p27aT
~0!p#21, ~33!

where the DIA steady-state coefficients of turbulent diffus
DT

(0) and the coefficientaT
(0) are given by

DT
~0!5

1

3 E
0

`

dpE
0

`

dt @E~p,t! g̃0~p,t!

2Eh~p,t! g̃1~p,t#,
~34!

aT
~0!5

1

3 E
0

`

dpE
0

`

dt @p2E~p,t! g̃1~p,t!

2Eh~p,t! g̃0~p,t#.

In order to find the nonsteady-state coefficientsDT(t) and
aT(t), we need to sett as the upper limit in the integral ove
the timet.

In the opposite case of short distances and tim
(p@p051/R0 andst0@1!, we have the asymptotic formul

g̃75 g̃0~p,s!6p g̃1~p,s!

>2$s1Dmp21@~s1Dmp2!214~p2u0
27pH0!/3#1/2%21,

~35!

where

u0
25^u2~r ,t !&, H05^u~r ,t !•~¹3u~r ,t !!&.

In the limit s→0 andDm50, it follows from Eq.~35! that

g̃0~p,0!>)/u0p, g̃1~p,0!>)H0/2p3u0
3 .

If the turbulent medium does not possess helic
(Eh(p,t)50), then g̃1(p,s)[0 and the system~31! turns
into a single nonlinear equation forg̃0(p,s):
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3~12m2!exp~2st!E~q,t! g̃0~ up2qu,t!G21

,

~36!

which is the same as the DIA equation for a sca
impurity.11,16In this caseaT

(0)[0, andDT
(0) is the same as the

DIA coefficient of turbulent diffusion for a scalar impurity
This confirms our previous qualitative reasoning on the si
larity between the magnetic value ofDT and the value ofDT

for impurity particles.
Note that the DIA equation for a scalar impurity does n

depend on the helicity, and the influence of the helicity
the values ofDT was determined by analyzing the term in th
equation hierarchy containing fourth-order terms with
spect to the velocitiesu(r ,t) ~assuming a Gaussian ensemb
of velocities!. The existence of helicity increases the diff
sion coefficientDT of a scalar impurity.10,16 In a 100% heli-
cal medium~whereEh(p,t)5pE(p,t)! the coefficientDT

may increase by up to 50%~for j0→`! compared with the
value in the absence of helicity. The existence of the sa
number of right and left helical motions in a medium i
creases the probability of the decay of this vortex mot
compared with case where one type of helical motion exi
This qualitatively explains the amplification of turbulent di
fusion by helicity.

Before giving the results of calculations using Eq.~34!,
we estimate DT and aT in the limiting cases
j05u0t0 /R0!1 andj0@1. Values ofj0!1 correspond to
the quasilinear approximation.4 In this case, a good approxi
mation for the Green function is g̃0(p,t)
' g̃m(p,t)5exp(2p2Dmt) and g̃1(p,t)50. We further as-
sume thatDm50, and we substitute these functions into t
Eqs. ~34!. Finally we obtain the following formulas for
j0!1:

DT
~0!>

1

3 E
0

`

dpE
0

`

dt E~p,t!>
u0

2t0

3
[

u0

p0

j0

3
,

aT
~0!>2

1

3 E
0

`

dpE
0

`

dt Eh~p,t!>2
H0t1

3

[S 2
H0

u0p1
D j0h

3g
, h5p1 /p0 , g5t0 /t1 . ~37!

Here t0 , p0 and t1 , p1 are the characteristic lifetimes an
wave numbers of the spectraE(p,t) andEh(p,t).

For frozen turbulence where E(p,t)[E(p),
Eh(p,t)[Eh(p) ~t0@t05R0 /u051/u0p0 or j0@1!, we can
use the asymptotic equation~35! for estimates:

DT
~0!>

1

)u0
E

0

` dpE~p!

p
>S u0

p0
D 1

)

,

aT
~0!5

H0

2)u0
3 E0

`

dp
E~p!

p
2

1

)u0
E

0

`

dp
Eh~p!

p

>const~h!S 2
H0

u0p1
D . ~38!
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FIG. 1. Dimensionless coefficient of turbulent diffusio

D̄T5DT(u0 /p0)21 for the model~41! with d-shaped turbu-
lent energy and helicity spectra. The solid curves give
DIA values and the dashed curves give the results of cal
lations using the self-consistent formula. The numbers on
curves give the values of the parametersa, g, and h. The
levels to the right give the corresponding coefficients f

j05100. The values ofD̄T for the cases~0, 5, 1!, ~0, 1, 5!,
~0, 5, 5!, ~1, 1, 5!, ~1, 5. 1!, and~1. 5, 5! are essentially the
same as the case~0, 1, 1!.
The calculations show that the function const(h) depends
r

t

d

Eh~p,t!5H0d~p2p1!e2t/t1, ~41!

w

ate
very weakly on h. According to the Khinchin–Bochne
theorem,3 uEh(p,v)u<pE(p,v). This implies that the di-
mensionless parametersa, h, andg satisfy

a5
H0

u0
2p0

<1, h5
p1

p0
>1, g5

t0

t1
>1. ~39!

Since the asymptotic forms~35! do not hold nearp5p0

and p5p1 , Eqs. ~38!, unlike ~37!, are semiquantitative. I
follows from the estimates~37! and~38! that it is convenient
to introduce the dimensionless variablesD̄T andāT , defined
by

DT5
u0

p0
D̄T~j0 ,a,h,g!,

aT5S 2
H0

u0p1
D āT~j0 ,a,h,g!. ~40!

We selected several turbulence models to investigate the
pendence ofD̄T and āT on the parametersj0 , a, h, andg :

E~p,t!5u0
2d~p2p0!e2t/t0,
e-

E~p,t!5
u0

2

p0

0.65159

11x17/3 x4e2t/t0,

Eh~p,t!5au0
2 0.65159

11x17/3 x5e2t/t1. ~42!

Here and subsequently,x5p/p0 and a is the degree of he-
licity. For p@p0 , the spectrum~42! has the Kolmogorov
form }p25/3. The spectra~41! and ~42! are examples of
limiting dependences onp: a peaked dependence and slo
decay forp→`.

Calculations were also performed for the intermedi
spectra:

E~p,t!5
8

3Ap

u0
2

p0
x4e2x2

e2t/t0,

Eh~p,t!5au0
2 8

3Ap
x5e2x2

e2t/t1, ~43!
e

FIG. 2. Dimensionless coefficientāT5aT(2H0 /u0 p1)21

for the model~41!. The notation is the same as in Fig. 1. Th
case~0, 1, 5! essentially coincides with~1, 1, 5!, ~0, 5, 1!
with ~1, 5, 1!, and~0, 5, 5! with ~1, 5, 5!.
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d

FIG. 3. Dimensionless coefficient of turbulent diffusionD̄T

for the model~42! with a Kolmogorov energy spectrum in
the inertial range. Herep05p1 and the numbers on the
curves indicate the parametersa andg. The solid level on the

right givesD̄T for j0→` and the dashed levels correspon
to j05100.
1 u0
2

p

to

h

~s!
1 ` t t

~s!

te

to

tis-
nt
re

of
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E~p,t!5
24 p0

x4e2xe2t/t0,

Eh~p,t!5
au0

2

p0
x5e2xe2t/t1. ~44!

In addition to the calculations of the DIA values~34! of the
steady-state coefficientsDT

(0)(j0) andaT
(1)(j0), we shall also

give the so-called self-consistent valuesDT
(s)(j0) and

aT
(s)(j0). These values can be calculated from Eq.~34! if

instead of the accurate DIA values forg̃0(p,t) and g̃1(p,t)
we take the values of these functions in the diffusion a
proximation~33! with the unknown coefficientsDT

(s)(j0) and
aT

(s)(j0). Equations~34! then become nonlinear equations
find the required values ofDT

(s)(j0) andaT
(s)(j0). This pro-

cedure was first proposed for a scalar field in Ref. 18.
Self-consistent values can also be found for t

nonsteady-state values ofDT
(s)(t) andaT

(s)(s):

DT
~s!~ t !5

1

3 E
0

`

dpE
0

t

dt expS 2p2E
0

t

dt DT
~s!~t ! D

3FE~p,t!coshS pE
0

t

dt aT
~s!~t ! D

1Eh~p,t!sinhS pE
0

t

dt aT
~s!~t ! D p21G ,
-

e

aT ~ t !5
3 E

0
dpE

0
dt expS 2p2E

0
dt DT ~t! D

3FE~p,t!sinhS pE
0

t

dt aT
~s!~t ! D

1Eh~p,t!coshS pE
0

t

dt aT
~s!~t ! D G . ~45!

Expressions forDT
(s)(j0) andaT

(s)(j0) corresponding to Eq.
~33! are obtained from the expressions~45! if we set t→`
and assumeDT

(s)(t;j0)[DT
(s)(j0) andaT

(s)(t;j0)[aT
(s)(j0).

A more logical but more complex method is to calcula
the nonsteady-state values~45! until those times for which
constant values are obtained forDT

(s)(t) and aT
(s)(t). We

mainly use the first, simpler method. Using both methods
calculateDT

(s)(j0) for a scalar impurity shows17 that the first
method gives values ofDT(j0) that are too low, and the
second method yields overestimates; their mean very sa
factorily approximates the true value of the coefficie
DT(j0). In the presence of helicity, the situation is mo
complicated, but is qualitatively the same as before.

The calculations show that the self-consistent values
D̄T

s(t) andāT
s(t) are always positive. For the limiting case o

100% helicity uEh(p,t)u5pE(p,t), where E(p,t)
5u0

2d(p2p0) f (t), Eqs.~45! give D̄T
s(t)5 āT

s(t).0. Since
ll

FIG. 4. Dimensionless coefficientāT5aT(2H0 /u0 p0)21

for the model~42!. The notation is the same as in Fig. 3. A
the levels on the right correspond toj0550. The case~0, 5!
essentially coincides with~1, 5!, and~0, 10! with ~1, 10!.
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e

FIG. 5. Dimensionless coefficient of turbulent diffusionD̄T for
the model~43!. The notation is the same as Fig. 3. All th
levels to the right correspond toj05100. Case~0, 5! is essen-
tially the same as~1, 5!.
the kinetic coefficientsDT andaT are mainly determined by
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large-scale turbulent motion, which is accurately describ
by the Green functions in the diffusion approximation, t
self-consistent method gives comparatively satisfactory
ues of DT and aT which agree qualitatively with the DIA
values.

The results of calculations of the steady-state DIA valu
D̄T(j0) and āT(j0) are plotted in Figs. 1–8. We note abov
all that the presence of helicity (aÞ0) reduces the diffusion
coefficient DT rather than increasing it, as in the case
scalar impurity diffusion. This effect was first noted in Re
10. This decrease is due to thea effect, i.e., the amplification
of the magnetic field by helical motion, which slows th
diffusion attenuation of the field.

A second interesting feature is the nonlinear depende
of the coefficientD̄T on the degree of helicitya5H0 /u0

2p0 .
For 0,a,0.5 this dependence is very weak. In practic
limiting values ofD̄T corresponding toa50 may be used in
this range of values of the parametera. Real turbulent mo-
tion rarely has a degree of helicitya.0.5, so that this char
acteristic can reduce the number of independent parame

If the helical motion is small-scale (h5p1 /p0@1) or
short-range correlated (g5t0 /t1@1), the turbulent diffu-
sion coefficientDT is almost independent of the degree
d

l-

s

f

ce

,

rs.

a scalar impurity. In this case, the difference between
coefficientsDT for the magnetic field and the scalar impuri
is determined by the different contribution to these coe
cients made by the correlation functions of the fourth a
higher orders.

For a scalar impurity, the maximum and invariably neg
tive contribution of this correction~in the absence of helic
ity! is ,10% for j0→`. For j0→0 this correction tends to
zero. It is very difficult to calculate the correction toDT for
magnetic field diffusion because of the very cumberso
expression for this correction. This correction may also ha
a low value; in any event, forj0→0 it also tends to zero like
the correction toDT for a scalar impurity. In practice, fo
p1 /p0.5 or t0 /t1.5, the influence of helicity on the
magnetic-field diffusion coefficientDT can be neglected
Physically, this is quite understandable if we recall that th
cases correspond to small-scale or short-range ti
correlated helical motion against a background of nonhel
large-scale motion with a long correlation time.

A comparison between the DIA values ofDT and the
self-consistent values ofDT

(s) shows that these agree well fo
j0<1, and agree qualitatively forj0@1. Note thatDT

(s),DT

always, because for small scales and times~p@p0 , st0@1!,
FIG. 6. Dimensionless coefficientāT5aT(2H0 /u0 p0)21 for
the model~43!. The notation is the same as Fig. 3. Case~0, 5!
essentially coincides with~1, 5! and case~0, 10! with ~1, 10!.
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FIG. 7. Dimensionless coefficient of turbulent diffusionD̄T for
the model~44!. The notation is the same as Fig. 3.
the real Green functiong̃0(p,s) has a higher value than its
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j* >constAt0t1~p0 /p1![constAg/h
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approximate diffusion expression.
The dependence of the dimensionlessāT coefficient on

the degree of helicitya is qualitatively the same as that fo
D̄T : for a,0.5, the difference between the coefficientsāT is
very small even forp1>p0 andt1>t0 , and forp1 /p0.5 or
t0 /t1.5, the dependence on the parametera essentially dis-
appears. This implies that in these cases, the dimensionaaT

coefficient depends linearly on the characteristic helicityH0

~because of the dimensional factor in Eq.~40!!.
An increase in the parameterg5t0 /t1 leads to a de-

crease inaT for any j0 , and corresponds physically to
reduction in thea effect for the shorter-lived helical motion
However, the degree of reduction depends on the valu
the parameterj0 , and forj0→`, aT ceases to depend ong,
which is consistent with the estimate~38!.

The dependence ofāT on the parameterh5p1 /p0 was
investigated using the model~41!, and is plotted in Fig. 2.
Attention is drawn to the peaked behavior ofāT for j0,1
for the caseh55 andg51. The maximum of the peak cor
responds toj05j* , which may be estimated qualitativel
from the condition that over its lifetimet1 , the helix has
time to decay, i.e.,DTt1'R1

2 for DT>u0
2t0/3, which is sat-

isfied for j0,1 ~see the estimate~37!!. This estimate gives
of

provided thatj* ,1. Substituting this value ofj* into the
estimate~37!, we find thatāT max>(1/3) const/Ag, and does
not depend on the parameterh. The conditionj* ,1 ~or
Ag/h,1! is satisfied for comparatively long-lived, smal
scale helical motion (h@1), i.e., when these helical forma
tions may be considered to be a particular type of impu
particles.

It would seem that a similar estimate ofj* might be
obtained for the other limiting casej0@1, where
DT>const(u0 /p0). This would yieldj* >constg/h2, subject
to the conditionj* @1. However the calculated values o
āT(j0), both in the DIA approximation and the sel
consistent values, do not reveal any peaks forj0@1. In re-
ality, such an estimate is meaningless for the regionj0@1,
since the nature of the turbulent motion withj0@1 is not
consistent with the helical formations being considered
some sort of impurity exposed to diffusion damage within
lifetime t1 .

For j0@1 the turbulent motion is of a vortex nature wit
the rotation timet0>1/u0p0 much shorter than the vorte
lifetime t0 : j0[t0 /t0@1. In this case, the helical motion i
an inseparable part of these vortices. Fort1!t0 the helical
FIG. 8. Dimensionless coefficientāT5aT(2H0 /u0 p0)21 for
the model~44!. The notation is the same as in Fig. 3.

721 721JETP 85 (4), October 1997 N. A. Silant’ev



this

the
FIG. 9. Nonsteady-state dimensionless coefficientsD̄T5 āT for
the model~41! with a51, g51, andh51. The solid curves
give the calculations using the self-consistent formula~45! and
the dashed curves give those using a simplified variant of
formula where constant values of the coefficientsDT

(s) andaT
(s)

are set in the integrands. The numbers on the curves give
values of the parameterj0 . The levels on the right give the

DIA values ofD̄T for j0510.
formations undergo repeated reversal in the vortex. In this
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t.3t0 , and positive values were obtained foraT . Our cal-
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case, the averagea effect ceases to depend on the parame
g5t0 /t1 . The dependence ofaT on h5p1 /p0 is mainly
determined by the dimensional factor in formula~40!: aT

}1/h.
It can be seen from the figures that the self-consis

values ofāT
(s) are numerically similar to the DIA values o

āT for j0!1, and are much lower forj0@1. As the param-
eter h5p1 /p0[R0 /R1 increases, this difference becom
even greater. Note that the self-consistent method gives
stantially better results when used to calculateaT , compared
with the calculations of the turbulent diffusion coefficie
DT .

Calculations of the correctionaT
(1) , which depends on

four-point correlation functions of the velocity~for a Gauss-
ian ensemble and the spectrum~41!!, showed that these cor
rections increase from 0% forj0→0 to <4% for p05p1

andt05t1 for j0510. For small-scale or short-range corr
lated helicity, we have 20% instead of 4% forg55, 25% for
h55, and 30% forg55, h55. The correction is almos
independent of the degree of helicitya, and is negative for
j0<1 and positive forj0@1.

4. CALCULATION OF NONSTEADY-STATE DT„T… AND
aT„T… BY SELF-CONSISTENT METHODS

Figure 9 gives results of calculations ofDT(t) andaT(t)
for the model ~41! with 100% helicity
(uEh(p,t)u5pE(p,t)). In this case, we findg51, h51,
a51, and D̄T

(s)(t)5 āT
(s)(t).0. The solid curves show th

results of the calculations using Eq.~45!, and the dashed
curves give those using the simplified variant of this eq
tion, where the steady-state valuesDT

(s)(`) andaT
(s)(`), also

calculated using the simplified variant of Eq.~45!, were
taken asDT

(s)(t) and aT
(s)(t) in the integral terms. The

dashed curves give low values and the solid curves g
slightly high values. This case was calculated in Ref.
using the Lagrange equations~9! and ~10! as a result of a
numerical simulation of trajectories. In this study, negat
values of the diffusion coefficientDT(t) were obtained for
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culations are in good agreement with the steady-state D
values forDT andaT , and reliably indicate that the coeffi
cient of turbulent diffusion of the magnetic field for an in
compressible medium is positive.

5. CONCLUSIONS

We present the main conclusions obtained from
analysis of these results.

1. The dimensionless coefficient of turbulent diffusio
D̄T5DT(u0 /p0)21 for a magnetic field in an incompressib
medium is positive and increases monotonically with
creasing parameterj05u0p0t0 , asymptotically approaching
its limiting value atj0→`. The presence of helicity in the
medium reducesDT , and for a low degree of helicity
a5H0 /u0

2p0,0.5 this effect is very weak. Small-scale o
short-range correlated helicity withh5p1 /p0>5 or
g5t0 /t1>5 negligibly altersDT , even fora51.

2. The dimensionless coefficient describing thea effect,
āT5aT(2H0 /u0p1)21, increases monotonically with in
creasing parameterj0 for large-scale~h>1! helicity. For
a,0.5, the value ofāT is essentially independent of th
degree of helicity.

3. For small-scale and short-range correlated helic
(h5p1 /p0>5 or g5t0 /t1>5!, the coefficientāT is essen-
tially independent ofa.

4. For small-scale helicity withAg/h,1, āT(j0) has a
peaked profile with a maximum a
j* >constAt0 /t1(p0 /p1)[constAg/h and āT max>(1/3)
3const/Ag.

5. For j0→`, āT(j0) tends to a limiting value which
depends weakly onh and does not depend ong.
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Integro-differential equation method in the hydrodynamics of an incompressible

viscous fluid

A. B. Petrin* )

Institute of High Temperatures, Russian Academy of Sciences, 127412 Moscow, Russia
~Submitted 18 February 1997!
Zh. Éksp. Teor. Fiz.112, 1332–1339~October 1997!

An integro-differential equation method is proposed to describe the motion of an incompressible
viscous fluid. The method uses an analogy between the hydrodynamic equations for an
incompressible viscous fluid and the magnetostatic equations. An analysis is made of the flow of
an incompressible viscous fluid round an object as a specific application. The solution
automatically satisfies the boundary conditions at the surface of the object and at infinity. ©1997
American Institute of Physics.@S1063-7761~97!01310-3#
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A well-known description of the motion of an incom
pressible viscous fluid is provided by a system of differen
equations for the velocity field and the vorticity field.1–3 In
Ref. 3 an analogy was noted between some of the differen
hydrodynamic equations for an incompressible viscous fl
and the differential magnetostatic equations but this anal
was not developed.

Here this analogy is developed, refined, and used
solve problems in hydrodynamics.

2. FORMULATION OF THE PROBLEM

The motion of a fluid is described by the Navier–Stok
equation, which may be expressed in the form3

]v

]t
1~v•¹!v52

¹p

r
2¹w1

fv

r
, ~1!

wherev is the velocity field,p is the scalar pressure field,r
is the fluid density,w is the potential of the external conse
vative forces per unit mass, andfv are the forces of viscosity
acting per unit volume of fluid.

If the fluid is incompressible, its density is constant a
the velocity field should satisfy the volume conservati
equation:

¹•v50.

The expression for the viscosity force is then given
fv5h¹2v, whereh is the first coefficient of viscosity.

Thus, the Navier–Stokes equation for an incompress
fluid can be simplified, and may be written as2

]v

]t
1~v•¹!v52

¹p

r
2¹w1

h

r
¹2v. ~2!

Introducing the vector vorticity fieldV5¹3v and recalling
the vector identity

~v•¹!v5~¹3v!3v1
1

2
¹~v2!,

we rewrite the previous equation in the form

]v

]t
1V3v52

1

2
¹~v2!2

¹p

r
2¹w1

h

r
¹2v.

724 JETP 85 (4), October 1997 1063-7761/97/10072
l

ial
d
y

to

s

le

]V

]t
1¹3~V3v!5

h

r
¹2V. ~3!

Let D be the characteristic dimension of the problem a
V be the characteristic velocity. We transform to dimensio
less variables, making the substitution

x5x8D, y5y8D, z5z8D, t5t8~D/V!. ~4!

We then obtain an equation for the dimensionless fie

]V8

]t8
1¹83~V83v8!5

1

R
¹82V8,

where R5rVD/h is the Reynolds number for the give
problem.

To be specific, we analyze the problem of exterior flo
of an incompressible fluid around an object. We also anal
the problem in terms of dimensionless variables. Then, om
ting primes from hereon, we obtain a system of three eq
tions:

¹•v50, ~5!

¹3v5V, ~6!

]V

]t
1¹3~V3v!5

1

R
¹2V ~7!

with the boundary conditions

v50 on the surface of the object, ~8!

v5e far from the object ~9!

~e is the unit vector determining the direction of the veloc
far from the object!.

We assume that the vorticity fieldV is known over all
space; then Eqs.~5! and ~6! can be used to find the velocit
over all space. In fact, Eqs.~5! and ~6! are similar to the
magnetostatic equations that determine the magnetic fieB
in terms of the current densityj :

¹•B50.

¹•B5m0j .

72404$10.00 © 1997 American Institute of Physics



The solution of the magnetostatic equations for given
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currents is given by the Biot–Savart law,

B~1!5
m0

4p E
V

j ~2!3r12

r 12
3 dV2 ,

where the integration extends over all points in the volumV
at which currents exist. The symbol 1 refers to the coor
nates of the point at which the fieldB is determined, the
symbol 2 indicates the coordinates of points over which
tegration is performed, andr12 is the position vector from the
point of integration 2 to point 1; its length is

r 125A~x12x2!21~y12y2!21~z12z2!2.

If we replaceB by v andm0j by V in the magnetostatic
equations, we obtain Eqs.~5! and ~6!. Thus, the solution of
these equations for a given vorticity fieldV is

v~1,t !5
1

4p E
V

V~2,t !3r12

r 12
3 dV2 .

Since the vorticity field only differs appreciably from
zero near the object, this solution tends to zero with incre
ing distance from the object.

Note that Eqs.~5! and ~6! are a linear system of equa
tions, so that its solution is also the velocity field

v~1,t !5e1
1

4p E
V

V~2,t !3r12

r 12
3 dV2 . ~10!

The velocity field calculated according to Eq.~10! not
only satisfies Eqs.~5! and ~6! but also the boundary cond
tion ~9! far from the object.

Thus, if the distribution of the vorticity field is known a
a certain time, this field can be found at the next instant
the integrodifferential equation

]V~1,t !

]t
1¹3FV~1,t !3S e1

1

4p E
V

V~2,t !3r12

r 12
3 dV2D G

5
1

R
¹2V~1,t !, ~11!

where the nabla operator acts on the coordinates denote
the index 1.

However, the problem is that integration in Eq.~11! is
performed over all space, and if the vorticity field inside t
object is assumed to be zero, the vorticity field distributi
obtained from Eq.~11! will automatically fail to satisfy the
boundary condition at the surface of the object around wh
the fluid flows.

3. SOLUTION OF THE PROBLEM

To satisfy this boundary condition, either the proble
must be formulated over all space, or the boundary con
tions must be determined for the vorticity field.

To automatically allow for the boundary conditions
the surface of the object, we assume that the object con
of the surrounding incompressible fluid which is exposed
the action of an external, fairly large, effective bulk friction
force f f r52g(r )v inside the object around which the flui
flows. The coefficientg(r ) takes into account the spatia
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g(r )5kw(r ), wherek is modulus of the force and the func
tion w(r ) is assumed to be zero outside the solid, unity
side the solid, and continuously integrable in the vicinity
its boundary. If the coefficientk is large enough, the velocity
of the fluid inside the solid will be negligible. It will then be
assumed that in the limit wherek tends to infinity, the fluid
velocity near the surface and inside the object will be ze
and the boundary conditions at the surface of the object
automatically be satisfied. Physically it is clear that the
coming stream of fluid will flow around this retarded, almo
stationary fluid as if it were a solid.

Using the frictional force introduced above, Eq.~1! can
be written over all space in the form:

]v

]t
1~v•¹!v52

¹p

r
2¹w1

fv

r
2

k

r
w~r !v. ~12!

As before, we take the curl of Eq.~12! and introduce the
vorticity field; we then obtain the differential equation

]V

]t
1¹3~V3v!5

h

r
¹2V5

k

r
¹3~w~r !v!. ~13!

As in Sec. 2, we transform to dimensionless primed va
ables in accordance with Eq.~4!. We then obtain an equatio
similar to ~7!:

]V8

]t8
1¹83~V83v8!5

1

R
¹82V85K¹83~w~r 8!v8!,

~14!

whereK5kD/rV, and R5rVD/h is, as before, the Rey
nolds number for the given problem.

Omitting the primes, we finally obtain

¹•v50, ~15!

¹3v5V, ~16!

]V

]t
1¹3~V3v!5

1

R
¹2V2K~¹3~wv!1wV!. ~17!

The first term in parentheses in Eq.~17! is nonzero near
the boundary of the object around which fluid flows, sin
the vector field¹w is nonzero near this boundary and
directed into the object. The integral of¹w along any curve
beginning outside the object and ending inside the object
be unity. Thus, this term is determined by the tangen
component of the velocity at the boundary.

The second term in parentheses in Eq.~17! is only non-
zero inside the object, and is zero outside.

The solution of Eqs.~15! and ~16! that satisfies the
boundary condition at infinity is given by Eq.~10!, as in Sec.
2. Thus, the integrodifferential equation for the problem h
the form

]V~1,t !

]t
1¹3FV~1,t !3S e1

1

4p E
V

V~2,t !3r12

r 12
3 dV2D G

5
1

R
¹2V~1,t !2KF¹w3S e1

1

4p E
V

V~2,t !3r12

r 12
3 dV2D
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1wV~1,t ! . ~18!
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The solution of Eq.~18! with allowance for Eq.~10!,

when the coefficientK tends to infinity and the size of th
region of variation of the function¹w near the boundary
tends to zero, will tend to the solution of Eqs.~5!–~7! with
the boundary conditions~8! and ~9!.

4. TWO-DIMENSIONAL PROBLEM

We consider two-dimensional flow around a cylinder
arbitrary cross section. We direct thez axis of a rectangular
Cartesian coordinate system along the generatrix of the
inder; the velocity field will then only have components
the x andy directions, and the vorticity field will only have
a z component which will be a function ofx andy. Then for
this component of the vorticity field, Eq.~18! has the form

]Vz

]t
1vx

]Vz

]x
1vy

]Vz

]y
5

1

R
¹2Vz2K@~¹w3v!z1wVz#,

~19!

where the nabla operator only acts on thex andy coordinates
~two-dimensional operator!, and the velocity field is

v~x1 ,y1 ,t !5e1
1

2p E @Vz~x2 ,y2,t !r12#

r 12
2 dx2dy2 , ~20!

which can be obtained from Eq.~10! after integrating over
the z coordinate between plus and minus infinity, where
position vector in formula~20! is two-dimensional~only has
x and y components! and integration is performed over th
entirexy plane.

Equation~19!, with Eq. ~20! inserted, yields the solution
of the two-dimensional problem in the limit, i.e., the dist
bution of the vorticity field and the velocity field at arbitrar
time.

5. TWO-DIMENSIONAL FLOW AROUND A CIRCULAR
CYLINDER

Flow around a circular cylinder is taken as a spec
example of a two-dimensional problem. Assuming that
coordinate origin is located on the symmetry axis of the c
inder, we take the functionw(r ) in the form

w~r !5
1

expS 1

d S r 2
D

2 D D11

, ~21!

whereD is the cylinder diameter,r 5Ax21y2, andd is ap-
proximately equal to the distance from the surface of
cylinder, on which the function is essentially unity inside t
cylinder and zero outside the cylinder~similar to the Fermi–
Dirac distribution, whose properties are well-known!. Cast in
dimensionless coordinates, the function~21! has the form

w~x,y!5
1

expS 1

s SAx21y22
1

2D D11

, ~22!
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The gradient of the functionw(r ) is then given by

¹w~r !52
1

s

expS 1

s S r 2
1

2D D
S expS 1

s S r 2
1

2D D11D 2

r

r
. ~23!

Substituting expressions~22! and ~23! into the system
~19! and ~20!, we obtain an integrodifferential equation fo
the approximate problem of two-dimensional flow around
cylinder. Solving this equation and making the coefficientK
tend to infinity and the coefficients tend to zero, we obtain
a rigorous solution of this problem.

Knowing the distribution of the velocity field from the
solution of Eqs.~19! and~20!, we can determine the dimen
sionless drag and lift coefficients of a circular cylinder.
fact, the force acting on the cylinder from the fluid is equal
the modulus of the resultant effective frictional force intr
duced earlier. If the fluid velocity at infinity is directed alon
the x axis, the dimensionless drag coefficientCd and the
dimensionless lift coefficientCa can be expressed in terms o
the dimensionless velocity:

Cd5
Fd

rV2DL/2
52KE w~x,y!vx~x,y!dx dy, ~24!

Ca5
Fa

rV2DL/2
52KE w~x,y!vy~x,y!dx dy, ~25!

whereFd is the drag andFa is the lift acting on a section o
the cylinder of lengthL. When the coefficientK tends to
infinity and the coefficients tends to zero, we obtain coef
ficients corresponding to a rigorous solution of the proble

6. NUMERICAL RESULTS

A numerical simulation was made of two-dimension
flow around a circular cylinder~19!, ~20!. The functionw(r )
and its gradient were taken in the form~22! and~23!, respec-
tively. The Reynolds number was taken to beR5400.

It was found that the parameterss andK of the function
w(r ), which determine the magnitude and spatial distrib
tion of the effective drag, generally influence the numeri
solution. This influence has the result that the effective d
acts not only inside the cylinder but outside as well. In t
calculations this leads to a slight overestimate of the dim
sionless drag coefficientCd compared with its experimenta
value, since the layers of fluid outside the volume are ad
tionally retarded. This additional retardation is observed
to distances of severals from the cylindrical surface, so tha
ass decreases, the coefficientCd should approach its accu
rate value.

The calculations showed that this is in fact the case. T
calculations were performed on a uniform grid wi
s50.005, K540, and R5400. The drag coefficient ob
tained in the calculations was approximatelyCd51.8. The
value ofCd varied slightly with time~less than by 0.1! as a
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result of the periodic detachment of vortices from the cylin-
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der and the formation of a Karman vortex street beyond th
cylinder.

When s was halved for the same parametersK and R,
the coefficientCd was reduced to'1.4. However, the value
of Cd obtained from experimental investigations of flo
around a cylinder is approximately 1.3~Ref. 1, p. 30!.

The results of the numerical calculations on a unifo
mesh show that in order to obtain a solution with a low
effective retardation of the fluid outside the cylinder, a no
uniform grid concentrated near the boundary must be u
for the calculations ands reduced so that artificial retarda
tion of the fluid flow outside the cylinder is essentially elim
nated.

It should be noted that a small perturbation of the inco
ing flow must be introduced in the numerical simulation
form a Kármán vortex street beyond the cylinder. This sm
perturbation, developing into a pair of vortices beyond
cylinder and formed immediately after the onset of the flu
motion, leads to axisymmetric systematic separation and
system of alternately separating vortices—a Ka´rmán vortex
street. Such a small initial perturbation is always present
real incoming flow of fluid at a cylinder and is responsib
for the instability of a real flow. The time evolution of th
vortices beyond the cylinder obtained numerically pas
through the same stages as the experimental evolution~Ref.
1, p. 395!. In particular, the numerical model correctly pr
dicts the flow separation location.

7. CONCLUSIONS

The integrodifferential equation method can reduce
problem of the hydrodynamics of an incompressible visc
727 JETP 85 (4), October 1997
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field—the vorticity field. This field only differs substantiall
from zero near the object around which the fluid flows and
the vortex wake, so that the vortex field need only be
proximated in this bounded spatial region to obtain a num
cal solution of these equations. The velocity field can
determined using the known vorticity field over all space
using the integral expressions derived.

An important advantage of the proposed method is t
the region of approximation of the function describing t
flow of fluid around the object is reduced in size a
bounded.

The integrodifferential equation method has been
plied here to study external two-dimensional flow around
circular cylinder. However, this method can be successfu
applied to problems of internal flow, and can also be used
express the equations of motion in integrodifferential form
problems of forced and free convection and other proble
of heat and mass transfer, both two-dimensional and th
dimensional.
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Rotation of a droplet in a viscous fluid

K. I. Morozov
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Unique capabilities for modeling the bulk motion of one liquid in another arise from the use of
droplets made of a magnetic liquid. In this paper the low-frequency rotational motion of a
magnetic droplet suspended in a viscous liquid is investigated. In this frequency range, the shape
of the droplet does not depend on the field frequency and is determined only by its
amplitude. An analytic solution has been found in the Stokes approximation to the problem,
which generalizes the classic problem of Jeffrey to the case of a liquid ellipsoidal particle. This
solution makes it possible to determine the velocity field inside and outside the liquid
particle, the moments of the viscous forces acting on the droplet, its coefficient of rotational
mobility. © 1997 American Institute of Physics.@S1063-7761~97!01410-8#
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In a classic paper by Jeffrey,1 which appeared at the en
of the first quarter of this century, the problem of slo
~Stokes! motion of a solid ellipsoidal particle in a viscou
liquid was solved analytically. Subsequently, the results
Ref. 1 have been used many times to describe various
persed systems and liquid crystals~see, e.g., Refs. 2 and 3!.
The study of liquids containing deformable particles, such
polymer solutions, suspensions of liquid droplets, and blo
came much later. In Ref. 4, Roscoe investigated the rheo
of a polymer solution by modeling it as a suspension
viscoplastic spheres in a viscous Newtonian liquid. In Ref
Keller et al. determined the behavior of an erythrocyte in
shear flow, treating the cell as a liquid particle bounded
an easily deformable shell. The basic problem addresse
these papers is how to determine the mechanism by whi
liquid particle interacts with the surrounding liquid and ho
it influences the structure and properties of the system un
study. It is noteworthy that in the papers cited so far
droplet is assigned a passive role, i.e., its shape and the
acter of its motion, including internal motion, are determin
ultimately by the external flow of the viscous liquid. Th
circumstance hinders the design and interpretation of exp
mental studies.

The interesting possibility of avoiding these difficultie
arises when magnetic liquids—i.e., colloidal dispersions
magnets in an ordinary liquid—are used as the drop
material.6 The basic advantage of this approach is that
liquid particle can be controlled by external magnetic fiel
This control includes setting it in motion and creating va
ous stable droplet configurations. This approach was take
Ref. 7, where a droplet of magnetic liquid was suspende
an electrolyte solution. In the absence of a magnetic field
droplet is, of course, a sphere, in our case with a diam
;1 mm. In a constant magnetic field, the droplet elonga
In this case, the shape of the droplet, which is determined
the competition between magnetic and surface forces, ca
approximated to high accuracy by a ellipsoid of rotation.8 If
the field is now made to rotate, the droplet will also rota
along with it. In Ref. 7, Lebedevet al. investigated the rota
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quencies the droplet takes part in a simple forced motion
which its long axis rotates with angular velocityV52p f . In
this case, no change is observed in the shape of the dro
compared to the case of a time-independent field.

Thus, by varying the amplitude of the magnetic field w
can investigate the rotational motion of a liquid ellipsoid
particle. Outwardly, this motion looks like rigid-body rota
tion ~since the magnetic liquid is opaque!; however, there is
a considerable difference between the rotation of a solid p
ticle and a liquid droplet, since motion within the droplet c
occur in the latter case. In this paper we also discuss
low-frequency rotational motion of a droplet. When th
droplets are sufficiently small, the approximation of sm
Reynolds number can be used in the calculations. For
lated in this way, the problem generalizes the problem
Jeffrey1 to a liquid ellipsoidal particle.

The structure of this paper is as follows. In Sec. 2 ran
of fluid parameters and values of the external magnetic fi
are determined for which the droplet remains ellipsoidal, a
equations of motion are formulated and solved. In Sec. 3
motion within the droplet is calculated. In Secs. 4 and 5
balance equation is derived for the moments of the for
and the rotational mobility of the droplet is determined.
the Appendix it is shown that the energy balance equatio
the system is equivalent to an integral condition for the v
cous tangential stresses at the droplet surface.

2. EQUATIONS OF MOTION AND THEIR SOLUTION

Rather than immediately writing down a system of equ
tions of motion for the droplet, let us first estimate seve
parameters of the problem in order to clarify the reasons w
low-frequency rotation of the magnetic field does not des
bilize the droplet shape. In this problem two physical mec
nisms determine the shape of the liquid magnetic particl
the magnetic field and the flow that arises inside and outs
the droplet as it rotates. The effectiveness of each of th
mechanisms is gauged by the value of a corresponding
mensionless parameter. In the first case this is the magn

72806$10.00 © 1997 American Institute of Physics
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Bond number Bo5G2R/s, whereG is the amplitude of the
external magnetic field,R is the zero-field radius of the drop
let, ands is the surface tension at the boundary. In the s
ond case it is the dimensionless frequencyVt, where
t5h1R/s and h1 is the viscosity of the liquid within the
droplet. Using typical values~see data from the experimen
of Ref. 7! for the quantities that enter into Bo andVt
(h1;10 cp, V<10 sec21!, we find that the contributions o
both mechanisms are the same order of magnitude only
extremely weak fields (G;1 Oe), which only slightly ex-
ceed the magnetic field of the Earth. Due to the quadr
dependence of the Bond number onG, the first mechanism
becomes dominant even in a field of;10 Oe. In what fol-
lows we assume that Bo@Vt.

The quantityVt, which is the ratio of the characteristi
time t for the droplet shape to relax to the period of t
field, is also assumed to be small, i.e.,Vt!1. Actually,
when we substitute a value ofs;10 dyne/cm, which is typi-
cal of liquids, into the definition oft, we find that for a
droplet with R<1 mm, Vt<1022. The latter inequality is
equivalent to saying that the long axis of the droplet la
behind the~moving! direction of the external magnetic fiel
~see Sec. 4!, but that this lag is so slight that the projection
the field on the long axis of the droplet essentially coincid
with its stationary value~i.e., when f 50!. Thus, when the
frequency range and parameters of the droplet satisfy
conditionsVt!1 andVt!Bo, the shape of the droplet i
independent ofV and is determined only by one parameter
the Bond number. In this range of parameters we can t
the droplet of magnetic liquid as an ellipsoid of rotation w
semiaxesa.b5c, which corresponds to what is observed7

Figure 1 shows an ellipsoidal magnetic droplet and
xyz coordinate system attached to it. In a constant field,
long axis of the dropletx coincides with the field direction
while in a rotating uniform magnetic fieldG it lags behind
the latter by an anglea. The vectorG rotates relative to the
laboratory coordinate systemx8y8z with angular velocityV
directed along thez axis, i.e., counterclockwise. Thez axis is
common to both systems of coordinates.

When the droplet is acted on by the moment of the m

FIG. 1. Ellipsoidal magnetic droplet~1! in a viscous liquid~2! in a rotating
magnetic fieldG; xyz and x8y8z are axes of the rotating and laborato
coordinate systems.

729 JETP 85 (4), October 1997
-

or

ic

s

s

e

at

e
e

-

the coordinate system attached to the droplet rotate rela
to the laboratory coordinate system with the same ang
velocity V as the field. The droplet of magnetic liquid~re-
gion 1! is surrounded by an unbounded volume of visco
liquid ~region 2! which is at rest at infinity. In the rotating
system of coordinatesxyz its shape is fixed, i.e., the velocit
at the droplet surface has no normal components. Never
less, the tangential components of the velocity are not eq
to zero: because the ellipsoid viewed in the rotating coo
nate system is in an external flow with vorticity2V ~shown
in Fig. 1 by the arrow in region2!, a flow arises within it
with opposite vorticity~clockwise in Fig. 1!.

In the rotating coordinate system the equations of mot
have the following form in the Stokes approximation:

h1,2¹
2v~1,2!5¹p1,2. ~1!

Here v(1,2), p1,2, andh1,2 are the velocity fields, pressure
and viscosities of the two regions under discussion, i.e.,
side and outside the droplet. The absence of bulk magn
forces on the right side of Eq.~1! is a consequence of th
uniformity of the magnetic field within the ellipsoid. Th
boundary conditions at the droplet surface

vn
~1!5vn

~2!50, vt
~1!5vt

~2! , ~2!

express the absence of normal and equality of tangen
components of the velocity at the liquid boundary. At infini
the velocity field should be determined only by the exter
flow:

v~2!~r→`!52V3r . ~3!

Since the shape of the droplet is fixed in our treatme
the formulation of exact conditions for the stress compone
at the boundary between liquids overdetermines the probl
Instead, we supplement the condition of continuity of norm
components of the stress with an integral relation—the c
dition that to zero order inVt the sum of magnetostatic an
surface energies of the ellipsoid be an extremum. This c
which corresponds to a droplet of magnetic liquid in a co
stant field, was discussed in detail by Bacriet al. in Ref. 8,
who obtained the following expression for the eccentricity
the ellipsoide5A12(b/a)2 as a function of the magneti
Bond number:

Bo54pS 1

m21
1n1D 2

3
~12e2!1/2~322e2!2~324e2!~arcsine!/e

~12e2!1/6@~32e2!n1211e2#
. ~4!

Herem is the magnetic permeability of the droplet andn1 is
the demagnetizing factor along thex axis.

The boundary condition for tangential stresses at the
face of the boundary will also be replaced by an integ
relation that follows from energy balance in the system~see
Sec. 3 and the Appendix!.

Equation~1! with the supplementary conditions~2! and
~3! for a liquid ellipsoid can be reduced to the Jeffrey pro
lem for a solid particle. In fact, we look for solutions in th
interior and exterior regions of the form
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vx
~1!52zya/b, vy

~1!5zxb/a, vz
~1!50, p15const,

ize
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E v s8~1!n dS5E v s8~2!n dS. ~11!
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~5!

vx
~2!5uJ2zya/b, vy

~2!5vJ1zxb/a,

vz
~2!5vJ , p25pJ , ~6!

wherez is a parameter to be determined that character
the vorticity within the droplet. This leads to an equati
analogous to~1! for the velocity fieldvJ5(uJ ,vJ ,vJ) and
pressurepJ in region2, and the trivial solutionvJ5 0 at the
surface of the ellipsoid. ConsequentlyvJ and pJ are the ve-
locity field and pressure from the Jeffrey problem1 for a mo-
tionless solid ellipsoid in an external flow with a tensor
velocity gradients]v1

`/]xk[g ik1v ik prespecified at infin-
ity. It follows from Eqs.~3! and~6! that the nontrivial com-
ponents of the symmetricg ik and antisymmetricv ik parts of
this tensor are

g125g215
z

2 S a

b
2

b

aD , v1252v215V1
z

2 S a

b
1

b

aD .

~7!

Expressions~5! and ~6! constitute a formal solution to
the system Eqs.~1!–~3! in terms of the quantitiesvJ , pJ, and
a single undetermined parameterz that describes the uniform
and negative vorticity within the ellipsoid. We determinez in
Sec. 3.

We will not give the explicit but extremely awkwar
expressions forvJ and pJ from Ref. 1 here, since only th
value of the forceFJ per unit area acting on the solid partic
is important for our subsequent discussion. According
Ref. 1~see also Ref. 3!, the quantitŷ FJ& i[s iknk ~wheres ik

is the stress tensor, andnk are components of the outwar
normal vector with respect to the ellipsoid! equals

~FJ! i52pn i1hAiknk . ~8!

Here p is a certain constant andh is the viscosity of the
liquid surrounding the solid particle. The matrix quantiti
Aik are linear combinations of components of the veloc
gradient tensor of the external flow. In our problem, Eq.~7!
implies that only the elementsA12 and A21 are nonzero,
where

A1252
n1g121b2n38v12

~a2n11b2n2!n38
, n385

n22n1

a22b2 . ~9!

The values ofA21 are obtained fromA12 by the simple re-
placements 1↔2, a↔b. The quantityn2 entering into Eq.
~9! is the demagnetizing factor of the ellipsoid along they
axis.

Combining Eqs.~6! and~8!, we find the forceF exerted
by the nonmagnetic liquid~region2! per unit surface of the
droplet:

Fi52pn i1h2~Aik22g ik!nk . ~10!

3. CALCULATION OF THE MOTION WITHIN THE DROPLET

In order to determine the parameterz, which character-
izes the rate of motion within the droplet, we will use th
following integral condition:
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Here the integration is carried out over the surface of
ellipsoid ands ik8 is the tensor of viscous stresses.

In our problem the liquid particle is assumed to be ell
soidal, and the integral relation~11! replaces the exact con
dition of continuity of tangential components of the stress
~according to Eq.~2! vn5 0 at the droplet surface! at the
boundary between liquids. In the Appendix we show that E
~11! is the form taken by the energy balance equation in
system.

Let us carry out the calculation using Eq.~11!. From Eq.
~10!, the contractions ik8

(2)nk is given by

s ik8
~2!nk5h2~Aik22g ik!nk . ~12!

According to the definition of the viscous stresses,9 and tak-
ing into account Eqs.~5! and ~7!, we find for the interior
region that

s ik8
~1!nk522h1g iknk . ~13!

Substituting Eqs.~12! and ~13! into Eq. ~11! and inte-
grating, we find an equation that determinesz:

a

b
A122

b

a
A215zS a

b
2

b

aD 2S 12
h1

h2
D . ~14!

It follows from Eq. ~14! thatz is a linear function of the
angular velocityV of rotation of the long axis of the particle
We will not present its explicit and awkward expression he
~see Eqs.~7! and ~9!, which determineA12 and A21!, but
instead limit ourselves to writing out the quantityz/V in two
limiting cases—small eccentricity~e→0, or a quasispherica
droplet! and large eccentricity~e→1, or a droplet like an
elongated cylinder!:

z

V
5H 211e4S 1

8
1

h1

6h2
D , e→0

8A12e2

ln~12e!

h2

h11h2
, e→1

. ~15!

As expected,z is everywhere negative. In Fig. 2 w
show the results of these calculations based on Eq.~14! for
the modulusuzu/V as a function of eccentricitye of the
droplet, plotted for several values of the ratioh1 /h2 ~label-
ing the corresponding curves!. Of course, the limit
h1 /h2→` corresponds to no motion within the dropl
(z50), in which case the problem reduces to the Jeff
problem for a solid particle~see Eqs.~5! and ~6!!.

4. BALANCE EQUATION FOR TORQUES

Let us compute the torqueL due to viscous friction
forces acting on the ellipsoidal particle during its rotatio
From considerations of symmetry it is clear that the on
nontrivial component ofL will be Lz[L, which equals

L5E ~xFy2yFx!dS, ~16!

730K. I. Morozov
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wheredS is an element of surface area of the ellipsoid. Su
stituting the quantityFi into Eq. ~16! from Eq. ~10!, and
carrying out the integration, we find

L5h2~A212A12!V, ~17!

whereV is the volume of the droplet.
The torque due to viscous friction forces Eq.~17! coun-

terbalances the torqueLm due to external~magnetic! forces:
L1Lm50. We could calculateLm by analogy withL, i.e.,
by considering the magnetic~Maxwell! stresses at the ellip
soidal surface. However, the results for the torque due
magnetic forces acting on an ellipsoid in a uniform exter
field are well known10:

Lm5~m21!2~n22n1!HxHyV/4p. ~18!

Here bym we mean the same static magnetic permeability
we used previously in Eq.~4!, since the dispersion ofm at
low frequencies is negligibly small.11 The componentsHx

andHy of the uniform magnetic field within the ellipsoid ar
related to the magnitude of the external fieldG by10

Hx5G cosa/~11~m21!n1!,

Hy5G sin a/~11~m21!n2!. ~19!

Finally, the balance condition on the torques due to v
cous and magnetic forces acting on a liquid particle can
written in the form

4ph2~A122A21!5~m21!2~n22n1!HxHy . ~20!

This equation determines the lag anglea of the long axis of
the ellipsoid~the x axis! behind the direction of the externa
field G. In general it is impossible to calculate the anglea
for arbitrary eccentricities of the droplet, because ase in-
creases, which means that the external fieldG increases as
well ~see Eq.~4!!, it is necessary to take into account th
dependence of the magnetic permeability on the internal fi
H.6 Here we write only the characteristic value of sin 2a for
a marginally elongated droplet (e→0), for which the depen-
dencem5m(H) is negligible:

FIG. 2. Absolute value of the vorticity parameter within the droplet in un
of V as a function of eccentricity for six values ofh1 /h2 , which label the
corresponding curves.
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As we already mentioned in Sec. 2, the magnitude of
angle by which the droplet shape lags the external field
determined by the small parameterVt.

5. ROTATIONAL MOBILITY OF THE DROPLET

By analogy with well-known problems of flow aroun
solid bodies in the Stokes approximation,2 we consider the
mobility B associated with apparent rotational motion of t
droplet relative to the direction perpendicular to its axis
symmetry, i.e., relative to thez axis in our treatment. Using
the definition of mobility as the ratio of the angular veloci
of rotation of the dropletV to the external magnetic torqu
Lm and Eqs.~7! and ~20!, we obtain

B53BHS

a2n11b2n2

a21b212abz/V
. ~22!

Here BHS51/6h2V is the rotational mobility of a solid
spherical particle. If we setz50, then Eq.~22!, of course,
reduces to Jeffrey’s result for the mobility of a solid ellipso
dal particle.1–3 In the present case of a liquid droplet wit
nontrivial internal motion, the ratioz/V should be taken
from the solution to Eq.~14!. In the limit of a quasispherica
particle it follows from Eqs.~22!, ~14!, ~9!, and~7! that

B5
12h2

2h113h2

BHS

e4 , e→0. ~23!

This result appears paradoxical. Actually, unless the
lipsoid is solid, for whichB→BHS as e→0, the rotational
mobility of the droplet will increase without bound for an
finite value ofh1 /h2 . This implies that even an infinitely
weak field is sufficient to cause rotation of the droplet w
finite velocity V. However, the latter result, at first glanc
violates energy conservation. This ‘‘paradox’’ has a simp
explanation: by the ‘‘rotation’’ of the droplet we mean i
apparent motion, i.e., the rotation of the long axis of t
droplet in the laboratory coordinate systemx8y8z ~see Fig.
1!. The velocitiesv8 of material particles in the laborator
system of coordinates are related to the velocitiesv in the
rotating system of coordinates by the usual kinematic re
tion v85v1V3r , and it follows from Eqs.~5!, ~6! and~15!
that ase→0 these quantities decrease to zero.

In the limit of a marginally elongated particle, the mo
bility of the droplet B approaches its rigid-body value be
cause the internal motion disappears with increasinge ~see
Fig. 2!. In Fig. 3 we plot the rotational mobility of the drop
let B calculated using Eqs.~22!, ~14!, ~9!, and~7! in units of
BHS as a function of the eccentricity of the ellipsoid. Th
mobility is calculated for five values ofh1 /h2 ~labeling the
corresponding curves!. The limit h1 /h2→` corresponds to
a solid ellipsoid. Of course, the differences in character
rotation of the liquid and solid ellipsoids are associated w
the motion within the droplet.
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6. CONCLUSION

In this paper we have touched on only one aspect of
rotational motion of a droplet suspended in a viscous liqu
specifically the way the motion within the droplet interac
with an external flow, assuming that the shape of the dro
remains unchanged. The applicability of our representa
of the droplet as an undeformed particle is limited to lo
frequencies. The experiments of Ref. 7 show that the sh
of the droplet is unchanged up to a certain frequencyf 1 . At
f 5 f 1 the droplet discontinuously elongates severalfo
transforming into a ‘‘dumbbell.’’ As the frequency of th
field increases further, up to a value off * ~which, however,
differs only very slightly fromf 1!, dynamic equilibrium is
established in the system, in which the droplet–dumbb
splits into two equal particles with the same shape as
original droplet. These individual droplets execute from o
to several half-turns and once more reunite into a sin
droplet–dumbbell, which after several rotations once m
splits into two, etc. Subsequent increases in the freque
shift this dynamic equilibrium more and more towards a co
figuration with two droplets, until a frequencyf 2 is reached
at which the ‘‘return’’ to the droplet–dumbbell shape do
not occur. The droplets that form are similar to the origin
droplet, and as the frequency increases they also und
division.7

For droplets with a radius from one to several millim
ters, the frequenciesf 1 at which large deformations begin a
1–3 Hz.7 At these frequencies the Reynolds numbers for
flow within the droplet Re5rVR2/h1 are no longer small.
Hence, the behavior of a droplet at high frequencies mus
studied outside the framework of the Stokes approximat
and the formulation and solution of the stability proble
requires a separate discussion.

The author is sincerely grateful to A. F. Pshenichnik
for useful comments and discussion of the results of
work. This work was carried out with the financial support
the Russian Fund for Fundamental Research~Project 95-01-
00408!.

FIG. 3. Mobility of the liquid dropletB relative to the mobilityBHS of a
solid spherical particle as a function of eccentricity for the same value
h1 /h2 as in Fig. 2.
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We show that the integral relation~11! is equivalent to
the condition of energy balance in the system. LetW1 and
W1 be the energies dissipated per unit time inside and o
side the droplet. Denoting byA the power generated by ex
ternal magnetic forces, let us write the energy balance eq
tion in the system as

A5W11W2 . ~A1!

