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The helical splitting amplitudes of a high-energy photon in an external Coulomb field are found
exactly with respect toZa. Both screened and unscreened potentials are investigated. The
treatment is carried out within the semiclassical approach, which is valid for small angles between
the momenta of all photons. A new representation is used for the semiclassical electronic
Green’s function. The resulting expressions are analyzed in detail for the case of transverse
components of the momenta of the final photons that are large compared with the electron
mass. ©1997 American Institute of Physics.@S1063-7761~97!00112-1#

1. INTRODUCTION pair and a hard photon. A possible experimental schem
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The generation of a virtual electron–positron pair
known to lead to the appearance of such nonlinear quan
electrodynamic effects as Delbru¨ck scattering~coherent pho-
ton scattering1! and the splitting of a photon into two in a
external Coulomb field. Delbru¨ck scattering has been tho
oughly studied by theoretical and experimental methods~see
the recent review in Ref. 2!. At high photon energies (v@m,
wherem is the electron mass and\5c51!, the photon scat-
tering amplitude was found exactly with respect toZa ~Zueu
is the nuclear charge,a5e2/4p51/137 is the fine-structure
constant, ande is the electron charge!. The approach taken
depends significantly on the momentum trans
D5uk22k1u ~k1 is the momentum of the initial photon, an
k2 is the momentum of the final photon!. The main contri-
bution to the total Delbru¨ck scattering cross section at hig
photon energy comes from the range of small momen
transferD!v ~scattering angleu;D/v!1!. Amplitudes for
this case are found in Refs. 3–5 by summing the perturba
diagrams for the interaction with the Coulomb field in a c
tain approximation, and in Refs. 6 and 7 with the aid of t
semiclassical approach. It is found forv@m andZa;1 that
the exact result with respect toZa differs significantly from
the result obtained in lowest-order perturbation theory.

The possibility of using the semiclassical approximati
stems from the fact that, in accordance with the uncerta
principle, the characteristic limiting parameterr is of the
order of 1/D, and the angular momentuml;vr;v/D is
much greater than unity at small scattering angles. This
cumstance is utilized in Refs. 6 and 7, where the semicla
cal Green’s function is obtained from a convenient integ
representation for the exact Green’s function of the Di
equation in a Coulomb field.8 The semiclassical electroni
Green’s function for an arbitrary centrosymmetric, decre
ing potential is found in Refs. 9 and 10, making it possible
calculate the Delbru¨ck scattering amplitudes in a screen
Coulomb potential.

The splitting of a photon in the Coulomb field of
nucleus has yet to be observed, although some events
experiment performed at DESY11 were erroneously inter
preted as photon splitting. It is shown in Ref. 12 that the
events correspond to the creation of an electron–posi
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discussed in Ref. 13. Photon splitting is studied theoretic
in Refs. 14–18 in lowest-order perturbation theory with r
spect toZa. The expressions obtained in Refs. 14 and 15
very cumbersome, and it is difficult to use them for nume
cal calculations. Nevertheless, such calculations are
formed in Refs. 17 and 18. In Ref. 16 the amplitudes of
process are obtained in significantly simpler form, but w
logarithmic accuracy~using the equivalent-photon approx
mation!. The comparison made in Ref. 17 of the exact Bo
cross section with the approximate result in Ref. 16 sho
that the maximum difference reaches 20% in the ene
range under consideration. The magnitude of the Coulo
corrections in the photon splitting process is still unknow
An experiment is presently being conducted at the G. I. B
ker Nuclear Physics Institute of the Siberian Branch of
Russian Academy of Sciences to observe the splitting o
high-energy photon (v@m) in the Coulomb field of heavy
nuclei. Therefore, a theoretical investigation of this proc
would be of unquestionable interest.

In the present work the splitting amplitude of a hig
energy photon is calculated exactly with respect toZa for
small anglesf 2 and f 3 between the momentak2 and k3 of
the final photons and the momentumk1 of the initial photon.
It is in fact small angles that make the main contribution
the total cross section of the process. In addition, sm
angles and high photon energies enable one to use the s
classical approach developed in Refs. 6, 7, 9, and 10 to c
sider Delbru¨ck scattering. We discuss the case of an u
screened Coulomb potential, as well as the influence
screening. The initial expression for the photon splitting a
plitude is very complicated, and contains a thirteenfold in
gral involving the parametrization of the Green’s functio
in a Coulomb field. The semiclassical approach provide
clear picture of the process, and permits determination of
integration region corresponding to the main contribution
the amplitude. Without it, calculation of the amplitude wou
probably be impossible.

This paper is organized as follows. In Sec. 2 we tra
form the exact amplitude, which significantly simplifies fu
ther calculations. The kinematics of the process are discu
in Sec. 3. The semiclassical Green’s function is derived
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the small-angle approximation in Sec. 4. In Sec. 5 this
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Green’s function is used to calculate the photon splitt
amplitude. In Sec. 6 we examine the case of large transv
momentum components of the final photons~v2f 2@m,
v3f 3@m!. The asymptotes of the result obtained at sm
momentum transfers and atZa!1 are discussed in Secs.
and 8. In the concluding section the exact Born cross s
tions are compared with the cross sections obtained using
equivalent-photon approximation~the Weizsa¨cker–Williams
approximation!.

2. TRANSFORMATION OF THE AMPLITUDE OF THE
PROCESS

According to the Feynman rules, in the Furry repres
tation the photon splitting amplitude has the form

M5 ie3E d4x Tr^xuê1exp~2 ik1x!G ê2*

3exp~ ik2x!G ê3* exp~ ik3x!G ux&1$k2
m↔k3

m ,e2
m↔e3

m%.

~1!

Heree1
m ande2,3

m are the polarization vectors of the initial an
final photons,ê5emgm52e•g, the gm are Dirac matrices,
G 51/(P̂ 2m1 i0), andP m5 i ]m1gm0(Za/r ). Each matrix
element of the operatorG is the Green’s function of the
Dirac equation for an electron in a Coulomb fiel
G(x,x8)5^xuG ux8&.

It is convenient to rewrite~1! in a form that contains
only the Green’s functions of the squared Dirac equation

D~x,x8!5^xuD ux8&5^xu1/~P̂ 22m21 i0!ux8&.

For this purpose, in~1! we represent the left-hand operatorG

in the formG 5D(P̂ 1m) and use the commutation relatio

~P̂ 1m!ê exp~ ikx!5exp~ ikx!@2êG 211êk̂22e–p#,

p52 i¹.

We now apply the same transformation to the right-ha
operatorG in ~1! and take half the sum of the resultin
expressions. Taking into account that

E dx Tr^xuA1A2ux&5E dx Tr^xuA2A1ux&,

for the arbitrary operatorsA1 andA2 , we obtain

M5 ie3E d4x TrH Fe1•e2* exp@ i ~k22k1!x#

3^xuD exp~ ik3x!~ ê3* k̂322e3* •p!D ux&

1e1•e3* exp@ i ~k32k1!x#^xuD exp~ ik2x!~ ê2* k̂2

22e2* •p!D ux&1e2* •e3* exp@2 i ~k21k3!x#

3^xuD exp~2 ik1x!~2ê1k̂122e1•p!D ux&G
1

1

2
@^xuexp~2 ik1x!~2ê1k̂122e1•p!D exp~ ik2x!
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Thus, representation~2! is a sum of contributions containin
two and three Green’s functions:M5M (2)1M (3). The am-
plitude written in form~1! contains terms of different order
of magnitude. This makes it necessary to allow for cance
tion of higher-order terms. The convenience of Eq.~2! stems
from the fact that after the trace of the matrix is taken, t
expression contains only terms of the required order.

Going from a time-dependent Green’s function to
energy-dependent Green’s function in~2!, taking the integral
over time, and omitting the standard fact
2pd(v12v22v3), for the contribution containing three
Green’s functions we obtain

M ~3!5
i

2
e3E d«

2p E dr1 dr2 dr3 exp@ i ~k1•r12k2•r2

2k3•r3!#Tr$@~2ê1k̂122e1•p!D~r1 ,r2u«2v2!#

3@~ ê2* k̂222e2* •p!D~r2 ,r3u«!#@~ ê3* k̂3

22e3* •p!D~r3 ,r1u«1v3!#%1~k2
m↔k3

m ,e2↔e3!.

~3!

Herep52 i¹ differentiates the corresponding Green’s fun
tion D of the squared Dirac equation with respect to the fi
argument.

We henceforth call the Green’s functionD(r1 ,r2u«)
with positive energy« the electron Green’s function, and th
function with negative energy the positron Green’s functio
Let the initial photon propagate along thez axis. Then, in
accordance with the semiclassical approach develope
Refs. 6, 7, 9, and 10, at high energies the main contribu
to the amplitude is made by the region of integration over
variableszi such thatz8,z for the electron Green’s function
D(r ,r 8u«) and z8.z for the positron Green’s function. In
terms of noncovariant perturbation theory, this correspo
to the fact that over the indicated integration region, the d
ference between the energyEn of any intermediate state an
the energy of the initial stateE05v1 is small compared to
E0 . In all remaining cases, at least one of the intermed
states hasuEn2E0u;E0 , and the corresponding contributio
to the amplitude is suppressed.

In addition, there is another constraint on the integrat
region making the main contribution to the amplitude. It
associated with the properties of the semiclassical Gre
function, and has the form

z1,z2 ,z3 , z1,0, max~z2 ,z3!.0.

All of the indicated inequalities make it possible to re
resent the main contribution toM (3) in the form of the dia-
grams shown in Fig. 1. The expressions for the vertices
obvious from Eq.~3!. In Fig. 1 the electron Green’s func
tions are represented by arrows running from left to rig
and the positron Green’s functions are represented by arr
running from right to left. All vertices in these diagrams a
spatially ordered. Using this figure, we can easily write t
limits for integration over energy and coordinates.
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As a result, diagrams a and b in Fig. 1 correspond to
following picture. Atr1 a photon with momentumk1 creates
a pair of virtual particles, which transforms into a phot
with momentumk2 at r2 . Between these two events, a ph
ton with momentumk3 is emitted atr3 by the electron~a! or
positron~b!.

Similarly, the expression for the contributionM (2),
which contains two Green’s functions, has the form

M ~2!5 ie3E d«

2p E dr1 dr2 Tr$exp@ i ~k1•r12k2•r2

2k3•r2!#e2* •e3* @~2ê1k̂122e1•p!

3D~r1 ,r2u«2v1!D~r2 ,r1u«!#

1@exp@ i ~k1•r12k2•r22k3•r1!#e1•e3*

3D~r1 ,r2u«2v2!@~ ê2* k̂222e2* •p!D~r2 ,r1u«!#

1~k2
m↔k3

m ,e2↔e3!#%. ~4!

The diagrams corresponding to the representation~4! of the
amplitude are shown in Fig. 2.

3. KINEMATICS OF THE PROCESS

The lifetime of a virtual electron–positron pa
~the length of the loop! can be estimated from the unce
tainty relation t;ur22r1u;v1 /(m21D̃2), where
D̃5max(uk2'u,uk3'u)!v1 , andk2' andk3' are the compo-
nents of the momenta of the final photons perpendicula
k1 . The characteristic transverse distance between the vi
particles can be estimated as (m21D̃2)21/2. It is clear that
the length of the electron–positron loop is much greater t
its transverse dimensions. The characteristic impact par

FIG. 1. Perturbation diagrams corresponding toM (3) @Eq. ~3!#.

FIG. 2. Perturbation diagrams corresponding toM (2) @Eq. ~4!#.
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D5k21k32k1 . For smallk2' andk3' ( f 2,3!1) we have

D25~k2'1k3'!21
1

4 S k2'
2

v2
1

k3'
2

v3
D 2

. ~5!

The characteristic orbital angular momentuml;v/D is
much greater than unity, and the semiclassical approxima
applies.

Let us consider a screened Coulomb potential. In
Thomas–Fermi model, the screening radius
r c;(ma)21Z21/3. If R!1/D!r c ~R is the radius of the
nucleus!, screening is negligible, and the amplitude is t
same as the amplitude in a Coulomb field. If 1/D;r c ,
screening must be taken into account. It is clear that imp
parametersr@r c do not contribute to the total cross sectio
Therefore, we henceforth consider only the range of mom
tum transfer which corresponds to impact parametersr
<r c . If uDiu5(k2'

2 /v21k3'
2 /v3)/2!r c

21 , it follows from
Eq. ~5! thatr<r c only whenuD'u5uk2'1k3'u>r c

21 . Thus,
the main contribution to the cross section comes from
range of transverse momentaD' bounded from below. In
this range uD'u@uDiu, i.e., D'D' . In addition, when
v/(m21D̃2)@r c , the angles between the vectorsk1,2,3 and
r1,2,3 are either small or close top, uzi u@r c , and the appro-
priate expansion can be used.

According to Furry’s theorem, an odd number of quan
are exchanged with the source of the external field dur
photon splitting, i.e., the amplitude is odd inZa. The range
of very small momentum transferD<r c

21 is significant only
in lowest-order ~linear with respect toZa! perturbation
theory, owing to the singular behavior of the Coulomb p
tential in the momentum representation (24pZa/D2). In
this order we use the equivalent-photon approximation,
the corresponding large logarithm appears in the cross
tion integrated over the angles of one of the final photon16

In higher-order perturbation theory with respect toZa,
the integral must be taken over all the momenta correspo
ing to the external field under the condition that the sum
these momenta equalsD. Therefore, even ifD;r c

21 , each of
the momenta of the external field is not small, and screen
can be neglected. In lowest-order perturbation theory scre
ing can be taken into account by multiplying the amplitu
by 12F(D2), whereF(D2) is the form factor of the atomic
electrons. Thus, to find the photon splitting amplitude in
screened Coulomb potential, it is sufficient to solve the pr
lem for the unscreened Coulomb potential.

4. GREEN’S FUNCTION

We now proceed to a treatment of the Green’s funct
D(r ,r 8u«) appearing in~3! and ~4!. A representation of this
function for an arbitrary centrosymmetric, decreasing pot
tial was found using the semiclassical approximation in Re
9 and 10. In the case of a Coulomb potential and a sm
angleu between the vectorsr and2r 8, from Eq.~14! in Ref.
9 we obtain

1051Li et al.
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4pkrr 8

3E
0

`

dl l FJ0~ lu!1 iZa
a•~n1n8!

lu
J1~ lu!G

3expF i
l 2~r 1r 8!

2krr 8 G S 4k2rr 8

l 2 D iZal

, ~6!

where a5g0g, k25«22m2, l5«/k, n5r /r , and
n85r 8/r 8. Taking into account that

E dl lJ0~ lu!g~ l 2!5
1

2p E dq exp~ iq•u!g~q2!,

u

u
J1~ lu!52

1

l

]

]u
J0~ lu!,

where g( l 2) is an arbitrary function andq is a two-
dimensional vector, we can rewrite Eq.~6! in the form

D~r ,r 8u«!5
i exp@ ik~r 1r 8!#

8p2krr 8
E dq

3S 11Za
a•q

q2 DexpF i
q2~r 1r 8!

2krr 8

1 iq•~u1u8!G S 4k2rr 8

q2 D iZal

. ~7!

Here u5r' /r , and u85r'8 /r 8. Equation~7! contains only
elementary functions, and the anglesu andu8 appear only in
the factor exp$iq•(u1u8)%. Therefore, the representation~7!
for the Green’s function is very convenient for calculation

If the angle betweenr andr 8 is small, then in a Coulomb
field, from Eq.~15! in Ref. 9 we find

D~r ,r 8u«!52
exp~ ikur2r 8u!

4pur2r 8u S r

r 8D
iZal sgn~r 2r 8!

. ~8!

It is clear that the Green’s function in this case is dist
guished from the free function only by the phase factor. I
easy to prove that all phase factors of the formr 6 iZa in the
representations~7! and ~8! of the Green’s functions cance
when these functions are plugged into the expressions
amplitudes~3! and ~4!. We also note thatk can be replaced
by u«u2m2/(2u«u) in ~7! and ~8! and that to within the re-
quired accuracy, the correctionm2/(2u«u) is significant only
in the phase factor exp@ik(r1r8)#.

5. CALCULATION OF THE AMPLITUDES M „3… AND M „2…

We now move on to the calculation of diagrams conta
ing three Green’s functions~see Fig. 1!. It is clear that the
contribution of diagramb can be obtained from the contr
bution of diagrama by making the replacementZa→2Za
and changing the overall sign. This ensures the applicab
of Furry’s theorem~the sum of the contributions is odd wit
respect toZa!. Therefore, the sum of the contributions ofa
andb in Fig. 1 can be obtained from the contribution ofa by
isolating the part that is odd with respect toZa and multi-
plying by 2.
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spect toz3 is divided in two:z3.0 ~photon ahead with mo-
mentumk3! andz3,0 ~photon behind!. In the former inter-
val the angles betweenr2 , r3 , and 2r1 are small. In the
latter interval the angles betweenr1 , r3 , and2r2 are small.
We useM1

(3) to denote the contribution of the former interva
to diagrama andM2

(3) to denote the contribution of the latte
interval. We introduce the vectorsf25k2' /v2 and
f35k3' /v3 (uf2,3u!1), as well as ui5r i' /r i5ni'

( i 51,2,3). When the small magnitude of the angles is tak
into account, we havedr i5r i

2dri dui .
It is convenient to perform the calculation for the helic

amplitudesMl1l2l3
(k1 ,k2 ,k3), for which it is sufficient to

find three amplitudes: M 122(k1 ,k2 ,k3),
M 111(k1 ,k2 ,k3), and M 112(k1 ,k2 ,k3). All remaining
amplitudes can be obtained by replacement of variables.

Note that in the approximation under consideratio
there is no need to allow for corrections to the transve
parts of the polarization vectorse2,3, and that the longitudinal
parts ofe2,3 can be expressed in terms of the transverse p
using the relatione•k50: (e2,3)52e2,3•f2,3. Thus, we can
assume that the transverse part of the polarization vecto
the final photon with given helicity is equal to the polariz
tion vector of a photon with the same helicity propagati
along thez axis. Henceforth we use the notatione for this
polarization vector in the case of positive helicity; the pola
ization vector with negative helicity will then bee* . Note
that since the arrangement of the vertices in the diagram
spatially ordered in our approach, the calculation ofM 112

requires finding twoM (3) amplitudes, namely,M 112
(3) and

M 121
(3) .

We substitute~7! and~8! into ~3! and perform the obvi-
ous expansion at small angles, taking account of terms q
dratic in f i andui . We introduce the notationk25v22« and
k35v31« and transform to variables

q2→k2q2 , q3→k3q3 , R15
v1

k2k3
r 1 ,

R25
v2

«k2
r 2 , R35

v2

«k3
r 3 .

After simple integration overui we obtain

M1
~3!5

e3

32p3v1v2v3
E

0

v2
«k2k3d«E

0

`

dR1E
0

`

dR2E
0

L dR3

R1R

3E E dq2 dq3S q2

q3
D 2iZa

exp~ iF!T, ~9!

whereL5R2v3k2 /v2k3 ,

T5
1

4
TrH S 11

Za a•q3

k3q3
2 D S 2

R1
e1•Q2ê1k̂1D

3S 12
Za a•q2

k2q2
2 D F S 2

R
e2* •~Q1«R3f23!2ê2* k̂2D

3S 2

R
e3* •~Q1«R2f23!2ê3* k̂3D2

4i

R
e2* •e3* G J , ~10!

1052Li et al.



F5
1

1
1 Q2

1
«2R2R3f23

2

2
~k2q22k3q3!•D

r

h

s

whereL15R1v3k2 /v1«, r 5R11R3 ,
F S R R1
D 2 2R v1

2
v3k2R22v2k3R3

v1R
Q•f232

m2

2
~R11R!G ,

R5R22R3 , f235f22f3 , Q5q21q3 ,

D5v2f21v3f3 .

For subsequent calculations it is convenient to transfo
the functionT in ~10! so that it does not containZa. For this
purpose we utilize the identities

Za
q2

q2
2 S q2

q3
D 2iZa

52
i

2

]

]q2
S q2

q3
D 2iZa

,

Za
q3

q3
2 S q2

q3
D 2iZa

5
i

2

]

]q3
S q2

q3
D 2iZa

and integrate by parts overq2 andq3 in ~9!. Thereupon terms
appear that contain the variableR1 in the factors 1/R1 and
1/R1

2 and do not depend onR1. Calculating the trace of eac
matrix and integrating the terms containing 1/R1

2 by parts
over R1 , for the various polarizations we find

T1225
8

R1R2 ~e•Q!~e•Q2!~e•Q3!,

T11152
4

R1R2 S k2

k3
1

k3

k2
D ~e•Q!~e* •Q2!~e* •Q3!

2
v1

«R3 e* •S v2

k2
Q3

2Q22
v3

k3
Q2

2Q3D1
2iv1

2

k2k3R2 e*

3~Q21Q3!1
m2v1

«R
e* •S v2

k2
Q22

v3

k3
Q3D ,

~11!

T11252
4

R1R2 S k2

«
1

«

k2
D ~e•Q!~e•Q2!~e* •Q3!

1
v2v3

«k3R1R2 ~Q2
21Q3

2!~e•Q!2
v1v2

k2k3R

3S Q3
2

R2 2m2D ~e•Q2!1
4i

R1R S v1v2

k2k3
22D ~e•Q!

1
2iv1v2

k2k3R2 e•~Q21Q3!,

where Q25Q1«R2f23 and Q35Q1«R3f23. The function
T121 can be obtained fromT112 using the replacement
v2↔v3 , k2↔k3 , Q2↔Q3 , and«→2«.

Similarly, for M2
(3) we obtain

M2
~3!5

e3

32p3v1v2v3
E

0

v2
«k2k3d«E

0

`

dR1E
0

`

dR2

3E
0

L1 dR3

rR2
E E dq2 dq3S q2

q3
D 2iZa

exp~ i F̃! T̃,

~12!

1053 JETP 85 (6), December 1997
m

F̃5F S 1

r
1

1

R2
D Q2

2
2

k3
2R1R3f 3

2

2r
2

~k2q22«q3!D

v2
G

1
v3k2R12«v1R3

v2r
Q•f32

m2

2
~R21r !, ~13!

and the functionT̃ for different polarizations is

T̃12252
8

r 2R2
~e•Q!~e•P1!~e•P3!; ~14!

T̃1125
4

r 2R2
S k2

«
1

«

k2
D ~e* •Q!~e•P1!~e•P3!

1
v2

k3r 3 eS v1

k2
P3

2
•P11

v3

«
P1

2
•P3D2

2iv2
2

k2«r 2 e

3~P11P3!2
m2v2

k3r
e•S v1

k2
P11

v3

«
P3D ,

T̃1115
4

r 2R2
S k2

k3
1

k3

k2
D ~e* •Q!~e* •P1!~e•P3!

1
v1v3

«k3r 2R2
~P1

21P3
2!~e* •Q!1

v1v2

k2«r S P3
2

r 2

2m2D ~e* •P1!2
4i

rR2
S v1v2

k2«
22D ~e* •Q!

2
2iv1v2

k2«r 2 e* •~P11P3!,

where P15Q1k3R1f3 and P35Q2k3R3f3 . The function
T̃121 can be obtained fromT̃111 by making the replace-
mentsv1↔v3 , k2↔2«, P1↔P3 , and e↔e* . Note that
the integrand for the helical amplitudesM2

(3) in ~12! and~14!
can be obtained from the integrand forM1

(3) in ~9! and ~11!
with the replacements

q2,3→2q2,3, v1↔v2 , v3→2v3 , k3↔«,

R1↔R2 , R3→2R3 , f23↔2f3 , f2→2f2 . ~15!

Here T122→ T̃122 , T121→ T̃121 , T111→ T̃112

3(e↔e* ), andT112→ T̃111(e↔e* ).
Similarly, for M (2) we find

M 122
~2! 50, M 111

~2! 5e* •~M121M13!,

M 112
~2! 5e•~M121M23!, M 121

~2! 5e•~M131M23!,
~16!

M2352
ie3

16p3 E
2v3

v2
d«E

0

` dR1

R1
2 E

0

` dR2

R2
2 FR1

1S k22k3

v1
D 2

R2G E E dq2 dq3 QS q2

q3
D 2iZa

3expH i F S 1

R1
1

1

R2
D Q2

2
1

v2v3k2k3

2v1
2 f 23

2 R2

2
~k2q22k3q3!•D

v1
2

m2

2
~R11R2!G J ,
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d«E` dR1 E` dR2
R

in

e
n
on
th

tly
tu
s
ti

-

-
m

he
e

Moreover, terms appear outside the integral when
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s,

i.
13 16p3
0 0 R1

2
0 R2

2 F 2

1S k22«

v2
D 2

R1G E E dq2 dq3 QS q2

q3
D 2iZa

3expH i F S 1

R1
1

1

R2
D Q2

2
2

v1v3«k2

2v2
2 f 3

2R1

2
~k2q22«q3!•D

v2
2

m2

2
~R11R2!G J , ~17!

and M12 can be obtained fromM13 with the replacements
v2↔v3 and f3↔f2 . As we see, a large number of terms
the sumM (2)1M (3) cancel.

In the general case, further transformation of the expr
sions leads to quadruple integrals of elementary functio
and this problem requires relatively detailed considerati
Below we confine ourselves to a detailed discussion of
caseuk2'u5uv2f2u@m, uk3'u5uv3f3u@m, for which the ex-
pressions for the amplitudes can be simplified significan
This range of parameters corresponds to a more vir
electron–positron pair in comparison to the electron ma
which can be neglected in this case. We note that the rela
between the momentum transferD5uDu and the electron
massm can be arbitrary here, sinceD determines the char
acteristic impact parameterr;1/D, rather than the virtuality
of the pair.

6. ZERO-MASS LIMIT

It is not difficult to see that settingm50 in these expres
sions leads to logarithmic divergences in individual ter
~i.e., to the appearance of lnm for a finite mass!. Such loga-
rithms appear, for example, inM1

(3) when the terms inT not
containing the multiplier 1/R1 are integrated overR1 @see
~11!#. The final result properly contains no logarithms of t
mass. However, the cancellation of these logarithms betw
the individual contributions is quite nontrivial.

When the integral overR1 is taken in Eq. ~9! for
T5T122 , no logarithms appear, andM 122

(2) 50. Formulas
~11! for T111 andT112 contain terms proportional toQ2

2.
In these terms it is convenient to pass from the variablesR2

andR3 to R2 andy5R3 /R and to integrate by parts overy.
In the terms containingQ3

2 we go over to the variablesR3

andy5R3 /R and also integrate by parts overy. As a result,
in the double integral overR2 andR3, all terms containing
the logarithm of the mass cancel, and we can setm50.
ThereuponT111 andT112 become

T11152
4

R1R2 S k2

k3
1

k3

k2
D ~e•Q!~e* •Q2!~e* •Q3!,

T11252
4

R1R2 S k2

«
1

«

k2
D ~e•Q!

3@~e•Q2!~e* •Q3!2 iR#. ~18!
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y5v3k2 /v1« ~upper limit! andy50 ~lower limit!. Similar
transformations must be performed forM2

(3) . Accordingly,
T̃111 and T̃112 become

T̃1125
4

r 2R2
S k2

«
1

«

k2
D ~e* •Q!~e•P1!~e•P3!,

T̃1115
4

r 2R2
S k2

k3
1

k3

k2
D ~e* •Q!@~e* •P1!~e•P3!2 iR#.

~19!

At the lower limit, terms outside the integral cancel
the sum ofM1

(3) andM2
(3) . Recall that to calculateM (3), we

must find the sumM1
(3)1(k2↔k3 ,e2↔e3), isolate the part

that is odd with respect toZa, and multiply by 2. The con-
tributions of terms outside the integral fromM1

(3) at the up-
per limit for M 111 then cancel, while they yield a finite
expression whenm50 in the sum withe•M23 for M 112

andM 121 .
To cancel out the contributions that are singular inm,

we must take advantage of the antisymmetry of the in
grands under the replacements«→v22v32« and
q2↔2q3 . The contributions of terms outside the integr
from M2

(3) at the upper limit vanish forM 112 , but they
yield an expression that is finite atm50 in the sums with
e* •M13 and e•M13 for M 111 and M 121 , respectively.
Similarly, the amplitudese* •M12 ande•M12 cancel the sin-
gular contributions fromM2

(3)(k2↔k3) for M 111 and
M 112 . As for M 121 , the integrated terms from
M2

(3)(k2↔k3) vanish at the upper limit.
As a result, the sum of the terms outside the integral a

M (2) yield additional contributions to the helical amplitude
which we represent in the form

dM52
e3

4p3 E
0

` dR

R E E dq2 dq3

Q2

3F S q2

q3
D 2iZa

2S q3

q2
D 2iZaGF. ~20!

The functionF for the various helicities is

F12250, F1215~e•Q!F E
2v3

v2
d«

k2k3
2

v1
2«

exp~ ic1!

2E
0

v2
d«

k2«2

v2
2k3

exp~ ic2!G ,

F1115~e* •Q!E
0

v2
d«

«k2
2

v2
2k3

exp~ ic2!

1~v2↔v3 ,f2↔f3!, ~21!

F1125F121~v2↔v3 ,f2↔f3!,

c15
Q2

2R
1

v2v3k2k3

2v1
2 f 23

2 R2
~k2q22k3q3!•D

v1
.

The phasec2 can be obtained fromc1 by replacement~15!.
To obtain Eq.~20! we took the integral over one of the radi
Note that the singularity of the integrand at«50 in ~21! is

1054Li et al.



fictitious and that it cancels out in the complete expression
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e* •f2

2
«k31k2

2

1
«22k2k3

.
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for the amplitude of the process. Therefore, it does not n
to be evaluated.

We substitute Eqs.~18! and ~19! into ~9! and ~12!, re-
spectively, setm50 in the phasesF and F̃, and take the
elementary integral overR1 in ~9! and overR2 in ~12!. Then
we pass from the variablesq2 and q3 to the variables
Q5q21q3 andq5q22q3 . As a result, the integral overq
has the form

J5E dq

Q2 S uq1Qu
uq2Qu D

2iZa

expS 2
i

2
q•DD . ~22!

We make the replacementq→uQuq and representQ andD in
the formQ5uQul1 , D5uDul2 . It is not difficult to see that
J is a function ofS5l1•l2 and uQuuDu.

Note that in the two-dimensional case the for
P5« i j l1

i l2
j is also invariant under rotation; however, ev

powers ofP can be expressed in terms ofS (P2512S2),
and odd powers ofP change sign upon reflection relative
an arbitrary axis.

At the same time, the integralJ is invariant under reflec-
tion. This becomes obvious, if the vectorq is reflected si-
multaneously withl1 and l2 . Thus,J does not vary unde
the replacementQ↔D. After this replacement,J takes the
form

J5E dq

D2 S uq1Du
uq2Du D

2iZa

expS 2
i

2
q•QD . ~23!

Using this representation, we can easily take the integ
overQ and over all radii. Summing all the contributions, w
ultimately obtain

M5
8e3

p2v1v2v3D2 E dq~T•“q Im!S uq1Du
uq2Du D

2iZa

,

~24!

T1225v3eE
0

v2
d«

k2
2

e* •a F ~e•b!k3

v1D1
2

~e•c!«

v2D3
G

1S v2↔v3

f2↔f3
D ,

T1115v3E
0

v2
d« k3Fe*

«

v2D3
S k32k2

2
1

e* •f3

e* •a

3~k2
21k3

2! D2e
~e* •b!~k2

21k3
2!

2~e•a!v1D1
G

1S v2↔v3

f2↔f3
D ,

T1125v3E
0

v2
d« k2Fe

k3

v1D1
S k22«

2
2

e•f23

e•a

3~k2
21«2! D1e*

~e•c!~k2
21«2!

2~e* •a!v2D3
G

1v2eE
2v3

0

d« k3Fk3~k2
21«2!

e* •b S e* •f23

v1D1
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It is clear thatT121 can be obtained fromT112 via the

replacementv2↔v3 , f2↔f3 . In Eq. ~24! we introduced the
notation

D15
v2k3a22v3k2b2

v1«
2 i0,

D25
v2k3 c̃22v1«b2

v3k2
, D35

v1«a21v3k2c2

v2k3
,

a5q2D12k2f2 , b5q1D22k3f3 ,

c5q1D22«f23, c̃5q2D12«f23. ~25!

In deriving ~24! we used the identity

Q expS 2
i

2
q•QD52i“q expS 2

i

2
q•QD

and integrated by parts overq. Note that in~24! the vectors
e ande* turned out to be in the denominators by virtue of t
relation 2(e•a)(e* •a)5a2.

7. ASYMPTOTE FOR SMALL D

In the small-angle approximation (uf2u,uf3u!1) the cross
section of the photon splitting process has the form

ds5
v1

2

28p5 uM u2x~12x!dx df2 df3 , ~26!

wherex5v2 /v1 , andv35v1(12x). We introduce the no-
tationr5(v2f22v3f3)/2. In the variablesr andD the cross
section of the process is

ds5uM u2
dD dr dx

28p5v1
2x~12x!

. ~27!

Let us consider the asymptote of the expressions
tained foruDu!uru. To obtain it we multiplyT in ~24! by

15q~q0
22q2!1q~q22q0

2!,

whereuDu!q0!uru. Then for the term in~24! which is pro-
portional to q(q0

22q2) we set q50 and D50 in T and
integrate by parts overq. Using the relation

“qq~q0
22q2!522qd~q0

22q2!,

we can easily calculate the integral overq, so that for
uqu5q0@uDu we have

ImS uq1Du
uq2Du D

2iZa

'4Za
q•D

q2 .

As a result, atuqu,q0 the contribution proportional toZa
does not depend onq0 , and the next terms with respect t
Za are small with respect touDu/q0 .

For the term proportional toq(q22q0
2) we have

“q ImS uq1Du
uq2Du D

2iZa

'4Za
q2D22q~q•D!

uqu4
.
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Setting D50 in T, we first calculate the integral over the
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angles of the vectorq and then over its magnitude. As
result, the leading term with respect toq0 /uru does not de-
pend onq0, and is proportional toZa. We take the sum of
the contributions of the two regions forq and calculate the
integral over the energy«. We ultimately obtain

M 1225
4iN~e•r!3

r4 ~D3r!z , N5
4Zae3v2v3

pv1D2r2 ,

M 1115NFe* •D12~e•D!
~e* •r!2

r2

3S 11
v22v3

v1
ln

v3

v2
1

v2
21v3

2

2v1
2

3S ln2
v3

v2
1p2D D G ,

M 1125NFe•D12~e* •D!
~e•r!2

r2

3S 11
v11v3

v2
S ln

v3

v1
1 ip D

1
v1

21v3
2

2v2
2 S ln2

v3

v1
12ip ln

v3

v1
D D G , ~28!

whereAz is the component ofA alongk1 . Substituting~28!
into ~27! and taking the elementary integrals over the ang
of the vectorsD andr, we arrive at the expression

ds5
4Z2a5

p2

dr2 dD2 dx

r4D2 g~x!, ~29!

where the functionsg(x) for the various polarizations hav
the form

g122~x!5x~12x!,

g111~x!5
1

2
x~12x!F11S 11~2x21!ln

12x

x

1
x21~12x!2

2 S ln2
12x

x
1p2D D 2G ,

g112~x!5
1

2
x~12x!F11U11S 2

x
21D

3~ ln~12x!1 ip!1
11~12x!2

2x2 ~ ln2~12x!

12ip ln~12x!!U2G , ~30!

g121~x!5g112~12x!.

Equations~29! and ~30! are consistent with the correspon
ing results in Ref. 16, which were obtained using t
equivalent-photon approximation. However, this meth
does not enable us to obtain the amplitudes~28! themselves.
A large logarithm appears in the cross section as a resu
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the integration of~29! over D2 from Dmin
2 to r2, where

Dmin;rc
21 for a screened Coulomb potential andDmin;r2/v1

for an unscreened Coulomb potential.
It is of interest to compare the contributions of the va

ous helical amplitudes to the cross section of the proc
whenD→0. Figure 3 shows the functiong(x) for the vari-
ous helical states, along with the function

ḡ~x!5g122~x!1g111~x!1g112~x!1g121~x!,
~31!

which results from the summation over the polarizations
the final photons. It is clear thatḡ (x) varies weakly over a
broad range ofx.

When D→0, the Coulomb corrections to the photo
splitting amplitude are small compared to the Born contrib
tion ~28!. They become significant whenD;r, and a sepa-
rate detailed analysis of their role is required.

8. THE BORN APPROXIMATION

As stated earlier, the photon splitting amplitude in Re
14 and 15 in the lowest Born approximation for arbitra
energy and momentum transfer is very complicated for
plications. It is therefore of interest to find the term in th
expansion of the amplitude~24! that is linear inZa. For this
purpose, in~24! we make the substitution

~e•“q!ImS uq1Du
uq2Du D

2iZa

→ZaF 1

e* •~q1D!
2

1

e* •~q2D!G
and write the functionsD1,2,3 from ~25! in the form

D15S q1
k22k3

v1
DD 2

2
4v2v3k2k3

v1
2 f23

2 2 i0,

D25S q2
k31«

v3
DD 2

2
4v1v2k3«

v3
2 f2

2 ,

D35S q1
k22«

v2
DD 2

1
4v1v3k2«

v2
2 f3

2 . ~32!

In each term we shift the integration variableq so that the
functionsD1,2,3 cease to depend on the anglef of the vector
q. For example, in the terms containingD1 we make the
substitution

FIG. 3. The functionsg(x) ~Eq. ~30!! for various polarizations, andḡ (x) of
Eq. ~31!.
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As a result, passing to the variablez5exp(if), we easily take
the integral overz using residues. Calculating the elementa
integrals overuqu and over«, for the Born amplitudes we
obtain

M 1225
2iZae3~ f23f3!z

pD2~e* •f2!~e* •f3!~e* •f23!
,

M 1115
2~Za!e3v1

pD2~e•f23!
2v2v3

3H ~e•D!F11
e•f21e•f3

e•f23
ln

a2

a3

1
~e•f2!21~e•f3!2

~e•f23!
2 S p2

6
1

1

2
ln2

a2

a3

1Li2~12a2!1Li2~12a3! D G
1

1

e•D Fv3
2~e•f3!2

a2

12a2
S 11

a2 ln a2

12a2
D

1v2
2~e•f2!2

a3

12a3
S 11

a3 ln a3

12a3
D G

1
2~e•f2!~e•f3!

e•f23
S v3

a2 ln a2

12a2
2v2

a3 ln a3

12a3
D J ,

M 1125
2~Za!e3v2

pD2~e* •f3!2v1v3

3H ~e* •D!F12
~e* •f2!1~e* •f23!

~e* •f3!
ln

2a1

a2

1
~e* •f2!21~e* •f23!

2

~e* •f3!2 S p2

6
1

1

2
ln2

2a1

a2

1Li2~12a2!1Li2~11a1! D G
1

1

e* •D Fv3
2~e* •f23!

2
a2

12a2
S 11

a2 ln a2

12a2
D

2v1
2~e* •f2!2

a1

11a1
S 12

a1 ln~2a1!

11a1
D G

1
2~e* •f2!~e* •f23!

~e* •f3! Fv1

a1 ln~2a1!

11a1

2v3

a2 ln a2

12a2
G J , ~33!

where

a15
D2

v2v3f 23
2 , a25

D2

v1v2f 2
2 ,

a35
D2

v1v3f 3
2 , Li2~x!52E

0

x dt

t
ln~12t !.
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stood as ln(2a11i0)5ln a11ip. In addition,

Li 2~11a1!5Li2~11a12 i0!

5
p2

6
2 ln~11a1!@ ln a11 ip#2Li2~2a1!.

The result~33! was obtained under the conditionuD'u@uDiu.
It can be shown that it also remains true in the case
uD'u;uDiu, if the expression~5! for D2 is used in Eqs.~33!.
Actually, in ~33! the difference betweenD2 and D'

2 is sig-
nificant only in the outermost factor 1/D2. For a screened
Coulomb potential the amplitudes~33! should be multiplied
by the atomic form factor 12F(D2). In the case of the Mo-
lière potential19 this factor is

12F~D2!5D2(
i 51

3
a i

D21b i
2 , ~34!

where

a150.1, a250.55, a350.35, b i5b0bi ,

b156, b251.2, b350.3, b05mZ1/3/121. ~35!

Recall that Eq.~33! holds for uk2'u,uk3'u@m.

9. CROSS SECTION OF THE PROCESS

It was proposed in Ref. 13 that to overcome the diffic
ties associated with the background in observing pho
splitting, events must be recorded withuf2,3u> f 0 , where the
angle f 0!1 is determined by the experimental condition
Let us consider the cross section of the process integr
over f3 in the regionuf3u. f 0 . It is interesting to compare the
result for this cross section (ds/dx df2) obtained from~33!
and ~26! with the cross section found using the equivale
photon approximation (dsapprox/dx df2). The large loga-
rithm corresponds to the contribution of the regio
D!r5uv2f22v3f3)/2u, wheref 3'x f2 /(12x). Taking the
integral overD2 in ~29! from Dmin

2 to Deff
2 , where~see Ref.

16!

Dmin
2 5D i

25@v1f 2
2x/2~12x!#2, Deff

2 5r25~v1x f2!2,

and summing over the polarizations of the final photons
an unscreened Coulomb potential we obtain

dsapprox

dx df2
5

8Z2a5

p3v1
2

ḡ~x!

x2f 2
4 ln

2~12x!

f 2 q S x

12x
f 22 f 0D .

~36!

The approximate cross section for a screened potential
the form

dsapprox

dx df2
5

4Z2a5

p3v1
2

ḡ~x!

x2f 2
4 S 2 ln

v1x f2

b0
1g D

3qS x

12x
f 22 f 0D . ~37!

The functiong in ~37! is
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a

g512(
i 51

3

a i
2~ ln ai11!22(

i . j
a ia j

ai ln ai2aj ln aj

ai2aj
,

ai5bi
21

Dmin
2

b0
2 , ~38!

and the coefficientsa i , bi , and b0 are defined in~35!. If
Dmin

2 /b0
2@1, then g52 ln(Dmin

2 /b0
2), and expression~37!

transforms into~36!. If Dmin
2 /b0

2!1, theng520.158.
The dependence ofs0

21ds/dx df2 on f 2 / f 0 for an un-
screened potential is shown in Fig. 4 forf 051023 and
x50.7 ~curve1!, as well asx50.3 ~curve2!, where

s05
4Z2a5 ḡ~x!

p3v1
2f 0

4 ,

and ḡ (x) is defined in~31!. Whenx50.7, the curve corre-
sponding to the cross section~36! is essentially identical to
curve 1. When x50.3 the difference between the approx
mate and exact cross sections is quite significant~in Fig. 4
curve 3 corresponds to the cross section found in
equivalent-photon approximation forx50.3!. However,
when x50.3, the cross sectionds/dx agrees to high accu
racy with the cross section found from~36!. This is because
ds/dx does not vary under the replacementx→12x, and
when x50.7, as we have already noted, the approxim
result ~36! agrees well with the exact result.

Whenx50.5, there is an appreciable difference betwe
the exact and approximate results~see Fig. 5!. This is related

FIG. 4. Dependence ofs0
21ds/dx df2 on f 2 / f 0 for an unscreened potentia

f 051023, x50.7 ~curve 1!, andx50.3 ~curve 2!. The quantitys0 is de-
fined in the text. Curve3 corresponds to the equivalent-photon approxim
tion andx50.3.
TABLE I. Values of the photon splitting cross sectionds/v1dx df2 in b/GeV
e

e

n

to the fact that a large logarithm results from the integrat
over f3 in the intervalu(12x)f31xf2u!x f2 . After integrat-
ing over the azimuthal anglew betweenf2 and 2f3 we
should integrate overf 3 from f 0 to x f2 /(12x) and from
x f2 /(12x) to infinity. If x f2 /(12x)' f 0 , the contribution
of the first interval vanishes, and the cross section beco
approximately half the cross section~36!, as can be seen in
Fig. 5.

Since the amplitudes~33! were obtained in the zero
mass approximation, it is of interest to estimate the accur
of this approximation. Numerical results for the cross sect
ds/dx df2 were obtained in Ref. 17~see Table V in Ref. 17!
for Z579, x50.87, v151.7 GeV, 3.4 GeV, and 6.1 GeV
and five values of the anglef 2 in the range 1.2–2.8 mrad. In
these calculations the electron mass was taken into acc
exactly. The data presented in Table I demonstrate the g
agreement between our results and the results in Ref.
Only at the point corresponding to the smallest value of
transverse component of the momentumk2'51.77 MeV
does the error reach 7%.

In the case of an unscreened potential, the cross sec
ds/dx can be approximated to high accuracy by the form

dsCoul

dx
5p f 0

2s0Fq~x21/2!

x2 S 2 ln
2~12x!

f 0
212F~x! D

1~x↔12x!G , ~39!

where

-

FIG. 5. Same as Fig. 4, but forx50.5 ~curve1!. Curve2 corresponds to the
equivalent-photon approximation.
for Z579 andx50.87.
f 2

mrad

v151.7 GeV v153.4 GeV v156.1 GeV

Present
work Ref. 17

Present
work Ref. 17

Present
work Ref. 17

1.2 22.7 21.1 3.11 3.25 0.57 0.56
1.6 7.5 7.4 0.99 1.03 0.18 0.18
2.0 3.09 3.12 0.40 0.41 0.071 0.072
2.4 1.48 1.51 0.19 0.19 0.034 0.034
2.8 0.79 0.80 0.10 0.10 0.018 0.018
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F~x!5
1

2
1

x

12x
1

2x21

~12x!2 lnS 22
1

xD . ~40!

If v1
2f 0

4/b0
2!1, the corresponding expression for the cro

section in a screened potential has the form

dsscr

dx
5p f 0

2s0Fq~x21/2!

x2 S 2 ln
v1x f0

b0
10.8422F~x! D

1~x↔12x!G , ~41!

whereF(x) was defined in~40!. The functionF(x) charac-
terizes the difference between the exact cross section an
cross section obtained using the equivalent-photon appr
mation. It is clear from Fig. 6 that this difference becom
significant only forx close to 0.5. It amounts to several pe
cent for total cross sections.

The inequalityD!r, which ensures applicability of the
equivalent-photon approximation, corresponds to a sm
anglew between the vectorsf2 and2f3 ~i.e., the situation in
which f2 and f3 have almost opposite directions!. It is there-
fore of interest to examine the cross sectionds(wmax)/dx
integrated overw from 2wmax to wmax. The dependence o
(p f 0

2s0)21ds(wmax)/dx on wmax in an unscreened potentia
is shown in Fig. 7 forf 051023 and various values ofx. It
can be seen that the cross section approaches its total va
comparatively large values ofwmax. The same conclusion
holds for a screened potential.

FIG. 6. Plot ofF(x) ~Eq. ~40!!.
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Semiclassical quantization of SU„3… skyrmions
V. B. Kopeliovich
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Semiclassical quantization of theSU(3)-skyrmion zero modes is performed by means of the
collective coordinate method. The quantization condition known forSU(2) solitons quantized with
SU(3) collective coordinates is generalized forSU(3) skyrmions with strangeness content
different from zero. The quantization of the dipole-type configuration with large strangeness
content found recently is considered as an example and the spectrum and the mass splittings
of the quantized states are estimated. The energy and baryon number density ofSU(3) skyrmions
are presented in a form emphasizing their symmetry in differentSU(2) subgroups of
SU(3), and alower bound for the static energy ofSU(3) skyrmions is derived. ©1997
American Institute of Physics.@S1063-7761~97!00212-6#

1. INTRODUCTION SO(3) hedgehog~1! has all contents equal to 1/3.12 Intu-
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The chiral soliton approach first proposed by Skyrm1

allows one to describe the properties of baryons with fa
good accuracy.2–4 Considerable progress has been made
cently also in understanding the properties of few-nucle
systems.5–7 Moreover, this approach allows some predictio
for the spectrum of states with baryon numberB.1.8–13 The
quantization of the bound states of skyrmions, primarily th
zero modes, is a necessary step towards realization of
approach. Different aspects of this problem have been c
sidered, beginning with Refs. 2, 13, 8, 9, and 14. Howeve
more general treatment allowing the consideration of a
trary SU(3) skyrmions was lacking until recently.

In the sector withB52 besides theSO(3) hedgehog
with the lowest quantum state interpreted as
H-dibaryon8,9 the SU(2) torus—a boundB52 state—was
discovered 10 years ago.15 In the flavor-symmetric~FS! case,
when all meson masses in the Lagrangian are equal to
pion mass, there are three degenerate tori in the (u,d), (d,s)
and (u,s) SU(2) subgroups ofSU(3). In the flavor-
symmetry-broken~FSB! case the (u,s) and (d,s) tori are
degenerate and heavier than the (u,d) torus. Another local
minimum with large strangeness content was found rece
in theSU(3) extension of the model.16 This configuration is
of molecular type and consists of two interactingB51 skyr-
mions located in differentSU(2) subgroups ofSU(3),
(u,s) and (d,s). The attraction between twoB51 skyrmi-
ons in optimal orientation which led to the formation of th
torus-like state is not sufficient for this when both skyrmio
are located in differentSU(2) subgroups ofSU(3) and in-
teract due only to one common degree of freedom. To fi
this configuration a special algorithm was developed allo
ing for the minimization of an energy functional dependi
on eight functions of three variables.16 The position of the
known B52 classical configurations representing loc
minima in SU(3) configuration space is shown on Fig. 1
the plane with the scalar strangeness contentCS ~Ref. 17! as
Y-axis and the difference of theU- and D-contents as
X-axis. Since the sum of all scalar contents is equal to un
they are defined uniquely at each point of this plot. T
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itively this is clear, since the basis for theSO(3) solitons is
formed by the matricesl2 , 2l5 , l7 and they are located in
three SU(2) subgroups ofSU(3) on equal footing. The
three tori in three differentSU(2) subgroups ofSU(3) are
denoted by the labels~2!, ~3! and ~4!, the u–d symmetric
state~2! with CS50 being of special interest. The configu
rations ~3! and ~4! can be connected by isorotation in th
(u,d) subgroup. The dipole type state~5! found recently16

has a binding energy about half of that of the torus, i
about 0.04 of the mass of theB51 skyrmion.

The zero modes of solitons have been quantized pr
ously in a few cases: forSU(2) solitons rotated in the
SU(2)2 as well as in theSU(3) configuration space of col
lective coordinates,13,8,14 and also forSO(3) solitons.8,9 In
the case ofSU(2) solitons rotated inSU(3) space the quan
tization condition known as the Guadagnini condition13 was
established; see also Ref. 18.

The quantization of theSU(2) B51 hedgehog yields
the spectrum of baryons, mainly the octet and decuplet,
moderate agreement with the data has been achieved.4 Quan-
tization of theSU(2) torus in theSU(3) space of collective
coordinates leads to predictions of a rich spectrum of stra
dibaryons.19,11Most of them are probably unbound if a nat
ral assumption is made concerning the poorly known C
simir energy of the torus-like solitons; see also the discuss
in the last section.

However, these solitons are only particular cases, si
other types of solitons exist, e.g., the above-mentioned s
tons of dipole type with large strangeness content,16 point ~5!
on Fig. 1. In general, one should expect that the map of
local minima in theSU(3) configuration space will becom
more and more complicated as the baryon number of
configuration increases. In some cases the local minima
responding to larger strangeness content may have gre
binding energy than configurations with small or zeroCS .
Therefore, a quantization procedure for arbitrarySU(3) soli-
tons should be developed. This is a subject of the pres
paper~Ref. 20 contains a preliminary short version!.

1060-10$10.00 © 1997 American Institute of Physics
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2. THE WESS-ZUMINO-WITTEN TERM

Let us consider the Wess–Zumino~WZ! term in the ac-
tion which defines the quantum numbers of the system in
quantization procedure. It was written by E. Witten in t
elegant form:21

SWZ5
2 iNc

240p2 emnabgE
V

Tr L̃mL̃nL̃aL̃bL̃gd5x8, ~1!

where V is the 5-dimensional region with 4-dimension
space–time as its boundary,NC is the number of colors o
the underlying QCD, andL̃m5U†dmU. As usual, we intro-
duce time-dependent collective coordinates for the quant
tion of zero modes according to the relationU(r ,t)
5A(t)U0(r )A†(t). Integration by parts is possible then
the expression for the WZ-term in the action, and for t
WZ-term contribution to the Lagrangian of the system
obtain

LWZ5
2 iNc

48p2 eabgE Tr A†Ȧ~RaRbRg1LaLbLg!d3x,

~2!

where La5U0
†daU05 iL k,alk and Ra5daU0U0

†

5U0LaU0
† , or

LWZ5
Nc

24p2 E (
k51

k58

vkWZkd
3x5 (

k51

k58

vkLk
WZ , ~3!

with the angular velocities of rotation in the configuratio
space defined in the usual way,A†Ȧ52 ivklk/2. Summa-
tion over repeated indices is assumed here and below.
functions WZk can be expressed through the chiral deriv
tives Lk:

WZi5WZi
R1WZi

L5~Rik~U0!1d ik!WZk
L , ~4a!

i ,k51,...,8, and

WZ1
L52~L1 ,L4L51L6L7!2~L2L3L8!/)

22~L8 ,L4L72L5L6!/A3,

WZ2
L52~L2 ,L4L51L6L7!2~L3L1L8!/)

22~L8 ,L4L61L5L7!/),

FIG. 1. Map of the different local minima for classical configurations w
B52 in the plane (Cu2Cd), CS . HereCu , Cd andCS are the scalar quark
contents of the soliton,~1! is the SO(3) hedgehog,~2!, ~3! and ~4! are
SU(2) tori in the (u,d), (d,s) and (u,s) subgroups ofSU(3), and~5! is the
dipole-type configuration~strange skyrmion molecule!.
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22~L8 ,L4L52L6L7!/),

WZ4
L52~L4 ,L1L22L6L7!2~L3L5L8!/)

12~ L̃8 ,L1L71L2L6!/),

WZ5
L52~L5 ,L1L22L6L7!1~L3L4L8!/)

22~ L̃8 ,L1L62L2L7!/),

WZ6
L5~L6 ,L1L21L4L5!1~L3L7L8!/)22~LD 8 ,L1L5

2L2L4!/),

WZ7
L5~L7 ,L1L21L4L5!2~L3L6L8!/)12~LD 8 ,L1L4

1L2L5!/),

WZ8
L52)~L1L2L3!1~L8L4L5!1~L8L6L7!, ~5!

where (L1L2L3) denotes the mixed product of vectorsL1 ,
L2 , L3 , etc. and

L̃35~L31)L8!/2, L̃85~)L32L8!/2,

L5 35~2L31)L8!/2, L5 85~)L31L8!/2

are the third and eighth components of the chiral derivati
in the (u,s) and (d,s) SU(2)-sub-groups. Here@ L̃3L̃8#
52@L3 ,L8#, etc.,

Rik~U0!5
1

2
Tr l iU0lkU0

†

is a real orthogonal matrix, and WZi
R are defined by the

expressions~5! with the substitutionL k→Rk . Relations

similar to ~5! can be obtained for WZ˜
3 and WZ̃8 ; they are

analogs of WZ3 and WZ8 for the (u,s) or (d,s)
SU(2)-subgroups, thus clarifying the symmetry of the W
term in the differentSU(2) subgroups ofSU(3).

The baryon number of theSU(3) skyrmions can be
written also in terms ofL i in a form where its symmetry in
the differentSU(2) subgroups ofSU(3) is obvious:

B52
1

2p2 E S ~L1L2L3!1~L4L5L̃3!1~L6L7LM 3!

1
1

2
@~L1 ,L4L72L5L6!1~L2 ,L4L61L5L7!# Dd3r .

~6!

The contributions of the threeSU(2) subgroups enter the
baryon number on equal footing. In addition, mixed term
corresponding to the interaction of the chiral fields from d
ferent subgroups are present also.

It should be noted that the results of calculating the W
term according to~5! depend on the orientation of the solito
in theSU(3) configuration space. When solitons are loca
in the (u,d) SU(2) subgroup ofSU(3), only L1 , L2 andL3

are different from zero, WZ8
R and WZ8

L are both proportional
to the B-number density, and the well known quantizatio
condition of Guadagnini,13 rederived in Ref. 18,

1061V. B. Kopeliovich
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YR5
)

dL /dv85NcB/3, ~7!

applies, whereYR is the so-called right hypercharge chara
terizing theSU(3) irrep under consideration. This relation
generalized to20

YR
min5

2

)

dLWZ/dv8'
1

3
NcB~123CS!, ~8!

where the scalar strangeness contentCS is defined in terms
of the real parts of the diagonal matrix elements of the ma
U:

CS5
^12Re U33&

^32Re~U111U221U33!&
, ~9!

and ^•••& means averaging or integration over the whole
dimensional space.17 This formula was checked in sever
cases.

a! One can rotate anySU(2) soliton of the (u,d) sub-
group by an arbitrary constantSU(3) matrix containingU4

5exp(2inl4). In this case CS5(1/2)sin2 n,17 and both
WZ8

R , WZ8
L are proportional toR88512(3/2)sin2 n. As a

result, the relation~8! is fulfilled exactly. Solitons~3! and~4!
on Fig. 1 can be obtained from the (u,d) soliton ~2! by
means ofU4 or U2U4 rotations and satisfy relation~8!. For
example, when the skyrmion is located in the (u,s) SU(2)
subgroup ofSU(3) we have

LWZ~u,s!52
)NcB

12
~v82)v3!. ~10a!

For skyrmions in the (d,s) SU(2) subgroup

LWZ~d,s!52
)NcB

12
~v81)v3!. ~10b!

Since we haveCS50.5 in both cases,17 relation~8! holds. To
derive ~10a and 10b! we have noted that if the soliton i
located in anySU(2) subgroup ofSU(3) the two terms in
~2! and ~4a! give equal contributions.

b! For theSO(3) hedgehog the strangeness content w
calculated previously,CS51/3,12,11andLWZ50 according to
Ref. 8, at least for periodicA(t).9 The standard assumptio
that the angular velocities are constant corresponds to~qua-
si!periodic behavior ofA(t), so relation~8! is satisfied.

c! We obtained the relation~8! numerically for solitons
of the form16

U5UL~u,s!U~u,d!UR~d,s!, ~11!

with U(u,d)5exp(ial2)exp(ibl3) andUL(u,s) andUR(d,s)
being deformed interactingB51SU(2) hedgehogs. For this
ansatz we had for the rotatedSU(3) Cartan–Maurer
currents16

L1i
r 5sacal 3i , L2i

r 5dia,

L3i
r 5~c2al 3i2r 3i !/21dib, L4i

r 5cal 1i ,

L5i
r 5cal 2i , L6i

r 5sal 1i1r 1i~b!,

L7i
r 5sal 2i1r 2i~b!, L8i

r 5)~ l 3i1r 3i !/2 ~12!

1062 JETP 85 (6), December 1997
-

x

-

s

( i ,k51,2,3) and the functionsa andb, with

r 1~b!5cbr 12sbr 2 , r 2~b!5cbr 21sbr 1 ,

cb5cosb, sb5sin b, ca5cosa, etc.

i lkt̃k5UL
†dUL , i r kt̃k5dURUR

† , k51,2,3.

Here

ŨL~u,s!5 f 01 i t̃kf k , ŨR~d,s!5q01 i t̃kqk ,

k51,2,3,

t̃ andt̃ are the Pauli matrices corresponding to the (u,s) and
(d,s) SU(2)-subgroups, andf 0

21...1 f 3
251, q0

21...1q3
2

51.

Li
r5TLiT

†, U05VT, V5U~u,s!exp~ ial2!,

T5exp~ ibl3!U~d,s!.

The chirally invariant quantities,B-number density~6!, and
the second-order and Skyrme term contributions to the st
energy have the same form in terms ofLki and Lki

r . The
formula ~4a! should be written then as

WZi5@Rik~V!1Rik~T†!#WZk
L , ~4b!

with WZk
L given in terms ofLn

r according to~5!. In the fol-
lowing we shall omit the label «r» everywhere. Relations
~10a, and b! can be checked easily with the help of~4!, ~5!
and ~12!.

Using ~12! and ~5! we obtain

WZ8
L5
)

2
~~ l1l2l3!1~r1r2r3!1sa@~ l1r22r1l2 ,l31r3!

2~dsal3 ,r322db!# !. ~13!

It follows from ~13! and ~4! that at large relative distances
for arbitrary but not overlapping solitons, and fora50, we
have

YR
min5

2

)

L8
WZ5

1

2)p2 E WZ8
Ld3x

5
1

4p2 E @~ l1l2l3!1~r1r2r3!#d3x

52~BL1BR!/2, ~14!

whereBL andBR are the baryon numbers located in the le
(u,s) and right (d,s) SU(2) subgroups ofSU(3). Relation
~8! holds sinceCS51/2 for both (u,s) and (d,s) skyrmions.
Equation~14! does not hold in the general case for overla
ping solitons, since there is no conservation law for the co
ponents of the Wess–Zumino term.

For the strange skyrmion molecule16 we should calculate
~3!, ~5!, ~8! with WZ85(R8k(V)1Rk8(T))WZk

L . The contri-
bution 2(BL1BR)/2 also appears with some addition
terms which turn out to be small numerically. We obtain
CS50.475 andYR

min520.87 in the FSB case, so relation~8!
is satisfied with good accuracy.
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racy for anySU(3) skyrmions. However, corrections to th
relation are not excluded by our treatment.

3. ROTATION AND STATIC ENERGY

We start with the well known Lagrangian density of th
Skyrme model widely used in the literature since Ref. 2
depends on the parametersFp5186 MeV ~experimental
value! and the Skyrme parametere:

LSk52
Fp

2

16
Tr L̃mL̃m1

1

32e2 Tr~ L̃mL̃n2L̃nL̃m!21LM

~15!

We takee54.12, close to the value suitable for describin
with a bit more complicated Lagrangian, the mass splittin
inside the SU(3) multiplets of baryons.4 The chiral and
flavor-symmetry-breaking mass termsLM in ~15! depending
on meson masses will be described in detail in Sec. 4.

The expression for the rotation energy density of
system depending on the angular velocities of rotations in
SU(3) collective coordinate space defined in Sec. 2 can
written in more compact form than previously:20,16

L rot5
Fp

2

32
~ṽ1

21ṽ2
21...1v̄8

2!1
1

16e2 H ~s121s45!
21~s45

1s67!
21~s672s12!

21
1

2
~~2s132s462s57!

21~2s23

1s472s56!
21~2s34

2 1s162s27!
21~2s35

2 1s171s26!
2

1~2s36
2 1s141s25!

21~2s37
2 1s152s24!

2!J . ~16!

Heresik5ṽ iL k2ṽkL i , i ,k51,2...8 are theSU(3) indi-
ces, and s34

2 5(s341)s84)/2, s35
2 5(s351)s85)/2, s36

2

5(2s361)s86)/2, s37
2 5(2s371)s87)/2, similar to L̃3 and

L̃8 .
To get ~16! we used the identitysabscd2sadscb

5sacsbd . The formula~16! possesses remarkable symme
relative to the differentSU(2) subgroups ofSU(3). The
functionsL8 or L̃8 do not enter~16! as well as expression~6!
for the baryon number density. The functionsṽ i are con-
nected with the body-fixed angular velocities ofSU(3) rota-
tions by means of transformation~see~8! above!

ṽ5V†vV2TvT†, ~17a!

or

ṽ i5~Rik~V†!2Rik~T!!vk5Rkivk . ~17b!

Rik(V†)5Rki(V) and Rik(T) are real orthogonal matrices
i ,k51,•••,8, and ṽ i

252(v i
22Rkl(U0)vkv l). Expressions

for Rik are given in the Appendix for the general case of
parametrization~11!. Relations~17! hold just because we ar
operating with rotated functionsLki

r in ~12!.
The expression for static energy can be obtained fr

~16! by means of the substitutionṽ i→2Li and
sik→2@L iL k#.

16 It can be written in a form which empha
sizes quite clearly the lower boundary for the static ene
proportional to the winding~baryon! number of the system
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stat H 8e F 1 23 47 56 2 31

2n462n57!
21~L422n531n171n26!

21~L5

22n342n161n27!
21~L622n731n152n24!

2

1~L722n362n142n25!
21

2

9
~@L31L̃323~n12

1n45!#
21@ L̃31LM 323~n451n67!#

21@LM 32L3

23~n672n12!#
2!G1M.t.13p2

Fp

e
B̃J d3r̃ , ~18!

whereB̃ is the baryon number density given by the integra
in ~6!, r̃ 5Fper andnik5@L iL k#. For i 54,5,k53 L̃3 should
be taken inni3 . For i 56, 7L5 3 should be taken. In~18! we
used relationsL̃32L5 35L3 and

~L31L̃3!21~ L̃31LM 3!21~LM 32L3!25
9

2
~L3

21L8
2!.

The chiral- and flavor-symmetry-breaking mass term M
will be considered in Sec. 4.

From ~18! we have the inequality

Estat2M.t.>3p2
Fp

e
B. ~19!

This inequality was obtained first by Skyrme1 for theSU(2)
model and is a particular case of the Bogomol’ny-ty
bound.

Eight diagonal moments of inertia and 28 off-diagon
ones define the rotation energy, a quadratic form inv ivk ,
according to~16!, ~17!. The analytical expressions for th
moments of inertia are too lengthy to be reproduced he
Fortunately, it is possible to perform calculations witho
explicit analytical formulas, by substituting~17! into ~16!.

The expression forErot simplifies considerably when th
(u,d) SU(2) soliton is quantized in theSU(3) space of
collective coordinates:

L rot~SU2!5
Fp

2

32
~ṽ1

21ṽ2
21...1ṽ7

2!1
1

8e2 S s12
2 1s23

2

1s31
2 1

1

4
~ṽ4

21...1ṽ7
2!~ l1

21 l2
21 l3

2! D ,

~20a!

or

L rot~SU2!5
Fp

2

8 Fv2f22~vf!21
12 f 0

2
~v4

21v5
21v6

2

1v7
2!G1

1

8e2 F ṽ2l i
22~ṽ l i !

21
12 f 0

2
l i
2

3~v4
21...1v7

2!G , ~20b!

where

ṽ i5@Rik~U0!2d ik#vk52~ f i f k2f2d ik1 f 0e ikl f l !vk
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TABLE I. The values of the massesMcl , the mass term M.t.~in MeV!, the strangeness contentCS and the moments of inertia~in 1023 MeV21! for the
hedgehog withB51 and the dipole configuration withB52 ~Ref. 16! in the flavor-symmetric~FS! and flavor-symmetry-broken~FSB! cases. Here M.t. is

included inMcl , Fp5186 MeV ande54.12. The accuracy of the calculations is at least;0.5% in the masses and a few percent in other quantities.

B Mcl M.t. CS UN US U3 U8 U38 U4652U57

FS 1 1702 46 - 5.55 2.04 - - - -
FS 2 3330 87 0.495 4.14 7.13 2.86 8.14 0.01 0.63
FSB 1 1982 199 - 3.24 1.06 - - - -
FSB 2 3885 380 0.475 2.44 4.13 1.70 4.77 0.002 0.24
for i ,k51,2,3, andv and ṽ have three components in the
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(u,d) SU(2) subgroup withṽ254@v2f22(ṽf)2#.
To derive~20b! we used also that

ṽ4
21...1ṽ7

252~12 f 0!~v4
21...1v7

2!.

Here, l2 parametrizes the chiral derivatives ofU0 : U0
†dkU0

5 i t i l i ,k , and the functionsf 0 , f define the matrixU0 in the
usual way

l i
25~di f 0!21...1~di f 3!2.

Equation~20b! defines the moments of inertia of arb
trary SU(2) skyrmions rotated inSU(3) configuration space
and illustrates well that theSU(2) case is much simpler tha
generalSU(3) case. The analytical expressions for the m
ments of inertia of axially symmetricSU(2) skyrmions, also
rotated inn-direction, can be found in Refs. 11 and 19.

When theSU(2) hedgehog is quantized in theSU(3)
collective coordinates space only two different moments
inertia enter,8,13,14 U15U25U3 and U45U55U65U7 .
For theSO(3) hedgehog the rotation energy also depends
two different moments of inertia,U25U55U7 and U1

5U35U45U65U8 .8,9 In the case of the strange skyrmio
molecule we obtained four different diagonal moments
inertia:20 U15U25UN ; U3 ; U45U55U65U75US and
U8 . Numerically the difference betweenUN andU3 is not
large whileU8 is a bit greater thanUS ~see Table I below!.
In view of the symmetry properties of the configuratio
many off-diagonal moments of inertia are equal to zero
few of them are nonzero, but at least one order of magnit
smaller than the diagonal moments of inertia, e.g.,U46 and
U57. For this reason we shall neglect them here in mak
estimates.

The Lagrangian of the system can be written in terms
the angular velocities of rotation and moments of inertia
the form ~in the body-fixed system!

L rot5
UN

2
~v1

21v2
2!1

U3

2
v3

21
US

2
~v4

21v5
21v6

21v7
2!

1
U8

2
v8

21U45~v4v52v6v7!1... . ~21!

The above relations between the different moments of ine
of the strange molecule can be obtained in the follow
way, at large distances between the twoB51 hedgehogs.

When theB51 skyrmion is located in the (u,s) SU(2)
subgroup ofSU(3) we obtain from~12! and ~16!

L rot~u,s!5
uS

2
~v1

21v2
21v6

21v7
2!1

uN

2 Fv4
21v5

2
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f
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1
4

~v31)v8! G , ~22a!

where we have retained the notations used for the (u,d) B
51 soliton.

For theB51 skyrmion in the (d,s) subgroup,

L rot~d,s!5
uS

2
~v1

21v2
21v4

21v5
2!1

uN

2 Fv6
21v7

2

1
1

4
~v32)v8!2G , ~22b!

with13,14

uS5
1

8 E ~12cF!FFp
2 1

1

e2 ~F8212sF
2/r 2!Gd3r ,

uN5
1

6 E sF
2FFp

2 1
4

e2 ~F821sF
2/r 2!Gd3r , ~22c!

whereF(r ) is the profile function of theB51 hedgehog and
f 05cosF. Relations~22c! follow immediately from~20b!.
Note that the combinations ofv3 and v8 which enter the
expressions for the rotation energy~22a, and 22b! and the
WZW-term ~10! are orthogonal to each other, as follow
from general arguments.

When twoB51 hedgehogs in different subgroups, (d,s)
and (u,s), are located at large distances, we should take
sum of the expressions~22a!, ~22b!. Simple relations for the
B52 moments of inertiaU in terms of theB51 inertia u
then appear:

UN52uS , US5uN1uS , U35uN/2,

U853uN/253U3 . ~23!

For interacting hedgehogs in a molecule these relations h
only approximately~see Table I where some numbers a
corrected in comparison with Ref. 20!.

In the flavor-symmetric~FS! case all meson masses
the Lagrangian are equal to the pion mass, and the dista
between centers of the two skyrmions in the molecule equ
;1.05 Fm. In the FSB case the kaon mass is included in
Lagrangian~see the next section! and the distance betwee
solitons centers in the molecule is;0.75 Fm.16,20

The Hamiltonian of the system can be obtained by
canonical quantization procedure2,14,8 which we reproduce
here for completeness. The components of the body-fi
SU(3) angular momentumJk

R can be defined as

Jk
R5dL/dvk . ~24!
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This definition coincides identically with another one,

Jk
R5

1

2i
Tr Alkp, ~25!

wherepab5dL/dȦba . In the canonical quantization proce
dure the substitution

pab5
dL

dȦba

→2 i
d

dAba

~26!

is made. The commutation relations

@Ji
RJk

R#52 i f iklJl
R ~27!

then follow immediately, wheref ikl are theSU(3) structure
constants.

After the standard quantization procedure the Ham
tonian of the system,H5v idL/dv i2L, is a bilinear func-
tion of the generatorsJi

R . For the states belonging to a de
nite SU(3) irrep the rotation energy can be written in th
simplified form

Erot5
C2~SU3!23YR

2/4

2US
1

N~N11!

2 S 1

UN
2

1

US
D

1
3~YR2YR

min!2

8U8
. ~28!

The second-order Casimir operator of theSU(3) group is
C2(SU3)5(1/3)(p21q21pq)1p1q, N is the right isospin
~see Fig. 2! and p,q are the numbers of the upper and lo

FIG. 2. T32Y-diagrams for the lowestSU(3) multiplets allowed for the
case of@SU(2)#3 configurations, ansatz~11!: singlet (p,q)5(0,0), octet
~1,1!, decuplet~3,0! and antidecuplet~0,3!. The lower dashed line indicate
isomultiplets withY521.YR

min , T5N; the upper dashed line shows non
strange isomultiplets withY5B52.
TABLE II. The values ofI , (1/2)sin2 n, the mass splittingdM ~in MeV! and th in
the flavor-symmetric and flavor-symmetry-broken cases. The binding ener
-

terms linear in the angular velocities present in the Lagra
ian due to the Wess–Zumino–Witten term are cancelled
the Hamiltonian, but they lead to the quantization conditi
discussed in the previous section. Corrections of or
U45

2 /US
2 and (UN2U3)/UN have been neglected in~28!.

Note thatYR
min can take arbitrary noninteger values becaus

is a quantity similar to the strangeness contentCS ,17 not a
quantum number.YR is a quantum number and can take on
integer values. The usual spatial angular momentum iJ
50 here. The correct description of the usual spatial ro
tions demands the introduction of a second set of collec
coordinates, as it was done previously11 for the case of flavor
SU(2). It was shown that the states of the lowest ener
haveJ50.

It is clear from expression~28! that for U8→0 the right
hypercharge satisfiesYR5YR

min52L8
WZ/), otherwise the

quantum correction due tov8 would be infinite. For solitons
located in (u,d) SU(2) we haveU850 andYR52L8

WZ/)
5B, the quantization condition13,18 with Nc53.

For the skyrmion molecule16 we haveL8
WZ'2)/2, or

YR
min'21, as was explained above. The last term in~25! is

absent forYR521, and because of the evident constrain

p12q

3
>YR>2

q12p

3
~29!

the following lowestSU(3) multiplets are possible: octe
(p,q)5(1,1), decuplet~3,0! and antidecuplet~0,3!, Fig. 2.
The sum of the classical mass of the soliton and rotatio
energy for theB52 octet, 10 and 1˜0 is equal to;3.53, 3.74
and 3.89 GeV forYR521 ~the flavor-symmetric FS-case!.
The whole FSB mass term described in the following s
tion, DM1dMFS, should be added to these numbers. Wh
the FSB mass term is included in the classical mass the
Mcl1Erot equals 4.23, 4.59 and 4.84 GeV for the oct
decuplet and 1˜0. Only the mass splitting part of the mas
term,dMFSB, should be added to these numbers~see Table II
below!. The octets withYR50 and 1 haveMcl1Erot1DM
equal to 4.61 and 4.73 GeV according to~28! ~the FS scheme
of calculation!. The SU(3) singlet withYR50 has energy
equal to MS5Mcl13/8U8 which, according to Table I

e massesM ~in GeV! for the octet, decuplet and antidecuplet of dibaryons

gy of the configuratione5(M11M22M )/(M11M2) relative to the final state F.st.
is presented.MFS5Mcl,FS1Erot,FS1DM1dMFS, MFSB5Mcl,FSB1Erot,FSB1dMFSB.

up,q;Y,T& I 2^sin2 n/2& dMFS MFS dMFSB MFSB F.st. eFS

u8,1,1/2& 22/10 24/10 2385 4.16 2124 4.10 LN 0.14
u8,0,1& 21/10 211/30 2353 4.19 2114 4.11 JN 0.15
u8,0,0& 1/10 23/10 2289 4.26 293 4.13 LL 0.14
u8,21,1/2& 3/10 27/30 2224 4.32 273 4.15 LJ 0.14
u10,1,3/2& 21/8 23/8 2361 4.40 2117 4.47 SN 0.11
u10,0,1& 0 21/3 2320 4.44 2104 4.48 JN 0.11
u10,21,1/2& 1/8 27/24 2280 4.48 291 4.50 LJ 0.11
u10,22,0& 1/4 21/4 2240 4.53 278 4.52 JJ 0.10
u10,2,0& 21/4 25/12 2401 4.52 2130 4.72 NN 0.04

u10,1,1/2& 21/8 23/8 2361 4.55 2117 4.72 LN 0.06

u10,0,1& 0 21/3 2320 4.59 2104 4.74 JN 0.07

u10,21,3/2& 1/8 27/24 2280 4.63 291 4.75 SJ 0.09
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equals.3.38 GeV in the FS case. This can be compared
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with the SO~3! hedgehog mass,MH53.272 GeV for the
same values of the parameters.12

4. MASS SPLITTING WITHIN SU„3… MULTIPLETS OF
DIBARYONS

The mass splittings insideSU(3) multiplets are defined
as usual by the FSB part of the mass terms in the Lagran
density:

LM5
Fp

2 mp
2

16
Tr~U1U†22!1

FK
2 mK

2 2Fp
2 mp

2

24
Tr~1

2)l8!~U1U†22!. ~30!

When (u,d) SU(2) solitons are rotated in the «strang
direction by means of the matrixU45exp(2inl4), ~30! leads
to the substitution4,11

Fp
2 mp

2→Fp
2 mp

2 1sin2 n~FK
2 mK

2 2Fp
2 mp

2 !.

For the ansatz~11!, after averaging over all phases in th
matrix A(t) exceptn, we can rewrite the mass term in th
energy density in the following form:

M.t.5
Fp

2 mp
2

8
~32v12v22v3!1

FK
2 mK

2 2Fp
2 mp

2

4

3F12v31~2v32v12v2!
sin2 n

2 G , ~31a!

or, for FK5Fp

M.t.5
Fp

2 mp
2

4 F ~32v12v22v3!S 1

2
1S mK

2

mp
2 21DCSD

1S mK
2

mp
2 21D ~2v32v12v2!

sin2 n

2 G . ~31b!

Herev1 , v2 andv3 are real parts of the diagonal matr
elements of the matrixU, depending on the functionsf i and
qi . For the ansatz~11! we have (b050)

v15ca0
ca~cbf 02sbf 3!1sa0

sacb ,

v25ca0
ca~cbq01sbq3!1sa0

sa@cb~ f 0q02 f 3q3!

1sb~ f 3q01 f 0q3!#2sa0
~ f 1q11 f 2q2!,

v35 f 0q02 f 3q31sa@sb~ f 1q22 f 2q1!2cb~ f 1q1

1 f 2q2!#, ~32a!

a0 andb0 are the asymptotic values of the functionsa,b. For
the local minimum found recently,16 a05b050. In this case
~32a! simplifies to

v15ca~cbf 02sbf 3!,

v25ca~cbq01sbq3!. ~32b!

Here v3 is given by ~32a! since it does not depend ona0 ,
b0 . If a0 , b0 are different from zero the ansatz~11! should
be written
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an

3exp~2 ib0l3!

to ensure the correct behavior ofU(r ) at r→`. For ex-
ample, fora5a05p/2, b5b050 then we havev151, v2

5v35 f 0q02 f 3q32 f 1q12 f 2q2 , i.e., the skyrmion is lo-
cated in the (d,s) SU(2) subgroup.

In the FS case the part of the mass term

M.t.FS5Fp
2 mp

2 ~32v12v22v3!/8 ~33!

is included in the classical massMcl which is minimized. In
the FSB case the second part,

DM5~FK
2 mK

2 2Fp
2 mp

2 !~12v3!/4 ~34!

also is included in the minimizedMcl ; see Table I. In the FS
caseDM.1016 MeV, while in the FSB case it is squeez
by a factor;3.

The mass splitting insideSU(3) multiplets is defined by
the term

dM52
1

4
~FK

2 mK
2 2Fp

2 mp
2 !~v11v222v3!K 1

2
sin2 n L ,

~35!

which is not included inMcl and is considered as a pertu
bation in both cases. Herev is the angle of rotation in the
«nonstrange» direction. For two undeformed hedgehog
large relative distances we havev11v222v3→2(1
2cosF ), whereF is the profile function of theB51 hedge-
hog, and the coefficient of sin2 n is the same as for the ro
tated B51 (u,d) hedgehog. Note that in the case of
strange skyrmion molecule with strangeness content clos
0.5 the term~35! defining the mass splitting within multiplet
is negative—directly opposite to the case when the n
strangeSU(2) solitons are used as starting configuratio
and are rotated in the «strange» direction. The quantitydM
should be added to the sum ofMcl1Erot calculated at the
end of Sec. 3, andDM should be added in the FS case.

To obtain the mass splitting withinSU(3) multiplets we
should calculate, as usual, the matrix elements of the fu
tion

K 1

2
sin2 n L 5

1

3
^12D88~n!&5

1

3
~12I !

for each component of theSU(3) multiplets described by the
SU(3) D-functions. Then the quantityI is equal to

I 5(
g

C0,0,0;Y,T,T3 ;Y,T,T3

8;~p,q!;~p,q!g C0,0,0;YR ,N,M ;YR ,N,M
8;~p,q!;~p,q!g , ~36!

expressed through the Clebsch–Gordan coefficients of
SU(3) group.22 In the case of a strange molecule we ha
YR521, N51/2 for the octet and decuplet,N53/2 for 10̃.
The values of̂ (1/2)sin2 n& and the mass splittings are show
in Table II.

For the octet the allowed strangeness of the states is21,
22, 23, for the decuplet it ranges from21 to 24, and the
nonstrange dibaryons appear in the 1˜0, 27-plet, etc.~Fig. 2!.
The masses of the dibaryons calculated according to the
and FSB schemes differ, but not very much since the
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by the decrease ofErot in comparison with the FSB case. Th
statesu10,22,0& andu1̃0,2,0& are supposed to haveJ51 and
the corresponding energy is added, roughly estimated
cording to our previous results.11

When FSB mass terms are included in the minimiz
static energyMcl they are squeezed by a factor;3 due to
the smaller dimensions of the kaon cloud in comparison w
the pion cloud,16 so the moments of inertia are greater a
Erot is smaller in the FS case~see Table I!. The absolute
values of the masses are controlled by the Casi
energy,23–26 which has the order of magnitude;21 GeV
for B5125,26 and;22 GeV for B52 molecules.

For the 27-plet the value of the difference ofI for states
with maximum and minimum hypercharge is 3/8, just as
decuplet and antidecuplet. The relative bindinge is shown in
Table II because it is less sensitive to the method of ca
lation. M1 andM2 are the masses of the final baryons ava
able due to strong interactions, calculated within the sa
approach~theory-to-theory comparison!. Inclusion of con-
figuration mixing usually leads to an increase of the m
splitting by;0.3– 0.4.27 Since the results for the mass spl
ting shown in Table II depend on the starting configuratio
and both FS and FSB calculation schemes are not consi
by themselves, one should use some interpolating proced
e.g., similar to the slow-rotator approximation used succe
fully in Ref. 4 for the description of the hyperon mass sp
ting.

5. CONCLUSIONS AND DISCUSSION

The quantization scheme for theSU(3) skyrmions has
been presented and the quantization condition kno
previously13 is generalized for skyrmions with arbitrar
strangeness content, which allows one to investigate the
sequences of the existence of different local minima
SU(3) configuration space. The quantization condition~8! is
valid for all knownB52 local minima shown in Fig. 1. It is
proved rigorously in several cases; in other cases it was
firmed by numerical calculation. However, some correctio
to relation~8! cannot be excluded. The moments of inertia
arbitrarySU(3) skyrmions can be calculated with the help
formulas ~16!, ~17!. Both static and rotational energies
well as the baryon number density ofSU(3) skyrmions are
presented in a form which makes apparent their symmetr
different SU(2) subgroups ofSU(3).

For the dipole-type configuration withCS50.5 our re-
sults are in qualitative agreement with those obtained in R
28 for the interaction potential of two strange baryons
cated at large distances. The absolute values of the mass
both B51 and B52 states are controlled by the Casim
energies, which make a contribution of orderNc

0 to the
masses of the configurations.22–25 However, the dipole-type
configuration does not differ much from theB52 configu-
ration within the product ansatz which we used as a star
point in our calculations.16 For this reason the Casimir en
ergy of the dipole can be close to twice that for theB51
soliton and can cancel in the binding energies of dibaryo
We conclude therefore that a new branch of strange dib
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with a small uncertainty in the absolute values of masses
to the Casimir energy, relative to the correspondingB51
states. The values of masses and bindings we obtained
cannot, however, be taken too seriously, not only because
Casimir energy is poorly known but also because the n
zero mode contributions closely connected with the Casi
energy ~principally the breathing and vibrational mode!
have not been taken into account. These effects not o
decrease the binding energies,6,7 but can make many of the
states listed in Table II unbound.

The prediction by chiral soliton models of a rich spe
trum of baryonic states with different values of strangen
remains one of the intriguing properties of such models. T
comparison with predictions of the quark or quark-b
models29,30 is of special interest. Some of these models p
dict the existence of bound strange baryonic states,30 similar
to the chiral soliton approach.

It is difficult to observe these states, especially tho
which are above the threshold for decay due to strong in
actions. The searches for the H-dibaryon predicted at
within the MIT quark-bag model29 have been undertaken i
different experiments, without success till now. It should
noted that observation of the H-dibaryon can be especi
difficult by the following reasons. First, its dimensions a
small in the framework of the chiral soliton approach,12,11

RH;0.5– 0.6 Fm. Therefore, estimates of the H-dibary
production cross section based on the assumption tha
dimensions are close to the dimensions of the deuteron
be too optimistic.

Second, it is not clear how the transition from an H
dibaryon to twoB51 solitons can proceed. Schwesing
proposed a nontrivial parametrization allowing for the tra
sition from theSO(3) B52 hedgehog to theB52 SU(2)
torus ~described in Ref. 31!. Within this parametrization the
two configurations are separated by a potential barrier; m
over, the behavior of some function in this parametrization
singular. So, if such a transition is not possible with smo
functions, it would be difficult to find H-dibaryon in coales
cence experiments. However, further investigations of
predictions of effective field theories providing a new a
proach to the description of the fundamental properties
matter are of interest. The near-threshold enhancement inpL
system which was observed many years ago in, e.g., the
action pp→pLK132 and confirmed in recen
investigations33 may be a confirmation of soliton model pre
dictions, because within this approach there is no differe
between real and virtual levels.

The problem of the H-dibaryon discussed in Ref. 8
that of parity doubling: theSO(3) soliton has no definite
parity, so a special symmetrization procedure should
done.8 A similar problem exists for the strange molecul
also. For the classical configuration of molecular type
have differentB51 skyrmions in different parts of space an
in different SU(2) subgroups ofSU(3). Themolecule has
no definite parity, but these configurations are invariant
der the combined operation of parity transformation and
terchange ofSU(2) subgroups. The electric dipole mome
tum of the molecule is different from zero~this was noted by
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R115s2a0
s2a~12 f 12

2 /2!1c2a0
c2af 02c2b22b0

q0

to theH-particle case, providing a state of definite parity a
removing the e.d.m. for the quantized state.
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APPENDIX

Here we sketch the expressions for the matrix eleme
Rik which connect the rotation angular velocities in bod
fixed and rotated coordinate systems:

ṽ i5Rkivk , Rik5Rik~V!2Rik~T1!,

Rik~T1!5Rki~T!5
1

2
Tr l iT

1lkT,

V5UL~u,s!exp~ ial2!, T5exp~ ibl3!UR~d,s!,

U05VT.

Definitions of UL(u,s) and UR(d,s) in terms of the func-
tions f 0 ,...,f 3 andq0 ,...,q3 are given following expression
~12!.

We use the notations

f 12
2 5 f 1

21 f 2
2, q12

2 5q1
21q2

2, F1
15 f 0f 11 f 2f 3 ,

F1
25 f 0f 12 f 2f 3 ,

F2
15 f 0f 21 f 1f 3 , F2

25 f 0f 22 f 1f 3 ,

F3
15 f 0f 31 f 1f 2 , F3

25 f 0f 32 f 1f 2 ,

Q1
15q0q11q2q3 , Q1

25q0q12q2q3 ,

Q2
15q0q21q1q3 , Q2

25q0q22q1q3 ,

sbb0
5sin~b2b0!, Qc5cbQ2

21sbQ1
1 ,

Qs5sbQ2
22cbQ1

1 ,

DF5 f 0
21 f 1

22 f 2
22 f 3

2, dF5 f 0
22 f 1

21 f 2
22 f 3

2,

C15cb1b0
~q1

22q2
2!22sb1b0

q1q2 ,

S15sb1b0
~q1

22q2
2!12cb1b0

q1q2 ,

C25cbb0
~q0

22q3
2!12sbb0

q0q3 ,

S25sbb0
~q0

22q3
2!22cbb0

q0q3 . ~A1!

Herea0 andb0 are asymptotic values of functionsa and
b. For the strange molecule16 we havea05b050. When,
e.g.,a5a05p/2, b5b050 hold, the matrixU corresponds
to solitons located in the (d,s) SU(2) subgroup ofSU(3).
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2s2b22b0
q3 ,

R125c2a0
f 31s2b22b0

q02c2b22b0
q3 ,

R135s2a0
c2a~12 f 12

2 /2!2c2a0
s2af 0 ,

R145s2a0
caF2

12c2a0
saf 21c2b02bq21s2b02bq1 ,

R1552s2a0
caF1

21c2a0
saf 12c2b02bq11s2b02bq2 ,

R165s2a0
saF2

11c2a0
caf 2 , R1752s2a0

saF1
2

2c2a0
caf 1 , R1852)sa0

ca0
f 12

2 ,

R2152c2af 32s2b22b0
q01c2b22b0

q3 ,

R225 f 02c2b22b0
q02s2b22b0

q3 ,

R235s2af 3 , R245saf 11c2b02bq12s2b02bq2 ,

R255saf 21s2b02bq15c2b02bq2 , R2652caf 1 ,

R2752caf 2 , R2850.

