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Arrival directions of gamma-ray-initiated showers with energies over 1014 eV detected by the
Bolivian and Tien Shan high-altitude arrays have been analyzed. Their distribution over
the celestial sphere is nonuniform, and in the range of galactic latitudesb>30° it is similar to
the distribution of Seyfert galaxies, which are at distances;1.5–200 Mpc from us, if the
Hubble constant is 75 km/s•Mpc. Assuming that Seyfert galaxies are sources of protons with
energies higher than 331019 eV, the gamma-rays can be generated in collisions of
extragalactic protons with relict photons and in subsequent electromagnetic cascades in the
extragalactic space. The upper limit on the extragalactic magnetic field,B!1029 G, is derived.
© 1998 American Institute of Physics.@S1063-7761~98!00102-4#
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1. INTRODUCTION

It was predicted1,2 that interaction between protons an
relict radiation in the extragalactic space can manifest it
through a cutoff in the spectrum of cosmic rays in the ene
rangeE.331019 eV. But the spectrum should not have
black-body cutoff if sources of cosmic protons are located
relatively small distances, within several tens of megap
secs, from us.3 As shown in Ref. 4, it is possible that proton
with energiesE.331019 eV are generated in nuclei of ac
tive galaxies located at distances within 40 Mpc at
Hubble constant of 75 km/s•Mpc. If this is the case, the pro
ton spectrum should not have a black-body cutoff.

The present study shows that gamma-rays of ultrah
energies detected by ground-based arrays can also be a
festation of interaction between protons and relict radiati

Gamma-ray-initiated showers were investigated on
Tien Shan5,6 and Bolivian7,8 high-altitude arrays. Against th
background of numerous showers initiated by cosmic ra
these showers could possibly be distinguished by their p
muon and hadron content. The researchers working on
Bolivian array identified them using this feature. On the Ti
Shan array, the basic criterion for selection of showers w
the low energy flux carried by the hadron component
compared with electrons and photons.

The energies of gamma-quanta detected by the T
Shan array5,6 were (5 – 8.5)31014 eV, on the Bolivian
array7,8 the energies were 1014– 1017 eV. The arrival direc-
tions of these showers did not point at any galactic source
g-radiation. The measured fluxes were several dozen ti
higher than the theoretical estimates of diffuseg-radiation
generated in interaction between cosmic rays and extrast
gas.9,10 For this reason, the detected gamma-rays were in
preted as radiation from unresolved galactic sources.5–8,11,12

It follows that large numbers of point sources should be c
centrated in small sections of the celestial sphere. In this c
they should have been detected in the x-ray band, bu
excessive x-ray emission from the areas with an allege
2131063-7761/98/86(2)/7/$15.00
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higher density of sources have been observed.10 Gamma-ray
initiated showers have not been investigated.

This paper gives an analysis of the distribution of arriv
directions of gamma-ray-initiated showers over the sky a
suggests a model for interpretation of features of this dis
bution and intensity of this radiation.

2. DISTRIBUTION OF GAMMA-RAY INITIATED SHOWERS
OVER THE CELESTIAL SPHERE

Let us consider the distribution of shower arrival dire
tions over the celestial sphere in the coordinates~a,d! given
in Ref. 5. It is shown in Fig. 1. The numerical labels attach
to the showers were suggested by the author. The distr
tion has some peculiar features. First, the coordinates
gamma-rays labeled by 2, 3, 4, and 6 coincide within th
1.5-fold measurement errors. The arrival direction of t
gamma-ray labeled by 5 is within the three-fold error
these four showers. As follows from the statistics, the act
arrival direction of a gamma-ray photon is within the thre
fold measurement error with a probability of 99.8%. T
probability of an accidental coincidence of five gamma-r
photons among eight detected events can be estimated i
following ways. These gamma-rays arrived from the asc
sion band a5(13– 16) h. The probabilityP that five
gamma-ray photons among eight fall within a band of wid
Da53 h is rather small:

P5C8
5~Da/24!5~12Da/24!3'1.131023.

Moreover, these gamma-rays arrived from an area
occupies a fractionDS'0.19 of the total field of survey. The
probability that five out of eight gamma-ray photons fa
within this area accidentally is also quite small:

P5C8
5~DS!5~12DS!3'731023.

Second, gamma-rays Nos. 2–6 arrived from the rang
galactic latitudesb>30°. This means that they are probab
not diffusive, since the intensity of diffuse emission in the
directions is lower than along the galactic disk,10 and most
© 1998 American Institute of Physics
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FIG. 1. Distribution of arrival directions of shower
due to gamma-ray photons on the sky.5 The solid
lines show galactic latitudesb5630° and the ga-
lactic planeb50°. The dashed lines limit the ob
servation area of the Tien Shan array and the area
photons Nos. 2–6 plus the three-fold measurem
errors in their coordinates. The dash-dotted linea
512 h 49 min is the axis of symmetry of the regio
b.30°. ~a! Distribution of Seyfert galaxies from
the full Byurakan survey.18 NumbersN of galaxies

and their z̄ in the bandDa52 h and in the region
~2–6! are given, as well as numbersN in the region
b.30° on the right and on the left of linea
512 h 49 min;~b! distribution of Seyfert galaxies
and active galactic nuclei with active cores listed
Refs. 19 and 20 withz<0.0022 ~* !, 0.0022,z
<0.0049~1!, and 0.0049,z<0.0089~3!; ~c! dis-
tribution of powerful radio galaxies withz,0.1 at
frequencies of 178 MHz21 ~1! and 5 GHz22 ~s!.
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gamma-ray photons should have been expected from th
gion of lower latitudes.~Absorption of gamma-rays of thes
energies in the galactic disk can be neglected.10! In other
experiments8 the excess~on the level of 3.8s! of gamma-ray-
initiated showers with energies higher than 1014 eV was de-
tected in the regiona5180– 210°,d50 – (240°). This re-
gion also corresponds to high latitudesb,225° ~the distri-
bution of celestial coordinates of these showers was
published!. The arrival directions of showers in regions
high galactic latitudes indicate that these gamma-rays ca
of extragalactic origin: they could be generated in inter
tions between extragalactic protons with the relict radiat
and in subsequent electromagnetic cascades in the ext
lactic space. This assumption was formulated earlier.13

3. DISTRIBUTION OF POSSIBLE SOURCES OF COSMIC
PROTONS OF SUPERHIGH ENERGIES

Feasible sources of high-energy protons are probably
clei of active galaxies4 and/or powerful radiogalaxies.10,14

Let us suppose that protons with energiesE.331019 eV
propagate in extragalactic space along straight lines and
re-

ot

be
-
n
ga-

u-

let

us compare the distribution of their sources over the celes
sphere with the distribution of gamma-rays.5 The uncertainty
in optical coordinates of galaxies is within several angu
seconds, so the errors in the distribution of galaxies over
sky are minor.

The analysis of the distribution of Seyfert galaxies w
based on the full Byurakan survey.18 The number of galaxies
in this survey wasNFBS5127 and the average red shift wa

z̄FBS50.048. Their distribution is given in Fig. 1a. In orde
to examine possible nonuniformity in the distribution, th
regionb.30° was divided by the linea512 h 49 min into
two sections of equal areas and the number of galaxie
each section was counted. The linea512 h 49 min is the
symmetry axis for the regionb.30° in the coordinates
~a,d!. Moreover, galaxies were counted in the bandsDa
52 h and in the region of arrival directions of gamma-ra
Nos. 2–6 within the three-fold measurement error. Numb
of this galaxies are given in Fig. 1a. It follows from th
figure that the distribution of galaxies in regionb.30° is
nonuniform, and the region of showers Nos. 2–6 coincid
with that where the number of galaxies is largest.
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TABLE I. Numbers of galaxies withz<0.0089 in different sections of the sky.19,20

NumberN of galaxies

z<0.0089 z<0.0022 0.0022,z<0.0049 0.0049,z<0.0089

~1!
a5(0 – 24)h, 67 24 32 26
d5(0 – 90°)
~2!
Regionb.30°
in the field of survey
of the array 59 20 23 16
~3!
Region~2–6! 38 13 14 11
Fraction of galaxies
in ~3! relative to
their number in~1! 0.57 0.54 0.44 0.48
Fraction of galaxies
in ~3! relative to
their number in~2! 0.64 0.65 0.61 0.68

Note.Region~3! has an area of about 0.19 of area~1! and about 0.52 of area~2!.
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The distribution of Seyfert galaxies withz<0.0089 from
the catalogue19 which could also be used in statistical studi
was analyzed in addition. The distribution also included
tive galactic nuclei from Ref. 20 not included in Ref. 19~the
galaxies from Ref. 20 did not fall with the region of showe
Nos. 2–6!. The distribution of galaxies is shown in Fig. 1
Galaxies with differentz were counted on different section
of the sky: ~1! a50 – 24 h, d50 – 90°; ~2! the bandb
.30° in the field of survey of the Tien Shan array;~3! the
region of showers Nos. 2–6. Their numbers and the frac
of galaxies in region 2–6 relative to the numbers of galax
in area~1! and ~2! are given in Table I. The table also ind
cates that a notable fraction of near galaxies falls within
region 2–6.

In the analysis of the distribution of powerful radio ga
axies over the sky, the catalogues for frequencies of
MHz and 5 GHz21,22were used. It turned out that the numb
of galaxies withz,0.1 in the regionb.30° to the right and
to the left of the linea512 h 49 min is different:N514 and
N58. In the region of showers Nos. 2–6, however, th
number equals the number of galaxies in the areasb.30°
free of gamma-rays. The distribution of radiogalaxies w
z,0.1 is given in Fig. 1c.

It follows that, if gamma-rays Nos. 2–6 are of extrag
lactic origin, the main sources of protons generating th
are, apparently, Seyfert galaxies rather than radio galax
This conclusion is in agreement with Ref. 4.

4. POSSIBLE MECHANISM OF GAMMA-QUANTA
GENERATION

Let us consider the development of electromagne
cascades15–17 and distances from proton sources at wh
gamma-rays with energies of (5 – 8.5)31014 eV are gener-
ated in them. The mean free path of such gamma-rays in
field of relict photons is 10–20 kpc,23 so they should be
generated on the boundaries of the Galaxy in order to
detected on the Earth. Numerical estimates given in the
-
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per refer to electromagnetic cascades generated by pro
with energiesE5631019, 331020, and 1022 eV.

Protons with energiesE.331019 eV interact with relict
photons through the following reactions:

p1g rel→p1p0, ~I!

p1g rel→n1p1. ~II !

In the proton rest system, the cross sectionspg has a
resonance at the photon energy«8'300 MeV with the peak
spg(300 MeV)'5.5310228 cm2 and drops with «8 to
spg(5 GeV)'0.8310228 cm2.24 The photon energy is«8
5g«(12b cosq), the proton Lorentz factor isg5E/mp ,
the proton mass ismp'938 MeV, the energy of the relic
photon in the L-system is «'6.731024 eV, b
5A121/g2, andq is the angle between the proton and ph
ton momenta in theL-system.3 Since we haveb'1 and
215<cosq<1, then 0,«8,2g«. In a head-on collision
(cosq521) the value«85300 MeV corresponds to the en
ergy E'331020 eV and «855 GeV to E'1022 eV. The
proton mean free path isl̄pg5(nrelspg)21, where the den-
sity of relict photons isnrel'400 cm23.10 The mean free path
l̄pg can vary in the range 1.5<l̄pg,150 Mpc for E53
31020 eV and 10<l̄pg,150 Mpc for E5631019 eV and
E@331020 eV. The fractionKp of energy transmitted from
the proton to the pion in reactions~I! and~II ! increases with
«8: 0.126<Kp<0.4 at«85145 MeV–2 GeV.3 Let us put in
the estimate the mean valueK̄p50.2 for E!1022 eV and
K̄p50.4 if E51022 eV.

Mesons generated in reactions~I! and ~II ! decay:

p0→2g, ~III !

p1→m11n, ~IV !

m1→e11n1n. ~V!

It follows from the kinematics of these decays25 that the
mean gamma-ray photon energy in Eq.~III ! is «̄g5«p/2,
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where the pion energy«p5KpE, the muon energy in Eq
~IV ! is in the range (mm /mp)2«p<«m,«p , the positrone1

energy in Eq.~V! is in the range (me /mm)2«m<«e,«m or
(me /mp)2KpE<«e,KpE; the muon mass is mm

'106 MeV, the charged pion mass ismp'140 MeV, and
the electron mass isme'0.5 MeV.

The values of«̄g and of limiting positron energies
«1<«,«2 derived from kinematic relations are listed
Table II.

The decay path of pions and muons is less than 1000
so we assume that they decay instantaneously.

First let us follow the positron~hereinafter we follow
only such particles that can generate gamma-rays with e
gies «g>531014 eV!. It scatters from relict photons, an
from radio photons if«e.1015 eV holds:

e1gb→e81g8. ~VI !

The cross section of reaction~VI ! is

s IC5~3/8!sTq ln~2/q10.5!, if «e.«min'me
2/«b ;

q5me
2/«e«b , sT56.65310225 cm2 is the Thomson cross

section, and«b is the background photon energy. The ener
of radio photons is«b5331029– 1026 eV, and the energy
density iswb'1027 eV/cm3.17 In our estimates, we conside
a field r 1 of radio photons with «b5331029 eV, n
'30 cm23 and field r 2 with «b51026 eV, n'0.1 cm23.
For the relict radiation field and radio photon fieldsr 1 and
r 2 , we have«min'431014, 8.331019, and 2.631017 eV, re-
spectively. The secondary positron energy in Eq.~VI ! is
«e8;«min and the scattered gamma-ray photon energy
«g8;«e . If the proton energy satisfiesE!1022 eV, the pos-
itron energy is in the interval

1.531014– 1015,«e,631018– 1020 eV.

In the field of relict photons, a positron with energy«e

5531014– 1015 eV scatters a gamma-ray photon with an e
ergy of 531014– 1015 eV. The positron mean free path in th
field of relict radiation is l̄ IC5(nbs IC)21 and equals
l̄ IC'5 kpc for «e5531014– 1015 eV. Thus, gamma-rays
with energies of 531014– 1015 eV should be generated in th
field of relict photons in the single reaction~II ! or in a single
chain of reactions~IV !, ~V!, ~VI ! if the proton energy satis
fies E!1022 eV. This should happen at an average dista
from the sourceR̄5l̄pg1l̄ IC and 1.5<R̄,150 Mpc.

Moreover, gamma-ray photons with energies of
31014– 1015 eV are scattered by positrons with energy«e

'231017 eV in the field r 1 and by positrons with«e

'1016 eV in the fieldr 2 . Here«e,«min holds and the scat

TABLE II. Energies of gamma-rays,«̄g , generated in reactions~I!, ~III !,
and limiting values of energies«1 and«2 of positrons, generated in reaction
~II !, ~IV !, ~V!, for several energies of the primary proton.

E, eV «̄g , eV «1 , eV «2 , eV

631019 631018 1.531014 1.231019

331020 331019 831014 631019

1022 231021 531016 431021
,

r-

y

is

-

e

tering cross section iss IC'sT , the mean energy«̄g of scat-
tered gamma-quanta and the positron energy« being related
by the following equation:

«̄g5~4/3!«b~«e /me
2!.

Positrons of such energies are generated by protons with
ergies 631019,E<1022 eV. The positron mean free path
l̄ IC5(nbsT)21'16 kpc and 5 Mpc in fieldsr 1 and r 2 , re-
spectively. Therefore gamma-rays with energies of
31014– 1015 eV are also generated in both reaction~II ! and
reaction chain~IV !–~VI ! in the field of radio photons at dis
tances 1.5,R̄,155 Mpc from a source of protons with en
ergies 631019,E<1022 eV.

Table III shows estimates of mean free pathl̄ IC of pos-
itrons with energies«e listed in Table II in the fields of
background photons. Secondary positrons with energy«min

generated in reaction~VI ! scatter gamma-ray photons wit
energies of 531014– 1015 eV, as was demonstrated above.
follows from the data in Table III that they are created
distanceR̄5l̄pg1l̄ IC from the source, and we have 1
,R̄,200 Mpc for E!1022 eV and R̄<(1 – 2)3103 Mpc
for E51022 eV.

Now let us follow the gamma-rays generated in reactio
~III ! and ~VI !. In the field of background photons they ge
erate electron–positron pairs if«g>«min :

g1gb→e11e2. ~VII !

The cross section defined by Eq.~VII ! is

sgg5~3/8!sTa2@~212a22a4!ln~a211Aa2121!

2A12a2~11a2!#,

wherea5me /«g* («g* >me). The energy of the photons in
the frame where their total momentum is zero equals

«g* 5@~«g«b/2!~12cosc!#1/2,

where c is the angle between the photon momenta in
L-system. The energies of particles in the pair generate
reaction ~VII ! are «e1

;«g and «e2
;«min . The mean free

path of gamma-rays in Eq.~VII ! is l̄gg5(nbsgg)21. Esti-
mates of l̄gg for gamma-rays with energies«̄g listed in
Table II are given in Table IV.

Electrons generated with energy«e;«min5431014– 2.6
31017 eV scatter gamma-ray photons with energies of
31014– 1015 eV in reaction~VI ! as described above. Thes

TABLE III. Estimates of mean free paths of positron,l̄ IC , in fields of relict
and radio photons.

l̄ IC

«e , eV Field of relict photons Fieldr 2 Field r 1

1.531014 5 kpc 5 Mpc 17 kpc
831014 5 kpc 5 Mpc 17 kpc
531016 70 kpc 5 Mpc 17 kpc

1.231019 6 Mpc 122 Mpc 17 kpc
631019 40 Mpc 510 Mpc 17 kpc
431021 2100 Mpc 2.13104 Mpc 470 kpc
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gamma-rays are generated at an average distanceR̄5l̄pg

1l̄gg1l̄ IC from the proton source. If a pair is generated
reaction~VII ! in the field of relict photons, gamma-ray pho
tons are created at distances from the source 1.5,R̄

,160 Mpc atE5631019 eV, 100<R̄,250 Mpc atE53
31020 eV, and R̄<103 Mpc at E51022 eV. For E
51022 eV a pair can be also created in reaction~VII ! in the
field r 2 , and gamma-rays will be generated at distance
,R̄,155 Mpc from the source.

The resulting estimate of distanceR̄'200 Mpc coin-
cides with the distances to Seyfert galaxies listed in the
survey18 which fall within the region where gamma-ray
Nos. 2–6 were detected, if the Hubble constantH
575 km/s•Mpc. It also follows from our estimate that in th
reactions given above gamma-rays with energies (5 –
31014 eV can be generated at distances of (1 –
3103 Mpc from the source.

As a result of the multiple reactions~I! and ~II !, which
occur forE.331019 eV, and of reactions~III !–~VII !, elec-
tromagnetic cascades are generated. Like external
showers,26 these cascades may develop over distances
siderably shorter than the average length because of fluc
tions in the parametersq, Kp , lpg , lgg , l IC , «e , and«e2

:
the initial proton undergoes several collisions at angleq cor-
responding to the maximum cross sectionspg with energy
transferKp,K̄p , the mean free path beingl,l̄, in reaction
~V! «e!«2 , and in reaction~VII ! «e!«min . As a result,
gamma-rays with energies of (5 – 8.5)31014 eV are gener-
ated in the cascade at distances 1.5<R̄,200 Mpc from the
source. Schemes of cascades generating gamma-rays
energies of 531014– 1015 eV at distancesR<10 Mpc from
the source were discussed in the earlier publication.13

The suggested mechanism of gamma-ray emission
counts for the distribution of gamma-quanta over the ce
tial sphere reported in Refs. 5–8.

5. INTENSITY OF GAMMA-RAY EMISSION

Now we analyze the intensity of gamma-ray emission
terms of development of electromagnetic cascades in the
tragalactic space. Let us assume that extragalactic mag
fields are weak and electrons generated in cascades d
lose energy in synchrotron radiation.

Let us compare the gamma-ray spectraI g detected by
the Tien Shan and Bolivian arrays. They are

I g~>531014 eV!

TABLE IV. Estimates of mean free paths of gamma-rays,l̄gg , in fields of
relict and radio photons (c590°).

«g , eV

l̄ IC

Field of relict photons Fieldr 2 Field r 1

631018 3.3 Mpc - -
331019 13.6 Mpc 211 Mpc -
231021 667 Mpc 7100 Mpc 212 kpc
4

ll

5)
)

air
n-
a-

ith

c-
s-

x-
tic
not

5~3.461.1!310213 ~cm2
•s•srad!21@Ref. 6#

and

I g~.1014 eV!56.10212 ~cm2
•s•srad!21@Ref. 8#.

The suggested mechanism accounts qualitatively for
difference between measured fluxes6,8 in the following way.
Gamma-rays with an energy of 1014 eV have a mean free
path of about 30 Mpc in the field of relict photons, an
gamma-rays with energies of (5 – 8.5)31014 eV have free
paths of 10–20 kpc.23 Therefore, the Bolivian installation
detected gamma-rays coming from distances of about
Mpc and the Tien Shan array detected gamma-rays cre
only on the boundaries of the Galaxy, whose number is c
siderably smaller.~A cascade does not develop inside t
Galaxy since electrons lose their energy in synchrotron
diation in galactic magnetic fields.! A more comprehensive
analysis of detected fluxes6,8 requires a detailed compariso
between selection criteria for the gamma-ray-initiated sho
ers used by the researchers and computer simulations of
tromagnetic cascades in the extragalactic space.

A proton traveling in the extragalactic space intera
with the relict radiation until its energy drops toE'3
31019 eV. In each interaction it generates high-ener
photons—two photons if reactions~I! and ~III ! have oc-
curred, and one in reaction~II ! with the subsequent chai
~IV !–~VI !. In our estimates, we assume thatl̄ 51.5 photons
are generated in one event. Each photon initiates a cas
developing through reactions~VI ! and ~VII !. Owing to the
highly unequal distribution of energy between the partic
of a pair in reaction~VII !, the cascade has a characteris
feature,17 namely, one of the particles~electron or photon!
has a high energy almost equal to the energy of the in
particle, and the other generated particles have energy«e8
;«min . Since these particles scatter gamma-ray photons w
energies of 531014– 1015 eV over a length of about 5 kpc
let us estimate the numberM of such particles on the Galax
boundary for our analysis of the gamma-ray intensity. W
suppose that near the Galaxy there is only one particle
each branch of the cascade and the average numbe
branches isk̄. Then M5 k̄ and the number of branchesk̄
5m̄ l̄ , wherem̄ is the average number of proton interactio
while the proton energy satisfiesE.331019 eV. Assuming
that the fraction of energy lost by a proton in each interact
is K̄p , we have

E~12K̄p!m5331019 eV.

Hencem̄55.4 andM'8 for E51020 eV andK̄p50.2. We
have set the energy equal toE51020 eV in this estimate
because the cross sectionspg has a resonance in this regio
and drops rapidly with decreasing energy.24

Possible sources of detected protons withE.3
31019 eV are at distancesR<R1537 Mpc.4 Protons gener-
ating gamma-ray emission can travel through much lon
distancesR2.R1 ,13 i.e., their sources are at distancesR
<R2 from us. Assuming that the number of sources in
sphere with radiusR is N;R3, we obtain a relation betwee
the total gamma-ray intensityI g and the proton spectrumI :
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I g~.1014 eV!'I ~.1020 eV!M ~R2 /R1!3.

The estimate of the distanceR2 follows.
The spectra of cosmic rays in the rangeE.1020 eV

measured at different installations vary.10,27Let us use in our
estimate the integrated intensity28

I ~.1020 eV!5S 12

3

1
D 10220 ~cm2

•s•srad!21

and assume that most of the cosmic particles in this ene
range are protons. The higher the energy of the initial pro
the largerM , for example,M524 for E51021 eV. Since the
particle spectrum is described by a power function and
exponent is about two in the spectral range un
discussion,10,27the number of particles drops with the ener
faster thanM grows. Therefore in estimatingR2 we neglect
the contribution of protons withE@1020 eV and takeM
58. Moreover, we should take into account that in measu
ments on the Tien Shan array the fraction of the flux fro
the regionb>30° is 0.625 of the total fluxI g . Taking the
published data onI g ~Refs. 6 and 8! and I ~Ref. 28! within
their measurement errors, we obtainR2.103 Mpc. Hence
sources of protons generating electromagnetic cascades
be at distances of up to several thousands of megapa
from us. This estimate of the distance through which prot
with energyE.331019 eV can travel generating gamma
rays in the interesting energy range is in agreement w
calculations3 and estimates of the previous section.

Let us consider development of an electromagnetic c
cade in the energy range«e,1014 eV. Such electrons scatte
gamma-rays with average energy10 «̄g'3.6310216«e

2 , and
their mean free paths isl̄e;1 kpc. The electron energy loss
each scattering is small:D«e /«e'1024 and 1026 at «e

51012 and 1010 eV, respectively. In the electron rest fram
the scattering of gamma-ray photons with energy«g

,1014 eV is almost isotropic.29 Therefore the transverse dis
tance between two gamma-ray photons sequentially scatt
over a length of 1 kpc is;0.3 kpc, i.e., their density is very
small. Therefore detection of cascade photons in the en
range accessible for satellite detectors seems rather diffi

6. EXTRAGALACTIC MAGNETIC FIELDS

We have assumed that extragalactic magnetic fields
weak. For cascade developing in magnetic fields, elec
synchrotron losses should be less than Compton losses
pressions for these losses are given in Ref. 30. This sugg
a limit on the magnetic field strengthB:

B,~3310211wb!1/2, «e,«min ,

B,3.8731026~~mc2!2/«e«b!

3@wb ln~2«e«b /~mc2!2!#1/2, «e.«min .

Here B is measured in G and the energy densitywb of the
background protons is measured in eV/cm3. From estimates
given in Sec. 4 it follows that gamma-ray photons at int
esting energies of 531014– 1017 eV are scattered from relic
photons by electrons ~positrons! with «e'5
gy
n,
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31014– 1017 eV; they are scattered fromr 1-photons by elec-
trons with «e<231017 eV, and fromr 2-photons by elec-
trons with «e<1016 eV. Hence we haveB,231028 G if
gamma-rays are scattered from relict photons, andB,2
31029 G if they are scattered from radio photons. Pre
ously some theoretical limits on the magnetic field we
published31: B,1029 G on the basis of measurements of t
quasar rotation measure withz52.5; B!1029 G if protons
of ultrahigh energies propagate in straight lines in extra
lactic space; the ordered magnetic field, if one exists, sho
satisfy B,10211 G. From these limits it follows that the
extragalactic magnetic field does not interfere with elect
magnetic cascade development. Since we assumed that
tons propagated in extragalactic space in straight linesB
!1029 G.

If magnetic fields or their inhomogeneities are higher
some directions than the estimates given above, no gam
ray-initiated showers should be detected from these di
tions. This assumption can account for the nonuniformity
the gamma-ray distribution over the celestial sphere. Ho
ever, unlike the large-scale inhomogeneity in the distribut
of active galaxies, the magnitude and type of the extraga
tic magnetic field inhomogeneity can hardly be derived fro
available experimental data.

7. CONCLUSIONS

High-energy gamma-ray emission detected by the T
Shan and Bolivian arrays5–8 may result from interaction be
tween extragalactic protons and relict radiation with sub
quent generation of electromagnetic cascades in extragal
space. This mechanism accounts for specific features of
emission, namely,~1! the arrival directions of gamma-ray
from the region of predominantly high galactic latitudesubu
>30°; ~2! the nonuniformity of the gamma-ray distributio
over the celestial sphere detected by the Tien Shan arra

The difference between fluxes measured by the two
rays can be easily explained on a qualitative level. A qu
titative analysis requires comparison between selection c
ria for showers used by researchers working on the arr
and computer simulations of electromagnetic cascades in
tragalactic space.

Cascade development requires that electrons not lose
ergy to synchrotron radiation in the extragalactic magne
field. Considering gamma-ray generation, we assumed
protons propagated in extragalactic space along stra
lines. From this follows a limit on extragalactic magnet
field strength:B!1029 G. This limit does not contradict es
timates published previously.31 The nonuniform distribution
of gamma-rays over the celestial sphere can be attribute
the fact that the magnetic field strength or its inhomoge
ities satisfy the condition given above only in the region
high galactic latitudesubu>30°. At present it is difficult to
verify this hypothesis in experiment.

In the energy range accessible to devices on satell
detection of cascade gamma-rays is hardly possible bec
of their low density.

These conclusions can be verified in experiments on
ANI high-altitude array32 and on the Tien Shan high-altitud
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array.33 Showers will be selected using the technique
scribed by Nikolskyet al.5 Spectra of ultrahigh-energy pro
tons and their arrival directions will be measured by the n
EAS-1000 arrays34 and those described in Refs. 35 and 36,
addition to those listed in Refs. 10 and 27. Moreover, co
puter simulations of electromagnetic cascades in extraga
tic space are required for verification of discussed result

I am greatly indebted to G. T. Zatsepin for support
this work, to Yu. N. Vetukhnovskaya, V. A. Dogiel, A. V
Zasov, I. G. Mitrofanov, A. I. Nikishov, I. L. Rozental, an
O. K. Sil’chenko for discussions. I am also grateful to B.
Komberg and the referee for constructive criticism.
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Fabry–Perot cavity in the field of a gravitational wave
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The structure of the electromagnetic field inside a laser cavity—a gravitational-wave detector—is
studied. The properties of the spatial and temporal phases of the standing electromagnetic
wave are discussed in detail and the corrections appearing in the electric field of the wave as a
result of the action of gravitational radiation on the optical system are determined.
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1. INTRODUCTION

Gravitational-wave astronomy is now one of the mo
rapidly developing fields of science.1,2 The most promising
devices for detecting pulses from space are laser interfer
eters, which are under development at several centers.
action of a gravitational wave on an interferometer~for ex-
ample, a Michelson interferometer! can be interpreted as
relative deformationD l / l;h of both legs, the deformation
being positive in one leg and negative in the other. The
mensionless parameterh is a measure of the deviation of th
metric from the Euclidean metric in the field of a gravit
tional wave.

A realistic prediction of the amplitude of pulses fro
space suggests a magnitudeh;10221210223. Even with a
leg of order 10 km displacements;10217 cm must be de-
tected. This is a difficult problem, requiring the applicati
of the principles of quantum nondestructive measureme
Several schemes for perforning such measurements
been developed. They all have the same drawback—the
quirements on the laser pump or the properties of the de
ing components are unrealistic.

A QND scheme based on the nonlinear properties of
permittivity of a plate inserted into a microwave circuit w
developed recently.3 The main advantage of this scheme ov
previous schemes is that the requirements on laser p
power W were sharply reduced, thus making the sche
much more attractive from the standpoint of possible imp
mentation.

The requirements for the measurement procedure
the measuring system itself were likewise formulated in R
3. Specifically, the procedure imposed definite requireme
on the structure of the electromagnetic field in the opti
cavity. No rigorous substantiation of the response of the s
tem to the action of a gravitational wave was given in Ref
The structure of the field was studied at a qualitative lev
where many important details of the process were omitte

This has made it necessary to analyze in detail the st
ture of the electromagnetic field inside an interferometer
the field of a gravitational wave. A standing optical wa
satisfying the boundary conditions on the mirrors forms in
ideal ~no damping! optical cavity. The intensity at the ant
nodes of the electromagnetic field oscillates with twice
2201063-7761/98/86(2)/6/$15.00
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wave frequency and vanishes at the nodes of the field
ideal cavities a distinction appears between the temporal
spatial phases of the wave: A reference wave is require
order to detect variations of the temporal phase~in
gravitational-wave detectors the optical beam propagatin
the neighboring leg plays the role of such a wave!, while a
detector which is decoupled from the mechanical supp
and moves in the field of the gravitational wave is required
order to detect variations of the spatial phase, which on
count of the boundary conditions is rigidly tied to the m
chanical supports of the system. A shift of the nodes of
standing wave inside the cavity is also admissable instea
the shift described above.

The propagation of an electromagnetic wave in the fi
of a gravitational wave has been studied many times in
literature. It is sufficient to mention several works4–8 where
the propagation of an electromagnetic wave in the field o
gravitational wave was studied in the geometric-optics
proximation and under several other simplifying assum
tions. In what follows, the propagation of an electromagne
wave will also be studied in the geometric-optics approxim
tion, and it will also be assumed that the action of the gra
tational wave on the interferometer is adiabatic.

In the present paper the structure of an electromagn
field in ideal cavities with two different configurations wi
be analyzed—a conventional~linear! Fabry–Perot cavity and
an interrupted Fabry–Perot cavity, one leg of which is p
pendicular to the other. In the second case the cavity c
figuration is reminiscent of the configuration of a Michels
cavity. However, there is an important difference. In t
Michelson interferometer the legs are coupled by a h
transmitting mirror, whereas in our cavity the corner reflec
is an ideally reflecting mirror. In other words, there are
damping or transmission losses in either cavity. However
a linear Fabry–Perot cavity the position of a node of a sta
ing wave of the electromagnetic field does not vary with t
frequency of the gravitational wave, whereas this effec
maximized in the interrupted cavity.

The objective of the present paper is to examine
structure of the electromagnetic field inside each cavity
detail in the geometric-optics approximation, assuming t
the action of a gravitational wave is adiabatic. In Sec. 1
solution of Maxwell’s equations in the geometric-optics a
© 1998 American Institute of Physics
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proximation is studied. In Sec. 2 a simpler case is
analyzed—a linear cavity. In Sec. 3 a broken cavity is stud
ied: The structure of the electromagnetic field is determin
and the correction introduced in the field by the action of
gravitational wave is calculated.

2. INTERACTION OF LIGHT BEAMS WITH THE FIELD OF A
GRAVITATIONAL WAVE

We shall study a gravitational field in the form of
gravitational plane wave given by an equation in a synch
nous frame of reference. The metric in the field of such
wave has the form

ds25~hab1hab!dxadxb,

wherehab is the Minkowski metric,hab are corrections to
the metric tensor, anda andb run through the values 0, 1, 2
3. We assume everywhere below that the speed of ligh
c51. For simplicity, we shall also assume that the grav
tional wave propagates along thez axis and the cavity legs
lie in thexy plane. Though limiting somewhat the general
of the analysis, this assumption nonetheless gives the co
qualitative answer to the problem posed. The case of a g
t i
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eral position differs from the case studied because additio
components of the electromagnetic field arise that complic
the problem. The simplifications preserve the physical me
ing of the results without obscuring it with numerous calc
lations.

In this case only three components of the corrections
the metric are different from zero:h1152h22,h21. We shall
designate them ash115h1 andh125h3 . The correction to
the metric can be written in the general form

hab5h1tab1h3sab .

Here the matricestab andsab describe the tensor structure o
the corrections to the metric. For a gravitational wave in
dent at an arbitrary angle, when the components of the w
vector of the wave in the chosen coordinate system are

k5V~1,sinw sin u,2cosw sin u,cosu!

~w is the azimuthal angle andu is the polar angle of inci-
dence of the wave in thexyz system!, the explicit form of
the matricestab andsab in terms of the angles of incidenc
of the gravitational wave is
tab5S cos2 w2cos2 u sin2 w ~11cos2 u!sin w cosw sin u cosu sin w

~11cos2 u!sin w cosw sin2 w2cos2 u cos2 w 2sin u cosu cosw

sin u cosu sin w 2sin u cosu cosw 2sin2 u
D

sab5S 2sin 2w cosu cos 2w cosu cosw sin u

cos 2w cosu sin 2w cosu sin w sin u

cosw sin u sin w sin u 0
D .
c-
n
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Now that the general relations have been written out, i
neceassry to state that only one polarizationh1 is studied,
though in doing so there is no loss of generality.

We introduce the Fourier representation of the corr
tions to the metric, omitting everywhere the index1:

hab~xm!5tabE dVh~V!exp~ iV~ t1z!!.

Strictly speaking, the solution of the problem of the m
tion of light beams in the field of a gravitational wave pr
suppose the solution of the generally covariant Maxwe
equations. We take as the components of Maxwell’s ten
Ea5F0a and Ba52(1/2Ag)eabcFbc .9 These quantities are
convenient because their boundary conditions are formul
just as for conventional electric and magnetic field vectors
the theory of electromagnetism: The tangential componen
the electric field vanishes at an ideally conducting surf
and the normal component of the magnetic field also v
ishes on such a surface.

We shall study the solution of the generally covaria
Maxwell’s equations in the geometric-optics approximatio
i.e., we shall assume that the electric field vector is descri
by the equation~see, for example, Ref. 10!
s

-

-

s
or

ed
n
of
e
-

t
,
d

E5ae2 iS, ~1!

where a is the amplitude of the electric field andS is the
eikonal. In the geometric-optics approximation the field ve
tor is represented as a product of a slowly-varying functioa
and a rapidly varying functione2 iS. It should be under-
scored that the gradient]S/]x is also a slowly-varying func-
tion. Several small parameters arise in the equations.
first one is the amplitudeh of the gravitational wave. The
second one is the ratio of the characteristic frequencyV of
the gravitational wave to the frequencyv of the electromag-
netic wave. We shall perform all calculations to first order
the amplitude of the gravitational wave and to zeroth orde
the ratio of the frequencies. Besides these small parame
which are related to the nature of the gravitational field a
the approximation adopted for solving Maxwell’s equation
there also exist several small parameters associated with
geometry of the system. We underscore immediately that
magnitudes of the principal small parameters areh;10223

and V/v;10212; all other small parameters are muc
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larger. For example, the ratio of the dimensions of the s
tem to the wavelength of the gravitational wave is;1023.

We make use of the slowness of the variations ofa and
]S/]x in order to obtain an equation forS:

~hab1hab!
]S

]xa

]S

]xb 50. ~2!

We solve this equation by the conventional method of
panding in a series in a small parameter—the amplitudeh of
the gravitational wave—in the formS5S01S1 . In the ze-
roth approximation the solution is trivial:

S05vpaxa,

wherepa is a vector that is tangent to the trajectory of t
light beam and possesses a zero norm,papa50, andv is
the frequency of the electromagnetic wave. A solution of
form

E5a exp$2 iv~ t2x!%

describes an electromagnetic plane wave propagating a
the x axis.

The first approximation inh has the form

pa
]S1

]xa 5
1

2
vhabpapb. ~3!

We now introducet5tabpapb. Then the solution of Eq.~3!
can be represented as

S1~xa!5 f ~paxa!1
vt

2i E dV

V
h~V!eiV~ t1z!, ~4!

where f is an arbitrary function of the argumentpaxa.
We note that the equation obtained is identical to

equation describing a geodesic curve in the field of a gra
tational wave.7

The reflection of an electromagnetic wave from the
terferometer mirrors in the present formulation of the pro
lem is expressed in the form of boundary conditions for
electromagnetic field on the surfaces of the mirrors. We s
formulate them in the conventional manner.12 Hence, the
boundary conditions must be rigidly tied to the surface of
mirrors. Therefore it is necessary to know the law of moti
of the mirrors in the field of the gravitational wave.

In the chosen coordinate system the mirrors move al
the linesxi5const. An analysis of the motion of mirrors in
synchronous frame of reference in the field of a gravitatio
wave can be found in Ref. 7. For this reason, we shall w
our boundary conditions in the form

Etang~xi !50.