From Eqs.~17! and ~18! we have

A5LmV5h2~A122A21!VV. ~A2!

We now computeW1 andW2 . According to Ref. 9 the
energy dissipated in the droplet is

W15
h1

2 E
E
S ]v i

~1!

]xk
1

]vk
~1!

]xi
D 2

dV. ~A3!

Here the integration is carried out over the droplet volume
fact that is denoted by the letterE below the integral sign.
Using the equation of motion~1!, we reduce the volume
integral in Eq. ~A3! to a surface integral in the standa
way2,9:

W15E
E
v i~s ik8

~1!2p1d ik!nkdS. ~A4!

The upper index on the velocity field in Eq.~A4! is not
specified: by virtue of the boundary conditions Eq.~2! we
can usev to denote the value of the velocity common to bo
liquids at the surface of the droplet. Sincevn50 ~see Eq.
~2!!, the dissipation of energy in the droplet can be writt
entirely in terms of the viscous stress tens
s ik8

(1)[h1(]v i
(1)/]xk1]vk

(1)/]xi):

W15E
E
v is ik8

~1!nkdS. ~A5!

By analogy withW1 we write the dissipation of energ
in the liquid surrounding the droplet in the form of tw
integrals— one over the surface of a sphere with large rad
L (L@a) and one over the surface of the ellipsoid:

W25E
L

v i
~2!~s ik8

~2!2p2d ik!nkdS2E
E
v is ik8

~2!nkdS.

~A6!

The minus sign in front of the second term is connected w
the fact that the symbolnk in Eqs.~A4! and~A5! denotes the
outward normal to the ellipsoid and the sphere.

In order to calculateW2 we need to know the behavio
of the fieldsv(2) andp2 far from the ellipsoid. Using Eqs.~6!
and ~7! and Jeffrey’s analytic solution,1 we find the follow-
ing asymptotic dependence of the velocity and pressure u
quantities of orderr 22 and r 23 respectively:

vx
~2!5Vy2C

x2y

r 5 2D
y

3r 3 , ~A7!

vy
~2!52Vx2C

xy2

r 5 1D
x

3r 3 , ~A8!

of
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v ~2!52C
xyz

, ~A9!

or

a

We now calculateswr8(2). According to Eq.~9!,

nts

s

z r 5

p2522h2C
xy

r 5 , ~A10!

where

C5R3~A121A21!/2, D5R3~A122A21!/2. ~A11!

The first terms on the right side of Eqs.~A7! and ~A8! give
the unperturbed velocity field in the rotating system of co
dinates; all the remaining terms in Eqs.~A7!–~A10! are per-
turbations due to the droplet.

The integral in Eq.~A6! over the distant sphere~in what
follows we will call this WL! is conveniently calculated in
spherical coordinatesr , w, u, in which the velocity field and
pressure can be rewritten in the form

v r
~2!52

C

r 2 sin2 u sin w cosw, ~A12!

vw
~2!5S 2Vr 1

D

3r 2D sin u, ~A13!

vu
~2!50, p252h2

v r

r
. ~A14!

As is clear from Eqs.~A7!–~A9! or ~A12!–~A14!, the com-
ponents of the viscous stress tensor are of orderr 23. Since
we will take the limitL→` after we have calculatedWL ,
we need only keep the terms of orderr 22 in the integral over
the distant sphere.WL can then be expressed in terms of
single component of the viscous stress tensor:

WL5E
L

vw
~2!swr8~2!dS. ~A15!
733 JETP 85 (4), October 1997
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swr8~2!5h2S ]vw
~2!

]r
1

1

r sin u

]v r
~2!

]w
2

vw
~2!

r D .

Hence, substituting the values of the velocity compone
from Eqs.~A12!–~A14!, we obtain

swr8~2!52
h2 sin u

r 3 ~D1C cos 2w!. ~A16!

The integration in Eq.~A15!, taking into account Eqs.~A13!
and ~A16!, yields

WL5
8p

3
h2DV5h2~A122A21!VV. ~A17!

Comparison of the latter result with Eq.~A2! shows that
WL5A. As a result, expressions~A1!, ~A5!, and~A6! finally
lead to the integral condition~11!.
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This paper discusses the kinetics of phase transitions to superconductivity with a multicomponent
order parameter in zero external field. It is shown that as it approaches equilibrium the
superconductor passes through an intermediate vortex-like state containing domain walls, single-
quantum, and multiquantum axially nonsymmetric vortices and antivortices. The energy
and other parameters of the domain walls are derived. Rigid superconducting bubbles are discussed
and criteria are established for their local stability. ©1997 American Institute of Physics.
@S1063-7761~97!01510-2#
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Investigation of the kinetics of formation and stable e
istence of nontrivial localized structures in media with va
ous physical properties~elementary particles, condensed m
dia, cosmic physics, etc.! is a vigorously evolving area o
physics with a large number of publications~see, for ex-
ample, Refs. 1–13, and the references cited therein!.

At the present time it is well established that although
variety of nonuniform states can nucleate as a result of sp
taneous symmetry breaking, the only objects that can e
without instability are those with nontrivial topological stru
ture ~i.e., which cannot be transformed in a continuous w
into a uniform structure!, i.e., structures that possess top
logical charge. Therefore, the study of nonuniform structu
begins with the elucidation of possible topological clas
and subclasses to which the defects in a given nonequ
rium medium may belong. In particular, there are many
amples of topologically stable defects~deviations from local
equilibrium! in condensed matter: line singularities~vortices
in superconductors and superfluid He3, vertical Bloch lines
in magnets, etc.!; point singularities~monopoles in liquid
crystals and superfluid He3, Bloch points in magnets, etc.!;
or singularities in the form of surfaces~domain walls in su-
perfluid He3, magnets, multicomponent superconducto
etc.!.

The existence of conservation laws for topologic
charge determines not only the stability of these structu
relative to weak external forces and dissipation, but also
many cases determines the character of the interaction
tween the defects. A clear example of this is the phenome
of topological confinement. In condensed media, two ty
of confinement are observed: either one defect serves
boundary for another defect of higher dimensionality, o
defect can only exist inside another object, from which
cannot escape. The latter type of confinement is commo
encountered in magnets and superfluid He3, and as we will
show below, may be encountered in multicomponent sup
conductors as well.

The most complicated problem in the study of topolo
cal defects is their formation kinetics, which involves the
motions, interactions between them, and their interconv
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ing with these phenomena has been achieved only by st
ing systems with simple order parameters and low spa
dimensions, such as vortices in superfluid He3 and ordinary
superconductors4,13–16 and domain walls and vortices i
magnets.17

Increasing the number of components of the order
rameter, for example in liquid crystals, greatly complica
the problem.2,3,9 For such interesting physical systems
He3, the number of components of the order parameter is
large as n518, which leads to a variety of superflui
phases1,18,19 that combine the properties of magnets, liqu
crystals, ferroelectrics, and multicomponent supercond
ors. Investigations of the kinetics of He3 meet with colossal
difficulties.1,12 Rigorous analysis of the possible topologic
singularities in the He3 system using the method of homo
topic groups18,19 postulates configurations in the form of do
main walls, vortices, particle-like excitations, etc. Topolog
cal objects in He3 are characterized not only by topologic
charge but also by elements of the symmetry group, wh
among the defects with a mantle~vortices!, we must distin-
guish singular and nonsingular.1,11 The existence of most o
these defects, and also complex combinations of them~for
example, chains of vortices in layers!, has been confirmed
experimentally.10,12,20

The exotic ‘‘heavy fermion’’ superconductors, in whic
multicomponent order parameters have been experimen
identified, approach He3 in complexity21,22 ~the number of
components of the order parameter can reachn510; see
Ref. 23!. In light of the important analogy between mult
component superconductors and superfluid He3,18,21 we ex-
pect these superconductors to exhibit topological singul
ties with configurations analogous to those observed in H3.
To the best of our knowledge, the current literature conta
no studies of the formation kinetics of vortex states in the
superconductors; however, the multicomponent nature
their order parameters and the presence of gauge vecto
tentials~whose influence is especially important in the kine
ics! should cause these states to differ from well-kno
states in ordinary superconductors in highly nontriv
ways.14–16

The complexity of these systems arises from the fact t

73414$10.00 © 1997 American Institute of Physics
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separated in them, but instead form essentially a single t
sition process. Because a complete picture of this proce
unavailable at the present time, it is our hope that dir
numerical simulation of a phase transition in a multicomp
nent superconductor will clarify our understanding of the
questions somewhat. This clarification is the goal of
present paper.

2. MODEL

The exotic superconductors can be investigated phen
enologically without analyzing the microscopic pairin
mechanism.21,22 It is customary to assume that the pha
transition to the superconducting state involves a lowering
the original full symmetry of the superconducting crys
G5G03R3U(1), whereG0 is the point group of macro
scopic crystal symmetry,R is the time reversal operator, an
U(1) is the group of gauge transformations. When the tr
sition is accompanied only by a breaking of gauge inva
ance, we speak of ordinary superconductivity. In this c
the order parameterD is a complex scalar~with two compo-
nents, i.e.,n52!. If, however, in addition to the breaking o
gauge invariance we also observe breaking of point-gr
symmetry or time-reversal symmetryR in the superconduct
ing state, we speak of unusual~exotic! superconductivity. In
the latter case, the order parameter can be expanded in
functions belonging to one of the irreducible representati
of the crystal point group:

D~k!5Sh jF j~k!. ~1!

If the dimension of the corresponding representation
greater than unity, then the order parameter is multicom
nent (n.2) and the Ginzburg–Landau functional is o
tained by expanding the energy nearTc in powers ofh j in
the form of combinations that are invariant under all t
symmetry operations of the system.

Symmetry analysis of the superconducting classes
heavy-fermion systems21,22,24shows that they can be relate
to systems with anisotropicd-type pairing. Under certain re
strictions, this allows us to write the simplest Ginzburg
Landau functional in the form~see also Refs. 25–32!

F5
1

2 E dvH ah•h* 1
b1

2
~h•h* !21

b2

2
uh•hu2

1b3~ uhxu41uhyu4!1K1Di* h j* Dih j

1K2Di* h i* D jh j1K3Di* h j* D jh i1K4Dz* h j* Dzh j

1g~¹3A!2J . ~2!

where D j5] j2 igAj ; j 5x,y; A is the vector potential;
h5$hx ,hy% is an order parameter with complex vector c
efficients hx5h11 ih2 , hy5h31 ih4 ; a5a(T2Tc);
b1 ,b2 ,b3 ,K j are phenomenological constants; a
g51/8p, g52e/\c. The condition of magnetic
stability22,26,28and the requirement that the fourth-order for
in Eq. ~2! be positive definite impose the following restri
tions onb1 , b2 , b3 , andK j :
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K1.uK2u, K11K21K3.uK2u, K4.0,

b11b21
b3

2
1minH b3

2
,2

b21ub2u
2 J .0. ~3!

All of the new superconductors are good type II sup
conductors~i.e., the Landau–Ginzburg parameterk@1!.

3. PHASE DIAGRAM AND RENORMALIZATION GROUP
ANALYSIS

A large number of papers25–32 have been devoted to
studying functionals like Eq.~2!, including the construction
of phase diagrams. In this section we discuss fluctuati
induced corrections to the results of Landau theory.

In the fluctuation regime, the parameters of the fre
energy expansion Eq.~2! are renormalized by the evolvin
critical fluctuations. These renormalizations are described
the equations of the renormalization group, which in the fi
«-approximation have the form26

u85u25u22w22v222u~w12v !d,

v85v24uv22v224w222~v212wv12u2!d,

w85w@122u24v#2~u21v215w2!d, ~4!

where u5(b11b21b3)/6, v5b1/6, and w5b2/6. The
constantd is proportional to the square of the anisotropyg2

of the gradient part of the functional:

dF5gE ddk kxky~hxhy* 1hyhx* !

and is small to the extent that the anisotropy is small.
The corresponding phase portrait of the system of E

~4! is shown in Fig. 1, plotted using axe
x5(u2w2v)/u(5b3 /(b11b21b3)5b3) and y5(u1w
2v)/u(5(2b21b3)/(b11b21b3)5b2). This phase por-
trait shows the boundary of positive definiteness and
boundaries separating regions of energetic advantage
mean-field theory phases.21,26It is easy to show that the latte
boundaries coincide with separatrices of the renormaliza
group, i.e., curves that separate regions in which

FIG. 1. Phase diagram and phase portrait of the equations of the reno
ization group. The boundaries of positive definiteness of the fourth-o
form are hatched.
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aries. We have the following three symmetrically distin
phases and conditions for their realization:

Sector I: b2,0, b3.0, phaseh5~1,1!; ~5a!

Sector II: 2b21b3,0, b3,0,

phase h5~1,0! or ~0,1!); ~5b!

Sector III: 2b21b3.0, b2.0, phaseh5~1,i !.
~5c!

The usual ideology of the renormalization group sa
that the crossing of stability boundaries by phase trajecto
~the dashed curves in Fig. 1! implies fluctuation-induced dis
continuous phase transitions to structures III, II, and I resp
tively. As a result, these structures turn out to be the sam
those predicted by Landau theory. The only difference is t
the phase transition changes from second-order to first-or
However, in this case the system immediately makes a t
sition ~for the correspondingb j and weak quadratic aniso
ropy! to the low-temperature phases I or III, bypassing int
mediate states like II, as happens in mean-field theory.

Thus, in simulating a phase transition in our system
merically it is sufficient to investigate three sets of para
eters of the Ginzburg–Landau functional, corresponding
the three symmetrically distinct phases Eqs.~5a!–~5c!.

Previous work has shown that the functional Eq.~2! be-
longs to the class of universal Ginzburg–Landau function
with interacting vector fields30 f15(h1 ,h2), f25(h3 ,h4).
In the context of the present paper, it is convenient to use
class to clarify the topology. In particular, whenb2.0 a
phase withf1'f2 is realized, whileb2,0 corresponds to
the phasef1if2 . The phase difference (w12w2) has the
sense of the angle between the vectorsf1 and f2 . More-
over, in Ref. 26 Ivanchenkoet al. show that the functiona
Eq. ~2! has an additional symmetry under simultaneous
change of the vertices (2b3)↔2b2 and the rotations
(h16h4)/21/25w1,4, (h26h3)/21/25w2,3, an operation that
transforms the structures II and III into each other. Furth
more, the replacement (2b3)↔2b2 inverts sectors II and
III about the line that separates them,b250. The existence
of symmetry transformations that permute these pha
among themselves permits us to investigate~at least theoreti-
cally! only one~either! of the sectors II or III. However, in
the presence of strong nonuniformity or for samples of fin
dimensions, direct application of this principle is not alwa
justified, since the study of either of these phases requ
numerical conversion of masses of data and boundary
ditions. Hence, it is convenient to simulate numerically ea
of these sectors independently and compare the results.
fact that the kinetics of appearance of topological singul
ties in phases II and III are the same both qualitatively a
quantitatively for the set of functional parameters giv
above indirectly confirms the correctness of the calculatio

The renormalization group analysis shows that the ph
transition to superconductivity in systems with anisotro
pairing should be a first-order fluctuation-induced pha
transition.26,30 Consequently, it should be accompanied
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tempt to explain the phenomenology of this process by
cluding specific long-lived nonlinear excitations of solito
type, claiming that these excitations, which exist aboveTc ,
are good candidates to play the role of seeds of the su
conducting phase as the temperature of the system is
ered. In the present paper we discuss a possible role
topological singularities in this process.

4. NUMERICAL SIMULATION

Vortices are fundamentally mesoscopic formation
which should be generated spontaneously in the kinetic
ordering as dissipative attractors of the fluctuating system15

We can show that an ordinary superconductor, which is
dered in zero external field, unavoidably passes through
intermediate vortex-like state where the average mesosc
magnetic field is zero,̂h&50, but the mean squared field
nonzero, ^h2&Þ0. In this case, topological configuration
that correspond to pairs of vortices arise from amorph
fluctuations at an arbitrary position.13,14 For a two-
component field, vortices form at points where lines of z
roes for both components ofD(x,y) intersect. Fluctuations
of both components of the order parameter fieldD also in-
teract with the gauge electromagnetic fieldA, which also
generates intrinsic magnetic vortices.

When the number of components of the order param
D is large, the simultaneous intersection of lines of zeroes
all the components is improbable, so that the simplest kin
scenarios are no longer sufficient to describe the forma
and structure of vortices. Since there is no doubt about
existence of a vortex state in systems with hea
fermions,25,29 we may infer that a kinetic mechanism shou
exist that leads to spontaneous formation of axially asy
metric two-quantum vortices. In this case there is no requ
ment that all the components of the order parameter vanis
a single point.

In the presence of fluctuation noisef (r ,t), the evolution
of the order parameterh and gauge fieldA can be described
by a well-known modification of the Landau–Khalatniko
equations13 in the form

]h j

]t
52G

dH

dh j
1 f j~r ,t !,

]A

]t
52GA

dH

dA
1 f A~r ,t !. ~6!

whereG andGA are positive relaxation constants, while th
correlators for the noise fluctuations have the form

^ f ~r ,t !&50,

^ f j~r ,t ! f i~r 8,t8!&5Dd~r2r 8!d~ t2t8!d j i . ~7!

Taking the anisotropy of these materials into acco
~and also for simplicity!, we show that all the quantities de
pend weakly on the coordinatez ~i.e., we solve Eq.~6! nu-
merically in a slice of the superconductor in the plane p
pendicular to thec axis!. In addition, as a first approximatio
we takeK2 , K3!K1 . As a result, we have
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]t j k k j

1S#1b2M
]M

]h j
1b3L

]L

]h j
1 f j ,

~ j 51,...,4, k5 j 2~21! j !,

qA
21 ]A

]t
52¹3~¹3A!1

1

k2 $@h1¹h22h2¹h1#

1@h3¹h42h4¹h3#2AS%1 f A . ~8!

Equation~8! is reduced to dimensionless form in the sta
dard way:

h j5h j S b11b21b3

a D 1/2

, qA5
GAG21

8paj2 ;1,

b25
2b21b3

b11b21b3
, b35

b3

b11b21b3
, j5S K1

a D 1/2

so thatk in Eq. ~8! is the Landau–Ginzburg parameter,k@1.
Furthermore, in order to shorten the calculations we int
duce the notation

S5h•h* [uhxu21uhyu2[( h j
2,

M5~hx* hy2hxhy* !/2i

[ iez•~h3h* !/2[@h1h42h2h3#,

L5~hx* hy1hxhy* !/2[h1h31h2h4 ,

P5uhxu22uhyu2[h1
21h2

22h3
22h4

2. ~9a!

It is easy to prove thatM and L are related by the expres
sions

hxhy* 5L2 iM , hx* hy5L1 iM . ~9b!

Moreover, there is an identity which will be important
what follows:

S2[P21~2M !21~2L !2. ~9c!

The derivatives of the Ginzburg–Landau functional Eq.~2!
can also be written in terms ofS, L, M , and P ~see the
Appendix!.

The equations in~8! are solved by the numerical metho
used in Refs. 16, 34, 35, 40. In particular, the authors
these papers observed that superconductors of the first
exhibit ~kinetic! instability of a planar domain boundar
separating a superconducting phase from a normal ph
whereas in superconductors of the second kind this boun
is stabilized by the absorption of vortex excitations.34 They
also discuss the problem of boundary conditions, which
especially important for large-scale numerical simulation
a relatively small volume~in our case 2563256 computa-
tional points!. In particular, the boundary conditions for Eq
~8! include the continuity of all components of the magne
induction vectorB5¹3A at the boundary of the supercon
ductor, and a certain condition~not entirely uniquely de-
fined! on the order parameterh. For superconductors with
small coherence length we can limit ourselves to the simp
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sults are obtained when cyclic boundary conditions are us
which are also simple.

4.1. The phase h5„1,i …

As mentioned above, the formation and evolution of
pological singularities in all phases of a multicomponent
perconductor look qualitatively very similar. Therefore, w
illustrate the results of simulation and their analysis in de
only for the phaseh5(1,i ) ~sector III!, which is the sector of
greatest practical interest for the system UPt3, and then very
briefly touch on distinctive features of the behavior in t
phases of sectors I and II.

For UPt3, experiment gives us the estimateb1;b2 .27,29

In this case, in the absence of an external field a phas
realized with broken time-reversal invariance, such that
ground state of the superconductor is doubly degenerate
respect to directions of the vectori h3h* ~corresponding to
degeneracy with respect to the phase differen
(w12w2)56p/2). It is significant that these states are sep
rated by an energy barrier. Note thati h3h* is proportional
to the orbital angular momentum of a Cooper pair,21 and the
corresponding uniform superconducting state is magnetic

A fragment of a system containing typical configuratio
of the order parameter modulush and the magnetic field
h5¹3A ~in zero external magnetic field! at intermediate
stages of its evolution, with initial conditions in the form o
fluctuations at an arbitrary position, is shown in Fig. 2~a and
b respectively!. Clearly visible are ‘‘punctures’’ and ‘‘chan-
nels’’ of width D on the surfaceh (x,y) with different field
directions~‘‘vortices’’ and ‘‘antivortices’’!. The emergence
of domain walls, as predicted in Ref. 21, in which the ord
parameter is lower than its equilibrium value but still no
zero, constitutes a fundamental quantitative novelty of
ordering kinetics of superconductors with a multicompon
order parameter.

In the intermediate stages of the transition to superc
ductivity, domain walls together with vortex-like formation
generate a complex, and sometimes extremely tangled,
figuration. However, as the system approaches equilibr
~ast→`!, out of all sets of nonuniformities there ‘‘survive’
only those domain walls attached to the boundaries~for in-
stance, at grain boundaries!. The remaining nonuniformities
vortex–antivortex pairs and closed domain walls, all collap
with time. Invoking the transparent analogy with magne
bubbles, we can refer to regions of the superconductor wi
closed domain walls as ‘‘superconducting bubbles.’’

In the initial stages, a closed domain wall acquires
ringlike shape as it gradually contracts. Then it either tra
forms to the uniform state or generates a two-quantum vo
F52F0 , at the center of which all the components of t
order parameter reduce to zero. In the latter case, the dom
wall—a superconducting bubble—has a ‘‘topologic
charge’’ from the outset, due to the phase excursion ofp
generated by transporting each of the vectorsf1 and f2

along its external boundary. The wall traps a magnetic fl
F52F0 nonuniformly distributed along it in previou
stages, and gradually shapes it into an ‘‘ordinary’’ tw
quantum axially asymmetric vortex. The typical initial topo
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FIG. 2. The phaseh5(1,i ). A fragment of
the system in the intermediate phase of
evolution for the following parameters of the
Ginzburg–Landau functional:b251, b3

520.5,k510: a—order parameter configu
rationh(x,y) ~for clarity this is shown in the
form of the function (12S), where S5h
•h* ); b—the same for the magnetic fieldh.
The mutual correspondence between the d
tribution of h(x,y) and nonuniformities in
the surface (12S) shown in Fig. 2a is evi-
dent. Two-quantum vortices are formed he
as a result of compression of a domain wa
with trapped magnetic flux.
ogy and evolution of a superconducting bubble as it becomes
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a two-quantum vortex is shown in Fig. 3.
The numerical observation of domain walls makes it d

sirable to predict them analytically, if only approximatel
To do so, we must reduce the initial system of equations
such a way as to best take advantage of known result
numerical simulation, preserving their nontrivial properti
as much as possible.

Above all, we note that a good approximation can
ready be obtained from a one-dimensional version of E
~8!, at least where the curvature of the domain wall is sm
We can also verify that the solutions we want forh j are only
slightly distorted by the gauge fieldA (k@1). Finally, nu-
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fluctuating fields of the system in the vicinity of doma
walls are anomalously~logarithmically! slow compared to
their rate of relaxation toward these domain walls. This
typical of attractor trajectories, which are the ‘‘slowest’’ pa
of the system to equilibrium. In turn, collapsing doma
walls are so-called ‘‘precursors’’ for still lower-dimension
singular vortices~as are the singularities of superconducti
bubbles that possess topological charge!.

In light of all this, a sufficient description of slowly re
laxing domain walls can be obtained by studying the follo
ing static reduced system for the fieldh :
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FIG. 3. Initial topology and evolution of a superconducting bubble as it becomes a two-quantum vortex.
d2S dh j
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dx222F(
j

S dx D G22S~S21!14b2M 14b3L 50,

~10a!

d2M

dx2 22Fdh1

dx

dh4

dx
2

dh2

dx

dh3

dx G22M ~S21!1b2SM50,

~10b!

d2L

dx222Fdh1

dx

dh3

dx
1

dh2

dx

dh4

dx G22L~S21!1b3SL50,

~10c!

d2P

dx2 22F S dh1

dx D 2

1S dh2

dx D 2

2S dh3

dx D 2

2S dh4

dx D 2G22P~S21!50,

~10d!

and then determining the fieldh using the results, as nece
sary. However, even in this form the system is still ve
complex. We solved it by using the method of verifiab
smallness described recently in Ref. 13. In brief, this meth
essentially works as follows: we first solve the system~10!
numerically, and then identify which terms of the equatio
~or their combinations! are small compared to the remainin
terms over a wide range of parameter values.

739 JETP 85 (4), October 1997
d

s

b3,0. Furthermore, the terms in Eqs.~10b! in square brack-
ets are small, so that by neglecting them and using the id
tity ~9c! we can reduce the system~10! to equations that
contain only the pair of independent invariantsS and M .
Then, using various projections of the phase portrait of
system in the space~S, M , dS/dx, and dM/dx!, we can
establish approximate relations between these variable
the vicinity of the domain wall, after which we solve th
remaining single equation.

After implementing this procedure we found the a
proximate relationS(M ).11b2(22b2)M2 ~in reality this
expression is accurate to 1022 against a background o
unity!!, for which the equation forM reduces to the simple
form of the equations of Refs. 5, 7, 17:

d2M

dx2 1b2M2b2~22b2!2M350. ~11!

With the boundary conditionsM→2M0[21/(22b2) as
x→2`, M→1M0 as x→1`, we obtain the well-known
solution:

M ~x!5h1h42h2h35Q tanh
x

D
. ~12!
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FIG. 4. The phaseh5(1,i ). Numerically
evaluated distribution of the quantitie
S(x), M (x), L(x), andP(x) and current
density j (x) for j55, k510, b251,
b3521. Figures~a—c! show projections
of the phase portrait onto the subspac
(M ,dM/dx), (S,dS/dx), and (M ,S), re-
spectively. The analytic estimates of th
nonuniformities~of order 6D in the vi-
cinity of each of them! are essentially in-
distinguishable from the numerical curve
and are not shown on this figure.
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the
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D5j~2/b2!1/25jS b11b2

b2
D 1/2

~13!

is the width of the wall, andQ5(M 1`2M 2`)/2 is its to-
pological charge. Accordingly, we obtain an analytic a
proximation forS(x) in the form of a so-called ‘‘dark soli-
ton’’:

S~x!5Sh i
2511b2S tanh

x

D D 2Y ~22b2!. ~14!

Substituting Eqs.~12!, ~14! into Eq. ~9c!, we easily find
the explicit dependenceP(x):

P~x!56H S 12S tanh
x

D D 2D F ~22b2!2

2b2
2S tanh

x

D D 2G J 1/2Y ~22b2! ~15!

i.e., a ‘‘soliton’’ that vanishes at infinity. It follows from Eq
~15! that for anyb2<1 the solutions describe a distributio
of physical quantities at arbitrary distances from the cente
the wall, whereas forb2.1 the solution is applicable only a
distances from the wall center of orderx<D
3 arccoth$(22b2)/b2%.

The discussion above applies wheneverb3,0, where-
uponL→0 in the superconductor. If we chooseb3.0 ~en-
suring, of course, that we stay in sector III as before, i
b2.b3.0!, it turns out thatP(x)→0 within the wall, while
now it is L(x), that is nonzero. In this case, in order to obta
the solutionL(x) it is once more sufficient to use the identi
~9c!, which leads to the replacementP→2L in Eq. ~15!.

These results are summarized in Fig. 4, from which i
clear thatS has essentially its equilibrium value througho
most of the bulk. Against this background there is a cert
region of widthD where the amplitudeS decreases and var
ies within the limitsS0.S.constÞ0. In those places wher
the modulus of the order parameter has a minimum,M
changes sign and reduces to a constant, equal in orde
magnitude to the equilibrium6M0 over the same distance
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zero only at the center of the wall, and vanishes over
same distances.

Projections of the phase portrait are shown in Figs.
4b, and 4c for the subspaces (S,dS/dx), (M ,dM/dx), and
(S,M ) respectively. These projections illustrate the conn
tion between these quantities, which we alluded to wh
obtaining the analytic estimates Eqs.~12!–~15!. The fact that
disagreement between these estimates and the numeric
sults ~for b2 in the range from 0 to 1.85! does not increase
the noise level argues in favor of the approximations
have made.

The additional phase shift (w12w2)5u(x) in the soliton
Eq. ~12! reaches6p and is determined by the relation

sin~u~x!!S 12b21b2S tanh
x

D D 2D 1/2

5tanh
x

D
, ~16!

which is correct forb2<1. In the limit b2→0 it reduces to
the expression sin(u(x))5tanh(x/D), which coincides with the
corresponding expression in Ref. 21 obtained in the limit
large anisotropyb3→`. In the other very important limit
b2→1, a jump in phase by6p takes place at the center o
the domain wall sin(u(x))5sign(tanh(x/D)); this also happens
for 1,b2,2. We can directly confirm that the total electr
current transverse to the wall vanishes.

Thus, this wall lies between two equilibrium states wi
different signs ofM ~the direction of magnetization!, states
that are separated by an energy barrier from one anot
therefore it is a stable topological formation. The existen
of the domain wall implies the following finite positive cor
rection to the free energy of the superconductor:

DF5E ~F~x!2F0!dV5sS. ~17!

HereS is the area of the wall (yz), ands is the energy per
unit area expended to create it~without including the mag-
netic field energy!,

s5Hc
2b2~32b2!D/12p~22b2!.0, ~18!
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FIG. 5. The same as in Fig. 2 for low
surface energy. The parameters of th
Ginzburg–Landau functional are
b250.1 ~in Fig. 2, b251!, b3520.5,
k510: a—typical configuration of the
quantity (12S)[12h•h* , b—
magnetic fieldh.
where Hc is the critical thermodynamic field in the phase

an
es
e
io

s
o

As b2→2, i.e., near the stability boundary~see Fig. 1!

n-

ex-
the

of

nly
t

h5(1,i ), and

Hc
258pa2/~22b2!~b11b21b3!. ~19!

Sinces.0, the state of the superconductor is metastable
can exist only if the domain wall is pinned at the boundari
We also cannot rule out states in which the entire sampl
divided up into a band-like domain structure, a configurat
that can lead to lowering of the total energy~wall
energy1demagnetization energy of the magnetic domain!.
The surface energy of the walls depends monotonically
the parameterb25(2b21b3)/(b11b21b3). As b2→0,
the energy tends to zero,s→0, while asb2 increases the
energy increases.
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the energy of the wall formally tends to infinity,s→`. In
this limit the estimates~12!–~18! are no longer valid. Nev-
ertheless, an increase ins near the stability boundary is in
itself quite typical of the phenomenology of fluctuatio
induced weak first-order phase transitions.13 In this region
the system must expend considerable energy to form
tended domain walls; in the final analysis, this is also
reason for threshold-like seed formation.

The qualitative picture of the formation and evolution
topological singularities for larges (b2→2) differs only
slightly from the case discussed already (b251). New and
interesting details of the behavior of the system appear o
at low wall energies (b2→0); see Sec. 5. In particular, i
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now present in the system~easily distinguishable puncture
in the order parameter!, arranged in chains within the wall. I
some cases we encounter unclosed domain walls at w
end a vortex is found. For higher well energies, analog
nonsingular vortices within a domain wall are easily dist
guished only in the pattern of magnetic field, whereas pu
tures in the order parameter are essentially invisible~Figs. 2
and 3!.

In the outer regions of such a vortex only two out of t
four components vanish, and at its center the modulus of
order parameter is approximatelyS0/2. However, the order
parameter in the wall itself determined by Eq.~14!, can be
considerably smaller at higher energies:S(x50)
!S0/2(51/(22b)). Therefore, in the latter case the sha
of a vortex is to a large extent determined by the funct
S(x), and as a result the vortex seemingly merges with
wall. It is clear that an arbitrary choice of parameters of
functional could lead to noncircular one-quantum vortices
the wall, i.e., the vortices tend to elongate along the wal
the surface energy increases.

Yet another interesting detail of the behavior of the s
perconductor for smalls is the anomalously slow relaxatio
of the configuration observed in numerical experiments w
a single closed wall contains a chain of one-quantum vort
with m vortices andn antivortices,mÞn. In experiments,
for example, it is not uncommon to encounter cases wh
m@n or conversely, although the most typical situations
those described above, i.e., eitherm5n—a superconducting
bubble without topological charge relaxing to the unifor
state—orm52, n50 ~or conversely!—a superconducting
bubble with topological charge relaxing to an axially asy
metric two-quantum vortex~antivortex!. Note, however, that
for small values ofs, vortices located in the bulk of the
superconductor are significantly transformed—they dege
ate into two closely spaced;D single-quantum nonsingula
vortices~Fig. 6a!. The distribution of magnetic field of this
configuration is quite close to circular~Fig. 6b!. The case
m@n is closely associated with the problem of local stabil
of a superconducting bubble and will be discussed bel
We emphasize that the magnitude of the total magnetic
through the surface of the sample was monitored through
the numerical experiment and remained unchanged,
F50. In other words, the total topological charge of t
entire sample equals zero.

At small s, the pattern obtained from the numerical s
lutions recalls the experimental situation in rotating He3,10,12

where so-called vortex layers with vortex chains are
served. This similarity is by no means accidental, but rat
is due both to the common origin~spontaneous symmetr
breaking! and similarity of the order parameters of He3 and
multicomponent superconductors. In both cases, the o
parameter in the domain wall is already decreasing, and
result it is energetically more favorable for the system
locate topological defects that possess a mantle~vortex! not
in the bulk ~of the superconductor, for example! but within
or along a domain wall.

Interestingly enough, experimental visualizations of t
magnetic field in high-temperature superconductors37–41also
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tional of type Eq.~2! was proposed for the high-temperatu
superconductor system Y–Ba–Cu–O as far back as Ref.
based on analysis of its possible superconducting clas
Most contemporary experimental data, however, suggest
the symmetry of the order parameter in high-temperature
perconductors is probably not lower than the symmetry
the crystal lattice, and that time reversal is not a brok
symmetry. Nevertheless, the problem of spatial anisotrop
the order parameter~i.e., D5D(k)! remains open.42 There is
an abundance of evidence both againstd-pairing and in favor
of it, and even in favor of (s1d)-pairing.42,26 In the latter
two cases the effective order parameter turns out to be
nificantly multicomponent, which leads to a functional
Ginzburg–Landau type as in Eq.~2!.26 At this time the situ-
ation remains in flux and has not been finally resolved.

In any case, by comparing our numerical results w
experiment,39–41 we have confirmed that if high-temperatu
superconductors have anisotropic pairing, the parame
b25(2b21b3)/(b11b21b3), b35b3 /(b11b21b3) of
the Ginzburg–Landau functional should be small,ub2u,
ub3u!1. However, we also note that in the traditional theo
~s-pairing!, the explanation for the existence of vortex chai
in high-temperature superconductors is a very complica
problem that requires additional assumptions to justify i43

The multicomponent order parameter generates these s
tures automatically.

4.2. The phase h5„1,1…

In sector I a phaseh5(1,1) is realized in Fig. 1 with a
phase difference (w12w2)50,p. Here the ground state i
doubly degenerate with respect to the sign of the quan
L5f1•f25(h1h31h2h4) . In this case the states are als
separated by an energy barrier. For the one- dimensional
with the corresponding substitutionb2→b3 , M→L we have
solutions whose form coincides completely with that giv
in Eqs. ~12!–~18!. The wall separates phases in which t
vectorsf1 andf2 are parallel and antiparallel.

The formation kinetics of vortex structures in a phase
sector I do not differ significantly from the picture in sect
III. The results of numerical simulation in the later stages
evolution are qualitatively the same as in Figs. 3, 4, 5, and

4.3. The phase h5„1,0… „or h5„0,1……

In sector II the phasesh5(1,0) orh5(0,1) are realized.
These states are also separated by an energy barrier, an
degenerate with respect to the sign of the quan
P5f1

22f2
2. Here we also have a domain wall and singu

and nonsingular vortices. The distribution of the quantit
S(x), P(x), M (x), and L(x) in phase II for the one-
dimensional case are qualitatively the same as for the o
phases. Namely, the solution for the order parameterP(x) is
a kink, and for the order parameterS(x) a dark soliton. In an
interphase wall, depending on the ratio of the parameter
the functional, eitherMÞ0 for b3,2b21b3 or LÞ0 for
b3.2b21b3 . Equations~12!–~18! also maintain their va-
lidity, and we need only take into account the correct n
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FIG. 6. Results for the evolution of a supe
conducting bubble with low surface energy
The two-quantum vortex splits.
malization ofS0 in this phase and replaceD by the quantity

e

th
is

i-

s,

so that the formation of multiquantum vortices is energeti-
uld

th-
es

s to
e
ng
cts
c-
er-
l-
D5j((22b)/2b)1/2, where (2b)5min$ub2u;ub3u%.

5. LOCAL STABILITY OF BUBBLES

In all phases, we encounter anomalously long-liv
closed walls with a chain of similar vortices at low energys
~the configuration mentioned above whenm@n!—i.e., rigid
superconducting bubbles. In ordinary superconductors,
energy per unit length of a single-quantum vortex
«15(F0/4pl)2 ln(k10.08). For the energy of a hypothet
cal n-quantum vortex we obtain«n'n2«1 , which isn times
the total energy ofn noninteracting single-quantum vortice
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e

cally unfavorable; moreover, there are no forces that co
do the work required to form them.

In multicomponent superconductors the situation is o
erwise. It is energetically favorable for one-quantum vortic
to be located in walls. At the same time, the system tend
shrink the wall length~the energy of the wall is positive; se
Eq. ~18!!. Hence, we are dealing here with an interesti
concrete realization of the topological confinement of obje
with differing spatial dimensions mentioned in the Introdu
tion. This type of confinement is also encountered in sup
fluid He3 ~Ref. 20! and in several liquid crystals. The stabi
ity of configurations of the ‘‘vortex1wall’’ type is caused by
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the same factors as in field theory,5–8 and strongly recalls the
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situation with quarks, which are not observed individua
~this analogy was pointed out in Ref. 1 in connection w
He3!. When vortices are separated, their energy of separa
increases proportional to the distance between them, as i
separation of quarks. A domain wall in this case plays
role of a ‘‘gluon string,’’ which in our case joins single
quantum vortices. If necessary, the analogy can be exten
much farther, e.g.,n-quantum vortices are hadrons, the ma
netic field gives photons, etc.~see Ref. 1!.

Let us discuss, for example, a configuration consisting
a closed domain wall withn similar vortices. An analogous
structure for rotating superfluid He3 was proposed in Ref. 10
and discussed in detail in Ref. 12. In our case the wall ene
s competes with the magnetic repulsion of the vortices
s→`, then the configuration described tends to contrac
an ideal n-quantum point vortex. For finite values of th
surface energys, the configuration of superconductin
bubbles is frozen, and ifs is very low, the equilibrium di-
ameter of a bubble made up ofn similar vortices can turn ou
to be quite large.

To estimate this diameter, consider a simple model w
symmetrically placed vortices on a ring-like domain wall
radiusR@j. The energy of this configuration can be writte
in the form

U~R!5
1

2 (
iÞ j

N
F0

2

8p2l2 ln
l

r i j
12pRs, ~20!

where the first term is the magnetic energy due to the re
sive interaction of one-quantum vortices at a distance ofr i j

between them~for simplicity j,r i j ,l!, while 2pRs is the
surface tension energy of the wall. The curvature of the w
is considered small, in which case the contribution to
energy from the curvature is logarithmically small and c
be neglected, as shown in Ref. 12. The condition of equa
of the forcesF5dU/dR50 is satisfied for

Rc5n~n21!F0
2/32p3l2s. ~21!

Yet another characteristic length scale appears in this sys
which must be compared withj andl. Specifically, in order
that the value of the order parameter at the center of
domain be close to equilibrium, the distance between vo
ces in the domain wall should bel 52Rc sin(p/n)@2j. Using
the explicit form ofs from Eq. ~18! ~in phase III for defi-
niteness! and the fact that in order of magnitude we ha
F0;21/2ljHc ~in classical superconductors this ratio is
identity!, the conditionRc sin(p/n)@j can be rewritten in
expanded form:

3n~n21!~22b2!sin~p/n!/~32b2!~2b2!1/2@1. ~22!

The inequality~22! is satisfied for essentially anyb2!1 and
n.2. Numerical simulation shows that for the parameters
our system, ‘‘frozen’’ multiquantum superconductin
bubbles of large size can actually exist; see Fig. 7. Fon
52 the curvature of the domain wall cannot be neglected
Eq. ~22! loses its validity.

As s increases, the superconducting bubbles, for
ample withn54, degenerate into the configuration shown
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parameter is less than its equilibrium value,S!S0 , but is not
equal to zero. The order parameter distribution has w
defined fine structure with characteristic size;j and con-
comitant fine magnetic field structure. Note that at large d
tances from the center of thisn-quantum vortex ‘‘spot,’’ the
magnetic field created by the vortices becomes isotropic,
should show up in experiments as a single washed
n-quantum vortex.

From this section it follows that ideal axially symmetr
vortices in whose core the order parameter equals zero do
exist even whens→` and the gradient parts in Eq.~2! are
isotropic, i.e.,K2 , K3!K1 . Fluctuations of the order param
eter for TÞ0 split up the multiquantum vortex, leading t
spatial anisotropy of its superconducting and magnetic pr
erties. A lattice made up of such vortices in an external fi
will have other than hexagonal symmetry. A detailed stu
of this question is beyond the scope of this paper. If
fluctuations of the order parameter are sufficient to ov
whelm the energy barrier that confines the vortex in the w
~for example, in the immediate vicinity ofTc!, then a
2n-quantum vortex should dissociate inton two-quantum
vortices. In any case, there is no topological hindrance to
process.

6. CONCLUSION

A phase transition to superconductivity is accompan
by the formation of an intermediate vortex-like state~a me-
soscopic magnetic field witĥh&50, ^h2&Þ0!. In multicom-
ponent superconductors, the nonuniform intermediate s
can contain various topological singularities of the order
rameter. Our numerical experiments have established tha
most typical singularities are domain walls, multiquantu
and single-quantum vortices~and antivortices!, and super-
conducting bubbles, including rigid bubbles.

A multiquantum vortex is formed by the collapse of
rigid bubble with the corresponding topological charg
which in turn arise spontaneously from amorphous fluct
tions at an arbitrary location. ForTÞ0, fluctuations in the
order parameter split these vortices inton-quantum vortex
spots.

When certain relations hold between the parameters
the Ginzburg–Landau functional, some of the topologi
singularities mentioned above, i.e., domain walls attache
the boundary of the sample and rigid bubbles, are ano
lously long-lived in multicomponent superconductors. T
ground state of a multicomponent superconductor in z
external magnetic field is metastable and nonuniform, and
order parameter, together with the associated magnetic p
erties, exhibits domain structure. The latter circumstance
affect the magnetic characteristics of the superconductor
serious way when a magnetic field is switched on.

The nonlinear excitations described above play an
portant role in the processes leading to fluctuation-indu
first-order transitions in these systems, so that their dyna
behavior qualitatively recalls the phenomenology
fluctuation-induced processes in anisotropic systems
scribed in Ref. 13.
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FIG. 7. Stable superconducting bubb
with n510 in the phaseh5(1,i ): a—
distribution of order parameterS5h•h* ,
b—magnetic field.
Finally, we mention that these results may be of particu-
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alerted us to the newest results in the area of high-
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ce
lar interest both to the theory of He3 and to gauge field
theory, since the model we have investigated can be rega
as statistically analogous to the corresponding field the
models of Refs. 5–8.

A number of papers published in recent months,44–50

have pointed out the great relevance of investigations of v
tex states in superconductors withd-pairing.
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FIG. 8. n-vortex spot formed by the
collapse of ann-quantum supercon-
ducting bubble in the phaseh5(1,i )
for n54: a—distribution of order
parameter S5h•h* , b—magnetic
field.
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APPENDIX

Ginzburg–Landau functional in effective variables

Using the new variables Eq.~9!, the Ginzburg–Landau
functional Eq.~2! can be completely rewritten in these va
ables. For a more symmetric description we introduce
vector S5(S1 ,S2 ,S3), whose components are respective
S15P, S252M , S352L. We have

F 5E dVH F(
j

~¹Sj !
2/41Js

2G Y uSu2uSu1S2/2

2b2S2
2/42b3S3

2/41x~¹3A!2J . ~A1!

Of course, the number of variables in the functional~A1!
remains the same as in Eq.~2!, since information abort the
phase of the superconducting order parameterh is contained
in the termJs , which has the form
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~A2!

i.e., it coincides exactly with the expression for the superc
ducting current. We note that functionals of this type f
Js50 anduSu5const are encountered in the physics of ma
netic phenomena when investigating the statics and dyn
ics of domain boundaries.17
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Dynamics of the intermediate state and domain walls in an external oscillating magnetic

by
field
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We study the dynamics of 90-degree domain walls in the intermediate state of antiferromagnets,
the state being realized in a first-order spin-flop transition in an external magnetic field.
We show that an additional oscillating external magnetic field leads to a drift in the domain walls
and find the dependence of the drift velocity on the amplitude, frequency, and polarization
of the oscillating field. Finally, we discuss the possibility of the domain structure drifting as a
whole. © 1997 American Institute of Physics.@S1063-7761~97!01610-7#
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It is well known that first-order spin-reorientation
phase transitions induced by an external magnetic field o
temperature variations in a magnetically ordered crystal
generate an intermediate state, i.e., a state in which dom
of two competing phases coexist in the magnetic mate
The intermediate state was first studied theoretically in R
1–3, which was followed by experimental verification th
such a state actually exists.4–8 These same papers also de
with regions of stability of the intermediate state and hig
frequency properties~in particular, antiferromagnetic reso
nance!. A consistent general approach to analyzing therm
dynamically stable intermediate states is developed in R
9 and 10, and at present the idea that two-phase dom
structures constitute the intermediate state of a magnetic
terial is generally accepted~see, e.g., Refs. 11–13!.

The domain structure of the intermediate state is therm
dynamically stable and its energy is lower than that of
constituent homogeneous magnetic phases. The domai
the intermediate state have various symmetries and are s
rated by domain walls. These walls are 90-degree in a s
flop transition in an antiferromagnet in an external magne
field directed along the easy-magnetization axis, and i
temperature phase transition of the Morin type between
tiferromagnetic and weakly ferromagnetic states.

The dynamical properties of domain walls~and interme-
diate states as a whole!, i.e., the laws governing the behavio
of such walls in external fields, have not been studied
thoroughly as the analogous properties of 180-degree dom
walls and the corresponding domain structures.14–17Ivanov14

analyzes the dynamics of the 90-degree domain wall sep
ing the collinear and ‘‘flopped’’ phases of an antiferroma
net in a spin-flop transition. He examines the steady-s
motion of a domain wall in an external constant magne
field, allowing for magnetic-dipole interaction and pheno
enologically taking into account relaxation processes.
notes that the dynamic properties of a 90-degree domain
differ considerably from those of 180-degree walls; in p
ticular, he finds that the highest possible velocity of stea
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relativistic interactions, while the highest velocity of 18
degree domain walls in antiferromagnets is determin
solely by exchange interactions~see, e.g., Ref. 18!.

Sobolevaet al.16 study the uniform motion of a 90
degree domain wall formed in a temperature phase trans
and find that the velocity of such walls is determined by t
balance between ‘‘pressure,’’ emerging as a result of
deviation of the system from the phase equilibrium positio
and ‘‘friction,’’ due to dissipative processes. Stationary a
oscillatory movements of a domain wall in rhomb
Seignette-ferromagnets in an external electric field are a
studied by Sobolevaet al.17

The characteristic features of the dynamical properties
domain walls in dysprosium orthoferrite in a pulsed ma
netic field with short buildup times were detected in the e
periments of Gnatchenkoet al.19–21 The features are mani
fested in the nonlinear dependence of the wall velocity
the field’s amplitude, and in the asymmetry of this depe
dence under reversal of the pulsed field. These studies m
the beginnings of the experimental investigation of the d
namical properties of the domain walls that exist in the
termediate state, subject to an external alternating magn
field.

The goal of our theoretical study is to establish the d
namical properties of single 90-degree domain walls in
intermediate states and the domain structure as a whole w
an external alternating magnetic field is applied to the s
tem. By way of an example, we examine the domain walls
the intermediate state under the conditions of one of the m
thoroughly studied first-order spin-reorientational phase tr
sitions in which an intermediate state of the magnetic ma
rial occurs: a spin-flop transition in an antiferromagnet
cated in an external magnetic field that is parallel to
easy-magnetization axis.1,2,9–13 The domain structure corre
sponding to this state consists of alternating domains of
phases, the collinearF i and the ‘‘flopped’’F' , where the
antiferromagnetism vector is directed, respectively, along
easy-magnetization axis and perpendicular to it. The in
mediate state is realized within a finite range of magne

74807$10.00 © 1997 American Institute of Physics
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tively, the lability fields of the ‘‘flopped’’ and collinear
phases. The spin-flop transition fieldHp , i.e., the field in
which the energies of the two phases are equal, lies wi
this range, whose length is, in order of magnitud
DH5H i2H''4pHp /d, whered is the constant of homo
geneous exchange between the sublattices. Within this ra
the intermediate state is thermodynamically stable, and
phase concentration is a linear function of the external m
netic field.

We start with the dynamics of a single 90-degree dom
wall to which an oscillating external field is applied. We th
discuss the motion of the domain structure in the interme
ate state as a whole.

As is known from the example of 180-degree doma
walls in different magnetically ordered crystals, a doma
wall oscillates in an oscillating magnetic field at the fie
frequency and also drifts, i.e., acquires a constant velo
component.22,23 Below we show that these types of motio
are also typical of 90-degree domain walls.

2. BASIC EQUATIONS

According to Refs. 24 and 25~see also Refs. 18 and 26!,
the dynamics of a double-sublattice antiferromagnet can
explained using an effective LagrangianL written in terms of
the unit ferromagnetism vector l5L /uL u, where
L5M12M2 , with M1 andM2 the magnetization vectors o
the sublattices. For an antiferromagnet with rhombic m
netic anisotropy located in an external magnetic fieldH(t),
the effective Lagrangian density can be written as

L5M0
2H a

2 F 1

c2 l̇21~¹–l!2G2
2

dM0
2 ~ l–H!22

1

2
~b1l x

21b2l y
2!

2
1

4
~b18l x

41b28l x
2l y

21b38l y
4!1

4

dgM0
2 ~H–~ l̇3 l!!J , ~1!

where M05uM1,2u is the modulus of the sublattice
magnetization vectors,c5gM0(ad)1/2/2 is a characteristic
velocity, which coincides with the minimum phase veloc
of spin waves in the absence of a magnetic field,a andd are,
respectively, the homogeneous and inhomogeneous
change constants,g is the gyromagnetic ratio,b1 andb2 are
the second-order anisotropy constants, andb18 , b28 , andb38
are the fourth-order anisotropy constants; a superior dot
notes a time derivative. This is a valid description of t
dynamics of an antiferromagnet when the external field
much weaker than the exchange fieldHe5dM0 . Here the
weak-ferromagnetism vectorM5M11M2 is related tol by

M5
2

d
~ l3~H3 l!!1

2

dgM0
~ l̇3 l!.

The dynamical stopping of a domain wall, for whic
various relaxation processes are responsible, will be ta
into account by using a dissipative functionQ:

Q5
lM0

2g
l̇2, ~2!

wherel is the relaxation constant.
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etrize the unit vectorl,

l z1 i l x5sin u exp iw, l y5cosu, ~3!

the equations of motion with allowance for the dissipati
terms can be written as

aS Du2
1

c2 ü D1sin u cosuFaS 1

c2 ẇ22~¹w!2D
2b1 sin2 w1b22b18 sin2 u sin4 w1b38 cos2 u

2
b28

2
cos 2u sin2 wG1

4

dgM0
2 @Ḣx cosw

2Ḣz sin w22ẇ sin2 u~Hx sin w1Hz cosw!

2Hyẇ sin 2u#2
4

dM0
2 ~Hy cosu1Hx sin u sin w

1Hz sin u cosw!~Hx cosu sin w2Hy sin u

1Hz cosu cosw!5
l

gM0
u̇, ~4!

a¹~sin2 u~¹w!!2
a

c2 ~sin2 uẇ!

2sin2 u sin w coswS b11
b28

2
cos2 u

1b38 sin2 u sin2 w D 1
4

dgM0
2

3F2
1

2
sin 2u~Ḣx sin w1Ḣz cosw!1Ḣy sin2 u

12u̇ sin2 u~Hx sin w1Hz cosw!1Hyu̇ sin 2uG
2

4 sin u

dM0
2 ~Hy cosu1Hx sin u sin w

1Hz sin u cosw!~Hx cosw2Hz sin w!

5
l

gM0
ẇ sin2 u. ~5!

If both b1 andb2 are positive, then in an external mag
netic field H0 parallel to thez axis and weaker than th
spin-flop transition fieldHp5@d(2b11b18)/8#1/2, the unit
vector l in the ground state is collinear with the eas
magnetization axisz. The magnetic material in this case ca
have two types of 180-degree domain walls: in one the v
tor l rotates in thexz plane, and in the other, in theyz plane.
If b2.b1.0, the domain wall in whichl rotates in thexz
plane is stable. This domain wall corresponds to the an
u5u05p/2, and the angle variablew5w0(y) satisfies the
equation

aw092S b12
4H0

2

d D sin w0 cosw02b18 sin3 w0 cosw050

~6!
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~we assume that the magnetization distribution in the domain
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wall is not uniform along they axis; a prime denotes a de
rivative with respect to this coordinate!.

Note that although we study an antiferromagnet h
with rhombic magnetic anisotropy, our results can be gen
alized to antiferromagnets with a different type of anisotro
in the xy plane—hexagonal, for example—the only cond
tion being that the anisotropy in thexy plane is high~see
below!. Our theory cannot be applied to a purely uniax
antiferromagnet, in which the orientation ofL in the
‘‘flopped’’ phase is not fixed, with the result that the plane
rotation ofL in the domain wall is not defined. Analysis o
the nonlinear dynamics of a domain wall in a uniaxial an
ferromagnet merits a separate investigation, which is out
the scope of the present work.