R315s2ac2a0
~12 f 12

2 /2!2c2as2a0
f 0 , R3252s2a0

f 3 ,

R335c2ac2a0
~12 f 12

2 /2!1s2as2a0
f 0211q12

2 /2,

R345cac2a0
F2

11sas2a0
f 2 ,

R3552cac2a0
F1

22sas2a0
f 1 ,

R365sac2a0
F2

12cas2a0
f 22Qc ,

R3752sac2a0
F1

21cas2a0
f 12Qs ,

R3852
)

2
~c2a0

f 12
2 1q12

2 !,

R4152s2aca0
F2

21sa0
c2af 22s2b2b0

q12c2b2b0
q2 ,

R4252sa0
f 12c2b2b0

q11s2b2b0
q2 ,

R4352ca0
c2aF2

22sa0
s2af 2 ,

R445ca0
caDF1sa0

saf 02cbb0
q05sbb0

q3 ,

R4552ca0
caF3

11sa0
saf 31sbb0

q01cbb0
f 3 ,

R465ca0
saDF2sa0

caf 0 ,

R4752ca0
saF3

12sa0
caf 3 , R485)ca0

F2
2 .

R515ca0
s2aF1

12sa0
c2af 11c2b2b0

q12s2b2b0
q2 ,

R5252sa0
f 22s2b2b0

q12c2b2b0
q2 ,

R535ca0
c2aF1

11sa0
s2af 1 ,

R54522ca0
caF3

22sa0
saf 32sbb0

q02cbb0
q3 ,

R555ca0
cadF1sa0

saf 02cbb0
q01sbb0

q3 ,
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R56522ca0
saF3

21sa0
caf 3 , R575ca0

sadF2sa0
caf 0 ,

s
-

5L. Carson, Nucl. Phys. A535, 479~1991!; T. Walhout, Nucl. Phys. A547,
423 ~1992!; T. Waindzoch and J. Wambach, Phys. Lett. B226, 163

. B

t.

.

ons

e

with
R585)ca0
F1

1 ,

R6152sa0
s2aF2

22ca0
c2af 2 , R625ca0

f 1 ,

R6352sa0
c2aF2

21ca0
s2af 21cb0

Q2
11sb0

Q1
2 ,

R645sa0
caDF2ca0

saf 0 , R6552sa0
caF3

12ca0
saf 3 ,

R665sa0
saDF1ca0

caf 02C22C1,

R6752sa0
saF3

11ca0
caf 32S22S1,

R6852)@sa0
F2

21cb0
Q2

11sb0
Q1

2#.

R715sa0
s2aF1

11ca0
c2af 1 , R725ca0

f 2 ,

R735sa0
c2aF1

12ca0
s2af 12cb0

Q1
21sbQ2

1 ,

R74522sa0
caF3

21ca0
caf 3 , R755sa0

cadF2ca0
saf 0 ,

R76522sa0
saF3

22ca0
caf 31S22S1,

R775sa0
sadF1ca0

caf 02C21C1,

R785)@sa0
F1

12sb0
Q2

11cb0
Q1

2#,

R8152
)

2
s2af 12

2 , R8250,

R8352
)

2
~c2af 12

2 1q12
2 !, R845)caF2

1 ,

R8552)caF1
2 , R865)sa~F2

11QC!,

R8752)sa~F1
22QS!, R885

3

2
~q12

2 2 f 12
2 !. ~A2!

The R8i do not depend ona0 ,b0 because the matrice
l2 ,l3 commute withl8 . The orthogonality of the real ma
trices R(V) and R(T) can be checked immediately from
these expressions.
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The diffraction mechanism of electron–positron pair photoproduction

d by
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We examine a mechanism of electron–positron pair photoproduction near a giant resonance. The
mechanism is based on the possibility of photons being absorbed by nuclei. Our calculations
set the cross section of this process at roughly 10230 cm2. We also discuss the feasibility of
observing the effect. ©1997 American Institute of Physics.@S1063-7761~97!00312-0#
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A free photon cannot produce an electron–positron p
since such a process is forbidden by energy and momen
conservation laws. But if a photon meets an obstacle, sa
nucleus that can absorb it, photon diffraction occurs, with
result that the diffracted photon of an appropriate energy
produce an electron–positron pair. In this paper we st
such a mechanism of electron–positron pair production
mechanism based on the possibility of a photon being
sorbed by a nucleus.

Before discussing the mechanism of pair production
photoabsorption, let us touch on the phenomenon of pho
absorption by nuclei.1

For photon energies lower than the energy of nucle
detachment from the nucleus (v,8 MeV) the photoabsorp
tion cross sectionsg(v) is zero. Above the nucleon knock
out threshold, for photon energies in the 8–15 MeV ran
the cross section sg(v) is finite but small,
sg(v)'10227– 10226 cm2, and slowly increases with en
ergy in this range. For photon energies in the 15–30 M
range there is a high and broad maximum in the photo
sorption cross section, withsg(v)'(121.5)310225 cm2

and a halfwidthg equal to 4–7 MeV, which is known as
giant resonance. For photon energies above 30 MeV the
toabsorption cross section is again small~as it is for
v,15 MeV! and decreases with increasing photon energ

Here we are particularly interested in the giant resona
region, where the prevailing photoabsorption mechanism
that of collective absorption of photons by a nucleus. Suc
process leads to specifically collective nuclear moveme
where the protons of the nucleus oscillate with respect to
neutrons of the same nucleus due to the variable electric
of the photon~the Migdal–Goldhaber–Teller model!.

The giant-resonance region is extremely interesting
studies of the photoproduction of electron–positron pairs.
the one hand, because of the large value ofsg(v), the cross
section of this process is large~estimates have shown tha
this value can compete with radiative corrections to the cr
section of pair production in the Coulomb field of a nucleu!.
On the other hand, the energies of the various particles
ticipating in the process~a photon, an electron and a pos
tron! are such that we can employ the formulas of the
trarelativistic approximation. In this case the matrix elem
of the pair photoproduction process is expressed in term
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2. THE SCATTERING AMPLITUDE OF A PHOTON THAT
CAN BE ABSORBED BY A NUCLEUS

Now let us discuss the scattering of a photon in the pr
ence of a nucleus. Several effects must be distinguished h
First there is the purely quantum-electrodynamic effect
photon scattering in the electrostatic field of the nucleus
Delbrück scattering. Akhiezer and Pomeranchuk3 were the
first to develop the theory of such scattering. Then there
photon scattering related to the possibility of a photon of
appropriate energy being transformed into an electro
positron pair. The theory of this process was developed
Bethe and Rohrlich.4 Finally, there is scattering due to pure
nuclear effects of photon absorption. Migdal5 was the first to
detect and study the corresponding mechanism. In what
lows we deal with the third effect in the giant-resonan
region. But first, following Bethe and Rohrlich,4 we discuss
the general theory of photon scattering related to photo
sorption.

When the energies are high and the scattering angleu
are small, the amplitude of coherent photon scattering~i.e.,
when the photon frequency does not change! can be written
as follows:4

f ~v,u!5kE bdbJ0~bku!~a1~b,v!1 ia2~b,v!!, ~1!

whereku5uk'u, k5v/c ~below we use a system of units i
which Planck’s constant and the speed of light are equa
unity!, k' is the transverse component of the 4-moment
of the scattered photon in relation to the 4-momentumk̃ of
the initial photon,J0(x) is a Bessel function, andb is the
impact parameter. The imaginary part of the scattering a
plitude ~1! is related to the functiona2(b,v), which in turn
determines the photoabsorption cross section via the rela
ship

sg52pE bdb 2a2~b,v!, ~2!

while the functiona1(b,v), which determines the real pa
of the amplitude, can be found via the simple dispers
relation

1070-04$10.00 © 1997 American Institute of Physics
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Allowing for the relationship between diffraction an
absorption,6 from now on we will assume that the functio
a2(b,v), related to photon absorption by nuclei, is a st
function,

a2~b,v!5Q~R~v!2b!, ~4!

which leads to the following simple relationship:

sg~v!52pR2~v!. ~5!

In other words,&R(v) acts as the effective radius of th
nucleus in relation to the absorption of a photon of freque
v. Bearing in mind the nature of a giant resonance, for
proximate estimates we can write the photoabsorption c
section in the giant-resonance region as

sg~v!5s0Q~v01g2v!Q~v02g2v!, ~6!

where, according to what was said in the Introduction,

s0'1.5310225 cm2, v0'25 MeV, g'5 MeV.

Inserting~4! into ~3!, we get

a1~b,v!5
Q~R02b!

p
lnUv01g2v

v02g2vU, R05As0

2p
.

~7!

Clearly, for photon energies in the giant-resonance reg
the functiona1 is proportional to (v02v)/g, while in the
high-energy region (v@v0) it decreases in inverse propo
tion to frequency:a1}g/v.

Substitutinga1(b,v) ~Eq. ~7!! anda2(b,v) ~Eq. ~4!! in
the right-hand side of Eq.~1!, we arrive at the final expres
sion for the photon scattering amplitude:

f ~v,u!5
k

uk'u ~N01 iN1!, ~8!

where

N05
1

p
R0J1~R0uk'u!lnU v01g2v

v02g2v U,
N15R~v!J1~ uk'uR~v!!,

with J1(x) a Bessel function.
We see that in the adopted step-function approxima

for a2(b,v) and with the photoabsorption cross section
the form~6! ~the giant-resonance region!, the real part of the
photon scattering amplitude near the giant resonance ma
of the same order of magnitude as the imaginary part.

Knowing the photon scattering amplitude, we can wr
an expression for the electromagnetic field 4-vector poten
related to the scattered photon:

Am~r ,t !5eme2 ivt
eikr

r
f ~v,u!, ~9!

whereem is the polarization 4-vector of the scattered photo
andk is the photon wavenumber.
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Now that we have an expression for the electromagn
field 4-vector potential related to the scattered photon,
can find the matrix element reflecting the electron–posit
pair production by the photon in the virtual state:

M5eE dtd3re2 ivtei ~q11q2!x
eikr

r
f ~v,u!emgmnJn ,

~10!

where q2 and q1 are the 4-momenta of the electron an
positron, respectively,gmn is the metric tensor,e is the pos-
itron charge, and integration is over the entire fou
dimensional space–time.

The electromagnetic currentJn in ~10! is given by the
formula

Jn5 ū~q2!gnv~q1!,

whereu(q2) andv(q1) are the electron and positron spin
amplitudes.

Integration of the right-hand side of Eq.~10! over space
and time yields

M5
4pe

v22uq21q1u2
f ~v,u!2pd~v2«22«1!M̃ , ~11!

whereM̃5emgmnJn , and«2 and«1 are the energies of the
electron and positron, respectively.

To calculateM̃ and the quantityuM̃ u2, which enters into
the cross section, we proceed as follows. First we write
metric tensor in the form2

gmn5gmn
' 1

2

s
qn k̃m , s52~ k̃q!@m2, ~12!

wheregmn
' is the transverse part of the metric tensor,k̃m is

the 4-momentum of the initial photon, andm is the electron
mass. The 4-vectorqm determiness, which does not enter
into the final formula~as we will see shortly!. Obviously,

M̃5~eJ!'1
2

s
~e k̃!~Jq!.

Following Sudakov,7 we decompose the electron and po
tron 4-momenta into longitudinal and transverse compone
with respect to the 4-vectorsk̃ andq:

q15a1q1~12x! k̃1q1
' ,

q25a2q1x k̃1q2
' , a1 ,a2!1, ~13!

where the variablex is the fraction of the energy carrie
away by the positron, and

~q6
' q!5~q6

' k̃ !50.

Using the explicit expression for the currentJn , we can
derive a formula for the contribution of the purely traver
polarization touM̃ u2 after summing over the spin states of th
electron–positron pair:

~eJ!'
2 52@e2k214~q1–e!~q2–e!#, ~14!
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Similarly, the interference of the longitudinal and tran

verse polarizations yields a contribution

4

s
~e k̃ !~eJ!'~Jq!528@~12x!~e–q2!1x~e–q1!#~e k̃ !,

~15!

while the contribution of the purely longitudinal polarizatio
of the scattered virtual photon is

4

s2 ~e k̃ !2~Jq!258x~12x!~e k̃ !2. ~16!

Now we express the quantity (e k̃ ) in ~15! and ~16! in
terms of the transverse component of the polarization ve
using the transversality condition for the electromagne
field 4-vector potential of the scattered photon: (ek)50. This
yields

~e k̃ !5k–e, k5q21q1 . ~17!

Summing the right-hand sides of Eqs.~14!–~16! and tak-
ing ~17! into account, we get

uM̃ u252e2~k222~xk2q2!2!. ~18!

Allowing for all possible transverse polarizations, we mu
put e252. Note that Eq.~18! is valid only if v@uku@m2.

Now that we have an expression foruM u2, we can find
the differential cross section for photoproduction of
electron–positron pair via the mechanism related to pho
absorption by a nucleus:

ds5
1

4v
uM u2

d3q2d3q1

~2p!54«2«1
d~v2«22«1!. ~19!

Using the parametrization~13! for the electron and positron
4-momenta, we get

d4s

dxdwdq2
2 dk2 5

a

4pk2 F 122x~12x!

m21~xk2q2!2

1
2m2

@m21~xk2q2!2#2G~N0
21N1

2!, ~20!

wherew is the angle between the two-dimensional vectork
andq2 . The reader will recall that the vectork is the total
transverse momentum of the new pair. Integration with
spect to the anglew from 0 to 2p and with respect to the
square of the transverse electron momentum from 0 toxk2

yields

d2s

dxdk2 5
a

2k2 H @122x~12x!# ln
k2x~12x!

m2

12x~12x!J ~N0
21N1

2!. ~21!

After ~21! is integrated with respect to the fractionx of
the electron energy from 0 to 1, we arrive at the followi
formula for the distribution of pairs with respect to th
square of their total transverse momentum:
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dk2 2k2 S 3 m2 9 D
When the photon energy is in the vicinity of the gia

resonance,R0uku is always much smaller than unity, sinc
uku<v. Hence we can expand the Bessel function presen
N0 and N1 in a series and keep only the first-order term
J1(x)'x/2, with x!1.

After this the differential distribution~22! can be inte-
grated with respect tok2. The greatest contribution is pro
vided by the regionk2;v2, so that the total cross section o
electron–positron production by the mechanism conside
here is

s5
av2

8 FR4~v!1
1

p2 R0
4 ln2 U v02g2v

v01g2v UG
3S 2

3
ln

v2

m2 2
16

9 D . ~23!

In the giant-resonance region atv5v0 this cross section is
approximately 2310230 cm2.

Note that fork2@m2 the differential~in the square of the
transverse momentum transfer! cross section of electron–
positron pair production in the Coulomb field of the nucle
is given by the formula8

dsk

dk2 5
8a3Z2

3k4 F (122x~~12x!!ln
k2

m2 12G , ~24!

which is applicable in the point-nucleus approximation a
holds as long as

1

uku
.R, R51.5A1/3310213 cm2, ~25!

whereA is the atomic number of the nucleus. The conditi
~25! corresponds to impact parameters~at which pair produc-
tion is possible! that are larger than the radius of the nucleu
For nuclei with A'100 the condition~25! is met up to
uku'30 MeV.

Of course, the main contribution to the total cross s
tion sk is provided by values ofk2 of orderm2, so that the
ratio of the total cross sections corresponding to the C
lomb mechanism and the mechanism considered here is
large:sk /s'103Z2. However, for differential~in k2! cross
sections the ratio may be considerably smaller:

dsk

ds
'

Z2

2
, k25400 MeV2. ~26!

In these conditions the cross section of electron–posit
pair production due to photoabsorption by nuclei is larg
than one percentage point~for nuclei with Z'10!, which is
roughly equal to the contribution of radiative corrections
Coulomb scattering.9

Note that for transverse momenta of the order of,
greater than, 100 MeV, when the photon finds itself ins
the nuclei, Eq.~24! requires substantial modification sinc
the nuclei cannot be interpreted as a point object. For
stance, if the nucleus of radiusR has a constant charge de
sity, the electrostatic potential of such of such a nucleus
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TABLE I.

1

U~r !5H Ze

r
, r>R,

Zer2

R3 , r ,R.

~27!

The Fourier transform of the potentialU(r ) is

U~q!5
4pZe

q2 C~y!,

C~y!5
3

y F S 12
2

y2D sin y1
2

y
cosyG , y5qR. ~28!

Clearly, asR→0, i.e., in the point-nucleus limit,C(y) is
equal to unity. In this limit the differential cross section
pair production in a Coulomb field is given by Eq.~24!. But
if Rq is of the order of, or larger than, unity, Eq.~24! must
by modified by multiplying it intoC2(y). Some values of
C2(y) are listed in Table I. Since the correction decrea
substantially asy increases, we cannot rule out the possib

y 0.1 0.5 1 5 10 50

C2(y) 0.984 0.856 0.504 0.202 0.0441 0.000
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both pair production mechanisms will compete as equals
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5A. Migdal, Zh. Éksp. Teor. Fiz.15, 81 ~1945!.
6A. I. Akhiezer and I. Ya. Pomeranchuk, Zh. E´ ksp. Teor. Fiz.16, 396
~1946!; G. Placzek and H. Bethe, Phys. Rev.57, 1072~1940!.

7V. V. Sudakov, Zh. E´ ksp. Teor. Fiz.30, 87 ~1956! @Sov. Phys. JETP3, 65
~1956!#.

8V. G. Zima and N. P. Merenkov, Yad. Fiz.24, 998 ~1976! @Sov. J. Nucl.
Phys.24, 522 ~1976!#.
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Ionization of hydrogen and helium atoms by highly charged fast ions in collisions with

in
small momentum transfer
A. B. Vo tkiv

Electronics Institute, Uzbek Academy of Sciences, 700143 Tashkent, Akademgorodok, Uzbek Republic
~Submitted 15 March 1996; resubmitted 17 June 1997!
Zh. Éksp. Teor. Fiz.112, 1966–1977~December 1997!

Ionization of hydrogen and helium atoms is studied for the case of ‘‘soft’’ collisions with highly
charged fast ions withv&Z!v2 andv@v0 , whereZ is the ion charge,v is the collision
velocity, andv0;1 is the characteristic velocity of the electron in the ground state of the atom.
Analytical expressions are derived for the singly and doubly differential cross section for
ionization of a hydrogen atom accompanied by the ejection of a slow electron~ve&v0 , where
ve is the velocity of the ejected electron with respect to the recoil ion!. The results are
generalized to the case of single ionization of helium. It is shown that soft collisions provide the
main contribution to the hydrogen ionization cross section and for all practical purposes
determine the cross section for single ionization of helium. The asymmetry in the angular
distribution of the ejected slow electrons and the properties of momentum exchange in
such collisions are discussed. Finally, a formula for the cross section for single ionization of
helium is proposed. ©1997 American Institute of Physics.@S1063-7761~97!00412-5#
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The study of collisions of atoms and highly excited fa
ions is of interest in many fields of physics~atomic physics,
solid-state physics, etc.! and in related fields~e.g., biophys-
ics!. Often the chargesZ of these ions are so large that the
satisfyZ*v, notwithstanding the high values of the ion v
locity v ~v@v0 , with v051 a.u..23108 cm s21; unless
stated otherwise, in what follows we use the atomic sys
of units!. There is a great number of experimental and th
retical papers devoted to the study of the total cross sect
for single, double, and multiple ionization of atoms in col
sions with such ions~see, e.g., Refs. 1–3 and the literatu
cited therein!. Detailed information about the collision of
highly charged fast ion and an atom can be obtained
studying the various differential cross sections. Signific
progress in developing the experimental techniques has m
it possible to carry out what is known as kinematically co
plete experiments in studying the collisions of fast charg
particles and atoms,4,5 experiments in which not only the
total ionization cross sections are determined but also
angular and energy distributions of the electrons leaving
atom, the momenta and energies of the recoil ions, etc. S
studies of the process of single ionization of helium atoms
collisions with a highly charged fast ion~Z524 andv512!,
a process in which the momentum transferred to the atom
small ~in what follows we call such collisions ‘‘soft’’!, were
conducted by Moshammeret al.,5 who investigated the be
havior of the slow electrons, whose energies after leaving
atom do not substantially exceed the atom’s ionization
tential, and the balance of momenta in the system consis
of the highly charged ion, the electron, and the recoil ion~the
researchers also calculated the collision process by
classical-trajectory Monte Carlo method!. Studying the char-
acteristics of slow electrons is important because such e
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collisions with highly charged fast ions in the region of th
parametersZ andv considered here.

The plan of the paper is as follows. In Sec. 2 we disc
the angular and energy distributions of slow electrons ejec
by hydrogen atoms in collisions with highly charged fa
ions with the following parameters:v&Z!v2, v@v0 , and
ve&v0 , whereve is the velocity of the ejected electron wit
respect to the recoil ion. Section 3 is devoted to a semiqu
tative generalization of these results to the case of sin
ionization of helium. Finally, there is a brief discussion, b
analogy with the photoionization process, of the balance
momenta in soft collisions.

It is a well-known fact~see, e.g., Ref. 6! that classical
mechanics cannot be used to describe soft collisions o
charged particle and an atom.1! The quantum mechanical ap
proach adopted in this paper is somewhat less rigorous
the various modifications of the distorted wave approxim
tion ~see, e.g., Ref. 7! but has one important advantage:
makes it possible to solve the problem analytically, and
final result is fairly simple. The main approximation in th
approach is the grouping~in the impact parameter! of colli-
sions into hard collisions, where the energy transferred to
electron is on the average high,«.I («@I ), and soft colli-
sions, with«,I ~I is the ionization potential!. Of course, no
strict boundary between these regions can be drawn, bu
indeterminancy in the ‘‘boundary’’ value of the impact p
rameter is not very important for the final expressions.

2. COLLISIONS WITH HYDROGEN ATOMS

Suppose that initially a hydrogen atom with its nucle
at the origin of coordinates is in its ground state and tha
highly charged structureless ion is moving along a class
linear trajectoryR(t)5b1vt, whereb is the impact param-

1074-07$10.00 © 1997 American Institute of Physics



eter vector. Let us partition the entire range of the impact

e
io

-

e
gy
e

o
.
on
g

an
m
rm
n

o-
e
th

h

le
s
n
s
e

um

s

e

th

ee
t

(t.0), wherev̄ is the average velocity at which the electron

for
in

of
er-
lec-
ill

the
are
ly

the
he
he

ne

en-
of

n,

n

f
-
the

o

the
ec-
x-
parameters 0<b,` into two subregions:~1! b,Z/v, and
~2! b.Z/v.

In collisions in the first subregion the energy transferr
to the electron is on the average much higher than the
ization potential of the atom. Indeed, forb.1 this energy
can be estimated at«(b).2Z2/b2v2 ~see Ref. 8!, i.e., it is
high already atb.Z/v.1 and rapidly increases as the im
pact parameter decreases~e.g., for ions with Z524 and
v512, which were used in the experiment of Moshamm
et al.,5 «(b51)58) for b,1 the average transferred ener
is even higher. For this reason~and because of the small siz
of the regionb,Z/v! the contribution of hard collisions to
the emission of slow electrons is small, so that we will n
take such collisions into account in the future~see, e.g., Refs
6, 7, 9, and 10 and the literature cited therein for discussi
of the spectra of electrons ejected in collisions with lar
momentum transfer!.

Calculations in various approximations11–13 for the re-
gion of impact parametersb.Z/v.1 predict a rapid de-
crease in the ionization probability asb increases, with the
result that even atb.( 1.522)Z/v the ionization probabil-
ity becomes much smaller than unity. To describe the tr
sitions of atoms in such collisions we use the scattering
trix approach, in which the transition amplitude has the fo
~see, e.g., Refs. 14 and 15 and the literature cited therei!

Ak52 i E
2`

`

dt^ck
~2 !~r ,t !uW~r ,t !uw0~r ,t !&. ~1!

Here w0(r ,t)5w0(r )exp(2it/2), where w0(r )5p21/2

3exp(2r) is the wave function of the ground state of hydr
gen, Ck

(2)(r ,t) is the wave function of the electron in th
final state, with both the field of the atomic nucleus and
field of the highly charged ion acting on the electron,

W~r ,t !5
Z

uR~ t !u
2

Z

uR~ t !2r u

is the interaction between the atom and the field of the hig
charged ion, andr is the electron radius vector.

Let us estimate the effect of the two centers on the e
tron in the final stateck

(2)(r ,t) assuming that classical force
act on the electron, i.e., the forces representing the actio
the highly charged fast ion (Fi) and of the atomic nucleu
(Fa). As a function of time, in the region occupied by th
atom the field of the highly charged fast ion has a maxim
with its center at the pointt50 and an effective width
I .b/v, with b.1 ~see Refs. 16 and 8!. In the region of
impact parametersb.v the field of the highly charged ion i
not only extremely weak for the atom~for v2@Z! but also
varies adiabatically slowly, so that the probability of th
atom becoming ionized is exponentially low~see, e.g., Ref.
11!. But for collisions withZ/v,b,v ~which provide the
main contribution to the emission of slow electrons!, we
have T,1, i.e., at such impact parameters the field of
highly charged ion has a sharp maximum in the timesutu,T,
when ionization mostly occurs. Then the distance betw
the proton and the departing electron can be estimated avt
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travels through the region of spacer;1 and which for slow
electrons is, in order of magnitude, equal tov051. The dis-
tance between the highly charged ion and the electron
t.0 can be assumed to be proportional to the difference
their velocities:uv2 v̄ut.vt. Thus, for the ratio of the forces
we have2!

Fi

Fa
;

Zv0
2

v2 5
Z

v2 ,

which implies that forZ/v2!1 the behavior of the slow
electron in the final state is controlled mainly by the field
the atomic nucleus. Hence the effect of the Coulomb int
action between the highly charged fast ion and such an e
tron can be taken into account approximately. Below we w
see that the main effect is that the angular distribution of
slow electrons becomes asymmetric: most electrons
dragged by the Coulomb attraction of the flying high
charged ion in the direction of the ion’s motion.

There is one more effect that leads to asymmetry in
angular distribution of the slow electrons. If we expand t
potential of the interaction of the atom and the field of t
highly charged ion,z/uR(t)u2Z/uR(t)2r u, as a function of
electron coordinates and time in monochromatic pla
waves, we see that the ion field carries a longitudinal~i.e.,
parallel to the ion velocity! momentumqp;1/v, with the
magnitude and direction of the momentum being indep
dent ~for ZÞ0! of the magnitude and sign of the charge
the incident particle~what is important is that if we allow
only for the dipole term in the expansion of this interactio
the calculated value ofqp vanishes!. The absorption of this
momentum by an atomic electron leads~as we will see
shortly! to additional asymmetry in the angular distributio
of the slow electrons.

In the region of impact parametersb.Z/v.1 the inter-
actionW(r ,t) can be written as

W~r ,t !5W1~r ,t !1W2~r ,t !, ~2!

where

W1~r ,t !52
Z~vtz1by!

R3~ t !
52

ZR~ t !–r

R3~ t !
52E~ t !–r ,

W2~r ,t !5
Zr2

2R3~ t !
2

3Z

2R5~ t !
~vtz1by!2. ~3!

In Eqs.~3!, thez axis is directed along the velocity vector o
the highly charged ion and they axis along the impact pa
rameter vector. In accordance with what was said earlier,
expansion in~2! is exact to within quadrupole terms.

The electron behavior in the field state in the field of tw
centers is determined by the Hamiltonian

H52
D

2
2

1

r
2W.2

D

2
2

1

r
2W12W2 . ~4!

In accordance with the above idea of the relative role of
two centers in the final state, the interaction of a slow el
tron with the atomic nucleus will be taken into account e
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fast ion will be treated in the zeroth approximation of t
theory of sudden perturbations:17

ck
~2 !~r ,t !5wk

~2 !~r !expS 2
ik2t

2 DexpF i E
2`

t

dt8W~ t8!G ,
~5!

wherewk
(2)(r ) is the Coulomb wave function for electron

proton scattering, which in the limitr→` is a linear combi-
nation of the incident plane wave and a convergent sphe
wave and is normalized by the conditio
^wk

(2)uwk8
(2)&5(2p)23d(k2k8), wherek is the wave vector

of electron motion with respect to the atomic nucleus. Pl
ging ~5! into ~1! yields

Ak52 i K wk
~2 !~r !U E

2`

`

dtW~r ,t !

3expF ivt2 i E
2`

t

dt8W~ t8!GUw0~r !L , ~6!

wherev5(11k2)/2 is the transition frequency.
For b.Z/v.1 the term

E
2`

t

dt8W~ t8!

is small compared to unity for all values oft. Expanding the
exponential function~6! in a series and keeping only th
leading terms, we get

Ak5Ak
d1Ak

q1Ak
i , ~7!

where

Ak
d52 i K wk

~2 !~r !U E
2`

`

dtW1~r ,t !exp~ ivt !Uw0~r !L ,

Ak
q52 i K wk

~2 !~r !U E
2`

`

dtW2~r ,t !exp~ ivt !Uw0~r !L ~8!

are the dipole and quadrupole transition amplitudes, res
tively, and in

Ak
i 52 i K wk

~2 !~r !U E
2`

`

dt exp~ ivt !

3~q~ t !–r !W1~ t !Uw0~r !L ~9!

we have allowed for the leading term in the interaction b
tween the slow electron in the final state and the field of
highly charged fast ion:

q~ t !5E
2`

t

dtE~ t !.

For the probability of an electron going into a state with
definite values ofk as a result of a collision with an impac
parameterb we have the following expression:

w~k,b!5uAku2.uAk
du212 Re~Ak

d!Re~Ak
q1Ak

i !

12 Im~Ak
d!Im~Ak

q1Ak
i !. ~10!
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W2 and the Coulomb wave functions and averaging~in view
of the geometry of the problem! the probability~10! over the
anglesw of electron departure~0<w,2p, with w is the
azimuthal angle in the plane of the impact parameter!, we get

w~k,u,b!5
1

2p E
0

2p

dww~k,b!

5
2Z2v2

v4 a~k!H 2K0
2~j!cos2 u1K1

2~j!sin2 u

1
8k

v
cosu@K1

2~j!sin2 u1K0
2~j!~3 cos2 u

21!#1
4Z

v2

cosu

v FK0~j!K1~j!2
pk

2

3exp~2j!~2K1~j!sin2 u1K0~j!

3~3 cos2 u21!!G J , ~11!

where the angleu of electron departure (0<u<p) is mea-
sured from the direction of the ion velocity vector,j5vb/v,
K0 andK1 are modified Bessel functions,18 and

a~k!5
27k21

~11k2!5 expS 2
4

k
arctankD

3F12expS 2
2p

k D G21

. ~12!

For the probability of ionization with a slow electron bein
ejected in a collision with a fixed impact parameter we ha

w~b!5E
0

kmax
dk k2E dV w~k,u,b!, ~13!

wherekmax.v051 anddV52p sinudu.
The doubly differential~in the departure angle and in th

energyE5k2/2! ionization cross section is given by the fo
lowing expression:

d2s

dEdV
52pE

bmin

`

db bA2Ew~k~E!,u,b!, ~14!

wherebmin5lZ/v!v ~with l a constant of order unity! is the
lower limit of the region of impact parameters in which th
ionization probability is substantially smaller than unity. If
~14! we integrate with respect to the impact parameter,
get

d2s

dEdV
528

Z2

v2

1

~112E!5

exp@2~4/A2E!arctanA2E#

12exp~22p/A2E!

3H sin2 u ln b1cos2 u20.5 sin2 u

1
23.5AE

v
cosu~sin2 u ln b1cos 2u!

1
2Z

v2 cosu@ ln2 b221.5pAE~sin2 u ln b
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v 5exp E`
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where b51.123v@bmin(E10.5)#215(1.123/l)(v2/Z)
3(E10.5)21.

Sinceb, determined to within a constant factor of ord
unity, contains the large cofactorv2/Z and enters into~15!
under the logarithm sign, we can simply setl to unity in the
definition of b. Note that the accuracy of this approach i
creases with the geometric dimensions of the region of
pact parametersZ/v,b,v ~the treatment is asymptoticall
exact in the formal limitv→`, Z→`, andv2/Z→`, pro-
vided that the conditionZ/v*1 remains valid!.

The electron energy distribution is determined by t
following differential cross section:

ds

dE
5E dV

d2s

dEdV
5

211p

3

Z2

v2

1

~112E!5

3
exp@2~4/A2E!arctanA2E#

12exp~22p/A2E!
ln

2.25v2

Z~112E!
. ~16!

We see that the probability of electron ejection rapidly d
creases with increasing electron energy: the majority of
ejected electrons~approximately 90%! have energies les
than the ionization potential of the atom,I 050.5. Note that
in the adopted approximation only the dipole transitions
tween the statesw0 andwk

(2) of the atom contribute to~16!;
the transitions betweenw0 and wk

(2) due to the interaction
W2(r ,t) ~which induces quadrupole electron transitions! and
the transitions to final states distorted by the field of
highly charged ion and responsible for the asymmetry of
angular distribution of the slow electrons contribute noth
to ~16!, so that they have no effect~in the given approxima-
tion! on the total number of the ejected slow electrons.

To obtain the angular distribution of these electrons
must integrate~15! with respect to the energiesE in
0<E&I 0 . However, since the electron departure probabi
rapidly decreases with increasingE, the upper limit in the
integral over energies can be formally set to infinity. Th
yields

ds

dV
5E

0

`

dE
d2s

dEdV
5 3•0.283

Z2

v2 H sin2 u ln b1

1cos2 u20.5 sin2 u

1
8•0.61

v
cosu ~sin2 u ln b21cos 2u!

1
2Z

v2 cosu@ ln2 b11^ ln2 v&2 ln2 v1

22p•0.61~sin2 u ln b21cos 2u20.5 sin2 u!#J ,

~17!

where we have employed the following notation:

b15
1.12v2

Zv1
, b25

1.12v2

Zv2
,
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1 H
0

F
0

G J
v25expH E

0

`

dk k3a~k!ln~v!F E
0

`

dk k3a~k!G21J 50.88,

~18!

^ ln2 v&5E
0

`

dk k2a~k!ln2~v!F E
0

`

dk k2a~k!G21

50.234,

ln2 v150.1.

The terms in~17! proportional toZ2/v2 correspond to elec-
tron dipole transitions~the termuAk

du2 in ~10!!, and the terms
proportional toZ2/v3 andZ3/v4, which lead to the asymme
try of the cross sectionds/dV with respect to the substitu
tion u→p2u, correspond to the term
2 Re(Ak

d)Re(Ak
q)12 Im(Ak

d)Im(Ak
q) and 2 Re(Ak

d)Re(Ak
i )

12 Im(Ak
d)Im(Ak

i ) in the expansion~10!. The asymmetry in
electron ejection can be characterized by the quantity

h5S E
0

p/2

du sin u
ds

dV
2E

p/2

p

du sin u
ds

dV D
3S E

0

p

du sin u
ds

dV D 21

. ~19!

Combining~18! and ~19!, we find that

h'
1.83

v
1

Z

v2 S 1.5 ln
1.6v2

Z
22.8712.15 ln21

1.6v2

Z D
'

1.83

v
1

Z

v2 S 1.5 ln
v2

Z
22.8712.15 ln21

v2

Z D . ~20!

From ~20! we see that most slow electrons are ejected by
atom ~for Z.0! in the direction of motion of the highly
charged fast ion. The first term in~20!, which is independent
of the magnitude and sign of the ion charge, and the sec
term, which depends on both magnitude and sign~for Z,0
we must takeuZu under the logarithm sign! reflect, respec-
tively, the absorption of longitudinal momentumqp;1/v by
the atom and the dragging of the departing electron by
electric field of the moving highly charged fast ion~we dis-
cussed these effects earlier!. Note that the simple additivity
of these effects in~20! is a consequence of the expansio
~7! and ~10!, where the terms leading to angular asymme
~but which are not the dominant terms for complete em
sion! are taken into account in the first nonvanishing a
proximation.

Combining~16! and~17!, we arrive at the following ex-
pression for the contribution to the ionization cross section
hydrogen atoms from collisions in which slow electrons a
ejected:

Ds'8p•0.283
Z2

v2 ln
1.6v2

Z
'8p•0.283

Z2

v2 ln
v2

Z
. ~21!

This expressions differs from the total ionization cross s
tion calculated in Ref. 8 only in the numerical factor und
the logarithm sign,3!
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s 58p•0.283
Z2

ln
5v2

, ~22!

fo

za

o

o

uc
io

ac

th
th
le
iz
on
io
i

s
en
-
ea

e

hy

:

g
b

s
th
h
s
io
b

ss
n

ns
-

o-
he

lo
ry
ase
a

he
ted

nti-
via

-
-
ase
ula

if-
ur
ay
lso
to

he

the
t

of
f a

al
i v2 Z

which gives a good description of the experimental data
v0!v&Z!v2. The two expressions,~21! and ~22!, clearly
show that forv0!v&Z!v2 the collisions resulting in the
emission of slow electrons contribute the most to the ioni
tion cross section. Note that the cross sections~15!, ~21!, and
~22!, considered as functions of the charge and velocity
the incident particle, obey scaling,s/Z5 f (v2/Z), which is
characteristic of the hydrogen ionization cross section in c
lisions satisfyingZ/v*1 andv@v0 ~see Ref. 1!.

So far we assumed that the highly charged ion is str
tureless. It is obvious, however, that a highly charged
carrying electrons can be considered a point charge
b.Z/v*1@r 2 holds, wherer 2;1/Z is the size of the ion.

3. SINGLE IONIZATION OF HELIUM

As in the above case, we partition the region of imp
parameters into two subregions:~1! hard collisions, and~2!
of soft collisions. When highly charged fast ions collide wi
helium atoms and the impact parameters are small, so
large portions of energy are transferred to the atomic e
trons, the most probable process is double-electron ion
tion, while in single-electron ionization the ejected electr
has a high energy. Hence the process of single-electron
ization accompanied by the ejection of a slow electron,
this region of impact parameters b
~b,Z/zeff v, wherezeff is the effective charge of the atom
core! is even more strongly suppressed than the proces
ejection of a slow electron in hard collisions with hydrog
atoms. But whenb.Z/zeff v holds, the probability of detach
ment of each of the electrons rapidly decreases with incr
ing impact parameter, so that for the probabilityP(b) of
single-electron ionization of helium we can write

P~b!.2w~b!, b.
Z

zeff v
, ~23!

where w(b) is the detachment probability for each of th
electrons. We assume that the functionw(b) can be de-
scribed as the probability of electron detachment from a
drogenlike ion with a core chargezeff , which we find from
the potential of single-electron ionization of helium
zeff

2 /25I50.909, which yieldszeff51.345.1.35. Of course,
this approach is quite crude. We note, however, that usin
to calculate the cross sections for the ionization of helium
highly charged fast ions yields a fairly good agreement~see,
e.g., Refs. 20 and 21! with the experimental data. For thi
reason, and also because of its simplicity, we employ
method, bearing in mind that the results obtained by t
approach should be interpreted as estimates. The result
hydrogen can easily be generalized to the case of single
ization of helium. For instance, if we introduce the Coulom
system of units, based on the chargezeff, the cross sections
~15!–~17! multiplied by 2 describe the corresponding cro
sections for single-electron ionization of helium. For the a
gular asymmetry parameter we have
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h'zeffF1.83

v
1

Z

v2 S 1.5 ln
1.6v2

Zzeff
22.87

12.15 ln21
1.6v2

Zzeff
D G

'zeffF1.83

v
1

Z

v2 S 1.5 ln
v2

Z
22.8712.15 ln21

v2

Z D G
~24!

~here we have used atomic units!. If we employ~24! to de-
scribe the asymmetry in the ionization of helium by io
with Z524 andv512 used in the experiment of Mosham
meret al.,5 we obtainh.0.5, i.e., about 75% of all the slow
electrons have a velocity component in the direction of m
tion of the highly charged fast ion. This value is close to t
experimentally determined value of 90% in Ref. 5~and to the
value that follows from classical-trajectory Monte Car
calculations5!. Note that in Ref. 5 the classical-trajecto
Monte Carlo method was used to study the hypothetical c
of single-electron ionization of helium by impact with
highly charged fast anti-ion~Z5224 and v512!. It was
found that the asymmetry in the angular distribution of t
ejected electron is reversed, i.e., the majority of the ejec
electrons move in the direction opposite to that of the a
ion movement. An estimate of the asymmetry parameters
formula ~24! yields h.20.1, i.e., Eq.~24! implies that in
such collisions~in view of the random selection of the pa
rameters of the problem! the above effects leading to asym
metry balance each other almost perfectly. Thus, in this c
a calculation based on classical mechanics and the form
~24! lead to qualitatively different results.

In Fig. 1 we compare the experimentally determined d
ferential ~in energy! cross sections and the results of o
estimates. In view of the fact that our approach is in no w
rigorous, to arrive not only at qualitative agreement but a
at a fairly good quantitative agreement we were forced
multiply the calculated cross sectiondsHe

(11)/dE by a factor
A51.4 ~note that such normalization has no effect on t
angular distribution of the slow electrons!. SincedsHe

(11)/dE
rapidly decreases with increasing energy, the value of
normalization constantA was chosen from the condition tha
the resulting~normalized! expression for the cross section
single-electron ionization accompanied by the ejection o
slow electron,

FIG. 1. The differential cross sectiondsHe
(11)/dE for the ionization of he-

lium by ions with Z524 andv512; the dots represent the experiment
data of Ref. 5, and the curve represents our estimates.
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DsHe
~11!'A•16p•0.283

Z2

zeff
2 v2 ln

1.6v2

zeff Z
, ~25!

reproduce atZ524 andv512 the experimental value of th
cross section for single ionization by Au241 ions with a col-
lision energyEc53.6 MeV/amu~see Refs. 3 and 22!, which
leads to the following relationship:

DsHe
~11!'11.3

Z2

v2 ln
1.2v2

Z
~258!

'11.3
Z2

v2 ln
v2

Z
. ~259!

Note that the experimental value of the cross sect
dsHe

(11)/dE has a peak atE.2 eV. At the same time, ou
estimate shows that this cross section monotonically
creases with increasing electron energy and is appreci
larger than the experimental value in the region of very l
energies,E&1 eV. The nature of this discrepancy is uncle
~one of the reasons may be that we ignored electron–elec
correlations!.

In Fig. 2 we compare the results of calculations by fo
mula ~258! and the experimental data of Refs. 3, 21–23
~total! cross sections of single ionization of helium in a bro
range of ion charges and energies~8<Z<54 and
1 MeV/amu&Ec<11.4 MeV/amu!. Finally, in Fig. 3 we
give the results of calculations by formula~258! and the ex-

FIG. 2. Single ionization of helium by ions with 8<Z<54 and collision
energies 1 MeV/amu<Ec<11.4 MeV/amu: the dots represent the expe
mental data of Refs. 21–23, and the curve was calculated via~258!.

FIG. 3. Single ionization of helium by ions with 24<Z<54 at a fixed
collision energyEc53.6 MeV/amu: the dots represent the experimental d
of Refs. 3 and 22, and the curve was calculated via~258!.
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ionization of helium by ions withZ ranging from 24 to 54 at
a fixed collision energyEc53.6 MeV/amu. If we base ou
reasoning on the agreement between the results of calc
tions by formula~258! and the experimental data correspon
ing to the parametersv0!v&Z!v2, we can assume tha
single ionization occurs for all practical purposes only in s
collisions.

Formula ~259! yields results whose agreement with th
experimental data is slightly worse.

In conclusion, let us touch on the problem of the balan
of momenta in the collision of a highly charged fast ion a
an atom withb.Z/v. In such collisions the average mome
tum Q.Zb/b2v transferred from the field of the inciden
particle to an atomic electron~see, e.g., Ref. 8! is small com-
pared to the characteristic momentum of an electron in
ground state of the atom,Q0.1. At the same time, the field
of the highly charged fast ion contains characteristic frequ
ciesV;v/b, which even atb.v are not low compared to
the atomic transition frequencies. Hence the ionization of
atom in collisions withb.Z/v resembles24–26the ionization
of an atom by a light wave, where the atom absorbs a pho
whose energy is sufficient for ionization but whose mome
tum is negligible. In photoionization by a field of modera
frequency, the momentum of the departing electron is b
anced by the momentum of the atomic core. Evidently,
same situation occurs in collision ionization withb.Z/v*1,
which leads to ejection of slow electrons. This, for instan
was detected in the experiments of Moshammeret al.,5,27

who studied ‘‘soft’’ collisions with helium atoms.

1!In this connection the good agreement between the experimental data
the results obtained by Moshammeret al.5 via the classical-trajectory
Monte Carlo method comes as a surprise.

2!For electrons moving with velocitiesv0,ve,v we have v̄ .ve and
Fi /Fa;Zve

2/v2;ZE/v2. This implies that at electron energiesE;z2/Z
the effects of the two centers become comparable, while atE@v2/Z the
effect of the highly charged ion is predominant.

3!Earlier Presnyakov and Uskov19 found a similar value of the factor unde
the logarithm sign.
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Coherence effects accompanying generation of high-order harmonics

c
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For phase-locked emitters, provided a certain relation exists between the pump wave and atomic
beam parameters, a saturation effect is shown to be possible for which the intensity of the
high-order harmonics ceases to depend on the atomic density. By means of a simple model that
includes variations in the intensity of the pump wave in the plane transverse to the focal
axis, an expression is obtained for the optimum atomic density of the medium corresponding to
intensity saturation. The dependence of the optimum atomic density on the laser power
and harmonic number obtained is found to be in qualitative agreement with recently published
experimental data.8 © 1997 American Institute of Physics.@S1063-7761~97!00512-X#
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The generation of high-order harmonics at frequenc
corresponding to an odd number of photons of the ioniz
laser wave was first examined in the experimental stud
Refs. 1–4. One peculiarity of this phenomenon is that
intensity of the harmonicI s ~s is the order of the harmonic!
depends on the densityna of atoms of the medium, estab
lished in Ref. 3. In a series of theoretical papers this re
was linked with the phenomenon of phase locking dur
harmonic generation. Thus, the authors of Ref. 5, by num
cally solving Maxwell’s equations in a nonlinear medium
obtained values of the intensitiesI s as functions of the basic
parameters of the ionizing wave and the atomic beam.

In Refs. 6 and 7 we examined the generation of hig
order harmonics with the aid of the analytical quantum
proach which we developed to describe the effects of abo
threshold atomic ionization. We established a direct l
between harmonic generation and the phenomenon of ab
threshold atom ionization in which the high-order harmon
owe their existence to transitions of the atom from t
ground state to the continuum with absorption of seve
pump photons and emission of a photon of the high-or
harmonic upon return to the ground state. The express
derived in Refs. 6 and 7 for the probabilities of spontane
and induced emission of high-order harmonics under co
tions of phase-locking of the emitters provide a satisfact
explanation of the main features of the phenomenon~shape
of spectrum, dependence ofI s on the various parameters o
the problem such as intensity and size of the focus of
laser wave, density of the atomic beam and its location r
tive to the focus, etc.!.

A recent joint experimental effort of the Lund an
Saclay groups,8 examined the dependence of the intensity
high-order harmonics generation on the density of the ato
medium. They found that in the low-pressure interval~4–14
mbar! the intensity of the harmonics grows approximate
quadratically as a function of the atomic density. Howev
as some optimum concentration is reached the intensit
generation rolls over to a constant level and further grow
of the density of the medium is accompanied by a monoto
decrease of the intensity. It was also found that the optim

1081 JETP 85 (6), December 1997 1063-7761/97/1210
s
g
s

e

lt
g
i-

-
-
e-
k
ve-
s

l
r

ns
s
i-
y

e
a-

f
ic

,
of
h
ic
m

falls with increasing order! and on the intensity of the lase
wave ~for fixed harmonic order it increases with the pum
power!.

It would be of interest to seek a qualitative explanati
for these experimental results within the framework of t
analytical quantum approach. In the present paper we s
that under conditions of phase-locking of the emitting ato
for low-to-moderate medium density the dependence of
intensity of the harmonicsI s on the atomic densityna is
quadratic. However, for certain ratios between the pump
beam parameters a saturation effect arises, whereby th
tensity I s ceases to depend on the concentration. The rea
for this phenomenon has to do with the substantial ph
shift of the emitters arising at distances less than the lon
tudinal dimension of the interaction volume.

Using a simple model which treats variations in the
tensity of the laser wave in the plane transverse to the fo
axis, we obtain a relation for the optimum atomic densi
The qualitative dependences following from this relation a
found to agree well with the data of Ref. 8.

2. PROBABILITY OF SPONTANEOUS EMISSION

We consider the time-dependent problem of transitio
from the ground state of the atoms with absorption of seve
pump photons and the return to the ground state with em
sion of a high-order-harmonic photon. The probability a
plitude for the system to undergo a transition at the timt
with emission of photons of thesth harmonic (K ,V5sv) is
given by the following expression from Ref. 7 (\5c51):

AV~ t !5A0s~eA0V!(
j

exp@ i ~sk2K !•Rj #j* ~sv2V!

3exp@ i ~sv2V2 il!t#, ~1!

where A0V is the amplitude of the vector potential of th
emitted wave of frequencyV; k andv are the wave vector
and frequency of the ionizing wave;Rj is the radius vector of
the j th atom~the residual ion! and the sum is over all atom
in the interaction volume of the medium with the laser wav
j* (x)5P /x1 ipd(x); the dimensionless factorA0s is deter-
mined by the probability amplitude of multiphoton ionizatio

1081-04$10.00 © 1997 American Institute of Physics
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of the maxima of the spectrum of above-threshold pho
electrons; the parameterl'10 corresponds to adiabati
switching-on of the wave field att→2`.

Equation~1! yields the following formula for the prob
ability per unit time of the transition to the partial final sta
of the system:

d

dt
uAV~ t !u25A0s

2 ~eA0V!2U(
j

exp@ i ~sk2K !•Rj #U2

3
2l

~sv2V!21l2 . ~2!

In the case of spontaneous emission of thesth harmonic
of frequencyv it is necessary to replaceeA0V by the expres-
sion A8pa/VV in Eq. ~2!, where V is the normalization
volume of the spontaneous emission field,a is the fine-
structure constant, and we replace the Lorentzian depend
~the last factor in expression~2!! by a d-function ensuring
conservation of energy in the process. Thisd-function is re-
moved by integration over the statistical weight of the em
ted photonK ,V. As a result, the transition probability of th
system of atoms from the ground state per unit time is gi
by

wsp
~s!5A0s

2 4as

l0
E

~4p!
U(

j
exp@ i ~sk2K !•Rj #U2

dVK ,

~3!

Here the integration is over directions of emission of t
photonK and l052p/v is the wavelength of the laser ra
diation.

We will only calculate the probability per unit time o
emission of a high-order-harmonic photon. Here for the to
transition probability per pump pulse we have the order-
magnitude estimatewsp

(s)t i , wheret i is the duration of the
ionizing pulse.

As follows from Eq. ~3!, the probabilitywsp
(s) can be

represented as a product of two factors: the quantityA0s
2 ,

which describes the transition taking place on a single a
and is the same for all atoms, and the sum overj correspond-
ing to the collective response of the medium to the pu
waves. The probabilityA0s

2 pertains to the transition of a
atom from the ground state with absorption of several pu
photons followed by return to the ground state with emiss
of one photon of a high-order harmonic. In the case of m
tiphoton transitions this probability is determined by t
component matrix element and involves a multiple sum o
intermediate states of the atom, a sum over virtual qu
energy states of the photoelectron, and integration over
continuum.7 The condition for phase-locking of the atom
radiating during this process is connected with the beha
of the arguments of the summed exponentials in expres
~3!.

The ensuing calculations are easily carried out in
continuous medium approximation~criterion formulated be-
low!, where the sum in expression~3! is replaced by an
integral over the volume in which the atoms interact with t
pump wave. In this case, Eq.~3! yields
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3E
~4p!

F2J1~v !

v G2 sin2 u

u2 dVK , ~4!

where Vint5pr0
2d is the volume within which the atomic

beam interacts with the ionizing wave,r0 is the radius of the
focus of the wave at its center,d is the diameter of the beam
of atoms projected transverse to the pump wave,J1(v) is the
Bessel function, the arguments of the diffraction factors a

v5svr0~u2u8! and u5sv@u22~u0
21u82!#d/4,

~5!

whereu0
2[2uDnu ~Dn5nv2nV is the difference in the re-

fractive indices of the medium for waves of the correspon
ing frequencies!, andu andu8 are the angles between thez
axis ~the direction of propagation of the ionizing wave! and
the vectorsK andk, respectively. The angleu8 is related to
the spread in the directions of the wave vectork resulting
from focusing of the laser wave. In the expressions obtai
below, it is necessary to average over this angle.

As the numerical calculations of L’Huillieret al.5 have
shown, under the conditions of the experiments on hi
order harmonic generation using a strong laser wave, wh
photoionization of the atoms reaches saturation, the m
contribution to Dn comes from the photoelectrons an
uDnu5vp

2/2v2, wherevp5A4pnie
2/me is the plasma fre-

quency of the ionized medium~ni'na under conditions of
saturation!.

The continuous medium approximation is valid if th
inequality usk2K ua!1 is satisfied or, allowing for the pa
rameterDn,

uDnua
l0 /s

5
u0

2as

2l0
!1, ~6!

wherea is the mean distance between the atoms of the
dium. It is not hard to see that for a given density of t
medium this condition imposes an upper bound on the m
mum achievable harmonic orderss.

According to Eqs.~4! and~5! the angular diagram of the
intensity of emission of a harmonic consists of two sha
diffraction maxima in the directions u5u8 and
u5Au0

21u82, and the resulting intensity depends on bo
the angular detuningu0 and the angular widthsDu' andDu i

of the corresponding diffraction factors.
The estimates in Ref. 7 showed that for parameters ty

cal of the experiments on high-order harmonics genera
the total intensity of emission in the directionu5u8 within
the limits of the angular widthDu'.2l0 /spr0 signifi-
cantly exceeds the analogous quantity in the direct
u5Au0

21u82 within the limits of the angular width
Du i.l0 /su0d. For this reason the main contribution to th
integral in expression~4! comes from the region of anglesu
for which v'0. In the case of hard focusing of the las
wave, when the angular divergence at the focusu f exceeds
the diffraction widthDu' (u f.Du') , the integral in expres-
sion ~4! yields
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~7!

Assuming for simplicity that the angular density of th
intensity of the laser wave is constant within the limits of t
focus, after averaging overu8 in expression~7! we obtain

wsp
~s!5A0s

2 S p

3 D 2 as

l0
~Vintna!2pDu'u f

sin2~svu0
2d/4!

~svu0
2d/4!

~8!

for u f.Du' .
In the soft-focusing limitu f,Du', there is no need to

average overu8, and the emission probability is given by
formula analogous to~8!, where the factorpDu'u f is re-
placed by the solid anglep(Du')2 of the diffraction spot in
the direction of the pump wave.

Wrapping up the discussion of the question of how
cusing of the wave affects the intensity of spontaneous em
sion of harmonics, we derive an expression for the ang
divergenceu f . In the diffraction near zone, where the tran
verse beam sized is significantly less than the confocal p
rameterL ~this is just this case that is realized in the we
known experiment of Liet al.3!, u f is given by

u f.
dl0

2

~2p!2r0
3 . ~9!

For the main laser and beam parameters given in the C
clusion it follows that forr0.1023 cm hard focusing takes
place, and forr0.1021 cm, soft focusing takes place.

The total intensity of emission of thesth harmonic
within the diffraction spot in the directionu50 is given by

I s5wsp
~s!sv/pr0

25A0s
2 ~2p!3

9
a~dna!2

sin2~svu0
2d/4!

~svu0
2d/4!2 .

~10!

~we restrict the discussion here to the case of larger0 , for
which u f,Du'!. If the main parameters of the problem a
such that the conditionu05svu0

2d/4,1 holds, the intensity
I s depends quadratically onna , and is equal to

I s5A0s
2 ~2p!3

9
a~dna!2. ~11!

This result obtains under conditions such that all the ato
found inside the volumeVint within which the atoms interac
with the wave are phase-locked. It is completely clear t
expression~11! is applicable for this reason only in suffi
ciently disperse media. Thus, if we use the parameter
Ref. 3 for our estimates~l051064 nm,d51 mm!, we ob-
tain the following upper bound on the atomic density:

na,2.131018/s cm23. ~12!

For harmonics with orderss.30– 50 condition~12! leads to
values ofna'1016 cm23.

The intensity~11! groups withna for fixed values of the
wave parameters until the argument of the diffraction fac
sin2 u0 /u0

2 in expression~10! becomes significant,u0@1. In
this case the intensityI s ceases to depend onna and its value
is given by
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Saturation occurs because when the medium is dense
distance in the pump-wave direction over which a signific
phase shift of the coherently radiating atoms accumulate

Lcoh5
2l0

su0
2 5

2pme

sal0na
, ~14!

is less than the longitudinal dimensiond region in which the
beam interacts with the wave. This effectively replaces
parameterd with the coherence lengthLcoh in expression
~10!.

The atomic density at which saturation is reached
found from the conditionLcoh.d and is given by

na'231013/sl0d ~15!

~herel0 andd are measured in centimeters, andna in cm23!.
The possibility of such a saturation effect under pha

locking conditions for a certain set of values of the para
eters of the problem was noted in Ref. 9, where this conc
sion was reached through numerical analysis of the result
the experiment of Ref. 3.

In fact, as follows from the results of a recent expe
mental study,8 the optimum value of the atomic density
which saturation is reached exceeds the estimate~15! by
more than an order of magnitude. This difference may be
to inhomogeneous ionization of the atoms within the focus
the pump wave. This inhomogeneity is a consequence of
laser wave intensity distribution in the plane transverse to
axis of the focal region. To understand this effect quali
tively and estimate it, consider the following model. We d
vide the focal region into two segments in the transve
direction. We assume that in the inner region abutting
focal axis total ionization of the atoms takes place within t
transit time of the pump-wave pulse. On the periphery of
focus the ionization has a partial character. Within th
model the diffraction factor sin2 u0 /u0

2 in expression~10!
changes and the expression for the intensity takes the fo

I s}
sin2~svu0

2d/4!

~svu0
2d/4!2 S Dr

r0
D 2

1
sin2~svu80

2d/4!

~svu80
2d/4!2

3F12S Dr

r0
D 2G ã, ~16!

whereDr is the effective radius of the inner region of th
focus, ã5uA0s8 /A0su2 andu08 andu0 are parameters that de
pend on the degree of ionization of the medium in the ou
and inner regions of the focus, respectively.

The transition from a quadratic dependence of the h
monic intensity to saturation asna increases takes plac
when the two terms in expression~16! become of the same
order of magnitude, at which point saturation is reached
the inner region (svu0

2d/4.1). Equation~16! then yields
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harmonic intensity begins to deviate from quadratic:

na'
~Dr/r0!2

@12~Dr/r0!2#ã

mev

se2d
. ~17!

The value ofna following from expression~17! is much
greater than the estimate~15! if Dr/r0'1 holds, i.e., almost
complete ionization of the atoms over the entire focal reg
occurs and the ratio of amplitudes isã,1. The experimen-
tally observed dependence8 of the optimum atomic density
for a given harmonic on the pump-wave power~in the range
0.631015 to 1.531015 W/cm2! also follows from condition
~17!, as well as the harmonic order (s.50– 70) for fixed
pump-wave intensity.

As follows from condition~17!, the optimum density
should decrease as a function of the orders, as is experimen-
tally observed. In addition, increasing the pump-wave pow
for fixed s causes the parameterDr/r0 to approach unity
and, consequently, leads to a growth ofna , which is also
observed in experiment.8

3. ESTIMATES; CONCLUSION

In this section we give the pump-wave and atomic-be
parameters, and also numerical estimates of the main q
tities for which expressions were obtained in the previo
section. In the derivation of the beam and pump param
values we were guided by two main considerations. The
fects of above-threshold ionization of the atoms and gen
tion of high-order harmonics were treated in the multipho
approximation, in which the Keldysh adiabaticity parame
satisfiesg>1. This condition imposes an upper bound on t
intensity of the pump wave in the interaction volume and
its degree of focusing. However, we note that the pha
locking conditions for the emitters implemented in this wo
do not depend on the mechanism of ionization of an in
vidual atom and are therefore equally applicable in the c
of ionization in the tunneling regime, wheng,1 holds. As
for the properties of the medium, the beam parameters~den-
sity, degree of collimation, cross-sectional diameter! are cho-
sen from the optimal conditions for observation of harmo
generation.

We will confine ourselves to a numerical example c
responding to the multiphoton approximation. To check
validity of the formulas obtained in this work, let us turn
the experimental results of Liet al.3 who observed genera
tion of high-order harmonics for hard focusin
(r0518 mm), a dense medium (na5531017 cm23), high
pump-wave intensity at the focus (I 5331013 W/cm2), and
comparatively long pulses (tp536 ps).

Calculating according to our formulas shows that in t
case of argon atoms the number of photons with harmo
1084 JETP 85 (6), December 1997
n

r

n-
s
er
f-
a-
n
r
e
n
e-

i-
e

c

-
e

ic

value of roughly 10 ~when the parameterA0s calculated
according to the formulas in Ref. 7 is approximately equa
1.431027!. Completely satisfactory agreement is noted b
tween the derived value ofNs and the experimental value.

The results obtained here are based on the suppos
that the amplitudeA0s @see Eq.~1!# is independent of the
coordinates of the atom. This assumption, strictly speak
is valid only in the case of a homogeneous pump-wave fie
In fact, the wave field at the focus is inhomogeneous, wh
can give rise to an additional phase in the sum in expres
~1!. However, the characteristic length over which this pha
varies significantly is of the order ofr0 . Since the charac-
teristic width of the transverse diffraction factor
Du';l/sr0!1, such a ‘‘sluggish’’ dependence of the a
ditional phase does not alter the results.

In conclusion, we may briefly formulate the main resu
obtained here.

1! We have shown that under the conditions for pha
locking of the radiating atoms the dependence of the int
sity of harmonic generation on the atomic density of t
medium can be different in the limiting cases of sufficien
disperse and dense media~from a quadratic dependence to
constant value!;

2! Using a simple model we have allowed for the effe
of variation in the pump-wave intensity in the directio
transverse to the focal axis. Using this model we have f
mulated a relation for the optimum atomic density of t
medium corresponding to the above-indicated transition. T
results obtained are found to be in qualitative agreement w
recently published data.8
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Evolution of polarization in an inhomogeneous isotropic medium
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Zh. Éksp. Teor. Fiz.112, 1985–2000~December 1997!

The depolarization and rotation of the polarization plane of radiation propagating in a two-
dimensional graded-index medium is investigated on the basis of the quantum-mechanical method
of coherent states. It is shown that the degree of polarization of both linearly and circularly
polarized radiation decreases with increasing distance as a result of interaction between the
polarization~spin! and the path~orbital angular momentum! of the beam. The wave nature
of the depolarization is emphasized. The depolarization decreases as the radiation wavelength
decreases. It is found that the degree of polarization exhibits oscillations of pure diffraction
origin during the propagation of light in a single-mode optical fiber. It is shown that the rotation
of the polarization plane is nonuniform in character and depends on the offset and the tilt
angle of the incident-beam axis relative to the fiber axis. The Berry phase is found to undergo
oscillations of a wave nature during the propagation of radiation in an inhomogeneous
medium. It is shown that the spread in the angle of rotation of the polarization plane increases
with distance and can be determined from measurements of the degree of polarization of
the radiation. ©1997 American Institute of Physics.@S1063-7761~97!00612-4#
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The polarization properties of fields must be taken in
account in many problems involving wave propagation
inhomogeneous media. The polarization of radiation
known to remain constant during propagation in a homo
neous, isotropic, nondispersive medium. Propagation in
inhomogeneous medium, on the other hand, is accompa
by significant changes in the state and degree of polariza
The depolarization of radiation in a randomly inhomog
neous medium has been investigated previously.1,2 It was
shown that two depolarization mechanisms occur: a g
metrical mechanism associated with Rytov rotation3 of the
polarization plane and a diffraction mechanism. McLean a
Pendry4 investigate polarization effects in the propagation
electromagnetic waves in two-dimensional random media
the basis of generalized transformation matrices for the
scription of multiple scattering by inhomogeneities. In op
cal fibers, as rule, the input polarization changes by virtue
birefringence in the medium.5–8 However, depolarization
also takes place in optical fibers without birefringence.
particular, it has been shown9 that the degree of linear polar
ization of radiation in an isotropic parabolic-index fiber d
creases with increasing distance. It has also been sho10

that the degree of linear polarization in a multimo
parabolic-index fiber decreases with distance according t
inverse square law as a result of Rytov rotation of the po
ization vector, while the degree of circular polarization r
mains constant. In experimental work,11 however, preserva
tion of the degree of polarization has not been observed in
isotropic optical fiber.

We know that the polarization vector of a light ray r
tates as it propagates along a twisted path in an inhom
neous medium.3 This rotation has been observed experime
tally in a single-mode fiber wound along a cylinder12 and has
been interpreted as a Berry geometrical phase effect.13 Rota-
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straight multimode step-index fiber.
In this paper we investigate the evolution of polarizati

in an isotropic multimode graded-index optical fiber. W
show that the depolarization of radiation in an isotrop
graded-index medium is the result of diffraction effects, th
mechanism prevailing for both linearly polarized and circ
larly polarized radiation. We analyze the rotation of the p
larization vector during propagation in a two-dimension
medium. We show that the rotation of the polarization pla
depends on the offset of the axis and the tilt angle of
incident beam relative to the axis of the fiber.

To investigate the evolution of the parameters of t
radiation beam, we use quantum-mechanical coherent-s
methods, which enable us to calculate averages by the op
tor approach. The entire system dynamics is transferre
operators in this case. The evolution of the beam parame
can then be investigated by purely algebraic procedures
without having to rely on explicit expressions for the wa
functions or having to compute the corresponding integra

The choice of the quantum-mechanical formalism
waveguide theory rests on the following considerations
has been shown15 that Maxwell’s equations for scalar wav
beams in the paraxial approximation are very accurately
ducible to a parabolic-type equation. This approximation
ables us to use well-developed quantum-mechanical meth
for the investigation of wave propagation in inhomogeneo
media, because the parabolic equation formally coinci
with the Schro¨dinger equation in quantum mechanics f
particles moving in a time-dependent potential well. All th
is required is to redefine the parameters in the Schro¨dinger
equation. The role of time is now taken by the longitudin
coordinate, and Planck’s constant is superseded by the ra
tion wavelength in vacuum. The potential is defined as
function of the refractive index of the medium.

The intimate relationship between the wave mechan

1085-09$10.00 © 1997 American Institute of Physics
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in detail in many papers~see, e.g., Refs. 16–18!. Methods
developed recently for the solution of time-depend
quantum-mechanical problems,21 such as the method of co
herent states and the density matrix formalism, have b
used to investigate the propagation of coherent and part
coherent light in slightly inhomogeneous media without p
larization effects.19,20 The coherent-state method has be
used to analyze polarization effects attending light propa
tion in a graded-index fiber.22 Completely polarized inciden
radiation in an inhomogeneous isotropic medium was fou
to undergo depolarization of diffraction origin.

In principle, the effects discussed below have been
tained on the basis of the classical approach, since the in
tigated equations are classical and do not contain Plan
constant. However, the results can also be used in the s
of quantum systems described by similar Hamiltonians.

2. STATEMENT OF THE PROBLEM

The equation describing the propagation of radiation
an inhomogeneous medium can be obtained from Maxwe
equation for the electric fieldE exp(2int):

curl~curl E!5k2«E ~1!

or

DE1k2n2E1¹~E•¹ ln n2!50, ~2!

wherek52p/l is the wave number, and«5n2 is the dielec-
tric constant of the medium.

We assume below that nonlinear effects and absorp
do not occur in the medium.

It is evident from Eq.~2! that the polarization term is
small. At relatively large distances, however, small corr
tions can produce appreciable cumulative effects.

We consider a two-dimensional graded-index optical
ber with a parabolic index profile

n2~x,y!5n0
22v2~x21y2!, ~3!

wherev is the gradient parameter,n0 is the refractive index
on the fiber axis, andx,y denote the transverse coordinates
the fiber.

We adopt coherent states, i.e., Gaussian wave pac
representing eigenfunctions of the annihilation operatorsâ1

and â2 ~Ref. 23!, to serve as functions specifying the spat
distribution of the field in the initial plane:

â1,2ua1a2&5a1,2ua1a2&, ~4!

â15
1

&

SAkv x̂1 iAk

v
p̂xD ,

â25
1

&

SAkv ŷ1 iAk

v
p̂yD ,

p̂x52
i

k

]

]x
, p̂y52

i

k

]

]y
.

The term coherent stateswas first introduced by
Glauber24 in 1963 as part of a study of oscillator states of
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portant consideration here is that these states are analo
to the Gaussian wave packets in coordinate representa
formulated and investigated by Schro¨dinger25 to establish a
relationship between the classical and quantum approac

The coherent statesua1a2& characterize the spatial dis
tribution of the electric field and have the form

ua1a2&5Akv

p
expH 2

kv

2
~x21y2!1A2kv~a1x1a2y!

2
1

2
~a1

21a2
21ua1u21ua2u2!J . ~5!

The eigenvalues

a15
1

&

SAkv x01 i Ak

v
px0D ,

a25
1

&

SAkv y01 i Ak

v
py0D

determine the initial coordinatesx0 and y0 ~offset! and the
anglespx0 and py0 between the ray path and the fiber ax
~tilt angles!.

For an axial beam (a1,250) the expression~5! takes the
form

u00&5Akv

p
expS 2

kv

2
x22

kv

2
y2D .

This is usually the form of the fundamental mode
laser sources. Such a beam also corresponds to the fu
mental mode of an optical fiber or the mode of a single-mo
fiber. Expressions witha1,2Þ0 describe beams having
nonzero offset or a nonzero tilt angle relative to the fib
axis. For example, the equation for a beam with an incide
beam offsetx0 has the form

ua10&5Akv

p
expS 2

kv

2
~x2x0!22

kv

2
y2D .

The coherent states~5! are localized wave packets
which have minimum width and angular diffraction sprea
ing during propagation in a medium with a quadratic ind
profile. The centroid of such wave packets moves along
geometrical ray path, i.e., obeys geometrical optics. Mo
over, the coherent states~5! form a complete system of func
tions and are the fiber-mode generating functions. This pr
erty can be utilized to expand an arbitrary fieldu f & in
coherent states:

u f &5p21E E ua&^au f & d2a. ~6!

In a slightly inhomogeneous medium~dn/n!1 at dis-
tances of the order ofl! Maxwell’s equations in the paraxia
approximation can be reduced to an equivalent Schro¨dinger
equation. A detailed derivation of this equation for a sca
wave field is given in Ref. 17. A similar approach can
used to derive a parabolic equation for a two-component v
tor wave function.22 In the paraxial approximation, radiatio
propagates at small angles relative to thez axis, so that
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]2E/]z2 !k]E/]z' ]2E/]x2 ' ]2E/]y2 .

q

e
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Disregarding the term]2E/]z2 in Eq. ~2!, we obtain the fol-
lowing equation for the two-component wave function:

i

k

]c

]z
5Ĥc, ~7!

where

c5An0 exp~2 ikn0z!S Ex

Ey
D , Ĥ5Ĥ01Ĥ1 ,

Ĥ05F2
1

2k2n0
S ]2

]x2 1
]2

]y2D1
1

2n0
~n0

22n2!G Î
is the Hamiltonian corresponding to the first two terms in E
~2!, and

Ĥ152
1

2k2n0 S ]

]x S 1

n2

]n2

]x D ]

]x S 1

n2

]n2

]y D
]

]y S 1

n2

]n2

]x D ]

]y S 1

n2

]n2

]y D D
is the Hamiltonian corresponding to the third term in Eq.~2!.

The HamiltonianĤ can be expressed in terms of th
annihilation and creation operatorsâ andâ1 by means of the
relations

x̂5
1

A2kv
~ â11â1

1!, ŷ5
1

A2kv
~ â21â2

1!,

]

]x
5S kv

2 D 1/2

~ â12â1
1!,

]

]y
5S kv

2 D 1/2

~ â22â2
1!.

We therefore have

Ĥ05
v

kn0
~ â1

1â11â2
1â211! Î ,

Ĥ15h~Âŝz1B̂ŝx1kM̂zŝy1ĈÎ 1 Î !.

Here

h5
v2

2k2n0
3 , Â5

1

2
~ â1

22â1
122â2

21â2
12!,

B̂5â1â22â1
1â2

1 ,

M̂z52
i

k
~ â1

1â22â1â2
1!, Ĉ5

1

2
~ â1

22â1
121â2

22â2
12!,

Î 5F1 0

0 1G
is the unit matrix, and

ŝx5F0 1

1 0G , ŝy5F0 2 i

i 0 G , ŝz5F1 0

0 21G
are the Pauli spin matrices.

In slightly inhomogeneous media we haveh!1. The
Pauli matrices satisfy the relations

ŝxŝy5 i ŝz , ŝyŝz5 i ŝx , ŝzŝx5 i ŝy ,
~8!
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.

Note that the HamiltonianĤ is non-Hermitian, i.e.,Ĥ1

ÞĤ. The solution of Eq.~7! can be expressed in terms of th
evolution operatorU5exp(2ikĤz):

C~x,y,z!5ÛC~x,y,0!.

The wave functionc(x,y,0) describes both the dependen
on the space coordinates and the polarization state, whic
characterized by the Jones vector in the planez50. For ex-
ample, the wave functions describing the linearly polariz
state have the form

uex&5ua1a2&S 1
0D , uey&5ua1a2&S 0

1D . ~9!

The wave functions of right- and left-circularly polarize
states have the forms~respectively!

u11&5
1

&

ua1a2&S 1
i D , u21&5

1

&

ua1a2&S 1
2 i D . ~10!

or

u11&5
1

&

~ uex&1 i uey&), u21&5
1

&

~ uex&2 i uey&),

~11!

Polarized radiation is described by the coherency matrix26

J5S ^Ex* Ex& ^Ex* Ey&

^Ey* Ex& ^Ey* Ey&
D . ~12!

The angle brackets signify statistical ensemble averages.
degree of polarization is given by26

P5S 12
4 detJ

Tr2 J D 1/2

. ~13!

3. EVOLUTION OF THE COHERENCY MATRIX

The polarization characteristics of the radiation are
scribed by the elements of the coherency matrix. It would
useful, therefore, to investigate the evolution of the coh
ency matrix, which is given by the equation

Ĵ~z!5Û1Ĵ~0!Û

or by the equation

2
i

k

dĴ

dz
5Ĥ1Ĵ2 ĴĤ, ~14!

where J(0) is the operator of the coherency matrix in th
initial planez50.

Equation~14! is the same as the equation for the cor
lation function describing the evolution of the spatial coh
ence of radiation.20

3.1. Linear polarization

The wave functions of linearly polarized beams a
given by Eqs.~9!. The elements of the coherency matrix a

Ji , j5^ei uĴ~z!uej&, i , j 5x,y. ~15!
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determined by the source of the radiation. For example
the case of radiation linearly polarized along thex axis, we
have26

Ĵ~0!5I 0S 1 0

0 0D 5
I 0

2
~11ŝz!, ~16!

whereI 0 is the total intensity of the incident beam.
For radiation linearly polarized along they axis, the op-

erator of the coherency matrix has the form26

Ĵ~0!5I 0S 0 0

0 1D 5
I 0

2
~12ŝz!, ~17!

To solve Eq.~14!, we use the relations@ âi ,â j
1#5d i , j

( i , j 51,2), Eqs.~8!, and the expressions

ŝzuez&5uex&, ŝxuex&5uey&, ŝyuex&5 i uey&,
~18!

ŝzuey&52uey&, ŝxuey&52uex&, ŝyuey&52 i uex&

in calculating the matrix elements~15!.
Solving Eq. ~14! to within small terms proportional to

h2 and substituting the solutions into~13!, we obtain the
following equation for the quantity representing depolariz
tion:

4 detJ

Tr2 J
5

v2

2k2n0
5 F S kvx0

21
k

v
py0

2 D ~v2z21sin2~vz!

2vz sin~2vz!!12 sin2~vz!G . ~19!

The inclusion of the next two terms in order of sma
ness, proportional toh3 andh4, introduces into~19! terms of
higher order inz, which provide a significant contribution a
distances greater than a certainz0 . Equation~19! is therefore
valid only up to distancesz<z0 , wherez0 is dictated by the
accuracy of the solution of Eq.~14!. In our case this distanc
is

z0'
1

2kh
.

Equation ~19! takes into account both meridional an
sagittal rays with initial coordinates in the planez50: x0

Þ0, y050, px050, py0Þ0. It is evident from Eq.~19! that
the depolarization depends on the wave number and vani
in the limit l→0. The degree of polarization of pure diffrac
tion origin oscillates in the case of the axial ray~x050,
py050!. Inasmuch as the axial ray corresponds to the fun
mental mode of the fiber, periodic recovery of the degree
polarization should be observed in a single-mode isotro
fiber.

The dependence of the degree of polarization of linea
polarized radiation on the distancez is represented by the
curves in Fig. 1 for various offsetsx0 , including meridional
rays and radius-preserving (py05x0v) helically twisted sag-
ittal rays. Clearly, the degree of polarization decreases
versely as the distance squared. The reduction in the de
of polarization becomes more pronounced as the offset o
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of the beam relative to the fiber axis is increased. The de
larization length of meridional rays is 1.4 times the depol
ization length of sagittal rays.

The reduction in the degree of polarization is accom
nied by small oscillations. Figure 2a shows the variation
the functionF5105(4 detJ/Tr2 J) with distancez. We see
that the rise in this quantity is accompanied by small os
lations.

Substituting Eq.~19! into ~13!, we obtain

Pl'12
1

4

v

kn0
5 ~v2x0

21py0
2 !~v2z21sin2~vz!

2vz sin~2vz!!2
1

2

v2

k2n0
5 sin2~vz!. ~20!

At distancesz@v21, Eq. ~20! acquires the form

Pl'12
1

4

v3

kn0
5 ~v2x0

21py0
2 !z22

1

2

v2

k2n0
5 sin2~vz!.

Consequently, the degree of polarization decreases
versely as the distance squared, and depolarization vani
in the limit l→0.

For an axial beam~x050, py050! we encounter oscil-
lations in the degree of polarization of pure diffraction o
gin:

Pl'12
1

2

v2

k2n0
5 sin2~vz!. ~21!

Clearly, the degree of polarization of an axial beam a
quires its initial value forvz5np.

3.2. Circular polarization

The wave functions of right-circularly and left-circularl
polarized radiation have the form~10!. Consider the evolu-
tion of right-circularly polarized radiation. The initial cohe
ency matrix then has the form26

Ĵ~0!5
1

2
I 0S 1 2 i

i 1 D 5
I 0

2
~11ŝy!. ~22!

FIG. 1. Degree of linear polarization versus distance for both meridio
and sagittal rays~solid curves! and for meridional rays only~dashed curves!.
1! x0520mm; 2! x055 mm.
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FIG. 2. Function F5105(4 detJ/Tr2 J)
versus distance for an incident-beam of
setx0520mm. a! Linear polarization:1!
meridional and sagittal rays;2! meridional
ray only. b! Circular polarization:1! sag-
ittal ray with positive helicity
(py05x0v); 2! sagittal ray with negative
helicity (py052x0v); 3! meridional ray.
The Jones vector of linearly polarized radiation can be
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expressed in terms of the Jones vector of circularly polari
radiation:

E5FEx

Ey
G5F̂FE1

E2
G , ~23!

where

F̂5
1

&

F 1 1

2 i i G
is the transformation matrix.

Accordingly, the evolution of the coherency matrix
given by

2
i

k

dĴ

dz
5Ĥ1Ĵ2 ĴĤ, ~24!

whereĤ5F̂21ĤF̂.
Solving this equation to within small terms inh2, we

obtain an equation for the quantity characterizing the deg
of polarization:

4 detJ

Tr2 J
5

v2

2k2n0
5 F S kvx0

21
k

v
py0

2 D ~v2z21sin2~vz!!

64kx0py0vz sin2~vz!12 sin2~vz!G . ~25!

The plus sign corresponds to right-circular polarizatio
and the minus sign to left-circular polarization. There
clearly an asymmetry with respect to the sign of the twist
sagittal ray paths~Fig. 2b!. The depolarization is stronge
when the helicities of the ray path and the ‘‘photon’’ pa
have the same sign, and it is weaker when the helicities h
opposite signs. The depolarization of meridional rays
weaker than that of sagittal rays.

In the foregoing discussion we have made use of E
~10! and the relations

ŝyu11&5u11&, ŝxu11&5 i u21&, ŝzu11&5u21&,

ŝyu21&52u21&, ŝxu21&52 i u11&,
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Substituting Eq.~25! into ~13!, we obtain an expression
for the degree of polarization

Pc'12
1

4

v

kn0
5 F ~v2x0

21py0
2 !~v2z21sin2~vz!!

64vx0py0vz sin2~vz!12
v

k
sin2~vz!G . ~26!

At distancesz@v21, the dependence of the degree
polarization on the distance has the form

Pc'12
1

4

v3

kn0
5 ~v2x0

21py0
2 !z22

1

2

v2

k2n0
5 sin2~vz!.

This expression takes into account the conditionpy05x0v
for radius-preserving sagittal rays.

Consequently, like the degree of polarization of linea
polarized radiation, the degree of polarization of circula
polarized radiation decreases inversely as the dista
squared. Note that an analogous result is obtained for
circularly polarized radiation.

For an axial beam~x050, py050! we have

Pc'12
1

2

v2

k2n0
5 sin2~vz!. ~27!

It is evident that the degree of polarization of an ax
beam ~fundamental mode! oscillates periodically during
propagation, decreasing to a level that depends on the g
ent parameter of the medium and the wavelength of the
diation, and then increasing back to its original value.

4. EVOLUTION OF THE BERRY PHASE

The evolution of the polarization vector is described
the elements of the coherency matrix. For example, the r
tion of the polarization vector of a beam polarized along
x axis and propagating along a helical path is given by
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FIG. 3. Angle of rotationb of the polariza-
tion vector~a,c! and the spread in the angl
of rotationdb ~b,d! versus distance for vari-
ous incident-beam offsets. a,b:1!
x050.5mm; 2! x051.0mm; c,d: 1!
x0510mm; 2! x0520mm.
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^b&5
2

arctan
Jxx2Jyy

'
1

2
arctanF vx0py0

2n0
3 ~2vz2sin~2vz!!G . ~28!

Equation ~28! has been obtained with the inclusion
second-order terms, and holds for sagittal rays with ini
coordinatesx0Þ0, y050, px050, py0Þ0.

Figures 3a and 3c show the angle of rotation of the
larization plane as a function of distance in an optical fib
with parametersv5731023 mm21 andn051.5 for various
offsets. We see that the angle of rotation increases with
tance, with sinusoidal oscillations superimposed on a lin
trend. Note that the angle of rotation increases linearly w
the distance only for comparatively small offsets. Equat
~28! then has the form

^b&5
vx0py0

4n0
3 ~2vz2sin~2vz!!. ~29!

At distancesz@v21, Eq. ~29! assumes the form

^b&5
vx0py0

2n0
3 vz,

which coincides with the equation derived in Ref. 27. F
x0>A2/kv ~the quantityA2/kv specifies the width of the
fundamental mode of the fiber!, the angle of rotation in-
creases more slowly with increasing distance. However,
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taken into account for large offsets of the beam.
The rate of rotation of the polarization vector is given

n5
d^b&
dz

'
v2x0py0

2n0
3 ~12cos~2vz!!. ~30!

Consequently, the rotation of the polarization vector exhib
nonuniform behavior. The rate of rotation is zero where
polarization vector is parallel to the principal normal.

We note that Rytov rotation~or the Berry phase! ~Ref.
13! is of pure geometrical origin and does not depend on
wavelength of the radiation. However, the spread in
Berry phase is a wave phenomenon and vanishes in the
l→0. Thus, it is given by

^db&25^b2&2^b&2'
1

2
~12P!

'
v3

8kn0
5 ~v2x0

21py0
2 !z21

v2

4k2n0
5 sin2~vz!. ~31!

The spread in the Berry phase is governed by the degre
polarization of the radiation, and can be determined fr
measurements of the degree of polarizationP:
^db&'(1/2)A12P2. Zel’dovich and Kundinova14 point out
that the depolarization in an optical fiber of lengthz'7.5 cm
is 10–30%, which is consistent with the results obtain
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FIG. 4. Angle of rotation of the polarization
plane versus a! tilt angleu0 of the beam relative
to the fiber axis; b! offset x0 in a graded-index
optical fiber with parametersv5731023

mm21, n051.5, and lengthz55 cm.
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Berry phase occur in an axial beam, even though the ph
itself is equal to zero in this case.

The spread in the Berry phase is a wave phenome
and vanishes in the geometrical-optics approximation.

Figures 3b and 3d show the spread in the Berry phas
a function of the distance for various offsets of the be
axis. It is evident that the dispersion of the Berry phase
creases nonlinearly for relatively small offsets. For an off
x0520mm, appreciable spreads in the Berry phase, of
order of ^db&'1°, occur at distancesz'3.7 mm. This re-
sult corresponds to rotation of the polarization plane throu
an anglê b&'4.4°.

For radius-preserving (py05x0v) helically twisted sag-
ittal rays, it follows from Eq.~29! that the rotation angle o
the polarization plane increases as the square of the tilt a
u0 of the incident beam relative to the fiber ax
(py05n0 sinu0) or as the square of the offsetx0 ~Figs. 4a
and 4b!. These results are in good agreement with exp
mental data. Experiments14 show that the angle of rotation o
the polarization plane of a sagittal ray with a tilt angle in
w0'n0u0512.5° relative to the fiber axis (Dn50.016,
n051.53! and lengthz57.5 cm isb'115°. For a radius-
preserving, helically twisted sagittal ray withx05py0 /v and
u0'8.19° in a fiber of lengthz57.5 cm withDn50.016, it
follows from Eq.~29! that the rotation angle of the polariza
tion plane isb'122° ~Fig. 5!. It is evident from Fig. 5 that
the theoretical curve describes the experimental data q
well, in spite of the difference in the index profiles of th
investigated optical fibers. Note that Liberman a
Zel’dovich28 obtain a cubic dependence of the rotation an
of the polarization plane on the angle between the direc
of propagation and the axis of a step-index fiber.

5. DISCUSSION AND CONCLUSION

It is instructive to determine the depolarization length
radiation in real optical fibers. We know6,7,11 that the propa-
gation of coherent radiation in optical fibers is accompan
by significant changes in the state and degree of polariza
It is evident from Eqs.~20! and ~26! that the degree of po
larization depends on the gradient parameterv of the fiber,
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The depolarization length corresponding to 50% reduction
the degree of polarization of the radiation can be determi
from Eqs.~20! and ~26!:

l d'Akn0

v

n0
2

v2x0
.

Substituting the values of the gradient parame
v5731023 mm21 ~for a fiber of radiusr 05x0525mm
and relative difference in the refractive indexD'6.931023!
and the radiation wavelengthl50.63mm into the above
equation, we obtainl d'8.3 cm. This level of depolarization
is observed experimentally in an isotropic multimode opti
fiber.11 The depolarization is intensified when the offset
tilt of the incident beam relative to the fiber axis is increas
Since beams with a large offsetx0 correspond to higher
waveguide modes, the depolarization of higher modes
stronger than that of lower modes. Consequently, in cohe
communication systems it is better to use single-mode fib
that are not birefringent, where the degree of polarizat

FIG. 5. Angle of rotation of the polarization plane versus tilt angle of t
beam relative to the axis of an optical fiber of length 7.5 cm in air; theo
ical ~solid curve! and experimental14 values~triangles!.
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radiation. In graded-index fibers this length isz'0.5 mm.
As shown above, inclusion of the ‘‘spin–orbit’’ term i

Eq. ~2! leads to periodic recovery of the polarization of
axial wave beam, which corresponds to the fundame
mode. Note that similar oscillations are exhibited by t
width of an axial beam. In the scalar wave problem,
width of an axial beam corresponding to the fundamen
mode does not change during propagation, because dif
tion spreading of the beam is compensated by the waveg
focusing effect. This shows that a Gaussian wave pac
although an exact solution of the scalar problem, is only
approximate solution of the vector wave equation.

The physical mechanism underlying oscillations in bo
the degree of polarization and the width of the beam is
fraction. Oscillations of the polarization and the beam wid
are interdependent in this sense. Most likely, wave pac
exist that preserve their width and polarization. It would
interesting, therefore, to look for such wave packets fo
given fiber index profile, or to determine index profiles f
given beam parameters such that the polarization and b
width are unchanged during propagation. However, t
problem requires further investigation.

The depolarization of radiation is a diffractive phenom
enon, and the interpretation of Rytov rotation as a ‘‘ge
metrical’’ mechanism of depolarization is incorrect. Ryto
rotation merely causes the polarization plane to rotate,
does not alter the degree of polarization. Furthermore,
rotation angle of the polarization plane does not diminish
the radiation wavelength decreases, whereas depolariz
vanishes in the limitl→0. As shown above, depolarizatio
also occurs for meridional rays, which are not subject
Rytov rotation.

Physically, depolarization corresponds to a decreas
the degree of correlation between various components o
field, or to the emergence of a field component that does
correlate with an initial component. In the real world, dep
larization is often induced by the scattering of radiation
small-scale inhomogeneities of the medium. The phys
cause of depolarization in our case is the scattering of ra
tion by large-scale inhomogeneities of the medium. Sin
large-scale inhomogeneities have little influence on the
larization characteristics, they are usually ignored. In wa
guide problems, however, small changes accumulate
distance and can produce significant effects.

The depolarization of a circularly polarized laser bea
during propagation in the atmosphere is observ
experimentally.29 Atmospheric turbulence is one propos
mechanism to explain the phenomenon. However, it
been shown theoretically1,2 that atmospheric turbulence ca
not account for the experimentally observed depolarizat
Depolarization is most likely attributable in this case to t
diffraction effects discussed above. A laser beam usually
a nonuniform Gaussian profile. The radiation therefo
propagates in a channel with a nonuniform distribution of
refractive index. The gradient parameterv characterizing
this nonuniformity is specified by the beam wid
a5A2/kv. For given values of the distancez58.045 km
and the radiation wavelengthl50.6328mm and for the

1092 JETP 85 (6), December 1997
al

e
l
c-
de
t,
n

-

ts

a

am
is

-

ut
e
s
ion

o

in
he
ot
-

al
a-
e
-
-

th

d

s

n.

as
e
e

from Eq. ~26! that the gradient parameter
v'2.831025 mm21. This value corresponds to a diamet
of the fundamental mode of the laser beama'85mm,
which is consistent with actual laser beam diameters. N
that depolarization increases as the beam diameter is
duced.