Besides the approximations indicated above, we s
use one other simplification. We shall assume that the wa
length of the gravitational wave is much longer than t
length of both legslGW@ l ,L. On the one hand this assum
tion greatly simplifies the formulas. On the other hand
makes it possible to neglect transitions between modes o
optical cavity. The effect of a gravitational wave on a cav
-
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containing a standing electromagnetic wave does not
reduce to adiabatic changes in the frequency and phas
gravitational wave can induce transitions between cav
modes by the parametric interaction of waves of two type11

The transition probability is small. This probability contain
a small factor, the amplitude of the gravitational wave. C
tainly, the adiabatic variation of the frequency and phase
also proportional to the amplitude of the gravitational wav
and in this sense both effects are of the same order of m
nitude. However, there is one fundamental detail. Transiti
between modes start when the frequency of the gravitatio
wave is higher than or equal to the frequency difference
tween neighboring modes:

V.
2p

l
,

where l is the characteristic length of a leg. This inequal
implies a limit on the ratio of the wavelength of a gravit
tional wave and the size of the optical system. If we wish
avoid intermode transitions, then the inequalitylGW. l must
be satisfied. Therefore, for the condition which we have c
sen on the spectral range of sensitivity of the detector,
discussion can be limited to the adiabatic variation of
phase and frequency.

3. LINEAR FABRY–PEROT CAVITY

We now study the structure of the electromagnetic fi
inside a linear Fabry–Perot cavity. Let the cavity be align
with thex axis. Let the cavity mirrors be perpendicular to th
x axis. Once again, let the gravitational wave propag
along thez axis. We choose the three-dimensional elect
field vector in the formE5(0,0,Ez). This choice serves to
simplify the problem and achieves two purposes. First,x and
y components of the vector field do not arise in the cav
and it is therefore easier to follow the physical meaning
the calculations. The second advantage is that the boun
conditions for the componentEz on the first and second mir
rors are equivalent to the corresponding boundary conditi
for the component of the magnetic field in this cavity.

We call the light beam propagating in the positivex
direction the first beam and the beam propagating in
negative direction the second beam. Let the first mirror
located at the pointx50, y50, z50 and the second mirro
at the pointx5 l , y50, z50.

Correspondingly, the field in the first beam will be d
termined by the equation

E~1!5ae2 iS1, ~5!

S15v~ t2x!1vs11
vt

2i E dV

V
h~v!eiVt

2
vt

2i E dV

V
h~V!eiV~ t2x!, ~6!

and the field in the second beam will be determined by
equation

E~2!52ae2 iS2, ~7!
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S25v~ t1x!1vs21
vt

2i E dV

V
h~V!eiVt

2
vt

2i E dV

V
h~V!eiV~ t1x!. ~8!

The negative sign in front of the amplitude of the field of t
second beam is chosen so as to match the values o
eikonals on the mirrors without a jump in phase byp ; and
s1 ands2 are constants determined by the matching con
tions. The values of the eikonal in Eq.~1! are real numbers
so that after the integrals in Eqs.~6! and ~8! are calculated,
their real parts must be taken and substituted into the exp
sions~5! and ~7! for the electric field.

The boundary conditions at the mirrors for the chos
components of the electric field have the form

E~1!1E~2!50.

The boundary condition for the first mirror, which is locate
at the pointx50, reduces to the equation

v~s12s2!52mp,

wherem is an integer.
The values of the eikonal on the second mirror located

x5 l are

S15v~ t2 l !1vs11
vt l

2
h~ t !, ~9!

S25v~ t1 l !1vs22
vt l

2
h~ t !, ~10!

and the boundary condition is expressed in the form of
equation for the eigenfrequencies of the cavity:

vS 12
th

2 D5
mp

l
. ~11!

In deriving this equation we assumed that the character
frequencies of the gravitational wave satisfy the inequali

V l !1.

Correspondingly, the total electric field inside the cav
is

E5a exp@2 iv~ t1s2!#H expF ivxS 12
th

2 D G
2expF2 ivxS 12

th

2 D G J ,

and the time-averaged squared field is described by an
pression that does not depend on the gravitational radia

uE2u54a2 sin2
mpx

l
.

It is evident from the latter formula that the light intensi
inside the Fabry–Perot cavity does not depend on the p
ence or absence of a gravitational wave. In order for
he

i-

s-

n

t

n

tic

x-
n

s-
e

presence of a gravitational wave to influence a quadr
function of the field an additional light source with a sta
dard frequency must be present or the cavity must be n
ideal.

4. CAVITY WITH PERPENDICULAR LEGS

We now examine the structure of the electromagne
field inside a Fabry–Perot cavity with perpendicular legs. L
one leg be aligned with thex axis and have lengthl . Let the
cavity mirror be perpendicular to thex axis. Let the second
leg be aligned with they axis and have lengthL. Let a
corner reflector be placed at the intersection of these
~see Fig. 1!. As before, let a gravitational wave propaga
along thez axis and the electric field vector be of the for
E5(0,0,Ez). Once again, for this choice of the vector thex
and y components of the field do not arise in the cavity.
should also be emphasized that the boundary conditions
the field componentEz at the first and second mirrors ar
equivalent to the corresponding boundary requirements
the components of the magnetic field in this cavity.

We consider the following path of the beams. At timet0

a beam leaves the first mirror located at the pointx50,
y52L, z50, reaches the corner reflector located at
point x5 l , y52L, z50, reflects from the corner reflecto
and propagates toward the second mirror. It reflects from
second mirror, returns to the corner reflector, reflects fr
the corner reflector, and returns to the first mirror, closing
path. Let the index 1 denote the first part of the path and
index 2 the second part~from the corner reflector to the
second mirror!. Let the index 3 denote the path of the bea
from the second mirror to the corner reflector and, finally,
the index 4 denote the path from the corner reflector to
first mirror. In the calculations we assumeV l , VL!1.

Let the eikonal on each leg and on each path be
pressed in the form

S15v~ t2x!1vs11
vt

2i E dV

V
h~V!eiVt

2
vt

2i E dV

V
h~V!eiV~ t2x!,

FIG. 1. Arrangement of the optical system. Coordinates of the first mi
x50, y52L. Coordinates of the corner reflectorx5 l , y52L. Coordi-
nates of the second mirrorx5 l , y50. Length of the horizontal leg—l ,
length of the vertical leg—L.
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S25v~ t2y!1vs22
vt

2i E dV

V
h~V!eiVt

1
vt

2i E dV

V
h~V!eiV~ t2y!,

S35v~ t1y!1vs32
vt

2i E dV

V
h~V!eiVt

1
vt

2i E dV

V
h~V!eiV~ t1y!,

S45v~ t1x!1vs41
vt

2i E dV

V
h~V!eiVt

2
vt

2i E dV

V
h~V!eiV~ t1x!,

The boundary conditions on both mirrors for the chos
components of the electric field are, once aga
E(1)1E(2)50. For the first mirror, which is located at th
point x50, y52L, it reduces to the equatio
v(s12s4)52mp, wherem is an integer. For the secon
mirror, located at the pointx5 l , y50, it reduces to the
equationv(s22s3)52np, wherem andn are integers.

The sum of all components of the electric field vanish
on the corner reflector:

E~1!1E~2!1E~3!1E~4!50,

and the expressions for each eikonal assume the form

S15v~ t1s1!2v l S 12
th

2 D ,

S25v~ t1s2!1vLS 11
th

2 D ,

S35v~ t1s3!2vLS 11
th

2 D ,

S45v~ t1s4!1v l S 12
rh

2 D .

Introducing

A5ae2 ivs1, B5be2 ivs2

we obtain the boundary condition for the electric comp
nents in the form

A sin v l S 12
th

2 D2B sin vLS 11
th

2 D50. ~12!

The second boundary condition is imposed for the co
ponents of the magnetic field which are perpendicular to
reflecting surface of the corner reflector. We find the m
netic field components themselves from Maxwell’s equ
tions, neglecting terms;V/v, i.e., the ratio of the fre-
quency of the gravitational wave to the frequency of t
electromagnetic wave. Then, only the componentsHy of the
magnetic field are different from zero in the first~horizontal!
n
,

s

-

-
e
-
-

leg and onlyHx are different from zero in the second leg. W
write out the sums of the magnetic field components in e
leg:

Hy
~1!1Hy

~4!5aS 12
th

2 D ~e2 iS11e2 iS4!.

Hx
~2!1Hx

~3!52bS 11
th

2 D ~e2 iS21e2 iS3!.

The perpendicular component of the magnetic field on
surface of the corner reflector must equal zero, whence
find the equation for the boundary condition

Hy
~1!1Hy

~4!2Hx
~2!2Hx

~3!50.

This equation reduces to the equation

AS 12
th

2 D cosv l S 12
th

2 D1BS 11
th

2 D
3cosvLS 11

th

2 D50. ~13!

Equations~12! and ~13! comprise a system of linea
equations. Equating the determinant of this system to z
gives a set of characteristic modes of a Fabry–Perot ca
with perpendicular legs. Thus, the solution for the eigenf
quencies of the cavity~to first order in the amplitude of the
gravitational wave! is

v5
mp

l 1L S 11
l 2L

l 1L

th

2 D1~21!m11
th

2~ l 1L !
sin v~ l 2L !.

~14!

We note immediately that the modes of an equal-
cavity (l 5L) do not depend on the time or on the presen
of the gravitational wave:

v5
mp

l 1L
.

When the length of one leg is negligibly small,L→0, the set
of modes is determined by the equation

v5
mp

l 1L S 11
th

2 D ,

i.e., we return to the situation described in the preced
section~one can easily see that the last term in Eq.~14! goes
to zero asL→0!.

We shall assume that the legs of our system are symm
ric. This greatly simplifies the calculations without loss
generality. Then the eigenfrequencies of the system are
stants and do not depend on the presence or absence
gravitational wave.

Let us calculate the electric field of the first and four
beams near the corner reflector at some pointx located be-
tween the first mirror and the corner reflector. The equati
for the eikonals in these beams are

S15v~ t1s1!2vxS 12
th

2 D ,
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S45v~ t1s4!1vxS 12
th

2 D .

Correspondingly, the sum of the electric fields in the first a
fourth beams is

E52a exp@2 iv~ t1s11p/2!#sin vxS 12
th

2 D , ~15!

and the absolute value of the squared field in this point i

uE2u54a2 sin2 vxS 12
th

2 D .

It is now obvious that the expression quadratic in t
field depends on the gravitational wave. Specifically, the
tensity of the radiation inside the cavity with perpendicu
legs will depend on the frequency of the gravitational wa

The constant component of the intensity will equal

I 54a2 sin2 vx,

and the variable part, which contains information about
gravitational wave, is

dI 524a2 sin~2vx!
px

le
th~ t !.

Herele is the wavelength of the electromagnetic wave. N
that in the case of equal leg lengths (l 5L) the sum of the
first and fourth beams vanishes at the corner reflector. Th
a consequence of the symmetry of the legs and the boun
conditions. However, sin 2vx already reaches a maximum
a distancej5le/8 from the surface of the corner reflecto
and the response of the cavity to the gravitational wave
largest there.

Therefore near the corner reflector the quantity quadr
in the electric field oscillates with the frequency of the gra
tational wave and with an amplitude of the order of

p l

le
th~ t !.

5. CONCLUSIONS

In Ref. 3 the necessary condition for implementing t
proposed quantum nondestructive meaurement scheme
that the spatial phase of the field~at a point in space rigidly
secured to the corner reflector! inside the cavity must contain
information about the gravitational radiation. It was show
above that such a situation obtains in a Fabry–Perot ca
with perpendicular legs.

The calculations performed above have a simple ph
cal interpretation. In a linear Fabry–Perot cavity an adiab
d

-
r
.

e

e

is
ry

is

ic
-

as

ty

i-
ic

variation of frequency does not produce oscillations of
squared field inside the cavity. In a cavity with perpendicu
legs the meaning of the calculations becomes espec
transparent in a locally-inertial coordinate system. Indeed
the limit V l !1, in a locally-inertial coordinate system th
mirrors move. In the field of a gravitational wave the fir
mirror moves in a direction toward the corner reflector a
the second mirror moves in a direction away from the cor
reflector. The sum of the distances between mirror 1 and
corner reflector and between mirror 2 and the corner refle
remains constant during the action of the gravitational wa
~for l 5L!, but the position of the corner reflector with re
spect to each mirror changes. From the standpoint of a o
dimensional observer, who can measure the field only al
an axis directed along a light beam, a standing wave w
constant characteristics is realized inside the cavity, wh
the corner reflector and the measuring instrument secure
it ‘‘travel’’ along the optical axis. From his point of view the
gravitational wave gives rise to oscillations of the corn
reflector along the optical axis and therefore the meas
ment instrument detects motion of the corner reflector
cording to the change in the field of the standing wave, if,
example, the detector is placed on the ‘‘slope’’ of the field
the wave.

I take this opportunity to thank V. B. Braginski� and
F. Ya. Khalili for discussions which stimulated the writing o
this paper and for numerous valuable remarks.
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We examine the properties of an atomic system consisting of a muon and antimuon. Expressions
are derived for the probability of decay and the hyperfine splitting of the lower levels with
allowance for the leading radiative corrections, which are of relative ordera. The results for the
lifetimes and the ground-state energy aret(1 3S1)51.7907(8)310212 s,
t(1 1S0)50.59547(33)310212 s, andEhfs(1s)54.23284(35)3107 MHz. The relative
probabilities for the various decay channels are calculated; in particular, for the 13S1 level it is
found thatG(mm→eeg)/G(mm→ee)'15%. Finally, possible applications are discussed.
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1. INTRODUCTION

In this paper we study the spectrum of a purely lepto
system consisting of a bound muon and antimuon.1! We dis-
cuss the properties of the system, such as the lifetimes, d
channels, and the hyperfine splitting of the lower levels,
detail. The given atomic system can be investigated by
standard methods of elementary particle physics. Inde
dimuonium can be produced in decays and collisions of
ementary particles or in nuclear collisions.

Note that atomic decay channels and scattering p
cesses have already been observed. For instance, the b
pm system was detected in theKL

0→(pm-atom)1n decay
by Coombeset al.,1 and then Aronsonet al.2 were able to
increase the number of events and carried out more accu
measurements. Ultrarelativistic positronium in the final st
was detected in proton–carbon collisions.3 The decayp0

→Ps1g inside the target was assumed to be the main so
of the atoms, and additional experiments4 proved that this is
indeed the case. Recently experiments with a proton b
and a tantalum target produced pionium.5

To make our description complete, we mention the
tection of the Coulomb interaction in the final state
proton–proton scattering.6 In the latter case the interactio
was observed in thep1p2, pp2, andK1K2 channels, al-
though given the small number of events, it was imposs
to determine whether these states belong to the continuou
discrete spectrum.

The production of bound states of them1m2 system is
even a rarer event than the production of hadronic atoms
that it is difficult to expect that enough atoms will be pr
duced for spectroscopic studies. Usually the product
probability is proportional to the wave function at the origi
i.e., to d l0 /n3. Clearly, in this case we can only hope
2261063-7761/98/86(2)/11/$15.00
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obtain the lowests states. Their lifetimes are in the picose
ond (10212 s) range, i.e., they are of the same order as
lifetimes of some neutral mesons ~cf., e.g.,7

t(KL
0)589.3(1)310212 s, t(D0)50.415(4)310212 s,

t(B0)51.56(6)310212 s, andt(BS
0)51.61(10)310212 s),

which have been measured to within about one percent.
decay products are also characteristic of the decay of
particles: the principal mode for paradimuonium is annihi
tion into two gamma photons~Fig. 1a!, while for orthod-
imuonium conversion into an electron–positron pair via v
tual one-photon annihilation~Fig. 1b! is the principal mode.
In both cases the energy of the final particle in the atom
center-of-mass system is 106 MeV.2!

Recent progress in observing various atomic states
collisions3,5 and decays,1,2,4 and the characteristic deca
channels of dimuonium, suggest that dimuonium will be d
tected soon. From the standpoint of experimental hi
energy physics, dimuonium is a family of neutral sca
~paradimuonium, states 1s and 2s! and vector~orthodimuo-
nium, states 1s and 2s! bosons. The study of dimuoni
atomic states is of interest to experimentalists as a mode
the search for exotic neutral particles with masses and
times characteristic of ordinary particles, but with anom
lously weak interaction between the two types. Note t
many models have a place for new neutral particles, eit
extremely heavy and interacting with matter, or with a no
mal mass but weakly interacting with ordinary particle
Clearly, dimuonium has the right properties for neutral e
otic particles of the second kind. Allowing for the fact th
lately the search for such particles has become one of
main lines of experimental research, we believe that
aforementioned properties of dimuonium make it a good
particle.

The m1m1 system may also be of interest as a test
© 1998 American Institute of Physics
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quantum electrodynamics~QED!. First, as in the case of or
dinary muonic atoms, it is possible to check the predictio
of QED at spacelike momenta of the order of the elect
mass~a typical atomic momentum isamm/2.0.75me!. In
ordinary muonic atoms, effects related to nuclear struct
play an important role~these effects are not present in
purely leptonic system!. The expected relatively modest a
curacy of measured lifetimes and hyperfine splitting may
partly compensated by corrections to the wave functions
are more sensitive to the features of the potentials than
such integrated quantities as the energy. On the other h
in calculating the hyperfine splitting~Fig. 2b! and the decay
width ~Fig. 1b! for the orthodimuonic system, we must allo
for the annihilation diagram, whose contribution is propo
tional to the photon propagator. Measuring the lifetime a
hyperfine splitting in orthodimuonium, we can experime
tally study vacuum polarization at a high timelike mome
tum ~in units of electron mass! that is still below the pionic
threshold.

In our opinion, the most interesting quantities are lif
times; finding these to within about one percent requi
knowing the radiative corrections and the ratios of the par
widths of the various decay channels, which can be dire
used in the detection process. Total and partial widths
discussed in Secs. 3 and 4. But before that, in Sec. 2,
study hyperfine splitting of the 1s and 2s states. The point is
that on the one hand, parts of the diagrams for hyper
splitting and decay of orthodimuonium resemble one
other, while on the other, there is an analogy between hy
fine splitting in dimuonium and positronium, which has be
well studied. The results are discussed at the end of the
per.

Before proceeding, we briefly review some familiar r
sults obtained for exotic atoms. Questions associated

FIG. 1. Decay of dimuonium in the leading approximation:~a! paradimuo-
nium, and~b! orthodimuonium. Here and in what follows we depict on
one diagram of each type. The double fermion line corresponds to the m
and the single line, to the electron. For instance, in the case of diagram~a!
one must allow~in a symmetric way! for two diagrams with different pho-
tons.

FIG. 2. Hyperfine splitting in dimuonium in the leading approximation: t
‘‘spring’’ denotes the exchange of a transverse photon~a!, and diagram~b!
depicts virtual one-photon annihilation~the wavy line denotes an ordinar
photon!.
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the production, spectrum, and decay of pionium have b
studied most thoroughly~see Refs. 8 and 9 and the literatu
cited therein!. Other exotic atoms containing mesons ha
also been studied~see, e.g., Refs. 8, 10, and 11!. Only a few
papers have been devoted to the study of dimuonium pro
In Ref. 10, in addition to other atomic states participating
the decay of elementary particles, the processh
→(m1m2-atom)1g was investigated. Bilen’ki� et al.8 stud-
ied processes with dimuonium production in the react
p21p→(m1m2-atom)1n and in the scattering of a pho
ton in the field of a nucleus. Several radiative corrections
the decay of heavy leptoniums in the ortho-state were inv
tigated by Malefant,12 who found only some of the
contributions of relative ordera ~see Sec. 3 for more details!.
At the same time it must be noted that some of the res
for hyperfine splitting in positronium13,14 can be used in the
case of dimuonium and to calculate the orthodimuonium
cay width.

2. HYPERFINE SPLITTING IN DIMUONIUM

It is convenient to start the discussion of hyperfine sp
ting in dimuonium with the results obtained for positronium
The leading contribution is of ordera4m and stems from two
diagrams in Fig. 2: the exchange of a transverse photon~a!
and virtual annihilation~b!. The result for dimuonium differs
in that the electron mass must be replaced by the muon m

Ehfs
~0!~ns!5

EF

n3 , ~1!

where the Fermi energyEF is defined as follows3!:

EF. 7
12a

4mm.0.175 eV54.233107 MHz. ~2!

The factor 7/12 results from adding 1/3~transverse ex-
change! to 1/4 ~annihilation!.

The leading radiative corrections of ordera5m stem
from the diagrams depicted in Fig. 3, where the contributio
from diagrams a to e have the same form for positronium
dimuonium, while the contributions from diagrams f to j a
specific to dimuonium. The results for the hyperfine splitti
of the ground state in positronium were found by Karpl
and Klein,13 and they were later corroborated by Fulton a
Martin,14 who established that for thens levels the entire
dependence on the state reduces to a scaling factorn23,
which emerges from the square of the Schro¨dinger wave
function at the origin,uwns(0)u2. The result is13,14

DEPs~ns!5
a

p F2
32

21
2

6

7
ln 21

3

7
p i G EF

n3 . ~3!

As noted earlier, this result stems from the first five diagra
in Fig. 3, which include the anomalous magnetic mom
~a!, two-photon exchange~b!, vertex correction to annihila-
tion ~c!, polarization insertion into an annihilation photo
~d!, and two-photon annihilation~e!. All these contributions
are listed separately in Table I. For the discussion that
lows, we present two of these corrections in detail: the ver
correction

on
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DEV~ns!5
a

p
@2232#

3

7

EF

n3 ~4!

~here we have written the combinatorial factor 2 explicitly!,
and the insertion of vacuum polarization from the lepto
comprising the atom~i.e., electrons for positronium an
muons for dimuonium!,

DEPm~ns!5
a

p F2
8

9G 3

7

EF

n3 . ~5!

The sign of the imaginary part in~3! can be explained by
the fact that hyperfine splitting is the difference between
orthopositronium and parapositronium energies, with
imaginary part giving the probability of parapositronium d
cay ~due to two-photon annihilation!15:

FIG. 3. Single-loop radiative corrections to hyperfine splitting in dimuo
ium: ~a! contribution of the anomalous magnetic moment,~b! two-photon
exchange,~c! the vertex correction to annihilation,~d! muonic polarization
of vacuum,~e! virtual two-photon annihilation,~f! transverse exchange with
the Uehling correction to the wave function~the Coulomb electron is de
picted by a dashed line!, ~g! vacuum polarization in a transverse photon,~h!
one-photon annihilation with a correction to the wave function,~i! electron
vacuum polarization in an annihilation photon, and~j! hadronic vacuum
polarization. In some cases~b and c! one must subtract the contributions o
the preceding order.
s

e
e

GPM
~0!~ns!5

a5mm

2n3 . ~6!

The corresponding lifetime is tPM
(0)(ns)5n330.6021

310212 s.
We begin the discussion of the specific contributio

with effects related to the Uehling potential. As noted earli
the leading contribution~1! is proportional to uwns(0)u2,
which varies due to corrections to the potential. Vacuu
polarization in a muonic atom, with a small nuclear char
is a nonrelativistic effect.

The insertion of vacuum polarization induces the follo
ing change in the photon propagator:

1

q21 i0
→

1

q21 i0
I P~q2!5

a

p E
s0

`

dsr~s!
1

q22s1 i0
.

~7!

Strictly speaking, the insertion of vacuum polarization is
ways transverse, i.e., proportional togmn2qmqn /q2, with
the result that~7! is true only in the Landau gauge. It is clea
however, that by appropriately selecting the longitudinal p
of the photon propagator and adding terms of ordera we can
ensure the validity of~7! in any covariant gauge~for details
see Ref. 16!.

In the case of electron polarization the parameters5l2

and the integral of the spectral functionr(s) can be repre-
sented in the form

l5
2me

A12v2
~8!

and

I Pe~q2!5
a

p E
0

1

dv
v2~12v2/3!

12v2

q2

q22l21 i0
. ~9!

As a result, the polarization insertion into the Coulom
photon is described by the nonrelativistic potential

VU~r !52
a

p E
0

1

dv
v2~12v2/3!

12v2

ae2lr

r
. ~10!

The Uehling potential~10! leads to a shift in the energ
levels ~the Lamb shift! and to corrections to the wave func
tion. The shift in the energy levels,

L~1s!52
a

p
@0.15...#E0520.49 eV,

L~2s!52
a

p
@0.072...#

E0

4
520.058 eV,

L~2P!52
a

p
@0.00172...#

E0

4
520.0014 eV ~11!

must be compared with the analog of the Rydberg cons
for dimuonium

E05
a2mm

4
51406.6133~5! eV,

-
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which was calculated using the following values of t
physical constants: a215137.035 9895(61) and
mm5105.658389(91) eV~see Ref. 7!.

Clearly, the contributions corresponding to diagram
and h in Fig. 3 can be found by taking the perturbation
uwns(0)u2 into account, which enters directly into the leadin
contributions~Fig. 2!. The correction is of relative ordera
and depends on the state~cf. Ref. 17!. The desired quantity
has the form

Duwns~0!u2

uwns~0!u2 52E d3rḠns~0,r ;Ens!VU~r !wns~r !, ~12!

where

Ḡns~Ens!5 (
n8Þn

ucn8s&^cn8su
Ens2En8s

~13!

is the reduced nonrelativistic Coulomb Green’s functi
~more precisely, itss-wave part!. The simplest way to calcu
late the integral in~13! is to use the explicit expression fo
the Green’s function~see, e.g., Ref. 18!:

Ḡ1s~E1s ;0,r !5
amr

2

4p

e2r

r
@4r~ ln 2r1C!

14r2210r22# ~14!

and

Ḡ2s~E2s ;0,r !52
amr

2

4p

e2r/2

2r
@4r~r22!~ ln r1C!

1r3213r216r14#, ~15!

where we have introduced the dimensionless rad
r5amrr , andC50.5772... is Euler’s constant. We also a
lowed for the fact that the nonrelativistic problem can alwa
be solved in terms of the reduced massmr .

Now it is easy to calculate the integral with respect
the radius analytically and to integrate the result with resp
to the auxiliary parameterv numerically. The results are

Duw1s~0!u2

uw1s~0!u2 5
a

p
@1.059...# ~16!

and

Duw2s~0!u2

uw2s~0!u2 5
a

p
@0.916...#. ~17!

Vacuum polarization usually leads to small numeric
contributions, which can easily be seen in the case of La
shifts ~11!. But for wave functions at the origin the contribu
tions prove to be relatively large. Note that wave functio
are much more sensitive to the details of the potential. W
is more important, however, is that a particular value of
wave function is not an integrated quantity, as is the ene
~11! or the matrix element for the atomic transitio
probability,17 where the corrections are of a normal order
magnitude. The shape of the potential can have a strong
fect on the wave function.
f
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In order to understand the nature of the large numer
values of the contributions, we write the Green’s function
a sum over states,

Dwns~0!5E d3rḠns~Ens ;0,r !VU~r !wns~r !

5E d3r (
nÞn8

wn8s~0!wn8s
* ~r !

Ens2En8s
VU~r !wns~r !,

~18!

and ignore the energy of the intermediate staten8 in the
denominatorEns2En8s . Clearly, we can easily find the sum
in ~18! and the result, withEns5En8s replaced byEns ,
proves to be divergent,

VU~0!2^nsuVUuns&
Ens

wns~0!.

Note that the Uehling potentialVU(r ) ~Eq. ~10!! is inversely
proportional to the radius, and the weighting function
logarithmically divergent.

This divergence means that we cannot ignore the in
mediate state energy. On the other hand, it is clear that
the 1s level, for example, in estimating the contribution
the discrete spectrum we are always justified in ignoring t
energy. This suggests that the continuum states provid
considerable contribution, with the sum over states slow
decreasing with increasing wave number. Indeed, exp
calculations show that the high-energy continuum states
responsible for the large numerical value~the first term in
square brackets corresponds to the discrete spectrum an
second, to the continuum!:

Duw1s~0!u2

uw1s~0!u2 5
a

p
@0.0710.98# ~19!

and

Duw2s~0!u2

uw2s~0!u2 5
a

p
@20.2611.17#. ~20!

Allowance for the correction to the wave function imm
diately leads to the contributions of diagrams f and h in F
3 ~see Table I!. Note that the results depend on the sta
Another state-dependent contribution stems from the vacu
polarization in the transverse photon~diagram g in Fig. 3!.
The corresponding contribution is proportional to

Mnl5^nlu¹2VUunl&. ~21!

The integral with respect to the radius can easily be c
culated analytically, and the integral with respect to the
rameterv, numerically. The results for the 1s and 2s levels
are listed in Table I.

Note that state-dependent contributions are more se
tive to the potential than the Lamb shift. In the case of c
rections to the wave function this manifests itself in the p
dominance of high-frequency intermediate states, while
vacuum polarization in a transverse photon the contribut
is proportional to the derivative of the potential.

Now we calculate the contributions related to the ins
tion of vacuum polarization into an annihilation photon. W
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found the contribution of muonic polarization above, so th
we need to examine electron polarization~diagram i in Fig.
3! and hadronic polarization~diagram j in Fig. 3!. Electron
vacuum polarization can easily be taken into account if
use the well-known asymptotic behavior of the polarizat
operator at high momenta:

I Pe~q2!5
a

p F1

3
ln

2q2

me
2 2

5

9G5
a

p F1

3
ln

q2

me
2 2

5

9
2

p

3
i G .

~22!

The corresponding contribution is (q25(2mm)2)

DEPe~ns!5
3

7

a

p F1

3
ln

~2mm!2

me
2 2

5

9
2

p

3
i G EF

n3 . ~23!

The presence of an imaginary part means that ort
dimuonium has a finite lifetime, determined by the dec
(m1m2-atom)→e1e2 ~Fig. 1b!:

GOM
~0! ~ns!5

a5mm

6n3 . ~24!

The lifetime is n331.806310212 s ~see Ref. 8!. Here
we note an important difference between positronium a
dimuonium: the lifetimes of the para- and ortho-states
dimuonium are of the same order~cf. Eqs.~6! and ~24!; see
Fig. 1!, while orthopositronium~Fig. 4b!, which decays into
three gamma photons,19 lives much longer than parapositro
nium, which decays into two photons~see Eq.~6! and Fig.
4a!. The difference appears because dimuonium has an a
tional mode of decay into an electron–positron pair, wh
proves to be the dominant one~Eq. ~24!!.

TABLE I. Corrections of ordera5m to the hyperfine splitting of the levels
1s and 2s are given in relative units:DE(ns)5(a/p)CEF /n3. The nota-
tion of the contributions corresponds to Fig. 3. The contributions a to e
the same as in positronium, and the contributions f to j are specific
dimuonium.

Contribution C(1s) C(2s)

a 0.571 0.571
b 20.857 20.857
c 21.714 21.714
d 20.381 20.381
e 0.263 0.263
f 0.605 0.523
g 0.345 0.355
h 0.454 0.393
i 1.483 1.483
j 20.080(9) 20.080(9)
Total 0.689~9! 0.556~9!

FIG. 4. Decay of positronium in the leading approximation:~a! parapositro-
nium, and~b! orthopositronium.
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Now let us discuss the hadronic contribution to vacuu
polarization. We first examine the approximation used
Ref. 20 to calculate the contribution of hadronic polarizati
to hyperfine splitting in muonium. The method consists
the following. The spectral function in the dispersion integ
~7! is approximated by the sum of the following terms: t
pionic contribution found by using the form factor of Re
21, the contributions of thev- and f-mesons in the pole
approximation, and the background above 1 GeV. The
rameters needed for the calculations~particle masses, cou
pling constants, parameters that contribute to the form fac
and parameters characterizing the background! were taken
from Refs. 7 and 22. A more detailed discussion can
found in Appendix A; the final results for hadronic polariz
tion are listed in Table I.

Table I also lists the contributions of individual terms
the hyperfine splitting. The final result for the correction i

DEhfs~1s!5
a

p
0.689~9!EF ~25!

and

DEhfs~2s!5
a

p
0.556~9!

EF

8
. ~26!

3. LIFETIME OF ORTHODIMUONIUM

We found the leading contribution~see Fig. 1b! earlier:

GOM
~0! ~ns!5

a5mm

6n3 .

As noted earlier, there is a close analogy between a num
of contributions of single-loop corrections to hyperfine sp
ting and to the orthodimuonium decay width, whose amp
tude is depicted diagrammatically in Fig. 5. Clearly, in t
given approximation there are three decay channels
orthodimuonium, with the final productsee, eeg, and 3g.
We begin with conversion into an electron–positron p
~diagrams a to f in Fig. 5!. The main results are listed in
Table II. Note that these results are given for the wid
which incorporates the square of the amplitudes, so the
rection is doubled. The first five corrections~diagrams a to e
in Fig. 5! yield equal contributions~in relative units! both to
the annihilation part of the hyperfine splitting~which
amounts to 3/7 of the total contribution! and to the ortho-
dimuonium decay width. However, there may be differe
combinatorial factors. For the width, all combinatorial fa
tors are equal to two, while for the hyperfine splitting, n
contributions except the vertex are doubled.

The calculation of diagram f in Fig. 5 leads to an infr
red divergence, which cancels diagram g in Fig. 5, cor
sponding to another decay channel (OM→eeg). The total
decay probability, which determines the lifetime of the sta
incorporates the IR finite sum of the diagrams f and g in F
5, so that we first find the total contribution. We seek t
width as the imaginary part of the energy. Here the lead
contribution corresponds to diagram a in Fig. 6, and the
sired correction to diagram b in Fig. 6. Earlier, in discussi
the contribution of electron polarization to hyperfine splittin

re
o
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~see Eqs.~22! and~23!!, we noted that the imaginary part
completely defined by the coefficient of the logarithm. T
asymptotic behavior of two-loop vacuum polarization at hi
momenta is well known~see, e.g., Ref. 23!:

I Pe
~2!~q2!5S a

p D 2F1

4
ln

2q2

me
2 1S z~3!2

5

24D G
5S a

p D 2F1

4
ln

q2

me
2 1S z~3!2

5

24D2
p

4
i G , ~27!

wherez(3)51.2020569... is the Riemann zeta function, a
of course in the calculations we must putq254mm

2 . Clearly,

TABLE II. Corrections of ordera6m to the decay width of the 1s and 2s
levels in orthodimuonium are given in relative units:DGOM(ns)
5(a/p)CGOM

(0) (ns). The notation of the contributions corresponds to Fig.

a 24.00 24.00
b 6.92 6.92
c 21.78 21.78
d 20.37(4) 20.37(4)
e 1.06 0.92
f1g 0.75 0.75
h 1.16 1.16
Total 3.74~4! 3.60~4!

FIG. 5. Single-loop radiative corrections to the orthodimuonium decay
plitude: ~a! vertex correction for the annihilation of the bound muonic pa
~b! muonic vacuum polarization,~c! electron vacuum polarization,~d! had-
ronic vacuum polarization in virtual annihilation,~e! virtual annihilation
with the Uehling correction to the wave function,~f! vertex correction for
the creation of a free electron pair,~g! pair production with bremsstrahlung
and ~h! three-photon annihilation. In calculating diagrams a one must s
tract the contribution of the preceding order.
d

the relative value of the correction is exactly equal to t
ratio of the coefficients of the logarithms in~22! and ~27!,
i.e., (3/4)a/p.

The partial widths corresponding to individual dec
modes incorporate infrared-divergent contributions se
rately. To ensure their finiteness we must add to the ve
contribution the probability of soft-photon bremsstrahlu
~for more details see Ref. 24!. Assuming that all the charac
teristic momenta in the final state are of the order of
muon mass and are known to 1%, we can conclude that
photon cutoff frequency, which separates the detected p
tons from the soft, is of the order of the electron ma
Dv;me . In this case it is sufficient to find the leading co
tribution in the doubly logarithmic approximation, since th
first power of the logarithm already depends on the detec
specifics for photons with frequency of orderme, yielding a
result that is excessively accurate. An expression for the
tex function can be found in Ref. 24, and the contribution
bremsstrahlung differs only in sign:

DGOM
eeg~ns!52

a

p
ln2

mm

me
GOM

~0! ~ns!, ~28!

which amounts to approximately 13%. The accuracy of t
calculation is determined by unknown contributions, with t
power of the logarithm being one unit smalle
(ln(mm /me)'5.3). Usually the numerical coefficients of th
nonleading logarithms are larger than those of the lead
logarithms, and we estimate the error to be 30% of~28!.

The width of three-photon decay in orthopositroniu
found in Ref. 19, after we have replaced the electron mas
the muon mass, becomes

DGOM
3g ~ns!5

a

p

4

3
~p229!GOM

~0! ~ns!. ~29!

The results for the correction of ordera6m to the decay
width are listed in Table II. The final expression is

DGOM~1s!.
a

p
$1.9010.68~4!11.16%GOM

~0! ~1s!

5
a

p
3.74~4!GOM

~0! ~1s!. ~30!

Here we have identified three types of contribution. The fi
term in braces corresponds to the contributions of diagram
to c and f in Fig. 5,

S 4

3
ln

2mm

me
2

221

36 D ,

FIG. 6. Some diagrams for the width of orthodimuonium decay as
imaginary part of the energy:~a! leading contribution, and~b! allowance for
a free electron vertex and bremsstrahlung.
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FIG. 7. Radiative corrections of relative ordera to the
paradimuonium decay amplitude:~a! single-loop correction
to the annihilation of a bound muonic pair,~b! two-photon
annihilation with the Uehling correction to the wave func
tion, and~c! electron–positron pair production. In calcula
ing diagrams a one must subtract the contribution of t
preceding order.
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obtained analytically; the second term corresponds to
contributions of diagrams d and e in Fig. 5 obtained num
cally; and the third term corresponds to three-photon
change. As noted in the Introduction, there was an ea
attempt to determine the radiative corrections,12 but only the
first ~analytic! contribution was found, and this amounted
only half of the final result. As for the second contributio
only the Uehling correction to the wave function was tak
into account, and in calculating this correction, Malefan12

used the free Green’s functions of the muon and antimuo
the initial expression without allowing for the Coulomb in
teraction, which of course led to incorrect results. The c
tribution of hadronic vacuum polarization was ignored co
pletely ~as was the third term in braces!. We also note that
the only state-dependent contribution is the second~numeri-
cal! one. For instance, in the case of the 2s level we have

DGOM~2s!.
a

p
$1.9010.54~4!11.16%GOM

~0! ~2s!

5
a

p
3.60~4!GOM

~0! ~2s!. ~31!

4. LIFETIME OF PARADIMUONIUM

We now discuss the decay of paradimuonium. The le
ing contribution to its width is similar to the correspondin
contribution for parapositronium15:

GPM
~0!~ns!5

a5mm

2n3 .

The corrections to this expression are described by the
grams in Fig. 7. The contribution corresponding to the rad
tive corrections of the bound muon–antimuon pair~Fig. 7a!
is also similar to the correction for positronium:25

DG rad~ns!52
a

p

202p2

4
GPM

~0!~ns!. ~32!

Another correction to two-photon decay corresponds
the Uehling correction to the wave function~Fig. 7b!. It is

TABLE III. Corrections of ordera6m to the decay width of the 1s and 2s
levels in paradimuonium are given in relative units:DGPM(ns)
5(a/p)CGPM

(0)(ns). The notation of the contributions corresponds to Fig.

Contribution C(1s) C(2s)

a 22.53 22.53
b 1.06 0.92
c 6.26 6.26
Total 4.79 4.65
e
i-
-

er

in

-
-

-

a-
-

o

state-dependent and proportional to~16! and ~17!. The re-
sults are listed in Table III. The final correction to the tw
photon width is

DGPM
2g ~1s!5

a

p
~21.47!GPM

~0!~1s! ~33!

and

DGPM
2g ~2s!5

a

p
~21.61!GPM

~0!~2s! . ~34!

The third diagram in Fig. 7~diagram c! corresponds to
another decay channel: one of the photons is transform
into an electron–positron pair, and the final state turns ou
be three-particle,eeg. It is convenient to do the necessa
calculations with the width interpreted as the imaginary p
of the energy. Here the leading contribution corresponds
the imaginary parts of the diagrams in Fig. 8a, and the
sired correction, to the imaginary parts of the diagrams
Fig. 8b. For the polarization insertion we again use the d
persion integral~9!. The order in which the integral an
imaginary part are calculated can be reversed. As a resul
have

DGPM
eeg~ns!5

a

p E
0

1

dv
v2~12v2/3!