It is known ~see, e.g., Refs. 1–3! that if the fourth-order
anisotropy constantb18 is negative, in the spin-flop transitio
field, i.e., atH05Hp , a first-order phase transition occurs
which the antiferromagnetism vectorl is reoriented perpen
dicular to thez axis and atb2.b1 is collinear with thex
axis. At the phase transition point, the two phases~the col-
linear and the ‘‘flopped’’! can coexist, with a 90-degree do
main wall separating them. As Eq.~6! implies ~with allow-
ance for the boundary conditions w0(2`)50,
w0(1`)5p/2, andw08(6`)50!, this wall can be described
by the equations

w085
1

2y0
sin 2w05

1

2y0
sech

y

y0
,

cos 2w052tanh
y

y0
, ~7!

wherey05A2a/ub18u is the thickness of the 90-degree wa
Note that the wall is much thicker than ordinary 180-deg
walls in view of the smallness of the fourth-order anisotro
constant as compared to the second-order anisotropy
stants (y0@y1805Aa/b).

Now, if we apply an additional magnetic field along th
z axis to the already existing domain wall, the wall begins
move in the direction of a more energetically favored ph
with a constant velocity, whose value is determined by
difference between the total field and the spin-flop transit
field.16 Here the highest velocity of motion is determined
the maximum strength of the additional field, the reason
ing that the total field strength must remain within the lab
ity region of the phases separated by the wall. If a vary
field is applied to the domain wall, the wall’s motion b
comes time-dependent; in particular, in a oscillating field,
wall oscillates at the field frequency and, as we will sho
moves with a certain velocity. Moreover, the presence of
additional oscillating field distorts the shape of the dom
wall.

Below we examine the dynamics of a domain wall l
cated in an additional oscillating magnetic fieldH̃(t), all
three components of which are nonzero and, in the gen
case, the phase shifts between the components are arbi
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H̃x5H̃0x cos~vt1x!, ~8!

H̃y5H̃0y cos~vt1x1!.

We will see that the domain-wall velocity strongly depen
on x andx1 .

3. LINEAR OSCILLATIONS OF A DOMAIN WALL

Assuming that the additional field is very weak, we em
ploy, following Refs. 22 and 23, one of the versions of pe
turbation theory used for solitons to analyze domain-w
dynamics. To this end we introduce a collective variab
Y(t), which has the meaning of the position of the doma
wall at time t, and seek a solution of Eqs.~4! and~5! in the
form

u5
p

2
1q~j,t !, w5w0~j!1c~j,t !, ~9!

wherej5y2Y(t). The functionw0(j) describes the motion
of an undistorted domain wall~the structure ofw0(j) is the
same as that ofw0(y) in the static solution~7!!, and the
functions c~j! and q~j! represent the distortion of the do
main wall. The velocity of domain-wall drift is defined as th
instantaneous velocityV(t)5Ẏ(t) averaged over the oscilla
tion period, Vdr5V(t), where the bar indicates averagin
over the oscillation period of the external field.

We seek the functionsc~j! andq~j!, which describe the
distortion of the domain wall, and the domain-wall veloci
V(t) in the form of series expansions in powers of the fie
amplitude, bearing in mind that we are interested only in
forced motion of the wall:

q~j,t !5q1~j,t !1q2~j,t !1••• ,

c~j,t !5c1~j,t !1c2~j,t !1••• , ~10!

V5V11V21••• ,

where the subscripts 1, 2, etc. denote the order of smalln
of the quantity in relation to the field amplitude, an
cn ,qn ,Vn;hn.

We substitute the expansions~10! into Eqs.~4! and ~5!
and separate the terms of different orders of smallness.
viously, in the zeroth approximation we obtain Eq.~6!,
which describes a domain wall at rest.

The first-order perturbation equations can be written
the form

~ L̂1T̂!c122
v0

ṽ0
2

q̇1 cosw05
sin 2w0

2y0ṽ0
2 ~V̇11v rV1!

1
gM0

ṽ0
2 @ ḣy1v0~hz sin 2w02hx cos 2w0!#, ~11!

~ L̂81T̂1s!q112
v0

ṽ0
2

ċ1 cosw0

5
v0V1

y0ṽ0
2

cosw0 sin 2w01
gM0

ṽ0
2 @ ḣx cosw0
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2ḣz sin w01v0hy cosw0!], ~12!

pi
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g
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,

with the result that in this equation we can ignore the term
-

r

of
e

t-

nd.
r
n
the
t by

ond-
Here we have introduced the notationh(t)5H̃(t)/M0 ,
s5(¸2121)v0

2/ṽ0
2, with ¸5b1 /b2 , and

T̂5
1

ṽ0
2

d2

dt2
1

v r

ṽ0
2

d

dt
,

where v05gM0Ab1d/2 and ṽ05c/y05v0Aub18u/2b1!v0

are the frequencies of activation of the bulk branch of s
waves in the magnetic material atH050 andH05Hp , re-
spectively, andv r5ldgM0/4 is the characteristic relaxatio
frequency.

The operatorL̂ in Eq. ~11! has the form of a Schro¨dinger
operator with a nonreflecting potential:

L̂52y0
2 d2

dj2 112
2

cosh2~j/y0!
. ~13!

The spectrum and the wave functions of the opera
~13! are well known. The spectrum has one discrete le
l050 corresponding to a localized wave function,

f 0~j!5FA2y0 cosh
j

y0
G21

, ~14!

and a continuous partlk511(ky0)2 corresponding to the
eigenfunctions

f k~j!5
1

bkAL
F tanh

j

y0
2 iky0Geikj, ~15!

wherebk5A11(ky0)2 , andL is the crystal length.
In contrast toL̂, the operator

L̂85L̂1
5

4 cosh2~j/y0!
1S 11

b28

ub18u
D exp~j/y0!

2 cosh~j/y0!
~16!

is not nonreflecting, and there is no way in which we can fi
its spectrum and eigenfunctions, which makes the analys
the dynamics of a 90-degree domain wall much more co
plicated than the analysis of the similar problem for 18
degree walls~for all models of magnetic materials consi
ered in Refs. 22, 23, 27 and 28 the first-approximat
equations contain only the nonreflecting operatorL̂!. Hence,
in solving the first-approximation equations we~a! use the
fact thatṽ0!v0 and~b! restrict our study to low-frequenc
external fields, i.e.,v!ṽ0 . Such restrictions are justified b
experimental considerations~see Refs. 19–21!, with the fre-
quencies of the alternating field being of order 106– 107 s21,
while for typical antiferromagnetsv0;1011 s21 and
ṽ0;109– 1010 s-1. We also assume that in our antiferroma
net anisotropy in the xy plane is high, i.e.,
(b22b1)/b1@(ṽ0 /v0)2;ub18u/b1 . This condition is not
too stringent, since usually fourth-order anisotropy consta
are much smaller than second-order anisotropy constant
a factor of 10 or even by several orders of magnitude. Hen
a 10% difference in the constants~which is typical of most
antiferromagnets! is enough for the approximation to work.1!

Here the parameters in Eq. ~12! is much greater than unity
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(L̂81T̂)q1 in comparison withsq1 and express the func
tion q1(j,t) in terms ofc1(j,t):

q15
1

s H v0V1

y0ṽ0
2

cosw0 sin 2w01
gM0

ṽ0
2 @ ḣx cosw0

2ḣz sin w01v0hy cosw0#22
v0

ṽ0
2

ċ1 cosw0J .

~17!

Plugging the expression forq1 into ~11! and ignoring small
terms in the parameterv/ṽ0!1, we arrive at an equation fo
the functionc1(j,t):

~ L̂1T̂!c15
sin 2w0

2y0ṽ0
2 ~V̇11v rV1!1

gM0

ṽ0
2

3@~112k cos2 w0!ḣy

1v0~hz sin 2w02hx cos 2w0!#. ~18!

We seek a solution of Eq.~18! in the form of an expansion in
the eigenfunctions of the operator~13!, which comprise a
complete orthonormal set:

c1~j,t !5ReH F(
k

dkf k~j!1d0f 0~j!GeivtJ . ~19!

The expansion coefficientsdk and d0 in ~19! can be
found in the usual way by multiplying the right-hand side
Eq. ~18! by f k* and f 0* , respectively, and integrating th
products with respect toj.

One important remark is in order here. The firs
approximation equations~11! and ~12! describe the excita-
tion of linear spin waves against a domain-wall backgrou
The last term in the expansion~19! corresponds to the shea
~Goldstone! mode, which describes the domain-wall motio
as a whole. The corresponding degree of freedom of
system, however, has already been taken into accoun
introducing the collective coordinateY(t) into the definition
of the variablej. The Goldstone mode in the expansion~19!
must therefore be dropped, i.e., we must set the corresp
ing expansion coefficient to zero,d050 ~see the discussion
of this problem in Rajaraman’s book29!.

For a monochromatic field of frequencyv we obtain

c1~j,t !5
gM0

ṽ0
2 @a1 cos 2w01a2G~j!#,

q1~j,t !5
gM0

ṽ0
2 @cosw0~a3 cos 2w01a4 sin 2w0!

1a5 cosw01a6 sin w0#. ~20!

Here we have introduced the notation

a05kḣy2v0hx , a25~11k!ḣy , a352ḣx ,

a452
2ṽ0

2v r

v21v r
2 hz , a55S ṽ0

v0
D 2

~ ḣx1v0hy!,
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2h2!sin 2w 22
v0

~V q8 cosw
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sed
a652S
v0

D hz ,

G~j!5
y0

2 E
2`

`

dk
tanh~j/y0!sin kj2ky0 coskj

~11k2y0
2!3/2 sinh~pky0/2!

.

The requirement that there be no Goldstone mode in~19!
is equivalent to the requirement that the right-hand side
Eq. ~18! be orthogonal to the functionf 0 , and this deter-
mines the equation for the velocityV1(t) of a domain wall in
the approximation that is linear in the field strength:

V̇11v rV152y0gM0@2v0hz~ t !1p~11k!ḣy~ t !#. ~21!

Solving Eq.~21! with a monochromatic field of type~8!
is fairly simple:

V1~ t !5mzh0z@v r cosvt1v sin vt#

1myh0y@v r sin~vt1x1!2v cos~vt1x1!#,

~22!

where

mz52
2gM0y0v0

v21v r
2 , my5

pgM0~11k!y0v

v21v r
2 .

The expression~22! describes the oscillations of a do
main wall in an oscillating external field. Clearly, it does n
lead to wall drift:V1(t)50. Note that atv50, i.e., in a static
field, mz remains finite~in contrast tomy , which vanishes!
and describes domain-wall motion with a constant velocity16

4. SECOND APPROXIMATION. DOMAIN-WALL DRIFT

We now analyze the equations of the second approxi
tion in the amplitude of the external magnetic field.

Here we will not write the system of equations of th
second approximation in general form. Instead, we give o
the equation that follows from Eq.~4!:

L̂c25
sin 2w0

2y0ṽ0
2 ~V̇21v rV2!1N~j,t !, ~23!

where the functionN(j,t) is defined as follows:

N~j,t !5
1

ṽ0
2 ~V̇11v rV1!c181sin 2w0~5 cos2 w021!c1

2

2
1

4 S V1

c D 2

sin 4w02y0 sin 2w0q1q18

2q1
2S sin2 w02

b28

2ub18u
D sin 2w0

2
gM0

ṽ0
2 @~ ḣx sin w01ḣz cosw0!q1

12~hx sin w01hz cosw0!q̇1#

2S gM0

ṽ0
D 2Fhxhz cos 2w01

1

2
~hx

2
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z 0G
ṽ0

2 1 1 0

1c1q̇1 sin w0!1
gM0v0

ṽ0
2 @2c1~hz cos 2w0

1hx sin 2w0!2q1hy sin w0#. ~24!

The second equation in the system, which follows fro
Eq. ~5! and determines the functionq2(j,t), has a similar
structure but contains no second-order term in the expan
of the domain-wall velocity,V2 , so that it is of no interest to
us.

A solution of Eq.~23! can also be sought in the form o
an expansion in the eigenfunctions ofL̂ similar to ~19!. Here
too, as in the first-approximation equation, we must requ
that there be no shear mode in the expansion of the func
c2(j,t), i.e., the right-hand side of Eq.~23! must be or-
thogonal to the functionf 0(j). This leads to an equation tha
determines the second-order termV2 in the expansion of the
domain-wall velocity:

V̇21v rV252ṽ0
2E

2`

`

dj N~j,t !sin 2w0 . ~25!

Plugging the functionsc1(j,t) and q1(j,t) calculated
in Sec. 3 into~23! and averaging over the oscillation perio
and integrating in~25!, we arrive at an expression for th
drift velocity Vdr5V2(t),

Vdr5(
i j

n i j ~v;x,x1!H̃0i H̃0 j . ~26!

We will call the coefficientsn i j , which are functions of
the field frequency and phase shifts, the nonlinear mobili
of a domain wall:

nxx52n0S v0

ṽ0
D 2

, nyy5n0k,

nzz52n0F11
4

3
k2S b28

ub18u
2

2

5D S ṽ0

v r
D 2G ,

nxz52pn0S v0

ṽ0
D 2Fcosx2k

v0

v r
sin xG ,

nxy5n0

vv0

ṽ0
2 @2k1~11k!h#sin~x2x1!,

nyz52pn0kFvv0

ṽ0
2

sin x1

2
k

16S 12
4b28

ub18u
D ṽ0

2

v0v r
cosx1G , ~27!

wheren05y0g2/2v r , and h is a numerical factor of orde
unity. In deriving~27! we employed the fact that the chara
teristic relaxation frequency in an antiferromagnet is ve
high (v r;1010 s21), since the relaxation constantl in ~27!
is exchange-amplified, so that at frequencies commonly u
in experiments (106– 107 s21) we havev!v r .
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Note that in contrast to the drift of 180-degree doma
walls studied in Refs. 22, 23, 27, and 28, the drift of 9
degree domain walls is possible even if the oscillating ex
nal magnetic field has only one component~in the case of
180-degree domain walls only the off-diagonal compone
of the nonlinear mobility tensor are nonzero!.

To make a numerical estimate of the components of
nonlinear mobility tensor we use the following typical valu
of the parameters:y0;1025 cm, g;107 s21 Oe21, and
v r;1010 s21. Here n0 proves to be of order
1021 cm s21 Oe22. Assuming also thatk;1, v0;1011 s21,
andṽ0;1010 s21, we find from the expressions for the com
ponents of the nonlinear mobility tensor that at the frequ
cies used in the experiments,v;107 s21, the following es-
timates hold:nxx;102n0 , nyy;n0 , nzz;102n0 , nxz;102n0

at x50, nxz;103n0 at xÞ0, nyz;1021n0 at x1Þp/2,
nyz;1022n0 at x5p/2, nxz;1022n0 at xÞx1 , andnxy50
at x5x1 .

Note that some of the components of the nonlinear m
bility tensor strongly depend on the phase shift between
corresponding components of the external field; in particu
nxz increases by a factor of ten whenxÞ0. It is in this case,
i.e., in the presence ofx- andz-components of the oscillating
field and a nonzero phase shift between these compon
that the domain-wall drift velocity is highest~with the am-
plitude of the external field of about one oersted, the veloc
may be as high as 1 m/s).

5. DRIFT OF A TWO-PHASE DOMAIN STRUCTURE IN THE
INTERMEDIATE STATE

The intermediate state in question emerges as a resu
a spin-flop transition and consists of alternating domains
the ‘‘easy-axis’’ ~antiferromagnetic! phase in which the an
tiferromagnetism vectorl is either parallel or antiparallel to
thez axis ~andm50! and the ‘‘flopped’’~weakly ferromag-
netic! phase in whichl is either parallel or antiparallel to th
x axis ~and mÞ0!. A typical domain structure in the inter
mediate state is depicted in Fig. 1.

Clearly, in this state there can be eight types of 9
degree domain walls separating the domains with differ
orientations ofl and, in addition, having different direction
of rotation of this vector when we go from the left domain
the right one. Naturally, the domain structure in the interm
diate state drifts as a whole only if all the domain walls in t
structure drift in one direction and have the same drift vel
ity.

In Sec. 4 we discussed the drift of a single domain w
with a well-defined orientation of the antiferromagnetis

FIG. 1. Two possible types of orientation of the antiferromagnetism ve
in a domain structure that is in the intermediate state; only the structu2
can drift.
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Eq. ~6!, which determines the domain-wall structure, w
used the boundary conditionsw0(2`)50 and w0(1`)
5p/2, i.e., we assumed thatl is parallel to thez axis in the
left domain (y→2`) and parallel to thex axis in the right
domain (y→1`).

Analysis of the dynamics of all other domain walls th
can exist in the current structure shows that in a given os
lating external magnetic field, all the walls drift with th
same absolute value of the drift velocity but with differe
directions of drift, which depend on the mutual orientation
l in domains separated by a wall. It turns out that all dom
walls in which the sign of the derivativew08 is the same, i.e.,
walls with the same direction of rotation of the vectorl,
move in the same direction. For example, all walls in whi
w08.0, i.e., in which l rotates clockwise in the transitio
from the left domain to the right one, move in the sam
direction as the specific domain wall studied above. Suc
structure is shown schematically in Fig. 1~type 2!.

Generally speaking, in the majority of experiments
which the spin-flop transition was studied, the intermedi
state with such a domain structure does not emerge—inst
a structure emerges in which the adjacent domain walls
characterized by different directions of rotation ofl, which
means that for such structures, drift as a whole is imposs
in our model. However, the required structure can still
formed by special means, and the principles of such form
tion are discussed in Refs. 30 and 31.

This work was partially supported by a grant from th
International Soros Science Education Program~ISSEP!
~Grant No. APU 062018!.
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Anomalous behavior of the specific heat and upper critical magnetic field in the

ar-
superconducting single crystal La 1.85Sr0.15CuO4

M. N. Khlopkin, G. Kh. Panova, N. A. Chernoplekov, A. A. Shikov, and A. V. Suetin

Kurchatov Institute, 123182 Moscow, Russia
~Submitted 24 December 1996!
Zh. Éksp. Teor. Fiz.112, 1386–1395~October 1997!

The specific heat and resistive upper critical magnetic field of the single crystal La1.85Sr0.15CuO4

are investigated in the temperature range 2–50 K in magnetic fields up to 8 T for two
directions of the magnetic field, parallel and normal to theab crystalline plane. For both
orientations a nonlinear~close to square root! magnetic field dependence of the mixed-state
specific heat and a positive curvature of the temperature dependence of the upper critical
magnetic field are observed. Neither of these anomalies is described by standard theories of
superconductivity. Within the framework of the thermodynamic relations it is shown
that in a type-II superconductor a relationship exists between the temperature dependence of the
critical magnetic field and the field dependence of the specific heat. The anomalies observed
in these phenomena are interrelated. ©1997 American Institute of Physics.
@S1063-7761~97!01710-1#
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Many properties of high-temperature superconduct
~HTSC’s!, discussed within the framework of various the
retical models,1–6 different significantly from the propertie
of ordinary superconductors. An upper critical magnetic fi
Hc2(T) with positive curvature of its temperature depe
dence is frequently observed in oxide~including high-
temperature! superconductors7–13 and indicates a possibl
difference between the superconductivity mechanism
these systems and the standard mechanism~standard super
conductors are characterized by negative curvature of
Hc2(T) curve with saturation at low temperatures!.

The electronic specific heat is of special interest. For o
of the models of nonstandard pairing~with lines where the
energy gap on the Fermi surface vanishes!, Volovik6 has
predicted an anomalous influence of the magnetic field
the specific heat of the superconductor near zero temp
ture, specifically a nonlinear dependence of the specific h
for the superconductor in the mixed state on the magn
field ~in standard superconductors with an isotropic ene
gap this dependence is nearly linear14–16!. Later a similar
anomaly was observed experimentally in the supercondu
YBa2Cu3O7 ~Refs. 17–20!. Note, however, that in Refs
17–20 the effect of the magnetic field on the specific h
was observed against the background of a large para
magnetic contribution to the specific heat, which introduc
significant uncertainty in the inferred field dependence of
specific heat of the superconductor proper.

The indicated anomalies are observed in various p
nomena and in different temperature regions~the first—in
the critical magnetic field nearTc , and the second—in the
specific heat in the low-temperature region!, and were previ-
ously considered to be independent.

The goal of the present work was to experimenta
study the specific heat of the high-purity single crys
La1.85Sr0.15CuO4 in the mixed state, and to determine its u

755 JETP 85 (4), October 1997 1063-7761/97/10075
s

d
-

n

e

e

n
ra-
at
ic
y

or

t
tic
d
e

e-

l

allel and perpendicular to theab plane.

2. SAMPLE PREPARATION AND CHARACTERISTICS

The La1.85Sr0.15CuO4 single crystal for study was ob
tained by the floating zone melting method with optical r
diation heating on a URN-2-ZM setup21 at a crystallization
rate of 0.5–0.7 mm/h. The samples were nearly cylindric
with a diameter of 7 mm and length of 16 mm, and we
black with metallic lustre.

The structural parameters and degree of crystalline p
fection of the samples were monitored by neutron and x-
diffractometers.

According to the room-temperature x-ray diffractio
data, the sample had tetragonal structure~F4/mmm! with lat-
tice parametersa5b53.773(1) Å and c513.233(2) Å.
The misalignment was on the order of 8°. The lattice para
eters of the sample are in good agreement with the dat
Chouet al.22 for a sample of La1.84Sr0.16CuO4.

The superconducting transition temperatureTc and its
width DTc were determined to beTc539.2 K and
DTc50.5 K from the magnetic susceptibility measured
constant current and from the resistance, andTc538 K and
DTc52 K from the specific heat. A jump was observed
the specific heat temperature dependence, correspondin
the superconducting transition with amplitud
DC/Tc59 mJ/mol•K2. The resistance ratiosR(296 K)/
R(45 K) were 1.4 for the current perpendicular to theab
plane and 1.8 for the current in theab plane for the corre-
sponding absolute values of the room-temperature resist
r'530 mV•cm andr i56 mV•cm.

3. EXPERIMENTAL TECHNIQUE

The specific heat of the sample in magnetic fields up t
T was determined by the adiabatic method with puls

75505$10.00 © 1997 American Institute of Physics
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heating.23 The experimental error was about 2% in the te
perature range 1.5–4 K, 1% in the range 4–10 K, and 0
0.5% in the range 10–50 K.

The temperature dependence of the resistance in a m
netic field was measured in a separate experiment by
standard constant-current four-contact method with the
rent density not exceeding 0.5 A/cm2. In the first case theab
plane was perpendicular to the field, and the current w
directed in this plane. In the second case theab plane was
parallel to the field, and the current was perpendicular to
plane.

4. EXPERIMENTAL RESULTS

The main results of our resistance and specific heat m
surements of the single crystal La1.85Sr0.15CuO4 are shown in
Figs. 1–6.

The temperature dependence of the relative resista
R(T)/R(300 K) is plotted in Fig. 1 for the two directions o
the current at which the measurements were made, par
and perpendicular to theab plane. As can be seen from th
figure, both current directions are characterized by ‘‘meta
behavior’’ of the resistance with the value of]R/]T falling
as the temperature is lowered.

The temperature dependence of the resistance in m
netic fields up to 8 T in theregion of the superconductin
transition is shown in Fig. 2. The superconducting transit

FIG. 1. Temperature dependence of the resistance in zero magnetic fie
two current directions:~1! perpendicular and~2! parallel to theab plane.
-
–

g-
he
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n

to 50% of its normal-state value, was found to be 39.2 K
zero field. Here asRnorm we took the resistance atT546 K,
where the magnetic field is no longer observed to have
effect on the resistance.

As can be seen from Fig. 2, the superconducting tra
tion observed in the temperature dependence of the re
tance is noticeably smeared on the high-temperature side
the magnetic field is increased, the curves of the superc
ducting transition are shifted toward lower temperatures w
an increase in their widthDTc . A strong anisotropy in the
broadening of the superconducting transition is also
served, which is typical of all single-crystal HTSC system
and which, as a rule, can be explained within the framew
of the fluctuation theory.24,25 In particular, for m0H58 T
(m054p•1027 H/m is the permeability! the anisotropy of
broadening of the superconducting transitionDTc(')/
DTc(i) at the 10% and 90% levels~of Rnorm! reaches 2.6.

The experimental results allowed us to determine
temperature dependence of the upper critical fieldHc2(T) for
the two given directions of the magnetic field, which is plo
ted in Fig. 3. These curves display a nonlinear depende
with positive curvature. The initial slope
m0@2dHc2(T)/dT#Tc

, determined from the linear part of th
dependenceHc2(T), is equal to 1.45 T/K for the magneti
field perpendicular to theab plane, and 4.37 T/K for the
magnetic field in theab plane.

Regarding the problem of estimatingHc2(0) in the
La1.85Sr0.15CuO4 system, note that for low-temperature s
perconductors, measuringHc2(T) does not present any spe
cial difficulties since their values lie in the range of magne
fields accessible to most laboratories. Similar measurem
for high-temperature superconductors, as a rule, are lim
to the temperature region nearTc, since the values ofHc2(T)
significantly exceed the accessible magnetic fields. The
fore, to estimateHc2(0) use is usually made of the followin
expression, taken from the WHH theory:26

Hc2~0!50.7Tc~dHc2 /dT!Tc
, ~1!

where (dHc2 /dT)Tc
is found from the experimental data

Estimates of the upper critical field from the initial slop
dHc2 /dT in this relation yieldm0Hc2(0)540 T for H per-
pendicular to theab plane andm0Hc2(0)5120 T forH par-
allel to theab plane.

for
of
ic
FIG. 2. Temperature dependence
the resistance in various magnet
fields ~for H perpendicular~a! and
parallel ~b! to the ab plane! at vari-
ous values ofm0H: s—0, d— 0.5,
,—1, .—2, h—3, j—4, n—6,
m—8 T.
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However, the unusual temperature dependence
Hc2(T) observed in a number of single crystals differs s
nificantly from the dependence predicted by Eq.~1! and can-
not be explained within the scope of this theory. Therefo
Eq. ~1! can lead to substantial errors in the estimates
Hc2(0), as wasshown experimentally12,13,27 for the system
Ba12xKxBiOy .

Figure 4 plots the temperature dependence of the spe
heat of the La1.85Sr0.15CuO4 sample nearTc for the two field
directions after subtracting the three-parameter regular
of the specific heatCb , represented in the form of a polyno
mial:

Cb5 (
n51

3

AnTn. ~2!

The coefficients of the polynomialAn were determined by
least-squares fitting to ensure minimum deviation of
regular part of the specific heat from the experimental po
in the region aboveTc . Jumps corresponding to the supe
conducting transitions are visible in the specific heat te
perature dependence. The jumps are 2–7 K wide, and
temperatures at their midpoints are in good agreement

FIG. 3. Temperature dependence of the upper critical magnetic fieldHc2(T)
for the field perpendicular~circles! and parallel~squares! to the ab plane.
The points denoted by empty symbols were inferred from the resista
curves of the transition, and those denoted by filled symbols—from
midpoint of the specific heat discontinuity.
of
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the resistance and susceptibility measurements. At temp
tures belowTc the magnetic field affects the specific hea
leading to a decrease in the size of the jump and shifting
transition toward lower temperatures, while aboveTc the
magnetic field does not affect the specific heat.

Figure 5 plots the experimental low-temperature spec
heat data in the coordinatesC/T vs T2 in magnetic fields of
0, 1, 2, 4, and 8 T for the magnetic field parallel and perp
dicular to theab plane. As can be seen from the figure,
small magnetic contribution is observed in the specific h
in the vicinity of 2 K, whose magnitude depends on t
magnetic field.

To correctly determine the electronic specific heat co
ficient g* (H) in the mixed state, we represented the expe
mental dependence as a sum of three terms

C~T,H !5g* ~H !T1bT31nCSch~mBH/kBT!, ~3!

where the first term describes the electronic componen
the specific heat, the second describes the phonon com
nent, and the third describes the magnetic component co
sponding to the two-level Schottky anomaly, which has
form

ce
e

FIG. 4. Temperature dependence of the specific heat near the supercon
ing transition in magnetic fieldsm0H50 ~the points denoted by empty
symbols! andm0H58 T ~the points denoted by filled symbols! for the field
perpendicular~circles! and parallel~squares! to theab plane.
e
FIG. 5. Temperature dependence of th
specific heat of La1.85Sr0.15CuO4 in vari-
ous magnetic fields ~s—0, ,—1,
h—2, n—4, L—8 T! for the field H
perpendicular~a! and parallel~b! to the
ab plane.
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CSch~x!5
x2ex

~11ex!2 . ~4!

Field-and-temperature dependences of the specific
C(T,H) were measured in perpendicular and parallel m
netic fields forH50, 1, 2, 4, and 8 T. These series of d
pendences were described with the help of Eqs.~3! and ~4!
without any assumptions regarding the functional dep
dence ofg* (H). The coefficientb, determined in zero field
was fixed for all other magnetic fields. As a result, we o
tained the following values of the variable paramete
b50.202 mJ/mol•K (QD5407 K), n50.260.1 mJ/mol•K
~it was difficult to determinen more accurately due to th
smallness of the magnetic contribution!. The maximum mag-
netic contributionnCSch(mH/kBT) in the vicinity of 2 K did
not exceed 5% of the total. The value ofg* (H) was deter-
mined by least squares in the 3–5-K region, where the m
netic contribution amounted to not more than 1.3% and
not exceed the random error.

In the investigated samples the coefficientg* (H) in zero
field was not large:g* (0)51.0 mJ/mol•K2, which can be
explained by the presence of a small quantity of meta
nonsuperconducting phase. Besides the above-desc
technique for determining the amount of superconduct
phase in the sample, this quantity can also be estimate
another technique, e.g., by assuming that the electronic
cific heat of the nonsuperconducting phase, characterize
the Sommerfeld coefficientgn , is equal to the electronic
specific heat of La1.85Sr0.15CuO4 in the normal~nonsupercon-
ducting! state. According to the estimates of Balbash
et al.,21 gn is approximately 9 mJ/mol•K2. Estimation of the
fraction of superconducting phase from the relati
h512g* (0)/gn also yields a value ofh in the range 85–
90% for the investigated samples of La1.85Sr0.15CuO4.

It can be seen from Fig. 5 that the presence of a m
netic field leads to an increase ing* (H), and the effect of
the magnetic field is greater when the field is oriented p
pendicular to theab plane.

Figure 6 plots the field dependence of the electronic s
cific heat coefficientg* (H) for two directions of the mag-
netic field. As can be seen from the figure, for both fie
orientations this dependence is substantially nonlinear: in
weak-field regiong* (H) grows rapidly with increasing field

FIG. 6. Magnetic field dependence of the coefficientg* for the field H
perpendicular (s) and parallel (d) to theab plane.
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this dependence holds for both field directions.
The observed influence of the magnetic field on the s

cific heat in the low-temperature region is at variance w
the predictions of the Abrikosov theory.16 According to this
theory, the specific heat of a superconductor in the mix
state contains a term that is linear in the temperatu
g* (H)T. The coefficientg* (H) grows with the field, reach-
ing at H5Hc2(0) the Sommerfeld valuegn , which is pro-
portional to the electronic density of states at the Fermi lev
This theory predicts a nearly linear dependence ofg* (H)
and negative curvature of the temperature dependence o
upper critical fieldHc2 .

In the investigated sample, as pointed out above, a n
linear dependence ofg* (H) is observed, where the temper
ture dependence of the upper critical field has positive c
vature. Note also that both the positive curvature ofHc2(T)
and the nonlinear dependence ofg* (H) are observed in the
same range of magnetic fields. It is of interest to investig
the interrelationship of these two anomalies.

Let us analyze the temperature dependence of the u
critical field Hc2(T) and the effect of the magnetic field o
the specific heat of a superconductor in the mixed state. H
we consider only the thermodynamic relations; specifica
we note that the transition from the mixed state to the norm
state is a second-order transition, the latent heat of the t
sition is equal to zero, and the entropyS of the supercon-
ductor, expressed in terms of the integral of the specific h

S~T8!5E
0

T8 C

T
dT

at or above the critical temperatureTc, does not depend on
the magnetic field. Therefore, the variation of the entropydS
with varying magnetic field vanishes at the superconduct
transition temperature:

dS~Tc!5E
0

Tc
dS C

T DdT1
DC~H !

Tc~H !
dTc~H !50. ~5!

HeredS, d(C/T), anddTc are the variation of the entropy
specific heat, and critical temperature, due to variation of
magnetic field bydH, and the quantitiesDC(H) andTc(H)
are respectively the specific heat jump at the transition fr
the mixed state to the normal state in a magnetic fieldH and
the transition temperature.

Denoting by ^d(C/T)/dH& the temperature-average
value ofd(C/T)/dH,

K d~C/T!

dH L 5
1

Tc
ETc d~C/T!

dH
dT, ~6!

and noting that d(C/T)5dHd(C/T)/dH and dTc(H)
5dH/(dHc2 /dT, after some transformations we obtain

K d~C/T!

dH L dHc2

dT
5

2DC~H !

Tc
2~H !

. ~7!

Introducing the dimensionless parameterp relating the
quantities^d(C/T)/dH& and dg* (H)/dH, the field deriva-
tive of the linear term in the specific heat, by
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dg* ~H !
5p

d~C/T!
, ~8!
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we obtain

dg* ~H !

dH

dHc2

dT
52p

DC~H !

Tc
2~H !

. ~9!

Since we used only thermodynamic arguments in
derivation of this relation, it should be valid for any syste
and consequently a relationship exists between the anom
of the temperature dependence of the upper critical field
the field dependence of the specific heat.

If DC(H)/Tc
2 and p depend smoothly on the magnet

field, then the abrupt anomalous increase of the tempera
derivative of the upper critical field with increasing extern
magnetic field should be accompanied by an abrupt decr
of the slope of the curveg* (H). Theoretical models of su
perconductivity with an anomalous temperature depende
of the critical magnetic field,2–4,28,29as a rule, should there
fore lead to a nonlinear dependence of the low-tempera
specific heat on the field andvice versa. Thus, models de-
scribing the nonlinear dependence ofg* (H) ~see, for ex-
ample, Volovik6!, as a rule, should lead to an anomalo
temperature dependence of the critical magnetic field.

5. CONCLUSIONS

We have investigated the specific heat in the superc
ducting single crystal La1.85Sr0.15CuO4 in the mixed state,
and also the upper critical magnetic field for two orientatio
of the field relative to the crystallographic axes, parallel a
perpendicular to theab plane. For both field orientations th
temperature dependence of the upper critical field exhi
positive curvature, and the specific heat of the mixed stat
the low-temperature region depends nonlinearly on the m
netic field. Neither of these phenomena is described by
traditional theory of the effect of a magnetic field on a s
perconductor.

We have analyzed the relationship between these
anomalies within the framework of the thermodynamic re
tions without resort to microscopic or phenomenologi
theories. We have shown that the temperature dependen
the critical magnetic field and the field dependence of
specific heat are interrelated by the condition of entropy b
ance.

The abrupt increase in the temperature derivative of
upper critical field with increasing external magnetic field,
a rule, should be accompanied by an abrupt decrease in
slope of the curveg* (H). The anomalous temperature d
pendence of the critical magnetic field, as a rule, sho
therefore lead to a nonlinear dependence of the lo
temperature specific heat on the field andvice versa.

Note that the observed dependence of the coefficien
the electronic specific heat in the mixed state on the m
netic field ~close to a square-root law!, wheng* ~H ! is ex-
trapolated to the normal-state valuegn , yields a value of
Hc2(0) substantially greater than the value obtained from
WHH theory. This can lead to revised estimates of the c
rent values of the main parameters of HTSC systems.
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On resistive nonlocal Josephson electrodynamics

V. P. Silin* )

P. N. Lebedev Physics Institute, Russian Academy of Sciences, 117924 Moscow, Russia
~Submitted 14 January 1997!
Zh. Éksp. Teor. Fiz.112, 1396–1408~October 1997!

New solutions of one-dimensional nonlocal Josephson electrodynamics are proposed that
describe the steady and nonsteady Abrikosov–Josephson vortex states of the resistive model; these
solutions are based on the superposition principle of the vortex structures whose properties
are determined by the nonlinear interaction of the vortices. The stability of the current–voltage
characteristic~1.13! is shown and the relaxation-oscillation mode of establishing the
corresponding state is investigated. The laws governing the annihilation and dispersal of the
interacting Abrikosov–Josephson vortices are examined. ©1997 American Institute of Physics.
@S1063-7761~97!01810-6#
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orously developing area of nonlinear physics. The theory
large-scale Josephson vortex structures with a characte
size much greater than the London lengthl is usually based
on the sine-Gordon equation or on its extension, which ta
dissipation into account~see, for example, Refs. 1 and 2!.
Powerful general mathematical methods can be used to
vestigate the sine–Gordon equation~see, for example, Ref
3!. This makes it possible to obtain abundant informat
about large-scale Josephson structures. Many different
merical investigations have been carried out and approxim
approaches have also been developed4 to take account of
dissipative processes and other perturbations in such s
tures.

Josephson electrodynamics of junctions with a compa
tively high critical current densityj c , when the inequality5

j c. j 0@A/cm2#5\c2~16pueul3!21;104l23@mm#,
~1.1!

is satisfied, have been attracting particular attention rece
The current densityj 0 is less than the dissociation current
Cooper pairs for superconductors with a large Ginzbu
Landau parameterk. For the conditions when the inequalit
~1.1! is satisfied Josephson electrodynamics is not only n
linear but also nonlocal. The existence of this nonloca
was pointed out as far back as in Ref. 6~see also Ref. 7!.
Following Ref. 8 for a Josephson junction that is infinite
the (y,z) plane when the phase difference of Cooper pairs
opposite sides of the junction on the coordinatez is one-
dimensional, we have the following equation:

sin w1
b

v j
2

]w

]t
1

1

v j
2

]2w

]t2

5
l

p

]

]z E
2`

`

dz8K0S uz2z8u
l D ]w~z8,t !

]z8
. ~1.2!

HereK0(z) is a modified Bessel function,

1

v j
2 5

\Cs

2ueu j c
5

\«

16pueud jc
,
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v j
2 0 2ueu j cRs 4ueud jc

l 5
l j

2

l
5

\c2

16pueu j cl
2 , ~1.3!

\ is the Planck constant,c is the velocity of light,e is the
electron charge, 2d is the junction width, which is assume
to be small compared with the London length,Cs andRs are,
respectively, the capacitance and resistance of a unit are
the tunnelling junction, and« and s are, respectively, the
dielectric constant and the conductivity.

In the nonlocal theory, unlike the usual local Josephs
electrodynamics, no general mathematical approach has
formulated. The description of only some vortex states
been obtained thus far~see below!. Therefore, it is important
to analyze the general properties of the results of nonlo
electrodynamics that have been obtained thus far, ther
permitting the possibility of searching for new vortex state
A nonlinear superposition principle is formulated below, a
cording to which the expressions for the Cooper-pair ph
differencew can be represented in the form of a linear s
perposition of spatially nonuniform and uniform states, t
temporal evolution and steady-state properties of which
determined by the nonlinear interaction of the vortices.

In this paper we will consider the consequences follo
ing from the case of a negligibly small capacitance when
second derivative with respect to time in Eq.~1.2! can be
ignored. This is the so-called resistive model,1 which corre-
sponds in the English-language literature to the term ‘‘res
tively shunted junction~RSJ! model.’’7 This model is most
widely applicable at temperatures near the superconduc
phase transition. In addition, we will be interested in t
conditions~1.1! of a Josephson junction with a large critic
current density when

l@l j . ~1.4!

In this case, according to Ref. 6~see also Ref. 9!, the
asymptotic form

K0S uz2z8u
l D.2 ln

uz2z8u
2l

, ~1.5!
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can be used in Eq.~1.2!. Then we write the following equa-
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sin w1
]w

]t
2

l

p E
2`

`

/
dz8

z82z
]w~z8,t !

]z8
5g. ~1.6!

Here the integral is understood in the sense of the princ
Cauchy value,t5t/t0 ~1.3!, and the termg5 j / j c , where j
is the density of the current that is shorting the tunnell
junction, is added to the right side of Eq.~1.6! compared
with ~1.2!. Below it will be assumed thatj does not depend
on the spatial coordinate. A time-independent solution of t
equation has already been given in Ref. 10 forg50, which
describes a single Abrikosov–Josephson vortex:

w5p12 arctanh~z/ l !. ~1.7!

The length l characterizes the size of the Abrikosov
Joesphson vortex. This solution was obtained independe
later in Ref. 9. The relaxation process for the establishm
of such a vortex in time~for g50! has been described in Re
11. The solution of Eq.~1.6! for gÞ0 was obtained in Ref
12, and it describes a single Abrikosov–Josephson vo
moving with a constant velocity:

w~z,t !5p1sin21 g12 tan21S z1vt

l /A12g2D , ~1.8!

wherev5(g l /t0A12g2). The relaxation process for esta
lishing such a nonlinear state has been described in Ref
The relaxation processes for the establishment of the p
odic structure of Abrikosov–Josephson vortices with a n
zero average magnetic field and for the decay of a vo
structure with a zero average magnetic field were also c
sidered in Ref. 14. Finally, a time-dependent solution of E
~1.6! was obtained in Ref. 15 that describes an infinite ch
of Abrikosov–Josephson vortices with a nonzero aver
magnetic field, traveling with a constant velocity:

w~z,t !5u01p12 tan21S tan@~z1vt !/2L#

tanh@a0/2# D , ~1.9!

where

sin u0 cosha05g, cosu0 sinh a05~ l /L !, ~1.10!

v5
v j

2L

b H S 1

4 Fg21
l 2

L221G2

1
l 2

L2D 1/2

1
1

2 Fg22
l 2

L221G J 1/2

. ~1.11!

The solution~1.9! is also realized for largej values, unlike
the case of a steady-state moving single Abrikoso
Josephson vortex, which is able to exist forg2,1, i.e., when
the current density is less than the critical valuej c . The
current–voltage~I–V! characteristic

V2

Rs
2 [ j r

25 j c
2H S 1

4 F j 2

j c
2 1

l 2

L221G2

1
l 2

L2D 1/2

1
1

2 F j 2

j c
22

l 2

L221G J ~1.12!
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2 , ~1.13!

corresponds to Eqs.~1.9! and ~1.11!. A comparison of the
analytically obtained I–V characteristic~1.12!, ~1.13! with
the results of numerical calculations in Ref. 10 makes it p
sible not only to discern a certain similarity but also to e
tablish the closeness of the results of Ref. 10. The sec
term of Eq.~1.13! gives an extremely simple analytical ex
pression for the excess superconducting current in the oh
region, wherej . j r . Finally, since the average magnet
field H̄, which corresponds to a traveling chain of vortic
~1.9!, is related to the parameterL by the expression

H̄5
F0

4plL
[

\c

4ueulL
, ~1.14!

Eqs.~1.12! and ~1.13! give the analytical dependence of th
voltage and current on the magnetic field. However,
question of the stability of the traveling chain of vortice
~1.9! is still not answered.

Observations on the solutions of Eq.~1.6! and, in par-
ticular, those which describe time-dependent resist
states,11–15 make it possible to assume that there exists t
class of solutions among the possible nonlinear solution
the resistive nonlocal Josephson electrodynamics which
be said to be superpositional. In this case the nonlinear s
which is characterized by the phase difference of the Coo
pairs, is described by a linear combination of phases, eac
which is outwardly similar to the separate nonlinear solut
of Eq. ~1.6!. At the same time the parameters that charac
ize such separate states turn out to be interdependent an
determined by the interaction of the vortex states. This in
action determines, in particular, the evolution of the nonl
ear system of interacting vortices with time. The impleme
tation of such a superpositional approach is demonstra
below. The relaxation-oscillation law for establishing
steady traveling chain of vortices~1.9! shows up most
clearly within the framework of the resistive~or RSJ! model.

Another question associated with the dynamics
Abrikosov–Josephson vortices, which is considered bel
is related to an investigation of the interaction of a vort
and an antivortex—a fluxon and an antifluxon.~Compare
Ref. 16 in the case of local Josephson electrodynamics.! For
the case when the currentj is absent~g50! the possibility of
the annihilation of the vortices and the possibility of the
dispersal in the presence of a steady-state phase come o
the linear superposition of the solutions describing the in
acting vortices. The presence of a spatially uniform and c
stant currentj ~g5const!, as shown below, allows stationar
states to exist, corresponding to a linear superposition o
fluxon and antifluxon, as well as a linear superposition of
infinite chain of vortices and antivortices. These new stati
ary spatially nonuniform current states correspond to
well-known portion of the I–V characteristic of a Josephs
junction, for which there is a nonzero superconducting c
rent with less than critical densityj , j c when the voltage is
equal to zero (V50). In other words, these spatially nonun

761V. P. Silin



form solutions must be considered along with the spatially
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uniform solutions of Eq.~1.6! ~and more precisely~1.2!! w
5u(t):

sin u1
du

dt
5g, ~1.15!

when the known solution

u5sin21 g, g2,1, ~1.16!

exists in the steady-state case corresponding to zero vo
(V50).

We consider the dynamics of the exact solutions of
resistive model, representing a linear superposition of
spatially uniform phase of a fluxon and antifluxon whi
obeys Eq.~1.15!. The nonlinearity of the resistive mode
appears in the nonlinear relationship of the phaseu(t) with
the coordinates of the centers of the fluxon and antiflux
z0(t) and with the characteristic vortex sizer(t). Just as in
the absence of a current, both the vortex annihilation and
vortex dispersal situations are possible. The possibility o
similar linear superposition of solutions is also establish
for vortex chains. The law describing the trend with time
the annihilation process of the vortex and antivortex cha
which is accompanied by a comparatively slow dispersa
the individual vortices of the chains, is also established.

2. We begin out presentation of the results of the res
tive dynamics of Abrikosov–Josephson vortices with t
case of the relaxation solution of Eq.~1.6!, describing the
establishment of a traveling chain of vortices~1.9!. The cor-
responding solution of Eq.~1.6! is

w~z,t!5u~t!1p12 tan21F tanS z1z0~t!

2L D
tanh~a~t!/2!

G . ~2.1!

If the following Hilbert transformation is used here~a.0,
A.0!:14

1

p E
2`

`

/
dx

x2y
sinh a

cosha2cosAx
5

sin Ay

cosAy2cosha
,

~2.2!

then it is easy to see that Eq.~2.1! satisfies Eq.~1.6! if the
functionsu, z0 anda satisfy the following ordinary nonlinea
differential equations:

du

dt
5g2sin u cosha. ~2.3!

da

dt
5

l

L
2cosu sinh a. ~2.4!

1

L

dz0

dt
5sin u sinh a. ~2.5!

The system of Eqs.~2.3!, ~2.4! defines the interaction o
the spatially uniform phaseu and finite vortex chain, de
scribed by an arctangent function; this is expressed in
nonlinear differential relationship ofu anda. In addition to
this, Eq.~2.5! also characterizes the nonlinear action of t
field of the spatially uniform phase on the movement of
vortex chain as time passesz0(t). The traveling chain of
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conditiong5const. In this case the system of Eqs.~2.3! and
~2.4! corresponds to an autonomous dynamic system. T
makes it possible to find the law governing the evolution
the nonsteady-state vortex chain~2.1! with time by analyzing
the phase portrait of the equation

da

du
5

~ l /L !2sinh a cosu

g2cosha sin u
, ~2.6!

in the ~a,u! plane. It is easy to see that in the~a,u! phase
plane Eq.~2.6! has only one singular~or stationary! point,
corresponding to Eq.~1.10!. In other words, Eq.~1.9! is the
only steady-state solution of the autonomous system~2.3!,
~2.4!. The solution of Eq.~2.5! corresponding to the station
ary point ~1.10! z05 v̄t, where v̄5L sinha0 sinu0, gives
the expression of the constant velocity~1.11! after convert-
ing to the dimensional timet5tt0 .

Near the stationary point~1.10!, when we havea5a0

1Da, u5u01Du, andDa andDu are small, Eq.~2.6! re-
duces to the following:

dDu

dDa
5

sin u0 sinh a0Da1cosu0 cosha0Du

cosu0 cosha0Da2sin u0 sinh a0Du
. ~2.7!

In accordance with the usual classification of singular poi
~see Refs. 17, 18! the stationary point~1.10! is a focus ac-
cording to Eq.~2.7!. The fact that the focus is stable can b
seen directly from the dependence ofDa and Du on time
using the relation

exp~2t cosu0 cosha0!cos~t sin u0 sinh a01const!.
~2.8!

Consequently, it can be proved that within the framework
the resistive model the solution~1.9! is stable, and the relax
ation process for establishment of a chain of Abrikoso
Josephson vortices traveling with a constant velocity is
scribed by the time-dependent solution~2.1!. In accordance
with Eqs. ~1.10! we have the following expressions for th
frequency V5t0

21 sinu0 sinha0 and damping rateG
5t0

21 cosu0 cosha0:

V5
1

t0
H 1

2 Fg2212
l 2

L2G
1S 1

4 Fg21
l 2

L221G2

1
l 2

L2D 1/2J 1/2

. ~2.9!

G5
1

t0
H 1

2 F12g21
l 2

L2G
1S 1

4 Fg21
l 2

L221G2

1
l 2

L2D 1/2J 1/2

, ~2.10!

which characterize relaxation oscillations. Remembering
I–V characteristic in the form~1.12!, it is easy to see that Eq
~2.9! can be written as

V5
2ueuV

\
. ~2.11!
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This relationship has been confirmed in an experiment with
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w~z,t!52 tan21
z1z0~t!

22 tan21
z2z0~t!

. ~3.1!
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tex
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tex
law
of
of
the AC Josephson effect.Moreover, it must be emphasize
that it is only in the limit.

g221@~ l /L !2 ~2.12!

that Eq.~2.9! becomes the well-known formula of Aslama
zov and Larkin,19

V5
2ueuRs

\
Aj 22 j c

2. ~2.13!

In this case we have

G5
c2Rs

8pl2L
5

cRsH̄ueu
2pl\

, ~2.14!

for the damping rate. Equation~2.11! is obviously general,
corresponding to an energy\V52ueuV of a Cooper pair in
the field of a static potential differenceV.

According to Eqs.~2.9! and ~2.10! the frequency and
damping rate are interrelated by the simple expression

G25V22S g2212
l 2

L2D 1

t0
2 . ~2.15!

It is seen from this, in particular, that for (j / j c)
25g251

1( l /L)2 the damping rate is equal to the frequency. F
larger values of the current densityj the damping rate is les
than the frequency. The following general dependence of
damping rate on voltage can be written:

G5
Rsc

2

8pl2L H 11F l 2

L2 1
V2

Rs
2 j c

2G21J 1/2

. ~2.16!

This makes it possible to obtain the following simple re
tion:

G

V
5

Rsj c

V

l

L
A11F l 2

L2 1
V2

Rs
2 j c

2G21

. ~2.17!

In particular, if

V@Rsj cl /L, ~2.18!

then

G

V
5

Rsj c

V

l

L
A11

Rs
2 j c

2

V2 . ~2.19!

This last formula allows one to see the possibility of real
ing weakly damped relaxation oscillations and, therefore
indicates the possibility for the effective excitation of su
oscillations with a frequency exceeding V0

5(2ueuRsj c /Al /L\) in a Josephson junction with a travelin
chain of Abrikosov–Josephson vortices~1.9!.

In the limit opposite to Eq.~2.18! the damping rate doe
not depend on the voltageG(V50). If l !L in this case, then
G5(2ueu/\)Rsj c and the damping rate turns out to be mu
greater than the frequency.

3. Proceeding now to a consideration of states co
sponding to a linear superposition of vortices and antivo
ces let us note first of all the case when there is no shor
current~g50!. In this case we write the solution of Eq.~1.6!
as
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F r~t! G F r~t! G
Using a Hilbert transformation~Ref. 20, p. 173, Eq. 15.2.10!

1

p E
2`

`

/
dx

x2y
1

x21y2 52
y

a~y21x2!
, a.0, ~3.2!

it is easy to prove that Eq.~3.1! is the solution of Eq.~1.6! if
the functionsz0(t) andr~t! obey the equations

dz0

dt
52

r2z0

r21z0
2 ,

dr

dt
5 l 2

rz0
2

r21z0
2 . ~3.3!

Equation~3.1! corresponds to the superposition of a flux
~2p-kink! and antifluxon~or antikink!, carrying single mag-
netic flux quanta with opposite signs and separated fr
each other by a distance 2z0(t). The functionr~t! charac-
terizes the vortex size. The magnetic field corresponding
the solution~3.1! ~compare Ref. 21! is a linear superposition
of two vortices:

Hy~x,z,t!5
\cr~t!

2pel2 E
2`

` dj

j21r2~t!

3H K0S 1

l
A@z1z0~t!2j#21x2D

2K0S 1

l
A@z2z0~t!2j#21x2D J . ~3.4!

At distances much greater than the sizer~t! of the vortex
core, (z6z0)21x2@r2,

Hy~x,z,t !5
\c

2el H K0S 1

l
A~z1z0!21x2D

2K0S 1

l
A~z2z0!21x2D J , ~3.5!

this represents the field of an Abrikosov vortex and antiv
tex and conforms to a corresponding combination of a vor
and Abrikosov–Josephson vortex at sufficiently large d
tances. Conversely, if (z6z0)21x2!r2, we have from Eq.
~3.4!

Hy~x,z,t !5
\c

4el2 ln
~ uxu1r!21~z2z0!2

~ uxu1r!21~z1z0!2 . ~3.6!

It follows from Eq. ~3.3! that with an increase in timez0
2

decreases; this corresponds, according to Eqs.~3.5! and
~3.6!, to a decrease of the magnetic field. Here ifz0

2@r2

holds, then the characteristic scale~or core! of the vortex
approaches the valuel so thatr2 l;exp(2t), and z0

2 de-
creases in accordance with the linear law 2l 2t. If, however,
the kink and antikink are sufficiently close together, so th
z0

2!r2, then according to Eq.~2.3! the characteristic scale o
the vortex increases in accordance with the linear lawr
; l t, and the distance between the vortex and antivor
decreases rapidly in accordance with the exponential
exp~2t!. These relations correspond to the annihilation
two Abrikosov–Josephson vortices, the magnetic field
which vanishes asz0 goes to zero according to Eq.~3.4!.

Let us now give another solution of Eq.~1.6! for g50:
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w~z,t!5p12 tan21
z1z0~t!

22 tan21
z2z0~t!

, ~3.7!
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which, like the solution~3.1!, describes a fluxon and ant
fluxon. Here the magnetic field of the linear superposit
~3.7! is described just as in the case of Eq.~3.1!, by the
formula ~3.4!. The only difference between the solution
~3.7! and~3.1! is the presence of the constant phasep in Eq.
~3.7!. This difference, however, leads to a nonlinear variat
of the ordinary differential equations describing the tim
evolution of the distance between vortices in Eq.~3.7! and
the time evolution of the corer~t! of the vortices. Substitu-
tion of Eq. ~3.7! into Eq. ~1.6! and use of the transformatio
~2.2! yield the following equations, which are different from
Eq. ~3.3!:

dz0

dt
5

z0r2

z0
21r2 ,

dr

dt
5 l 1

z0
2r

z0
21r2 . ~3.8!

It obviously follows from this that the distance between ki
and antikink in Eq.~3.7! increases with an increase in tim
In other words, the solution~3.7!, unlike the annihilation
solution~3.1!, describes a dispersal of two vortices with the
simultaneous spreading.