To summarize, the decrease in the degree of polariza
in multimode optical fibers has a diffraction origin and c
only be explained in wave language. Inasmuch as depo
ization vanishes both in the limitl→0 and in the limit
x0→0, it can be interpreted as the result of interaction b
tween polarization~spin! and the trajectory~orbital angular
momentum!. The degree of polarization of both linearly an
circularly polarized beams decreases inversely as the
tance squared. The depolarization of meridional rays
weaker than that of sagittal rays. Right-circularly polariz
radiation and left-circularly polarized radiation are asymm
ric with respect to the sign of the twist of sagittal rays. D
polarization intensifies when the offset of the beam axis,
gradient parameter of the fiber, or the wavelength of
radiation increases.

The rotation of the polarization vector in a graded-ind
optical fiber is nonuniform. The linear growth of the angle
rotation of the polarization plane with increasing distance
accompanied by sinusoidal oscillations. The spread in
Berry phase or the rotation angle of the polarization pla
increases with distance, accompanied by fluctuations in
spread of the Berry phase for an axial beam~fundamental
mode!; these fluctuations are a wave phenomenon. The r
tion of the polarization vector increases linearly with d
tance, and as the squares of the offset and tilt angle o
sagittal ray relative to the fiber axis.

The proposed approach can be used to investigate
evolution of polarization in birefringent, absorbing, or amp
fying optical fibers, as well as in fibers with random inh
mogeneities.

1V. I. Tatarski�, Izv. Vyssh. Uchebn. Zaved. Radiofiz.10, 1762~1967!.
2Yu. A. Kravtsov, Izv. Vyssh. Uchebn. Zaved. Radiofiz.13, 281 ~1970!.
3S. M. Rytov, Dokl. Akad. Nauk SSSR18, 2 ~1938!.
4A. S. McLean and J. B. Pendry, J. Mod. Opt.42, 339 ~1995!.
5L. G. Cohen, Bell Syst. Tech. J.50, 23 ~1971!.
6A. M. Smith, Appl. Opt.17, 52 ~1978!.
7P. Kaminov, IEEE J. Quantum Electron.QE-17, 15 ~1981!.
8C. R. Manyuk and P. K. Wai, J. Opt. Soc. Am. B11, 1288~1994!.
9A. D. Shatrov, Radiotekh. E´ lektron.26, 505 ~1981!.

10A. A. Esayan and B. Ya. Zel’dovich, Kvantovaya E´ lektron.15, 235~1988!
@Sov. J. Quantum Electron.18, 149 ~1988!#.

11O. I. Kotov, O. L. Marusov, O. L. Nikolaev, and V. N. Filippov, Opt
Spektrosk.70, 924 ~1991! @Opt. Spectrosc.70, 540 ~1991!#.

12A. Tomita and R. Y. Chiao, Phys. Rev. Lett.57, 936 ~1986!.
13M. V. Berry, Proc. R. Soc. London, Ser. A392, 45 ~1984!.
14B. Ya. Zel’dovich and N. D. Kundinova, Kvantovaya E´ lektron. 22, 184

~1995!.
15M. A. Leontovich and V. A. Fok, Zh. E´ ksp. Teor. Fiz.16, 557 ~1946!.
16D. Marcuse,Light Transmission Optics, 2nd ed., Van Nostrand Reinhold

Princeton, N.J.~1982!.
17J. A. Arnaud,Beam and Fiber Optics, Van Nostrand, New York~1976!.
18G. Eichmann, J. Opt. Soc. Am.61, 161 ~1971!.
19S. G. Krivoshlykov and I. N. Sisakyan, Opt. Quantum Electron.12, 463

~1980!.

1092N. I. Petrov



20S. G. Krivoshlykov, N. I. Petrov, and I. N. Sisakyan, Opt. Quantum Elec-
tron. 18, 253 ~1986!.

nt

25E. Schrödinger, Naturwissenschaften14, 664 ~1926!.
26R. M. A. Azzam and N. M. Bashara,Ellipsometry and Polarized Light,

rk
21I. A. Malkin and V. I. Man’ko, Dynamical Symmetries and Cohere
States of Quantum Systems@in Russian#, Nauka, Moscow~1979!.

22N. I. Petrov, J. Mod. Opt.43, 2239~1996!.
23J. R. Klauder and E. C. G. Sudarshan,Fundamentals of Quantum Optics,

Benjamin, New York~1968!.
24R. J. Glauber, Phys. Rev.131, 2766~1963!.
1093 JETP 85 (6), December 1997
North-Holland Publ. Co., Amsterdam; Elsevier North-Holland, New Yo
~1977!.

27V. S. Liberman and B. Ya. Zel’dovich, Phys. Rev. A46, 5199~1992!.
28V. S. Liberman and B. Ya. Zel’dovich, Pure Appl. Opt.2, 367 ~1993!.
29D. L. Fried and G. E. Meyers, J. Opt. Soc. Am.55, 740 ~1965!.

Translated by James S. Wood
1093N. I. Petrov



Nonlinear diffraction in spontaneous three-wave and coherent four-wave light scattering

on-
by polaritons
G. Kh. Kitaeva, A. A. Mikhailovski , and A. N. Penin

M. V. Lomonosov Moscow State University, 119899 Moscow, Russia
~Submitted 24 June 1997!
Zh. Éksp. Teor. Fiz.112, 2001–2015~December 1997!

Spontaneous three-wave and coherent four-wave scattering by polaritons in crystalline media
with periodically modulated nonlinear quadratic susceptibility have been studied both
theoretically and experimentally. Phase matching conditions and an expression for the scattering
spectral line shape with due account of cascade processes in nonlinear diffraction for
coherent Stokes polariton light scattering have been derived. Measurements of the light intensity
distribution due to the three- and four-wave scattering in a LiNbO3:Nd:Mg crystal with a
periodic domain structure are in good agreement with theoretical results. The prospects for using
the effects of nonlinear diffraction in spectroscopic studies of media with periodic
distributions of nonlinear optical parameters, specifically, in precision measurements of the IR
refractive index dispersion and determination of the period and profile of the quadratic
susceptibility distribution are discussed. ©1997 American Institute of Physics.
@S1063-7761~97!00712-9#
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In recent years, there has been steady interest in cry
line structures with periodically modulated optical para
eters. The reason is that such materials can be used in
quency converters of electromagnetic radiation~light
harmonic converters, frequency doublers, etc.! based on
quasi-matched parametric interactions. Before using s
materials, one should study the quantitative characteristic
their optical properties over a broad spectral range. S
characteristics include dispersion of the refractive index
both visible and infrared ranges, the period and alignmen
a spatial grating, and its profile. These characteristics
measured using various linear and nonlinear optical effe
but only the latter yield the required information about a t
sample.

One well-known method of measuring the dispersions
the linear and quadratic susceptibility of crystals in the
range is by spectroscopy of spontaneous three-wave p
metric light scattering.1 Spontaneous parametric scattering
media with a periodic distribution of quadratic susceptibil
demonstrates an effect of nonlinear diffraction resulting
additional spectral features related to the quasi-matc
interaction.2 Measurements of the spectrum and angular d
tribution of spontaneous parametric scattering in such m
rials yield dispersion curves in the polariton spectral ran
the period of a quadratic susceptibility distribution, and
shape. Notable flaws of this technique, however, are the r
tively poor accuracy of refractive index measurements~espe-
cially in the range of low-frequency polariton states!, the low
intensity of signals due to higher harmonics of the quadr
susceptibility space distribution, and poor spatial resolut
in measurements of variations in parameters of a nonlin
superlattice generated in a crystal.

Processes of four-wave mixing in media with period
distribution of nonlinear optical parameters have not be
studied in detail by this time, although they can play a de

1094 JETP 85 (6), December 1997 1063-7761/97/1210
al-
-
re-

ch
of
h

n
of
re
s,
t

f

ra-

d
-
e-
,

la-

ic
n
ar

n
i-

linear diffraction is of special interest for measurements
the polariton light scattering. The technique of coherent a
Stokes Raman scattering~CARS! has been widely used in
coherent spectroscopy.3 Measurements of the Stokes comp
nents of scattered light, however, are lacking, although
version of the coherent four-wave light scattering is pref
able for studies of crystals without a symmetry center. A
though the number of components in the experimental ap
ratus required for this technique is larger, since all interact
waves should have different frequencies, the optical sys
is aligned more easily by switching from recording spectra
spontaneous parametric scattering to spectra of coherent
scattering. By using the effect of coherent Stokes Ram
scattering~CSRS!, one can reduce the uncertainty of me
sured dispersion curves of the polariton refractive index
one or two orders of magnitude and investigate sm
samples of materials. The latter circumstance also allows
to study nonperiodic distributions of optical parameters. I
obvious that the effect of nonlinear diffraction in the cohe
ent Stokes scattering should give rise to emergence of a
tional features in the spectrum and angular distribution
scattered light, and multistep diffraction processes, in wh
nonlinear diffraction occurs in both polariton state generat
and probing light scattering due to this state, should ta
place. When active spectroscopic methods are emplo
signals due to weak spatial harmonics of the nonlinear s
ceptibility, which do not manifest themselves in spontaneo
parametric scattering owing to their small amplitudes, can
detected. Taking into account the measured efficiences o
high-order nonlinear diffraction one can reconstruct the p
file of a nonlinear spatial grating with a higher accuracy.

The aim of our study was to investigate spontaneo
parametric scattering and coherent Stokes light scatterin
materials with a periodic distribution of nonlinear suscep
bility using samples of multiply domained LiNbO3:Nd:Mg

1094-08$10.00 © 1997 American Institute of Physics



crystals and to assess the feasibility of applying these effects
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to spectroscopic techniques.

2. THEORY

2.1. Three- and four-wave light scattering in a homogeneous
noncentrosymmetric medium

In spontaneous parametric scattering, the pump opt
wave is scattered due to vacuum fluctuations in a nonc
trosymmetric medium.1 The frequencies of the three wave
are related by the temporal phase matching:

vL2vP5vS , ~1!

and the wave vectorsk i by the condition of spatial phas
matching, which is expressed for a homogeneous medium

kL2kP5kS , ~2!

where the subscriptsL, P, andS denote the laser~pumping!,
polariton ~idle!, and signal waves, respectively. Conditio
~2! should be satisfied to within some allowed detuni
Dk5ukL2kP2kSu, which is determined by the absorptio
and the length of the scattering medium.

Spontaneous parametric scattering is used in meas
ments of dispersions of the real and imaginary parts of
polariton wave vector. To this end, the pumping and sig
frequencies are selected in the transparent range of the
terial, and the frequencyvP is in the polariton band of the
spectrum. After leaving the test material, the scattered w
is measured to find its distribution in frequency and ang
I S(uS ,vS), whereuS is the scattering angle in the plane
wave vectors. The detected signal has a maximum when
spatial matching condition~2! is satisfied exactly. The polar
iton dispersion curve is determined using the tuning cu
uS0(vS), which connects points of maximum intensit
where

]I ~uS ,vS!

]uS
U

vS5const

50.

The linear absorption factor for polaritons and the imagin
part of their wave vector are derived from the angular l
width of the scattered light spectrumI (uS ,vS5const).

Coherent four-wave scattering process in a nonc
trossymmetric media can be divided into two types, nam
direct and multistep processes.3 Direct scattering is the para
metric interaction of three pumping waves generating
fourth wave whose frequency and wave vector satisfy
matching conditions temporal and spatial. In the case
Stokes scattering, the matching conditions are expresse
follows:

vS5vL2v11v2 , ~3!

Dk[kS2kL1k12k250, ~4!

wherev i are the frequencies of the four interacting wav
andk i are their wave vectors; the subscripts 1, 2, andL label
the incident waves, and the subscriptS denotes the scattere
wave to be detected. The efficiency of the process is de
mined by the nonlinear cubic susceptibilityx (3) of the mate-
rial.
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x of the material, and it can be treated as two sequen
three-wave processes similar to the parametric light sca
ing. In this case, however, the population of all the intera
ing modes is high and is determined not by vacuum fluct
tions, but by the intensities of all three pumping waves.
the first process, a polariton wave with the difference f
quencyv12v2 and wave vectork12k2 resulting from the
pump waves with frequenciesv1 and v2 is excited in the
material. A rapidly decaying free polariton wave is also e
cited, its frequencyvP and wave vectorkP being related
through the dielectric function of the material. The tempo
and spatial matching conditions in excitation of polarit
waves have the form

vP2v11v250, ~5!

t [ kP2k11k250, ~6!

which are analogous to Eqs.~1! and~2!. In the second stage
of the multistep process, the test pump wave is scattered
the coherently excited polariton waves. The temporal a
spatial matching conditions are similar to Eqs.~5! and ~6!.
As in the case of spontaneous parametric scattering,
matching conditions~4! and~6! should be satisfied to within
an uncertainty determined by the absorption and the len
of the scattering medium. If the material has both quadra
and cubic nonlinear susceptibilities, both of these proces
can occur concurrently, and the necessary condition for
tecting multistep light scattering by coherently excited p
laritons is that Eqs.~3!–~6! should be valid simultaneously
Multistep coherent scattering was first studied by Coffin
and DeMartini.4 Its theory was described comprehensively
Refs. 5 and 6, and the case of Stokes scattering was ana
in our previous publications.7,8

2.2. Three- and four-wave light scattering in media with
periodic distribution of quadratic nonlinear susceptibility

In the case of a material with a periodic distribution
the quadratic nonlinear susceptibilityx (2), the Fourier series
expansion can be used:

x~2!~r !5(
2`

`

xm
~2! exp~ iqm•r !, ~7!

where the amplitudes of the spatial harmonics are

xm
~2!5

1

2p E
2d/2

d/2

x~2!~r !exp~2 iqm•r !dr , ~8!

qm5qm, m is an integer,q[(2p/d)n is the reciprocal su-
perlattice vector,d is its period, andn is the unit vector
normal to its layers.

2.2.1. Three-wave spontaneous parametric light scat
ing. Spontaneous parametric light scattering in such mat
als was discussed in Ref. 2. In the plane wave approxi
tion, the polarization at the frequency of the scattered w
can be expressed as

1095Kitaeva et al.
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PS~vS5vL2vP!; (
m52`

xm ELEP

3exp@ i ~kL2kP1qm!•r #, ~9!

whence follows the phase matching condition for interact
waves@compare with Eq.~2!#:

kL2kP1qm5kS . ~10!

In this case, the intensity distribution over frequency a
angle for spontaneous parametric scattering contains a
tional tuning curves, whose number equals that of the n
zero spatial harmonicsxm

(2) . By measuring the frequencie
and angles on any tuning curve with indexm and taking into
account condition~10!, one can determine with a high acc
racy the periodd of the nonlinear superlattice and alignme
of the vectorn. The scattered light intensity on each tunin
curve of orderm is, in turn, proportional touxm

(2)u2. Thus, by
measuring the relative distribution of the scattered light
tensity in different orders of nonlinear diffraction, one c
reconstruct the profile of the quadratic susceptibility spa
distribution in the studied crystal.

2.2.2. Four-wave coherent light scattering by polariton
In a medium with periodic modulation of its quadratic su
ceptibility, nonlinear diffraction should take place in a
stages of a multistep process. Unlike the spontaneous p
metric scattering, the four-wave coherent scattering has
been analyzed theoretically in previous work. Here we
scribe a consistent calculation of the coherent cascade
tering intensity depending on the relation among wave v
tors of waves interacting in a material whose quadra
susceptibility is expressed by Eq.~7!. Suppose that three
pump waves enter the medium, and their fields are expre
as

Ei5Ei0 exp~2 iv i t1 ik ir !,

where the subscripti can be 1, 2, orL. In the first stage, the
interaction betweenE1 andE2 generates the polarization

P~1!~r ,vP5v12v2!

5
1

4p (
n

xn
~2! exp~ inq•r !E10E20*

3exp@2 i ~v12v2!t1 i ~k12k2!•r #. ~11!

The spatial Fourier components of the polarizatio
P(1)(r ,vP) and fieldE(r ,vP) generated by this polarization
P(1)(k,vP) and E(k,vP), are related through the polarito
Green’s functionG(k,vP)1:

E~k,vP!5G~k,vP!P~1!~k,vP!. ~12!

In this case, the Green’s function is assumed to be the s
as in a homogeneous medium. A general expression
G(k,vP) was given in Ref. 5. The Green’s function of ord
nary polariton waves can be written in the form

G~k,vP!5
vP

2

c2

4p

k22KP
2 ~vP!

, ~13!
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the polariton state at frequencyvP , and aP is the linear
absorption of the medium at this frequency. Hence we de

E~r ,vP!5
1

4p

E10E20* exp~2 ivPt !

~2p!3 E dkG~k,vP!

3exp~ ik•r !(
n

xn
~2!E

V8
dr 8 exp~ iDkn

~1!r 8!, ~14!

whereDkn
(1)5k12k22k1qn. Here and in what follows we

use the plane-wave approximation, so the amplitudes ca
removed from under the integrals over the coordinat
Nonetheless, integration over the coordinates is perform
over a limited crystal volumeV8 exposed simultaneously t
the fieldsE1 and E2 . The domain of integration over th
wave vectorsk contains all possible magnitudes and alig
ments ofk.

In the second stage, the test wave and the field descr
by Eq. ~14! are mixed. As a result, the expression for t
polarization oscillating at frequencyvS5vL2vP takes the
form

P~2!~r ,vS5vL2vP!

5
1

~4p!2

EL0E10* E20 exp~2 ivSt1 ikS•r !

~2p!3

3(
m,n

xm
~2!xn

~2!* E dk exp~ iDkm
~2!r !G* ~k,vP!

3E
V9

dr 9 exp~2 iDkn
~1!

•r 9!, ~15!

whereDkm
(2)5kL2kS2k1qm. We can easily derive from

Eq. ~15! the scattered light intensity as a function of th
detuning~i.e., the shape of the scattered light spectrum!:

I S}U(
m,n

xm
~2!xn

~2!* E dkG* ~k,vP! f ~Dkm
~2!! f * ~Dkn

~1!!U2

,

~16!

f ~j!5E
V
drei j•r. ~17!

Here we have assumed for simplicity that the integrat
domainV8 defined for Eq.~14! and the region of interaction
V9, which is the nonlinear crystal volume exposed simul
neously to all three incident waves, are identical and deno
by V. In the case of an unlimited interaction regionV, the
functionsf (Dkn

(1)) and f (Dkm
(2)) are nonvanishing only if the

exact conditionsDkn
(1)5Dkm

(2)50 are satisfied, which, in
turn imply that the matching conditions for incident wav
are fulfilled:

Dkn2m[kS2kL1k12k21~n2m!q50. ~18!

In the case of a limited interaction volume, condition~18! is
fulfilled to within some detuning which depends on the ch
acteristic linear dimensions of regionV. As follows from Eq.
~15!, the scattered light intensity as a function of the detu

1096Kitaeva et al.
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exact matching conditionsDkn2m5k50 ~wherek is an inte-
ger! has the form

I S~t1 ,t2 ,...!}U(
n

xn
~2!xn1k

~2!*
vP

2

ukP2tnu22~kP1 iaP/2!2U2

,

~19!

t [ kP2k11k22qn. ~20!

The line shape defined by Eq.~19! is the result of interfer-
ence among Lorentzians with different peak positions de
mined by the conditions

tn50. ~21!

This means that peaks in the scattered light spectrum sh
be detected when conditions~18! and ~21! are satisfied si-
multaneously. These are the matching conditions for coh
ent multistep four-wave scattering in a medium with the q
dratic nonlinear susceptibilityx (2) defined by a periodic
function of coordinates.

If the medium also has a cubic susceptibility, an ad
tional scattered component due to direct four-wave scatte
should be detected. In multi-domained crystals of the ty
under discussion, the signs of the nonlinear susceptib
components of odd orders are the same in all domains.
spatial modulation ofx (3) due to periodic modulation of the
impurity concentration is several orders of magnitu
smaller than that ofx (2) and can be neglected in this mode
In crystals shaped as plates with thicknessL the total signal
intensity is expressed in terms of the effective cubic susc
tibility:

xeff
~3!5x~3!1

v2

c2 (
n

xn1k
~2! xn

~2!*

3
1

uk12k22qnu22~kP2 iaP/2!2 , ~22!

I S } uxeff
~3!u2Fsin~DkL/2!

DkL/2 G2

. ~23!

3. EXPERIMENT

3.1. Samples

Our experiments were performed on tw
LiNbO3:Nd:Mg crystals with a layered structure determin
by the growth procedure. The first sample was a sing
domain crystal in which the layered structure manifested
self only as a small periodic modulation of the refracti
index (Dn'1024). The second sample had a 180° doma
structure of the ‘‘tail-to-tail, head-to-head’’ configuration9

and the domains were localized on layers produced in
process of growth. A nonvanishing spontaneous polariza
in each domain and periodic alternations in its direction
to periodic alternations in the quadratic susceptibility sign
the studied samples, the angle between the normal to
domain interfaces~and growth layers! and the crystalc-axis
was 57°.
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3.2. Three-wave spontaneous parametric scattering

In order to record the intensity of light due to spontan
ous parametric scattering in crystals with periodic modu
tion of optical parameters versus scattering angle and wa
length, we used an experimental setup with a photocam
similar to that described in Ref. 10. The light scattering co
figuration is depicted in Fig. 1. Figures 2a,b show the sp
tral and angular distributions of light due to spontaneo
parametric scattering in the single-domain and multidom
samples, respectively. The comparison between these sp
indicates that the spectrum of the multidomain crystal c
tains additional components, which are defined more cle
in the region of upper polariton branch (vP>900 cm21).
From the shapes of spectral components correspondin
zero-order diffraction we derived dispersion curves of t
ordinary refractive index in the region of the upper polarit
branch in single-domain and multidomain samples plotted
Fig. 3. On the base of our measurements and Eqs.~1! and
~3!, we calculated the domain structure perio
d55.660.2 mm. Moreover, we determined that the add
tional tuning curve on the spectrum of spontaneous param
ric scattering in the multidomain sample in the region of t
upper polariton branch corresponds to the spatial harmo
xm

(2) with m521.
Analyzing the spontaneous parametric scattering sp

trum of the multidomain sample corresponding to scatter
by the lower polariton branch in the vicinity of the TM fun
damental mode with frequencyvTO5580 cm21, however,
we encountered certain difficulties. As follows from our n
merical calculations, the clearly defined component cor
sponds to two merging curves due to the spatial harmo
xm

(2) with m561. A weak tuning curve corresponding t
m50 can be seen only at large scattering angles near
phonon component. This indicates that the amplitude of
zeroth spatial harmonic of the quadratic nonlinear susce
bility is small in comparison with the amplitudes ofm561
harmonics. Similar relations among nonlinear diffraction
ficiencies of different orders for a LiNbO3:Y:Mg crystal with
a similar domain structure were given in Ref. 11. Furth
attempts to detect nonlinear diffraction of higher orders
spectra of spontaneous parametric scattering were futile
small pumping powers (PL<300 mW) no additional tuning
curves were observed, apparently owing to the small am
tudes of the corresponding spatial harmonicsxm

(2) , and at

FIG. 1. Configuration of spontaneous parametric scattering and nonli
diffraction.
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larger pumping powers (PL>1 W) they were not observable Measurements were performed as follows. The f

FIG. 2. Intensity of spontaneous parametric light scattering versus scattered light frequency and angle in~a! single-domain and~b! multidomain
LiNbO3:Nd:Mg crystals.
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due to the strong effect of photoinduced light scattering.

3.3. Four-wave coherent Stokes scattering by polaritons

In recording these spectra, we used an experimenta
rangement described previously.8 The alignments of pump
ing light beams with respect to the crystal axes are show
Fig. 4.

FIG. 3. Dispersion of ordinary refractive index in the polariton branch of
crystal spectrum derived from spontaneous parametric scattering sp
~squares! single-domain crystal;~circles! multidomain crystal.
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quency differencev12v25vP was tuned to the polariton
state ~the wavelength of the first source was constant a
equal to 1.064mm and that of the second source was tun
between 1.08 and 1.22mm!. Then the angles between th
incident light beams and crystal axis at which coher
Stokes scattering should occur were approximately ca
lated from Eqs.~18! and~21! using fairly accurate measure
ments (Dno,e'0.0002) of the refractive index dispersion
the visible range and less accurate data on the dispersio
the ordinary refractive index in the polariton branch me
sured by means of the spontaneous parametric scatterin
addition, we used the domain superlattice constant deri
from spontaneous parametric scattering spectra. The a
ment was defined in terms of the anglesu1 andu2 between
the pumping IR beams and the probe beam at wavelen
lL5532 nm, and the anglea of the crystal rotation in the
plane of the pump wave vectors~Fig. 4!. The wave vectors
of all interacting beams were in one plane containing
c-axis of the crystal. Next, a set of curves of the scatte
light intensity versus the crystal rotation angle at fixedu2 ,

tra:

1098Kitaeva et al.
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FIG. 4. Configuration of coherent Stokes light scattering by pola
tons and nonlinear diffraction.
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recorded at differentu1 . As a result, we obtained a two
dimensional graph ofI S(a,u1) for fixed frequencyvP and
angle u2 . It is obvious that the peaks ofI S(a,u15const)
should lie on curvesa5an2m(u1) determined by the condi
tion Dkn2m50 near their crossings with the curves oftn50.

Figure 5 shows numerically calculated curv
a5a0(u1) on which the conditionDkm2n50 holds for both
test samples together with measurements of peak posi
on the curves of the scattered light intensityI S(a,u15const)
for frequencyvP5560 cm21. Note that, on the scale of thi
graph, the curves ofa5a0(u1) for the two samples coincide
since the difference between the refractive indices of
single-domain and multidomain samples in the visible a
near-IR ranges is small, of order 1024. The curves
a5an2m(u1) for the case ofn2mÞ0 were not analyzed
since numerical calculations indicated that in this range
condition Dkm2nÞ050 does not hold for all sets of th
anglesu1 , u2 , anda. Figure 5 indicates that the calculation
and measurements of the anglea5a0(u1) are in good
agreement. This means that, on one hand, the accuracy o
refractive index dispersion data in the transparency ra
used in the calculations is fairly good, and, on the ot
hand, the coherent four-wave interaction model is adequ
The angular widths of the curvesI S(a,u15const) were

FIG. 5. Curves ofa5a0(u1) at frequencyvP5560 cm21 and positions of
peaks on curve of scattered light intensityI S(a,u15const) for ~triangles!
single-domain and~squares! multiply-domained crystals.
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~23!, by the linear dimensions of the interaction region in t
crystal,L<1 mm.

Equations~22! and ~23! imply that the contribution of
the direct four-wave scattering due to the cubic susceptib
x (3) should be detected along the entire cur
a5an2mÞ0(u1). Nonetheless, in our experiments the sign
was detected only on limited sections of the cur
a5an2mÞ0(u1), where additional spatial phase matchin
conditions for multistep scattering are satisfied. This in
cates that the background due to direct scattering is smal
x (3) is relatively low.

Basic information on the dispersion of the polariton sta
and modulation ofx (2) in a crystal can be derived from th
curve I max(u1)[I(a0(u1),u1). This curve shows the change i
I S on the surface defined by the conditionDk50 and is
plotted using measurements ofI S at the peak of each one
parameter curveI S(a,u15const) for differentu1 . The curve
connecting these peaks yields such parameters of the
dium as the refractive index and effective absorption at
polariton frequency, superlattice constant and the ratio
nonlinear diffraction efficiencies of different orders. Figur
6 and 7a yield curvesI max(u1) recorded at one frequency an

FIG. 6. Curve of I max(u1) for the single-domain crystal at frequenc
vP5560 cm21 andu250°: ~black squares! experimental data; the dashe
line shows calculations.
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e
ies

rve
FIG. 7. Angular characteristics of coherent Stokes scattering in the multidomain crystal at frequencyvP5560 cm21 andu250°: ~a! I max(u1) measured in
experiments. Peaks due to the quasi-matching interaction are encircled:1—m2n50, n51; 2—m2n50, n52. ~b! Measurements~black squares! of peak
positions on curves of the scattered light intensityI S(a,u15const), and~dashed lines! calculated curve ofa5a0(u1), and curves of intensity maxima for th
first stage of multistep scattering corresponding totn50 (n50,1,2). The curves oftn50 for n51,2 are calculated for several polariton state frequenc
which can be excited simultaneously owing to the finite widths of the pump laser lines. Labels1 and2 denote positions of peaks on the experimental cu
I max(u1) ~Fig. 7a!.
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peak positions on these curves are defined by the e
matching conditionstn50 at frequencyvP . If the polariton
frequency and the difference wave vectork12k22qn5kP

are given, this allows one to calculate the refractive index
the polariton frequency. In this case, the polariton refract
index uncertainty can be about 1%, which is an order
magnitude better than the accuracy of the spontaneous p
metric scattering technique in this frequency band. We h
measured the refractive index of the tested samples at
frequencies of this band. AtvP5533 cm21 we have ob-
tainednP53.7560.05 ~compare to the value derived from
the spectra of spontaneous parametric scatter
nP54.360.6!, and at vP5560 cm21 we have
nP57.0460.08. Note that in the latter case the polarit
refractive index could not be derived from three-wave sc
tering measurements, since in this frequency band the s
tral line of the spontaneous parametric scattering stron
overlaps with the Raman line ~vTO5580 cm21,
Dv'20 cm21!.

In the case of a homogeneous medium, the cu
I max(u1) has only one peak, and in the case of a sample w
a periodically modulated nonlinear susceptibility it can ha
additional peaks due to nonlinear diffraction. In princip
nonlinear diffraction can also affect the curv
I S(a,u15const). This is possible if condition~17! is satisfied
for different m2n at equalu1 andu2 , which was never the
case in our experiments. On the curve ofI max(u1) plotted in
Fig. 7a, the nonlinear diffraction manifests itself in the for
of additional peaks~encircled by solid lines!. The peak
marked by2 corresponds tom2n50 and n52, and that
marked by1 to m2n50 andn51. The graph shows only
one slope of the scattered light intensity peak due to sca
ing not affected by nonlinear diffraction, since the intens
measurements at largeru1 were very inaccurate owing to
vignetting by apertures of the light detecting system. For
same reason, we could not adequately interpolate the ex
mental curve ofI max(u1) using a formula like Eq.~19!. We
derived the domain superlattice constantd55.360.1 mm
from the positions of peaks in the scattered light intens
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tive index, we plotted curvestn50 anda5a0(u1) shown in
Fig. 7b. The curvestn50 for n50,1,2 have the shapes o
broad bands, whose widths are determined by the spec
of polariton states excited simultaneously by pumping la
lines of finite widths.

Similar measurements were performed at the other
quency vP5533 cm21. Measured and numerically calcu
lated phase matching curves are plotted in Fig. 8a,b. In
case, the curveI max(u1) has two clearly defined peaks o
coherent Stokes scattering due to nonlinear diffraction co
sponding ton2m50 ~marked by0! and n51 ~labeled by
1!. Figure 8a shows that peak1 is much stronger than peak0,
which is in qualitative agreement with the ratio between
respective Fourier components of the quadratic susceptib
in multiply-domained LiNbO3:Y:Mg crystals.11 The domain
superlattice constant isd55.3460.05mm, which is in good
agreement with the value derived from the angular dep
dence atvP5560 cm21. In calculating the line shapes usin
Eq. ~22!, we took into account angular divergences of pum
laser beams and their finite spectral widths. It is notewor
that the approximation of the experimental curveI max(u1) by
Eq. ~22! is satisfactory only if the linear absorption at th
polariton frequency is assumed to be smaller than that
rived from spontaneous parametric scattering spectra12 and
calculations based on the oscillator model.13 This discrep-
ancy was noted previously7,8 in studies of homogeneou
crystals, but its nature has remained unclear. The small
ference between the domain superlattice constants der
from measurements of the spontaneous parametric scatt
and coherent Stokes scattering can be ascribed to the i
mogeneous distribution of this parameter over the cry
volume.

4. CONCLUSIONS

In this work we have investigated for the first time th
nonlinear diffraction in coherent four-wave light scatterin
by polaritons in materials with periodically modulated qu
dratic susceptibility. We have found phase matching con

1100Kitaeva et al.
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FIG. 8. Angular characteristics of coherent Stokes scattering in the multidomain crystal at frequencyvP5533 cm21 andu2516°: ~a! I max(u1) ~black squares!
measured in experiments; the solid line shows calculations by Eq.~22! taking into account the angular and spectral distributions of pumping beams and
absorptionaP5500 cm21 at the polariton frequency. Peaks due to the quasi-matching interaction are encircled:0—m2n50, n50; 1—m2n50, n51. ~b!
Measurements~filled squares! of peak positions on curves of scattered light intensityI S(a,u15const),~dashed line!, calculated curve ofa5a0(u1), and
curves of intensity maxima for the first stage of cascade scattering corresponding totn50 (n50,1). The curves oftn50 for n50,1 are calculated for severa
polariton frequencies which can be excited simultaneously owing to finite widths of pumping laser lines. The labels0 and1 denote positions of peaks on th
experimental curveI max(u1) ~Fig. 8a!.
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shape. The predicted effect has been detected in experim
and our measurements are in satisfactory agreement
both theoretical predictions and data on the three-wave p
metric scattering in the materials studied. We have compa
the spectroscopic possibilities of the coherent Stokes sca
ing technique with those of spontaneous parametric sca
ing. From our analysis, we have drawn the following conc
sions.

1. Cascade diffraction processes are possible in cohe
four-wave light scattering by polaritons in a noncentrosy
metric media and with periodically modulated quadratic s
ceptibility.

2. Coherent Stokes scattering allows one to detect l
scattering in higher orders of nonlinear diffraction than t
spontaneous parametric scattering, so one should be ab
reconstruct, in principle, the profile of a nonlinear diffractio
grating with higher accuracy.

3. Active spectroscopy allows one to measure the
main superlattice period and refractive index at the polari
frequency with a higher accuracy than the three-wave sp
taneous parametric scattering spectroscopy. Measuremen
the linear absorption in the polariton branch derived fro
coherent Stokes spectra are, however, different from d
obtained by other techniques, and the nature of this disc
ancy has remained unclear.

4. Intensities of CSRS signals from relatively small r
gions in crystals are notably higher than in the case of sp
taneous parametric scattering. Therefore the four-wave
lariton scattering can be used in studies of the spa
distribution of domain system parameters.

Hence it follows that, in coherent polariton light scatte
ing by polaritons, nonlinear diffraction allows one to obta
1101 JETP 85 (6), December 1997
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cost of such an improvement is a more sophisticated exp
mental facility and a more laborious data-processing te
nique.
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Propagation of a beam of gamma rays in the field of a monochromatic laser wave

pa-
V. A. Maisheev* )

Institute of High-Energy Physics, 142284 Protvino, Moscow Region, Russia
~Submitted 28 April 1997!
Zh. Éksp. Teor. Fiz.112, 2016–2029~December 1997!

The head-on propagation of a beam ofg rays through the field of a laser wave is investigated.
The optical properties of the laser wave~as a medium! are described by the dielectric
tensor. The refractive indices are determined, and the polarization characteristics of
electromagnetic normal modes capable of propagating in such a medium are investigated. Relations
are derived to describe the variation of the initial polarization and intensity of ag-ray beam
as it propagates in a laser field. The influence of laser intensity on the investigated process is
discussed. ©1997 American Institute of Physics.@S1063-7761~97!00812-3#
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Polarization phenomena1,2 accompanying the transmis
sion of visible light through anisotropic or gyrotropic med
have been known for some time. Analogous phenomena
predicted by theory3 for g rays with energies>1 GeV
propagating in single crystals, which are anisotropic me
by their very nature. The main process by whichg rays are
absorbed in single crystals is the formation of electro
positron pairs. The cross section of the process depend
the direction of linear polarization of theg rays relative to
the crystallographic planes. In general, as a result of inte
tion with the electric field of the single crystal, a monochr
matic, linearly polarized beam ofg rays comprises two elec
tromagnetic waves with different refractive indices, so th
linear polarization is transformed into circular polarization
vice versa.

On the other hand, it has been noted4 that pair produc-
tion in single crystals is analogous to the process in the fi
of a linearly polarized electromagnetic wave. The possibi
of birefringence of high-energyg rays moving in a linearly
polarized laser wave has been suggested on the basis o
analogy in a study5 of problems regarding the propagation
g rays in single crystals, but no actual estimates of the ef
are given.

A recent paper6 shows for the first time that for existin
laser parameters, the phenomena of birefringence and
tion of the polarization plane ofg rays with energies in the
tens of GeV or higher are quite conspicuous even for co
paratively short~a few picoseconds! laser bunches with pa
rameters within the realm of present-day engineering ca
bilities. The variations of the Stokes parameters and
intensity ofg rays are calculated in the same paper for tra
mission of the latter through a laser bunch with arbitra
polarization. The known amplitudes for the scattering
light by light7,8 are used in the calculations.

Here we further investigate the propagation of hig
energyg rays through a laser wave by a more tradition
approach1,2 based on the crystal optics of anisotropic a
gyrotropic media. In this approach the anisotropic~gyrotro-
pic! medium is described by the dielectric tensor. Knowi
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gation of electromagnetic waves in the given medium a
calculate their refractive indices. It should be noted that
calculate the polarization transformation ofg rays moving in
the laser field, it is sufficient to know only the differenc
between the indices, in contrast with processes such as
Čerenkov radiation of charged particles, whose descript
requires the absolute values of the refractive indices.

The use of the dielectric tensor to describe the proper
of the electromagnetic vacuum is a common practice; in R
9, for example, explicit equations are given for the comp
nents of this tensor in the case of slowly varying fields a
low photon frequencies.

2. DIELECTRIC TENSOR OF A LASER WAVE

We can write the equations for the electromagnetic fi
in the medium in the form1,2

curl B5
1

c

]D

]t
, div D50,

curl E52
1

c

]B

]t
, div B50, ~1!

whereE is the electric field,D is the electric displacement,B
is the magnetic induction,t is the time, andc is the speed of
light. The properties of the medium~which in our case is the
monochromatic electromagnetic field of the laser wave! are
manifest in the relationships among the vectorsB, E, andD.
Choosing to write the equations in this form makes it po
sible to disregard the magnetic field strength.1,2 We write the
relationship betweenD andE,

Di~v!5« i j Ej~v!, i , j 51,2,3, ~2!

where« i j 5« i j8 1 i« i j9 is the complex dielectric tensor, andv
is the frequency of theg ray propagating in the laser wave

The average energy losses per unit time and per
volumeV of a monochromatic electromagnetic wave~beam
of high-energyg rays! E0 exp@i(k•r2vt)# with wave vector
k are1,2

q̃5
1

4pV E
V
E•

]D

]t
dV5

iv

16p
~« i j* 2« j i !Ej* Ei . ~3!
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The energy loss mechanism is the production of electron–
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positron pairs in the wave field.The process is governe
mainly by the transverse part of the dielectric tensor, as
longitudinal components are of higher order in the small
teraction constanta ~Refs. 4 and 11!. Bearing this in mind,
we can write Eq.~3! as follows in a coordinate system wit
one axis directed along theg-ray wave vector:

q̃5
ivJ

4
$~«11* 2«11!~11j3!1~«12* 2«21!~j12 i j2!

1~«21* 2«12!~j11 i j2!1~«22* 2«22!~12j3!%, ~4!

whereJ5(E1E1* 1E2E2* )/8p, andj i denotes the Stokes pa
rameters of the beam ofg rays.

On the other hand, knowing the pair-production cro
sectionsgg , we can write

q̃52nlsgg~cngEg!52nlsggcJ, ~5!

wherecng is the flux density ofg rays with energyEg , and
nl is the number of photons per unit volume of the las
wave. The factor 2 in the equation accounts for the oppos
motion of g photons and laser photons. In our coordina
system with one axis along theg-ray wave vector, the othe
two axes are parallel and perpendicular to the linear po
ization of the laser wave~if it is zero, the choice of these
axes is arbitrary!. In this coordinate system pair production
then described by the relation6

sgg~z!5s0~z!1sc~z!j2Pc1s l~z!j3Pl , 0,z<1,
~6!

where the invariantz5m2c4/EgEl , m is the electron mass
El is the laser photon energy, andPc andPl are the circular
and linear polarizations of the laser photon. Pair product
is a threshold process, so that forEgEl<m2c4 or for z.1,
the laser wave represents a transparent medium to a bea
g rays. The functionss0 , sc , ands l can be found in Refs
4, 6, 7, and 10, and enter into Eqs.~17!–~19!, ~23!–~25!
through relations~9!–~11! ~see below!. Those components o
the dielectric tensor associated with the absorption ofg rays
can be found by comparing relations~4! and ~5!.

We use the following dispersion relations in determini
the dielectric tensor:2

« i j8 2d i j 5
2

p
PE

0

` x« i j9 ~x!dx

x22v2 , ~7!

« i j9 52
2v

p
PE

0

` ~« i j8 2d i j !dx

x22v2 , ~8!

whered i j is the Kronecker delta. Equating~4! and ~5!, we
obtain

«119 1«229 54nlcs0 /v, ~9!

«119 2«229 54nlcs l Pl /v, ~10!

«128 2«218 54nlcscPc /v. ~11!

It is readily apparent that«121«2150. This result follows
from the invariance of the tensor« i j under rotation of the
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larized laser wave~PcÞ0, Pl50!. The same result can b
deduced from the theory of generalized susceptibilities12 for
quantities that change sign upon time reversal, where t
corresponds to photon angular momentum in our case. C
sequently, the subset of dielectric tensor components ass
ated with absorption is given by

«119 52nlc~s01Pls l !/v, ~12!

«229 52nlc~s02Pls l !/v, ~13!

«128 52«218 52nlcPcsc /v, ~14!

We can use Eqs.~7! and ~8! to find the remaining compo
nents of the tensor. The results of calculations of the com
nents of the tensor« i j are given below for a coordinate sys
tem with one axis along theg-ray wave vector and with the
other two axes parallel and perpendicular to the linear po
ization of the laser wavePl . The integrals~7! and~8! reduce
to integrals that are evaluated in a recent preprint5 by the
theory of residues:

«118 2«228 5
a

2p

^E2&
Ecr

2 Plz
2F18~z!, ~15!

«118 1«228 521
2a

p

^E2&
Ecr

2 z2F28~z,1!, ~16!

«128 52«218 5
a^E2&
2Ecr

2 Pcz
2Fc8~z!, ~17!

«119 2«229 52
a

4

^E2&
4Ecr

2 PlF19~z!, ~18!

«119 1«229 5
a^E2&

Ecr
2 F29~z,1!, ~19!

«129 52«219 5
a^E2&
pEcr

2 PcFc9~z!, ~20!

where ^E2&54pnlEl is the rms electric field of the lase
wave,Ecr5m2c3/e\ is a critical field, and the functionsF18 ,
F28 , Fc8 , F19 , F29 , andFc9 have the form
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The functionsL2 andL1 are given by
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F18~z!55
F 2 2G F 2 1G 4

0,z<1,

2@Az212z arctanAz21#21FA11z2
z

2
L1G2

,

z.1,
~21!

F28~z,m!

5

¦

222m2F11mS z2
z2

2 D G 1

4
L2

2

2F12mS z1
z2

2 D G
3

1

4
L1

2 1
~11mz!A12z

2
L2

2
~mz21!Az11

2
L11

p2

4 F11mS z2
z2

2 D G ,
0,z<1,

222m1F11mS z2
z2

2 D G
3arctan2~Az21!2F12mS z1

z2

2 D G 1

4
L1

2

1~11mz!Az21arctanAz21

2
~mz21!A11z

2
L1 ,

z.1,

~22!

Fc8~z!5H 3A12z2L2 , 0,z<1,

0, z.1,
~23!

F19~z!5H z4S L21
2A12z

z D , 0,z<1,

0, z.1,

~24!

F29~z,m!5H z2H F11mS z2
z2

2 D GL22A12z~11mz!J ,

0,z<1,

0, z.1,
~25!

Fc9~z!5

¦

z2S 3

2
A12zL22

3

2
A11zL12

1

4
L2

2

1
1

4
L1

2 1
p2

4 D ,

0,z<1,

z2F3Az21arctanAz212
3

2
A11zL1

1arctan2(Az21)1
1

4
L1

2 G ,
z.1.

~26!
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11A12z

12A12z
, L15 ln

A11z11

A11z21
.

These data completely determine the dielectric tensor
g rays propagating directly into an oncoming monochroma
laser wave. In a number of problems it is more convenien
use the inverseh i j of the tensor« i j . When u« i j 2d i j u!1,
these two tensors are related by

h i j 1« i j 52d i j . ~27!

Figure 1 shows the components of the dielectric tensor
functions of the invariantz.

3. REFRACTIVE INDICES OF GAMMA RAYS IN A WAVE
FIELD

A fundamental problem in the optics of anisotropic a
gyrotropic media is the propagation of monochromatic pla
waves characterized by definite values of the frequencv
and the wave vectork in such media. These waves, whic
satisfy the homogeneous wave equation, are called elec
magnetic normal modes,2 and have the form

E5E0 exp@ i ~k•r2vt !#, k5v ñs,

whereE0 is a complex vector that does not depend on
coordinatesr or the timet, ñ is the complex refractive in-
dex, ands5k/uku is the unit real vector. The vectorsD andB
have the same form.

From Maxwell’s equations~1!, taking into account the
relation betweenD andE in a coordinate system with thex
axis along the wave vector, we obtain the wave equation1,2

h11

]2D1

]x2 1h12

]2D2

]x2 2
1

c2

]2D1

]t2 50,

h21

]2D1

]x2 1h22

]2D2

]x2 2
1

c2

]2D2

]t2 50. ~28!

For a monochromatic plane wave it follows from these eq
tions that

~ ñ 22d i j 2h i j !D j50, i , j 51,2. ~29!

From the compatibility condition for the two homogeneo
equations we find the refractive index forg rays,

ñ225
S

2
6AS2

4
2Dh

5
h111h22

2
6A~h112h22!

2

4
1h12h21, ~30!

whereS andDh are the trace and determinant of the mat
h i j .

Consequently, a beam ofg rays propagates in the field o
a laser wave as a superposition of two electromagn
waves, which have different refractive indices in general. W
note that in our situation the two roots of Eq.~30!, with the
form (211small quantity), are linear and correspond
motion in opposite directions.
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The refractive indices are complex quantities in the g
eral case. Forz>1, however, it is evident at once from Eq
~30! that they are real, i.e., the laser wave is a transpa
medium in this case. If the laser wave is linearly (Pc50) or
circularly (Pl50) polarized, the refractive indices are eas
determined, and are equal ton1

25«11 andn2
25«22 in the first

case and ton1,2
2 5(«111«22)/26 i«12 in the second case

where the components of the dielectric tensor are written
the previously specified coordinate system, and the rela
«1252«21 is taken into account.

In the limit z→` the refractive indices for linearly an
circularly polarized laser waves are respectively

n' ,ni511
a

p

^E2&
E0

2

1163Pl

45
, ~31!

n⇒ , n⇔511
a

p

^E2&
E0

2 S 11

45
6

16Pc

315zD . ~32!

Figures 2 and 3 shows the behavior of these indices as f
tions of the variablez.

FIG. 1. Components of the dielectric tensor versus the invariantz.

18,19! k(«118 1«228 22)/2, k(«119 1 «̄ 229 )/2; 28,29! k(«228 2«118 )/Pl ,
k(«229 1«119 )/Pl ; 38,39! k«128 /Pc , k«219 /Pc . The components«218 52«128 ,
«129 52«219 , and the factork215a^E2&/Ecr

2 .

FIG. 2. Real parts of the refractive indices for linearly~Pl51, Pc50,)
curves~1 and18! and circularly~Pl50, Pc51, curves2 and28! polarized
laser waves, and the corresponding differences~curves3 and 4! of these
indices versus the invariantz. The factork215a^E2&/Ecr

2 .
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4. POLARIZATION CHARACTERISTICS OF GAMMA RAYS
PROPAGATING IN A LASER WAVE

From the dispersion relations~29! we find a relation for
the components of the vectorD:

D1

D2
5k5

ñ 222h22

h21
5

uD1u
uD2u

eid, ~33!

whered is the phase shift betweenD1 andD2 . Rotating the
coordinate system about theg-ray wave vector, we can re
duce this relation to the formk50 or to the formk5 ir
~sinceuD1uuD2usind5b1b2, whereb1 andb2 are the lengths
of the semiaxes of an ellipse, anduru5b1 /b2 ; Ref. 13!. The
first case corresponds to the propagation of a linearly po
ized wave, and the second case to an elliptically polari
wave, wherer.0 (r,0) corresponds to left~right! polar-
ization of theg ray.

We first consider the casez.1, in whichg rays are not
absorbed. Ifh129 Þ0, we have

k5 ir5 i
~h118 2h228 !/26A~h118 2h228 !2/41h129

2

h129
. ~34!

Clearly, normal modes are elliptically polarized in gener
where the principal axes of the ellipse are parallel to the a
of the adopted coordinate system. The circular polarizat
Pcirc and the linear polarizationPline of the wave are deter
mined from the well-known relations

Pcirc5
2r

11r2 , ~35!

Pline5
12r2

11r2 . ~36!

We see at once that, generally speaking,PcircÞPc and
PlineÞPl , even if Pc

21Pl
251. If h129 50, the waves are lin-

early polarized along the coordinate axes. When absorp
is present (0,z,1), normal modes propagating in a lin
early polarized laser wave (Pc50) are completely linearly

FIG. 3. Imaginary parts of the refractive indices for linearly~Pl51, Pc50,)
curves~1 and18! and circularly~Pl50, Pc51,) curves~2 and28! polarized
laser waves, and the corresponding differences curves~3 and 4! of these
indices versus the invariantz. The factork215a^E2&/Ecr

2 .
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behavior is observed for a circularly polarized laser wa
(Pl50), wherePcirc561.

If PcÞ0 and PlÞ0 in the presence of absorptio
(z,1), a beam ofg rays propagating in a laser wave will b
a superposition of two elliptically polarized waves, where t
principal axes of the polarization ellipses are rotated by
anglew relative to the previously adopted coordinate syste
Indeed, since the refractive indices are complex in this c
the quantityk is complex as well, and it can be readily e
tablished by direct calculation that

k~1!k~2!51, ~37!

where the parenthesized superscripts correspond to no
modes with refractive indicesñ1 and ñ2 . Inasmuch as the
quantitiesk (1) andk (2) are related by the simple expressio
~37!, from now on we use just one of them,k5k (1), and
drop the superscript.

The following relations can be derived in the prese
situation:

D1
~1!D1

~2!1D2
~1!D2

~2!52D2
~1!D2

~2! , ~38!

D1
~1!D1*

~2!1D2
~1!D2*

~2!5D2
~1!D2*

~2!
k1k*

k*
, ~39!

where the parenthesized superscripts refer to normal m
with refractive indicesñ1 and ñ2 . Consequently, neither th
displacement vectorsD(1) and D(2) nor D(1) and D* (2) are
orthogonal~see Ref. 2!.

We denote the Stokes parameters of the normal m
with index ñ1 by X1 , X2 , and X3 , and we denote thos
corresponding toñ2 by Y1 , Y2 , andY3 . We then obtain

X15
k1k*

11kk*
, ~40!

X252
i ~k* 2k!

11kk*
, ~41!

X35
kk* 21

11kk*
. ~42!

Moreover,Y15X1 , Y252X2 , andY352X3 . The anglew
can be determined from the relation tan 2w5X1 /X3 ~it is
equal to2w for the second wave!.

As an illustration, Fig. 4 shows the results of calcu
tions of uPcircu, uPlinu, and uwu as functions of the variablez
for a laser wave withPc5Pl51/&.

5. PROPAGATION OF GAMMA RAYS IN A LASER WAVE

The foregoing analysis enables us to find relations
scribing the variation of the intensity and the polarization
g rays propagating in a homogeneous (nl5const) laser
wave. Representing the beam ofg rays by a superposition o
two electromagnetic normal modes with previously det
mined refractive indices and polarization characteristics,
obtain relations describing the variation of the intensity a
the Stokes parameters of theg-ray beam during its traversa
of the laser wave:
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Jg~x!5J1~x!1J2~x!12J3~x!, ~43!

j1~x!5
~X1J1~x!1Y1J2~x!1p1J3~x!!

Jg~x!
, ~44!

j2~x!5
~X2J1~x!1Y2J2~x!1p2J4~x!!

Jg~x!
, ~45!

j3~x!5
~X3J1~x!1Y3J2~x!1p3J4~x!!

Jg~x!
, ~46!

whereJg(x) and j1(x), j2(x), j3(x) are the intensity and
Stokes parameters of theg-ray beam at depthx. The partial
intensitiesJi(x) ( i 51 – 4) have the form~the physical sig-
nificance of these quantities is easily understood by writ
out the expression (D(1)1D(2))(D* (1)1D* (2)#

J1~x!5J1~0!exp~22 Im~ ñ1! vx/c!, ~47!

J2~x!5J2~0!exp~22 Im~ ñ2! vx/c!, ~48!

J3~x!5exp~2Im~ ñ11 ñ2! vx/c!$J3~0!cos@Re~ ñ1

2 ñ2! vx/c#2J4~0!sin@Re~ ñ12 ñ2! vx/c#%,

~49!

J4~x!5exp~2Im~ ñ11 ñ2! vx/c!$J3~0!sin@Re~ ñ1

2 ñ2! vx/c#1J4~0!cos@Re~ ñ12 ñ2! vx/c#%,

~50!

where the initial partial intensities can be determined fro
the relations

J1~0!5
j2~0!2 f j3~0!

2~X22 f X3!
1

j1~0!2q

2~X12q!
, ~51!

J2~0!52
j2~0!2 f j3~0!

2~X22 f X3!
1

j1~0!2q

2~X12q!
, ~52!

FIG. 4. Variation of the absolute values ofPcirc ~1! and Pline ~2! and the
angle of rotationw ~in deg! ~3! of the axes of the polarization ellipse relativ
to the adopted coordinate system versus the invariantz. Circular and linear
polarizations of the laser wave arePc5Pl51/&, and for z.1 ~1/z,1!,
w50.
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J ~0!5
X12j1~0!

, ~53!
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3 2~X12q!

J4~0!5
j3~0!X22j2~0!X3

p3~X22 f X3!
. ~54!

In the derivation of these relations we have made use of
relationship between the quantitiesXi andYi , thereby elimi-
nating them from the equations. We have also assumed
Jg(0)51. The parametersf , q, p1 , p2 , and p3 have the
form

f 5
i ~kk* 21!

k2k*
, q5

11kk*

k1k*
,

p15
2~11kk* !

k1k*
, p25

2~12kk* !

k1k*
,

p35
2i ~k2k* !

k1k*
,

These relations describe the general case ofg-ray propa-
gation PlÞ0, PcÞ0, z,0. Formally, however, they do no
describe cases in whichk1k* 50 ~e.g., when a beam o
photons is completely circularly~or linearly! polarized or
when z.1 for an arbitrarily polarized beam!. Under the
stated conditions the propagation of a beam ofg rays can be
described by well-known relations6,14 or by passing to a limit
in the above-derived relations, for example, by sett
k5d1 ir and lettingd tend to zero. This case is described
the Appendix.

6. INFLUENCE OF THE LASER WAVE INTENSITY ON THE
PROPAGATION OF GAMMA RAYS

The influence of the intensity of an electromagne
wave on electron–positron pair production is investigated
several papers~see Ref. 4 and the literature cited therein!. So
far we have considered a relatively low-intensity laser wa
whose level can be characterized by the dimensionless
rameter

j25
^E2&
Ecr

2

m2c4

El
2 .

The relations obtained here for the tensor« i j hold when
j2!1. Previously obtained results4 can be used to write the
components of the dielectric tensor with allowance for
series expansion inj. A key issue in this treatment of th
intensity is the replacement of the variablez by a variable,
which we denote byz̃ , such thatz̃5z(11j2). The condi-
tion for pair production in the given situation isz̃,1, which
implies an increase in the threshold energy of theg-ray beam
at a fixed frequency of the laser wave. On the whole,
corresponding components of the dielectric tensor re
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Ẽcr5
m2c3~11j2!

e\
,

The functionsF28(z,1), F29(z,1), F18(z), F19(z), Fc8(z),
and Fc9(z) are replaced byF28( z̃ ,m), F29( z̃ ,m), F18( z̃),
F19( z̃), Fc8( z̃), and Fc9( z̃), where m51/(11j2). Strictly
speaking, the domain of applicability of these refined eq
tions is bounded by the conditionj2!1, but important infor-
mation can still be obtained in this case. For example, cer
estimates in Ref. 6 are obtained for a laser withEl51.18 eV
and j2'0.1. Allowance for the intensity of the laser wav
shifts the pair-production threshold from 221 GeV to 2
GeV; in light of the sharp intensity dependence of the refr
tive indices near threshold, this shift requires appropriate
lowance in experiments.

For j2@1, pair production in the laser wave becom
similar to the analogous process in a static electromagn
field. The dielectric tensor for a static field is derived in R
15, and specific results of calculations appear in Ref. 16

7. DISCUSSION OF THE RESULTS

As mentioned, it was first shown in Ref. 6 that for e
isting laser parameters it is possible to observe variation
the polarization parameters ofg-ray beams. In that paper
Kotkin and Serbo consider the scattering of light by ligh
and show that this interaction causes the polarization cha
teristics of the beam to vary in a way that can be descri
by means of differential equations for the Stokes paramet
These equations are then solved for a transparent med
and for circularly (Pl50) and linearlyPc50) polarizedg
rays subject to absorption. Despite the sufficiency of suc
description ofg-ray transmission through a wave field, se
eral factors are missing from the paper~primarily a descrip-
tion of the laser wave as a well-defined optical medium!. For
example, the difference between the real refractive indice
determined from the variation of theg-ray polarization and
not as a property of the mediumper se. This deficit is rem-
edied in the present study of the transmission ofg rays
through a laser field.

Here we have obtained the dielectric tensor for a la
field on the basis ofg-ray absorption during the productio
of electron–positron pairs. This approach to the probl
from the standpoint of obtaining final results describing t
variation of the beam polarization in a laser bunch is equi
lent to the treatment of the scattering of light by light~or,
more precisely, the determination of the forward scatter
amplitude!, since the two processes are related by the opt
theorem. On the other hand, according to the principles
macroscopic electrodynamics, an electromagnetic wave~g
rays! becomes polarized as it propagates in a medium, in
case owing to the presence of virtual electron–positron pa
which introduce lines in the diagrams of both processes
question.8
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We have determined the refractive indices and polariza-
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tion characteristics of electromagnetic waves on the basi
dispersion relations. These waves are essentially charac
tic solutions of the problem ofg-ray propagation in a me
dium, and this can be exploited to obtain, in the general c
simple relations describing the variation of the Stokes
rameters of a beam ofg rays moving in a laser wave. A
comparison of the results of calculations of the variation
the Stokes parameters from Eqs.~43!–~46! with the same
results obtained by numerical integration of the differen
equations6 reveals good agreement between the two~to
within the numerical errors!. The comparison has been ma
under analogous conditions; in particular, the parameterj2,
which takes into account the influence of the laser wave
tensity on the investigated process, has been set equ
zero.

The relations that we have derived for the dielectric te
sor can be used to include the influence of the intensity of
laser field in the approximationj2!1. Despite the latter re
striction, it is important take this factor into account—first
all, in view of the sharp variation of the refractive indice
near the pair-production threshold~see Figs. 2 and 3!, and
second, because values ofj250.05– 0.2~and higher! are al-
ready fully attainable by technical means.6

Let us compare the results of calculations of the diel
tric tensor and the refractive indices with published calcu
tions of these quantities for slowly varying fields and lo
photon frequencies,8,9,15We should mention that direct com
parison of the components of the tensor is hindered so
what by the different approaches to the solution. The pres
study is based on the field equations~1!, which do not con-
tain the magnetic fieldH, whereas the latter is present
Refs. 8 and 9. This situation is discussed in detail in Ref
and 2, and is attributable to the fact that the fieldsE andB
are not completely independent.

However, the refractive indices are observable quanti
and must be independent of the particular approach cho
We carry out the comparison for equal-magnitude, mutua
perpendicular, static electric and magnetic fields~represent-
ing a kind of electromagnetic wave analog! ~Ref. 15!, using
Eq. ~31!. As a result, we find that the values ofn'21 and
ni21 for the laser wave~Eq. ~31!! are double the values fo
the indicated combination of fields calculated according
Ref. 15. This result can be understood by considering
opposing path traveled byg rays in the laser wave. For mas
less particles the number of collisions is proportional
12cosf ~f is the angle between the directions of motion
laser and gamma photons!.13 At f5p this factor is equal to
2, and enters into the refractive indices. As theg-ray fre-
quency increases, the refractive indicesn' andni in a static
field gradually increase to the values of the invariant para
eter x5EEg /Ecrmc2'0.7 and then slowly decrease,16 i.e.,
they qualitatively mimic the analogous data forg rays mov-
ing in a laser wave~see Fig. 2!, although the peak in a stati
field is flatter and does not exceed the low-frequency refr
tive indices by more than 20%.

We illustrate the feasibility of converting a linearly po
larized beam ofg rays into a circularly polarized beam usin
1108 JETP 85 (6), December 1997
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'10 V/cm ~Ref. 6!. In this case Re(ñ'2ñi)'8310
near the reaction threshold (Eg'221 GeV), corresponding
to a quarter-wave plate of thickness'0.18 cm.

It is important to note that the determination of the a
solute values of the refractive indices~and not merely their
difference! broadens the category of problems associa
with the transmission of particles through a wave; for e
ample, it provides a means of analyzing their Cˇ erenkov
radiation5 in such a medium. For existing laser paramete
roughly speaking, this type of radiation will be emitted b
particles with a Lorentz gamma factor;106– 107, and the
particles must be of sufficient mass to ensure low brem
strahlung losses. The characteristic energies of Cˇ erenkovg
rays are of the order of several hundred GeV.

The polarization of electromagnetic normal modes is
trivial matter. They are elliptically polarized in the gener
case (Pc ,PlÞ0). For zero absorption the axes of the ellips
are parallel to the linear polarization of the laser wave. A
sorption causes the axes to rotate about this direction,
they are no longer mutually orthogonal.

For j2!1, the propagation ofg rays in the field of a
linearly polarized laser wave has much in common with
like process in single crystals in the region of coherent p
production.4 For example, in single crystals the dielectr
tensor can be expressed in terms of the same functionsF18 ,
F28 , F19 , andF29 as in a laser medium.5 A significant differ-
ence in single crystals, of course, is the occurrence of at l
several equivalent-photon frequencies and the existenc
an incoherent component due to thermal fluctuations, wh
precludes a single crystal from being regarded as a perfe
transparent medium.

It is important to note that no experiments have be
performed to date to corroborate the transformation of be
polarization in single crystals, despite the notable lapse
time since the publication of Ref. 3 and the announcemen
several proposals to investigate and utilize this phenome
in modern accelerators.11,17The recently disclosed feasibility
of experiments in laser beams6 can be used to verify the
basic principles of the theory, not only for a laser mediu
but also for single crystals, owing to the similar nature of t
effects, and the circular polarization of a laser wave sign
cantly extends the sphere of such experiments.

The author is grateful to G. L. Kotkin and V. G. Serb
for useful advice.

APPENDIX

The relations for the intensity and Stokes parameters
beam of gamma rays in the casek1k* 50 are

J5J0 exp@2~n11n2!#@cosh~n22n1!

2a sinh~n22n1!#,

j15
b sin D1j1

0 cosD

cosh~n22n1!2a sinh~n22n1!
,
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j 5
Pcirc sinh~n22n1!1aPcirc cosh~n22n1!1Pline@2b cos~D!1j1

0 sin ~D!#
,
2 cosh~n22n1!2a sinh~n22n1!

j35
Pline sinh~n22n1!1aPline cosh~n22n1!1Pcirc@b cosD2j1

0 sin D#

cosh~n22n1!2a sinh~n22n1!
,

where 5V. A. Maisheev, V. L. Mikhalev, and A. M. Frolov, Zh. E´ ksp. Teor. Fiz.
th
e
s
ly

k

Re

101, 1376 ~1991! @Sov. Phys. JETP74, 740 ~1991!#; IHEP Preprint No.

.

-

a5j3
0Pline1j2

0Pcirc , b5j3
0Pcirc1j2

0Pline ,

n15Im~ ñ1! vx/c, n25Im~ ñ2! vx/c,

D5Re~ ñ12 ñ2! vx/c,

Pline andPcirc correspond to the polarization of a wave wi
refractive index ñ1 , j i

0 denotes the initial values of th
Stokes parameters, and all other notation is the same a
the main text. In a transparent medium, obvious
n15n250.
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Ordered structures in a nonideal dusty glow-discharge plasma

as-
A. M. Lipaev, V. I. Molotkov, A. P. Nefedov,* ) O. F. Petrov, V. M. Torchinski , V. E. Fortov,
A. G. Khrapak, and S. A. Khrapak

Scientific Research Center for the Thermal Physics of Pulsed Effects, Russian Academy of Sciences, 127412
Moscow, Russia
~Submitted 5 May 1997!
Zh. Éksp. Teor. Fiz.112, 2030–2044~December 1997!

The formation of ordered structures of charged macroparticles in a constant-current neon glow-
discharge plasma is investigated. Experiments were performed with two types of particles:
thin-walled glass spheres 50–63mm in diameter and particles of Al2O3, 3–5 mm in diameter.
Formation of quasicrystalline structures is observed in the standing strata and in an
artificially created double electric layer. The formation of extended filamentary structures of
macroparticles in the absence of visible stratification of the positive column has been observed for
the first time. The influence of the discharge parameters on the formation of the ordered
structures and their melting is examined. The form of the interaction potential between the charged
macroparticles is considered, as well as changes in the conditions for maintaining the
discharge in the presence of high concentrations of dust particles. ©1997 American Institute of
Physics.@S1063-7761~97!00912-8#

1. INTRODUCTION For surface treatment, low-pressure radio-frequency g
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The presence of macroscopic particles can have a
stantial effect on the properties of a low-temperature plas
Particles heated to a sufficiently high temperature can,
emitting electrons and acquiring a positive charge, sign
cantly increase the electron concentration in the plasma
similar effect can occur under conditions in which the dom
nant process is photoemission or secondary electron e
sion. Cold particles, on the other hand, absorb electrons f
the plasma, acquire a negative charge, and reduce the
electron concentration in the plasma. Charged particles in
act with electric and magnetic fields, and the Coulomb int
action between particles can lead to a highly nonid
plasma.

A dusty plasma was first observed under laboratory c
ditions by Langmuir in the 1920’s.1 However, its active in-
vestigation began only in recent decades in connection wi
long list of applications such as the electrophysics and e
trodynamics of the combustion products of rocket fuels,
electrophysics of the working body of solid-fuel magnetoh
drodynamic generators, and the physics of dust clouds in
atmosphere.2–6 Dust and dusty plasma are widely distribut
in the universe. They have been detected in planetary ri
comet tails, and in interplanetary and interstellar clouds.7–9

In the last ten years there has been heightened intere
studying the properties of dusty plasmas in connection w
the expanded use of the technology of plasma sputtering
etching in microelectronics and in the production of th
films.10–13The presence of particles in plasma not only lea
to contamination of the surface of the semiconductor elem
and thereby to an increased yield of defective compone
but also perturbs the plasma in a frequently unpredicta
way. The reduction or prevention of these negative effect
impossible without an understanding of the processes of
mation and growth of condensed particles in a gas-disch
plasma, their transport mechanism, and their influence on
properties of the discharge.
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discharge plasma is usually used.The degree of ionization
of such a plasma is low (;1027), the electron energy is a
few eV, and the ion energy is near the thermal energy of
atoms ('0.03 eV). A neutral, nonemitting particle inciden
on such a plasma is buffeted by fluxes of all the partic
present in the plasma, including electrons and ions. It is c
tomary to assume that electrons incident on the surface o
particle are absorbed, and the ions raining down upon
surface knock out electrons and recombine with them.

As a consequence of the great difference in masses
temperatures of the electrons and ions, the electron flux
ceeds the ion flux by several orders of magnitude, and
particle acquires a negative charge. The negative electros
potential on the particle leads to repulsion of electrons a
attraction of ions. The charge of the particle changes until
electron and ion fluxes on the particle equalize.

The steady-state chargeZ or floating potentialwp can be
estimated within the framework of the orbital motion mod
widely used in the theory of plasma probes.15 This model is
valid in the collisionless regime for particles of sufficient
small dimensions

Rp!l! l , ~1!

whereRp is the particle radius, andl and l are the typical
screening length and the typical mean free path of the e
trons or ions, whichever is the smaller. Balance of elect
and ion currents leads to the following equation forwp :

NeATe

me
expS ewp

Te
D5NiATi

mi
expS 12

ewp

Ti
D , ~2!

whereTe( i ) and me( i ) are the temperature and mass of t
electrons~ions!.

Equation~2! enables one to estimate the potential a
charge of an isolated particle in the plasma. The typi
charge of a micron-sized particle lies within the range fro
103 to 105 electron charges. The walls of the dischar

1110-09$10.00 © 1997 American Institute of Physics



chamber and the electrodes acquire a negative potential. All
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this makes it possible under certain conditions to compen
for the effect of gravitation, and leads to levitation of th
particles above the lower electrode or floor of the discha
chamber. Methods for confining a dusty plasma in spe
traps, which make it possible to reduce contamination of
work surfaces, are based on this effect.

The thermodynamic properties of dusty plasmas
mainly determined by the magnitude of the nonideality p
rameterG, which is equal to the ratio of the Coulomb pote
tial energy to the kinetic energy of thermal motion chara
terized by the particle temperatureTp :

G5
Z2e2

aTp
, a5S 3

4pNp
D 1/3

, ~3!

wherea is the mean distance between particles, andNp is
their concentration. Thanks to the large charge of the p
ticles, nonideality in the interaction between particles c
enter significantly earlier than nonideality of the electro
ion subsystem, despite the fact that the particle concentra
is usually low in comparison with the electron and ion co
centrations.

From the simplest and most widely studied model o
one-component plasma it is well known that forG.1 short-
range order appears in the system, and forG'170 a one-
component plasma crystallizes.16 The one-component mode
cannot claim to provide a faithful description of the prope
ties of a dusty plasma, above all because it neglects scr
ing effects. Nevertheless, a number of papers, on the bas
qualitative results of the one-component model, express
view that near-range order is possible in a therm
equilibrium dusty plasma, and even crystallization.4,5,17

Recently, ordered structures of dust particles were
tected in a thermal plasma at atmospheric pressure at a
perature of around 1700 K~Refs. 18 and 19!. Similar con-
siderations led Ikezi20 to infer the possibility of
crystallization of a dust subsystem in a nonequilibrium g
discharge plasma. Eight years after the publication of
paper, a dust crystal was finally observed experimentally
high-frequency discharge near the lower electrode at
boundary of the near-cathode region,21–24 and later in the
strata of a stationary glow-discharge.25,26

A plasma crystal can have varied crystal structure, wit
lattice constant on the order of fractions of a millimete
which makes it possible to observe it practically with t
naked eye. Plasma crystals possess a great many vir
making them an indispensable instrument both in the st
of highly nonideal plasmas and in the study of the fundam
tal properties of crystals. These include, first and forem
simplicity of preparation, observation, and parameter cont
and their short equilibrium relaxation times and respo
times to external perturbations.

A dust crystal is not a unique example of the appeara
of long-range order in Coulomb systems. In his time, Wign
showed27 that upon cooling, an electron gas can conde
and form an ordered crystalline structure, the so-ca
‘‘Wigner crystal.’’ Recently, crystallization of a quantum
electron liquid with formation of a Wigner crystal was inve
tigated experimentally.28 Crystal structures, also in one
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component systems, were observed in electrostatic vac
traps on charged macroparticles29 and in Paul and Penning
traps on Mg or Be ions cooled to very low temperatur
(;1023 K).30–32 A Coulomb crystal is also realized in co
loidal suspensions.33 Colloidal crystals consist of almos
monodisperse micron-sized particles suspended in an e
trolyte, where they become charged toZ52(103– 104) and
are screened by ions of both signs in the electrolyte. Acco
ing to a conjecture of Deryagin and Landau,34 under certain
conditions the Coulomb interaction between the partic
makes formation of a crystal structure energetically m
favorable. Strong coupling between particles takes plac
distances less than the screening radius, which in collo
suspensions is very small. This leads to the result that
crystallization a rather high particle densi
(Np;1012 cm23) is necessary. As a consequence, colloi
crystals are usually opaque, hindering experimental stud
their bulk properties. To the drawbacks of colloidal crysta
as an instrument of physical study may also be added t
long equilibrium relaxation time, amounting to sever
weeks.

The present paper investigates the formation of orde
structures of charged macroparticles of various sizes i
constant-current glow-discharge plasma in neon. The in
ence of the discharge parameters on the possibility of
existence of quasicrystalline structures of dust particles
examined, along with the conditions for their formation a
destruction. We consider the question of the form of t
interaction potential between the macroparticles, and also
effect of the macroparticles themselves on the conditions
maintaining the discharge.

2. EXPERIMENTAL SETUP

A glow-discharge was created in neon in a cylindric
vertically positioned tube with cold electrodes. A schema
of the setup is shown in Fig. 1. The inner diameter of t

FIG. 1. Schematic of the experimental setup.
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tube was 3 cm, the length of the tube was 60 cm, the distance
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between the electrodes situated in lateral nibs of the tube
40 cm. A double mobile probe was also placed in the tu
The discharge current was varied within the range from
to 10 mA, and the neon pressure, from 0.2 to 2 Torr. D
charge regimes with standing strata existed in this range

Micron-sized particles to be introduced into the plas
were held in a cylindrical container located in the upper p
of the gas-discharge tube. The bottom of the container
fashioned from a metal mesh with a spacing of 100mm.
When the container was shaken, particles rained down
the positive column of the discharge. The particles were
sualized with the aid of illumination in either the horizont
or vertical planes by a probe laser beam. The beam from
argon laser was formed by a cylindrical lens into a pla
converging beam with thickness of the beam waist at
center of the discharge tube equal to 150mm and width 40
mm.

The horizontal probe beam could be vertically transla
along the length of the tube, and the vertical probe be
both in height and radius. Light scattered by the particles w
observed with the aid of a CCD camera at an angle of 60
the case of the horizontal beam and at an angle of 90° in
case of the vertical beam. The output signal of the cam
was recorded on video tape. Note that individual partic
and the cloud of particles as a whole are visible in the la
light even to the naked eye.

Oscillations of the discharge connected with repositio
ing of the cathode spot are observed in a glow-discha
with a cold cathode, which causes fluctuations of the orde
structures. To damp these oscillations, an additional t
with a constriction was introduced. This inset was position
in the lower part of the discharge tube above the cathod

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1. Formation of ordered structures in strata of the positive
column

In the experiments we used two types of particles: p
ticles of borosilicate glass (r52.3 g/cm3) in the form of
thin-walled, hollow spheres~microballoons! of diameter
50–63 mm with wall thickness 1–5mm ~the mass of the
particlesM p lies in the range from 231028 to 1027 g! and
Al2O3 particles (r54 g/cm3) with diameter 3–5mm ~M p

lies in the range from 6310211 to 3310210 g!.
In the presence of standing strata in the positive colu

of the discharge, dust particles that poured down from
container hovered in the form of a cloud in the center of
luminous part of the stratum. The charged microscopic p
ticles captured into the stratum formed ordered quasicrys
line structures, whose size and shape depended on the
charge parameters. The region of existence of the strata
the given discharge tube lies in the range of neon press
from 0.1 to 1.7 Torr for the discharge current varying fro
0.1 to 10 mA. The length of the luminous part of the stratu
was 10 mm at a pressurep51.2 Torr and grew to 25 mm a
p50.2 Torr. The distance between the luminous parts of
strata depended weakly on the discharge parameters an
within the limits 35–50 mm. Note that the ordered structu
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existence region.
The formation process proceeds as follows: after be

shaken out of the container, the particles fall past their eq
librium position and then, over the course of several secon
rise back up and form into an ordered structure which
preserved for as long as desired provided the discharge
rameters are left unchanged. Individual particles can m
upward toward the anode and along the periphery of
stratum. In addition, peculiar orbital motions of the particl
around the ordered structures are observed. Contrary circ
motions of individual particles are also observed. A parti
completes one revolution in approximately 10 s.

The simultaneous existence of ordered structures in s
eral neighboring strata was observed. By way of exam
Fig. 2a shows an image of structures of charged microb
loons of borosilicate glass in two neighboring strata.
varying the discharge parameters~current, pressure! it is pos-
sible to obtain coalescence of the structures in neighbo
strata into one long, extended formation. Figure 2b displ
such a structure.

Figure 3 shows digitized images of structures of Al2O3

particles taken in the horizontal plane for two values of t
discharge currentI p : 0.4 and 3.9 mA for neon pressur
p50.3 Torr. Figure 4 shows two plots of the condition
particle distribution functionn(r )5n2(r )/n1(r ), obtained
by processing the corresponding images in Fig. 3;n1 andn2

are the corresponding unary and binary functions.35,36 The
function n(r ) is the particle number density at a distancer
from some particle. The choice of this function instead of t
commonly used pairwise correlation functiong(r ) is dic-
tated by the inhomogeneity of the investigated structures
sociated with their relatively small dimensions.

Figure 4 plots the distribution functionn(r ) for each of
the above two discharge regimes for the central part o
horizontal cross section of the structure, and for all of t
particles in the given cross section~the central part of the
horizontal cross section in our case consists of the parti
lying inside a circle whose center coincides with the cen
of mass of the cross section, and includes around 40% o
the particles observed in the cross section!. It can be seen
that for I p50.4 mA at least three maxima ofn(r ) can be
identified, which suggests the existence of long-range or
in the investigated dusty plasma. This corresponds t
crystal-like structure.

It follows from these images and distribution function
that with increasing discharge current there is a tende
toward the destruction of long-range order~‘‘melting’’ !, and
at I p53.9 mA only short-range order is observed.

Note that the destruction of long-range order accom
nying an increase in the discharge current above all entr
the periphery of the structure. The central part of the form
tion preserves its former order. In addition, with increasi
I p, spontaneous oscillations of individual macroparticles
observed. In this situation, such particles move along circu
trajectories whose radii increase with distance from the c
ter of the structure. Circular oscillations of the particles we
also observed in a dusty rf discharge plasma when the
pressure was decreased.37 As can be seen from Fig. 4, de
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spite varyingI p by an order of magnitude, the mean inte
particle distancea, equal to 250mm, remains essentially
unchanged.

At a higher neon pressure of 0.7 Torr, less ordered st
tures of charged Al2O3 particles are observed in the range
currents from 0.7 to 7 mA. The interparticle distancea in

FIG. 2. Video images of structures of charged microballoons of borosilic
glass: a! in two neighboring strata~p50.5 Torr, I p50.5 mA!, b! after their
coalescence~p50.4 Torr, I p50.4 mA!. The scale in the figure correspond
to 3 mm.
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equal to 280mm.
The constancy of the interparticle distancea in the face

of a significant change in the discharge current and, con
quently, the electron concentrationNe, differs sharply from
the appreciable dependence ofa on the power fed to the rf
discharge~and accordingly on the electron concentrationNe!
observed in Ref. 23.

Figure 5 shows a digitized image of the structure
charged microballoons of borosilicate glass in one of
vertical planes. Figure 6 plots the corresponding distribut
functions for the central part of the structure and the struct
as a whole. These results demonstrate the existence of
nificant ordering of the particles in the vertical cross se
tions.

Our experiments revealed the emergence of unusual
mations of charged macroparticles: in different discharge
gimes, with the disappearance of visible standing strata
tended filamentary structures are formed, extending upw
from the dark cathode space through the height of the tu
The length of these structures reached 60 mm. Fragmen
the filamentary structure are shown in Fig. 7. Near the d
cathode space the number of filaments reaches 7–8, whi
the upper part their number is reduced to 1–2. The num
of particles per filament~chain! reaches 100–120. Note tha
the extended filamentary structures are observed for b
types of microscopic particles used in the experiments.

Strata in low-pressure discharges have been experim
tally investigated in considerable detail.38–41 In the positive
column of the discharge under the conditions of interest, l
of electron energy in elastic collisions is negligibly small a
the electron distribution function is formed under the acti
of the electric field and the inelastic collisions. This can le
to the appearance of strata—a spatial periodicity of
plasma parameters with characteristic sc
l15«1 /eE0'4 – 5 cm ~«1 is the first excitation potential
equal to 16.6 eV for neon, andE0 is the electric field aver-
aged over the length of the stratum!.

The electron concentration, their energy distribution, a
the electric field are highly irregular along the length of t
stratum. The electric fieldE is relatively strong at the head o
the stratum~around 10–15 V/cm at its maximum!—a region
occupying 25–30% of the length of the stratum, and we
~around 1 V/cm! outside this region. The maximum value o
the electron concentration is displaced relative to the ma
mum of E in the direction of the anode.39 The electron en-
ergy distribution is substantially bimodal,39 and the head of
the stratum is dominated by the second maximum, wh
center lies near the excitation potential«1 .

Due to the high floating potential of the walls of th
discharge tube, the strata have a substantially tw
dimensional character: the center–wall potential differen
at the head of the stratum reaches 20–30 V, and the cha
in the potential takes place in a narrow near-wall layer
thickness 2–3 mm~Refs. 40–42!. Thus, an electrostatic tra
is found at the head of each stratum, which in the case
vertical orientation is capable of confining particles wi
high enough charge and low enough mass.

The experimental information above was obtained o

te
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FIG. 3. Digitized video images of structures o
Al2O3 particles in the horizontal plane fo
p50.5 Torr: a! I p50.4 mA, b! I p53.9 mA. Frame
dimensions 535 mm2.
for moving strata; however, there is every reason to believe
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that for the same discharge parameters, the properties of
ing and moving strata are similar.43 By virtue of the substan-
tially two-dimensional nature of the problem, a theoretic
description of the strata in a low-pressure discharge is q
complicated, and at present can lay claim to only a qual
tive explanation of the observed effects.44,42 As a conse-
quence of particles sticking to the probe, efforts under ta
in the present work to measure plasma parameters with
aid of a double probe in the presence of macroparticles h
not been crowned with success. Nevertheless, the ele
field strengths measured in the positive column in a n
discharge in the absence of stratification are in good ag
ment with the published data. Therefore, in our analysis
will be forced to rely, above all, on the results of an expe
mental study of strata40–42carried out under conditions sim
lar to ours.

The potential of the particlewp, and consequently its
chargeZ, can be estimated with the help of Eq.~2!. How-
ever, it must be recalled that its derivation employs the M
wellian electron energy distribution far from the particle. A
we have already pointed out, the electron distribution fu
tion is bimodal in the strata, and Eq.~2! can be used for
estimates only in those regions of the stratum where on
the maxima predominates. Thus, in the region of maxim
luminosity, the second maximum, which has energyTe'«1 ,
predominates. This makes it possible with the aid of Eq.~2!
st-
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of

wp'21.65«1'227 eV. The relation between the potenti
of a particle and its charge in the linear Debye screen
approximation is45

Z5wpRp~11Rp /lL!, ~4!

wherelL is the linearized screening length

lL5F4pe2S Ne

Te
1

Ni

Ti
D G21/2

. ~5!

This yields a chargeZ'233104 for the Al2O3 particles,
andZ'273105 for the glass particles.

Levitation of macroscopic particles takes place in t
region of the stratum where the electrostatic forceZeE is
balanced by the gravitational forceM pg. Thus, it is possible
to determine the magnitude of the electrostatic fieldEm in
which particle levitation is possible:

Em5
M pg

Ze
. ~6!

This yields Em'1 V/cm for the Al2O3 particles and
Em'45 V/cm for the glass particles. The latter is 3–4 tim
the fields usually observed at the head of the stratum. H
ever, this disagreement can be partly explained by the s
ration of particles according to wall thickness, and con
quently mass, where this separation takes place directl
-

FIG. 4. Distribution functionsn(r ) for
the structures shown in Fig. 3: a!
I p50.4 mA, b! I p53.9 mA. 1—n(r )
for the central region of the cross sec
tion, 2—for the entire cross section.
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the discharge: particles with minimalM p /Z are captured,
above all the thin-walled ones with wall thickness 1–2mm.
In addition, the very presence of charged particles can lea
an increase in the electric field.

The Coulomb interaction between charged particles
proportional to the product of their charges. Therefore
large value ofZ leads to a strong Coulomb repulsion b
tween particles, and consequently nonideality of the syst
For a mean interparticle distancea5300 mm at T5300 K,
the nonideality parameterG;106 and 108 for particles of
radius 1.5 and 25mm, respectively. Note, however, that th
particles are screened by the electrons and ions of
plasma, whose concentration varies severalfold along
length of the stratum and lies within the limit
53107– 53108 cm23 ~Refs. 40–42!. The floating potential
of the particles is equal in order of magnitude to the elect
energy, and significantly exceeds the ion energy. There
the screening of the particles is substantially nonlinear.
addition, electron and ion recombination takes place on
surface of the particles, as a result of which there is no

FIG. 5. Digitized video images of structures of charged microballoons
borosilicate glass in the vertical plane forp50.2 Torr andI p50.7 mA.
Frame dimensions 637.5 mm2.

FIG. 6. Distribution functionsn(r ) for the structure imaged in Fig. 5:1—
n(r ) for the central region of the cross section,2—for the entire cross
section.
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verse charged-particle flux near the particles, and their
tribution function is non-Maxwellian. Thus, even th
asymptotic behavior of the potential far from the partic
surface ceases to be Debye-like, and depends on the dis
according to a power law,w(r )'2ZRP/2r 2. This effect has
long been known, and has been well studied in the theor
spherical electrostatic probes.15

The structure of the screening cloud in the collisionle
regime with allowance for the nonlinearity of the Poiss
equation and the non-Maxwellian character of the elect
and ion energy distribution functions was calculated in R
46 for spherical particles in a helium discharge. It turns o
that at small distances the particle potential can be appr
mated to high accuracy by the Debye–Hu¨ckel potential

w~r !5wp

Rp

r
expS 2

r 2Rp

l D . ~7!

Howeverl5lL only in the case of sufficiently small par
ticles (Rp!lL), and for largeRp the screening length in
creases withRp, reaching and even exceeding the electr
screening lengthle5ATe/4pe2Ne.

Figure 8 plots the results of a calculation ofw(r ) that we
performed for a neon discharge, for particles of two siz
under conditions typical of the mid-region of the strata
neon, and allowing for the non-Maxwellian character of t
electron and ion distribution functions due to their absorpt
by the surface of the macroparticle. It can be seen that
approach to the non-Debye-like dependencew(r )}21/r 2

takes place earlier for larger particles, and at distances c
to the mean interatomic distance in the levitating orde
structures. This effect can lead to an increase in repulsio

f

FIG. 7. Digitized video image of a fragment of a filamentary extend
structure of charged glass microballoons in the vertical plane
p50.4 Torr andI p50.4 mA. Frame dimensions 7.5318 mm2.
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large interatomic distances, and a slackening of the dep
dence of the interparticle interaction on the electron and
concentrations in the screening cloud.

Figure 9 plots the dependence of the screening lengl
on the electron concentrationNe . Proper choice of the latte
enables one to accurately approximate the calculated po
tial w(r ) near the particle with the help of the Debye
Hückel potential ~7!. As in the case of the helium
discharge,45 at small radii it is possible to use the line
screening lengthlL , but for Rp;lL it is necessary to allow
for nonlinear effects. Note that under the conditions of int
est,l shows essentially no dependence onTe .

Allowing for screening of the charge of the dust particl
and the non-Maxwellian character of the electron and
velocity distribution functions near the particles, as a noni
ality parameter in place ofG calculated according to Eq.~3!,
it is possible to use20

GD5
Z2e2

aTp
e2a/l ~8!

in the case of small Al2O3 particles, and

FIG. 8. Dependence of the unit-normalized productrwp on distance to the
surface of the particle in neon ~Te550000 K, Ti5300 K,
Ne553108 cm23! for particles of radiusR525 mm ~1! and R51.5 mm
~2!. The dash–dot curves plot the dependence obtained from Eq.~7! with
l5130 and 85mm, respectively. The dashed curve corresponds to Eq.~7!
with l5lL .

FIG. 9. Dependence of the effective screening lengthl on the electron
concentrationNe in neon~Te550000 K, Ti5300 K! for particles of radius
R525 mm ~1! andR51.5 mm ~2!. Curve3 plots the linear Debye–Hu¨ckel
screening length~5!.
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in the case of large glass particles.
In both cases, the degree of nonideality can be redu

by several orders of magnitude in comparison withG; how-
ever, it is still too large to explain the observed ‘‘melting’’ o
the ordered structures. One reason for this is that the part
are held back not where the electrostatic force acting on th
is maximum~and consequently their chargeZ is also maxi-
mum!, but where it balances the gravitational force. The s
ond and probably the most important reason is that, a
consequence of the fluctuating plasma microfields, partic
charged to large values ofZ have mean kinetic energyTp

significantly greater than the temperature of the gas. T
effect is observed both in a radio-frequency plasma37,47 and
in our experiments.26 In both cases, with distance from th
melting curve, the particle energy reaches a very high va
of the order of 50 eV. Such a growth of the energy c
explain the observed ‘‘melting’’ of dust crystals.

3.2. Formation of ordered structures in an electric double
layer

Levitation of macroparticles in the positive column of
constant-current glow-discharge requires an electric fi
strong enough to balance the force of gravity and is poss
not only in strata, but also in a specially organized elec
double layer. Toward this end, one can vary the plasma
rameters by varying the transverse cross section of the p
tive column.48

However, in contrast to Ref. 48, we use a positive c
umn with a narrow cathode part with radiusRk and a wide
anode part with radiusRa (Rk,Ra) with an expansion seg
ment in between. In this case, a double layer of space ch
separating the two plasma regions with different elect
temperaturesTek and Tea and electron concentrationsNek

andNea appears in the mouth of the constriction. The narr
cathode part has higher values ofTek andNek . The potential
jump U at the double layer depends on the gas pressure
radii Rk and Ra , their ratioRa /Rk , and the discharge cur
rent.U can be estimated from the relation48

U5Tek2Tea1
Tek1Tea

2
ln

Nek

Nea
. ~10!