12v2 G~0!~l,0!, ~35!

whereG (0)(l,0) is the width of paradimuonium decay int
real and virtual photons with mass~8!, or in the limit
mm@me,

DGPM
eeg~ns!5

a

p H S 2

3
ln 2 2

5

9DG~0!~0,0!

1
1

3 E
4me

2

` dl2

l2 G~0!~l,0!J . ~36!

Note that the real width of two-photon decay is

GPM
~0!5 1

2G
~0!~0,0!. ~37!

The combinatorial factor appears because the PM→2g
decay actually involves two identical massless photo

.

FIG. 8. Some diagrams for the width of paradimuonium decay as the im
nary part of the energy:~a! the leading contribution, and~b! decay with
production of a pair and a photon.
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TABLE IV. Properties of the low-lying states of dimuonium as compound particles. Decay modes with relative probability of at least 1% are inclu

State Mass, MeV JPC t, s Decay channel DG/G, %

PM 1s 211.3154 021 0.59547~33!310212 gg 98.5
eeg 1.5

2s 211.3164 021 4.7653~26!310212 gg 98.5
eeg 1.5

OM 1s 211.3154 122 1.79073~23!310212 ee 86~4!
eeg 13~4!

eegg ;1
2s 211.3164 122 14.3305~19!310212 ee 86~4!

eeg 13~4!
eegg ;1
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while in calculatingG (0)(l,0) in the limit l50, the photons
are assumed to be distinct. Clearly, if we ignore the pho
massl in G (0)(l,0), the integral with respect to the dispe
sion variable diverges at largel ~i.e., v.1!. The divergence
is cut off in G (0)(l,0) kinematically; decay is possible onl
if l,2mm . As a result, instead of a divergence we have
logarithmic contribution to the width. The constant term
calculated in Appendix B. The result is

DGPM
eeg~ns!5

a

p S 4

3
ln

2mm

me
2

16

9 D 1

n3 GPM
~0!~1s!, ~38!

which amounts to 1.5% of the total width.
The final result for parapositronium is

DGPM~1s!5
a

p
4.79GPM

~0!~1s! ~39!

and

DGPM~2s!5
a

p
4.65GPM

~0!~1s!. ~40!

5. DISCUSSION

First and foremost, we give the expressions for the li
times and hyperfine splitting of the lower levels with allow
ance for radiative corrections:

tOM~1s!51.7907~8!310212 s, ~41!

tOM~2s!514.331~6!310212 s, ~42!

tPM~1s!50.59547~33!310212 s, ~43!

tPM~2s!54.7653~26!310212 s. ~44!

The contributions of the individual terms are listed
Tables II and III. The contributions of the next order a
estimated to be 5% of the one-loop contributions. The an
hilation lifetimes of dimuonium states must be compar
with the muon lifetime (tm52.2031026 s) and the atomic
lifetimes of higher states. For instance, the annihilation wi
of the 2p level differs from the width ofs states by an
additional factora2, with the result that the lifetime of this
level is completely determined by the one-photon transitio4!

2p→1s:

t~2p→1s!515.4310212 s, ~45!
n

a

-

i-
d

h

and turns out to be of the same order as the annihila
lifetimes for the 1s and 2s levels given above.

Note that the sign of corrections of relative ordera for
the widths and for the hyperfine splitting is opposite that
the correction for positronium. In the case of hyperfine sp
ting ~Table I!, this is due to the large contribution of th
insertion of electron vacuum polarization into an annihilati
photon. As explained earlier, the logarithmic contribution
also present in the decay of paradimuonium, and it is rela
to the asymptotic behavior of the polarization operator.

We assume that dimuonium can be studied by the m
ods of experimental high-energy particle physics, and
properties of the dimuonium low-lying states as~compound!
particles are listed in Table IV. For orthodimuonium w
added the estimate for the decay channel OM→eegg, which
appears in the next perturbation order. Note that one of
decay channels, which emerges as a first-order correctio
perturbation theory (OM→eeg), amounts to 15%, and
therefore can be used for detection purposes together
the principal channel.

Hyperfine splitting in dimuonium can also be measur
by methods of elementary particle physics as the interfere
of the ortho andpara states in the field of an IR laser. Th
results for hyperfine splitting are

Ehfs~1s!54.23284~35!3107 MHz, ~46!

Ehfs~2s!55.28940~34!3106 MHz. ~47!

Measurements of lifetimes and hyperfine splitting to 1
accuracy will make it possible to check the predictions
quantum electrodynamics. The corrections amount to ab
1% for widths and roughly 0.1% for hyperfine splitting. I
discussing the various QED contributions, one must bea
mind that some of the corrections for hyperfine splitting a
para state decay are the same for dimuonium and posi
nium, while others yield contributions only for dimuonium
Positronium is a well-studied system~see Appendix C!, with
the result that measurements for dimuonium make it poss
to check the QED contributions specific to dimuonium
which amount to about 0.7% for hyperfine splitting and 1.7
for the width of paradimuonium decay. To check the QE
prediction one can measure partial widths, which for so
~nonleading! channels may amount to 15% of the total widt
Measurements of all these quantities will make it possible
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test QED at large time-like momenta~in comparison to the
electron mass! and to measure the hadronic vacuum pol
ization atq254mm

2 , whose contribution amounts to 0.1%
the orthodimuonium decay width.

In conclusion we summarize the main properties
dimuonium that are of interest from an experimental sta
point. The spectrum of dimuonium states is a family of ne
tral particles that interfere in the field of an IR laser. T
lifetimes lie in the picosecond range, and the decay prod
are ultrarelativistic electrons and positrons and hard gam
photons~see Table IV!. Thus, the bound muon–antimuo
system can serve as a good test particle for perfecting de
tion methods for exotic neutral elementary particles, wh
interact only weakly with normal matter.

Part of the present work was done during the stay of
of the authors~S.G.K.! in Dresden, Germany. He is gratef
to the staffs of the Max Planck Institute of Physics of Co
plex Systems and the Dresden Technical University for th
hospitality and support. This work was partially supported
the following grants: DFG SO333/1-2~U.D.J. and G.S.!, and
95-02-03977 from the Russian Fund for Fundamental
search~S.G.K. and V.G.I!.

6. ADDENDUM

After this paper was accepted for publication, the wo
of Owen and Repko34 of 1972 was brought to our attention
for which we are grateful to W. W. Repko. The estima
obtained in that work for the contribution of the insertion
the hadronic vacuum polarization to hyperfine splitting
consistent with our more accurate calculations. We wo
also like to note the papers by Holvik and Olsen a
Lyuboshits35 in addition to those cited in the Introduction i
connection with dimuonium formation.8,10

APPENDIX A

Contribution of hadronic polarization to hyperfine splitting

The contribution of hadronic polarization to hyperfin
splitting and the width of orthodimuonium decay can be co
veniently written as follows:

DEhadr~ns!5
a

p
C

EF

n3 5
3

7

a

p
Chadr8

EF

n3 , ~48!

DGhadr~ns!52
a

p
Chadr8 GOM

~0! ~ns!. ~49!

The coefficientChadr8 is the ratio of the free electron propa
gator to the correction with the insertion of vacuum polariz
tion for timelike momentumq25(2mm)2.

The correction to the propagator can be represented
the dispersion integral~7!. Following Ref. 20, we separat
out the p-meson contribution from the spectral functio
r(s). The contribution is

rpp~s!5
~s24mp

2 !3/2

12s5/2 uFp~s!u2, ~50!
-

f
-
-

ts
a

c-
h

e

-
ir
y

-

d

-

-

ia

whereFp(s) is thep-meson form factor, which is require
because of the strong interaction inside the pion loop. T
form factor is used in the parametrization scheme
Gounaris and Sakurai:21

Fp~s!5~mr
21dmrGr!H ~mr

22s!1S Gr

mr
2

kr
3 @k~s!2~h~s!

2hr!1kr
2h8~mr

2!~mr
22s!# D

2 i FmrGrS k~s!

kr
D 3 mr

As
G J 21

, ~51!

where we have introduced the auxiliary quantities

d5
3

p

mp
2

kr
2 ln S mr12kr

2mp
D1

mr

2pkr
2

mp
2 mr

pkr
3 '0.48, ~52!

k~s!5
1

2
As24mp

2 , ~53!

h~s!5
2

p

k~s!

As
ln

As12k~s!

2mp
, ~54!

h8(s) is the s-derivative of h(s), kr5k(mr
2), and

hr5h(mr
2). In calculating the contribution of the pion loo

we tookGr5150.7(1.2) MeV andmr5768.5(6) MeV~see
Ref. 7!. The result is

Cpp8 54mm
2 E

4mp
2

`

ds
rpp~s!

4mm
2 2s

520.128. ~55!

Clearly, the size of the contribution is determined by t
r-meson pole. Indeed, in the pole approximation,

rr~s!5
4p2

f r
2 d~s2mr

2!,

and the result atf r
2/4p52.2 ~see Ref. 22!,

Cr8520.116, ~56!

is close to the one obtained earlier.
Next, to ~55! we must add the contribution of the othe

resonances~v andf!. This can be done in the pole approx
mation. The corresponding values of the parameters
f v

2 /4p518(2) and f f
2 /4p511(2) ~Refs. 20, and 22!,

mv5782 MeV andmf51019 MeV~Ref. 7!. The results are
listed in Table V.

Now we must add the nonresonant contribution. We
timate the contribution of the background in the followin
way: the weighting function is defined to be

r.~s!5
R~s!

3s
, ~57!

where

R5
s~e1e2→hadrons!

s~e1e2→m1m2!
, ~58!
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and the value of the auxiliary functionR(s) is taken approxi-
mately equal to 2 forAs between 1 and 4 GeV, and to 4 fo
As larger than 4 GeV~see, e.g., Ref. 7!.

All the results for hadronic polarization are listed
Table V. They amount to

DEhadr~ns!5
a

p
@20.080~9!#

EF

n3 , ~59!

or 0.02% for hyperfine splitting, and

DGhadr~ns!5
a

p
@20.37~4!#GOM

~0! ~ns!, ~60!

or 0.09% for the orthopositronium decay width.

APPENDIX B

Decay of paradimuonium into a photon and an electron-
positron pair

As noted earlier, to calculate the probability of the P
→eeg decay we must evaluate the integral~36!. Consider
the quantity

Ceeg5
a

p H S 2

3
ln 22

5

9D G~0!~0,0!

GPM
~0!

1
1

3 E
4me

2

` dl2

l2

G~0!~l,0!

GPM
~0! J , ~61!

or

Ceeg52
a

p H S 2

3
ln 22

5

9D1
1

3 E
4me

2

` dl2

l2

G~0!~l,0!

G~0!~0,0! J .

~62!

Let us discuss the amplitude of emission of two photo
with one photon being massless~we denote its 4-momentum
by kn!. In the atom’s center-of-mass frame, we can ign
the three-dimensional momenta of the muon and antimu
and following the standard procedure we can easily see
the amplitude is proportional to

g i~g j kj !g l

2k0m
,

where the indices of allg-matrices are purely spatial. Sinc
the photon is real, this quantity does not depend on the m

TABLE V. Contributions of hadronic vacuum polarization to the hyperfi
splitting and width of orthodimuonium:pp, the contribution of the pionic
loop with allowance for interaction;v and f, contributions of the corre-
sponding resonances in the pole approximation; the background corresp
to nonresonant contributions to the dispersion integral above 1 GeV.
corrections are given in terms ofChadr8 ~see Eqs.~48! and ~49!!.

Contribution C8

pp 20.128(13)
v 20.014(3)
f 20.012(2)
Background~1–4 GeV! 20.028(6)
Background~above 4 GeV! 0.04
Total 20.186(22)
,

e
n,
at

g-

nitude of the momentumk, just on its direction. The depen
dence on the ‘‘mass’’l of one of the photons is now con
tained only in the photon propagators and integrals w
respect to energy and the magnitude of the moment
which can be ‘‘removed’’ by delta functions when we pass
the imaginary part:

X~l!5E k0E duku k2d~k2!d~k1
2!u~k0!u~2mm2k0!,

wherek15(2mm2k0 ,2k) is the 4-momentum of the mas
sive photon, with

k1
254mm

2 24mmk01k2.

The kinematics of emission is entirely determined by t
delta functions and corresponds to the condition

uku5mm2
l2

4mm
,

which leads to

X~l!5
1

8 S 12
l2

4mm
2 D u~2mm2l!.

Note that there are no other integrations: the kinema
fixes everything except the direction of emission, but sin
the photons emerge in opposite directions, there is no r
tive angle, and after averaging over the polarizations of
gamma photons, summation over the angles is trivial. A
result we arrive at the simple integral

Ceeg52
a

p H S 2

3
ln 22

5

9D1
1

3 E
4me

2

` dl2

l2

X~l!

X~0! J
5 2

a

p H S 2

3
ln 22

5

9D1
1

3 E
4me

2

4mm
2 dl2

l2 S 12
l2

4mm
2 D J ,

~63!

and calculating the asymptotic behavior is easy and lead
~38!.

APPENDIX C

Hyperfine splitting and the decay of positronium

Here we discuss the current status of theory and exp
ment for the hyperfine splitting of the ground state of po
tronium and for parapositronium decay. The decay of pa
positronium in leading approximation differs from that
dimuonium, so comparison with the decay of dimuonium
of no interest.

C.1. Hyperfine splitting of the ground state in positronium

The hyperfine splitting of the ground state in positr
nium is described by the following expression:27,28

Ehfs
Ps~1s!5S 122.1179

a

p
10.357a2 ln

1

a

1@20.84~6!1C2#21.5a3 ln2
1

a DEF , ~64!

where the Fermi energy was defined earlier in the paper,
the unknown coefficientC2 corresponds to a two-loop cor

nds
e
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rection to one-photon annihilation and the contribution as
ciated with that correction. Numerically, the theoretical e
pression leads to the result~see Ref. 27!5!

Ehfs
Ps~1s!5@203395.3~7!14.0 C2# MHz. ~65!

This should be compared with the experimental resu
which are 203387.0(16) MHz,29 203384.9(12) MHz,30 and
203389.1(7) MHz.31 The estimated experimental error
a2EF . At present, calculations of the coefficientC2 are be-
ing completed.6!

C.2. Decay of parapositronium

The accuracy of calculating and measuring the width
parapositronium decay is not so high. The theoretical exp
sion is32

GPP~1s!5GPP
~0!~1s!S 122.533

a

p
12a2 ln

1

a DGPP
~0!~1s!,

~66!

where the leading term is defined by analogy with~6!. Cor-
rections of ordera2 are not known. The experimenta
result33 has an error of 231024 in relative units, and is con
sistent with the theoretical result.

* !E-mail: sgk@onti.vniim.spb.su
1!We call this system dimuonium, distinguishing between states with z

total spinS50 ~paradimuonium, or PM! and unit total spinS51 ~orthod-
imuonium, or OM!. The namemuoniumis reserved for an atom consistin
of an electron and antimuon.

2!We use the relativistic system of units, in which\5c51 anda5e2.
3!Bearing in mind thatE5hn, we present the results for hyperfine splittin

in terms ofn.
4!Here we have allowed for the dependence of the radiative width on

mass of the nucleus, which in the nonrelativistic approximation leads to
result (11Zm/M )2(mr

3/m3)G` , whereG` is the probability for a nucleus
with infinite mass.26

5!G. Adkins and P. Labelle~private communication!.
6!G. Adkins ~private communication!.
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The propagation of a quasimonochromatic wave packet of acoustic radiation in a discrete
randomly-inhomogeneous medium under the condition that the carrier frequency of the packet is
close to the resonance frequency of Mie scattering by an isolated scatterer is studied. The
two-frequency Bethe–Salpeter equation in the form of an exact kinetic equation that takes account
of the accumulation of the acoustic energy of the radiation inside the scatterers is taken as
the initial equation. This kinetic equation is simplified by using the model of resonant point
scatterers, the approximation of low scatterer density, and the Fraunhofer approximation
in the theory of multiple scattering of waves. This leads to a new transport equation for
nonstationary radiation with three Lorentzian delay kernels. In contrast to the well-
known Sobolev radiative transfer equation with one Lorentzian delay kernel, the new transfer
equation takes account of the accumulation of radiation energy inside the scatterers and
is consistent with the Poynting theorem for nonstationary acoustic radiation. The transfer equation
obtained with three Lorentzian delay kernels is used to study the Compton–Milne effect—
trapping of a pulse of acoustic radiation diffusely reflected from a semi-infinite resonant randomly-
inhomogeneous medium, when the pulse can spend most of its propagation time in the
medium being ‘‘trapped’’ inside the scatterers. This specific albedo problem for the transfer
equation obtained is solved by applying a generalized nonstationary invariance principle. As a
result, the function describing the scattering of a diffusely reflected pulse can be expressed
in terms of a generalized nonstationary ChandrasekharH-function, satisfying a nonlinear integral
equation. Simple analytical asymptotic expressions are found for the scattering function for
the leading and trailing edges of a diffusely reflectedd-pulse as functions of time, the reflection
angle, the mean scattering time of the radiation, the elementary delay time, and the
parameter describing the accumulation of radiation energy inside the scatterers. These asymptotic
expressions demonstrate quantitatively the retardation of the growth of the leading edge and
the retardation of the decay of the trailing edge of a diffusely reflectedd-pulse when the
conventional radiative transfer regime goes over to a regime of radiation trapping in a
resonant randomly-inhomogeneous medium. ©1998 American Institute of Physics.
@S1063-7761~98!00402-8#
ic
h
te
c

re
o

d
th
rin
n
of

ini-

on
er-
y a

liza-
.

o-

ary
t ve-
ase
1. INTRODUCTION

Over the past decade the multiple scattering of class
wave fields in discrete randomly inhomogeneous media
attracted great interest from theoreticians and experimen
because of the possibility of Anderson localization of su
wave fields, specifically, acoustic waves.1,2 In searching for
localization of an acoustic wave packet in the case of th
dimensions it is desirable to employ a medium consisting
an ensemble of spherical scatterers randomly distribute
space under the condition that the carrier frequency of
packet is close to the resonant frequency for Mie scatte
by an isolated scatterer. One would think that this resona
condition together with a sufficiently high spatial density
2371063-7761/98/86(2)/7/$15.00
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the scatterers could give, according to Refs. 1 and 3, a m
mum transport mean free path lengthl tr for the radiation
and, correspondingly, a low value of the radiation diffusi
coefficient D. However, resonance scattering is charact
ized not only by a large scattering cross section but also b
long radiation delay time.4 For this reason additional diffi-
culties can arise in determining the closeness to the loca
tion threshold in a specific experiment, as noted in Ref. 5

The problem is that according to experiments6 the radia-
tion diffusion coefficient in this resonant randomly inhom
geneous medium has the formD5vEl tr /3, where, on ac-
count of the above-mentioned time delay in an element
resonance scattering event, the acoustic energy transpor
locity vE can be an order of magnitude lower than the ph
© 1998 American Institute of Physics
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velocity C0 of sound in a homogeneous medium with
scatterers. Such a decrease in the energy transport veloc
classical, specifically, acoustic, wave fields with multip
resonance Mie scattering by an ensemble of randomly
tributed scatterers, which has no relation to the phenome
of wave localization, is physically closely related, as can
easily seen from Ref. 7, to the well-known Compton8 and
Milne9 trapping of optical resonance radiation in gas
whose atoms possess a resonance absorption line.

A definition of trapping of resonance radiation in gas
was given by Compton.8 If the radiation delay timetdel in an
elementary resonance scattering event is longer than the
flight time t l of the radiation between scattering events,

tdel/t l@1, ~1!

then the radiation propagating in the medium spends mos
its time ‘‘trapped’’ inside the resonant scatterers. It should
noted that most treatments8–14 on the theory of the trapping
effect focus mainly on the transfer of an excited state of
atoms by means of trapped resonance radiation. A substa
advance in extending the conventional theory of radiat
transfer to this effect was made by Sobolev15 and his
successors.16–18 On the basis of phenomenological consid
ations Sobolev derived a radiative transfer equation with
exponential~Lorentzian! delay kernel in a term with an iso
tropic scattering phase function for the radiant intensity
nonstationary radiation. Although Sobolev’s theory is phy
cally clear and mathematically well developed,15–21 it is not
completely systematic and needs to be improved. Indeed
Sobolev’s radiative transfer equation the delay effect is ta
into account only in the term with the scattering phase fu
tion and is neglected in the term with the extinction coe
cient. The accumulation of radiation energy inside resona
scatterers, which was studied in Refs. 5, 6, 22, and 23, is
discussed at all in Sobolev’s theory. As a result of the
deficiencies, Sobolev’s radiative transfer equation with de
is inconsistent with Poynting’s theorem for nonstationary
diation.

Our objective in the present paper is to eliminate th
deficiencies of Sobolev’s theory of radiative transfer w
delay. The deficiences of Sobolev’s theory for the trapp
of resonance radiation are due to the phenomenological c
acter of the theory and can be eliminated by returning to
‘‘first principles’’ of the statistical theory of multiple scatter
ing of waves in randomly inhomogeneous media. This
demonstrated in the present paper for the case of reso
multiple scattering of a quasimonochromatic acoustic w
packet by an ensemble of randomly distributed scatterer

The starting point is the exact generalized kine
equation,24 which follows from the two-frequency Bethe
Salpeter equation for the space–time coherence spectral
sity function of an acoustic field. The generalized tw
frequency Ward–Takahashi identity24–26for a classical wave
field in a randomly-inhomogeneous medium, which obey
hyperbolic stochastic equation, permits introducing into
kinetic equation an operator that takes account of the a
mulation of acoustic energy inside the scatterers~Sec. 2!. A
modified radiation transfer equation with three Lorentz
delay kernels is derived by applying to the kinetic equat
of
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the low-density approximation in the model of resonant po
scatterers27 together with the Fraunhofer approximation28,29

~Sec. 3!. The albedo problem of diffuse reflection of a
acoustic pulse from a resonant semi-infinite medium
solved for the modified equation obtained~Sec. 4!.

2. GENERALIZED KINETIC EQUATION FOR MULTIPLE
SCATTERING OF ACOUSTIC WAVES

Our starting point is the stationary wave equation for t
pressureP(r ,t) in a sound wave propagating in a discre
randomly-inhomogeneous medium with phase veloc
C(r ). Assuming that the densityr0 of the medium, unper-
turbed by the sound wave, is the same and uniform ins
and outside the scatterers, the wave equation can be wr
in the form,30

2DP1
1

C2~r !

]2P

]t2 52J, ~2!

whereJ(r ,t) is a fixed source of the acoustic disturbance.
analogy to the case of electromagnetic waves,23 it is conve-
nient to setC0

2/C2(r )5e(r ). Here the effective permittivity
of the medium e(r )511de(r ) includes a randomly-
inhomogeneous componentde~r !

de~r !5~e121!(
i

x~r2r i !. ~3!

Heree1 is the fixed permittivity of a scatterer andx(r2r i) is
a characteristic function of the region of space occupied
the i -th scatterer centered at the pointr i and equals 1 inside
and zero outside a scatterer. It is assumed that the ense
of scatterers consists of identical spheres with fixed radiur 0

and that the centersr i of the scatterers are randomly distrib
uted in space.

Multiple scattering of nonstationary acoustic wave rad
tion in the discrete randomly inhomogeneous medium un
study is described by the two-frequency Bethe–Salpe
equation.24 As in to the case of electromagnetic radiation23

this equation can be transformed to the following generali
kinetic equation

H 2 i
Vv

C0
2 @12A1~p;q,v!#1 ip–qJ f ~p;q,v!

5E
p8

DG~p8;q,v!K~p8,p;q,v! f ~p;q,v!

2DG~p;q,v!E
p8

K~p,p8;q,v! f ~p8;q,v!

2DG~p;q,v!J~p;q,v!, ~4!

which is written in the spatial Fourier transform and temp
ral Laplace transform representations and the Wigner v
ables. The desired functionf (p;q,v) is a spatiotemporal co
herence spectral density function of the sound fie
^P(R1r /2,T1t/2)P(R2r /2,T2t/2)&, where the angular
brackets denote averaging over the ensemble, the wave
tors p andq correspond to the spatial vectorsr andR, and
the frequenciesV and v correspond to the time variablest
and T. The quantityDG(p;q,v) on the right-hand side o
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Eq. ~4! can be expressed in terms of the Fourier transfo
G(p,V) of the average Green’s function by the relation

DG~p;q,v!5
1

2i
@G1~p1!2G2~p2!#; ~5!

here~and below! the indices 1 and 2 correspond to the fr
quencies V1,256V1v/21 i0 and the wave vector
p65p6q/2. The intensity operator is denoted b
K(p,p8;q,v) and we haveJ(p;q,v)5J1(p1)J2(2p2),
whereJ1,2(p) are the Fourier transforms ofJ1,2(r ). The sym-
bol *

p
5(2p)23*dp.

The most interesting quantityA1(p;q,v) in Eq. ~4! is
the Fourier transform of the operato
A1(R;R81r 8/2,R82r 8/2;V1 ,V2) describing the accumula
tion of sound energy inside the scatterers. The wave vec
p andq correspond to the spatial vectorsr 8 andR2R8. The
general definition of the operatorA1 in the coordinate rep-
resentation has the form23

A15
1

g11g2
A12

1 , ~6!

where the operatorA12
1 and the analogous operatorA12

2 are
defined as

A12
6 5M1^̂ I 6I ^̂ M26~G1^̂ I 6I ^̂ G2!K12. ~7!

HereM is the mass operator, the functiong(V)5V2/C0
2, I

is the identity operator, and the symbol^̂ denotes a tenso
product of two operators with the same first two argume
~see Ref. 23!. The physical meaning of the operator~6! is
clarified by the energy equation

^w~R,v!&5
1

2r0C0
2 E

p
E

q
eiq–R@12A1~p;q,v!# f ~p;q,v!,

~8!

where w5P1P2 /(2r0C0
2) is the two-frequency spectra

component of the sound energy density. The second term
the right-hand side of Eq.~8! shows that the operator~6!
characterizes the spectral component of the sound en
accumulated inside the scatterers. The two other ene
equations, related with the kinetic equation~4!, have the
form

^S~R,v!&5
1

2r0V E
p
E

q
eiq–Rpf ~p;q,v!, ~9!

^Q~R,v!&5
1

2r0V E
p
E

q
eiq–RDG~p;q,v!J~p;q,v!.

~10!

On the left-hand sides of these equatio
S5(2P1¹P21P2¹P1)/4ir0V and Q5(P1J22P2J1)/
4ir0V are, respectively, the spectral components of
Poynting vector and of the intensity of the sources of
sound disturbance, taken with a minus sign. The ene
equations~8!–~10! make it possible to verify that multiply
ing the kinetic equation~4! by exp(iq–R) and then integrat-
rs

s

on

gy
gy

e
e
y

ing over the variablesp and q gives an ensemble-average
Poynting theorem for the initial wave equation~2! in the
form

2 iv^w&1div^S&1^Q&50. ~11!

The compatibility of the kinetic equation~4! with the aver-
aged Poynting theorem~11! is based on the generalized two
frequency Ward–Takahashi identity

A12
2 5

g12g2

g11g2
A12

1 , ~12!

proved in Refs. 24–26.

3. MODIFIED ACOUSTIC RADIATIVE TRANSFER EQUATION
WITH THREE LORENTZIAN DELAY KERNELS

We now return to the exact kinetic equation~4! in order
to obtain from it an approximate modified radiation transp
equation taking account of the delay effect. First we shall
all approximations that make it possible to switch from t
kinetic equation~4! to the general modified radiative transf
equation with delay. Next, using in addition the low-dens
approximation and the model of resonant point scatterer27

we write out the modified equation with three Lorentzi
delay kernels.

Spatial dispersion approximation

Let a quasimonochromatic wave packet~pulse! of acous-
tic radiation with spatial and temporal scalesDr 0 andDt0 ,
wherek0Dr 0@1 andVDt0@1, propagate in a discrete ran
domly inhomogeneous medium. The quantityk05V/C0 is
the wave number in a homogeneous medium. Assuming
the intensity operator in Eq.~4! varies as a function ofq on
the scaleDq;1/r 0 , satisfying the condition

r 0!Dr 0 , ~13!

we can setq50 in all coefficients of the kinetic equation~4!,
except, of course, the coefficientip–q.

Strong delay approximation

The ratio of the time scaleDt0 of the pulse and the scal
Dv;1/tdel of the variation of the intensity operator in Eq
~4! as a function ofv is assumed to be arbitrary, i.e.,

0,tdel/Dt0,`. ~14!

For this reason, the exact dependence of the intensity op
tor in Eq. ~4! on the frequencyv at q50 is used. However,
we neglect in Eq.~4! the dependence of the quantity~5! on v
at q50, setting

DG~p;0,v!>Im G~p!, ~15!

where

G~p!5G~p,V1 i0!51/k0
22p22M ~p!,

M ~p!5M ~p,V1 i0!.
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Fraunhofer approximation

It is assumed that the imaginary part of the avera
Green’s function in Eq.~15! is a ‘‘sharp’’ function of p
corresponding to an approximation in the form of a Dir
d-function

Im G~p!.2
p

2

d~p2keff!

k0neff
, ~16!

where the effective wave numberkeff is determined as the
root of the equation p22k0

21ReM(p)50 and
neff5ukeff /k0uu11] ReM(p)/]p2u at p5keff . The approxima-
tion ~16! is physically equivalent, according to Ref. 29, to t
assumption28 that, on the average, one effective scatter
inhomogeneity of the medium is present in the Fraunho
diffraction zone of another inhomogeneity, and it makes
possible to introduce the radiation intensity

I ~s;q,v!5
1

~2p!3 E
0

`

p2dp f~ps;q,v!, ~17!

wheres is a unit vector.

Low-density approximation

In the approximation of a low scatterer densityn the
mass operator and the intensity operator can be simply
pressed~see, for example, Ref. 6! in terms of the scattering
operator T(r ,r 8;V)5 T̃(V)d(r )d(r 8) of an isolated scat-
terer, which is assumed to be a small,k0r 0!1, and is re-
garded as a resonant point scatterer of the model27 with a
scattering amplitudeT̃(V) of the form

T̃~V!52
4pk0

2r eff

kr
22k0

22 ik0
3r eff

. ~18!

Here the effective lengthr eff51/L equals the reciprocal o
the cutoff parameterL;1/r 0 in the k-space integration o
the Fourier transform of the Green’s function of the wa
field in a homogeneous medium.27 The resonance wave num
ber kr is determined together with the resonance freque
V r5krC0 of a scatterer by the equation

kr
25

r eff

r 0
3

3C1
2

C0
22C1

2 ,

whereC1 is the speed of sound inside the scatterer. If
sound speed inside a scatterer is much less than the s
speed outside the scatterer,C1!C0 , then forr eff5r0 we find
for the resonance frequency of the scattererV r.)C1 /r 0 . It
can be verified by solving the problem of diffraction of
sound wave by a sphere~see, for example, Ref. 31! that for a
small sphere (k0r 0!1) this value ofV r does indeed equal
to within a numerical factor, the lowest resonance freque
of the sphere, (p/2)C1 /r 0 .

In direct proximity to a resonance of a point scatter
V.V r and uvu!V r , an approximation can be obtained f
the two-frequency bilinear combination of scattering amp
tudes~18! with a characteristic Lorentzian dependence on
frequency difference
e

g
r

it

x-

y

e
nd

y

,

-
e

T̃1T̃2

uT̃u2
.

1

12 ivtdel

, ~19!

where the elementary delay timetdel mentioned in Sec. 1
assumes the value

tdel5
2r eff

C0
F4S V2V r

V r
D 2

1S V r r eff

C0
D 2G21

. ~20!

Substituting the expressions~18! and~19! into the equations
in Ref. 6 gives for the mass operator and the intensity ope
tor the expressionsM (p,V)5nT̃(V) and

K~p,p8;q,v!5nT̃1T̃2.
4p/ l

12 ivtdel
, ~21!

where the mean free pathl of the radiation is determined, a
usual, by the equation 1/l 5nu T̃u2/4p. From Eqs.~6! and~7!,
these equations for the mass operator and the identity op
tor lead in turn to the following representation of the quant
A1(p;q,v) in the low-density approximation, which take
account on the left-hand side of the kinetic equation~4! of
the accumulation of acoustic energy inside the scatterers

A1~p;q;v!.2
a

12 ivtdel
. ~22!

The quantitya on the right-hand side of Eq.~22! equals
the resonance efficiency factor in the formu
vE5C0

2/(11a)Cph for the radiation energy transport veloc
ity, first introduced in Ref. 6. The quantityCph5V/keff de-
notes the phase velocity of a wave in a random
inhomogeneous medium. As emphasized in Ref. 6,
radiation energy transport velocityvE in a randomly inho-
mogeneous resonant medium is different from both the ph
velocity and the group velocityvg , determined by the equa
tion C0

2/Cphvg512n]Re T̃/]E with E5V2/C0
2. The

Ward–Takahashi identity~12! in the low-density approxima-
tion gives atv50 the following relation for the resonanc
efficiency factora:

a

n
52

] Re T̃

]E
1

k0

2p
ImS ]T̃

]E
T̃* D , ~23!

in agreement with the result of Ref. 27. The Lorentzi
asymptotic expression~19! and the relation~21! with the
mean free flight timet l of the radiation determined in term
of the group velocity ast l5 l /vg make it possible to write the
radiation energy transport velocityvE as the Compton
velocity8,10 of excitation transfervE5 l /(tdel1t l).

In the next section, in studying the solution of the mod
fied radiation transport equation with delay, there appe
another scattering timet0 of radiation in a resonant medium
defined in terms of the phase velocity ast05 lCph /C0

2. The
ratio of the elementary delay time~20! to the scattering time
t0 is related to the resonance efficiency factora, as follows
from Eq. ~23!, by the equation

tdel

t0
5akav5a1n

] Re T̃

]E
, ~24!
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whereakav was first introduced in Ref. 32. Comparing E
~24! with the definition of the group velocityvg shows that
akav,a11 for vg.0.

Substitution of the expression~18! for the scattering am-
plitude T̃ into the right-hand sides of Eqs.~23! and~24! and
also into the equations for 1/l , Cph, andvg and simple cal-
culations, similar to Ref. 5, give in direct proximity to res
nance of a point scatterer the frequency dependences o
main physical parameters of the problem of pulse propa
tion in a randomly inhomogeneous medium consisting
resonance point scatterers, examples of which are given
clarity, in Figs. 1 and 2 as a function of the ratioV/V r of the
frequency to its resonance value.

Modified radiative transfer equation with three Lorentzian
delay kernels

We now turn to the kinetic equation~4!. We multiply it
by p2 and integrate overp from p50 to p5`, using the
approximations~13!–~16!, the definition~17!, and also the
expressions~21! and ~22! for the intensity operator and th

FIG. 1. Parametersa ~bottom solid line!, akav ~dashed line!, and ratiotdel /t l

~top solid line! versus the average frequencyV of a pulse withkrr 051,
L51/r 0 , C0 /C152, V r52C1 /r 0 , and 4pr 0

3n/350.3.

FIG. 2. Ratiosl /C0t0 ~broken curve! and t l /t0 ~solid curve! versus the
average pulse frequencyV. The values ofkrr 0 , L, C0 /C1 , V r , and
4pr 0

3n/3 are the same as in Fig. 1.
the
a-
f
or

quantities that account for the accumulation of acoustic
ergy inside the scatterers. Together with the inverse Fou
transform in spaceR with respect to the variableq and the
inverse Laplace transform in timet with respect to the vari-
ablev, this leads to the following modified radiative transf
equation with three Lorentzian delay kernels:

Cph

C0
2

]

]t F I ~s;R,t !1aE
0

t dt8

tdel
expS 2

t2t8

tdel
D I ~s;R,t8!G

1~s¹R!I ~s;R,t !52
1

l E
0

t dt8

tdel

3expS 2
t2t8

tdel
D I ~s;R,t8!1

1

l E
0

t dt8

tdel
E

4p

ds8
4p

3expS 2
t2t8

tdel
D I ~s8;R,t8!1

1

~4p!2 J~keffs;R,t !.

~25!

Heres ands8 are unit vectors andds8 is an element of solid
angle. The expressions~8!–~10! for the ensemble-average
energy quantities can be transformed, using the express
~13!–~16!, the definition ~17!, Eq. ~22!, and the above-
mentioned inverse Fourier and Laplace transforms, to
following form in the space–time representation

^w~R,t !&5
1

2r0C0
2 E

4p
dsE

0

t

dt8Fd~ t2t8!1
a

tdel

3expS 2
t2t8

tdel
D G I ~s;R,t8!, ~26!

^S~R,t !&5
1

2r0C0
2

C0
2

Cph
E

4p
ds s I ~s;R,t !, ~27!

^Q~R,t !&52
1

2r0C0
2

C0
2

Cph

1

~4p!2 E
4p

ds J~keffs;R,t !.

~28!

Integrating the modified radiative transfer equation~25! over
the variables shows that its solution satisfies, on the ba
~26!–~28!, the ensemble-averaged Poynting theorem~11! in
the temporal representation.

Modified radiative transfer equation with one Lorentzian
delay kernel in the Sobolev approximation

A radiative transfer equation of the Sobolev equati
type15 with one Lorentzian delay kernel can be derived fro
the modified radiative transfer equation~25! by formally ne-
glecting the delay effect in the expression in the squ
brackets on the left-hand side of Eq.~25!, in the term with
the accumulation of energy inside the scatterers, and
right-hand side of Eq.~25! in the first term with the extinc-
tion coefficient, but not in the second term with the scatter
phase function. Moreover, the elementary delay timetdel

must be neglected compared with the scattering timet l on
the right-hand side of the Compton representation of the
diation energy transport velocityvE , thereby replacing it by
the group velocityvg .
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4. SOLUTION OF THE ALBEDO PROBLEM OF DIFFUSE
REFLECTION OF AN ACOUSTIC PULSE FROM A SEMI-
INFINITE RESONANT RANDOMLY INHOMOGENEOUS
MEDIUM

We shall now consider for the modified radiative trans
equation~25! with three Lorentzian delay kernels the pro
lem of diffuse reflection of an acoustic pulse from a sem
infinite randomly inhomogeneous medium consisting
resonant point scatterers and occupying the half-spacez.0.
This problem presupposes finding a solution of the homo
neous modified radiative transfer equation~25! with the
boundary condition

I ~m;z50,t !5
1

2
d~m2m0!I 0~ t !, ~29!

wherem5sz andm05s0z.0 denote thez components of a
unit vectors and unit vectors0 in the direction of propaga
tion of the incident flattened pulse with a temporal profi
given by the functionI 0(t). It is sufficient to find a particular
solution of the albedo problemI d(m,m0 ;z,t) with incidence
of a pulse in the form of a Diracd-function with I 0(t)5d(t),
since the general solution is then obtained by forming
convolution of the solution found andI 0(t).

Application of the principle of invariance for nonstationary
problems

One could apply the principle of invariance, develop
by Ueno33 for the conventional nonstationary radiative tran
fer equation, in the time representation to solve the alb
problem for the modified radiative transfer equation~25!
with the boundary condition~29!. However, it is more con-
venient first to Laplace transform the modified radiati
transfer equation~25! in time and then apply the Ambart
sumyan principle of invariance34 for the conventional sta
tionary radiative transfer equation but now with the effect
albedo of an elementary scattering event. This form of
principle of invariance for nonstationary problems was st
ied by Minin19 in solving the modified radiative transfe
equation with one Lorentzian delay kernel, as proposed
Sobolev.15 After an inverse Laplace transform in time th
Minin method leads to the following form of the solution o
the albedo problem posed above for the modified radia
transfer equation~25! in the time representation:

I d~2m,m0 ;z50,t !5
1

4m
S~m,m0 ;t !. ~30!

Here the scattering functionS(m,m0 ;t) is expressed by
means of the relation

t0S~m,m0 ;t !5
mm0

m1m0
F11~11a!