4. Continuing the discussion of the nonlinear behav
of the properties of vortices in the properties of the solutio
of Eq. ~1.6!, which represent linear superpositions of vor
ces, let us now turn to the case of a nonzero shorting cur
~gÞ0!. Here, first of all, let us point out a time-independe
solution that describes an fluxon~2p-kink! and antifluxon~or
anti-kink! pair at rest:

w~z!5sin21 g12 tan21S Fz

l
1

1

gGA12g2D
22 tan21S Fz

l
2

1

gGA12g2D . ~4.1!

The integral transformation~2.2! easily makes it possible to
prove that Eq.~4.1! satisfies Eq.~1.6!. On the other hand, the
solution ~4.1! is completely analogous to the correspondi
known solution of the static analog of Eq.~1.6!, which was
obtained in the Peierls–Nabarro theory of dislocations.22 The
magnetic field corresponding to an vortex-antivortex p
~4.1! is given by Eqs.~3.4!–~3.6!, in which the characteristic
core size of the vortex isr5( l /A12g2), and the distance
between vortices is 2z052l /g. With a decrease in curren
the distance between steady-state vortices given by~4.1! in-
creases, and the structure of the magnetic field of each vo
approaches the structure of an isolated vortex sincer ap-
proachesl .

The nonsteady-state extension of the solution~4.1!, cor-
responding to the nonlinear state of two interacti
Abrikosov–Josephson vortices forgÞ0, can be represente
by

w~z,t !5u~t!12 tan21Fz1z0~t!

r~t! G22 tan21Fz2z0~t!

r~t! G .
~4.2!

Here the functionu~t! satisfies Eq.~1.15!. Therefore, Eq.
~4.2! can be interpreted as describing the linear superpos
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state. The magnetic field is again described by Eqs.~3.4!–
~3.6!. However, the functionsr andz0 now obey the follow-
ing system of nonlinear ordinary differential equations:

dr

dt
5 l 2

rz0

z0
21r2 @r sin u1z0 cosu#, ~4.3!

dz0

dt
5

rz0

z0
21r2 @z0 sin u2r cosu#. ~4.4!

In the special cases ofu50 andu5p, which correspond to
the steady-state solution of Eq.~1.15!, we have the formal
transformation of these equations into Eqs.~3.3! and ~3.8!,
respectively.

In the case of a constant currentg2,1 holds and the
solution ~1.16! of Eq. ~1.5! exists, the system of equation
corresponds to an autonomous second-order dynamic
tem. Correspondingly, it follows from Eqs.~4.3! and ~4.4!
that

dr

dz0
5

z0
2~ l 2r cosu!1r2~ l 2z0 sin u!

rz0~z0 sin u2r cosu!
. ~4.5!

This equation makes it possible to see one singular~or sta-
tionary! point of the dynamic system on the (r,z0) phase
plane

r cosu5 l , z0 sin u5 l . ~4.6!

This point corresponds to the stationary state of the two
teracting vortices described by Eq.~4.1!. Near the stationary
point, when

r5~ l /cosu!1Dr, z05~ l /sin u!1Dz0 ,

andDr andDz0 are small, Eq.~4.5! yields

d~Dr cosu!

d~Dz0 sin u!
5

Dz0 sin u1cot2 u~Dr cosu!

Dr cosu2Dz0 sin u
. ~4.7!

According to the usual classification of singular points on
phase plane,17,18 the stationary point~4.6!, as follows from
Eq. ~4.7!, is a saddle point. The stationary point~4.7! turns
out to be unstable. Two qualitatively different conditions c
be seen far from the singular point. First of all, if the vort
and antivortex are sufficiently close to each other so t
r sinu @z0 cosu andr cosu @z0 sinu, then the further evo-
lution of the approach of the vortices occurring in this case
given by the law z0;exp(2tA12g2). In this case if
z0 sinu,l, a comparatively slow separation of the vortic
occurs in accordance with the lawr; l t. It is seen that the
presence of a nonzero current~gÞ0! delays vortex annihila-
tion. Secondly, when the vortex and antivortex are su
ciently far apart~z0 cosu @r sinu, r cosu !z0 sinu!, fur-
ther dispersal of the vortices occurs. In this case
evolution of the interacting vortex and antivortex is dete
mined by the fact that the size of their cores approac
( l /A12g2), and the distance between them varies
(2g l /A12g2)t. In other words, the asymptotic dispers
mode corresponds to

wass~z,t !5sin21 g12 tan21S z1vt

l
A12g2D
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22 tan21
z2vt

A12g2 , ~4.8!
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S l D
where the asymptotic dispersd rate of the vortices is equa

v5
2ueuRsjl

\A12~ j / j c!
2

5
c2Rs

8pl2

j

Aj c
22 j 2

, ~4.9!

which corresponds to the velocity of the uniform motion o
single Abrikosov–Josephson vortex~1.8!.

5. Let us consider another class of solutions of Eq.~1.6!
for gÞ0, which makes it possible to see a linear superpo
tion of spatial structures whose quantitative characteristic
well as the evolution with time exhibit a highly nonlinea
character. Note, first of all, the static solution correspond
to two superposed periodic chains of vortices and antivo
ces superposed on a spatially uniform phase~1.16!, when the
conditiong2,1 determined by the current is satisfied,

w~z!5sin21 g62 tan21H FL

l
Al 2g2

1AL2

l 2 ~12g2!21G tanS z

2L
1

1

2
tan21

1

gL D J
72 tan21H FL

l
Al 2g21AL2

l 2 ~12g2!21G
3tanS z

2L
2

1

2
tan21

l

gL D J . ~5.1!

Note that this current solution, just like the steady-state
lution ~4.1! and the solution~1.16!, corresponds to zero volt
age on the I–V characteristic of the Josephson junction.
solutions~5.1! and ~4.1!, unlike ~1.16!, are highly spatially
nonuniform. Equation~5.1! can be considered as a line
superposition; this follows from the form of the magne
field. At the same time, the spatially uniform phase exert
highly nonlinear effect on the properties of the spatially no
uniform periodic vortex chains.
lar! point exists for
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obvious in the case of the time dependent analog of the
lution ~5.1!:

w~z,t!5u~t!12 tan21S tanFz1z0~t!

2L G
tanh@a~t!/2#

D
22 tan21S tanFz2z0~t!

2L G
tanh@a~t!/2#

D . ~5.2!

Here the functionu~t! is defined by Eq.~1.15!. Therefore, it
can be stated that the chains of vortices and antivortic
corresponding to the other two terms of Eq.~5.2!, have no
effect on the spatially uniform phaseu. Conversely, the in-
fluence of the phaseu on the spatially periodic vortex chain
is significant and is nonlinear; this is seen from the equati
which are obeyed by the functionsz0 anda:

1

L

dz0

dt

5

sinh a sin
z0

L Fsin u cosha sin
z0

L
2cosu sinh a cos

z0

L G
cosh2 a2cos2~z0 /L !

,

~5.3!

da

dt
5

l

L
2

sinh a sin~z0 /L !

cosh2 a2cos2~z0 /L ! Fsin u sinh a cos
z0

L

1cosu cosha sin
z0

L G . ~5.4!

If the current j does not depend on time andg2,1
holds, then Eqs.~5.3! and~5.4! correspond to an autonomou
dynamic system, an analysis of the properties of which
be carried out on the (a,z0) phase plane using the equatio
be
L
da

dz0
5

l

L Fcosh2 a2cos2
z0

L G2sinh a sin
z0

L Fsin u sinh a cos
z0

L
1cosu cosha sin

z0

L G
sinh a sin

z0

L Fsin u cosha sin
z0

L
2cosu sinh a cos

z0

L G . ~5.5!

It follows from this, in particular, that a stationary~or singu- in time. In particular, when the vortex chains turn out to

quite close,z !L , Eqs.~5.3! and ~5.4! become

of a
of
er
tan a5
l

LA12g2
,

z0

L
5tan21

l

gL
, ~5.6!

which corresponds to the steady-state solution~5.1!.
On the other hand, the system of Eqs.~5.3! and ~5.4!

makes it possible to trace the annihilation process of
chain of vortices and antivortices, which corresponds t
decrease of the distance 2z0 between chains with an increas
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e
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0

dz0

dt
52z0 cosu,

da

dt
5

l

L
2

z0

L
sin u. ~5.7!

These equations are like those describing the evolution
vortex–antivortex pair. An exponentially rapid decrease
z0 with an increase in time follows from them, and a slow
decay of the vortex occurs forz0 sinu !l when the size of
its core increases linearly.
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6. In summarizing all that has been presented above, it
t
th

t
he
-

th
ion
u

ut

th
is
ce
e

,
ab

he
on

t
re
on
ifi

r
9
o
ec
p

ap

o

e
ns
ty
s

r-
e

turns out to be less than the London length. If the latter
25 24

n-
cal
vely
so
s of
can

P

nd

n-

.

.,

.

i-
is first necessary to emphasize that the observation of
previously known solutions of the resistive model for bo
separate Abrikosov–Josephson vortices~1.7! and ~1.8! and
also for chains of these vortices~1.9! makes it possible to
represent the superposition property used in our paper in
form of the spatially uniform and nonuniform phases in t
case of Eqs.~1.7!–~1.9! and~2.1! as well as that of the non
uniform phases~3.1!, ~3.7!, ~4.1!, ~4.2!, ~4.8!, ~5.1!, ~5.2!. In
all of the cases considered the nonlinear character of
vortex structures is determined by those nonlinear relat
ships which determine the spatial dimensions of the str
tures and which determine in steady-state cases the evol
of the interacting vortices with time.

Among the relationships presented let us mention
annihilation of Abrikosov–Josephson vortices, their d
persal and spreading, both in the case of individual vorti
and also in the case of periodic structures. Let us also m
tion the stability of a traveling vortex chain~1.9! with the
I–V characteristic~1.12!, ~1.13!, which was shown above
and also the relaxation-oscillation properties for the est
lishment of such a traveling chain.

Let us make the following comment with regard to t
possible experimental manifestation of the properties of n
local Josephson electrodynamics. While the condition~1.4!
~or the condition~1.1! in expanded form corresponding to i!
can require extreme values of the Josephson critical cur
density for its realization in the case of a tunnelling juncti
between massive superconductors, the situation is simpl
for a Josephson junction in a thin film. Actually, if the film
thicknessD turns out to be less than the London length (D
!l), le5l2/D plays the role of the effective Meissne
shielding depth. Then, as is known~see, for example, Refs.
and 10!, the conditionl j!le must be satisfied in order t
realize the clearly exhibited limit of nonlocal Josephson el
trodynamics. This leads to a decrease of the critical Jose
son current density, which requires using the nonlocal
proach, compared with thej 0 of Eq. ~1.1! by a factor of
D/l; ~Ref. 9! this broadens the area of experimental study
the effects in question.

However, even without such an extension to the cas
thin films, our consideration of the properties of junctio
between massive superconductors opens up the possibili
describing the situation of fairly strong magnetic field
Thus, the I–V characteristic~1.12!, ~1.13! in accordance
with Eq. ~1.14! is applicable, in particular, whenH̄.H0

5f0/4pl2, i.e., when the scale of the periodic nonunifo
mity of the traveling chain of Abrikosov–Josephson vortic
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amounts to 10 to 10 cm, then H0;160– 1.6 0e. In
other words, for superconductors with sufficiently long Lo
don lengths manifestation of the relationships of nonlo
Josephson electrodynamics is possible at comparati
small magnetic fields, which, however, turn out to be
strong that they bar using the usual local electrodynamic
Josephson junctions. The corresponding magnetic fields
be even weaker in the case of films.
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Physical manifestations of valence-bond structures in correlated systems
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A. A. Ovchinnikov and M. Ya. Ovchinnikova

N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Russia
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Using the Hubbard model and the correspondingt2J model, we study the properties of
correlated states with valence-bond structures. Mixed states with such structures and with
antiferromagnetic spin ordering can be constructed by means of local unitary
transformations of uncorrelated states. The latter turn out to have lower energy than mean-field
antiferromagnetic solutions. Spin correlations for various degrees of dopingd5n21 are
in good agreement with the results of exact calculations for finite systems. In contrast to mean-
field solutions, allowance for valence-bond correlations leads to a reasonable value of the
critical d, at which long-range antiferromagnetic order disappears. A calculation of the spectral
functions that describe photoemission reveals typical behavior in two bands of effective
hole ~and electron! excitations, and energy transport in bands as the quasimomentum varies from
~0,0! to ~p,p!, consistent with calculations in finite systems. We construct a homogeneous
correlated state of fluctuating valence bonds~the band-model analog of states of fluctuating valence
bonds!, and demonstrate that its energy is lower than that of valence-bond alternant
structures. ©1997 American Institute of Physics.@S1063-7761~97!01910-0#
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Two factors facilitate progress in studying the electro
properties of high-temperature superconductors~HTSC!.1

The first is ongoing improvement in experimental metho
e.g., in angle-resolved photoemission spectrosc
~ARPES!2–8 and spin correlations via neutron scatterin9

and so forth. The second is the development of numer
methods for calculating the energy and dynamical proper
of strongly correlated finite systems within the scope of
basic Hubbard model or the equivalentt2J model ~exact
diagonalization methods or the quantum Monte Ca
method!.1,10,11The results of these and other studies need
be interpreted in the language of simpler solutions for th
same models, employing one-particle representations
treating a correlated state.

Solutions for states with a variety of electron
structure—antiferromagnetic, spiral,12,13 and others—have
been constructed in studies of the Hubbard model via
mean-field method. Analogs of these states or more com
cated spin structures—chiral states,11,14 for example—have
been proposed and studied with thet2J model. A number of
authors1,10,15–20have compared experimentally derived ch
acteristics of photoemission spectra, Fermi surfaces,
susceptibility, and so on, while numerically modeling fin
systems and antiferromagnetic mean-field solutions with
generalized Hartree–Fock method.

In the present paper, we wish to continue such a co
parative investigation, extending it to other kinds of cor
lated states—specifically, to dimer structures of valen
bonds and four-site valence bonds, which we callQ4 struc-
tures. Valence-bond states were originally introduced
Anderson.21,22 Studies of alternant valence-bond structu
can be found in Refs. 23 and 24.

To construct correlated states with valence-bond str
ture, we make use of the variational method of local unit
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parameter responsible for valence-bond dimer structure,
to work at an arbitrary doping level. To assess the contri
tion of some structure to an exact ground state, it is imp
tant to know not just the energy of the variational correla
state, but its physical characteristics, such as the shape o
Fermi surface, its photoemission spectrum, and spin corr
tions. Our aim here is to study the physical manifestations
valence-bond structures, and to discuss in a qualitative
how they relate to the results of exact calculations of fin
clusters.

We deal here with the Hubbard model and the cor
spondingt2J model. The Hamiltonian of the former is

H52t (
^nm&,s

~cns
† cms1h.c.!1(

n
Unn↑nn↓2m(

n
nn .

~1!

Modeling of a CuO2 plane25,26 in the electron representatio
corresponds tot.0 andn5ne,1 for a hole-doped plane.

In the subspace of functions with only singly-occupi
and vacant sites, the model~1! corresponds to thet2J
model, which is described by the Hamiltonian

Ht2J5HS1T, HS5J (
^nm&

S Sn•Sm2
1

4
nnnm D, ~2!

T52t (
^nm&,s

~c1ns
† c1ms1h.c.!1OS t2

U D , ~3!

J54t2/U, c1ns5cns~12nn2s!.

We restrict our attention to leading terms in the operatorT,
discarding three-site hopping terms11,27 ;t2/U and a con-
stant that depends on the total number of particles.

76711$10.00 © 1997 American Institute of Physics
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2. SPIN STATES OF THE UNDOPED t 2J MODEL

We begin by elucidating the symmetry of correlat
states~which constitute the object of study here! using the
undopedt2J model.

For then51 state, thet2J model with one electron o
hole localized per site is specified by the spin Hamilton
~2!. We wish to compare the energies^Ht2J& of possible
localized statesC loc , which display a variety of spin struc
ture. These correspond to various solutions~see Sec. 3! of
Hubbard-model correlated states with finiteU/t and nÞ1.
Among these states are the following four.

1! The Néel state of a perfect antiferromagnetic

C loc
AF5)

n
ucnsn

† &, sn5
1

2
~21!nx1ny ~4!

is the limit asU→`, n→1 of the antiferromagnetic mean
field solution.

2! The dimer spin state is a product of the singlet co
ponents of the complexes$an ,bn%,

C loc
DM5)

n
Cn

S~ab!,

Cn
S~ab!5

1

&

(
s

s

usu
uans

† bn,2s
† &, ~5!

and corresponds to a paramagnetic correlated state o
Hubbard model with valence-bond dimer structure. Heren
labels the dimers.

3! A mixed state with dimer and antiferromagnetic sp
structure is obtained by mixing triplet components into t
spin functions of the complexes,

C loc
DM1AF5)

n
$cosg Cn

S~ab!1sin g Cn
T~ab!%, ~6!

and has energy

N21^Ht2J&
DM1AF5JH 2

5

8
2

1

2
cos 2g2

3

8
sin2 2gJ .

~7!

FIG. 1. a! Dimer structure in thex orientation of valence bondsDMx , and
b! the structure of four-site clustersQ4.
TABLE I. Calculated mean energy per lattice site f
valence-bond structures or antiferromagnetic order.
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plexes$an ,bn ,cn ,dn%, which are depicted in Fig. 1b~Q4
structures!, correspond to the paramagnetic or mixed stat

C loc
Q45)

n
fn

L50 , ~8!

C loc
Q41AF5)

n
S (

L50

2

cLfn
LD . ~9!

Heren labels the four-site clusters, while the cluster comp
nents

fn
L5(

m
C1m;1,2m

L,0 Tm~ac!T2m~bd!, ~10!

consisting of tripletsT(ac) andT(bd) of the diagonally op-
posite cluster sites, are eigenfunctions ofSac

2 , Sbd
2 , and the

total spinL25(Sa1Sb1Sc1Sd)2 with vanishing projection
in the z direction,Lz50.

It is not difficult to show that the spin state~8! is the
lowest-lying eigenstate of the intracluster part of the Ham
tonian in thet2J model,

hQ45J~Sa•Sb1Sb•Sc1Sc•Sd1Sd•Sa!

5
1

2
J~L22Sac

2 2Sbd
2 !.

If we assume additional antiferromagnetic order, the me
field of the spins of neighboring clusters results in mixing
the states of clusters withLÞ0, i.e., to the mixed state~9!
with energy

N21^Ht2J&
Q41AF5

1

4
J$232c0

212c2
2~&c01c1!2%,

~11!

c0
21c1

21c2
251.

The mean calculated energy per lattice site for sta
~4–6, 8, and 9! is shown in Table I. For theDM1AF and
Q41AF mixed states, the minina occur atgÞ0 andc1 ,c2

Þ0, which confirms that valence-bond and antiferromagne
order structures can coexist. Table I also lists the mean
S05(21)nx1ny^Sz& per site for states with antiferromagnet
order.

The data in Table I imply a number of properties:
1! stabilization of the state as a result of the organizat

of the valence-bond structure, which is consistent with
phase diagram calculated24 for the paramagneticDM state
and the Hubbard-model (DM1AF) state. The energy is re

or states~4–9! of the undopedt2J model with various

SpinS0 shown for the latter. Last column pertains to the

768innikova
ferromagnetic state.

AF DM DM1AF Q4 Q41AF F

^H&/J 21 20.875 21.042 21 21.084 0
S0 0.5 0.475 0.434

(4), October 1997 A. A. Ovchinnikov and M. Ya. Ovch
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where it is20.92t ~Refs. 11 and 14!;

2! a high degree of degeneracy: the mean energies o
dimer structures that completely cover a two-dimensio
lattice are identical. This same degeneracy is also foun
theQ41AF structures if the sign of the spin is transferred
the parity of the site in the original lattice;

3! a small energy difference between the paramagn
and antiferromagnetic solutions when valence-bond struc
is present. This presumes a lower Ne´el temperature than th
elevated values given by mean-field calculations;

4! a reduced value of the local spinS0 at magnetic sub-
lattice sites in mixed antiferromagnetic states with valen
bond structures, as compared with the state of a rigid a
ferromagnetic.

3. PROPERTIES OF BAND SOLUTIONS IN THE HUBBARD
MODEL WITH ALTERNANT DIMER VALENCE-BOND
STRUCTURE

In Ref. 24, we proposed a variational method for co
structing states with alternant valence-bond structure at fi
U/t for arbitrary doping. The Hubbard-model correlat
state wave function is represented as resulting from lo
unitary transformations of an uncorrelated stateF given by
the Hartree–Fock approximation, or by the generaliz
Hartree–Fock method:

C5WF, W5)
n

Wn . ~12!

The local unitary operatorsWn refer to disjoint elements o
the structure in question~i.e., clusters!. Then the original
problem ~1! with HamiltonianH in the basis of correlated
statesC is rigorously equivalent to the problem with tran
formed Hamiltonian

H̃5W†HW ~13!

in the basis of functionsF. Specifying the local operato
Wn(a) with variational parametersa ~essentially the orde
parameters of the new structures! and examining the new
problem by means of the mean-field method makes it p
sible to study new types of correlated states at arbitrary d
ing levels. In contrast to the nonunitary local transformatio
of Gutzwiller28, one can find for~13! an explicit~albeit cum-
bersome! expression forH̃ in terms of the Fermi operators o
the system, and carry out an exact energy calculation
Hartree–Fock-type functions.

For the simplest valence-bond dimer structure~Fig 1a!, a
cluster consists of the two centers$anbn%5$cncn1ex

% that
form the bond, while the operator with a single variation
parameter is

Wn~a!5exp~a@gns
† gn2s

† un2suns2h.c.# !5I

1Wi j X2i ,2j
n ; Wi j 5S Ca sa

2sa Ca
D

i j

, ~14!
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gns5
&

~ans1bns!, uns5
&

~ans2bns!,

Ca5cosa21, sa5sin a. ~15!

Here theX2i ,2j
n are Hubbard operators for states of the dim

$anbn% with a total of two electrons (na1nb52):

u2i &5$ugns
† gn2s

† &,uuns
† un2s

† &% i , i 51,2. ~16!

Thus,Wn induces a rotation of the singlet two-hole comp
nents~16! of the nth cluster.

As a result, the effective Hamiltonian~13! takes the form

H̃5(
n

h̃n2t(
n,s

(
l

@ b̃ ns
† ãn1 l ,s1h.c.#. ~17!

Heren labels the dimers~even sites of the original lattice!, l
runs through valuesl 5ex6ey , 2ex , and the transformed op
erators

Q̃n5$ h̃n , b̃ns , ãns%5Wn
†QnWn , ~18!

like the original operatorsQn5$hn ,bns ,ans%, affect thenth
cluster.

As a result of the transformation, the intracluster part
the Hamiltonian~1!

hn5U@nn↑
a nn↓

a 1nn↑
b nn↓

b #2t~ans
† bns1h.c.!

takes the form

h̃n5hn1h2i 8,2j 8@Wi 8 iWj 8 j2d i 8 id j 8 j #X2i ,2j . ~19!

Here i 8,i , j 8, j 51,2, h2i 8,2j 85^2i 8uhnu2 j 8& are matrix ele-
ments ofhn in the basis of cluster states~16!, and theWi , j

are defined in~14!. The Hubbard operatorsX2i ,2j can easily
be expressed in terms of the original Fermi operators.24 Simi-
larly, ãns and b̃ns can be expressed in terms of

g̃s5gs1Cags$n2s
g ~12nu!1ns

un2s
u %1sags

†u2sus ,

ũs5us1Caus$n2s
u ~12ng!1ns

gn2s
g %2saus

†g2sgs .
~20!

We have omitted the cluster label here;Ca and sa are de-
fined in ~15!.

We thus have an explicit expression forH̃ in terms of
Fermi operators. We previously derived a self-consistent
proximate solution24 for the transformed HamiltonianH̃(a)
at fixed a via the generalized Hartree–Fock method, w
subsequent minimization overa. Note that in the basis o
single-determinant functionsF5uPkxks

1 & of the generalized
Hartree–Fock approximation, the mean energy can be
pressed exactly24 in terms of a set of one-electron means
the basis$F% defined in Appendix 1. The correlated state c
then be represented in the form

C5WF5U)
k,s

x̃ kls
† L , x̃ kls

† 5W†xkls
† W. ~21!

The product overk here applies to quasimomenta inside t
Fermi surface, and the one-electron functionsxkls

† are eigen-
states of the linearized Hamiltonian (H̃)L5(kshks1const,
with eigenvaluesEkl , l51,2. The expressions forhks ,

769A. A. Ovchinnikov and M. Ya. Ovchinnikova
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Ekl , andxkls , as well as the procedure for ensuring se
consistency developed in Ref. 24, are briefly detailed in A
pendix 1.

To assess the role of valence-bond structures in ac
correlated systems, we calculate a number of physical c
acteristics of these states, and broadly discuss their co
spondence with exact numerical calculations for finite s
tems.

We begin with the shape of the Fermi surface and
density of states

nk5
1

2 (
s

^cks
† cks&C5

1

2 (
s

^FW1cks
† cksWF&. ~22!

Appendix 1 sets out the computational scheme~22! for a
correlated state with wave functions given by~12! and~14!.
The energy eigenvalues of the linearized HamiltonianH̃L

form two bandsl51,2, with a band gap;U at n51. For
x-oriented dimer structure~denotedDMx ; Fig. 1a!, the very
flat minima of the upper band and maxima of the lower ba
correspond to coordinateskx56(p2dx), ky50 in the first
Brillouin zone ukx6kyu<p. For an undoped system, th
band occupation functionsf lk5^xkls

† xkls&F are 1 and 0,
respectively. In accordance with the electron–hole symm
of the Hubbard model, the Fermi boundaries, which
specified byEkl5m, are the same when the electron a
hole doping are equal in absolute magnitude. Figure 2 sh
the Fermi surface in the extended Brillouin zone forn50.8,
U/t58. The height of the maximum isE1k

max2m50.092t.
Inasmuch as real HTSC single crystals~apart from

YBaCuO! are symmetric under the interchangekx↔ky , it
makes sense to calculate a density of statesnk that is aver-
aged over the two dimer structures of valence bonds witx
andy orientation,

n̄ k5
1

2
@nk~DMx!1nk~DM y!#.

In Fig. 3, we plot profiles of the mean density of statesn̄ k

along the loopGY MG for n51.2, 1, and 0.8, as well a
contour maps ofn̄ k(kx ,ky) for DM1AF mixed states. For
n50.8, we also plot the densitynk for an antiferromagnetic
state of the generalized Hartree–Fock method with

FIG. 2. Fermi boundary for states with dimer structure in thex-oriented
valence bonds (DMx) for the Hubbard model withU/t58 andn50.8.
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ukx6kyu5p of the first Brillouin zone. The dotted an
dashed curves correspond to structures withx andy orienta-
tion.

Discontinuities or regions of rapid variation ofnk ~black
areas in Fig. 3b! are associated, albeit not so directly, wi
the observable signal limits in the photoemission spectru
In particular,nk is the integral overv of the spectral density
measured in forward and backward photoemission~ARPES,
IPES!. Note that the boundary of rapid variation innk exte-
rior to the pointG ~0,0! can, to a gross approximation, b
associated with the Fermi ‘‘boundary’’ established v
ARPES measurements. Likewise, the interior boundary
be associated with the Fermi ‘‘boundary’’ that might be o
served via IPES, if it were possible to do so with angu
resolution. Hence, the Fermi ‘‘boundary’’ that would be o
served for a state with the structure in question forms an
about the pointY ~p,p! for both electron and hole doping.

With such a definition of the Fermi ‘‘boundary,’’ Lat
tinger’s theorem would not hold, in direct conflict with ex
perimental observations. For hole doping (nh.1), the re-
gion of phase space outside the ‘‘boundary’’ constitutes l
than half the entire space, while according to the theorem
should comprisenh /2.0.5. This inconsistency was als
noted in calculations of the Fermi surface based on pro
tion operators.29

With regard to the arc-shaped Fermi surface about
point Y ~p,p!, the very same shape can be observed for m
HTSC single crystals—both electron-doped3,4 and
hole-doped.5–8 This shape is usually explained by empiric
models that incorporate next-nearest-neighbor~diagonal! in-
teractionst8 between centers.30–33 A direct derivation25,26 of
the generalized Hubbard-model parameters from the th
band Emery model yields lower values oft8 than the empiri-
cal values obtained from ARPES data. Our own origin
model~1! contains no such interactions. Nevertheless, dim
structures in the correlated state under investigation will g
rise to non-nearest-neighbor interactions. Interaction te
between sitesn andm with un2mu5&,2 appear in the ex-
plicit expression forH̃(a).

We now discuss spin correlations in mixedDM1AF
states with dimer structure. In Fig. 4, we plot the calcula
static correlation function

x~ l !5
1

3
N21(

m
~21! l x1 l y^4SmSm1 l&C

for U/t58 and various doping levels. Herem and l label
lattice sites, rather than dimers. It is this quantity, rather th
xz;(21)l x1 l y^4(Sm)z(Sm1 l)z&C , that must be compared
with x( l ), which was calculated in Refs. 17 and 19 for fini
clusters. The ground state of finite systems with equival
axesx,y,z must be put into correspondence with the set
DM1AF states in the two-dimensional plane with vario
polarizations of local spins. This is equivalent to calculati
x( l ) instead ofxz( l ) for a DM1AF state with one (z)
polarization. The existence of a plateau in the curves ofx( l ),
which disappears as the doping level rises, correspond

770A. A. Ovchinnikov and M. Ya. Ovchinnikova
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FIG. 3. Profiles of the density of statesn̄ k averaged
over two structures along the loopGY MG ~solid

curves!, and contour maps ofn̄ k(kx ,ky) for mixed
DM1AF states in the regionukx(y)<1.2p. The upper-
most plots pertain to an antiferromagnetic state of t
mean field with no valence-bond structure. Dotted a
dashed curves correspond tox andy orientations.
long-range antiferromagnetic order withxz( l );3x( l ), and

s
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g-
rlo
d

w
aa

to the structure of the valence bonds. In the mean-field
for
in

ctra
ond
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is consistent with the previously found phase diagram.
The derived behavior ofx( l ) closely resembles result

for x( l ) obtained by Haaset al.17 for the t2J model ~838
cluster,J54t2/U50.4! via exact diagonalization. The sim
lar results in Ref. 17 and Fig. 4 signify that the plateau inxz

at l>& in Ref. 17 is indicative of long-range antiferroma
netic order in finite systems. Quantum Monte Ca
calculations19 of x( l ) for finite systems in the Hubbar
model were carried out at high temperatures (kT5t/4), so
that long-range antiferromagnetic order disappears at lo
doping levels than in our calculations and those of H
et al.17

Note that similar curves ofx( l ) with a plateau atl>&
are typical of states~6! and ~9! of the t2J model with a
variety of valence-bond structures, such as dimer orQ4 sym-
metry. Figure 4 shows the result for the latter atn51. This
means that the behavior ofx( l ) is not particularly sensitive
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er
s

method with no valence-bond structure, however, i.e.,
a50 in W(a), both antiferromagnetism and the plateau
x( l ) disappear at very high doping levels (d;0.45, as op-
posed tod;0.25 forAF1DM states withU/t58!.

4. EXCITATION BANDS OBSERVED IN PHOTOEMISSION
SPECTRA

We now attempt to calculate the photoemission spe
responsible for the correlated ground state with valence-b
dimer structure; for simplicity, we neglect antiferromagne
order. In angle-resolved forward and backward photoem
sion ~ARPES, IPES!, the measured signal is proportional
the spectral functions, which in turn specify the quasim
mentumk and energyv ~in the electron representation!:1

771A. A. Ovchinnikov and M. Ya. Ovchinnikova
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A2~k,v!5(
n

u^Cn
Ne21uck,suC0

Ne&u2d

3~v2m1En
Ne21

2E0
Ne!, v>0, ~23!

A1~k,v!5(
n

u^Cn
Ne11uck,s

1 uC0
Ne&u2d

3~v2m2En
Ne11

1E0
Ne!, v<0. ~24!

In these equations, theCn
Ne61 are excited states of the sy

tem with an extra electron or hole and quasimomentumk.
The projection operator method of Unger and Fuld29

facilitates the self-consistent approximate calculation of
spectral functions. Ignorance of the ground state in Ref. 2
made up for by the use of sum rules and splitting of com
cated operators. Here, in constrast to Unger and Fulde,29 we
start with the variational ground state of a certain structur
specifically, a valence-bond dimer structure. Our goal is
identify manifestations of this structure in photoemissi
spectra. Its relationship to the projection operator method
Ref. 29 consists in the use of a finite basis set of opera
$Qlks% to construct the excited statesCn

Ne21 with quasimo-
mentumk, spin projections, and one extra hole above th
given ground stateC05WF0 .

We seek excited states with quasimomentumk in the
form

Cks
n 5W(

l
Dl

nQlksF0 , l51,...,L0 . ~25!

For givenk and an arbitrary set of odd operators$qiks% that
reduce the number of particles by 1, we can selectively c

FIG. 4. Spin correlation function as a function of distance between spins
DM1AF states of the Hubbard model withU/t58, for various levels of
doping. The dashed line represents the spin correlation for the localized
~9! of a Q41AF structure in the undopedt2J model.
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nonvanishing norm~see Appendix 2!, such that

Sll85^F0Qkls
1 Qkl8sF0&5Sldll8 , SlÞ0,

l,l851,...,L0~k!. ~26!

This is precisely the set used in~25!.
A discrete set of effective excited states that mimics

multiparticle hole excitation continuum can then be deriv
from the equation

@Sl
21/2Hll8Sl8

21/2
#Dl8

n
5Ek

nDl
n , ~27!

where

Hll85^F0Qkls
1 H̃Qkl8sF0&. ~28!

The photoemission signal amplitudeA(k,v), which is re-
sponsible for exciting effective hole statesEk

n from a corre-
lated state withx-oriented valence-bond dimer structure, c
be written in the form

A~k,v!5(
n

uM n~ke!u2
G

~v2Ek
n!21G2 , ~29!

M n~ke!5(
l

~Dl
n !* ^F0Qkls

1 u c̃ ksF0&. ~30!

Here ke is the momentum of the ejected electron, a
c̃ ks5W1cksW5 ãks1eikxb̃ks can be obtained by applying
cks to C05WF0 and invoking the definition ~25!;
d(v2Ek

n2E0) in ~23! has been replaced by a Lorentzia
with width G, and theDl

n are eigenvectors of the matri
equation~27!. In subsequent calculations, we treatG as an
adjustable parameter equal to 0.1t. In principle, it should be
possible to evaluate the widthsGn for any effective level
En(k) in terms of the commutators@@Qlks ,H#,H#, but these
are too tedious to calculate. Similar expressions can be
tained forA1(k,v) (v.0) by extracting the orthogonal se
$Qlks

1 % from the operator basis$qiks
1 %. It can be shown that

for undoped systems,A1(k,v)un515A2( k̃ ,2v), where
k̃5(pp)2k.

For an alternantDMx1AF structure with two sites pe
elementary cell, the minimal reference basis for the opera
$qiks% consists of the two operators$aks ,bks% i . For n51,
only one of the combinationsx1ks5caaks1cbbks—the so-
lution to the linearized problem (H̃)L , which is responsible
for the lower Hubbard bandl51—produces hole excita
tions with nonvanishing norm (x2ksF50). In this sort of
one-particle approximation, the photoemission signal wo
correspond to an isolated bandElks—the lower (l51) or
upper (l52), respectively, for forward or backward photo
emission. One encounters such behavior in the antiferrom
netic ground state of the generalized Hartree–Fock met
with structureless valence bonds: all strong~multiparticle!
excited states are inaccessible from the single-determi
ground state, since they cannot be produced by the o
particle operatorcks , which figures in the interactions be
tween light and electrons.

Meanwhile, in calculations of finite clusters via exa
diagonalization in thet2J model17 or the quantum Monte

or

ate
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Carlo method for the Hubbard model,20 one can readily trace
the two-band structure of each of the spectral functions~24!
and ~25! responsible for forward and backward photoem
sion. Using the expanded basis of operatorsqiks , our calcu-
lation with Eqs.~29! and~30! shows that allowance for cor
relations like those that produce valence-bonds leads
splitting of the forward and backward photoemission ban
into two subbands. The basis operatorsqiks and the compu-
tational scheme and approximations are detailed in Appen
2.

In Fig. 5, we plot the spectral functionsA(k,v) for the
ground state with valence-bond dimer structure with no
tiferromagnetic order, calculated with Eqs.~29! and ~30!,
G50.1t. Two bands are easily seen, with bothv,0 and
v.0, displaying typical interband energy transport as
quasimomentumk varies from the pointG ~0,0! to M ~p,0!
and on toY ~p,p!. This is the very sort of energy transpo
shown by exact calculations of finite systems.20

The emergence of two hole~or electron! excitation
bands for states with valence-bond dimer structure beco
understandable in light of their approximate description
the undopedt2J model. The state~5!, with localized spins
and dimer spin structure in the$anbn% bonds, can be identi
cally rewritten in the form

CDM
t2J5WS a5

p

4 DF0
t2J , F0

t2J5U)
k,s

gks
† L

5U)
n,s

gns
† L , W5)

n
WnS a5

p

4 D .

Here k occupies the unit cellF0 of the Brillouin zone,n
labels the dimers, the operatorWn transforms the corre
sponding component of the functionF to the singlet dimer
state with spin localization:

WnS p

4 D ugns
1 gn,2s

1 &5
1

&

uan↑
1 bn↓

1 1bn↑
1 an↓

1 &.

We can write the general state of thet2J model, with qua-
simomentumk and one hole above the background of t
state~5! with the structure of Fig. 1a, in the form

FIG. 5. Spectral functions calculated with Eqs.~30! and~31!, G50.1t, for a
state with valence-bond dimer structure~no antiferromagnetism! in the Hub-
bard model withU/t58, n51, averaging over the two structures withx and
y orientation. The curves ~top to bottom! correspond to
k5(0,0),(p/4,p/4),...,(0,0)along the loopGY MG of Fig. 2.
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t2J .

The energy of the two hole-excitation bands, up to ter
;t/U, is then

Ek
1~2!57t$5/42coskx cosky2cos 2kx1cos2 ky%

1O~ t2/U !.

Thus, two hole~and analogous electron! excitation bands
are associated with the two dimer states withne51 ~or
ne53!, which are mixed whenkÞ(0,0) and kÞ(p,p).
Note that photoemission of an electron with spins from the
ground state~4! of a perfect antiferromagnetic can produ
both sublattice sites with spin polarizations and sublattice
sites with the opposite polarization, but with the neighbori
spin flipped in the process. Splitting and dispersion of
resulting hole excitations are of orderJ54t2/U, instead of
being of ordert like the splitting of excitations from the
localized states~5! and ~6! with valence-bond dimer struc
ture.

The photoemission intensity at the corresponding f
quenciesv5Ek

1(2)2m from any localized state of thet2J
model, however, in no way reproduces the behavior sho
in Fig. 5 and analogous results computed for finite system20

For thet2J model withn51, we have the symmetry

A~k,2v!5A~k,v!, A~ k̃ ,v!5A~k,v!, k̃5~p,p!2k.
~31!

In contrast to Eqs.~31! for the t2J model, in Hubbard-
model calculations for finiteU there is an explicit asymmetry
in A(kv) for forward and reverse photoemission, which r
flects the band nature of the correlated ground state. In
ticular, a property typical of noninteracting electrons is e
plicit: the intensity of forward (v.0) or reverse (v,0)
photoemission is nonzero for quasimomenta both inside
outside the Fermi surface.

The explanation set forth here, however, does not pr
that doubling of the photoemission bands is necessaril
result of the emergence of exclusively dimer structures in
valence bonds. The simplest calculation of hole excitatio
against the background of the localized ground state~8! with
Q4 symmetry in the valence-bond structure for thet2J
model shows that this structure can also mimic band d
bling. Out of nine bands correlated with the levels of
individual four-site complex withn53, i.e., with one hole,
and with total spin 1/2, only two pairs of close-lying ban
turn out to be active in photoemission, which with allowan
for broadening can mimic two excitation bands.

5. HOMOGENEOUS STATE OF FLUCTUATING VALENCE
BONDS

Correlated states with alternant dimer structure of
valence bonds with a doubled unit cell were studied ab
and in Ref. 24. These were constructed with the aid of lo
operators that operate on disjoint clusters—the dim
$an ,bn%. The local operators chosen in this way commu
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lence of the bonds within the dimers and the bonds w
neighboring sites that belong to other dimers. The s
consistent Hartree–Fock solution for the transformed Ham
tonian H̃ reinforces a ‘‘structure’’—a self-maintaining in
equivalence of the bonds—that resembles spin-wave den
waves.

One can, however, imagine a correlated state of fluc
ating valence bonds, constructed from the uncorrelated s
F via the unitary transformation

C5WF, W5eaZ, Z5 (
^nm&

Znm . ~32!

Here the local antihermitian operatorZnm , which operates
on two nearest-neighbor sites, is a perfect analog of the g
erator in the transformation operator~14! within the dimer
~in contrast to~14!, n and m in ~32! label the sites, rathe
than the dimers!:

Znm5@gnm,s
† gnm,2s

† unm,2sunm,s2h.c.#

[2
1

2 (
s

j nmsDnm,2s , ~33!

j nms5cns
† cms2cms

† cns , Dnm,2s5nn2s2nm2s ,

whereg andu denote even and odd combinations of orbits
neighboring centersn,m.

The summation in~32! takes place over all neares
neighbor bonds.Znm operates on the singlet components
neighboring sites with two particles per bond in the to
function F. Such components interact with one anoth
probabilistically in F. One can therefore speak of rando
formation of valence bonds, i.e., the formation of singl
from localized spins at pairs of sites following charge flu
tuations at those pairs in the single-determinant functionF.

In view of the noncommutativity of the local operator
we cannot find~as we did previously! an effective Hamil-
tonianH̃5W†HW to all orders in the transformation param
etera. It is possible, however, to findH̃ up to terms;a2,

H̃'H1a@H,Z#1
a2

2
@@H,Z#,Z#, ~34!

and to find a fully homogeneous, self-consistent Hartre
Fock solution forH̃, neglecting terms;a3 and higher. The
smallness of the optimal value ofa, which minimizes the
energyH̃5^H̃(a)&F , justifies the expansion ina and makes
it possible to assess the accuracy of the approximation.

The mean energy for such a problem, in the sing
determinant stateF of the generalized Hartree–Foc
method, depends on nine one-electron expectation va
over F:

^H̃&F5H̃~yn!, yn5$r l ,d l%n ,

r l5
1

2 (
s

^cns
† cn1 l ,s&, d l5

1

2 (
s

s

usu ^cns
† cn1 l ,s&,

~35!

l 5~0,0!,~1,1!,~0,2!, ~0,1!,~1,2!,~0,3!.
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In these means,d l[0 for odd l . The ground state of the
HamiltonianH̃ in the Hartree–Fock approximation,

F5U)
ks

F

xlks
† L ,

is defined by the eigenfunctionsxlks and spectrumElk of
the linearized HamiltonianH̃L5(n$]H̃/]yn%(yn2yn)1H̃.
In the latter equation,yn is the operator corresponding to th
meanyn .

In Fig. 6, we plot the calculated mean energy per site
a function of doping level for a homogeneous state w
fluctuating valence bonds and spins with antiferromagn
order (d lÞ0), as well as the same quantities in the abse
of antiferromagnetic order (d l50), compared with the ener
gies of states with alternant structure of the valence bonds
the Hubbard model withU/t58. Among antiferromagnetic
solutions, states with a homogeneous distribution of vale
bonds turn out to be lower in energy than states with al
nant structureDMx . This may well be related to the quadru
pling of the number of bonds on which optimization of tw
hole components takes place.

Figure 7 shows the optimal transformation parame
a(n,U/t) as a function of the dopingd5un21u at fixed
U/t58, or as a function ifU/t with n51, for a homoge-
neousFVB1AF state of the valence bonds, compared w
the corresponding parametera for the alternant dimer struc
ture DMx1AF. For U/t<9, a is indeed small for
FVB1AF, a,0.2, which justifies the quadratic~in a! rep-
resentation of the effective Hamiltonian~34!. At U/t;12,
however, there is an abrupt increase in the optimala for the
FVB state, while the functionH̃(a) becomes quite flat nea
minimum. It is unclear whether this behavior signals a qua
tative change in the ground state atU/t;12; the issue can-
not be resolved in the context of the expansion~34!.

The preceding comments have to do with antiferrom
netic solutions. At low doping, paramagneticFVB states are

FIG. 6. Dependence of energy on the doping level for correlated hom
neous states with fluctuating valence bonds~solid curve! and states with
alternant dimer structure~dashed curve!, with antiferromagnetism either
present or absent. The upper curve corresponds to the energy o
Hartree–Fock state. For an electron-doped system (n.1), the vertical axis
corresponds to@^H&2U(n21)#/t.
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significantly higher in energy than states with valence-bo
dimer structure, andAF1FVB states with a doubled uni
cell ~see Fig. 6! as a result of the emergence of a gap in
spectrum of the latter. In accordance with the results
tained by Dagottoet al.34 for finite systems, that gap give
rise to a jump in the chemical potentialm(n) at n51. In Fig.
8 we plot m(n) for the paramagneticFVB state and the
AF1FVB state for the Hubbard model withU/t58. The
behavior ofm(n) for the former is not much different from
m(n) for the Hartree–Fock solution~dashed curve!.

We now note the distinction at the Fermi surface b
tween periodic structures~antiferromagnetic or valence-bon
dimer structure! with two sites per unit cell and the homog
neous paramagneticFVB state. In the former withnÞ1, the
Fermi surface encloses the lobe along the nesting
ukx6kyu5p of the undoped system, so that the outer a

FIG. 7. Dependence of optimal transformation parametera(n,U/t) on U/t
at n51 ~upper panel!, and ond5un21u at U/t58 ~lower panel! for the
FVB1AF ~solid curve! andDM1AF states~dashed curve!.

FIG. 8. Chemical potentialm(n) as a function of electron number densi
for the antiferromagnetic and paramagnetic solutionsFVB. Solid and
dashed curves have the same significance as in Fig. 7.
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V1(2)54p (16un21u). For the homogeneousFVB state in
the paramagnetic case~i.e., with no magnetic doubling of the
unit cell!, only one of these boundaries remains, enclosin
phase volumeV54p2n in accordance with Lattinger’s theo
rem, as confirmed by ARPES experiments.2–8 In contrast to
the work reported in Ref. 2–8, the shape of the Fermi surf
for the homogeneous stateFVB can be described phenom
enologically by a linear model with hopping interactions b
tween sites (n,m) with odd l 5m2n. In such a model, there
are no next-nearest-neighbor interactions between sites
l 5m2n5(61,61).

The homogeneousFVB state has a Fermi surface shap
much like that of the two-dimensional Hubbard model w
no interaction. This surface does not display the typical
perimentally observed shape of the Fermi surface~for
NdNiCuO,2–4 YBaCuO,5 and BiBaCuO6–8!—an arc about
the pointY ~pp!, possibly for a variety of reasons. The co
relations described by the transformations~32! and~33! may
not exhaust the electron correlations; possibly, the origi
model ought to include nearest-neighbor hopping inter
tions, as in Refs. 31–33. Nevertheless, the state~32! is im-
portant, in that it yields a paradigm for the explicit constru
tion of a correlated state with fluctuations.

6. CONCLUSIONS

In the t2J and Hubbard models, the formation of dim
or more complicated valence-bond structures stabilizes b
antiferromagnetic and paramagnetic states. In contrast
macroscopically inhomogeneous state with phase differen
tion, which emerges from a mean-field solution only
doped systems,13 states with microscopically inhomogeneo
valence-bond structures can coexist perfectly with antifer
magnetic order both in undoped systems and in doped
tems, over a significant range of bothd5un21u and U/t.
Local unitary transformations with a variational parame
provide a convenient means of constructing states w
valence-bond structure.

The good agreement between the spin correlationx( l )
as a function of distancel between the spins and the dopin
level d obtained for states with valence-bond dimer struct
and in exact calculations of finite systems1,15–20 makes it
possible to interpret short-range correlations as a con
quence of the formation of valence-bond structures, a
long-range order as a consequence of antiferromagnet
which vanishes at the critical doping leveldc . When corre-
lations like those that produce valence-bond structures
taken into consideration, the critical valuedc;0.25 for the
transition of the antiferromagnetic state into the param
netic state turns out to be much less thand;0.45, the value
predicted by mean-field theory~these numbers are obtaine
for U/t58!.

States with valence-bond structure exhibit a two-ba
pattern of effective~multiparticle! hole ~and electron! exci-
tations with dispersion and splitting;t. This is precisely the
pattern obtained in exact calculations of finite clusters20

Simpler solutions for thet2J model with valence-bond
structure make it possible to interpret them as a consequ
of two ~even and odd! dimer states withn51 or n53 par-
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contrast to localized spin states, calculations for the band
correlated states with valence-bond structure also reprod
the interband energy transport when the quasimomen
changes from~0,0! to ~p,p!, as observed in exact calcula
tions of finite systems, and typical of uncorrelated states

The high degeneracy of states with varied valence-b
structure~as observed in the simpler solutions of thet2J
model! make only one particular structure unlikely. This al
confirms the homogeneous variational correlated state of
valence bonds that we constructed, whose fluctuations fo
the charge fluctuations in the uncorrelated state. The en
of such a state with fluctuating valence bonds turns out to
lower than that of a state with alternant structure of the
lence bonds.FVB states provide an example of the explic
representation of a correlated state exhibiting one of the v
ous types of fluctuations, in terms of the formation
nearest-neighbor valence bonds.

The problem of the shape of the Fermi surface in HT
is more complicated. It is unclear to what degree a gene
zation to other types of correlations—in particular, those
volving non-nearest neighbors—or expansion of the H
bard model itself, or a subtler treatment of the photoemiss
data, can eliminate the existing discrepancies in the shap
the Fermi surface.

This research was supported by Grant No. 015-943 fr
the International Science and Technology Center, and by
Russian Fund for Fundamental Research~Project 97-03-
33727A!. We also thank V. Ya. Krivnov for useful discus
sions of our results, and E. Plekhanov for assistance
checking the calculations.

APPENDIX 1

The mean energyH̄(yi)5^CHC&5^FH̃F& for states
$an ,bn% with valence-bond dimer structure~Fig. 1a! can be
calculated exactly, and depends on the following o
electron means over the single-determinant stateF:

$yi%5$r0 ,d0 ,g0 ,r1 ,d1 ,g1 ,b1 ,r2 ,d2 ,g2 ,b2% i , ~36!

rn2zsdn5^ans
† ams&F5^bn,2s

† bm,2s&F ,

gn1bn5^ans
† bms&F ,

gn2bn5^bns
† ams&F , n51,2,3. ~37!

Herem5n1 ln , ln5(0,0), ~1,1!, or ~2,0! for n50,1,2. The
parameter b0[0 is not incorporated into$yi%, and
zs5s/usu561.

From the dependence ofH̄(yi), we find the linearized
Hamiltonian

H̃L5(
ks

ĥks1H̄2(
n

]H̄

]yn
yn , ~38!

ĥks5Akd i , j1S 2zsDk Vk81 iVk9

Vk82 iVk9 zsDk
D

i j

S aks
†

bks
† D

i

S aks

bks
D

j

,

~39!
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$Ak ,Dk ,Vk8%m5
4 (

n50
H ]rn

,
]dn

,
]gn

J
m

3coskxl x coskyl y ,

Vk95
1

4 (
n50

2
]H̄

]bn
sin kxl x coskyl y .

In the summands,l 5 l (n)5(0,0), ~1,1!, or ~2,0! for
n50,1,2. The eigenfunctions and energies of the lineari
problem~38! and ~39!

xlks5
1

&

S ck1zssk ck2zssk

ck2zssk 2ck2zssk
D

i j
S eiuaks

†

e2 iubks
† D

j

, ~40!

Ek
1~2!5Ak7@D21V0

2#1/2, V0
25~Vk8!21~Vk9!2, ~41!

ck5cosfk ; sk5sin fk ; tan 2fk52Dk /V0 ;

tan 2uk5Vk9/Vk8

in turn make it possible to calculate the means~36!, and
complete the self-consistency procedure.

The density of stateŝnk&C5^ ñk&F for a correlated state
with valence-bond dimer structure can be calculated in
same way as the mean energy. If we limit consideration
the linear approximation in the nonlocal one-electron me
r l ,d l ,g l ,b l , lÞ0, but take full account of all orders in th
local means (l 50), we obtain

^ ñk&F5r01coskxG01 (
m51

4

Gm$rk ,dk ,gk ,bk%m . ~42!

Here theGm5Gm(r0 ,d0 ,g0), with m50,...,4 areexplicit,
albeit cumbersome, functions of the local means~36!, and
the remaining quantities in the summand are determined
the occupation functionsf lk5 f F(Elk2m) of the energy
bands in the linearized problem:

rk5
1

2
~ f 1k1 f 2k!, dk5

1

2
~ f 1k2 f 2k!sin 2fk ,

gk1 ibk5
1

2
~ f 1k2 f 2k!e

2iuk cos 2fk .

The equations definingfk anduk are given above.

APPENDIX 2

In calculating the effective hole excitations above t
ground-state background, where the latter has valence-b
dimer structure, we take advantage of the smallness of th
states’ nonlocal one-electron means~36! ( lÞ0) in compari-
son with the local intradimer means (l 50). In constructing
the effective hole excitations, we therefore base the initial
of operatorsqjks on local operators belonging to thenth
dimer:

qjks5A2

N (
n

eiknqjns ,
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qjns5$gns ,uns ,gnsnn,2s
g ~12nns
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Note that in the projection-operator method,29 the ana-

ns.

the

v. B
2nn2s
u !, unsnn,2s

u ~12nns
g !~12nn,2s

g !,

un,2s
† gn,2sgns~12nns

u !, gn,2s
† un,2suns~12nns

g !% j .
~43!

The operatorsqjns with j .2 are generated from the one
particle operatorsgns ,uns by commutation with the trans
formation operatorW.

The matrices

si j 5^F0qins
† uqjnsF0&,

Hi j 5^F0qins
† uH̃uqjnsF0&,

can be calculated in the linear approximation in the nonlo
means~for example, withn51, U/t58 for the local (l 50)
and nonlocal (lÞ0) meansyi in ~36!, we have~0.5, 0.399,
0.227! and ~0, 20.036, 0.042,20.06, 0, 20.022, 0.049,
0.056!!. In this approximation, the matrix elementssi j and
Hi j can be expressed in the form of expansions analogou
~42! for ^nk&, with appropriate coefficients in place ofGm .
For every pair (i , j ), these coefficients are explicit function
of the local means. As a result,si j and Hi j are completely
known from the solution of the linearized problemH̃L .