Thus, for the given discharge tube the introduction o
constriction with a radiusRk53.5 mm yields an increase in
Ne for p50.5 Torr of almost an order of magnitude, inT of
a factor of three, andU'10 V. Since the longitudinal di-
mension of the double layer in the mouth of the constrict
is not large (;1 cm), the values of the longitudinal electr
field in the layer are of the same order of magnitude as at
head of the stratum. Thus, conditions are ensured for
capture and suspension of charged macroparticles, with
sequent formation of an ordered structure.

In experiments with a constrictionRk53.5 mm, we did
indeed obtain levitation of particles of both types in t
mouth of the narrow part. The constriction was created
introducing an additional cylindrical glass tube with variab
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inner diameter into the discharge tube, the wide part of
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which was placed over the cylindrical cathode.

3.3. Effect of dust particles on discharge parameters

At moderate pressures under stationary steady-state
ditions, charge losses in a weakly ionized plasma are ass
ated with ambipolar diffusion toward the walls of the di
charge chamber.38 In this case the electron temperature~and
accordingly the longitudinal electric field! in the positive col-
umn of the glow-discharge can be determined by equa
the ionization rate and the rate of ambipolar diffusion loss

The presence of dust particles in the discharge can
stantially alter this situation. The point is that for a hig
enough macroparticle concentration, charge loss to their
faces becomes predominant in comparison with loss to
chamber walls. An idea of the efficiency of the two proces
of charged particle loss can be had by comparing their
spective rates. The rate of ambipolar losses is given by

nd5
Da

L2 , ~11!

where Da is the ambipolar diffusion coefficient, an
L5R/2.4 is the characteristic diffusion length for cylindric
discharge geometry38 ~R is the radius of the discharge cham
ber!. The electron loss rate to the surfaces of the dust p
ticles in the orbital motion approximation is given by

np5pRp
2NpA 8Te

pme
expS ewp

Te
D . ~12!

For the ambipolar diffusion coefficient the following es
mate applies:38

Da'Di

Te

Ti
'

1

3Nas
A 8Ti

pmi

Te

Ti
. ~13!

Heres is the resonant recharging cross section~in the case
of motion of the ions in their own gas! and Na is the atom
concentration. Hence we obtain for the ratio of the char
teristic rates

np

nd
53pRp

2S R

2.4D
2

NpNasATimi

Teme
expS ewp

Te
D . ~14!

Let us estimate the macroparticle concentration
which charge loss to the particles is more probable than
the walls. Using the neon discharge paramet
Na5331016 cm23 (P51 Torr), Te550000 K, Ti5300 K,
Rp530 mm, s'2310215 cm22, ewp /Te'22, we find
from ~14! that the rates coincide forNp'250 cm23.

Under the conditions of the experiment described he
the concentration of macroparticles of the given size w
roughly an order of magnitude greater. Thus, the main ch
nel of charge loss is probably loss to dust particles. Un
such conditions, an increase in their density should be
companied by a rise in the ionization rate needed to main
the stationary discharge regime. This obviously means a
in the electron temperature, and consequently the ele
field, in the region in which the macroparticles are located
this field grows to a sufficient magnitude, it will keep th
particles from falling as a result of the force of gravity. Th
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the electric field values required to compensate for the fo
of gravity and the electric field values usually observed at
head of the stratum in the case of heavy glass particles,
also allows a qualitative explanation of the experimenta
observed suspension of an extended ordered structure of
particles in the absence of visible stratification of the posit
column of the glow discharge.

4. CONCLUSION

In the present paper we have investigated the forma
of ordered structures of charged macroparticles in the p
tive column of a neon glow discharge. We observed the f
mation of quasicrystalline structures whose size and sh
depended on the discharge parameters. Formation of
structures took place in a region of high electric field,whi
balanced the force of gravity, in standing strata and in
double electric layer created by introducing an additio
cylindrical glass tube with variable inner diameter into t
discharge. The effect of the discharge parameters on the
sible existence of quasicrystalline dust-particle structu
was investigated. It was found, in particular, that increas
the discharge current leads to the destruction of long-ra
order ~melting of the quasicrystal!.

The experiments also revealed the emergence of unu
formations of charged macroparticles. For certain values
the discharge parameters, extended filamentary struct
were formed in the absence of stratification of the posit
column. The length of such structures reached 6 cm. N
that this is the first reported observation of such structure

The electrostatic interaction between dust particl
which leads to the formation of ordered structures, was c
sidered in detail with allowance for the nonlinearity
screening with a non-Maxwellian energy distribution of t
electrons and ions of the plasma. A difference in the shap
the interaction potential is noted for different sorts of ma
roparticles~due to a difference in their diameters!. An esti-
mate was made of the coupling parameterG corresponding to
the existence of ordered structures. We point out the ne
sity of allowing for an additional channel of electron and io
loss in the presence of high dust-particle concentration in
discharge.
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Surface driven transition in a nematic liquid crystal cell

re
D. Andrienko, Yu. Kurioz, and Yu. Reznikov* )
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V. Reshetnyak
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~Submitted 23 November 1996!
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Surface driven reorientation effects in a nematic liquid crystal cell caused by light-induced
changes of the anchoring parameters were studied. Theoretical consideration of one-dimensional
flat distributions of the director has shown that the director can undergo threshold
reorientation between hybrid, homeotropic, and planar alignments as the anchoring energy varies
continuously. The threshold reorientation takes place when the reference and light-induced
easy axes are perpendicular. In the one-elastic-constant approximation the light-induced transition
was found to be of second order as shown by a critical increase of the director thermal
fluctuations in the vicinity of the transition point. These effects were experimentally studied in
the cells containing 5CB liquid crystal aligned by the photosensitive azo-containing
polymer layer. ©1997 American Institute of Physics.@S1063-7761~97!01012-3#
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Reorientation effects caused by light acting on the ali
ing surfaces of liquid crystals have been intensively stud
in the past decade1–7 because of their fascinating expect
applications and surprising nonlinear optic effects. The ba
idea of this work is to control the orientation of the liqu
crystal by the phototransformation of the aligning surface

Ichimura et al.1,2 in their publications have carefully
treated the change of the liquid crystal alignment under
action of light on the azo-containing aligning layers. It w
found that trans-cis isomerisation of azo-inits results in
out-of-plane anchoring transition between the planar~the
easy orientation axise lies in the plane of the surfaces! and
homeotropic~the vectore is normal to the cell surfaces! easy
axis directions. In turn, the linearly polarized actinic lig
wave caused in-plane reorientation of the director on
polyvinyl-cinnamate polymer surface due to the cro
linking reaction between cinnamic acid groups.4 A similar
effect was observed under the action of linearly polariz
light on azo-containing polymers5–8 and under the action o
light on the bulk of azo-containing nematic liquid crystal.9,10

The effects above can be explained by the light-indu
changes of the anchoring parameters. In the macroscopic
proach and Rapini approximation two basic parameters c
acterize the anchoring: the easy axise and the anchoring
energyW. Both parameters can be induced or changed
the action of light on the photosensitive aligning layer.

As was shown in our previous publications, the in-pla
smooth and threshold reorientation effects can be descr
by changes in the azimuth anchoring energy.4,8,10 These
changes are due to the modification of the orientation dis
bution function of polymer fragments onto the aligning su
face under the action of actinic light, i.e., a change in
order parameter of the fragments.

In accordance with the work of Ichimuraet al.,1,2 the
out-of-plane reorientation is the result of trans-cis isomer
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are two main microscopic scenarios of this effect. The fi
one is the percolation-like process due to the competit
between the planar ability of cis-isomers and homeotro
properties of trans-isomers. This scenario should lead
discontinuous change in the polar anchoring energy as
cis-isomer concentration increases. The second one is
smooth change of the total aligning ability of the mixture
trans- and cis-isomers, leading to a smooth change in
polar anchoring energy.

The aim of this work is to consider the out-of-plane su
face driven reorientation effects in nematic liquid crys
cells caused by smooth changes in the polar anchoring
ergy and to discuss the microscopic scenario of the proc
realized under the trans-cis isomerisation of polymer fr
ments on the aligning layer.

2. THEORY

The system under consideration is a nematic liquid cr
tal bounded by two plates covered with alignment materia
The free energy of such a sample in the approximation of
surface Rapini potential has the form11

F5
1

2 E ~K1~div n!1K2~n•curl n!2

1K3@n•curl n#2!dV2
1

2
W0E ~n•e0!2dS

2
1

2
WLE ~n•eL!2dS, ~1!

where K1 are the Frank elastic constants,e0,L are the unit
vectors along the easy axes on the surfaces, andW0,L are the
anchoring energies which can depend on the light field
tensity I 5E2.

Let us consider the geometry realized in the experim
described below~Fig. 1!. The top plate is the reference on

1119-06$10.00 © 1997 American Institute of Physics



ro

ht

a
rg
b
e

cu

,
y

-
nc

be

e

-
de-

d

trol
i-
an-
ibit

efs.
the
of

-

ec-

al-

er-

ac
and is characterized by an easy axis directioneref

5(0,cosaref ,2sinaref) and constant~large! anchoring en-
ergy Wref . The bottom photosensitive surface is the cont
one with the homeotropic easy axisecon5(0,0,1) and the
anchoring energyWcon. Let us assume that the incident lig
gives rise to the additional planar easy axiseind5(0,1,0) on
the control surface with the anchoring energyWind . Both
Wcon andWind depend on the light intensityI . We also sup-
pose that the director characteristic reorientation times
much shorter than the time over which the anchoring ene
varies. In this case the director distribution is determined
the minimum of the total free energy at each instant of tim
Further we also assume that the director reorientation oc
in the yz-plane ~«flat» reorientation!. Thus, in the one-
elastic-constant approximation, the free energy~1! can be
brought into the form

F

S
5

1

2
KE

0

L

uz8
2dz2

1

2
Wref cos2~aref2uref!uz5L

2
1

2
~Wcon2Wind!sin2 uconuz50 , ~2!

whereu(z) is an angle between they-axis and the director
andL is the cell thickness. Minimization of the free energ
~2! leads to the equation for the director distribution

uz950 ~3!

and the boundary conditions

Luz81
1

2
~jcon2j ind!sin 2uuz5050,

Luz81
1

2
j ref sin 2~u2a ref!uz5L50, ~4!

where jm5WmL/K (m5con,ind,ref) are the anchoring pa
rameters. In the case of infinite anchoring on the refere
surface the solution to the equation~3! takes the form

u5ucon1~aref2ucon!z/L, ~5!

whereucon is the tilt angle on the control surface and can
found from the implicit equation

aref2ucon5
1

2
~jind2jcon!sin 2ucon ~6!

FIG. 1. Geometry of the out-of-plane director reorientation. Bottom surf
is the control, upper is the reference one;econ, eind and eref are the initial,
induced and reference easy axes, correspondingly.
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From~6! one can obtain the conditions for the stability of th
director distribution~5!. As a result we find that fora ref50
and jind2jcon5Dj.21, only the planar distribution is
stable. ForDj.1 the hybrid distribution with tilted orienta
tion of director on the surfaces is realized. In this case
creasingj ind causes the tilt angleucon to increase monotoni-
cally, i.e., smooth reorientation of director towardecon.

For 0,a ref,p/2, increasingj ind results in a monotone
decrease of the tilt angleucon with no critical points forDj.

For a ref5p/2 the onlyucon5p/2 solution is stable for
Dj,1. For Dj.1, the director distribution becomes tilte
and the angleucon decreases towardeind asj ind increases.

Thus, fora ref50 anda ref5p/2 the reorientation shows
the threshold behavior as the anchoring energy on the con
surface varies~Fig. 2!. In the one-elastic-constant approx
mation this reorientation is a second-order orientational tr
sition, so that the director fluctuations are assumed to exh
a critical behavior in the vicinity of the transition point.

The thermal fluctuationsdn of the director in a cell with
arbitrary anchoring have been considered in detail in R
12 and 13. In line with the approaches developed there
director fluctuationsdn can be regarded as a superposition
the eigenfunctions of the operator2(K/2)D and have the
form

dna~r !5exp~ iq'•r!

3(
j

$dna j
1 exp~ iqz

j z!1dna j
2 exp~2 iqz

j z!%, ~7!

wherea5x,y, q'5(qx ,qy,0) is the wave vector of fluctua
tions in the plane of the cell surfaces,r5(x,y,0), and the
sum is over the discrete modes of the fluctuation wave v
tors qz

j .
Let us consider the case ofqx50 and the out-of-plane

part of the fluctuations (dny) which is responsible for the
ee-scattering of light and corresponds to the situation re
ized in the experiment.11 The boundary conditions~4! linear-
ized with respect to the director fluctuations, which det
mine the values ofqz

j , have the form

Ldny,z2~jcon2j ind!dnyuz5050,

Ldny,z1j refdnyuz5L50. ~8!

e

FIG. 2. Calculated dependence of the tilt angleucon on the control surface
on the anchoring parameterDj at the different tilt anglesa ref on the refer-
ence surface:1—a ref590°; 2—a ref570°; 3—a ref520°; 4—a ref50°.

1120Andrienko et al.



Substituting~7! in the boundary conditions~8!, we ob-
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tain an equation for theqz-components of the fluctuatio
wave vectors:

tan t5
t~j ref1Dj!

t22j refDj
, ~9!

wheret5qzL.
Application of the equipartition theorem of classical s

tistical mechanics gives the fluctuation amplitudes

udny j
1 u25AH 21

2Dj

Dj21t2 ~12cos 2t !

2
Dj22t2

t~Dj21t2!
sin 2tJ 21

, ~10!

whereA5kBT/KV(q'
2 1qz

j 2
). It is seen that the denominato

in ~10! can be equal to zero for some definite values ofDj
and t. This means that the amplitude of the lowest fluctu
tion mode experiences an infinite growth, i.e., a second-o
structural transition occurs. In the case of a strong ancho
on the reference surface this condition reduces to the e
tence of the solution to the system of equations

Dj tan t5t, t22Dj~12Dj!50. ~11!

The first equation corresponds to Eq.~9! for j ref5` and the
second one to the vanishing of the denominator in~10!. It is
apparent thatt50, Dj51 is the solution of this system an
thus defines the transition point.

The asymptotic behavior of the fluctuation wave vec
and amplitude of fluctuation in the limitDj→1 has the form

qzL;A12Dj, udny1u2;
1

4VKq'
2 ~12Dj!

. ~12!

It is seen that the lowest mode of the splay-bend direc
fluctuation diverges whenDj→1. Moreover, the behavior o
dny1 in the vicinity of the pointDj51 is typical of the
second-order transitions.

This orientational transition is a light-induced anchori
transition and is the surface analog of the well known lig
induced Freederiksz effect.11 In turn, the smooth surface di
rector reorientation for an oblique easy axis direction is
analog of the giant optical nonlinearity widely studied in t
past decade.14 It should be noted that the director can u
dergo reorientation not only whenW changes but also due t
the changes of the Frank elastic constants or the cell th
ness~the dimensionless parameter determining the dire
distribution in the cell isj5WL/K!. The orientational tran-
sition at a critical cell thickness in a wedge-shaped cell w
studied by Barberoet al.15

In summary, we emphasize the new facts. Firs
smooth variation of the anchoring can lead to threshold
orientation of the director. Secondly, the threshold reorien
tion takes place only for a definite cell geometry, name
when the easy axes are orthogonal on the aligning surfa
Lastly, if the threshold reorientation occurs, the director th
mal fluctuations increase near the transition point. Since
differential cross-section is proportional to the squared a
plitude of the fluctuations, the intensity of theee-scattered
light should increase near the transition point.
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3. MATERIALS AND EXPERIMENTAL PROCEDURE

The experiments were performed with a sandwich c
arrangement filled with the mixture of the liquid crystal 48
2n-pentyl-4-cyanobiphenyl~5CB!. The thickness of the
cells was 70mm. One of the aligning plates was the refe
ence. We used three types of reference surfaces
polydimethyl-siloxane ~PS! layer ~provides homeotropic
alignment, a ref590°!, an obliquely evaporated layer o
In2O3 (a ref'30°), and a rubbed polyimide~PI! layer (a ref

54.5°). The anglesa ref were determined by zero magnet
and optical rotation methods16 in the symmetric cells with a
homogeneous director distribution.

The control surface was coated with a layer of photos
sitive azo-polymer~AP! ~Fig. 3! providing the homeotropic
orientation of 5CB. This polymer belongs to a class of ph
tosensitive polymers side fragments of which undergo
trans-cis isomerisation as well as the reorientation of tra
isomers perpendicular to the polarization vector of U
light.17,18The initial absorption spectrum of AP and its tran
formation under UV-irradiation are shown in Fig. 3.

Thus, we used two initial liquid crystal alignments in th
cells: the hybrid~PI or In2O3 reference surfaces! and homeo-
tropic ~PS reference surface!. To observe reorientation of th
director, the cellC was inserted in the optical circuit nor
mally to the exciting UV beam from a Hg-lamp~Fig. 4!. The
control surface faced the Hg-lamp. The wavelength spect
of the exciting light was given by the filterF1 and is shown
in Fig. 3. The polarizationEexc of the UV light was set by the
Glan–Thompson quartz prismPr. In the case of a hybrid

FIG. 3. The initial absorption spectrum of AP and its transformation un
UV light irradiation: 1—initial spectrum;2—spectrum obtained after the
irradiation with exciting light of Hg-lamp;3—spectrum obtained in an hou
after the irradiation.

FIG. 4. Experimental setup.

1121Andrienko et al.



cell with tilted liquid crystal alignment direction,Eexc was
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parallel to the director. It had an arbitrary direction when t
cell with homeotropic orientation were used. The irradia
circle with radiusR51.5 mm and homogeneous light inte
sity distribution was formed by the condenserL and the dia-
phragmD attached directly to the cell. The UV light inten
sity I exc was controlled in the range 0.5– 50 mW/cm2 with
the filtersF2 .

A probe beam from a He–Ne laser~l test50.63 mm,
power Ptest50.5 mW! passed through the polarizerP, cell
C, diaphragmD, and analyzerA. The polarizerP and ana-
lyzer A were crossed and their axes made a 45° angle w
the projection of the directorn on the aligning surfaces. Th
intensity I test

out of the light behind the analyzer was measur
by a photodiodePh connected to the computer.

The action of the UV light did not affect either the re
erence aligning layer or the liquid crystal. Therefore, t
change ofI test

out under UV irradiation indicated director reor
entation in the cell caused by the phototransformation of
control surface.

The intensityI test
out behind the analyzer is given by19

I test
out5I test

in sin2~pDc/l!, ~13!

where

Dc5E
0

LS n0ne

An0
21~ne

22n0
2!nz

2
21D dz

is the phase difference of the extraordinary and ordin
waves,ne andn0 are the refractive indexes of liquid cryst
for the extraordinary and ordinary waves, respectively, a
nz5sin@ucon1~aref2ucon!z/L).

To observe the critical behavior of the director fluctu
tions in the vicinity of the reorientation threshold we us
the experimental setup for studying Rayleigh scattering
light described in detail in Ref. 12. The totalee-scattering in
the range 2–10 mrad was detected through simultaneou
radiation with the exciting UV light.

4. EXPERIMENTAL RESULTS

The irradiation of cells with the exciting beam caus
the test light to appear behind the analyzer, i.e., director
orientation occurred. After the UV light had been cut off t
initial state was restored in several minutes.

Observations in a polarizing microscope of the irradia
area in the cells with initially homeotropic liquid crysta
alignment~PS reference surface! revealed a typical schliere
structure of the tilted or planarly oriented liquid crysta
Sometimes monodomain orientation of the liquid crystal
curred in this area. If hybrid cells were used~PI and In2O3

reference surfaces!, tilted director alignment of the irradiate
spot was observed. The irradiated area in this case was m
less bright than that in the remaining part of the cell, wh
was attributable to the decrease of the director tilt in the c
under the UV light irradiation.

The dependence of the light intensity behind the a
lyzer I test

out(texc) on the irradiation timetexc is shown in Fig. 5
for different types of reference surfaces. It is seen that th
is a smooth director reorientation in the hybrid cell wi
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tilted direction of the easy axiseref ~PI and In2O3 reference
surfaces!. In contrast, we have obvious threshold reorien
tion in the initially homeotropic cell~PS reference surface!.
The dependenceucon(texc) calculated in accordance with Eq
~13! for the threshold reorientation of director is shown
Fig. 6a.

The increase ofI exc caused an increase in the number
oscillation periods for all types of cells and is due to t
increase in the maximum director deviation angle on the c
trol surface. Within the limits of experimental error the d
pendence of the stationary valueū(I exc) was linear up to
I exc.20 mW/cm2. In the case of the homeotropic cells th
«silent time»~time needed to reach the threshold! was in-
versely proportional to the intensityI exc ~Fig. 7!.

The reorientation of the director was accompanied
light scattering caused by fluctuations of the director. T
light scattering intensityI sc

ee increased with the irradiation
time and then went through a maximum. Since the inten
of the scattered lightI sc

ee is proportional to sin 2b, whereb is
the angle between the directorn and the wave vector of the
incident light,12,13 this increase can be explained by th
change in this angle during reorientation. In the homeotro
cell the scattering only increased with the reorientation. E
dently, it is due to the appearance of schlieren structure in
irradiated area.

It is significant that in the hybrid cells the increase in t
light scattering began simultaneously with the director reo
entation. At the same time, we found that the intensity of
scattered light increased before the director reorientation
the homeotropic cell. It is seen in Fig. 8 that a definite de
exists between the beginning of the light scattering incre
and the director reorientation. Note that the value of t
delay depended on the exciting light intensityI exc, i.e., larger
intensities give smaller delays.

5. DISCUSSION

The experimental results evidently show the thresh
director reorientation in the homeotropic cell and critical b
havior of the director fluctuation in the vicinity of the thres
old point. There are two possible explanations of this effe

FIG. 5. Light intensity behind the analyzerI test
out(texc) as a function of the

irradiation time texc, for different types of reference surfaces: a—a ref

530°; b—a ref54.5°; c—a ref50°.
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FIG. 6. a! Tilt on the control surface,ucon(texc),
and b! the anchoring differenceDj(texc), calcu-
lated in accordance with Eq.~13!.
The first one is the discontinuous change of the anchoring
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energy on the control surface. Without doubt, if the diffe
enceDW5Wind2Wcon of the anchoring energies as a fun
tion of the excitation time has a break, the threshold reori
tation of director should occur both in the hybrid an
homeotropic cells. The second possibility is a smooth cha
in the differenceDW with threshold director reorientatio
only in the homeotropic cell, which is due to the competiti
between bulk and surface torque and was discussed a
~Sec. 2!.

As the experiments have demonstrated, only the hom
tropic cell exhibits threshold reorientation of the directo
Hence, the model of smooth anchoring energy variation
valid in our case. Comparison of the experimental dep
denceucon(texc), Fig. 6a, and the solution of Eq.~6! allows
us to calculate the anchoring differenceDj5DWL/K at
each instant of time. The results obtained for the homeo
pic cell are shown in Fig. 6b. The initial valueWcon(texc

50)'4•1024 erg/cm2 was measured independently in th
symmetric cell by theH-field method proposed recently b
Lavrentovichet al.16

FIG. 7. Dependence of the silent time on the intensity of incident ligh
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changes in the anchoring energyDW5Wind2Wcon are due to
the change in the concentrationsCtrans, Ccis of trans- and
cis-isomers under the action of UV light. In fact, this mech
nism is responsible for the planar-homeotropic transitions
the cells with azo-polymer aligning material.1,2 Moreover,
our studies of the absorption spectrum of a thick AP layer
the range of 300–800 nm revealed the typical transforma
under trans-cis isomerisation of azo-dye18 ~Fig. 3!.

Thus, the differenceDW5Wind2Wcon is a function of
Ctrans, Ccis. At Ccis50 the homeotropic orientation of th
easy axis is realized, whereas the planar alignment ta
place forCtrans50. In this modelCtrans, Ccis depend on the
UV light intensity and give the experimentally obtained i
crease in the stationary value of the tilt angleucon with in-
creasingI exc. Moreover, at small irradiation timesCtrans(t),
Ccis(t) are linear, and the time needed to achieve their cr
cal values corresponding to the anchoring differenceDj
5 f (Ccis,trans)51 is irreversibly proportionalI exc as was

FIG. 8. Critical increase of the light scattering in the vicinity of the reo
entation threshold. The increase in the light scattering starts earlier tha
director reorientation and is due to the attainment of the critical value for
anchoring parameter.
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found experimentally~Fig. 7!. The saturation of the light-
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with
induced anchoring energy for long exposure times could
caused by the saturation of the concentration of cis-isom
and decimation of trans-isomers.

It should be noted that we observed a difference betw
the relaxation behavior of AP and liquid crystal in the c
after switching off the UV light. The characteristic time o
AP absorption spectrum relaxation was one to two hours
the thick AP layer, while the recovery time of the initia
homeotropic orientation in the cells was several secon
This result requires further study. However, we believe t
it reflects the fact that if the relaxation time of the AP spe
trum is determined by the lifetime of cis-isomers,tcis, in the
polymer matrix, the recovery timetd of the initial director
alignment is also determined by the orientational viscos
and elasticity of the liquid crystal and by the interaction b
tween the liquid crystal and the cell walls~boundary condi-
tions!. It is well known that the value oftcis strongly depends
on the environment of cis-isomers, being hours in a polym
matrix and few seconds in a liquid crystal matrix.20,21 Since
cis-isomers at the cell wall directly interact with liquid cry
tal molecules at the polymer surface, their lifetime should
comparable with the value oftcis in a liquid crystal matrix,
i.e., with the value observed in our experiments. Moreove
is reasonable to suppose that steady homeotropic alignm
occurs for a concentration of cis-isomers at the surface
from its equilibrium value that also makestd<tcis. Besides,
strong homeotropic anchoring of liquid crystal at the ref
ence surface may also bring about the early recovery of
initial alignment.

The authors thank to A. Iljin, T. Marusii, and S. Slu
sarenko for useful discussions. We are very grateful to
Dyadyusha for help in anchoring energy measurements
to A. Tereshchenko who carried out the spectral studies.
research described in this publication was made possibl
part by Grants Nos. U5W000, U5W200 from the Intern
tional Science Foundation, GR/J88111 from EPSRC~UK!,
and the Ukrainian State Fund for Fundamental Studies S
port, grant No. 2.3/406.
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Magnetohydrodynamics of a viscous spherical layer rotating in a strong potential field

nd-
S. V. Starchenko

Borok Geophysical Observatory, Institute of Earth Physics, Russian Academy of Sciences, 152742 Borok,
Yaroslavl Region, Russia
~Submitted 15 May 1997!
Zh. Éksp. Teor. Fiz.112, 2056–2078~December 1997!

An analytic solution is given for classical magnetohydrodynamic~MHD! problem of almost rigid-
body rotation of a viscous, conducting spherical layer of liquid in an axisymmetric potential
magnetic field. Large-scale flows bounded by rigid spheres are described for the first time in a new
approximation. Two problems are solved:~1! in which both spheres are insulators and~2! in
which the outer sphere is an insulator and the inner sphere a conductor. Axially symmetric flows
and azimuthal magnetic fields are maintained by a slightly faster rotation of the inner
sphere. The primary regeneration takes place in the boundary and shear MHD layers. The shear
layers, described here for the first time, smooth out the large gradients at the boundaries
of the MHD structures encompassed by them. There is essentially no azimuthal magnetic field
inside these original structures, which are bounded by potential contours tangent to the
spheres. An applied constant magnetic field creates a rigid MHD structure outside an axial cylinder
tangent to the inner sphere. Inside the cylinder the rotation is faster and the meridional flux
depends on height. A magnetic dipole forms a structure tangent to the outer equator. Outside the
structure, the rotation is also rigid-body when both spheres are insulators. When a conducting
sphere is present, the liquid rotates differentially everywhere, while near the axis and inside the
MHD structure, it rotates even faster than the inner sphere. The last example of a general
solution is a quadrupole magnetic field. In this case, two equatorially symmetric MHD structures
are formed which rotate together with the inner sphere. Outside the structures, as in the
most general case, the rotation is differential, the azimuthal magnetic field falls off as the first
power of the applied field, and the meridional flux falls off as the square of the field in
the first problem, and as the cube in the second. ©1997 American Institute of Physics.
@S1063-7761~97!01112-8#

1. INTRODUCTION AND STATEMENT OF THE PROBLEM The small-scale flows are concentrated in the Ekman bou
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In the middle of this century, Proudman1 formulated a
problem involving the almost rigid-body rotation of a vi
cous incompressible liquid between concentric spheres.
linearized the problem, using the smallness of the differe
DV between the angular velocities of the rotating sphe
which is characterized by the very small parameter

e[
DV

V
!1. ~1!

The large-scale flow was described analytically1 in the ap-
proximation of rapid rotation (d!1) with a thin viscous Ek-
man layer, where

d[
An/V

L
. ~2!

Here n is the kinematic viscosity,V is the angular rotation
velocity of the outer sphere, andL is the thickness of the
spherical layer of liquid illustrated in Fig. 1.

The large-scale flow consists of a differential rotati
plus a weak (O(d)) meridional flow, which depend only on
the inside radiuss of an axial tangential cylinder that i
tangent to the inner sphere. All the liquid outside the tang
tial cylinder rotates as a rigid body together with the ou
sphere. We associate a cylindrical coordinate system (s,w,z)
with the latter, where distances are measured in units oL.
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ary layer and in the free shear layer, which ensures a re
meridional flow and smoothes out the large gradients at
tangential cylinder. The structure of this layer was det
mined by Stewartson2 only ten years after Proudman’
paper1 had been published.

Much later, Ruzmaikin3,4 pointed out the importance o
solving the Proudman-Stewartson problem for the earth’s
namo, and Starchenko5 laid the foundations for solving the
associated, more complicated, magnetohydrodyna
~MHD! problem analytically. Since then this problem h
been at the center of attention by researchers, who use
merous models for the hydromagnetic convection, dyna
and interiors of planets.6–9 For seven years, repeated but u
successful attempts were made to find the most general
lytic solution of this MHD problem.10,11Only very recently12

has it become clear that one must begin with a proper st
ment of the problem.

A first step in this direction had already been taken
Hollerbach’s numerical model.13 He examined the effect of a
central axial magnetic dipole on a Proudman–Stewart
system~see Fig. 1! in which a liquid with constant conduc
tivity s and densityr is subjected to the strong influence
a weak potential magnetic field. The effect of even a la
azimuthal magnetic field on this axially symmetric flow
much weaker, since the azimuthal field cannot cross an
the very thin layers that form the flow.14–16 Unfortunately,

1125-13$10.00 © 1997 American Institute of Physics
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Hollerbach and the authors of a subsequent important
lytic paper12 did not take the next step in stating the proble
they did not formulate the approximation of a strong pote
tial field, but restricted themselves only to examining t
effect of very weak fields. Even these weak fields, wh
were, therefore, of no practical interest, ended up chang
the Proudman–Stewartson flow in a fundamental way. I
therefore logical to formulate the strong-field approximati
in this paper in order to solve the MHD problem analytical

Thus, we assume that the system shown in Fig. 1 lie
a strong potential magnetic fieldB measured in terms of th
dimensional magnitudeBp . Accordingly, the principal di-
mensionless parameter of the problem is very large:

l5
Bp

ArV/s
@1. ~3!

This approach makes it possible in practice to avoid restr
ing the other basic parameters of the problem, i.e., to ass
that we can take arbitraryd and

Rm5msVL2, ~4!

where Rm is the magnetic Reynolds number andm is the
magnetic permeability of the liquid, usually taken to be eq
to the vacuum permeabilitym0 in SI units.

It is important to note that in contrast to earlier wo
~including numerical calculations!, we do not limit ourselves
to the approximation of rapid rotation (d!1) or to large or
small Reynolds numbersRm . Thus, the results of this pape
do not just apply to geophysics and the theory of the MH
dynamo. They can be used in astrophysics to model the m
netoactive interiors of the planets, sun, and stars. It is in
esting to compare our results with corresponding numer
simulations. Furthermore, the theory discussed here ca
used both in setting up experiments and for comparison w
laboratory experiments that have been conducted and ar
ing conducted on extremely diverse liquid systems rotat
in magnetic fields.

FIG. 1. Rotation of an inner sphere of radiusr 2 by an amounteV faster
than an outer sphere (r 1) with a rotational velocity ofV. Shown here are
the Ekman (;d) and Hartmann (;d/l) boundary layers. The thicknes
(r 12r 2) of the spherical layer equalsL.
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to represent the dimensional velocityv and magnetic induc-
tion b vectors in a standard form that takes into account
subsequent linearization of the problem:

v5eLV~@¹~ews21x!#1szew!, ~5!

and

b5Bp~B1eRm@¹~ews21C!#1eRmsJew!, ~6!

where the dimensionless quantitiesew , sJ, andz are, respec-
tively, the unit vector in the direction of increasingw, the
azimuthal magnetic field, and the local angular rotation
locity, while F andx are the dimensionless meridional flu
functions of the magnetic induction and velocity. The ma
netic field~6! and flow~5! vectors obey the complete syste
of MHD equations linearized in the small parameter« ~for
details of the derivation, see Ref. 12!:

2
]x

]z
1d2sD~sz!1l2B•¹~s2J![@A#50, ~7!

2
]z

]z
2d2s21D2~s21x!1l2B•“~s22B•¹x![@B#50,

~8!

s21D~sJ!1B•¹z[@C#50, ~9!

and

sD~s21C!1B•¹x[@D#50, ~10!

where the modified Laplacian is given byD5D5s22.
The boundary conditions for attachment at the rig

boundaries of the inner and outer spheres with radiir 2 and
r 1 , respectively, are

x5
]x

]r
50 for r 5r 2 ,r 1 , ~11!

z51 for r 5r 2 , ~12!

and

z50 for r 5r 1 . ~13!

The boundary condition corresponding to the absence o
azimuthal magnetic field at an insulating sphere has the f

J50. ~14!

At the boundary of a conducting sphere the following con
nuity conditions must be satisfied:

J5 j ,
]~r 2J!

]r
5H

]~r 2 j !

]r
, ~15!

whereH is the ratio of the conductivity of the sphere to th
conductivity s of the liquid, while j is the azimuthal mag-
netic field inside the rigid conducting sphere. The equat
for this field can be derived from Eq.~9!, and has the form

D~s j!50. ~16!

We end this section by stating the two very differe
MHD problems which are of greatest practical interest.
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Problem 1: insulator–insulator. Both spheres are insu-
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lators. We seekz, J, andx in Eqs.~7!–~9!, using the bound-
ary conditions~11!–~14! for both spheres.

Problem 2: insulator–conductor.The inner sphere is an
insulator, and the outer a conductor. We seekz, J, x, andj in
Eqs. ~7!–~9! and ~16!, using the boundary conditions~11!–
~13! for both spheres, and then apply Eq.~14! for the outer
sphere and Eq.~15! for the inner sphere.

After the functionx has been found, it is easy to dete
mine the meridional magnetic fieldC using Eq.~10! by add-
ing the appropriate boundary conditions. Since the ac
meridional field @¹(s21Cew)# is essentially indistinguish
able against the background of the applied potential fieldB,
we shall not studyC here.

2. INSULATOR–INSULATOR: ASYMPTOTES AND
STRUCTURE

Here we describe the principal asymptotes and the
responding structures of the general analytic solution to
first MHD problem stated above.

In the approximation of a strong potential field~3!, we
have a small parameterl22 in the higher order derivatives in
the initial hydromagnetic equations~7!–~9!. This makes it
possible to reduce the order of the system substantially,
ing into account the corresponding viscous effects, which
O(d2), only within the narrow boundary and shear MH
layers. The shear layers are described in the next section.
Hartmann–Ekman boundary layer problem has already b
solved by Loper17,18 and Starchenko5 in the rapid rotation
approximation. In the following we solve the analogo
problem in the approximation of a strong applied field~3!.

2.1. Boundary layers and asymptotic equations

The radial derivative is perpendicular to the thin boun
ary layer. Thus, here we can neglect the other derivativ
writing down the original system of Eqs.~7!–~9! in a spheri-
cal coordinate system (r ,q). Integrating Eq.~9!, inside the
layer we obtain

]Js

]r
52Br~zs2z!. ~17!

Here and in the following the subscripts denotes small-scale
quantities concentrated within narrow layers, andr denotes
radial components. We take all quantities without a subsc
s to be large-scale quantities that are essentially cons
perpendicular to a layer. Integrating Eqs.~7! and~8! perpen-
dicular to the radial layer under consideration and using
~17!, we obtain

2 cosq

s2

]xs

]r
1d2

]2zs

]r 2 2l2Br
2~zs2z!50, ~18!

and

2 cosqs2~zs2z!2d2
]3xs

]r 3 1l2Br
2 ]xs

]r
50. ~19!
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ment boundary conditions~11!–~13! without the nonpenetra
tion conditionxs50 can be written conveniently in the com
plex form

zs1
i

s2

]xs

]r
5z1~z62z!

3expS 6
r 2r 6

d
Al2Br

212i cosq D . ~20!

Here the upper sign~1! corresponds to the outer sphe
r 5r 1 , wherez150, and the lower sign~2!, to the inner
spherer 5r 2 , wherez251.

Now, integrating Eqs.~20! and ~17! and applying the
nonpenetration boundary condition together with condit
~14!, at the outer boundary of the thin MHD layer we obta

x56ds2~z62z!AAl4Br
414 cos2 q2l2Br

2

2l4Br
418 cos2 q

, ~21!

and

J56dBr~z62z!AAl4Br
414 cos2 q1l2Br

2

2l4Br
418 cos2 q

. ~22!

This is the boundary condition for the large-scale quantit
outside the Hartmann–Ekman boundary layers solved h
Expanding Eqs.~21! and ~22! as series in the small param
eter l21!1, we obtain the asymptotic conditions at th
boundaries of the Hartmann layer:

x52l23ds2Ucosq

Br
3 Uz1O~l27!,

J52l21dSz1O~l25! ~23!

for the outer spherer 5r 1 and

x5l23d~z21!s2Ucosq

Br
3 U1O~l27!,

J5l21dS~z21!1O~l25! ~24!

for the inner spherer 5r 2 . HereS561 is the sign of the
radial componentBr of the applied potential field. Thus, w
have obtained a total of four boundary conditions in E
~23! and ~24!, instead of eight in Eqs.~11!–~14!. Accord-
ingly, the order of the system of equations for the large-sc
fields should be reduced by a factor of two compared to
original system. This reduction is achieved by dropping b
the kinematic viscosity ~d2sD(sz) in Eq. ~7! and
d2s21D2(x/s) in Eq. ~8!! and the magnetic viscosity
(s21D(sJ) in Eq. ~9!! in the first approximation. The valid
ity of leaving out these terms will be confirmed once aga
below when we obtain a more general solution of the pr
lem.

The corresponding formal expansion in terms of t
small parameterl21,

z5z01l21z11..., J5l21J01l22J11...,

x5l22x01l23x11..., ~25!
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enables us then to find the solution, not only in the first-order
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of
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d in
~subscript 0!, but also in the second-order~subscript 1! ap-
proximations. The system of equations for the first appro
mation is obtained by substituting Eq.~25! into Eqs.~7!–~9!
and equating the coefficients for the leading powers ofl@1:

B•“~s2J0!50, 2
]z0

]z
1B•¹~s22B•¹x0!50,

B•¹z050. ~26!

This fourth-order system should satisfy the following boun
ary conditions:

J052dSz0 , x050 for r 5r 1 , ~27!

and

J05dS~z021!, x050 for r 5r 2 , ~28!

derived from Eqs.~23! and~24!, respectively. The following
system of equations for the second approximation~29!, to-
gether with its boundary conditions~30!, can be derived
similarly:

d2sD~sz0!1B•¹~s2J1!50, ~29a!

2
]z1

]z
1B•¹~s22B0•¹x1!50, ~29b!

s21D~sJ0!1B•¹z150, ~29c!

and

J152dSz1 , x152ds2Ucosq

Br
3 Uz0 for r 5r 1 ,

~30a!

J15dSz1 , x15ds2Ucosq

Br
3 U~z021! for r 5r 2 .

~30b!

The first and second of Eqs.~26! form the simple system

B•¹~s2J0!5B•¹z050,

which is complete for finding the large-scale quantitiesJ and
z using just the first boundary conditions in Eqs.~27! and
~28!. The weak meridional fluxx5O(l22) can be found
later using the remaining boundary conditions in Eqs.~27!
and ~28!. In the degenerate case (z05const), the rotation is
rigid-body everywhere, and thenx5O(l23d) can be found
using the second approximation Eqs.~26b! with the second
boundary conditions from Eqs.~30!.

2.2. General solutions inside and outside the l curves

The general solution of the system of Eqs.~26! without
the middle equation can conveniently be written in the fo

z05G~V!, J05s22F~V!, ~31!

whereG andF are free functions determined by the boun
ary conditions, while a given flux functionV determines the
applied potential fieldB5@¹(Vew /s)#. It follows from this
solution that the characteristics of the systems of Eqs.~26!
and ~30! are parallel to the applied magnetic fieldB or, in
other words, lie on theV5const contours. If the contour
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intersect both spherical boundaries, then different bound
conditions~27! and ~28! apply to the different spheres~see
points A and B in Fig. 2!. Alternatively, either a single
boundary condition is applied twice to different points of
single sphere~C andD, E andF in Fig. 2!, or the contours
do not intersect the boundaries at all~curve l No. 3 in Fig.
2!.

Thus, inside the spherical layer there are two types
V5const contours separated by a special curve that is
gent to only one point on one of the two spheres. Let us
it curve l . In all, three topologically differentl curves can
exist in our spherical layer, as shown qualitatively in Fig.
Let us begin with curve No. 1, which is most widespread
astrophysical applications. Thisl curve is tangent to the
outer sphere in the lower part of the figure. This type
curve intersects two points in the inner sphere, forming
closed region with it. Inside this region, the solution~31!,
with the first boundary conditions from Eq.~28! applied
twice, has the form

J050, z051, ~32!

since the signS561 of the function is different at the
boundary pointsC andD joined by the contourV5const in

FIG. 2. The three topologically possible positions of thel curves~No. 1, 2,
and 3! encompassing the MHD structures in the spherical layer illustrate
Fig. 1. The magnified insets show the structure of the MHD layers:~top! a
shear layer of thicknessAd/l indicated by the arrows, and~bottom! a hilly
layer intersecting two shear layers.
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the lower part of Fig. 2. Thus, the region inside the curvel
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from Eq. ~35! is constant, i.e.,z05const. Thus, the estimate
of
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rotates together with the inner sphere and ‘‘expels’’ the a
muthal fieldJ0 from there.

Curve l No. 2 in the middle of Fig. 2 is typical o
laboratory systems. This curve is tangent to one point on
inner sphere. It intersects two points on the outer sph
with which it forms another closed region inside which,
analogy with the previous case, we obtain

J050, z050. ~33!

Thus, the region rotates together with the outer sphere
also ‘‘expels’’ the fieldJ0 .

The last of the possiblel curves, No. 3, is shown in the
upper part of Fig. 2. It is tangent to both spheres, so that
extremely unlikely in any practical applications. This cur
is closed and, by analogy with the previous cases, insid
we have

J050, z05z35const, ~34!

where the constant 0<z3<1 can be determined only afte
solving the conjugate problem for the original MHD lay
along the curvel ~see below!.

Outside any of the abovel curves, generally speakin
we obtain nontrivial solutionsJ0 and z0 , since we apply
different boundary conditions,~27! and~28!, at the different
spheres~see pointsA andB in Fig. 2!. We write these solu-
tions in a form convenient for later practical applications:

z05@11S1~s1 /s2!2/S2#21, ~35!

and

J052dS1~s1 /s!2z0 . ~36!

Here the distances from the rotation axiss6(V) are mea-
sured to the corresponding points of intersection of
V5const profiles with the outer~1! and inner~2! spheres.
The functionsS6(V) which determine the signs of the com
ponentBr are similarly associated with the spheres.

Having obtained the general solution~32!–~36!, let us
estimate the range over which it is valid, and thereby confi
the validity of our initial assumptions. To order of magn
tude, for the nondegenerate case in~l,d! parameter space
Eqs.~25!, ~35!, and~36! imply

J5O~d/l!, z5O~1!, x5O~1/l2!. ~37!

Substituting these estimates in the original system of E
~7!–~9!, we obtain the inequalities

l221d2!ld, l22d2!1, l21d!1,

which are the conditions under which the ‘‘viscous’’ term
with the operatorD in the original Eqs.~7!–~9! can be ne-
glected here. All these inequalities are satisfied if for ar
trary d we have

l@max~1,d21/3!, ~38!

which confirms our assumptions in the approximation o
strong applied potential field~3! in the nondegenerate cas
In the degenerate case, the angular rotation velocity obta
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of x in Eq. ~37! can be replaced, and the range of validity
Eq. ~38! expands:

x5O~dl23!, l@1. ~39!

3. ORIGINAL FREE SHEAR MHD LAYERS

Usually this general nontrivial solution, Eqs.~35! and
~36!, differs substantially from any of the trivial solutions
Eqs. ~32!–~34!, inside all the possiblel curves~see Fig. 2
and Sec. 4 of this paper!; that is,z0 andJ0 are discontinuous
on the curvel . These discontinuities are smoothed out
viscosity in the free shear MHD layer along thel curve. As
far as we know, no studies of this sort of MHD layer ha
been undertaken before.

Let us derive the basic equations for this type of origin
layer moving along a curvel determined by a particula
value of the flux functionV(r ,q)5Vl 5const. The layer is
best described by an orthogonal coordinate system (V,U)
related to the applied potential field

B5@¹~Vew /s!#5¹U. ~40!

On the l curve distinguished by a layer, the coordina
V5Vl 5const, whileU varies. Outside and insidel , the
angular velocityz and the transformed azimuthal field

P[~l/d!s2J ~41!

are constants of order unity. Outside the curvel on the outer
boundary of our free layer, Eqs.~34! and~35! yield boundary
conditions for the small-scale quantitieszs and Ps concen-
trated in the layer:

zs5z~Vl ![z l5const, Ps52s2
2 ~z121!5const.

~42!

Inside the curvel , on the inner boundary of the layer Eq
~32!–~34! yield other boundary conditions for the small-sca
quantities in the layer:

Ps50, zs5~1,0,z3!. ~43!

Comparing Eqs.~42! and ~43!, we can again convince our
selves of the discontinuity in the large-scale quantities onl .
The discontinuity takes place along the coordinateV, so that
for describing small-scale variables within the layer, we m
add the appropriate ‘‘viscous’’ terms from Eqs.~9! and~7! to
the asymptotic first-order system~26!. As a result, we obtain

d

l
~¹V!2

]2Ps

]V2 1s2~¹U !2
]zs

]U
50,

d

l
~¹V!2

]2zs

]V2 1s22~¹U !2
]Ps

]U
50,

where (¹V)2]2/]V2 is the leading term in the expansion o
the modified LaplacianD5D2s22, which describes the
magnetic and kinematic viscosities, respectively, in the fi
and second equations. Using a variable ‘‘stretched out’’ p
pendicular to the layer,

x5~V2Vl !Al

d
, ~44!
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4. INSULATOR–CONDUCTOR: ASYMPTOTES AND
STRUCTURE
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from the above equations:

]2Ps

]x2 1FZ

]zs

]U
50,

]2zs

]x2 1FP

]Ps

]U
50. ~45!

Here the functions FZ(U)5s2(¹U)2/(¹V)2 and
FP(U)5s22(¹U)2/(¹V)2 are given, and depend only onU
for V5Vl 5const.

The system of Eqs.~45! for the layer must satisfy the
boundary conditions~43! and ~42! asx approaches1` and
2`, respectively. In addition, some boundary conditio
must be satisfied at either sphere, i.e., at both ends of
layer in the direction of the coordinateU. To determine
these boundary conditions, we compare the character
thickness of our free layer that follows from Eqs.~44! and
~45!,

ds5Ad

l
, ~46!

with the known thicknessd/l of the Hartmann layer consid
ered above. Obviouslyds@d/2, under the conditions consid
ered here, so that we are right to use condition~42! or ~43! as
a boundary condition where our layer intersects one of
spheres~e.g., in a row along with the pointsE, F, D, andC
in Fig. 2!. For the small-scale variables the Hartmann bou
ary conditions take the form

Ps5H s2
2 ~zs21!, r 5r 2 ,

2s1
2 zs , r 5r 1 ,

~47!

and the corresponding structure of the MHD layers is illu
trated qualitatively in the magnified inset in the upper part
Fig. 2 next to the pointE.

A considerably more complicated situation arises at
edge of the layer, where the curvel is just tangent to the
sphere~see pointG of Fig. 2!. Here the radial component o
the applied fieldBr50, so that the Hartmann layer degene
ates into a singular hilly layer, which is usually thicker th
the Hartmann layer~see Refs. 2 and 12!. If this hilly layer is
even thinner than the free layer examined above~see Eq.
~46!!, then we are justified in using Eq.~47! at this end of the
layer and complete the statement of the problem for our
layer. Otherwise, we have to solve the problem for a h
layer from the beginning. The situation in which the hil
layer is thicker than the free layer is illustrated in the low
inset to Fig. 2 near the pointG.

Unfortunately, there is no general analytic solution
the system of Eqs.~45! for the layer, although that system
rather simple. It can be solved easily when the applied m
netic field is given. Even then, however, we have to ov
come the additional difficulties caused by the hilly layer,
Stewartson2 did, but only ten years after Proudman’s pape1

We restrict ourselves to a detailed description of only
large-scale fields, which, as can be seen from the above
cussion, can be done independently of the free MHD lay
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In this section we present the general asymptotic so
tion of the second problem stated in Sec. 1 and referred t
the ‘‘insulator–conductor’’ problem. The search for a sol
tion is analogous in many respects to that in Sec. 2 for
first, or ‘‘insulator–insulator’’ problem. In this section, w
therefore concentrate our attention only on those featu
that significantly distinguish the solution of the second pro
lem from that of the first.

4.1. Boundary layers and asymptotic equations

The derivation of the modified boundary conditions
the same as in Sec. 2.1 up to Eq.~21!. We then ultimately
have the same asymptotic boundary conditions at the o
insulating sphere as in Eq.~23!. At an inner conducting
sphere only the first modified attachment boundary condit
from Eq. ~24! is retained unchanged. The magnitude of t
large-scale magnetic fieldJs at the inner spherical boundar
~this is the right-hand side of Eq.~22!! is taken with the
upper sign~1!. Accordingly, the initial boundary condition
~15! with Eq. ~17! take the following form for our large-scal
quantities~see Eq.~16! for the azimuthal fieldj inside this
sphere!:

J1Brd~12z!Re
1

Al2Br
212i cosq

5 j ,

2r j 2r 2Br~12z!5H
]~r 2 j !

]r
. ~48!

Based on the obvious order-of-magnitude estima
j 5O(] j /]r )!O(1)5z and all the boundary conditions ob
tained above, we are justified in seeking the large-scale qu
tities in the form of the expansions

z511dl21z01..., ~J, j !5dl21~J0 , j 0!1...,

x5dl23x01... ~49!

It is clear that the whole liquid tends to rotate togeth
with the inner sphere:z'1. We therefore limit ourselves to
the first asymptotic approximation~subscript 0!, which is
essentially an analog of the second approximation~29! ex-
amined in Sec. 2. On deriving the corresponding asympt
boundary conditions, at the insulating outer sphere (r 5r 1)
we obtain

J052
Br

uBr u
, x052s2Ucosq

Br
3 U. ~50!

At the conducting inner sphere (r 5r 2) the boundary condi-
tions have the form

J05 j 0 , Brz05H
] j 0

]r
12r ~H21! j , x050. ~51!

The system of first-order equations differs substantially fr
the systems for the first problem~see Eqs.~26! and~29!!, and
it convenient to write it in more detail:

B•¹~s2J0!50, ~52!
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s21D~sJ0!1B•¹z050, ~53!
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2
]z0

]z
1B•¹~s22B•¹x0!50. ~54!

4.2. Basic MHD structure and derivation of a solution

For the applied magnetic field~40! being considered
here, the general solution of Eq.~52! for the azimuthal field
J0 is taken from Eq.~31!. In the nontrivial region, where the
contoursV5const intersect each of the spheres once,
arbitrary functionF can be found from the first boundar
condition in Eq.~50! and, accordingly, the general solutio
for the azimuthal field has the form

J052~s1 /s!2S1 , ~55!

whereS1(V)5Br /uBr u for r 5r 1 ands15s(r 5r 1 ,V), as
in Sec. 2.

Besides the nontrivial region, whereJ0 has the form
~55!, there are also trivial regions withJ050. They are
bounded by part of the spherical boundary and/or the th
possible types ofl curves. Here we repeat the correspond
results~33! and~34! from Sec. 2 for curves of the second an
third types~see Fig. 2!. It is merely necessary to replacez0

by z in Eqs.~33! and ~34! for the second MHD problem.
The significant difference in the first type ofl curve lies

in the fact that inside the region bounded by it,z0 andx0 can
be found from Eqs.~53! and ~54! with the boundary condi-
tions ~52! and with zero azimuthal fieldsJ050 and
j (r 5r 2 ,u)50. The situation in which onlyl curves of the
first type exist is the most widespread in practical appli
tions ~see Sec. 6!. In this section, we therefore restrict ou
selves to finding a general solution only for this situation.
other cases, a solution can be found in similar fashion~see,
for example, the following section for curves of the seco
type!.

Thus, in the region outside the type-onel curves, we
have already obtained the azimuthal magnetic field~55!. This
field is zero within the region bounded by an arbitrary cur
In this way we obtain boundary conditions for the fieldj 0

that are easily found from Eq.~16! and take the form
D(s j0)50. Now we have everything we need to determi
z0 from Eq. ~53! and the average boundary condition giv
by Eq. ~51!. We conclude the construction of a solution b
finding x0 using Eq.~54!, and employing the last boundar
conditions from Eqs.~50! and ~51!.

We conclude this section by estimating the range of
lidity of this general solution in the~l,d! plane. The above
discussion implies that

z511O~dl21!, J5O~dl21!5 j , x5O~dl23!,
~56!

By substituting these estimates in the original equations~7!
and ~8!, we determine the conditions under which it is co
rect to neglect the terms that have been omitted in
asymptotic equations~52! and~54!, respectively~in Eq. ~53!
all the original terms from Eq.~9! have been retained!,

dl231d2!ld and l23d3!l21d.
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l@max~1,d!, ~57!

which is wider than that for the first problem~see Eq.~38!!
and the usual choiced!1.

5. CONSTANT AXIAL MAGNETIC FIELD

The simplest potential magnetic field is directed alo
the rotation axisz and is constant. Its magnitude varie
through the parameterl, and the field itself has the simpl
form

B5ez , ~58!

since we have normalizedB to the arbitrary valueBp in Sec.
1. A magnetic field of this sort can be imposed on our syst
~see Fig. 1! by putting it into a solenoid, as shown in Fig. 3
The solution is determined by a singlel curve of the second
type ~see Fig. 2! described in Secs. 2 and 4 of this paper f
the insulator–insulator and insulator–conductor problem
respectively. Thel curve under consideration here is th
generator of a tangential cylinder~see Fig. 3b!.

5.1. Insulator–insulator

For problem 1 of Sec. 1, the large-scale azimuthal an
lar velocity z and magnetic fieldsJ can be easily derived
from the general trivial~33! and nontrivial~35!–~36! solu-
tions, and for the constant field~58! are given by~see Figs.
3b and 3c!

z5H 1/2, s,r 2 , and r .r 2 ,

0, s.r 2 ,
~59!

and

sJ5H 2~d/2l!s, s,r 2 and r .r 2 ,

0, s.r 2 .
~60!

These expressions~59! and ~60! for a hydromagnetic flow
are even simpler than for the nonmagnetic flow described
Proudman and Stewartson1,2 in the approximation of rapid
rotation (d!1). Here we have not restricted the value ofd,
but nevertheless have simple rigid-body rotation both ins
and outside the tangential cylinder.

It is somewhat more difficult to obtain the meridion
flow x. To do this, we must solve the second-order syst
~29!–~30!, since this case is degenerate owing to rigid-bo
rotation throughout, and

x050. ~61!

It is easy to see that in the second approximation, the ang
rotation velocity and magnetic field go to zero, i.e.,

J150, z150. ~62!

This greatly simplifies Eq.~29b! and the corresponding
boundary conditions from Eq.~30! for the meridional flow:

]2x1

]z2 50, ~63!

and
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FIG. 3. ~a! A constant axial field applied to the
system illustrated in Fig. 1, when both spher
are insulators withr 152r 2 . ~b! Azimuthal ro-
tation at angular velocityz. ~c! Azimuthal mag-
netic fieldsJ52(d/l)sJ0 ; the contours are in
steps of 0.05 units ofsJ0 . ~d! Meridional flows
x5(d/l3)x1 ; contours are in steps of 0.01
units of x1 .
2ds2z/@12~s/r 1!2#, r 5r 1 ,

.

d

and outside the tangential cylinder (s.r 2) there is no flow

r

er
de-
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x15H ds2~z21!/@12~s/r 2!2#, r 5r 2

. ~64!

Here we have used the fact thatBr5cosq5z/r for the con-
stant magnetic field of Eq.~58!. The general solution of Eq
~63! depends on two arbitrary functions of the variables:

x15zF~s!1G~s!. ~65!

The free functions are determined by the boundary con
tions ~64! for r 5r 2 with z5z2(s) and for r 5r 1 with
z5z1(s), where the heights of the inner~2! and outer~1!
boundaries are

z2~s!5r 2A12~s/r 2!2, z1~s!5r 1A12~s/r 1!2.
~66!

Substituting Eq.~65! into the boundary conditions~64!, we
obtain a linear system of equations forF andG:

z1F1G52ds2r 1
2 z/z1

2 ,

z2F1G5ds2r 2
2 ~z21!/z2

2 . ~67!

Thus, inside the tangential cylinder (s,r 2), the result-
ing meridional flow~see Eqs.~65!–~67!! can be described by
the expression

x5
ds2

2l3

~z22z!r 1
2 z1

222~z12z!r 2
2 z2

22

z12z2
, ~68!
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in either the first~61! or second approximations andx150
~see Fig. 3d!.

The flow ~68! is singular at the tangential cylinder fo
s5r 2 , when z2 goes to zero according to Eq.~66!. This
singularity is smoothed out by viscosity in the MHD lay
generated by the layer shown in Fig. 3c. The latter is
scribed above in Sec. 3 and serves to smooth out the dis
tinuities in the azimuthal rotation and magnetic field~see
Eqs.~59! and ~60!!.

5.2. Conductor–insulator

For the second problem of Sec. 1, the general nontri
~55! and trivial ~33! solutions yield the azimuthal field in th
spherical layer:

sJ5H 2~d/l!s, s,r 2 , and r .r 2 ,

0, s.r 2 .
~69!

This field is twice the field~60! for a nonconducting inner
sphere.

We now substitute Eq.~69! into the first boundary con-
dition ~51! to find j 5(d/l) j 0 inside the conducting sphere
For this we impose the boundary conditions

j 05H 21, r 5r 2 ,

0, z50,
~70!
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FIG. 4. As in Fig. 3, but with a conducting inne
sphere.
on Eq.~16!; these are singular at the point~u5p/2, r 5r 2!
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Further calculations analogous to Eqs.~65!–~68!, but using

ty

lds
the
ing

ru-
because the azimuthal field is antisymmetric. We are
aware of any methods for solving Eq.~16! with singular
boundary conditions such as Eq.~70!. Thus, we have devel
oped a special numerical solution technique~for details, see
Sec. 6.2!. The solution obtained by this method is shown
Fig. 4c, together with Eq.~69!.

We now substitute the radial gradient of the fieldj at the
inner sphere from the numerical solution of Eq.~16! into the
second boundary condition~51!, which takes the form

z05
H

cosq

] j 0

]r
for r 5r 2 . ~71!

An angular rotation velocityz0(s) which depends only ons
is obtained from Eq.~54! and the result is sketched in Fig
4b. Near the axis the liquid rotates faster than the in
sphere in a superrotation which is somewhat surprising
systems of this type, since the inner sphere is specifie
rotate faster than the outer sphere.

Equation~54! for the meridional flowx0 is identical to
Eq. ~63! for x1 ; however, the boundary conditions from Eq
~51! and ~52! are simpler than Eq.~64!, and take the form

x05H 2s2/@12~s/r 1!2#, r 5r 1 ,

0, r 5r 2 .
~72!
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the condition~72!, yield the resultant meridional flux~Fig.
4d! inside the tangential cylinder:

x5
d

l3

s2r 1
2 ~z22z!

z1
2 ~z12z2!

, s,r 2 , ~73!

while there is no meridional flux (x50) outside the cylinder
(s.r 2). The resulting distributions of the field and veloci
are shown in Fig. 4.

6. APPLIED DIPOLE AND QUADRUPOLE FIELDS

In this section we impose dipole and quadrupole fie
~40! with sources at the center of the inner sphere on
system sketched in Fig. 1. For the dipole, the correspond
orthogonal system of coordinates (U,V) is expressed in
terms of the spherical coordinates (r ,q) as

V5
sin2 q

r
, U52

cosq

r 2 , ~74!

and for the quadrupole, we have

V53
sin2 q cosq

r 2 , U5
123 cos2 q

2r 3 . ~75!

The l curves generated by both the dipole and the quad
pole are curves of the first topological type~seel curve No.
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FIG. 5. An applied magnetic dipole~a! for insulat-
ing spheres withr 153r 2 ; azimuthal rotation at
angular velocityz ~b! and azimuthal magnetic field
sJ ~c!.
1 in Fig. 2! described in Secs. 2 and 4. For the dipole, it is a
th

tr
th

l

it
n

orderd/l3. The corresponding correctness conditionl@1 is
lts

i,
ol-

er-
tio
te

dge,
he
single curve tangent to the equator of the outer sphere
satisfies~see Fig. 5a! the condition

V5
sin2 q

r
51/r 1[Vd , ~76!

while the quadrupole generates two equatorially symme
~1 or 2! l curves tangent to the outer sphere that satisfy
condition ~see Fig. 7a below!

V53
sin2 q cosq

r 2 56
2

)r 1
2

[6Vq . ~77!

6.1. Dipole in the ‘‘insulator–insulator’’ problem „problem 1 …

For the ‘‘insulator–insulator’’ problem, the nontrivia
solution ~34!–~35! outside the dipole curve~76! together
with the expansion~25! yield the large-scale quantities

z5
1

11~r 1 /r 2!3 , J52
d

l

r 2
3

r 3 z. ~78!

The azimuthal magnetic fieldsJ is directed opposite the
rigid-body rotationz of Eq. ~78! outside the curvel ~76!. In
the first approximation, there is no field (J50) insidel , and
the liquid rotates together with the inner sphere (z51) in
accordance with the trivial solution~32!.

Therefore, we are again dealing with a degenerate s
ation, where the liquid rotates as a solid both inside a
outside the curvel . As in Sec. 5.1, a meridional flowx
shows up only in the second approximation (x1), and is of
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independent ofd. Thus, we can crudely compare our resu
with Hollerbach’s13 numerical calculations for smalld and
l<1.

Outside l , the angular velocity of rigid-body rotation
depends~Eq. ~78!! on the ratio of the cubes of the radi
(r 1 /r 2)3. For the geophysical situation discussed by H
lerbach,r 1 /r 2.3, so thatz.1/28, which is consistent with
his value ofz.0.06 for the maximum valuel.2 that he
considered. Forl.0.3, 0.5, 1, and 2, he obtained charact
istic values of the azimuthal magnetic field in the ra
9:7:4:2,which is in very good agreement with our estima
that J5O(1/l) even for smalll. We are therefore justified
in concluding that our asymptotes are good even at the e
l'1, and retain important numerical relationships from t
nonlinear problem.13

6.2. Dipole in the ‘‘insulator–conductor’’ problem „problem
2…

The general nontrivial~55! and trivial ~32! solutions
yield an azimuthal magnetic field in the spherical layer~for
r 2,r ,r 1! of

sJ5H 2s~d/l!~r 1 /r !3, V,1/r 1 ,

0, V5sin2 q/r .1/r 1 .
~79!

Using the continuity ofsJ ~see Eq.~51!!, we now formulate
the boundary conditions atr 5r 2 for the fields j inside the
conducting sphere using Eq.~16!:
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FIG. 6. The case of a magnetic dipole illustrate
in Fig. 5a, but with an inner sphere having th
same conductivity as the liquid.~a! Azimuthal ro-
tation at velocityz511(d/l)z0 with contours in
steps of 25 units ofz0 . The dot-dashed curve
corresponds toz050. Where the contours are dis
continuous the liquid rotates more rapidly tha
the inner sphere~superrotation withz0.0! and
where they are dashed, slower (z0,0). ~b! Azi-
muthal magnetic fieldsJ.
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s j5H 2s~d/l!~r 1 /r 2!3, s2,r 2
3 /r 1 ,

0, s2.r 2
3 /r 1 .

~80!

Here a singularity analogous to that in Eq.~70! can be seen.
s j is discontinuous atq5arcsinAr 2 /r 1, reaching a maxi-
mum to the left and vanishing to the right. The main dif
culties in obtaining a corresponding solution of Eq.~16! are
connected with this discontinuity. Standard expansions
terms of any polynomials are essentially nonconvergent
order to overcome the singularity in Eq.~80!, it was neces-
sary to use a specially developed finite difference techniq
The resulting azimuthal magnetic field is shown in Fig.
for the geophysical situation 3r 25r 1 .

Since the magnetic field~79! in the layer satisfies Eq
~16!, Eq. ~53! for the angular rotation velocity simplifies an
now coincides with the last of Eqs.~26!. The corresponding
general solution is again Eq.~31! with the boundary condi-
tions from Eq.~51! which for the applied dipole being con
sidered here take the form

z05
2Hr 2

3

cosq

] j 0

]r
for r 5r 2 . ~81!

Determining j r[] j 0 /]r using Eq.~80! and the above
~see Fig. 6b! numerical solution forj 5d j 0 /l, we obtain an
azimuthal rotation from Eqs.~31! and~81! which is shown in
Fig. 6a. Contours are drawn in this figure in steps of 25 un
of z0 , which reflects the relatively large magnitude of th
differential rotation. The small superrotation regions~see
Sec. 5.2! associated with the large positive derivatives ofj r

at the inner sphere near the rotation axis and inside the M
structure are of special interest. Here the liquid rotates m
faster than the inner sphere~Fig. 6a, continuous contours!. A
large part of the layer, on the other hand, rotates more slo
than the inner sphere, which may explain the westward d
of geomagnetic inhomogeneities.

6.3. Quadrupole in the ‘‘insulator–insulator’’ problem
„problem 1 …

Outside the quadrupole curvel ~77!, the trivial solution
~34!–~35! and the expansion~25! yield the large-scale quan
tities
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z5
1

11s1
2 /s2

2 , J52
d

l

s2
2

s2 z, ~82!

where s6
2 (V) are the positive real roots of the following

equations distinguished by taking the upper~1! or lower~2!
signs:

~s6
2 !32r 6

2 ~s6
2 !21r 6

10V2/950, ~83!

where for the quadrupole,V53 sin2 q cosq/r2 is taken from
Eq. ~75!.

As in the case of the dipole, the azimuthal magnetic fie
is opposite the rotation and, in the first approximation, ins
the quadrupole curvel there is no field (J050) and the
liquid rotates together with the inner sphere (z051). How-
ever, beginning with the quadrupole, the system ceases t
degenerate. As opposed to the dipole, in this kind of non
generate system the rotation is differential outside thel

curves and the meridional flow is of orderl22, as in the
more general case~Fig. 7!.

7. DISCUSSION AND CONCLUSIONS

The initial assumption in this paper, namely, almo
rigid-body rotation (e!1), makes it possible to reduce tw
complicated MHD problems to linear systems of equatio
in Sec. 1. Then analytic solutions for these problems
found in the limit of a strong potential magnetic field~3!.
Now these general solutions can be used to estimate
range of validity of the original assumption. To do this w
write the initial system of MHD equations in detail, using th
left parts @A#, @B#, @C#, and @D# of the system of Eqs.
~7!–~10! linearized ine:

e@A#1e2H 1

rs

]~x,s2z!

]~r ,u!
1lRmF¹S ew

C

s D G¹~s2J!J 50,

~84!

@B#1eF]z2

]z
2s23

]~x,sDsz!

r ]~r ,u!
12s23

]x

]z
D

x

sG
5el2RmH s

]J2

]z
2F¹S ew

C

s D G¹S s21D
C

s D J , ~85!
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FIG. 7. Magnetic quadrupole~a! with insulating
spheres havingr 152r 2 ; azimuthal rotation
with angular velocityz ~b! and azimuthal mag-
netic fieldsJ ~c!.
2
C

s.

s.

The correctness condition for the linearization of problem 2

a-

e-

has
inty

n

s-
ern

nte-

his

n-
e@C#1e RmH F¹S ew s D G¹z21w@~¹x!¹J#J 50, ~86!

and

e@D#1e2RmF¹S ew

C

s D G¹x50. ~87!

For the first, ‘‘insulator–insulator,’’ MHD problem~see
the solution and estimates of Sec. 2!, the linearization is
correct if the following inequalities, which replace Eq
~84!–~87!, are satisfied:

l@e~l221Rml21!, 1@e@11Rm~d21l22!#,

1@eRml22, l22@eRml24. ~88!

With the customary choice ofd,1 andRm.1 the correct-
ness condition for problem 1 reduces to

e!min~1,l2Rm
21,Rm

21d22!. ~89!

For the second, ‘‘insulator–conductor,’’ MHD problem
~see the solution and estimates in Sec. 4!, the linearization is
correct if the following inequalities, which replace Eq
~84!–~87!, are satisfied:

l3@e~11Rmld!, 1@e~11Rmdl!,

1@eRml23d, 1@eRml23d. ~90!

1136 JETP 85 (6), December 1997
reduces to

e!min~1,~lRmd!21!. ~91!

We are therefore justified in applying the general an
lytic theory in the approximation of Eq.~1! to a wide class of
physical MHD systems when conditions~89! or ~91! are sat-
isfied, together, respectively, with Eqs.~38! and ~39! or Eq.
~57!.

As an example, let us consider the earth’s interior. R
cent studies19 yield a direct estimate ofe.1025. Reliable
estimates have also been obtained20 of l>10 andRm.108.
The dimensionless thickness of the viscous Ekman layer
been estimated, but less accurately owing to the uncerta
in the viscosity,21 asd.102221027. Thus, the strong field
conditions ~57! are easily satisfied, while the linearizatio
condition ~91! is certainly satisfied ford!1024. A direct
solution of the problem for such narrow MHD layers is e
sentially impossible, even using the most powerful mod
computers~see Refs. 7–9 and 13!. Thus, it is logical to use
the analytic results obtained here to describe planetary i
riors.

In conclusion, we summarize the basic results of t
paper as follows:

~1! An analytic solution of the classical MHD problem
involving the almost rigid-body rotation of a viscous, co

1136S. V. Starchenko



ducting spherical layer of liquid in a strong axially symmet-
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falls off as the square when both spheres are insulators, and

ful
he

V.
ric potential magnetic field has been obtained for the fi
time. The large-scale flows and fields have been descr
when both spheres are insulators and when the inner sp
is a conductor.

~2! For the first time a description is given of the she
MHD layers that smooth out the large gradients at
boundaries of the MHD structures encompassed by th
The latter original structures ‘‘expel’’ the azimuthal ma
netic field from regions bounded by potential contours t
gent to the spheres.

~3! Applying a constant magnetic field creates a ma
netic structure outside the axial cylinder tangent to the in
sphere. Inside the cylinder the rotation is faster, while
meridional flow depends on the height.

~4! An applied dipole field forms an MHD structure tan
gent to the outer equator. When both spheres are insula
the liquid inside the structure rotates as a rigid body toge
with the inner sphere. Outside the structure the rotation
slower, but also rigid-body. When the inner sphere is a c
ductor, a singularity in the boundary conditions causes
rotation at the axis and inside the MHD structure to be mu
faster than the rotation of the inner sphere. This sort of
perrotation is somewhat surprising, since the given rota
of the inner sphere is faster than that of the outer sphere

~5! The last example of a general solution is for a qua
rupole magnetic field. In this case, two equatorially symm
ric structures rotate together with the inner sphere. Outs
the structures, as in the most general case, the rotatio
differential, the azimuthal magnetic field falls off with th
first power of the potential field, and the meridional flo
1137 JETP 85 (6), December 1997
t
ed
ere

r
e

.

-

-
r

e

g,
er
is
-
e
h
-
n

-
t-
e
is

as the cube when one sphere is a conductor.
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Low field magnetic response of the granular superconductor La 1.8Sr0.2CuO4
L. Leylekian, M. Ocio, and L. A. Gurevich* )
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M. V. Feigel’man

L. D. Landau Institute for Theoretical Physics, 117940 Moscow, Russia
~Submitted 29 April 1997!
Zh. Éksp. Teor. Fiz.112, 2079–2113~December 1997!

The properties of the low excitation field magnetic response of the granular high-temperature
(HTc) superconductor La1.8Sr0.2CuO4 have been analyzed at low temperatures. The
response of the Josephson currents has been derived from the data. It is shown that intergrain
current response is fully irreversible, producing a shielding response, but that it does not
carry Meissner magnetization. Analysis of the data shows that the system of Josephson currents
freezes into a glassy state even in the absence of external magnetic field, which is argued
to be a consequence of thed-wave nature of superconductivity in La1.8Sr0.2CuO4. The macroscopic
diamagnetic response to very weak variations of the magnetic field is shown to be strongly
irreversible, but still qualitatively different from any previously known kind of critical-state
behavior in superconductors. A phenomenological description of these data is given in
terms of a newly proposed fractal model of irreversibility in superconductors. ©1997 American
Institute of Physics.@S1063-7761~97!01212-2#
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Granular superconductors~SC! are composed of a ver
large number of small~micron-size! superconductive grain
coupled by Josephson tunnelling~or, in some cases, by th
proximity effect!. These systems are inherently disorder
due to randomness in the sizes of grains and their separa
Usually the strength of Josephson coupling between grain
rather weak, so the maximum Josephson energy of the
tact between two grains is much below the intragrain sup
conductive condensation energy. Therefore granular SC
be considered systems with a two-level organization: th
short-scale properties are determined by the supercondu
ity of individual grains, whereas macroscopic SC behavio
governed by weak intergrain coupling.

In studying the latter, one can neglect any internal str
ture of SC grains and describe them just by the phasesf j of
their superconductive order parametersD j5uDu j exp(ifj).
As a result, the macroscopic behavior of granular SC can
described by a classical free energy function of the form~see
Ref. 1–3!:

H5
1

2 (
i j

EJ
i j cos~f i2f j2a i j !

1E d3r
1

8p
~¹3A!22

1

4p
~¹3A!•Hext), ~1.1!

where

a i j 5
2p

F0
E

i

j

A•dr

is the phase difference induced by the electromagnetic ve
potentialA andF05p\c/e, whereas the coupling strength
EJ

i j are proportional to the maximum Josephson curre
EJ

i j 5(\/2e)I i j
c . The vector potentialA in Eq. ~1.1! is the
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Hext and of the Josephson current-induced vector poten
A ind .

In the absence of external magnetic field, the lowe
energy state for the ‘‘Hamiltonian’’~1.1! is clearly a macro-
scopically superconductive state with all phasesf j equal to
one another. Thus, this granular SC system looks like a
dom XY ferromagnet with randomness in the values of t
coupling strengthsEJ

i j ’s ~apart from the possible role of th
induced vector potentialA ind, which will be discussed later!;
within this analogy, the role ofXY ‘‘spin components’’ is
taken bySx5cosfj , Sy5sinfj .

The situation becomes much more complicated in
presence of a nonzero external magnetic fieldHext, which
makes the system randomly frustrated~since magnetic fluxes
penetrating plaquettes between neighboring grains are
dom fractional parts ofF0!. When the external field is suf
ficiently strong,Hext@H05F0 /a0

2 ~herea0 is the character-
istic intergrain distance!, the random phasesa i j become of
the order ofp or larger, which implies complete frustratio
of intergrain coupling—i.e., the system is then expected
resemble anXY spin-glass.

Actually, the random Josephson network in a magne
field is not exactly identical to anXY spin-glass for the fol-
lowing reasons.1 First, the effective couplings ĒJ

i j

5EJ
i j exp(iaij) between ‘‘spins’’Si of the frustrated SC net

work are random complex numbers, whereas in theXY spin-
glass model they are real random numbers. Second,
phasesa i j generally depend on the total magnetic inducti
B5Hext1Bind, i.e., the effective couplingsĒJ

i j depend on the
phase variablesf j , which determine the intergrain current
I i j 5I i j

c sin(fi2sj2aij). In some cases the effects produc
by the self-induced magnetic fieldBind are weak and can be
neglected~the quantitative criterion will be discussed lat

1138-19$10.00 © 1997 American Institute of Physics



on!, so that phasesa i j can be considered to be fixed by the
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The model described by the Hamiltonian~1.1! with fixed

a i j ’s andHext@H0 is usually called the gauge glass model
is expected on the basis of both analytic2–5 and numerical6,7

results that the gauge glass model in 3D space exhibits a
phase transition to a low-temperature glassy supercondu
~nonergodic! state. The mean-field theory of such a low
temperature state shows3,5 that it is characterized by a finit
effective penetration depth for the variation of an exter
field, nonzero macroscopic critical current, and the abse
of a macroscopic Meissner effect.

The full model~1.1!, with thea’s the containing contri-
bution from Bind, is sometimes called a ‘‘gauge glass wi
screening.’’8 The effect of screening on the existence a
properties of the phase transition to a glassy state is not c
pletely clear; some numerical results8 indicate the absence o
a true phase transition in a 3D model with screening. Qu
titatively, the strength of screening is determined by the ra
bL52pLI c /cF0 whereL is the characteristic inductanc
of an elementary intergrain current loop.9 In ceramics with
bL!1, screening effects only become important on a lo
distance scale;a0 /AbL ~i.e., they are similar to strongly
type-II superconductors with disorder!.

Apart from its relevance to the description of granu
superconductors, the gauge glass model with screenin
often considered~e.g., Ref. 10! a simplified model describing
the large-scale behavior of disordered bulk type-II superc
ductors in the mixed state~the so-called vortex glass prob
lem!. Actually it is uncleara priori how these two problems
are related; an obvious difference between them is that
basic ingredient of the latter is the vortex lattice, which
clearly an anisotropic object, whereas the former does
contain any preferred direction in 3D space. On the ot
hand, a granular superconductor in a moderate magnetic
Hext<H0 can be considered a kind of disordered type-II s
perconductor, where the notion of a hypervortex~which is a
macroscopic analog of an Abrikosov vortex! can be
introduced.2,11 Therefore, the macroscopic properties of
granular network atHext<H0 may resemble those of th
vortex glass; in such a scenario, a phase transition betw
vortex glass and gauge glass phases would be expected
granular superconductive network atHext;H0 ~see Ref. 1
for a more detailed discussion of this subject!.

Recently, it was noted that granular superconduct
may become glassy even in the absence of a external m
netic field, if enough of the Josephson junctions are ano
lous, i.e., their minimum Josephson coupling energy co
sponds to a phase differenceDf5p instead of 0~so-called
p-junctions!. Two completely different origins ofp-
junctions were proposed: mesoscopic fluctuations in d
superconductors,12 and pairing with nonzero momentum.13,14

Recent experiments revealing thed-wave nature of pairing in
high-temperature superconductors15 suggest the possibility
of observing glassy superconductive behavior in HTSC
ramics in virtually zero magnetic field. Note that ceram
with equal concentrations of ordinary andp-junctions are
completely equivalent~if screening effects can be neglecte!
to XY spin-glass. In constrast to the 3D gauge glass mo
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dynamic phase transition at finite temperature; recently, it
has been suggested that theXY spin-glass andd-wave ce-
ramic superconductor might have a new equilibrium orde
phase, the so-called chiral-glass phase.16 However, these is-
sues are hardly relevant to the measurable response at
peratures much below the ‘‘bare’’ glass transition tempe
ture Tg , which we consider in this paper.

Experimental studies of granular superconduct
reveal9,17 the onset of magnetic irreversibility~a difference
between Meissner and shielding magnetizations or, in o
terms, between field cooled~FC! and zero field cooled~ZFC!
magnetizations! below some temperatureTg , which is lower
than the SC transition temperatureTc of the grains. How-
ever, detailed analysis of the magnetic response in such
tems is usually complicated by the mixing of contributio
from individual grains and from intergrain currents. The go
of the present paper is to develop a method that make
possible to extract from the raw d.c. magnetic response
the intergrain contribution, and to compare its behavior w
theoretical predictions.

The compound La1.8Sr0.2CuO4 was chosen in this study
for experimental convenience, since its critical temperat
('32 K) is within the optimal temperature range of o
noise and a.c. susceptibility measurement setup. The sa
was fabricated by the standard solid-state reaction of La2O3,
SrCO3 and CuO.18 Mixed powder was pressed into pellet
which were sintered in air at 920 °C for 12 hours. The m
terial was then submitted to three cycles of regrinding, s
ing to 20mm, pressing and sintering again at 1100 °C for
hours. Samples prepared in two successive runs were us
this study. In the first~sampleA!, pellets 1 mm thick and 10
mm diameter were obtained, with a density about 80% of
theoretical bulk value. In the second~sampleB!, cylinders of
diameter 6 mm and length 5 to 6 mm were prepared wit
density of about 88%. In both preparations, grains sizes w
in the range 1–10mm. Room temperature x-ray powder di
fraction patterns divulged a small amount (,5%) of the
non-superconductive compound La122xSr2xCu2O5.

The rest of this paper is organized as follows. In Sec
a general analysis of the magnetic response data obtaine
two different samples~A andB! of La1.8Sr0.2CuO4 ceramic is
presented, and the intergrain~Josephson! contribution to the
overall response is derived. Section 3 is devoted to a deta
study of the magnetic response of Josephson intergrain
work in the low-field range. It is found that the macroscop
critical current is suppressed considerably~by a factor 2! in a
magnetic field of only about 2 G. The lower-field d.c
response to field variations of order 0.05–0.5 G was a
lyzed for the FC states obtained atHFC50–10 G and two
temperatures, 10 and 20 K. The data atT510 K and HFC

50 and 0.1 G are shown to be compatible with the Be
critical-state picture,19 and the low-field critical current value
is identified. The rest of the data are in sharp contrast w
Bean-model predictions: the screening current grows sub
early ~approximately as the square root! with increasing ex-
citation field strength. Very low-field, low-frequency a.
measurements are presented, which reveal the strongly
versible nature of that anomalous response. A new phen
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enological model is proposed for the treatment of these data.
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Its first predictions are found to be in a reasonable agreem
with the data.

In Sec. 4, a theoretical analysis of our experimental
sults is given in terms of the existing theories of the gau
glass state. It is shown that the observed transition temp
ture to the low-temperature state of the network, and
magnitude of the~low-B,T! critical current, are in sharp con
tradiction with the ~usual! assumption that the zero-fiel
granular network is unfrustrated. In contrast, under the
sumption of a strongly frustrated network atB50, all basic
measured parameters of the ceramic network are in mu
agreement. We believe that these estimates suggest the
tence of a large proportion ofp-junctions in La1.8Sr0.2CuO4

ceramics, possibly due to thed-wave nature of superconduc
tivity in cuprates.

Section 5 is devoted to the development of a new mo
of diamagnetic response in glassy superconductors, whic
necessary for the description of the anomalous data desc
at the end of Sec. 3. This new model~in some sense inter
mediate between the Bean19 and the Campbell20 models! is
based on two ideas: the existence of two characteristic ‘‘c
cal’’ currents ~Jc1 and Jc@Jc1!, and the fractal nature o
free-energy valleys in the ceramic network. Our conclusio
are presented in Sec. 6, whereas some technical calcula
can be found in the Appendix.

For convenience, the e.m.u. system of units will be u
for experimental data, and Gaussian units for theoretical
cussions.

2. GENERAL PROPERTIES OF D.C. MAGNETIC RESPONSE

The d.c. magnetization was measured by the class
extraction method. Two SQUID magnetometers were us
one a home-made apparatus used in several previous
glass studies,21 the other a commercial system~Cryogenics
S500!.

In this section, we describe the static magnetic respo
of samplesA and B and present a preliminary treatment
these data, in order to distinguish between the magnetic
sponse of individual grains and intergrain currents9,22 ~a de-
tailed study of the latter is the subject of the next sectio!.
We first present results obtained after cooling the sample
various d.c. fields and applying small field increases. S
ondly, we derive from the results the response of the Jose
son currents as a function of field and temperature. Fina
we show that the behavior of the field-cooled susceptibi
can be satisfactorily accounted for if the system of Joseph
currents does not carry Meissner magnetization. We sh
that the same interpretation accounts fairly well for the
results which, at first sight, are rather different for sampleA
andB.

SampleA is a 1 mm-thick pellet with an approximatel
ellipsoidal shape of 236 mm. Its calculated volume isV
'8.5 mm3, and the demagnetizing field coefficient for a fie
parallel to the longitudinal axis isN'0.06.23

Figure 1 displays the magnetic dipole moment of t
sample cooled to 10 K in zero field and submitted to cyc
0→Hmax→0 for several values ofHmax up to 2 G. At the
lowest increasing fields, the moment increases initially w
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slopeP1 . Above 1.5 G, it approaches slopeP2 . The rema-
nent positive moment saturates forHmax>1 G. The calcu-
lated moment of the sample for perfect volume shielding i
homogeneous field is~e.m.u. system!

M52
HV

4p~12N!
520.7231023

•H cm3
•G.

Owing to uncertainties in the evaluation of the volume, th
value is only accurate to65%. Nevertheless, it is in fair
agreement with the slopeP1 in Fig. 1. On the other hand
slopeP2 is about 53%, a rather small value since the dens
ratio of the sample is about 80%. At such low temperatu
~in comparison withTc'32 K!, where the lower critical field
of the grain’s material is above 100 G, one would exp
expulsion of the field by the grains with a penetration de
l. The expected value for the magnetizationM5M/V of
the system of uncoupled grains can be calculated as24

M

H
5

1

4p

f

12 f N2~12 f !n
, ~2.1!

where f is the volume fraction of the superconductive ma
rial and n is the demagnetizing-field coefficient for th
grains.

As an estimate, we assume the grains to be sphe
(n51/3) and, usingM /H'0.53•1/4p andN50.06, we find
f '0.41. This value is considerably below the volume fra
tion of the sample filled by grains ('0.8); we assume tha
the difference is due to the intergrain penetration depthl
being comparable to the grain sizer , and we estimate an
effective value ofl to be

f 50.4150.8S 12
l

r D 3

FIG. 1. Magnetic moment of the sampleA as a function of field applied in
the zero-field cooled state~e.m. units of magnetic moment correspond
cm3

•G!. Hmax50.5 ~s!, 1 ~h!, 1.5 ~D! G. The curves for field loops 0
2Hmax20 are superimposed.
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FIG. 2. Shielding susceptibility of the sampleA as a function
of temperature, normalized to the moment for complete shie
ing. Curves~top to bottom! correspond toHdc520.07, 14.34,
8.60, 5.73, 2.87, 1.99, 1.42, 0.85, 0.57, 0.28, 0.14, 0.06 G.
yielding l50.2 r . Taking an average size of 5mm for the
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grains, we obtainl'500 nm. Values reported for the mea
penetration depth in La1.8Sr0.2CuO4 are about 200 nm.25 The
value found here is larger than the expected mean value
the homogeneous material, indicating that the grains are
monocrystalline. This will be confirmed below by the resu
of field-cooling experiments.

The shielding susceptibility is plotted in Fig. 2, as
function of temperature and for several values of the amb
FC field. The measurements were performed according to
following procedure: the sample was cooled in a fieldHdc

down to the working temperature and the moment was m
sured after waiting 300 sec; then the field was increased
small amountDH<Hdc/10 and the moment was measur
again after waiting 300 sec. The figure displays the exp
mental shielding susceptibility normalized to the value
total shielding, i.e.,

xsh5
M~H1DH !2M~H !

DH

4p~12N!

V
.

The curves show the double step usually ascribed to the
tion of both intragrain currents and Josephson intergr
currents.26 At high temperature, the onset of grain diama
netism occurs at about 32 K. Above 25 K, the response
responds to the diamagnetism of the grains. At fixed te
perature, it isHdc-independent forHdc<5 G, and decrease
for increasingHdc.5 G. Below 25 K the onset of Josephso
currents is manifested by a second step of the diamagn
response. This second step appears at decreasing tempe
asHdc increases. At the lowest temperatures, the diamagn
moment amounts to about 100% of flux expulsion atHdc

50, and decreases with increasingHdc. At Hdc.8 G, the
flux expulsion saturates at a value slightly above 50%, wh
corresponds roughly to the 53% level determined above
the grain response.

The susceptibility in Fig. 2 contains the contributions
grains and Josephson currents. The contributions can
separated along the lines of the work by Dersh and Blatte22
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Mg andM j stand for the magnetization of grains and of t
Josephson currents. It should be noted that the magnetiza
due to macroscopic circulating currents in a supercondu
is sample-size dependent, i.e., the corresponding suscep
ity is not a local quantity. At the macroscopic scale of t
circulating currents, the magnetizationMg can always be
written asxgH local, wherexg(H) is homogeneous over th
sample. In what follows, we consider quantities averag
over the volume of the sample: in that case,M j is the aver-
aged moment per volume unit due to the currents.

The demagnetizing field effect will be neglected in t
calculations. We have verified that, owing to the small va
of the demagnetizing factor, this does not modify the ess
tial features of the result while allowing a simpler derivatio
~the demagnetizing factor will be taken into account wh
analyzing the data from sampleB!. We get

Mg5xg~H14pM j !.

Then

M5Mg1M j5xgH1M jmg , mg5114pxg ,

and

M j5
M2xgH

mg
. ~2.2!

Equation~2.2! must be considered with care, sincexg is
history- and field-dependent. In fact it is well-adapted to t
description of the result of zero~or small! field cooling ex-
periments.