]

] t̃

1akav

]2

] t̃ 2GS1~m,m0 ; t̃ ! ~31!

in terms of an intermediate scattering functionS1(m,m0 ; t̃ ),
where the dimensionless time ist̃ 5t/t0 . The intermediate
scattering function can be written as a convolution in tim
r

-
f

e-

e

-
o

e
-

y

e

S1~m,m8; t̃ !5E
0

t̃
d t̃ 8H1~m, t̃2 t̃ 8!H1~m8, t̃ 8!, ~32!

by means of a generalized, time-dependent Chandrase
H-function H1(m, t̃ ) satisfying the equation

H1~m, t̃ !5
en1 t̃ 2en2 t̃

akav~n12n2!
1

1

2
mE

0

t̃
d t̃ 8H1~m, t̃2 t̃ 8!

3E
0

1

dm8
H1~m8, t̃ 8!

m1m8
. ~33!

The parametersn1 andn2 in the free term on the right-han
side of Eq.~33! are given by the equations

n1,252
11a

2akav
F17A12

4akav

~11a!2G , ~34!

wheren1.n2 and it is assumed that 4akav,(11a)2.
In the next two sections we shall examine the asympto

values of the scattering functionsS(m;m0 ;t) for small and
large values of the dimensionless timet̃ .

Case of small values t̃˜0

In the limit of small values of the dimensionless tim
t̃ ( t̃→0) the asymptotic solution of Eq.~33! can be ap-
proximated by the term on the right-hand side, sett
H1(m, t̃ )→ t̃ /akav. Substituting this value ofH1(m, t̃ ) into
the right-hand side of Eq.~32! gives S1(m,m8; t̃ )
→ t̃ 3/6akav

2 , which leads on the basis of Eq.~31! to an
asymptotic expression of the scattering function for sm
values of the dimensionless timet̃→0

t0S~m,m0 ;t !→
mm0

m1m0

t̃

akav
. ~35!

This asymptotic expression is the single-scattering appr
mation for the leading edge of a diffusely reflected pulse

Case of large values t̃˜`

In the limit of large values of the dimensionless timet̃

( t̃→`) it is easier to use the asymptotic solution Eq.~33!,
Laplace transformed in time, in the corresponding limit
small values of the dimensionless frequencyṽ5vt0

(ṽ→0!, according to the idea, applied by Minin,18 of finding
for large values of the time the asymptotic solution of t
modified radiative transfer equation with one Lorentzian d
lay kernel, proposed by Sobolev.15 Minin’s idea consists of
using an asymptotic representation of the Chandrase
H-function35 H(m,l) in the limit l→1 of the form
H(m,l)→H(m,1)@12mA3(12l)#. In this method, after
inverting the Laplace transform in time, the desir
asymptotic representation of the scattering function for la
values of the dimensionless timet̃→` is obtained. This
asymptotic expression can be written as
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t0S~m,m0 ;t !→
1

2
A3

p
H~m,1!H~m0,1!mm0

A11a

t̃ 3/2

~36!

and represents the diffusion approximation for the trail
edge of a diffusely reflected pulse.

5. CONCLUSIONS

In this paper it was shown that a quasimonochroma
acoustic pulse can be trapped in a discrete randomly in
mogeneous medium consisting of an ensemble of rando
distributed scatterers when the carrying frequency of
pulse is close to the Mie resonance frequency of an isola
scatterer, and the elementary delay time can be greater
the mean free flight time of the radiation. Trapping of optic
nonstationary radiation in gases whose atoms possess a
nance absorption line was first studied by Compton a
Milne back in 1923 and 1926. In the last few years interes
the trapping of nonstationary radiation has actually re
peared in connection with attempts to interpret experime
on the observation of localization of classical, for examp
acoustic, wave fields in discrete randomly-inhomogene
media with a resonant elementary Mie scattering event. S
cifically, as follows from the present work, the delay of t
transfer of the radiation of classical wave fields in such m
dia, which was discovered by an Amsterdam group6 in 1991,
is only a partial manifestation of the trapping of nonstatio
ary radiation.

In this paper a systematic theory of trapping of nons
tionary acoustic resonance radiation in a discrete rando
inhomogeneous medium was constructed on the basis
new nonstationary radiative transfer equation with th
Lorentzian delay kernels that takes account of the accum
tion of acoustic energy inside scatterers and is consis
with the ensemble-averaged Poynting theorem for non
tionary acoustic radiation.

The albedo problem of diffuse reflection of a quasim
nochromatic pulse from a semi-infinite resonant medium w
solved for the nonstationary radiative transfer equation w
three Lorentzian delay kernels which was derived. Sim
asymptotic expressions were found in the single-scatte
approximation and the diffusion approximation, respective
for the scattering function for the leading and trailing edg
of a diffusely reflected pulse, when the time scale of
incident pulse is short compared with the mean free fli
time of the radiation and the incident pulse can be regar
as a Diracd-function. It was found that these asymptot
representations can be clearly stated for the scattering f
tion of a pulse on the scale of the mean free flight timet0 ,
determined in terms of the phase velocity of the waves i
randomly inhomogeneous medium. On this scale the ris
the leading edge of the diffusely reflected pulse slows do
as the parameterakav5tdel/t0 , equal to the ratio of the el
ementary delay timetdel to the mean scattering timet0 , in-
c
o-
ly
e
d
an
l
so-
d
n
-

ts
,
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ly
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creases. The dropoff of the trailing edge of a diffusely
flected pulse slows down as the parametera characterizing
the accumulation of acoustic energy inside scatterers
creases.
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Interference phenomena in Doppler broadened quantum transitions: amplification of
intense radiation without population inversion
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We study the effect of nonlinear interference processes on quantum transitions in intense
resonant electromagnetic fields with allowance for changes in level populations, relaxation
processes, incoherent excitation, and Doppler broadening of the transitions, on the
absorption, amplification, and refraction of the interacting fields. The theory is generalized to the
case of nonlinear interference interaction of two intense fields in open and closed three-
level quantum systems. Using the density matrix, we derive general expressions in the case of
stationary interaction that make it possible to analyze the optical characteristics for various
configurations of the interfering transitions by a simple substitution of parameters. The possibility
of amplifying light without saturated population inversion in a resonant transition is
discussed. We formulate the conditions for such amplification and use examples to show that
under appropriate changes in the initial level populations and the intensity of the auxiliary
light, the inversionless amplification coefficient does not decrease with increasing intensity of the
amplified radiation. We also show that allowance for these accompanying processes greatly
affects the choice of optimal conditions for interference in optical transitions. As an illustration we
list the results of a numerical analysis of possible experiments. ©1998 American Institute
of Physics.@S1063-7761~98!00502-2#
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1. INTRODUCTION

Many ideas of quantum optics were formulated on
basis of Einstein’s relations, which state that the probabili
of induced transitions involving photon absorption and em
sion are equal, and that they are related to the probabilit
spontaneous emission. From the classical viewpoint, em
sion and absorption of light are due to forced vibrations
coupled charges and the relationship between the phas
the radiation and the induced vibrations.

However, the same radiation can lead to several cohe
interfering vibrations of varying nature. Interference can
either constructive or destructive, complete or incomple
depending on phase and amplitude relationships. Here
corresponding optical response components can be amp
or suppressed. The macroscopic response of the mediu
determined by quantum transitions in which the photons
participate in several processes simultaneously. In the p
ence of several resonant electromagnetic fields, the prob
ity amplitudes of the quantum states contain several osci
ing components at nearby frequencies. When we calcu
the transition probabilities, in addition to squares of the
solute values of the corresponding components there
mixed terms that reflect the interference of the quantum tr
sitions. Coherent nonlinear phenomena determined by
coevolution of quantum states mixed by an external fi
have become known as nonlinear interference effects.

In optics, wave interference leads to a redistribution
radiation in space~including zones with zero intensity! while
the total radiative power is conserved. In quantum opt
2441063-7761/98/86(2)/15/$15.00
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nonlinear interference effects lead to a considerable cha
in the spectral characteristics of the transitions, so that
usual effects emerge. For instance, refractive indices wh
signs change with frequency may emerge, which signals
onset in certain frequency ranges of amplification witho
population inversion on the levels involved in the transitio
or, in contrast, the onset of absorption of radiation as a re
of a transition with population inversion. The region whe
the sign changes corresponds to transparency, i.e., a lac
interaction between the amplified radiation and the reson
transition. The use of nonlinear interference effects make
possible to capture and confine atoms in certain quan
states, a phenomenon known as coherent population trap
~CPT!. On the basis of resonant nonlinear optical proces
entirely new methods of selective action on matter have b
developed.

Here there is a profound analogy with classical ide
Leaving aside the classification of elementary proces
which has been introduced for, and is true of, only the c
of weak fields, we can predict and explain a broad spectr
of processes for which nonlinear interference effects are
sponsible. The theoretical bases of such an approach w
developed by several groups of scientists in the USSR in
1960s and 70s~see, e.g., Refs. 1–4!. As noted earlier, one
manifestation of such effects involving quantum transitio
is amplification in a resonant transition without populati
inversion. The possibility of obtaining sign-varying contou
of spectral lines in three-level systems in the microwave f
quency range was demonstrated in theoretical papers~see,
© 1998 American Institute of Physics
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e.g., Ref. 5! and was corroborated experimentally~see, e.g.,
Ref. 6!.

In several parameters the characteristics of optical tr
sitions differ considerably from those of microwave tran
tions. The conditions for observing this effect in optical tra
sitions for two-level systems was studied in Ref. 7, and
three-level systems in Refs. 2, 4 and 8, with the experime
aspects studied in Refs. 9–12. In Refs. 4 and 8, the crit
for amplification without population inversion at the cent
of the spectral line were derived, the evolution of the sha
of the spectral line as the characteristics of incoherent
coherent pumping were varied was analyzed, and nume
estimates were based on an open V-scheme of transition
neon. The anisotropy of the spectral lines and the distinc
features of nonlinear interference processes in Dopp
broadened transitions, with the strong-field intensity reach
values corresponding to Rabi frequencies of the order of
product of homogeneous and Doppler widths, were stud
in Refs. 4 and 13. Lately there has been an upsurge of in
est in the study of inversionless amplification in connect
with recent advances in laser physics and new problems.
corresponding papers are cited in related collections of
ticles and in the latest works~see Ref. 14!.

Nonlinear interference effects manifest themselves
ferently in different experimental situations. The phase re
tions and the amplitude of the interfering intratomic vibr
tions depend on the properties and relaxation characteri
of the transitions, the intensity of the fields, and the yie
from resonances. For gaseous media, a characteristic fe
of the typical experimental situations is the inhomogene
Doppler broadening of the transitions. Depending on
value and sign of the Doppler shifts, the contributions to
macroscopic nonlinear polarization of the medium from
atoms moving with different velocities can amplify or su
press each other. The above effects are interrelated and
manifest themselves differently in absorption, refraction, a
nonlinear optical mixing of radiation frequencies in macr
scopic volumes. Their study is of considerable interest
both pure science and applications.

The present paper is a development of the results
Refs. 4, 8 and 13. We use a unified approach for the stat
ary case to study all possible open and closed three-l
configurations~the V- andL-configurations! with allowance
for different channels of relaxation and incoherent excitat
to all levels, the inhomogeneous broadening of transitio
and the effect of the intensity of the amplified radiation
nonlinear interference and amplification without populati
inversion. We derive symmetric working equations that e
compass these cases, and give numerical illustrations
characteristic examples of open and closed optical syste

2. GENERAL EXPRESSIONS FOR THE REFRACTIVE INDEX,
AMPLIFICATION, AND ABSORPTION COEFFICIENTS

We consider the interaction of two strong laser fields
a three level system. Figure 1 depicts the possible confi
rations of such systems: V,L, and ladder~H! configurations.
We investigate the spectral characteristics of the refrac
index and the amplification and absorption coefficients
n-
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the interacting fields with allowance for possible addition
incoherent excitation of the levels~the excited atoms have
Maxwellian velocity distribution!, as well as all kinds of pro-
cesses of coherence and population relaxation in the sys
Here one must distinguish between open and closed syst
In open systems, where the lower level is not the grou
level, the rate of incoherent excitation of the levels by
external source is essentially independent of the indu
transitions between the levels. On the other hand, in clo
systems, where the lower level is the ground level, the rat
excitation of atoms with different velocities depends on t
magnitude and velocity distribution of the population of t
ground state, from which excitation to other levels starts, a
in this way it depends on transitions in the system induced
electromagnetic fields.

Below we study the spectral characteristics of a medi
irradiated by lightE4 with tunable frequencyv4 near the
l –m transition frequency. Depending on the configuration
the transitions being investigated, we turn on one of
strong fields,E1 , E3 , or E2 with frequenciesv1 , v3 , or v2

that are in resonance with the adjacent transitions depicte
Fig. 1. All fields are assumed to have the same polariza
and are traveling waves that propagate in the positive
negative direction along thez axis:

Ej~z,t !5Ej exp$2 i ~v j t2kjz!%1c.c.,

wherekj can take negative values, andj 51,2,3,4.

2.1. Equations of the density matrix

We solve the problem by using a system of equations
the components of the density matrixr of a mixed quantum
mechanical ensemble. These equations make it possib
allow ~in a phenomenological manner! for processes of inco-
herent excitation and relaxation that are due to the interac
with other systems whose properties do not depend on
ensemble in question. In operator form and in the interact
picture, these equations are

dr

dt
52

i

\
@V,r#1R1q, ~1!

whereV is the Hamiltonian describing the interaction of th
atom and external electromagnetic radiation, andR and q
describe relaxation processes and incoherent excitation o
levels.

Only stationary states will be considered. Here the fo
of Eq. ~1! suggests that since the amplitude of the interact

FIG. 1. Diagram of energy levels and transitions.
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Hamiltonian is time-independent, solutions forr i j for the
interaction with a plane wave will take the form

r i i 5r i , r i j 5r i j exp@ i ~Vt2kz!#, r j i 5r i j* ,

where the labels correspond to a transition from a lower le
to a higher level.

The equation for the diagonal elements of the den
matrix r have the form of balance equations for the me
level populations. Hence, if there is relaxation in the syst
and incoherent pumping takes place, only the diagonal
ments ofq are nonvanishing, and the expressions for th
elements can be written, on empirical grounds, as the pro
of the rate~probability per unit time! of incoherent excitation
to a given level and the population of the initial level. F
each configuration of the three-level system below, we c
sider two cases, an open configuration and a closed con
ration, whose features were described earlier. We call
level populations in the absence of radiation the initial le
populations. Each relaxation term can be written as a prod
of the appropriate relaxation constants and an element o
density matrix. In addition to the fact that the equations
the density matrix make it possible to allow for these sta
tical processes, in the stationary case they make it possib
replace the system of differential equations by a system
algebraic equations.

Below we employ notation in which double indices f
off-diagonal elements, which indicate transitions from
lower level to a higher one, are replaced by the transit
indices used in Fig. 1. For instance,

Lnnrnn5qn2 i @V,r#nn1gmnrmm, Lnn5
d

dt
1Gn ,

Llmr lm5L4r452 i @V,r# lm , Llm5
d

dt
1G lm ,

Vlm5Glm•exp$ i @V4t2kz#%, Glm52
E–dlm

2\
, ~2!

where dlm is the dipole moment of the transition
qn5( jwn jr j , with wn j the rate~probability per unit time! of
excitation of atoms into staten from lower levels;gmn are
the rates of relaxation transitions between the levels;Gmn are
the homogeneous transition halfwidths;Gn5( jggn j

are the
reciprocal lifetimes of the levels; andV45v42vml is the
offset from resonance. In the absence of collisio
G i j 5(G i1G j )/2.

In this notation the equations for the absorption~ampli-
fication! coefficienta4(V4) and the refractive indexn4(V4)
assume the form~if we use the solutions for the off-diagona
elements of the density matrix!

a4~V4!

a4
0 5Re

r 4 /G4

~r 4 /G4!0
, ~3!

n4~V4!2n4
nr

2~n4 max
0 2n4

nr!
5Im

r 4 /G4

~r 4 /G4!0
. ~4!

Here a4
0 is the value of the coefficient in vanishingly wea

fields at the center of the line,n4
nr represents the contributio

of all nonresonant levels to the refractive index at the giv
el

y
n

e-
e
ct

-
u-
e
l
ct
he
r
-
to

of

n

,

n

frequency~in gases at low pressures,n4
nr'1!, n4 max

0 is the
maximum value of the refractive index in the resonance
gion in the zero-field limit, and (r 4 /G4)0 is the ratio at reso-
nance in zero fields.

If the atom’s velocity isv, we must addv–“r to the
left-hand side of Eq.~1!. In the cases studied in this pap
this proves to be equivalent to allowing for a Doppler shift
the resonances, i.e., to replacing the offset from resona
V j by V j85V j2kjv in the final expression. In what follows
the prime on the offset is dropped, so that we assume tha
Doppler shift has been taken into account. We also use
notationDr 45r l2r m and Dn45nl2nm , with ni the level
populations in the absence of fields; these are describe
ni5qi /G i1(gki /G i)(qk /Gk).

In open configurations, the population of the grou
state is usually higher than the other populations. Hen
incoherent excitation from this level plays the leading ro
andqi can be assumed to be constant even in the presen
fields.

The distinctive features of closed configurations can
taken into account by replacing one of the equations for le
populations~say, the equation for the lower level! by the law
of conservation of the sum of populations. We also use
notationPi5G i1 iV i for the resonance denominators~e.g.,
Plm5P45G41 iV4 , Plm5Pml* , Pl f 5P425G l f 1 i (V4

1V2), etc.!.
We next study the resonant nonlinear interaction of t

strong light fields in three-level quantum systems with d
ferent configurations of the correlated transitions.

2.2. Generalized equations describing nonlinear interference
effects in the field of two intense radiative fields for
various transition configurations

The calculations in the Appendices show that althou
there are important difference in the manifestations of
interference effects in quantum transitions of various c
figurations~open and closed!, the equations for the refractiv
index, the amplification and absorption coefficients, and
populations of the energy levels—the latter being establis
by various coherent and incoherent processes—can be
sented in a systematic manner for all cases depicted in Fi

a4

a04
5F1

Dr 4

Dn4
7F2

Dr i

Dn4
,

a i

a0i
5F3

Dr i

Dni
7F4

Dr 4

Dni
,

~5!

n4~V4!2n4
nr

2~n4 max
0 2n4

nr!
5 f 1

Dr 4

Dn4
7 f 2

Dr i

Dn4
,

2
ni~V i !2ni

nr

2~ni max
0 2ni

nr!
5 f 3

Dr i

Dni
7 f 4

Dr 4

Dni
. ~6!

Here and in what follows, the labeli indicates a transition in
resonance with the auxiliary applied field~see Fig. 1!, and

F11 i f 15
G4

P4

11u2

11g11u2
, F21 i f 25

G4

P4

g2

11g11u2
,

F31 i f 35
G i

Pi*
11g1

11g11u2
, F41 i f 45

G i

Pi*
u1

11g11u2
, ~7!
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FIG. 2. Dependence of the absorption coef
cient ~a! and refractive index~b! in the homo-
geneously broadened transitionl –m ~l is the
excited state! in the presence of a strong field
in the adjacent transitionl –g on the normal-
ized offset y45V4 /G lm (S450): curves1,
S155 and V150; curves 2, S15100 and
V150; curves 3, S155 and V152G lg ;
curves4, S15100 andV152G lg .
n
o

s
a

n

g15
uGi u2

P4P4i
, g25

uGi u2

Pi* P4i
, u15

uG4u2

P4P4i
, u25

uG4u2

Pi* P4i
.

~8!

The functionsF j have the same form for all schemes exce
the H-scheme. In the H-scheme, we must remove the co
gation sign onPi in the denominators of the expressions f
g2 , u2 , F3 , andF4 .

The population differences, which depend on the rad
tive intensities, can also be written in general form:

Dr 45
Dn4X27DniX3

X1X22X3X4
, Dr i5

DniX17Dn4X4

X1X22X3X4
. ~9!

The minus sign in Eqs.~5!, ~6!, and ~9! refers to the
V(E4 ,E1)- andL(E4 ,E3)-schemes, and the plus sign, to th
H(E4 ,E2)-scheme. Furthermore,

X1511a14k4F11a1ik iF4 , X2511a24k4F21a2ik iF3 ,

X35a34k4F21a3ik iF3 , X45a44k4F11a4ik iF4 ,

a1452a34, a1i52a3i , a2452a44, a2i52a4i , ~10!

with k4 andk i the saturation parameters for the transitions
and i , respectively. For open configurations,

k45
2uG4u2~G l1Gm2g4!

G lGmG4
, ~11!

and the saturation parametersk i as well as the parameter
amn , which depend only on the relaxation constants,
given below for each scheme.

2.2.1. V-scheme (fields E 4 and E 1 ; i 51)

Open configuration:

k i5k15
2uG1u2~Gg1G l2g1!

GgG lG1
, a2i5a2151, a1451,

a3i5a315
Gg2g1

Gg1G l2g1
, a445

Gm2g4

G l1Gm2g4
. ~12!

Closed configuration:
pt
ju-
r

ia-

e

4

re

k45
4uG4u2

GmG4
, k i5k15

4uG1u2

GgG1
,

a3i5a3150.5Dn4 , a450.5Dn1 ,

a2i5a2150.5~11Dn1!, a1450.5~11Dn4!. ~13!

2.2.2. L-scheme (fields E 4 and E 3 ; i 53)

Open configuration:

k35
2uG3u2~Gm1Gn2g3!

GmGnG3
, a2i5a2351, a1451,

a3i5a335
Gn

G l

G l2g4

Gm1Gn2g3
, a445

G l

Gn

Gn2g3

Gm1G l2g4
.

~14!

Closed configuration:

k45
4uG4u2

GmG4
,

a3i5a33511Dn42~112Dn4!
Gm2g3

Gm1Gn2g3
,

a4450.5F12
g3

Gn
1Dn3S 11

g3

Gn
D G ,

a2i5a23511Dn3

Gn2~Gm2g3!

Gn1Gm2g3
,

a1450.5F11Dn4S 11
g3

Gn
D G . ~15!

2.2.3. H-scheme (fields E 4 and E 2 ; i 52)

Open configuration. As noted earlier, in the functions
F3 , F4 , g2 , andu2, we must remove the conjugation sig
on Pi :

k25
2uG2u2~G f1Gm2g2!

G fGmG2
, a1451, a2i5a2251,
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a3i5a325
G l2g4

G l

G f2g2

Gm1G f2g2
, a445

G l

G l1Gm2g4
.

~16!

Closed configuration:

k45
4uG4u2

GmG4
,

a3i5a325~112Dn4!
G f2g2

Gm1G f2g2
2Dn4 ,

a4450.5~12Dn2!, a1450.5~11Dn4!,

a2i5a22511Dn2

Gm2~G f2g2!

Gm1G f2g2
. ~17!

3. GENERAL ANALYSIS OF THE EQUATIONS

The emitted power per unit volume due to induced em
sion, Wi , and the absorbed powerWa, are directly propor-
tional to the number of atoms per unit volume that are
pable, respectively, of emitting or absorbing radiation~the
populations of the upper and lower levels!, and proportional
to the probabilitybi(I ) of induced emission and the prob
ability ba(I ) of absorption generated by radiation of intens
I . According to the Einstein relations, these probabilities
usually assumed equal, which means that population in
sion is needed for amplification of radiation.

To make amplification without population inversion po
sible, the probability of induced emission must exceed
probability of absorption. This is made possible by nonline
interference effects. This introduces a situation in which
absorption of light by atoms in the lower energy levels d
creases and the probability of induced emission of light
atoms in the higher levels increases or remains unchan
As noted earlier, a difference between the probabilities
induced emission and absorption due to nonlinear inter
ence effects was demonstrated in Refs. 2–4, 13, 15–17
conditions for the onset of amplification of light withou
population inversion due to such effects were studied
two-level optical systems in Ref. 7 and for three-level s
tems, in Refs. 4 and 8.

Let us examine, for instance, the interaction of fieldsE3

andE4 in the L-scheme~see Fig. 1!. Quantum interference
can be achieved when the transitions involve a coherent
perposition of states that are close in energy. Such states
be real sublevels~this situation was considered, for instanc
in Ref. 1!. A similar situation can be realized for quasileve
through the use of electromagnetic radiation. For example
the case of exact resonance, the lower levell in the V-
scheme can be represented by a coherent superpositio
two symmetrically disposed quasilevelsl 1 and l 2 produced
by a resonant external field. The light-emitting atoms c
transit from levelm to either levell 2 or l 2 , and the processe
are independent. If the atom in the lower level is in a coh
ent superposition of states, transitions from these states
not independent and interfere. Under certain conditions,
interference is destructive and the absorption process is
pressed.
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In some cases, interfering frequency-degenerate osc
tions within a single atom, induced by auxiliary radiatio
can be interpreted as being due to various correlated q
tum transitions, all contributing to the same process. Th
might be, for example, one- and two-photon contributions
an optical process related to emission or absorption at
given frequency. For instance, in the V-scheme~Fig. 1!, pho-
tons can be observed as a result of transitions from levell to
level m and as a result of transitions from levelg to levelm
with the simultaneous participation of two photons, one w
energy\v1 emitted in such transitions, and the other, w
energy\v4 , being absorbed.

The classification of quantum transitions as one- a
multiphoton transitions was introduced on the basis of
difference in their frequency-correlation properties in t
context of perturbation theory. In strong resonant elect
magnetic fields these properties undergo dramatic chan
so that the initial classification becomes meaningless fr
the standpoint of physics.2–4,15,16 The corresponding varia
tions manifest themselves in resonant emission and abs
tion spectra; for instance, the conditions for resonances
of Doppler broadening change dramatically.2–4,16,18

Here it is much more convenient to use a classificat
scheme based on the structure of the solution for the
diagonal elements of the density matrix.2–4,13 In this classi-
fication scheme, many experimental results can explai
and predicted by using the concept of interfering compone
in off-diagonal density-matrix elements, components
duced by the interacting fields. The amplitudes of these co
ponents can be varied by changing the intensities of the
spective fields, while the phases can be varied by chang
the magnitudes and signs of their offset from one- and m
tiphoton resonances.

For instance, let us turn to the case, considered in R
4 and 8, of inversionless amplification of weak radiation
the presence of a strong field in resonance with the adja
transition in the V-configuration. According to Eq.~A1! for
r4 ~see Appendix A!, polarization at this frequency consis
of two interfering components, one of which is due to t
coherencer41 jointly induced by the probe and strong ligh
fields, i.e., correlated transitionsg– l and l –m between the
levelsg andm. As a result, the solution~A2! for the polar-
ization with uu1,2u!1,

r 4

iG4
5

Dr 42Dr 1~ uG1u2/P1* P41!

P4@11~ uG1u2/P4P41!#
, ~18!

makes it possible to identify three effects of the auxilia
strong field, and each can be observed individually or
conjunction with the other two:

1! The effect of moving populations~the field-
dependence ofDr 4 and Dr 1! manifests itself in strong co
herence relaxation (G41@G4,1) and in Doppler-broadened
transitions for counterpropagating waves in the V- andL-
schemes~for unidirectional waves in the H-scheme!.

2! The denominator in~18! has two roots with respect to
V4 ~one- and two-photon resonances modified by the fie!.
This is a reflection of resonance splitting in this transitio
which can show up separately atng5nl .
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3! The second term in the numerator, taken together w
the denominator, reflects the presence of a nonlinear inte
ence effect, since it influences only the shape of the spe
line and not the total intensity. The integral of the seco
term with respect toV4 ~along with the denominator! is zero,
and the integral of the first term with respect toV4 ~along
with the denominator! is equal toDr 4 .

Thus, the variation in the total absorption or amplific
tion is determined by the variation in the population diffe
ence, while the nonlinear interference effects only influen
the shape of the spectral line. In the expansion
uG1u2/P4P41 in weak fields, such effects show up indepe
dently, and under some conditions~e.g., for Doppler-
broadened short-wave transitions,v4.v i! they can be ob-
served in pure form. These effects are associated with
possibility of changes in sign of the amplification coefficie
for Dr 1(uG1u2/G1G41).Dr 4 without changes in the sign o
Dr 4 . This means that both amplification without populati
inversion and electromagnetically induced transparency~the
fact that absorption vanishes at finite values ofDr 4! can
occur in this system. Here, under resonant conditions,
effect is not tantamount to amplification due to inversi
population in two-photon transitions. A component prop
tional to the population difference in the two-photon tran
tion is produced only if the yield of the one-photon res
nance is high, whereupon the interference between lad
and two-photon quantum transitions vanishes. Note that
component is produced by field-dependent factors in both
numerator and denominator of Eq. ~18!. At
uV1u'uV4u@G1 ,G4 , ug1,2!1u, P4' iV4 , and
P1' iV1' iV4, Eq. ~18! assumes the form

a~V4!

a0~0!
'

G4
2Dr 4

V4
2Dn4

2Re
G4~Dr 4g11Dr 1g2!

iV4Dn4

'
G4

2Dr 4

V4
2Dn4

2
G4G14

G14
2 1~V42V1!2

uG1u2~Dr 12Dr 4!

V4
2Dn4

5
G lm

2 ~r l2r m!

~nl2nm!V4
2 2

GgmG lm

Ggm
2 1~V42V1!2

uG1u2~r m2r g!

V4
2~nl2nm!

.

~19!

The last two terms in this equation describe a two-pho
process, and originate in the second term in the numer
~together with the denominator! in Eq. ~18!. Thus, the lack of
interference leads to the need for population inversion in
initial and final states (r m5nm.r g) in order to amplify the
probing field.

Let us examine the conditions for inversionless ampl
cation of intense radiation, which are related directly to
problem of an inversionless laser. For the V- andL-schemes,
using Eqs.~5! for each transition we have, respectively,

Dr 4

Dr i
,

F2

F1
,

Dr i

Dr 4
,

F4

F3
. ~20!

These conditions simplify at the center of the line

Dr 4

Dr i
,

g2

11u2
,

Dr i

Dr 4
,

u1

11g1
. ~21!
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In the H-scheme, the conditions for amplification wit
out population inversion are

Dr 4

Dr i
, 2

F2

F1
,

Dr i

Dr 4
, 2

F4

F3
. ~22!

This implies that in contrast to the V- andL-schemes, there
must either be population inversion of the levels involved
the adjacent transition, or amplification occurs under cert
conditions in the wings of the resonance.

Level populations also depend on the intensities and
quencies of both fields and on the initial level population
Thus, optimization should be carried out in a self-consist
manner. Below, the corresponding dependence is illustra
by numerical examples.

We now formulate the general criteria for optimal co
ditions for the center of the line. To be definite, we exam
a transition scheme with a common lower level, i.e., an op
V-configuration.

Using Eqs.~5! and ~9!, we obtain

a4

a04
5AH 12

Dn1

Dn4

uGu1
2

G1
2~11k11uGu4

2/G1G41!

3F S 12
g1

Gg
D 2G1

G l
1

G1

G41
G J ,

A5
11k11uGu4

2/G1G41

~11g11u2!~X1X22X3X4!
. ~23!

If the amplified fields are negligible, this expressio
transforms into the one studied in Refs. 4 and 8:

a4

a04
5

1

11uGu1
2/G4G41

H 12
Dn1

Dn4

uGu1
2

G1
2~11k1!

3F S 12
g1

Gg
D 2G1

G l
1

G1

G41
G J . ~24!

If we compare~23! and~24!, we see that all the main effect
of a strong field in resonance with the adjacent transition
retained, and that there are additional effects associated
the amplified radiation.

Equations~20!–~24! make it possible to interrelate th
main parameters of the inversionless amplification region
resonance, the population differences between the interac
transitions for the V-scheme can be described by Eqs.~9!
~see also Appendix A!:

Dr 45r l2r m5
Dn4X22Dn1X3

X1X22X3X4
,

Dr 15r l2r g5
Dn1X12Dn4X4

X1X22X3X4
,

X1511
k4@11u2#

11g11u2
2a1

k1u1

11g11u2
,

~25!

X2511
k1@11g1#

11g11u2
2a4

k4g2

11g11u2
,



te
el
a
ic

he

vi
re
in

m
w
F
fs

es
s

e

ig
th
le

fs
th
d

ed
o
el
tio
if
e

her-
the
the

one
. In
it-

s.

s
ing
al-

ths
and
f the
ed

tion
rent
in
ero
in-

at
plit-
on
e-
the

. If
in-
on
the
in-
ten-
ton
ld

nge

ms
ear
ter-
er
pa-
on-
ed
th

e
2
co-

ap-

250 JETP 86 (2), February 1998 Popov et al.
X35a1

k1@11g1#

11g11u2
2

k4g2

11g11u2
,

X45a4

k4@11u2#

11g11u2
2

k1u1

11g11u2
.

There is no inversion of saturated populations if

Dn1

Dn4
,

X2

X3
,

Dn4

Dn1
,

X1

X4
.

Since the constants

ai5a15
Gg2g1

Gg1G l2g1
, a45

Gm2g4

G l1Gm2g4

are always less than unity, the ratiosX2 /X3 andX1 /X4 are
greater than unity for all values of the saturation parame
of both fields. This means that if the ratio of the initial lev
populations,Dn1 /Dn4 , does not exceed unity, there is not
single saturation parameter or relaxation constant at wh
inversion of saturated populations occurs.

Furthermore, there is no population inversion if t
above constants obey the following inequalities~see~25!!:

a1,
k4g2

k1~11g1!
, a4,

k1u1

k4~11u2!
.

Other cases require special treatment.
The threshold and laser power are dictated by

a45T, ~26!

whereT represents the radiative loss per pass of the ca
per unit length of the gain medium. Thus, the above exp
sions determine the conditions for, and characteristics of,
versionless lasing.

4. NUMERICAL ANALYSIS

We now illustrate the above behavior of open syste
using neon atoms, and of closed systems, using a model
parameters close to the transitions of atomic sodium.
neon, we select the same transitions that were used in Re
and 8 to analyze the conditions for weak-field inversionl
amplification involving homogeneously broadened tran
tions: the 2s2– 2p4 transition for the long-wave field (gl),
and the 3s2– 2p4 transition for the short-wave field (ml).
The relaxation constants for these transitions are w
known: Gm533107 s21, G l553107 s21, Gg5107 s21,
and gml5ggl50.53107 s21. Equations for the velocity-
averaged absorption coefficients of a weak field at the h
frequency transition in the presence of a strong field with
characteristic Rabi frequency not exceeding the Dopp
width of the low-frequency transition were obtained in Re
4 and 13, where it was established that the line profile of
probe field is anisotropic, and the authors discussed the
ferences among the saturation effects, the conditions ne
for separate manifestations of each such effect, and the m
fication that the effects undergo with increasing strong-fi
intensity. The same questions were studied for popula
motion and the nonlinear interference effect. Moreover, d
ferences in the spectral manifestations of these effects w
rs
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investigated, and the various features of lasing under co
ent pumping were analyzed. Hence, we focus below on
effects associated with an increase in the intensity of
amplified radiation.

Figures 2–8 show the results of numerical analysis d
by using the equations of Sec. 2.2 and the Appendices
averaging over velocity, the initial level population was wr
ten

nj5
Nj

Ap v̄
expF2S vz

v̄ D 2G ,

where Nj are the velocity-integrated populations. In Fig
2–8 we use the notationa i5a i(V i)/a i

0 for the normalized
absorption coefficient~positive values! and amplification co-
efficient ~negative values!, and dni5@ni(V i)2ni

nr#
3@2(ni max

0 2ni
nr)#21 for the normalized values of the part

of the refractive index that depends on the transition be
investigated. Thus, the absorption coefficients are norm
ized to unity at resonance in zero fields. The Doppler wid
correspond to the experimental values for the transitions,
the homogeneous widths were estimated to be the sum o
level widths. The two radiative intensities are characteriz
by the parametersS15uG1u2/G1Ggm andS45uG4u2/G4Ggm .

Figure 2 depicts variations in the shape of the absorp
and refraction spectra due to population motion and cohe
effects, for neon atoms with zero projection of the velocity
the propagation direction of the radiation. We see that at z
offset of the strong radiation and selected values of the
tensity of that radiation, with a ratioNl :Ng:Nm5100:50:85
in the initial level populations, the absorption coefficient
the center of the line remains close to zero due to the s
ting effect, even when the intensity of the auxiliary radiati
is increased still further. At finite offset, the spectrum b
comes asymmetric, and over a certain frequency range
radiation is amplified due to nonlinear interference effects
the intensity and frequency offset of the strong field are
creased still further, the amplification shifts to the regi
corresponding to backward Raman scattering, since for
unperturbed populations the two-photon transition is
verted. Under resonant conditions and at the selected in
sities, there is no population inversion either in one-pho
transitions or in two-photon transitions. Calculations yie
r l :r g:r m595.65:93.1:85 for curve1, 95.46:95.35:85 for
curve2, 96.3:87:85 for curve3, and 95.5:94.9:85 for curve
4. The refractive index also undergoes a considerable cha
in the presence of the auxiliary radiation.

Because of Doppler shifts in a gas, the various ato
have differing offset ratios, so that the shape of nonlin
resonances is nearly symmetric, while their position is de
mined by the offset of the strong field within the Doppl
profile and the relationship between the directions of pro
gation of the wave. Figure 3a shows the onset of inversi
less amplification involving a short-wave Doppler-broaden
transition in neon, and variation of the amplification wi
increasing intensity of the amplified radiation for the sam
initial level populations as in Fig. 2. Comparison with Fig.
suggests that because of atomic motion, the macroscopic
herence and the nonlinear interference effect do not dis
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FIG. 3. Dependence of the velocity-averaged absorption coefficient~a! and
refractive index~b! in the inhomogeneously broadened transitionl –m ~l is
the excited state, and the waves propagate in the same direction! in the
presence of a strong field in the adjacent transitionl –g on the normalized
offset y4 : curves 1—S155, S450, and V15350G lg; curves 2—S155,
S451, and V15360G lg . c! Population distribution over the velocitie

z5v/ v̄ ~the radiation frequencies correspond to the absorption minima!. The
ratios of the initial velocity-integrated unsaturated populations are the s
as in Fig. 2:Nl :Ng:Nm5100:50:85. The solid curves correspond to curv
1 in Figs. 3a and b and the dashed curves, to the curves2 in Figs. 3a and b.
e-
ten-
pear. The relative variation in the refractive index and a
sorption coefficient proves to be even greater in Fig.
Figure 3b depicts the corresponding dispersion of the ref
tive index. Finally, Fig. 3c shows that there is no inversion
saturated populations in any of the transitions, and that
populations of the levels involved in the transition corr
sponding to the auxiliary radiation even out, which is al
the case for the two-photon transition as the intensity of
amplified radiation increases~coherent population trapping!.
In the latter case, the velocity distribution of the populati
of the upper levelm becomes slightly modulated, due t
nonlinear optical effects in two strong fields.

Nonlinear interference effects in Doppler-broaden
transitions have a pronounced angular anisotropy. For the
andL-schemes with counterpropagating waves, the velo
packets of atoms in one- and two-photon resonances do
intersect, the velocity-averaged interference contribut
vanishes, and the radiative interaction is governed solely
ladder transitions. Figure 4 shows that a resonance eme
on the opposite side of the Doppler profile, and amplificat
disappears despite the similar saturated populations at r
nant velocities in comparison to the case depicted in Fig
The experiments described in Refs. 10 and 11 investiga
the special features of the generation of three-level gas
sers, due to nonlinear interference effects, where the la
threshold exists only for waves propagating in the same
rection. The theory of such lasers was examined in Ref
and 13, including the case of unidirectional lasing with
lowance for saturation in correlated transitions.4,19

The interference of contributions to the macroscopic p
larization from atoms moving with different velocities man
fests itself differently for short-wave and long-wave tran
tions. This is due to the reversal of the sign of the Dopp
shift (k42k1)v for the two-photon resonance when the fr
quency ratio changes. After averaging over velocities,
splitting of atomic responses shows up only in long-wa
transitions.11,20

The corresponding variations in the characteristics of
versionless amplification are shown in Fig. 5a, with the i
tial level populations changing in such a way that the uns
urated population differences between the amplified a
auxiliary fields remain the same as in Fig. 4. Figure 5b
picts the corresponding velocity distribution of the lev
populations. Here the frequency of the probe radiation
tuned to the center of the dip in Fig. 5a~provided, of course,
that the intensity of this radiation is nonzero!. We see that as
the intensity of the amplified radiation grows, the populati
of the upper resonant levelm changes little, while the am
plification and line profile change considerably.