Sincerk ,dk ,gk ,bk in expansions like~42! are propor-
tional to the Fermi occupation functionsf lk5 f F(Elk2m) of
the one-electron levels foruF0&, the number of nonvanishing
eigenvalues of the hermitian matrixsi j calculated in such an
approximation depends on the location ofk relative to the
Fermi surface. In particular, forn51 we have three nonva
nishing eigenvaluesSl .

Steps in the calculation include:
1! calculating the matricessi j andHi j ;
2! finding the eigenvalues and eigenvectors of the h

mitian, positive-definite matrices

si j uj l5uilSl ;

3! identifying among the latter the eigenvectors nu
beredl51,...,L0(k) with nonvanishing normSlÞ0;

4! constructing from these vectors the basis for the
erators

Qlks5(
i

qiksuil , l51,...,L0~k!

with nonvanishing norm~26!, which can be used to constru
hold excitations;

5! calculating rank-L0 matrices~28!, equal to

Sl
21/2Hll8Sl8

21/2
5Sl

21/2uil* hi j uj l8Sl8
21/2,

the diagonalization of which specifies the vectors~25! and
energiesEk,n of effective hole~multiparticle! excitations for
given k and a given initial set of operatorsqjks . In similar
fashion, one can also calculate the amplitudesM n(ke) in the
spectral functions~29!.
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logs of the matricessi j andHi j are

si j ~k!5^@qiks
† ,qjks#1&C , Fi j 5^@qiks

† ,@H,qjks#2#1&C

instead of our matrices

si j
h 5^ q̃ iks

† q̃ jks&C , si j
e 5^ q̃ iks q̃ jks

† &C ,

which are separately used for hole and electron excitatio
In the method used by Unger and Fulde,29 effective electron
and hole excitations are simultaneously determined from
poles of the function̂ $S21/2FS21/22v%21&.
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Transformation of spin-wave resonance spectra in multilayer films upon passage

the
through the Curie point of the locking layer
A. M. Zyuzin and A. G. Bazhanov

Mordovian State University, 430000 Saransk, Russia
~Submitted 24 January 1997!
Zh. Éksp. Teor. Fiz.112, 1430–1439~October 1997!

A technique has been developed for controlling the degree of spin locking in two- and three-
layer ferrite–garnet films. Variation of the degree of locking is achieved by varying the
temperature and by passing one of the layers of the film through its Curie point. A fundamental
difference in the nature of the transformation of the spin-wave resonance spectra taking
place near the Curie point of the locking layer in films with initially symmetric and asymmetric
boundary conditions is identified. ©1997 American Institute of Physics.
@S1063-7761~97!02010-6#

1. INTRODUCTION be used to vary the degree of spin locking and study
r-
ly
so
D
e
r
ng
A
h
ex
so

n

e

is
m
a

ne
al

in
on
th
y

i
e
le
tio

ag
oc
. O
lu
c
c

To
s, it
yer
ex-
po-
ve

spin

ns-
the

in
c

s
g

ith
ee
le-
on

-

yer

and

ird
o-

rs

8-
A study of the effect of spin locking on the salient cha
acteristics of spin-wave resonance spectra is undoubted
current interest. Essentially, all studies of spin-wave re
nance start out from an analysis of boundary conditions.
spite the large number of publications dedicated to this qu
tion ~see, e.g., Refs. 1–5!, the potential of techniques fo
controlling the degree of spin locking and thereby varyi
the boundary conditions remains far from being realized.
the same time, such techniques allow one to obtain ric
and more detailed information about the peculiarities of
citation and the salient characteristics of spin-wave re
nance spectra in thin films.

In a number of works~see, e.g., Refs. 6 and 7! definite
boundary conditions were created by depositing additio
surface layers, whose magnetizationM or effective fieldHeff

differs either on the high side or the low side from the valu
of these parameters in the main layer~the excitation layer of
standing spin-wave modes!. However, such an approach
not easily reproducible. In this case, control of the para
eters of very thin surface layers is extremely difficult as
rule.

One way of controlling the degree of spin locking in o
or both surfaces of the excitation layer consists in gradu
reducing the thickness of the locking layer~spatial factor! by
layered etching.8

Another technique for controlling the degree of sp
locking that is at the same time reversible and smoothly c
trollable is possible, based on the following property. Let
Curie temperatureTC in the locking layer be substantiall
lower than in the excitation layer. As the temperature
raised and the Curie point of the locking layer is approach
there takes place a gradual weakening followed by comp
destruction of magnetic ordering. The exchange interac
constantA and the magnetizationM in this case fall to zero.
The transition from the magnetically ordered to the param
netic state should lead to the disappearance of the spin l
ing mechanisms that exist below the Curie temperature
course, increasing the temperature will also alter the va
of the physical parameters in the excitation layer. But sin
these parameters are easily controlled, such a technique
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effect of the latter on the spin-wave resonance spectra.
provide greater accuracy in the interpretation of the result
is necessary that the Curie temperature of the locking la
be substantially lower than the Curie temperature of the
citation layer of the spin-wave modes. Despite the clear
tential of this approach, we know of no studies which ha
implemented such an approach for varying the degree of
locking.

The aim of the present paper is to investigate the tra
formation of spin-wave resonance spectra accompanying
transition through the Curie point of the locking layer
multilayer films with initially symmetric and asymmetri
boundary conditions.

2. EXPERIMENT

We investigated two- and three-layer single-crystal film
of ferrite–garnets in which the dominant spin-lockin
mechanism is dissipation.9 The films were grown by liquid-
phase epitaxy on gadolinium–gallium garnet substrates w
orientation~111! by successive submersion in two or thr
different melts. Simultaneously, as a control we grew sing
layer analogs of each of the layers of the multilayer films
clean substrates. The first layer~the locking layer! of the
two-layer film with composition~YSmLuCa!3~FeGe!5O12

and thickness h52.1 mm had Curie temperature
TC5215 °C, saturation magnetization 4pM5470 G, effec-
tive uniaxial anisotropy fieldHeff51210 Oe, and Gilbert de
cay parametera5DHg/v50.15. HereDH is the half-width
of the absorption line,g is the gyromagnetic ratio,v is the
angular frequency of the microwave field. The second la
had composition Y2.98Sm0.02Fe5O12. This was the layer in
which standing harmonic spin-wave modes were excited
it had the following parameters: TC5280 °C,
4pM51740 G, Heff521715 Oe, a50.003, and
h50.520.85mm.

The three-layer films were prepared by growing a th
layer onto part of the two-layer film which had the comp
sition ~SmEr!3Fe5O12, TC5280 °C, 4pM51330 G,
Heff596 Oe, a50.2, and h51.1 mm. Three-layer films
were also grown in which the lower and upper locking laye

77806$10.00 © 1997 American Institute of Physics



had the same composition,~SmEr!3Fe5O12, andTc5280 °C.
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The saturation magnetization was measured by the techn
described in Ref. 10. The thickness was measured on
single-layer analogs by the interference method, and for
thin films it was also estimated from the total etching tim
The spin-wave resonance spectra were recorded on a
diospectrometer~resonator withTE011 mode! with perpen-
dicular and parallel orientations of the constant magn
field relative to the plane of the film. Spin-wave resonan
was excited by a linearly polarized microwave field wi
frequency 9.343109 Hz. The resonance fields of the spi
wave modes were measured with an NMR magnetome
The Curie temperature was determined from the tempera
of disappearance of the homogeneous resonance peak o
corresponding layer. To create the required sample temp
tures, a thermally insulated, thin-walled quartz tube with
ameter 8 mm was placed inside the resonator. Air that
passed through a heater was blown onto the sample. As
sensor in the temperature stabilization system we use
platinum resistance thermometer. To monitor the tempe
ture in front of and behind the sample, two platinum
platinum–rhodium thermocouples were placed near the r
nance cavity in the tube. From the mean value of
thermocouple voltage we determined the sample temp
ture, which was kept constant to an accuracy no worse t
62 °C.

Since the spin-wave resonance spectra were recorde
constant frequencyv, the dispersion curves were construct
as a dependence of the difference of the resonance field
the zeroth andnth modes on (2n11)2 for the three-layer
films and (n11/2)2 for the two-layer films. In such films the
boundary conditions are respectively symmetric and as
metric.

3. EXPERIMENTAL RESULTS

Temperature studies of the spin-wave resonance spe
of two- and three-layer films revealed the following. At roo
temperature, eight~including the zeroth! spin-wave modes
were clearly recorded in the spectrum of the two-layer fil
which consisted only of a locking layer withTC5215 °C
and an excitation layer~Fig. 1a!. The dispersion curves
H02Hn5 f ((n11/2)2) obeyed a quadratic law, by virtue o
which they remained linear over a wide temperature inter
With increasing temperature, starting roughly at 140 °C,
number of spin-wave modes gradually decreased~Fig. 1b!.
Modes successively disappeared, starting with the lar
mode number, and the amplitudes of the remaining mo
decreased. In the interval from 215 to 280 °C in the spectr
of this film only one mode~the zeroth! remained~Fig. 1c!.

The transformation of the spectra of the three-la
films, taking place with increasing temperature, had a fun
mentally different character and was accompanied not b
decrease, but an increase of the number of spin-wave mo
Such films differed from the two-layer films by the presen
of a third layer, which like the first was a locking layer b
had the composition~SmEr!3Fe5O12 with TC5280 °C.

The transformation proceeded as follows. Starting at
same temperatureT.140 °C, intermediate peaks appear
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Increasing the temperature led to growth of the amplitude
the peaks that had already appeared and to subsequen
pearance of peaks corresponding to intermediate mode
lower order ~Fig. 2b!. As follows from the figure, in this
temperature region the distribution of intensities of the a
sorption peaks of the spin-wave modes ceases to be m
tonic. For T>215 °C the total number of modes rough
doubled, and remained unchanged up toT;260 °C ~Fig.
2c!. Increasing the temperature toT5280 °C, the Curie tem-
perature of the excitation layer, led to a decrease in the n
ber of modes and to total disappearance of the entire s
trum. As can be seen from Fig. 3, the variation of the num
of modesN(T) as the Curie temperature of the excitatio
layer is approached is more abrupt than for approach to
Curie temperature of the locking layer. It can also be se
that a pronounced correlation occurs in the behavior of
dependencesN(T) for the two- and three-layer films.

One of the characteristic differences in the transform
tion of the spin-wave resonance spectra of the three-la
films is that in the temperature region from 140 to 215 °C
knee appears in the dispersion curve, which with growth
the temperature and the appearance of new intermed
modes, shifts into the region of smalln. This is illustrated in
Fig. 4, which presents dispersion curves for different te
peratures of a three-layer film with thickness of the exci
tion layer h50.52mm. For T>215 °C, i.e., after the ap
pearance of all the intermediate modes, the knee in
dispersion curve disappeared, but the slope angle of the
persion curve differed by roughly a factor of two from that
the curve corresponding to room temperature. At tempe
tures below 140 °C and above 215 °C the dispersion cur
were straight lines. Only their slope angles decreased, du
the faster~in comparison with the magnetizationM ! de-
crease of the exchange interaction constantA with tempera-
ture in the excitation layer~Fig. 5!.11

For comparison, we also investigated the effect of te
perature on the spectra of the three-layer films in which
first and third layers had the composition~SmEr!3Fe5O12 and
the same Curie temperatureTC , equal, as in the excitation
layer, to 280 °C. The number of modes in the spectra of s
films remained unchanged over a wide temperature inte
~see Fig. 3, curve3!. Only with approach toTC did their
number gradually decrease, and forT.TC the entire spin-
wave resonance spectrum disappeared.

As the temperature was lowered, the transformation
the spin-wave resonance spectra of the investigated fi
took place in the reverse order.

4. CALCULATION OF SPIN-WAVE RESONANCE SPECTRA

The dominant spin locking mechanism in the inves
gated films was the dissipative mechanism,9 which in con-
trast to the dynamic mechanism12 renders the localization
region of the standing harmonic spin waves independen
the orientation of the external magnetic fieldH relative to the
film. Such a locking mechanism arises for excitation of va
able magnetization in two- or three-layer films with high
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FIG. 1. Above—experimental spin-
wave resonance spectra of a two
layer film ~perpendicular orientation!
at 20 °C~a!, 185 °C~b!, and 240 °C
~c!. Below—calculated spectra an
intensities of the spin-wave mode
for various values of b/k1h: a!
531028 cm, b! 531027 cm, c!
531025 cm.
different decay parameters in the layers. The presence of
th

ev

m
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free path! of these waves is related to the wave number of the

ble
-
m

th
s of
exchange coupling between the layers, and also the fact
even under conditions of homogeneous resonance, the d
tion of the magnetization vectorM from its equilibrium
value in the layer with large decay parameterad is ad /ae

times smaller than in the layer with the small decay para
eter ae , leads to the appearance of a node of the stand
spin wave near the interlayer boundary. Note also that
dispersion or reactive~elastic! properties of the layers with
largea have an additional effect on spin locking.13,14

We based our treatment and explanation of
temperature-induced transformation of spin-wave resona
spectra of multilayer films on the following assumptions.

Standing spin waves, excited by a uniform microwa
field in the layer with small decay parametera, are har-
monic.

In layers with strong absorption~the locking layers! the
spin waves are excited by waves localized in the layer w
small a, and are decaying. The depth of penetration~mean
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harmonic modes in the excitation layer.
Noting the harmonic time dependence of the varia

magnetizationm(z,t), its spatial configuration in the excita
tion layer for perpendicular configuration relative to the fil
can be described by the equation12,15

d2m

dz2 2
M

2A S H2
v

g
1Hk

eff2
2

3
Hk1Dm50, ~1!

whereH is the external constant field andHk1 is the cubic
anisotropy field. This equation is valid for a medium wi
small decay. This condition is satisfied by the parameter
the excitation layer.

The solutions of Eq.~1! have the form

m1~z!5B1 sin k1z1B2 cosk1z. ~2!

wherek1 is the wave number andBi are constants.
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FIG. 2. The same as in Fig. 1, but for
three-layer film ~perpendicular orienta-
tion!. The vertical dashed lines corre
spond to intermediate modes.
In the locking layers we approximate the spin wave as
er

ta
f
e

s
f

the wave numbers, we used the exchange boundary condi-
e-
ci-
s

to
being exponentially decaying with distance from the int
layer boundary:

m2~z!5C1ek29z, z,0,

m2~z!5C2e2k29~z2h!, z.h, ~3!

wherez50, h corresponds to the boundaries of the exci
tion layer. Herek2951/l , wherel is the penetration depth o
the spin wave in the locking layer, which, as was assum
grows linearly withk1 ~Ref. 16!. To determine the relation
between the constantsBi , Ci and to find acceptable values o
-

-

d,

tions onm ~Ref. 15!, which must be satisfied by the magn
tization and its first derivative on one boundary of the ex
tation layer (z50), where locking is large and hardly varie
up to T.280 °C, and on the other boundary (z5h), where
the degree of locking varies substantially with approach
T5215 °C and then completely disappears:

m1

M1
5

m2

M2
,

A1

M1

dm1

dz
5

A2

M2

dm2

dz
. ~4!
e
FIG. 3. Temperature dependence of th
number of spin-wave modes:1! in a two-
layer film, 2! in a three-layer film,3! in a
three-layer film in which both locking layers
have the composition~SmEr!3Fe5O12 with
TC5280 °C.
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Here the indices 1 and 2 denote respectively the parame
of the excitation and locking layer.

Taking into account that locking at one of the boundar
of the excitation layer remained strong up toT.280 °C, to
simplify the calculations we assumed the presence of a n
on this boundary, i.e.,m1uz5050. This approximation does
not have a noticeable effect on the calculated values of
peak intensities of the spin-wave modes or their resona
fields. The equation, obtained with the help of Eqs.~2!–~4!
and defining the set of acceptable values ofk1 , has the form

tan~k1h!52
A1

A2

k1

k29
52bk1 , ~5!

where b5A1 /A2k29 is a parameter defining the degree
spin locking, which, noting the above assumption th
k29}k1

21, is seen to be proportional tok1 .
The solutions of Eq.~5! allow us to find the eigenvalue

H of Eq. ~1!, i.e., the resonance fields of the possible sp
wave modes and to determine the wave numbers and
figuration of the latter.

To determine those spin-wave modes which can be
cited by a uniform microwave field from among those fou

FIG. 4. Dispersion curvesH02Hn5 f ((2n11)2) of a three-layer film at
20 °C ~1!, 185 °C~2!, 198 °C~3!, 240 °C~4!, 267 °C~5!. The points corre-
spond to experiment, the solid curve3—to calculation for
b/k1h5531027 cm.

FIG. 5. Temperature dependence ofA ~curve1! and 4pM ~curve2! for the
excitation layer. Curves3 and 4 are the dependence of 4pM (T) in the
locking layers with composition ~SmEr!3Fe5O12 and
~YSmLuCa!3~FeGe!5O12 , respectively.
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the intensitiesI n of the corresponding peaks. In the case o
linearly polarized microwave field directed along thex axis,
we have6,15

I n5K0

S E mxndzD 2

E a

2gM
~mxn

2 1myn
2 !dz

, ~6!

whereK0 is a constant. In the calculation the integration
limited to the thickness of the excitation layer. It can
shown that the main contribution to the interaction integ
between the microwave field and the magnetization is de
mined by precisely this layer. This is due, first of all, to th
smallness of the exponential decay region of the spin wa
in the layers with largea and, second, to the fact that th
phase of the magnetization oscillations in this region
shifted relative to the phase of the magnetization oscillati
in the excitation layer. At the same time, it should be
marked that despite its smallness the indicated region, du
the large value of its decay parametera, is an additional
energy dissipation channel of the standing harmonic wa
and affects the width of the absorption peaks of the sp
wave modes, especially the higher-order modes.

5. DISCUSSION

Results of our calculation of the intensities and res
nance fields of the spin-wave modes of a three-layer film
various values of the parameterb/k1h are presented in Fig
2. In the case of strong locking at both boundaries, wh
corresponds to symmetric boundary conditions, only mo
with an odd number of half-waves over the thickness of
excitation layer are excited. The intensity of the modes w
even number, although they are allowed by the bound
conditions, is equal to zero. Calculation confirms this co
clusion~Fig. 2a!. An increase in the temperature and a fas
decrease inA andM of the layer withTC5215 °C in com-
parison with the other layers destroys the equality betw
the degrees of locking at the boundaries and thereby
symmetry of the boundary conditions. An increase in t
parameterb alters the roots of Eq.~5!. This is accompanied
by a change in the spatial phase of the standing spin wav
this boundary. In turn, a change in the phase has the re
that the total variable magnetic moment of the modes t
under symmetric conditions had an even number of h
waves becomes nonzero and corresponding intermed
peaks appear in the spin-wave resonance spectrum. As
lows from Fig. 2b, which displays both the experimental a
calculated spectra corresponding to one of the intermed
situations, the distribution law of the intensities of the inte
mediate modes differs from the distribution law of the mo
intensities for symmetric or asymmetric boundary con
tions: I n}(1/n2...1/n4) ~Ref. 16!. As can be seen from Fig
2b, the intermediate modes between the previously obse
zeroth mode and first mode, and also between the first m
and the second mode, have very small relative intensity. T
has the result that intermediate modes are recorded in
spectrum, starting only at some mode number. This is
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sion curve, which with a decrease in the degree of lockin
shifted toward spin-wave modes with lower number. If t
modes whose intensities amount, for example, to less
10% of the intensity of the subsequent mode were not ta
into account in the calculated spectra, this would also lea
the appearance of a knee in the dispersion curve~curve3 in
Fig. 4!. Note that such a knee, explained by fluctuations
the exchange constant and the magnetization in amorp
and polycrystalline films, was observed in Refs. 17 and
Passing the layer withTC5215 °C through its Curie poin
leads to the disappearance of spin locking at the corresp
ing boundary. The boundary conditions become asymme
on one boundary the spins are locked, on the other they
free. In this case all modes are excited which have an
number of quarter waves over the thickness of the excita
layer, not half-waves as is the case with symmetric bound
conditions. As a result, over the same interval of wave nu
bers the number of excited spin-wave modes roug
doubles. The intensity distribution becomes monotonic~Fig.
2c!. The set of wave numbers corresponding to these mo
begins to correspond to the formulak5(p/h)(n11/2),
wheren50,1,2... is the mode number. Such is the mec
nism of transformation of the spin-wave resonance spect
taking place with increasing temperature in the three-la
film.

A decrease in the degree of locking at the boundary
the excitation layer of a two-layer film leads to a gradu
decrease in the efficiency of excitation of spin-wave mod
where, to start with, this decrease affects first the high
order modes, as a consequence of which they cease t
recorded in the spectrum. Results of our calculation of
spin-wave resonance spectra of the two-layer film for diff
ent degrees of locking, which corresponds to different te
peratures, are also found to be in good agreement with
experimental data~Fig. 1!.

Note that the nature of the transformation of the sp
wave resonance spectra for perpendicular and parallel o
tations was analogous. For both orientations there wa
gradual appearance of intermediate spin-wave modes in
spectrum of the three-layer film. At the same time, for t
perpendicular orientation, the high degree of locking for
modes with small mode number was preserved up to hig
temperatures. This has to do with the fact that for this ori
tation the locking layer continues to be a reactive~elastic!
medium with strong dissipation all the way toTC , while for
parallel orientation it is dispersive.
783 JETP 85 (4), October 1997
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—varying the temperature and passing one or more
ers of a multilayer film through the Curie point can be us
as a means of controlling the degree of spin locking;

—the disappearance of spin locking at one of the bou
aries of a three-layer film roughly doubles the number
observed spin-wave modes. This has to do with making
transition from symmetric to asymmetric boundary con
tions and with the excitation of previously forbidden inte
mediate modes. The correlation observed between the
perature dependences of the number of spin-wave mode
two- and three-layer films confirms this conclusion;

—both a growth and a decrease in the number of sp
wave modes can be observed, depending on the initial s
metry of the boundary conditions as the temperature is ra
and the Curie point of the locking layer is approached;

—the non-equivalence of the degree of locking at t
surfaces of the excitation layer and its dependence on m
number together are one of the reasons for the appearan
a knee in the dispersion curves.
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Spin relaxation of Mn ions in „CdMn …Te/„CdMg …Te quantum wells under picosecond
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Spin relaxation of Mn ions in a Cd0.97Mn0.03Te/Cd0.75Mg0.25Te quantum well with photogenerated
quasi-two-dimensional electron–hole plasma at liquid helium temperatures in an external
magnetic field has been investigated. Heating of Mn ions by photogenerated carriers due to spin
and energy exchange between the hot electron–hole plasma and Mn ions through direct
sd-interaction between electron and Mn spins has been detected. This process has a short
characteristic time of about 4 ns, which leads to appreciable heating of the Mn spin subsystem in
about 0.5 ns. Even under uniform excitation of a dense electron–hole plasma, the Mn
heating is spatially nonuniform, and leads to formation of spin domains in the quantum well
magnetic subsystem. The relaxation time of spin domains after pulsed excitation is measured to be
about 70 ns. Energy relaxation of excitons in the random exchange potential due to spin
domains results from exciton diffusion in magnetic fieldB514 T with a characteristic time of 1
to 4 ns. The relaxation time decreases with decreasing optical pump power, which indicates
smaller dimensions of spin domains. In weak magnetic fields (B52 T) a slow down in the exciton
diffusion to 15 ns has been detected. This slow down is due to exciton binding to neutral
donors~formation of bound excitons! and smaller spin domain amplitudes in low magnetic fields.
The optically determined spin–lattice relaxation time of Mn ions in a magnetic field of 14 T
is 270610 and 1667 ns for Mn concentrations of 3% and 12%, respectively. ©1997 American
Institute of Physics.@S1063-7761~97!02110-0#
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Manganese atoms contain five unpaired electron spin
the 3d5 shell, and form a dilute magnetic subsystem in se
magnetic semiconductors.1 In Mn atoms d-electrons effi-
ciently interact with carriers in the valence ban
(pd-ineraction! and conduction band~sd-interaction! of the
semiconductor, which leads to such effects as giant s
splitting of band states, giant Faraday rotation of the plan
polarized light, formation of magnetic polarons,1,2 etc. Inter-
action amongd-electrons of different Mn atoms within th
magnetic subsystem results in the formation of antiferrom
netic clusters of nearest neighbors.3

Spin–lattice relaxation in the magnetic subsystem
bulk semiconductors has been intensely studied.4–6 It is
found that at liquid-helium temperatures, isolated Mn ato
interact weakly with phonons, resulting in long spin–latti
relaxation times in the millisecond range.4 The presence o
antiferromagnetic Mn clusters in semimagnetic semicond
tor crystals increases the spin–lattice relaxation rate by
eral orders of magnitude.5,6 Spin exchange between isolate
Mn atoms and clusters is efficient owing to the spin–s
interaction. Clusters, in turn, interact more efficiently th
isolated atoms with phonons. In semimagnetic semicond
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with increasing Mn density and temperature. At liquid h
lium temperatures and Mn concentration of about 3%,
spin–lattice relaxation time is in the microsecond range.5,6

The subject of this publication is spin and energy e
change among the magnetic, electron, and phonon
systems in a semimagnetic quantum well filled with hig
density photogenerated electron–hole (e–h) magneto-
plasma. Attention is focused on effects due to the dir
spd-exchange interaction between electron and Mn sp
Owing to the small quantum well width, a high concentrati
of photocarriers can be generated without substantial lat
heating, which is impossible in bulk semiconductors.

The possibility of direct spin and energy exchange b
tween Mn spins and spins of photogenerated carriers in se
magnetic semiconductors is obvious, and was studied th
retically long ago.7 The experimental data concerning th
topic, however, are scarce. Investigations have been
formed only in bulk semimagnetic semiconductors, and h
not yielded positive results,8 since the density of photogene
ated electrons was insufficient.

Significant recent progress in molecular beam epita
techniques has allowed manufacture of high-quality hete

78413$10.00 © 1997 American Institute of Physics
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enues for studying phenomena at high densities of photo
cited carriers in quantum wells with isoelectronic magne
impurities.9–11

In studying quantum wells with magnetic impurities
high densities of interband optical pumping, we detected
nificant heating of Mn whene–h plasma of high density wa
generated in a short time of about 0.5 ns,11 which led to a
blue shift of the exciton recombinationX-line in a magnetic
field. Moreover, we found that the relaxation time of t
X-line position after a powerful pump pulse depended on
technique used to measure the exciton spectrum. The re
ation time during luminescence decay immediately afte
powerful optical pulse was.4 ns, whereas the relaxatio
time of theX-line position measured via low-power nonhea
ing probe pulses, with a long delay following the pum
pulse, was two orders of magnitude longer~about 300 ns!.
This long time is in agreement with the Mn spin relaxati
time averaged over the quantum well due to spin–lattice c
pling. To account for the short spin–lattice relaxation tim
we suggested that the Mn spin temperature after a powe
pump pulse becomes nonuniform, that spin domains
formed in the magnetic subsystem of the quantum well,
that the energy relaxation of excitons takes place in the
sulting random exchange potential.

In the present work, we have continued studying phy
cal properties of spin domains formed in a Cd12xMnxTe
quantum well. We have used Cd0.97Mn0.03Te/Cd0.75Mg0.25Te
quantum wells 10 nm wide with a low concentration of M
magnetic impurities and studied in detail the mechanism
spin–spin heating of the Mn subsystem, the effect
phonons on spin heating of magnetic impurities, and the
ergy relaxation of carriers in the exchange field due to s
domains.

2. EXPERIMENTAL TECHNIQUE

We measured an undoped Cd0.97Mn0.03Te/
Cd0.75Mg0.25Te heterostructure grown by molecular beam e
itaxy on a CdTe substrate with the~001! orientation. The
sample consisted of a set of isolated quantum wells, w
widths Lz51.8, 4.5, 6, and 10 nm in order of increasin
distance from the surface. The quantum wells were separ
by ~CdMg!Te barriers with a width of 100 nm. In order t
obtain a sample with a single quantum well, the initial ch
was chemically etched in a diluted solution of bromine
methanol, CH3OH:Br2. The resulting sample contained
single quantum well separated from the surface by a ba
with a width of ;100 nm. Some of the measurements we
performed on a single CdTe/Cd0.88Mn0.12Te quantum well
with Lz510 nm. The sample was placed in a liquid heliu
cryostat equipped with a superconducting solenoid. T
quantum well plane was perpendicular to the magnetic fi
Photoluminescence spectra were recorded atT54.2 K in a
magnetic fieldB50 – 14 T using a grating monochromato
Nonequilibrium carriers were generated by a pulsed d
laser. The laser wavelength was 585 nm, the pulse repet
rate 0.8 MHz, and the pulse width 30 ps. For conduct
laser light to the sample and collecting luminescence ra
tion, we used a quartz optical fiber with a diam
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surface in order to generate uniforme–h plasma and to col-
lect the photoluminescence signal only from the excited
gion of the sample.9–11 The photogenerated carrier densi
was derived from the shape of the luminescence line of
e–h plasma taking into account the number of filled Land
levels.9 The maximum carrier density was.231012 cm22

at a pulsed pump power densityP53 mJ/cm2.
Photoluminescence signal was detected by a tim

correlated photon counting system with a time resolution
0.3 ns build around a cooled photomultiplier tube. For stu
ing Mn spin–lattice relaxation after delays longer than t
carrier lifetime, we used additional weak probing photoex
tation. The carrier density in this case was at m
33109 cm22. For this purpose, the laser was operated in
special mode. The dye-laser was pumped by the second
monic of a Nd:YAG laser operated at a repetition rate of
MHz, and this sequence of pulses was diluted by a facto
1:100. In order to generate hf probe pulses, the laser was
in a special mode with partial suppression of driving puls
As a result, the dye-laser output was a sequence of pr
pulses with a repetition rate of 82 MHz~12.2 ns between
pulses! uniformly distributed between pump pulses gen
ated at a rate of 0.8 MHz~1220 ns between pulses!. The ratio
between the intensities of the probe and pump pulses
about 1/1000, so that the total energy of probe pulses wa
most 10% of the pump pulse energy.

3. Mn SPIN AVERAGED OVER THE QUANTUM WELL.
SPIN–LATTICE RELAXATION

3.1. Photoluminescence spectra under cw pumping

Figure 1 shows photoluminescence spectra of a sin
Cd0.97Mn0.03Te/Cd0.75Mg0.25Te quantum well with a width of
10 nm due to low-power over-barrier nonresonance cw e
tation by an Ar1 laser for various magnetic fields. The spe
tra were recorded at zero time delay,td50, and a tempera-
ture of the liquid helium bathTbath54.2 K. In the absence o
magnetic field, only one relatively wide line with FWHM o
;4 meV due to recombination of excitons bound at neu
donors~D0X complex! is detected.12 The line notably shifts
to the low-energy side by.20 meV as the magnetic field
increases, and it becomes more narrow. Small shifts to
low-energy side are related to polarization of Mn magne
impurity spins in applied magnetic fieldB and are caused by
the spd-interaction in the conduction and valence bands
the quantum well. The shiftDE is directly proportional to
the average Mn spin̂Sz&, effective concentration of mag
netic impuritiesN0x* , and the exchange integralsb anda in
the valence and conduction bands, respectively1,13:

E~B!2E~0!52
1

2
~ ubu1uau!N0x* ^Sz&. ~1!

HereN0 is the number of lattice cells per unit volume andx*
is the effective mole content of Mn. The parameterx* is
always smaller than the Mn contentx because of formation
of antiferromagnetic Mn clusters, which contribute little

785Tyazhlov et al.
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FIG. 1. Photoluminescence spectra from an isola
Cd0.97Mn0.03Te/Cd0.75Mg0.25Te quantum well with a width of
10 nm under cw pumping by an Ar1 laser at various mag-
netic fields (Tbath54.2 K). The insert shows the energy o
the excitonic optical transition (Ex) and of the transition in
the e–h plasma (Ep) at P53 mJ/cm2, td50 ns,
Tbath54.2 K as functions of magnetic field.Ep is defined as
the spectral energy corresponding to 3/4 of the spectral p
intensity I max on the low-energy edge of thee–h plasma
spectral line. The solid lines are fits based on Eqs.~1! and
~2!. The exciton position in zero magnetic field~black
square! is derived from photoluminescence excitation spe
tra.
the sample magnetization in magnetic fieldsB,15T.3 The
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factor 1/2 is the eigenvalue of the Pauli spin operator
electrons and holes.

The average Mn spin is determined by the population
the Mn Zeeman multiplet in applied magnetic field. In
homogeneous system under conditions of thermal equ
rium within the magnetic subsystem,^Sz& is described by a
Brillouin function for spin 5/2 in external magnetic fiel
B1,13:

^Sz&5B5/2

mBgMnB

k~TMn1T0!
, ~2!

wheremB is the Bohr magneton,gMn is the Mng-factor,k is
the Boltzmann constant,TMn is the Mn spin temperature, an
T0 is the effective antiferromagnetic temperature due t
weak long-range interaction in Mn-subsystem. In the cas
a low Mn concentration, the latter parameter is small, a
T0;1 K for x50.03.13

The photoluminescence line becomes narrow in h
magnetic fields because of ionization ofD0X complexes due
to the exchange field.12 In the studied quantum well at
temperature of 4.2 K, the complexes are ionized in a m
netic field of 2–2.5 T. Thus, in magnetic fieldB.4 T, the
X-line due to recombination of excitons weakly localized
fluctuations of the quantum well random potential domin
in the spectra.

At a low pump power densities, the line shift in ma
netic field is in a good agreement with the Brillouin functio
corresponding to the effective temperatureTMn.Tbath,
where Tbath54.2 K is the liquid helium bath temperatur
~with due account of the additional line shift due to ioniz
tion of exciton complex!. In a saturating magnetic field, th
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is 24 meV ~here.20 meV is the shift with respect to th
D0X-line at zero field and.4 meV is theD0X-complex
binding energy!.12 The magnetic field of 14 T fully saturate
the magnetic subsystem at a low Mn spin temperat
(TMn.4.2 K). In Fig. 1 the exciton transition energ
changes little in magnetic fields higher than.6 T.

Equation~1! allows us to determine the Mn spin̂Sz&
directly from the line position in the photoluminescen
spectrum, and Eq.~2! enables determination ofTMn through
^Sz& at a fixed external magnetic field. Thus, the spec
position of the exciton luminescence line atB514 T for a
low excitation level corresponds tôSz&55/2.

3.2. Photoluminescence spectra under pulsed
photoexcitation. Probe pulses as a means of determining
the volume-averaged ŠSz‹ as a function of time.
Spin–lattice relaxation

Figure 2 shows a photoluminescence spectrum of
Cd0.97Mn0.03Te quantum well recorded during the lifetime o
the e–h plasma at delay timetd50 ~the time gate width is
0.3 ns!, Tbath54.2 K, B514 T, andP53 mJ/cm2. For com-
parison, luminescence spectra under cw excitation forB50
and 14 T are given in the graph. The spectrum contain
broad line due to luminescence of thee–h plasma from the
lowest size-quantized subband of electrons and ho
(nz51).10 In a magnetic field of 14 T, an additional featu
due to quantization of both electron and hole states in str
magnetic fields is resolved. Allowed optical transitions

786Tyazhlov et al.
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FIG. 2. Photoluminescence spectra of th
Cd0.97Mn0.03Te/Cd0.75Mg0.25Te quantum well with a
width of 10 nm due to additional photoexcitation b
probe pulses recorded after a powerful pump pu
(P53 mJ/cm2) at the initial moment
(Tbath54.2 K). The signal was detected with delay
corresponding to peaks of the probe pulses with
time gate width of 0.3 ns. For comparison, the gra
shows photoluminescence spectra under cw exc
tion atB50 andB514 T. The vertical dashed line
shows the energyE* of the excitonicX-line in a
magnetic fieldB514 T under cw excitation.
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trons and holes with equal quantum numbers (j e5 j h) are
clearly seen~Fig. 2!.

As in the case of low pump power densities, the lum
nescence line of thee–h plasma shifts to the low-energ
side in magnetic fields of up to 14 T. The shift rate, howev
is notably smaller in this case. The insert to Fig. 1 shows
optical transition energies for excitons (Ex) at low cw pump
powers and for thee–h plasma (Ep) at P53 mJ/cm2 and
td50 ns as functions of magnetic field forB,10 T and
Tbath54.2 K. In this range of magnetic fields, Landau leve
are not resolved, andEp is defined as the energy correspon
ing to a level of 3/4 of the maximum luminescence intens
I max on the low-energy tail of thee–h plasma line. By de-
fining Ep in this manner, we approximately take into accou
the renormalization of the bandgap in thee–h plasma.10

Since the shape of the low-energy edge of thee–h plasma
line changes little in magnetic fields ranging to 10 T, t
uncertainty in theEp shift is .1 meV, even though thee–h
plasma line is very broad (.40 meV). The measured shi
of Ep versus magnetic field is accounted for by spin tempe
ture TMn.1060.5 K in accordance with Eqs.~1! and ~2!.

The Mn spin temperature is different from bothTbathand
the electron temperatureTe of the e–h plasma in the quan
tum well. Te rapidly grows with the optical pump power.10

This parameter is determined by analyzing shapes of lu
nescence spectra.14 At the maximum pump power densit
P53 mJ/cm2 the temperatureTe rises to 200–300 K. Thus
the spin temperature is considerably lower than the elec
temperature,TMn!Te .

Comparison of plasma luminescence spectra corresp
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heating is important only atP>0.3 mJ/cm2, with TMn ~or the
average Mn spin̂ Sz&! being a function of the time delay
following the pump pulse.

The variation inTMn during the luminescence decay tim
immediately after the pump pulse is discussed in Sec. 4.
testing the magnetic state of the quantum well at long del
after the excitation of carriers, we have used photolumin
cence spectra due to additional photoexcitation by pr
pulses~Fig. 2!. The optical signal was detected at time d
lays corresponding to peaks of probe pulses with a time g
width of 0.3 ns. The power density in a single probe pulse
P.3 nJ/cm2, and the filling factor of Landau levels at peak
of probe pulses was at mostn;0.01.

The X-line due to excitons dominates in the photolum
nescence spectra. Figure 2 shows that theX-line is blue
shifted by;4 meV with respect to its position under the lo
cw power density during the first probe pulse (td512.2 ns).
This shift reflects a decrease in the average spin^Sz& or an
increase in the Mn spin temperature~see Eqs.~1! and ~2!!
due to a high-power pump pulse attd50. We performed a
dedicated experiment to check that the probe pulse en
was too small to heat the magnetic subsystem. As was n
above, no Mn heating was detected even at a pump po
density two orders of magnitude higher,P.0.3 mJ/cm2.

In recording photoluminescence spectra using pro
pulses, we detected the signal at the moment when the p
pulse was on so that^Sz& derived from these spectra could b
treated as a Mn spin averaged over the quantum well
ume,^Sz&V .

One can see in Fig. 2 that as the delay increases,

787Tyazhlov et al.



its
-

-
re
s

rg
s

o

m
-

-

in

in
e,
re

a
u

-

ha
er

action with phonons, we measuredtMn as a function of tem-
out
-
he
s.
e/
n

nt
s a

ge

not
m-

y
of

-

of a

he
ti-

on
tors
fit

his
pic
in

ath
to

d
This
pec-
s

,
h
tion

The
c-

the

e
ial
X-line slowly shifts to lower energies, eventually reaching
equilibrium valueE* . This shift reflects the energy relax
ation of ^Sz&V to its equilibrium valuê Sz&55/2, or the re-
laxation of the spin temperatureTMn averaged over the quan
tum well volume to the liquid helium bath temperatu
Tbath54.2 K. Since the concentration of free carriers in the
experiments is low, we attribute this behavior to the ene
relaxation of the Mn spins due to interaction with phonon

The exciton transition energy versus time,Ex(t), mea-
sured using probe pulses atB514 T andTbath54.2 K, is
plotted in Fig. 3 for two pump power densities,P53 and
2 mJ/cm2. The horizontal dashed line shows the position
the X-line under cw pumping,Ex5E* 51.6268 eV, when
the Mn spin temperature equals the liquid helium bath te
perature, TMn5Tbath54.2 K. The solid lines are least
squares exponential fits based on the formula

DE~ t !5Ex~ t !2E* 5DE~0!exp~2t/tMn!. ~3!

The quantityDE(0) is a function of the pump energy den
sity. It equals 4.2 and 1.8 meV forP53 and 2mJ/cm2,
respectively. Although the initial value ofDE(0) character-
izing the spin disorder was different, the relaxation time
both cases was the same,tMn5270610 ns.

The equal values oftMn at differentDE(0) indicate that
the Mn spin subsystem is cooled down owing to the sp
lattice relaxation, and the phonon subsystem temperatur
least after delaystd>12 ns, is close to the bath temperatu
Otherwise the spin relaxation could not be described by
exponential because the spin–lattice relaxation time wo
be a function of the phonon temperature.6 The derived spin
relaxation timetMn5270 ns is in good agreement with in
vestigations of the spin–lattice relaxation of bulk~CdMn!Te
crystals in a magnetic fieldB.14 T at liquid helium
temperatures.5

In order to have an additional test of the statement t
^Sz&V relaxation in the range of long delays is due to int

FIG. 3. Delay dependence of the spectral positionEx of the exciton recom-
bination line under weak additional photoexcitation for two values of
pump power density,P53 mJ/cm2 ~curve 1! andP52 mJ/cm2 ~curve 2! in
magnetic fieldB514 T. The Cd0.97Mn0.03Te/Cd0.75Mg0.25Te quantum well
has widthLz510 nm; Tbath54.2 K. The horizontal dashed line shows th
exciton line positionE* under cw excitation. The solid lines are exponent
least-squares fits of Eq.~3!.
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perature and Mn concentration. Experiments were carried
in magnetic fieldB514 T. As the bath temperature in
creased from 4.2 to 10 K, the spin relaxation time in t
quantum well withx50.03 decreased from 270 to 70 n
Measurements of the spin relaxation time in similar CdT
~CdMn!Te quantum wells with a higher Mn concentratio
x50.12 indicate that the relaxation timetMn decreases to
1667 ns atTbath54.2 K.1! These data are also in agreeme
with published data on the spin–lattice relaxation time a
function of T andx.5,6

One can also see in Fig. 2 that in the ran
td510– 100 ns the excitonX-line is notably broader than in
spectra recorded under cw pumping. This broadening can
be caused by the luminescence of the exciton–impurity co
plex since~see Fig. 1! the exciton is in the ground state b
the time the magnetic field is 2–3 T, at an exciton energy
1.635 eV, whereas theX-line is about 4 meV lower on the
energy scale attd510– 100 ns. This line broadening de
creases with increasing time delay, and attd;100 ns it is
negligible.

We presume thatX-line broadening attd,100 ns is re-
lated to spin inhomogeneities in the magnetic subsystem
quantum well. The decrease in theX-line width reflects the
emergence of equilibrium due to spin–spin interaction. T
characteristic time in which equilibrium is established, es
mated from measurements of theX-line half width, is
tss;70 ns. Presently no published data are available
spin–spin relaxation times in semimagnetic semiconduc
with x50.03, which were studied in the present work. A
to the previously reported15,16 experimental curve oftss(x)
in the range of 0.05,x,0.1 to the region ofx.0.03 yields
tss.1 ns, which is much less than our measured value. T
difference can be accounted for in terms of the macrosco
character of spin inhomogeneities in the Mn subsystem
our experiments.

4. HEATING OF MAGNETIC SYSTEM DUE TO SPIN–SPIN
INTERACTION WITH e – h PLASMA

4.1. Direct heating of Mn spins by photogenerated carriers.
Experimental results

As was noted above, the spin temperatureTMn of the
magnetic subsysetem remains close to the liquid helium b
temperature at an optical pump power density up
P50.3 mJ/cm2. At higher P, the spin temperatureTMn is a
function of the time delaytd between the pump pulse an
the moment when the luminescence signal is detected.
can be seen in Fig. 4, which shows photoluminescence s
tra of the Cd0.97Mn0.03Te quantum well recorded at variou
delays td during the lifetime of the e–h plasma at
Tbath54.2 K and B514 T for two pump power densities
P53 mJ/cm2 and 0.3mJ/cm2. For comparison, the grap
also shows photoluminescence spectra under cw excita
for B50 andB514 T.

Figure 4 shows that atP53 mJ/cm2 and td<1.3 ns,
e–h plasma luminescence dominates the spectrum.
maximum carrier concentration derived from the filling fa
tor of Landau levels10 is neh51.731012 cm22. The carrier

788Tyazhlov et al.



g

-
xci-
ks
FIG. 4. Photoluminescence spectra of the Cd0.97Mn0.03Te/
Cd0.75Mg0.25Te quantum well with a width of 10 nm recorded durin
thee–h plasma lifetime at various delaystd,1.3 ns,Tbath54.2 K,
B514 T, P53 and 0.3mJ/cm2 ~dashed and solid lines, respec
tively!. For comparison, photoluminescence spectra due to cw e
tation atB50 and 14 T are given. The vertical dashed line mar
the spectral position of theX-line in magnetic fieldB514 T under
cw excitation.
concentration decreases with increasing time delay owing to
ra

on

t
ed
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teraction in the plasma,DEe2h , due to the decrease in the
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f

for

-

ctra
fer-
lines
carrier recombination, and the luminescence line due to t
sitions between the lowest Landau levels~0–0! gradually
transforms to theX-line of magnetoexcitons attd.1.5 ns.
The energy of the 0–0 transitions in thee–h plasma, like the
exciton transition energy, is a function of the average M
spin ~see Eq.~1! and Refs. 10 and 17!. Therefore, in testing
the magnetic state of the system during thee–h plasma life-
time, one can also measure the energy of 0–0 transiti
E020 .

Figure 4 indicates that in the rangetd50 – 1.3 ns the
energyE020 increases withtd . The maximum shift is abou
6 meV. It occurs approximately at the time when excit
Landau levels are emptied~filling factor n.1!. There are two
reasons for changes in the energy of the 0–0 transition w
td . First, this is a decrease in the attractive interparticle
n-

n

s,

th
-

plasma densityneh . Second, the exchange interaction ener
DEexc decreases owing to the increase in the Mn spin te
perature. Previously10 we argued that the renormalization o
E020 due to the interparticle interaction in thee–h plasma is
small in a CdMnTe quantum well (DEe2h,3 meV for
neh<231012 cm22). Consequently, the change inDEexc

due to the higher Mn spin temperature is at least 3 meV
td51 – 1.3 ns.

A similar value ofDEexc is obtained by directly compar
ing photoluminescence spectra at varioustd recorded at two
values of the optical pump power density,P53 and
0.3mJ/cm2, but at time delays differing by about 1 ns~Fig.
5!. A delay of about 1 ns was selected to make the spe
correspond to equal carrier densities. In this case, the dif
ence between the spectral positions of the luminescence
the

en-
FIG. 5. Comparison between photoluminescence spectra of
Cd0.97Mn0.03Te/Cd0.75Mg0.25Te quantum well 10-nm wide at
B514 T, Tbath54.2 K, andP53 and 0.3mJ/cm2 ~dashed and solid
lines, respectively!. The delays are selected so that the carrier d
sities in both cases are equal.
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is determined solely by the difference between the Mn s
temperatures, since the renormalization due to the inter
ticle interactionDEe2h in these cases is the same. Figure
demonstrates that the difference between the luminesc
line positions reaches 5 meV attd.1 ns. By substituting
DEexc.5 meV into Eqs.~1! and ~2! and using the value

FIG. 6. Transition energiesE020 andEx ~Ẽ, see the discussion in Sec. 5! in
the photoluminescence spectra of the Cd0.97Mn0.03Te/Cd0.75Mg0.25Te quan-
tum well ~Lz510 nm, Tbath54.2 K! in magnetic fieldB514 T atP53, 2,
1, and 0.3mJ/cm2 ~plotted by circles, squares, triangles, and rhombi, resp
tively! versus time in the rangetd,16 ns. The spectra were recorded eith
without the additional optical probe pulses during photoluminescence d
~open symbols! or under additional excitation by the first probe pulse at
peak~full symbols!. Within the time intervaltd,1.5 ns the corrections for
the interparticle interaction in thee–h plasma were taken into account. Th
dashed line plots the concentrationneh of two-dimensional electrons and
holes derived from the number of occupied Landau levels atP53 mJ/cm2.
The dash-dotted horizontal line shows the position of the exciton line un
cw excitation.
n
r-

ce

field, we obtainTMn.25 K for P53 mJ/cm at td;1 ns.
In Fig. 6 we plot the transition energyE020 between the

lowest Landau levels for a magnetic fieldB514 T,Tbath54.2
K, and P53, 2, 1, and 0.3mJ/cm2. At td,1 ns ~n.1!, we
have corrected for interparticle interaction in thee–h
plasma. Attd.1 ns~n,1!, these corrections are so small
to be negligible. Figure 6 also shows a fit to the deviati
E0202E* during heating of Mn spins at pump power de
sity P>1 mJ/cm2. When heating the spin system,td<1.5 ns,
and the deviation from equilibrium is linear in time to withi
the experimental errors,E0202E* }vt. The heating ratev
decreases with pump power, and is 3.7, 1.9, and 1.1 meV
at P53,2, and 1mJ/cm2. Heating typically ends simulta
neously with the transition from the plasma to exciton
gime of the charge carriers.

There are two feasible mechanisms for heating the
subsystem on a subnanosecond time scale. The first is s
spin spd-interaction between charge carriers and Mn; t
second is, the electron–phonon interaction, provided that
optical pump pulse heats the lattice to a temperature of o
100 K, at which the spin–lattice relaxation time drops
several nanoseconds.6

In order to estimate the effect of lattice heating on t
Mn spin temperature, we measured a sample that contai
in addition to a quantum well with a widthLz510 nm, a
partially ‘‘etched off’’ quantum well withLz56 nm. Figure
7 shows photoluminescence spectra of such a sampl
Tbath54.2 K, B514 T under conditions of both weak cw
pumping by an Ar1 laser and a high power pulsed pum
(P52 mJ/cm2). Under cw pumping, theX-line from the
6-nm quantum well is a factor of about 50 weaker than t

-

ay

er
e

r

FIG. 7. Photoluminescence spectra of th
Cd0.97Mn0.03Te/Cd0.75Mg0.25Te sample containing two
quantum wells with widths of 10 nm and 6 nm unde
pulsed excitation~P52 mJ/cm2 and td50 and 1 ns!,
and under low-power cw pumping~Ar1 laser!.
B514 T, Tbath54.2 K.
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gap
from the 10-nm well, and is shifted by about 30 meV to t
high-energy side owing to the size quantization.

Under pulsed pumping, several Landau levels are fil
in the 10-nm quantum well at the momenttd50, whereas in
the 6-nm quantum well only one level is occupied. T
higher filling factor in the first well is caused in this case
a more efficient collection of photoexcited carriers from t
bulk to the wider quantum well, and additional surface
combination in the partly ‘‘etched-off’’ quantum well~see
the insert to Fig. 7!.

The separation between the first and second well is o
100 nm, so a large difference between the lattice temp
tures in these wells is out of the question.18 Nonetheless,
heating of the Mn spins in the 10-nm quantum well is clea
seen in Fig. 7, whereas no heating is detected in the 6
well. Consequently, the difference between the Mn spin te
peratures in these wells is associated with the difference
tween the densities of photoexcited carriers.

Thus, we can conclude that the short time of Mn sp
depolarization in a photoexcited quantum well is related
direct interaction between the photoexcited carriers and
magnetic subsystem.

4.2. Spin–spin sd -exchange between Mn and e – h plasma.
Discussion of experimental results

In the previous section we demonstrated that the hea
of the magnetic subsystem in the quantum well under opt
pumping develops during a very short time interval of ab
1 ns, and is terminated when only one Landau level is oc
pied, which roughly corresponds to the transition from t
plasma mode to excitonic mode of the nonequilibrium ca
ers existence.

Figure 8 shows the amplitude of the energy (Ex) devia-
tion from its equilibrium value measured at the maximum
the first probe pulse,Ex(12.2 ns)2E* , as a function of the
maximum filling factor of the Landau levels in the condu
tion band,nmax

c 5n(0). The parameterEx(12.2 ns)2E* is ap-
proximately linear withnmax

c , and this curve has a cut-off a
Ex5E* near a filling factornmax

c .1. Thus, we conclude tha
heating of the magnetic subsystem as a function of the fil
factor of electron states has a threshold.

The presence of the cut-off point in Fig. 8 indicates th

FIG. 8. Amplitude of the energy (Ex) deviation from its equilibrium value
E* measured at the peak of the first probe pulse as a function of the m
mum filling factor of the conduction band,nmax

c 5n(td50).
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the Mn spin heating does not depend on the total concen
tion of carriers in the quantum well, but is instead a functi
of the filling of the upper spin subband of electrons. Figure
shows a diagram of spin splitting of the density of states n
the band gap in a strong magnetic field. Under equilibriu
conditions at 4 K, Mn spins are fully polarized and align
with the magnetic field~states marked by the up-arrow i
Fig. 9!. The band gap edges corresponding to allowed opt
transitions ins1 and s2 circular polarizations are formed
by electrons and holes with parallel spins,e↑, h↑ and e↓,
h↓, respectively. The total spin splitting of the band stat
DEs.50 meV, is shared between electron and hole sta
proportionally to the respective exchange integrals, nam
DEe

s.10 meV in the conduction band andDEh
s.40 meV in

the valence band.13 The electron Fermi energyEe
F , on the

contrary, is higher than the hole Fermi energyEh
F, owing to

the smaller electron effective mass,mh /me.2.19 One can
see in Fig. 9 that even at the maximum accessible Fe
energies ~DEe

s1DEh
s;60 meV, which corresponds to

ne;231012 cm22!, the holes are totally spin polarized. Th
onset of filling of the electron spin-split levele↓, on the
contrary, occurs atEe

F.10 meV. The statese↓ are optically
inactive because of the absence ofh↓ holes, and cannot be
seen in photoluminescence spectra. In a magnetic field
B514 T the spin splitting in the conduction band is appro
mately equal to the cyclotron splitting between the elect
Landau levels,DEe

s;D01
e , which provides a convenien

qualitative criterion for the onset of the electron spin-sp
statee↓ filling, namely, the filling factorn5nc is approxi-
mately equal to unity.

The absence of Mn spin heating atn,1 ~Fig. 8! and the
termination of heating atn;1 in the plots ofE020(t) in Fig.
6 indicate that Mn spin heating is determined by the filling
the upper electron spin subband and is due to the spin–
sd-interaction.

The most likely mechanism of the energy transfer is e
change scattering of electrons with a transition from thee↑
subband to thee↓ subband accompanied by a change in
Mn spin, i.e., so-called spin-flip scattering.