More generally, we must consider the response to fi
increments dH to obtain x5dM /dH. Then, the
polarizability1! x j of the Josephson network reads

x j5
x2xg

mg
. ~2.3!

Note that we can equivalently consider the response of
current system in a homogeneous medium with permeab

1141Leylekian et al.
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mg . If the applied field is varied bydH, the Josephson net
work sees a variation of internal fielddH15mgdH and de-
velops a polarizationdM j5x jdHi . We then recover Eq
~2.3!.

The value ofxg could be determined in principle if we
were able to obtain a packing of disconnected grains equ
lent to the packing of the sintered sample. In practice t
was not possible. Indeed, mechanical grinding resulted
breaking a large number of grains, and thus modifying
characteristics of the material. Nevertheless, it is possibl
derivexg , at least approximately, from the data of Fig. 2.
high temperatures, above the onset of intergrain curren

FIG. 3. Josephson currents susceptibility in the sampleA as a function of
temperature. Values have been calculated from data of Fig. 2 and usin
~2.3!. Hdc55.73~d!, 2.87~s!, 1.99~j!, 1.42~h!, 0.85~m!, 0.57~.!, 0.28
~n!, 0.14 ~,!, 0.06 ~L! G.
a-
is
in
e
to

at

alone, independent ofHdc below '6 G. At low tempera-
tures, forHdc above about 6 G, thexsh curves coincide, and
there is no manifestation of the onset of intergrain curren
Thus, here also,xsh represents the response of the gra
alone.

Hence, the responsexg of the grains can be reasonab
approximated by an interpolation between these two lim
The interpolation curve, obtained by a smoothing proced
between the two curves atHdc50 G andHdc520 G, is dis-
played on Fig. 2~dashed curve!. The values ofx j derived
from Eq. ~2.3! are plotted against temperature in Fig. 3, f
Hdc,6 G.

Note that the dependence ofx j on Hdc seen in the figure
can be assumed to reflect the behavior of the initial shield
properties of the Josephson network with increasing ofHdc.
Nevertheless, a nonlinearity in the response due to the
relative increase in the value ofDH (DH5H/10) cannot be
ruled out; this issue will be studied in detail in sampleB.
Finally, we point out the similarity between our data and t
results of earlier numerical simulations on a gauge gl
system.17

Above we have discussed the system’s responses to
variation of magnetic field at fixed temperature~i.e., shield-
ing responses!, and derived from these data the polarizabil
x j of the intergrain system. Now we turn to a description
the results of the field cooling measurements. FC~Meissner!
magnetization was measured by the standard procedure
tween 10 and 40 K for fields from 0.01 to 20 G. The resu
are plotted against temperature in Fig. 4 and against app
field in Fig. 5. Data are normalized to the value of the m
ment for 100% shielding.

Even in the weakest field, the flux expulsion rate is
more than 45%, less than the 53% shielding by grains
weak fields, below 1 G, there is an approximate affinity b
tween the curves ofM /H versusT. M /H can be extrapolated
linearly to H→0. The result is plotted in Fig. 2~solid

q.
,
06,
FIG. 4. FC~Meissner! susceptibility of the sampleA as a
function of temperature for fields up to 20 G. Curves~top to
bottom! correspond toHdc520.07, 14.34, 8.60, 5.73, 4.01
2.87, 1.99, 1.42, 0.85, 0.57, 0.4, 0.28, 0.2, 0.14, 0.08, 0.
0.02, 0.01 G.
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FIG. 5. FC~Meissner! susceptibility of the sampleA as a func-
tion of field for selected temperatures. Curves~top to bottom!
T536, 30, 28, 26, 24, 22, 20, 18, 16, 13.5, 10.5 K.
circles!: one can see that the extrapolated FC susceptibility
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coincides exactly with the low d.c. field shielding suscep
bility above 25 K. Therefore, at low d.c. fields above 25
the response of the grain system is reversible, and it is
scribed well by the low d.c. field shielding curves; this ju
tifies the hypothesis used above for the calculation ofx j .

On the other hand~see Fig. 5!, the behavior of the FC
susceptibility as a function ofH is nontrivial.M /H decreases
with increasing field, and reaches a stable level~about 25%
at the lowest temperatures! at roughly 1 G. Whatever the
temperature, this decrease is centered at a constant val
the field, about 0.1–0.3 G. Above 5 G,M /H decreases onc
more with increasing field. Note an essential difference
tween the FC results presented on Fig. 4 and the shiel
results above~Fig. 2!: the FC curves do not show any in
crease in the responseM /H with decreasing temperature b
low 20 K, where the intergrain coupling grows considerab
~as can be seen in Fig. 2!. This means that the network o
intergrain currents does not produce Meissner~FC! magne-
tization, whereas it does produceshieldingmagnetization.

The behavior of the FC susceptibilityxFC5MFC/H as a
function of applied fieldH depicted in Fig. 5 shows two
nontrivial features: crossover between two plateaus~at low
and moderate values ofH!, which takes place between 0
and 1 G independent of temperature, and a value of the l
field xFC that is appreciably lower than the Meissner r
sponse of uncoupled grains~45% versus 53%!. These fea-
tures can be understood in terms of polycrystalline struc
of the grains, which can be suspected from the large va
of the penetration depth obtained from the results of Fig
and self-shielding~pinning of the magnetic flux! by the Jo-
sephson currents when reducing the temperature in an
plied field.

We start with the first feature; the curves of FC magn
tization in Fig. 5 are rather similar to those measured
Ruppelet al.27 in YBaCuO ceramics, who interpreted the
results on the basis of a theory of flux expulsion by stron
anisotropic randomly oriented crystallites derived
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any activated flux creep mechanism. It is thus well-adap
to the analysis of our results; indeed, flux creep effects
scarcely be invoked here, since the temperature has no
parent effect on the characteristic field related to the decre
in magnetization.

The starting point of the model is that, provided the s
b of the crystallites is such thatl i!b!l' , the longitudinal
magnetization of a crystallite whosec-axis makes an anglea
with the field is given byM52(H/4p)g cos2 a, whereg is
a factor close to 1 that depends on the ratiol i /b. Averaging
over a, one obtains

M

H
5

g

3

1

4p
.

It must be stressed that the system of intragrain crys
lites is a strongly-coupled system, in contrast to the sys
of grains that compose the ceramic. Therefore, a grain c
sists of an ensemble of interconnected Josephson loops
rounding crystallites whose planes are nearly along the fi
and are thus transparent to the field. At low fields, this s
tem will expel the flux with a penetration depth that depen
on the junction coupling energy. Nevertheless, when the fi
is such that a loop sees a flux larger than;F0/2, the mac-
roscopic magnetization of the Josephson currents vani
and the system reacts as an ensemble of disconne
crystallites.29 The characteristic field of this crossover is su
that28

Hmsc

F0
'0.1. ~2.4!

Recently determined values for the penetration depth
La1.8Sr0.2CuO4

30 are l i5150 nm andl'51500 nm. Older
measurements indicate a higher anisotropy, up to a fa
14.31 We can thus reasonnably consider that the model
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be applied in our case. TakingHm50.3 G, we obtainsc
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57.4310 cm . With sc'pb this leads to a mean diam
eterb51.5mm for the crystallites.

Above Hm , the system acts as an ensemble of crys
lites whose average susceptibility is (g/3)(1/4p). With the
density ratio f 50.8, taking g51 and assuming spherica
crystallites, we obtain from Eq.~2.1! 4pM /H50.31, which
is above the experimental value~the latter being about 0.25!.

Nevertheless, it must be noted that we have neglec
here the effect of the factorg and used a rather unrealist
spherical approximation for the shape of crystallites. Fina
it has been seen that above 5 G, the FC magnetization s
to decrease once more with increasing field, althoughHc1 is
larger than 100 G in La1.8Sr0.2CuO4. This might be due to
intrinsic pinning inside the crystallites themselves when
applied field is such that the flux in the cross-section of o
crystallites is larger thanF0 . With a mean radius of 0.8mm
for the crystallites, this crossover occurs at about 10 G.

We now turn to the discussion of the second feat
mentioned above. At temperatures below 25 K, the Jose
son currents become active. Their effect is that at 10 K,
shielding response of the system of grains amounts to a
53%, while the FC susceptibility saturates at about 45
This difference is enough to be significant, and can be in
preted to be the result of pinning by the Josephson netw
In fact, this pinning can be understood as a back shield
effect of the Josephson currents against a decrease in
local internal field, due to the temperature dependence of
grain’s system permeabilitymg . We have seen above tha
the response of the system consists of the two parts: fo
applied fieldH, the internal field due to the grains seen
the integrain currents isHi5mgH, and the intergrain cur-
rents system reacts to all variations ofHi with a polarizabil-
ity x j and generates a magnetizationdM j5x jdHi .

Thus, when the temperature is decreased bydT, the in-
ternal field decreases byH dmg /dT and the Josephson ne
work tends to screen this variation. Since the intergrain c
rents give no Meissner effect, we consider their respons
be totally irreversible. Thus for a variationdT in the tem-
perature, in a fieldH, the variation in the induction is

dB5~114px j !S dmg

dT D
H

HdT.

On the other hand,B5(114pxFC)H. With mg51
14pxg , we finally obtain

xFC5xg14pE
Tc

T

x j

dxg

dT
dT5xg1x j

FC. ~2.5!

M j
FC5x j

FC H is the magnetization produced by the Jose
son currents due to variations inmg with decreasing tempera
ture. Asxg is known only in the limitHdc→0, Eq.~2.5! has
been used to calculatexFC versusT in the limit of low field.

In order to do so, we started with the values
xg(H→0) as derived above; forx j , we used the values
given in Fig. 3 for the weakest fieldHdc50.06 G. The result
is plotted in Fig. 6. The agreement of calculated values w
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experimental data is satisfactory, although not perfect. T
discrepancy is emphasized if we revert Eq.~2.5! to calculate
x j as a function ofxg andxFC.

The reason is that we have used the simplest lin
model of back shielding here. In fact, as we will see later,
response of the current system is strongly nonlinear, with
susceptibility x j decreasing with increasingDH, and this
effect becomes stronger as the temperature increases.
result is that the calculated efficiency of back shielding
underestimated, since the value of the experimental sus
tibility is determined by applying finite incrementsDH.

2.2. Sample B

SampleB was machined from one of the original cylin
ders, in form of a parallelepiped of dimensions appro
mately 33336 mm. Its calculated volume isV'52.6 mm3,
and its demagnetizing field coefficient for a longitudinal fie
is N'0.19. In a longitudinal field, its calculated moment f
perfect flux expulsion isM55.160.231023

•H cm3
•G.

Measurements of the initial magnetization at 10 K are
fair agreement with this value. ForHdc above 3 G and up to
30 G, the ratioDM/DH reaches a stable level at about 3
31023 cm3 which corresponds to the response of the gra
alone. With a density ratio of 88% for this sample, using E
~2.1! one finds f 50.46, yieldingl50.19r , i.e., the same
value as derived for sampleA.

The shielding susceptibility was measured in this sam
by using a more sophisticated method, in order to reduce
effect of nonlinearity. After cooling the sample to the wor
ing temperature in the d.c. field, the field was increased i
successive stepsDH, andDM was measured. At the lowes
fields, DH510 mG, and~to keep a good signal/noise ratio!
DH5Hdc/50 at the highest ones. The value ofDMn /SnDH
was then extrapolated toDH50 by a least-squares fit.

As in the case of sampleA, all curves withHdc<10 G
merge at high temperatures to a common curve, which c
responds to the flux expulsion by the grains. The main d
ference from sampleA is that in sampleB, Josephson curren
shielding sets in at higher temperatures. This is consis
with the fact that sampleB is denser, resulting in better cou

FIG. 6. xFC calculated with Eq.~2.5! from the values ofxg andx j (0) ~see
the text!.
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pling between grains; moreover, it is larger, which also i
creases the total shielding magnetization. At low tempe
ture, the magnetization curve atHdc520 G reaches a leve
slightly above 60%, which corresponds to the low
temperature level for the grains.

The shielding response of the Josephson currents ca
obtained with the procedure already used for sampleA. Here
the demagnetizing factor cannot be neglected (N'0.19).
Two kind of quantities are to be considered. The first i
volves the responsesxg andx of an equivalent sample with-
out demagnetizing field~e.g., an infinitely long cylinder with
the same cross section!; herexg is the response of the system
of grains alone, without intergrain currents, andx is the total
response of the system of intragrain plus intergrain curre
The second involves the measured responsesx̄g andx̄; these
correspond to the measured moment for each case, nor
ized to the moment for total flux expulsion from the volum
of the sample. The relation between the two kinds of qua
tities is

M

H
5

x̄

12N
5

x

114pNx
.

A relation of the same kind holds forxg and x̄g . With the
use of Eq.~2.3!, we finally obtain

x j5
x̄2x̄g

~12Nm̄ !m̄g
, ~2.6!

wherem̄5114px̄, m̄g5114px̄g .
Similar to the case of sampleA, an approximate curve

has been determined forx̄g by interpolation between the
weak Hdc curves at high temperatures, and the curve
Hdc520 G at low temperatures. The values ofx j have then
been derived from Eq.~2.6! and plotted in Fig. 7. The set o
curves is similar to the set for sampleA, except for the
higher onset temperature of the intergrain currents.

FIG. 7. Josephson current shielding susceptibility as derived from the d
and the use of Eq.~2.6!. Hdc50 ~s!, 0.1 ~h!, 0.5 ~n!, 1 ~,!, 2 ~L!, 5 ~d!
G.
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Field-cooled magnetization data, normalized to the va
of the moment for full flux expulsion, are reported in Fig.
as a function of field up to 30 G. At the lowest field an
temperature, the FC magnetization does not exceed 28%
its value for full flux expulsion. Furthermore, at low tem
peratures the curves representing the field depende
present a second maximum at about 5 G. We expect that
complicated behavior is due to the back shielding effect
the intergrain currents, as discussed for sampleA.

To take them into account, a relation similar to Eq.~2.5!
~but with the demagnetizing effect included! should be de-
rived. The internal field is given as usual byHi5H
24pNM, and the value of the local field seen by the cu
rents isHl5mgHi . Thus, under a temperature variationdT,

dHl

dT
5

dmg

dT
~H24pNM!24pNmg

dM

dT
.

With dB/dT5m jdHl /dT, and using the relation

M5
x̄FCH

12N
5

1

4p E
Tc

T d~B2Hi !

dT
dT,

one obtains after integration

x̄FC5
12N

4pN
~12exp~24pNI !!,

I 5E
Tc

T m j

12N~12mgm j !

dxg

dT
dT. ~2.7!

Here m j5114px j , with x j plotted in Fig. 7, whereas the
value of mg was obtained using the relationmg

5(12N)m̄g /(12Nm̄g) from the value ofx̄g as derived
above.

The values ofx̄FC for H→0 have been calculated usin
the values ofx̄g as determined above, and the values ofx j at
Hdc50. The calculated value ofx̄FC was found to be abou
20.35 atT510 K, whereas its measured value was ab
20.28. The discrepancy between measured and calcul
values is larger here than in corresponding results for sam

ta
FIG. 8. FC~Meissner! susceptibility of sampleB normalized to the moment
for total flux expulsion, as a function of field.T531 ~s!, 30 ~h!, 28 ~n!, 25
~,!, 20 ~L!, 10 ~d! K.
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as in the case of sampleA, i.e., it stems from the nonlinea
response effect. This effect is numerically larger in sam
B, since here the onset of Josephson currents occurs
range of temperature wherexg still varies strongly, in con-
trast to the case of sampleA.

The above analysis shows~notwithstanding the afore
mentioned discrepancy! that the back shielding effect lead
to a strong reduction in the field-cooled susceptibility
compared with the susceptibility of the grains alone. It
then easy to understand the complex behavior ofx̄FC as a
function of field: at 10 K, for instance, the onset of ba
shielding occurs at about 20 G, and its amplitude increa
with decreasing field due to the increase inx̄ j . Starting with
the two-step behavior ofxg expected from the theory o
Wohllebeenet al.28 ~and seen in the data of sampleA, where
back shielding is less important!, back shielding results in
the double maximum shape of the measured curves.

3. DETAILED STUDY OF THE JOSEPHSON NETWORK
RESPONSE

3.1. Determination of the global critical current

In this subsection we present the procedure we use
derive the macroscopic critical current in our sampleB. This
procedure is not quite trivial, since we are interested in
dependence of the critical current on the background
field in the sample, so we need to analyze the magnetiza
curves, which depend both on the cooling fieldHdc and the
field variationdH.

The magnetization was recorded at 10 and 20 K a
function of increasingDH with the smallest possible field
steps (dH510 mG), and starting from several FC state
From theDM data, it is possible to derive the current r
sponseDM j as a function ofDH. For this we use Eq.~2.6!,
which can be written as

DM j5
DM2DMg

~12Nm̄ !m̄g
, ~3.1!

whereDMg is the magnetization of the grains alone;m̄ and
m̄g are defined in Subsection 2.2. The value of the gr
system response is approximately derived in the same
tion: DMg'3.231023

•H cm3
•G at 10 K, andDMg'2.9

31023
•H cm3

•G at 20 K. Calculated values ofDM j at 10
K are plotted in Fig. 9. Note the similarity of these results
the magnetization curves of classical type-II superconduc
with strong pinning~the difference is that hereDH plays the
role of H!.

After cooling the sample at zero d.c. field, its response
obviously symmetric with respect toDH. When it is cooled
in a finite d.c. field, this is no longer the case, as explaine
the previous section. The magnetic moment of the sam
just after cooling isMFC5Mg1M j

FC where M j
FC is the

positive moment due to back shielding by the Josephson
rents that developed during the cooling process~see Eqs.
~2.3! and~2.6!!. The total moment produced by the intergra
currents after increasing the field byDH is thus M j

5M j
FC1DM j . It is this moment that vanishes whenJc→0

~at large enoughDH!, and thusDM j approaches2M j
FC.
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In Fig. 10 we show the data recorded atT510 K and
Hdc52 G. Curves recorded at positive and negativeDH both
converge to the value corresponding to2M j

FC; at 10 K, the
value of2M j

FC is about 1.131023 e.m.u.
WhenDH.Hdc, it is natural to expect that the respon

of the Josephson network does not depend on the initial s
A simple illustration can be given by analogy with Bean-lik

FIG. 9. Shielding moment of the Josephson currents after cooling
sample at 10 K in a d.c. field over the range 0–10 G.T510 K, Hdc50 ~s!,
0.1 ~h!, 2 ~n!, 4 ~,!, 10 ~L! G.

FIG. 10. Shielding moment of the Josephson currents after cooling
sample at 10 K in a d.c. fieldHdc52 G. Data are for positive and negativ
field steps.T510 K. Hdc52 G, DH.0 ~n!, DH,0 ~,!.
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pinning in type-II superconductors.19 At largeDH, when the
induction profile has penetrated to the center of the sam
the magnetization does not depend onDH, but only onJc .
If Jc varies with the induction in the sample, as is the case
real materials, the magnetization depends on the totalH,
whatever the value ofHdc in which the sample was cooled
Indeed, when plotted as a function of the total fieldHdc

1DH, the curves giving the total moment of network cu
rents M j

FC1DM j merge in their ‘‘large’’ field part~i.e.,
above their maximum!. The values have been calculate
with 2M j

FC51.131023 emu and 0.731023 emu for Hdc

52 and 4 G respectively. In order to obtain an optimal ov
lap between the curves, the following values have been u
for DMg : 3.2531023

•H cm3 G at Hdc50 G, 3.2231023

3H cm3 G at Hdc52 and 4 G. The calculated values fo
DM j at large DH are extremely sensitive to those fo
DMg . This allows us to refine the determination ofDMg .
Note that the values quoted above do not differ by more t
1%, which is compatible with experimental accuracy and
possible variations of grain response withHdc.

Finally, from the knowledge of the true Josephs
shielding response in ‘‘large’’ fields, we can now derive
rough evaluation of the critical current. Specifically, abo
the maximum ofDM j , we calculate the valueJ̄c of the
average critical current which would give the value of t
measured moment by use of the Bean formula19 in a cylin-
drical geometry. For strong penetration, the magnetizatio
given in e.m.u. byM5 J̄cR/3. With R50.15 cm and the val-
ues of the moment measured at 10 and 20 K withHdc50 G,
we obtain the data displayed in Fig. 11. Note that the data
limited to fields such thatH'H* 54p J̄cR, below which the
above approximate evaluation is no longer relevant.

3.2. Low field d.c. response

We can now concentrate on the behavior of the Jose
son current moment at smallDH. For this discussion, the
current susceptibilityDM j /DH is plotted againstDH at 10
and 20 K in Figs. 12 and 13, respectively. At 10 K after ze

FIG. 11. Calculated values of the average critical currentJ̄c as a function of
total field for strong field penetration. The large square corresponds to
initial Jc as determined in subsection 3.2.T510 ~j!, 20 ~n! K.
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field cooling or cooling in a small fieldHdc50.1 G, the re-
sponse varies linearly withDH for small values ofDH up to
about 0.5 G. This linear slope ofDM j /DH is considered to
be the result of classical Bean-like pinning with critical cu
rent densityJc5H* /4pR, where 1/4pH* is the initial slope

he

FIG. 12. Josephson current susceptibility at 10 K vs. applied variationDH
of field, after cooling in d.c. fieldHdc50 ~s!, 0.1~h!, 2 ~n!, 4 ~,!, 10 ~L!
G. The meaning of dashed and dot-dashed lines is explained in the teT
510 K.

FIG. 13. Josephson currents susceptibility at 20 K vs. applied variationDH
of field, after cooling in d.c. fieldHdc50 ~s!, 0.1 ~h!, 2 ~n!, 5 ~,!. T
520 K.
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of the curve.19 This initial slope is plotted in Fig. 12 as the
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short-dashed line, which corresponds toH* 52 G, leading to
Jc'3.7 A/cm2.

At larger DH, the behavior of current susceptibilit
DM j /DH deviates from linear, which is the result of bo
the magnetic-field dependence of the critical currentJc , an
intrinsic effect, and the increasing degree of flux penetrat
into the sample, a purely size-dependent effect. Usually
uses the Bean model~generally with someB-dependent criti-
cal current! in an appropriate geometry to deconvolve the
two effects.

However, one should keep in mind that the Bean mo
is a severe simplification of the problem of constant pinn
force, corresponding to the limitl→0 ~i.e., the London pen-
etration depth is assumed to be negligible with respect to
Bean penetration length!. For the simplest sample shap
~thin slab or cylinder!, this means that the conditionl!R
should be fulfilled, which is usually the case. However t
situation is more complicated for samples of square cro
section ~like the present one!, where the effect of corner
may become important even atl!R. For such a geometry
use of the Bean model leads to exactly the same rela
between critical current, external field, and measured mag
tization as for cylindrical samples, whereas one expects s
difference if finite-l corrections are taken into account. A
the present time, we are not able to evaluate these co
tions, nor therefore the value of the magnetization cor
sponding to our experimental geometry with nonnegligi
l. Nevertheless, we expect that it lies between the curves
two extreme limits. The upper one corresponds to thel→0
limit, where the magnetization is given simply by Bean
formula for the cylinder:

4pM /H5211H/H* 2H2/3H* 2 for H,H*

and

4pM /H52H* /3H for H.H* .

A lower limit ~thought rather artificial! consists of the
‘‘double slab’’ case in which the variation of magnetizatio
is counted twice~once for each pair of edges!:

4pM /H5211H/H* for H,H* /2

and

4pM /H52H* /4H for H.H* /2.

Both curves are plotted in the Fig. 12~dot-dashed and long
dashed curves respectively! for Jc53.7 A/cm2 and
DM j /DH525.0531023 cm3 at DH→0.

We now discuss the data, starting from that obtained
low d.c., fields,Hdc50 and 0.1 G. One can see that after t
initial linear part, the absolute value of the measured susc
tibility is always less than the calculated value. This cor
sponds to a decrease inJc with increasing induction, as clas
sically expected in granular materials, due to the suppres
of intergrain critical currents by magnetic field penetrati
into the Josephson junctions.9 This ‘‘classical’’ behavior for
granular superconductors is usually analyzed by conside
the volume-averaged Josephson medium as a kind of typ
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penetration depthlJ is large compared with the grai
size.11,34

At Hdc>2 G, the behavior ofDM j /DH is quite differ-
ent: there is no initial linear slope, but a monotonic curvatu
is present down to the smallestDH. It is no longer possible
to fit a Bean-like curve to the data. For instance, the Be
curve plotted for the lowestDH data forHdc52 G is repre-
sented in Fig. 12 as a dashed line. It corresponds to a
small critical current of order 0.2 A/cm2, and it is evident
that the effective screening current becomes much la
with increasing DH. Here, in contrast to the case o
Hdc50 G, the absolute value of the measured susceptib
is always larger than the calculated value for a const
shielding current corresponding to the limitDH→0. This
means that whereas atHdc50 the effective screening curren
density stays constant and then slowly decreases with
creasingDH ~which corresponds to classical Josephson p
ning!, at Hdc>2 G it increases withDH sublinearly~since a
linear increase would correspond to a susceptibility indep
dent ofDH!. Such behavior is quite unusual within the com
monly accepted picture of screening in superconductors;
deed, we know that for vanishing field excitations, t
screening current may be either linear inDH and reversible,
as in the London~or Campbell20! shielding regime, or con-
stant~equal to the initial critical currentJc! and irreversible
as in the case of the Bean-type critical state~or of any other
known critical model, e.g., Kim model,32 exponential
model,33 etc!.

The above anomalous screening behavior is even m
pronounced at 20 K, where even after zero field cooling,
initial linear slope ofDM j /DH can be seen in the data. A
curves show the same anomalous behavior as the data
K in fields from 2 G. This specific behavior is emphasized
plotting the difference between the measured susceptib
DM j /DH and its value for total flux expulsion
DM j (0)/DH againstDH on a log–log scale. In such a plo
at least in the regime of weak penetration, i.e., wh
DM j /DH is greater than 0.8DM j (0) /DH, sublinear varia-
tion of the shielding current density results in a logarithm
slope less than 1 for the curves ofDM j /DH ~for DM j /DH
less than 0.8DM j (0) /DH, we are in a regime of strong
penetration, where it is no longer possible to relate sim
the variations of the moment response to those of the shi
ing current!. In Fig. 14, we have plotted the three curves f
which data are found in the range above 0.8DM j (0)/DH,
i.e., atT510 K, Hdc50 and 2 G, andT520 K, Hdc50 G.

At 10 K andHdc50 G, the logarithmic slope is about
as expected, although in the weakest fields the logarith
slope becomes closer to 0.5. At 20 K andHdc50 G, the
logarithmic slope is about 0.4 at the lowestDH. Approxi-
mately the same value of the slope characterizes the
obtained at 10 K andHdc52 G, although the dispersion o
data points at lowestDH makes its accurate determinatio
difficult.

The above anomalous behavior makes it tempting to
a simple Ansatz for the behavior of the response curr
density of the system versus induction variations. Let us s
pose thatJ}DBa, with a between 0 and 1. The case wit

1148Leylekian et al.
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a51 corresponds simply to classical screening with pene
tion lengthl ~sinceJ}DB!; the case witha50 corresponds
to constantJ, i.e., the classical Bean case. Anomalous
sponse arises for nonintegera. For very weak excitation
DH, the length of induction penetration is small compar
with the size of the sample, and we need to consider
effect of the excitation to lowest order inDB only. For the
purpose of illustration we consider the simplest slab geo
etry. Then the induction profile is determined by the Ma
well equation

dB

dx
524pJ1S DB

DB1
D a

, ~3.2!

wherex is the coordinate perpendicular to the edge of
sample. For an external fieldDH, the induction in the
sample is given by

DB~x!5S ~12a!4pJ1

DB1
a ~xH2x! D 1/~12a!

, ~3.3!

wherexH is the coordinate of penetration andJ1 andDB1 are
normalizing factors;DB5DH for x50, i.e.,

xH5
DB1

a

4pJ1~12a!
DH12a .

Then, integrating the field profile~3.3! over x, we get

4pDM̄1DH

DH
}DH12a, ~3.4!

where DM̄5DM/V is the mean magnetization variatio
due to the field variationDH.

FIG. 14. Difference between the measured susceptibility and its value
perfect shielding for selected data at 10 and 20 K. The short dashed
represents a logarithmic slope 1 expected for a Bean critical state.s—T
510 K, H50 G; n—T510 K, H52 G; h—T520 K, H50 G.
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in Fig. 14, we find values ofa in the range 0.4–0.5 at bot
10 and 20 K.

Thus, a simple choice for the relation between t
screening currentJc and the induction variationDB allows
us to imitate the experimental results for the simplest pro
col of a weak monotonicDH variation on top of a homoge
neous state of the network. Nevertheless, it is evident
DB has no clear meaning if the variation ofH is nonmono-
tonic, or if the initial state is obtained by nonzero field coo
ing. Indeed, in the latter case, induction in the sample va
during cooling due to the variation ofmg with T, giving the
responseDM j

FC as seen before. Furthermore, we will s
below that the response is irreversible, even for extrem
low excitation fields.

3.3. Irreversibility: very low field, low frequency a.c.
response

Problems of sensitivity limit the range of small excit
tions which can be used in d.c. experiments. The preced
results clearly show the sublinear nature of the low fie
response, but they do not allow its precise determination
order to extend the range of our lower excitations investi
tion by several orders of magnitude, we have been led
perform a.c. susceptibility measurements. The use of a.c
sponse measurements is always questionable when eq
rium ~or quasiequilibrium! properties are under investigation
since the results can be affected by the time-dependent
of the response function. It has been shown that the latte
the response of a very good conductor with comp
conductivity.35,36 Hence, it is necessary to work at low fre
quency, in a range where the susceptibility is rough
frequency-independent.

We present here preliminary results obtained on a lo
cylinder produced by stacking several of the original sam
B cylinders. Measurements were made at 20 K, at a work
frequency of 1.7 Hz in the equipment used for noi
experiments.36 The sample was simply shifted into the upp
half of the third-order gradiometer. At this temperature a
frequency, we have verified that the in-phase susceptibilit
almost frequency-independent, which ensures that the re
are mainly dependent on the~quasi!static part of the re-
sponse. The susceptibility was recorded using the class
method of SQUID magnetometry. We used a.c. excitat
fields in the range 331022– 30 mG, and the sample wa
cooled in d.c. fields from 0 to 8.8 G. From the data, t
values of the Josephson network susceptibility were deri
using the method developed in Sec. 2, with the suscepti
ties in Eq.~2.6! being complex quantities. The susceptibili
measured at 4.2 K at the lowest a.c amplitude was take
be the level for perfect diamagnetism.

Figure 15 displays a log–log plot of the out-of-pha
susceptibilityx j9 versus the amplitude of the a.c. field, an
for several values of the FC static field. The response
irreversible down to the lowest a.c. amplitudes, and the ir
versibility increases with the superimposed d.c. field. A
curves follow a power law, with the same exponent close
0.5. Going towards the smallest a.c. excitations, they sh
some downward bend, which could be related to the

or
ne
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proach to a linear regime~with x j950! below 0.1 mG, al-
though the variance of the data is too great to draw an
conclusions.

The in-phase susceptibilityx j8 is plotted as a function of
Hac

0.5 in Fig. 16. Here as well, the anomalous nature of th
response is clearly seen. 4px j8 behaves like (211d
1gHac

0.5), where both the constantd and the slopeg increase
with increasing superimposed static fieldHdc.

FIG. 15. Out-of-phase susceptibility at 1.7 Hz as a function of a.c. fiel
amplitude.T520 K, Hdc50 ~d!, 2.2 ~j!, 4.4 ~n!, 8.8 ~.! Oe.

FIG. 16. In-phase susceptibility at 1.7 Hz as a function of the a.c. fiel
amplitudeHac

0.5. T520 K, Hac50 ~d!, 2.2 ~j!, 4.4 ~m!, 8.8 ~.! Oe.
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The dependence of the harmonic susceptibility on
a.c. field amplitude provides genuine proof of the existen
of static irreversibility in the response. This is not surprisi
by itself, but these results stress the anomalous aspect o
irreversibility. For instance, in the classical Bean case w
weak penetration, it is known that 114px j8 andx j9 are pro-
portional toHac, whereas Figs. 15 and 16 clearly show t
proportionality toHac

0.5. Further evidence is provided by plo
ting x j9 against 114px j8, as displayed in Fig. 17. It can b
shown that if the a.c. response is driven only by static ir
versibility, the two will be proportional. In the Bean case, t
coefficient of proportionality is 4/3p. In Fig. 17, data that
fall within the range in 20% variation inx j8 ~where the rela-
tions for slab geometry are approximately valid! show that
x j9 is indeed proportional to 114px j8 , but with a bit smaller
coefficient'0.2860.03.

In order to understand the meaning of the above resu
we generalize the crudead hoc model of Sec. 3.2 to the
irreversible case. In order to do so, we generalize the pr
col of the Bean model. Specifically, in the Bean model, t
current is given by a step function of the variation of indu
tion, J5Jcsign(DB) according to the sign ofDB, as long as
the induction variation is monotonic. If the sign of variatio
of B is reversed,J also changes sign; this can be written
terms of the variation of the current density~with respect to
the initial current distribution obtained after monoton
variation of the field,Jinit ) DJ522JinitU(2DBnew) where
U(x)5(1/2)(11sign x) andDBnew5B2Binit . Such a rep-
resentation~which is not needed in the analysis of the Be
model itself! will allow us to construct the necessary gene
alization of the relation between current and variation of
field used in Eq.~3.2!.

Actually our goal here is rather limited: we wish to fin
a consistent description of the simplest hysteresis cy

d

d

FIG. 17. Plot of 4px j9 as a function of 114px j8 for Hdc50 ~s!, 2.2 ~h!,
4.4 ~n!, 8.8 Oe,T520 K, f 51.7 Hz.
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which consists of an initial increase inDB from zero to
DBinit , reversal of the sign of the field variation until th
value of DB52DBinit is reached, and another reversal
dB/dt, finishing atDBfinal5DBinit . The description of this
cycle will be consistent if we find that the value of the cu
rent density at the end-point,Jfinal , coincides with the value
after the original increase in the fieldDBinit Jinit . This simply
means that the hysteresis loop is closed. It is easy to ch
that the above condition will be fulfilled by the followin
choice of theDJ(DBnew) dependence:

DJ52sign~Jinit!2
12aJ1S DBnew

DB1
D a

U~2DBnew!, ~3.5!

whereJ1 andDB1 have the same meaning as in Eq.~3.2!.
Actually, the only difference between the Eq.~3.5! and

the original used in Eq.~3.2! is the coefficient 212a. The
Bean model limit then corresponds toa→0, so the above
coefficient approaches 2, as it should. Then instead of
~3.2! we obtain

dDB/dx56212aA DBa, ~3.6!

whereA54pJ1 /DB1
a .

The induction profile, induced magnetization and h
monic response are calculated in the Appendix. The m
conclusions are that the fundamental components 114px j8
and x j9 are both proportional toh0

12a , and that their ratio
R5x j9/(114px j8) decreases from 4/3p to 0 whena goes
from 0 to 1. Fora50.5, we get~see Fig. 19! R'0.25, a
value which is in good agreement with the data presented
Fig. 17. Note that the degree of irreversibility~measured by
this ratio! is similar ~although a bit lower! to that of the Bean
model.

It should be emphasized that the numerical coefficien
Eq. ~3.5! was ‘‘fit’’ in order to obtain a consistent~i.e.,
closed! hysteresis loop. One can expect that an analog
equation describing current variation after some more co
plicated history of field variations will contain a differen
~history-dependent! numerical coefficient instead of 212a.

It can be seen from Figs. 15 and 16 thatA

54pJ1 /DB1
a increases with increasing ambient d.c. field.

FIG. 18. Picture of a fractalJ(dA) landscape. An example of a hysteres
loop is shown.

1151 JETP 85 (6), December 1997
f

ck

q.

-
in

n

n

us
-

t

is natural to expect a decrease inJ1 with increasingHdc. The
increase inA with Hdc means thatDB1

a decreases more
quickly thanJ1 whenHdc increases.

The presence and behavior of the constantd cannot be
predicted on the basis of the above simple model. In fact,
latter neglects the possibility of elastic displacement of fl
lines under the action of the external applied field. Such
effect would result in a response analogous to the Camp
response due to the elastic displacement of vortices in t
pinning potential in type-II superconductors.20 Campbell’s
response is linear, so it would result in an a.c. fie
independent positive contribution tox8, whose amplitude
would be inversely proportional to the strength of the rest
ing force of the pinning potential wells. It is natural to expe
that the pinning force decreases with increasing ambient
field in our granular system, due to the reduction in juncti
critical currents. Hence, such an effect would make a po
tive contribution tox8 that would increase with increasin
d.c. field. This corresponds rather well to the behavior of
offset d seen in the data.

4. COMPARISON WITH AN EXISTING THEORY OF GAUGE
GLASS: FRUSTRATION AT H50

In this section we compare the experimental results
scribed above with the theoretical results available for r
domly frustrated Josephson networks. We start with a sim
estimate of the mean energyEJ5\I c/2e using the experi-
mental value of the low-temperature ZFC~T510 K,
Hdc50 G! critical current densityJc'3.7 A/cm2. Using the
estimatea0'5 mm for the mean size of the grains, one cou
naively obtainI c'Jca0

2'1 mA and the corresponding low
temperature Josephson energyEJ

naive'20 K ~this value was
derived fromJc measured atT510 K, but we do not expec
much difference in the intrinsic Josephson energies aT
510 K and atT→0, since the bulk transition temperature
La1.8Sr0.2CuO4 is Tc'32 K!.

However, such an estimate is in conflict with the me
sured value of the glass transition temperatureTg'29 K.
Indeed, let us assume that the mean coordination num
~number of ‘‘interacting neighbors’’! Z in the ceramics is

FIG. 19. Values of 4px9/(114px8) as a function of exponenta.
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around 6, as for a simple cubic lattice. Then for an estimate
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of the relation betweenEJ and Tg, one can use simulation
data,6,7 which give Tg'0.5EJ(Tg)50.5EJ0

( l 2Tg /Tc),
where we took into account the linear dependence ofEJ on
Tc2T close to the bulk transition temperature. As a res
one gets

EJ0

kB
'

2Tg

12Tg /Tc
'600 K, ~4.1!

i.e., 30 times the naive estimate above. However we n
show that this discrepancy can be resolved if we assume
the current network producing the measured critical curr
densityJc was actually strongly frustrated in spite of the la
of a background d.c. field in this measurement.

The macroscopic critical current densityJc for a strongly
frustrated Josephson network is calculated in Ref. 5 using
mean-field approach~we are not aware of any calculations
this kind beyond the scope of mean-field theory!. It is shown
that frustration significantly reducesJc as compared to its
valueJ0 for an unfrustrated system:

Jc

J0
5

3)g

8
~12T/Tg!5/2,

where the factorg'0.065 was obtained by numerical sol
tion of the slow cooling equations~Refs. 3, 37, 4, p. 183!
describing the evolution of the glassy state under slow va
tions of temperature and magnetic field. In the lo
temperature limit, this relation amounts to a factor of
reduction in theJc value with respect toJ0 . Correspond-
ingly, the characteristic value of the critical current for
individual junction will be I c'25Jca0

2'25mA, which re-
sults in a Josephson coupling energyEJ0

'500 K, in fairly
good agreement with the above estimate~4.1!.

The above estimates show that the network of Joseph
junctions in La1.8Sr0.2CuO4 is frustrated even in the absenc
of an external magnetic field. A careful reader might qu
tion this conclusion, since we have used some results f
mean-field theory that may be a poor approximation for a
gauge-glass. We believe, however, that the qualitative re
of the above estimates is robust, because a significant re
tion in Jc with respect toJ0 should be a general feature of
glassy network, so that inaccuracy due to mean-field
proximation cannot compensate for a huge discrepancy
tained betweenEJ

naive and the estimate~4.1!.
Additional evidence of the glassy nature of our system

provided by the similarity of the low-DH diamagnetic re-
sponse atT520 K for zero and nonzeroHdc, as described in
Sec. 3 above, as well as the low-frequency noise data
tained in Ref. 35 on the same type of ceramics.

What might the origin of that frustration be? We belie
that most probably it is the result of thed-wave nature of
superconductivity in cuprates15 and randomness of the crys
talline orientations in ceramics.13,14 It was shown there tha
the form of the effective phase-dependent Hamiltonian
such ceramics is of the same form as in~1.1! except for the
fact that the random phasesa i j at B50 are just 0 orp,
depending on the mutual orientation of grainsi and j . There-
fore, such a system is equivalent atB50 to an XY spin-
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pletely random orientation of phasesf i , as in the gauge-
glass model with uniformly random distribution ofa i j ’s.

Therefore, the low-temperature state is characterized
the presence of randomly distributed intergrain currents a
therefore, of the magnetic field generated by those curre
It means that the actual phasesa i j will contain contributions
due to the self-induced magnetic field. Its relative importan
is characterized by the ratio of the corresponding magn
flux penetrating elementary loops of the ceramicsFs f to the
flux quantum F0 , i.e., just by the parameterbL

52pLI c /cF0, whereL is the characteristic inductance o
an elementary loop.9 Estimating the elementary inductanc
asL'2pa0mg and using Eq.~4.1! to estimateI c , we obtain

bL'
4p2a0mgI c

cF0
5

8p3mga0EJ

F0
2 '0.1, ~4.2!

so that self-field~screening! effects are relatively weak
though perhaps not always negligible.

It is also of interest to estimate the effective penetrat
depthlcer into the ceramics of a very weak magnetic fie
perturbationdH. Roughly, the value oflcer can be estimated
to be a0 /AbL;15mm. Another~hopefully more accurate!
estimate can be obtained using mean-field results,5 which
enable one to expresslcer via the critical current densityJc :

lcer5S g

8p2

cF0

Jcj0mg
D 1/2

'25mm, ~4.3!

where we inserted~as compared with Ref. 5! mg'0.35, and
approximated the random nearest-neighbor network by a
bic lattice with coordination numberZ56, which amounts to
the relationj0

25a0
2/6 between the effective interaction rang

j0 and the intergrain distancea0 .
The characteristic magnetic field variation producing t

critical current densityJc at the boundary can be estimated
be DHc;4plcerJc /c'15 mG, whereas the numerica
solution5 yields

DHc5
v

2cg
4plcerJc'30 mG. ~4.4!

In the theoretical approach of Ref. 5,DHc marks a
crossover between reversible~although still nonlinear at
DH<DHc! and irreversible penetration of the magnetic fie
into the intergrain network. The value ofDHc obtained in
Eq. ~4.4! is at the lower end of the range of field variation
used to measure our d.c. magnetization curves, so we m
just conclude that we always havedH@DHc, and thus are
producing the Bean-like critical state. Indeed, the data
Hdc50, T510 K look compatible with such an interpretatio
~see Fig. 14!, where some deviations from the logarithm
slope 1~which is characteristic of a Bean state! are seen at
lowestDH<50 ~mG!.

However, as far as the data obtained at 10 K with d
fieldsHdc.2 G are concerned, or all data at higher tempe
ture (T520 K), including d.c. and a.c. results at zero-Hdc

~see Figs. 12–16!, the low-field magnetization response
drastically different from Bean-type predictions, as explain
at the end of Sec. 3. Qualitatively, the most surprising feat
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of these data is the existence of a very broad range ofDH
he
op
ld

d
ch
o-
ca

-
e

no
at

p
su

ne
f

o
s
io
ic
re

h

es

n
tio
va

he

F
ic

e
e
io
y

ch
u
te

It is important to note that theJ(dA) dependence in Ref.
the

rip-
th

a
ther
e-

or-

nd

an
he

e
-
g-

able

q.
of
r
a-

d

nse
ome

to
the

th’’

ni-
within which the response is nonlinear but still not like t
critical-state response. We are unaware of any microsc
theory that predicts fractional-power behavior of the shie
ing susceptibility over such a broad range ofDH variations.
It cannot be ruled outa priori that such a behavior is relate
to a very wide range of intergrain critical currents, whi
might exist in ceramics~we have thus far neglected inhom
geneity of intergrain coupling strengths in our theoreti
discussion!. Moreover, we may expect that the relative im
portance of such inhomogeneities increases with the fi
and/or temperature~see Ref. 38!.

In Sec. 5, we attempt to formulate a new phenome
logical model appropriate for the understanding of our d
~leaving its theoretical justification for a future study!; this
model will be seen to be an interpolation between Cam
bell’s and Bean’s regimes of flux penetration into hard
perconductors.

5. FRACTAL MODEL OF DIAMAGNETIC RESPONSE

We showed at the end of Sec. 3.3 that a simple ge
alization, Eq.~3.6!, of Bean’s relation between variation o
the applied magnetic inductionDB and currentJ results in
reasonably good agreement with our data. However, in c
trast to the original Bean relation, the new one was not ba
on any physical model—it was just a convenient descript
of the data. In this Section we propose a phenomenolog
model that provides a qualitative understanding of the ir
versible diamagnetic behavior mimicked by Eq.~3.6!.

We begin with the nonlinear response of the currentJ to
a variation of the vector potentialdA derived in Ref. 5 via
the mean-field approximation and presented in Fig. 2 of t
paper. Here the current induced by a variation ofdA is linear
at very smalldA, then grows sublinearly, and finally reach
its maximum valueJc at the criticaldAc such that the dif-
ferential response (dJ/dA)dAc

→0. FordA.dAc the numeri-
cal instability of the slow cooling equations was detected a
interpreted as an indication of the absence of any solu
that would interpolate smoothly between zero and large
ues of dA ~i.e., much greater thandAc!. In other words,
some kind of ‘‘phase slip’’ was expected to occur in t
model,5 leading to a new metastable state with lower~free!
energy at the new value of the vector potentialA85A1dA
~in other words, a state similar to the one obtained by the
procedure at constantA8, which does not carry macroscop
current!. A further increase indA85A2A8 again induces a
macroscopic current until it reaches the maximum valueJc at
dA5dAc , and so on.

Thus, the wholeJ(dA) dependence emerging from th
mean-field solution5 is periodic; it leads immediately to th
irreversibility of the response, since the inverse funct
dA(J) is multivalued: different vector potential values ma
correspond to the same value of current. Of course, su
periodicJ(dA) dependence does not correspond to the us
Campbell–Bean picture, which would be better represen
by

JCB~dA!5J~dA!u~dAc2dA!1Jcu~dA2dAc!. ~5.1!
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5 was obtained from the space-independent solution for
glassy correlation functionQj j (t,t8)5^cos(fj(t)2fj(t8))&.
Such an approximation, which is reasonable for the desc
tion of smooth ‘‘adiabatic’’ transformations in a system wi
long-range interactions, will probably break down when
jump occurs from one metastable state to another. In o
words, the aforementioned ‘‘phase slip’’ should have som
thing to do with spatially inhomogeneous processes like v
tex penetration in hard type-II superconductors.

The problem of the solution of the general history- a
space-dependent system of integral equations~which can be
derived following the method of Ref. 5! is formidable, and
the method to solve it is still unknown. Therefore we c
only speculate on possible properties of its solution. T
simplest idea would be that the macroscopicJ(dA) response
becomes similar~after averaging over inhomogeneities of th
space-dependent solution! to the Campbell–Bean type of re
sponse~5.1!. Indeed, our analysis of the low-field diama
netic response atT510 K andHext50 ~Sec. 3.2!, developed
in Sec. 4 on the basis of such an assumption, is in reason
agreement with the data. However other sets of data~for
higher temperature and/or lower field! are described by the
completely different Ansatz~3.5!.

We now propose a~phenomenological! generalization of
the J(dA) relation compatible with Eq.~3.5!. The relation
we are looking for should be an intrinsic~i.e., independent of
the sample geometry! and general~i.e., usable for an arbi-
trary magnetic history of the sample! relation between the
current and variation of the vector potential. Recall that E
~3.5! was written for the simplest nonmonotonic variation
DB, and that it relates the true vectorJ and the pseudovecto
DB. Thus, in writing this equation, some additional inform
tion on the geometry of the sample has been used~we use the
simplest slab geometry!. A natural basic equation shoul
therefore relate the current densityJ and the variation of the
vector potentialdA.

In a generalized model, the diamagnetic current respo
must possess two major properties: it must scale as s
fractional powera'0.5 of the amplitude of the excitation
field dB, and it must be strongly irreversible~as follows
from an analysis of the ratio 4px9/(124px8)'0.28!. We
consider these two conditions in turn.

The first condition is rather easy to fulfill: it is enough
suppose that the differential response of the current to
variation of the vector potentialdA is given by a nonlinear
generalization of the London relation

dJ

dA
52

c

4p
leff

22~J!, ~5.2!

where the current-dependent ‘‘effective penetration dep
is given by

leff5l1uJ/J1uk. ~5.3!

In the case of a monotonic field variation applied to an i
tially uniform induction distribution, Eqs.~5.2! and ~5.3!
lead to the simple relationJ}DBa with a5(11k)21. In-
deed, with dA5DBdx and approximatingdDB/dx by
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DB/leff , one obtainsJ}DB1/(11k). Thus we need to choose
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k'1 in order to reproduce the observed scaling witha
'0.5.

However, the set of equations~5.2!, ~5.3! does not sat-
isfy the second condition above: the corresponding soluti
are reversible, as follows from the existence of a sing
valued functiondA(J)}J112k, which follows from Eqs.
~5.2!, ~5.3!. In other words, the system described by E
~5.2!, ~5.3! would exhibit nonlinearity and harmonic gener
tion, but would not show finitex9(v) in the limit v→0. In
order to avoid this inconsistency, we need to formulate
model with the same kind of scaling betweendA andJ as in
Eqs. ~5.2!, ~5.3!, but with a nonmonotonicJ(dA) depen-
dence that allows for irreversible behavior.

A model obeying very similar properties was formulat
and studied in Sec. 3.2 of Ref. 4 in a different physical co
text ~one-dimensional spin-glass!. The low-energy spin con
figurations in this model are described by a phase varia
w(x)P(2p,p) such that two such configurations~local en-
ergy minima! that differ by a phase shiftdw(x0)5F in a
region around some pointx0 have a characteristic energ
differenceE(F)}F5/3 and a characteristic spatial extent
phase deformationX(F)}F1/3. This scaling holds for the
intermediate range of phase deformationsw0!F!p; at
smallerF<w0!1, the energy cost of deformation is}F2,
whereas atF;p the energy growth obviously saturates d
to 2p periodicity.

The aboveE(F) scaling leads to a sublinear growth
the characteristic ‘‘force’’f (F)5dE/dF}F2/3 with F over
the same intermediate range. The leading contribution to
second derivatived2E/dF2 ~curvature of the energy valleys!
comes from the smallest scaleF;w0 , i.e., from the curva-
ture of individual local minima. It was explained in Sec. 3
of Ref. 4 that such scaling implies fractal structure of t
energy minima as a function ofw with fractal dimension
D f51/3. This means that the number of energy minima d
cernible on a scalew grows asN }w21/3 at finer scales; new
minima appear primarily due to the splitting of old
~broader! ones. This picture emerged in Sec. 3.2 of Ref
from a microscopic analysis of the original Hamiltonian for
one-dimensional spin-glass model formulated in Ref. 39.
can borrow the qualitative features of this construction
our present purpose~leaving for future studies the problem
of its microscopic justification for the case of supercond
tive glasses!.

Suppose that the free energyF(dA) of the Josephson
network behaves~as a function of vector potential variation
with respect to a ‘‘virgin’’ state with a homogeneous indu
tion! in a way similar toE(w) at w!p. Specifically, sup-
pose that the free energy is parabolic,dF}(dA)2, at very
small variations of vector potentialdA<dAc1 , but on a
larger scale,dA@dAc1 , it contains many local minima
whose characteristic free energies scale~with respect to the
lowest state withdA50! as

F~dA!}~dA!u11 ~5.4!

for dAc1!dA!dAc, with exponentuP(0,1) ~see the defi-
nition of dAc below!. Then the characteristic value of th
currentJ5(1/c)]F/]A scales as
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over the same interval ofdA. At larger variationsdA
>dAc, the growth of the induced current should saturate
the true critical current valueJc , so we can estimate

dAc;dAc1~Jc /Jc1!1/u. ~5.6!

On the other hand, weakdA!dAc1 leads to the usua
linear London~or Campbell! response with an effective pen
etration depthl1 ; matching atdA;dAc1 leads to the fol-
lowing estimate:

dAc1;
4p

c
Jc1l1

2. ~5.7!

The estimate~5.5! looks very much like the previous
version defined by~5.2!, ~5.3!, so one can find a relationshi
between the exponents:

u51/~112k!5a/~22a!'0.3. ~5.8!

However the whole picture is substantially altered: the c
rent is now assumed to be an~irregularly! oscillating func-
tion of dA ~see Fig. 18!, so only its envelopeJchar(dA) de-
fined on a scaledA follows the scaling relation~5.5!. As a
result, the inverse functiondA(J) is multivalued, and irre-
versibility of the response is ensured. Similar to the sp
glass model of Ref. 4, Sec. 3.2, the fractal dimensionD f of
the low-energy valleys can be defined; it is now given
D f512u'0.7.

The proposed picture is based on the existence of
substantially different scales of currents,Jc1 and Jc , and
corresponding vector potential variationsdAc1 and dAc . It
can thus be compared with the usual Campbell–Bean pic
of critical currents in the same way as the thermodynamic
type-II superconductors is compared with that of type-I.

To describe quantitatively the diamagnetic response
the ‘‘fractal’’ range~5.4!, we need to determine the distribu
tion functionP @J(dA)# ~which would lead, in particular, to
the estimate~5.5! for Jchar(dA)!. Moreover, in general, a
relation of the type of~5.5! might be nonlocal~i.e., the cur-
rent depends on thedA(x) distribution over some region o
space, whose size may depend ondA itself; see again Ref. 4
Sec. 3.2!. We leave this complicated problem for future stu
ies, and only note here that the mere existence of rela
~5.5! is sufficient for the existence of some ‘‘natural’’ prop
erties of the response~like the existence of a closed hyste
esis loop, as assumed in Sec. 3.3!.

6. SUMMARY AND CONCLUSIONS

In this paper, we have presented experimental results
the low temperature~10 and 20 K! response of the granula
HTc superconductor La1.8Sr0.2CuO4 to small field excitations.
The general properties of the magnetic response were in
tigated in two samples~A andB! differing by the strength of
the coupling between grains. By cooling the samples in v
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we were able to measure the shielding response of the m
rial and to derive a method, inspired by the work of Der
and Blatter,22 to deduce from the data the polarizability
the intergrain current system. The field cooled magnetiza
was measured in fields up to 20 G. Analysis of the res
leads to the conclusion that a! the structure of the grains i
polycrystalline, resulting in a step decrease of the FC m
netization with increasing field, which can be interpreted
the basis of the model by Wohllebeenet al.;28 b! self-
shielding~pinning! by intergrain currents when lowering th
temperature strongly reduces the value of the FC magne
tion; c! there is no macroscopic Meissner magnetization
to the system of intergrain currents.

Further detailed study of the response of the Joseph
network was performed in sampleB. It was shown that the
response is asymmetric with respect to the sign of varia
of the applied field after field cooling; this is due to th
shielding currents pinned during cooling. The macrosco
critical current is found to be strongly reduced by moder
values of the external d.c. field, about 2 G.

Very low-field magnetization measurements were p
formed by applying field steps of 10 mG or low-frequen
a.c. fields in the range 50mG to 30 mG after cooling in d.c
fields up to 8.8 G. The results show that the respons
highly nonlinear, and the shielding current growing subl
early with increasing applied field. Furthermore, the a.c.
sults show that the response is strongly irreversible dow
the smallest excitations used. It is shown that a nonlin
relation between the shielding current and the inductionJ
}DBa with a'0.5, together with a natural assumption abo
the existence of a closed hysteresis loop, yield prediction
reasonable agreement with the data.

Theoretical analysis of our experimental results was
veloped in the context of existing ‘‘gauge-glass’’ theories
was shown that the extremely low value of the lo
temperature, zero-field critical current density~Jc

'3.7 A/cm2 at 10 K! together with the rather high temper
ture of the transition to the low-temperature glassy state,
be coherently interpreted only under the assumption that
Josephson network is strongly frustrated even at zero app
field. This contradicts the usual assumption that frustratio
the interactions results solely from local magnetic inducti
but supports the hypothesis of the existence of a large
portion of p-junctions in the granular system. Thesep-
junctions are possibly due to thed-wave nature of the pair
ing, combined with the randomness of grain orientations
La1.8Sr0.2CuO4 ceramics.

Finally, a new model of diamagnetic response in t
glassy state of granular superconductors was develope
order to describe the anomalous~fractional-power! behavior
of the shielding current response. This model, based on
idea of fractal structure of the free energy landscape in
granular network, can qualitatively account for the main fe
tures of the anomalous response. Its further development
be the subject of future studies.
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cussions, which helped to clarify a number of issues con
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APPENDIX

The hysteretic behavior of the current as a function
the induction variations is represented by the relation

DJ562~12a!nJcS uDBu
Bc

D a

, ~A1!

with n50 when starting from a zero-induction state, a
n51 otherwise.DJ5J2J0 andDB5B2B0, whereJ0 and
B0 are the~old! values just before the last reversal of the si
of variation of B. The Ansatz~A1! ensures that we have
stable closed hysteresis loop, and that there is no hyste
for a51, which describes the London case.

The induction profile is determined by the Maxwe
equation, which leads, for the case of weak penetration,

dDB

dx
562~12a!nAuDBua, ~A2!

whereA54pJc /Bc
a ; x is the distance from the edge of th

sample. After increasing the applied field from 0 toh0 , start-
ing from a zero-induction state, the induction profile is giv
by B2adB52Adx, leading to

x52
1

A
E

h0

B

j2a dj52
B12a2h0

12a

~12a!A
,

where

B5~h0
12a2~12a!Ax!1/~12a!. ~A3!

The field penetrates untilx5xh0
5h0

12a/(12a)A.
When h decreases fromh0 , we obtain (B02B)2adB

52212adx. Hence

x52
1

212aA
E

h02h

B02B

j2a dj

52
1

212aA~12a!
~~B02B!12a2~h02h!12a!.

Modification of induction relative toB0 extends up toxh

5(h02h)12a/212aA. For 0,x,xh ,

B5B022S S h02h

2 D 12a

2~12a!AxD 1/~12a!

, ~A4!

whereB0 is given by Eq.~A3!. Whenh52h0 is reached,
Eq. ~A4! gives simplyB52B0 . After reversing the sign of
variation ofh once more, the profiles are simply symmetric
to those given by Eq.~A4!.

The average induction can now be derived. After so
algebra, one obtains

^B&5
A

22a
h0

22aF122S 12h/h0

2 D 22aG for h0.0,

~A5a!

and
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^B&5
A

h22a 2112
11h/h0

22a
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11E. B. Sonin, JETP Lett.47, 496 ~1988!; E. B. Sonin and A. K. Tagancev,
Zh. Éksp. Teor. Fiz.95, 994 ~1989! @Sov. Phys. JETP68, 527 ~1989!#.

ta,

r,
F.

en,

K.

with
22a 0 F S 2 D G 0

~A5b!

For a sinusoidal excitationh5h0 cosvt, one gets

^B&
h0

5
Ah0

12a

22a F122S 12cosvt

2 D 22aG
for 2np,vt,~2n11!p, ~A6a!

^B&
h0

5
Ah0

12a

22a F2112S 11cosvt

2 D 22aG
for ~2n21!p,vt,2np. ~A6b!

Since ^B&/h0511^M &/h0 , the Fourier transform of
Eqs.~A6a!, ~A6b! yields the values of 114px8 and 4px9.
This can be done numerically. Figure 19 displays the ra
4px9/114px8 as a function ofa.

*Permanent address: Institute of Solid State Physics, 142432 Che
golovka, Moscow Region, Russia. Current address: Delft University
Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.

1!The susceptibility, which in the usual sense is a local quantity represen
(B2H)/H, has no meaning in the case of circulating currents in a c
ductor. We speak rather of a polarizabilityx j , which represents the aver
age value (B2H)/H, and which describes the global effect of the curre
over the whole volume of the sample.
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Characteristic time of avalanche mixing of granular materials

S. N. Dorogovtsev* )

A. F. Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia
~Submitted 8 May 1997!
Zh. Éksp. Teor. Fiz.112, 2114–2123~December 1997!

Fractions of a granular material are mixed in a cylinder rotating slowing about its horizontally
oriented longitudinal axis. The cylinder is not completely full, and at any instant, mixing
occurs only on the free surface of the material. The complete dependence of the characteristic
time of such so-called avalanche mixing on the fill level of the cylinder is constructed
within a simple geometric approach. This dependence faithfully describes the actual experimental
curve. Near the critical point of half-filling, at which mixing to a homogeneous state does
not occur, the reciprocal of the characteristic mixing time is proportional tod2 ln(udu21), whered
is the deviation of the fill level from half-filling. ©1997 American Institute of Physics.
@S1063-7761~97!01312-7#
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The experiment reported in Ref. 1 demonstrates the
sence of so-called avalanche mixing so graphically and
fectively that one of the vivid illustrations of this phenom
enon appeared on the cover of the March 1995 issue
Nature. Fractions of a granular material are poured int
cylinder rotating slowly about is horizontally oriented long
tudinal axis. The cylinder is not completely full, so that
free surface remains at the top. It is assumed that gran
can flow only when they lie on the free surface. Everywh
else in the material they do not mix with one another, a
they rotate along with the cylinder~see Fig. 1a!.

As a result, as the cylinder rotates, avalanches, in wh
the fractions mix, occur continuously over the free surface
the material. Such mixing on a surface is called avalan
mixing.1 The drum in which mixing is investigated in a
experiment is flat, so that it is actually a disk or, as it is s
called, a two-dimensional drum.2–6 Therefore, there is no
need to discuss the question of the mixing of granules al
the rotation axis of the cylinder. We ask then how such m
ing unfolds.

It has been found that the dynamics of avalanche mix
can in fact be understood based on a simple approach inv
ing essentially geometric arguments.7–9 Thus, there is no
need at all to utilize the ideas of the theory of self-organiz
criticality10–12 ~we note, however, that the general interest
the problem of the surface flow of granules in a rotati
drum13–18 and in the surface flow of granular materials
general19 has recently been displayed specifically in conn
tion with problems of self-organized criticality!. Unfortu-
nately, the dependences already known from experim
were not constructed in our previous papers.7,8 Now, how-
ever, we can obtain response functions that enable us to
rectly compare our theory with the available experimen
data. We show here that our theory accurately describes
fastest of the possible mixing regimes. Comparing our
sponse functions with the experiment in Ref. 1, we see
the actual experimental situation is very close to this regim

We assume that the cylinder rotates so slowly that at
instant, the free surface is at an angle of repose to the h
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they can be disregarded!.
Since the angle of repose, the radius of the cylinder,

its rotation rate do not appear in the response functions,
can henceforth depict the free surface as being horizonta
in Fig. 1a, set the radius of the cylinder to unity, and assu
that the timet is simply the rotation angle of the cylinde
We assume that granules of different fractions differ only
color. For simplicity, as in the experiments, let only tw
fractions, viz., white and black, mix.~The results can easily
be generalized to an arbitrary number of fractions!. Their
initial arrangement is not important for the quantities that
seek, and we do not specify it. The granules are small,
we describe the state at any point in the material byr, which
is the concentration of the black material at that site~r51 at
sites where all the material is black, andr50 at sites where
it is all white!. Let the cylinder rotate counterclockwise.

Obviously, if the cylinder is more than half full, the cen
tral portion of the material~in Fig. 1 it is encircled by a
dashed line! never mixes, and rotates along with the dru
When it is less than half full, all the material must mix.

Under what circumstances does avalanche mixing
velop most rapidly? Obviously, the fastest of all possib
regimes is realized if the material mixes completely, i.e., t
homogeneous state, when granules flow over the free sur
from its right-hand half to its left-hand half~see Fig. 1a!. To
clarify, there can be an inhomogeneous distribution of
fractions on the right-hand half of the free surface, while t
concentrationr must be the same everywhere on its left-ha
half. We introduce a circle with radius equal to the small
distance from the center to the free surface~denoted by the
dashed line in Fig. 1!, and we discuss how the first fraction
distributed on tangents drawn to this circle. It is clear in t
situation under consideration that after a long enough t
~certainly after the first complete turn of the cylinder! the
values ofr along different tangents of the type denoted
CD in Fig. 1b can differ, but the concentrationr will be the
same everywhere along each individual tangent~Fig. 1b!.
Then, if any tangent is characterized by the anglew between

1157-05$10.00 © 1997 American Institute of Physics
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FIG. 1. a! Diagram of avalanche mixing. Granules of different fractions from sectorA mix as they flow into sectorB in response to an infinitesimal turn o
the drum. The free surface of the granular material is at a repose angle to the horizontal. The different fractions are indicated by black and white sh
regions with mixed material are denoted by hatching. Different degrees of mixing are not shown here or in the figures below. b! Derivation of Eq.~3!. The
cylinder is more than half full. Since the repose angle does not appear in the response functions, the free surface is drawn horizontal. The angleu characterizes
the relative volume of the empty space. The position of tangentCD is characterized by the anglew. In the regime of maximally fast mixing, the concentratio
of the black fraction equalsr(w,t) at all points on such a tangent at sufficiently large times. The tangent intersects the free surface of the material ifz,2u,
wherez[2p2w.
the corresponding radius vector and a normal to the free
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surface, the state of the system at timet can be described by
the quantityr(w,t).

Thus, consideration of the fastest mixing regime, or
troduction of the equivalent assumption of complete mix
in the avalanches, drastically simplifies the problem.7 It is
then possible not to explore the subtleties associated with
specific structure of the granules, their cohesion, chain
etc.

How close is the avalanche mixing observed in the
periment in Ref. 1 to the fastest regime, which can be
scribed analytically? The answer to this question is the m
subject of the present work. The principal experimental
sult that enables us to make such a comparison is the de
dence of the characteristic mixing time on the fill level of t
rotating drum. Thus, we must construct this dependence
all fill levels.

In general, a characteristic mixing time can be intr
duced for the following reason. As we shall see below,
long times, the concentration of the black fraction on t
left-hand part of the free surfacer(w50,t) depends on the
time in the following manner~a similar dependence, o
course, can be written for other points in the material, a
the same dependence also follows from the experimen
Ref. 1!:

r~0,t !5r`1C0 exp$2t/t%cos$2pt/T1w0%. ~1!

Here r` is the concentration of the black fraction in th
material mixed to a homogeneous state, which, like the c
stantsC0 andw0 , depends on the initial conditions, i.e., o
the size and arrangement of the pure fractions att50; t is the
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period. We also need to construct plots oft andT as func-
tions of the fill level.

In the next section we show how equations describ
the dynamics of mixing can be obtained in a very simp
manner, if the assumption made above is used. The prob
actually reduces to an investigation of the dynamics o
zero-dimensional linear system.

In Sec. 3 we use these equations to construct curves
describe the dependence of the parameterst andT appearing
in ~1!, i.e., the characteristic mixing time and the oscillati
period, on the fill level of the cylinder. We see that the e
perimental situation in Ref. 1 is very close to the fast
mixing regime, and that our theory faithfully describes t
experiment.

As it turns out, if the cylinder is exactly half full, the
granular material never mixes to a homogeneous state
Sec. 4 we describe the highly nontrivial, singular behavior
the characteristic mixing time in the vicinity of this speci
point.

Thus, we see that the dependence of the mixing time
the fill level of the cylinder can be described surprising
well within an approach based on the assumption that
granules mix completely when they flow over the free s
face of the material. In the concluding portion of this pap
we briefly discuss how the mixing process might be d
scribed when this very strong assumption is discarded, i.e
the granules of different fractions are not distributed p
fectly homogeneously after they flow over the free surface
is found that the problem reduces to a description of
dynamics of a one-dimensional linear system. Another ch

1158S. N. Dorogovtsev
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of the granules, appears in this situation.

2. EQUATIONS DESCRIBING THE DYNAMICS OF
AVALANCHE MIXING

Let us describe the kinetics of avalanche mixing in t
case of complete mixing of the granules when they flow o
the free surface of the material, i.e., the fastest mixing
gime. We have already obtained the corresponding equat
in Ref. 7. Now, however, we have learned to derive them
simply that we can allow ourselves to present this brief d
vation here.

We turn to the case of a more than half full drum. It
convenient to characterize the fraction of empty space by
opening angleu ~see Fig. 1b!. We wish to find an asymptote
like ~1!. Therefore, we focus only on fairly long times,
which, as was shown in the Introduction, the concentrat
of black granules is everywhere identical along each in
vidual tangent likeCD. ~In Refs. 7 and 8 we also show ho
avalanche mixing develops at lesser times.! These tangents
are characterized by the anglew, and the concentration of th
black fraction at points along the corresponding tangen
time t is r(w,t).

We turn the cylinder through the small angledt at time
t. Then the quantity of black material flowing from right t
left ~from sectorA to sectorB in Fig. 1! is:

dt
sin2 u

2
r~0,t !5dtE

0

sin u

dr rr right~r ,t !

5dtE
0

2u

dz
dr~z!

dz
r ~z!r right~r ~z!,t !

5dt
cos2 u

2 E
0

2u

dz
d tan2~z/2!

dz

3r~2p2z,t !. ~2!

Here the first integration*0
sinudr is carried out from the

middle of the free surface to the wall of the cylinder;r (z) is
the coordinate of the point of intersection of the tang
characterized by the anglew52p2z with the free surface,
i.e., segment ED in Fig. 1b. In addition,
r (z)5cosu tan(z/2), so thatr (2u)5sinu. Thus, the con-
centration of the black fraction at different points on t
right-hand half of the free surface isr right(r (z),t)5r(z,t).
We now take into account that, as follows from the abse
of mixing of the granules at points not belonging to the fr
surface,r(w,t)5r(0,t2w) for t>w andw>0, and from~2!
we quickly obtain the desired equation forr(0,t):

r~0,t !5cot2 uE
0

2u

dz r~0,t22p1z!
sin~z/2!

cos3~z/2!
. ~3!

Proceeding in the same manner, we can also easily
tain the corresponding equation for a less than half full c
inder ~here it is convenient to introduce the angleq[p2u!:

r~0,t !5cot2 qE
0

2q

dz r~0,t2z!
sin~z/2!

cos3~z/2!
. ~4!
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to an investigation of the dynamics of a zero-dimensio
linear system. We note that Eqs.~3! and~4! do not transform
into one another following the formal replacement ofu by
p2q. The fact is that the half-full pointu5q5p/2 is, as
we shall see below, a point where analyticity is lost. At ha
filling, it follows at once from Eq.~3!, as well as from~4!,
that r(0,t)5r(0,t2p), and that mixing to a homogeneou
state never occurs in the system. Thus, the mixing time g
to infinity at that point.

To find the characteristic mixing time and the oscillatio
period of the asymptotes of the solutions of Eqs.~3! and~4!
~see Eq.~1!!, it is sufficient to substituter(0,t)5ezt into
these equations. As a result, at more than half-filling, fro
~3! we obtain

e2pz52 cot2 uE
0

u

dj e2zj
sin j

cos3 j
. ~5!

At less than half-filling, Eq.~4! gives

152 cot2 qE
0

q

dj e22zj
sin j

cos3 j
. ~6!

Thus, we obtain two transcendental equations forz. To
determine the characteristic mixing time, we must find t
roots closest to zero. As can be seen from the asymptote~1!,
each of these two roots is associated with a character
mixing time and an oscillation period:

z52t216 i2p/T. ~7!

We note at once thatt andT depend on only one paramete
i.e., on the fill level of the drum! Now we need only find th
roots of Eqs.~5! and ~6!.

3. DEPENDENCE OF THE MIXING TIME ON THE FILL LEVEL
OF THE CYLINDER

The integrals on the right-hand sides of Eqs.~5! and~6!
can be expressed in terms of special functions. As us
although the solution of a transcendental equation canno
represented in analytic form, it can be found to as high
level of accuracy as desired. Since these special functions
quite exotic, it is simpler to calculate the integrals in~5! and
~6! directly. It turns out to be most convenient to perform
single integration by parts and then iterate the following
lations:

z5
1

2p
lnH e2uz22z cot2 uE

0

u

dje2zj tan2 jJ ~8!

for a more than half full cylinder (u,p/2), and

z5
1

2q
lnH 112z cot2 qe2zqE

0

q

dje22zj tan2 jJ ~9!

for less than half-filling (q,p/2).
These iterations converge very rapidly. As a result, us

~7!, we obtain the desired dependence of the reciprocal of
mixing timet21 and the oscillation periodT on the fill level
of the drum~see Figs. 2 and 3!, i.e., our main results. Now it
is more instructive to expresst21 and T in terms of
v5(q2sin 2q/2)/p, i.e., the relative fraction of the volum
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of the drum occupied by granules, rather than the angleu
andq. For comparison, Fig. 2 also presents the experime
points from Ref. 1 with their errors.

Each value oft(v) found corresponds to the shortest
all possible times for avalanche mixing at the respect
value ofv. Thus, plots oft21(v) for certain specific granu
lar materials should not extend above the limiting curve c
structed in Fig. 2. In fact, although the experimental poi
shown in Fig. 2 are close to the limiting dependence, they
still below it. Thus, the actual experiment1 is very close to
the limiting regime of fastest mixing, and is therefore d
scribed excellently by our theory, which does not cont
any parameters of the granular material being mixed.

Following Ref. 1, we can also introduce another para
eter, viz., the mixing ‘‘rate’’v/t. In our theory its maximum
v/t50.0683... is achieved atv50.177..., i.e., the material
mixes most rapidly at that fill level of the drum. These valu
are also very close to the experimental valu
v/t50.05660.006 whenv50.1760.015.1

In Refs. 7 and 8 we found analytic expressions fort21

and T in the limiting cases of low and high fill levels: at
low drum fill level, (q!1)t21'1.392/2q and
T'4pq/7.553, and at a high fill level, (u!1)t21'(1/9)
3(1/2p)u2 andT'2p24u/3. These analytic dependence

FIG. 2. Dependence of the reciprocal of the characteristic mixing time
the fraction of the volume of the cylinder occupied by granular mater
Experimental points from Ref. 1 are shown for comparison.

FIG. 3. Dependence of the oscillation period of the concentration of ei
of the fractions~see Eq.~1!! at long times on the fraction of the volume o
the cylinder occupied by granular material.
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and 3. We now show howt and T behave near the specia
point, i.e, the half-full point.

4. CRITICAL BEHAVIOR NEAR THE HALF-FULL POINT

As was noted in Sec. 2, when the drum is half full,
follows from Eq.~3!, as well as from~4!, that the concentra-
tion of the black fractionr(0,t) is a periodic function with
periodp ~half of the rotation period of the drum!, and com-
plete mixing is never achieved. Therefore, taking Eq.~7! into
account, we can represent the desired root near the half
point in the formz52i 1s, wheres is a small correction~of
course, the conjugate rootz522i 1s could be found with
equal success!.

Consider, for example, a more than half full cylinde
After substituting the latter relation into Eq.~3!, we have

e2ps52 cot2 uE
0

u

dj e2sj$4 sin 2j1tan3 j27 tanj

24i ~cos 2j1tan2 j21!%. ~10!

We now introduce a small deviationd from half-filling:
u5p/22d, whereupon we can expande22sj, taking the
smallness ofs into account. It is now simplest to proceed
the following manner: integrating by parts, we can eas
isolate the terms that are singular whend→0. The remaining
integrals, which converge asd→0, can also be evaluate
without difficulty. After this we need only compare the co
efficients of terms with equal powers ofd.

Here we omit these routine but extremely cumberso
calculations, and merely present the expression for the
closest to zero:

z52i 2
8d

p
i 2

16d2

p F ln
1

udu
25/2G1... ~11!

~We have not written out a termO(d2) in the imaginary part
of z.! It follows directly from ~11! with consideration of~7!
that at sufficiently long times (t@t), the mixing process
develops according to~1!, in which the characteristic mixing
time t and the oscillation periodT can be expressed in term
of the deviation ofu from p/2 in the following manner:

t215
16d2

p F ln
1

udu
2

5

2G ~12!

and

T5p14d. ~13!

Of course,t and T can also be expressed in terms of t
deviation of the relative fraction of the volume filled by th
granular material from one-half, noting thatv21/2'2d/p.

Similar calculations can be performed with equal su
cess in the case of less than half-filling (q,p/2). The final
expressions have precisely the same form as~12! and ~13!
~but hered5q2p/2,0!. Of course, such agreement is o
served only in low orders. We note that in the theory
ordinary critical phenomena, the coefficients of the singula
ties on the two sides of a critical point differ~see, for ex-
ample, Refs. 20 and 21!.

n
l.

r
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A comparison of the analytic expression~12! with the
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complete dependence oft(v) ~see Fig. 2! calculated in the
preceding section shows that~12! is suitable only in the very
narrow rangeuv21/2u,0.02 near half-filling.

5. CONCLUSIONS

We have found that in an actual experiment1 ~using col-
ored crystal salt granules!, mixing occurs in a regime that i
very close to the fastest of all possible regimes for avalan
mixing. ~In the fastest mixing regime, granules should m
completely to a homogeneous state as they slide over the
surface of the material.! In this case the description of ava
lanche mixing becomes extremely simple, i.e., the prob
reduces to an investigation of the dynamics of a ze
dimensional linear system, and can, in fact, be solved
actly. It has been found that the simple system studied h
has unusual critical behavior near the half-full point of t
cylinder, at which the material never mixes to a homog
neous state.

Remarkably, the main characteristic of the problem, v
the characteristic mixing timet, which we specifically
sought, was found to be extremely insensitive to deviati
from a homogeneous distribution of the granules after t
flowed over the free surface.~Note that we also neglecte
fluctuations of the repose angle with time. Such fluctuatio
can be significant in an experiment at a low fill level of t
cylinder.! These deviations are, of course, visible experim
tally in the actual patterns of the distribution of the fractio
at individual moments in time, and their extent is determin
by which specific granular material is being mixed~see Refs.
16, 22, and 23!. Consideration of these deviations reduc
the problem to the investigation of the dynamics of a o
dimensional linear system.

In fact, since the granules of a fraction can be irregula
distributed even after they have flowed over the left-ha
half of the free surface in this case, the quant
r(r , w50, t), where r is the coordinate of a point on th
left-hand half of the free surface measured from its cen
will appear in the equation describing the mixing dynami
The specific form of the map expressingr(r , w50, t) in
terms of the distribution of the black fraction at that mome
in time on the right-hand half of the free surface is det
mined by the characteristics of the granular material. Nev
theless, it is not difficult to see that the map must be linea
the granules of different fractions differ only in color; if th
material is homogeneously mixed on the right-hand half
the free surface, a homogeneous distribution should als
obtained after the material flows over the left-hand half;
quantity of the black fraction before flow in sectorA in Fig.
1a should be conserved after flow into sectorB. These argu-
ments are sufficient, in principle, to predict the form of su
a map. It can be selected, for example, on the basis of s
phenomenological arguments after describing the dep
dence on the nature of the granular material by a single
rameter.
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r(r , w50, t) here, since they are far from as elegant as E
~3! and~4!. Of course, Eqs.~3! and~4! can be obtained from
these general equations as the simplest special case. An
lytic treatment of the general case can be performed with
difficulty for half-filling. It can be seen that one more cha
acteristic time, which is associated with the characteristics
the granules, i.e., with the specific form of the map intr
duced, then appears in the problem. Still, such a problem
be solved analytically only in the simplest situations. For ju
this reason, a faithful description of the real experiment
Ref. 1 using a very simple, essentially geometric, theo
which does not contain any characteristics of the granule
quite impressive.
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The Ginzburg–Landau expansion and the slope of the upper critical field in

superconductors with anisotropic normal-impurity scattering

A. I. Posazhennikova and M. V. Sadovski * )

Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia
~Submitted 16 May 1997!
Zh. Éksp. Teor. Fiz.112, 2124–2133~December 1997!

We carry out the Ginzburg–Landau expansion for superconductors with anisotropics andd
pairing in the presence of anisotropic normal-impurity scattering, which enhances the stability ofd
pairing with respect to disordering. We find that the slope of the curve of the upper critical
field, udHc2 /dTuTc

, in superconductors withd pairing behaves nonlinearly as disorder grows: at
low scattering anisotropy the slope rapidly decreases with increasing impurity concentration,
then gradually but nonlinearly increases with concentration, reaches its maximum, and then rapidly
decreases, vanishing at the critical impurity concentration. In superconductors with anisotropic
s pairing, udHc2 /dTuTc

always increases with impurity concentration, finally reaching
the familiar asymptotic value characteristic of the isotropic case, irrespective of whether there is
anisotropic impurity scattering. ©1997 American Institute of Physics.@S1063-7761~97!01412-1#

1. INTRODUCTION clear indications thatd pairing exists in high-Tc supercon-
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The problem of determining the type of Cooper pairi
is still occupying center stage in high-Tc superconductivity
studies. Most experiments and a number of theoret
models1 indicate that the majority of high-Tc oxides have
dx22y2-anisotropic pairing with the zeros of the gap functi
lying on the Fermi surface. Other variants of anisotro
pairing have also been proposed, e.g., the so-called an
tropic s pairing,2,3 which also gives rise to zeros in the ga
function ~but without a change in sign in the order para
eter! or to minima in the gap function at the Fermi surface
the same directions in the Brillouin zone as in the case od
pairing ~here, too, there are experimental indications t
verify this fact!. Borkovski and Hirschfeld4 and Fehren-
bacher and Norman5 pointed out that controlled injection o
normal impurities~disordering! can serve as an effectiv
method of experimentally distinguishing the above types
anisotropic pairing, since it would lead to a markedly diffe
ent behavior of the density of states in these types of su
conductor. In our previous paper~see Ref. 6! we found that
measuring the evolution of the slope of the curve of
upper critical field,udHc2 /dTuTc

, as the degree of disorde
changes, at least in principle, serve the same purpose
superconductors withd pairing the magnitude of this slop
rapidly decreases with increasing disorder, while in the c
of anisotropics pairing the slope of the field increases wi
disorder, which is similar to the behavior in the isotrop
case.

Recently, Haran´ and Nagi7 examined an interesting
model with anisotropic impurity scattering. They found th
when thed-type scattering anisotropy is strong, the break
of d-type Cooper pairs decreases substantially becaus
normal-impurity scattering, which in the isotropic case is d
scribed by the well-known Abrikosov–Gor’kov formula fo
magnetic impurities in a isotropic superconductor.4–6 Thus,
by allowing for anisotropic impurity scattering we can,
least in principle, resolve one of the main problems of hig
Tc superconductor physics: the contradiction between
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with respect to disordering.8 This explanation of the remark
able stability of high-Tc superconducting cuprates with re
spect to disordering, if there is indeedd pairing in such cu-
prates, is not the only one~see, e.g., the explanation given
Ref. 9!, but the simplicity of the model of Ref. 7 is appealin
and stimulates calculations of other characteristics of su
conductors with ‘‘exotic’’ types of pairing, with allowance
for the possible role of anisotropic normal-impurity scatte
ing. The present paper is a direct generalization of Ref. 6
this case. It will be shown that allowance for anisotrop
impurity scattering leads~in the case ofd pairing! to striking
anomalies in the behavior of the slope of the curve of
upper critical field as a function of the degree of disord
~impurity concentration!. As in Ref. 6, we base our reasonin
on a microscopic derivation of the Ginzburg–Landau exp
sion in the impurity system.

2. THE GINZBURG–LANDAU EXPANSION

Let us consider a two-dimensional electron system w
an isotropic Fermi surface and a separable Cooper-pai
potential of the form4,5

V~p,p8![V~f,f8!52Ve~f!e~f8!, ~1!

wheref is the polar angle determining the direction of th
electron momentump in the highly conducting plane, an
for e(f) we adopt the simplest model:

e~f!5H& cos~2f! ~d pairing!,

&ucos~2f!u ~anisotropic s pairing!.
~2!

We assume, as usual, that the attraction constantV is
finite in a layer of thickness 2vc in the vicinity of the Fermi
level ~vc is the characteristic frequency of the photons th
ensure the attraction of the electrons!. In this case the super
conducting gap~the order parameter! has the form

D~p![D~f!5De~f!, ~3!
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where the positions of the zeros of the gap function at the
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Fermi surface for thes andd cases coincide.
We take a superconductor containing ‘‘normal’’~non-

magnetic! impurities that are distributed at random in spa
with a concentrationr. Following Haran´ and Nagi,7 we as-
sume that the square of the impurity scattering amplitude
be written as

uVimp~p,p8!u2[uVimp~f,f8!u25uV0u2

1uV1u2f ~f! f ~f8!, ~4!

whereV0 is the amplitude of isotropic point scattering,V1 is
the amplitude of anisotropic scattering, and the model fu
tion f (f) ~depending on the same polar angle that defi
the direction of the electron momentum! determines the na
ture of the anisotropic impurity scattering. We assume t
the scattering is ‘‘essentially’’ isotropic and introduce t
following constraints:7

uV1u2<uV0u2, ^ f &50, ^ f 2&51, ~5!

where the angle brackets stand for averaging over the d
tions of momentum at the Fermi surface~the anglef!. Ac-
cordingly, the second term in~4! describes the deviation
from isotropic scattering.

The normal and anomalous Green’s functions in suc
superconductor are10

G~v,p!52
i ṽ1jp

ṽ21jp
21uD̃~p!u2

,

F~v,p!5
D̃* ~p!

ṽ21jp
21uD̃~p!u2

, ~6!

wherev5(2n11)pT,

ṽ~p!5v1 irE dp8

~2p!2 uVimp~p2p8!u2G~v,p8!,

D̃~p!5D~p!1rE dp8

~2p!2 uVimp~p2p8!u2F~v,p8!, ~7!

andj is the electron energy measured from the Fermi lev
To find the transition, or critical, temperatureTc we can

restrict ourselves to the linear approximation inD in Eqs.~7!:

ṽ5v1 ir
N~0!

2p

3E djE
0

2p

df$uV0u21uV1u2f ~f! f ~f8!%
ṽ

ṽ21j2
,

D̃5D1r
N~0!

2p

3E djE
0

2p

df$uV0u21uV1u2f ~f! f ~f8!%
D̃

ṽ21j2
.

~8!

The linearized equation for the gap function, which d
termines the transition temperatureTc , is
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D~p!52Tc(
v

E
~2p!2 V~p,p8!

ṽ21jp8
2

. ~9!

Applying standard methods to Eq.~9! and the renormaliza-
tion equations~8!, we arrive at an equation for the transitio
temperatureTc in general form:

ln
Tc

Tc0
5~^e&21^e f&221!FCS 1

2
1

g0

2pTc
D2CS 1

2D G
1^e f&2FCS 1

2D2CS 1

2
1

g0

2pTc
S 12

g1

g0
D D G ,

~10!

where Tc0 is the transition temperature in the absence
impurities,C(x) is the logarithmic derivative of the gamm
function, g05prV0

2N(0) and g15prV1
2N(0) are, respec-

tively, the isotropic and anisotropic scattering frequenci
and ^e f&2 determines the overlap of the functionse(p) and
f (p).

For simplicity we select the functionf (p) in a form
similar to ~2!:

f ~p![ f ~f!5& cos~2f!, ~11!

which ensures a maximum overlap in thed case. A more
general approach can be found in Ref. 7. We can now w
the renormalization equations~8! as follows:

ṽ5v1 i
g0

p E dj
ṽ

ṽ21j2

1 i
g1

p2 cos~2f!E djE df8 cos~2f8!
ṽ

ṽ21j2
,

D̃5D1 i
g0

p E dj
D̃

ṽ21j2

1 i
g1

p2 cos~2f!E djE df8 cos~2f8!
D̃

ṽ21j2
.

~12!

FIG. 1. Tc as a function of the disorder parameterg0 /Tc0 . The dashed
curve corresponds to the case ofs pairing and the solid curves, to the cas
of anisotropicd pairing for the following values ofg1 /g0 : curve 1, 0.0;
curve2, 0.3; curve3, 0.5; curve4, 0.6; curve5, 0.7; curve6, 0.8; curve7,
0.9; and curve8, 0.95.
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ia-
FIG. 2. The diagrammatic representation of the Ginzbur
Landau expansion. The electron lines are ‘‘dressed’’
impurity scattering;G is the vertex part of the impurity
scattering calculated in the ladder approximation. The d
grams~c! and ~d! are calculated forq50 andT5Tc , and
p65p6q/2.
This yields the well-known expression for the renormalized

n

n-

Note that in Eq.~17! there is no dependence on the aniso-
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n
d

n-
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frequency in both cases of interest:

ṽ5v1g0 sgnv. ~13!

In the case ofd pairing the symmetry of the gap functio
in the presence of impurities does not change:

D̃5D
uṽu

uṽu2g1

. ~14!

When there iss pairing, the gap is renormalized by a co
stant independent of the anglef and the frequencyg1 :

D̃5D1D0

2&g0

puvu
. ~15!

As a result, the equation forTc in a superconducting withd
pairing becomes

ln
Tc

Tc0
5CS 1

2D2CS 1

2
1S 12

g1

g0
D g0

2pTc
D . ~16!

For a superconductor with anisotropics pairing we have

ln
Tc

Tc0
5S 12

8

p2D FCS 1

2
1

g0

2pTc
D2CS 1

2D G . ~17!

FIG. 3. The dimensionless coefficientKA /KA0 as a function of the disorde
parameterg0 /Tc0 . The dashed curve corresponds to the case ofs pairing
and the solid curves to the case of anisotropicd pairing, for the following
values ofg1 /g0 : curve1, 0.0; curve2, 0.4; curve3, 0.6; curve4, 0.7; curve
5, 0.8; curve6, 0.9; and curve7, 0.95.

1164 JETP 85 (6), December 1997
tropic scattering rate.
Figure 1 plotsTc vs.g0 /Tc0 for the case ofd pairing for

different values ofg1 /g0 . For ans-type superconductor the
transition temperatureTc becomes weakly suppressed
g0 /Tc0 increases. For ad-type superconductor the transitio
temperatureTc at small values ofg1 becomes suppresse
very rapidly, but asg1 /g0 increases, the critical value
g0c /Tc0 at which superconductivity disappears rapidly i
creases.