Figures 6a–c show how strongly inversionless ampl
cation depends on the ratio of the initial level populations.
accordance with the above analysis, if the saturated pop
tions do not satisfy the above criteria, amplification is impo
sible no matter how strong~or weak! the fields are~Figs. 6a
and b!. In turn, the ratio of the saturated population diffe
ences depends on the initial populations, the relaxation c
acteristics of the transitions, and the intensities of the fie
If the above criteria are met, inversionless amplification b
comes possible, and its value depends on the ratio of in

e
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FIG. 4. The same as in Figs. 3a and
~curves1!, but the waves propagate in op
posite directions.
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sities of the interacting light fields~Fig. 6c!. By varying the
population distribution by incoherent pumping, inversionle
amplification can be maintained at a given level. This dep
dence determines the characteristics of lasing in an in
sionless laser.

As noted earlier, open and closed systems of transiti
have distinctive features, which are related both to any r
tionship among the relaxation parameters and to the inte
lation between the incoherent pumping rate and the pop
tion of the lower level. Figures 7 and 8 illustrate some
these features using the sodium atom as a model, with
following relaxation characteristics of the 4P1/2– 3S
(l45330 nm) and 3P1/2– 3S (l15590 nm) transitions:
Gm593107 s21 and Gg5633107 s21. By using weak
probe radiation, Wang and Gao21 analyzed the features o
inversionless amplification involving theD1 and D2 transi-
tions in sodium with allowance for Doppler broadening
the transitions and the hyperfine splitting of the lower lev
We used the characteristics of a shorter-wave transition
model, differing from the one discused in Ref. 21, in order
illustrate the dependence of inversionless amplification
volving closed Doppler-broadened transitions on the int
sity of the amplified radiation. As noted earlier, the moti
of population differences and the splitting of resonan
s
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s
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e-
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compete with nonlinear interference effects in the product
of inversionless amplification. Hence, it is important to sho
that conditions close to optimal can be realized for a re
tively broad class of objects.

Figure 7b~curve 1! shows that an important feature o
the present case is the dependence of the intensity of
upper levelm on the intensity of the auxiliary radiation, eve
at vanishing intensities of the probe radiation. As noted e
lier, this is due to the variation of the rate of incohere
pumping to this level as the population of the lower lev
changes. Curve1 in figures 7a and b corresponds to the ca
in which 36% of the atoms are excited via incoherent pum
ing from the ground state to the levelm, which for appro-
priate atomic concentrations can correspond to strong
sorption of the probe radiation. If the system is irradiated
auxiliary light in resonance with the adjacent transitio
weak short-wave radiation propagating in the same direc
is amplified ~at a level of approximately 50% of the initia
absorption!. Amplification takes place in the absence of i
version of saturated populations for all transitions. Curve2
in Fig. 7a shows that amplification can vary considerably
the intensity of the amplified radiation increases, which
accompanied in the present scheme by significant varia
in the populations of levelsm and l . Figure 7c depicts the
o-
si-

s

i-

ip
FIG. 5. a! Dependence of the velocity-
averaged absorption coefficients in the inh
mogeneously broadened long-wave tran
tion l –g on the normalized offsety4 ; b!
population distribution over the velocities

z5v/ v̄ ~l is the excited state, and the wave
propagate in the same direction!, in the pres-
ence of a strong field at the adjacent trans
tion l –m (Nl :Ng:Nm510:85:50): curves
1—S150.5, S4510, and V45200G lm ;
curves 2—S1510, S4510, and
V45200G lm . In Fig. 5b the radiation fre-
quencies correspond to the center of the d
~the solid curves correspond to curves1 in
Fig. 5a, and the dashed curves, to curves2 in
Fig. 5a!.
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FIG. 6. Dependence of the velocity
averaged values of the absorption coef
cientsa1 anda4 at zero offset of either
field ~l is the excited state, and the wave
propagate in the same direction! on the
normalized radiative intensitiesS1 and
S2 : ~a! and ~b!, Nl :Ng:Nm5100:50:70;
~c! and ~d!, Nl :Ng:Nm5100:50:85.
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velocity and energy-level distribution of atoms that cor
sponds to the disappearance of both absorption and am
cation. It is interesting to note how this distribution chang
abruptly due to nonlinear optical effects involving an i
crease in the intensity of the weaker radiation.

Figure 8 shows that by varying the initial distribution v
incoherent pumping and the intensity of the auxiliary rad
tion, we can maintain, over a certain range of values, a c
stant level of amplification as the intensity of the amplifi
radiation rises.

5. CONCLUSION

Our results contribute to the development of the the
of resonant nonlinear interference processes involving qu
tum Doppler-broadened transitions in strong electromagn
fields for open and closed three-level configurations, w
allowance for incoherent pumping of levels and for proces
accompanying the coherent interaction of light fields.

The expressions derived in this paper make it possibl
analyze and compare, from a consistent standpoint, the m
festations of quantum interference processes in various
L-, and ladder configurations of interacting transitions, w
allowance for processes that strongly affect the choice
optimization of the conditions of experiments in the des
of lasers that do not require population inversion. These
pabilities have been demonstrated through the use of num
cal models characteristic of open and closed configurat
of optical transitions.
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APPENDICES

Here we give the outline and results of calculations
the refractive index, the absorption coefficient, and le
populations for various open and closed configurations
energy levels.

A. V-SCHEME „FIELDS E1 AND E4…

A.1. Open configuration

The equations for the density matrix are

Lgmrgm5 i ~rglVlm2Vglr lm!

5L41r415 i ~r1* V42V1* r4!,

L1r152 i $V1~rg2r l !1r41* V4%,

L4r452 i $V4~rm2r l !1r41V1%,

Lgrg522 Re~ iV1* r1!1qg ,

Lmrm522 Re~ iV4* r4!1qm ,
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Llr l5ql22 Re~ iV1r1* 1 iV4r4* !1g4rm1g1rg . ~A1!

FIG. 7. a! Dependence on the normalized offsety4 of the velocity-averaged
absorption coefficient in the inhomogeneously broadened long-wave tra
tion l –m ~l is the ground state, and the waves propagate in the same d
tion! in the presence of a strong field at the adjacent transitionl –g: curves
1—S1510, S450, andy150; curves2—S1510, S4520, andy4520. b,c!

Saturated population distributions over the velocitiesz5v/ v̄: in ~b!, the
radiation frequencies correspond to the absorption minima; in~c!, the radia-
tion frequencies correspond to the right~1! and left ~2! zero-absorption
points of the corresponding curves.Nl :Ng:Nm564:0:36.
For the amplitudes of the off-diagonal elements of t
density matrix~r 1 , r 41, and r 4!, in the stationary case we
have a system of algebraic equations, whose solution is

r 15 i
G1

P1F* @Dr 1~11g1v* !2u1v* Dr 4#,

r 415
G1* G4

P41P4P1* F
@Dr 1P41Dr 4P1* #,

r 45 i
G4

P4F
@Dr 4~11u2v!2Dr 1g2v#,

u1v5
uG4u2

P4P41
, u2v5

uG4u2

P1* P41
,

g1v5
uG1u2

P4P41
, g2v5

uG1u2

P1* P41
,

P15Plg5G11 iV1 , P415Plg5G411 i ~V42V1!,

F511g1v1u2v , Dr 15r l2r g , V15v12vgl .
~A2!

Plugging ~A2! into the equations for the diagonal ele
ments of the density matrix in~A1!, we find that

r m5nm1~12a44v!k4@Dr 4F1v2Dr 1F2v#,

r l5nl2Dr 4~a44vk4F1v2a31vk1F4v!

1Dr 1~a44vk4F2v2a31vk1F3v!, ~A3!

r g5ng2~12a31v!k1@Dr 4F4v2Dr 1F3v#,

a31v5
Gg2g1

Gg1G l2g1
, a44v5

Gm2g4

Gm1G l2g4
;

F1v1 i f 1v5
G4~11u2v!

P4F
, F2v1 i f 2v5

G4g2v

P4F
,

F3v1 i f 3v5
G1~11g1v!

P1* F
, F4v1 i f 4v5

G1u1v

P1* F
. ~A4!

The saturation parameters for the first and fourth transiti
are

k15k lg5
2uG1u2~G l1Gg2g1!

G lGgG1
,

k45
2uG4u2~G l1Gm2g4!

G lGmG4
. ~A5!

Calculation of the population difference for the correspon
ing transitions yields

Dr 45
Dn4X2v2Dn1X3v

X1vX2v2X3vX4v
, Dr 15

Dn1X1v2Dn4X4v

X1vX2v2X3vX4v
,

X1v512a31vk1F4v1k4F1v ,

X2v512a44vk4F2v1k1F3v ,

X3v5a31vk1F3v2k4F2v ,

X4v5a44vk4F1v2k1F4v . ~A6!
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FIG. 8. Dependence of the velocity
averaged absorption coefficientsa1 and
a4 on the normalized radiative intensi
ties S1 and S2 at zero offset of both
fields ~l is the ground state, and th
waves propagate in the same direction!:
a,b!, Nl :Ng:Nm564:0:36; c,d!,
Nl :Ng:Nm560:0:40.
io

n

le
or
e

ac-
Using these solutions, we obtain

a4

a04
5F1v

Dr 4

Dn4
2F2v

Dr 1

Dn4
,

a1

a01
5F3v

Dr 1

Dn1
2F4v

Dr 4

Dn1
,

~A7!

n4~V4!2n4
nr

2~n4 max
0 2n4

nr!
5 f 1v

Dr 4

Dn4
2 f 2v

Dr 1

Dn4
,

2
n1~V1!2n1

nr

2~n1 max
0 2n1

nr!
5 f 3v

Dr 1

Dn1
2 f 4v

Dr 4

Dn1
. ~A8!

A.2. Closed configuration

As noted earlier, in this case the incoherent excitat
rates depend on induced transitions in the system, as
flected in the equation for the populations:

Lgrg5wgr l22 Re~ iV1* r1!,

Lmrm5wmr l22 Re~ iV4* r4!,

r l512rm2rg . ~A9!

Herewg andwm are the probabilities of arrival at the give
level.

Since the form of the equations for the off-diagonal e
ments in a closed system is the same as before, the c
sponding stationary solutions for the population differenc
n
re-

-
re-
s,

the absorption and amplification coefficients, and the refr
tive index can be obtained from~A6! and~A7! via the simple
substitutions

X1v5110.5~11Dn4!k4F1v20.5Dn4k1F4v ,

X2v5110.5~11Dn1!k1F3v20.5Dn1k4F2v ,

X3v50.5Dn4k1F3v20.5~11Dn4!k4F2v ,

X4v50.5Dn1k4F1v20.5~11Dn1!k1F4v ,

k15
4uG1u2

GgG1
, k45

4uG4u2

GmG4
.

The initial and saturated level populations are

nl5
1

11wg /Gg1wm /Gm
,

ng5
wg /Gg

11wg /Gg1wm /Gm
,

nm5
wm /Gm

11wg /Gg1wm /Gm
,

r m5 1
3@11Dr 122Dr 4#, r g5 1

3@11Dr 422Dr 1#,

r l5
1
3@11Dr 11Dr 4#.
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B. L-SCHEME „FIELDS E3 AND E4…

B.1. Open configuration

In this case the initial system of equations assumes
form

Llnr ln5 i ~r lmVmn2Vlmrmn!

5L43r435 i ~r4V3* 2V4r3* !,

L4r452 i @V4~rm2r l !2r43V3#,

L3r352 i @V3~rm2rn!1r43* V4#,

Lnrn522 Re~ iV3r3* !1g3rm1qn ,

Lmrm522 Re~ iV3* r31 iV4* r4!1qm ,

Llr l5ql22 Re~ iV4r4* !1g4rm . ~B1!

As in Appendix A, in the stationary case we can reduce t
system to algebraic form. The solution is

r 35 i
G3

P3F* @Dr 3~11g1l* !2u1l* Dr 4#,

r 4352
G3* G4

P43P4P3* F
@Dr 3P41Dr 4P3* #,

r 45 i
G4

P4F
@Dr 4~11u2l !2Dr 3g2l #,

u1l5
uG4u2

P4P43
, u2l5

uG4u2

P3* P43
, ~B2!

g1l5
uG3u2

P4P43
, g2l5

uG3u2

P3* P43
,

Pnm5P35G31 iV3 , Pln5P435G431 i ~V42V3!,

F511g1l1u2l , Dr 35r n2r m , V35v32vmn ;

r l5nl1Dr 3@c2k4F2l1b1k3F3l #

2Dr 4@c2k4F1l1b1k3F4l #,

r n5nn2Dr 3~c1k4F2l1b2k3F3l !

1Dr 4~c1k4F1l1b2k3F4l !, ~B3!

r m5nm2Dr 3@k4F2l~12c2!2k3F3l~12b2!#

1Dr 4@k4F1l~12c2!2~12b2!k3F4l #,

b15
Gn

G l

g4

Gm1Gn2g3
, b25

Gm2g3

Gm1Gn2g3
,

c15
G l

Gn

g3

G l1Gm2g4
, c25

Gm2g4

G l1Gm2g4
;

k35
2uG3u2~Gm1Gn2g3!

GmGnG3
, ~B4!

k45
2uG4u2~Gm1G l2g4!

GmG lG4
;

e

is

F1l1 i f 1l5
G4~11u2l !

P4F
, F2l1 i f 2l5

G4g2l

P4F
, ~B5!

F3l1 i f 3l5
G3~11g1l !

P3* F
, F4l1 i f 4l5

G3u1l

P3* F
;

Dr 45
Dn4X2l2Dn3X3l

X1lX2l2X3lX4l
, Dr 35

Dn3X1l2Dn4X4l

X1lX2l2X3lX4l
,

X1l511k4F1l2~12b12b2!k3F4l ,

X2l511k3F3l2~12c12c2!k4F2l ,

X3l5~12b12b2!k3F3l2k4F2l ,

X4l5~12c12c2!k4F1l2k3F4l . ~B6!

The expressions for the amplification and absorption
efficients and the refractive index for them– l and m–n
transitions are

a4

a04
5F1l

Dr 4

Dn4
2F2l

Dr 3

Dn4
,

a3

a03
5F3l

Dr 3

Dn3
2F4l

Dr 4

Dn3
,

~B7!

n4~V4!2n4
nr

2~n4 max
0 2n4

nr!
5 f 1l

Dr 4

Dn4
2 f 2l

Dr 1

Dn4
,

2
n3~V3!2n3

nr

2~n3 max
0 2n3

nr!
5 f 3l

Dr 1

Dn1
2 f 4l

Dr 4

Dn1
. ~B8!

B.2. Closed configuration

The initial system of equations is

Lnrn5wnr l22 Re~ iV3r3* !1g3rm ,

Lmrm5wmr l22 Re~ iV3* r31 iV4* r4!,

r l512rn2rm . ~B9!

As in the previous section, we can represent the stat
ary solution of the algebraic system of equations in the fo
~B6!, where

X1l5110.5F11Dn4S 11
g3

Gn
D Gk4F1l

2@12b21Dn4~122b2!#k3F4l ,

X2l511@11Dn3~122b2!#k3F3l

20.5F12
g3

Gn
1Dn3S 11

g3

Gn
D Gk4F2l ,

X3l5@12b21Dn4~122b2!#k3F3l

20.5F11Dn4S 11
g3

Gn
D Gk4F2l ,

X4l50.5F12
g3

Gn
1Dn3S 11

g3

Gn
D Gk4F1l

2@11Dn3~122b2!#k3F4l ,
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k45
4uG4u2

GmG4
,

nl5
1

11wn8/Gn1wm /Gm
, nn5

wn8/Gn

11wn8/Gn1wm /Gm
,

nm5
wm /Gm

11wn8/Gn1wm /Gm
, wn85wn1

g3

Gn
wm .

The saturated level populations can be expressed
terms of the solutions~B6! for the population differences
~Dr 35r n2r m andDr 45r l2r m)

r m5 1
3@12Dr 32Dr 4#, r n5 1

3@112Dr 32Dr 4#,

r l5
1
3@112Dr 42Dr 3#.

C. H-SCHEME „FIELDS E4 AND E2…

C.1. Open configuration

The initial equations for the density matrix are

Ll f r l f 5 i ~r lmVm f2Vlmrm f!5L42r425 i ~r4V22V4r2!,

L2r252 i @V2~r f2rm!1r42V4* #,

L4r452 i @V4~rm2r l !2r42V2* #,

Lmrm5qm22 Re~ iV4* r41 iV2r2* !1g2r f ,

L fr f522 Re~ iV2* r2!1qf ,

Llr l522 Re~ iV4r4* !1g4rm1ql . ~C1!

The stationary solutions of the algebraic system of eq
tions for the amplitudes of off-diagonal elements have
similar form:

r 45 i
G4

P4F
@Dr 4~11u2h!1g2hDr 2#,

r 4252
G4G2

P42P4P2F
@Dr 2P42Dr 4P2#,

r 25 i
G2

P2F
@Dr 2~11g1h!1Dr 4u1h#,

g1h5
uG2u2

P4P42
, g2h5

uG2u2

P2P42
,

u1h5
uG4u2

P4P42
, u2h5

uG4u2

P2P42
,

Pm f5P25G21 iV2 , Pl f 5P425G421 i ~V41V2!,

F511g1h1u2h , Dr 25r m2r f , V25v22v f m .
~C2!

The equations for the populations and population diff
ences can be written as follows:

r f5nf1~12d2!k2@Dr 4F4h1Dr 2F3h#,

r l5nl2Dr 4~k2d1F4h1k4b2F1h!

2Dr 2~k2d1F3h1k4b2F2h!, ~C3!
in

-
a

-

r m5nm1Dr 4@k4F1h~12b2!2k2F4hd2#

1Dr 2@k4F2h~12b2!2k2F3hd2#,

b25
Gm2g4

Gm1G l2g4
, d15d2

g4

G l
, d25

G f2g2

Gm1G f2g2
;

F1h1 i f 1h5
G4~11u2h!

P4F
, F2h1 i f 2h5

G4g2h

P4F
,

F3h1 i f 3h5
G2~11g1h!

P2F
, F4h1 i f 4h5

G2u1h

P2F
; ~C4!

k45
2uG4u2~G l1Gm2g4!

G lGmG4
,

k25
2uG2u2~G f1Gm2g2!

G fGmG2
; ~C5!

Dr 45
Dn4X2h1Dn2X3h

X1hX2h2X3hX4h
,

Dr 25
Dn2X1h1Dn4X4h

X1hX2h2X3hX4h
, ~C6!

HereDn45nl2nm , Dn25nm2nf , and

X1l512d2S 12
g4

G l
Dk2F4h1k4F1h ,

X2h511k2F3h2~12b2!k4F2h ,

X3h5d2S 12
g4

G l
Dk2F3h2k4F2h ,

X4h5~12b2!k4F1h2k2F4h .

The expressions for the amplification and absorption
efficients and the refractive index for them– l and f –m tran-
sitions are

a4

a04
5F1h

Dr 4

Dn4
1F2h

Dr 2

Dn4
,

a2

a02
5F3h

Dr 2

Dn2
1F4h

Dr 4

Dn2
, ~C7!

n4~V4!2n4
nr

2~n4 max
0 2n4

nr!
5 f 1h

Dr 4

Dn4
1 f 2h

Dr 2

Dn4
,

n2~V2!2n2
nr

2~n2 max
0 2n2

nr!
5 f 3h

Dr 2

Dn2
1 f 4h

Dr 4

Dn2
. ~C8!

C.2. Closed configuration

The equations for the populations are

Lmrm5wmr l22 Re~ iV4* r41 iV2r2* !1g2r f ,

L fr f5wfr l22 Re~ iV2* r2!, r l512rm2r f . ~C9!

Using the stationary solutions~C2! for the off-diagonal
elements, we find that the transition from~C6! for the open
configuration can be achieved via the substitutions

X1h5110.5@11Dn4#k4F1h
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2@d22Dn4~122d2!#k2F4h ,

X2h511@11Dn2~122d2!#k2F3h

20.5@12Dn2#k4F2h ,

X3h5@d22Dn4~122d2!#k2F3h20.5@11Dn4#k4F2h ,

X4h50.5@12Dn2#k4F1h2@11Dn2~122d2!#k2F4h ,

k45
4uG4u2

GmG4
.

Here the formulas for the initial level populations are

nl5
1

11wf /G f1wm8 /Gm
,

nf5
wf /G f

11wf /G f1wm8 /Gm
,

nm5
wm8 /Gm

11wf /G f1wm8 /Gm
, wm8 5wm1

g2

Gm
wf .

The saturated level populations can be expressed
terms of the population differences~Dr 25r m2r f and
Dr 45r l2r m! by using the equationr l512r f2r m :

r m5 1
3@11Dr 22Dr 4#, r f5

1
3@12Dr 422Dr 2#,

r l5
1
3@11Dr 212Dr 4#.
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Polarization fields in the positronium atom undergoing emission or absorption of
optical photons
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This paper solves the problem of the interaction of an electron and positron via the field of soft
and hard photons with emission or absorption of a real photon. The interaction is interpreted
as a third-order QED effect in the coordinate representation. The role of intermediate states with
positive and negative frequencies is studied. A general expression is derived for the matrix
elements of the operator of the effective electron–positron interaction energy for different types
of quantum transitions. The expression makes it possible to calculate the probabilities of
the corresponding transitions in the nonrelativistic approximation. Electric dipole transitions in
the positronium atom accompanied by emission~absorption! of an optical photon are
investigated. Two-particle wave functions of the positronium atom are used to introduce the
concept of polarization fields inside the positronium atom. It is found that the polarization fields
depend on the coordinates and time and on the choice of the pair of states between which a
quantum transition with emission or absorption of a photon takes place. ©1998 American
Institute of Physics.@S1063-7761~98!00602-7#
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1. INTRODUCTION

Polarization fields play an important role in shaping va
ous optical processes. For instance, in the classical optic
insulators such a polarization field is the electric dipo
field,1 which allows not only for an explaination of reflectio
and refraction of light but also makes it possible to derive
a rigorous manner the Lorenz–Lorentz formula for the
fractive index. As shown in Refs. 2 and 3, establishing
nature of polarization fields in insulators requires using
approach based on QED first- and second-order effects.
makes it possible to study various types of quantum tra
tion in the field of virtual and real photons and to allow f
the orbital and spin degrees of freedom of the atomic e
trons, the various types of intermediate states in the spec
of interacting atoms, and the retardation effect for atoms
cated at arbitrary distances from one another. A consider
achievement here is the development of a method for obt
ing new types of integral equations that describe the pro
gation of photons in a medium with allowance for differe
quantum-transition types~electric dipole, quadrupole, mag
netic dipole, spin, etc.! in the spectrum of atoms.4,5 Here
allowance is made for electron and positron polarizat
fields, which correspond to intermediate states of the ato
with positive and negative energies, respectively. An integ
field equation in the electric dipole approximation has be
used to study the laws of reflection and refraction of light
quantum6 and nonlinear4 optics, to build a theory of a non
linear refractive index,4 and to theoretically predict the nea
field effect with allowance for a discrete distribution of th
atoms near the the observation point.4,7. In contrast to Refs.
1–7, our paper studies the role of polarization fields inside
individual atom.

Drake8 examined the interaction of two atomic electro
2591063-7761/98/86(2)/11/$15.00
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in a helium-like atom as a QED third-order effect. It wa
found that with allowance for the orbital and spin degrees
freedom and intermediate states with positive and nega
energies, third-order effects lead only to relativistic corre
tions to the photon emission and absorption probability.

The present paper is devoted to the theory of quan
transitions between the levels of the positronium atom
duced by soft~optical or radio-frequency! photons. The need
for such a theory derives from the use of precision meth
of radio and optical spectroscopy in the physics of the po
tronium atom, research into the annihilation process
highly excited states,9–11 and the study of the possibility o
markedly changing the kinetic characteristics of the ann
lation process in the field of an optical laser.12. Obviously,
the interaction of the positronium atom and the photon fi
is largely determined by the coupling constants in the eff
tive Hamiltonian. Hence we pay special attention to the
constants by interpreting the optical transition between
levels of the positronium atom as a QED third-order effe
We find that these effects explain the one-photon proce
of emission and absorption in the positronium atom due
the Coulomb electron–positron interaction and induced
larization fields. We also find that calculations of the pro
ability ~per unit time! of spontaneous photon emission yie
the same result if we use the single-particle wave functi
of the positronium atom of Refs. 10 and 13 or the tw
particle wave functions derived in the present paper. In ot
words, thanks to the specific properties of the positroni
atom, third-order effects are most evident in such an atom
contrast to the case of helium-like atoms.8

As noted earlier, in this paper we use the two-parti
wave functions of the positronium atom. First, this makes
possible to study the various schemes of quantum transit
© 1998 American Institute of Physics
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FIG. 1. Feynman diagrams for the electron–positron int
action in the positronium atom with emission or absorpti
of a photon.
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accompanying the emission or absorption of an optical p
ton and to establish the role of real and virtual photons
such processes and the role of various intermediate st
Second, by employing two-particle wave functions we a
able to describe the radiative interaction of the positroni
atom in the field of annihilation and optical photons witho
resorting to perturbative techniques,12 i.e., solely on the basis
of fermion and boson operators.

Photon emission in electron–electron and electro
positron collisions was studied by Lifshitz,14, Fedushin,15

and Garibyan16 under the stringent condition that the inte
acting particles have well-defined momenta before and a
collision. This is true for the interaction of free particles, b
is of no use if we wish to study quantum transitions betwe
states of the positronium atom, where the constants of
tion are the square of the total angular momentum~orbital
and spin! and the projection of the total angular momentu
on the quantization axis. Furthermore, as we show in
paper, intermediate states with positive and negative
quencies play an important role in the electron–positron
teractions involving emission~absorption! of a photon. A
study of the role of intermediate states provides us with c
-
n
es.
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tain capabilities for exciting the Rydberg states of the po
tronium atom by using, for example, the 2P state as an in-
termediate state.9 In this paper, we therefore investigate th
entirely new problem of the interaction of the electron a
positron in a positronium atom undergoing emission~absorp-
tion! of a photon as a QED third-order effect. As note
above, the interaction of two atomic electrons belonging
two hydrogen-like atoms located at an arbitrary distan
from each other was examined in Refs. 2 and 3 in the con
of third-order effects. Here we use a similar approach
study the electron–positron interaction, but focus on imp
tant differences between our problem and the one discu
in Refs. 2 and 3, which involve, for example, the emergen
of a hard electron–positron interaction mode due to the
change of virtual gamma photons.

2. EFFECTIVE INTERACTION ENERGY OF A POSITRONIUM
ATOM AND THE PHOTON FIELD

In quantum transition theory one can introduce the eff
tive Hamiltonian of interacting electron–positron and ele
tromagnetic fields, which contains the term
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G~k!a2
†b2

†b1a1c1G* ~2k!a1
†b1

†b2a2c†, ~2.1!

where the subscripts 1 and 2 label the quantum states o
positronium atom,b1a1 is the annihilation operator for th
positronium atom in state 1,a2

†b2
† is the creation operator fo

the positronium atom in state 2, etc., andc and c† are the
annihilation and creation operators for a photon with wa
vector k. The interaction~2.1! is considered a QED third
order effect, with corresponding Feynman diagrams depic
in Fig. 1.

Separating the temporal factors from the wave functio
and integrating in theS-matrix Si→ f

(3) with respect to time,
frequencies, and wave vectors, we arrive at the follow
expression for the matrix of the effective interaction ene
(\5c51):

Ui→ f
~3! 5

e3

4p
a2

†b2
†b1a1E dr 8dr 9dr-

3H 2
1

ur 92r-u
(
l 6

exp~ i uv2
~2 !2v1

~2 !uur 92r-u!

v l~12 i0!1v2v2
~1 !

3C̄2
~1 !~r 8!Â~r 8!C l~r 8!C̄ l~r 9!gm9

3C1
~1 !~r 9!C̄1

~2 !~r-!gm9 C2
~2 !~r-!

2
1

ur 82r-u
(
l 6

exp~ i uv1
~2 !2v2

~2 !uur 82r-u!

v l~12 i0!2v2v1
~1 !

3C̄2
~1 !~r 8!gm8 C l~r 8!C̄ l~r 9!Â~r 9!

3C1
~1 !~r 9!C̄1

~2 !~r-!gm-C2
~2 !~r-!

2
1

ur 82r-u
(
l 6

exp~ i uv2
~1 !2v1

~1 !uur 82r-u!

v l~12 i0!1v2v1
~2 !

3C̄2
~1 !~r 8!gm8 C1

~1 !~r 8!C̄1
~2 !~r 9!Â~r 9!

3C l~r 9!C̄ l~r-!gm-C2
~2 !~r-!

2
1

ur 82r 9u
(
l 6

exp~ i uv2
~1 !2v1

~1 !uur 82r 9u!

v l~12 i0!2v2v2
~2 !

3C̄2
~1 !~r 8!gm8 C1

~1 !~r 8!C̄1
~2 !~r 9!gm9

3C l~r 9!C̄ l~r-!Â~r-!C2
~2 !~r-!

1
1

ur 92r-u
(
l 6

exp~ i uv2
~2 !2v1

~1 !uur 92r-u!

v l~12 i0!1v2v2
~2 !

3C̄2
~2 !~r 8!Â~r 8!C l~r 8!C̄ l~r 9!gm9

3C1
~1 !~r 9!C̄1

~1 !~r-!gm-C2
~2 !~r-!

1
1

ur 82r-u
(
l 6

exp~ i uv2
~2 !2v1

~1 !uur 82r-u!

v l~12 i0!2v2v1
~1 !

3C̄2
~2 !~r 8!gm8 C l~r 8!C̄ l~r 9!Â~r 9!
he

e

d

s

g
y

C1
~1 !~r 9!C̄1

~1 !~r-!gm-C2
~2 !~r-!

1
1

ur 82r-u
(
l 6

exp~ i uv2
~2 !2v1

~1 !uur 82r-u!

v l~12 i0!1v2v1
~1 !

3C̄2
~2 !~r 8!gm8 C1

~1 !~r 8!C̄1
~1 !~r 9!Â~r 9!

3C l
~1 !~r 9!C̄ l~r-!gm-C2

~2 !~r-!

1
1

ur 82r 9u
(
l 6

exp~ i uv2
~2 !2v1

~1 !uur 82r 9u!

v l~12 i0!2v2v2
~2 !

3C̄2
~2 !~r 8!gm8 C1

~1 !~r 8!C̄1
~1 !~r 9!gm9

3C l
~1 !~r 9!C̄ l~r-!Â~r-!C2

~2 !~r-!J , ~2.2!

whereC1(2)
(6) (r ) are the solutions of the Dirac equation for a

electron with positive and negative frequencies in the po
tronium atom, which may be in quantum states 1 and

C̄1(2)
(6) 5C1(2)

(6)* g4, C1(2)
(6)* is the conjugate wave function

g45b, g j52 iba j ( j 51,2,3),

a5S 0 s

s 0 D , b5S 1 0

0 21D ,

ands are the Pauli matrices. The primes on the radius v
tors r and theg matrices correspond to different wave fun
tions of the interacting particles. Here theg matrices with
different numbers of primes commute. Summation in~2.2! is
over all intermediate states with positive and negative f
quencies. Electron states with negative frequencies are in
preted as positron states, and we do not introduce the p
tron wave function, which contains the charge conjugat
transformation. The reason is that a linear combination
states with opposite signs of charge cannot be a genera
lution of the Dirac equation.13 In this paper we use the solu
tion

C5(
r

arC r
~1 !1(

r
br

†C r
~2 ! ,

~2.2a!

C̄5(
r

ar
†C̄ r

~1 !1(
r

brC̄ r
~2 ! .

We transform fromSi→ j
(3) to the matrix of the effective

interaction energy in~2.2! according to the following equal
ity:

Si→ j
~3! 522p iU i→ j

~3! d~2vm
~1 !2v1v r

~1 !1vn
~2 !2vp

~2 !!,
~2.3!

wherevm
(1) , v r

(1) , vn
(2) , andvp

(2) are the frequencies of th
interacting electron and positron in the positronium ato
Here, by fixing the states of the positronium atom 1 and
we haver 52, p51, m51, andn52 for diagrams 1–4 and
the corresponding terms in~2.2!. For diagrams 5–8 we hav
r 51, p52, m51, andn52. The sign of the frequencyv of
the optical photon in the conservation law~2.3! indicates that
in the vector potential operatorÂ5(gmAm we have speci-
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fied the negative-frequency part, which is proportional to
annihilation operator for a photon of this mode.

Integration in the matrixSi→ j
(3) with respect to time, fre-

quencies, and wave vectors makes it possible to find
frequencies of the virtual photons, which are carriers of
electron–positron interaction. Here, diagrams 1–4 in Fig
correspond to electron–positron interaction via soft virt
photons, whose energy is much less than twice the elec
rest mass. We call this mode of electron–positron interac
soft. Diagrams 5–8 correspond to the hard mode of electro
positron interaction, with the virtual photons having an e
ergy comparable to twice the electron rest mass. Moreo
the presence in~2.2! of factors containing frequency differ
ences in their denominators suggests that the electr
positron interaction is resonant, in which case diagrams
of the soft interaction mode and the diagrams 5–8 of the h
interaction mode correspond to processes that involve in
mediate states with both positive (l 1) and negative (l 2) fre-
quencies. The terms that provide the greatest contributio
~2.2! are those whose denominators contain frequency dif
ences much less than twice the electron rest mass.

2.1. Generalized Breit operator

The Breit operator corresponds to QED second-or
effects,13 and was derived for the interaction of two fre
electrons and for the atomic electrons in helium-like atom
Pirenne17 and Berestetski� and Landau18 generalized this op-
erator to the electron–positron interaction with allowance
the charge conjugation transformation and the exchange
teraction between the electron and positron. In Refs. 2
and 19, the Breit operator was also generalized to the cas
two atomic electrons belonging to two hydrogen-like ato
an arbitrary distance from each other. The electron–posi
interaction considered in the present paper contains the
change of virtual photons as an integral part of a more co
plicated interaction, with Feynman diagrams depicted in F
1. We now show how allowing for this exchange in QE
third-order effects for the electron–positron interaction lea
to a generalization of the Breit operator, where in addition
retardation effects we must properly allow for the role
intermediate states and the nonrelativistic motion of the
teracting particles in the positronium atom.

Let us examine the first term in the matrix~2.2! of the
effective interaction energy and expand the retardation fa
in this term to order 1/c2. Assuming thatcÞ1, we obtain

exp~~ i /c!uv2
~2 !2v1

~2 !uur 92r-u!

ur 92r-u

5
1

ur 92r-u
1 i

uv2
~2 !2v1

~2 !u
c

2
~v2

~2 !2v1
~2 !!2

2c2
ur 92r-u.

~2.4!

Substituting~2.4! into the first term in~2.2!, we find that
the second term on the right-hand side of Eq.~2.4! contrib-
utes nothing to the first term in~2.2!, since the wave func-
tionsC l ,C1

(1) andC1
(2) ,C2

(2) are orthogonal. Furthermore
sinceg49gm9 g4-gm-512a9a- and the matrix elements of th
operatorsa9 anda- are equal in order of magnitude tov/c
e

e
e
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(v is the particle velocity!, in terms containinga9a- we can
keep just the first term on the right-hand side of Eq.~2.4!.

We remove the frequencies from the expression for
matrix element by employing the Dirac equation:

H9C1
~1 !~r 9!5v1

~1 !C1
~1 !~r 9!,

H95ca9p91g49mc22
e2

2ur 92r-u
,

~2.5!

H-C2
~2 !~r-!5v2

~2 !C2
~2 !~r-!,

H-5ca-p-1g4-mc22
e2

2ur 92r-u
,

wherem is the electron mass, andp9 andp- are the momen-
tum operators acting on the position vectorsr 9 and r-, re-
spectively. Now we write the obvious relationship

2~v2
~2 !2v1

~2 !!2ur 92r-u

5
v2

~2 !2v1
~2 !

v l2v1
~1 !

@H9,@H-,ur 92r-u##. ~2.6!

Calculating the commutators, we find that the contribution
the third term on the right-hand side of Eq.~2.4! is deter-
mined by the operator

2
~v2

~2 !2v1
~2 !!2

2c2
ur 92r-u→

~a9a-!2~a9n23!~a-n23!

2ur 92r-u

3
v2

~2 !2v1
~2 !

v l2v1
~1 !

, ~2.7!

where n235(r 92r-)/ur 92r-u. Thus, the electron–positro
interaction corresponding to diagram 1 in Fig. 1 is given
the generalized Breit operator

B1l~r 9,r-!5
e2

4p

1

ur 92r-u

1
e2

4p

~a9a-!2~a9n23!~a-n23!

2ur 92r-u
f l1

2
e2

4p

~a9a-!

ur 92r-u
, ~2.8!

where f l15(v2
(2)2v1

(2))/(v l 1
2v1

(1)). At f l151 the op-
erator~2.8! is the relativistic Breit operator.13 The condition
f l151 means that the transition of the system of two p
ticles into an intermediate state must obey particle ene
conservation, i.e.,v2

(2)2v1
(2)5v l2v1

(1) .
Similarly, we can examine the exchange of virtual ph

tons in the second, third, and fourth terms of the matrix~2.2!,
with diagrams 2, 3, and 4, respectively. Performing the n
essary calculations, we obtain the operatorsB2l(r 8,r-),
B3l(r 8,r-), and B4l(r 8,r 9), which are similar to~2.8! but
with f l1 replaced by the following coefficients:
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f l25
v2

~2 !2v1
~2 !

v2
~1 !2v l 1

, f l35
v1

~1 !2v2
~1 !

v l 2
2v2

~2 !
,

f l45
v1

~1 !2v2
~1 !

v1
~2 !2v l 2

. ~2.9!

Thus, the contribution of the various diagrams 1–4 to
electron–positron interaction depends heavily on the type
positive- or negative-frequency intermediate state.

We now examine diagrams 5–8, which differ from 1–
in that r is replaced byp andp by r . The retardation factor
in the corresponding terms of the matrix~2.2! has a large
coefficient 2mc in the exponential and hence oscillates w
a wavelength 1/2mc (1/2mc is the electron Compton wave
length!. Allowing for the important role of intermediate
states in the electron–positron interaction, noted earlie
connection with diagrams 1–4, we employ the fact that
most important domain of integration for diagrams 5–8
ur 92r-u;1/mc. Since according to our assumption that t
electron and positron velocities in the positronium atom
small, the electron and positron wave functions change l
in this region, in~2.2! we can separate out integration wi
respect tor5r 92r-, putting r 95r- in the arguments of the
wave functions. Then the fifth term in~2.2! takes the form

e3

4p
a2

†b2
†a1b1E dr 8dr 9dr-

exp~2imcr!

2

3(
l 6

1

v l~12 i0!1v2v2
~2 !

C̄2
~2 !~r 8!Â~r 8!C l~r 8!

3$C l* ~r 9!C1
~1 !* ~r 9!C1

~1 !~r 9!C2
~2 !~r 9!

2~C l* ~r 9!a9C1
~1 !~r 9!!~C1

~1 !* ~r 9!a-C2
~2 !~r 9!!%.