The rate of paramagnetic impurity spin relaxation, 1/te ,
in bulk semiconductors due to the contact spin–spin inter
tion with free Fermi carriers is calculated by Abraham20 for
spin 1/2 under conditions when in which Landau quanti

xi-

FIG. 9. Diagram of spin splitting of the density of states near the band
edge in a saturating magnetic field. The situation when the width of thee–h
plasma photoluminescence spectra is about 30 meV is illustrated.
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spin-flip scattering of band electrons. The total energy
electrons and Mn spins is conserved, and the change in
electron energy ismBgMnB. The electron quasimomentum
not conserved because of the short range of the exch
potential action. Given a sufficiently high concentration
electrons with a Fermi distribution function, the rate of sp
flip scattering is independent of the conduction band s
splitting DEe

s .
A calculation of the spin-flip scattering rate for two

dimensional carriers and impurities with spin 5/2 in a sy
metrical quantum well~see Appendix! shows that in the two-
dimensional case, the Mn spin relaxation rate is proportio
to the coupling constant squared, the density of sta
squared, and the electron temperature, which is in qualita
agreement with the result for bulk semiconductors.20 The
numerical coefficient, however, is a factor of twenty high
owing to a change in the spin matrix element and size qu
tization of the electron motion along thez-axis. Moreover, in
a quantum well the relaxation rate depends on the dista
between the Mn atoms and heterojunction, because the
tron density is modulated in the direction perpendicular
the quantum well plane.

In the structure studied here, the characteristic rate
Mn spin relaxation is less than a nanosecond~see Refs. 15
and 16, and the discussion in Sec. 3.2!. This rate determines
the characteristic time in which a local equilibrium is esta
lished in the magnetic subsystem. Therefore we use in
estimates the spin relaxation rate averaged over the qua
well profile ~Eq. ~A12!! and ignore oscillations in the elec
tron density of statesD due to Landau quantization. Th
density of states D is estimated to be
D5ne /Ee

F5531010 meV21 cm22 (ne5neh51.731012

cm22, Ee
F540 meV!. By substituting into Eq.~A12! D,

a51.5310223 eV•cm3 (N0a50.22 eV),13 andTe5200 K,
we obtain the characteristic spin relaxation timete.4 ns for
the maximum pump power densities.

As stated in Sec. 3.2, the temperature of photoexc
electrons at maximum pump power densities is very hi
Te.200 K. Therefore the process of Mn spin relaxati
through interaction with photoexcited electrons constitu
spin heating to the temperatureTe of thermal equilibrium
between Mn spins and electrons, with characteristic timete .
The Mn spin heating is described by the equation

DE~ t !5E~ t !2E* 5DEmax@12exp~2t/te!#, ~4!

where DEmax corresponds to thermal equilibrium betwe
electrons and Mn spins. TakingDEmax.20 meV
(TMn'Te'200 K) and expanding Eq.~4! in terms oft/te ,
we have in the range of smallt/te the Mn spin heating rate
v'DEmax/te.5 meV/ns, which is in fair agreement wit
our measurements (v53.7 meV/ns).

Note that the parameters of our experimental conditi
are beyond the range of applicability of Eq.~A12!. In a mag-
netic field of 14 T, separate Landau levels are resolved in
photoluminescence spectra, which indicates that the en
distribution of electrons has notable oscillations. Since
density of states is included in the final formula in the fo
of a convolution~Eq. ~A9!!, the quantization of the densit
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of states should lead to an increase in 1/te in the case when
the spin splitting is a multiple of the cyclotron energy in th
conduction band~DEe

s50, D01
e ,...,D0i

e !.
The relaxation rate as a function of the homogene

width G of Landau levels should be approximately describ
by the relation 1/te}*D2dE}1/G. On the other hand, the
matrix element of the spin-flip scattering should drop w
the increasing difference between Landau level numbers
accordingly, withDEe

s . Thus, the spin relaxation rate 1/te in
a quantizing magnetic field should be a decreasing osci
ing function ofDEes with an absolute maximum atDEe

s50.
The oscillation amplitude should increase with decreasingG,
resulting in a total suppression of resonant spin-flip scat
ing at certain ratios amongG, D i j

e , and DEe
s . Under these

conditions, the nonresonant three-particle processes of e
tron spin-flip scattering with participation of phonons will b
dominant.

Agreement between measurements of the heating rav
and theoretical calculations with Eq.~A12! is probably due
to a notable homogeneous broadening of lines ine–h
plasma and the mutual cancellation of corrections to the d
sity of states and matrix element of the spin-flip scatterin2!

As we just noted, the Mn spin relaxation rate in a qua
tizing magnetic field ofB514 T should drop with increasing
DEe

s . The increase in the spin temperature leads to a lo
splitting in the conduction band, which in turn leads to po
tive feedback and results in spatial inhomogeneities in
magnetic subsystem of the quantum well. Figure 10 illu
trates this process. At the initial moment, both the magn
and electronic subsystems are homogeneous~Fig. 10a!, and
the probabilityW of spin-flip scattering is independent o
position. As a result, a fraction of all Mn ions change th
spin states~Fig. 10b!. At a fixed magnetic field,W is larger
in heated regions owing to the smaller electron spin splitt
DEe

s . Thus, it is natural to expect that the Mn spin heati
should be inhomogeneous and lead to the separation o
magnetic subsystem in the quantum well into hot and c
regions.

Large inhomogeneities in the spin density should res

FIG. 10. Diagram illustrating spatial separation in the Mn subsystem cau
by the spin-flip scattering of conductance electrons. The situation of
totally polarized Mn subsystem at the initial moment is shown. The diag
shows two electron subbands~e↑ and e↓! split by thesd-exchange. Elec-
trons are shown only in the uppere↓ subband. At the initial moment~a!
both the magnetic and electronic subsystems are homogeneous. Then~b! a
fraction of Mn ions change their spin states, and the electron spin splittin
heated regions is reduced. The probability of spin-flip relaxation increase
these regions. Later the spin-flip relaxation occurs largely in the he
regions. When~c! all electrons are in the lowere↑ subband, diffusion of
electrons from cold regions is driven by the gradient of the exchange po
tial due to the Mn magnetization.
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ure 2 demonstrates that this broadening really occurs in
range of time delaystd510– 100 ns. On the other hand, in
homogeneities in the magnetic subsystem should give ris
new features in the relaxation of photoexcited excito
These features will be discussed in detail in the next sect

5. SPIN DOMAINS IN THE MAGNETIC SUBSYSTEM.
ENERGY RELAXATION OF EXCITONS IN A RANDOM
EXCHANGE POTENTIAL

The behavior of the excitonic subsystem during the p
toluminescence decay after a pump pulse strongly depe
on the laser pulse energy. This is clearly seen in Fig
which shows spectra of decaying photoluminescence du
pulses with two different pump power densities~P53 and
0.3mJ/cm2! recorded at moments with a delay of about 1
between them. As we noted above, this delay was selecte
that the carrier concentrations in both cases were equal.

In the time delay rangetd52 – 10 ns, the shift of the
X-line to the low-energy side is about 1 meV in the case
the lower pump power densityP50.3 mJ/cm2. Hence, when
TMn is close to the liquid helium bath temperature, the loss
the exciton energy due to the relaxation in the random
tential is small (<1 meV), whereas in the case of the high
pump power densityP53 mJ/cm2, whenTMn reaches 25 K,
the X-line rapidly shifts to the low-energy side by about
meV. This shift indicates a fast~within several nanoseconds!
relaxation of Mn spins, which is in disagreement with t
spin lattice relaxation time of 270 ns measured using pr
pulses~Sec. 3!. This shift also cannot be attributed to form
tion of a magnetic polaron, since the Mn concentration in
sample is too low.3!

In order to describe the evolution of features in the ph
toluminescence spectrum throughout the studied time in
val, it is convenient to introduce a band gap edge energyẼ.
We defineẼ5E020 during the lifetime of thee–h plasma
and Ẽ5Ex when the carriers are bound to excitons. Sin
E0205Ex when the Landau level filling factor isn<1 and
E020<Ex for n.1,10,17 the Mn spin ^Sz& can be directly
derived fromẼ using Eqs.~1! and~2! throughout the studied
range of carrier densitiesneh with due account of the renor
malization ofE020 caused by interparticle interaction in th
e–h plasma.

The energyẼ is plotted in Fig. 6 as a function of time
delay for P53, 2, 1, and 0.3mJ/cm2 at a magnetic field
B514 T andTbath54.2 K. We first discuss the case of th
maximum pump power densityP53 mJ/cm2. The dashed
line in Fig. 6 shows the concentrationneh of two-
dimensional electrons and holes forP53 mJ/cm2. At higher
power densitiesneh was derived from the number of occu
pied Landau levels.14 In the rangen,1 the density of carri-
ers was assumed to be proportional to the intensity of
X-line in the luminescence spectra. The lifetime of noneq
librium carriers in the studied quantum well is within th
time resolution of the light detection device, which equ
300 ps. Nonetheless, the FWHM of theneh(t) curve is about
1 ns. Hence follows a conclusion that the accumulation
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portant during a fairly long time of about 1 ns.
In the time delay range 2–10 ns, when thee–h system is

composed of excitons, the Mn spin system relaxes to
equilibrium state. The carrier concentration drops during t
process by several orders of magnitude. Exponential fits
scribing the cooling of Mn spins are shown in Fig. 6 by so
lines. These exponentials are in satisfactory agreement
experimental points. The characteristic timet loc of spin re-
laxation during the photoluminescence decay proved to
461 ns. As will be shown below, this time does not reflec
real, fast process of Mn spin relaxation, but is controlled
specific features of energy losses by excitons and can
described in terms of the exciton diffusion model discuss
below.

Measurements in the rangetd,10 ns were performed
during the photoluminescence decay without an additio
photoexcitation. In this case, a local Mn spin^Sz&x averaged
over the exciton volume is measured. The term ‘‘local spi
means in this case that an exciton can migrate across
sample for a long time, lose its energy in both crystal a
random exchange potentials, form a magnetic polaron,
Therefore the measured value of^Sz&x , generally speaking
is different from the average over the quantum well volum
^Sz&V .

Figure 6 also shows energies of excitonic transitio
measured using additional photoexcitation at the maxim
of the first probe pulse (td512.2 ns). This graph demon
strates that at shorter delays (td53 – 10 ns) the value of
^Sz&x is larger than̂ Sz&V measured after longer delays tim
(td512.2 ns!. It is obvious that such behavior would b
impossible in a homogeneous spin system. The differe
between measurements of the same parameter^Sz& by differ-
ent methods is a clear indication that the magnetic subsys
of the quantum well contains microscopic spin inhomoge
ities, i.e., spin domains.

When the pump power density is reduced

P51 mJ/cm2, the behavior ofẼ(t) is essentially the same. I
can be described in terms of heating and cooling to the b
temperature during the photoluminescence decay (td,6 ns).
The maximum in the spin temperature lags the maximum
the electron and hole density. The Mn spin relaxation ti
for P52 and 1mJ/cm2 and td51 – 6 ns is adequately de
scribed by an exponential function with typical time
t loc52.7 and 2.3 ns. At the peak of the probe pul
(td512.2 ns) the X-line has a higher energy than a
td54 – 6 ns.

At lower pump power densities, the behavior ofẼ(t) is
qualitatively different. Starting atP50.3 mJ/cm2, it is iden-
tical to that of neh(t), so that the maximum energy shi
occurs in the regiontd.0. If the pump power density is
reduced further, thee–h system devolves into the excito

regime, the shape of theẼ(t) curve does not change, and th

maximum of the differenceẼ2E* tends to zero. In this
regime, heating of the Mn spin subsystem, on average
curtailed. Starting atP50.3 mJ/cm2, the deviation ofEx

from its equilibrium value measured at the first probe pu
is zero. An important point is that a laser pulse of a hi
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FIG. 11. Photoluminescence spectra of th
Cd0.97Mn0.03Te/Cd0.75Mg0.25Te quantum
well (Lz510 nm) recorded at different mo
mentstd at Tbath54.2 K, P53 mJ/cm2, and
B52 T!. The graph also includes spectra r
corded at a low density of nonequilibrium
carriers forB50 and 2 T. The insert shows
the energyEx as a function of time at a mag
netic field of 2 T, which was derived from
the position of theD0X line at delays
td51 – 6 ns. The exciton binding energy a
a neutral donor (.4 meV) was derived from
photoluminescence spectra under cw exci
tion at the magnetic field of 2 T. The dashe
horizontal line in the insert shows theX-line
position under cw excitation.
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not heat the Mn spin system. Therefore the deviat
Ẽ(0)2E* , about 1 meV at zero delay andP50.3 mJ/cm2,
relates to the population of localized states of the low
Landau level and the effective shift of the photolumine
cence line peak to the region of maximal density of state

We ascribe the short Mn spin relaxation time~several
nanoseconds! to the diffusion of excitons in a highly nonun
form exchange potential. The diffusion process is schem
cally shown in Fig. 10c. The decrease int loc with decreasing
pump power density indicates an increase in the excha
potential gradient, i.e., a relative decrease in the spatia
mensions of spin domains dimension as compared to t
amplitude ~the difference between̂Sz& inside and outside
the domain!. Hence follows the inverse statement. In the p
cess of the domain evolution, the amplitude of a spin dom
first increases, and then the domain grows.

In order to detect a suppression of the exciton diffusi
we performed an experiment in small magnetic fields, wh
excitons are bound on impurities and their diffusion is i
peded or even inhibited completely. Moreover, in small m
netic fields, Mn spin heating should be more uniform~see the
discussion in Sec. 4.2!, which should reduce the amplitude o
spin domains and also slow exciton diffusion.

Figure 11 shows photoluminescence spectra of
Cd0.97Mn0.03Te quantum well recorded at different momen
of time td at Tbath54.2 K, P53 mJ/cm2, and magnetic field
B52 T. This plot also gives spectra recorded at a low car
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minescence spectra evolve in a manner similar to that of
spectra of Figs. 4 and 5. In the magnetic field of 2 T in the
time rangetd50 – 1.3ns , the spectra are mainly due to th
e–h plasma luminescence, as in the magnetic field of 14
When the delay increases to 1.5–2 ns and the carrier den
drops, the luminescence line gradually transforms to the
of exciton recombination bound to neutral donors~see the
discussion in Sec. 3.1 and Ref. 12!. The X-line of exciton
recombination should have an energy about 4 meV high
The insert to Fig. 11 gives the energyEx in a magnetic field
of 2 T versus time. The energyEx was derived from the
transition energy of theD0X complex, and the binding en
ergy of the D0X complex (.4 meV) was directly deter-
mined from the separation between theX and D0X lines
recorded under cw excitation in a field of 2 T.12 In the time
delay rangetd51.5– 6 ns, Ex weakly depends on time
~compare to Fig. 6!. The spin relaxation timet loc is approxi-
mately 15 ns. The increase int loc from 4 to 15 ns as the
magnetic field drops from 14 to 2 T reflects the curtailmen
of exciton diffusion in weak magnetic fields and is asso
ated, on the one hand, with a decrease in the amplitud
spin domains, while on the other, it reflects the localizat
of excitons at neutral donors. In order to separate these
contributions to the exciton diffusion, additional experimen
are needed for an independent measurement of the spin
main amplitude as a function of magnetic fie
~see footnote 2!.
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It follows from our measurements that the main con
bution to Mn spin heating in a quantum well doped w
magnetic impurities under powerful pulsed excitation com
from free carriers, which generate spin domains in stro
magnetic field. To conclude this paper, we give a schem
description of the sequence of events in the quantum we

In the first stage (td50 – 1 ns) the quantum well con
tains dense two-dimensionale–h plasma~Fig. 10a!. In this
stage electrons from the spin-split subband heat the Mn
tem through spin-flip scattering. This heating is spatia
nonuniform~Fig. 10a,b!. This effect is due to positive feed
back in the form of a higher spin-flip scattering intens
caused by lower spin splitting in the conduction band. In
first stage the magnetic subsystem of the quantum we
divided into regions with higher and lower Mn spin tempe
tures, i.e., magnetic domains are formed. The presence o
spin density inhomogeneities is indicated by the nota
broadening of theX-line in measurements with probe puls
with time delays up totd.100 ns.

In the second stage (td>1 ns) the existence of carrier
in the form of e–h plasma has terminated, carriers a
present in the quantum well in the form of excitons, and th
density gradually drops as a result of recombination. T
stage is characterized by the diffusion of excitons driven
the exchange field gradient from hotter to colder regio
~Fig. 10b!. The exciton diffusion manifests itself through th
difference between the local spins^Sz&x measured during the
photoluminescence decay and the Mn spin averaged ove
quantum well volume,̂ Sz&V , obtained using probe pulse
~Figs. 2 and 3!. We have observed in the experiments ho
^Sz&x deviates from̂ Sz&V to higher values corresponding t
lower spin temperatures and a more ordered state of
spins in the rangetd53 – 10 ns. The fact that the local M
spin deviates from the average value is direct evidence
favor of microscopic spin inhomogeneities in the magne
subsystems in the quantum well.

During the second stage, local equilibrium in the ma
netic subsystem is established through the spin–spin inte
tion, and Mn spins concurrently relax to the equilibrium sta
through interaction with acoustic phonons.

The authors are indebted to V. B. Timofeev and S
Gubarev for fruitful discussions. This work was supported
the Volkswagen Fund~Germany!, Russian Nanostructure
Program, and Russian Fund for Fundamental Research~grant
No. 97-02-17697!. One of the authors~D. R. Ya.! would like
to express gratitude to Deutsche Forschungsgemeins
~SFB 410! for financial support.

APPENDIX

Mn spin relaxation via Fermi-distributed quasi-two-
dimensional free electrons

The spin relaxation rate due to interaction with Ferm
distributed three-dimensional electrons was calculated
Abraham20 for spin 1/2 and low magnetic fields. We no
perform similar calculations for two-dimensional carrie
Suppose that there is thermal equilibrium between spin s
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so that the Landau quantization of electron orbital mot
could be ignored.

Let the magnetic field be aligned with thez-axis, perpen-
dicular to the quantum well plane. The well occupies t
space betweenz50 andLz , and a Mn atom is at distancea
from the heterojunction. Suppose for simplicity that the wa
of the quantum well are infinitely high. A finite height of th
walls should lead to inessential corrections that can be
nored in our case.

The Hamiltonian of thesd-exchange between spins o
band electrons and Mn spin has the form1

H5asW SW d~r !5ad~r !FszSz1
1

2
~s1S21s2S1!G .

~A1!

Herea is the exchange integral for conduction electrons, a
spin operatorsSW andsW act on the Mn and free electron spin
respectively. The notation in this equation is identical to th
in Eqs.~1! and ~2!.

The spin wave function of Mn varies as a result of
electron transition from one spin subband to another sim
taneously with a change in the spin projection of the m
netic impurity by a unit. The elementary probability of suc
a transition is given by the expression23

w5
2p

\
u^ i uHu j &u2d~Ei2Ej !. ~A2!

Consider a situation when the magnetic field is su
ciently strong so that Mn has in the initial state the sp
projection on the magnetic field directionSz55/2. Hamil-
tonian ~A.1! is responsible for transitions from state 5/2
state 3/2. We consider electrons from the lowest si
quantized subband. Then the wave functions of the ini
and final states have the form

u i &5&
sin~pa/Lz!

ALz

uk&U52 ,2
1

2L , ~A3!

u j &5&
sin~pa/Lz!

ALz

uk8&U32 ,
1

2L . ~A4!

Herek andk8 are wave vectors of Bloch electron function
in the initial and final states in the quantum well plane:

uk&5uk„r …

eikr

ALxLy

. ~A5!

Neglecting the Zeeman energy of the Mn spin in appl
magnetic field,

Ei2Ej5Ek2Ek81mBgMnB'Ek2Ek8 , ~A6!

and calculating the spin matrix element

U K 5

2
,2

1

2U12 s2S1U32 ,
1

2 L U2

5
5

4
, ~A7!

we obtain the elementary probability of the Mn spin flip:
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w5
10p

a2
sin4~pa/Lz! u^kud~r !uk8&u2d~E 2E !.
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and theoretical investigation. The main experimental difficulty is the pres-
ence of theD0X line in the luminescence spectra of the studied quantum
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\ Lz
2 k k8

~A8!

The total probabilityW is obtained by integrating the
elementary probabilityw over all occupied initial states an
all vacant final states of band electrons:

W5E
0

`

wN~E!N~E8! f ~E!@12 f ~E8!# dE ~A9!

~hereinafterE5Ek , E85Ek8!. Integration is performed ove
the spin subbandsz521/2, f (E)5$exp@(E2Ee

F)/kTe#11%21

is the Fermi distribution function,Te is the electron tempera
ture, andN(E) is the total number of states with a give
energy in one spin subband. Since the density of state
two-dimensional carriers is independent of their ener
D(E)5N(E)/ALxLy5D, it can be taken out of the inte
grand. As a result, we have

W5
10p

\
sin4S p

Lz
aDa2S D

Lz
D 2E

0

`

f ~E!@12 f ~E8!# dE

5
10p

\
sin4S p

Lz
aDa2S D

Lz
D 2 kTe

exp~2Ee
F/kTe!11

.

~A10!

In degenerate electron systems, the exponent is usually
ligible in comparison to unity. Then the Mn spin relaxatio
rate 1/te52W ~Ref. 20! is described by the expression

1

te
52W'

20p

\
sin4S p

Lz
aDa2S D

Lz
D 2

kTe . ~A11!

Usually the relaxation rate 1/te measured experimentally i
averaged in thez direction. Thus, we derive from Eq.~A11!
the formula

K 1

te
L

z

5
15p

2\
a2S D

Lz
D 2

kTe ~A12!

for the quantum spin relaxation rate averaged over the qu
tum well profile.

1!Our experimental technique does not allow us to change the 12.2-ns
interval between probe pulses. For this reason, the relative uncertain
tMn in the quantum well withx50.12 is notably larger than in sample
with x50.03.

2!A final conclusion about direct effect of magnetic field on the relaxat
rate of Mn spin due to free electrons demands a dedicated experim
796 JETP 85 (4), October 1997
of
,

g-

n-

e
in

tal

well at low pumping densities, which makes difficult identification of lin
in the magnetic field range of 4–10 T. Further progress in this field
probably impossible without a notable improvement in the quality of
vestigated structures.

3!In similar undoped Cd12xMnxTe heterostructures, a magnetic polaron
detected only atx>0.1.21,22 In order to check whether a magnetic polaro
is formed in the quantum well, we studied the time evolution of the bou
exciton line at zero magnetic field. We have not detected a notable sh
the spectral line position, which could be an indication that a magn
polaron is formed in the studied quantum well.
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Distinctive features of Raman–Nath scattering of light by sound in easy-plane

e

antiferromagnets
E. A. Turov*

Institute of Metal Physics, Ural Department of the Russian Academy of Sciences,
620219 Ekaterinburg, Russia
~Submitted 5 February 1997!
Zh. Éksp. Teor. Fiz.112, 1464–1475~October 1997!

This paper discusses the acoustic diffraction of light in the presence of an exchange-enhanced
photoelastic interaction of aniferromagnetic origin resulting from acoustic modulation of
the dielectric permittivity due to oscillations in the antiferromagnetism vectorL . In the ‘‘easy-
plane’’ type of antiferromagnet these oscillations arise from antiferromagnetoelastic
interactions, and can be so large that the photoelastic interaction corresponding to them can be
comparable in value to~or even exceed! the interaction in well-known nonmagnetic
crystals actually used in acoustooptic devices. The advantage of antiferromagnets lies in the fact
that both the diffraction angle and the amplitude of the diffracted light can depend on the
magnitude and direction of a magnetic field in these materals. Here the Raman–Nath diffraction
regime is discussed, which is probably more favorable from an experimental point of view
for the antiferromagnets in question. It is shown that for these materials, the usual mechanism of
photoelastic interaction associated with acoustic modulation of the index of refraction is
accompanied by an additional mechanism arising from modulation of the polarization of the optical
modes. Qualitative estimates are given for FeBO3. © 1997 American Institute of Physics.
@S1063-7761~97!02210-5#
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In a previous paper by the author,1 it was shown that in
the ‘‘easy-plane’’ type of antiferromagnet the photoelas
interaction associated with the antiferromagnetic part of
dielectric permittivity tensor«ab is subject to the so-called
exchange enhancement,2–4 and can reach values that are
least comparable to those of well-known nonmagnetic m
rials ~e.g., lithium niobate or sapphire! actually used in
acoustooptic devices. Furthermore, antiferromagnets
have the additional advantage that both the angle of diffr
tion and the amplitude of the diffracted light in these ma
rials can depend strongly on an applied magnetic field. T
makes it possible to further control the acoustic diffracti
~and, in particular, modulate it with a magnetic field!.

Usually acoustooptic diffraction is discussed theore
cally in two limiting regimes2,3—Bragg diffraction and
Raman–Nath diffraction, depending on the value of the
rameter

Q5
2pdl

nL2 , ~1!

whered is the width of the acoustic beam traversed by lig
l andL are the wavelengths of the light and sound, andn is
the index of refraction of the light. ForQ@1 we have Bragg
diffraction, while for Q,1 we have Raman–Nath diffrac
tion. However, according to Ref. 4, an acoustooptic c
schematically shown in Fig. 1 in fact operates in the Rama
Nath regime even forQ,10.

In Ref. 1 mentioned above, applications of Bragg d
fraction in the antiferromagnetsa2Fe2O3 ~hematite! and
FeBO3 ~iron borate! were discussed. However, it was disco
ered that the Raman–Nath regime is more favorable from
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antiferromagnets. Thus, for example, in FeBO3 for d
50.1 cm and an acoustic frequencyV/2p5100 MHz we
obtain from Eq.~1! a valueQ50.6, which rapidly decrease
with decreasingV. ~Here and everywhere below, the re
quired parameters of the material are taken from the art
Ref. 1, where they are collected in an Appendix according
the original papers.! We mention only that for FeBO3 the
issue is the wavelengthl5514.5 nm for which the crystal is
transparent~in blue light!.

We will not pause to discuss the various physical p
tures of acoustooptic diffraction in the Bragg and Rama
Nath regimes, referring the reader to well-known books
these topics.2,3 The present article is devoted to Raman–Na
diffraction, for which the interaction lengthd of light with an
acoustic beam is sufficiently small~e.g., in a thin plate!.
Discussion of this case usually involves only acoustic mo
lation of the index of refraction, which leads to modulatio
of the phase of light waves that cross the sonic beam
agreement with Fig. 1 we treat the case of normally incid
light with wave vectorkiz ~normal to the plate!. Sound with
wavelengthqix propagates in the plane of the plate. Thez
axis is directed along the trigonal axis of symmetry; for thex
axis we will consider two alternatives.

If only this mechanism for photoelastic interaction e
isted ~modulation of the index of refraction!, we could find
the antiferromagnetic diffraction component in the Rama
Nath regime by simply inserting the components of the t
sor found in Ref. 1 into the corresponding expressions
Refs. 2, 3 or other papers. However, for the case of ea
plane antiferromagnets, the sound also modulates the op
anisotropy ~birefringence! associated with the vectorL ,
which lies in this plane. As a result, an additional mechani

79707$10.00 © 1997 American Institute of Physics
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for Raman–Nath diffraction arises, due to modulation of
polarization of light passing through the acoustic beam. I
likely that this polarization mechanism was observed pre
ously in the modulation of light by intrinsic low-frequenc
vibrations~0.5 MHz! in hematite.6

As we will see below, this latter mechanism sometim
turns out to be decisive.

2. DIELECTRIC PERMITTIVITY AND ITS ACOUSTIC
MODULATION

For exchange magnetic structures of the fo
1̄ (2)3z(1)2x(2) ~see Ref. 6!, which are typical of the
antiferromagnet FeBO3 of interest to us, the components
the dielectric permittivity tensor«̃ ab affected by the light
(kiz), taking into account the antiferromagnetic contrib
tion, have the form7

«̃xx5«'1b1Lx
21b2Ly

21c1HxLy2c3HzLx ,

«̃yy5«'1b2Lx
21b1Ly

22c2HxLy1c3HzLx .

«̃zy5 «̃yx5~b12b2!LxLy2
1

2
~c11c2!HxLx1c3HzLy .

~2!

Here «' , bi , and ci are constants determined experime
tally. The coordinate system is chosen so thatxi2, i.e., the
second-order symmetry axis, whilezi3, i.e., the trigonal axis.

The modulation of«̃ ab arises from acoustically induce
oscillations in L . The most effective acoustic modes~for
qix! are those that contain the strainsexz and exy , which
give rise to rotation ofL in the easy plane through a com
paratively large angle

dw'sin dw52dL/L'22Uaexa , a5y, z, ~3!

due to the very small anisotropy in this plane. HereUa is the
coefficient of exchange enhancement of the photoelastic
teraction introduced in Ref. 1~Eqs.~25! and ~16!!. In weak
fields H'550 Oe ~the projection ofH on the easy plane!,
which in the case of FeBO3 are sufficient to overcome th
basal anisotropy and destroy the domain structure, these
efficients can reachUa'104.

FIG. 1.
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only by the conditionHz!HE ~whereHE is the exchange
field!. In this case we assign to the componentH' the role of
creating uniformly oriented states withL ' H' . Actually, in
what follows we neglect those terms in Eq.~2! and in sub-
sequent expressions that are proportional toH' ~in Eq. ~2!
H'[Hx! compared with terms of the formHzLa and La

2 .
On the other hand, it is important to note that the enhan
ment coefficientUa in Eq. ~3! is actually independent ofHz

~Hiz does not prevent rotation ofL in the xy plane due to
the strainexa!.

To simplify the theoretical discussion and interpretati
of experiment, it is desirable that these acoustic deformati
be referred to the normal~intrinsic! magneto-acoustic mode
of the problem. Hence, we limit ourselves to discussing t
alternatives here.

H'iM'ixi2, L iy. We use the axes in which the com
ponent«̃ ab of Eq. ~2! are written. In this case, we must s
dL[Lx @Ly'L(12Lx

2/2L2)'L# and a5z in Eq. ~3!. It is
true that oscillations ofexz alone do not constitute a pur
magnetoacoustic mode; however, the other component
ticipating in the pure modeexy'0.15exz , i.e., it is relatively
small. The phase velocity of these waves isvz'4•105 cm/s.

Let us split «̃ ab into two parts—a static part and a dy
namic part induced by the sound:

«̃ab5«ab1D«ab~x,t !. ~4!

The latter is associated withLx and will be written in the
linear approximation with respect toLx}exa . From Eq.~2!
we obtain

«xx5«'1b2Ly
2, «yy5«'1b1Ly

2,

«xy5«yx5c3HzLy , Ly'L, ~5!

and furthermore

D«xx52D«yy52«xyUaexa ,

D«xy522Uzexz~«xx2«yy!. ~6!

H'iM'ix'2, L iy. Here the coordinate axes are chos
differently from the first alternative, so that expression~2!

for «̃ ab must be transformed by rotating thex andy axes by
p/2 about thez axis ~we keep the notation as before!. Here
we note a well-known fact pointed out in Ref. 7: whe
Hz50, the tensor«̃ ab is invariant under rotation through an
angle at all, not justp/2. Thus, all of the change arises fro
terms withHzÞ0. Under these conditions~recall thatqix!
there exists a pure magnetoacoustic mode with polariza
uiy. In this case even in the new system of coordinates
again havedL[Lx and the component of the strainexy is
nonzero. This means we must seta5y in Eq. ~3!. The cor-
responding phase velocityvy'6•105 cm/s.

The final expressions for the static and dynamic com
nents in Eq.~4! take the form

«xx5«'1b2Ly
21c3LyHz , «yy5«'1b1Ly

22c3LyHz ,

«xy50, ~7!
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1c3LyHz#. ~8!

For both alternatives we assume that

exa5aa sin~qx2Vt !, a5z or y. ~9!

3. EQUATIONS OF THE ELECTROMAGNETIC FIELD AND
THEIR SOLUTION

When q!k, we can show thatEz'0 in the Raman–
Nath regime, and the equations for the electric vector of
light passing through the acoustic beam have the form

c2
]2Ex

]z2 2
]2

]t2 ~ «̃xxEx1 «̃xyEy!50.

c2
]2Ey

]z2 2
]2

]t2 ~ «̃yyEy1 «̃yxEx!50. ~10!

For D«ab50 these equations yield the intrinsic optic
modes that propagate along thez axis, with index of refrac-
tion n1 and n2 , and directions of the polarization vector
the xy plane. Under conditions of Raman–Nath diffractio
i.e., small widthd (Q,1), we seek a solution to the syste
~10! perturbed by the light in the form

Ea~x,z,t !5Aa~x,t !exp$ i @ k̃~x,t !z2vt#%, a5x, y.
~11!

We now substitute Eq.~11! into Eq.~10!, taking into account
Eqs.~5!, ~6! or ~7!, ~8!, and Eq.~9!. In calculating the time
derivatives we must take into account th
]Aa /]t;]D«ab /]t;V!v ~in our case, V/v&1027!.
Thus, of all the terms with these derivatives we need o
keep those withv2. This also applies to terms with the de
rivative ] k̃ /]t, although to a lesser degree. These terms
be eliminated when the condition

Ud ] k̃

]t
U!v ~12!

holds. Once we have found the eigenvaluesk̃ , we will prove
that this inequality holds~see below!.

This in fact means that when we calculate the derivati
with respect tot in Eq. ~10!, the functionsAa , D«ab , and k̃
can be treated as constants. Furthermore, in the Raman–
regime~i.e., small widthd! the amplitudesAa are taken to be
independent ofz. It is this fact in particular that distinguishe
the Raman–Nath regime from the Bragg regime, for wh
the evaluation of the functionAa(z) is most of the
problem.1–3 Here, however, the problem reduces firstly
including the effect of acoustic strain on the phase of
transmitted light waves~through k̃ (x,t)!, and secondly its
effect on the optical polarization~through the ratio of ampli-
tudesAx andAy!.

With these approximations, Eqs.~10! lead to a system o
wave equations forAa(x,t) that determine both the index o
refraction of the optical modesñ1,2(x,t) and the polarization,
given by the ratio of amplitudes of each of the modes. B
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sound. The total dielectric permittivity~4! enters into the
resulting expressions:

ñ 1,2
2 5

«̃xx1 «̃yy

2
6AS «̃xx2 «̃yy

2 D 2

1 «̃ xy
2 , ~13!

S Ay

Ax
D

1

52S Ax

Ay
D

2

5
«̃xy

ñ 1
22 «̃yy

[G̃~x,t !. ~14!

These expressions are suitable for both alternatives prop
above if we choose coordinate axes corresponding to eac
them and expressions for«ab and D«ab given in Sec. 2
~taking Eq. ~4! into account!. We discuss each alternativ
separately.

4. ACOUSTOOPTIC DIFFRACTION FOR H'i2ix
„CONFIGURATION 1…

In order to describe the light waves in the medium it
necessary to add to Eqs.~11! and~14! a boundary condition
at the input (z50). Let this be

Ax[A1x1A2x5E0 , Ay[A1y1A2y50. ~15!

The solution to Eqs.~15! combined with Eq.~14! gives the
wave amplitudes, while knowledge of the indices of refra
tion ñ1 and ñ2 from Eq. ~13! allows us to find the corre-
sponding phase advance in the medium, and conseque
the componentsEx and Ey of the resulting field where it
leaves the acoustic beam (z5d). In this case it is necessar
to separate the part unperturbed by the sound~for D«ab50!
from the waves scattered by the sound.

To this end, we specify the phase advanceF̃ i5 k̃ id cor-
responding toñ i5(c/v) k̃ i(x,t) in the form

F̃i5F i1DF i sin~qx2Vt !. ~16!

F i5
vnid

c
, DF i5~21! iF i

3«xyUzaz

ni
2A11s2

, ~17!

s5
2«xy

«xx2«yy
, ~18!

where quantities without tildes («ab , ni , etc.! denote unper-
turbed values of these quantities, i.e., in the absence
sound. Analogously, in Eq.~14! we also expandG̃(x,t) in
static and dynamic parts:

G̃5G01G1 sin~qx2Vt !, ~19!

where

G05
s

11A11s2
, G152Uzaz

s222

A11s2~11A11s2!
.

~20!

In the resulting expressions forEx(d) and Ey(d) it is
necessary, as usual,2,3 to expand an exponential of the form
exp@DFi sin(qx2Vt)# in a Fourier series, whose coefficien
are Bessel functions of the first kindJp(DF i) ~integerp!.

The final expressions for the so-called diffraction indic

Ra5Re~Ea /E0!, a5x,y
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are given in the Appendix in view of their awkwardness
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~Eqs. ~A1! and ~A2!!. Here we discuss the basic physic
results obtained by using them.

Above all, we prove the inequality~12! used above by
estimating the quantity

d] k̃/]t52DF iV cos~qx2Vt !.

According to Eq.~17!,

uDF i uV5
3dV

4cni
~«xx2«yy!

s

A11s2
~2Uzaz!v. ~21!

Using the overestimates~see the Appendix of Ref. 1! d
51 cm, «xx2«yy&1023, 2Uzaz&0.5, and keeping in mind
that the maximum value ofs/A11s2'1 ~for s@1!, we find
from Eq. ~21! that for an acoustic frequencyV/2p5106 Hz

uDF i uV,1025v.

Consequently, the inequality~12! is easily satisfied.
The awkwardness of the general expressions forRa

given in the Appendix relates to the fact that the parame
s ~Eq. ~18!! and DF i ~Eq. ~17!!, as yet undetermined b
experiment, can in principle vary over a very wide ran
~principally due to the fieldHz!. This implies that the physi-
cal results forRa can vary markedly depending ons and
DF i , not only quantitatively but qualitatively as well.

In this situation~Configuration 1!, we can identify three
types of effects:

1. Because there is optical anisotropy in the basal pl
associated with the antiferromagnetism~the vectorL ! deter-
mined by the components Eq.~5! of the tensor«ab , even in
the absence of sound (D«ab50) there exists a linear bire
fringence~the Cotton–Mouton effect!, which leads to a ro-
tation of the plane of polarization and ellipticity of light a
the output that was linearly polarized at the input~see, for
example, Refs. 7 and 8!. In the Appendix this effect is given
by the first lines of each of the expressions forRx and Ry

~Eqs.~A1! and ~A2!!.
A discussion of this effect for waves that pass throu

the plate without scattering would divert attention from t
primary goal of this paper, which is to discuss diffraction
the Raman–Nath regime~although it nonetheless must b
taken into account in the corresponding experiments!. There-
fore, we add only one more result to what was said ab
involving birefringence. Namely, we present a curve that
scribes the end of the vectorE ~more precisely, only its
relative projections in thexy, planeRx[x andRy[y!. From
the expressions in the Appendix~the first lines in the expres
sions forRx andRy!, excluding any temporal factors, we fin
that this curve is an ellipse. We will not write out the gene
expression~i.e., for arbitrary values of the parameterG0 ,
ranges froms/2 to 1 depending on the magnitude ofHz!;
rather, we give only the characteristics of this ellipse in
limit G0→1 ~when s@1!. This will be a canonical ellipse
(x/a)21(y/b)251, whose semiaxes are

a52J0~DF!cos~Dkd!, b52J0~DF!sin~Dkd!. ~22!

Here we introduce

Dk5~k12k2!/2[~v/2c!~n12n2!,
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modes, and also set

DF1>2DF2[DF'2
3pd

2nl S s

A11s2D ~«xx2«yy!

3~2Uzaz!, ~23!

since~see Eq.~17!! they differ only because of small differ
ences inn1 andn2 ~of order 1023– 1024! due to the antifer-
romagnetism. Consequently, depending on the argum
Dkd of the cosine and sine, the curve in question in thexy
plane can change from the straight linex50, when the field
E(d) is linearly polarized along they axis (cos(Dkd)50), to
the straight liney50 when E(d) is polarized along thex
axis (sin(Dkd)50). In the intermediate case, when

cos2~Dkd!5sin2~Dkd!51/2,

circular polarization is observed at the output.
In what follows we discuss the role played byDkd as we

investigate the diffracted waves. Here we add only that
other values ofG0

2,1, the polarization ellipse can be rotate
relative to thex andy axes by a certain angle that depen
on the fieldHz .

2. A second effect is ordinary Raman–Nath diffractio
associated with acoustic modulation of the phase Eq.~16!.
Due to the anisotropy of«ab we are dealing with so-called
anisotropic Raman–Nath diffraction: for the boundary co
dition Eix (z50), diffracted waves appear at the outputz
5d) with both componentsEx and Ey . Due to multiple
scattering, diffracted beams appear with wave vect
k i6pq and corresponding frequenciesv6pV (p
51,2,3,...). Our retention of the frequencyV!v in the lat-
ter expression is purely symbolic~in calculating the ampli-
tude from solutions to Eq.~10! we have neglected terms o
order V/v!, in order to illustrate the quantized~discrete!
nature of the scattering process when momentum and en
are conserved.

Complete expressions Eqs.~A1! and ~A2! for diffracted
waves are given in the Appendix; here we demonstrate
peculiarities of Raman–Nath diffraction arising from antife
romagnetism by discussing first-order diffraction (p51)
with k1,26q. Essentially we again discuss only the limitin
casess!1 (G0's/2) ands@1 (G0'121/s).

Accordingly, for these two cases we obtain~the second
line of Eq. ~A1!!:

G0!1: Rx1~DF!5J1~DF!$cos@~k11q!r2~v1V!t#

2cos@~k12q!r2~v2V!t#%, ~24!

G0'1: Rx1~DF!5J1~DF!sin~Dkd!

3$sin@~k1q!r2~v1V!t#

2sin@~k2q!r2~v2V!t#%, ~25!

where we again invoke the condition Eq.~13! and introduce
k5(k11k2)/2 along withDk5(k12k2)/2. Recall also that
r x[x and r z[d. Note that in the first case only the firs
optical mode is diffracted~with index of refractionn5n1!.
In fact, Eq.~24! implies simple modulation of the amplitud
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case both modes~with n5n1 andn5n2! are diffracted, and
in this case will interfere.

In the first case, the amplitudes of the diffracted wav
are determined by the functionJ1(DF), which is a maxi-
mum whenDF51.85. In the second case, for a maximum
is also necessary that

Dkd5~2p11!
p

2
, p50, 1, 2,... . ~26!

This corresponds to the fact that the phase difference of
optical modes will be an odd multiple ofp/2. Note that this
is exactly the condition for a wave passing through the be
without scattering~see Eq.~22!! to be linearly polarized
along they axis.

Let us now turn to the componentRy1(DF). Here we
can write for an arbitrary value ofG0 ~from the second line
of Eq. ~A2!!

Ry1~DF!52
G0J1~DF!

11G0
2 sin~Dkd!

3$sin@~k1q!r2~v1V!t#

2sin@~k2q!r2~v2V!t#%. ~27!

From this expression it is clear that under the same co
tions as in Eq.~26! the amplitude is a maximum asG0→1
and decreases proportional tos whens!1.

3. A third effect is additional Raman–Nath diffractio
due to acoustic modulation of the polarization of the opti
waves, determined by Eq.~14!. However, in this case, as i
the Bragg regime, there is only first-order diffraction. T
corresponding expressions that determine the amplitud
the modulationG1 in Eq. ~20! are given by the next two line
of Eqs.~A1! and ~A2!:

Rx~G1!5
2G0G1J0~DF!

~11G0
2!2 sin~Dkd!

3$cos@~k1q!r2~v1V!t#

2cos@~k2q!r2~v2V!t#%, ~28!

Ry~G1!5
2~12G0

2!G1

~11G0
2!2 J0~DF!sin~Dkd!

3$sin@~k1q!r2~v1V!t#

2sin@~k2q!r2~v2V!t#%. ~29!

The ratio of their amplitudes iss/2, while their phases are
shifted byp/2. Thus, whens!1 we haveRy@Rx , while for
s@1 we have the opposite,Rx@Ry . Recall thats in Eq. ~18!
is directly proportional toHz according to Eq.~5!; therefore,
this ratio ofRx andRy can be changed by changing the fie
Hz .

It is clear from the expressions given above that the a
plitudes of the scattered waves depend very strongly on
field Hz ~through the chain of relations~20!, ~18!, and ~5!!,
and also on the amplitudes of the acoustically induced ph
shiftsDF ~see Eq.~23!!. Equations~28! and~29! still contain
the amplitude of the acoustic modulation of the polarizat
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wide limits. Thus, for experimentally attainable values of t
parameters,DF can vary by three orders of magnitude~from
10 to 1022!, while the amplitudeG1 can even change sign
G1'22Uzaz for s!1 and G1'12Uzaz for s@1; for s
52 it reduces to zero.

The quantityDF affects the amplitudes, since it appea
in the arguments of the Bessel functions~J0 and J1 in the
case under discussion here!. The functionJ0(DF)'1 for
DF!1 and falls off rapidly asDF decreases, changing sig
for DF'2.4. The functionJ1(DF)'(1/2)DF for DF!1,
and reaches a maximum forDF51.85. Both of these specia
cases can be achieved experimentally.

We now turn our attention once more to the fact
sin(Dkd), which is present in all the expressions except E
~24!. According to Eq.~26! it reduces to 1 for

~2pd/l!~n12n2!5~2p11!p/2, p50, 1, 2,... .

From this we may estimate the widthd corresponding to
maximum amplitude of the diffracted beams under disc
sion:

d5dmax5~2p11!
l

4~n12n2!
'~2p11!•0.1 cm ~30!

~usuallyn12n2'1024!. We can vary this width by varying
the field Hz , sincen1 and n2 are obtained from Eq.~13!
when«ab50 due to the dependence of«xy on Hz ; see Eq.
~5!.

Finally, it is of interest to estimate the ratio of the am
plitudes of the diffracted beams, which are related to mo
lation of the polarizationG1 and the index of refractionDF,
respectively. For example, let us estimate the ratio of am
tudesRy1(DF) from Eq. ~27! and Ry1(G1) from Eq. ~29!.
For the special cases!1 ~so thatuDFu!1 as well! we find

Ry1~DF!/Ry1~G1!'s2.

In this case, modulation of the polarization gives a larg
first-order contribution to the diffracted amplitude tha
modulation of the index of refraction~phase!.

5. ACOUSTIC DIFFRACTION FOR H'ix'2
„CONFIGURATION 2…

We now turn to Configuration 2, for whichH'ix'2. In
this case the quantities«ab andD«ab are given by Eqs.~7!
and ~8!. According to Eqs.~13! and ~4!, these expression
clearly imply that there is no linear modulation of the refra
tive indexesñ1,2 in general; conversely, the functionG̃(x,t)
that determines the polarization ratio~14! has no unperturbed
part (G050), but does contain a nonzero modulated p
(G1Þ0). In the end, it turns out that

G05DF5s50. ~31!

However, according to Eqs.~7! and ~8! G1 is given by

G15
D«xy

«xx2«yy
5

2Uyay@~b12b2!Ly
21c3LyHz#

~b12b2!Ly
212c3LyHz

. ~32!
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ing on which of the terms—spontaneous or field-induced
dominates in the difference«xx2«yy .

It is easy to see that the diffraction indicesRx andRy for
Configuration 2 can be obtained from expressions for
previous configuration as a special case, taking into acco
Eqs. ~31! and ~32!. The results will be the following~they
can be obtained directly from Eqs.~A1! and ~A2!!:

Rx5cos~k1d2vt !.

Ry52G1 sinS k12k2

2
dD

3H cosF S k11k2

2
1qD r2~v2V!t G

2cosF S k11k2

2
2qD r2~v2V!t G J , ~33!

where

k15
v

c
A«xx, k25

v

c
A«yy,

while «xx , «yy , and G1 are taken from Eqs.~7! and ~32!
respectively.

Thus, in this case there are only two symmetrically d
posed diffraction beams~which are first-order only!, with
polarization vectors perpendicular to the polarization of
incident light. Ordinary birefringence does not appear he
because the incident light is one of the characteristic opt
modes with index of refractionn15A«xx.

The amplitudeRy from Eq. ~33! is a maximum under
conditions analogous to Eq.~26! ~or Eq. ~30!!, and is deter-
mined by the quantityG1 ~Eq. ~32!!, which for an acoustic
power flux of 1 – 10 W/cm2 can reach 0.15–0.5. Equatio
~32! also determines the field dependence of the amplit
Ry .

6. CONCLUSION

The goal of this paper is not so much to obtain results
to discuss them, and to obtain only those estimates tha
necessary to guide the corresponding experiments. Neve
less, the author is inclined to add a few comments with
gard to the estimates. The fact is that in applications
FeBO3 for Configuration 1 we do not in fact know one of th
parameterss in Eq. ~18!, more precisely the constantc3L in
the expression for«xy ~Eq. ~5!!. The same may be said fo
Configuration 2, where we also need to know the terms w
c3L in Eqs.~7! and ~8!.

For both cases, it is probably sufficient to perform one
two possible magnetooptic experiments in order to determ
the quantitiesc3L: either measure«xy(Hz) for Configuration
1, or the field-dependent terms in the difference«xx2«yy for
Configuration 2.

As we have already noted, in order to obtain high inte
sity for the contributions to Raman–Nath diffraction give
by Eq.~24!, ~25!, and~27! associated with phase modulatio
it is desirable to haveDF'1.85. This can be achieved b
taking, e.g.,d52 mm, «xx2«yy'1023 ands51. Then from
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magnitude foraz,10 by fitting Uz to the changes in the
field H' .

As for contributions to Raman–Nath diffraction con
nected with modulation of the polarization~with the param-
eterG1 from Eq. ~20!!, here according to Eqs.~28! and~29!
it is convenient to haveuDFu!1 for Configuration 1. In this
case, under the conditions,1 the quantityRy(G1) will have
the larger amplitude of the two contributions~28! and ~29!.
Its value is determined by the productUzaz , which can give
a relative amplitude of the diffracted wave of several tens
percent. For Configuration 2 the quantityG1 of Eq. ~32!,
which is in order of magnitude equal touUzayu, also give
tens of percent amplitudes for the Raman–Nath diffract
amplitude inRy Eq. ~29!.

Finally, the angle of first-order diffraction equals

Q1,2'sin Q1,256
q

k
. ~34!

Taking into account thatq5V/v andk52pn/l, and choos-
ing v'5•105 cm/s ~the average of the two sound velocitie
mentioned above! ~Configurations 1 and 2! we find for
FeBO3 from Eq. ~34! that

uQ1,2u'5•1023 rad'0°208.

It is still necessary to keep in mind that in several cases
diffractive wave is polarized perpendicular to the incide
wave.

Equation~33! probably applies to the simplest case f
the first experiment, corresponding to Configuration 2, wh
there is no phase modulation~to linear order in the acoustic
deformation! and where there is no undiffracted wave wi
Eiy for the given boundary conditions Eq.~15!, so that the
diffracted wave withEiy can be observed against zero bac
ground. The geometry of the experiment, which is describ
in the text~for both configurations!, requires samples in the
form of plates with thickness of order 1 mm and a norm
parallel to the trigonal axis of symmetry.

The author thanks M. I. Kurkina for discussing the r
sults of the work and stimulating remarks, and V. V. N
kolaev for valuable help.

This work was supported by the Russian Fund for Fu
damental Research~Grant N. 96-02-16489!.

APPENDIX

The general expressions for the diffraction indices
configurationH'i2ix are

Rx5 (
i 51,2

H d i11G0
2d i2

11G0
2 FJ0~DF i !cos~kid2vt !

1 (
p51

`

Jp~DF i !~cos~ ip1 !1~21!p cos~ ip2 !!G
1

G0G1

~11G0
2!2 ~21! iJ0~DF i !

3@sin@~k i1q!r2~v1V!t#
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l

-

2sin@~k i2q!r2~v2V!t##J . ~A1!

Ry5 (
i 51,2

~21! i 21H G0

11G0
2 FJ0~DF i !cos~kid2vt !

1 (
p51

`

Jp~DF i !~cos~ ip1 !1~21!p cos~ ip2 !!G
1

~12G0
2!G1

~11G0
2!2 J0~DF i !@sin@~k i1q!r2~v1V!t#

2sin@~k i2q!r2~v2V!t##J . ~A2!

Here

~ ip6 !5~k i6pq!r2~v6pV!t.

k i iz, qix, r x5x, r z5d, ki5
v

c
ni .
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Dynamics of domain walls in ultrathin magnetic films
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The domain walls in ultrathin ferromagnetic films with uniaxial magnetic anisotropy are
investigated theoretically. It is shown that taking account of the magnetodipole and magnetoelastic
interactions leads to the appearance of an effective anisotropy with respect to the direction
of the normal to the plane of the wall. The existence of a new type of domain walls—‘‘corner’’
walls, at which the magnetization vector is rotated in the plane making a certain angle,
which depends on the film parameters, with the plane of the domain wall and the static and
dynamic properties of these walls are investigated. The dependence of the limiting velocity of the
domain walls on the film thickness is found. ©1997 American Institute of Physics.
@S1063-7761~97!02310-X#
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A vast number of both theoretical and experimental
pers has been devoted to investigating magnetoelastic i
action in magnetically ordered crystals; various proble
have been examined in these papers that are associated
this interaction: magnetoacoustic resonance, the appear
of a magnetoelastic gap in the spin-wave spectrum, etc.
effect of the magnetoelastic interaction on the static and
namic properties of large-scale inhomogeneities of the
main wall type in the magnetization distribution has be
analyzed in a number of papers; the fundamental va
which the relationship between the elastic and magnetic s
systems of a crystal has on the structure and dynamic p
erties of domain walls, was demonstrated in this case.
example, it is known that the formation of 180-degree d
main walls in a ferromagnetic with cubic magnetic anis
ropy is caused precisely by magnetoelastic interaction.1

The role of magnetoelastic interaction is especially i
portant in antiferromagnetics and weak ferromagnetics
which this interaction is exchange-amplified. The effect
magnetoelastic interaction on the dynamics of the main w
in antiferromagnetics was investigated in Ref. 2, where
was shown that the experimentally observed features in
field dependence of the steady-state velocity of the wall
weak ferromagnetics3,4 are related to Cerenkov radiation o
sound waves, which arises when the walls attain the velo
of sound.

The role of magnetoelastic interaction in ferromagnet
in the formation and the dynamic properties of domain wa
is significantly smaller since the effect of this interaction
the properties of the domain walls is masked by the m
stronger magnetodipole, for example, interactions. Mo
over, the velocities of the walls in ferromagnetics are limit
by the so-called Walker limit, the value of which is caus
by relativistic interactions~rhombic anisotropy, magnetod
pole interaction!. The limiting velocity of the domain walls
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sound, so that resonance effects such as the Cerenkov r
tion of sound do not appear.

A situation exists, however, when the role of the ma
netoelastic interaction in the formation of domain walls~and
domain structures! in ferromagnetics can be exceptional
important. It is a question of an analysis of the static a
dynamic properties of domain walls in ultrathin magne
films with uniaxial magnetic anisotropy. In a ferromagne
with uniaxial magnetic anisotropy the motion of doma
walls is generally impossible unless the magnetodipole in
action is into account, in view of the presence of an ad
tional constant motion of the system—the total projection
the magnetization on the anisotropy axis5—since ignoring
this interaction leads to a zero value of the limiting veloc
of the domain walls6 and a formally infinitely large mass o
the domain walls. As will be shown below, in an ultrath
ferromagnetic film the magnetodipole interaction in the ba
small-parameter approximation—the ratio of the film thic
ness to the characteristic dimension in the magnetization
tribution ~or thickness of the domain wall!—leads only to a
renormalization of the uniaxial anisotropy constant and d
not determine the mass of the wall and its limiting stead
state velocity.7 In this case, of course, the role of other inte
actions increases, which can affect these characteristic
the domain wall; this is primarily the magnetoelastic intera
tion.