As usual, for the order parameter in which the free e
ergy is expanded we take the gap function. Here we ass
that the amplitudeD(T) is a slowly varying function of po-
sition. In momentum space we have the following Four
transfer of the order parameter:

D~f,q!5Dq~T!e~f!. ~18!

The Ginzburg–Landau expansion for the difference
free energies of the superconducting and normal states
the following form ~accurate to within terms quadratic inD
in the region of small values ofq!:

Fs2Fn5AuDqu21q2CuDqu2; ~19!

it is determined by the diagrams~see Fig. 2! of the loop
expansion for the electron free energy in the order-param

FIG. 4. The dimensionless coefficientKC /KC0 as a function of the disorder
parameterg0 /Tc0 . The dashed curve corresponds to the case ofs pairing
and the solid curves to the case of anisotropicd pairing, for the following
values ofg1 /g0 : curve1, 0.0; curve2, 0.4; curve3, 0.6; curve4, 0.7; curve
5, 0.8; curve6, 0.9; and curve7, 0.95.
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fluctuation field with a small wave vectorq. Subtraction of
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the diagrams~c! and ~d! guarantees that the coefficientA
vanishes at the transition pointT5Tc . In Appendices A and
B we give the details of calculations of, respectively, t
vertex partGpp8 and the Ginzburg–Landau coefficients for
d-type superconductor. Note that ford-type superconductor
the ‘‘diffusion’’ renormalization due to the diagrams of typ
~b! and ~d! is zero to within terms quadratic inq, provided
that the anisotropy of impurity scattering is ignored. For
s-type superconductor the calculations are similar, but h
there is no dependence on the anisotropic component o
scattering.

As a result, the Ginzburg–Landau coefficients can
written as

A5A0KA , C5C0KC , ~20!

whereA0 and C0 are the usual expressions for isotropics
pairing:11

A05N~0!
T2Tc

Tc
, C05N~0!

7z~3!

48p2

vF
2

Tc
2 ; ~21!

herevF andN(0) are the electron velocity and the density
states at the Fermi surface. All properties of the models
contained in the dimensionless coefficientsKA and KC . In
the absence of impurities we haveKA

051 and KC
0 53/2 in

both models. For a system with impurities we have the f
lowing.

~A! d pairing:

KA5
g0

4pTc
E

2vc

vc dj

j

3E
2`

`

dv
v1j

~v21g0
2!cosh2S v1j

2Tc
D 1

g1~2g01g1!

4Tc

3E
2`

`

dv
v2

~v21g0
2!~v21~g02g1!2!cosh2S v

2Tc
D ,

~22!

KC5
3pTc

7z~3!g1
H 2pTc

g1
FCS 1

2
1

g02g1

2pTc
D

2CS 1

2
1

g0

2pTc
D G1C8S 1

2
1

g02g1

2pTc
D J ; ~23!

~B! anisotropics pairing:

KA5
g0

pTc H 1

4 E
2vc

vc dj

j

3E
2`

`

dv
v1j

~v21g0
2!cosh2S v1j

2Tc
D 1

2g0

p
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3E
2`

`

dv
1

~v21g0
2!cosh2S v

2Tc
D J , ~24!

KC52
3~p228!

28p2z~3!
C9S 1

2
1

g0

2pTc
D

1
24p2

7z~3!g0
2

Tc
2

~p228!g2 ln
Tc

Tc0
1

6p

7z~3!

Tc

g0
. ~25!

The results of numerical calculations of the dimensionl
coefficients as functions of the parameterg0 /Tc0 in the case
of d pairing for different values ofg1 /g0 are depicted in
Figs. 3 and 4.

3. THE UPPER CRITICAL FIELD

As is well known,11 the behavior of the Ginzburg–
Landau coefficientsA andC determines the temperature d
pendence of the upper critical magnetic field nearTc :

Hc25
f0

2pj2~T!
52

f0

2p

A

C
, ~26!

wheref05cp/e is the magnetic flux quantum, andj(T) is
the temperature-dependent coherence length. From this
can easily find the slope of the curve representing the t
perature dependence ofHc2 near Tc , i.e., the temperature
derivative of the field:

U dHc2

dT U
Tc

5
24pf0

7z~3!vF
2 Tc

KA

KC
. ~27!

For ans-type superconductor the slope of the curve of t
upper critical field is independent of the anisotropic scatt
ing. Figure 5 depicts the dependence of the dimension
parameterh5udHc2 /dTuTc

/udHc2 /dTuTc0
on the disorder

parameterg0 /Tc0 in the case ofd pairing for different values
of g1 /g0 . In the case of anisotropics pairing, the slope of
the curve of the upper critical field increases with disord

FIG. 5. The normalized slope of the curve of the upper critical fie
h5udHc2 /dTuTc

/udHc2 /dTuTc0
, as a function of the disorder paramet

g0 /Tc0 . The dashed curve corresponds to the case ofs pairing and the solid
curves to the case of anisotropicd pairing for the following values of
g1 /g0 : curve1, 0.0; curve2, 0.4; curve3, 0.5; curve4, 0.6; curve5, 0.7;
curve6, 0.8; curve7, 0.9; and curve8, 0.95.
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as usual,6 and in the strong scattering limit,g0@Tc , the
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where U(p,p8) is the irreducible vertex part. We take

ion
dependence ofh on g0 becomes linear and the slope is giv
by the well-known Gor’kov formula12

s

N~0!
U dHc2

dT U
Tc

5
8e2

p2 f0 , ~28!

wheres5N(0)e2vF
2/3g0 is the electron conductivity in the

normal phase with isotropics pairing, characteristic of ordi-
nary dirty superconductors. Hence strong disorder suppre
the anisotropy of the gap, and we pass to the usual limit
dirty superconductor.

In the case ofd pairing, the slope of the curve of th
field Hc2 for small values ofg1 /g0 rapidly drops to zero on
the scaleg0;Tc0 . In the interval 0.5<g1 /g0<0.6 the be-
havior of the slope changes dramatically: firsth increases
slowly but nonlinearly withg0 /Tc0 , then it passes through
maximum, and then rapidly drops. The length of the sect
where the slope grows rapidly increases asg1→g0 . We be-
lieve that such strong anomalies in the way the slope of
curve of the upper critical field depends on the disorder
rameter can be used to determine the pairing type and
possible role of anisotropic scattering in unusual superc
ductors. Unfortunately, in the case of high-Tc superconduct-
ing systems the situation is complicated by the well-kno
nonlinearity of the temperature dependence ofHc2 , a feature
observed in a broad temperature range starting atTc , and by
a certain indeterminancy in the experimental methods u
to determineHc2 .

The present work was partially supported by the Russ
Fund for Fundamental Research~Project 96-02-16065!, by
the Statistical Physics State Program~Project IX.1!, and by
the High-Tc Superconductivity State Program of the Russ
Ministry of Science~Project 96-051!.

APPENDIX A: CALCULATION OF THE VERTEX PART Gpp8
IN THE LADDER APPROXIMATION

The Bethe–Salpeter equation for the vertex part is

Gpp85U~p,p8!1(
p9

U~p,p9!GR~p9!GA~p9!Gp9p8 ,

~A1!
es
a

n

e
-

he
n-

n

d

n

n

U(p,p8) in the form ~the ladder approximation!

U~p,p8!5rV0
21rV1

2f ~p! f ~p8!. ~A2!

Then Eq.~A1! can be written as follows:

Gpp85rV0
21rV1

2f ~p! f ~p8!1rV0
2C~p8!

1rV1
2f ~p!F~p8!, ~A3!

where

C~p8!5(
p9

GR~p9!GA~p9!Gp9p8 ,

F~p8!5(
p9

f ~p9!GR~p9!GA~p9!Gp9p8 . ~A4!

From ~A3! we can obtain a self-consisted system of equat
for the functionsC(p8) andF(p8):

H C~p8!5rV0
2I 11rV1

2f ~p8!I 21rV0
2I 1C~p8!1rV1

2I 2F~p8!,

F~p8!5rV0
2I 21rV1

2f ~p8!I 31rV0
2I 2C~p8!1rV1

2I 3F~p8!,
~A5!

where

I 15(
p

GR~p!GA~p!,

I 25(
p

f ~p!GR~p!GA~p!,

I 35(
p

f 2~p!GR~p!GA~p!. ~A6!

Solving the system of equations~A5!, we arrive at expres-
sions forC(p8) andF(p8) and hence for the vertex part:
Gpp85
rV0

2~12rV1
2I 31rV1

2f ~p8!I 2!1rV1
2~ f ~p! f ~p8!~12rV0

2I 1!1rV0
2f ~p!I 2!

~12rV0
2I 1!~12rV1

2I 3!2rV0
2rV1

2I 2
2 . ~A7!

APPENDIX B: THE GINZBURG–LANDAU COEFFICIENTS
2 2

N~0!pvF
2Tc 1
1D q . ~B1!

The diagram~a! in Fig. 2 corresponds to

2
T

~2p!2 Dq
2(

v
E dp2 cos2~2f!Gv~p1!G2v~p2!5

2Dq
2TN~0!(

v
E dj

ṽ21j2
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v uṽu3

The diagram~c! in Fig. 2 corresponds to

2
T

~2p!2 Dq
2(

v
E dp2 cos2~2f!Gv~p!G2v~p!5
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2D2T N~0! E dj
. ~B2!

en
u
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io

Writing the expression forFs2Fn and separating out the
2

rg–

q c (

v ṽ21j2

The diagram with a ‘‘diffuson’’~Fig. 2b! yields

2T(
v

(
pp8
& cos~2f!GR~p1!GA~p2!Gpp8

3A2 cos~2f8!GR~p18 !GA~p28 !. ~B3!

If we take ~A6! and ~A7! into account, Eq.~B3! becomes

2TN~0!pg1(
v

F 1

uṽu~ uṽu2g1!
2

vF
2~2uṽu2g1!q2

8uṽu3~ uṽu2g1!2G .

~B4!

Note that when there is no anisotropic scattering compon
for d-type superconductors the diffusion renormalization d
to the diagrams of the type depicted in Fig. 2c is zero
within terms quadratic inq.

Reasoning along similar lines, we arrive at an express
corresponding to the diagram~d! in Fig. 2:

2TN~0!pg1(
v

1

uṽu~ uṽu2g1!
. ~B5!
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coefficients ofq raised to the zeroth power and ofq , we can
obtain the expressions for the corresponding Ginzbu
Landau coefficients.

* !E-mail: sadovski@ief.intec.ru

1D. Pines, Physica C235–240, 113 ~1994!.
2S. Chakravarty, A. Subdo”, P. W. Anderson, and S. Strong, Science261,
337 ~1993!.

3A. I. Liechtenstein, I. I. Mazin, and O. K. Andersen, Phys. Rev. Lett.74,
2303 ~1995!.

4L. S. Borkovski and P. J. Hirschfeld, Phys. Rev. B49, 15 404~1994!.
5R. Fehrenbacher and M. R. Norman, Phys. Rev. B50, 3495~1994!.
6A. I. Posazhennikova and M. V. Sadovski�, JETP Lett.63, 358 ~1996!.
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Investigation of a magnetic phase transition in fcc iron–nickel alloys

S. V. Grigor’ev,* S. A. Klimko, S. V. Maleev, A. I. Okorokov, V. V. Runov,
and D. Yu. Chernyshov

St. Petersburg Institute of Nuclear Physics, 188350 Gatchina, Leningrad Region, Russia
~Submitted 21 May 1997!
Zh. Éksp. Teor. Fiz.112, 2134–2155~December 1997!

A magnetic phase transition in carbon-doped~0.1 and 0.7 at. %! Fe70Ni30 Invar alloys was
investigated by the method of depolarization of a transmitted neutron beam and by small-angle
scattering of polarized neutrons. It is shown that for both alloys, two characteristic length
scales of magnetic correlations coexist aboveTc . Small-angle scattering by critical correlations
with radiusRc is described well by the Ornstein–Zernike~OZ! expression. The longer-
scale~second! correlations, whose size can be estimated from depolarization data, are not described
by the OZ expression, and hypothetically can be modeled by a squared OZ expression,
which in coordinate space corresponds to the relation^M (r )M (0)&}exp(2r/Rd), whereRd is the
correlation length of the second scale. The temperature dependence of the correlation radius
Rc was obtained:Rc}((T2Tc)/Tc)

2n, wheren'2/3 is the critical exponent for ferromagnets,
over a wide temperature range up toTc

exp, at which the correlation radius becomes constant
and equals its maximum valueRc(Tc)5Rc

max. The maximum correlation radius established
~Rc

max5140 Å and 230 Å for the first and second alloys, respectively! characterizes the length-
scale of the fluctuation for which the appearance of critical correlations first results in
the formation of a ferromagnetic phase, and the phenomenon itself exhibits a ‘‘disruption’’ of
the second-order phase transition atT5Tc

exp, as a result of which a first-order transition
arises. Temperature hysteresis was also detected in the measured polarization of the transmitted
beam and intensity of small-angle neutron scattering in the alloy aboveTc , confirming
the character of this magnetic transition as a first-order transition close to a second-order transition.
© 1997 American Institute of Physics.@S1063-7761~97!01512-6#

1. INTRODUCTION. TWO LENGTH SCALE PROBLEM ns.n ~ns51,2 and so on!. In Ref. 8 it is also conjectured

The two length scale problem for phase transitions above
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Tc has attracted a great deal of attention in recent ye
Discussion of this problem commenced with the paper
Andrews1 on the two-component line detected in measu
ments of x-ray scattering at a structural phase transition
SrTiO3. A narrow peak superposed on a preexisting w
peak due to conventional critical scattering appeared at t
peratures close to the transition temperatureTc .

In the opinion of the author, this indicates the existen
of a second, longer scale together with the conventio
characteristic scale of critical fluctuations. The existence o
two-component line in the critical scattering of neutrons a
x-rays has now been observed in SrTiO3,

1,2 Ho,3 RbCaF3,
4

KMnF3,
5 Tb,6 and UPd2Al3.

7 It is shown in Ref. 6 that in-
homogeneities in Tb that are much larger than the conv
tional correlation radius are spatially localized within a 0
mm thick layer near the surface of the crystal. At the sa
time, conventional fluctuations are distributed uniform
throughout the entire volume. It is conjectured that the
pearance of large clusters in the surface layer is due to
influence of surface defects and elastic deformations on
order parameter.

A corresponding attempt at a theoretical interpretation
these experiments was recently made in Ref. 8, where
conjectured that the presence of defects engendering la
scale tensile stresses results in the formation of a fluctua
scale that is longer than the conventional fluctuation sc
while the character of the defects~point, linear! changes the
critical exponent of the correlation length fromn'2/3 to
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zians’’ with substantially different correlation radii. How
ever, in Ref. 7, for example, the existence of an addition
second length scale was observed as a volume effect, a
was shown that the correlation function of the ‘‘seco
length scale’’ is described by a ‘‘squared Lorentzian
which, as will be demonstrated below, agrees with the res
of our work.

In a recent review,9 it is concluded on the basis of a s
of experiments1–7 that the interaction of the elastic deform
tions and order parameter results in the appearance of a
ond correlation length in critical phenomena above the tr
sition temperature. The question of the form of t
correlation function of the ‘‘second length scale’’ is solve
in Ref. 9 in favor of the ‘‘squared Lorentzian.’’

Our objective in the present work is, on the one hand
demonstrate the coexistence of two length scales of magn
correlations in Invar FeNi alloys aboveTc and, on the other,
to develop a method for investigating two length scales
magnetic correlations in ferromagnets.

Magnetic inhomogeneities with a wide spectrum of siz
can be investigated by means of small-angle scattering
polarized neutrons in ferromagnets and to measure at
same time the polarization of the transmitted beam. On
one hand, the typical resolution of small-angle neutron sc
tering experiments is of the order of 102103 Å. On the
other, magnetic inhomogeneities of magnitude at least ab
103 Å can be estimated from experiments measuring the
polarization of a transmitted beam.

1168-12$10.00 © 1997 American Institute of Physics
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method of small-angle neutron scattering yields the corr
tion radiusRc of critical fluctuations, which are described
the momentum space by an Ornstein–Zernike~OZ! expres-
sion. Maleev and Ruban show~in Refs. 10 and 11! that criti-
cal correlations at temperaturesT.Tc do not yield appre-
ciable depolarization of a neutron beam transmitted thro
the sample, since the induction is high only at the cente
correlation and decreases substantially atr;Rc . They also
establish that depolarization results from the appearanc
large magnetic clusters~quasidomains! with a uniform dis-
tribution of magnetization within a cluster atT,Tc .

Investigations of critical phenomena in a nickel sing
crystal12 and in an iron polycrystal13 confirm the validity of
such a description of small-angle scattering of polarized n
trons in complete agreement with Refs. 10 and 11. In c
trast, we observe14,15an intensification of depolarization of
transmitted neutron beam in a sample of a carbon-doped~0.7
at. %! Invar alloy Fe75Ni25 in the paramagnetic temperatu
range, i.e., in contrast to depolarization in Fe and Ni,
observed depolarization aboveTc in the alloy studied was
found to be much greater than the polarization compu
from the small-angle scattering parameters.

The observation of strong depolarization at temperatu
T.Tc can be explained by large-scale magnetic correlatio
which are present in the sample together with the conv
tional critical fluctuations. The investigations established t
two characteristic length scales of magnetic inhomogene
coexist above the Curie temperatureTc . In the present case
Tc is defined to be the temperature at which basic phys
quantities, for example, the susceptibility and correlation
dius of the critical fluctuations, diverge. Analysis of the p
larization of a neutron beam transmitted through a sam
showed that magnetic inhomogeneities with characteri
length scaleRd>1000 Å are formed over a wide temper
ture rangeT.Tc in the alloy. Analysis of the magneti
small-angle scattering intensity at the same temperat
yields a different characteristic length scale—the radius
critical fluctuations, which becomes distinguishable with
the limits of error (Rc540620 Å) at T'Tc125 K and in-
creases toRc5120610 Å asTc is approached. It was als
found that the forms of the spin correlation functions cor
sponding to different length scales of inhomogeneities
different. The correlation function of critical fluctuations
described by the OZ expression, while the long-range co
lation can hypothetically be described by a squared OZ
pression.

In the present work, we investigated iron–nickel allo
of a different composition (Fe70Ni30) and with various ad-
mixtures of carbon~0.1 and 0.7 at. %!. As will be shown
below, the coexistence of two characteristic length scale
magnetic inhomogeneities aboveTc was established for both
alloys; this shows that the ‘‘two length scale’’ situatio
aboveTc is a general situation for fcc FeNi alloys with hig
iron content.

In the course of the investigations, for both alloys, te
perature hysteresis was observed in the measured pola
tion of the transmitted beam and the small-angle neut
scattering intensity aboveTc . Note that in contrast to the
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with the Invar composition are fundamentally disorder
systems.16 The anomalous behavior of the linear thermal e
pansion coefficient and Young’s modulus in the temperat
range from 0 toTc shows that the magnetism and bulk cha
acteristics of Invar alloys are strongly linked. Disorder in t
magnetic subsystem of FeNi Invar alloys resulting from t
interaction of the order parameter and elastic deformation
the system near the transition temperature is probably
sponsible for the emergence of large-scale magnetic corr
tions at temperaturesT.Tc, as well as the existence of tem
perature hysteresis in the magnetic properties near
transition temperature.

This paper is organized as follows. Section 2 is devo
to the theoretical aspects of the method that we employe
investigate two length scales of magnetic correlations in
romagnets aboveTc . Section 3 gives a brief description o
the experimental samples and the experimental apparatu
which the measurements were performed. Preliminary res
are presented in Sec. 4. In Sec. 5 the Curie temperature o
alloys is determined and the character of the transition
discussed. Sections 6 and 7 are devoted to a demonstrati
the existence of two length scales of magnetic correlati
above Tc . Finally, the results and the conclusions draw
from the investigations are discussed in Sec. 8.

2. THEORETICAL ASPECTS OF THE METHOD

In the present section we show that measurements
small-angle neutron scattering together with a simultane
analysis of neutron depolarization make it possible to de
onstrate the existence of two length scales of magnetic
relations in ferromagnets aboveTc .

It is well known that critical scattering data yield th
spin-correlation radius in the system and its temperature
pendence, which can be described well on the basis of s
larity theory.17,18 The crux of these ideas about second-ord
phase transitions is as follows. Magnetization fluctuatio
appear above the Curie temperature and grow asTc is ap-
proached. The correlation radiusRc, which characterizes
long-scale fluctuations, is the only scale that exists in
system aboveTc . As Tc is approached, it increases asRc

}t2n, wheret5(T2Tc)/Tc is the relative temperature. A
the phase transition (t50), the correlation radius become
infinite. The small-angle neutron elastic scattering cross s
tion aboveTc can be described by the OZ expression to h
accuracy and increases asTc is approached19:

ds

dV
5

2

3
r 0

2g2S~S11!
1

r 2

1

Rc
221q2 , ~1!

whereq5k f2k i , q'ukuu is the momentum transfer,u is the
scattering angle,k i andk f are, respectively, the wave vecto
before and after scattering,r 0 is the classical electron radius
g is the gyromagnetic ratio of the neutron,S is the spin of the
atom, andr is a constant of the order of the interatom
distance. Thus, theq dependence of small-angle scatteri
ds/dV makes it possible to obtain the parameterRc , which
is the critical correlation radius at a given temperature.

1169Grigor’ev et al.
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FIG. 1. Schematic curves illustrating the variation of th
induction in real space in the case of the critical fluctu
tions (1/r )exp(2r/Rc) ~a! and in the case of a magneti
cluster exp(2r/Rd) ~b!. The neutron scattering cross se
tion is proportional to the Fourier transform of the expre
sions presented, and corresponds in the first case to
OZ formula~1!, and in the second case to the squared O
expression.
In Refs. 10 and 11 it is shown that the depolarization of
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neutrons that have passed through a sample can be reg
as resulting from neutron scattering within the angular wi
of the transmitted beam. Depolarization is determined by
total cross sectionsC ~per magnetic atom!, in the central
detector with angular apertureC. The relation between the
directions of the polarization vectorP0 and the neutron wave
vector k is also important for the degree of polarization
the transmitted beam. Thus, in the caseP'k the polarization
is given by

P5P0 exp@~23/2!sCN0L#, ~2!

where N0 is the density of magnetic atoms andL is the
thickness of the sample. The contribution of critical fluctu
tions in the system aboveTc to depolarization of the trans
mitted neutron beam is estimated in Ref. 10. In the case
critical fluctuations, the total scattering cross sectionsC is
easily calculated by integrating the expression~1! over the
aperture of the detector@0,C#. In the case at hand, the tot
cross sectionsC is small and depends ont logarithmically:

sC5
2

3
pr 0

2g2S~S11!
1

~kr !2 lnF11S kC

k D 2G , ~3!

wherek5Rc
21 is the reciprocal of the correlation radius.

real experiments, temperature stabilization and tempera
gradients in the sample ordinarily limit how closelyTc can
be approached:tmin;1024, i.e. measurements ofRc are lim-
ited to the temperature rangeutu>tmin . Substituting this
minimum value oft into the expression forsC with l'9 Å
yields the cross sectionsC<0.2 b. ForL of the order of
several millimeters andN0'1023, depolarization is of the
order of several percent. For example, in the case of a n
tron beam with wavelength 3 Å passing through a 0.5 cm
thick Ni single crystal, depolarization does not exceed
even with t51024.12 Over the entire paramagnetic rang
(t.tmin), therefore, the polarizationP of the transmitted
beam is virtually identical to the initial polarizationP0 .

We note here that the expression~2! is valid in the Born
approximation, the criterion of applicability of which to sca
tering by magnetic inhomogeneities~diffraction limit! can be
formulated as the condition that the angle of precession
the polarization vector in the magnetic fieldB of an inhomo-
geneityRd be small:

gBRdl/b!2p. ~4!

Herel is the wavelength@Å#, Rd is the average correlatio
radius@cm#, andb53.958•105 @Å cm•s21# is a constant re-
lating the velocity and wavelength of the neutron. This a
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in the case when the polarization vector turns in the field
the inhomogeneity by an angle greater than approximatelp,
complete effective depolarization of the transmitted be
occurs.

At the same time, as shown in Ref. 20, in the appro
mation ~4!, the polarization of a neutron beam transmitt
through the sample decreases with wavelength
exp(2al2), where a is a constant. When the opposite in
equality holds, the depolarization of the neutrons is indep
dent of wavelength. Therefore, the experimentally measu
l2 dependence of the polarization should indicate whethe
not condition~4! is satisfied and the diffraction limit is ap
plicable.

We note here that with the exception of the depende
of the degree of depolarization on the angular width of
beam, any phenomena associated with depolarization ca
formulated in classical terms. We assume that magnetic
homogeneities are large enough that all neutrons are s
tered into the angular aperture of the detector, which rend
the quantum and classical approaches equivalent.

Figure 1 displays schematically the variation of the
duction in real space in the case of a critical fluctuati
((1/r )exp(2r/Rc), panel a and in the case of a magnet
cluster (exp(2r/Rd), panelb). The neutron scattering cros
section is proportional to the Fourier transform of the expr
sions presented, and corresponds in the first case to the
formula ~1!, and in the second case the squared OZ exp
sion.

It was shown above that critical fluctuations~Fig. 1a!
cannot make a large contribution to beam depolarization,
strong beam depolarization requires the presence of la
magnetic inhomogeneities with sizesRd.Rc, within which
the induction distribution is comparatively uniform~Fig. 1b!.
Indeed, as shown in Ref. 11, the small-angle magnetic ela
scattering cross section is

sC5
2

3
r 0

2g2S2E
C

dVN0E dr exp~ iq–r !^m~r !•m~0!&,

~5!

whereSm(r ) is the average spin of a magnetic atom at te
perature T, and is related to the magnetization dens
M (T,r ) by

gm0N0Sm~r !5M ~T,r !5M0~T!m~r !, m2~r !<1. ~6!

Here M0(T) is the maximum magnetization density of
cluster. If the classical limit is correct, then the integral ov

1170Grigor’ev et al.
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exponentsCN0L in Eq. ~2! can be rewritten in the form

sCN0L5
1

3 S gB~T!

v D 2

RdL, ~7!

where B54pM is the induction inside a cluster,v is the
neutron velocity, andRd is the effective size of a magneti
cluster,

Rd5
1

2 E
2`

`

dẑ m~z,0!•m~0,0!&, ~8!

where the integration extends along the neutron path thro
the cluster, and the average is taken over all clusters in
sample.

It is clear in Eq. ~8! that the effective sizeRd of an
inhomogeneity depends strongly not only on the characte
tic size of the correlation but also on the form of the cor
lation function^m(z,0)•m(0,0)&. In the case of critical fluc-
tuations, the effective size of a correlation as defined in
~8!, Rd;a ln(1/ka)!1/k5Rc , is small for any reasonably
attainable values of the correlation radius. Since in fact
small effective sizeRd , and notRc , appears as a paramet
in the expression~7! and determines the degree of depol
ization, the onset of critical fluctuations results in only
relatively small depolarization of the neutron beam.

In the case of an inhomogeneity with slowly decreas
induction, the effective sizeRd approximately equals the cor
relation radius of the inhomogeneity, and therefore expr
sion ~2! can be rewritten in the form

P

P0
5expF2

1

2 S gB~T!

v D 2

RdLG , ~9!

which is identical, to within a factor of 2/3 in the exponen
to the Halperin–Holstein formula.20 It is shown in a recent
paper21 that the expression~9! also obtains when allowanc
is made for demagnetization fields in the classical analysi
this problem.

Thus, measurements of the depolarization of the tra
mitted beam make it possible to determine the scatte
cross sectionsC for q,kC5qmin , i.e., they yield an inte-
gral representation of long-scale magnetic clusters with c
acteristic sizeR.1/qmin and a uniform magnetization distr
bution in a cluster. On the other hand, for small-an
neutron scattering, the characteristic momentum transfer
in the rangeq.kC, which corresponds to inhomogeneitie
with characteristic scaleR,1/qmin . The shape of the corre
lation function from which scattering takes place can be
termined from the form of theq-dependence of the scatterin
cross section.

3. EXPERIMENT

In the present work, we investigated polycrystalli
samples of a carbon-doped~0.1 and 0.7 at. %! fcc iron–
nickel Fe70Ni30 alloy, which we refer to below as the ‘‘first’’
~I! and ‘‘second’’ ~II ! samples, respectively. The sampl
were produced in an argon atmosphere in an induction
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water. The samples were certified for fcc structure by
neutron-diffraction method.

Measurements of the intensity of small-angle scatter
of polarized neutrons as well as the polarization of the tra
mitted neutron beam were performed on the samples ov
wide temperature range near the transition temperatureTc in
1 K steps. The experiments were performed with the ‘‘Ve
tor’’ multidetector small-angle polarized-neutron scatteri
setup at the VVR-M reactor of the St. Petersburg Institute
Nuclear Physics. The setup is described in Ref. 22. The s
tered neutrons were detected in the momentum-tran
range 3•1023<q<3•1022 Å 21 with step Dq53•1023

Å21. The spectrum-averaged wavelength wasl59.2 Å
(dl/l520%).

The magnetic scattering intensityI s analyzed in the
present work was defined as the excess above the nu
scattering, which was taken to be the scattering by the
lattice of the alloy near the paramagnetic temperatureTp ~
Tp5370 K for alloy I andTp5470 K for alloy II!:

I s~T,q!5I ~T,q!2I ~Tp ,q!R~T!, ~10!

where I (T,q)5I ↑(T,q)1I ↓(T,q) is the sum of the intensi-
ties of the transmitted beam with spin in the stateI ↑(T,0)
parallel to the magnetic field, and in the stateI ↓(T,0) anti-
parallel to the magnetic field at temperatureT, and
R(T)5I (T,0)/I (Tp,0) is the beam attenuation due to th
magnetic phase transition. The factorR(T) ~10! is close to 1,
and yields the second-order correction to the scattering
tensity I s . The polarizationP(T) of the transmitted neutron
beam was defined in the standard manner:

P~T!5
I ↑~T,0!2I ↓~T,0!

I ↑~T,0!1I ↓~T,0!
. ~11!

We also measured the wavelength dependence of
neutron depolarization for the ‘‘first’’ sample at several tem
peratures nearTc . The measurements were performed w
the SPN-1 spectrometer of the pulsed IBR-2 reactor~Dubna!.
The neutron polarization was analyzed in the range from 1
10 Å. In the course of the experiments, the polarization v
tor of the neutron beam was directed perpendicular to
neutron velocity vector. The guiding field was equal to 1 O
The temperature measurements were performed in a hel
filled furnace and temperature stabilization to within 0.1 K

Structural investigations of the samples were perform
with a Mini–SFINKS powder diffractometer~St. Petersburg
Institute of Nuclear Physics, Gatchina!.23 The samples were
positioned perpendicular to the incident neutron beam. T
spectra for both samples were identified unequivocally
corresponding to fcc structure~Fd3m, space group 225!. No
additional reflections indicating the presence of additio
phases or ordering of the metal atoms were observed.
following structural parameters were found from the spec
by the Rietveld method~the MRIA package24 was used!:
lattice constant 3.58549~2! Å for alloy I and 3.59440~3! Å
for sample II; Debye–Waller factorU iso50.072(14) Å2 for
alloy I andU iso50.243(14) Å2 for alloy II.

The lattice constant and Debye–Waller factor (U iso) in-
crease with carbon content. It is natural to attribute the

1171Grigor’ev et al.
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FIG. 2. Diffraction patterns of samples I~a! and II
~b! and difference curves of the theoretical and e
perimental spectra. The circles show the experime
tal points and the solid lines show the theoretic
spectra corresponding to the computed paramete
crease in the lattice constant to an increase in the cell
f
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ture, which could be determined only via additional measure-

Ni
d
le

the
in

n-
volume,16 and the increase inU iso to static displacements o
the metal atoms induced by the insertion of carbon. T
shape and sizes of these samples, which are atypical for p
der measurements, did not make it possible to properly t
a number of systematic corrections into account. Thus,
structural parameters obtained at this stage of the inves
tions are effective parameters,25 and have only comparativ
significance.

The difference curves presented in Fig. 2~a—for alloy I,
b—for alloy II! together with the theoretical and experime
tal spectra show that the intensities of the reflections~420,
222, 111! for the composition Fe70Ni30 ~0.1% C! and ~220!
for the composition Fe70Ni30 ~0.7% C! are poorly described
One reason for the discrepancies between measured
computed the intensities of separate reflections might be
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4. RESULTS

The overall features of the behavior of the Invar Fe
alloy nearTc were partially studied in Refs. 14 and 15 an
mentioned in the introduction. The pattern of small-ang
scattering and depolarization for the alloys studied in
present work is qualitatively identical to that described
Refs. 14 and 15 for Fe75Ni25 doped with 0.7 at. % carbon.

The temperature dependence of scattering intensityI (T)
for different values of momentum transferq ~in the tempera-
ture intervals 285–350 K and 380–450 K for alloys I~a! and
II ~b!, respectively! are displayed in Fig. 3. At a phase tra
sition with increasing temperature~forward direction!, the

1172Grigor’ev et al.
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small-angle neutron scattering intensity decreases to
nuclear scattering intensity. In this temperature range, sm
angle magnetic scattering can be neglected compared
nuclear scattering. A subsequent decrease in the temper
of alloy II ~reverse direction! resulted in an appreciable dis
placement of the temperature dependenceI (q,T) in the di-
rection of low temperatures, and the formation of a hystere
curve ~Fig. 3b!. The arrows in the figure show the directio
of variation of the temperature in the course of the meas
ments. We note that on account of the long duration of
measurements, and therefore their high cost, measurem
of small-angle neutron scattering intensity with decreas
temperature were not performed for alloy I. However, as
show below~Fig. 4a!, hysteresis of the polarization of th
transmitted beam occurred in alloy I, just like alloy II~Fig.
4b!.

Figure 4 displays the temperature dependenceP(T)

FIG. 3. Small-angle scattering intensity versus temperature for various
mentum transfersq for alloys I ~a! and II ~b!. The arrows show the sequenc
of temperature variations in the measurements.
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(l59.2 Å) of the polarization of the transmitted neutro
beam and the small-angle scattering intensity
q50.018 Å21 for both alloys. At high temperature
(T@Tc), the polarization of the transmitted beam equals
polarizationP0 of the incident beam. However, contrary
the conventional notion12,13 that the polarization decrease
rapidly (10%/0.1 K) at a paramagnet–ferromagnet tran
tion, in the present case the beam polarization starts to
crease continuously~at a rate of the order of 10%/3 K! at
some temperature that we denote byT0 ~T0'330 K for alloy
I and'410 K for alloy II!. The small-angle neutron scatte
ing intensity~Fig. 4! at temperaturesT,T0 increases, dem-
onstrating the existence of critical fluctuations in the samp

As will be shown below, we determineTc from the
small-angle scattering data to be the temperature at which
radius of critical correlations takes on its maximum value.Tc

is then tens of degrees less thanT0 ~the temperature at which
the polarization starts to decrease!, and at the Curie tempera

o-

FIG. 4. Temperature dependence of the polarization of a neutron b
transmitted through the sample (q,0.003 Å21) and small-angle scattering
intensity forq50.018 Å21 for the alloys I~a! and II ~b!.
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The fact that the polarization starts to decrease at a temp
ture some tens of degrees higher than the Curie tempera
would be unusual for standard magnets.

As noted in the introduction, critical fluctuations nearTc

depolarize the beam very little. This is explained by the f
that the effective magnetization of a fluctuation that affe
the neutron spin is weak, because the magnetization
creases rapidly~as 1/r ! at a distance of the order of the siz
of the fluctuation~Fig. 1a!. Thus, the presence of depolariz
tion in this temperature range attests to the emergenc
magnetic inhomogeneities with a large radius and slowly
creasing correlation function~Fig. 1b!.

Weak but clearly distinguishable temperature hystere
in the polarization with increasing and decreasing tempe
ture can be seen in Fig. 4. We note that no relaxational p
nomena were observed in the measurements. The pola
tion measured at the temperature of maximum hyster
(P550%, DP'15%! remained constant to within 0.5% fo
10 h. The polarization differenceDP5P82P9, whereP8 is
the polarization at the 50% level with temperature decreas
from high values, andP9 is the polarization at the tempera
ture corresponding toP8 but with temperature increasin
from low values, was taken as a measure of the hyster
The temperature ranges where hysteresis is observed in
small-angle neutron scattering intensity and in the neut
depolarization are identical, as is the temperatureT0 at which
the scattering intensity increases and the polarization
creases with decreasing temperature. We also note that a
magnetic field applied to the sample increases, the magni
of the temperature hysteresis decreases until it vanishes
pletely at some tens of oersteds.26

5. CURIE TEMPERATURE. ANALYSIS OF THE q
DEPENDENCE OF THE SCATTERING INTENSITY

An important question for the present investigation is
question of the Curie temperature. For Invar alloys, the c
cept of a Curie point is not as clearcut as in the case of p
ferromagnetic materials. For example, the spontaneous m
netizationMs as a function of temperature for low value
near the transition temperature does not cut off abruptly
T5Tc but decreases smoothly with increasingT.16 Strictly
speaking, no definite value ofTc can be associated with suc
a temperature dependenceMs(T). Various methods for de
termining Tc were examined by Belov,27 and they yield a
discrepancy of 10 K or more for Invar alloys, while for N
for example, the values ofTc found by various methods
agree to within 1 K.

The Curie temperature can be accurately determi
from small-angle neutron scattering experiments, since in
limit q!k the small-angle scattering cross section is prop
tional to the static magnetic susceptibility of the system n
the transition.17 Therefore, the maximum of the temperatu
dependence of the scattering intensity~scattering cross sec
tion! corresponds to the maximum of the susceptibility, a
indicates the Curie temperatureTc quite accurately on the
temperature scale. At the same time, as pointed out in Se
the radius of the critical correlations for standard magn
must approach infinity atT5Tc . In what follows, we obtain
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assumes its maximum value, since for the disordered syst
investigated here, the correlation radius increases with
creasing temperature to someT8 and then becomes constan
We call this temperature the Curie temperature of the gi
alloy, Tc5T8. We note that this method of determiningTc is
preferable to other methods, since the measurements ca
performed in essentially a vanishing field.

To start, we verify that the correlation functions for spi
at which small-angle scattering occurs, i.e., scattering in
rangeqP@331023, 331022# Å 21, can be described by th
OZ expression, i.e., it corresponds to the correlation funct
of the critical fluctuations. Theoretical and experimental
timates of the contribution of inelastic scattering compa
with elastic scattering in the rangeq>k have shown that
inelastic scattering can be neglected.

Figure 5 shows the reciprocal of the small-angle scat
ing intensity I 21 versus the squared momentum transferq2

for different temperaturesT.Tc for alloys I ~a! and II ~b!.
The curves are linear to within the statistical errors. T
confirms the correctness of using an OZ-type relation

I ~q,k!5
A

q21k2 , ~12!

wherek5Rc
21 is the reciprocal of the correlation radius an

A is a free parameter, to analyze the small-angle scatte
dataI (q). It is evident from the figure that atTc'293 K and
Tc'386 K for alloys I and II, respectively, the linear depe
denceI 21(q2) extrapolated toq2→0 does not vanish. This
means that near the Curie temperature,k5Rc

21 does not
vanish but instead approaches a constant.

To obtain the final results, the functionI (q,k) was con-
volved with the instrumental resolution function, which
approximated by a Gaussian function with standard devia
3.331024 Å. The experimental data onI (q) were analyzed
in the range qP@0.01,0.025# Å 21 by the least-square
method. The two independent parametersA and k2 were
determined from the analysis for each value of the tempe
ture T.

The temperature dependence of the squared reciproc
the correlation radiusk2(T) for both alloys, which decrease
with decreasing temperature in the rangeT.Tc (t
P@0.02,0.2#) and then becomes constant and different fro
zero atT'Tc

exp, is displayed in Fig. 6. We note that th
increase in the correlation radiusRc(T) is bounded by the
value Rc

max(Tc
exp)5140610 Å for alloy I and

Rc
max(Tc

exp)5230610 Å for alloy II. The difference between
Rc

max(Tc
max) for the two alloys indicates that this limit is no

determined by the resolution of the apparatus, which set
upper limit on the experimental range ofR'300 Å, but is
instead a characteristic of the magnetic transition in
samples.

Thus, we are observing a ‘‘disruption’’ of the transitio
at the temperatureTc at which the critical correlation radiu
reaches the valueRc

max. The temperature dependencek2 is
described by a power law

k25k1
21k0

2t2n, ~13!
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where n is the critical exponent,t5(T2Tc
exp)/Tc

exp is the
2 max 22 exp
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FIG. 5. Reciprocal of the small-angle scattering intensityI 21 versus the
squared momentum transferq2 for different temperaturesT.Tc for alloys I
~a! and II ~b!.

TABLE I. Parameters obtained by a least-squares fit of the tempera
dependence of the reciprocal of the correlation radius:k25k1

21k0
2t2n,

wheret5(T2Tc)/Tc .

Alloy k0
2 , Å22 k1

2 , Å22 Tc , K 2n

Fe70Ni30 0.1% C, 0.00660.002 4.531025 29361 1.360.1
heating

Fe70Ni30 0.7% C, 0.0360.01 231025 38860.5 1.460.2
heating

Fe70Ni30 0.7% C, 0.0360.007 231025 385.560.3 1.3760.06
cooling
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reduced temperature,k15(Rc ) , andTc is the tempera-
ture at whichRc(T) assumes its maximum value. The p
rametersk0

2 , k1
2 , Tc

exp, and n were determined by least
squares analysis.

The resulting values are presented in Table I. The
pression~13! with the valuesk1

250 andk0
2 determined in the

preceding analysis was also fit to the experimental temp
ture dependencek2(T). As a result, two free parameters o
the least-squares fit were obtained:Tc

theor andn. The quantity
n remained equal to its previous value, to within the limits
error, and the values obtained forTc

theor were 28661 K for
alloy I, and 386.460.5 K with heating and 384.360.3 K
with cooling for alloy II.

The curvesk2(T) obtained with the least-squares para
eters are displayed in Fig. 6~solid curves!. They are essen
tially identical for both types of fits. Especially interesting
the fact that for alloy II, the curves obtained with increasi
and decreasing temperature are shifted by 2–3 K, and
consequence the temperatures at which the correlation ra
Rc(T) assumes its maximum value differ by 2.5 K, i.e., a
proximately by the width of the hysteresis, for increasing a
decreasing temperature. Thus, on account of hysteresis
real Curie temperature depends on the history of the sam
Nonetheless, the Curie temperature can be regarded as e
lished to within the hysteresis width~2–3 K! ~see Table I!.

The parameterk0
2 is identical, to within the limits of

error, for increasing and decreasing temperature for alloy
and is quite different from the parameterk0

2 for alloy I
~Table I!. The parameterk0 , being a coefficient in the
power-law relationRc(t)5k0

21t2n, is effectively the in-
verse correlation radius att;1, i.e., in the paramagneti
region for T@Tc . The valuesk0

21'12 Å and '6 Å ob-
tained for alloys I and II, respectively, indicate the presen
of critical fluctuations of this scale in the experimental allo
in the far paramagnetic region.

6. ANALYSIS OF NEUTRON POLARIZATION

The polarizationP(l) of the transmitted neutron beam
as a function of the wavelength was measured at vari
temperatures near the transition for sample I:T5289 K,
303.6 K, and 311.4 K. The resultingl dependence of the
polarization of the transmitted beam~normalized to the po-
larization of the transmitted beam in the paramagnetic reg
at T5370 K! is described well by an exponential functio
P(l)/P0(l)5exp(2al2). To verify this, we constructed a
plot of f 52 ln(P/P0) as a function ofl2 ~Fig. 7!. The data
demonstrate a linear dependence off on l2 in the wave-
length range 1–4 Å. The lack of oscillatory behavior in t
resulting curves suggests that the direction of the induc
inside the magnetic inhomogeneities is completely dis
dered. As already mentioned in Sec. 2, the variation of
larization with wavelength according to the law exp(2al2)
demonstrates the existence of magnetic correlations in w
the polarization vector of the neutrons precesses b
‘‘small’’ angle. In other words, the condition~4! ought to be
satisfied.

In the approximation~4!, depolarization can be regarde

re
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as being due to uncorrelated small rotations of the polar
tion vector in the magnetic field of inhomogeneities of s
Rd . Equation~9! is valid in this case.

The scale of the magnetic inhomogeneity on which
polarization occurs can be estimated roughly by means of
expression~9! and the temperature dependence of the po
ization P(T) at neutron wavelengthl59.2 Å ~Fig. 4!. Mea-
surement of the magnetization by the method of thr
dimensional polarization analysis of the transmitted neut
beam shows that the inductionB nearTc does not exceed 0.3
kG for sample I, and 0.5 kG for sample II.26 In our case
L50.13 cm. Substituting these values of the inductionB
into the expression~9! and assuming its distribution to b
uniform within a magnetic cluster, we obtain from Eq.~9! an
estimate of the lower limit on the cluster sizeRd . The values

FIG. 6. Squared reciprocalk2 of the correlation radius versus temperatureT
for alloys I ~a! and II ~b! ~increasing and decreasing temperature!. The solid
curves show the temperature dependencek2(T) computed using the least
squares parameters.
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obtained for the sizesRd(T) of the magnetic inhomogene
ities are of the order of 1032105 Å, which is hundreds of
times greater thanRc over the entire temperature rang
T>Tc .

7. NEUTRON MEAN FREE PATH

The coexistence of two length scales of magnetic co
lations in the system can be demonstrated by using the
cept of a neutron mean free path.

As noted in Sec. 2~with citations to Refs. 10 and 11!,
the depolarization of the neutrons transmitted through
sample can be regarded as being due to neutron scatterin
magnetic inhomogeneities within the angular width of t
transmitted beam. Then the depolarization is determined
the total cross sectionsC , normalized to one magnetic atom
in the central detector with angular widthC. Thus, the po-
larization in the caseP'k is given by the relation~2!.

At the same time, attenuation of the neutron beamI /I 0

can be regarded as being due to absorption and scatterin
neutrons outside the angular aperture of the central dete
Here I and I 0 are, respectively, the intensities of the tran
mitted and incident beams. A temperature-dependent
I (T)/I (Tp), whereI (Tp) is the intensity of the transmitted
beam in the paramagnetic region, can be separated out o
total attenuation of the beam. The temperature-depen
part of the beam attenuation characterizes the magnetic
tering cross sections12C

m (T) near the phase transition, no
malized to one magnetic atom, outside the central dete
with angular widthC. The attenuation of the neutron bea
t(T)5I (T)/I (Tp) due to the magnetic scattering at the pha
transition is

I ~T!/I ~Tp!5exp@2s12C
m ~T!N0L#, ~14!

whereN0 andL are the same quantities as in the case of
polarization given by the expression~2!.

Note that the cross sections12C
m (T) neglects Bragg

scattering, since the neutron wavelength (l59.2 Å) is
greater than the lattice constant of the alloy (a'3.6 Å) and
therefore the conditions for Bragg reflection are not satisfi
As mentioned above, in the regionq>k the contribution of
inelastic scattering is small compared to elastic scatter

FIG. 7. The quantity2 ln(P/P0) versusl2 at various temperatures near th
transition for alloy I:1—T5289 K, 2—303.6 K,3—311.4 K.
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m

FIG. 8. PolarizationP(T) (1) and attenu-
ation I (T,q.0.002 Å21) (2) of the beam
versus temperature for alloys I~a! and II
~b!.
We therefore regards12C(T) as the elastic scattering cross
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large compared withNs or, in other words, the mean free
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section of magnetic correlations near the transition.
Thus, the scattering cross sectionsC for q,kC5qmin

can be determined by measuring the depolarization of
transmitted beam, i.e., it yields an integral representation
the long-scale magnetic correlations with characteristic s
R→1/qmin . On the other hand, the beam attenuation, wh
characterizes the removal of neutrons from the transmi
beam at the phase transition, is determined by the total s
tering cross section in the region 1.q.kC, which corre-
sponds to inhomogeneities with characteristic sc
1,R,1/qmin . In our caseqmin50.003 Å21.

The quantities Ll5@(3/2)sC(T)N0#21 and
Ls5@s12C

m (T)N0#21 are the neutron mean free path f
long- and short-scale inhomogeneities, respectively. The
tios L/Ll andL/Ls represent the average number of neutr
scattering eventsNl and Ns per unit length of the sample
and are proportional to the neutron scattering cross sect
of inhomogeneities of different scales.

Figure 8 displays the polarizationP(T)/P(Tp) and beam
attenuationI (T)/I (Tp) versus temperature, and Fig. 9 di
playsNl andNs for alloys I and II. It is clear from the figures
that the dependence ofNl on TP@Tc ,T0# is different from
that ofNs . Furthermore, over a wide temperature rangeNl is
e
of
e
h
d

at-

e

a-
n

ns

path in the case of scattering by long-scale correlation
much shorter than in the case of scattering by conventio
critical fluctuations. We also note that forN51 a kink is
observed in the functionNl(T). This kink characterizes the
transition from single to multiple scattering. It is obvious th
polarization forN.1 can no longer characterize the cro
sectionsC given by the expression~2!.

Analysis of the scattering intensity as a function
qP@331023, 331022# Å shows that the spin correlatio
function corresponding to this range ofq is described by the
usual OZ expression for critical correlations. In the case
critical fluctuations, the total cross sectionsu1 ,u2

in the an-
gular rangeu12u2 (u2.u1) can be obtained by integratin
the expression~1! over the corresponding range of angle
The cross section depends onk logarithmically:

su1 ,u2
5

2

3
pr 0

2g2S~S11!
1

~kr !2 ln
u2

21~k/k!2

u1
21~k/k!2 . ~15!

Here the same notation as in Eq.~1! is used;k is the wave
vector andk is the reciprocal of the correlation radius.

Then the total scattering cross section in a small angleC
within the width of the transmitted beam has the form~3!,
FIG. 9. ReciprocalsNl (q,0.003 Å21) (1)
and Ns (q.0.003 Å21) (2) of the neutron
mean free path versus temperatureT for al-
loys I ~a! and II ~b!.
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C,u,1 is

s12C
m 5

2

3
pr 0

2g2S~S11!
1

~kr !2 ln
11~k/k!2

C21~k/k!2

} ln
~k/k!2

11~kC/k!2 . ~16!

Since kC/k;1 and k/k@1, the relations12C
m @sC

should hold for cross sections associated with critical co
lations. As shown in Ref. 10, the cross sectionsC is small,
and has little effect on the polarization at essentially a
temperatureT.Tc . However, the valuesNs andNl obtained
experimentally above, which are proportional to the cro
sectionss12C

m andsC , show thats12C
m !sC ~Fig. 9!.

The enormous value and temperature dependence o
scattering cross section for small anglesC suggest that large
magnetic inhomogeneities with sizesRd@Rc are present in
the sample. Since the observed inhomogeneities are cap
of strongly depolarizing the neutron beam, the depolariza
indicates that the induction decreases slowly over their c
acteristic scale~Fig. 1b!. On the other hand, it is clear tha
the cross section obtained from the beam attenuation is
termined by the scattering by critical fluctuations, as co
firmed by the fact that the cross section grows very slow
with decreasing temperature.

The depolarization data can thus be explained by
existence in the present system of a second length s
Rd(T) larger than the characteristic sizeRc(T) of critical
fluctuations at temperaturesT>Tc . At the same time, as wa
found in Sec. 2, the characteristic forms of the inhomoge
ities associated with different length scales differ from o
another. Inhomogeneities with characteristic sizeRc have the
form in real space that is typical of critical fluctuation
(1/r )exp(r/Rc). The form of inhomogeneities with the othe
scaleRd(T) should correspond to a more uniform distrib
tion of magnetic induction in them.10,11 The mechanisms
leading to the emergence of these inhomogeneities are p
ably varied.

8. DISCUSSION

In the present work we investigated iron–nickel allo
with the composition Fe70Ni30 with admixtures of carbon
~0.1 and 0.7 at. %!. For these alloys, just as for the allo
~Fe75Ni25 with addition of 0.7 at. % carbon! that we investi-
gated previously,17,18 it was established that two character
tic length scales of magnetic inhomogeneities coexist ab
Tc . This characterizes the ‘‘two length scale’’ situatio
aboveTc as a general situation for iron-enriched FeNi alloy

A similar experiment, indicating the existence of stro
depolarization above the Curie temperature, was perform
on the alloy Fe65Ni35 and discussed in Ref. 28. However, th
authors conclude from the fact that depolarization of the n
tron beam is present far above the Curie tempera
(Tc1100 K), that depolarization is due to critical fluctu
tions of the magnetization. Their conclusion is based on
experimentally established fact that aboveTc, depolarization
depends on the neutron wavelength, and belowTc it is inde-
pendent of the neutron wavelength. As a result, in their op
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determined by different mechanisms of the interaction
neutrons with the magnetic system of the sample.

We cannot agree with this interpretation of the da
since, first, as noted above, with reference to the work M
leev and Ruban,13,14 critical fluctuations nearTc weakly de-
polarize the neutron beam, and in order for strong depo
ization to occur, large magnetic inhomogeneities with siz
Rd.Rc and a comparatively uniform distribution of the in
duction within their characteristic scale must exist in t
sample. Second, the presence or absence of al dependence
in the polarization of the transmitted beam is determined
the satisfaction or nonsatisfaction, respectively, of the con
tion ~4!. As the temperature decreases belowTc , both the
inductionB and the sizeRd of the inhomogeneities increas
and the condition~4! ceases to be satisfied, as a result
which thel dependence in the polarization vanishes. In co
sequence of this, such a difference cannot be explained
difference in the mechanisms of interaction of neutrons w
the magnetic system, and it simply indicates an increas
the induction B and size Rd of inhomogeneities in the
sample. In conclusion, we emphasize once again that
observation of depolarization can be explained by large-s
magnetic inhomogeneities, which exist in the sample
gether with the conventional critical fluctuations at tempe
turesT.Tc .

These investigations have established the Curie temp
ture Tc , defined as that point on the temperature scale
which the correlation radius of the critical fluctuations a
sumes its maximum value. It was shown that the correlat
radius does not become infinite asTc is approached, bu
instead becomes constant atTc

exp. In our opinion, this dem-
onstrates a disruption of the second-order phase transitio
this temperature when the valueRc(Tc

exp)5Rc
max typical of

the system is reached, and a transformation of the trans
into a first-order transition that is close to a secon
transition.

In the course of the investigations, temperature hys
esis was also observed in the measured values of the p
ization of the transmitted beam and the small-angle neu
scattering intensity at temperaturesT.Tc . As a result of the
existence of hysteresis phenomena, the real Curie temp
ture depends on the sample history, and is establishe
within the width of the hysteresis~2–3 K!. It was found that
two characteristic length scales of magnetic inhomogene
coexist over a wide temperature rangeT.Tc . It was also
established that the forms of the spin correlation functio
are different for the two scales. The short-scale correlat
characterizing critical fluctuations can be described by
Ornstein–Zernike expression, while the long-scale corre
tions can be tentatively described by a squared Ornste
Zernike expression. These features confirm the characte
the magnetic phase transition in FeNi Invar alloys as a fi
order transition. As far as we know, this is the first expe
mental confirmation of the theoretical predictions of the e
istence of a first-order phase transition in this system.29–31
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Effect of electroelastic anisotropy of DNA-like molecules on their tertiary structure
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Under certain conditions, mechanical forces can cause an anisotropic molecule like DNA to
assume a toroidal spatial structure. A simple model describing such a behavior is suggested. The
model incorporates anisotropic elastic energy and external electrical forces. The steady-
state structures formed by a macromolecule have been studied numerically using this model.
There exist ranges of model parameters, namely, the anisotropy of the elastic tensor, magnitude
and orientation of forces, and modulation periods, where molecules have toroidal, spherical,
or extended structures. Estimates of parameters characteristic of these structures are consistent with
experimental data. In particular, the toroidal structure dimension corresponds to experimental
dimensions of toroidal globules produced as a result of so-called PSI condensation of
DNA molecules. ©1997 American Institute of Physics.@S1063-7761~97!01612-0#
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It is known that, depending on external conditions, is
lated two-chain DNA macromolecules can be condense
fairly compact globules of various shapes, densities,
structures ~see, for example, Refs. 1, 2, and referenc
therein!. Globular structures in DNA were detected abo
twenty-five years ago,3 and their toroidal configuration wa
determined.4 Later both experimental5,6 and theoretical in-
vestigations of processes shaping toroidal particles were
lished. These include, for example, studies based on ma
scopic concepts7,8 originating from the work of I. M.
Lifshits9 concerning the coil-to-globule transition and stud
based on the microscopic description of DN
conformations.10,11 Investigations of these processes ha
continued to the present time.12,13 This fact alone indicates
that some questions in this field have not been comple
answered.

As a result of these studies, it has become clear that t
are many factors affecting the globule structure. Usually f
mation of toroidal structures is induced by adding a neu
polymer and a mono- or polyvalent salt to an aqueous s
tion of DNA, from which derives the term applied to th
phenomenon, namely PSI~Polymer- and Salt-Induced! con-
densation.

According to the established concept of P
condensation,9,12 the neutral polymer generates osmotic pr
sure, which makes the spatial molecular configuration m
compact, and the salt partly neutralizes negative charge
DNA phosphate groups. In addition to these main factors
essential role in the PSI condensation is played by intrin
DNA parameters~contour and persistent lengths!, inter-
monomer interaction, etc. It is hardly possible or advisable
take into account all these factors in an exact form, si
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these effects are unknown. Therefore the existing theorie
the PSI condensation which is responsible for formation
toroidal structures, are approximate to a greater or lesser
tent. Some treatments8,13 ignore electrostatic forces, while
others12 neglect effects of excluded volume. On the oth
hand, it turns out that, irrespective of the approximatio
used in these theories, DNA structures predicted by differ
models have similar qualitative characteristics, and they
described by similar functions of the macromolecule para
eters.

Therefore it seems probable that some underlying cau
lead to the formation of toroidal structures independent
specific approximations in the models describing them. T
assumption is corroborated by investigations9,13 based on a
very general macroscopic approach and demonstrating
minimization of both bulk and surface free energies e
pressed with due account of well known scaling relations
hard polymers14 yields results for toroidal configurations tha
are in qualitative agreement with experimental data.

A microscopic approach to conformations of DNA mo
ecules, which is based, in a sense, on quite opposite ass
tions, was developed by Manning.10,11,15–17He considered a
DNA molecule as an elastic rod extended by electrost
repulsive forces acting between the negative charges of
phosphate groups. These forces are balanced by el
forces compressing the rod. When phosphate charges
partly neutralized by oppositely charged salt ions,18 com-
pressing forces can lead under certain conditions to the
known buckling instability of a straight rod.19 Thus we ob-
tain the instability criterion for a straight molecule confo
mation due to axial compressive forces:

1180-07$10.00 © 1997 American Institute of Physics
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Herejb is the bending persistent length,Fa is the axial com-
pressing force~numerically equal to the electrostatic exten
ing force!, T is the temperature, andR is the DNA molecule
radius. The buckling instability should lead to a toroidal m
ecule in this model.

Strictly speaking, the macroscopic polymer approach
plies only on a macroscopic scale, i.e., on a scale larger
the persistent length, which is about 500 Å. The microsco
approach can be used on scales smaller than this length
the other hand, the characteristic dimensions of the exp
mentally detected globules fall between these two rang
i.e., they are comparable to the persistent length. Howe
these are the scales~they can be called mesoscopic scales! on
which the elastic energy of DNA molecules plays an imp
tant role. Electrical forces also should not be ignored
these scales~as will be shown below, elastic and electr
forces are comparable!. Moreover, the condensation of op
positely charged ions on an anisotropic and nonuniform
charged DNA molecule should also be nonuniform and
isotropic.

The aim of this work was to investigate a ‘‘minimal
model of DNA-like molecules taking into account only th
elastic and nonuniform electric forces, and to analyze
spatial structures which appear in this model. Here we st
once again that in our model the anisotropic structure
properties of the DNA molecule manifest themselves both
the anisotropy of elastic moduli~i.e., ai j Þd i j ! and in the
existence of a nonuniform electroelastic modulus. If the s
tem is treated as isotropic, both these effects vanish,
toroidal structures cannot form.

2. MODEL DESCRIPTION

Following the scheme described in Refs. 20 and 21,
consider the axial line of a DNA molecule as an elastic str
or rod. As was noted above, the conformation of this string
largely determined on intermediate~mesoscopic! scales by
its elastic energy. The latter can be expanded, as usua
terms of the strain tensor. This expansion is convenie
expressed in the form

E05E
0

L

dsS 1

2
ai j v iv j1biv i D , ~1!

which is a generalization of the classical Kirchhoff proble
of the equilibrium of an elastic rod.22

In Eq. ~1! L is the elastic string length,s is the coordi-
nate along the axial line,aik is the matrix of elastic modul
~the anisotropy inaik reflects the existence of two nonide
tical helices on the microscopic scale!, and the vectorb de-
scribes spontaneous deformation of a DNA molecule res
ing in formation of the superhelical structure. The physi
cause of spontaneous deformation can be, for example
sorption of a DNA molecule on nucleosomes. In this pap
we are interested only in PSI condensed structures, so
neglect the spontaneous momentb due to adsorption.
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In order to describe the conformation of the DNA axial lin
we should introduce a Frenet local reference framev1 , v2 ,
v3 , where the vectorv1 is tangent to the axial line, and th
vectorsv2 andv3 are aligned with the main axes of the ro
deformation,19 i.e.,

v15
dr

ds
, vi•vj5d i j . ~2!

The vectorv in expression~1! for the energy describe
changes in the Frenet local reference parallel to the strin

d

ds
vj5@v3vj # . ~3!

Equation~3! means that all permissible deformations of t
curve are described by rotations of the Frenet refere
frame, i.e., the elastic string is not extensible~which is a
fairly good approximation for DNA molecules, whose to
sion and bending moduli are several orders of magnit
smaller than the stretching modulus!.

For the problems of interest, the presence of inter
anisotropic elasticity of the molecule, i.e., the fact thatai j

Þd i j , is essential. This anisotropy of the elastic moduli
introduced in a natural way, since in replacing the dou
helix with a single elastic string~axial line! we must take
into account the anisotropic DNA structure. In terms of m
chanics, polynucleotide chains forming the double helix c
be modeled by helical grooves on the elastic rod discus
above, one of these grooves being narrow and another b
wide. This fact leads to a consequence that is very impor
for the PSI condensation. Let us recall that a DNA molec
is charged and carries a charge of22e ~wheree is the el-
ementary charge! per pair of bases~i.e., for a contour length
of 3.4 Å!. The negative DNA charge is partly neutralized b
condensation of oppositely charged ions in the solution. T
problem of a charged string~polyion! in a solution contain-
ing oppositely charged ions has been treated by m
authors.16,18,23 They demonstrated that, when the polyio
charge exceeds a certain critical value, oppositely char
ions ‘‘condense’’ on the polyion and reduce its charge d
sity to the critical value.

The distinguishing feature of our model is, as was no
above, the inherent anisotropy of the macromolecule or po
ion due to different charge densities in the narrow and w
grooves.24,25 This means, in particular, that neutralization
the molecular charge by oppositely charged ions is nonu
form and anisotropic over the molecule length, for examp
owing to the inhomogeneity of the field generated by ne
tive charges of phosphate groups in the narrow or w
groove.

An exact solution to the appropriate electrostatic pro
lem would obviously be beyond the accuracy of our simp
fied model of DNA molecules composed of two chains.
our opinion, however, the only important effect is the pre
ence of an inhomogeneous field generating a nonunifo
torque

Mee5@F3v1# . ~4!

1181Golo et al.
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phate group negative charge. Let us reiterate that in
model this force is nonuniform along the molecule axis.

The electroelastic moment given by Eq.~4! affects the
molecule conformation defined by the vectorv. The vector
F is related in a complicated way to the adsorption of op
sitely charged ions and the molecule conformation. Gen
ally speaking, the problem of macromolecule conformat
should be solved with due account of the osmotic press
produced by the solvent, the excluded DNA volume, and
conformation entropy~the latter two should be considered
a self-consistent manner, like the forceF!. It is clear that a
problem with such a general statement can hardly be sol
In the next section, we will show that a considerably simp
fied model incorporating only the macromolecule elastic
and nonuniform electroelastic moment yields a qualitativ
adequate description of most spatial structures formed
DNA molecules. Moreover, under some fairly natural a
sumptions concerning the values of parameters in our mo
reasonable quantitative agreement is also obtained.

3. RESULTS

We consider the DNA molecule as an anisotropic ela
rod acted upon by an electro-elastic momentMee that varies
over the rod axis. In this section, our aim is to determine
possible steady-state conformations of such a rod. The s
tion is obtained in two stages. On the first stage we de
mine purely mechanical characteristics of the rod. The eq
librium condition in the laboratory frame is expressed in t
well-known form:19

dMu

ds
5@Fu3~v1!u# , ~5!

whereMu is the torsional moment due to the forceF. Here
the subscriptu distinguishes physical quantities measured
the fixed~laboratory! reference frame.

It is convenient to convert this equilibrium condition
the moving ~local! reference frame characterized by t
Frenet coordinate system introduced above. To this end
operator R̂ locally transforming the laboratory referenc
frame to the moving one should be applied to Eq.~5!. As a
result, we have the following equation in the local referen
frame:

dM

ds
52@v3M #1@F3v1# , ~6!

where the vector tangent to the axial line in the movi
reference frame is, by definition,v1[(1,0,0). By solving Eq.
~6! we obtainv ~recall that, by definition,19 M5dE/dv!.

Given v, we reconstruct the tangent vector in the lab
ratory frame:

d~v1!u

ds
5@v3~v1!u# . ~7!

This is the first stage of the solution, which reduces
the calculation of the vector fieldv1 . The second stage i
determination of the steady-state configurationr (s) based on
the Eq.~2!. This procedure cannot be performed analytica
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merically. We have employed the fourth-order Adam
scheme. The calculation accuracy depended on the spe
configuration under investigation, but even in the worst c
the relative error was within 1023, which seems reasonabl
for a qualitative assessment of configurations.

In solving the problem numerically, one should fir
transform it to dimensionless variables. The variables in E
~2!, ~6!, and~7! have the following dimensionalities:

@v#5
1

cm
, @ai j #5erg•cm, @F#5

erg

cm
.

It seems convenient to introduce a characteristic energ«
and lengthl . They can be estimated as follows. The ma
DNA elastic moduli are known to be of orde
10219 erg•cm.1,17 In our numerical analysis, we assume
that the numerical factors in front of this parameters are
the order of unity, hence

« l .10219 erg•cm. ~8!

Unfortunately, to the best of our knowledge, no expe
mental measurements of the electroelastic momentMee ~or
the corresponding forceF! are available. Therefore we hav
to use approximate estimates of the Coulomb energy.
latter essentially depends on the unneutralized charge
DNA phosphate groups. If this charge is assumed to be
proximately the elementary charge on a characteristic s
of about the DNA molecule diameter (d.1027 cm), the es-
timate for the forceF is 1025 dyn. If the degree of neutral
izations is considerable~the charge per characteristic leng
is 0.1e), the force is about 1027 dyn. Note that the thresh
old of the buckling instability calculated by Manning15 cor-
responds to a force that is one or two orders of magnit
smaller. However, Manning15 considered the onset of insta
bility, whereas we are discussing conditions for formation
a toroidal structure. In addition, the compressive axial fo
is only important for the buckling instability and the to
sional moment appears later owing to the bending of
elastic rod. In the case under discussion, a torsional mom
appears even in an initially straight configuration.

Assuming that electric forces are of the same order
elastic forces, i.e., that the dimensionless electroelastic
ment, like the dimensionless elastic moduli, is of order un
we can determine the ratio between the characteristic par
eters« and l :

l

«
.107

cm

erg
. ~9!

Thus, we can derive from Eqs.~8! and ~9! the two charac-
teristic parameters:

«.10213 erg, l .1026 cm.

Note that the characteristic energy needed for format
of a compact three-dimensional structure is one order
magnitude higher than the heat energy~which is about
10214 erg!, and this justifies our mechanical model, whic
neglects thermal fluctuations. The lengthl acts in our model
as an effective persistent length, over which Coulomb for
are comparable to elastic ones. In accordance with the ab

1182Golo et al.
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length ~as expected! is an order of magnitude smaller tha
the thermal persistent length. In our opinion, these two fa
are quite natural, since the compact DNA configurat
arose, for example, under conditions of PSI condensation
osmotic pressure of about 105 dyn/cm2,1,12 and the respec
tive forces are stronger than thermal fluctuations.

Before proceeding to the results of numerical calcu
tions based on Eqs.~2!, ~6!, and~7!, there is another impor
tant note. As follows from the expression forMee and defi-
nition of the energy density, there is no bulk contribution
the energy ifF5const. Therefore, any nontrivial effects du
to the electroelastic moment can be described only by tak
into account the functionF(s). Given that the double helix is
a three-dimensional periodic structure and considering o
the most important features of conformations, we analy
numerically only simple periodic functionsF(s).

The forceF(s) is a vector, so its amplitude and directio
in the local reference can both be modulated, while the lo
reference is determined by the molecule conformati
which, in turn, depends on the force. In our numerical ana
sis, we included both types of modulation, and it turned
that the results essentially depend on both the magnitude
direction of the force.

Specifically, we specified in our numerical solution t
force F in the form

F5Asin~s/ka!R̂~n,s/ko!f,

whereA is the force amplitude,ka is the period of the am-
plitude modulation, andR̂(n,s/ko)f is the operator rotating
the unit vectorf aligned with the force with respect to th
local normaln to the curve, andko is the modulation period
of the force orientation. Since the model described ab
implies nonuniform~i.e., depending on the coordinate alon
the axial line of the molecule! and anisotropic~i.e., depend-
ing on the alignment of the molecule section in space! charge
neutralization in the narrow groove of the DNA molecule,
is natural to assume that the periodko corresponds to the
helix pitch, i.e., its period is ten times the distance betwe
base pairs~34 Å!, and this value~ko50.34 in our dimension-
less units! was used in calculations, unless stated otherw

Numerical solutions of the system of equations~2!, ~6!,
and~7! are presented in the form of graphs that show stea
state configurations of the elastic string, and these confi
rations were compared with DNA shapes observed, for
ample, under conditions of PSI condensation.

Figure 1 shows a toroidal structure obtained with t
following numerical parameters:

~1! the matrix of elastic moduli

S 1.7 0 0

0 1.1 0

0 0 1.3
D ;

~2! force amplitudeA55.6;
~3! amplitude modulation periodka50.17;
~4! projection of the force unit vector on the local norm

f 350.01;
~5! orientational modulation periodko50.34.
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For convenience the effective persistent lengthl , which
is approximately 1/5 of the overall structure dimension,
also shown in the graph.

It is interesting to compare Fig. 1 with an electron m
crograph~Fig. 2! of a toroidal globule.26

According to some experimental data,3,4,13toroidal glob-
ules have typical radii of about 500 Å, so the above estim
l .1026 is in agreement with these data. Note also that
estimate of the characteristic energy needed to form a to
dal configuration,«.10213 erg is also in agreement with
characteristic energies of toroidal globules given in Ref.
This agreement can be considered as a consistency test o
suggested model.

The parameters listed above have considerable effec
the three-dimensional configuration formed by a macrom
ecule. The model parameters of the configuration shown
Fig. 3 are the same as in Fig. 1, except the matrix of ela
moduli, which is modified as follows:

S 1.7 0 0

0 1.1 0.2

0 0.2 1.05
D .

The resulting configuration is spherical. Note that th
change in the configuration is due to a small change in
anisotropy of the elastic tensor~we refer not to the orders o
magnitude but the values because our results belong to
parameter range specified, as was mentioned above, by
scales«.10213 erg andl .1026 cm!.

The force alignment is also essential. For example, if
take f 350.03 instead off 350.01, which is the case in th
structures shown by Figs. 2 and 3, a particle shaped a
torus becomes unstable against a transformation to an
tended structure. This is illustrated by Fig. 4~in order to
obtain a more compact structure, we used in this case
unit matrix of elastic constants!.

There are also certain limitations on the permissible c
tour lengthL of a macromolecule. Figures 1, 3, and 4 corr
spond toL5300. It is clear from the geometrical viewpoin

FIG. 1. Toroidal globule~the parameters are given in the text!. At the
bottom the effective persistent length is shown.
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l
FIG. 2. Electron micrograph of a toroida
globule.26
that formation of toroidal structures is impossible at very
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small L, i.e., for the specific parameters used in our calcu
tions, forL,30. If the contour length, however, is too larg
toroidal configurations are also unstable. Figure 5a show
an illustration a configuration corresponding toL53000. It
was obtained for the following values of model paramete

~1! the matrix of elastic constants

S 1.4 0 0

0 1.1 0

0 0 0.9
D ;

~2! force amplitudeA522.4;
~3! amplitude of the modulation periodka50.034;
~4! projection of the force unit vector on the local no

mal, f 350.01;
~5! orientational modulation periodko50.34.

FIG. 3. Spherical globule~the parameters are given in the text!.
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sulting configuration. It is plotted as follows. An arbitrar
point is selected on the trajectory~in this specific case,
s50.07!, and a plane normal to the tangent vector at t
point is defined. Then all sequential crossing points of
trajectory with this plane are marked. It is clearly seen in F
5b that the resulting shell is spherical. Note that simi
structures were also predicted by the macroscopic approa9

Such changes in configurations of three-dimensional st
tures with the molecule length are in agreement with exp
mental data, and they seem quite natural from the intuit
viewpoint regarding the behavior of anisotropic elastic ro
acted upon by nonuniform external forces.

4. CONCLUSIONS

Let us summarize our results. We have demonstra
that there are purely mechanical forces that can shape
anisotropic DNA molecule in a toroidal three-dimension
structure. In order to give an adequate description of th
mechanical forces, we have discussed a simple model in
porating Kirchhoff’s anisotropic energy22 ~see also Ref. 19!
and external electric forces. Actually, this model applies
intermediate~mesoscopic! length scales, where the configu
ration is determined by the mechanical energy. The full
scription of the system should, of course, also include mic
scopic aspects15 and macroscopic polymer effects.9,13 Our

FIG. 4. Extended globule.
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estimates and qualitative agreement between numerical
culations by the mechanical model and experimental d
indicate, however, that at least some features of PSI con
sation are adequately described by our model.

In this connection, we would like to note the following
The issue of so-called kinks or sharp bends in structures
been discussed in the literature.15 Direct observations of such
kinks have also been reported.28,29 Some authors, howeve
suppose that there are no kinks~see the discussion in Ref. 1!.
In our model, we also obtain configurations with sectio
looking like kinks~although no kinks are possible in elasti
ity theory!. One of such configurations is shown in Fig. 6
an illustration. The model parameters in this graph are
following:

~1! matrix of elastic constants

S 1.1 0 0

0 1.1 0

0 0 1.1
D ;

~2! force amplitudeA55.6;
~3! amplitude modulation periodka50.34;
~4! projection of the force unit vector on the local no

mal, f 350.01;
~5! orientational modulation periodko50.34;
~6! L530.

FIG. 5. ~a! Spherical shell.~b! Poincare´ section of the spherical shell.

FIG. 6. Quasi-kink structure.
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In the quasikink configuration obtained with these p
rameters, the quasikink angle is 70°, which is in agreem
with experimental results.28,29

An important issue related to the biophysical functio
of compact DNA structures~and promising applications o
such objects as biological sensors! is the liquid-crystal order-
ing ~in particular, the cholesteric one! of DNA segments in
compact globules. Our simple model does not contain fac
that would lead to such ordering~namely the steric or long-
range interaction!. Purely mechanical factors, however, ca
give rise to nematic ordering of neighboring macromolec
sections. As an illustration of this fact, in Fig. 7 we presen
Poincare´ section of a toroidal structure shown in Fig. 1.
certain type of ordering in the pattern of the crossing poi
is obvious, and it indicates that a sort of liquid-crystal ord
ing is present in the structure. Unfortunately, quantitat
estimates of the order parameter and even its classifica
are impossible within our approach to the problem, mo
over, attempts of such estimates are futile for the reas
discussed above.

We conclude from our analysis that there are five ba
factors that control the macromolecule configuratio
namely, the matrix of elastic constantsai j , the amplitudeA
and alignmentf of the Coulomb force, the periods of bot
the amplitude and orientational modulation, and the to
contour lengthL. In our simple model, these parameters a
controlled by various physical factors. For example, t
force amplitude depends on the concentration and valenc
salts in the solution, whereas the force modulation and
isotropy of elastic moduli can be regulated, in principle,
introducing ~intercalating! specific chemical agents into th
DNA structure.

It is feasible that toroidal configurations can be d
stroyed by introducing a sufficient quantity of dye molecu
into the two DNA chains. Impurities or dopants that affe
adsorption of charges due to salts in the solution~or even
replacement of a monovalent salt with a polyvalent on!
should change the force modulation period and essent
modify the formation conditions and shapes of DNA thre
dimensional configurations.
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Drift of vertical Bloch lines in a domain wall with a noninterchangeable spectrum

eri-
in perpendicularly magnetized films
G. E. Khodenkov
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The dynamics of vertical Bloch lines in variable external magnetic fields is examined with
allowance for the magnetostatic noninterchangeability of the spectrum of the domain wall. The
drift velocity of the translational motion of vertical Bloch lines is calculated and is found
to be nonzero in second order in the weak oscillating field. ©1997 American Institute of Physics.
@S1063-7761~97!01712-5#
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When we speak of the drift of Bloch lines we mean th
translational motion along a domain wall initiated by an o
cillating external magnetic field of only one definite pola
ization. This effect was first detected in experiments a
studied in in-plane magnetized yttrium-iron garnet films.1–4

In addition to the drift of Bloch lines in the domain walls
magnetic materials of various types exhibit a drift of t
domain walls proper. The presence of drift presupposes
existence of nonlinear mechanisms leading to the occurre
of even terms in the dependence of the velocities of dom
walls or Bloch lines on the amplitude of the external field

For domain walls in uniaxial ferromagnets this mech
nism was studied, in particular, by Bar’yakhtaret al.5 Here
the drift of the domain wall is proportional to a quadra
combination of the magnetic fields of different polarization
Such a drift can lead, at least in principle, to a drift of ve
tical Bloch lines, but here such mechanisms are not con
ered.

A general theory explaining the drift of Bloch lines wa
proposed by Iordanski� and Marchenko.6 For lines of differ-
ent topological types with allowance for the general form
magnetostatic energy and the presence of a combinatio
uniaxial and cubic anisotropy, the frequency dependenc
the drift has been derived in an approximation that is q
dratic in the external fields of arbitrary polarizations. Law
that govern the transformation of the force leading to d
have also been established. Grishin and Martynovich7 pro-
posed another mechanism for the drift of vertical Bloch lin
in perpendicularly magnetized films with magnetic-bubb
domains~magnetic-bubble films!. However, for the mecha
nism to become real the magnetic parameters of the fil
material must be spatially inhomogeneous on both side
the domain wall.

2. STATEMENT OF THE PROBLEM

In this paper we will study a particular mechanism f
the drift of vertical Bloch lines in domain walls of uniaxia
ferromagnets with a large anisotropy constant. The mec
nism is based on the long-known noninterchangeability
the spectrum of magnons localized at domain walls.8,9 In
1986, V. M. Chetverikov pointed out that such an effect c
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cally studied by other researchers~see the relevant literatur
cited in Ref. 10, where the effect of magnetostatic nonint
changeability on the motion of vertical Bloch lines in co
stant fields was studied!. The noninterchangeability of the
spectrum modifies the dissipation processes in vertical Bl
lines in such a way that the asymmetry in the velocity of t
motion of a Bloch line in the forward and reverse directio
along a domain wall emerges already in the first nonlin
~quadratic! approximation in the external field strength. Th
usual approach to studying the translational dynamics of v
tical Bloch lines in magnetic-bubble films is to employ su
ficiently long unipolar magnetic-field pulses. Here, in co
trast to Refs. 1–4, the possible noninterchangeability ef
appears superposed on the large~larger than the effect! main
contribution among the odd~in field strength! contributions.

The theory proposed in Ref. 10 referred to constant
ternal fields. The goal of the present investigation is to der
the equations of motion of vertical Bloch lines in variab
magnetic fields of a definite polarization, when the veloc
asymmetry effect, due in this case to the noninterchangea
ity of the spectrum, is clearly visible in pure form, i.e., in th
form of translational drift of the lines. We will limit our-
selves to perpendicularly magnetized very thin films, wh
the twist of the domain wall is small and can be ignored~as
can its effect on the vertical Bloch lines!.

Suppose that we have a uniaxial ferromagnet wh
easy-magnetization axis is collinear with thez axis and
whoseQ-factor is high,Q5Ha/4pM@1, whereHa is the
anisotropy field, andM is the absolute value of the magn
tization vector. The unperturbed 180-degree domain wal
this ferromagnet lies in thexz plane. To describe the domai
wall we use the Slonczewski equations for the variab
y5q(x,t) andc(x,t), i.e., we use the equations describin
the behavior of the domain-wall surface and the value of
azimuthal angle of the magnetization vector at this surfa
with both being dependent on thex-coordinate~the x axis
lies in the plane of the domain wall at right angles to t
easy-magnetization axis! and timet:

hDċ1aq̇2hDhz5q92k2q2
~sin2c!8

2AQ
, ~1a!

1187-05$10.00 © 1997 American Institute of Physics
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q8cos2c

AQ
. ~1b!

Equations~1! are expressed in terms of the followin
dimensionless variables:

x→
x

L
, q→

q

L
, t→t~4pgM !,

hx,y→
hx,y

8M
, hz→

hz

4pM
, ~2!

with the dots and primes on the variables designating der
tives with respect tot and x. The x-coordinate along the
domain wall is measured in units of the width of the Blo
line, L5D/AQ, whereD is the width of the domain wall;
the time variablet is measured in units of 1/4pgM , whereg
is the magnetomechanical ratio; and the position of the
main wall q(x,t) is measured in units ofD. Weak external
magnetic fieldsh(t) are measured in the units specified
~2!, which are proportional toM . The equations contain th
following small parameters:a,1 is the Gilbert or viscous
damping parameter, andk,1 is the restoring force constan
of the domain wall. The equations also contain a topolog
chargehD561, with the ‘‘plus’’ corresponding to a domain
wall with the directions of magnetization in the domai
Mz(y→6`)57M and the ‘‘minus,’’ to magnetizations
with opposite orientations.

The contribution to Eq.~1! of the ‘‘noninterchangeable’’
magnetostatic energy}sin2(c2q8/AQ) is expanded in pow-
ers of the small parameter 1/AQ. Note that in the linear
approximation Eqs.~1! lead to a noninterchangeable spe
trum of the wall magnons that coincides with the exa
spectrum.9

One of the main assumptions of the present work is t
noninterchangeable effects are taken into account ev
where to within 1/AQ. The other main assumptions are

uhx,y,zu,1, a,1, v,k,1. ~3!

The importance of the smallness of the amplitudes of
external fields and the damping parameter has been po
out earlier, and the third inequality in~3! presupposes tha
the frequenciesv of external fields~measured in units o
4pgM ! are below the frequencyv05k of the homogeneous
resonance of the domain wall, so that free wall magnons
not excited.

Equations~1! correspond to the local field momentu
hDqc8 which, in view of ~1! ~and this can be verified!, sat-
isfies the continuity equation

2
d~hDqc8!

dt
1a~ċc82qq̇8!1

]

]x H 2hx cosc2hy

3sin c2
c82

2
1q9q2

q82

2
2k2

q2

2
2

q~sin 2c!8

2AQ

1
~q8sin 2c!8

2AQ
2

cos 2c

4
2sin 2c

q8

AQ
J 50. ~4!
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time is balanced by the damping of the momentum due
viscous processes and the difference of the momentum
~the second and third terms on the left-hand side!. Note that
in the stationary case considered in Ref. 10 an energy
ance equation was used to simplify the calculations. One
the advantages of using~4! in comparison to an energy ba
ance equation is that in the time-dependent case Eq.~4! does
not contain time derivatives of the external fields.

3. PERTURBATION THEORY

To derive the equations of motion of vertical Bloc
lines, we begin with the perturbation theory formulated
Ref. 11. The differences consist~a! in the presence of non
interchangeable terms in Eqs.~1! and ~b! in the use of an
equation of momentum flux conservation, which simplifi
the selection of necessary terms in the expansions and
calculations considerably.

Consider Eqs.~1!, where in view of the inequalities~2!
we have dropped the dissipative terms and the contribut
of external fields. Their effect will be taken into account lat
via Eq.~4!. We look for the solutions of Eqs.~1! in the form
of series:

c~x,t !5c~0!~u!1c~1!~u,t !1•••, ~5a!

q~x,t !5q~0!~u!1q~1!~u,t !1•••. ~5b!

Here the local variable isu5x2X(t), where X(t) is the
coordinate of the vertical Bloch line on thex axis, and it is
the equation of this vertical line that we are seeking. In
present treatment it is sufficient to determine only the fi
two terms in the expansions~5a! and ~5b!.

The zeroth-order equations are

q~0!92k2q~0!5
~sin c~0! cosc~0!!8

AQ
, ~6a!

2c~0!91sin c~0! cosc~0!5
cos 2c~0!q~0!8

AQ
. ~6b!

Since according to~6a! we haveq(0)}1/AQ, the right-
hand side of Eq.~6b! is of order 1/Q and can be dropped
Among the solutions of Eq.~6b! with a zero right-hand side
~i.e., without allowance for noninterchangeability! we select
the following two, both corresponding to a 180-degree v
tical Bloch line:

cosc~0!52tanhu, c~0!85
1

coshu
, hL51, ~7a!

cosc~0!5tanhu, c~0!852
1

coshu
, hL521. ~7b!

To the vertical Bloch line of type~7a! we assign a positive
topological chargehL51 and to the vertical Bloch line o
type ~7b!, a negative topological chargehL521. Both solu-
tions have the same directions of magnetizations in the
main wall as x→6`, i.e., c(x→2`)→0 and
c(x→`)→hLp.
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Ref. 10! the following approximate solution of Eq.~6a!,
which determines the deformation of the domain wall in t
static state due to the noninterchangeable part of the ma
tostatic energy;

q~0!5
hL

AQ
F 1

coshu
2

pk

2
exp~2kuuu!G . ~8!

Note that the sign of the deformation of the domain w
depends only on the sign of the topological charge of
Bloch line, hL , and is independent of the sign of the top
logical charge of the domain wall,hD . Also note that it is
precisely the deformation of the surface of the domain w
Eq. ~8!, that leads to noninterchangeable effects in the
namics of a vertical Bloch line.

The first-order equations are

q~1!92k2q~1!5hDċ~0!1
~cos 2c~0!c~1!!8

AQ
, ~9a!

L̂c~1!5hDq̇~0!1cos 2c~0!
q~1!8

AQ
22sin 2c~0!

c~1!q~0!8

AQ
,

~9b!

where

L̂52
d2

du2
2cos2c~0!. ~9c!

Note that the time derivatives on the right-hand sides of E
~9a! and ~9b! are]/]t52Ẋ]/]u.

Since~9b! and~8! imply c (1)}1/AQ, the second term on
the right-hand side of Eq.~9a! is of order 1/Q and can be
dropped. After this, in thek,1 approximation, the solution
of Eq. ~9a! can be written as

q~1!5
hLhDẊ

2k
exp~2kuuu!. ~10!

Here we note the important fact that the sum of the de
mations~8! and~10! of the surface of the domain wall has n
definite symmetry with respect to reversal of the sign of
velocity Ẋ of the vertical Bloch line.

In this approximation, Eq.~9b! reduces to

L̂c~1!52ẊhDq~0!81cos 2c~0!
q~1!8

AQ
. ~11!

This equation is meaningful since the kernel of operatorL̂,
which is the symmetric function 1/coshu, is automatically
orthogonal to the antisymmetric right-hand side of Eq.~11!.
An approximate solution of Eq.~11! has the form10

c~1!5
hLhDẊ

2AQ
F u

coshu
2p sgn~u!S 12

1

coshuDexp

~2kuuu!G , ~12!

where sgn(u) is the sign function. In the limitk50 this
solution satisfies the initial equation exactly. A numeric
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slightly from the exact solution at the points of extrema
the exact solution.

We also note that in calculating~12! we ignored~and
this is also done below! terms proportional tok2, since in
calculating noninterchangeable effects we use, where p
sible, the limitk50. Also, the sum of~7! and ~12! has no
definite symmetry with respect to reversal of the sign of
velocity Ẋ of the vertical Bloch line~just as the sum of the
deformations of the domain wall,~8! and ~10! has no such
symmetry!. These facts are decisive in the mechanism
drift of a vertical Bloch line.

4. EQUATIONS OF MOTION AND THE DRIFT OF A
VERTICAL BLOCH LINE

The zeroth- and first-order approximations~7!, ~8!, ~10!,
and ~12! are sufficient for setting up the equations that d
scribe the motion of a vertical Bloch line with allowance f
noninterchangeable effects. If we integrate Eq.~4! for the
momentum density with respect tox within infinite limits
and assume that the moving vertical Bloch line emits no s
waves, we arrive at the integral form of this equation, wh
actually is the equation of motion of a vertical Bloch line:

2
dP

dt
1Fg1Fd1Fe50, ~13!

where

P5hD^qc8&, ~14a!

Fg52phLhD q̇̄~ t !, ~14b!

Fd5a^ċc82qq̇8&, ~14c!

Fe52hx~ t !. ~14d!

According to~13!, the variation of the total momentum
~14a! of the vertical Bloch line with time is balanced by th
gyrotropic force~14b!, the viscous force~14c!, and the ex-
ternal force~14d! generated by the fieldhx(t). Here and in
what follows the angle brackets indicate that the express
inside the brackets is integrated with respect tou over infi-
nite limits. The partial differential equations~1a! and ~1b!
have therefore been reduced to the ordinary differential eq
tion ~13!, which coincides in form with the equation of mo
tion of a material point.