~2.10!

The improper integral overr is equal to2p/(mc)2. Thus,
the electron–positron interaction corresponding to the h
interaction mode of Feynman diagram 5 is determined by
operator13

B5l~r 9,r-!52
e2

4p

p

m2c2
~12a9a-!d~r 92r-!. ~2.11!

The same operator can be separated out of the o
terms of the matrix~2.2! that correspond to the hard mode
the electron–positron interaction. The dependence of the
erator~2.11! on the dummy indices is only meaningful whe
~2.11! is substituted into the appropriate matrix element
~2.2!.

2.2. Allowance for other intermediate states

In the generalized Breit operatorsBsl (s51,2,3,4) and in
the operatorsB5l , we allowed only for intermediate state
that correspond to the maximum values of the resonant
tors, which contain differences of various frequencies.
now take into account the remaining intermediate states,
which the resonant factors become equal to61/2mc2. Then
for the soft mode of the electron–positron interaction,
e
of

in
e

e
le

rd
e

er

p-

f

c-
e
or

e

can associate with the effective interaction energy matrix
effective interaction energy operator that allows for emiss
~absorption! of a real photon. This operator has the form

Usoft
~3!52

e3

8pmc2 H 2g48gd8 Ad~r 8!
1

ur 92r-u

1g4-gd-Ad~r-!
1

ur 82r 9u
J , ~2.12!

where we have left only the Coulomb term in the generaliz
Breit operators, since the coefficientsf l1, f l2, f l3, and f l4

contain a factor 1/c2.

3. TRANSITION TO TWO-COMPONENT ELECTRON AND
POSITRON WAVE FUNCTIONS

When the particle velocities are low (v!c), we can go
from four-component wave functionsCn

(6) to approximate
two-component wave functionsFn

(6) .13 This transition is ac-
curate to order 1/c2. We write the functionsCn

(6) in the
following way:

Cn
~1 !5S wn

~1 !

s–p

2mc
wn

~1 !D , wn
~1 !5S 12

p2

8m2c2D Fn
~1 ! ,

Cn
~2 !5S 2

s•p

2mc
xn

~2 !

xn
~2 !

D , xn
~2 !5S 12

p2

8m2c2D Fn
~2 ! ,

~3.1!

where the operatorss and p act on the variables on which
the wave functionsFn

(6) depend. Henceforth we use labels
2, and 3 for the corresponding operators instead of prim

Using ~3.1!, we transform the matrix element^C̄2
(1)

3(r 8)Â(r 8)C l
(1)(r 8)& in the first term on the right-hand sid

of Eq. ~2.2!, whereupon we obtain, to order 1/c3,

^C̄2
~1 !ÂC l

~1 !&5^F2
~1 !~r 8!uUNR

~1!uF l
~1 !~r 8!&,

~3.2!

UNR
~1!5

1

mc
~p1–A1!1

\

2mc
~s1–H1!

1
1

16m3c3
$2~A1–p1!p1

212p1
2~A1–p1!

1\~s1–H1!p1
21\p1

2~s1–H1!%,

where we have allowed for the fact that¹1–A150, and
H15¹13A1 is the magnetic field strength at the pointr 8.
Hereafter, we use the conventional Gaussian system of u
and introduce the constant\.

Similarly, using~3.1! we can transform̂C2
(2)ÂC l

(2)&.
After performing the necessary transition, we find the sa
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nonrelativistic operator as in~3.2!, which transforms the
wave functionF l

(2) into the functionF2
(2) .

We now transform̂C l 1
* (r 9)C1

(2)* (r-)uB1l uC1
(1)

3(r 9)C2
(2)(r-)&, the matrix element in the first term on th

right-hand side of Eq.~2.2!, to order 1/c2. Here the Coulomb
term in the operator~2.8! is transformed using the wav
functions wn

(6) and xn
(6) , which contain the operato

12p2/8m2c2. To transform the retarded terms in~2.8!, we
simply replacewn

(1) andxn
(2) by Fn

(1) andFn
(2) .

Omitting the uninteresting computational details, we
rive at the following nonrelativistic operator, which tran
forms the wave functionF1

(1)(r 9)F2
(2)(r-) of a pair of par-

ticles into the wave functionF l
(1)(r 9)F1

(2)(r-):

B1l~r 9,r-!5
e2

4p

1

ur 92r-u

2
e2

4p

1

4m2c2 S 1

2
f f l21D 4

ur 92r-u
~p2–p3!

1
1

2
f l1

1

4m2c2

e2

4p

4

ur 92r-u
n23–~n23–p3!p2

1
e2

4p

\

4m2c2

1

ur 92r-u2

3H s3•~n233p3!2s2•~n233p2!

14s3•~n233p1!S 1

2
f l121D

22s2•~n233p3!S 1

2
f l121D

1 f l1s2•~n233p3!J
1

e2

4p

1

2m2c2

\2

ur 92r-u3
S 1

2
f l121D

3$~s2–s3!23~s2–n23!~s3–n23!%

1p
e2

4p

\2

m2c2
d~r 92r-!

2
e2

4p

\2

2m2c2 S 1

2
f l121D

3
8p

3
~s2–s3!d~r 92r-!, ~3.3!

wheren235(r 92r-)/ur 92r-u. Since the operator~3.3! con-
tains higher orders of 1/ur 92r-u, we must remove the singu
larity by isolating the originr 95r-. The integral over the
surface surrounding the origin remains finite asr 9→r-. At
-

f l151, the operator~3.3! becomes the Breit operator for a
electron and positron.

The transformations of the second, third, and fou
terms in~2.2! for the soft electron–positron interaction mod
yield the same nonrelativistic operator as in~3.3!, with the
labels on the operators of momentum, spin, and radius ve
replaced appropriately.

3.1. Hard mode of the electron–positron interaction

Employing the wave functions~3.1!, we transform

^C̄ l
(2)(r 9)C̄1

(1)(r-)uB5l uC1
(1)(r 9)C2

(2)(r-)&, the matrix el-
ement in the fifth term on the right-hand side of Eq.~2.2!.

Allowing for the fact that the operator~2.11! already
contains the factor 1/c2, we can drop the operato
O512p2/8m2c2 in the wave functions~3.1!. Multiplying
the wave functions in the desired matrix element, we fi
that the matrix element of the first term in the operator~2.11!
is a quantity of order 1/c4, i.e., it lies beyond the approxima
tion scheme adopted here. The matrix element of the sec
term in ~2.11! yields the operator

B5l~r 9,r-!5
p

2

e2

4p

1

m2c2
~31s2•s3!d~r 92r-!, ~3.4!

which coincides with the exchange interaction operator
an electron and positron.13

The expression~2.10! also contains a sum over the in
termediate statesl 1 of electrons with positive energies. Th
means that we must calculate matrix elements of the t

^C̄ l
(1)(r 9)C̄1

(1)(r-)uB5l uC1
(1)(r 9)C2

(2)(r-)&. Here, how-
ever, the denominator of the resonant factor is a quantity
order 2mc2, so that matrix elements of this type can be d
carded.

We now examine the sixth term in~2.2!. To this end, we
use the wave functions~3.1! to transform the matrix elemen

^C̄2
(2)(r 8)C̄1

(1)(r-)uB6l uC l
(1)(r 8)C2

(2)(r-)&. We can easily
show that the operatorB6l coincides with~3.4! if the labels
are replaced accordingly.

3.2. Operator for the effective interaction energy of an
electron and positron with a field of virtual and real photons

We substitute the operators~3.4!, ~3.3!, andUNR
(1) into the

matrix ~2.2!. Then in~2.2! we separate out terms with inte
mediate statesv l containing denominators in the resona
factors that are much smaller than 2m2c2. We denote this
part of ~2.2! by Ui→ f

(3) ( l
l 1) . We then find that

2
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Ui→ f
~1 ! S l 1

l 2
D 5

1

\
a2

†b2
†b1a1H 2(

l 1

^F2
~1 !uUNR

~1!~r 8!uF l
~1 !&^F l

~1 !F1
~2 !uB1l~r 9,r-!uF1

~1 !F2
~2 !&

v l~12 i0!1v2v2
~1 !

2(
l 1

^F2
~1 !F1

~2 !uB2l~r 8,r-!uF l
~1 !F2

~2 !&^F l
~1 !uUNR

~1!~r 9!uF1
~1 !&

v l~12 i0!2v2v1
~1 !

2(
l 2

^F1
~2 !uUNR

~1!~r 9!uF l
~2 !&^F2

~1 !F l
~2 !uB3l~r 8,r-!uF1

~1 !F2
~2 !&

v l~12 i0!1v2v1
~2 !

2(
l 2

^F2
~1 !F1

~2 !uB4l~r 8,r 9!uF1
~1 !F l

~2 !&^F l
~2 !uUNR

~1!~r-!uF2
~2 !&

v l~12 i0!2v2v2
~2 !

1(
l 2

^F2
~2 !uUNR

~1!~r 8!uF l
~2 !&^F l

~2 !F1
~1 !uB5l~r 9,r-!uF1

~1 !F2
~2 !&

v l~12 i0!1v2v2
~2 !

1(
l 1

^F2
~2 !F1

~1 !uB6l~r 8,r-!uF l
~1 !F2

~2 !&^F l
~1 !uUNR

~1!~r 9!uF1
~1 !&

v l~12 i0!2v2v1
~1 !

1(
l 1

^F1
~1 !uUNR

~1!~r 9!uF l
~1 !&^F2

~2 !F l
~1 !uB7l~r 8,r-!uF1

~1 !F2
~2 !&

v l~12 i0!1v2v1
~1 !

1(
l 2

^F2
~2 !F1

~1 !uB8l~r 8,r 9!uF1
~1 !F l

~2 !&^F l
~2 !uUNR

~1!~r-!uF2
~2 !&

v l~12 i0!2v2v2
~2 ! J . ~3.5!
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Likewise, in ~2.2! we separate out terms with intermed
ate terms corresponding to denominators in the resonant
tors of order 2mc2. This part of the matrix~2.2! can be
denoted byUi→ f

(3) ( l 1

l 2) and written explicitly using the opera

tor Usoft
(3) ~Eq. ~2.12!!.

Let Fpr
ab(r 8,r 9)5Fp

a(r 8)F r
b(r 9) be the wave function

of the electron–positron system, a simple product of wa
functions of the individual particles in statesp,r 51,2
(a,b51,2). Then the matrix~3.5! can be written as a sum
of terms like

^Fpr
abuUNR

~1!unFnm
ab&1^nFpr

abuUNR
~1!uFnm

ab&, ~3.6!

where nFnm
ab and nFpr

ab are the corrections to the unpe
turbed functionsFnm

ab andFpr
ab . We next allow for the fact

that matrix elements likê nFpr
abuUNR

(1)unFpr
ab& are much

smaller than the matrix elements~3.6!. Instead of the matrix
elements~3.6!, we then have

^Fpr
ab1nFpr

abuUNR
~1!uFnm

ab1nFnm
ab&, ~3.7!

where formally in addition to third-order effects we ha
included first-order effects of typêFpr

abuUNR
(1)uFpr

ab&.
Actually, the introduction of the matrix elements~3.7!

can be interpreted in the following way. The emission~ab-
sorption! of a real photon by a system consisting of an el
tron and positron interacting via the virtual photon field c
be described as a first-order effect if the electron and posi
are assumed to comprise a single dynamical system.
means that instead of the wave functionsFpr

ab we can intro-
duce the wave functions of the positronium atom. Depend
on the choice of terms in the operatorsBsl , we can then
c-

e

-

n
is

g

allow for both orbital and spin degrees of freedom of t
electron and positron. Furthermore, depending on the ch
of the terms in the operatorUNR

(1) , we can examine the dif-
ferent types of quantum transitions in the positronium ato

In the problem examined in Refs. 3 and 4 — the inter-
action of two electrons belonging to two hydrogen-like a
oms located at an arbitrary distance from each other —
trix elements of type~3.7! were also separated out in order
introduce the concept of polarization fields. It was found th
first-order effects lead to a change in the quantum state
one of the electrons, which is equivalent to taking into a
count the external field at the point where this electron
located. Third-order effects, which do not induce quant
transitions in the spectrum of the other electron, produce
polarization field~electron or positron, depending on the typ
of intermediate state! due to the exchange of virtual photon
Thus, the polarization field in the problem examined in Re
3 and 4 is not a field of real photons, and can be conside
a correction to the external field acting on the individu
electrons.

The explicit form of the polarization fields in that prob
lem depends on the type of quantum transitions~electric di-
pole, magnetic, etc.! in the spectrum of the interacting elec
trons, and corresponds to one-electron transitions. T
electron transitions, accompanied by the emission
absorption of a real photon with twice the energy, was
amined in Ref. 20. Energy conservation makes it imposs
for a single atomic electron to emit or absorb a photon
twice the original energy, so first-order effects are forbidd
in matrix elements of type~3.7! and the process is two
particle, i.e., it can be described as a third-order QED effe
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The electron–positron system in the positronium atom is
similar situation. The emission and absorption of a real p
ton is two-particle, and can be considered a third-order ef
with matrix ~3.5!.

On the other hand, in the nonrelativistic theory of qua
tum transitions, single-particle wave functions of the posit
nium atom can be used if we choose a reference frame
origin at the atom’s center of gravity and introduce relat
coordinates and momenta. The fine structure of the pos
nium atom can be described using appropriate electr
positron interaction operators by transforming to total s
and angular momentum operators.13 Quantum transitions in
such a system can be described as first-order perturba
effects.10 This way of describing quantum transitions in th
spectrum of the positronium atom can considered equiva
to the approach that uses the matrix~3.5! with two-particle
wave functions of the positronium atom if, for example, w
are only interested in calculating the probability of quantu
transitions between two states of the positronium atom.

The situation changes dramatically if we need a deta
description of the kinetics of quantum transitions, as for
ample in the problem discussed in Ref. 12, which studies
annihilation decay of the positronium atom from two sta
between which spontaneous and stimulated optical tra
tions may occur. To describe such a process we invoke
appropriate commutation relations for fermion and boson
erators and an idea about the two-particle wave function
the positronium atom. Using single-particle wave functio
would require the introduction of Pauli commutation re
tions. Such a change in statistics masks the physical ess
of the process. Thus, the introduction of two-particle wa
functions of positronium~and hence the concept of polariz
tion fields! is productive in describing the self-consistent i
teraction of the positronium atom and the field of intern
and external photons, in describing the gradual formation
the photon field inside the atom, etc. The explicit form of t
polarization field acting on the electron or positron in t
positronium atom can then be determined from the ma
~3.5! after the appropriate terms of the operatorUNR

(1) ~Eq.
~3.2!! have been substituted into the matrix.

4. ELECTRIC DIPOLE TRANSITIONS IN THE POSITRONIUM
ATOM

We now examine electric dipole transitions betwe
states 1 and 2 of the positronium atom~for example, 1S and
2P) under the following conditions:

~1! The intermediate statesl 6 are chosen in such a wa
that the energy difference\(v l6v7vk

6) in ~2.2! is much
less than 2mc2 (k51,2).

~2! In the operatorsBsl we only leave terms that do no
contain the speed of light, i.e., nonrelativistic terms.
shown above, such terms only appear in the soft mode
electron–positron interaction. Under such conditions
electric dipole transitions have the highest effective inter
tion energy, and hence the highest probability per unit ti
of a quantum transition involving the emission~absorption!
of an optical photon.
a
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Electric dipole transitions in a positronium atom are go
erned by the nonvanishing quantity

G~k!52
e

mc
A2p\c2

VRv
eik–a

e2

4p\E dr 8dr 9dr-

3(
l 6

H 21

v l~12 i0!1v2v2
~1 !

3F2
~1 !* ~r 8!~p1–e!F l

~1 !~r 8!F l
~1 !* ~r 9!

3F1
~2 !* ~r-!

1

ur 92r-u
F1

~1 !~r 9!F2
~2 !~r-!

2
1

v l~12 i0!2v2v1
~1 !

F2
~1 !* ~r 8!F1

~2 !* ~r-!

3
1

ur 82r-u
F l

~1 !~r 8!F2
~2 !~r-!F l

~1 !* ~r 9!~p2–e!F1
~1 !

3~r 9!2
1

v l~12 i0!1v2v1
~2 !

F1
~2 !* ~r 9!

3~p2–e!F l
~2 !~r 9!F2

~1 !* ~r 8!F l
~2 !* ~r-!

3
1

ur 82r-u
F1

~1 !~r 8!F2
~2 !~r-!

2
1

v l~12 i0!2v2v2
~2 !

F2
~1 !* ~r 8!F1

~2 !* ~r 9!

3
1

ur 82r 9u
F1

~1 !~r 8!F l
~2 !~r 9!

3F l
~2 !* ~r-!~p3–e!F2

~2 !~r-!J , ~4.1!

whereVR is the electromagnetic field quantization volume,k
is the wave vector of an optical photon,a is the radius vector
of the positronium atom, ande is the polarization unit vector
of the optical photon.

To calculateG(k) and the emission or absorption pro
ability per unit time of a photon of frequencyv, we must
know the electron and positron wave functions and the c
responding particle energy values in the positronium ato

4.1. Electron and positron stationary states in the
positronium atom

The operators~3.3! and~3.4! can be applied to the prob
lem of positronium as a bound electron–positron syste
The nonrelativistic terms in these operators then define
unperturbed Hamiltonian operator, while the relativis
terms determine the fine structure of the positronium at
~to order 1/c2). The unperturbed problem reduces to t
hydrogen-atom problem of nonrelativistic quantum mech
ics in the positronium center-of-mass system. The unp
turbed Schro¨dinger equation will then coincide with the elec
tron equation of motion in the hydrogen atom if the electr
mass is replaced by the reduced massm/2. The energies of
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FIG. 2. Quantum transitions in the positronium
atom involving absorption of a real photon.
in
it

nd
s

um
i

he
i-

ti

e

nd

b

is
m.

om

m

ers
s

an-
ron
ers

s a
si-
an

ms
the positronium atom are therefore half the correspond
energies of the hydrogen atom, while the radii of the orb
are twice as large.13

In contrast to the traditional approach of Ref. 13, we fi
the wave functions of the electron and positron in the po
tronium atom separately, as well as the set of quantum n
bers of these particles. We write the unperturbed Ham
tonian operator of the positronium atom in the form

H5H011H02,

H015
1

2m
p1

22
e2

2ur12r2u
, H025

1

2m
p2

22
e2

2ur12r2u
,

~4.2!

wherer1 andp1 are the radius vector and momentum for t
electron, andr2 andp2 are the same quantities for the pos
tron.

To calculate the commutator@H01,H02#, we must use
the commutators

Fp1
2 ,

1

ur12r2uG52i\
n12–p1

ur12r2u2
,

Fp2
2 ,

1

ur12r2uG522i\
n12–p2

ur12r2u2
, ~4.3!

wheren125(r12r2)/ur12r2u. Allowing for the fact thatp1

52p2, in the positronium atom, we find that@H01,H02#50.
This means that we can introduce the constants of the mo
l 1
2, l 1z , andH01 for the electron, andl 2

2, l 2z , andH02 for the
positron, with the corresponding set of quantum numb
l 1 , m1z , n1 andl 2 , m2z , n2. Following Ref. 21, for particle
motion in a central field, we find the wave functions a
energies of the electron:

Fn1l 1m1

~1 ! 5Rn1l 1
~r !Yl 1m1

~Q,w!, En1
52

1

2n1
2

me4

4\2
,

~4.4!

wheren1> l 111 is the principal quantum number,l 1 is the
orbital quantum number, andm1 is the magnetic quantum
number of the electron. The radial wave functions can
defined in terms of Laguerre polynomials,21 and show that
g
s

i-
-

l-

on

rs

e

the radii of the electron orbits in the positronium atom
twice the radii of the electron orbits in the hydrogen ato
The electron energy valuesEn1

are one fourth the values in
the hydrogen atom. For the positron in the positronium at
we obtain similar results.

According to Ref. 13, the energy of the positroniu
atom is

En52
1

4

me4

n2\2
, ~4.5!

wheren is the principal quantum number. Comparing~4.5!
and ~4.4!, we find thatn15n251 when n51, n15n252
whenn52, etc. The orbital and magnetic quantum numb
of the positronium atom,L andM , can be expressed in term
of the quantum numbersl 1 , m1 and l 2 , m2 if we examine
the problem of adding the angular momental1 and l2 of the
electron and positron.21 Here we haveM5m11m2 and

L5 l 11 l 2 ,l 11 l 221, . . . ,u l 12 l 2u. ~4.6!

This means that in the positronium atom, the principal qu
tum numbers of positronium, the electron, and the posit
coincide, while the orbital and magnetic quantum numb
may be different. Thus, in the 1S state of the positronium
atom we have

n5n15n251, m15m250, L50, l 15 l 250.

In the 2P state we have

n15n25n52, L51,

l 150, l 251, m150, m250,61

or

l 151, l 250, m250, m150,61.

The wave functions of positronium can be expressed a
linear combination of simple products of electron and po
tron wave functions with appropriate Clebsch–Gord
coefficients.20

4.2. Polarization fields in the positronium atom

Figure 2 depicts the various quantum transition diagra
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corresponding to each term in~4.1!. Let us examine the firs
diagram for the absorption of an optical photon. Accordi
to the expansion of the general solution~2.2a! of the Dirac
equation, for this diagram we have the initial state of t
electron and positron with the wave functionF1

(1)

3(r 9)F1
(2)* (r-) and the energies 2E1, with E1 specified in

~4.1!. As a result of the electron–positron interaction via t
field of virtual photons, the electron finds itself in the inte
mediate statel 1 with positive energy, and the positron i
state 2. Then a real photon is absorbed and the electron
from statel 1 to state 2. The second diagram representing
absorption of an optical photon, Fig. 2b, differs from t
first. Indeed, first there is a transition of the electron fro
state 1 to statel 1 initiated by a real photon of frequencyv.
Then, as a result of the electron–positron interaction via
field of virtual photons, the electron and positron go in
state 2. The diagrams in Figs. 2c and d are similar to the
two, but the transitions involve intermediate states w
negative energy\v l 2

.
Using the expression~4.1!, we can write explicit equa-

tions for the vector potentials of the fields at points in spa
where the electron and positron are located, with the rad
vectorsr1 andr2. Here we allow for the multimode nature o
particle interaction and introduce the polarization vect
ekl , the frequenciesvk , and the wave vectorsk of the vari-
ous photons participating in the induction of polarizati
fields (l51,2 are the photon polarization indices!. To this
end, we write the interaction of the electron and the po
ization field Ae(r1 ,t) in terms of the operato
UNR1

(1) 52(e/mc)p1–Ae , where

Ae~r1 ,t !5(
kl
A2p\c2

VRvk
e2 ivkteklcklleikr 1

3
1

^F2
~1 !up1–ekluF1

~1 !&

3(
l 1

H 21

\@v l~12 i0!1vk2v2
~1 !#

3^F2
~1 !up1–ekluF l

~1 !&

3K F l
~1 !F l

~2 !U e2

4pur 92r-u
UF1

~1 !F2
~2 !L

2
1

\@v l~12 i0!2vk2v1
~1 !#

3K F2
~1 !F1

~2 !U e2

4pur 82r-u
UF l

~1 !F2
~2 !L

3^F l
~1 !up2–ekluF1

~1 !&J . ~4.1a!

Following the same line of reasoning, we can write t
vector potentialAp(r2 ,t) of the polarization field acting on
the positron in the positronium atom by using the opera
UNR2

(1) 52(e/mc)p2–Ap , where
e

es
e

e

st

e
s

s

r-

r

Ap~r2 ,t !5(
kl
A2p\c2

VRvk
e2 ivkteklcklleikr 2

3
1

^F2
~2 !up2–ekluF1

~2 !&

3(
l 1

H 21

\@v l~12 i0!1vk2v1
~2 !#

3^F1
~2 !up2–ekluF l

~2 !&

3K F2
~1 !F l

~2 !U e2

4pur 82r-u
UF1

~1 !F2
~2 !L

2
1

\@v l~12 i0!2vk2v1
~2 !#

3K F2
~1 !F1

~2 !U e2

4pur 82r 9u
UF1

~1 !F l
~2 !L

3^F l
~2 !up2–ekluF2

~2 !&J . ~4.1b!

Obviously, polarization fields also emerge when optic
photons are emitted. In this case we must replacevk in
~4.1a! and~4.1b! by 2vk , k by 2k, and the operatorckl by
the creation operatorckl

† for a photon of modekl, and also
interchange the electron and positron states, 1↔2.

Equations~4.1a! and~4.1b! make it possible to study the
spatial–temporal behavior of the fields in the positro
ium atom, having chosen the states 1 and 2 of the elec
and positron, including Rydberg states. The number of p
ton modes participating in field formation is determined
the energy conservation law~2.3!. It must be noted, however
that in the early stages of field formation the conservat
law is not specified by a delta function, so that the numbe
photon modes can be large. A detailed analysis of the fie
~4.1a! and ~4.1b! as functions of coordinates and time r
quires further investigation.

4.3 Probability of spontaneous photon emission per unit
time

We now apply Eq.~4.1! to the spontaneous emission
a single real photon. We first replacev with 2v in ~4.1! and
permute the indices: 1�2. In accordance with the conserva
tion law ~2.3!, for the 2P→1S transition we have

\v5
3

16

me4

\2
. ~4.7!

The wavelengthl corresponding to this transition is 2465Å
According to Ref. 9, the lifetimet of the 2P state of posi-
tronium is 3.231029 s. Indeed, this result can easily be o
tained if we use single-particle wave functions of the po
tronium atom10 and the energy values~4.5! to calculatet.
Accordingly, the probability of spontaneous photon emiss
per unit time for this transition isW5t2150.3125
3109 s21.
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We now use two-particle wave functions of positroniu
~see Sec. 4.1! to calculateG(k) andW. As Eq.~4.1! shows,
we need to calculate the matrix elements of the electron
positron momentum operator and the matrix elements of
electron–positron Coulomb interaction operator, allowi
for various intermediate statesl 6 . To this end, it is conve-
nient to expand the Coulomb interaction operator in the m
trix elements in terms of spherical harmonicsYkq(Q1 ,w1)
andYkq(Q2 ,w2) ~see Ref. 21!:

e2

r 12
5e2(

k50

`
4p

2k11

r ,
k

r .
k11(q

Ykq~Q1 ,w1!Ykq* ~Q2 ,w2!,

~4.8!

whereQ1, w1, Q2, andw2 are the angular variables of th
electron and positron, andr , and r . denote the lesser an
greater of the lengths of the radius vectorsr1 andr2. Follow-
ing the method of calculating matrix elements in atom
spectroscopy,21 we find that calculations of the probabilityW
of the optical transition based on formula~4.1! based on
two-particle wave functions yield the same result as in Re
9 and 10.

5. CONCLUSION

In this paper we have given a detailed substantiation
the physical meaning of the coupling constantG(k) in the
effective Hamiltonian~2.1!. For electric dipole transitions
we have derived a formula~Eq. ~4.1!! that allows for various
types of electron–positron interaction in the field of optic
and annihilation photons. For other quantum transition typ
with allowance for relativistic terms in the operatorBsl , Eq.
~4.1! can easily be generalized by using the matrix~2.2! and
analyzing the situation.

We have solved the problem of electron–positron int
action accompanied by emission or absorption of a soft p
ton. Such interaction can be interpreted as a third-order Q
effect with the Feynman diagrams of Fig. 1. Here are
main properties of this interaction.

A key feature of the diagrams in Fig. 1 is the exchan
of soft and hard photons. In accordance with this, we
separate the soft and hard modes of the electron–pos
interaction, which are described by the operatorsBsl . If
there is no emission~absorption! of a real photon, the
electron–positron interaction is a second-order QED eff
In this case, the operatorsBsl cease to depend on the inte
mediate statesv l 6

and the soft interaction mode correspon
or
e

-

s.

f

l
s,

-
o-
D
e

e
n
on

t.

to the operatorB1[U (2), whereU (2) is the Breit operator.
The hard interaction mode is described by the operatorB5

~Eq. ~3.4!!.
When emission~absorption! of a real photon is taken

into account in the Feynman diagrams of Fig. 1, the
change of virtual photons leads to the emergence of inter
diate states. As a result, the generalized operatorsBsl begin
to depend on the frequenciesv l 6

of the intermediate states
Since the electron and positron masses are equal, we

able to deal with two-particle wave functions of the positr
nium atom. This makes it possible to introduce the conc
of polarization fields inside the positronium atom. We b
lieve that this concept plays an important role in precis
optical and radio spectroscopy of the positronium atom a
in quantum positronics.
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Effect of the initial charge and charge-state fluctuations on the range parameters of
high-energy ions
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A model used in calculating the depth distribution of implanted atoms, and the energy released
into the electron and nuclear subsystems of the solid is studied. It takes into account the
initial charge and the fluctuations of charge states of high-energy ions with energies
E>1 MeV amu21. The results of calculations are obtained on the basis of solutions of
transport equations. Satisfactory agreement between theoretical predictions and experimental
results is observed for a broad class of ion–target systems. ©1998 American Institute of Physics.
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1. INTRODUCTION

The penetration of ions through solids and the ma
processes accompanying such penetration~defect formation,
atomization of the target! of medium-energy ions
(E<10 MeV) are described well by the Monte Carlo meth
or by solving the direct and inverse Boltzmann kinetic eq
tion. However, recent experimental results1–5 obtained for
high-energy ion implantation (E>1 MeV amu21) differ
considerably from theoretical predictions, both for the dis
butions of implanted atoms and for the initial radiatio
induced defects that are formed in the process. For a num
of ion–target combinations the experimental values of
mean straggling of projected ranges,DRp , exceed the theo
retical values by a factor of 1.5 to 5, and the experimenta
measured asymmetries of the depth distribution profiles
the implanted atoms are strongly shifted in the positive
rection in comparison to the calculated profiles.

According to our calculations~Ref. 6!, these discrepan
cies between theory and experiment cannot be explaine
the crystallographic channeling effect, since the differenc
the shapes of the ion-range distribution functions is obser
near the mean projected rangeRp . We believe7–9 that the
observed effects can be explained by the following reas
ing. In standard theoretical approaches to the problem,
changes in the charge state of ions~electron capture and
stripping! are not considered explicitly. The mean effecti
ion charge (Zeff), which is determined by the dynamic equ
librium between electron capture and loss and depends s
on ion energy, is used as a parameter in calculating the
scattering and stopping cross sections. Hence the effec
fluctuations in the charge states of ions on implantation p
cesses is not taken into account in this setting.

Such an approximation works only in the low- an
medium-energy ranges because of the large cross sectio
electron capture and loss by ions. At energies of ab
1 MeV amu21 and higher the situation changes dramatica
In the energy range considered here the cross section
electron capture and loss are so low that the characteristic
2701063-7761/98/86(2)/6/$15.00
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range under conditions of unchanged charge states beco
comparable to the straggling for the profiles of implant
atoms and radiation-induced defects. The electron loss
capture cross sectionss6 at such energies may be 1024 nm2

or even lower. Hence the probability of charge-exchan
processes,P5Ns6x becomes close to unity at distances
order 1mm from the target surface. Calculations done
Burenkovet al.9 show that the equilibrium charge distribu
tion for the ion flux is formed only after the ions have tra
elled a certain distance inside the target:z'0.8 mm for 50-
MeV boron ions B1 in silicon, z50.9mm for 60-MeV
nitrogen ions Ni1 in diamond,z51 mm for 59-MeV nickel
ions Ni1 in diamond, andz57.2mm for 130-MeV xenon
ions Xe1 in diamond. Thus, random fluctuations in th
charge of high-energy ions can strongly affect the shape
the distributions of the implanted atoms and radiatio
induced defects. Note that these electron stopping fluc
tions differ in their nature from those studied by Bohr10

which account for the broadening of the energy spectrum
the ions because of the random distribution of impact para
eters in collisions.

In recent years there has been an upsurge of intere
the problem of theoretically describing the loss of energy
fast ions with allowance for charge-exchange processes11–13

in connection with measurements ofdE/dx in layers of ma-
terials when the layer thickness varies for various init
charge states.14,15

The present paper is a development of an approach
gested in Refs. 7–9. Here we allow for the effect of fluctu
tions in the charge state of ions not only on the ion-ran
characteristics but also on the depth distributions of the
ergy released into the electron and nuclear subsystems o
solid. We also discuss the effect of the initial charge state
the ions at the entrance to the target on the range parame
The role that the atomic number of the target ions plays
the manifestation and the relative value of the above effe
is examined. For the numerical calculations of the charac
istics of implantation profiles we used the solutions of t
© 1998 American Institute of Physics
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direct and inverse~the method of distribution moments!
Boltzmann equations.

2. THEORETICAL MODEL

In our case the distribution function of the ion flux in th
target,F(x;h,E,q), must depend not only on the initial io
energy, the depthx in the target, the angleu between the
direction normal to the surface and the direction of i
propagation (h5cosu) but also on the ion chargeq. The
direct kinetic equation for the distribution function of the io
flux is

h
]F~E,h,q;x!

]z
5NF E dsn8F~E8,h8,q;x!

2E dsnF~E,h,q;x!G
1N

]

]E
@F~E,h,q;x!Se~E,q!#

1N(
q8

@sq8→qF~E,h,q8;x!

2sq→q8F~E,h,q8;x!#, ~1!

wheredsn is the differential scattering cross section for
ion, with scattering amounting to the transition of the i
from a state with energyE, direction of motionh, and
chargeq to a state with parametersE8, h8, andq, respec-
tively; dsn8 is the differential cross section of the inver
transition;Se is the electron stopping cross section; andN is
the concentration of atoms in the target.

In Eq. ~1! the last~collision! term directly describes fluc
tuations of the ion charge states. Summation overq8 is done
over all possible charge states.

Assuming that processes such as scattering and ch
of the charge state of a particle are mutually independent
cab write the inverse kinetic equation for this particle as

h
]F~r ,n,E,q!

]r
5NE @dsnF~r ,n,E,q!2F

3~r ,n8,E2T,q!#

1NSe~E,q!
]F~r ,n,E,q!

]E

2
1

2
NVe

2~E,q!
]2F~r ,n,E,q!

]E2

1N(
q8

sq→q8@F~r ,n,E,q!

2F~r ,n,E,q8!#. ~2!

Here we assume thatds5dsn1dse . At high energies
the contribution of electron stopping to the total ener
losses are dominant. Hence the effect of charge fluctuat
on the elastic scattering in this model can be ignored. In
~2!, dsn is the differential elastic scattering cross sectio
which characterizes the transition of an ion from a state w
ge
e

ns
q.
,
h

energyE, direction of motionn, and chargeq to a state with
parametersE2T, n8, andq, respectively, withT the energy
transferred from the ion to the target in a single elastic c
lision; Ve

2(E,q) is the mean square straggling of electr
stopping.

In contrast to the standard approaches of Refs. 16–18
allow for fluctuations in electron stopping we must take in
account the dependence of electron stopping on the
charge, given by

Se~E,q!5Zeff
2 ~E,q!Sp~E!, ~3!

whereZeff(E,q) is the effective charge, which depends o
the degreeq of ionization of the ions; andSp(E) is the cross
section of electron stopping for protons. Assuming that
equipartition rule is valid in the Lindhard energy loss fro
near and distant collisions, we used the following formula
calculate the effective charge:

Zeff
2 ~E,q!5

1

2
Zeff

2 ~E!1F11S q

Zeff~E! D
2G , ~4!

whereZeff(E) is the mean effective charge of the ions at
given energyE, calculated in the Brandt–Kitagawa model.18

In this case the electron stopping cross section is a
tistical quantity whose distribution parameters are descri
in terms of cross section of the variation of the charge st
The electron capture and stripping cross section were ca
lated on the assumption that the charge distributions
Gaussian, which is in good agreement with the experime
data.19 The mean valuesq0 of the ion charge were calculate
on the basis of the model of Ziegleret al.,16 while the vari-
ance of the ion distribution over the charges was represe
by the simple Bohr formula10

d50.5Fq0S 12
q0

Z D 5/3G1/2

, ~5!

whereZ is the nuclear charge of the ion. With the Gauss
distribution of the charge states and the dominance of sin
particle processes in the variation of the charge states of i
the cross section of variation of the charges of the ions m
ing in the target is described by the following expression19

sq→q615s0exp@7a~q2q0!#, ~6!

wheresq→q61 is the cross section of loss (1) or capture
(2) of a single electron by a moving ion, anda50.5d22.
For ion energiesE,Ec550ZT

1/3q0
1/2 keV amu21 we use the

Bohr formula10

s05pa0
2ZT

1/3q0
2S v0

v D 3

, ~7!

while for E.Ec we use the formula proposed by Nikolae
et al. ~see Ref. 19!:

s052pa0
2ZT

2/3q0
5/2S v0

v D 5

. ~8!

In ~7! and ~8!, a0 andv0 are the atomic units of length
and velocity,v is the ion velocity, andZT is the nuclear
charge of the target atoms.
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The cross sectionsq→q11 can be obtained as a functio
of the ion velocity and the target’s atomic number if w
equate the model cross section~6! and the actual electron
loss cross section calculated by formulas~7! and ~8! at q
5q0. In other words, the fact thats05sq→21 at q5q0 is
used to determines0.

3. LIMITS OF THE METHOD

The adopted model makes it possible to take into
count the initial charge of the ions and the fluctuations of
charge state of the ions by using the solution of Boltzma
kinetic equations, but requires knowing the electron loss
capture cross sections. Rigorous calculations of the elec
loss and capture cross sections can be done only for loZ
ions. For medium-mass and heavy ions the approxim
methods of Bohr10 and Nikolaevet al.19 are used in the the
oretical treatment of this problem, while the experimen
data can be found, for instance, in the review article
Betz.19 The cross sections obtained in the present work~see
Eqs.~5!–~8!! agree to within 20–30% with the experiment
data.19 This leads to a 25–40% uncertainty in calculati
Rp , DRp andSk (Sk is the asymmetry of the profile of th
distribution of implanted atoms over the depth of the cr
tal!, which is severalfold smaller than the role of the effect
fluctuations of charge states of ions discussed above. H
ever, at relatively low energies~tens of keV amu21), the
calculated cross sections were found to exceed the ex
mental values by a factor of two to three. To such ion en
gies there correspond finite sections of the ion ranges,
which elastic processes of interaction of the ions and
atoms of the stopping medium become dominant. As a re
of selecting the formula of Ziegleret al.16 for the electron
stopping cross section instead of the more common Be
formula,20 the ion energy range is not limited entirely to th
of the first Born approximation, i.e., it extends considera
into the range of low ion energies (v>vF , wherev is the
ion energy, andvF is the Fermi-electron energy!.

Calculations were done using a mesh grid with a dep
variable mesh width. The resulting depth distributio
proved to have low sensitivity to the mesh width. Equati
~1! was solved by a step-by-step calculation of the distri
tion function in the group approximation. For medium-ma
ions ~such as, say, Al1), the energy and angle ranges we
split into groups~20 to 30 groups in energy and 5 to 1
groups in angles!. For light ions~such as, say, B1) and high
energies (E.1 MeV amu21), we were forced to increase th
number of groups in energy to 50–100 so that our res
would be in good agreement with the experimental data
Ref. 1, for example. In solving Eq.~2! numerically, we var-
ied the number of steps from 100 to 1000, depending on
width of the energy interval and ion mass~the number of
partitions must be increased as the ion mass decreases!. The
error in numerical calculations ofRp , DRp , and Sk
amounted to roughly 1–3%.