This paper is also devoted to a theoretical analysis of
problem of the ‘‘magnetoelastic’’ mass of domain walls
an ultrathin ferromagnetic film with uniaxial magnetic a
isotropy.

Let us consider a ferromagnetic film of thickness 2h,
lying in the xy plane, with the normal oriented along th
anisotropy axis~or z axis!. The energy of this system with
the elastic subsystem and magnetoelastic interaction ta
into account can be represented in the form

80408$10.00 © 1997 American Institute of Physics
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Wm5E dr H a
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~¹M !22
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Mz

22
1

2
MH dJ , ~1!

We5E dr H l

2
uii

2 1mui j
2 J , Wme5E dr bMiM jui j ,

whereM is the magnetization vector,a andb are the non-
uniform exchange interaction and uniaxial magnetic anis
ropy constants, respectively~b.0!, Hd is the demagnetizing
field, ui j is the strain tensor,l andm are the elastic moduli o
the crystal. The integration in Eq.~1! is carried out over the
volume of the crystal. For simplicity we have written th
energy of the elastic subsystem of the crystal and the m
netoelastic interaction energy in isotropic form since tak
account of the more complicated structure of these inte
tions does not lead to any fundamentally new results but o
complicates the calculations.

The dynamics of the system being considered is
scribed on the basis of the standard equations of motion
the magnetization~the Landau–Lifshitz equations! and the
equations of elasticity theoryr]2ui /]t25]s i j /]xj , where
s i j is the stress tensor andr is the density of the material.

In the general case it is impossible to solve the comp
system of magnetoelastic equations; therefore, let us pro
in the following manner: let us first analyze the contributi
of the magnetodipole interaction, then for an arbitrary~one-
dimensional! magnetization distributionM (x) we will ex-
press the strain tensors on the basis of the equations of
ticity theory in terms of the Fourier components of th
distribution. This will make it possible to eliminate the stra
tensors from the energy of the magnetic substance an
write the latter only in terms of the distributionM (x) or its
Fourier components~Sec. 2!. We show in Sec. 3 that for th
solution of the domain wall problem in ultrathin magne
films the contribution of both the magnetodipole and mag
toelastic interactions leads to the appearance of some e
tive magnetic anisotropy in the plane of the film, which giv
rise to the existence of so-called corner domain walls. T
dynamic properties of domain walls in ultrathin magne
films are considered in Sec. 4, in particular, the mass
limiting steady-state velocity of the walls are calculated.

2. EFFECTIVE ENERY OF MAGNETIC SUBSTANCE

The demagnetizing fieldHd is defined by the equation
of magnetostatics

div Hd524p div M , curl Hd50. ~2!

Here, the magnetodipole energyWmd , corresponding to
some arbitrary magnetization distributionM ~r !, is equal to

Wmd52
1

2 E dr•M ~r !Hd~r !

5
1

8p E drE dr 8
~¹•M ~r !!~¹•M ~r 8!!

ur2r 8u
. ~3!

Converting to the Fourier components of the unit ma
netization vectorm5M /M0 , M05uM u in the xy plane
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where r'5(x,y), k5(kx ,ky), we obtain the following ex-
pression for the magnetodipole interaction energy:

Wmd5
1

8p2S E dkH E dz mz~k,z!mz~2k,z!

1E E dz dz8 exp~2ukuuz2z8u!@ ukumz~k,z!

3mz~2k,z8!22imz~k,z!~k–m~2k,z8!!

3sign~z2z8!1uku21~k–m~k,z!!~k–m~2k,z8!!#J ,

~5!

whereS is the film surface area.
In the ultrathin magnetic films of interest to us the ma

netization distributionm~r ! can be considered to be uniform
over the film thickness, i.e., it does not depend on thez
coordinate. In this case the integrals with respect toz andz8
in Eq. ~5! are easily calculated, and as a result the magn
dipole energy for an arbitrary~in thexy plane! magnetization
distribution in an ultrathin film can be written as

Wmd52pM0
2H E dr mz

21
h2

4p2 E dk@ uku21~k–m~k!!

3~k–m~2k!!2ukumz~k!mz~2k!#J . ~6!

The first term in Eq.~6!, as is easily seen, leads to
simple renormalization of the uniaxial anisotropy constanb
in the energy of the magnetic subsystemWm in Eq. ~1!:
b→b* 5b24p. The second term in Eq.~6! is proportional
to the square of the film thickness and, consequently
small. Nevertheless, it plays a very important role in t
dynamics of the domain walls since in a uniaxial ferroma
netic ~ignoring magnetoelastic interaction! it is precisely this
term that determines the mass of the domain wall, and if i
ignored, the effective magnetic anisotropy remains uniax
and, as already pointed out, the mass of the wall turns ou
be formally infinite; therefore, the domain wall cannot mov
Specifically, the role of the magnetodipole interaction in t
statics and dynamics of domain walls in the problem be
considered will be discussed below.

Let us now turn to an analysis of the magnetoelas
interaction. The equations of elasticity theory with the inte
action with the magnetic subsystem taken into account a

r
]2ui

]t2 5m
]2ui

]xj
2 1~l1m!

]2uj

]xi]xj
1bM0

2 d~mimj !

]xj
, ~7!

whereb is the magnetoelastic interaction constant.
We will assume that the film surface is free of stress

and, therefore, the wall conditions at the surface, i.e., foz
56h, have the forms iz(6h)50.

In the problem we are treating of a domain wall in
ferromagnetic film the velocity of the domain walls is muc
less than the velocity of sound and, therefore, as an ana
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placement vector in Eq.~7! can be dropped out; this corre
sponds to passing to the elastostatic limit.

We will assume, as before, that the magnetization dis
bution is uniform over the film thickness. Moreover, takin
account of the fact that the system being considered is
tropic in the (xy) film plane, with no loss of generality we
can choose the Cartesian axesx andy in such a manner tha
the x axis is oriented along the normal to the plane of t
domain wall. Then the magnetization distribution and t
elastic fields will not depend on they coordinate: m
5m(x), u5u(x,z); this greatly facilitates solving the sys
tem of Eqs.~7! since in such a coordinate system the eq
tion for the uy component of the displacement vector tur
out to be unrelated to the equations for theux anduz com-
ponents.

Determining the Fourier componentsui(k,z)

ui~k,z!5E
2`

`

dx ui~x,z!exp~2 ikx!, ~8!

we rewrite the equation for theuy component as

m~uy92k2uy!52 ikbM0
2sxy~k!, ~9!

where the notation

si j ~k!5E
2`

`

dx mi~x!mj~x!exp~2 ikx!, ~10!

has been introduced, and the prime denotes a derivative
respect to the coordinatez.

Since the right side of Eq.~9! does not depend onz, the
solution of this equation, which satisfies the free wall con
tions

syz~z56h!5@muy81bM0
2syz~k!#z56h50 ~11!

at the film surface, is simple to find:

uy~k,z!5
bM0

2

mk F isxy~k!2syz~k!
sinh k~z2h!

coshkh G . ~12!

Let us now consider the equations for the componentsux

anduz . In the Fourier components introduced with Eq.~8!,
these equations are

mux92~l12m!k2ux1 ik~l1m!uz852 ikbM0
2skk~k!,

~13!

~l12m!uz92mk2ux1 ik~l1m!ux852 ikbM0
2sxz~k!.

The left side of the system of Eqs.~13! has the doubly
degenerate eigenvalueq56k. Therefore, the solution of the
inhomogeneous Eqs.~13! is

ux~k,z!5~a11b1z!coshkz1~c11d1z!sinh kz1Bx ,

~14!

uz~k,z!5~a21b2z!coshkz1~c21d2z!sinh kz1Bz .

wherea1,2, b1,2, c1,2, d1,2, Bx , Bz are some constants. Sub
stituting Eq.~14! into ~9!, we find that the coefficientsa1,2,
b1,2, c1,2, d1,2 are interrelated by the expressions
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c25
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~nd12ka1!, d252 ib1 , ~15!

and thez-independent terms are equal to

Bx5
ibM0

2

k~l12m!
skk~k!, Bz5

ibM0
2

mk
skz~k!. ~16!

Then, substituting Eqs.~14! and ~16! into the wall con-
ditions at the film surface

skz~z56h!5@m~ux81 ikuz!1bM0
2skz~k!#z56h50,

~17!
szz~z56h!5@~l12m!uz81 ikluk!1bM0

2szz~k!] z56h50,

we find thata25d25b15c150,

d15
ibM0

2

2

@~l12m!szz~k!2lsxx~k!#

m~l12m!

2 sinh~kh!

sinh~2kh!12kh
,

b252 id1 , a15
d1

2k
~n2122kh coth~kh!!,

~18!

c25
id1

2k
~n1112kh coth~kh!!,

wheren5(l13m)/(l1m).
By substituting the expressions~12! and ~14! found for

ui(k,z) into the termsWe andWme, which describe the elas
tic subsystem of the crystal and magnetoelastic interact
and integrating with respect to thez coordinate, we obtain
after simple but rather lengthy calculations

W1[We1Wme52
~bM0

2!2S

pm E
0

}

dkH usxy~k!u21usxz~k!u2

1
m

l12m
usxx~k!u21

tanh~kh!

kh
usyz~k!u2

1
sinh2~kh!

kh@sinh~2kh!12kh#

u~l12m!szz~k!2lsxx~k!u2

~l12m!~l1m! J .

~19!

It is important to point out that for small film thicknesse
the energyW1 turns out to be proportional to the thicknes
and its density is finite, unlike the portion of the magneto
pole energyWmd that is not associated with the renormaliz
tion of the uniaxial anisotropy~the second term in Eq.~6!!,
the density of which itself becomes proportional to the fi
thickness and, therefore, small ash→0. This result is also
precisely the reason why the role of magnetoelastic inte
tion is so important in ultrathin films.

3. DOMAIN BOUNDARIES IN ULTRATHIN MAGNETIC FILMS

Thus, by adding the energy of the magnetic subsystem
the crystal to the energyW1 , we obtain the total energy o
the system, written only in terms of the magnetization dis
bution ~or its Fourier components!:
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0 H
2`

F 2 S dx D 2 zG
12hE

0

}

dkukuumx~k!u22
~bM0!2

2pm E
0

`

dkH usxy~k!u2

1usxz~k!u21
m

l12m
usxx~k!u21

tanh~kh!

kh
usyz~k!u2

1
sinh2~kh!

kh@sinh~2kh!12kh#

u~l12m!szz~k!2lsxx~k!u2

~l12m!~l1m! J .

~20!

The solution of the equations of motion for the magn
tization in a system described by such an energy is imp
sible to find even for the case of a single domain wall. The
fore, in order to describe the static and dynamic propertie
a wall in ultrathin magnetic films we employ a metho
analogous to that used in Ref. 7 to analyze the dyna
properties of domain walls in ultrathin magnetic films wh
only the magnetodipole interaction is taken into account. A
tually, this method is a variation of the well-known approa
to describing the dynamics of a domain wall on the basis
the Slonczewski equations.8

The dynamics of a ferromagnetic can be described
the basis of the LagrangianL, which is

L5
M0

g E dVH w sin u
]u

]t J 2W. ~21!

whereg is the gyromagnetic ratio,W is the energy of the
ferromagnetic, and the angular variablesu andw parametrize
the magnetization vectorM ,

M5M0 ~sin u cosw, sin u sin w, cosu!. ~22!

We will assume that the magnetization distribution in
plane 180-degree domain wall moving along thex axis with
velocity V is described by the usual relations~see, for ex-
ample, Ref. 8!:

cosu~x!52tanhFx2Vt

D G , w5const, ~23!

whereD is the effective thickness of the domain wall.
The Fourier components of the magnetizationmx(k) and

the quantitiessi j (k), entering into the energy~20! and cor-
responding to the magnetization distribution~23!, are

mx~k!5
pD

cosh~pkD/2!
, sxx~k!5R1~k!cos2w,

sxy~k!5R1~k!sin w cosw, sxz~k!5R2~k!cosw,
~24!

syz~k!5R2~k!sin w, szz~k!52pd~k!2R1~k!,

R1~k!5
pkD2

sinh~pkD/2!
, R2~k!5

ipkD2

cosh~pkD/2!
.

The quantityD and the anglew are variational param
eters of the problem and are determined from the Eul
Lagrange equations for the effective LagrangianLeff(w,D),
which is obtained when the magnetization distribution~23!
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grangian~21! and integrated with respect to thex coordinate:

Leff~w,D!5
4hM0V

g
w2E~w,D!,

~25!

E~w,D!52M0
2hFa

D
1D~b̃2r1 sin2w1r2 sin4w!G .

The notations

b̃5b* 2
~bM0!2

m
, r15

8h ln 2

D
,

r25
~bM0!2

6m

3l12m

l1m
, ~26!

have been introduced here, and the quantityE(w,D) has the
meaning of the energy of a unit length of the domain wall.
the derivation of Eq.~26! we make use of the fact that th
width D of the domain wall in ultrathin magnetic films i
considerably greater than the film thickness 2h.

Thus, we see that both the magnetodipole and magn
elastic interactions lead, primarily, to a renormalization
the uniaxial anisotropy constant and, secondly, to the app
ance of some effective anisotropy in the (xy) plane. It is
important to emphasize that this effective anisotropy is
related to the crystallographic axes but to the normal to
plane of the domain wall, the direction of which in the (xy)
plane is arbitrary, generally speaking. It turns out in this c
that the magnetodipole interaction determines the ‘‘seco
order’’ constantr1 while the magnetoelastic interaction d
termines the ‘‘fourth-order’’ constantr2 .

By varying Leff(w,D), we obtain equations determinin
the parametersw andD:

a2~ b̃1r2 sin4w!D250,
~27!

V

gM0
2~r122r2 sin2w!D sin w cosw50.

From Eqs.~27! it is easy to obtain explicit expression
for the domain wall parametersw and D, which are fairly
lengthy in the general case. Therefore, below we will lim
ourselves to the most crucial case and will take into acco
that the uniaxial anisotropy constant is much greater than
effective rhombic anisotropy constantsr1 and r2 : the con-
stantr1 is small, scaling like the film thickness, while th
constantr2 ~as with the renormalization of the uniaxial an
isotropy constant caused by the magnetoelastic interact!
scales with the parameter (bM0)2/m. Here, as is easy to see
the parameterD depends weakly on the quantitiesr1 andr2

and is equal toD5(a/b* )1/2. It is easy to prove, starting
from the second of Eqs.~27!, that the anglew, which deter-
mines the direction at which the magnetization vector lea
the plane of the domain wall, has three possible values
stationary domain wall: 1! w50, which corresponds to a
Néel domain wall~the rotation plane of the magnetizatio
vector is perpendicular to the plane of the domain wall!; 2!
w5p/2, which corresponds to a Bloch domain wall~the
magnetization vector lies in the plane of the domain wall!; 3!
w5w* 5arcsin(r1/2r2)1/2. The magnetization distribution
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FIG. 1. The functionf (w,p) for p
,1 ~a! andp.1 ~b!.
corresponding to the last solution, describes a domain wall in
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which the rotation plane makes the anglew5p/22w* with
the plane of the wall and, therefore, below we will call su
a wall a corner domain wall. For the existence of a cor
domain wall it is necessary that the inequalityr1,2p2 be
satisfied~of course, in this situation one of four equivale
orientations of the rotation plane of the magnetization vec
in the domain wall can be realized:6w* andp6w* !.

An analysis of the stability of these solutions shows t
the state corresponding to the Ne´el domain wall ~w50! is
unstable for any value of the effective anisotropy consta
r1 andr2 . The Bloch domain wall, in which the magnetiz
tion vector is turned around in the plane of the wall~w5p/2!,
is stable if the inequalityr1.2r2 is satisfied, which is op-
posite to the condition for the existence of the corner dom
wall. If, however, the latter condition is satisfied, i.e.,r1

,2r2 , then it is precisely the corner domain wall that tur
out to be stable.1!

By using these expressions for the parametersr1 and
r2 , we find the criterion for the existence of a corner dom
wall: the latter exists and is stable if the film thicknessh is
less than some critical valueh0 :

h05D
~bM0!2

24 ln 2

3l12m

m~l1m!
. ~28!

The quantityh0 naturally has meaning if it amounts to
least several lattice constants, i.e., is>1027 cm. However,
the thickness of the domain wallD is usually of the order of
1025 to 1026 cm; therefore, one can speak of the critic
thicknessh0 and the existence of corner domain walls on
in magnetic substances with a sufficiently large magne
striction.

4. DYNAMICS OF DOMAIN BOUNDARIES IN ULTRATHIN
MAGNETIC FILMS

Let us now consider the dynamic properties of dom
walls. The movement of domain walls is usually associa
with the action of an external magnetic field, oriented in su
a manner that one of the domains separated by a wall
comes energetically more advantageous: in the geometry
ing considered by us this is a field directed along the ani
ropy axisz. In the approximation being considered, in whi
the thickness of the domain wall is a constant~which is valid
in the usual situation for a large value of the figure of me
of the magnetic substanceQ5b/4p@1!, the external mag-
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the velocity of the wall by the simple expression~see, for
example, Ref. 8!

V5gHD/g, ~29!

whereg is the relaxation constant.
According to the second equation of the system~27! the

velocity of the domain wall forD5const is related to the
anglew by the expression

V5V0f ~w!, f ~w!5sin 2w~sin2w2p!, ~30!

where the parameterp5r1/2r2 and the characteristic veloc
ity of the domain wall2! V05r2(g,M0)D have been intro-
duced.

The functionf (w,p) is shown in Fig. 1. Forp,1 ~Fig.
1a! this function has two sets of extrema: one sets co
sponds to values of the anglew defined by the condition
sin2w5sin2w1 and the second to the condition sin2w
5sin2w2 , where

sin2w65
1

8
@312p1~~2p21!218!1/2#. ~31!

If, however, we havep.1 ~Fig. 1b!, then the extrema
corresponding to the ‘‘1’’ sign in Eq. ~31! vanish and the
extrema corresponding to the ‘‘2’’ sign remain. The values
of the anglesw6 as a function of the parameterp are shown
in Fig. 2, while the valuesu f (w,p)u at these points are show
in Fig. 3. These last values determine the limiting stea
state velocityVc of the domain wall and, according to Eq
~29!, the limiting value of the external fieldHc5gVc /gD, at
which such motion is possible.

Let us first consider the case when the parameterp,1,
and the corner domain wall turns out to be stable in the st
case. As already pointed out, in this case four equiva

FIG. 2. Values of the critical anglew6 as a function of the parameterp.
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values of the anglew are possible, which determine the r
tation plane of the magnetization vector in a static dom
wall. Furthermore, to be specific we will assume that t
angle is equal tow* 5arcsin(p1/2).

For 1/2,p,1 we have w*.p/4 and u f (w1 ,p)u
,u f (w2 ,p)u; if, however, p,1/2 holds, then we have
w*,p/4 and u f (w1 ,p)u.u f (w2 ,p)u ~this is precisely the
situation depicted in Fig. 1a!. For p51/2 the angle satisfie
w*5p/4, and the extrema become identical,u f (w1 ,p)u
5u f (w2 ,p)u.

The asymmetrical magnetization distribution with r
spect to the positive and negativex axis in a static corner
domain wall causes the domain wall velocity to depend
the direction of the external magnetic field, i.e., a uniq
‘‘nonreciprocity’’ exists: uV(H)uÞuV(2H)u.

If the external field is directed along the positive dire
tion of thez axis (H.0), then the wall moves in the positiv
x direction (V.0) and forp,1/2, as is clearly seen from
Fig. 1a, the anglew increases with velocity from its stati
value w5w* to the valuew5w1 , which corresponds to a
velocity V15V0f (w1 ,p), and the limiting field value, for
which steady-state motion of the domain wall is possible
equal toH15gV1gD. If, however, we haveH,0 and the
domain wall moves in the negative direction of thex axis
(V,0), then with an increase in velocity the anglew de-
creases from the initial valuew5w* to w5w2 , which cor-
responds to the velocityV25V0f (w2 ,p), anduV2u,V1 .

The velocityV2 is achieved for a fieldH25gV2 /gD,
which is smaller in absolute magnitude thanH1 , uH2u
,H1 . With a further increase in the negative field the s
lution, corresponding to the branch of the multivalued fun
tion w5w(V,p) being considered, vanishes and therefor
transition to the other branch occurs unavoidably, on wh
the velocityV2 is no longer an extremum~this transition is
shown by the arrow in Fig. 1~a!. Thus, forH5H2 the rota-
tion plane of the magnetization vector in the domain w
changes suddenly: the value of the anglew changes abruptly
from the extremum valuew2 to some valuew8, which lies in
the interval (2w1 ,2w* ), and with a further increase in th
field the velocity of the domain wall continues to increase~in
absolute magnitude! up to V1 .

If we have 1/2,p,1 and u f (w2 ,p)u.u f (w1 ,p)u, the
situation is reversed: ifH,0 holds, then, starting from th
static value of the anglew5w* , the domain wall reaches th
limiting velocity Vc5V0u f (w2 ,p)u as the field increase

FIG. 3. Dependence of the values of the functionu f (w,p)u at the extremal
pointsw5w6 on the parameterp.
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H.0 the valueV0u f (w1 ,p)u is reached first, and then fo
H5H1 a jump occurs in the anglew to the other branch, and
as the field increases further the velocity of the domain w
reaches its limiting valueV0u f (w2 ,p)u.

Starting from the expression forE(w,D) ~25! and Eq.
~30!, which determines the anglew as a function of the ve-
locity V, one can find in principle the energy of a movin
domain wall as a function of its velocity~or the value of the
external magnetic field! and the parameterp. In general form
this expression is quite involved; however, for small doma
wall velocities the calculations can be greatly simplified
starting from Eqs.~25! and~30!, we write the energy density
s(V) of a moving corner domain wall in the form

s* ~V!5s* ~0!12M0
2r2DS V

V0
D 2 1

sin22w
,

s* ~0!54M0
2b* DS 12

r1
2

8br2
D , ~32!

wheres~0! is the effective energy density of the static corn
domain wall, and the second term has the meaning of
kinetic energy density of the domain wall.

For small values of the external field the velocityV of
the domain wall is also small, and the anglew differs only
slightly from its equilibrium value in the static corner do
main wall: w5w*1c, c!1. From Eq.~30! linearized with
respect toc we find

c5
V

V0

1

4p~12p!
. ~33!

By substituting this value into Eq.~32!, we obtain the
effective energy density of a moving corner domain wall
order (V/V0)3:

s~V!5s~0!1
mV2

2
1qS V

V0
D 3

. ~34!

m5
2

g2D

r2

r1~2r22r1!
, q5

M0
2D

8

2p21

@p~12p!#5/2, ~35!

where the quantitym can be interpreted as the mass dens
of the corner domain wall.

Let us recall that Eqs.~34! and ~35! are obtained for a
corner domain wall, in which the static value of the anglew
is equal tow* . An analogous calculation of the energy of
corner domain wall, in which the anglew is equal to2w* in
the static condition, leads to exactly the same expression
s(V), but with q replaced by2q. Thus, one can conclud
that despite the asymmetry in the dynamics of corner dom
walls, having different initial~or static! values of the angle
w, their masses~i.e., the coefficients of the squared veloci
in the kinetic energy of the domain walls! are identical; how-
ever, the coefficients of the higher powers of the expans
in terms (V/V0) are different: they differ in sign. Conse
quently, for one and the same velocity, corner domain w
existing on different branches of the functionw5w(V,p)
have different energy.

As follows from Eqs.~34! and ~35!, in the case consid-
ered above (p,1/2, V,0) qV3.0 holds and, therefore, fo
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one and the same value of the external fieldH,0 which
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determines the velocity of the domain wall, the energy o
corner domain wall with anglew in the interval (w2 ,w* )
turns out to be greater than the energy of a domain wall w
anglew the interval (2w1 ,2w* ). Consequently, the rota
tion plane of the magnetization vector in a moving corn
domain wall can undergo a sudden reorientation, i.e.,
angle w can pass to the other branch of the functionw
5w(V,p), not only at the extremal velocityV2 , as de-
scribed above, but also at a lower~in absolute magnitude!
velocity, since such a transition is energetically advan
geous. ForuVu,V2 this process can be induced by therm
fluctuations in the magnetic or elastic subsystems of the
or by the interaction of the moving domain wall with lattic
defects; in this case the transition to the energetically m
advantageous state must be accompanied, of course, b
release of energy in the form of spin-wave radiation a
sound.

If 1 .p.1/2 holds, then we haveqV3.0 for V.0; in
this case the corner domain walls, for whichw52w* holds
in the static condition, are energetically more advantage
and a reorientation of the domain wall can occur in posit
fields H.0.

Let us now consider the casep.1, in which the static
Bloch domain wall with a static value of the anglew56p/2
is stable. Both states are equivalent, and to be specific
will assume thatw5p/2 holds in the static condition.

The dependence of the anglew on the velocity of the
domain wall in this case is described by Eq.~30! as before;
however, as already pointed out, forp.1 the function
f (w,p) has extrema only for sin2w5sin2w2 ~see Fig. 1b!.
The nonreciprocity of the motion of the domain wall d
scribed above is absent in this case,V(H)52V(2H), and
sudden jumps of the rotation plane of the magnetization v
tor in the domain wall are also absent: as the field rises
velocity of the domain wall increases linearly according
Eq. ~29!, achieving its limiting valueVc5V0u f (w,p)u for
Hc5gVc /gD.

If the effect of the magnetoelastic interaction on the d
namics of the domain wall is negligibly small compared w
the effect of the magnetostatic interaction, i.e., in the lim
p@1, then, as follows from Eq.~30!, the limiting emergence
angle of the magnetization vector from the plane of the
main wall is close top/4 ~this is typical for a Bloch domain
wall in a ferrormagnetic!, u f (w2 ,p)u'p, and the limiting
domain wall velocity is equal toVc'pV054hgM0 ln 2.
With a decrease of the parameterp the limiting velocity of
the domain wall also decreases; asp→1, the limiting angle
w2 is close top/6, while the limiting velocity of the Bloch
domain wall being considered is equal toVc'0.63V0 .

The mass of the Bloch domain wall is calculated ana
gously to the mass of the corner domain wall and is equa

m5
2

g2D

1

r122r2
. ~36!

It is interesting to point out that in the limitp@1 the mass
m152hm of a unit length of a domain wall is independent
all material constants of the film except the gyromagne
ratio, m15@2g2 ln 2#21.7
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Note also that asr1→2r2(r→1) the masses of both th
Bloch ~36! and corner~35! domain walls increase withou
limit and for r152r2 they formally go to infinity.

This does not mean, however, that the domain wall c
not move: the fact of the matter is that the valuep51, which
separates the existence and stability regions of the two ty
of domain walls, is isolated, and the dependence of the
netic energy of the domain wall on the velocity forp51
turns out to be nonquadratic. As it is easy to see from
~30!, for p51 an expansion of the functionf (w) for small
deviations of the anglew from its equilibrium value ofp/2
starts out with a term that is cubic inc rather than a linear
term, and in place of thec;V dependence~33! we havec
5(V/2V0)1/3. Moreover, forp51 the expansion of the ki-
netic energy of the domain wall for small velocities starts o
with c4 rather thanc2, and as a result we arrive at th
following nonstandard dependence of the kinetic energy
the domain wall on the velocity:

s~V!5s~0!1
M0

2r1D

2 S V

2V0
D 4/3

. ~37!

5. CONCLUSION

The analysis conducted above attests to the impor
role which the magnetoelastic interaction plays in ultrath
magnetic films. It is the magnetoelastic interaction whi
results in the appearance of a fourth order effective energ
rhombic anisotropy (r2Þ0) in the energy of a magnetic sub
stance, the presence of which leads to extremely impor
features in the structure and dynamics of domain walls
ultrathin magnetic films: if this interaction is sufficientl
strong and the inequality 2r2.r1 is satisfied, then corne
domain walls exist and are stable in the static condition, a
their behavior differs in a nontrivial manner from the beha
ior of the usual Bloch domain walls.

Taking account of the magnetoelastic interaction impl
that the limiting steady-state velocity of domain walls in u
trathin magnetic films becomes nonmonotonically depend
on the film thickness. As was shown, this velocity is equa
Vc5V0 max$uf(w2 ,p)u, u f (w1 ,p)u%, and therefore forp.1/2
(h.h0/2) we haveVc5V0u f (w2 ,p)u and it decreases with a
decrease in film thickness, whereas forp,1/2 (h,h0/2) we
haveVc5V0u f (w1 ,p)u and it increases with a decrease
thickness. The dependence of the limiting velocity on t

FIG. 4. Dependence of the limiting steady-state velocity of a domain w
on the film thickness.
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film thickness is shown in Fig. 4. For large thicknesses, when
m

-
t

e
a

h t

th

Walker velocityVW ~the limiting steady-state velocity of a domain wall!.6

The characteristic velocityV we have introduced does not have such a
pa-

a

f.
the effect of the magnetoelastic interaction is small co
pared with the magnetodipole interaction andp@1 holds, the
quantity Vc is directly proportional to the thickness,Vc

'pV054hgM0 ln 2}h. The minimum value of the limiting
velocity of the domain wallVc is reached forh5h0/2 and is
equal to Vc

min5Vc(h5h0/2)5r2gM0D/2, and as the film
thickness approaches zero we haveVc(h→0)
53r2gM0D/451.5Vc

min .
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1!We note that a unique analog of corner domain walls exists in some w
ferromagnetics, in which the magnetization vectors of the sublattices
rotated in the ac plane of easy magnetization, and the axis along whic
magnetization distribution varies does not coincide with theb axis of the
magnetic substance.

2!In massive ferromagnetics the characteristic domain wall velocity is
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rameter of the problem.
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Nonlinear response of photorefractive lithium tantalate and niobate at acoustic

ht,
frequencies
P. A. Prudkovski , O. V. Skugarevski , and A. N. Penin

M. V. Lomonosov Moscow State University, 119899 Moscow, Russia
~Submitted 9 April 1997!
Zh. Éksp. Teor. Fiz.112, 1490–1498~October 1997!

An amplification of the intensity of pump oscillations is observed experimentally at frequencies
from 100 Hz to 1 kHz during photoinduced light scattering and holographic-type parametric
scattering in photorefractive lithium tantalate and niobate. Possible ways are analyzed for
explaining the existence of a photorefractive response in these crystals over times of
1022– 1023 s, which are five orders of magnitude shorter than the Maxwell time. ©1997
American Institute of Physics.@S1063-7761~97!02410-4#
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The phenomenon of photorefraction was observed in
1960’s,1,2 but interest in photorefractive media continues
to the present owing to the enormous variety of their pr
erties. For example, a holographic grating inscribed
lithium niobate can be kept for months,3 while the character-
istic photorefractive response time in barium titanate is na
or picoseconds.4 According to the generally accepted theo
of photorefraction proposed by Glass,5 when photorefractive
crystals are illuminated a macroscopic current develops
them and rearranges the electric charge density. The ele
static field of the separated charges changes the refra
index of the medium owing to an electrooptical effect. Th
theory assumes the existence of a single temporal param
which characterizes the entire photorefractive process,
Maxwell time,

tM5«st/4ps, ~1!

where «st is the dielectric permittivity of the medium an
s5sT(11I /I s) is its conductivity, whose value under illu
mination varies over a scale length determined by the par
eter I s .6

From time to time, however, papers are published wh
indicate the existence of a photorefractive response wit
characteristic time very different from the Maxwell time.4,7,8

In our work we have also observed a photorefractive
sponse in copper-doped lithium tantalate and niobate at c
acteristic frequenciesf ;0.1– 1 kHz, whereas the Maxwe
times for these crystals are tens of minutes.

2. DESCRIPTION OF THE EXPERIMENT

When a coherent light beam strikes a photorefract
medium, wide-angle scattering that is degenerate in
quency may take place over a characteristic time. This s
tering is usually associated with optical damage and eff
are made to avoid it, as it greatly reduces the pump inten
This is photoinduced light scattering, which has been
plained in terms of the recording and self-consistent am
fication of a large number of holographic gratings.9 When
certain conditions are met in directions which form a distin
cone whose shape is determined by the four-wave sp
synchronization condition 2kp5ks1

1ks2
~where the sub-
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respectively!, in anisotropic crystals it is possible to obser
a sudden rise in the scattered light intensity. This eff
arises because in these directions two, rather than one,
tered light modes interact on a single holographic grating
is referred to as holographic-type parametric scattering.10

In a study of the temporal characteristics of the photo
fractive response, we have examinedo2e-mode photoin-
duced light scattering andoo2ee-mode holographic-type
parametric scattering in LiTaO3:Cu and ee2oo-mode
holographic-type parametric scattering in LiNbO3:Cu. The
pump intensity was modulated at one or two frequencies
the range from 100 Hz to 1 kHz with a small~less than 10%!
depth of modulation. The magnitude of the photorefract
response of the crystals at these frequencies was determ
from the change in the depth of modulation in the intens
of the light during the scattering process.

The experimental apparatus is shown schematically
Fig. 1. An ordinary polarized beam from a helium-cadmiu
laser (l5442 nm), for lithium tantalate, or an extraordina
polarized beam from an argon laser (l5488 nm), for
lithium niobate, was passed through an electrooptical mo
lator and was incident on anX2Z-cut crystal. Two photo-
detectors detected the pump and scattered light intensitie
computer connected to the measurement apparatus throu
CAMAC crate processed the data. The depth of modulat
in the intensity of the light in both channels was determin
from the magnitudes of the Fourier components at the mo
lation frequencies, and in order to isolate the regular mo
lation more precisely from the noise, we used the spectr
of the fluctuations in the intensity~rather than the spectrum
of the signal!, which is the Fourier transform of the autoco
relation function of the luminous intensity, normalized to t
square of the average value. Figure 2 shows a typical plo
the autocorrelation function of the pump and scattered li
intensities modulated at the two frequencies, together w
their Fourier spectra. A coefficient characterizing the mag
tude of the photorefractive response at these frequencies
obtained from the ratio of the amplitudes of the Fourier co
ponents at the modulation frequencies:

K~ f !5AGs~ f !/Gp~ f !. ~2!

where

81206$10.00 © 1997 American Institute of Physics



FIG. 1. A sketch of the experimental ap-
paratus:~1! argon or helium-cadmium la-

ser; ~2! electrooptical modulator;~3! pho-
torefractive crystal of copper-doped
lithium niobate or tantalate~c is the opti-
cal axis!; ~4! semitransparent mirror;~5!
analyzer;~6! photodetectors;~7! CAMAC
crate; ~8! computer; ~9! electrical pulse
generator.
1 `
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grating. It can be seen clearly in Fig. 2, however, that the
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G~ f !5
A2p

E
2`

b~t!e2p i f tdt

is the spectrum of the fluctuations and

b~t!5^I ~ t !I ~ t1t!&/^I ~ t !&2

is the normalized autocorrelation function of the lumino
intensity. K( f )51 corresponds to equality of the relativ
modulation amplitudes of the pump and scattered light int
sities, i.e., to ordinary diffraction on a stationary holograp
-

depth of modulation for the scattered light intensity is mu
higher than that for the pump light, which means that t
photorefractive holographic grating is able to vary as
pump intensity changes, thereby amplifying the modulat
in the scattered radiation.

3. DISCUSSION OF RESULTS

Figure 3 shows the scattered intensity and convers
factor for the modulation depth in the pump intensity
n

of
FIG. 2. A typical example of the autocorrelatio
function ~a! and spectrum~b! of the fluctuations in
the intensity of a pump modulated at frequencies
100 Hz and 500 Hz~1! and in the intensity of light
scattered as a result ofoo2ee-mode holographic-
type parametric scattering in LiTaO3:Cu ~2!.
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FIG. 3. Time dependence of the scattering intensity a
conversion factor for the depth of modulation in the pum
intensity at frequencies off 5300 Hz ~a! and f 5100 Hz
~b! during detection ofee2oo-mode holographic-type
parametric scattering in LiNbO3:Cu ~a! andoo2ee-mode
holographic-type parametric scattering in LiTaO3:Cu ~b!.
functions of time during the detection of holographic-type
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talate. In Fig. 3a for LiNbO3:Cu the coefficientK(t) reaches
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parametric scattering in lithium niobate and tantalate. By
end of the first hour for the lithium tantalate and the seco
hour for the lithium niobate, the scattering intensity h
stopped rising and has attained an approximately cons
level, i.e., the recording of the holographic gratings satura
with the effect of the electrostatic field of the separa
charges balancing the photogalvanic current. The time o
which the process of recording the holographic-type pa
metric scattering reaches saturation is of the same orde
the Maxwell timetM;103 s. At the same time, however, th
holographic grating is able to amplify pump oscillations
frequencies on the order of a hundred hertz, i.e., for a os
lation period,T;1022 s, which is five orders of magnitud
shorter than the Maxwell time.

The time dependence of the conversion factor for
depth of modulation is different for lithium niobate and ta
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a maximum in the middle of the dynamic regime where t
scattering intensity is rising rapidly, while it falls off to unit
in the saturation regime. Thus, in lithium niobate the ho
graphic grating is able to react to the changes in the pu
intensity only during the period when the grating is increa
ing even without this change, while in the saturation regim
as might be expected, it becomes stable. TheK(t) curve is
substantially different for lithium tantalate, as can be seen
Fig. 3b. It has no distinct maxima, as in Fig. 3a; the conv
sion factor differs little fromK.1.4 throughout the dynamic
regime. Then in the saturation regime the conversion fac
not only fails to drop to unity, but increases toK.2. Thus,
even in the stationary state, a photoinduced holographic g
ing in lithium tantalate is able to react to changes in t
pumping over times much shorter than the Maxwell time
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e

FIG. 4. Time dependence of the scattering intensityI (t)
and conversion factor for the depth of modulation of th
pump,K(t) at a frequency off 5100 Hz during detection
of o2e-mode photoinduced light scattering in LiTaO3:Cu.
Figure 4 shows the time dependence of the scattering
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Let us finally examine Fig. 5 which shows the conver-
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d a
intensity and conversion factor of the oscillations for pho
induced light scattering in lithium tantalate. As can be se
from this graph, it is meaningless to introduce the conce
of dynamic and saturation regimes for photoinduced li
scattering, since the scattering intensity experiences r
drops throughout the entire observation period. This
caused, first of all, by the competition between photoindu
light scattering and holographic-type parametric scatter
which causes a large part of the pump intensity to be
moved by holographic-type parametric scattering and, s
ond, by the possibility of electrical breakdowns in the cry
tal, and, finally, by the fact that energy exchange betw
two interacting waves is forbidden under stationa
conditions.11 Evidently, for the same reasons the convers
factor for the depth of the intensity modulation has a la
scatter, although on the average, as for holographic-t
parametric scattering, it is undoubtedly greater than unity
-
n
ts
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d
g
-

c-
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n

n
e
e

sion factor for the modulation depth of the pump intens
for two frequencies~not multiples! at once,f 15100 Hz and
f 25430 Hz, during holographic-type parametric scatteri
in LiTaO3:Cu. The picture is much more complicated f
two modulation frequencies: although the scattering inten
varies significantly only within the first hour after the ons
of recording, as in Fig. 3b, the conversion coefficients u
dergo rapid changes for eight hours and only after that
they approach a roughly constant level ofK1.K2.1.5. Evi-
dently, the amplifications of the intensity oscillations at t
two frequencies are interrelated and cannot be treated i
pendently. Otherwise it would be difficult to explain the fa
that a time almost an order of magnitude longer than the t
to record the gratings is necessary to attain a stationary
ation, not to mention that twice during the observation per
there was a time when one of the conversion factors ha
local maximum while the other was less than unity~i.e., the
he

in
FIG. 5. Time dependence of the conversion factor for t
depth of modulation of the pump intensity,K(t) at frequen-
cies of f 15100 Hz ~1! and f 25430 Hz ~2! during detection
of oo2ee-mode holographic-type parametric scattering
LiTaO3:Cu.
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relative amplitude of the oscillations decreased!, an effect
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observed in the preceding plots.
In completing our discussion of the experimental da

we must note that the results were completely irreproduc
during this study of the temporal dependence of the con
sion factor for the intensity modulation depth: two curv
obtained under the same conditions can have substan
different features aside from the fact that the gain coeffici
is almost always greater than unity. This suggests a stoc
tic mechanism for amplification of the intensity oscillatio
at these frequencies.

In sum, our results yield the following conclusions:
1. Amplification of oscillations~or fluctuations! in the

pump intensity during scattering in photorefractive lithiu
tantalate and niobate has been observed at frequencies
100 Hz to 1 kHz. We were unable to detect amplification
the oscillations reliably at higher frequencies.

2. Amplification of the oscillations is observed in lithium
tantalate under any conditions, while in lithium niobate
occurs only during the dynamic regime, when there is a ra
increase in the holographic gratings, i.e., in the nonstation
case.

3. The amplification of oscillations during photoinduce
light scattering and holographic-type parametric scatter
indicates that the holographic gratings recorded in a cry
vary with changes in the pump intensity. As a result,
oscillations in the scattered radiation are determined b
combination of the oscillations in the pump intensity and
the amplitude of the holographic grating.

4. The amplification of oscillations with a period muc
shorter than the Maxwell time of the medium indicates
existence of a new, as yet unknown mechanism for phot
fraction with a substantially shorter characteristic time.

5. The mechanism for the amplification of the oscill
tions appears to be stochastic in nature and leads to st
fluctuations in the gain coefficient, a lack of reproducibili
in the results, and, perhaps, interactions among the amp
cation processes for oscillations at different frequencies.

We now consider some possible explanations for the
served effect based on earlier work.4,7 The existence of a
photorefractive response in barium titanate over times on
order of tens of picoseconds has been observed by recor
holograms with picosecond pulses,4 while at least a nanosec
ond is required to redistribute the electron density in a cry
of this type. This rapid photorefractive response was
plained by the fact that electrons photoexcited in the cond
tion band of the crystal change its refractive index owing
Drude transfer and, thereby, record a grating based on
carriers.4 This grating spreads out owing to diffusion of ele
trons in the conduction band, i.e., its lifetime is bound
above by the Maxwell time. The idea of the existence o
free carrier grating can be used to explain the amplificat
of pump fluctuations. In fact, a change in the carrier conc
tration in the conduction band takes place essentially im
diately ~over times on the order of picoseconds!, i.e., a free
carrier grating is capable of reacting immediately to a cha
in the intensity of a pump at frequencies on the order
hundreds of hertz.

Another possible explanation of the observed effec
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was observed which involved the appearance of a photo-
current in a LiNbO3:Fe crystal perpendicular to the magne
field vector and to a photogalvanic current that is prop
tional to the intensity of illumination of the crystal. The mo
bility of the carriers forming this current was determine
from the magnitude of the photo-Hall current and turned
to be three orders of magnitude higher than the ordin
carrier mobility in lithium niobate. It was proposed that th
measured mobility corresponds to nonthermal electrons
have not yet been clothed in a polaron ‘‘coat’’ and, therefo
have a much lower effective mass and a higher mobil
Since the mobility of a medium is proportional to the mob
ity of its carriers, while the concentration of nonthermal ele
trons may increase under nonstationary conditions~for ex-
ample, in the case of fluctuations in the pump intensity!, the
Maxwell time ~1! corresponding to the nonthermal carrie
may be much smaller than usual, which would also expl
the amplification of the light intensity fluctuations durin
scattering at acoustic frequencies.

4. CONCLUSION

We have observed a response in photorefractive lithi
tantalate and niobate over times five orders of magnit
shorter than the Maxwell time that leads to nonlinear conv
sion of fluctuations in the pump intensity. We have propos
two possible ways of explaining the observed effect whi
in principle, are not mutually exclusive. The existing ph
nomenological theory of photorefraction, which successfu
describes the majority of photorefractive processes~for ex-
ample, the recording of holograms, the development
holographic-type parametric scattering!, does not account for
the existence of free electrons on gratings or of nonther
carriers in photorefractive crystals. Thus, in order to clar
the true causes of the amplification of pump intensity os
lations, a more rigorous theory of photorefraction must
developed which includes the coupling of various proces
which have very different characteristic times in photorefra
tive crystals: from the photoexcitation times for carriers
the conduction band~times on the order of picoseconds! to
the Maxwell time for redistribution of the electron density
a crystal.

The authors thank V. V. Laptinskaya for many fruitfu
discussions. This work was supported by the Russian F
for Fundamental Research~Grant No. 96-02-1633a!.
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Structure of the superconducting state of superconductors near the critical field Hc2 for

values of the Ginzburg–Landau parameter k close to unity

Yu. N. Ovchinnikov

L. D. Landau Institute of Theoretical Physics, Russian Academy of Sciences, 142432 Moscow, Russia
~Submitted 24 January 1997!
Zh. Éksp. Teor. Fiz.112, 1499–1509~October 1997!

It is shown that near the transition temperatureTc the coefficients of the second and third terms
in the expansion of the free energy in powers ofHc22B ~B is the magnetic field induction
inside the superconductor! go to zero simultaneously for a value ofk51 for the Ginzburg–Landau
parameter. Thereby the structure of the mixed state nearHc2 for a value of the parameterk
close to unity is determined by the temperature correction to the coefficient for the third power and
the coefficient for the fourth power in the expansion of the free energy in powers ofHc2

2B. The values of these coefficients depend on the type of vortex lattice. ©1997 American
Institute of Physics.@S1063-7761~97!02510-9#

1. INTRODUCTION 2. SOLUTION OF THE GINZBURG–LANDAU EQUATION
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The mixed state of superconductors was investigated
Abrikosov.1 He found the magnitude of the magnetic fie
inside the superconductorH(r ) and, in particular, the mag
netic inductionB5^H(r )& from the equation for the vecto
potentialA(r ) ~see also Refs. 2–4!. Actually, however, the
induction valueB cannot be found from equations for th
order parameterD and the vector potentialA(r ), since in the
thermodynamic limit this system of equations has a v
number of solutions of ordereHR2 ~R is the characteristic
transverse dimension of the superconductor!. The induction
value B is determined from the condition of minimum fre
energy with respect to the area of an elementary cell~or the
inductionB! for a given value of the external magnetic fie
H0 .5 Physically, such an ambiguity is associated with t
possibility of surface currents, which produce a total ma
netic moment of the same order as the internal vortex c
rents.

We show below that near the transition temperatureTc

the coefficients for the second and third terms of the exp
sion of the free energy in powers ofHc22B vanish simulta-
neously for a Ginzburg–Landau parameterk51. Conse-
quently, there are three small parameters: 12T/Tc , k221
and 12B/Hc2. As a result, the structure of the mixed sta
depends on the temperature correction;(12T/Tc) to the
coefficient of the third power and the value of the coefficie
of the fourth power of the expansion of the free energy
powers ofHc22B. Thus, the equation forB is a third-degree
polynomial. In the general case three roots exist for it
must be expected that the coefficient of the (Hc22B)4 term
in the expansion of the free energy in the powers ofHc2

2B is positive. In this case the free energy as a function
B has two local minima and one maximum. Let us inves
gate three types of lattices: triangular with one and two fl
quanta in a cell and square with one flux quantum in a c
The two coefficients go to zero simultaneously fork51 for
all three types of lattices.
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Near the transition temperatureTc the free energyFS of
a superconductor in an external magnetic fieldH0 can be
represented by6

FS2FN5nE d3r H 2S 12
T

Tc
D uDu21

pD

8Tc
u]2Du2

1
7z~3!

16p2Tc
2 uDu4J 1

1

8p E d3r ~curl2 A

22H0 curl A1H0
2!, ~1!

where A is the vector potential,]25]/]r22ieA, and n
5mp0/2p2 is the density of states at the Fermi surface. T
coefficientD depends on the transport mean free pathl tr of
the electrons and is equal to

D5Ddifh; Ddif5
v l tr

3
;

h512
8Tt tr

p S cS 1

2
1

1

4pTt tr
D2cS 1

2D D ,
~2!

l tr5vt tr .

In Eq. ~2! v is the electron velocity at the Fermi surface a
c(x) is the Eulerc function. We will show below that for a
complete investigation of the states of a superconductor
values of the Ginzburg–Landau parameterk close to unity it
is necessary to supplement Eq.~1! for the free energy by
terms of next order in 12T/Tc. This problem is beyond the
scope of this paper and will not be considered here.

By varying the free energy~1! with respect toD andA,
we obtain the Ginzburg–Landau system of equations

pD

8Tc
]2

2 D1S 12
T

Tc
DD2

7z~3!

8p2Tc
2 uDu2D50,

~3!

1

4p
curl curl A5 j ; j 5

ipenD

4Tc
~D]1D* 2D* ]2D!.
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As shown in Ref. 6, at the pointH in terms of the mag-
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3~H 2B!31
P3

~H 2B!41... . ~11!

f
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ti-

-

s

n

netic field

H5Hc25
4Tc

peD S 12
T

Tc
D ~4!

the linearized system of Eqs,~3! has solutions of the form

D5exp~2ieHx1y2eH~x2x1!2! ~5!

for an arbitrary value of the parameterx1 . The calibration is
used in obtaining Eq.~5!.

A5~0;Hx;0!. ~6!

In the external magnetic fieldH0,Hc2 we will look for
solutions of the system of Eqs.~3! such that all physica
quantitiesuDu2, H(x,y), j are periodic functions of position
We assume thata1,2 are the vectors of the elementary ce
i.e.,

uD~r1Na11Ma2!u25uD~r !u2. ~7!

From the periodicity condition of the current density a
uDu2 we find

R
G
S ]x

]r
22eADdl50. ~8!

whereG is a closed contour running along the edge of
elementary cell andx is the phase of the order paramet
Since the order parameter is a single-valued function of
coordinates, Eq.~7! leads to the quantization condition of th
magnetic fluxf with respect to the elementary cell

f5
p

e
N, N51, 2... ~9!

This exact relation greatly simplifies the search for soluti
of the system of equations~3!.

In a magnetic fieldH0 close to Hc2 we look for the
solution of the system of equations~3! in the form of a series
in terms of powers ofHc22B

A5~0,Bx,0!1A11A21..., D5D01D11D21...,

D05(
N

CN exp~2ieBNx1y2eB~x2Nx1!2!,
~10!

where B is the induction of the magnetic field inside th
superconductor (B5^H(r )&), and the vectorsAk have two
nonzero components~1,2! and are proportional to (Hc2

2B)k. The physical quantities satisfyuDku2;(Hc2

2B)2k11, CN
2 ;Hc22B. Below we will use the calibration

div A50. In this calibration all quantitiesAk are periodic
functions of the coordinates. In the calibration used in Re
the quantitiesAk are increasing functions ofx; this leads to
additional difficulties in solving the system of Eqs.~3!.

It follows from Eqs. ~1! and ~10! that the free energy
density (FS2FN)/V can be represented in the form of
series in terms of powers ofHc22B:

FS2FN

V
5

1

8p H ~B2H0!21P1~Hc22B!21
P2

Hc2
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The coefficientsPk in Eq. ~11! are determined by the type o
vortex lattice and by the value of the Ginzburg–Landau
rameterk.

The inductionB is found from the condition of mini-
mum free energy~1!, ~11! with respect toB for a given value
H0 of the external magnetic field,5

]~FS2FN!

]B
50. ~12!

Our task is to find the coefficientsP1 and P2 in the
expansion~11!. To do this it is necessary to find the quan
ties D0 , D1 andA1 , A2 .

The periodicity conditions~7! impose a stringent restric
tion on the values of the coefficientsCN ~Eq. ~10!!. For dif-
ferent types of lattices we find

CN5C0 expS 2
ip

2
N2D , ~13a!

a triangular lattice with one flux quantum;

CN115CN5C0, ~13b!

a square lattice with one flux quantum;

CN115CN5C0, ~13c!

a triangular lattice with two flux quanta. The coefficientsC0

can be assumed real in all cases.
To construct the functionsD1 ,D2 ,... we need a basis

derived from the eigenfunctions of the operatorL̂

L̂52F ]2

]x2 1S ]

]y
22ieBxD 2G , L̂ f n5lnf n . ~14!

The operatorL̂ has been thoroughly investigated. All of it
eigenvaluesln are given by

ln54eB~n11/2!, n50, 1, 2... ~15!

Each eigenvalue is infinitely degenerate

f n[ f n~x1 ,r !5exp~2ieBx1y!Dn~2AeB ~x2x1!!. ~16!

wherex1 is an arbitrary real number andDn is the parabolic
cylinder function:7

Dn~z!522n/2 exp~2z2/4!Hn~z/A2!. ~17!

In Eq. ~17! Hn is the Hermitian polynomial. The correctio
D1 to the order parameter can be represented by

D15 (
M51

`

(
N52`

`

QN
M exp~2ieBNx1y!

3DM@2AeB~x2Nx1!#. ~18!

From the periodicity conditions~7! for any type of lattice we
find

QN
M5aMCN . ~19!

whereaM is a complex number not depending onM . Below,
for convenience, we assume
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M
`

A

u

1
pe2nD

^A2uD u2&

u-

p-

ll

e

hat
ell
D1 5 (
N52`

CN exp~2ieBNx1y!DM@2 eB~x2Nx1!#,

~20!
M51, 2...

From Eq. ~20! the expression for the correctionD1 to the
order parameter becomes

D15 (
M51

`

aMD1
M . ~21!

In the approximation being considered the system of eq
tions ~3! becomes

peD

4Tc
Hc2~D01D1!2

pD

4Tc
FeBD012eB(

M51

` S M1
1

2D
3aMD1

M12ieA1]2D0G2
7z~3!

8p2Tc
2 uD0u2D050,

curl curl ~A11A2!54p j .

j 52
penD

4Tc
S ]

]y
;2

]

]xD uD0u21
ipenD

4Tc
@4ieA1uD0u2

1D1]1D0* 1D0]1D1* 2D0* ]2D12D1* ]2D0#, ~22!

where

]65S ]

]x
,

]

]y
62ieBxD . ~23!

From the system~22! with the orthogonality of the functions
D0 andD1 taken into account we find

H1~r !52
p2enD

Tc
~ uD0u22^uD0u2&!, H15curl A1 ,

peD

4Tc
~Hc22B!^uD0u2&1

1

4pn
^H1

2~r !&

2
7z~3!

8p2Tc
2 ^uD0u4&50,

~24!
peBDM

2Tc
aM^D1

MD1
M* &

52
ipeD

4Tc
^A1~D1

M* ]2D02D0]1D1
M* !&

2
7z~3!

8p2Tc
2 ^uD0u2D0D1

M* &,

S ]2

]x2 1
]2

]y2DA15
p2enD

Tc
S ]

]y
;2

]

]xD uD0u2.

Equation~1! for the free energy density (FS2FN)/V is re-
duced to a rather simple form by means of Eqs.~10!, ~20!,
~21!, ~22!, ~24!:

FS2FN

V
5

1

8p
~B2H0!21

7z~3!n

16p2Tc
2 S ^uD0u4&S 12

1

k2D
1

^uD0u2&2

k2 D2
penD

4Tc
~Hc22B!^uD0u2&
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2Tc
1 0

2
peB

2Tc
(

M51

`

M uaMu2^D1
MD1

M* &. ~25!