The important thing is that the action of the fieldhz(t),
which does not enter explicitly into the continuity equatio
~4!, shifts the domain wall as a whole, which in turn shif
the vertical Bloch line due to the gyrotropic effect. Beside
the field hz(t) changes the asymptotic behavior of the d
sired solutions of Eqs.~1a! and~1b!. Actually, we must add
the termhz(t) to the right-hand side of the first-order ap
proximation equation~9a!. As a result, the solution~10! un-
dergoes a change: to its right-hand side we must add
expression

q̇̄5
hDhz~ t !

k2
.
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pression for the local field momentumhDqc8 that leads to
the emergence of the gyrotropic forceFg ~Eq. ~14b!!. The
quantity q̄ (t) together with the corresponding anglec̄ (t)
can be found from the linearized variant of Eqs.~1!, where
hz(t) is taken into account explicitly and the dependence
the coordinatex is dropped. Justification of a more gener
nonlinear, asymptotic representation can be found in Ref.

We also note that in writing the expressions~14b! and
~14d! we ignored all nonlinearities in the weak extern
fields. According to Ref. 5, under certain conditions the
nonlinearities can lead to a drift of the domain wall a
hence to a drift of a vertical Bloch lines in the wall. Th
effect is not connected to the effects of noninterchangeab
of the spectrum, requires using magnetic fields of two diff
ent polarizations, and hence is not considered here.

Next, to derive the equations of motion of a vertic
Bloch line, we only need to calculate via~7!, ~8!, ~10!, and
~12! the momentumP ~see Eq.~14a!! and the viscous force
~14c! that enter into Eq.~13!. In calculating the various in-
tegrals, in addition to allowing for the inequalities~3!, we
must leave only the first-order terms in 1/AQ, where the
velocity Ẋ of a vertical Bloch line~measured in units o
4pMgL! is also assumed small.

The momentum of a vertical Bloch line has the we
known form11

P'^hDq~1!c~0!8&'
pẊ

2k K exp~2kuuu!
coshu L '

p2Ẋ

2k
. ~15!

Thanks to the large factor 1/k in ~15!, we can ignore all other
corrections to the momentum.

The viscous force~14c! consists of two partial contribu
tions: one is quadratic in the anglec, and the other is qua
dratic in the coordinateq of the domain wall. The first con
tribution can be written as follows:

2aẊ^~c~0!8!212c~0!8c~1!8&'22aẊ2a
hDẊ2

AQ
K 1

coshu

3S 1

coshu
2

u sinh u

cosh2 u

2p sgn~u!
sinh u

cosh2 u
D L

522aẊ2ahDẊ2
12p

AQ
.

~16a!

In calculating the integrals we allowed for the fact that th
values are determined by rapidly decreasing exponen
functions with exponents equal to unity, so that in the in
grands we can ignore the exponential factors with expon
k,1. We also took into account the well-known relatio
ships uuu85sgn(u) and @sgn(u)#852d(u), whered(u) is the
Dirac delta function. Within the same approximations,
the second partial contribution to the viscous force we h
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2ahDẊ2

AQ
K sgn~u!

sinh u

cosh2 u
L

52
2aphDẊ2

AQ
. ~16b!

Thus, with allowance for noninterchangeable effects,
total value of the viscous force acting on a vertical Bloch li
is

Fd522aẊ2
ahD~11p!Ẋ2

AQ
. ~17!

Note that this force contains terms that are quadratic in
velocity, do not depend on the topological charge of the v
tical Bloch line, and are due to the noninterchangeability
the magnetostatic energy. The viscous force has no defi
symmetry with respect to reversal of the sign ofẊ, since
neither the deformation of the surface of the domain w
~the sum of~8! and~10!! nor the sum of the azimuthal angle
~7! and ~12! has such symmetry. The direction of motion
a vertical Bloch line in which the dissipative force is at i
maximum can be determined by a simple rule. The dissi
tive force is at its maximum if the sign of the amplitude
the dynamical~gyrotropic! bending of the domain wall, Eq
~10!, coincides with the sign of the amplitude of static defo
mation of the domain wall, Eq.~8!.

Collecting all the results,~14!, ~15!, and~17!, and insert-
ing them in Eq.~13!, we arrive at the equation of motion o
a vertical Bloch line. Note that calculating the higher-ord
terms in the series~5a! and ~5b! via the integral equation
reflecting the conservation of momentum~in our approach
this equation acts as the solvability condition for the probl
used in Ref. 11! makes it possible to derive terms that a
cubic in the velocity, which coincide exactly with the thos
calculated in Ref. 11.

Here we limit our discussion to the situation in which th
dissipative force~17! contains cubic terms together with th
quadratic terms calculated earlier. The effective equation
motion of a vertical Bloch line is

p2

2k

d~Ẋ1Ẋ3!

dt
12aS Ẋ1

p2Ẋ3

8k
D 1

ahD~11p!

AQ
Ẋ2

1phDhL q̇̄22hx~ t !50, ~18a!

where q̇̄ ~needed if we wish to allow for the fieldhz(t)! can
be found by solving the following linear equation:

q̈̄1a q̇̄1k2 q̄5hDhz . ~18b!

Let us now study some of the simple corollaries of Eq
~18a! and ~18b!. Suppose that the external fieldhx is con-
stant. Then Eq.~18a! implies that

Ẋ5
hz

a S 12
hDahx

AQa
D ,
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wherea5(11p)/2 ~in Ref. 10 the coefficient was errone-

in

ld
l

e
of

e

in

g

of
ca

do
s

le

h

in front of the term withhx(t) in Eq. ~18a! change, but the

h

m
s
a

l
tic-

ent
f a
e
-

ral
of
of

eso-

nd

A

la
ously written as (112p)/2). Analysis of this expression
shows that the velocity of a vertical Bloch line is largest
absolute value when the static~8! and dynamic~10! ampli-
tudes of deformation of the domain wall~i.e., the total de-
formation is at its minimum!.

Let us now consider a variable external fie
hx5h cosvt and calculate the drift velocity of a vertica
Bloch line. Assuming that the noninterchangeable term
small and solving Eq.~18a! by the method of successiv
approximations, we find the mean velocity of drift motion
a vertical Bloch line:

X̄̇54pMgL
2hD~11p!/AQ

4a21~p2/2k!2~v/4pMg!2 S h

8M D 2

.

~19!

Note that calculations show that in the case of a variable fi
hz(t)5h cosvt the factor (h/8M )2 in ~19! must be replaced
by

S p

2 D 2S v

4pgM D 2S hz

4pgMk2D 2

.

Of course, in addition to the drift~19! the vertical Bloch line
experiences vibrational motion. It must be said at this po
that the field and frequency dependence~19! coincides with
the corresponding results of Iordanski� and Marchenko6 ~for-
mula ~27! in Ref. 6! and that forQ.1 Eq. ~19! determines
the constants introduced in Ref. 6 within the noninterchan
ability mechanism.

The direction of drift is determined by the same line
reasoning as in the case of uniform motion of a verti
Bloch line in a constant field.10 With the adopted mechanism
for vertical Bloch lines of type~7! the direction of drift de-
pends only on the sign of the topological charge of the
main wall,hD . Note that in addition to vertical Bloch line
of the form ~7! there are two more types withhL561 but
with other asymptotic values of the azimuthal ang
c(x→2`)5p and c(x→`)52p (hL51) or
0 (hL521). It can be verified that for such vertical Bloc
lines the sign in front of the external force~14d! and the sign
1191 JETP 85 (6), December 1997
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sign in Eq.~19! for the drift velocity remains unchanged.
In conclusion we list the main approximations for whic

the equation of motion of a vertical Bloch line, Eq.~18!,
which allows for the noninterchangeability of the spectru
of the domain wall, is valid. The specimens were thin film
of perpendicularly magnetized uniaxial ferromagnets with
largeQ-factor,Q@1, in which the twist of the domain wal
can be ignored. Note that this class incorporates magne
bubble films of ferrite garnets near the magnetic mom
compensation point, where formally the width parameter o
vertical Bloch line,L(→`) exceeds the film thickness. Th
Gilbert damping parametera is also assumed small. Al
though the restoring force constant of the domain wall,k, is
small, it must exceed a threshold value above which flexu
instability of the domain wall develops. The amplitudes
external exciting fields are small, and the frequencies
these fields are below the frequency of homogeneous r
nance of the domain wall.
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Magnetoresistance and magnetic torque have been studied in the single crystals of the mixed
complex~ET!2TlHg~S0.45Se0.55CN!4. The quantum oscillations~Shubnikov–de Haas and
de Haas–van Alphen! have been observed and investigated in details in this compound. The
behavior of these oscillations is close to that in the complex~ET!2TlHg~SeCN!4 but is
characterized by a stronger carrier scattering induced by the disordered positions of the S and Se
atoms in the anion. ©1997 American Institute of Physics.@S1063-7761~97!01812-X#
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In recent years the isostructural organic metals of
a-ET2XHg~YCN!4 series, where ET stands for bis~ethylene-
dithio!tetrathiafulvalene (C10H8S8), X5K, Tl, Rb, NH4, and
Y5S, Se, have been a subject of intensive studies.1 These
compounds have revealed a variety of surprising proper
in high magnetic fields, arising from the specifics of th
electronic band structure. The Fermi surface FS,2 essentially
the same in all these metals, uniquely combines featu
characteristic of quasi-one-dimensional~Q1D! and quasi-
two-dimensional~Q2D! systems being represented by the c
existence of a slightly warped cylinder and a pair of op
sheets. The series can be subdivided into two groups: On
them includes the salts with X5K, Tl, Rb and Y5S which
undergo a phase transition into an antiferromagnetic grou
state which is believed to be driven by a Peierls-like ins
bility of the Q1D FS part. However, unlike in most oth
Q1D metals, the transition does not lead to an insulat
state3–5 although it brings about an essential rearrangem
of the FS.6 In contrast, no transition is observed in th
salts of the other group with X5NH4, Y5S and X5Tl, K,
Y5Se and the FS retains its initial shape at lo
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exhibit very different properties in magnetic fields.
In particular, the salt ET2TlHg~SCN!4 belonging to the

first group exhibits the following properties.~1! A phase
transition into an antiferromagnetic groundstate atTp

'10 K ~Ref 5!; ~2! Strong angle-dependent magnetores
tance oscillations~AMRO! which are presumed to originat
from the electron motion along new open sheets of the
constructed FS~Ref. 6!; ~3! Shubnikov–de Haas~SdH! and
de Haas–van Alphen~dHvA! oscillations with fundamenta
frequencyF05670 T atHib* ~whereb* is the normal to the
crystal highly-conducting ac-plane! demonstrating enor-
mously high second-harmonic contribution at low tempe
ture, in fields above 10 T~Ref. 10!. On the other hand, the
selenium-containing complex, ET2TlHg~SeCN!4, is charac-
terized by~1! the absence of the phase transition;~2! AMRO
associated with the electron orbits on the cylindrical FS; a
~3! strong SdH and dHvA oscillations (F05650 T) with a
normal harmonic content described by the standard Lifshi
Kosevich formula in the field up to 15 T~Ref. 8!.

In order to obtain more information on the effect
subtle structural changes in the electronic band struc
andthe groundstate properties induced by the substitutio
the S atoms by the Se ones in the anion, we have carried

1192-04$10.00 © 1997 American Institute of Physics



magnetic-field studies of a new organic conductor with the
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mixed composition, ET2TlHg~S0.45Se0.55CN!4.

2. EXPERIMENT AND SAMPLES

In the experiment, single crystals of the mixed s
ET2TlHg~S0.45Se0.55CN!4 having a typical size of'131
30.2 mm3 were used. The samples were prepared by e
trocrystallization in benzonitrile as described by Rouss
et al.11 or in trichlorethane with the addition of absolute et
anol~10 vol. %! at 20° at constant current,I 50.5mA. In the
latter case the electrolyte was a mixture of cyclic 18-crow
ether and TlSCN and Hg~SeCN!2 salts in the ratio of 1:3:1.
The samples obtained from different batches had differ
quality. Nevertheless, the microprobe analysis has shown
same chemical composition for all of them, giving a sta
S:Se ratio of 8:1, in agreement with the chemical formula
the complex. A x-ray photomethod test has confirmed t
these samples are single crystals isostructural to the o
metals of thea-phase series.

The magnetoresistance and torque measurements
carried out as functions of the direction and strength of
magnetic field and the temperature. The magnetoresist
was measured by the standard a.c. technique at 330 Hz
a currentI 5100mA directed perpendicular to the highly
conducting layers. This geometry provides the best con
tions for observation of AMRO.6,12 The magnetic field up to
15 T was generated by a superconducting solenoid. The m
surements of magnetoresistance were performed at tem
tures down 1.5 K. The dHvA effect was studied by a can
lever torquemeter as described in Ref. 13. Th
measurements were carried out in magnetic fields up to 1
and temperatures down to 0.5 K.

3. RESULTS AND DISCUSSION

As in the case of the selenium salt,8 the samples of the
mixed complex do not show any sign of the phase transi
characteristic of its sulfur analog.5

The SdH and dHvA oscillations in the samples of t
mixed salt are clearly exhibited in the field dependence
the resistance and magnetic torque in fields>10 T ~see Figs.
t
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1 and 2!. FFT analysis yields the oscillation fundamenta
frequency of 650610 T for Hib* . This value is close to
those obtained for both the pure sulfur and selenium salts.8,10

Neither SdH nor dHvA oscillations show any significant
contribution of frequencies other than the fundamenta
within the field and temperature range studied. The ang
dependence of the oscillation frequency is well described b
the expressionF(u)5F0 /cosu, where u is the angle be-
tween the field andb* directions~Fig. 3!, in accordance with
the cylindrical shape of the corresponding FS part. Basicall
the described behavior is very similar to that found for th
selenium salt. We only note that the value of the backgroun
magnetoresistance and the SdH amplitude in the mixed co
plex are, respectively, a factor of three and a factor of si
lower than in the selenium analog.8

From the temperature dependence of the SdH and dHv
amplitudes we estimate the cyclotron mass of the carrie
(m* ) on the cylindrical part of the FS. In the conducting
plane it satisfiesm0* 5(2.060.1)me , whereme is the free

FIG. 1. Shubnikov–de Haas oscillations in ET2TIHg~S0.45Se0.55CN!4;
Hib* , T51.5 K, I ib* . Inset: FFT of the oscillations.
n
FIG. 2. De Haas–van Alphen oscillations i
ET2TIHg~S0.45Se0.55CN!4. The magnetic field is tilted by the
angle221.6° with respect to theb* direction;T50.5 K. Inset:
FFT of the oscillations.
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electron mass. The mass of the carriers in the selenium
has the same value.8 The dependence of the cyclotron ma
on the field direction for the dHvA oscillations~Fig. 4! obeys
the relationm* (u)5m0* /cosu, within experimental error, in
agreement with the cylindrical shape of the FS.

The angular dependence of the dHvA amplitude in
mixed complex is shown in Fig. 5. There are two pairs
angles,u'642° andu'658°, at which the amplitude van
ishes due to the spin-splitting effect.14 Using the experimen-
tally obtained cyclotron mass, we evaluate theg-factor from
the condition for the spin-splitting zeros,14 taking into ac-
count the cylindrical shape of the FS.

cosS p

2
pg

m0*

me cosu D 50,

where p51 corresponds to the fundamental harmonic,g
'1.7. This value is very close to that found for the seleni
analog.8 As in the latter case, we attribute the deviation fro
the free electrong-factor to the substantial effect of th
electron-phonon interaction.

The Dingle temperature obtained from the field dep
dence of the oscillation amplitude in various samples of
mixed complex varies from 1.4 to 2.2 K, which is muc
higher than the valueTD'0.6 K reported for the selenium
salt.9 The high Dingle temperature explains the relative
low magnetoresistance and the SdH amplitude in the mi
complex as compared to the selenium salt.

FIG. 3. Angular dependence of dHvA frequency. The solid line correspo
to the relationF(u)5650T/cosu.

FIG. 4. Angular dependence of the cyclotron mass. The solid line co
sponds to the relationm* u52.0me /cosu.

1194 JETP 85 (6), December 1997
alt

e
f

-
e

d

These results suggest that the mixed compl
ET2TIHg~S0.45Se0.55CN!4, is a ‘‘dirty’’ version of the pure
selenium salt ET2TIHg~SeCN!4. This conclusion, in prin-
ciple, is consistent with the absence of the AMRO like tho
found in the pure selenium salt.8 Indeed, the amplitude of the
AMRO is expected to depend on magnetic field and
sample quality as;(vt)2 where v is the cyclotron fre-
quency,v5eH/m* c, andt is the relaxation time. Using the
Dingle temperature to estimate the relaxation time, one
tains anvt value in the mixed salt an order of magnitud
lower than that obtained for the pure selenium analog at
same magnetic field. Therefore, the AMRO amplitude is
pected to be an order of magnitude lower in the compou
studied. Figure 6, which illustrates the angular depende
of the magnetoresistance at an arbitrary azimuthal angl
ac-plane shows only one shallow maximum at around240°
which could be attributed to the AMRO effect, in agreeme
with the above consideration.~A picture like Fig. 6 was ob-
served at the different azimuthal angles.! Note, however, that
a different ~in comparison with the selenium salt! shape or
degree of distortion of the FS cannot be completely ruled
as a possible reason for the weakness of AMRO in
present case. Thus, the reason for the absence of AMR

FIG. 5. Angular dependence of dHvA amplitude.T50.5 K.

FIG. 6. Angular dependence of the magnetoresistance.H515 T, T
51.5 K, I ib* .
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the mixed complex is still obscure and a more detailed study
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is needed for its clarification.
Summarizing, we have studied the magnetoresista

and magnetic torque of the mixed comple
ET2TIHg~S0.45Se0.55CN!4. The complex is found to closely
resemble its pure selenium analog, ET2TIHg~SeCN!4 but is
likely characterized by a stronger carrier scattering indu
by the disordered positions of the S and Se atoms in
anion. The disorder may be a reason for the suppressio
the density-wave instability at low temperatures. On
other hand, unrelated to the disorder, the low-tempera
properties are determined by the details of the inherent e
tronic band structure of the material. The latters could
essentially different from those of ET2TIHg~SCN!4 due to
the presence of the Se atoms. Further studies are necess
understand the crucial factors responsible for the lo
temperature ground state in the system.
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Modeling a dimer state in CuGeO 3 in the two-dimensional anisotropic Heisenberg model

ten.
with alternated exchange interaction
S. S. Aplesnin

L. V. Kirenski� Institute of Physics, Siberian Branch of the Russian Academy of Sciences, 660036
Krasnoyarsk, Russia
~Submitted 28 March 1997!
Zh. Éksp. Teor. Fiz.112, 2184–2197~December 1997!

The two-dimensional Heisenberg spin-1/2 model with alternated exchange interaction along thec
axis and an anisotropic distribution of the exchange interaction in the lattice,Jb /Jc50.1, is
examined. A quantum Monte Carlo method is used to calculate the phase diagrams of the
antiferromagnet, the dimer state in a plane, the value of the alternationd of the exchange
interaction, and the anisotropyD512Jxy/Jz of the exchange interaction,D;d0.58(6). The
following characteristics are calculated forD50.25: the dependence of the temperature
of the dimer-state–paramagnet transition on the alternation of the exchange interaction,
Tc(d)50.55(4)(d20.082(6))0.50(3), the singlet–triplet energy gap, and the dependence of the
magnetization on the external field for some values ofd. The value of the exchange
interaction,Jc5127 K, the alternation of the exchange interaction,d50.11Jc , and the correlation
radius along thec axis, jc'28c, are determined. Finally, it is found that the temperature
dependence of the susceptibility and the specific heat are in good agreement with the experimental
data. © 1997 American Institute of Physics.@S1063-7761~97!01912-4#
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At liquid-helium temperatures the compound CuGeO3 is
in a nonmagnetic state separated from the excited state b
energy gapE. The value of this gap in the spectrum
magnetic excitations is known from inelastic neutron scat
ing experiments (EN523.5 K; see Refs. 1 and 2!, from elec-
tron spin resonance~EPR! experiments (EESR52265 K; see
Ref. 3!, and from the temperature dependence of the m
netic specific heat (EC530 K; see Ref. 4!. The magnetic
susceptibility rapidly tends to zero along all three axes wh
T,Tc514 K holds ~see Refs. 5 and 6!, and so does the
integral spin-resonance intensity.7,8 Measurements of the
magnetization in strong magnetic fields reveal a jump
magnetization,DM'0.025mB , in critical fieldsHc along the
a, b, and c axes at Hca512.9 T, Hcb512.4 T, and
Hcc513.6 T ~see Ref. 8!, which also points to the presenc
of an energy gap.

Most researchers~see, e.g., Refs. 6 and 8! relate the
formation of a dimer state in CuGeO3 to a spin–Peierls tran
sition. Crystal structure studies reveal a doubling of the cr
tal cell along thec and a axes when the lattice constan
along these axes change by approximately 0.2% at temp
tures lower thanTc514 K ~Ref. 9!. Measurements of lattice
constants and the energy gap at high pressures~up to 4
GPa!10,11 do not suggest that a spin–Peierls transition ta
place in CuGeO3, since the lattice constantc is practically
pressure-independent, while the gap increases by 20%. C
rimetric studies in the vicinity ofTc reveal a similarity in the
jump in the specific heat,DC'0.12 J mol21 K21 ~Ref. 4!,
which roughly amounts to 7% of the specific heat
T514 K. According to the model of a spin–Peierls tran
tion, the jump in specific heat atTc in the Hartree–Fock
approximation isDC51.43gTc (g52kB

2/3J) ~Ref. 12!, and
for CuGeO3 the theoretical estimate ofDC'5 J mol21 K21
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In another model it is assumed that there is a com
peting antiferromagnetic interactionJ2 along thec axis that
involves next-nearest neighbors. In this model there is
energy gap in the absence of dimerization of the lattice,
the susceptibility is well described in the high-temperatu
region with the parametersa5J2 /J150.36 andJ15160 K
~Ref. 13!. However, the calculated transition temperatu
proved to be higher than the experimentally observed va
T.14 K. To resolve this contradiction, Castillaet al.14 pro-
posed considering a spin–Peierls interaction in an antife
magnet with a,ac50.25 ~Ref. 15!, with a50.24, and
J15150 K, i.e., as if the gap was caused by weak dimeri
tion of the lattice and the temperature behavior ofx(T) was
due to the competition of exchange interaction. This mod
however, does not describe the magnetization curveM (H)
in strong pulsed fields,16 and most neutron-diffraction
studies17–19 do not reveal this fairly strong interaction o
about 37 K. Besides, the introduction of impurities with
this model does not facilitate the formation of antiferroma
netic order. In Ref. 20 the present author suggested allow
for four-spin exchange, which forms a singlet–triplet g
and describes fairly well the temperature behavior ofx(T) in
CuGeO3; however, the four-spin exchange constant has
unrealistic value if the anisotropy of exchange is taken i
account.

In all the models mentioned above it is assumed that
spin system is one-dimensional. Nishiet al.18 used neutrons
to find the three exchange parametersJc5120 K,
Jb /Jc50.1, andJa /Jc520.01 along the three directions
No interactionJ2 along thec axis was detected. Using th
crystal structure parameters, Khomskiiet al.21 calculated the
exchange interaction parameters, Jn

c511.6 meV,
Jb /Jc'0.06, Ja /Jc'2331025, Jnn

c /Jn
c50.2320.3, and

estimated the spin–Peierls transition temperature in

1196-08$10.00 © 1997 American Institute of Physics
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the number of nearest chains, andl8 is the spin–phonon
coupling constant. For CuGeO3 we havel850.2Jc ~Ref.
22!, and the calculated value of the spin–Peierls transit
temperatureTSP;38 K exceeds the experimental valu
Tc

expt514 K severalfold. All the models ignore the anisotro
of susceptibility, which in the vicinity of the maximum sus
ceptibility amounts to roughly 30%; the anisotropy of t
paramagnetic Curie pointub /uc'0.75 ~Ref. 5!, and the an-
isotropy of the critical fieldsHca /Hba51.055~Ref. 8!. Thus,
analysis of the experimental data shows that CuGeO3 is a
quasi-two-dimensional magnetic material with anisotro
exchange interactions, has a gap in the excitation spect
and has a zero spin average at a site.

As in the one-dimensional model, we consider the alt
nation of the exchange interaction between the nearest ne
bors along thec axis. The alternation of this interaction ca
be caused not only by nonlinear displacements of atoms
lated to a structural phase transition but also by nonlin
interactions between the spin and phonon subsystems, w
the frequencies of the elastic lattice vibrations are close
magnon frequencies. In CuGeO3, Nishi et al.18 detected a
softening of the phonon mode from 34 cm23 at 300 K to
30 cm21 at 5 K. Several questions arise in connection w
this model: Can a dimer~singlet! state form in the two-
dimensional Heisenberg model? What effect will the anis
ropy of the exchange interaction have on this state? Wha
the dependence of the energy gap between the ground
excited states on the size of alternation of the exchange
teraction? If we establish the magnetic structure, we can c
jecture about the nature of the elementary excitations and
possible effects of doping CuGeO3 with nonmagnetic impu-
rities.

One approach to solving these problems, which foll
from the experimental data, is to use the quantum Mo
Carlo method based on the trajectory algorithm.23 The main
idea of the algorithm is to transform aD-dimensional quan-
tum problem into a (D11)-dimensional classical problem
by introducing ‘‘temporal’’ sections in the space of th
imaginary time 0,t,1/T and to carry out the Monte Carl
procedure in the ‘‘imaginary-time–coordinate’’ space.

2. THE MODEL

Let us consider a two-dimensional lattice with spi
S51/2 localized at the lattice sites and the spin–spin bo
between the nearest spins distributed anisotropically.
cording to the experimental data of Nishiet al.,18 the ex-
change interaction along one of the axes is roughly ten tim
stronger than along the other:Jb /Jc50.1. The exchange in
teractionJc is alternated along thec axis, which we denoted
by z, i.e.,J1,111

c 5J01d andJ111,112
c 5J02d. This nonuni-

formity in the exchange interaction is due to lattice dist
tion, J1,111

c 2J111,112
2 5l8(u12u111) ~here u is the dis-

placement of the atom from the equilibrium position!, and to
the anharmonicity of the vibrations. The Hamiltonian is

H52
1

2 (
i , j 51

L H Ji , j
z~b!Si

zSj
z1Ji , j

x,y~b!
Si

1Sj
21Si

2Sj
1

2 J
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2 (
i , j 51

L H ~Ji , j
z~c!1~21! jdz!Si

zSj
z1~Ji , j

x,y~b!

1~21! jdx,y!
Si

1Sj
21Si

2Sj
1

2 J 2(
i 51

N

hzSi
z , ~1!

whereJb,0 is the anisotropic interaction along theb axis,
Jz(b).Jx,y(b); Jc,0 is the anisotropic interaction along thec
axis,Jz(c).Jx,y(b); dz(x) is the measure of alternation of th
exchange interaction along thec axis;H5hz/Jc is the exter-
nal magnetic field along the axis external magnetic fi
along thec axis; andL is the linear dimension of the lattic
(N5L3L).

To transform aD-dimensional quantum system into
(D11)-dimensional classical system, we partition t
Hamiltonian into terms with different types of coupling an
use the Trotter formula for decomposing an exponen
operator:24

eA11A21A31•••1Ap5 lim
m→`

@eA1/meA2/meA3/m•••eAp/m#m,

~2!

wherem is a positive integer known as the Trotter numb
Suzuki25 proved an equivalence theorem on the corresp
dence between the partition function of aD-dimensional
quantum system and the partition function of
(D11)-dimensional classical system. The partitioning of t
Hamiltonian into terms is arbitrary; often it is the even a
odd terms that are grouped separately. For a fixedm the
condition ~2! is approximate, and increasing the size of t
cluster makes the calculation errors smaller, as shown in
26. We partition the Hamiltonian~1! into four-spin clusters
~Fig. 1! with overlapping values of the exchange interactio
J, which enter into the clustersA andB with a weight equal
to 1/2:

FIG. 1. Partitioning of a lattice into four-spin clusters described by
HamiltoniansHA andHB . The lattice is three-dimensional and consists
spatial coordinates (i , j ) and the ‘‘time’’ (m). Local ~1!, loop ~2! ~dashed
line!, and global~the heavy straight line 3! rotations of spins were per-
formed in the lattice.
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H5H 1H 5 (
i , j 51

~H2i 21,2j 211H2i ,2j !

1 (
i , j 51

L

~H2i 21,2j
B 1H2i ,2j 21

B !, ~3!

and themth approximation of the partition functionZ(m)
has the form

Z~m!5TrF H expS 2
bHA

m DexpS 2
bHB

m D J mG , ~4!

whereb51/kBT. Whenm tends to infinity,Z(m) becomes
the exact partition function in the thermodynamic lim
Since all four-spin clusters commute with each other in ev
part of the Hamiltonian,HA or HB, we have the following
expression forZ(m):

Z~m!5Tr@~LALB!m#

5TrF H )
i , j 51

L

expS 2
bH2i 21,2j 21

A

m D
3expS 2

bH2i ,2j
A

m DexpS 2
bH2i 21,2j

B

m D
3expS 2

bH2i ,2j 21
B

m D J mG . ~5!

Let us form a complete orthogonal set of state vect
s r5$Si , j ,r%, i , j 51,2,...,L, r 51,2,...,4m. Then

Z~m!5(
sr

^s1uLAus2&^s2uLBus3&•••~s2muLAus1&. ~6!

The expression for the classical partition function of
N34m three-dimensional lattice can be written as

Z~m!5(
$sr %

)
^ i , j ,r &

exp~2bE~ j ,i ,r !!. ~7!

HereE( i , j ,r ) is the energy of a block of eight spins and
determined by the matrix element

exp~2bE~ i , j ,r !!

5^Si , j ,rSi 11,j ,rSi , j 11,rSi 11,j 11,r u

3exp~2bHA,B~ i , j !!uSi , j ,r 11Si 11,j ,r 11

3Si , j 11,r 11Si 11,j 11,r 11&. ~8!

This 16316 matrix HA,B( i , j ) consists of four independen
matricesT15(232), 2T25(434), andT35(636). The
eigenvalues and eigenvectors of the matricesT1 andT2 can
be calculated analytically and those of the matrixT3 , nu-
merically.

There are three types of spin flip that are used in
Monte Carlo procedure: loop, local, and global~Fig. 1!. All
spins on the specified lines rotate according to the transi
probability, which is determined by the change in the lo
energy~8!. The zero matrix elements~8! correspond to infi-
nite energy and are excluded from the procedure. Spin r
tions on horizontal lines have an infinitesimal probability
occurring and do not participate in the procedure eith
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in the Trotter direction and on the lattice. The linear dime
sion of the latticeL was set at 40, 48, and 64 andm, at 16,
24, and 32. The number of Monte Carlo steps per spin va
from 3000 to 10 000. A single Monte Carlo step is defined
the rotation of all spin on anL3L34m lattice. The energy
E and the specific heatC were calculated by the following
formulas:

E5K 1

2 (
i , j ,r

Fx,y
r L , Fi , j

r 52
]~ ln r i , j

r !

]b
, C5

dE

dT
. ~9!

Here ther i , j
r are the matrix elements of the local dens

matrix ~i , j 51,...,L and r 51,...,m!. The sum is over
L3L3m eight spin clusters, and the angle brackets deno
thermodynamic average. The magnetizationM and the lon-
gitudinal susceptibilityx are defined as follows:

M5K (
i , j ,r

M i , j
r L , x5

M

H
,

Mi , j
r 5

1

4m (
hx ,hy50

1

~Si 1hx , j 1hy

r 1Si 1hx , j 1hy

r 11 !, Si561.

~10!

We calculated the longitudinal spin–spin and four-spin c
relation functions,R(r )5^S0

zSr
z& and ^Si

zSi 11
z Si 1r

z Si 1r 11
z &,

and their Fourier transforms along the sides and diagona
the lattice normalized to 1/S2 and 1/S4 ~S is the spin!, re-
spectively:

Sz~q!5
1

L (
r 51

L

exp~2 iqr !^S0
zSr

z&,

^tqt2q&5
1

L (
r 51

L

exp~2 iqr !^S0
zS1

zSr
zSr 11

z &. ~11!

We define the thermodynamic average of the spin at a sit
s5 limr→`Au^S0

zSr
z&u. The correlation radiusj of spin–spin

interaction and the pre-exponential exponenth are defined as
follows:

R~r !5A/r h exp~2r /j!, ~12!

where R(r ) is the normalized correlation function
R(r )5u^Sz(0)Sz(r )&2^Sz&2u.

Let us now calculate the correlation functions of the n
mal type for spin operators,̂S1(0)S2(r )&, by the Hirsch
method.27 The idea of this method is that the world lines a
broken in the Trotter direction at a distancer 5m and the
wave functions in theSz-representation are compared at th
distance, and then their asymptotic behavior is determi
for m→0. Calculating these correlations involves a ne
Monte Carlo procedure with free boundary conditions in t
Trotter direction and doubles the computation time.

The statistical error in the Monte Carlo calculations w
estimated by standard methods. The average value was
culated, the instantaneous value was stored, and a
completion of the Monte Carlo procedure the standard de
tion was calculated. The error was found to vary from 0.1
2%. A systematic error emerges becausem is finite; the error
is proportional to roughlyA/(mT)2.
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3. EFFECT OF THE ANISOTROPY OF THE EXCHANGE
INTERACTION ON THE STABILITY OF THE
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ANTIFERROMAGNETIC STATE IN ALTERNATION OF THE
EXCHANGE INTERACTION

When the exchange interaction in a magnetic materia
anisotropic, there is a tendency of long-range antiferrom
netic order of the Ne´el type to set in in the material. Alter
nation of the exchange interaction forms a dimer state, wh
the pairs of the nearest spins form a singlet. An isolated
has a gap between the singlet and the triplet,Ec5Jx,y. The
correlation functions of the nearest neighbors in a singlet
in an anisotropic antiferromagnet without alternation (d50)
are related as follows, respectively:^S0

1S1
2&52^S0

zS1
z&, and

^S0
zS1

z&@^S0
1S1

2&. According to the model of resonant va
lence bonds, pairs of spins coupled by strong interacti
(J01d) are in the singlet state, and between the other p
of spins there is no interaction along thec axis. Then the
four-spin correlation function in the longitudinal comp
nents, represented by the product of these p
q5^S0

zS1
zSr

zSr 11
z &2^S0

zS1
zSr 11

z Sr 12
z &, is much larger along

odd distances than along even. Between the antiferrom
netic state and the state of resonant valence bonds there
mixed state, where between the singlets positioned at a
tance equal to the correlation radiusj there are correlations
in the longitudinal components of spin. At a certain distan
these correlations tend to zero,^S0

zSr
z&→0, and the spins do

not interact. In this way the magnetic materials is partition
into unrelated microregions, in which ordinary spin exci
tions can propagate. According to Schulz and Ziman,28 the
limited size of these regions causes a gapEc;1/j to occur in
the excitation spectrum. A dimer state becomes ene
preferable to Ne´el order because of the large contribution
entropy into the free energy; for instance, the entropy sa
fies S; ln W, where W5CN

d 5N!/d!(N2d)!, with d the
number of dimers.

To find the dependence of the region of stability of t
antiferromagnetic and dimer states on the measure of a
nation, we must calculate the above characteristics at
temperature,T/J50.06 and 0.125, for a number of values
the parameter of anisotropy of the exchange interact
D512Jx,y/Jz50.1, 0.2, 0.25, 0.3, 0.4, and 0.5. The critic
value of alternation,dc , at which long-range antiferromag
netic order is disrupted, is determined by the disappeara
of magnetization at a site and can be found from the infl
tion point of the dimerization parameterq. Dimers are also
formed in magnetically ordered states. For instance, the
correlation function in the transverse components increa
along thec axis and decreases along theb axis. The energy
of a dimer state is higher than the energy of the antifer
magnetic state and increases with the alternation of the
change interaction as a power function,E2EAF5Adb,
where the exponentb increases with the anisotropy of th
exchange interaction and atD50 is equal to 1.5~1!. After the
transition to a dimer state is completed, the correlations
tween the spins in theb-direction weaken drastically:^S0

zS1
z&

decreases severalfold. This is due to the formation of sin
pairs along thec axis. To determine the magnetic structu
we printed out the instantaneous values of the magnetiza
at a site and the spin correlation functions^S0

zS1
z& at a site.
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relation to each other.
Knowing the dependence of the spin–spin correlat

functions on the distance in the three directions,c, b, and
along the diagonal, we can find the correlation radius and
average dimensions of the ordered region of the soliton ty
The correlation radius diverges in the vicinity of the critic
value dc as a power function:j55(4)/(d2dc)

0.50(5).
Within 10% this function is universal and is independent
the anisotropy of the exchange interaction. For the isotro
case the exponent is different:j55/d0.70(4). The nonunifor-
mity of the exchange interaction in value enhances quan
fluctuations and leads to a second-order antiferromagn
dimer-state phase transition ind. The phase boundary of thi
transition can be approximated by the power la
D5A(d2B)a with the fitting parametersA51.060.8,
B50.060.01, anda50.5860.06.

4. THE THERMODYNAMIC CHARACTERISTICS OF A DIMER
STATE AS FUNCTIONS OF TEMPERATURE

For CuGeO3 the anisotropyD of the exchange interac
tion amounts to 0.25, so that from the relationshipD;d0.58

we can estimate the critical value of alternation of the e
change interaction along thec axis atdc'0.09; above this
value a dimer state is realized in CuGeO3. For a given an-
isotropy of the exchange interaction we can find the dep
dence of the temperature of the transition from a dimer s
to a paramagnetic state ond and the dependenceEg(d) of
the energy gap between the singlet and triplet states from
calculated magnetization vs. field-strength curvesM (H). By
comparing the experimental valuesTc

expt and Mexpt(H) with
the calculated values we can find the values of the excha
interaction Jc0 and alternationd. The critical temperature
Tc , at which all correlations between the dimers disappe
is determined from the four-spin correlation by the ma
mum in dq/dT. The excitation of the singlet is the triple
with Sz50, which is the cause of a strong decrease in
correlation function in the transverse components along thc
axis as the temperature increases. Along theb axis, where
there is no alternation of the exchange interaction, the te
perature behavior of correlations between nearest neigh
is similar to the behavior in a magnetically ordered phas

In the majority of papers discussed in Ref. 29 it is a
sumed that the main excitation in a dimer state is a spin
when one dimer is torn apart and a system of two opposi
directed spin is formed, with the spins located at certain d
tances from each other, which is equivalent to a soliton
citation in a one-dimensional chain of spins. This is tr
when the chain has a degenerate ground state of single
the sites~12!~34!~56!••• and of another type~23!~45!~67!•••
~see Ref. 21!. In the model with alternating bonds, an amou
of energyDE equal to 3d is lost when the singlet is trans
ferred to a neighboring site. The probabilityW of triplet
formation is proportional to exp(2Jx,y/T). If the average dis-
tance between triplets,p;1/W, exceeds the characterist
size of a dimer correlation,p.j, there is no interaction be
tween the triplets. The approximation of the correlation
dius depicted in Fig. 2a by power and exponential cu
leads to a more complicated excitation pattern. For an an

1199S. S. Aplesnin



tropic antiferromagnet (d50) aboveTN one can observe a
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typical power-law behavior:j50.50(5)/(T20.134(8)). In
the dimer state in the vicinity of a dimer-state–paramag
transition (T.0.6Tc), the approximationj5A/T exp(d/T)
produces the smallest error. AboveTc the temperature de
pendence of the correlation radius is independent of the
ternation of the exchange interaction. Possibly, atTc there is
crossover of the temperature dependence ofj from exponen-
tial to power-like, where the crossover depends on a cha
in the nature of the excitations.

The gain in energy of the dimer state is achieved due
exchange in the transverse components of the sp
E2EAF;d1.5. Hence the smaller the value of the correlati
function ^S0

1S1
2&, the smaller the energy in absolute valu

The emergence of a spin moment at a site~say, a triplet with
Sz50) fixes the short-range magnetic order but does
substantially change the correlation function in the longi
dinal components. Hence the Fourier transforms of this fu
tion are practically independent of temperature in the dim
phase, including the Fourier transform in the reciprocal
tice vector,Sz(Q) ~Fig. 2b!. In an anisotropic antiferromag
net, Sz(Q) drastically varies above the Ne´el temperature. In
CuGeO3, the intensity of inelastic neutron scattering in t
vector Q for T,14 K is also temperature-independent17

Figure 2c depicts the temperature dependence of the in
sity of inelastic neutron scattering and the results of Mo
Carlo calculations with alternation of the exchange inter
tion, J0c5127 K andd50.15. The agreement with exper
ment becomes better if we take a smaller value of the in
mogeneity of the exchange interaction,d50.11. This,
however, requires using a larger lattice and hence a la
number of Monte Carlo steps, which is impossible with t
current computer. The dependence ond of the temperature o
the dimer-state–paramagnet transition is well approxima
by the power functionTc(d)50.55(4)(d20.082(6))0.50(3).

The data on specific heat support the assumption
there is a gap between the ground and excited states~Fig.
3b!. The approximation of the temperature dependence
C(T) by a two-level system~of the Schottky type! does not
describe the results even qualitatively. The specific heat
dimer state is well approximated by an exponential funct
similar to the one for an anisotropic antiferromagn
C5A exp(2Eg/2T), where Eg is the gap between th
ground and excited states. From this approximation it f
lows that the ratioEg /Tc is approximately 2.1~1! and agrees
well with the experimental data,Eg

expt/Tc
expt52.14 ~see Ref.

4!, and so does the temperature behavior ofC(T) for T,Tc ,
which is depicted in normalized units in Fig. 3c. Above t
transition temperature the susceptibility increases~Fig. 3a!,
since dimers (S50) still exist and as a result of heating a
gradually transformed into triplets. The magnetic state m
be considered a dimer gas in a paramagnetic matrix. Th
are two possible explanations of the experimental data
specific heat and susceptibility aboveTc . The first is that the
dimer-state–paramagnet transition is of a spin–Peierls
and that the structural transition belowTc514 K alternates
the exchange interaction. Then forT.14 K the specific heat
the susceptibility and the neutron scattering intensity
CuGeO3 vary with temperature in the same way as they do
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FIG. 2. ~a! Temperature dependence of the correlation radiusj along thec
axis for d50 ~1!, 0.3 ~2 and 3!, and 0.5~4! at L564 ~2! and 48~3!. ~b!
Temperature dependence of the Fourier transformSz(Q) in the reciprocal
lattice vectorQ5p/c for d50 ~1!, 0.3 ~2 and3!, and 0.5~4! at L564 ~2!
and 40~3!. ~c! Temperature dependence of the normalized intensity of
elastic neutron scattering inQ5p/c, Sn(Q)5S(Q,T)/S(Q,T54 K) ~2;
data taken from Ref. 17!, and the results of Monte Carlo calculations fo
d50.15 ~1! at Jc5127 K.
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FIG. 3. Temperature dependence of the su
ceptibility in the fieldH/J50.01~a! and the
specific heat~b! for d50 ~1!, 0.3 ~2!, and
0.5 ~3!. The inset in Fig. 3a depicts the tem
perature dependence of the normalized su
ceptibility x/xmax of CuGeO3 ~1; data taken
from Ref. 5!, and the results of Monte Carlo
calculations ford50.15 ~2!. ~c! Tempera-
ture dependence of the normalized speci
heatC(T)/C(Tc): ~1! the results of the ex-
periment of Kobayashiet al.,4 and ~2! the
results of Monte Carlo calculations.
an anisotropic antiferromagnet. The second is that the non-
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linear anharmonicity of lattice vibrations drives the value
alternation of the exchange interaction up with increas
temperature. In this case the specific heat will increase un
heating aboveT.14 K, which qualitatively agrees with th
experimental data~Fig. 3c!. The temperature behavior o
susceptibility calculated ford50.15 on the assumption tha
there is a spin–Peierls transition and that calculated on
assumption thatd is temperature-dependent~corresponding
to Tc(d), i.e., susceptibility is taken atTc! coincide when
expressed in normalized unitsx/xmax and are in good agree
ment with the experimental data depicted in the inset to F
3a.

The field dependence of the magnetization along thc
axis, depicted in Fig. 4, can be used to determine the crit
field Hc and the jump in magnetization,DM , for different
values ofd. ForH.Hc the correlated dimer state disappea
The critical fieldHc is the field strength at which the deriva
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its maximum~Fig. 4b! and long-range ferromagnetic orde
sets in,̂ S0

zSr 5L/2
z &Þ0, although the correlations between th

nearest neighbors remain negative up to higher magn
field strengths~Fig. 4a!. Hence in such fieldsM (H) depends
on the alternation of the exchange interaction. The satura
field Hc2 coincides with the classical valu
Hc252zS(Jc1Jb). The magnitude of the jump in magnet
zation ~the inset in Fig. 4c! increases according to a powe
law: DM50.05(d20.08)0.5. Such a dependence follow
from the fact that the size of the region of correlating dime
amounts tojcjb and the emergence of one triplet is th
region yields a magnetic moment of order;2/jcjb ; for in-
stance, at d50.11 we have jc528, jb'5, and
DM;0.013mB . Plugging the experimental valu
DM50.025mB ~see Ref. 8! into the theoretical dependenc
DM vs. d, we can find the value of alternation of the e
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FIG. 4. ~a! Field dependence of the
spin correlation functions for the
dimer state ford50.15 ~1 and3! and
0.3 ~2 and4! at distancesr 51 ~1 and
2! and r 532 ~3 and 4! along thec
axis. ~b! Field dependence of the
dimerization parameterq for d50.15
~1! and 0.3~2!. ~c! Field dependence
of magnetizationM for d50.3 ~1! and
0.6 ~2!. The inset in Fig. 4c depicts the
dependence ofM on the reduced field
strengthH/Hc for d50.15 ~1! and 0.3
~2! and the experimental data~3! taken
from Ref. 8.
change interaction,d50.11(1), in CuGeO3 and the transi-
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zero. Since a Ge atom affects two Cu–O–Cubonds, silicon
op-
e
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rgy
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hat
tion temperatureTc /J50.11, which corresponds to the valu
of the exchange interactionJ0c5127 K.

The magnetic structure being investigated can help p
dict effects to which diamagnetic dilution over the sites c
lead. For instance, substitution of zinc atoms for copper
oms at the critical concentrationx50.015– 0.02~Ref. 30!
and substitution of Ga for Cu~Ref. 31! in CuGeO3 lead to an
increase in susceptibility in the low-temperature region a
to formation of antiferromagnetic order, according to antif
romagnetic resonance data.32 Substitution of Si atoms for Ge
atoms atx50.7% also leads to formation of antiferroma
netic order at low temperatures.33 A silicon atom is smaller
than a germanium atom, and according to theoret
estimates17 the exchange interactionJc is approximately

1202 JETP 85 (6), December 1997
e-
n
t-

d
-

al

doping breaks two bonds. When zinc is substituted for c
per, bonds along thec axis are also broken. This disrupts th
motion of dimers and diminishes the entropy contribution
the energy. According to Monte Carlo calculations, the e
ergy of a dimer state atd50.11 exceeds the energy of
ferromagnetic state by 3%, which corresponds to an ene
of roughly ;2 K per spin. Dilution at such concentration
leads to a similar~in order of magnitude! decrease in the
energy:EDS(x)/EDS(0)'122x. In diluted CuGeO3, the c
axis is the easy-magnetization axis and the spin-flop fi
amounts toHc'1 to 2 T ~Ref. 34!. If the impurity does not
substantially alter the anisotropy fields, the value of the m
ment at a site can be estimated from the fact t
Hc /J;zsA2D, i.e., s;0.01mB , and the Ne´el temperature
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the exchange interaction field,Tc;2 K; this is in fairly good
agreement with the experimental data.30,31 There is also an-
other way to estimate the effective moment. For instan
when one spin is removed from the correlating antiferrom
netic region of sizejcjb , an odd number of spins are lef
and the contribution of each such spin to the effective m
ment is roughly 1/jcjb;0.0072mB at the critical concentra
tion xc50.7%. Lack of oxygen in CuGeO3 can lead to such
effects, and because of the disruption of chemical bond
diamagnetic copper atom may form. Petrakovski� et al.7

showed how thermal treatment can affect the magnetic p
erties of CuGeO3. Lack of oxygen acts like a paramagnet
impurity: divergence of the susceptibility is observed and
M vs H dependence is nonlinear.

Thus, in a two-dimensional Heisenberg model with a
isotropic bonds and alternated exchange interaction a co
lating dimer state can form, i.e., the magnetic materia
separated into finite regions with antiferromagnetic order,
gions characterized by the presence of an energy gap
tween the ground and excited states. For CuGeO3 we have
found the dimensions of such a region along thec and b
axes,jc'28c andjb'5b, the value of the exchange inte
action,Jc5127 K, and the alternation of the exchange int
action,d50.11Jc , for T,14 K. The paramagnetic susce
tibility and the specific heat forT,Tc are well described by
this model. The linear increase in the specific heat in
paraphase could be caused by nonlinear anharmonicity
instance, the nonalternation of the exchange interaction
creases because of the nonlinear spin–phonon interac
The small value of the magnetic moment at the critical va
of the magnetic field,Hc , is related to the formation of on
triplet (S51) in the correlating region whose size
jcjb'140bc, and this region can be a soliton. The solit
gas has a critical temperature of the transition to
paraphase, and the Fourier spectrum of the pair spin cor
tion function in this state is weakly temperature-depend
and qualitatively coincides with the temperature depende
of the integral intensity of inelastic neutron scattering.

This work was supported by the Krasnoyarsk Regio
Science Fund~Project No. 6F0004!.
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A theoretical study is performed of the anomalous Hall effect in granular alloys with giant
magnetoresistance. The calculation is carried out within the Kubo formalism and the Green’s
function method. The mechanism of asymmetric scattering of the spin-polarized current
carriers is considered with allowance for a size effect associated with scattering not only by one
grain, but also with more complicated processes of transport among two and three grains.
It is shown that scattering of conduction electrons by the interfaces of the grains and the matrix
has a substantial effect on the magnitude of the anomalous Hall effect and determines its
sign. In general, correlation between the quantitiesrH andr2 is absent, whererH is the Hall
resistivity andr is the total resistivity of the granular alloy. However, numerical
calculation shows that for certain values of the model parametersrH;r3.8 and for these same
parameter values the amplitude of the giant magnetoresistance reaches 40%, which is
found to be in quantitative agreement with the experimental data for Co20Ag80 alloys @P. Xiong,
G. Xiao, J. Q. Wanget al., Phys. Rev. Lett.69, 3220~1992!#. It is also shown that
increasing the resistivity of the matrix leads to a significant growth in the anomalous Hall effect,
and more substantial growth for alloys with small grain size, which is in good agreement
with experiment@A. B. Pakhomov, X. Yan, and Y. Xu, J. Appl. Phys.79, 6140~1996!; @X. N.
Jing, N. Wang, and A. B. Pakhomov, Phys. Rev. B53, 14032~1996!#. © 1997 American
Institute of Physics.@S1063-7761~97!02012-X#
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Magnetic granular alloys are inhomogeneous magnet
which ferromagnetic metallic grains similar in size to
single-domain magnet are randomly distributed in the pa
magnetic or diamagnetic matrix of a metal or insulator. A
though the study of electron transport phenomena in s
systems was begun more than 20 years ago,1 the many
anomalies in the dependence of the various kinetic effe
~resistivity, thermal conductivity, thermoelectric power, Ha
effect! on the magnetic field, concentration and size of
grains, temperature, etc. in both metal–metal alloys
metal–insulator composites were only recently discove
~see, for example, Refs. 2–6!.

The presence of spin-dependent scattering of conduc
electrons in the bulk and on the surface of the grains, s
dependent potential barriers at the intergranular conta
along with classical and quantum size effects, all of wh
are characteristic of magnetically inhomogeneous syste
together with the inhomogeneity in the size and shape of
grains are the reason, on the one hand, for the wide varie
observed properties and, on the other, for substantial d
culties in their theoretical interpretation.

By now, the main mechanisms of giant magnetores
tance in metal–metal granular alloys have been reliably
tablished and explained. In a number of papers~see, for ex-
ample, Refs. 7–9!, it has been shown that gian
magnetoresistance in granular alloys is of the same natu
in multilayer structures and spin-valve sandwiches, i.e., i
related to spin-dependent scattering of electrons in the b
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by Zhang and Levy8 is based on the concept of sel
averaging of the probability of scattering of spin-polariz
current carriers, and is valid providedl @r 0 , wherel is the
mean free path of the electrons andr 0 is the radius of the
grains or intergranular distance. For real granular alloys w
giant magnetoresistance this condition is obviously not m
Recently, Vedyaev et al.9 proposed a new quantum
statistical approach to the description of giant magnetore
tance in granular alloys, based on the Kubo formalism a
the Green’s function method, which does not make use of
concept of self-averaging and allows one to explain the
served dependence of giant magnetoresistance on the si
the grains.

A no less interesting effect, revealing unusual behav
in granular alloys, is the anomalous Hall effect. The H
field in ferromagnets can be written in the form10,11

Ey5R0Bzj x14pRsMzj x , ~1!

whereBz is the magnetic induction,Mz is the magnetization,
j x is the current density,R0 is the coefficient of the norma
Hall effect, due to the action of the Lorentz force, andRs is
the coefficient of the anomalous Hall effect. The latter co
ficient is associated with the effect of spin–orbit coupling
the scattering of spin-polarized current carriers. For homo
neous crystalline ferromagnets with small-to-moderate im
rity content, the anomalous Hall coefficientRs

b , due to the
grain material, is described well by the relation

1204-07$10.00 © 1997 American Institute of Physics
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wherer is the resistivity anda andb are constants of arbi
trary sign, where the first term is associated with skew s
tering and the second with both skew scattering and the s
jump mechanism.11 The coefficientRs

b is usually called the
anomalous Hall constant,10,11 since it is independent of th
magnetization and the magnetic field. It can be taken
granted that the main anomalous Hall carriers in alloys
transition metals ared-like electrons, since spin–orbit cou
pling is significantly greater for them than it is fors-like
electrons, and the relatively small mean free path of thd
states presents no obstacle to the appearance of the an
lous Hall effect.11

Experimental studies of the anomalous Hall effect
metal–metal and metal–insulator granular alloys have
covered a number of facts that have not found even qua
tive explanation within the framework of the well-develop
theory of this effect in homogeneous alloys or in the effe
tive medium theory for composites.12 We note some of thes
results.

1. In the system Co20Ag80, after annealing, which alter
the size of the grains and the amplitude of giant magnet
sistance, instead of a correlation of type~2! for the residual
~4.2 K! anomalous Hall effect, the relationRs;r3.7 is
observed.4 For the granular alloys (Co70Fe30)xAg12x it has
also been established that a correlation of type~2! does not
hold, either for variation of the grain concentration or f
variation of the temperature.13

2. At 77 K, the Hall coefficientRs.0 for the granular
alloys (Co70Fe30)xAg12x whereas for the homogeneous a
loys Co20Ag80, Rs

b,0 ~Ref. 13!.
3. The coefficientRs for the granular alloys Co20Ag80

depends markedly on the magnitude of the magnetic fi
and in a nonmonotonic fashion.3

4. In granular metal–insulator alloys the coefficientRs

grows abruptly with decreasing concentration of ferrom
netic metallic grains, and reaches giant values~three to four
orders of magnitude greater thanRs

b! near the percolation
threshold.5,6

Efforts recently undertaken14,15 to explain some of these
results for alloys with giant magnetoresistance in terms
the Zhang–Levy model8 were based on the concept of se
averaging and were of a purely qualitative character. In p
ticular, within the framework of the Zhang–Levy model, it
not possible, for the same values of the parameters cha
terizing scattering from the grain surfaces, to explain cor
lation of the typeRs;r3.7 and giant magnetoresistance am
plitudes of up to 40% in Co20Ag80 alloys at low temperature

In the present paper, within the framework of the Ku
formalism and the Green’s function method, we construc
theory of the residual anomalous Hall effect of granular
loys. Of primary concern for us will be the effect of scatte
ing at the grain–matrix interface on the possible types
correlation betweenRs andr. As in previous studies on th
theory of the anomalous Hall effect in inhomogeneo
alloys,11 we restrict the discussion to the mechanism of sk
scattering and show that in this case it is possible to exp
most of the observed effects.
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By definition ~1!, the anomalous Hall coefficient of
granular alloy is

Rs5
sxy

4pMz
r2, ~3!

wheresxy is the off-diagonal, linear~in the spin–orbit cou-
pling! part of the conductivity tensor~expression~3! assumes
that sxy!sxx and sxx5syy5r21!. For systems with giant
magnetoresistance, the quantityr obviously depends on the
magnetic field, but the ratiosxy /Mz can also be a function o
the magnetic field by virtue of the fact that a magnetic fie
alters the character of spin-dependent scattering in the
tem. The effect of a magnetic field onRs is considered in
Ref. 16, but here we calculate the coefficientRs and the
anomalous Hall resistivityrH54pRsMz for the state of
magnetic saturation, for which, as a rule, the anomalous H
effect is observed.

The granular alloy model proposed here consists in
following. We assume that all ferromagnetic grains are id
tical spheres with radiusr 0 ; the type, concentration, and dis
tribution of the impurities in the bulk of the grains and ne
the grain–matrix interfaces may vary; both thed-like and
s-like conduction electrons are characterized by a quadr
dispersion law, and their scattering by impurities is we
(kFl )21!1; the effect of potential barriers on passage of
electron through an interface is not considered.

For weak scattering and a quadratic dispersion law,
Kubo formula for the antisymmetric part of the conductivi
tensor takes the form

sxy5
e2\

4pV
Tr^vxG̃

ret~e!vyG̃
adv~e!&e5eF

, ~4!

where G̃ is the total Green’s function with allowance fo
spin–orbit coupling, and angular brackets denote quant
statistical averaging. In the linear approximation in the spi
orbit coupling

G̃5G1GTG1GHsoG, ~5!

where T is the matrix operator of isotropic scattering b
impurities, andHso is the spin–orbit coupling operator
whose matrix elements have the form11

Hkk8
so

5
1

N (
l

ei ~k2k8!•RlHl
so~k2k8!, ~6!

Hl
so~k2k8!5 is~k•k8!za0

2 Mz

Ms
l l

so~k2k8!, ~7!

where a0 is the lattice parameter andl l is the spin–orbit
coupling parameter for the impurity located at the siteRl ; l l

is proportional to the scattering potential of this impurityVl

~Ref. 11!, and the indexs is equal to11(21) for states with
spin aligned~anti-aligned! with the magnetization~up-spin
and down-spin!.

Then it follows from Eqs.~4!–~7! that to lowest order in
the scattering potentialVl

1205Vedyaev et al.
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FIG. 1. Diagrams for calculation of the Hall conductiv
ity sxy of a granular alloy.
~s! 2 Mz e2\ \2
2 2 2

nd
.

a
fo

.

Ref. 9, and is based on finding the Green’s functions

in

nt

on-

e
lat-
ll
sxy 522sa0 Ms 4pV m2 N~eF! (
k,k8,k9

kxky8 uGku

3uGk8u
2^^l~ l !k,k8

so Vk8k9
l Vk9k

l &&k5k85k95kF
, ~8!

whereN(eF) is the density of states at the Fermi level a
the double brackets denote configurational averaging
what follows we will consider the contribution tosxy of only
one subband, e.g., the subband of states with up-spin. Tr
forming to ther representation, we obtain an expression
the nonlocal Hall conductivity of a granular alloy:

sxy~r ,r 8!522a0
2 Mz

Ms

e2\V

4p

\2

m2 S p\

4e2D 2S 2m

\2 D 4

N~eF!

3E dr 9sxx~r ,r 9!^^l l
so~r 9!Vl

2~r 9!&&sxx~r 9,r 8!,

~9!

where sxx(r ,r 8) is the nonlocal conductivity of the alloy
The method of calculatingsxx(r ,r 8) is explained in detail in
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G(r ,r 8), where the pointsr and r 8 are found either in the
same grain, in the matrix, in neighboring grains, or finally,
a grain and in the matrix. The calculation ofsxy(r ,r 8) is
more complicated, since the integrand in Eq.~9! is a function
of the coordinates of three points (r ,r 8,r 9) and is therefore
defined by the sum of the contributions of the eight differe
scattering processes depicted in Fig. 1.

We stress that since we assume that the matrix is n
magnetic,Hso50 for an impurity in the matrix, by virtue of
which the pointr 9 can lie only in a ferromagnetic grain~in
its bulk or on its surface!. Therefore, taking advantage of th
form of the Green’s functions and the technique for calcu
ing sxx(r ,r 8) used in Ref. 9, it is possible to calculate a
eight contributions~Fig. 1!; then, integrating overr 9 and r 8
in expression~9! and averaging overr , we find the contribu-
tions of the grains and the matrix tosxy . The contribution
sxy

m of the grains is defined by the diagrams~Fig. 1! in which
point 1 is found in a grain, and the contributionsxy

nm of the

1206Vedyaev et al.



matrix—by the diagrams in which point 1 lies in the matrix.
in

ng

sxy
m 5sxy

m~b!1sxy
m~s! , ~10!
Finally, these two contributions are different for impurities
the bulk of the grains (sxy

m(b) ,sxy
nm(b)) and on their surface

(sxy
m(s) ,sxy

nm(s)). The final expressions for the correspondi
contributions have the form
1207 JETP 85 (6), December 1997
sxy
nm5sxy

nm~b!1sxy
nm~s! , ~11!

where
sxy
m~b!522

a0
2Mz

Ms

e2\VkF
4

4p

\2

m2

lm
so~122xm!

Axm~12xm!
F eF

pkFN~eF!l m
G3/2S 2m

\2 D 4

N~eF!H l m
2 2

3l m
4 I 0

4r 0
F2S 2r 0

l m
D1

3l m
3 l nmI

8r 0
2

3expS 2
2r 0

l m
DFS 2r 0

l m
D1

3N1l m
3 I

16r 0R2 expS 2S 1

l nm
2

1

l m
D r 0DexpS 2

2R

l nm
DFS 2r 0

l m
D F l m

2 FS 2r 0

l m
DexpS 2S 1

l nm
2

1

l m
D r 0D

2 l nm
2 FS 2r 0

l nm
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3l m
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64r 0
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2R
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l nm
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D

3expS 4S 1

l nm
2

1

l m
D r 0D F l m

4 F2S 2r 0

l m
DexpS 4S 1

l nm
2

1
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D r 0D2 l nm

4 F2S 2r 0
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D G1

3N2l m
2 I 1

16pr 0R4 expS 2
4R
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D

3expS 6S 1

l nm
2

1

l m
D r 0DFS 2r 0
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D F l m

2 FS 2r 0

l m
DexpS 2S 1

l nm
2

1
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D r 0D2 l nm

2 FS 2r 0
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2R2 expS 2
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D
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1
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D r 0D S 12expS 2

2r 0
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Axs~12xs!
F eF
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2r 0

l m
D S 12expS 2
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sxy
nm~b!522
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2Mz
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e2\VkF
4

4p

\2

m2

lm
so~122xm!

Axm~12xm!
F eF

pkFN~eF!l m
G3/2S 2m
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32~~R2r 0!32r 0
3!

3expF4S 1
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sxy
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4p

\2

m2

ls
so~122xs!

Axs~12xs!
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sinh x

x
, F1~x![coshx2x,

l nm , l m , andl s are the mean free path of the electron in t
matrix, in the grains, and on the surface of the grains, resp
tively, R is the mean intergranular distance,c is the volume
concentration of the grains,xm andxs are the impurity con-
centrations, andlm

so and ls
so the spin–orbit coupling con

stants in the bulk and on the surface of the grains, resp
tively. To find the resulting Hall conductivity of the granula
alloy, because of the different conductivity of the grains a
matrix it is necessary to use the effective-fie
approximation.12 The desired expression then takes the fo

sxy5K K sxy
i

~s i12s!2L L ^^~s i12s!22&&21, ~16!

where i 5m,nm. In general, the Hall conductivitysxy and
the ordinary conductivity can be mediated by differe
groups of electrons, so we denote the corresponding pa
eters in the expression forsxy

i by the subscript (d), and in
the ordinary conductivitys i by the subscript (s). It is con-
venient to normalize the results of calculation for the H
conductivity of a granular alloyrH54pRsMz by the corre-
sponding valuerH

b 54pRs
bMz

b for a homogeneous massiv
ferromagnetic material in which the type, concentration, a
distribution of the impurities are the same as in the bulk
the grains; here we also assume thatMz5cMz

b .

3. RESULTS OF CALCULATION; DISCUSSION

As follows from an analysis of the derived analytic e
pressions~10!–~16!, scattering by the surfaces of the grain
the classical size effect~whose magnitude depends on t
ratio of the grain radiusr 0 to the characteristic mean fre
path l ), and the conductivity of the matrix all have a su
stantial effect on the Hall resistivity of a granular alloy.

The type, concentration, and distribution of impuriti
near the grain–matrix interface determine the correspond
mean free pathl s , the magnitude of the parameterps of
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spin-dependent scattering from the surface, and the sur
Hall resistivity rH

s 54pRs
sMz

s , which by definition is equal
to the Hall resistivity of a massive ferromagnet with th
same type, concentration, and distribution of impurities
the surface layer of the grains. As follows from express
~13!, the sign ofpH

s is in general not the same as that ofpH
b ;

therefore, for strong surface scattering the Hall resistivity
a granular alloyrH can have the opposite sign of the Ha
resistivity rH

b of the parent ferromagnetic metal or allo
Such a situation was recently observed13 for granular
(Co70Fe30)xAg12x , alloys which is a direct confirmation o
the significant role of surface scattering in granular syste

Interestingly enough, if spin-dependent surface scat
ing always amplifies the giant magnetoresistance, then it
both increase ~for rH

s /rH
b .0) and decrease ~for

22,rH
s /rH

b ,0! the Hall resistivity. Therefore, there is i
general no universal correlation for granular alloys betwe
rH and r or giant magnetoresistance. We have found
numerical calculation that for alloys with giant magnetor
sistance, grain concentrationc520%, and mean grain siz
varying between 20 and 60 Å, the relationrH;rn does hold,
where the exponentn depends substantially on the nature
the surface scattering~Fig. 2!. For l s /a054 we haven53.8,
and the amplitude of the giant magnetoresistance, calcul
in the same model and with the same parameters, rea
40%. This is found to be in quantitative agreement with t
results of Ref. 4 for the anomalous Hall effect and gia
magnetoresistance of Co20Ag80 alloys. We recently obtained
a power-law dependencerH;rn with n53.7 for the Zhang–
Levy model, but for model parameters that did not descr
giant magnetoresistance.14

Let us now consider how the size of the grains affe
the anomalous Hall effect~see Fig. 3!, and whether this in-
fluence can be described by some simple relation. On
basis of an analysis of the theory of the size effect for
case of thin films, proceeding from qualitative arguments
authors of Ref. 15 proposed the following relation for t
Hall resistivity of a spherical grain:

rH5rH
b 1rH

s B~ l ,r 0!P2
l

r 0
S 11Ps

l

r 0
D , ~17!

FIG. 2. Correlation between the Hall resistivityrH /rH
b and total resistivity

r/rb of a granular alloy, having the form (rH /rH
b );(r/rb)n; c50.2,

pb50.2, ps50.52, l m(s)5120 Å, l m(d)520 Å, l nm5200 Å, rH
s /rH

b 51,
r 0520– 80 Å. The powern depends on the nature of scattering by t
surfaces of the grains:l s /a052, n53.1 ~curve1!; l s /a054, n53.8 ~curve
2!; l s /a056, n54.3 ~curve3!.

1208Vedyaev et al.
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wherePs is the Fuchs–Sondheimer surface reflection para
eter andB( l ,r 0)'0.2 for l /r 0<1. Figure 3 plots the result
of a calculation of the Hall resistivity of a granular alloy as
function of grain size employing relation~17! and the more
consistent theory~10!–~16!. As could be expected, the tw
approaches yield the same trends, namely thatrH grows as
the grain sizer 0 is decreased, and all the more so for stro
surface scattering. Note that the proposed theory allows
only for the size effect associated with scattering in o
grain, but also more complicated transport processes
tween two and three grains which, of course, are not
scribed by relation~17!.

Above we assumed that electronic states with defin
spin polarization~for concreteness, anti-aligned with the r
sulting magnetization! are responsible for the anomalou
Hall effect, and we did not distinguish between the mean f
path of the anomalous Hall carriers,l (d) , and the mean free
path of thes-like states,l (s) , with the same spin polarization
We now show that the possible difference betweenl (d) and
l (s) is not fundamental. Figure 4 plots the results of a cal
lation of the dependence ofrH /rH

b on l (d) for fixed mean
free path of thes statesl (s)5100 Å. It can be seen that thi
dependence is weak and monotonic, and that even for s
values ofr 0 and l (d)5 l s/10 the Hall resistivity is decrease
by not more than twofold. This has to do with the fact th
the Hall conductivitysxy depends onl more weakly than the

FIG. 3. Dependence of the Hall resistivityrH /rH
b of a granular alloy on the

size of the grains r 0 ~c50.2, pb50, ps50,
l 5 l m(s)5 l m(d)5 l mn5 l s /a0550 Å, rH

s /rH
b 51!; 1! relation ~17!, 2! rela-

tions ~10!–~16!.

FIG. 4. The Hall resistivityrH /rH
b of a granular alloy for fixed mean free

path of thes states plotted as a function of the mean free path of thed states
~c50.2, pb50.2, ps50.52, l m(s)5150 Å, l nm5200 Å, l s /a052,
rH

s /rH
b 510!; 1! r 0550 Å, 2! r 0530 Å, 3! r 0510 Å.

1209 JETP 85 (6), December 1997
-

g
ot
e
e-
-

e

e

-

all

t

ordinary conductivitys, sincesxy arises only in the higher
Born approximations in the scattering potential. Howev
the situation can change if a potential barrier~absent or sub-
stantially reduced for thes states! exists for thed states at
the grain–matrix interface. This would lead to significa
changes inrH /rH

b , which are not observed in experimen
Unfortunately, since the quantityrH /rH

b depends strongly on
the surface scattering and not only on the type of carrier
is difficult to judge the type of carrier of the anomalous H
effect from the magnitude ofrH . For this reason it is also
difficult to judge the existence of potential barriers for the
in granular systems.

Let us now consider how the conductivity of the matr
affectsrH /rH

b . With decreasing mean free pathl nm in the
matrix ~Fig. 5!, the Hall resistivity can grow by more tha
two orders of magnitude, the effect being most pronoun
for small grains (r 0510 Å). These trends are found to be
agreement with experimental data on the giant anoma
Hall effect in the granular systems~NiFe!SiO2 ~Refs. 4 and
5! and Fe~SiO2! ~Ref. 16! near the percolation threshold
Such a large effect arises due to the fact that in the case
high-resistivity matrix, due to shunting, an electron trav
mainly via grains where, in multiple collisions with the su
faces of the grains under conditions of the size effect,
skewness of its own motion increases many-fold. Obviou
along with this, the structure of the percolation cluster a
the nature of the contact between the grains will play a ro
These two factors are not taken into account here, but
lead to additional enhancement of the anomalous Hall eff

The proposed quantum-statistical model makes it p
sible to explain the many observed regularities of the ano
lous Hall effect in granular alloys. All previous efforts12,14,17

were based on the concept of self-averaging and were
purely qualitative character. It is worth noting that the pr
posed model contains a number of parameters. Such pa
eters as the concentration and size of the grains and the
purity concentration are easily determined experimenta
The characteristic mean free paths of the electron can als
reliably determined from the experimental data on the re
tivity and the anisotropic magnetoresistance,8,9,11,14and the
spin–orbit coupling parameters according to calculations
the anomalous Hall effect for crystalline ferromagnets11 are

FIG. 5. Dependence of the Hall resistivityrH /rH
b of a granular alloy on the

mean free path of an electron in a nonmagnetic matrixl nm ~c50.2, pb50.2,
ps50.52, l m(s)5150 Å, l m(d)520 Å, l s /a052, rH

s /rH
b 51!; 1! r 0550 Å,

2! r 0530 Å, 3! r 0510 Å.
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very close to the spectroscopic data for the spin–orbit cou-
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4P. Xiong, G. Xiao, J. Q. Wanget al., Phys. Rev. Lett.69, 3220~1992!.
5A. B. Pakhomov, X. Yan, and Y. Xu, J. Appl. Phys.79, 6140~1996!.
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pling of the isolated atoms.
In conclusion, we dwell briefly on a question in th

theory of the anomalous Hall effect that has been alre
discussed for 40 years, specifically, what is the domin
mechanism of this effect? Despite the fact that it has b
noted more than once in the literature that the side-ju
mechanism does not permit an explanation of much of
data for disordered crystalline11 and amorphous18,19 alloys,
and that under no conditions can its role exceed that of s
scattering,11 a number of authors continue to take it to be t
main mechanism~see, for example, Ref. 20!. In the present
paper we have proposed a theory of the anomalous Hal
fect that explains the experimental data for granular all
taking into account only the mechanism of skew scatteri
which is an additional confirmation of its dominant role.
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Temperature dependence of surface impedance of Tl 2Ba2CaCu2O82d and YBa 2Cu3O6.95
single crystals measured in the microwave band
A. A. Zhukov, M. R. Trunin, A. T. Sokolov, and N. N. Kolesnikov

Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka,
Moscow Region, Russia
~Submitted 5 June 1997!
Zh. Éksp. Teor. Fiz.112, 2210–2222~December 1997!

The real partRs and the imaginary partXs of the surface impedanceZs5Rs1 iXs of
Tl2Ba2CaCu2O82d and YBa2Cu3O6.95 single crystals have been measured with high precision at
frequencyv/2p59.4 GHz in the temperature range 0,T,140 K. In the Tl2Ba2CaCu2O82d

crystal a linear temperature dependenceRs(T) has been found forT<50 K, and the magnetic field
penetration depthl(4.2 K)5Xs(4.2 K)/vm0'3760 Å has been measured. Along with well
known features of the functionZs(T) in high-quality YBa2Cu3O6.95 single crystals, such as the
linearity of l(T) andRs(T) for T,Tc/3 and a maximum ofRs(T) at T;Tc/2, the
linearity range ofl(T) extends toT.50 K, and this curve has a plateau in the range
60,T,85 K. The curve ofRs(T) in both the superconducting and normal states of YBa2Cu3O6.95

is well described by a two-fluid model with the electron–phonon mechanism of quasiparticle
relaxation. A formula describing the curve ofl2(0)/l2(T) throughout the studied
temperature range is also given. ©1997 American Institute of Physics.@S1063-7761~97!02112-4#
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11
Measurements of the surface impedanceZs5Rs1 iXs of
high-Tc superconductors in the microwave band yield info
mation about the scattering mechanism, density of states,
nature of the superconducting paring in these compound
particular, much attention is being focused on the symme
of the order parameter in high-Tc superconductors.1 This dis-
cussion was prompted by the observation of a linear te
perature dependence of the magnetic field penetration de
l(T)5Xs(T)vm0 , in the ab-plane of Yba2Cu3O6.95

~YBCO! single crystals in the low-temperature range.2 Such
a dependence, which is very unusual in the case of isotr
s-pairing, was readily interpreted in terms of thedx22y2 sym-
metry of the order parameter,3 when the Fermi surface ha
lines of zero order parameter. Later research demonstr
that Dl(T) in YBCO can be linear with temperature in a
s-type two-band model,4 when the superconducting state
the band of Cu–O chains becomes gapless owing to the m
netic impurity scattering, and also in models with a mix
(d1s) symmetry.5 To date, linear curves ofl(T) in the
rangeT,30 K have been detected not only in YBCO hig
quality single crystals fabricated by different techniques,6–8

but also in Bi2Sr2CaCu2O8 ~BSCCO!9 and Ba0.6K0.4BiO3

~BKBO! perfect single crystals.10 Another common feature
of high-Tc single crystals detected in numero
experiments6–10 is the linearity of the surface resistance wi
temperature in the low-temperature range,DRs(T)}T. At
frequencies of about 10 GHz the curve ofDRs was linear in
the range up toT;Tc/2 ~Refs. 9,10! ~hereTc is the critical
temperature!, whereas in YBCO single crystals6–8 this curve
is linear in the range of up toT<Tc/4, and at higher tem-
peratures the curve ofRs(T) has a broad peak at aboutTc/2.
In high-Tc superconductors the shape ofRs(T) is largely
determined by scattering of quasiparticles. Calculations
the case of inelastic scattering due to antiferromagnetic
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model taking into account electron–phonon scatterin
showed a peak on the curve ofRs(T) in the intermediate
temperature range. However, until now no microsco
model predicts a linear temperature dependence ofRs(T).

The paper describes an experimental technique tha
lows us to measure the surface resistanceRs(T) and reac-
tanceXs(T) versus temperature in HTSC single crystals a
frequency of 9.4 GHz over a broad temperature range. T
technique has been used to measure for the first time
surface impedance of Tl2Ba2CaCu2O82d ~TBCCO! single
crystals as a function of temperature. Curves ofRs(T) and
Xs(T) measured in YBCO samples have been analyzed
terms of the two-fluid model suggested in our earl
publications.8,10

2. EXPERIMENTAL TECHNIQUE

The surface impedance of small samples was meas
by the ‘‘hot-finger’’ technique suggested by Sridhar a
Kennedy.13 Its underlying idea is to place a sample fixed to
sapphire rod at the center of a cylindrical superconduct
cavity resonating in theTE011 mode, i.e., at the maximum o
a homogeneous microwave magnetic field. By varying
sample temperature and measuring first the Q-factor
resonant frequency shiftD f of the cavity with a sample in-
side and then those of the empty cavity~Q0 and D f 0!, one
can determine the surface resistanceRs and reactanceXs of
the sample as functions of temperature.

This method requires that the experimental facil
should satisfy two basic conditions. First, since HTSC sin
crystals are small and their losses in the superconduc
state are low, the empty cavity should have highQ0 so that
the temperature dependence of the sample parameters c
detected against the background of the cavity parame

1211-07$10.00 © 1997 American Institute of Physics



FIG. 1. Design of the microwave cavity unit.
Second, our measurements ofQ and D f by sweeping the
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microwave frequency demand that the microwave gener
should be highly stable.

We have used a cylindrical cavity with a diameter a
height of 42 mm fabricated from niobium~Fig. 1!. The cav-
ity was immersed in the liquid helium, so it was always
the superconducting state. TheTE011 mode was driven at a
frequency of 9.42 GHz. Since this mode is degenerate~os-
cillations at theTM111 mode have the same frequency!, nio-
bium posts with a diameter and height of 5 mm were ma
on both the upper and lower lids of the cavity, which resul
in a difference between theTM111 andTE011 modes greater
than 10 MHz. The sapphire rod supporting the sample w
thermally insulated from the cavity walls owing to the hig
vacuum condition inside the cavity, which was sealed
indium O-rings. The lower end of the sapphire rod was
serted into a stainless-steel tube, which was, in turn, s
ported by an aligning Teflon mandrel. This thermal insu
tion allowed the cavity to maintain a Q of about 107 when
the temperature of the sample and rod was raised
T;140 K. The sample temperature was controlled by
computerized circuit whose block diagram is shown in F
2. Measurements from the thermometer T were processe
an analogue-to-digital converter~ADC! and fed to a com-
puter. The latter compared the measured and prescribed
peratures and transmitted the difference to a digital
analogue converter~DAC!. The resulting driving signal was
fed to amplifier Amp1 and corrected the thermal power ge
erated by a heater H. The temperature was maintained a
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range 4,T,140 K.
The high stability of the microwave frequency ('109)

was ensured by a microwave synthesizer equipped wit
phase-locked frequency control~PLFC! loop. The micro-
wave signal was fed through an isolator I1, then a fraction of
the microwave power was conducted by a directional coup
~DC! to a frequency converter~FC!. There the oscillations
with frequency 9.4 GHz were translated to the lowe
frequency band~around 50 MHz! and fed to a PLFC unit,
where the lower frequency was compared with that genera
by a reference frequency synthesizer in the megahertz b
Thus a signal proportional to the phase difference was p
duced to drive the microwave generator, and the feedb
loop was closed. The frequency was swept by changing
of the reference frequency synthesizer, which was driven
the output of a 20-bit DAC.

An electromagnetic wave generated by the microwa
synthesizer was conducted via a rectangular wavegu
through the attenuator At1 and isolator~rectifier! I2 to the
cavity coupled to the waveguides through tunable coupl
loops. Downstream of the cavity, the wave was conduc
through the isolator I3 and attenuator At2 to diode D operated
in the quadratic regime. The diode output amplified by a
plifier Amp2 was converted by an ADC and fed to the com
puter.

By varying the frequencyf sw from the microwave syn-
thesizer and measuring the voltage across the diode, we
ted the microwave power transmitted through the cavity a

1212Zhukov et al.
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FIG. 2. Box diagram of the facility measuring Q-factor an
shift of the resonant frequency as functions of temperatu
function of frequency, which was described by the conven-
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tional resonant formula:

P~ f sw!5
P0

4~ f sw2 f i !
2/ f i

211/Qi
2 , ~1!

where P0 is a constant independent of the frequencyf sw,
and f i5 f andQi5Q when the cavity contains a sample a
f i5 f 0 , Qi5Q0 when the cavity is empty. The resonant fr
quency f i of the cavity was derived from the peak positio
on the curve ofP( f sw), and the value of Q was derived from
the FWHM of the transmission curve using the formu
Qi5 f i /d f i , whered f i is a transmission bandwidth. The
of about 107 was measured to within 1%, and the reson
frequency error was within 10 Hz.

3. EXPERIMENTAL RESULTS

In our experiments, we studied TBCCO and YBC
single crystals, grown by techniques described elsewhere8,14

They were shaped as plates with characteristic dimension
13130.1 mm ~TBCCO! and 1.531.530.1 mm ~YBCO!.
t

of

ĉ-axis was aligned with the microwave magnetic field a
high-frequency currents circulated in theab-plane.

Figure 3 shows Q~squares! and the shift of the resonan
frequency~circles! of the cavity versus temperature with
TBCCO sample inside. The surface resistanceRs and reac-
tanceXs were derived from measured curves ofQ(T) and
D f (T) using the relations

Rs~T!5Gs@Q21~T!2Q0
21~T!#, Xs~T!5

2
2Gs

f 0
@D f ~T!2D f 0~T!#1X0 , ~2!

whereGs is the geometrical factor of the sample andX0 is an
additive constant. The parameterX0 was calculated by equat
ing the imaginary and real parts of the impedance in
normal state,Rs(Tc)5Xs(Tc). The factorGs for a sample
with known dimensions was calculated assuming that
magnetic field strength on the sample surface was equa
the field amplitude at the center of the empty cavity. W
calculated the geometrical factor of one sample using
FIG. 3. Measurements of 1/Q and D f versus temperature in a
TBCCO single crystal.
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~2!, measured values ofQ(Tc) and the resistivity
r(Tc)52R2(Tc)/vm0 . This value ofGs derived from ex-
perimental data was 40% lower than the calculated one
our subsequent analysis, we took into account this correc
to calculations of the geometrical factor.

The surface resistanceRs(T) and reactanceXs(T) of the
TBCCO single crystal as functions of temperature are plo
in Fig. 4. For T>Tc15112 K these parameters are equ
Rs(T)5Xs(T), which corresponds to the normal skin-effe
condition. The value R(Tc1).0.19V corresponds to
r(Tc1).100 mV•cm. On both theRs(T) andXs(T) curves,
the features corresponding to two superconduct
transitions with critical temperaturesTc1.112 K and
Tc2.81 K are clearly seen. According to Simonov a
Molchanov,15 the first transition occurs in the
~Tl1.85Cu0.15!Ba2~Ca0.875Tl0.125!Cu2O8 ~or 2212! phase, and
the second in the TlBa2~Ca0.87Tl0.13!Cu2O7 ~or 1212! phase,
which, in contrast to the 2212 phase, has no TlO~3! planes. A
single crystal TBCCO containing only one phase has
been fabricated as yet.

Figure 5 shows how the magnetic field penetration de
l(T)5Xs(T)/vm0 and surface resistanceRs(T) of the
TBCCO single crystal depend on the temperature in the l
temperature range. The valuel(4.2 K)'3760 Å is approxi-
mately twice as large as the value ofl~0! in the 2212 phase
with the critical temperatureTc'100 K.16 The function
Rs(T) is linear over the interval 4,T<50 K. By extrapolat-
ing this curve toT50, we obtain the residual resistanc
Rres[Rs(0)'320 mV. The small value ofRres indicates a
good quality of the crystal surface. In most other samp
the curve ofRs(T) was at a constant level ofRres.1 mV in
the rangeT,30 K.

The surface impedance components of a YBCO sin
crystal with critical temperatureTc.92 K versus tempera
ture are plotted in Fig. 6. The normal state h
Rs(T)5Xs(T), Rs(Tc).0.11V, and r(Tc).35mV•cm.
The features ofRs(T) and l(T) behavior in the supercon
ducting state is illustrated by Figs. 7 and 8. The linear sec
of Rs(T) at T<20 K is followed by a broad peak in th

FIG. 4. Surface resistanceRs and reactanceXs of a TBCCO single crystal
measured as functions of temperature.
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interval aroundT;40 K ~Fig. 7!. Such a behavior ofRs(T)
is typical of high-quality YBCO single crystals.6–8 A linear
section of the curve ofl(T) in the range ofT,30 K was
also observed previously.2,6–8 On the curve for the YBCO
crystal in Fig. 8 the parameterDl(T)}T is linear in tem-
perature in the range of up toT'50 K. By extrapolating the
curve ofl(T) to T50, we obtain the valuel(0).1400 Å,
which is characteristic of theab-plane in YBCO. On the
interval 60,T,85 K the magnetic field penetration depth
almost constant with temperature. A plateau on the curve
l(T) was detected in all YBCO crystals grown by the sam
technique,8 but the positions of these plateaus with respec
Tc/2 were different. For example, in the data of Ref. 8 t
plateau was in 35,T,65 K. Microwave measurements o
epitaxial films17 and YBCO single crystals7 also demon-
strated a feature in the curve ofl(T) at T;60 K.

FIG. 5. Surface resistanceRs and field penetration depthl5Xs /vm0 in a
TBCCO single crystal in the low-temperature range. The va
Rs(0 K)[Rres is marked by the arrow on the left.

FIG. 6. Surface resistanceRs and reactanceXs of a YBCO single crystal
versus temperature.

1214Zhukov et al.
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4. DISCUSSION

In discussing experimental curves ofZs(T), it is conve-
nient to consider concurrently the complex conductiv
ss[s12 is2 . The conductivity is related to the impedan
through a simple local formula

Zs5Rs1 iXs5S ivm0

s12 is2
D 1/2

. ~3!

Given Eq.~3!, we can obtain for normalized parameters ge
eral equations relating both the real and imaginary parts
the impedance to the complex conductivity and vice vers
both the superconducting and normal states:

Rs~T!

Rs~Tc!
5As~Tc!~w1/221!

s2w
,

Xs~T!

Xs~Tc!
5As~Tc!~w1/211!

s2w
, ~4!

FIG. 7. Surface resistanceRs(T) of the YBCO single crystal in the low-
temperature range. The straight line is a guide for the eye. The v
Rs(0)[Rres is marked by an arrow.

FIG. 8. Magnetic field penetration depthl(T)5Xs(T)/vm0 in the YBCO
crystal in the low-temperature range.
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of
in

s1~T!

s~Tc!
5

4Rs
2~Tc!RsXs

~Rs
21Xs

2!2 ,

s2~T!

s2~0!
5

l2~0!

l2~T!
5

Xs
2~0!~Xs

22Rs
2!

~Rs
21Xs

2!2 . ~5!

Here Rs(Tc)5Xs(Tc) and s(Tc)5s1(Tc) are the imped-
ance and conductivity atT5Tc , and Xs(0) ands2(0) are
the same parameters at zero temperature;l5(1/vm0s2)1/2,
w511(s1 /s2)2. Figure 9 shows the ratios defined by E
~5! for the TBCCO single crystal derived from the expe
mental data onRs(T) andXs(T) plotted in Figs. 4 and 5. The
curves in Fig. 9 have rather complex shapes defined by
contributions of two superconducting thallium phases 22
and 1212. Nonetheless, on the base of our experimental
and previous microwave measurements of
impedance,6–10 we can describe some features inZs(T) and
ss(T) common for all high-quality YBCO, BSCCO, BKBO
and TBCCO single crystals in the ranges of low, interme
ate, and subcritical temperatures.

Low temperatures, T!Tc . The common features are lin
ear sections of the curve of surface resistanceRs(T) and the
real part of the conductivitys1(T). The reactanceXs

}l(T) and imaginary part of the conductivitys2(T) are also
linear with temperature in all these HTSC materials, exc
TBCCO crystal, although the curves ofl(T) in Fig. 5 and
s2(T) in Fig. 9 have clearly defined linear sections on t
interval 20,T,50 K. Our measurements of TBCCO are,
a sense, similar to the data on the first high-quality YBC
single crystals,18 in which Rs(T) and s1(T) were linear,
whereas the functionsl(T) and s2(T) were thought to be
quadratic.

Intermediate temperatures, T;Tc/2. The common fea-
ture of Rs(T) curves for high-quality YBCO crystals manu
factured by different techniques is a broad peak in the reg
aboutT;40 K. Such a peak has not been detected in ot
HTSC materials, which, unlike YBCO, have tetragon
structures. Measurements of these crystals at;10 GHz are

e

FIG. 9. Components of the TBCCO single crystal conductivity plott
against temperature. The temperature dependent part ofRs(T) in Eq. ~5!
was determined by subtracting from the measured values ofRs given in
Figs. 4 and 5 the residual resistanceRres.

1215Zhukov et al.
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characterized by a linear growth inRs(T) up to T;Tc/2. In
this work and in recent experiments7,8 with YBCO single
crystals the features were observed in curves ofl(T) and
s2(T). The insert to Fig. 10 showss2 /s2(0) versus tem-
perature~circles! derived from the experimental data of Fi
6 using Eq.~5!. This curve has a plateau in the intermedia
range extending toT.0.9Tc . Note also that the peak o
Rs(T) in Figs. 6, 7, and 10 is less pronounced th
usual.6,8,18 Srikanth et al.7 detected a notable increase
Rs(T) in the temperature range following the peak.