4. RESULTS OF CALCULATIONS AND DISCUSSION

To evaluate the effect of charge distribution fluctuatio
on the formation of the distribution profiles of implante
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atoms, we calculated the parameters of the implantation
files (Rp , DRp , andSk) with and without allowance for ion
charge fluctuations. Calculations with allowance for cha
distribution fluctuations were done using the method of m
ments to numerically solve the system of integro-differen
equations~2!. The cross sections of elastic scattering a
electron stopping were take from Ref. 17, while the cro
sections of electron capture and loss by ions were calcul
by Eqs.~5!–~8!. The method of numerically solving the in
verse kinetic equation is described in Ref. 17. The differe
between Eq.~2! and the standard inverse transport equat
of Ref. 17 lies in the presence of a collision term in t
former, a term that describes the change in the states o
ion charges. This difference does not preclude using the
cedure of numerical solution of equations of this type dev
oped earlier. Nevertheless, the structure of the system of
ear equations approximating~2! is somewhat more
complicated than in the common case discussed in Ref.

In contrast to the ordinary approach, our method ma
it possible to model the implantation of ions with variou
initial charge states. The parameters of the profiles for
plantation of boron and aluminum atoms into silicon a
listed in Tables I and II as functions of the initial state of t
ions. As expected, the mean projected ion rangeRp increases
as the initial charge of the ions decreases~in the case of
boron ions the increase may amount to 6%!. This occurs
because of the decrease in electron stopping at small de
where the equilibrium distribution of atoms over the char
states has not enough time to set in. More important, h
ever, is the effect of the initial charge states on the high
order moments of the distributions of the implanted ato
(DRp andSk!. For instance, the discrepancies in the valu
of DRp amount to 23% and 12% for the implantation
boron and aluminum atoms, respectively. For the distribut
asymmetry factorSk, the maximum discrepancy amounts
48% and 27% for the implantation of boron and aluminu

TABLE I. Spatial moments of the distribution of boron with energ
100 MeV implanted in silicon~with allowance for fluctuations in ionic
charge! for various initial charge states of the incident ions.

q Rp , mm DRp , mm Sk

1 313.9 11.78 0.49
2 311.3 11.82 0.50
3 307.1 11.54 0.52
4 301.2 10.65 0.61
5 295.2 9.43 0.78

TABLE II. Spatial moments of the distribution of aluminum with energ
100 MeV implanted in silicon~with allowance for fluctuations in ionic
charge! for various initial charge states of the incident ions.

q Rp , mm DRp , mm Sk

1 40.40 0.97 23.59
2 40.37 0.96 23.60
6 40.16 0.95 23.73
8 39.98 0.93 23.94
12 39.50 0.86 24.70
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atoms, respectively. As the ion energy rises, the effect of
initial charge state of the ion on the parameters of the
plantation profiles gets stronger. The results of these ca
lations make it possible to conclude that the strong discr
ancy between the distribution moments of the implan
atoms obtained in the given model and those obtained on
basis of standard calculations16,17 is due to the effect of ion
charge fluctuations rather than to the choice of the ini
charge state of the implanted ions. Experiments in wh
postimplantation profiles are measured suggest that the
tuations of the charge state of the ions have a strong effe
the formation of impurity and defect profiles when hig
energy ion implantation is involved.

In Fig. 1 we depict, for the sake of comparison, t
experimental and theoretical values of the parameters of
distribution of atoms over the target depth as functions of
ion energy for the case in which silicon is bombarded
aluminum atoms. The calculations were done with and w
out allowance for fluctuations of the ion charge distributio
Allowing for charge state fluctuations modifies the value
Rp very slightly. At the same, such fluctuations have a stro

FIG. 1. Spatial moments of the distribution of aluminum in silicon at im
plantation energies up to 100 MeV. Solid curves depict the results of ca
lations obtained with allowance for fluctuations in the charge states of
ions, dashed curves depict the results of calculations without allowanc
charge fluctuations,17 thej indicate the results of standard modeling,16 and
the h indicate the experimental data of La Ferlaet al.2.
e
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effect onDRp and especially onSk. For instance, in the cas
of implantation of aluminum atoms in silicon at an ener
E5100 MeV, the value ofDRp nearly doubles. The varia
tion of Sk may be considerably greater. As the ion ma
increases, the difference in the values of the ion-range
rameters show up at high energies, for which broader cha
distributions of the ion flux are formed in a sizable segm
of the ion range in the target.

Numerical solution of the direct kinetic equation~1!
makes it possible to extract information about the total de
distributions of the implanted atoms~Fig. 2! and the distri-
bution profiles of the energy released in inelastic~track for-
mation! and other~defect formation! processes~Fig. 3a!.
Figure 2 shows that the results of calculations with o
model correspond better to the experimental data than th
of standard calculations16 for the distribution profile of alu-
minum atoms implanted in silicon atE5100 MeV. The ex-
perimental profiles exhibit a greater dispersion of ions o
the ranges than the one yielded by our model, which is
indication of the highly approximate nature of the io
charge-exchange cross section used in the present paper
considerably higher dispersion of ions over the range in
model ~compared to that obtained by standard calculatio!
is also characteristic of depth distributions of radiatio
induced defects created as a result of elastic collisions w
target atoms~curve4 in Fig. 3a!.

Figure 3b depicts the calculated distribution profiles
250-MeV xenon atoms implanted in indium phosphide o
tained in our model~curve2! and in standard calculations16

~curve1!.
It is hardly possible to overestimate the importance

information about the distributions of the energy released
ions elastically~curve 4 in Fig. 3a! and in collisions with
electrons of the stopping medium~curve2 in Fig. 3a!. First,
using thedE/dx profile, one can calculate the dose of hig
energy ions at which a latent amorphous layer is form
deep inside semiconductors and insulators near the m
mum in the elastically released energy. For instance, in v
of the energy criterion, amorphization of a local volume o
semiconducting crystal occurs when the energy elastic
released within a unit volume reaches a critical value«cr .
For different semiconductors«cr varies over a broad range

u-
e
or

FIG. 2. Distribution of aluminum with energy 100 MeV implanted in sil
con. The solid curve depicts the calculated profile obtained with allowa
for fluctuations in charge state of the ions, the dashed curve represen
results of standard modeling,16 and thes indicate the experimental data o
La Ferlaet al.2.
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For instance, for silicon«cr5631020 keV/cm3 at lower tem-
peratures and increases to 531021 keV/cm3 at room
temperature.20 For GaAs crystals, the characteristic values
«cr are ~2.523!31020 keV/cm3 at low temperatures an
~8.323!31020 keV/cm3 at room temperature,21,22 while for
InP this value is smaller by a factor of 5 to 10.

Since

«cr5NSn
maxD, ~9!

where N is the concentration of atoms in the crysta
Sn5(1/N)(dE/dx)n , and D is the ion dose, we can easil
calculate the ion dose needed for the formation of a la
amorphous layer. For example, forE5250-MeV xenon ions
Xe1 in InP ~Fig. 3!, the amorphization ion doseDamo is
approximately ~225!31012 ion/cm2 at low temperatures
and ~8220!31012 ion/cm2 at room temperature. These da
are in good agreement with the experimental results obta
recently.23 Second, the depths in the surface layer of se
conducting crystals at which track formation is possible c
also easily be found. If we base our calculations on
mechanism of thermal peak formation due to strong elec

FIG. 3. ~a! Distribution profiles for the energy liberated in inelastic~curves
1 and 2! and elastic~curves3 and 4! processes as a result of implantin
xenon with energy 250 MeV in indium phosphide. Curves1 and3 represent
the results of standard modeling16 and curves2 and4, the results obtained
on the basis of the present model.~b! Distribution profiles for xenon with
energy 250 MeV implanted in indium phosphide calculated on the bas
the present model~curve2! and the standard model16 ~curve1!.
f

nt

ed
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e
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excitation, as a result of which local cylindrical domain
melt24 and are then rapidly quenched, the critical ion ene
losses per unit range for track formation in the InP crystal
approximately 1.7–1.9 keV/nm~the upper and lower value
of (dE/dx) thr are given for the case where the process
described with and without allowance for the latent heat
fusion!. The information drawn from Fig. 3a~curve2! sug-
gests that in the case being discussed, tracks can be fo
starting at the crystal’s surface to 10–15mm deep. The ex-
periment of Gaiduket al.23 showed that there are continuou
track regions at depths up to 10–12mm. The broken tracks
at x>10mm observed in the experiment may be due to s
tistical fluctuations in the charge-exchange processes inv
ing the loss of one or several electrons by the ion, when
certain segment of the rangedE/dx becomes larger than th
value (dE/dx) thr for track formation. Hence when A3B5

semiconductors are irradiated by high-energy ions, an
tremely complicated pattern of structural transformatio
over the depth of the crystal can be observed, a pattern
contains continuous track regions, broken tracks, fa
weakly damaged regions, and amorphous regions at the
of ion ranges in the crystal.

5. CONCLUSIONS

Numerical modeling suggests that fluctuations in t
charge states of atoms have a strong effect on the forma
of implantation profiles in high-energy ion implantation, e
pecially on the variance and asymmetry of the ion distrib
tion over the depth of the crystal. As the atomic number
the ions increases, the relative size of this effect diminish
The initial charge state of the ion must be taken into acco
in the numerical calculations, but its effect is not very stron

Numerical calculations of the distributions of the ener
released by ions in inelastic and elastic processes mak
possible to describe such important phenomena as the fo
tion of continuous and broken tracks and latent amorph
layers inside the crystal. Satisfactory agreement is obse
between the theoretical predictions and the experimental
on the depths of occurrence and the sizes of these region
a crystal.
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Influence of the Stark effect on multiphoton ionization of atoms when the dynamic
polarizability depends strongly on the laser frequency
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The influence of the Stark effect on multiphoton ionization of Ba atoms under conditions when
the dynamic polarizability depends strongly on the frequency of the laser radiation is
investigated. It is found that for some electric field strengths« of the laser radiation this effect
gives rise to resonance peaks in the Ba1 ion yield as a function of the laser radiation
frequency at frequencies corresponding to single-photon transitions between the excited states.
These frequencies can differ substantially from the frequencies corresponding to the
conventional multiphoton excitation of these states from the ground states of the atoms. Peaks in
the ion yield as a function of« behave differently from the conventional Stark effect—their
position on the frequency scale does not depend strongly on«. The conditions under which such
an induced resonance structure appears are determined. ©1998 American Institute of
Physics.@S1063-7761~98!00802-6#
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1. INTRODUCTION

When interpreting the results of investigations of mu
photon ionization of atoms, the perturbation of the atom
spectrum by the electric field of laser radiation must be ta
into account in most cases.1 One of the basic mechanisms b
which a strong laser field perturbs an atomic spectrum is
dynamic Stark effect. This effect consists of a changeDEn in
the energy of a leveln ~Ref. 1!,

DEn52an~v!«2/4. ~1!

Here « is the intensity of the laser field andan(v) is the
dynamic polarizability of the leveln, which depends on the
frequency of the radiation,2

an~v!5(
m

dnm
2

vnm2v2 iGm/2
. ~2!

In Eq. ~2! dnm is the matrix element of a one-photon tran
tion from the staten into the statem; vnm is a frequency
corresponding to this transition;v is the frequency of the
laser radiation; andGm is the width of the levelm. The
summation in Eq.~2! extends over all intermediate statesm.

The character of the manifestation of the Stark eff
accompanying multiphoton ionization when the laser rad
tion frequency differs strongly from the frequenciesvnm cor-
responding to single-photon transitions in atomic spectr
now well known. In these cases, according to Eq.~2!, the
magnitude of the dynamic polarizability is virtually indepe
dent of the frequency of the laser radiation. For this reas
in the case of multiphoton ionization of atoms under the
conditions, according to Eq.~1! the shifts of the resonanc
peaks in the ion yieldN1(v) as a function of the laser fre
quency should depend quadratically on«. This picture has
indeed been observed in most experiments on the multip
ton ionization of atoms.1
2761063-7761/98/86(2)/8/$15.00
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If we havev.vnm , then the dynamic polarizability o
the levelsn andm is strongly frequency-dependent. For th
reason, the Stark effect in the case of multiphoton ionizat
of atoms under such conditions should be different from
picture described above. However, this case has never
investigated in detail.

In the present paper we report the results of investi
tions of the manifestation of the Stark effect in the ionizati
of a Ba atom whenv.vnm . Radiation from a color-cente
laser frequency-tunable in the rangev5840029000 cm21

was used in these investigations. The line width of this
diation was equal toDv5324 cm21 and the duration of the
laser pulse wast.3•1028 s. Ionization of a Ba atom unde
these conditions requires the absorption of five photons.
conditionv5vnm is satisfied for a number of frequencies
the laser radiation employed.

In the experiment the yield of Ba1 ions produced
through multiphoton ionization of Ba atoms was measured
a function of the laser frequencyv with different intensities
« of the electric field of laser radiation. The intensity of th
laser electric field varied in the range«.10627•106 V/cm.
On the whole, the experiments were arranged in the conv
tional manner for investigating the multiphoton ionization
atoms. The experimental arrangement is described in d
in previous treatments~see, for example, Ref. 3!.

2. EXPERIMENTAL RESULTS

The results of the investigations of the dependence of
yield of Ba1 ions on the frequency of the laser radiation a
presented in Figure 1 for three values of«. Here and below,
« denotes the maximum field strength within a laser pul
As one can see from Fig. 1, the character of the freque
dependenceN1(v) varies with«. The number of resonanc
peaks in these dependences does not remain constant
position of the resonance peaks on the frequency scale
© 1998 American Institute of Physics
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FIG. 1. Yield of Ba1 ions versus frequencyv of the radiation
from a color-center laser. The curves were measured with
strengths« of the electric field of the laser radiation equal t
6.6•106 V/cm ~a!, 4•106 V/cm ~b!, and 9•105 V/cm ~c!.
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wise, in the main, does not remain the same. For large va
of « these peaks show a distinct asymmetry. These f
together indicate that the spectrum of the Ba atom is stron
perturbed under the conditions of our experiments.

We note that the frequency dependenceN1(v) mea-
sured with approximately the same values of« as those dis-
played in Figs. 1a and 1c was analyzed in detail in Refs
and 5. For this reason, we shall not discuss here the deta
these dependences. We note only that the results of Re
and 5 show that the dependence presented in Fig. 1c ca
interpreted as the spectrum of unperturbed states of the
atom. Table I gives the identification of the resonance pe
present in this dependence. As follows from the table, a
ries of ordinary multiphoton resonance transitions from
6s2 1S0 ground state of the Ba atom as well as one transiti
consisting of two successive resonance transitions~the tran-
sition at the frequencyv58940 cm21! occur in the experi-
mental region of the spectrum. As the results of our previ
work showed,5 the behavior of the peaks, which are due
conventional multiphoton transitions, with increasing« is de-
scribed well by the conventional quadratic Stark effect w
vÞvnm : their shift and width depend quadratically on«.
es
ts
ly

4
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. 4
be

Ba
ks
e-
e
,

s

We now examine the frequency dependenceN1(v) pre-
sented in Fig. 1b. It was measured for a value of« falling
between the values of« at which the curves shown in Figs
1a and 1c were measured. As one can see, a resonance
mum is present in this dependence at the freque

TABLE I. Identification of resonance peaks in the frequency depende
N1(v) presented in Fig. 1c.

N v, cm21 v1 , cm21 Transition

1 8452 8448 6s2 1S014\v→5d7s 1D2

2 8565 8568 6s2 1S013\v→5d6p 3P1
0

3 8595 8592 6s2 1S014\v→6p2 1S0

4 8625 8623 6s2 1S014\v→6p2 3P0

5 8838 8836 6s2 1S014\v→6p2 1D2
0

6 8905 8904 6s2 1S014\v→6p2 3P2

7 8940 8939 6s2 1S013\v→5d6p; 1F3
01\v→6s7d 3D2

Note.The numbers in the table correspond to the numbers of the reson
peaks in the frequency dependenceN1(v) in Fig. 1c;v—laser frequencies
at which resonance peaks appear in the curvesN1(v); v1—frequencies
corresponding to a multiphoton transition into undisturbed states of the
atom.
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v58780 cm21; this maximum is not present in the fre
quency dependenceN1(v) in Figs. 1a and 1c~the peakX in
Fig. 1b!.

To study the behavior of this peak as a function of« the
frequency dependenceN1(v) was investigated in detail nea
the frequencyv58780 cm21 by varying« with a small step.
The results of these investigations are presented in Fig. 2
follows from this figure, the peak noted above first appear
some field intensity («053•106 V/cm). The width of this
peak is comparatively large relative to the widths of t
peaks which are due to the conventional multiphoton exc
tion of the unperturbed states~see Fig. 1c!. As « varies, the
position of this peak on the frequency scale does not cha
much within the width of the peak. This peak is not observ
for large values of«.

Analysis shows that the peak noted above cannot
identified with a conventional multiphoton excitation
some bound and autoionization states of a Ba atom f
either the 6s2 1S0 ground state or the first excited states.
the same time, the frequencyv58780 cm21 at which this
peak appears is close to the frequency corresponding to
one-photon transition 5d6p 3P1

0→6p2 3P0

(vmn58788 cm21). However, this frequency does not co
respond to multiphoton excitation of either the 5d6p 3P1

0

state or the 6p2 3P0 state. The detuning for multiphoton ex
citation of these levels at frequencyvmn58788 cm21 equals
DE5664 cm21 ~see Fig. 3a!.

At present, two possible causes of the appearance o
resonance structure in the excitation scheme shown in F
are known—resonant mixing, leading to splitting of the le
els, and the Stark effect, leading to a shift of the levels.1

In the first case the detuningDE must be compensate
by splitting of the states into quasienergy levels:

FIG. 2. Results of investigations of the behavior of an induced peak du
the one-photon transition 5d6p 3P1

0→6s2 3P0 with different field intensities
«. The values of« are presented in scaled units. The value«51 corresponds
to the absolute value«52.5•106 V/cm. The vertical dashed line marks th
frequency corresponding to this one-photon transition.
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DE5V5dnm«/2, ~3!

whereV is the Rabi frequency anddnm is the matrix element
of a single-photon transition~in our case the transition
5d6p 3P1

0→6p2 3P0!.
However, analysis shows that under our experimen

conditions this effect cannot produce a peak in the Ba1 ion
yield. The estimates show that for the field streng
«53•106 V/cm given above the splitting can compensa
the detuningDE5664 cm21 only if dnm>10 a.u. This is a
very large value of the transition matrix element. It is larg
than for the transition from the ground state of the Ba at
into the first excited state 6s6p 1P1

0, for which
dnm.8.6 a.u.6 In addition, it is well known thatdnm should
be much smaller for transitions between excited states, wh
the transition 5d6p 3P1

0→6p2 3P0 under discussion is.
Moreover, when resonant mixing occurs the correspo

ing peak should be symmetric with respect to the resona
frequencyvmn58788 cm21. In our case, however, it is de
tuned from this frequency by the amountd58 cm21. This
also contradicts the fact that the peak under discussion is
to resonant mixing of the levels.

Let us now examine the possibility for the Stark effect
balance the detuning. In this case the detuning must be
anced by a level shift

DE5~an2a0!«2/4, ~4!

where a0 and an are the dynamic polarizabilities of th
ground and excited states, respectively.

By analogy, we shall estimate the value ofdnm required
for the Stark effect to balance the detuning. We shall use
~4!. This formula contains the shift of the ground state of t
atom: DE052a0«2/4. Estimates show that under our e
perimental conditions this quantity does not exceed 5 cm21,
which is much less thanDE. Therefore we shall neglectDE0

in these estimates. We note that in estimatingDE0 we took
the value ofa0 to be equal to its static limita05280 a.u.6

Such an approach is completely justified, since the laser

to

FIG. 3. Diagrams illustrating the realization of the processes investiga
The magnitudeDE of the detuning is presented for an unperturbed Ba ato
The values ofDE andv are given in cm21.
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quencies employed are much lower~approximately by a fac-
tor of 2! than the frequencies corresponding to the transit
into the first excited state 6s6p 1P1

0 (v518060 cm21), near
which a0 should be substantially different from its stat
limit.

As far as the dynamic polarizability of an excited state
concerned, according to Eq.~2!, near frequenciesvnm corre-
sponding to single-photon transitions between two states
dynamic polarizability of the two states involved has po
and can assume large values. The quantityGm ensures that
the dynamic polarizability remains finite.

For estimates, we retain in the sum over the intermed
states in the expression~2! for the dynamic polarizabilityan

only the resonance term that makes the largest contribu
to an(v). After simple manipulations, we obtain the follow
ing expression for the real part of the dynamic polarizabi
giving rise to a level shift:

an~v!5
~vnm2v!dnm

2

~vnm2v!21Gm
2 /4

. ~5!

We note that in the general caseGm in the formulas for
the dynamic polarizabilities is taken to be the largest of
natural width of a level, the field and ionization widths of th
level, and the width of the radiation spectrum. For defini
ness, we take for estimatesvnm2v.Gm/2.d, where
d58 cm21, as noted above, is the detuning of the peak un
discussion relative to the resonance frequen
vnm58788 cm21. Then Eq.~5! becomes

an5dnm
2 /2d. ~6!

Thus, on this basis, the equation for estimating the va
of dnm necessary in order for the Stark effect to compens
the detuningDE is

dnm5A8dDE/«2. ~7!

An estimate based on this expression for the conditi
of our experiment givesdnm.1 a.u. This value, in contras
to the value obtained above for the case of resonance mix
is typical for transitions between excited states. This c
firms that under the conditions of the experiments descri
above the Stark effect could balance the detuningDE and
thereby give rise to the peak being discussed.

We note that all aspects of this peak are explained w
by the occurrence of a Stark effect under conditions when
dynamic polarizability depends strongly on the frequency
the laser radiation. Thus, the asymmetry of this peak rela
to the resonance frequencyvnm58788 cm21 is explained
well. We shall explain this fact using Fig. 4. It is well know
that for a two-level system in a field with frequencies clo
to the resonance frequencyvnm for v>vnm one level pos-
sesses a negative and the other a positive dynamic pol
ability; for v<vnm the polarizabilities of both levels chang
sign1 ~see Fig. 4a!. Thus, one level has a positive shift fo
v>vnm and the other has a positive shift forv<vnm ~see
Fig. 4b!. Therefore, forv>vnm the first level will be excited
because the detuningDE is compensated, while forv<vnm

the second level will be excited.
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When exact equalityv5vnm holds the dynamic polar-
izabilities of both levels equal zero. In this case neither le
is shifted and therefore neither level is perturbed.

For this reason, when the probabilities of multiphoto
excitation of both interacting levels are the same, two pe
with the same amplitude and a dip between them atv5vnm

should appear near the frequencyvnm ~see Fig. 4c!. How-
ever, if the excitation probabilities of both levels are substa
tially different, then, naturally, these two peaks will hav
very different amplitudes.

As follows from Fig. 1c, the resonance peak due
three-photon excitation of the 5d6p 3P1

0 state
(v58565 cm21) has a much larger amplitude than the pe
due to four-photon excitation of the state 6p2 3P0

(v58525 cm21). This shows that the probability of three
photon excitation of the 5d6p 3P1

0 state is much higher than

FIG. 4. Diagram of the formation of the Stark-effect-induced resonan
structure inN1(v) that corresponds to the excitation schemes presente
Fig. 3: a—Approximate dependence of the dynamic polarizabilitya of the
excitedn andm states on the laser frequency near the frequencyvnm cor-
responding to a single-photon transition between these states; b—diagra
the change in the energyE of the statesn andm and appearance of induced
resonances with these states; c—approximate form of the resonance s
ture in the frequency dependenceN1(v) in the case when the multiphonon
excitation probabilities of the statesn andm are the same.



on
fo

o-
nc
n
in
ge
th
ve

ls

is
ha

e

g

y-

se
b
th
nd

ti-
ua
ks
s
o-
a

t i
o

e
ld

lit
n

of
i-

ain

te

ap-
of
de-

e
rm
r
on.
e-

lue

ns

ally

ub-
ved

e

nts

f

the

ec-

280 JETP 86 (2), February 1998 I. I. Bondar’ and V. V. Suran
that of four-photon excitation of the 6p2 3P0 state. Hence it
follows that the peak atv58780 cm21 is due to three-
photon excitation of the 5d6p 3P1

0 state strongly shifted by
the Stark effect.

The first appearance of this peak at some value of«0 is
explained by the fact that the detuning of the multiphot
resonance is first balanced at this field intensity, i.e., the
lowing condition is now satisfied:

DE52~amax2a0!F0
2/4, ~8!

whereamax is the maximum magnitude of the dynamic p
larizability of the shifted level near the resonance freque
vnm and F is the effective field strength for multiphoto
excitation of the atom, i.e., the field strength correspond
to the part of the laser–atom volume that makes the lar
contribution to the total number of excited atoms. Since
distribution of the laser radiation is nonuniform, we ha
F5 f «, where as noted above« is the maximum intensity of
the electric field of the laser radiation within the laser pu
and f ,1 is a coefficient. In Eq.~8! F05 f «0 .

Calculations taking account of the real space–time d
tribution of the laser radiation in our experiments show t
we havef 50.80 for three-photon excitation.

The maximum value of the dynamic polarizability of th
5d6p 3P1

0 level near the frequencyv58780 cm21 was cal-
culated according to Eq. ~8!. The result is
amax523.4•104 a.u.

The dynamic polarizability of the same level 5d6p 3P1
0

was measured in Ref. 5 for the frequency correspondin
three-photon excitation (v058568 cm21). It equals
a52.26•103 a.u. Comparing these two values of the d
namic polarizability of the 5d6p 3P1

0 level shows that for a
comparatively small change in the frequency of the la
radiation the dynamic polarizability changes sign and
more than an order of magnitude. This fact shows that in
spectral range studied the dynamic polarizability depe
strongly on the frequency of the laser radiation.

As noted in the introduction, the Stark effect in mul
photon ionization conventionally manifests itself as a q
dratic increase with« of the detuning of the resonance pea
in N1(v) relative to their unperturbed positions. In the ca
at hand, however, as« increases, the position of the res
nance peak under discussion on the frequency scale virtu
does not change within the width of the peak. This effec
explained by the sharp dependence of the polarizability
the frequency of the laser radiation nearvnm . We shall ex-
plain this in greater detail.

As noted above, the induced resonance peak first app
when the relation~8! is satisfied. As the strength of the fie
increases further, because of the fact that whenN1(v) is
measured the magnitude of the dynamic polarizabi
changes together with the laser frequency, the resona
maximum should appear at a frequency whereuau,uamaxu
holds and which satisfies the relation

v5v01DE8/k5v02an~v! f 2«2/4k, ~9!

wherek is the number of photons required for excitation
the level andv0 is the frequency corresponding to this exc
tation. Specifically, this happens atk53 and v0
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58568 cm21 for the 5d6p 3P1
0 level. In Eq.~9! the pertur-

bation of the ground state of the Ba atom was once ag
neglected.

We note that in the case of excitation of the sta
5d6p 3P1

0 undergoing a shift, we haveDE8,DE because of
the sign of the dynamic polarizability~as noted above,DE is
the detuning at which the induced resonance peak first
pears!, i.e., in contrast to the conventional manifestation
the Stark effect, in the present case the detuning should
crease and not increase with increasing«. However, on ac-
count of the sharp frequency dependence ofan(v) the value
of DE8 will not differ much fromDE as« varies over a large
range.

To confirm this, we shall solve Eq.~9! for v. For this,
we replacean(v) in this equation by the real part of th
dynamic polarizability, consisting only of the resonance te
~5!. Once again, we setv2vnm.G/2 for frequencies nea
the frequency corresponding to a single-photon transiti
After manipulations we obtain the following frequency d
pendence of the dynamic polarizability:

an~v!5
C

2~v2vnm!
, ~10!

whereC is a constant. We determine its value from the va
of the dynamic polarizability amax at the frequency
v58790 cm21. The result isC522.7•1028 a.u.

Using the expression obtained above foran(v), we find
that the equation~9! for the frequency at which a maximum
should as a function of« becomes

~v2v0!~v2vnm!1C8«250, ~11!

whereC85C f2/8k. The solution of this equation forv, sat-
isfying the conditionv2vnm;Gm/2, has the form

v5
vnm1v0

2
1A~vnm2v0!2

4
2C8«2. ~12!

Estimates show that under our experimental conditio
C8«2!(vnm2v0)2/4. Hence we find that the frequencyv at
which an induced resonance peak should appear is virtu
independent of the field strength for«.«0 andv.vnm .

Thus, although the formulas employed above are s
stantially simplified, they nonetheless describe the obser
effect well.

Note that the change in frequencyv can be observed in
principle, but only for a large change in«. Thus, in accor-
dance with Eq.~12!, in order for the frequencyv to change
relative tovnm by an amount of the order of the width of th
spectrum (.5 cm21), « must increase to«53.5•108 V/cm.

However, saturation of the ionization process preve
the observation of such a change in the frequencyv. It is
evident that the frequencyv will change with increasing«
until « equals the value«s corresponding to the onset o
ionization saturation. As« increases further,v will no longer
change, since on account of ionization saturation, when
field intensity reaches values«.«s there will no longer be
any neutral atoms in the interaction region. Thus, the eff
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tive value ofF with «.«s cannot increase, but instead r
mains equal to Fs5 f «s . We note that in our case
«s55.5•106 V/cm.

Note that that appearance of ionization saturation sho
also result in suppression of the induced peak above. Th
explained by the fact that on account of the spatial nonu
formity of the distribution of the laser radiation in the inte
action region, as« increases («.«0), the volume where the
effective fieldFs5 f «s is localized will occupy a smaller an
smaller part compared with the total volume where ioni
tion of atoms occurs. For this reason, as« increases unde
saturation conditions the amplitude of the induced pe
should decrease and the peak should vanish.

Thus, analysis shows that a resonance peak of the na
discussed above should appear for«0,«,«s , and on ac-
count of the sharp frequency dependence of the dyna
polarizability it should appear only near the frequencyvnm .
This picture is observed in our experiment.

We note that besides the single-photon transit
5d6p 3P1

0→6p2 3P0 discussed above, another series
single-photon transitions of the same character between
excited states of the Ba atom can appear in the experime
region of the spectrum. However, the peaks correspondin
these transitions are absent in the frequency depend
N1(v) presented in Fig. 1. This fact can be explained
follows.

As follows from the analysis presented above, the
pearance of such peaks depends on the ratio of different
tors: the magnitudes of the detuningDE for multiphoton
excitation of the levels; the magnitudes of the dynamic
larizabilities of the interacting levels; the multiphoton exc
tation probabilities of these states; and the values of«s at
which ionization saturation starts.

It is obvious that as« increases, the peaks for which th
smallest detuning for multiphoton excitation or the larg
dynamic polarizability of the interacting levels occurs shou
appear first. The single-photon transitions that can occu
our experimental region of the spectrum with small detu
ings DE are presented in Table II. According to this tab
the detuning for the transition 5d6p 3P1

0→6p2 1S0

(DE5294 cm21), which should occur at the frequenc
vnm58666 cm21, is smaller than the detuning for the tra
sition 5d6p 3P1

0→6p2 3P0 discussed above. The corre
sponding excitation scheme is presented in Fig. 3b. The
sence of a corresponding induced peak in the curveN1(v)
presented in Fig. 1 shows that the maximum dynamic po
izabilities of the levels corresponding to this transition a
much smaller than the dynamic polarizabilities of the lev
corresponding to the transition 5d6p 3P1

0→6p2 3P0 .

TABLE II. Single-photon transitions between excited states of the Ba a
which can be realized in the region of the spectrum 8400– 9000 cm21.

v2 , cm21 Transition E, cm21

8528 5d6p 1F3
0→6p2 1D2 1232

8666 5d6p 3P1
0→6p2 1S0 294

8788 5d6p 3P1
0→6p2 3P0 664

8846 5d6p 3D3
0→5d7s 1D2 1588
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If this assumption is correct, then the correspond
peak should appear at values of« higher than those corre
sponding to Fig. 1b. For this reason, we searched for suc
peak for«.4•106 V/cm. The results are presented in Fig.
As follows from this figure, such a peak does appear in
frequency dependenceN1(v) under the indicated condi
tions.

Unfortunately, detailed investigations of the behavior
this peak as a function of«, similar to those performed fo
the peak described above, could not be performed bec
for large« this peak merges with a neighboring peak.

It is evident from Fig. 5 that, as discussed above, t
peak is likewise shifted somewhat relative to the frequen
indicated in Table II for the single-photon transitio
5d6p 3P1

0→6p2 1S0 . As follows from Fig. 1c, the amplitude
of the peak due to four-photon excitation of the 6p2 1S0 state
is larger than the amplitude of the peak due to three-pho
excitation of the 5d6p 3P1

0 state. This implies that the prob
ability of four-photon excitation of the 6p2 1S0 state is higher
than that of three-photon excitation of the 5d6p 3P1

0 state.
For this reason, the appearance of the peak in questio
explained by four-photon excitation of the shifted 6p2 1S0

state.
The results presented in Fig. 5 make it possible to e

mate, as was done for the 5d6p 3P1
0 level, the maximum

magnitude of the negative dynamic polarizability of th
6p2 1S0 level at frequencies near 8666 cm21. An estimate
givesamax527•103 a.u. This value is much less in magn
tude thanamax for the 5d6p 3P1

0 level. This is because in the
present case the transition whose matrix element makes
largest contribution toa is a triplet–singlet transition, while

FIG. 5. Yield of Ba1 ions near the laser frequency corresponding to
single-photon transition 5d6p 3P1

0→6s2 1S0 . The vertical dashed line
marks the frequency corresponding to this transition. The measurem
were performed for the laser electric field intensity«54.5•105 V/cm.
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in the case discussed above it is a triplet–triplet transiti
Naturally, the first matrix element is much smaller than t
second one.

The dynamic polarizability of the same 6p2 1S0 state was
measured in Ref. 5 at a frequency corresponding to fo
photon excitation of the state (v058592 cm21). The results
of Ref. 5 implya523.4•1023 a.u. As one can see, for th
6p2 1S0 state a small change in the laser frequency also p
duces a sharp change in the value ofa.

As far as the other single-photon transitions presente
Table II are concerned, according to what we have s
above the corresponding peaks in the frequency depend
N1(v) should appear at higher values of«. However, de-
tailed investigations could not be performed in this ca
since for large values of« other broadened peaks, which a
due to the conventional multiphoton excitation of the stat
are localized at the corresponding frequencies. At the s
time, we recall that, as was shown above, ionization sat
tion strongly affects the appearance of peaks of this ki
which correspond to single-photon transitions for whichDE
is large. Such peaks should not appear in cases when«.«s .

Let us now consider the frequency dependenceN1(v)
presented in Fig. 1b. As follows from the analysis presen
above, in this dependence two resonance peaks correspo
three-photon excitation of the same 5d6p 3P1

0 state. One of
these peaks lies near the frequency corresponding to the
ventional three-photon excitation of this sta
(v058568 cm21). As shown in Ref. 5, the behavior of thi
peak with increasing« is conventional for the quadratic Star
effect under conditions of multiphoton ionization: The sh
and width are quadratic functions of«.

The second peak lies near the frequency correspon
to a single-photon transition from the 5d6p 3P1

0 state into
the higher-energy 6p2 3P0 state (vnm58788 cm21). As one
can see, this frequency differs substantially~by 664 cm21!
from the frequency corresponding to the conventional thr
photon excitation of the 5d6p 3P1

0 state. The appearance o
this peak can be explained by the excitation of the stron
Stark-shifted 5d6p 3P1

0 state. The strong shift in this case
due to the large dynamic polarizability of this state. Its b
havior with increasing« ~in contrast to the quadratic« de-
pendence of the shift of the peak! is explained by the sharp
dependence of the polarizability on the frequency of the la
radiation.

A similar pattern also obtains for the above-discuss
four-photon excitation of the 6p2 1S0 state. In this case, two
resonance peaks are likewise present in the frequency de
denceN1(v): one peak near the frequency corresponding
conventional four-photon excitation of the sta
(v058592 cm21) and the other, Stark-induced, peak ne
the frequency corresponding to a one-photon transition fr
this level to the lower-lying 5p6p 3P1

0 level
(vnm58692 cm21).

We note that in the general case more than two indu
peaks can correspond to the same state. However, thei
pearance is determined by the relations discussed abov
tween the following quantities characterizing the atom be
investigated and the laser radiation: the magnitude of
detuning DE for multiphoton excitation of this state; th
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magnitude of the dynamic polarizability and the probabil
of multiphoton excitation of this state; and the value of«s at
which ionization saturation first appears.

3. CONCLUSIONS

In the present work the influence of the Stark effect
multiphoton ionization of atoms under conditions when t
dynamic polarizability is strongly frequency dependent w
investigated. It was found that for some values of the elec
field intensity this influence results in the appearance of
duced resonance peaks in the frequency dependence o
ion yield near frequencies corresponding to single-pho
transitions between the excited states. These frequencies
be substantially different from the frequencies correspond
to conventional multiphoton excitation of these states fr
the ground state of the atoms. The behavior of these pe
differs substantially from that of the typical Stark effect—th
dependence of their shift on the field strength is far fro
quadratic~in the case investigated the shift does not depe
strongly on«!. The appearance of such peaks depends on
magnitudes of the dynamic polarizabilities of the levels, t
multiphoton excitation probabilities of the levels, and t
field strengths at which saturation of the multiphoton ioniz
tion process first appears.

When the above-noted excitation of one or another s
occurs, two and more resonance peaks can appear in
frequency dependenceN1(v). One of them appears near th
frequency corresponding to the conventional multiphoton
citation of this state from the ground state and the oth
appear near the frequencies corresponding to single-ph
transitions from this state into other states.

In the present work these results were obtained for fi
photon ionization of the Ba atoms. We obtained similar
sults earlier with six-photon ionization of the Sr atom.7 In
this case, likewise for definite values of«, a resonance pea
appears in the frequency dependenceN1(v) at a frequency
that corresponds not to multiphoton excitation of unp
turbed Sr states from the ground state but rather to a o
photon transition between excited states.

These facts show that induced peaks of the nature
scribed above characteristically appear when an atom in
acts with laser radiation whose frequency equals the frequ
cies corresponding to transitions between excited states.

Note that this behavior of the Stark effect is characte
tic of the process of multiphoton ionization of atoms by o
laser beam, i.e., the exciting field and probe field~which
ionizes the atoms! are one and the same. When these fie
are different, however, this effect will arise conventional
The position of the resonance peaks in the curves of the
yield versus the frequency of the probe radiation should b
quadratic function of the field intensity of the perturbing r
diation.

We wish to expression our sincere appreciation to N.
Delone for his steadfast interest in these investigations.
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Self-action of intense electromagnetic radiation in an electron–positron vacuum
N. N. Rozanov
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An analysis is done of the effects of self-action of intense coherent electromagnetic radiation in
an electron–positron vacuum that is in homogeneous electric and magnetic fields. A
modified version of the Heisenberg–Euler theory, in which the Lagrangian incorporates terms
with field derivatives, is used to take into account vacuum dispersion. The nonphysical
branch of the solutions of the dispersion equation is excluded by a transition to a quasioptical
equation for the slowly varying field envelope, an equation that describes the propagation
of radiation with allowance for diffraction, spatial–temporal dispersion, and vacuum nonlinearity.
The existence of dark solitons~with an intensity gap! in the vacuum is shown to be present.
Finally, self-focusing of radiation in a vacuum is demonstrated and the critical self-focusing power
is determined. ©1998 American Institute of Physics.@S1063-7761~98!00902-0#
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1. INTRODUCTION

Vacuum polarization in strong electromagnetic fields d
stroys the linearity of the Maxwell equations.1 This is re-
flected in many nonlinear optics phenomena, which can
observed in astrophysical studies2–6 and in laboratory experi-
ments involving the use of powerful lasers.7–9 The
Heisenberg–Euler theory of this effect leads to Maxw
equations that coincide in form with the equations of nonl
ear electrodynamics of continuous media in the absenc
dispersion.1 In this way the vacuum is interpreted as a tran
parent medium with a weak nonresonant nonlinearity. M
precisely, the dispersion is weak far from a resonance
radiation with characteristic frequenciesv!vc , where
vc5mc2/2\ ~m is the electron mass, andc is the speed of
light! The absorption of radiation in the vacuum correspo
ing to electron–positron pair production is exponentially lo
in fields whose strength is below the critical valu
E!Ec5m2c3/e\, wheree is the electron charge.