From the first two of Eqs.~24! we find

^uD0u2&5
2p3eDTc

7z~3!

Hc22B

b2~b21!/k2 , ~26!

where

b5
^uD0u4&

^uD0u2!2 , k5
1

p2eD S 7z~3!

2pn D 1/2

. ~27!

For further calculations it is convenient to convert to a Fo
rier series expansion of the functionsuD0u2, A1 ,... In an
isotropic superconductor it must be expected thatua1u5ua2u
and the angle between the vectorsa1,2 is equal top/3 or p/2.
We assume thatK1,2 are the elementary vectors of the reci
rocal lattice. The order parameteruD0u2 in this case can be
represented by

uD0u25 (
N,M52`

`

CNM exp~ i ~NK11MK2!r !. ~28!

Further calculations depend on the type of lattice.
For a triangular lattice with one flux quantum in a ce

we find

K15
2p

A3x1

~0,1!, K25
p

A3x1
~A3;21! ,

2A3Bx1
25p, CN5C0 expS 2

ip

2
N2D , ~29!

CNM5C0
231/4 expS 2 ipNM2

p

A3
~N21M22NM!D .

For a square lattice with one flux quantum in a cell w
obtain

K15
2p

x1
~0,1!, K25

2p

x1
~1,0!,

eBx1
25p, CN115CN5C0 , ~30!

CNM5
C0

2

A2
~21!NM expS 2

p

2
~N21M2! D .

Let us also give an expression for the quantities t
characterize a triangular lattice with two flux quanta in a c

K15
2p

A3x1

~0,1!, K25
p

A3x1

~A3,21!,

A3Bx1
25p, CN115CN5C0 , CN,2K1150, ~31!
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C0
231/4 p

:

ds
ne
lin

a 52
~21!M Hc22B

D ; ~38!

.

,
he
CN,2K5
A2

expS ipK~N2K !2
2A3

3~N214K222NK!D .

By using Eq.~20! for the explicit form of the functions
D1

M , we find that

^D1
MD1

M* &5^uD0u2&M ! ~32!

To calculate the quantityaM we need the following relation

D1
M]1D0* 2D0* ]2D1

M

5 i S ]

]y
;2

]

]xD uD0u222AeBMD0* D1
M21~1;2 i !. ~33!

The explicit form of the vector potentialA1 is easily found
from Eqs.~24! and ~28!:

A152
ip2enD

Tc
(

KNMÞ0
CNM~~KNM!y ;

2~KNM!x!exp~ iKNMr !/KNM
2 . ~34!

We now represent the functionD0* D1
M in the form of a

Fourier series

D0* D1
M5(

N1K
CNK

M exp~ iKNMr !. ~35!

The coefficientsCNK
M depend on the type of lattice:

CNK
M 5CNK~21!M5 S 2p

A3
D M /2S N2

K

2
1

iA3

2
K D M

,

triangular, one flux quantum,

pM /2~N1 iK !M,

square, one flux quantum

triangular, two flux quanta:

CN,2K11
M 50,

~36!

CN,2K
M 5CN,2K~21!MS p

A3
D M /2

~N2K1 iA3K !M.

By using Eqs.~34!–~36!, we find the following expres-
sion for the correlatorsi ^A1(1;2 i )D0* D1

M21&, which deter-
mine the value of the coefficientsaM :

i ^A1~1;2 i !D0* D1
M21&

5
pAenD

2TcAB
(
N,K

CNKCNK
M H A3

2
~N21K22NK!21

~N21K2!21

A3~N21K22NK!21.

~37!

In Eq. ~37! the top line to the right of the brace correspon
to a triangular lattice with one flux quantum, the middle li
to a square lattice with one flux quantum, and the bottom
to a triangular lattice with two flux quanta.

We find the following expression for the coefficientsaM

from Eqs.~24!, ~26!, ~35!–~37!:
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M 2M•M ! B~b2~b21!/k2! M

where the coefficientsDM depend on the type of lattice:

DM5S 2p

A3
D M /2

(
N21K2Þ0

S S 12
1

k2D
1

MA3

2pk2

1

N21K22NKD S N2
K

2
2

iA3K

2 D M

3expS 2
2p~N21K22NK!

A3
D ,

DM5pM /2 (
N21K2Þ0

S S 12
1

k2D1
M

pk2

1

N21K2D
3~N2 iK !M exp~2p~N21K2!!, ~39!

DM5S p

A3
D M /2

(
N214K222NKÞ0

S S 12
1

k2D
1

MA3

pk2

1

N214K222NKD ~N2K2 iA3K !M

3expS 2
p~N214K222NK!

A3
D .

The arrangement of the lines in Eq.~39! is the same as in Eq
~37! in terms of lattice types.

Finally, by means of Eqs.~34!–~39! Eq. ~25! for the free
energy density is reduced to

FS2FN

V
5

1

8p
~B2H0!22

~Hc22B!2

8pk2~b2~b21!/k2!

2
~Hc22B!3

8pk2B~b2~b21!/k2!3 (
M51

` DM
2

MM !

1
~Hc22B!3

8pk6B~b2~b21!/k2!3 G. ~40!

The coefficientG in Eq. ~40! depends on the type of lattice
and we give its value for the three types of lattices in t
same order as in Eq.~37!:

G5
1

p

A3

2 (
NN11KK120.5~N1K1K1N!

~N21K22NK!~N1
21K1

22N1K1!

3~21!N1K1NK1 expS 2
2p

A3
~N21K21N1

21K1
22NK

2N1K12NN12KK110.5~N1K1K1N!!D ,

G5
1

p (
NN11KK1

~N21K2!~N1
21K1

2!
~21!N1K1NK1

3exp~2p~N21K21N1
21K1

22NN12KK1!!, ~41!
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TABLE I.
G5
1

p
A3 (

NN114KK12N1K2K1N

~N214K222NK!~N1
214K1

222N1K1!

3~21!K1N1KN1 expS 2
p

A3
~N214K21N1

214K1
2

22NK22N1K12NN124KK11N1K1NK1!D .

The sums in Eq.~37! are taken over the valuesN; N1 ; K; K1

such that both factors in the denominator are different fr
zero.

It follows from Eq.~39! that the dependence onk2 of the
sum in the third term of Eq.~40! is given by

(
M51

} DM
2

MM !
5

g0

k4 1
g1

k2 S 12
1

k2D1g2S 12
1

k2D 2

. ~42!

A direct calculation shows that for all three types of lattic
considered the relation

G5g0 ~43!

is satisfied. Equation~43! is obviously exact. The results of
numerical calculation for the coefficientsg i , b and G are
listed in Table I.

A triangular lattice with one flux quantum has a sixt
order symmetry axis, while the square lattice has a fou
order axis. Symmetry with respect to the replacementr→
2r exists in the triangular lattice with two flux quanta. As
result, only the coefficientsDM with M5K(6;4;2), K
51, 2,..., are different from zero.

With Eqs.~42! and~43! taken into account, Eq.~40! for
the free energy density is reduced to

FS2FN

V
5

1

8p
@~Hc22H0!222~Hc22H0!~Hc22B!

1~Hc22B!2#2
~Hc22B!2

8pk2~b2~b21!/k2!

2
~Hc22B!3

8pk2B~b2~b21!/k2!3 S g1

k2 S 12
1

k2D
1g2S 12

1

k2D 2D . ~44!

We point out once more that in the Ginzburg–Landau
proximation~Eq. ~1! for the free energy! for a value ofk51
the coefficients of (Hc22B)2 and (Hc22B)3 in the power
expansion of the free energy (Hc22B) ~Eq. ~44!! go to zero

Lattice
type

Triangular,
one flux quantum

Square,
one flux quantum

Triangular,
two flux quanta

G 3.661705•1022 5.145751•1022 0.1803918
g0 3.661705•1022 5.145751•1022 0.1803918
g1 4.361318•1022 0.0687983 0.2520449
g2 1.299969•1022 2.338158•1022 9.405005•1022

b 1.15952 1.18034 1.33897
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taken into account this effect vanishes, and at the point w
the coefficient for (Hc22B)2 is equal to zero the coefficien
for the term (Hc22B)3 will be equal to C̃(1
2T/Tc)/8pHc2 , C̃;1. Note also that the coefficientsg0,1,2

are numerically small for the triangular and square lattic
with one flux quantum. This is due to the high symmetry
such lattices. The coefficient for (Hc22B)4 will also obvi-
ously be small numerically. There is no basis for expect
the coefficientC̃ to be small.

Thus, the structure of the mixed state for values of
parameterk2 close to unity is determined by a fourth-degr
polynomial inHc22B. As a result, the absolute value of th
parameteruDu and the inductionB change drastically for a
small change in the value of the external magnetic fieldH0 .

A region exists in terms of the parameters (Hc2

2H0)/Hc2 , k221, 12T/Tc , in which the free energy as
function of B has three extremal points for a given type
flux lattice. One of these points corresponds to a maxim
and the other two to a local minimum.

3. MAGNETIC MOMENT MV , CREATED BY INTERNAL
CURRENTS

The total magnetic momentM of a unit volume of a
superconducting cylinder is defined by the relation

B5H014pM . ~45!

The magnetic momentM is created by both internal curren
and surface

M5MV1MS . ~46!

Both of these contributions, generally speaking, are of
same order.

By means of Eqs.~22!, ~26!, ~28! the magnetic momen
MV of a unit volume of a superconductor, created by inter
currents, is written as

MV5
1

2S E
S
@rj #zd

2r

5
penD

8Tc

1

S E
S
d2r S x

]uD0u2

]x
1y

]uD0u2

]y D
52

penD

4Tc
^uD0u2&ã52

ã~Hc22B!

4pk2~b2~b21!/k2!
. ~47!

The integration in Eq.~47! is carried out over the areaS of
an elementary cell.

The constantã depends on the type of lattice:

ã5S (
MÞ0

C0M~21!M111 (
NÞ0

CN0~21!N11DY2C00,

~48!

ã5H 0.324654—triangular lattice, one flux quantum
0.412025—square lattice, one flux quantum
0.404058—triangular lattice, two flux quanta.
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We have shown that in an external magnetic fieldH0 the
free energy of a superconductor can be expanded in a s
in powers ofHc22B, whereB is the induction of the mag
netic field inside the superconductor. The expected radiu
convergence of the series is of the order ofHc2 and it re-
mains finite ask→1. Because of the presence of surfa
currents a vast number of solutions~of the order ofeHR2,
whereR is the characteristic diameter of the superconduct
cylinder! exists for the system of Ginzburg–Landau equ
tions. Some of them correspond to a local minimum a
some to saddle points. Surface currents create a bulk m
netic moment of the same order as the internal currents.
a superconducting cylinder with a sufficiently large diame
the surface energy is small compared with the volume
the inductionB can be found by minimizing the bulk portio
of the free energy with respect to the inductionB in a given
external magnetic fieldH0 . In Eq. ~11! for the free energy
the only place where the external magnetic fieldH0 enters is
the first term.

We have also shown that in the Ginzburg–Landau
proximation a unique situation arises—the coefficients
the square and cubic terms of the expansion of (FS

2FN)/V in powers ofHc22B go to zero simultaneously a
the pointk51. Thus, in the vicinity of the pointk51 the free
energy is a fourth-degree polynomial inHc22B, and the
coefficient for the term (Hc22B)3 contains the small param
eter 12T/Tc . To calculate it it is necessary to go outside t
framework of the free energy in the Ginzburg–Landau
proximation.
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function of the inductionB exist, generally speaking, for
given type of flux lattice. Two of these, are probably, loc
minima and one is a maximum.

The quantitiesg0,1,2, which arise in a calculation of the
cubic term, are numerically small for the triangular a
square lattices with one flux quantum. This smallness is
result of the high symmetry of these lattices. The coeffici
for the fourth power ofHc22B will also apparently be nu-
merically small. A detailed investigation of the structure
the eddy lattice, arising in the parameter region

~k221!!1, ~12H0 /Hc2!!1, 12T/Tc!1.

is the subject of a separate investigation.
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Exact soliton-like solutions in generalized dynamical models of a quasi-one-

dimensional crystal

O. V. Gendel’man and L. I. Manevich

N. N. Semyonov Institute of Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Russia
~Submitted 18 February 1997; resubmitted 13 May 1997!
Zh. Éksp. Teor. Fiz.112, 1510–1515~October 1997!

We examine the dynamics of a one-dimensional crystal on a substrate with allowance for both
nonlinear interaction with the substrate and intramolecular dispersion and nonlinearity.
We show that such models, with the potential chosen appropriately, have soliton-like solutions
with a distinct velocity. Such a potential allows for an independent selection of the
curvature of the potential well and the height of the potential barrier, and in this way ‘‘globally’’
models the real potential. We show that such global modeling is correct to a first
approximation. ©1997 American Institute of Physics.@S1063-7761~97!02610-3#
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In certain areas of solid-state physics, a consistent
scription of the nonlinear dynamics of the phenomena le
to equations that contain, in addition to gradient terms r
resenting nonlinearity and dispersion~i.e., terms that depend
on the derivatives of the desired displacement field!, terms
that depend only on the field proper. Such equations m
contain, e.g., a combination of terms that are characteri
on the one hand, of Korteweg–de Vries and modifi
Korteweg–de Vries models and, on the other, of sin
Gordon,f4, and similar models.

The structure of these equations takes them outside
class of well-known models, including integrable mode
Furthermore, generally speaking, even the search for s
tions of the soliton type leads in these cases to an analytic
insoluble problem for an ordinary fourth-order nonline
equation. The simplest example of systems of this type
one-dimensional crystal on a substrate.

Hence it comes as no surprise that the usual approac
specific investigations is to try to avoid this crucial difficul
by keeping only a nonlinearity and dispersion of the gradi
type ~and then in the continuum approximation we arrive
the ordinary models of the Korteweg–de Vries or modifi
Korteweg–de Vries type!, or only the substrate potentia
combined with continuum models of the sine–Gordon orf4

type ~in all such cases the problem of finding soliton-lik
solutions reduces to solving nonlinear second-order differ
tial equations!.

In some cases, however, such ‘‘truncation’’ is unjus
fied. For example, in the physics of polymer crystals
gradient nonlinear and dispersion terms are responsible
intramolecular interaction, and the nongradient terms, for
termolecular interaction. Although physically these intera
tions are of different origin, their strength may coincide
order of magnitude. Below we call equations that cont
nonlinear and dispersion of both types generalized equati

The present authors know of only two papers that d
with generalized models. Kovalev and Kosevich1 give exact
soliton solutions of the generalized equations

Utt2c2Uzz26GUzUzz2FUzzzz52
]C

]U
~1!
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Utt2c2Uzz2HUz
2Uzz2PUzzzz52

]F

]U
~2!

with substrate potentials

C5A~U221!2 ~ the f4 model!, ~3!

F5B~11cospU ! ~sine–Gordon model!, ~4!

whereU is the scalar displacement field,G, F, H, andP are
the coefficients of the nonlinear and dispersion terms, anc
is the speed of sound.

In Eq. ~1!, the relationships between the parameters
be arbitrary, and the soliton velocity assumes only one p
sible value for any specific set of parameters. Equation~2!
allows only for one combination of parameters, but the so
ton velocity spectrum is continuous. Konnoet al.2 show that
in the latter case Eq.~2! is exactly integrable by the invers
scattering method.

The gradient terms in Eq.~1! are the same as in th
well-known Boussinesq equation, so that below we call t
equation the generalized Boussinesq equation. By anal
we say that Eq.~2! is the generalized modified Boussine
equation. This terminology will be retained even for mo
complicated substrate potentials.

With the aid of a computer model of the polyethylen
crystal, Balabaevet al.3 show~using the molecular dynamic
method! that polymer crystals exhibit a preferential localiz
tion of torsional and longitudinal nonlinear excitations alo
a single chain, with the gradient and nongradient terms p
ing comparable roles, as noted earlier. With this in mind,
can say that the longitudinal and torsional dynamics o
polymer chain in a crystal can be described~in the long-wave
approximation! by the generalized and modified Boussine
equations, respectively, which, however, contain a more
alistic substrate potential.

The potentials~3! and ~4! are not suited to such a de
scription, the reason being that they are represented by f
tions in which the curvature of the potential well and t
height of the potential barrier are intimitely related, and th
relationship gives way upon passage of the solitary wave

82403$10.00 © 1997 American Institute of Physics
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nonlinearity are rigorously related. Such restrictions are
acceptable for any realistic model of a polymer crystal.

In this paper we discuss generalized models unfette
by these restrictions, which allow for analytic soliton-lik
solutions.

2. EXACT SOLITON-LIKE SOLUTIONS IN GENERALIZED
MODELS

We now examine the simplest possible generalizati
of the substrate potentials in Eqs.~1! and~2! that lift the first
of the restrictions mentioned earlier. The only thing th
needs to be done is to allow for terms of the next order~for
the potential~3! this is the sixth-order term and for the po
tential ~4!, the cosine of twice the angle!. If we take into
account the requirement that the equilibrium positions m
remain unchanged, we arrive at the following expressions
the modified potentials:

C* 5A1~U221!21A2~U221!3 ~ the f42f6 model!,
~5!

F* 5B11B21B1 cospU

1B2 cos 2pU ~double sine–Gordon!. ~6!

Clearly, such a choice of potentials makes possible an in
pendent selection of the height of the potential barrier a
the curvature of the potential well. In relation to the re
substrate potential, these approximations are of a ‘‘glob
nature, i.e., they model the basic characteristics of the
potential and do not necessarily coincide with the first te
in the expansion of the potential in the correspond
bases—the Taylor series and Fourier series~respectively!.
The validity of such an approach will be justified later~in
contrast to the standardf42f6 and double sine–Gordo
models, below we allow for nonlinear gradient terms!.

We seek a solution of Eq.~1! with potential ~5! in the
form

U5tanhk~z2Vt!. ~7!

Substituting this into the equation leads to conditions t
link the reciprocal soliton halfwidthk and the soliton veloc-
ity V to the parameters of the problem:

k2~c22V2!14Fk452A1 , 22Gk314Fk45A2 . ~8!

We seek a solution of Eq.~2! with the substrate potential~6!
in the form

U5211
4

p
arctanFexpS pa

2
~z2Vt! D G . ~9!

This is a true solution if the soliton parameters obey
conditions

a52S 4B2

2H23p2PD 1/4

,

c22V25
4B1

a2 1
a2~H2Pp2!

2
. ~10!
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2B2H23p2P.0,

c22
B1

A4B2 /~2H23p2P!

12A 4B2

2H23p2P
~H2Pp2!.0. ~11!

The two solutions correspond to the discrete velocity sp
trum: ~8! can yield two values for the velocity, but~10!
yields only one. Depending on the parameters of the co
sponding generalized Boussinesq equation, solitons spec
by ~7! and ~8! can correspond to both expansion of a on
dimensional crystal (k,0) and compression (k.0).

In the system of the generalized modified Boussine
equations~9! and ~10!, expansion and compression solito
exist for the same values of the parameters: if Eqs.~10! have
a solution, the parametera is determined to within a sign
We also note that this solution exists over a certain conti
ous range of dispersion-to-nonlinearity ratios, rather than
for a single ratio. Thus, the second restriction on the use
the generalized Boussinesq model is also lifted. Natura
this system is nonintegrable.

The solution~9!, ~10! for B250 was originally obtained
by Beklemeshev and Klochikhin.4

The soliton-like solutions~7! and ~9! differ from the
standard solutions for systems with a discretely degene
potential. First, these solutions can have only one or t
fixed values of the soliton velocity. Such behavior of a so
tion for a polymer crystal model was indeed detected in
computer experiment of Balabaevet al.3 and cannot be ex-
plained by the standard models, which yield a continuo
velocity spectrum. Second, the speed of long-wave soun
not ‘‘critical’’ for the given type of equations, as it is in th
standard models. In other words, for certain ratios of
parameters the solitons move with the speed of sound
have finite energy.

3. CORRECTNESS OF THE ‘‘GLOBAL’’ APPROXIMATION
OF THE SUBSTRATE POTENTIAL

We now examine the applicability of the ‘‘global’’ ap
proximation of the real substrate potential by employi
model potentials of thef42f6 or double sine–Gordon type

We employ the generalized continuum model of a no
linear chain on a substrate. The model is described by
equation

Utt2c2Uzz2t1Uz
nUzz2t2Uzzzz52

]V

]U
, ~12!

where n is either 1 or 2, and the potentialV satisfies the
following conditions:

~a! V (z)5V (2z);
~b! z50 is the maximum point,z561 are the minimum

points, and there no other extrema in the interval (21,1).
The topological soliton of Eq.~12!, u5u(z2Vt)

5u(p), satisfies the conditions
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p→`, u→12d exp~2lp!. ~13!

How does the soliton-like solution of Eq.~12! behave when
p→`? If we insert the second condition in~13! into Eq.~12!
and ignore multiple powers of the exponential, we arrive
an expression for the decay constant of the topological s
ton at infinity,

l2~V22c2!2t2l452v, ~14!

where v is the curvature of the potential well nearU51.
Equation~14! suggests that the extent of decay of the so
tion at infinity is determined by the curvature of the potent
well of the substrate.

What is the behavior of the same solution nearp50?
Since the solution is antisymmetric~the first condition in
~13!!, it can be expanded in a Taylor series in odd powers
p. The formula for calculating the coefficients of this seri
can be obtained by multiplying Eq.~12! by Up and integrat-
ing the product once:

1

2
~V22c2!Up

22
t1

n12
Up

n12

1
1

2
t2~Upp

2 22UpUppp!5H2V . ~15!

The constant of integrationH2V (0) for the desired solu-
tion ~which ‘‘links’’ the equilibrium positions! coincides
with the height of the potential barrier of the substra
Clearly, if in Eq. ~15! we allow only for the lowest-orde
terms in the series expansion of the solution near zero,
right-hand side of Eq.~15! contains only this quantity.

The asymptotic procedure for finding the solutions
Eq. ~12! consists in calculating the expansion in exponent
at infinity via this equation and expanding in a Taylor ser
at zero via Eq.~15!. The two expansions can then b
matched by Pade´ approximation. According to the gener
theorems of Pade´ approximation theory, successive diagon
approximations will then converge to the exact solution.5

Let us use Eq.~1! with the potential~5! to show how a
soliton-like solution of the equation describing the dynam
of the generalized model can be obtained by the Pade´ ap-
proximation method. We seek a solution in the for
U(x)5U(z2Vt), and for the sake of convenience chan
variables:q(U)5Ux

2 .
As a result, Eq.~1! with the potential~5! becomes

1

2
~V22c2!q823Gp1/2q82

F

2S q-q1
1

2
q8q9D

524A1U~U221!26A2U~U221!2. ~16!

Integrating once with respect toU, we obtain

2~V22c2!q14Gq3/21FS q9q2
1

4
~q8!2D

5V 112~A1~U221!21A2~U221!3!. ~17!

The solution of Eq.~17! is soliton-like if the functionq
and its first derivative vanish atU561. Clearly, these con
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tegration:V 150. Equation~17! ‘‘suggests’’ the following
form for the expansion of the solution near the limit poin

U→1q;A0~12U !2, U→21q;A0~11U !2. ~18!

Matching these two expansions via the two-point Pade´ ap-
proximation yields

q;
1

4
A0~12U2!2. ~19!

Equations~17! and ~19! contain two unknown param
eters,A0 and V. Inserting ~19! near the pointsU→1 and
U→0 into ~17!, we arrive at two equations for these param
eters,

~c22V2!A01FA0
258A1 , ~20!

~c22V2!
1

4
A01

1

2
GF0

3/22
1

4
A0

2F52~A12A2!. ~21!

The right-hand side of Eq.~20! is the curvature of the poten
tial well, and on the right-hand side of Eq.~21! only the
overall height of the barrier from the potential remains. P
ting A054k2, we can easily see that these two equatio
coincide with Eqs.~8! for the parameters of the exact solito
like solution of Eq.~1! with the potential~5!.

Of course, calculating higher-order terms in the expa
sions requires detailed information about the substrate po
tial. Nevertheless, as we have shown, to calculate the
terms in the expansions near zero and at infinity we n
only know the height of the potential barrier and the curv
ture of the potential well. In this sense any substrate poten
in which these parameters are properly ‘‘adjusted’’ can se
as a satisfactory approximation. Thus, the generalized m
els introduced in Sec. 2 make it possible to find, to a fi
approximation, soliton-like solutions for all realistic sub
strate potentials that exhibit the necessary symmetry, p
vided that dispersion and nonlinearity are taken into acco
to leading order.
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Effect of Pyragas feedback on the dynamics of a Q-switched laser

r

N. A. Lo ko, A. V. Naumenko, and S. I. Turovets

Institute of Physics, Belarus Academy of Sciences, 22072, Minsk, Belarus
~Submitted 29 December, 1996!
Zh. Éksp. Teor. Fiz.112, 1516–1530~October 1997!

A linear analysis is made of the stability of the limit cycle in a Q-switched laser with continuous
delayed feedback which controls the onset of instability. The Stokes generalization of the
Floquet theory for the functional equations was used to derive a general equation to determine
the Andronov–Hopf bifurcations and also saddle-node and subharmonic bifurcations.
Conditions for stabilization ofT-periodic regimes were determined and possible destabilizing
effects introduced by the feedback were identified. ©1997 American Institute of
Physics.@S1063-7761~97!02710-8#
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Dynamic chaos, inherent in most nonlinear systems
usually an undesirable effect in practice. Thus, the possib
of using a suitable method of dynamic control to stabil
various periodic orbits embedded within a chaotic attrac
has recently been attracting close attention among resea
ers. Several years ago, Ott, Grebogi, and Yorke1 proposed a
general method of stabilization based on applying sm
feedback-controlled pulse perturbations to available sys
parameters. Since then, several modifications of this me
have been successfully applied to various experime
systems.2 However, it has been shown that all of these me
ods are sensitive to noise, mainly as a result of the t
discreteness. The pulsed nature of the action also imp
fairly stringent constraints on the spectral pass band of
feedback loop. In consequence, none of these pulse t
niques has been implemented so far in fast systems
comparatively high oscillation frequencies.

Pyragas3 proposed a new method of control based
continuous delayed feedback, which was then generalize
using information on many previous states of the system.4 In
the simplest case of continuous delayed feedback, the co
signal is proportional to the difference between the out
signals taken at a given time and at some preceding ti
The main advantages of this method are that real-time c
trol of fast systems can be achieved, the method is st
against noise, and is relatively easy to implement experim
tally. The effectiveness of continuous delayed feedback
been investigated numerically and demonstrated experim
tally in various electronic devices,5–7 in the dynamics of
chemical reactions,8,9 in the ferromagnetic resonanc
effect,10 and in lasers.11 However, this method has not bee
sufficiently well-studied analytically and the physical mech
nisms responsible for the stabilization of unstable orbits h
not been fully clarified. In many cases, the treatment of
results is based more on intuitive semiphenomenolog
concepts than on a mathematical analysis of stability. T
present paper aims to fill this gap.

For the analysis we selected a model of a class B
switched laser.12 It is well known that a Q-switched lase
demonstrates a wide range of nonlinear phenomena, inc
ing a cascade of period-doubling bifurcations leading
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controlling chaos in this model arises mainly from the re
tive mathematical complexity of the problem, which requir
generalizing the Floquet theory for the functional equatio
Nevertheless, the first results obtained by us earlier17,18

showed good agreement with the experimental data on
stabilization of aT-periodic cycle~T is the loss modulation
period! in a modulated CO2 laser with continuous delaye
feedback.11 Another study19 appeared at the same time, co
taining a theoretical analysis performed for the first perio
doubling bifurcation using a multiscale perturbation metho
This method yielded an equation for the slowly varying a
plitude and phase of the approximate solution near the p
metric resonance~ratio of modulation frequency to relax
ation frequency.2!. From knowledge of where the
2T-periodic solutuion exists, it was concluded that the bifu
cation diagram underwent a shift.

In order to identify possible bifurcations and effects i
troduced by continuous delayed feedback, we propose to
velop further the approach used by us in Refs. 17 and 18,
direct analysis of the stability of theT-periodic regime in a
system with a delay using the Floquet theory. TheT-periodic
solution may be obtained by using one of the well-know
asymptotic methods for nonlinear laser equations.14,15 Par-
ticular attention is focused on obtaining analytic estima
for the boundaries of saddle-node, Andronov–Hopf, a
period-doubling bifurcations, and identifying the physic
mechanisms responsible for each of these bifurcations.
examine the influence of the technical delay in the feedb
circuit, which is unavoidable in real experimental system
on the stabilization process. It is shown that for specific
rameters additional feedback-induced instabilities may
cur.

2. DESCRIPTION OF MODEL

The mathematical model of the laser has the form14,15

u̇5vu@y212l cos~wt1 f !2K~ t !#,

ẏ5y02~11u!y, ~1!

whereu andy are the dimensionless intensity of the outp
field and the population inversion,v is the ratio of the rate of
attenuation of the radiation in the cavity to the rate of rela
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andl andw are the amplitude and frequency of the period
loss modulation. The termK describes the action of the con
tinuous delayed feedback on the lasing process:

K~ t !5a~ut2ut1T!. ~2!

Here the feedback depth isa!1, andUt and ut1T are the
intensities at the delayed timest2t and t2(t2T). Unlike
Refs. 3 and 11 we introduce here an additional delayt which
may be comparable withT and associated with the finit
time taken for propagation of the signal in the feedback lo
It is known that this type of feedback does not influen
unstableT-period orbits and does not require them to
known in advance. We postulate, as in Ref. 3, that the sig
K(t) is bounded so that the feedback only influences
stability of theT-periodic orbit in a certain small neighbo
hood and does not significantly alter the dynamics of
system far from this orbit.

3. ANALYSIS OF STABILITY

Below we shall use a logarithmic change of variables
which the solutions of system~1! corresponding to spiky
behavior of the laser look smoothed for any values of
parameterv. This makes it easier to find analytic and n
merical solutions of the problem.14 It is known that the laser
equations rewritten in these variables are the equations f
nonlinear oscillator with the Toda potential controlled by
external periodic force and parametrically, and may be
pressed in the form

ẍ1 ẋ~e11e2ex!1Ṙ1@11l cos~mt8!#ex1R~e11e2ex!

511le2
21m sin~mt8!2le1e2

21 cos~mt8!, ~3!

where R5ae1
21@exp(xt8)2exp(xt81T8)# describes the influ-

ence of feedback and

x5 ln
u

y021
, m5we1 , t85

t

e1
, e15

1

Av~y021!
,

e25Ay021

v
, T85

T

e1
, t85

t

e1
.

Here the normalized modulation frequencym is expressed in
units of the frequency of the relaxation oscillationse1

21.
In the following equations all the primes will be omitte

to simplify the notation. Unlike Eqs.~1!, the harmonic bal-
ance method applied to Eq.~3! gives a fairly good approxi-
mation to the accurateT-periodic solution when the zeroth
order and first-order harmonics are used. For instanc
Fourier transformation shows that even near the main re
nance subject to the conditionm.1, the difference between
the trial function for theT-periodic solution taken in the
form x05c1a cos(mt)1d sin(mt) and the accurate solutio
determined numerically is around a few percent.14 The val-
ues ofc andy5a/r (r 25a21d2) may be determined from
the following equations:

ec @ I 0~r !1lyI1~r !#51,
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a
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~c21c3y1c4y2!2 d31d4y 5F c21c3y1c4y2

2d6yG50, d15
2I 1~r !

r
,

d25
2l

r F I 0~r !2
I 1~r !

r G , d35I 0~r !,

d45lI 1(r ), d55
l

e2
, d65e1 ,

c05
d3l

r e2
2

ld1

r e1
, c15

d4l

r e2
, c25d31

d1e2

e1
,

c35d41
d3l

r e1e2
, c45

d4l

r e1e2
, ~4!

where I n(r ) is a modified Bessel function obtained by e
panding

exp~r cos t !5I 0~r !12(
k51

`

I k~r !cos~kt!.

To analyze the stability of this solution, we write th
linearized equation for the deviationj(t)5x(t)2x0(t):

j̈1 f ~ t !j̇1g~ t !j1a@h~ t !~ j̇t2 j̇ t1T!

1q~ t !~jt2jt1T!#50, ~5!

where f (t), g(t), h(t), andq(t) areT-periodic functions of
time, which may be expressed in terms of the solutionx0(t)
as follows:

f ~ t !5e11e2ex0, g~ t !5@e2ẋ011

1l cos~mt!#ex0, h~ t !5e1
21ext

0
,

q~ t !5e1
21ext

0
~ ẋt

01e2ex01e1!.

Here the following notation is introduced for brevity
xt

05x0(t2t), jt5j(t), andjt1T5j(t1T).
We shall first make a linear analysis of the stability

the system~1! when the modulation depth is zero (l50). In
this limiting case, Eq.~5! is reduced to the following expres
sion:

j̈1dj̇1j1b@~ j̇t2 j̇ t1T!1d~jt2jt1T!#50, ~6!

whereb5a/e1 , d5e11e2 is the damping factor for smal
oscillations of the unperturbed Toda oscillator~3! ~l50,
b50!. If the solution is taken in the formj(t)5emt, a char-
acteristic quasipolynomial may be obtained to find the ex
nentm:

m21dm111b~m1d!~e2mt2e2m~t1T!!50.

The bifurcation boundary~or region of instability! is deter-
mined from the condition Rem50 and has a form similar to
the case of ordinary negative feedback whose signal is o
proportional to a single value of the intensity at a delay
time:20

2x2111b~dC1xS!50,

dx1b~2dS1xC!50, ~7!
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wherex5Im m is the pulsation frequency at the bifurcatio
boundary,

C5cos~xt!2cos@x~t1T!#,

S5sin~xt!2sin@x~t1T!#.

These equations can easily be solved fort50. Solving
the linear system~7! for sin(xT) and cos(xT), squaring, and
summing the resultant expressions yields the following re
tion:

b5
1

2d
@12x2~22d2!1x4#,

from which it follows that

x1,2
2 5

1

2
~22d26AD !. ~8!

For instability to exist the value of the discriminantD should
be positive:

D52d2~42d2!18bd.0.

Then

b,b* 52
d

2 S 12
d2

4 D ,

whereb* is the threshold value ofb for the existence of an
Andronov–Hopf bifurcation. The corresponding value
x* 512d2/2. Since we haved!1 for the typical parameter
of a class B laser, the frequencyx of the unstable solution
near the threshold is close to the resonant relaxation
quency, which is unity in this normalization.

The bifurcation value ofT is determined by

T5
1

x H arctan
22dx@12~d21x2!#

x2@12~d21x2!#2d2 12pnJ . ~9!

The value of the arctangent is selected according to the
of the function sin(xT) which is proportional tod21x221
for x.0. The bifurcation curves determined from formul
~8! and ~9! are plotted in Fig. 1. For smalld the instability
thresholds~maxima of the curves forb5b* ! are obtained for
the following values of the delayT:

T* '2d12pS 11
d2

4 D S n1
1

2D . ~10!

FIG. 1. Boundaries of regions of instability on the (a,T) plane without
modulation (l50). Parameters:v570, y052.
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stability at the relaxation frequency are close to 2/(2n11).
Thus, for a given relation between the feedback frequen
and the relaxation frequency, auto-oscillations are excite
the depth of feedback has a negative value, greater than
magnitude of the bifurcation valueub* u. It is interesting to
note that for these values of the external modulation f
quency, period-doubling regions are observed correspon
to odd Matthieu zones.14,15 It will be shown subsequently
that for this frequency ratio the system may become dest
lized ~or stabilized—depending on the sign of the feedba
depth! and in generallÞ0. At this point, it is appropriate to
note that, as can be seen from the previous analysis and
Fig. 1, the physical mechanism responsible for the action
Pyragas feedback involves the introduction of effect
frequency-selective dissipation into the system. In order
optimize the excitation~or suppression! of relaxation oscil-
lations with the period 2p near the steady-state solution, th
delay in the feedback loop should be selected in accorda
with condition ~10!, and in particular should be of th
orderp.

We now consider the case of nonzero modulat
depthl.

It is known from the theory of linear delayed differenti
equations with periodic coefficients that the solution of E
~5! may be expressed in the form21

j5(
k

`

exp~mkmt! (
j 50

nk21

Ck jt
jwk j~ t !,

wheremk are the characteristic exponents,nk is the multi-
plicity of the exponentmk , wk j(t) areT-periodic functions,
and Ck j are constants. Assuming the nondegenerate c
(nk51) and substituting the particular solutio
jk5exp(mkmt)wk0 into formula~5!, we obtain an equation fo
eachwk0 ~we subsequently omit the subscripts!:

ẅ1~2mm1 f !ẇ1@~mm!21mm f1g#w

1b@hẇt1~mmh1q!wt#50, ~11!

where b5a$exp(2mmt)2exp(2mm(t1T))%. We can say
that Eq.~11! is an equation for the unknown functionsf (t),
g(t), h(t), q(t), and therefore the parameters of the syst
~1! if the characteristic exponentm of Eq. ~5! is fixed assum-
ing that the functionw is T-periodic. Then the opposite i
also true: Eq.~11! can be used to determinem for specified
system parameters and hence specified forms of the func
listed above, subject to the same condition for the functionw.

Using a Fourier series expansion of the functionw
(w5(k

`wke
imkt), as in the usual Floquet theory, we can o

tain the following characteristic equation for the exponentm:

det Anl50, ~12!

where

Anl52dnl~ml2 imm!21W~ l ,n21!,

dnl5H 1, n5 l ,

0, nÞ l ,

W( l ,n) are the Fourier components of the function
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1 imlh~ t !#e2 imlt,

W~ tu l !5 (
k52`

`

W~ l ,k!eimkt.

The coefficients W( l ,k) have the property W( l ,k)*
5W(2 l ,2k)um5m* .

In the absence of feedback Eq.~12! is similar to an in-
finite Hill determinant. At the same time, it is an analog o
quasipolynomial which has an infinite number of roots in t
complex plane, in the particular case of a laser without
switching examined above. Equation~12! can also be re-
duced to the Hill determinant in the general case if the te
nical delay ist50. It is known22 that in the Hill equation,
only that part of the determinant corresponding to the ma
mum harmonics contains the main information on the bif
cation boundary. On the basis of general concepts of co
nuity, we assume that this also remains valid fortÞ0. The
validity of this assumption will be confirmed subsequen
by means of a numerical simulation.

We consider the following cases of loss of stability
the T-cycle: saddle-node, period-doubling, and Androno
Hopf bifurcations.

For the case of a saddle-node bifurcation, one purely
multiplier M5e2pm intersects the unit circle at the poin
M51. Assumingm50 in order to obtain this value of th
exponential, we findb50, and Eqs.~11! and ~12! to deter-
mine the bifurcation boundary are the same as the equa
in the absence of feedback. Thus, a saddle-node bifurca
does not vary under the influence of Pyragas feedbac~a
detailed analysis of this bifurcation using a quasiconserva
Lyapunov approach was reported in Ref. 14!. For the same
reason, continuous delayed feedback cannot give rise
new saddle-node bifurcation boundary~or any other bifurca-
tion which involves the real multiplier passing through uni
such as a cycle symmetry-breaking bifurcation!. Thus, in
principle, the stabilization of an unstableT-cycle with a mul-
tiplier greater than unity cannot be achieved by continu
delayed feedback.

To determine the period-doubling bifurcation, we c
express the exponentm in the formm5z1 i /2, wherez is a
real quantity. At the bifurcation boundary we findz50, and
this can be determined using Eq.~12!, substitutingm5 i/2. It
may be postulated thatm is real and equal toz however, but
instead of aT-periodic function we take a 2T-periodic func-
tion for w: w(t12T)5w(t) andw(t1T)52w(t). Then in
Eq. ~11! we have

b5a@e2zmt1e2zm~t1T!#,

and an equation similar to~12! may be obtained for the ex
ponentm, using an expansion in the form

w5(
k

`

w2k11 expF imS k1
1

2D t G .
830 JETP 85 (4), October 1997
-

-

i-
-
ti-

al

ns
on

e

a

,

s

boundary in this sum, the new equation of the form~12!
may be converted to a reduced equation for the Floquet
ponentz:

u2~m/22 i zm!21W0u25uW1u2, ~13!

whereW0,1 are the first Fourier components of the functio

W~ t !5WS tU l 5 1

2D5zm f~ t !1g~ t !1
im

2
f ~ t !

1bFzmh~ t !1q~ t !1
im

2
h~ t !Ge2 imt/2.

The bifurcation boundary is determined from Eq.~13! where
z50.

If we sett50, this boundary can also be determined
a standard method22 from the following ordinary differential
equation, obtained from Eq.~11! with a delay, for the value
of b redetermined above:

ẅ1~ f 12ah!ẇ1~g12aq!w50. ~14!

Equation~14!, like Eq. ~11!, is an equation for the pa
rameters of the system, including the bifurcation paramet
provided that the functionw is 2T-periodic. Equation~14!
has two linearly independent solutions:w1 and e2dtw2 ,
where w1,2 are 2T-periodic functions, andd is a constant
term in the Fourier expansion of the functio
F(t)5 f (t)12ah(t), and it determines the damping rat
which is equal to the sum of the two Lyapunov expone
(k150, k252d! with opposite sign. For smalla these ex-
ponents are largest in the initial system~1! which, like any
system with a delay, has an infinite number of characteri
exponents.

By means of the change in variablesw5exp$2(1/2)
3*F(t8)dt8%h, we reduce Eq.~14! to a Hill equation:

ḧ1G~ t !h50,

where

G~ t !5@g~ t !12aq~ t !#2
1

2
@ f ~ t !12ah~ t !# t82

1

4
@ f ~ t !

12ah~ t !#2.

Introducing the new normalized timet85mt, we obtain the
equation in canonical form:

ḧ1
1

m2 Fu012(
k51

`

uk cos~kt82ek!Gh50,

whereuk are the Fourier components of the functionG(t)
andv5Au0/m'1/m is the oscillation frequency of the un
perturbed system. If we adopt the Whittaker method for
nth instability zone, the solution may be taken in the fi
approximation as

h5ent8 sinS n

2
t81s D .

Heren, the Floquet exponent for the Hill equation, has re
or purely imaginary values, ands is a constant. We shal
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FIG. 2. Bifurcation boundaries in the

e
s-

-

planes (l,m) and ~a,l! for small detun-
ings D5m22 and an additional delay
t50: a! Curve 1—boundary of virtual
Andronov–Hopf bifurcation, curve2—
boundary of period-doubling bifurcation
for a520.011. The region between thes
curves is the region of classical compre
sion; b! Curves 3 and 4—boundaries of
period-doubling bifurcation forD50.05
and Andronov–Hopf bifurcation, respec
tively, andlc is the point of a degenerate
Andronov–Hopf bifurcation.
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2T-periodicity is only satisfied at the boundary of the
zones. Note that the odd zones (n52l 11) are determined
by values of the modulation frequencym52/n close to the
frequencies 2p/T* of the positive (a,0) feedback in an
unmodulated system (l50), for which an Andronov–Hopf
bifurcation may occur. We are principally interested in t
main ~first! instability zone. The Floquet exponents may
obtained from

n252F u0

m2 1S n

2D 2G1An2
u0

m2 1
un

2

m4.

The stability condition is determined by the inequality

Re k5Re~2d/26n!,0, ~15!

which reduces to the form

d.0,

Fu02S mn

2 D 2G2

1S d

2D 2Fu01S mn

2 D 2G1S d

2D 4

.un
2 . ~16!

Expressions~15! and ~16! determine a bifurcation curve
which is almost the same as that obtained from the m
general equation~13!. However, expressions~15! and ~16!
are more convenient for the analysis and allow vario
simple conclusions to be drawn.

Let us consider the first zone (n51). The behavior of
the system near the unstable orbit at the bifurcation poin
mainly determined by the two maximum Lyapunov exp
nents which give the following damping rate:

d5e11~e212a/e1!ecI 0~r !.

Considering the feedback deptha to be a variable which is
second-order in the parametere1,2;e, we can conclude tha
near the instability threshold atm225D!1, the cycle am-
plitude r is small. Then the feedback mainly influences on
the damping rate (dD5d(a)2d(a50);a/e;e;d,
GD;a;e2!G!. The variation of the coefficientsu0 and
u1 , and also the Fourier components of the functionG ~and
therefore the exponentsn! accompanying any change ina is
also small. With these constraints on the system parame
the following relation can be obtained for the cyc
amplitude:14

r'
lm

e2~12m2!
.
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Then the period-doubling bifurcation boundaryn5d/2 deter-
mined by inequality~15! is described by

S l

3e2
D 2

5D21d2, ~17!

which is the same as that derived in Ref. 19. This curve
plotted in Figs. 2a and 2b.

For tÞ0 the bifurcation boundary can only be obtain
directly from Eq.~13! in a form similar to Eq.~17! under the
same assumptions

S l

3e2
D 2

5S D2
2a

e1
sin

mt

2 D 2

1S e11e21
2a

e1
cos

mt

2 D 2

.

~18!

It can be concluded from a comparison of expressions~18!
and~17! that if there is an additional delayt, the role of the
damping in the system is played b
e11e21(2a/e1)cos(mt/2) which depends periodically ont.

Negative feedback (a.0) increasesd, which leads to
suppression of the period-doubling bifurcation and stabili
tion of theT-cycle since, as can be seen from Eq.~17!, for
small D the instability threshold is proportional to the diss
pation in the system:

l th53e2dS 11
D2

2d2D .

The results of the calculations using the general equa
~13!, plotted in Fig. 3a, show that this conclusion, reach
near resonance (m'2) is valid over a wider region. Value
of m@2 are an exception. For instance, form.2.4 the in-
stability threshold in terms ofl is slightly reduced, i.e.,
negative feedback may lead to destabilization via a peri
doubling bifurcation.

Figure 3a also shows the bifurcation boundaries obtai
by a numerical integration of the system~1!. It can be seen
that the curves calculated analytically and numerically sh
good agreement for 1.6<m<2.4 and describe the correc
trend of the boundary shift form,1.6 andm.2.4. Thus, the
analytic results remain valid over a fairly wide range ofm.

The shift of the bifurcation boundary also depends
the delayt ~Fig. 3b! which determines the phase shift of th
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FIG. 3. Boundaries of period-doubling
bifurcation on the (l,m) plane: a—
a50 ~curves 2 and 4!, a50.01,
t/T50.1 ~curves1 and 3!; curves1
and 2 give the numerical results ob
tained by integrating system~1!, and
curves3 and4 were obtained by ana-
lytic calculations using formula~13!;
b—a51/70, t/T50, 0.1, 0.2, 0.3,
0.4, and 0.5, respectively for curves0,
1, 2, 3, 4, and5.
feedback signal pulsations relative to the laser pulses and
pt
s-

ar
y

s
d
it

fo

ing
-

ua

le
he
he

e
al
tio

a
ot

n

th
c
ie

then forl5lc we have the case of a degenerate Andronov–
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therefore influences the effective feedback de
a85a cos(mt/2) by altering the total dissipation in the sy
tem. For instance, a change int by the valueT is equivalent
to a change in the sign ofa8. It follows from Eqs.~11!–~13!
and ~18! that the values of the bifurcation parameters
2T-periodic in t. Near m'2 the increase in the instabilit
threshold is optimum fort'0.

Positive feedback (a,0), on the other hand, reduce
friction in the system and therefore lowers the perio
doubling threshold inl, even near resonance. In particular,
follows from Eq. ~17! that for m52 (D50) the period-
doubling bifurcation threshold approaches zero
a052@(e11e2)e2#/2(d50). For finite detunings from the
exact resonance condition (m52), the minimum threshold is
also determined by the constraintd50 and islc53e2uDu
~curve1 in Fig. 2a, intersection of curves3 and4 in Fig. 2b!.
At this boundary we findn50.

Note that curve1 is determined by the conditionn50
for any d and the gap between it and the period-doubl
bifurcation boundaryn5d/2 is the region of classical com
pression ~or anisotropic phase space!.23,24 The condition
n50 determines a curve which may be called the virt
Andronov–Hopf bifurcation boundary,25 since the multipli-
ers above it are real and those below it become comp
conjugate. As the modulation depth decreases to zero, t
multipliers undergo virtual motion near the boundary of t
unit curve, without intersecting it.

In the region wheren becomes purely imaginary, th
virtual Andronov–Hopf bifurcation is converted into a re
one where the positive feedback compensates for the fric
in the system. Thus, whend<0 holds forl,lc the system
is only unstable as a result of the Andronov–Hopf bifurc
tion whosea threshold in a first approximation does n
depend onl andD in this region, and is equal toaHopf'a0 .
This value is the minimuma threshold for the Andronov–
Hopf bifurcation in an unmodulated laser~Eqs. ~8! and ~9!,
a* 5e1b* !. Note that the frequency of the excited pulsatio
is also the same as the Andronov–Hopf frequency atl50.
The nature of the instability in these cases is clearly
same, and is associated with the buildup of relaxation os
lations with a particular relation between their frequenc
and the feedback and Q-switching frequencies. Ifd50 holds,
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Hopf bifurcation where this is the same as a period-doubl
bifurcation. Above this boundary, theT-periodic solution is
unstable to perturbations with the period 2T and below this
boundary it is unstable to perturbations with the Androno
Hopf frequency. Ford>0, the T cycle is unstable nea
l<lc . It is natural to assume that a bifurcation bounda
with zero damping exists far fromm'2. In this case, the
value ofaHopf determined from the conditiond50 also de-
pends onm andl and may, in principle, have positive va
ues. Moreover, because of the complexity of the depende
d(l,m) far from resonance, the conditiond50 may be mul-
tivalued in terms ofl andm.

These relationships are confirmed by numerical integ
tion of the system linearized near theT-periodic solutionx0

and are shown in Fig. 4. CurvesAB ~Figs. 4a and 4c! and
AC ~Fig. 4b! are the boundaries of a saddle-node bifurcat
which does not depend ona. Since the initial approximation
of the first harmonic of the exactT-periodic solutionx0 in
the resonance region wherem<1 holds is rather rough, this
boundary is slightly shifted relative to the real boundary d
termined by direct integration of the system~1!. CurveCD is
the boundary of a period-doubling bifurcation. Its depe
dence ona ~Fig. 4a,a.0 and Fig. 4b,a,0! andt ~Fig. 4c!
demonstrates agreement with our analytical results. W
this part of the curve touches thel50 axis, it becomes the
boundary of a virtual Andronov–Hopf bifurcation nearm'2
~sectionCD of curve3 in Fig. 4b!. Both multipliers on this
curve near the minimum are close to21. The shift of the
point of contact relative to the exact resonance (m52) is
associated with a nonzero value oft and is determined from
Eq. ~18! by D5(2a/e1)sin(mt/2). Below this, the multipli-
ers of the system are complex and the stability of theT-cycle
depends ond. For uau.ua0u, i.e., whend<0 holds near
m'2 ~curve4 in Fig. 4b!, theT-periodic solution is unstable
to the Andronov–Hopf bifurcation over a wide range ofm
bounded by the bifurcation curvesDB and FE, where d
changes sign. Foruau,ua0u, i.e., whend>0 holds near
m'2 ~curves 3 in Fig. 4b and curves2–4 in Fig. 4c!,
Andronov–Hopf instability is observed far from resonance
regions bounded by curvesBC ~Fig. 4a! andDE ~Fig. 4b!.
For instance, fora.0 this instability is found to the left of
the period-doubling bifurcation curve~Fig. 4a!. As we move
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along curveBC to point C ~period-doubling bifurcation
point!, the multipliers tend to21. As we approach pointB
~saddle-node bifurcation!, the multipliers tend to 1. Fora,0
Andronov–Hopf instability exists to the right of the perio
doubling bifurcation~Fig. 4b!.

4. CONCLUSIONS

We have examined the possibility of controlling cha
by continuous delayed feedback in class B Q-switched
sers. For this purpose we developed a theory derived from
analysis of stability in a general form. Analytic estimat
were made of the boundaries of saddle-node, per
doubling, and Andronov–Hopf bifurcations, which provid
information on instability trends in the system as the para
eters vary.

FIG. 4. Bifurcation boundaries on the (l,m) plane obtained by integrating
the linearized equation~5!: a! t/T50.1, a50 ~1!, 0.005~2!, 0.02 ~3!, and
0.04 ~4!; AB corresponds to a saddle-node bifurcation,CD is a period-
doubling bifurcation, andBC is an Andronov–Hopf bifurcation. b!
t/T50.1, a50 ~1!, 20.005~2!, 21/70 ~3!, and20.02~4!; AC—boundary
of saddle-node bifurcation,CD—period-doubling bifurcation,DE, DB,
andFE—Andronov–Hopf bifurcations. c! a51/70, t/T50 ~1!, 0.2~2!, 0.5
~3!, 0.7 ~4!, and 0.8 ~5!; AB—boundary of saddle-node bifurcation
CD—period-doubling bifurcation,BC and ED—Andronov–Hopf bifurca-
tions.
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feedback does not alter stability cycles with real multiplie
greater than unity which implies, for instance, that t
boundaries of saddle-node and symmetry-breaking bifu
tions do not depend on this feedback.

The physical mechanism for the suppression of a peri
doubling bifurcation is associated with increased total dis
pation in the system caused by the feedback effect. For
tain feedback parameters, on the other hand, the dissipa
in the system may decrease, leading to the excitation of
stability.

An analytic investigation was made of the influence
the unavoidable technical delay in a continuous feedb
system. This influence becomes particularly important
fast systems where the delay may be comparable with
even greater than the fundamental period of the oscillati
which need to be stabilized, as in a semiconductor laser,
instance~t.10 ns,T.1 ns!. In these cases, the analytic r
sults are most useful since direct numerical calculations
quire a large amount of computer time and memory. T
technical delay alters the threshold of a period-doubling
furcation with the period 2T, as was recently confirmed in
independent numerical investigations.26,27

An Andronov–Hopf bifurcation appears in the syste
when the dissipation is compensated by feedback. Near r
nance (m52) this instability is found for the same depths
feedback as without loss modulation and is mainly attrib
able to the action of the feedback, which excites relaxat
oscillations with a particular relation between their frequen
and the feedback frequencies.

Note that our analysis was made using a harmonic b
ance method to determine theT-periodic solution in its sim-
plest form where only one harmonic is taken into account
the intensity logarithm. This method gives good results
the lowest bifurcations~the first instabilities! in the modula-
tion frequency rangem>1.5 where the oscillations are sti
fairly small. Near resonance (m<1), this method is less ac
curate but still gives a very useful idea of the general tre
in the instability behavior. The analytic estimates in this
gion may be improved either by using a larger number
harmonics in the harmonic balance method or by adop
the asymptotic quasiconservative Lyapunov approach to
the T-periodic solution.14,15

The validity of the approximations made in the stage
solving the linearized system of equations to determine
bifurcation boundaries was confirmed by numerical integ
tion of Eqs.~5! and ~1!.

This work was made possible by support from the Int
national Science Foundation~Grant No. MX5000! and the
Belarus Fund for Fundamental Research~Grant No. 15006!.
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