Temperatures close to Tc , T→Tc . After a transition to
the superconducting state, the surface resistanceRs(T) drops
rapidly. At frequencies near 10 GHz,Rs of high-quality
YBCO crystals drops by a factor of one hundred or mo
when the temperature decreases by 1 K belowTc . NearTc ,
the curves ofs2(T) are very steep. As can be seen in F
10, the derivative @1/s2(0)#ds2(T)/dT equals 24 at
T5Tc . An identical or similar value of this derivative wa
obtained in experiments with YBCO single crystals.6–8

At present no microscopic theory describing these f
tures of the temperature dependence of the surface im
ance or microwave conductivity of HTSC crystals is ava
able. Even the linear section ofRs(T) in the low-temperature
range, which is typical of all high-quality HTSC crystal
could not be interpreted in terms of the models withdx22y2-
or anisotropics-pairing. At the same time, experimenter
attention is focused on the intermediate temperature ra
and the interval close toTc . For example, new features o
the conductivity detected recently in high-quality YBC
crystals7,19,20indicate, in the opinion of the authors, a mul
component nature of the order parameter. In the absence
generally accepted microscopic theory, it seems importan
have a phenomenological description of the microwave
sponse which would describe features common to all highTc

superconducting materials. Previously8,10 we suggested a
two-fluid model describing curves ofZs(t) in the range of

FIG. 10. Comparison between calculations~solid lines! and measurements
~dots! of the surface resistanceRs /Rs(Tc) and imaginary part of the con
ductivity s2 /s2(0) ~insert! of the YBCO single crystal. The temperatur
dependent part ofRs was obtained by subtracting the residual resistanceRres

from Rs given in Figs. 6 and 7.
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the YBCO sample.
In the two-fluid model, a crystal with carrier densityn

undergoes a transition from the normal to superconduc
state atT5Tc . As a result of this transition, the superco
ducting carriers with densityns and normal carriers with
densitynn with equal chargese and massesm coexist, the
total density beingn5ns(t)1nn(t) at all reduced tempera
turest[T/Tc<1. In the microwave band (vt!1) the con-
ductivity components in the two-fluid model are expressed
the very simple form

s15
e2t

m
nn , s25

e2

mv
ns , ~6!

wheret is the relaxation time of normal carriers. Given th
measured values ofs2(t), we derive ns(t) and
nn(t)5n2ns(t) using Eq.~6!. Therefore, the only missing
function of temperature needed for determination ofs1(t) in
Eq. ~6! and impedanceZs(t) in Eqs. ~3! and ~4! is t(t). A
reciprocal statement can be formulated, namely, the func
t(T) can be derived from the experimental data forRs(T)
ands2(t) on the base of the two-fluid model.

Previously we proved8 that all the features ofRs(T) in
YBCO single crystals discussed above can be describe
terms of the electron–phonon scattering mechanism app
to quasiparticles, whent(T) in Eq. ~6! is expressed by the
Bloch–Grüneisen formula:

1

t~ t !
5

1

t~Tc!

b1t5J 5~k/t !/J 5~k!

11b
,

J 5S k

t D5E
0

k/t z5ezdz

~ez21!2 , ~7!

where k5Q/Tc ~Q is the Debye temperature! and
b't(Tc)/t(0)!1 are dimensionless parameters. Fork@1
we derive from Eq.~7! the well-known Debye formula
1/t(t)}t5.

By puttingb50.2 andk51.2 in Eq.~7! and using mea-
sured values ofs2(t) ~circles in the insert to Fig. 10! and
vt(Tc)5@r(Tc)s2(0)#2150.004, we derive from Eqs.~6!
and~2! the ratioRs(t)/Rs(Tc) shown by the solid line in Fig.
10. As we noted in our previous publication,10 the peak of
Rs(T) at T;40 K typical of YBCO single crystals can b
described only if 1/t(t)}t5. If a term quadratic in tempera
ture and corresponding to electron–electron scattering
added to the numerator in Eq.~7!, the peak is ‘‘smoothed
out,’’ as is the case in high-Tc superconductors with a tetrag
onal structure.

The measured functions2(t)/s2(0)5l2(0)/l2(t)
5ns(t)/n plotted in Fig. 10 can be also described in terms
the two-fluid model. Att51 the derivative of this function
with respect tot equals24, which is in agreement with the
number deriving from the Gorter–Casimir two-fluid mod
@ns(t)}(12t4)# and, as follows from theoretica
calculations,21 corresponds to an average electron–phon
coupling constant larger than unity. The linear sections
l(T) and Rs(T) curves in YBCO, BSCCO, and BKBO

1216Zhukov et al.
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1V. M. Loktev, Fiz. Nizk. Temp.22, 3 ~1996! @Low Temp. Phys.22, 1
~1996!#.

,

described by the functionns(t)}(12t) , wherea is a nu-
merical parameter.10 Therefore, at an arbitrary temperatu
T<Tc the functionns(t) with the asymptotic limits in the
low-temperature range and near the critical temperature
cussed above can be described by the following formula

ns /n5~12t !a~12d!1d~12t4/d!, ~8!

where 0,d,1 is a weighing factor. The curve representi
function~8! in Fig. 10 ata55.5 andd50.15 is in fair agree-
ment with the experimental values ofs2(t)/s2(0) in Fig.
10. The entire set of curvess2(t) measured in YBCO crys
tals grown by the same technique is approximated by Eq.~8!
with the parametera'5.5 almost constant andd varying
between 0.1 and 0.5.

5. CONCLUSIONS

The paper reports on the first ever investigation of
temperature dependence of the real partRs(T) and imaginary
part Xs(T) of the surface impedance of a TBCCO sing
crystal. We have detected a linear section of theRs(T) curve
in the range ofT<50 K and measured the magnetic fie
penetration depthl(4.2 K). Common features of the micro
wave impedance and complex conductivity of all hig
quality HTSC single crystals and specific features of th
parameters as functions of temperature have been descr
The curves ofRs(T) and l(T) measured in YBCO single
crystals are adequately described by the two-fluid mo
with the electron–phonon mechanism of quasiparticle s
tering, the superconducting carrier density being descri
by a linear function of temperature atT!Tc and by the
Gorter–Casimir function nearTc .

This work was supported by Russian Fund for Fun
mental Research~Project 97-02-16836! and the Supercon
ductivity Program sponsored by the Government of Rus
~Grant 96-060!.
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Contributions to the theory of ferromagnetism in the degenerate Hubbard model

R. O. Za tsev

Kurchatov Institute, 123182 Moscow, Russia
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The possibility of ferromagnetic ordering in a generalized Hubbard model with allowance for
degeneracy and for infinite Hubbard energy is studied. The region of existence of
ferromagnetism for electron density greater than 1 is determined. It is shown that for electron
density less than 1 ferromagnetism exists only in special cases when the Fermi surface
passes near van Hove singularities. ©1997 American Institute of Physics.
@S1063-7761~97!02212-9#
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The ferromagnetic properties of transition metals
best described by the Hubbard model1 with strong repulsion
betweend-electrons located in the same unit cell. The lon
range part of the Coulomb interaction is assumed to be n
ligible, since it is compensated by the screening effect of
s electrons. The Hubbard energy is assumed to the lar
energy parameter,2 and from the outset it is assumed to
infinite.

If s–d hybridization is neglected, then the magne
properties of transition elements are determined mainly
the d-electron subband, whose width can be expresse
terms of hopping integrals. For simplicity and clarity, in th
case of interest to us, that of a cubic crystal, a model w
zero off-diagonal and identical diagonal hopping integr
will be used:

Ĥ52 (
r ,r8,s,l;rÞr8

tl~r2r 8!âr ,s,l
1 âr ,8s,l

2 (
r ,s,l

~m1sH !âr ,s,l
1 âr ,s,l . ~1!

Herem is the chemical potential,s56 is the spin index,H
is the external magnetic field, the crystal indexl takes on
three values (l5xy,yz,zx) if the t2g shell is filled, and two
values~l53z22r 2, x22y2! if the eg shell is filled.

It will be shown that for electron density less than
ferromagnetism exists only in special cases for which
Fermi surface passes near van Hove singularities. T
method makes it possible to explain the existence of fe
magnetism in Ni~see, for example, Refs. 3 and 4!.

The present work is devoted to a study of the conditio
under which ferromagnetism appears that are not assoc
with the existence of van Hove singularities. The calcu
tions are performed in the one-loop approximation for el
tron or hole densities greater than 1.

2. DENSITY RANGE N<1

In the limiting case of infinite Hubbard energy, it is co
venient to express the creation and annihilation operator
terms of theX̂ operators describing transitions between v
cant ~0! and one-particle~u0,l&! states

âr ,s,l5X̂r
~0us,l! , âr ,s,l

1 5X̂r
~s,lu0! . ~2!
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the simplest one-loop approximation, in which the se
energy partS (s) does not depend on the momentump:

nl
~s!5 f l

~s!(
p

nF~jp
~s,l!!. ~3!

Here nF(e) is the Fermi distribution andjp
(s)5 f l

(s)tp
1S(s)2m2sH is the one-particle excitation energy.

On account of the cubic symmetry the end multiplier c
be expressed in terms of the average occupation numb5

and does not depend on the numberl of the single-particle
state:

f l
~s!512(

s

k

ns
~ ŝ !2 (

sÞl

k

ns
~s!

512kn~ s̄ !2~k21!n~s!,

s̄52s. ~4!

This is also true of the self-energy part

S~s!52(
p

tp@knF~j~ s̄ !~p!!1~k21!nF~j~s!~p!!#,

~5!

wherek is the number of crystal components.
The end multiplier can be expressed in terms of the

erage number of particlesn5(l,snl
(s) and the average mag

netic moment per cellM5(l,s@nl
(s)2nl

( s̄ )#.
In zero field, all quantities can be expressed in terms

the average number of particlesn per cell:

nI
~6 !5

n

4k
, f 512nS 12

1

2kD , n52k f(
p

nF~jp!.

We obtain the spin susceptibility by differentiating E
~3!. Using the obvious conditiondn(1)52dn(2), we find
the derivative

x5
dM

dH
5

22k f D0

~12D1!@~12n!/ f #2 f D1
, ~6!

where

Dm5(
p

tp
mnF8 ~jp!. ~7!

1218-07$10.00 © 1997 American Institute of Physics
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In the limit T50, all momentsDm can be expressed i
terms of the initial density of statesr(e)5(d(tp2e).

The band calculations for the fcc nickel lattice show
very sharp peak in the density of states for energies co
sponding to filling of the degenerate hole-type (k52)
3z22r 2 andx22y2 states.

For this reason, it can be expected that the denomin
of the susceptibility~6! will vanish for some finite interval
m,0, which atT50 corresponds to the hole density ran
0,nh,0.8. The experimentally observed saturation m
netic moment in ferromagnetic nickel corresponds tonh50.6
~see Fig. 1!.

This result holds forn,1. In this range the susceptibilit
differs from that of an ideal Fermi gas by a factor mu
greater than 1. In the three-dimensional model under stu
the denominator vanishes at the limit of the range—ne51.
However, the numerator also vanishes at that point, so tha
a result the susceptibility near this density acquires a s
stantial temperature dependence,6,7 which corresponds to the
magnetism of localized one-particle states.

3. Eg ELECTRONS. DENSITY RANGE 1 <N<2

The situation in which the system resonates betw
one- and two-particle states is much more interesting. I
convenient here to introduce a new chemical poten
m2U→m and assume that there are no vacant states a

The single-particle statesâs
1u0& and b̂s

1u0& have spin
1/2. Lower-energy two-particle states3A2 have spinS51:

âs
1b̂s

1u0& ~Sz5s!,
â↑

1b̂↓
11â↓

1b̂↑
1

&

u0& ~Sz50!. ~8!

For simplicity, higher-energy1E and 1A1 states are ne
glected.

In a finite external magnetic field, the variations in t
end multipliers depend on variations in both the one-part
(nI) and two-particle (nII) occupation numbers. Taking int

FIG. 1. Magnetic susceptibility (T50) as a function of the electron densit
for various degrees of degeneracy.
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of statesa and b, the variations in the end multipliers ar
given by

f 1
~s!5nII

~s!1nI
~s! , d f 1

~s!5dnII
~s!1dnI

~s! ,

f 2
~s!5nII

~0!1nI
~ s̄ ! , d f 2

~s!5dnI
~ s̄ !52dnI

~s! . ~9!

Thus, in contrast to the preceding ‘‘one-particle’’ cas
now it is necessary to have two independent equations to
the one- and two-particle variations.

To obtain these equations, we employ the part of
expansion of the annihilation operator that corresponds
transitions between one- and two-particle states:

ârs5Ẑr5b1X̂r
~0,sus,s!1b2X̂r

~0,ŝuA0! , ~108!

whereb151 andb251/&.
We multiply this expression by an arbitrary linear com

bination of conjugateX operators

Ŷr5b1X̂r
~s,su0,s!1b2X̂r

~A0u0,s̄ ! . ~10a!

Averaging the separateT-products over states with a fixe
temperature and chemical potential, in the one-loop appr
mation we find a relation between the two-particle occu
tion numbersnII , the Fourier componentsĜv(p) of the vir-
tual one-particle Green’s function, and the end multiplie
f k .

The inverse single-particle Green’s function matrix
turn can be expressed in terms of the end multipliersf k and
in terms of the self-energy matrixŜ, which in the one-loop
approximation is independent of both frequency and mom
tum and in our model reduces immediately to the diago
form

Ĝv
k,s~p!5@dk,s~ iv2Ss1m1sH !2 f kbktpbs#

21. ~11!

We calculate theT-products in the one-loop approxima
tion:

2^T̂~ Ẑr~t!Ŷr~t10!!&5b1b1^X
~s,sus,s!&1b2b2^X

~A0uA0!&

5b1b1nII
~s!1b2b2nII

~0!

5T (
v,k,s,p

bkGv
~k,s!~p!bsf se

ivd. ~12!

Here d is a small positive correction andf s is a terminal
factor.

Differentiating Eq.~12! with respect to the magnitude o
the magnetic field gives two equations. Under the condit
b1b11b2b250 we find an equation that does not depend
the applied magnetic field:

dnII
~s!~12K0!22K0dnI

~s!

5d f 1
~s!~12K0!1d f 2

~s!~11K0!

5A~m!@dS1~s!2dS2~s!#, ~13!

where the electron~hole! density lies in the range 1,ne,2,
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K05(
p

nF~jp!54
ne21

21ne
, jp5b2f tp2m,

f 5
21ne

12
, A~m!5(

p

nF~jp!2nF~2m!

b2tp
. ~14!

For bk5bk we obtain an equation for the susceptibility,

dnII
~s!5d f 2

~s!1d f 1
~s!

5K0(
k

bk
2d f k

~s!1 f D0(
k

bk
2dSk~s!

1 f b2D1(
k

bk
2d f k

~s!2b2f D0sdH, ~15!

where

Dn5(
p

tp
nnF8 ~jp!, b1

251, b2
251/2, b253/2.

To study the one-loop self-energy diagramsS1,2, it is
sufficient to calculate the separate loops and then sum t
taking account of the commutation rules, which determ
the nonzero vertex parts of the kinematic interaction~see
Refs. 8 and 9 as well as Fig. 2!.

In the simplest model without hybridization, we hav
only diagonal self-energy parts

S1
~a,s!52A2

~ s̄ !1B1
~s! ,

S2
~a,s!52A1

~ s̄ !1B2
~ s̄ !1A2

~ s̄ !1B2
~s! ,

S1
~b,s!52B2

~ s̄ !1A1
~s! ,

S2
~b,s!52B1

~ s̄ !1A2
~ s̄ !1B2

~ s̄ !1A2
~s! . ~16!

Here

As
~s!5T (

n,v,p
tp
s,nGv

n,s~p!

FIG. 2. One-loop self-energy part. The nonwavy line represents sep
components of the virtual Green’s function, and the wavy line represents
Fourier components of the hopping integrals.
m
e

operatort̂ (p) with the matrix elements of the virtual Green
function ~11!, referred to a given projection of the spin and
given a state.

In a cubic crystal, the variation of the self-energy pa
does not depend on the number of the atomic state~a or b!,
but it does change sign when the spin projection chan
sign.

Direct calculations show that the variation in the se
energy part depends only on the transition numb
d(1

(a,s)5dS2
(b,s)5dS1(s) anddS2

(a,s)5dS2
(b,s)5dS2(s).

We obtain two equations for the variationsdSk directly
from their definition in terms of the integrals of the Green
function ~11!—the so-called one-loop approximation:

dSk
~s!52dSk

~2s!52~QWk,n2D1Uk,n!dSn
~s!

1b2D2Uk,nd f n
~s!2sD1RkdH. ~17!

The numerical matricesÛ and Ŵ, as well as the vectorR,
can be expressed in terms of the matrixŜ constructed in
accordance with Eqs.~16!

Ŝ5S b1
251 b2

251/2

b1
251 2b2

2521/2
D ,

~18!

Rk5(
n

Sk,n , Uk,n5
Rkbn

2

b2 , Wk,n5Uk,n2Sk,n .

In this caseRk5(nSk,n5(3/2,1/2). In the matrixŴ the el-
ements in the first row equal 0,W1,15W1,250, and the ele-
ments of the second row sum to zero,W2,152W2,2522/3,

U1,151, U1,25
1

2
, U2,15

1

3
, U2,25

1

6
. ~19!

The inhomogeneous term is found to be proportional to
vectorR5(3/2,1/2).

Equations~13! and~17! imply a relation that is indepen
dent of both the external field and the end multipliersf k :

b2
2~dS11dS2!5@b1

21Q~m!#~dS12dS2!. ~20!

Here jp5(01tpb
2f 2m, Q(m)5@K02nF(2m)#/ f b2,

b253/2, b1
251, andb2

251/2.
Two of Eqs.~9!, which relate the variations of the occu

pation numbers and the end multipliers, must be added
this equation. Thus, our problem is to solve the system
four equations~13!, ~15!, ~17!, and~20!.

The condition that this equation be solvable is that
determinant of the following matrix not vanish:

te
he
S 12b1
2~K01 f b2D1! 12b2

2~K01 f b2D1! 2 f D0b1
2 2 f D0b2

2

12K0 11K0 2A~m! A~m!

2D2b2b1
2 2D2b2b2

2 12D1b1
2 2D1b2

2

0 0 b2
22b1

22Q b1
21b2

21Q

D .
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Vanishing of the determinant of this matrix signifies ferro-
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magnetic instability.
Direct calculations atT50 lead to the equation

K0~12K0!~Q1b2!

52A~m!D2b2
21D1@ f ~Q1b2!~b1

22b2
21b2K0!

1K0~12K0!~Qb21b1
412b1

2b2
22b2

4!#. ~21!

All coefficients depend on the chemical potential. For
semielliptical band model, these results can be expresse
terms of the angular parametera, which varies from 0 to 2p.
In the limit T50 we have

D052
2 sin~a/2!

f pb2 , D15
sin a

f pb2 , D2D05D1
2, b25

3

2
,

A~m!5
2

pb2 H lnUtanS p2a

4 D U1sin a/2J , K05
a2sin a

2p
,

Q~m!5
K02u~a2p!

f b2 , ne52
21K0

42K0
,

f 5
ne12

12
, K05

ne21

3 f
. ~22!

The logarithmic divergence of the coefficientA(m) in the
limit m→0 in Eq. ~21! is compensated by the fact that th
determinantD2 vanishes in the limita→p. Solving Eq.~21!
numerically gives the unique solutiona052.56, ne51.26,
corresponding to the onset of ferromagnetic instability in
range 1,ne,1.26.

4. t 2g ELECTRONS. DENSITY RANGE 1 <N<2

In this case the system resonates among six sin
particle statesâs

1u0&, b̂s
1u0&, and ĉs

1u0& and nine lower-
energy two-particle states3A2:

âs
1b̂s

1u0& ~Sz5s!,
â↑

1b̂↓
11â↓

1b̂↑
1

&

u0& ~Sz50!,

~23a!

b̂s
1ĉs

1u0& ~Sz5s!,
b̂↑

1ĉ↓
11b̂↓

1ĉ↑
1

&

u0& ~Sz50!,

~23b!

ĉs
1âs

1u0& ~Sz5s!,
ĉ↑

1â↓
11 ĉ↓

1â↑
1

&

u0& ~Sz50!.

~23c!

These three groups of relations are interrelated by the cy
substitutionA→B→C→A.

In the simplest model without hybridization we hav
only the diagonal self-energy parts:

S1
~a,s!52A2

~ s̄ !1B1
~s!2C1

~s!2C2
~ s̄ ! ,

S2
~a,s!52A1

~ s̄ !1B2
~ s̄ !1B2

~s!1A2
~ s̄ !2C1

~ s̄ !2C2
~s! ,

~24!
S3

~a,s!52A4
~ s̄ !1C1

~s!2B1
~s!2B2

~ s̄ ! ,

S4
~a,s!52A3

~ s̄ !1C2
~ s̄ !1C2

~s!1A4
~ s̄ !2B1

~ s̄ !2B2
~s! ,
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is the sum of the products of the matrix elements of
transition matrix t̂ (p) with the elements of the virtua
Green’s function matrixĜv(p), referred to a given projec
tion of the spin and a givena state. We obtain six othe
equations by means of the cyclic substitutio
A→B→C→A anda→b→c→a.

Note that for a cubic crystal, the variation in the se
energy part does not depend on the number of the atomiA,
B, or C state, but it does change sign when the spin proj
tion change sign:dSs

(n,s)5dSs(s). It is also evident that
each term on the right-hand side is proportional to
squared genealogical coefficient:Ak

(s)5Bk
(s)5Ck

(s)5gk
2Q,

wheregk
25(1,1/2,1,1/2).

Substituting these numbers into the right-hand side
Eqs.~24! yields the same result for all three self-energy pa
calculated in a vanishing external magnetic field.

To find the first correction to the magnitude of the ma
netic field, we employ the general equations~17!. The realS
matrix in these equations can be constructed on the bas
Eqs.~24!:

Ŝ5S 0 2g2
251 0 0

2g1
252 22g2

2521 0 0

0 g2
251/2 0 g4

251/2

g1
251 2g2

2521/2 g3
251 2g4

2521/2

D ,

Rk5~1,1,1,1!. ~25!

The matrixUk,i5Rkgi
2/g2 thus possesses elements that

not depend on the row number. Therefore equations~17!
possess a particular solution that does not depend on
transition number:

dSk
~a,s!5dS l

~b,s!5dSm
~c,s!5dS~s!52dS~2s!.

Using these relations and the explicit expression for the o
particle Green’s function, we obtain an equation fordS:

dS~s!5D1dS~s!1D2(
k51

4

gk
2d f k

~s!2sdHD1 . ~26!

Here we use the same notation as in Eq.~15!, but in this case

g25 (
k51

4

gk
253.

The equation of state, differentiated with respect to
external field, has the same general form as Eq.~15!:

2dnII
~s!5~K01 f g2D1!(

k51

4

gk
2d f k

~s!1 f g2dS~s!D0

2 f g2sdHD0 . ~27!

However, in this equation

f 5
42nt

18
, K05(

p
nF~jp!5

nt21

9 f
.
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This becomes a complete set of equations if a relation is
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ˆ ˆ ~0,s,su3s/2!
2 ˆ ~A~yz,xz!us/2!

1 ˆ ~0,s̄ ,s̄ u s̄ /2!
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established between the variations of the one- and t
particle states. In our case this equation is independen
both the variation in the external field and the variation in
self-energy part

~12K0!dnII
~s!52K0dnI~s!. ~28!

This equation must be supplemented with two relations fr
~9! that relate the variations in the occupation numbers
end multipliers:

dnII
~s!5d f 1

~s!1d f 2
~s! , d f 2

~s!52dnI
~s! . ~29!

Thus, our problem is to solve the system of three equati
~26!, ~27!, and~28! with the additional conditions~29!.

The condition for this system to have a solution is th
the determinant of the following matrix not vanish:

S 12g1
2~K01 f g2D1! 12g2

2~K01 f g2D1! 2 f D0g2/2

12K0 11K0 0

22D2g1
2 22D2g2

2 12D1

D .

~30!

Vanishing of the determinant of this matrix signifies ferr
magnetic instability.

At T50 we obtain

K0~12K0!5D1@ f ~113K0!1K0~12K0!#. ~31!

All coefficients depend on the chemical potential. For
semielliptical band model, the integrals can be expresse
terms of the angular parametera. In the limit T50, we
again have Eqs.~22!, but with a different equation of state

K05
a2sin a

2p
, nt52

2K011

21K0
, f 5

42nt

18
, g253.

~32!

Equation~31! has only one solution, ata52.51. Ferro-
magnetic instability is therefore present at all 0,a,2.51,
which corresponds to the density range 1,ne,1.4.

5. t 2g ELECTRONS. DENSITY RANGE 2 <N<3

Neglecting hybridization among 3d and 4sp states, we
examine the case of an almost half-filledt subband, in which
electronic states resonate between two- and three-par
states. The lowest three-particle state hasS53/2 and is four-
fold degenerate in the spin projection:

âs
1b̂s

1ĉs
1u0&, Sz53s/2,

1

)

~ âs̄
1b̂s

1ĉs
1u0&1âs

1b̂s̄
1ĉs

1u0&1âs
1b̂s

1ĉs̄
1u0&),

Sz5s/2. ~33!

The three lowest triplet states with spin 1 were co
structed from the three different products of pairs of creat
operators~see Eq.~23!!.

The expansion in terms of theX transition operators be
tween the two- and three-particle states of lowest energ
determined by the three genealogical coefficients:
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ars5Xr 1A
3

Xr 1
)

Xr .

~34!

From Eq.~34! we obtain an expansion of the two other a
nihilation operators by means of cyclic substitution.

In the absence of a field, all average occupation numb
and end multipliers can be expressed in terms ofnt, the
mean number of electrons per cell. Taking account of
degree of degeneracy, we have

3nII14nIII 51, 18nII112nIII 5nt . ~35!

To find the equation of state, we express the occupa
numbers of the three-particle states in terms of the o
particle Green’s function at coinciding points

nt518nII1b2f (
s,k,p

nF~b2f ep
~k!2m!. ~36!

Here b252 is the sum of the squares of all genealogic
coefficients in the expansion~34!. We determine the excita
tion spectrum in terms of the poles of the one-parti
Green’s function, and we expressnII in terms ofnt by means
of ~36!. Summing over the spin index, we obtain the equ
tion of state:

nt5214 f K0 , f 5
5nt26

36
,

K05
1

3 (
p,k51,2,3

nF~jp
~k!!, jp

~k!5b2f ep
~k!2m. ~37!

The equations for the variations of the three-particle
cupation numbersdnIII

(3s/2) and dnIII
(s/2)52dnIII

(2s/2) can be
obtained from the general equation for the average valu
T-products of the annihilation operator~34! by a linear com-
bination of three conjugate operators with arbitrary coe
cientsbs :

b1b1nIII
~3s/2!1b2b2nIII

~s/2!1b3b3nIII
~2s/2!

5T (
1<k,n<3

(
v,p

bkGv
k,n~p!bnf n . ~38!

In the one-loop approximation, the matrix elements of t
Green’s function can be expressed in terms of the inve
matrix ~11!.

Variation of this relation leads to

b1b1dnIII
~3/2!1b2b2dnIII

~1/2!1b3b3dnIII
~21/2!

5K0@b1b1d f 11b2b2d f 21b3b3d f 3#1~b–b! f dG.
~388!

If the vectorb is assumed to be orthogonal to the vec
b, thenb–b50 and two relations that do not depend expl
itly on the variation of the magnetic field can be obtaine
The equation relating the variations of the occupation nu
bers also contains the variation of the self-energy partsdSk .
We find the first equation under the conditionsb3b35b1b1

andb2b2522b1b1:

~12K0!~dnIII
~3/2!23dnIII

~1/2!!5A~m!~dS122dS21dS3!.
~39!
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Setting b250 and b3b352b1b1 , we obtain the second

se
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S2
~a,s!52A2

~ s̄ !1B2
~s!1C2

~s!1A3
~ s̄ !1B3

~ s̄ !1C3
~ s̄ ! , ~43!

the
l
-
-

ns
orm
the

the
equation

~12K0!~dnIII
~3/2!1dnIII

~1/2!!22K0dnII5A~m!~dS12dS3!.
~40!

Here

A~m!5(
p

nF~jp!2nF~2m!

b2tp
.

The variations of the terminal factors can be expres
in terms of the variations of the occupation numbers:

d f 15dnIII
~3/2!1dnII , d f 25dnIII

~1/2! ,

d f 35dnIII
~21/2!2dnII .

Using the additional conditiondnIII
(21/2)52dnIII

(1/2), we find
the inverse relations

dnIII
~3/2!5d f 11d f 21d f 3 , dnIII

~1/2!5d f 2 ,

dnII52d f 22d f 3 . ~41!

The variationdG of the virtual Green’s function con
tains three types of terms:

b1
2dnIII

~3s/2!1b2
2dnIII

~s/2!1b3
2dnIII

~2s/2!

5K0 (
k51,2,3

bk
2d f k

~s!1 f (
k51,2,3

bk
2dSk

~s!D0

1b2f (
k51,2,3

bk
2d f k

~s!D12b2f sdHD0 . ~42!

Here

Dk5(
p

tp
knF8 ~jp!.

To study the one-loop self-energy diagrams, it is su
cient to calculate the separate loops and then sum them
ing account of the commutation rules, which determine
nonzero vertex parts of kinematic origin~see Fig. 2!.

In our very simple model without hybridization, we hav
only diagonal self-energy parts:

S1
~a,s!52A3

~ s̄ !1B1
~s!1C1

~s! ,
1223 JETP 85 (6), December 1997
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S3
~a,s!52A1

~ s̄ !1A2
~ s̄ !1B2

~ s̄ !1C2
~ s̄ !1B3

~s!1C3
~s! .

Here

As
~s!5T (

n,v,p
tp
s,nGv

n,s~p!

is the sum of the products of the matrix elements of
transition matrix t̂ (p) with the elements of the virtua
Green’s function matrixĜv(p), referred to a given spin pro
jection and a givena state. We find the remaining six equa
tions by cyclic substitution:A→B→C→A.

In the absence of a field the integralsA, B, andC differ
only in their end multipliers:Ak5Bk5Ck5bk

2n, wheren is
a correction to the chemical potential, so that atH50 all
self-energy parts~43! equal 5n/3.

We obtain directly from Eq.~43! three equations fordS
in terms of integrals of the Green’s function~11!—the so-
called one-loop approximation:

dSk
~s!52dSk

~2s!52~Fk,n
~0!2Dk,n

~1! !dSn
~s!1b2Dk,n

~2!d f n
~s!

2sdHRkD1 . ~44!

In the presence of a field, the equations for the variatio
can be written as a set of three equations of the general f
~12!, with coefficients that can be expressed in terms of
elements of the numerical matrixŜ:

Ŝ5S 2b1
252 0 b3

251/3

0 3b2
252 23b3

2521

b1
251 23b2

2522 2b3
252/3

D ,

R5S 7

3
, 1, 2

1

3D . ~45!

The matrices

D̂ ~n!5(
p

tp
nnF8 ~jp!Û

differ in their temperature factors, and are proportional to
same matrixÛn,m5Rnbm

2 /b2:
S ~2b1
21b3

2!b1
2

b2 5
7

6

~2b1
21b3

2!b2
2

b2 5
7

9

~2b1
21b3

2!b3
2

b2 5
7

18

3~b2
22b3

2!b1
2

b2 5
1

2

3~b2
22b3

2!b2
2

b2 5
1

3

3~b2
22b3

2!b3
2

b2 5
1

6

~b1
223b2

212b3
2!b1

2

b2 52
1

6

~b1
223b2

212b3
2!b2

2

b2 52
1

9

~b1
223b2

212b3
2!b3

2

b2 52
1

18

D . ~46!
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Here the following values of the squared genealogical coef-
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ficients have been used:b151, b252/3, b351/3, and
b25(kbk

252.
The operatorF̂ (0) has the formF̂ (0)5Q(m)Ŵ, where

Q~m!5
1

f b2 (
p

@nF~jp!2nF~2m!#

5
1

f b2 @K02nF~2m!#.

In the matrixŴ, the elements of each row sum to zero:

S U1,122b1
252

5

6
U1,25

7

9
U1,32b3

25
1

18

U2,15
1

2
U2,223b2

252
5

3
U2,313b3

25
7

6

U3,12b1
252

7

6
U3,213b2

25
17

9
U3,322b3

252
13

18

D .

~47!

The inhomogeneous term is proportional to the thr
component quantityR5(7/3, 1,21/3). Here we have intro-
duced the following notation for the squared genealog
coefficients:b1

251, b2
252/3, b3

251/3, andb2(kbk
252.

Since the effects of an external field and the relations
to the variation of the end multipliers are governed by
vectorR, we can obtain general relations only for the var
tions dSk . To this end we multiply both sides of Eqs.~44!
by the components of the vectorsN(6), which are orthogona
to the vectorR ~i.e. R–N(6)50!:

dSk
~s!Nk

~6 !5Q~m!Nk
~6 !Wn

kdSn
~s! . ~48!

Herel56, and the third equation can be obtained by m
tiplying by the vectorM , whose components satisfy the co
dition that they are orthogonal to the result obtain by op
ating with the operatorŴ. In other words,MnWn

kHk50 for
arbitrary vectorH. This possibility stems from the fact tha
the determinant of the matrixŴ equals 0, while none of the
principal minors vanishes. As a result we obtain

dSk
~s!Mk2SnD1dSn

~s!

5b2SnD2d f n
~s!2sdH~MkRk!D1 . ~49!

HereSn5MkUn
k .

We employ below the three auxiliary vectors

N~1 !5~10,221,7!, N~2 !5~0,1,3!,

M5~1,22/3,21!, S5~1,2/3,1/3!5bk
2 .

Ferromagnetic instability is a consequence of the res
ing set of equations having no solution. Simple calculatio
give the following condition for the onset of ferromagne
instability:
1224 JETP 85 (6), December 1997
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3$18152Q19Q22D1@26168Q235Q2#%

52D2$ f D0~213K0!@14140Q211Q2#

22A~m!@14140Q19Q2#%. ~50!

At zero temperature, whenD0D25D1
2, Eq. ~50! becomes

@3K0~12K0!2b2f tD1~213K0!#

3@18152Q19Q214D1~317Q26Q2!#

524D2A~m!~14140Q19Q2!. ~51!

The calculation of the coefficients in Eq.~51! for a
semielliptical-band model atT50 shows that ferromagneti
instability exists in the narrow density range 2,nt,2.141.

6. CONCLUSIONS

In summary, in the limiting case of infinite Hubbard e
ergy, ferromagnetic ordering emerges over narrow range
electron or hole density, each of which exceeds 1. This is
to the fact that for densities less than 1, the system reson
between vacant and one-particle states, and it exhibits
maximum tendency toward ferromagnetic ordering for an
tremely small number of electrons. The scattering amplitu
calculated for opposing values of the spin projection is po
tive, which leads to high paramagnetic susceptibility witho
the onset of ferromagnetic ordering.10

For a number of particles~or holes! greater than 1, the
system resonates betweenN- and N61- particle ~Hund!
states, which have the maximum possible value of the s
Ferromagnetic instability results from the existence of fin
spin polarization under the additional condition that the sc
tering amplitude of excitations with opposing spins is po
tive.

Experimental data show that electron states in pure i
~Fe! fall between the configurations 3d24(sp)6 and
3d34(sp)5. The saturation magnetic moment equals 2.2mB ,
which agrees qualitatively with the results of Sec. 5.
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5R. O. Za�tsev, Zh. Éksp. Teor. Fiz.70, 1100~1976! @Sov. Phys. JETP43,
574 ~1976!#.

6Y. Nagaoka, Phys. Rev.147, 392 ~1966!.
7A. Suto, Phys. Rev. B43, 8779~1991!.
8F. Dyson, Phys. Rev.102, 1217,1230~1956!.
9R. O. Za�tsev, Phys. Lett. A134, 199 ~1988!.

10J. Hubbard and K. P. Jain, J. Phys. C2, 1650~1968!.

Translated by M. E. Alferieff
1224R. O. Za tsev



Generation of soliton packets in a two-level laser

olid-
A. A. Zabolotski 
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Novosibirsk, Russia
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A variant of perturbation theory is constructed for a system of nearly integrable equations.
Perturbations of a special type are considered, which makes it possible to represent the system in
the form of compatibility condition for ‘‘deformed’’ linear systems. The corresponding
deformation of the Whitham equations is found. The mathematical apparatus is used to
theoretically examine the generation of a sequence of solitons in a two-level laser. The generation
process is described by a system of Maxwell–Bloch equations with pumping of the upper
level and with allowance for some relaxation effects. The dynamics of the transformation of the
initial perturbation into a sequence of solitons under pumping is studied. Finally, the
various generation regimes are analyzed and compared with the experimental data. ©1997
American Institute of Physics.@S1063-7761~97!02312-3#
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Describing the generation of laser pulses in nonlin
media is one of the most important problems of nonlin
physics. Much work, both theoretical and experimental,
been done in this field~see the literature cited in Refs. 1–4!.
The theoretical work mostly deals with the behavior of is
lated pulses. At the same time, it was discovered in exp
ments that for large relaxation times dense packets of pu
can be generated in a system with pumping. Such regim
especially the nature of the generated pulse packets and
characteristics, have yet to be studied in detail. The stud
nonlinear processes in amplifying media is related to solv
evolutionary equations. In most cases for such models th
is no analytical analysis of the generation of packets of
trashort pulses. Partially this is due to the analytical diffic
ties that emerge when one tries to describe the behavio
dense packets of pulses with many degrees of freed
Some of these difficulties can be overcome by employ
models that are exactly solvable or are close to being i
grable. The most detailed information about the evolution
the fields in nonlinear media can be obtained by employ
the inverse scattering method.5 This method was used t
study the characteristics of long laser amplifiers6 and to ana-
lyze the self-similar asymptotic behavior of the solutions
Raman scattering7,8 and Maxwell–Bloch models in medi
with nondegenerate9,10 and degenerate11 transitions. Some
researchers~see Refs. 12–14! also studied the mixed
boundary-value problem for a model of stimulated Ram
scattering. It was assumed that initially the medium is p
tially inverted. Both numerically and by the inverse scatt
ing method it was found that the solution has two comp
nents, a soliton component and a nonsoliton component,
that at large times the solution exhibits a nonsoliton s
similar asymptotic behavior. Formally, the equations used
Refs. 8, 12–14 to describe stimulated Raman scattering
equivalent to the Maxwell–Bloch equations for a two-lev
laser, in which a weak pulse propagating in the medium ‘‘a
sorbs’’ energy previously stored by the inverted medium

Most lasers use a different amplification scheme. F
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state lasers can be described by the Maxwell–Bloch eq
tions for a two-level medium in which the higher level
being pumped.1,4 It was noticed in experiments that the in
tial stage of pulse generation in amplifying media can
certain conditions be approximated by a modulated perio
solution. In this paper, a modulated periodic~single-phase!
solution is employed to explain the generation of solitons
a laser. Such an approach is used to describe the mod
tional instability, which sets in when a step pulse propaga
in a nonlinear medium. In the case of the Korteweg–de Vr
equation, this approach makes it possible to describe fa
accurately the transformation of a plane wave into a soli
packet. The heuristic method is based on the solution of
system of Whitham equations for the slowly varying para
eters of a periodic wave.15,5 This approach has been justifie
for several models both numerically and analytically.5

The goal of the present investigation is to explain t
generation of soliton packets in a two-level laser. To this e
a perturbation theory is developed in order to solve in
grable systems of equations of the Ablowitz–Kruska
Newell–Segur~AKNS! type.5 Here perturbations of a specia
type, i.e., perturbations that can be incorporated into
model by ‘‘extending’’ the partial derivatives, are taken in
account. The limits of applicability of this perturbatio
theory are partially compensated by the relative simplicity
the final formulas and the importance of the problems be
solved by the theory. In developing the perturbation the
we will use the results obtained for integrable models with
variable spectral parameter.16 Such models emerge in differ
ent areas of physics. Belinski� and Zakharov17,18 developed
the mathematical apparatus for constructingN-soliton solu-
tions for integrable equations of the theory of gravity, a
Mikha�lov and Yaremchuk19,20developed the necessary too
for constructing soliton solutions for the cylindrically sym
metric Heisenberg model and a model of the ‘‘main chi
field.’’ What sets the approach used in this paper apart fr
the exact methods of finding the solutions used in the c
papers is that here we study the dynamics of a dense pa

1225-08$10.00 © 1997 American Institute of Physics



of a large number of pulses. The interaction of the pulses
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with each other and the effect of pumping and relaxat
lead to modulation of the pulse packet, a process descr
by a periodic wave with slowly varying parameters.
perturbation-theory mathematical apparatus is develope
order to describe the slow deformation of the periodic wa
The apparatus can be used for a certain class of models~see
below!. To this end an appropriate generalization of t
Whitham equations is carried out. The solution of the
equations is used to analyze the nature and dynamic
pulse packets generated in a two-level laser from a w
initial plane wave. Both the stationary and time-depend
generation regimes are examined. It is found that genera
of soliton packets is possible. The results are compared
the experimental data.

The plan of the paper is as follows. In Sec. 2 a pertur-
bation theory is developed for the general AKNS system
Sec. 3 the deformed Whitham equations are derived. Th
equations take into account perturbations for the single-ph
solution. Section 4 is devoted to applying the mathemat
apparatus in describing the generation of pulse pac
within the framework of the Maxwell–Bloch equations wi
allowance for pumping and relaxation. Two types of soluti
are studied here. The first describes the time-dependent
cess of the trailing edge of a step pulse splitting into a pac
of solutions and the amplification that accompanies this p
cess. The range of applicability of this solution is discuss
The second solution describes the passage of the system
state of steady generation of solitons. The results are c
pared with the experimental data. Finally, it is establish
that the second regime agrees qualitatively with the exp
mental results.

2. PERTURBATION THEORY FOR DEFORMED INTEGRABLE
SYSTEMS

The mathematical apparatus used in this section is ba
primarily on the results of Ref. 16. Let us examine the d
formation of the integrable equations that emerges as a re
of ‘‘extending’’ the partial derivatives. Such a procedure
known to lead to integrable equations with a variable spec
parameter, provided that certain conditions are met.16 Most
often these conditions cannot be realized in physical exp
ments. We will show that they can be made less stringen
can even be dropped if the deformations are weak and s
Below we will see that for slow deformations this approa
makes it possible to study a range of parameters that ca
be reached by reduction of the integrable model.

The evolutionary equations emerge as the compatib
condition for the following overdetermined systems of equ
tions:

Fj5UF, Fh5VF. ~1!

Here U, V, and F are matrix functions ofj, h, and the
spectral parameter. Generally,U andV are rational functions
of the spectral parameterl and have the form

U~l,j,h!5u01 (
n51

N1 un~j,h!

l2ln
,
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V~l,j,h!5v01 (
n51 l2mn

, ~2!

where the simple polesln and mm do not coincide. The
compatibility condition is

Uh2Vj1@U,V#50. ~3!

Let us ‘‘extend’’ the partial derivatives:

]

]h
→Dh5

]

]h
1F~l!

]

]l
,

]

]j
→Dj5

]

]j
1G~l!

]

]l
. ~4!

Instead of the compatibility condition~3! we have

DhU2DjV1@U,V#50. ~5!

Suppose that

F52« (
m51

N1 cm

l2lm
, G52« (

m51

N2 bm

l2lm
. ~6!

Then the evolutionary equations satisfying~5! become

]hu02]jv01@u0 ,v0#50,

]un

]h
1Fun ,(

k51

N2 vk

ln2mk
G5« (

m51

N2 bmun1cnvm

~ln2mm!2 ,

]vn

]j
1Fvn ,(

k51

N1 uk

mn2lk
G5« (

m51

N1 cmvn1bnum

~lm2mn!2 . ~7!

The compatibility condition requires that

Fh1GFl5Gj1FGl ; ~8!

these relationships were obtained in Ref. 16 for exactly in
grable models. In real physical systems the conditions~8!
impose restrictions, and in most cases the physical par
eters cannot be realized. Let us show that in an approxim
theory the conditions~8! can be dropped.

Suppose thatF andG are slow functions of their argu
ments:

F5« f ~«h,«j,l!, G5«g~«h,«j,l!, ~9!

where« is a small parameter. The condition~8! is met for all
f andg to within terms of order«2. With this accuracy the
system of equations~7! satisfies the compatibility condition
~5! for arbitrary perturbations on the right-hand side. Su
perturbations can be studied by the inverse scattering me
with allowance for the ‘‘extension’’~4!. We need only re-
place the Lax representation~1! with

DjF5UF, ~10!

DhF5VF. ~11!

This representation makes it possible to use the inverse s
tering method for the perturbed system. In particular, by e
ploying this method we can build a generalization of t
Whitham equation directly in diagonal form.
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3. DEFORMED WHITHAM EQUATIONS
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As noted earlier, it is often impossible to analyze an
lytically the behavior of a packet consisting of a large nu
ber of pulses. Sometimes the dynamics of such a packet
be described by a slow packet modulation, which in turn
described by variations in the parameters of the packe
pulses. Here the parameters obey the Whitham equation
deriving the Whitham equations one assumes that the s
of modulation with respect to both variables is much larg
than the corresponding characteristics of the pulses com
ing the packet. The inverse scattering method reduces
initially complex problem of deriving the Whitham equation
to a universal procedure, and the resulting equations are
agonal. An important advantage of the suggested pertu
tive approach is that it allows deformed Whitham equatio
to be constructed diagonal form, too. Several ways of c
structing Whitham equations forN-phase solutions hav
been suggested~see, e.g., Refs. 21–23!. Here we will use a
direct generalization of the approach proposed by Flasc
et al.23 to the case of deformed systems.

Let us suppose that the general deformed AKNS sys
can be written in the form of the compatibility condition fo
the following overdetermined systems of equations:

DjF5S L11 L12

L21 2L11
DF, ~12!

DhF5S A11 A12

A21 2A11
DF. ~13!

Following Marchenko,21 we introduce the quadratic func
tions

f 5
i

2
~f1c21f2c1!, g5f1c1 , h5f2c2 , ~14!

wheref1,2 andc1,2 are distinct solutions of the systems~12!
and ~13!. These functions satisfy the following system:

Dh f 5 i ~A12h2A21g!, Dj f 5 i ~L12h2L21g!,

Dhg52iA12 f 12A11g, Dj g52iL 12 f 12L11g,

Dh h522iA21 f 22A11h, Dj h522iL 21f 22L11h.
~15!

Clearly, Eqs.~15! imply that P(l)5 f 22gh is constant, i.e.,
DjP(l)50 and DhP(l)50. The shape of the periodi
wave is determined by the dependence ofP on the spectral
data. An N-phase solution is determined by the followin
polynomial:

f 22gh5P~l!5 )
k51

2N12

~l2lk!5 (
j 50

2N12

Pjl
j . ~16!

The rootslk are fixed by the initial conditions. The follow
ing representation is valid for the generalN-phase solution
for the AKNS system:

f 5 (
k50

N11

f kl
k, g5 l ~l! (

k51

N11

gkl
k, h5p~l! (

k51

N11

hkl
k.

~17!
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such thatl (l) (p(l)) are common factors ofL12 (L21) and
A12 (A21). Following Refs. 21 and 24, we assume that

g5 l ~l! )
k51

N11

@l2mk~j,h!#, ~18!

wheremk are additional spectral variables. Plugging~18! into
~15! and settingl5mk , we arrive at a system of equation
for mk :

Djmk5
2iL 12~mk!AP~mk!

P j Þk~mk2m j !l ~mk!
, ~19!

Dhmk5
2iA12~mk!AP~mk!

P j Þk~mk2m j !l ~mk!
. ~20!

The next stage is to construct the Whitham equations
the deformed system, i.e., a system that can be represe
by the compatibility condition for the linear systems~12! and
~13!. To this end we generalize the results of Refs. 23 and
directly. From~12! and ~13! it follows that

DhS L12

g D5DjS A12

g D . ~21!

We introduce a new normalization:f 22gh51. Then ~21!
can be written as

Dh

L12~l!AP~l!

Pk51
N11~l2mk!l ~l!

5Dj

A12~l!AP~l!

Pk51
N11~l2mk!l ~l!

. ~22!

The average over the rapid oscillations can be done
replacing the integral over the phase by an integral over
additional variablesmk . The corresponding equations a
found via a Jacobi transformation.22,23 The Whitham equa-
tions are obtained as the conditions for the vanishing of
coefficients of the terms that become singular in the lim
l→lk ~the lk are the roots of the polynomialP!. A direct
check shows that these conditions for the vanishing of
coefficients of the derivatives with respect to the variablej
andh are the same as for the extended derivatives, i.e.,
generalized equations remain diagonal. We write the fi
equations in the form

]lk

]h
1Vk

]lk

]j
1F~lk!1VkG~lk!50, ~23!

where

Vk5 K 2iL 12~mk!

P j Þk~mk2m j !l ~mk!
L K 2iA12~mk!

P j Þk~mk2m j !l ~mk!
L 21

.

~24!

The formal expression for the Whitham velocity~24! con-
tains averages over the phasesWj5kjj1vkh1w0 , where
w0 , kj , andvk are constants. Equations~19! and ~20! con-
tain perturbing terms of order«. Hence, if the equations ar
used for averaging, these terms yield a correction of orde«.
We will assume that the spectral parameterslk vary slowly:
their derivatives with respect to the variables are of or
O(«). Note that this assumption agrees with the adop
hydrodynamic approximation. For this reason, allowance
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the perturbing terms in Eqs.~19! and~20! leads to anO(«2)
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correction, which is ignored in the first approximation.

4. SOLITON GENERATION IN A TWO-LEVEL LASER

Let us use the above mathematical apparatus to ana
the generation of pulse packets in a two-level laser syst
Some nonlinear processes that occur in laser systems ca
described in terms of a two-level model in which the upp
level is being pumped. Pumping can be taken into accoun
introducing a coefficientC ~see below! into the right-hand
side of the Bloch equation for the population differenc
Such a model is used to describe gas and ion lasers and
frequently, dye lasers.4 The pumping results in a consta
replenishment of the upper level. Relaxation effects pla
certain role as the system sets in in the stationary regi
Allowing for such effects is important when we examin
long pulse packets, even if the length of each pulse is sm
compared to the relaxation time. Note that the literature c
tains no analysis of the nature and dynamics of generatio
ultrashort-pulse packets and of the effect of pumping a
relaxation on this process. One reason, as noted earlier
in the substantial analytical difficulties encountered in su
analysis. The mathematical apparatus developed in Sec
and 3 makes the study of the behavior of pulse packet
amplification much simpler.

In this section we discuss two qualitatively different r
gimes of generation of soliton packets in a laser. The firs
time-dependent and is accompanied by the developmen
modulational instability and simultaneous amplification.
the second regime the system reaches the steady regim
generation very fast.

The Maxwell–Bloch equation s for a two-level mediu
are

]tQ1g2Q12inQ52
id12

\
EN, ~25!

]t N31g1~N32N0!5
id12

2\
~Q* E2QE* !1C0 , ~26!

]zE5 iN0

2pv0

cl
^Q&G . ~27!

Here d12 is the dipole moment of the transition,N3 is the
difference of level populations,Q is the off-diagonal term of
the density matrix,N0 is the number density of resona
atoms,g1,2 are the relaxation constants,t is the time lag,v0

is the transition frequency, andcl is the speed of light. The
angle brackets stand for averaging over the velocity distri
tion of the ensemble of atoms:^Q&G5*Q(n)G(n)dn. Here
we examine the case where the generated pulses are
shorter than the relaxation timesg1,2

21. Pumping is modeled
by the functionC0(z) on the right-hand side of Eq.~26!.
Below we introduce the following notation:

t5tAV, x5
zAV

cl
, V5

2pN0v0d12

\
, C5

C0

AV
.
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system of Maxwell–Bloch equations~25!–~27!. The Lax
representation for this system has the form of~12! and~13!,
where

L1152 il, L125
E

2
, L215

E*

2
,

A115
i

4 K N3

l2n L
G

, A1252
i

4 K Q

l2n L
G

,

A2152
i

4 K Q*

l2n L
G

. ~28!

The system~25!–~27! admits a Lax representation eithe
whenC(x) is arbitrary andg1,250 holds or forg15g2Þ0
andC50 ~see Ref. 16!. Nonzero values ofC andg15g2 are
possible in certain conditions,16 but it is impossible to mee
these conditions in the real physical world. Within the a
proximate theory developed above such conditions can
avoided. More than that, we can study a range of parame
in which reduction of the integrable model with a variab
spectral parameter is not achieved. For instance, in
present approach we can study effects associated with
arbitrary variations of pumping in time.

We select the following perturbation:

F~l!5«
c~x,t !

l
, G~l!5«gl,

where« is a small parameter. The first function correspon
to pumping and the second, to relaxation effects. The co
tion g15g2 is met for a gas of metal atoms. We assume t
the theory makes it possible to establish the rules valid
distinct relaxation constantsg1 andg2 , too. The present au
thor does not know of any generalN-phase solutions of the
Maxwell–Bloch model. However, such solutions clear
must have the same structure as the solutions of the no
ear Schro¨dinger equation. The difference can only be in t
values of the phase velocities. Let us use the well-kno
single-phase solution of the unperturbed model
Marchenko21 and Kamchatnov and Pavlov25 for the field
strength. For the two pairs of complex-conjugate roots of
polynomialP, i.e., for l1,35a6 ib andl2,45a06 ib0 , we
have

uE~x,t !u2

5uE~0,0!u2@~b1b0!224bb0sn2

3$A~b1b0!21~a2a0!2W,k%#, ~29!

wherek54bb0 /@(b1b0)21(a2a0)2#. The phaseW can
be found from~19! and ~20!:

W5t1 xV0
21 1t0 , V052E G~n!

4P i 51
4 ~l i2n!

dn.

~30!

For a single-phase solution we must setN52 andl (l)51 in
~15! and ~17!. From Eq.~21! we find that

DhSAP~l!

l2m D 5DjFAP~l!

V0
S 1

l2m
2 K 1

l2n L D G , ~31!
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where the angle brackets stand for averaging over the period
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T of the rapid oscillations:

T5E dW5E dm

«~c/m1gm!1AP~2m!
. ~32!

Formula~32! follows from ~19! and ~20!. As noted ear-
lier, the perturbing terms provide a contribution to t
Whitham equations, which we ignore. Hence in~32! we can
put c5g50. Then

T5
2K~k!

A~l12l3!~l22l4!
,

whereK(k) is the complete elliptic integral of the first kin
with modulusk,

k25
~l12l2!~l32l4!

~l12l3!~l22l4!
,

and the lk are the roots of the polynomialP, with
l1.l2.l3.l4 . We assume that thelk are slow functions
of their variables:lk5lk(«z,«t). Averaging according to
the formula

K 1

l2m L 5
1

T E du

l2m
5

1

T E dm

~l2m!AP~2m!
, ~33!

we arrive at the deformed Whitham equation:

]xln2
1

Vn
] tln5

g

Vn
ln1

c

ln
, ~34!

where

1

Vn
5

1

V0
F12S lnK 1

ln2m L D 21G ,
K 1

l12m L 5
~l22l3!E~k!1~l12l2!K~k!

~l12l2!~l12l3!K~k!
,

K 1

l22m L 5
~l12l2!K~k!1~l12l4!E~k!

~l12l2!~l32l4!K~k!
,

K 1

l32m L 5
~l22l4!E~k!1~l22l3!K~k!

~l22l3!~l32l4!K~k!
,

K 1

l42m L 5
~l12l3!E~k!1~l12l4!K~k!

~l12l4!~l32l4!K~k!
, ~35!

with V0 given by ~30!. For G(n)5d(n) we have
V051/4AP0, where P05l1l2l3l4 . In ~35! E(k) is the
complete elliptic integral of the second kind with the sam
modulus k. The above formulas generalize the Whitha
equations obtained by Kamchatnov and Pavlov25 to the case
of perturbed systems.

5. SOLUTIONS OF THE WHITHAM EQUATIONS FOR AN
AMPLIFYING MEDIUM

The evolutionary equations~34! have different types of
solution. Let us describe the possible scenario of soliton g
eration when an infinitely long square pulse is injected i
the system. We assume that in the process of evolution o

1229 JETP 85 (6), December 1997
n-
o
he

into a sequence of solitons. As the packet of solitons trav
through the active medium, the solitons become amplifi
Suppose for simplicity thatg is a constant andc depends
only on x. Then, using the ansatz

lk5e2gtAzk12E c~x!dx, ~36!

we can reduce Eqs.~34! to ordinary homogeneous equation
for the hidden parameterszk(x,t). Thus, the problem re-
duces to describing modulational instability of a step pu
propagating in an attenuator and to a corresponding cha
of parameters.

Modulational instability of a step pulse has been exa
ined by many researchers5 ~see also Ref. 26!. The common
way to tackle the problem is to use the heuristic Whitha
approach based primarily on the single-phase solution of
model. This solution is modulated so the plane-wave a
soliton solutions can be matched. It is often assumed in
process that the positive asymptotic solution consists o
sequence of solitons with an amplitude that increases
x→`. For the Maxwell–Bloch model this assumption is n
always valid. Let us take the unperturbed spectral prob
~13!. Suppose that an infinitely long rectangular pulse
field E(0,t) with an amplitude 2A is injected into a semi-
infinite unperturbed medium at the pointx050. The solution
of the spectral problem~13! can easily be found. The con
tinuous spectrum related to the infinitely long pulse cons
of the real axis and a segment of a straight line perpendic
to the real axis and symmetric to this axis. The vertex of
segment lying in the imaginary part of the spectrum cor
sponds to a value of the spectral parameterj t equal toiA.
The imaginary part of the spectrum corresponds to the s
ton asymptotic limits. If we consider a semi-infinite step
the limit of a rectangular pulse, we can easily show tha
soliton related to a pointj1, iA of the spectrum that lies in
the @0,1 iA# interval has a smaller amplitude and a high
velocity.

Generally, in analyzing the characteristics of the gen
ated solitons the following conditions must be met:~a! the
Jost functions~the solutions of the spectral problem~12!!
must be analytic in the upper half-plane, and~b! vs must be
smaller thancl , wherevs is the phase velocity of a soliton
A simple analysis of the phaseW in ~30! shows that a soliton
with a larger amplitude has a smaller phase velocity. A
result, the decay of such a step pulse is accompanied
forward-attenuated pulsations. Numerical calculations h
shown that there is a limited range of initial conditions und
which intense solitons can be generated at the leading e
of the step. This is possible only if there is partial inversi
of the medium:Q(x,0) is nonzero.

Another method of generating solitons at the lead
edge consists in injecting into the system a periodic wave
a special type: its associated spectrum consists of segm
of curves symmetric with respect to the real axis and po
tioned in such a way that the distance from the point~0,0! in
the complex plane to a point in the spectrum on a segmen
a curve increases as the point moves from the segme
vertex toward the real axis.
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Let us examine the case of finite initial polarization.
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With initial inversion of the medium we must account for th
contribution of the continuous spectrum to the generat
process, since this spectrum participates in the formatio
the intense pulses. For the Maxwell–Bloch model w
pumping and without relaxation~see Eqs.~25!–~27!!, the
contribution of the continuous spectrum to the asympto
solution was calculated by Burtsevet al.,27 who found that
the field has a self-similar asymptotic solution with an a
plitude that grows in proportion toAx. This solution depends
on the self-similar variables5A2x(cl t2x) ~see Ref. 27!.

Here is an estimate of the phase velocity of an amplifi
soliton. For a fixed points0 at the leading edge we find tha

x2cl t52s0t211o~ t21!,

wheres0 is a constant. We estimate the soliton velocity
the leading edge of the packet. To this end we constru
solution corresponding to the pointz1 of the spectrum. There
are several methods of building soliton solutions,5 and using
them is easy. A single-soliton solution of the model~25!–
~27! for a zero field atx→6` has the form

E~x,t !54 Im z1

exp~22i Im f1 ia0!

cosh~2 Ref1a1!
,

f5
A2cx1z1~12e2gt!

g
2

A2cx1z12Az1

4c
. ~37!

The asymptotic behavior of this solution is

x5cl t5c12c2t21/21o~ t21/2!,

wherea0,1 andc1,2 are constants, with

c15
cl

g S 11
g

4cl
D , c25

Acl

A8~11g/4cl !
.

The above reasoning suggests that for large times
soliton packet and the fraction of the generated pulses rel
to the continuous spectrum separate in time. The sol
packet lags behind. Analyzing the phaseW, we find that
solitons can split away from the trailing edge of the pu
and the distance between such solitons slowly increases,
the last solution having the largest amplitude~Fig. 1!. In this
case the conditions~a! and~b! for generating intense soliton
at the trailing edge of the pulse are met. The Whitham eq
tions can be used to describe the decay of the trailing edg
a step pulse. This process is described by the dynamics o
hidden spectral datazk , the roots of the polynomialP. Sup-
pose that the rootsz1 andz3 of the polynomialP are fixed:
z15a01 ib0 and z35a02 ib0 , with a0 and b0 real con-
stants. The dynamics of the other two~moving! roots,z2 and
z4 is described by the self-similar solution of Eqs.~34!. Sup-
pose thatz25a1 ib andz45a2 ib. Then Eqs.~38! reduce
to
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AP0
H 12

1

a1 ib

3
2ib@a02a1 i ~b02b!#K~k!

@a02a1 i ~b02b!#K~k!2@a02a1 i ~b01b!#E~k!J .

~38!

Separating the imaginary and real parts in~38!, we find that

R~k!5
E~k!

K~k!

5
a~a0

21a21b0
21b2!22a~a0a1b0b!

a~a0
21a21b0

21b2!22a0~a21b2!
, ~39!

S t

x
AP021D ~a21b2!~a02a!2@12R~k!#1@b02b

1~b01b!R~k!#254b~a02a!~a0b2ab0!~1

2R~k!!1@b02b1~b01b!R~k!#~bb02b2

1aa02a2!. ~40!

Equations~38! and the expression for the modulusk of
the elliptic functions,28

k25
4bb0

~a02a!21~b01b!2 , ~41!

implicitly specify the dependence of the spectral data on
self-similar variablex/t. This dependence has the shape u
ally found in related problems.26 As x/t increases, the roots
z2 and z4 monotonically change fromz1 and z3 , respec-
tively, to zero values. The dynamics of pulse packets~with-
out amplification! corresponding to such behavior of th
roots is depicted in Fig. 1. Numerical calculations show t
if we allow for amplification and relaxation, a weak period
wave in the time-dependent regime is amplified and tra
forms into a dense packet of narrow pulses~solitons!; see
Fig. 2. Asymptotically the amplitude of these solitons d
verges likeAx.

Here is another mechanism of soliton generation
which relaxation plays a leading role~together with amplifi-
cation!. A distinctive feature of this mechanism is that th
regime of generation of asymptotic solitons of the same a

FIG. 1. Transformation of the trailing edge into a packet of pulses with
allowance for amplification and relaxation. The diagram shows the dep
dence of the field’s intensityI on the spatial coordinatez.
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plitude becomes quasistationary very fast. Letls (ls* ) be the
value of the spectral parameterl1 (l3) at which the right-
hand side of Eq.~34! vanishes. This point is a stable foc
point in the phase plane. Figure 3 depicts the dependenc
the real and imaginary parts ofl2 on the variablex. For the
initial field we take a low-amplitude harmonic wave. Su
pose~as we did earlier! that two roots,l1 andl3 , vary in an
interval whose origin corresponds to the plane-wave solu
and whose end point, to the soliton limit. Then, asl2 varies
from zero tols , the harmonic wave is transformed into
sequence of asymptotic solitons of the same amplitude~Fig.
4!. Numerical analysis of the phase velocity of the lead
soliton shows that the velocity monotonically tends to t
speed of light as the pumpingC increases.

In real experiments it is often impossible to observe
details of formation of a pulse packet in one pass of
cavity. At the same time, investigating the initial stage
amplification is important for studies of the characteristics
the generated pulses. Knowledge of the dependence o
group velocity on the coordinates, time, and pumping ma
it possible to use the laser for further amplification and tra
formation of the generated pulses more effectively. He
establishing the mechanism of soliton generation and its
tures is important for practical reasons.

Here is a qualitative comparison of our results with t
experimental data taken from the literature. Apolonsk�

29

studied the dependence of the velocity of the genera
pulses on the amplification length. He found, in particul
that the pulse velocity increases monotonically with the a
plification length. This property is common for the two ge
eration regimes considered above. In the first case the sy
does not reach the stationary regime. The amplitude of
generated pulses asymptotically increases in proportion
Ax. The second mechanism of generation predicts that
system reaches the quasistationary soliton generation re
very fast. The soliton solution is an attractor. For strong s
ton pulses to form it is enough to inject a packet of sm
height but large length into the medium.

Let us now estimate the values of the physical para
eters for which soliton generation can be observed. Fo
carbon-dioxide laser the relaxation timeT2 is approximately
10 ps and the dipole momentd12 of the vibrational–
rotational transition is roughly 3310220 esu. Suppose tha
the gas pressure is 10 atm. As a result of amplificati

FIG. 2. The same as in Fig. 1 but with allowance for amplification a
relaxation;«c50.05 and«g5«g1,250.05.
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pulses several picoseconds long and with a radiation in
sity of order 1 TW cm22 are emitted by the laser. This mean
that tens or even hundreds of ultrashort pulses simu
neously exists over the length of the laser, which amount
tens of centimeters. The amplification of these pulses can
described as modulation of the parameters of the packet
whole. Here, if we assume that amplification is described
the second mechanism of generation, the duration of
pass through the active medium of the laser is sufficient
the stationary regime to be attained. For Nd:YAG a
He–Ne lasers the ratio of the soliton size~in time! to the
time it takes the soliton to travel through the cavity is es
mated via experiments at 0.02–0.01~see Ref. 4!. In these
experiments it was discovered that the soliton amplitu
reaches a value close to the stationary one during a time
than the time of one pass through the cavity. If we assu
that the transverse relaxation timeT2 is the minimum relax-
ation parameter, a crude estimate shows that in the sec
mechanism of generation the time it takes the pulse packe
pass through the cavity once is sufficient for these laser
reach the stationary regime~see the literature cited in Ref. 4!.

We believe that the last generation scenario agrees q
tatively with the experimental data on generation of pulses
gas and ion lasers.4 The relationship between pulse leng
and relaxation time used in numerical calculations holds
experiments involving gas and ion lasers. With the seco
mechanism one can find the dependence of the amplitud
the generated solitons onC. In ion lasers,C is determined by
the current used to excite the ions. Figure 5 depicts the
pendence of the amplitude of the generated asymptotic s

FIG. 3. Time dependence of the real and imaginary parts of the spe
parameterl2 in the second soliton generation mechanism. Time is measu
in units of (eg)21.

FIG. 4. Transformation of a weak initial harmonic wave to a soliton pac
in the second soliton generation mechanism.
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3A. C. Newell and J. V. Moloney,Nonlinear Optics, Addison-Wesley,
Redwood City, CA~1992!.

.

r-

pl.

55,
tons onC. This dependence can be used to verify the the
qualitatively and must hold for pulses whose intensity is
from saturation.

In this paper we have proposed an approximate appro
to analyzing the dynamics of dense pulse packets propa
ing in nonlinear media. We believe that this method make
possible to study analytically the initial stages of coher
nonlinear processes in nonlinear media~including amplify-
ing media!. In more general cases we must incorpor
N-phase solutions and allow for saturation. This can be do
at least partially, by generalizing the results of the pres
work. The results can also be used to describe Raman
tering and four-wave mixing30,31 with allowance for relax-
ation and pumping, and in the adopted approach it is poss
to avoid imposing formal restrictions on physic
parameters.32
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Apolonski� for numerous stimulating discussions of the las
experiments and the corresponding theoretical aspects.
work was sponsored by the Russian Fund for Fundame
Research~Grant No. 95-02-04392! and Deutsche Fors
chungsgemeinschaft~Grant 426 RUS 113/89/0~R,S!!.
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FIG. 5. The square of the amplitude of asymptotic~asz→`! solitons,I a , as
a function of pumpingC.
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Dynamics of two-dimensional radiating vortices described by the nonlinear Schro ¨ dinger

equation

I. A. Ivonin

Russian Research Center ‘‘Kurchatov Institute,’’ 123182 Moscow, Russia
~Submitted 16 May 1997!
Zh. Éksp. Teor. Fiz.112, 2252–2262~December 1997!

The paper considers the dynamics of dark charged solitons~vortices! described by the two-
dimensional~2D! nonlinear Schro¨dinger equation~NSE! with a repulsive potential. The dynamics
of these point-like vortices in the NSE is quite different in comparison with the vortices in
an incompressible liquid because of the possibility of wave-like emission of energy, momentum,
and angular momentum in the first case. Another important feature is the characteristic
scale of the problem, namely the screening parameter. Related problems of the collapse of a
vortex dipole and the decay of a multicharged vortex in a region bounded by an absolutely
reflecting shell are investigated both analytically and numerically. The conditions and
scaling of a vortex dipole collapse and the limitations on the decay of a multicharge dipole in a
bounded region are obtained. ©1997 American Institute of Physics.@S1063-7761~97!02412-8#
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The nonlinear Schro¨dinger equation with a repulsive po
tential

iC t1
1

2
DC2U~ uCu2!C50 ~1!

describes1 propagation of modulated ion-acoustic waves
plasma (U5uCu2), nonlinear waves in optical fibers with
‘‘normal’’ dependence of the refractive index on the lig
intensity (U5uCu21auCu4), three-dimensional diffraction
patterns of a laser beam transmitted through a diffrac
grating and scattering media (U5uCu2), etc. Moreover, Eq.
~1! has been applied recently to describe excitations i
Bose-condensate.2–4

In a one-dimensional case, this equation can
integrated5 if U5uCu2; it has a set of particular solution
with one parameter in the form of dark solitons,1,6 i.e., expo-
nentially screened depressions in the field amplitudeuCu2

with a nonzero asymptotic background value. The depth
the depressions~the parameter of the solution! uniquely de-
termines the velocity of dark solitons. An important prope
of these particular solutions is that in the case of the non
tegrable NSE they are, like ordinary solitons,7 nonlinear at-
tractors, i.e., their interaction with linear waves of small a
plitudes does not change their shapes, but only incre
their amplitudes.8

In the two-dimensional case, one-dimensional dark s
tons are unstable against transverse excitations.9 Growth of
this self-focusing instability leads to the formation
bounded two-dimensional solutions.3 To interpret these loca
solutions, the ‘‘hydrodynamic’’ ansatz~Madelung! is quite
convenient. In particular, in fieldC5Ar exp(if), the
squared amplituder and phasef have the sense of the den
sity and velocity potential of some iso-frozen compressi
medium,

]r

]t
1div~r¹f!50,
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with nonlocal specific enthalpyh. In what follows, we select
for definiteness the potential in Eq.~1! in the form
U5uCu221 with the background~unperturbed! field ampli-
tude and densityuCu25r51. In this case, the enthalpy in th
Bernoulli equation~2! has the form

h5r212
¹2Ar

2Ar
.

The uniqueness condition on the fieldC requires only
that the velocity potential be defined to within 2pN. The
possible branch points off correspond to point vortices with
a discrete amplitudeN and velocity potential in the vicinity
of a vortex f5Nu, where u is the azimuthal angle. A
uniquely defined velocity potential corresponds to purely p
tential flows, such as acoustic waves.

Conservation~the freezing-in condition! of point vortex
amplitudes gives rise to conservation of the topologi
chargeN of the corresponding dark solitons described by E
~1!. Unlike one-parameter one-dimenional dark solito
‘‘charged’’ (NÞ0) two-dimensional dark solitons have n
such parameter because the presence of a branch poin
plies that the maximum depth~a drop toC50! is attained at
the vortex center. However, once generated, a vortex ca
disappear except through collapse with another vortex of
posite charge. Potential fields of arbitrary amplitudes can
eliminate an isolated vortex, and this property is the sou
of the keen interest in studying the dynamics of charg
solitons.

A vortex pair ~a combination of two dark 2D soliton
with opposite charges! has, like 1D solitons, one paramete
namely the distance between the vortices. This param
uniquely determines the integrals of motion and velocity o
uniformly propagating dipole2 and is convenient in describ
ing evolution of the variable vortex solutions discussed
low.

1233-06$10.00 © 1997 American Institute of Physics



Linearization of the continuity Bernoulli equations~2!
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about a constant backgroundr51 yields the phase velocity
of acoustic waves

Vk5A11
k2

2
.1,

propagating in the unperturbed medium. Therefore we
conclude that stable localized steady solutions of Eq.~1!
moving at a supersonic velocityV.Cs

051 are forbidden,
since otherwise the Cherenkov resonance condition woul
easily satisfied, and emission of waves would lead to v
ability.

At the same time, an isolated point vortex generates
its environment rotations of the medium with linear veloc
V}1/r , varying with the distance between the vortex and
observation point. Therefore, there are no solutions desc
ing dipoles moving at a constant velocity for which the d
tance between the vortices is smaller than a critical va
This statement was verified2 by a numerical calculation o
parameters of the uniformly moving solutions: it turned o
that there are no singly charged vortex dipoles moving
constant velocitiesV/Cs

0.1/&. In the following section,
this statement will be confirmed by analytical calculation

Vortices in a dipole moving at a large velocity copious
shed potential waves and approach one another. In the
section, such a motion of a vortex pair with due account
radiation will be analyzed numerically using the NSE with
repulsive quadratic potential. This allows us to determine
scaling of the collapse at the pointz0 at time t0 of two
oppositely charged dark solitons separated by a distanceL(t)
and moving in the z direction: L;Az02z,
z02z5(t02t)/&. It is noteworthy that the complex
Ginzburg–Landau equation, whose structure is very sim
to that of NSE, also predicts collapse of two vortices in
dipole when the distance between them becomes sufficie
small.10 The analogy between these cases is, obviously,
direct, because vortices described by NSE are very diffe
from those described by the Ginzburg–Landau comp
equation~where vortices repel one another at large distanc
and the interaction intensity between them decays expo
tially slowly10!.

Another interesting problem is a decay of an isola
multicharged (N@1) dark soliton. A dark solution with a
chargeN.1 is inherently unstable and decays to vortices
unit amplitude initially located at vertices of a regular pol
gon, as has been confirmed numerically many times.11 Then,
as in hydrodynamics, if the number of vortices satisfi
N.7, a ‘‘polygon instability’’ develops,12 and the vortices
are distributed randomly over a certain area. If the numbe
vortices is large, the flow pattern is similar to the veloc
field due to a vortex of finite dimensions. Given appropria
boundary conditions~a rigid shell of finite dimensions!,13 a
Kelvin vortex ~a vortex shaped as a circular cylinder with
uniform distribution of vorticity! is Lyapunov-stable in three
dimensions even if emission of waves is taken into acco
Thus, the decay of a multiply charged dark soliton in
bounded region can at least be retarded considerably, if
stopped completely. Details of this process will be discus
in the last section of the paper.
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analytically and numerically the nonlinear dynamics of bo
oppositely and similarly charged topologically stab
2D dark NSE solitons~vortices! with a repulsive potential

2. COLLAPSE OF A VORTEX DIPOLE IN THE NSE MODEL

Unlike the dynamics of point vortices in an incompres
ible liquid, the vortex dynamics in the NSE model is n
determined solely by their charges and instantaneous p
tions. The motion of an isolated vortex is controlled by t
potential fields generated at its site. The problem of vor
dynamics is formulated in a self-consistent manner only
we know that these potential waves~their amplitudes, wave
vectors, and phases! are due to the evolution of vortices. A
similar case is evolution of radiation emitted by charged p
ticles. The problem of their dynamics is well-posed only
the absence of an external electromagnetic field.

The similarity between the 2D dynamics of charged p
ticles interacting through the Coulomb potential and dyna
ics of vortices is complete only in a incompressible liqu
when the Hamiltonians of a quasi-stationary system
charges and of a system of point-like vortices in the La
representation are identical.14 If radiation is taken into ac-
count, at least, in the first approximation in the parame
V/Cs , this similarity persists. So, the Maxwell equation
combined with the gauge condition are transformed to
earized hydrodynamic equations~2! if charges are replaced
with vortex intensities, and the magnetic field~which has
only one component in the 2D configuration! are replaced
with the deviation of the density from its background val
(r/r05Bz). The electric field vector directed at 90° wit
respect to the magnetic field determines the vortex veloc

V5ez3E.

Specifically, the divergence of this vector yields, on o
hand, a continuity equation linearized about a constant ba
ground densityr0 , and on the other hand, an equation for t
electric field circulation. The equation for the magnetic fie
circulation corresponds to the Euler equation lineariz
about a constant background density. In addition, the eq
tion for the electric field divergence in combination with th
gauge condition yields a relationship between the vortic
~vortex intensity! and a function of the velocity flux~corre-
sponding to the electric field potential! in the form of re-
tarded potentials. Thus, the electrodynamic equation for
electric field generated by arbitrarily moving electr
charges15 is a full analogue of an integral equation in th
form of retarded potentials for a hydrodynamic velocity fie
generated by mobile emitting vortices. This equation~it is
not given in the paper because it is too complicated15! is
closed, i.e., the field derived from this equation unique
determines the velocities of all vortices. In the specific ca
of a uniformly propagating pair of similarly charged vortice
(N51) with a distanceL between them, we obtain an equ
tion for the vortex velocity

V5
1

L

1

A12V2
~3!
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051 if the potential in Eq.~1! is selected in the
2

-

is
. I
ng
ir
e

as

n
ti
m

ly
m
in

s

e
es
g

es
,
n

n

ion
g

d

ic

in a dipole approach one another. If the distance between

tion
ia-

hey
ed
the
es
r as
ed
es
it

o
we
rder
h
with

ten

the
e-
ns-
or

po-
ant

al
can
ct to
ov
of

n
hs
ly
tion

the
f
of

r-
y
d-
se
.

t
his
ed
form U5uCu 21).
It is worth noting that Eq.~3! is approximate since the

sound velocity is not constant,Cs
2[r1DAr/4Ar, and ap-

plies only to the caseL@1. Nonetheless, it yields a qualita
tively correct result even whenL;1, as will be proved be-
low.

The only difference between Eq.~3! and the usual for-
mula for a vortex pair velocity in an incompressible liquid
the presence of the relativistic denominator in the former
qualitative terms, this denominator leads to the followi
effects. First, there are no stationary moving vortex pa
with L smaller than a critical value. This critical distanc
L52 corresponds to the critical velocityV/Cs

051/&, which
is identical to the numerical result in Ref. 2, which is a ple
ant surprise since it confirms that Eq.~3! yields qualitatively
correct results even beyond its applicability range. Seco
for L.2 there are two solutions, of which one asympto
cally goes over to the corresponding solution for an inco
pressible liquid asL→`, and the second~with unstable di-
rection of vortex propagation! has a velocity tending to the
speed of sound.

The absence of solutions with vortex pairs uniform
moving along thez-axis with the distance between the
smaller than the critical value can be proved by lineariz
the NSE@Eq. ~1!# nearC50 ~near the vortex pair! and ex-
panding smooth linear perturbations in a Fourier series. A
result, we have the relation

kz
2V25~12k2/2!2,

which has real rootskz for V,1, andkxm5mp/L only if
L.p/2.

For L@1 Eq. ~3! can also be derived by linearizing th
NSE @Eq. ~1!#. In fact, at large distances from the vortic
C→1. By linearizing Eq.~1! about this value and neglectin
derivatives of higher order,2,16 we obtain a formula for the
velocity potentialf:

~¹22V2 ]2/]z2!f50.

Therefore, after the relativistic transformation of coordinat
s5z/A12V2, the potentialf(x,s) becomes harmonic and
with due account of sources, specifically vortex pairs of u
intensity, it is expressed as

f5arctanS §

x1L/2D2arctanS §

x2L/2D .

The gradient of this potential averaged at the site of o
vortex yields an expression for the velocityV identical to Eq.
~3!.

Solutions of Eq.~1! with uniformly moving vortices are
invariant with respect to the inversion of the propagat
direction.2 This means that they move in a specially confi
ured inhomogeneous background fieldC which provides a
coherent return to the vortex pair. If the fieldC in front of a
vortex dipole is not specially configured~for example, the
pair propagates in the initially constant background fiel!,
the vortices lose their energy to wave generation~they pro-
duce the specially configured background!, and they no
longer move uniformly. As the energy decreases, the vort
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them drops to the critical value~at which the vortex pair
velocity reaches the local sound velocity!, a local Cherenkov
resonance becomes possible, and the state of uniform mo
cannot be restored. The vortex pair energy is lost to rad
tion, and the distance between the vortices drops until t
annihilate. As follows from computer simulations describ
below, this collapse takes a finite time comparable to
propagation time of waves emitted by the moving vortic
through the screening length. Therefore, it does not matte
regards the possibility of collapse what fraction of emitt
energy is transmitted to infinity and what fraction com
back, since the vortices will have annihilated by the time
returns.

In order to determine the scaling of the collapse of tw
oppositely charged dark solitons modeled by the NSE,
simulated the process on a computer using a second-o
finite-difference ‘‘predictor–corrector’’ Euler scheme wit
respect to time and space. The studied area was covered
a 1003100 mesh, which corresponded to more than
zones over the screening length in Eq.~1!. The vortex
strength in each mesh was derived from the circulation of
velocity ¹f on its boundary. The vortex position was d
fined as the center of the resulting vortex area. The tra
verse size of this area in the simulation was at most two
three meshes, which allowed us to determine the vortex
sition fairly accurately. Figure 1 shows contours of const
field density uCu2 at three sequential moments (t150.75,
t251.75, andt352.5). The initial distanceL051 between
vortices of unit amplitude equalled one half of the critic
value, which guaranteed the collapse of the vortices. One
see that the dipole becomes more asymmetric with respe
the reversal of the direction of motion owing to Cherenk
radiation of potential waves. It was found that the collapse
vortices with opposite charges moving along thez-axis takes
a finite time, and in the final stage the distanceL decreases
with time asAt02t near the moment of collapset0 ~in Fig. 1
t0't352.5). Figure 2 shows calculations of the functio
L(t02t). Oscillations due to emission of waves with lengt
comparable to the distanceL between the vortices are clear
seen. The dashed curve plots the best fit of the func
L(t02t) to a power function with exponenta50.5. The
uncertainty in this parameter due to the uncertainty in
time of collapse isda50.1. Figure 3 plots the position o
the vortex pairz02z measured with respect to the site
collapsez0 as a function of the time to collapse~as can be
seen in Fig. 1,z0'1.7). The dashed line in this graph co
responds to uniform motion with the critical velocit
V/Cs

051/&, which is the maximum possible value accor
ing to Eq.~3!. One can see that the pair velocity is very clo
to the critical value right up until the moment of collapse

3. DECAY OF A MULTICHARGED DARK NSE SOLITON

The boundary condition on the fieldC in Eq. ~1! with a
repulsive potential implies thatuCu2 tends to a constan
background. The phase of the field can be arbitrary. T
allows us to consider sets of vortices with unbalanc
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charge, i.e., charged dark 2D solitons. As in the case of
nonlinear differential equation, the important parameters
investigation of Eq.~1! include its integrals@Eq. ~2!#, namely
the energyE, number of particlesN, momentumP, and
angular momentumM :

E5E 1

2
~¹C!21

1

2
~ uCu221!2d2r ,

N5E ~ uCu221!d2r ,
~4!

FIG. 1. Contours of constantuCu2 in the process of collapse of a pair o
oppositely charged dark NSE solitons at successive times:~a! t150.75; ~b!
t251.75; ~c! t352.5. The crosses mark point-like vortex positions.
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P5
i

2 E ~C* ¹C2C¹C* !d2r ,

M5
i

2 E @r ~C* ¹C2C¹C* !#zd
2r ,

which are named in analogy with hydrodynamic integra
Given a nonzero background fieldC on the boundary, the
boundary condition for the phase should be determined c
sistently so as to provide conservation of the integrals in
~4!. The hydrodynamic impenetrability, or solid-wall, cond
tion,

Vun[¹fun[
i

2uCu2 ~C* ¹C2C¹C* !un50

is sufficient for conservation of the integrals in Eq.~4!.
Dark solitons with like charges gyrate around a fix

point, similarly to hydrodynamic point vortices. The ener
of the vortex system drops as the distances between t
increase, so dark solitons with like charges move apar

FIG. 2. Distance between dark NSE solitons with opposite charges
function of the time to collapse att052.5. The dashed line shows the best
based on a power law with exponent 0.5.

FIG. 3. Vortex pair position~with respect to the collapse sitez051.7! as a
function of time to collapse. The dashed line corresponds to uniform mo
with critical velocity V51/&.
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single dark soliton with a chargeN.1 is unstable and de
cays to vortices of unit amplitude located initially at the ve
tices of a regularN-gon, as has been verified repeatedly
numerical simulations.11 The size of thisN-gon increases
with time owing to emission of energy~in the acoustic ap-
proximation as}t1/2(N11), see Ref. 12!. At the same time, by
analogy with hydrodynamics, a polygon instability develo
when the number of vortices satisfiesN.7,12 and the vorti-
ces are randomly distributed over a certain area. Far f
this area, the velocity field due to these vortices has only
asymptotic rotational component, so the flow pattern a
whole is similar to the velocity field generated by a vortex
finite size.

In an unbounded area, the spreading of the vortice
unlimited. In a region bounded by solid walls, waves gen
ated by the vortices are reflected from the boundary and
turn to the vortex zone. In the subsequent radiation, the w
momentum is imparted to the vortices, which can stabil
their spreading. Indirect evidence in favor of this stabiliz
tion can be found, for example in Lamb’s monograph.14 It
was shown previously13 using Arnold’s method of iso-frozen
variations17 that, given appropriate boundary conditions~a
solid wall of finite dimensions!, a vortex shaped as a circula
cylinder with a uniform distribution of vorticity is
Lyapunov-stable in three dimensions, even when radiatio
taken into account. The Lyapunov functionalF5E2VM is
composed of such integrals as the energyE and angular mo-
mentumM . Specifically, the vortex energy drops as the d
tances between the vortices increases, whereas, the an
momentum increases. The decrease in the energy as a
tion of the angular momentum is fully balanced~the varia-
tion of functionalF is zero! when the Lagrangian factorV
equals the average angular velocity of the region occupied
the vortices. Thus, definiteness of the sign of the sec
variation ofF ~and consequently, the stability of the dime
sions of the region with uniform distribution of charged da
NSE solitons! is ensured, as in Ref. 13, when the solid w
is taken to be of appropriate size. Specifically, the radiuR
of the solid wall should be such that the inequality

Cs
2.S Vr 2V

a2

r D 2

, a,r ,R, V5
N

a2 ~5!

holds everywhere outside the circular area of radiusa occu-
pied byN vortices. The physical meaning off this conditio
is that the flow should be ‘‘subsonic’’ in a reference fram
rotating with angular velocityV. On the boundary of the
vortex area (r 5a), the right-hand side of inequality~5! is
zero. The field densityr[uCu2 in the vortex area is almos
zero, but the local sound velocityCs

2[r1DAr/4Ar on this
boundary is finite owing to the large perturbations in the fi
density. Therefore condition~5! is satisfied near the vorte
area. Far from this area we haveCs

051, so condition~5! is
fully satisfied if

R<
a2

2N
1Aa21S a2

2ND 2

.
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At a low packing density (N/RCs
0!1) the radiusa of the

stable area occupied by the vortices can be much sm
than the boundary radiusR:

amin.
R

AR

N
11

;ANR!R. ~6!

In other words, Eq.~6! indicates that, if the radiusR of the
shell containing a system of dark NSE solitons is mu
smaller than their total chargeN, all dark solitons can be
stably localized in the region with dimensions considera
smaller than those of the shell, i.e.,amin;ANR.

This statement is illustrated in Fig. 4, which shows c
culations of the decay of an isolated multicharged dark N
soliton in the region bounded by a solid wall. The abscissa
Fig. 4 is time, and the ordinate is the rms radiusa of the
localization region containing unit vortices resulting fro
this decay. The input data in these calculations are the w
radiusR525 and the dark soliton chargeN511. It is clear
that the size of the vortex zone does not grow beyonda.7,
which is even smaller than the estimate by Eq.~6!. Figure 5
shows contours of constantuCu2 at t510, when the growth
of the vortex zone is saturated. The graph clearly shows
almost circular region, which persists at all subsequent tim
in this calculation and is occupied by vortices undergo
nonuniform motion.

4. CONCLUSIONS

In this paper, we have discussed the interaction of d
two-dimensional NSE solitons with either like or oppos
charges. The hydrodynamic~Madelung! analogy between
these dark solitons and point vortices of discrete amplitud
a compressible medium has proved to be very useful. A
gly charged isolated dark soliton cannot be destroyed by
potential waves, which makes it a very attractive subject
research.

The electromagnetic analogy between dark solitons
electric charges emitting electromagnetic waves has allo
us to determine the translational velocity of a dipole pair
dark solitons@Eq. ~3!#. There is a maximum critical velocity
for uniformly moving dipoles, which is in both qualitativ
and quantitative agreement with the numerical calculati

FIG. 4. Vortex area radius as a function of time.
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of Ref. 2. The impossibility of uniform propagation of dark
charged solitons with characteristic dimensions smaller th
the screening length determined by Eq.~1! has been proved.
This also applies to the three-dimensional NSE~for example,
to solutions with vortex rings!. The computer simulation
demonstrates what happens to a vortex pair of dark solito
with a distance between them smaller than the critical valu
they begin to emit waves and annihilate after a finite tim
interval. During their collapse, the translational velocity o
the vortex pair is finite and less than the critical velocit
V/Cs

051/&, i.e., the maximum value determined by Eq.~3!.
The distance between the vortices averaged over the osc
tions isL}(t02t)a where the exponent isa50.560.1, and
in the final stage of collapse near the timet0 it decreases at
an increasing rate.

FIG. 5. Lines of equal field densityuCu2 at momentt510.
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NSE soliton in a region bounded by a solid wall~‘‘impen-
etrable’’ boundary condition! has been solved both analyt
cally and numerically. The vortex decay does not yield
uniform spatial distribution of the resulting vortices; instea
they are uniformly spread over a region whose dimensio
in some cases;ANR @Eq. ~6!#, which is much smaller than
the wall dimensionR.
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