However, the locally weak nonlinearity and dispersi
effects can build up along the path of propagation of
radiation. This justifies the importance of taking such effe
into account. To incorporate even the weakest dispersion
the picture, we must step outside the framework of
Heisenberg–Euler theory, which was developed for st
homogeneous fields. This can be done by introducing te
that contain field derivatives into the Lagrangian.10,11But, as
it can easily be shown~see Ref. 12 and the discussion of Eq
~~6!–~10! below!, even with the weakest field the dispersio
relation acquires new nonphysical branches. The goal of
present paper is to derive and analyze a quasioptical equ
for the field envelope that is free of such difficulties~the
slowly varying field approximation!. The new equation al-
lows for the effects of weak nonlinearity and dispersion
the vacuum, which makes it possible to study a broad ra
of nonlinear-optics phenomena, such as self-focusing, s
tons, and stabilization of shock waves. A brief discussion
2841063-7761/98/86(2)/5/$15.00
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the dispersion spread of pulses of weak radiation in
vacuum can be found in Ref. 12. As far as we know, t
literature contains no studies of self-action effects in a d
persive vacuum.

2. GENERAL FORMULAS

Below we will use a system of units in which the spe
of light c is equal to unity and so is Planck’s constant,\51,
while the square of the electron chargee gives the fine struc-
ture constant,e251/137. We start with the electromagneti
field Lagrangian of the type

L5L01LHE1L8. ~1!

HereL052(1/16p)FikFik is the Lagrangian of the classica
electromagnetic field; it is quadratic in the electromagne
field tensorFik ~Ref. 13; here we use the real form of th
tensor!. The termLHE represents the polarization correctio
in the Heisenberg–Euler theory~it contains higher powers o
Fik ; see Ref. 1!. Finally, L8 is the polarization correction
term ~found in Ref. 10!, which contains derivatives of the
electromagnetic field tensor. In an approximation that is lo
est in the powers of the field and derivatives we can writ

LHE
~4!5

e4

360p2m4 ~4F217G2!, ~2!

L85g@2~] iFk
i !~]nFnk!1FikhFik#, ~3!

whereg5e2/360pm2, h5]2/]t22D is the d’Alembertian,
with D the Laplace operator, andF and G stand for the
following field invariants:

F5 1
2~B22E2!, G5E–B, ~4!

with E and B the electric and magnetic fields. Such a L
grangian can be used if

v!m, k!m, E!Ec , ~5!
© 1998 American Institute of Physics
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where v and k are the characteristic frequency and wa
vector of the radiation, andEc5m2/e is the critical field
strength at which electron–positron pair production is s
possible.

The first pair of Maxwell equations gives the relatio
ship between the electric and magnetic fieldsE and B and
the potentials:

div B50, curl E52
]B

]t
. ~6!

The second pair can be found by varying the action with
Lagrangian~1!, which means we can write this pair in th
common form

curl H5
]D

]t
, div D50, ~7!

where

D5E14pP, H5B24pM , ~8!

with P5](LHE1L8)/]E andM5](LHE1L8)/]H the elec-
tric and magnetic polarization vectors. Here, however, th
quantities are linked to the field strength nonlocally, in co
trast to the Heisenberg–Euler theory, in which there is
dispersion.1 In the lowest approximation in dispersion an
nonlinearity we have

P5PHE
~3!26ghE, H5HHE

~3!16ghB, ~9!

PHE
~3!5

e4

180p2m4 ~24FE17GB!,
~10!

MHE
~3!5

e4

180p2m4 ~24FB17GE!.

The Maxwell equations~6! and ~7! in conjunction with
the constitutive equations~8!–~10! form a closed system o
equations describing the nonlinear and dispersion effect
the propagation of electromagnetic radiation in an electro
positron vacuum, provided that conditions~5! are met. Note
that in accordance with~9! dispersion is both spatial an
temporal and is characterized by a single constantg. In view
of the first two inequalities in~5!, dispersion must be weak
Ignoring this requirement leads to the following difficult
When we are dealing with extremely weak field
E!(v/m)Ec , in the expressions~9! for the polarization vec-
tors we could ignore the terms that are nonlinear in the fi
strength, PHE

(3) , HHE
(3)→0, and leave only the dispersio

terms. But, in accordance with the wave equation, in addit
to the ordinary branchk25v2 there would then appear a ne
branch of the dispersion with no physical meaning. Cor
sponding to this branch are rapid spatial–temporal variati
of the field that do not meet the conditions~5!.

As in the Heisenberg–Euler theory, a plane wave is s
a solution of the reduced equations, i.e., it does not pola
the vacuum. Although formally the additional~‘‘disper-
sive’’! terms in~9! are linear in the field, they disappear
the case of weak fields satisfying the ordinary dispers
relation. Vacuum dispersion manifests itself when the cla
cal dispersion relationk25v2 is violated. This can be
achieved by various means: due to the nonlinearity in
l
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interaction of several plane waves~crossed light beams!,7–9

in the presence of a rarefied medium~plasma!,14 etc. Below
we consider the simplest possible variant of propagation
electromagnetic radiation against the background of str
static homogeneous electric and magnetic fields that vio
the above dispersion relation.

3. WEAK RADIATION AGAINST THE BACKGROUND OF
STATIC FIELDS

Suppose that the field is a mixture of static electric a
magnetic fields~labeled by the subscript 0! and a beam/pulse
of relatively high-frequency electromagnetic radiatio
~primed quantities!:

E5E01E8, B5B01B8. ~11!

In this section we assume that the high-frequency radiatio
weak and ignore the terms that are nonlinear inE8 andB8 in
the expressions for the polarization vectors:

D5D01D8, H5H01H8. ~12!

Weak radiation can be represented by a superposition
weak plane waves with a spatial–temporal dependence o
form

E85E1 exp@ i ~k–r2vt !#, ~13!

with similar expressions forB8, D8, and H8. For an indi-
vidual plane wave characterized by a wave vectork and
frequencyv the Maxwell equations reduce to

k3E85vB8, k3H852vD8. ~14!

The constitutive equations, which expressD8 and H8 in
terms ofE8 and B8, can be obtained by linearizing the ex
pressions~9! and~10! in E8 andB8. These equations readil
yield dispersion relations between the wave vectork and
frequencyv. External static fields lead to vacuum aniso
ropy, which make the general relationships cumbersome
simplify matters, we consider the case common in the op
of uniaxial crystals: the presence of only a static magne
field (E050). Then the constitutive equations become

D85~12b!E817g~E8–B0!B0 ,
~15!

H85~12b!B824g~B8–B0!B0 ,

where

b52g124pg~k22v2!, g5
e4

45pm4 . ~16!

This corresponds to tensors of electric and magnetic per
tivity of the vacuum, i.e.,

Di85e ikEk8 , Hi85m ikBk8 , ~17!

of the form

e ik512b17gB0iB0k , m ik512b24gB0iB0k . ~18!

Spatial–temporal dispersion manifests itself in the d
pendence ofb on the frequencyv and the wave numberk. If
this dependence is ignored, the result coincides with the
in Ref. 1 ~provided that the error in Eq.~130.4! in Ref. 1 is
corrected!. Accordingly, there is no vacuum anisotropy an
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dispersion in an external field ifB8–B050 and at the same
time eitherE8–B050 or k3B050. In all other cases there i
vacuum anisotropy and dispersion. A convenient way to
scribe these phenomena is to select for the two indepen
polarization the linear polarizations in which the vectorB8 is
perpendicular to the plane containingk andB0 ~labeled'! or
in which it lies in that plane~labeledi!. Introducing a small
deviation of the refractive index from unity,dn, calculated at
a fixed polarization in the absence of dispersion, we find t

k

v
511dn148pgv2dn2. ~19!

In the lowest approximation in the nonlinearity, the expre
sion for dn for the two polarization states mentioned earl
has the form1

dn5KgB0
2 sin2 u, K'5 7

2, K i52, ~20!

whereu is the angle betweenk andB0 .
Equation~19! clearly shows that the wave number is

nonlinear function of frequency, with the nonlinearity coe
ficient being in turn quadratic in the nonlinear shiftdn of the
refractive index. Accordingly, for the group velocityvg of a
pulse of electromagnetic radiation we have

1

vg
5

dk

dv
511dn1144pgv2dn2. ~21!

The spread of pulses is characterized by the quadratic dis
sion parameter15

D25
d2k

dv2 5288pgvdn2. ~22!

The inequalityD2.0 corresponds to normal~in contrast to
anomalous! dispersion, which is natural due to the fact th
the system is far from resonance (v!vc). Here the charac-
teristic length of spread of a pulse with an initial lengthtp is

Ldisp5
tp

2

D2
. ~23!

We see that vacuum dispersion manifests itself most viv
when the high-frequency radiation is in the form of sh
pulses.

4. SELF-ACTION OF RADIATION

Dispersion is important in various nonlinear optics e
fects in vacuum, including its effect on the probability of
photon decaying into two photons in an external field,1 a
process that occurs when synchronism conditions are me~in
the terminology used in nonlinear optics this is called pa
metric decay of high-frequency radiation16!. Below we study
the lowest-threshold phenomena of self-action of radiation
a vacuum that are possible in the presence of dispersion
us take the simplest variant of the polarization structure
the radiation. We send thez axis along the direction of pref
erable propagation of the high-frequency radiation and
sume that the electric strength vector is directed appr
mately along thex axis ~unit vector ex! and the magnetic
strength vector, along they axis ~unit vectorey!. When both
-
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static fields are present, the electric~vector E05E0ex! and
the magnetic~vector B05B0ey!, Eqs. ~19!, ~21!, and ~22!
retain their form, but instead of~20! we have12

dn52g~E02B0!2. ~24!

Now, in contrast to Sec. 3, we take into account not only
linear terms but also the lowest-order nonlinear~cubic! terms
in the alternating fields. Here we employ the standard
proximation of nonlinear optics, the approximation of slow
varying amplitudes, or the quasioptical equation method16

i.e., we assume that the envelopeE1 of the alternating field
changes little in the course of approximately one period a
over distances of the order of one wavelength of the hi
frequency vibrations. To this end we write the strength of
alternating field in the form

E85 1
2E1 exp@ iv~z2t !#1c.c. ~25!

If we ignore the nonresonant terms~which do not meet
the synchronism conditions!, we arrive at the following qua-
sioptical equation:

]E1

]z
1

1

vg

]E1

]t
1

1

2iv
D'E11 i

D2

2

]2E1

]t2 2 ivn2uE1u2E150,

~26!

where

D'5
]2

]x2 1
]2

]y2 , n25
e4

360pm4 dn2. ~27!

The nonlinearity coefficientn2 is positive, which corre-
sponds to self-focusing~in contrast to defocusing!. Note that
in the given approximation the nonlinearity coefficient
frequency-independent, which means that there is no non
earity dispersion.

The quasioptical equation~26! describes the effects o
diffraction, dispersion, and nonlinearity of relatively low
frequency electromagnetic radiation in vacuum. There is r
son to study the manifestations of these factors separa
using the analogy between Eq.~26! and the quasioptica
equation for an ‘‘ordinary’’ Kerr medium.15–18 What is im-
portant here is that the dispersion and nonlinearity coe
cients have the same sign~D2.0 andn2.0!.

We start with the case of continuous or quasicontinuo
radiation~the pulse lengthtp is so large that dispersion dis
tortions along the lengthL of the path have no effect
L!Ldisp!. Then in ~26! we can ignore the term containin
D2 . If we shift to a reference frame that moves with a v
locity equal to that of the group velocity of the radiation,vg ,
with t replaced by

t5t2z/vg , ~28!

Eq. ~26! transforms into the following nonlinear Schro¨dinger
equation:

iv
]E1

]z
1

1

2
D'E11v2n2uE1u2E150. ~29!

This equation is well known from the literature~see Refs. 16
and 17!. It describes the balance between the diffracti
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spread of a beam of light and the beam’s nonlinear collap
i.e., the self-focusing and collapse in a Kerr medium of
diation whose power exceeds the critical valuePsf . Here

Psf5
5.763

8pn2v2 5
5.763c

8pn2k2 . ~30!

In this expression for the critical self-focusing power w
used ordinary units and the wave vectork5v/c. In terms of
these units the nonlinearity coefficientn2 is

n25
a3

475p3 S E02B0

Ec
D 4 1

Ec
2 , ~31!

wherea5e2/\c51/137 is the fine structure constant. If th
radiation power exceeds the critical value, within the fram
work of the quasioptical equation~29! the radiation become
focused, with the intensity near a nonlinear focal point te
ing to infinity ~collapse!. Actually, the intensity is not infinite
at the focal point because of factors that are not taken
account by the quasioptical equation: absorption of radia
in the vacuum due to intense electron–positron pair prod
tion ~‘‘vacuum breakdown’’!, the effect of higher-order non
linearity terms in the field’s Lagrangian, and the decrease
the width of the beam in focusing to values of order of t
radiation’s wavelength. Note that another variant of se
focusing, i.e., small-scale self-focusing, or filamentation,
which the beam is split into separate intense filaments,19 re-
quires considerably higher radiation powers (P@Psf). In ac-
cordance with~30!, the critical power decreases with increa
ing radiation frequency asv22. Even if the radiation power
is lower than the critical value, vacuum nonlinearity affec
primarily the angular divergence of the beam, with the ch
acteristic length of nonlinear distortions being

Lnl5
1

kn2Ec
2

Ec
2

uEu2
.

Another important example of self-action is related
the balance between the dispersion spread and the nonl
squeezing of radiation pulses.15 In this case, assuming tha
the path length is smaller than the characteristic length
transverse distortions of the beam, we can ignore the t
with the Laplace operator in~26! and use~28!:

i
]E1

]z
2

D2

2

]2E1

]t2 1vn2uE1u2E150. ~32!

This one-dimensional Schro¨dinger equation allows for an ex
act solution by the inverse scattering method.20 Soliton-like
solutions of Eq.~32!, in which the intensity profile of the
pulse does not change in the course of pulse propaga
play a special role. Since bothD2 and n2 are positive, this
equation has no solution of the ‘‘bright-soliton’’ type~a
pulse with zero intensities at the leading and trailing edg!.
However, Eq.~32! has solutions of the ‘‘dark-soliton’’ type
~a pulse with a constant background at the periphery and
intensity gap at the center; see, e.g., Refs. 15 and 16!:

E15A tanh~qt!exp~ iGz!. ~33!
e,
-

-

-

to
n
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The soliton parameters, i.e., the amplitudeA at the periphery,
the reciprocal pulse lengthq, and the propagation constan
G, are linked by the following relationship:

G5D2q25vn2A2. ~34!

A dark soliton can be interpreted as the propagation o
shock wave envelope whose front~the difference between
the two values of the envelope amplitude,A andA! is stabi-
lized due to dispersion. For numerical estimates it is con
nient to express the frequency and strength of the elec
magnetic field in terms of the corresponding critical valu
given above:vc/2p56.231018 Hz andEc54.431013 esu.
Then ~22! becomes

D2F s2

cmG53.3431043K2
v

vc
S B0

Ec
sin u D 4

, ~35!

and the nonlinearity coefficient~31! becomes

n2@esu#51.4310238S E02B0

Ec
D 4

. ~36!

If in accordance with the conditions~5! we put v/vc50.1
and (E02B0)/Ec50.1, we have D2510247 s2/cm and
n2510242 esu.

Thus, we have formulated quasioptical equations that
scribe the propagation of narrow and quasimonochrom
beams and pulses of relatively low-frequency and weak e
tromagnetic radiation~conditions ~5!! in an electron–
positron vacuum in the presence of static electric and m
netic fields. The allowance for vacuum diffractio
dispersion, and nonlinearity has made it possible, by us
the analogy with effects of self-focusing of radiation in
Kerr medium, to demonstrate the possibility of self-focusi
and the formation of dark solitons in extreme astrophysi
conditions. Such effects can also manifest themselves in
periments with ultrashort laser pulses in the crossed be
geometry.

The author is grateful to S. V. Fedorov for fruitful dis
cussions. The work was sponsored by the Russian S
Committee for Higher Education~Grant No. 95-0-5.5-74 for
research in the field of basic science!.
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Selective reflection of resonance radiation from excited media
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According to quantum electrodynamics, the cross section for resonant scattering of radiation on
an aggregate of excited atoms can be written as a sum of positive definite terms. This
type of structure is not consistent with the Fresnel formulas for the reflection coefficient of
radiation from thermally excited media. The difference shows up on a macroscopic level and
indicates that semiclassical radiation theory cannot be used. A study of the correlation
between elastic scattering and stimulated emission processes clarifies the reason for the
discrepancies. The resulting singularities require summing of Feynman diagrams which appear
beginning in the sixth order of perturbation theory. A lower bound estimate for the reflection
coefficient from a plane layer is given, including processes which violate the statistics of radiation.
The contribution of stimulated emission processes caused by the initially scattered photon
are examined specifically. An experiment is proposed which would settle the choice of theories.
© 1998 American Institute of Physics.@S1063-7761~98!01002-6#
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1. INTRODUCTION

Research on the kinetics of intense electromagn
fields in matter has required a generalization of transp
theory for resonance radiation1–3 to the case of excited me
dia. This kind of generalization has been carried out in
number of papers.4–10 The most general results have be
obtained based on a method employing quantum mecha
kinetic Green functions.9–11 While this generalization is en
tirely suitable for uniform or quasiuniform media, when i
homogeneities induce reflection effects or when the bou
ary of the radiation diffusion region is taken into accou
new unaccounted-for physical phenomena arise.12,13 In fact,
the derivation of a closed system of equations in the stand
quantum mechanical Green function technique require
discontinuity in the photon–photon correlation function
which raises doubt as to whether stimulated emission p
cesses have been correctly taken into account. Letâkl be the
photon annihilation operator in the mode defined by
wave vectork and polarizationl. Here we are concerne
with a correct accounting for the correlato

^âkl
1 âkl

1 âklâkl& , where all the indices~k,l! are the same
In the standard technique for one-particle Green functio
correlators of this type are neglected, citing their small s
tistical weight.14 In thermodynamic equilibrium in the ther
modynamic limit, it can be shown that this neglect
justified.14 In calculating kinetic phenomena, it must b
borne in mind that a description of each stimulated emiss
event resulting from a resonance process will involve
appearance of a Diracd-function. Thus, these terms are si
gular and their neglect becomes dubious. The use of pe
bation theory as a whole is dubious for the same reason

The necessity of a correct accounting for the photo
photon correlators shows up distinctly in the phenomena
selective reflection of resonance radiation from vacuu
excited medium interfaces. This type of boundary can
2891063-7761/98/86(2)/10/$15.00
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regarded as a limiting case of spatial inhomogeneity. T
selective reflection of resonance radiation from excited m
dia has been studied both experimentally15–18 and
theoretically.18–24 Despite some optimistic claims,18 there is
no agreement between theory and experiment and e
among different theoretical calculations. Most of the calc
lations have been based on semiclassical radiation the
operating with an unquantized electromagnetic field. In t
case, the calculations yield the Fresnel formulas for the
flection coefficientR when there is no inverted population i
the medium. At low concentrations of scattering particl
the coefficientR, which is determined by the refractive inde
of the medium, is proportional25 to the square of the differ-
ence of the concentrations of the scatterers in the ground
excited states, i.e.,R}(n12n2)2. The same result follows
from quantum electrodynamics when there is a discontinu
in the photon–photon correlators. It has been shown12 that a
proper quantum electrodynamical treatment of these corr
tors for resonance radiation changes the result fundam
tally. It turns out that the reflection coefficient cannot
expressed in terms of the refractive index of the medium,
the estimated lower bound is proportional to the total den
of scattering atoms, i.e.R}(n11n2)2.

In this paper our goal is to find the mechanism for th
behavior, which at first glance seems so unusual, by stud
the elementary scattering and stimulated emission event
well as the correlation between them. Our goal is to clar
the structure of the singular terms and point out the rea
that perturbation theory is unacceptable. Thus, we are c
cerned with particular properties of the diffusion of res
nance radiation in excited media. The mathematical prob
is essentially how to sum the infinite series. It is perfec
clear that under steady state conditions, the scattering
resonance radiation cannot be studied using perturba
theory. Usually, in accordance with the Weisskopf–Wign
theory,26 it is assumed that the difficulty is removed whe
© 1998 American Institute of Physics
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the finite width of the energy levels of the atoms is taken i
account. In the following it will be explained why this pro
cedure for summing the Feynman diagrams is not adeq
for the theory of resonance radiation transport in excited m
dia, and another consistent procedure for summing the
grams will be pointed out.

2. QUALITATIVE ANALYSIS OF THE PROBLEM

Some properties of the reflection coefficient can be
tained from general considerations. We denote the eig
functions of the atoms in a reflecting medium byw i . We
take note of the adiabatic hypothesis27 and assume that th
atoms were in statew0 before scattering. The complete wav
function of the medium and the electromagnetic fieldC can
be expanded inw i :

C5 f 0w01(
iÞ0

f iw i . ~1!

If we are interested in the density matrixr of the electromag-
netic field, then it is necessary to form a bilinear constr
from Eq. ~1! which, in turn, must be summed over the arg
ments of the atoms in the medium. We find

r5r~c!1r~n!,

where

r~c!5Tra f 0f 0* , r~n!5Tra (
iÞ0

f i f i* . ~2!

The matrixr (c) describes the scattered field when the ato
of the medium do not change state~coherent scattering chan
nel!. The matrixr (n) corresponds to scattering processes
which the initial state of the atoms in the medium chang
~incoherent channel!. The incoherent channel includes spo
taneous emission and Raman scattering, as well as stimu
atomic emission. Note that stimulated emission and cohe
scattering processes are described by different channels
rigorous quantum mechanical theory. Since the differ
channels correspond to different final-state wave functio
they do not interfere with one another.

Suppose we are interested in the average occupa
numbers of phonons in mode~k,l! owing to scattering, i.e.,

^Nkl&5Trph N̂klr.

Here a sum is taken over the arguments of the photon fi
and

N̂kl5âkl
1 âkl .

According to Eq.~2!, we have

^Nkl&5^Nkl&~c!1^Nkl&~n!,

with

^Nkl&~c!5Trph Trauâkl f 0u2.0,

^Nkl&~n!5Trph Tra (
iÞ0

uâkl f i u2.0.

In a study24 of the coherent channel for reflection of photo
from an interface boundary, it is shown that^Nkl& (c)
o

te
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;(n11n2)2, implying that this is an estimated lower boun
for R, since^Nkl&n.0. This statement is consistent with th
above analysis, but not the semiclassical theory of radiat
Furthermore, let us expand the coefficientsf i in eigenfunc-
tions of the photon number operatorN̂kl :

f i5(
N

f iNuN&.

Now it is obvious that

^Nkl&~n!5Trph Tra (
iN

Nu f iNu2.0. ~3!

Thus, the contribution of the incoherent channel toR can be
represented as an expansion in the number of scattered
tons, which is analogous to the expansion in the Tam
Dankov method.28 Note that all terms in the expansion~3!
must be positive.

3. SCATTERING OF LIGHT BY TWO ATOMS

We now analyze the situation from the standpoint
perturbation theory. We consider resonant scattering by
atoms. Let an unperturbed atom lie at the pointR1 and an
excited atom, atR2 . Of course, under steady state cond
tions, perturbation theory based on theŜ matrix is not appli-
cable here. We proceed as follows: we track the6 i0 terms
in the resonance denominators that appear owing to the a
batic hypothesis. Replacing these terms by finite express
when the energy widthsg of the atoms are taken into accou
removes the resonance divergences. This kind of repla
ment takes place without a change in the signs of thei0,
which would violate causality. Thus, thei0 terms make it
possible to foresee the general structure of the result in
more complete theory.

Let two atoms with a single valence electron apiece
teract with a coherent quantized electromagnetic field. T
interaction is assumed to be quasiresonant, w
uk2v21u!k1v21, which makes it possible to neglect th
square of the vector potential in the total Hamiltonian of t
system. Herev21 denotes the frequency of the resonant tra
sition in the atoms, and\5c51. In the second quantizatio
representation, we take the Hamiltonian of the system to

Ĥ5Ĥ01Ĥ8,

Ĥ05(
j

« j8b̂ j
1b̂ j1(

j
« j b̂ j

1b̂ j1(
kl

kS âkl
1 âkl1

1

2D ,

Ĥ852
e

m E ĉ1~r !p̂•Â~r !ĉ~r ! dr2
e

m

3E ŵ1~r !p̂•Â~r !ŵ~r !dr .

Here « j8 and « j are the allowed energies of the first an
second atoms, andb̂ j (b̂ j

1) and b̂ j (b̂ j
1) are the annihilation

~creation! operators of the valence electron states cor
sponding to these energy levels. We neglect spin and
change effects. Under these conditions, for simplicity,
operators can be regarded as Bose-type.
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FIG. 1. Feynman diagrams for the cohere
~a! and incoherent~b! scattering channels.
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The field operators for the first and second atoms co
spond to the expressions

ĉ~r !5(
j

c j~r2R1!b̂ j , ŵ~r !5(
j

w j~r2R2!b̂ j ,

where c j and w j are the wave functions of the electron
states in the atoms. The electromagnetic field operator is

Â~r !5(
kl

ek
l

A2kV
~ âkleik•r1âkl

1 e2 ik•r !,

whereek
l are the unit vectors of the linear polarization a

V5LxLyLz is the quantization volume.
In the Schro¨dinger picture, the wave equation of the sy

tem has the form

i
]C

]t
5~Ĥ01Ĥ8!C.

The transition to the interaction picture is carried out in t
standard way using the operator exp(iĤ0t), whereupon

i
]C

]t
5Ĥ8C

and

C~ t !5Ŝ~ t,2`!C0,

Ŝ~ t,2`!5T̂ expH 2 i E
2`

t

Ĥ8~ t !dtJ .

For a preliminary analysis we limit ourselves to thir
order perturbation theory:

Ŝ511Ŝ~1!1Ŝ~2!1Ŝ~3!.

The operatorsŜ(1) andŜ(3) can show up only when describ
ing the incoherent scattering channel. If we exclude Ram
scattering and two-photon absorption~emission!, then the
operatorŜ(2) will only describe coherent scattering. Thus,

^Nkl&5^Nkl&~c!1^Nkl&~n!,

^Nkl&~c!5^Ŝ~2!N̂klŜ~2!&, ~4!

^Nkl&~n!5^Ŝ~1!1Ŝ~3!uN̂kluŜ~1!1Ŝ~3!&.

Averaging is over the initial state of the system. As might
expected, both terms on the right hand side of the firs
Eqs.~4! are positive definite.

We begin with the coherent channel, omitting the deta
in the standard computational procedure. We merely n
that the coupling of atomic operators that arises accordin
the Feynman diagram~Fig. 1a! corresponds to the following
analytic expression:
-

-

n

e
f

s
te
to

ĉ~r ,t !ĉ1~r 8,t8!

5 i(
j
E exp@2 iE~ t2t8!#

c j~r !c j* ~r 8!

E2« j1 i0

dE

2p
.

An analogous expression corresponds to the coupling of
operatorsŵ andŵ1. It is the ‘‘1’’ sign in front of the i0 that
shows up in the final result, which has the form

^Nkl&~c!54p2UP21
l ~k!

A2kV
U2UP21

l0~k0!

A2k0V
U2

d2~k2k0!

3Uexp@ i ~k02k!•R1#

k2v211 i0
1

exp@ i ~k02k!•R2#

v212k1 i0 U2

N0 .

~5!

We have limited ourselves to a two-level approximation
the atoms, which are assumed to have identical structure

Pi j
l ~k!5

e

m E c i* ~r !p̂•ek
leik•rc j~r ! dr ;

N0 is the number of photons in the scattering mode.
The presence ofd2 in the result should not be confusing

since this kind of dependence is typical of quantum elec
dynamics, and makes it possible to calculate the probabili
of processes per unit time. Note a characteristic feature
Eq. ~5!. A term of the form sin2(k02k)•(R12R2) appears
here for nonresonant frequencies (k0Þv21). For the reso-
nance frequencies (k05v21), the dependence is differen
and a factor cos2(k02k)•(R12R2) shows up.

In the following we shall be interested in the reflectio
coefficient at the interface. A specularly reflected beam c
responds to a geometry in which (k02k)'(R12R2). It is
now obvious that for the nonresonance frequencies the re
is zero according to Eq.~5!, and that for Fresnel reflection
from an excited medium, this corresponds to the depende

^Nkl&~c!;~n12n2!2N0 , k0Þv21. ~6!

At the resonance frequencies, for the same reason, inste
Eq. ~6! it turns out that

^Nkl&~c!;~n11n2!2N0 , k05v21. ~7!

It is too early to carry out a complete analysis includi
the incoherent scattering channel. But, since the cohe
scattering channel defines a lower bound on the reflec
coefficient, and Eq.~7! divulges the existence of a reflecte
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wave even for an optically saturated medium (n15n2), it is
evident that the Fresnel formula breaks down. Thus, the
flection of resonance radiation from excited media canno
calculated using semiclassical radiation theory, which yie
the Fresnel formula.

Let us consider the incoherent channel. The te

^Ŝ(1)N̂klŜ(1)& is of no interest to us, since it describes a
sorption or stimulated emission by the atoms. Now, acco
ing to Eq.~4!, we have to calculateŜ(3) in the lowest order of
perturbation theory. The scattering process, which cont
the interference component responsible for selective refl
tion, corresponds to the Feynman diagram in Fig. 1b.
contribution to^Nkl& (n) is

^Nkl&~n!5^Ŝ~1!N̂klŜ~3!&1c.c.

58p3iUP21
l ~k!

A2kV
U2UP21

l0~k0!

A2k0V
U2

3
d2~k2k0!d~v212k!

k2v212 i0

3exp@2 i ~k02k!•~R22R1!#1c.c. ~8!

This result is remarkable in many regards. First and fo
most, its sum with the coherent channel yields

^Nkl&~c!1^Nkl&~n!54p2UP21
l ~k!

A2kV
U2UP21

l0~k0!

A2k0V
U2

3Uexp@ i ~k02k!•R1#

k2v211 i0

1
exp@ i ~k02k!•R2#

v212k2 i0 U2

N0d2~k2k0!,

~9!

which differs from Eq.~5! only in the signi0 in the second
term. This difference is crucial. Above all, Eq.~9! is a com-
plete result from fourth-order perturbation theory. When
Heisenberg picture is used in the calculations, this re
shows up immediately, since there is no separation into
herent and incoherent channels there.

This same result also follows from the semiclassi
theory of scattering. According to Eq.~9!, there is never any
scattering in the direction of the vectork corresponding to
the condition (k02k)'(R12R2). This implies that Eq.~6!,
along with the Fresnel equations, are valid at arbitrary f
quenciesk0 . This conclusion contradicts the above analys
The error lies in Eq.~8!, which yields an estimate at th
resonance frequencies of

^Nkl&~n!;2cos@~k02k!•~R12R2!#,0,

which is inconsistent with the positive definiteness of t
coherent scattering channel. Therefore, Eq.~9!, which fol-
lows from the lowest-order scattering theory, is false, alo
with Eq. ~8!. The situation is not saved by taking the fini
width of the energy levels into account, which does n
change the sign of̂Nkl& (n).
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The positive definiteness of the incoherent channel
be recovered if similar terms in the expansion of theŜ matrix
are included in the two functions of the scalar product in E
~4!. This means that systematic allowance forŜ(3) requires
that perturbation theory terms of sixth order be retained
Eq. ~4!. This implies, in turn, that the sixth-order terms a
larger in absolute value than the fourth-order result and c
tain singularities, which means that perturbation theory is
applicable on the whole. Including the finite values ofg does
not remedy the situation. Thus, with finiteg, the sixth-order
terms still contain singularities whose elimination requir
summation of infinite subsequences of Feynman diagram

It is necessary to go beyond the confines of fourth-or
perturbation theory. Even sixth-order perturbation theory
troduces qualitatively new phenomena. It is natural to be
a study of the contribution from sixth-order perturbatio
theory with an analysis of the processes that bring a sin
photon to the scattering mode. Here we encounter the sq
of the same elementŜ(3) corresponding to the Feynman dia
grams of Fig. 1b. The result is nonlinear inN0 . We shall not
examine these processes. Processes that bring two photo
the scattering mode in sixth-order perturbation theory
clude stimulated emission from an excited atom, induced
photons initially scattered by another atom. This coupling
processes is linear inN0 . Including this coupling, which
corresponds to terms of the typeu f i2u2 in Eq. ~3!, along with
the coherent channel, only improves the lower bound e
mate of the overall result forR. The physics of these pro
cesses is important for predicting the results of reflect
from media with a population inversion.

In the following, we examine the reflection of light from
media with a plane-parallel configuration. Coherent scat
ing will be taken into account, along with the two-photo
reflection processes discussed above. Two-photon reflec
is calculated by summing infinite subsequences of Feynm
diagrams.

4. REFLECTION OF LIGHT FROM A SEMI-INFINITE MEDIUM

We assume that the half-spacez.0 is filled with an
atomic gas consisting of atoms with a single valence e
tron. Radiation in the (k0 ,l0) mode is incident on the inter
face boundary. We take a Schro¨dinger equation of the form

i
]C

]t
5F Ĥa1Ĥph

2
e

m E ĉ1~r ,R!p̂•Â~r !ĉ~r,R ! dr dRGC,

where

Ĥa5(
ip

« i~p!b̂ip
1b̂ip , « i~p!5

p2

2M
1« i ,

Ĥph5(
kl

kS âkl
1 âkl1

1

2D .

« i is the energy of an atom in thei th energy state, andp and
M are its momentum and mass.b̂ip(b̂ip

1) denote the Bose
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operators for annihilation~creation! of atoms in the state
( i ,p). The gas is assumed to temperature nondegenerat
addition,

ĉ~r ,R!5(
ip

c i~r2R!
eip•R

AV
b̂ip ,

wherec i(r2R) is the wave function of thei th state of the
atom.

To calculate the reflection coefficient, we use theG-
operator method,24 which makes it possible to separate t
coherent and incoherent scattering channels. We denote
set of occupation numbers for the free electromagnetic fi
by the vectorN5..., Nkl ,... . In occupation number spac
this state corresponds to a wave function that can be wri
in the form

F0~Nuz!5)
kl

w~Nkluzkl!, ~10!

where w(Nuz) is the quantum mechanical oscillator wa
function. The desiredG-space is constructed as follows. W
introduce a creation vector&G

0 , the mathematical vacuum
into this space. LetÛ(N)(Û1(N)) be the annihilation~cre-
ation! operator for an aggregate of noninteracting photo
with the set of occupation numbersN and Û1(N)&G

0 be the
wave function of this state. These wave functions form
complete basis for expanding any wave function describ
the physical states. There is a unitary transformation betw
the basis wave vectors introduced in this way and the w
functions~10!.24 Let

F̂~z!5(
N

Û~N!F0~Nuz!.

The unitary coupling between the standard occupation n
ber space and theG-space is realized through the unita
operator24

Ô5F̂1&G
0, CG5ÔC.

In the G-space the Schro¨dinger equation takes the form

i
]CG

]t
5F Ĥa1(

N
«~N!Û1~N!Û~N!2

e

m

3E F̂1ĉ1p̂•Â~r !ĉF̂ dr dR dzGCG ,

where

«~N!5(
kl

kS Nkl1
1

2D , dz5)
kl

dzkl .

The average value of any electromagnetic field opera
K̂ can be found using the formula

^K&5E ^F̂1~z!K̂F̂~z!&G dz,

where&G5CG . Thus, the construction

r~z,z8!5^F̂1~z8!F̂~z!&G
In

the
ld

n

s

a
g
en
e

-

r

serves as the density matrix of the electromagnetic field
the medium. It can be conveniently calculated using
quantum mechanical Green function formalism24 in a form
proposed by Keldysh11 in the G-space:

D l l 8~z,t,z8,t8!52 i ^T̂cF̌l~z,t !F̌l 8
1

~z8,t8!&G

52 i ^T̂cF̃l~z,t !F̃l 8
1

~z8,t8!Ŝc&0G . ~11!

Here theF̌ are the field operators in the Heisenberg pictu

and theF̃ are the field operators in the interaction picture
theG-space. The transformation in Eq.~11! from one picture
to the other is standard.24 The subscriptl corresponds to a
time profile originating (l 51) at the pointt→2`, extend-
ing to t→`, and returning again (l 52) to t→2`. T̂c is the
chronological operator on this profile. The operatorŜc has
the form

Ŝc5T̂c expH(
l

~21! l 11
ie

m E F̃l
1c̃ l

1p̂•Â~r !

3c̃ lF̃ldz dr dR dtJ ,

c̃5(
ip

c i~r2R!
b̂ip

AV
exp@ ip•R2 i« i~p!t#,

F̃5(
N

Ũ~N!F0~Nuz!exp@2 i«~N!t#.

In the last term of Eq.~11!, the average is taken over th
initial system of the atom1field system until the interaction
between them is turned on adiabatically. In the following,
Eq. ~11! we take this to mean statistical averaging over
ensemble of systems, as well as quantum mechanical a
aging. In Eq.~11! it is possible to account explicitly for the
interaction of the gas atoms with a reservoir. The effect
the reservoir shows up through the mass operators a
broadening of the energy levels of the atoms. Then the s
of the retarded mass operator is determined by causality

We assume that the ensemble of atoms has a Gaus
distribution until it interacts with the radiation. This makes
possible to use a thermodynamic variant of Wick’s theorem14

in simplifying the average product of the operatorsc. The

product of operatorsF̃ can be simplified exactly.24 This
makes it possible to avoid a divergence of the correlators
comprise these operators, and thereby to account corre
for the stimulated emission processes of interest to us. D
gram techniques yield the following results: above all, t
function D l l 8 has the structure

D l l 85D l l 82 ir l l 8 .

To construct the desired density matrixr, it is sufficient to
know justr12, sincer5 i D12 for t5t8. The following sys-
tem of equations emerges for the matricesD l l 8 andr l l 8

24:

r125r12
~c!1r12

~n! , ~12!

r12
~c!5~11D rP̂ r !r12

0 ~11P̂ aDa!, ~13!

and
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r12
~n!52D rP̂ 12

~n!Da , D r5D r
01D r

0
P̂ rD r . ~14!

In addition,P̂ l l 8 andP̂ l l 8
(n) are the polarization operators th

arise in the Green function technique inG-space, and

D r5D11, Da52D225D r
1 ,

P̂ r5P̂ 11, P̂ a5P̂ 225P̂ r
1 .

This kind of structure in the system of equations is co
venient for further study in the spirit of the comments in S
2. According to Eq.~12!, the density matrix of the photon
subsystem breaks up into the sum of two components.
coherent componentr12

(c) describes elastic scattering pr
cesses in which the atoms of the medium return to th
initial ~including translational! quantum state. The incohere
componentr12

(n) describes processes in which the atoms
the medium change their quantum state. The following ru
for constructing Feynman diagrams can be used to calcu
the polarization operators:

1. A solid line with an arrow is identified with a facto
iGll 8

0 . For homogeneous media

Gll 8
0

5(
j j 8p

c j~r2R!c j 8
* ~r 82R8!E Gll 8

0 j j 8~p,E!

3exp@ ip•~R2R8!2 iE~ t2t8!#
dE

2pV
.

If the scattering atoms of the medium are subject to the
tion of a reservoir that broadens the atomic energy lev
then24

Gr
0 j j 8~p,E!5d j j 8~E2« j~p!1 ig j /2!21,

~15!

G12
j j 8~p,E!522p idg~E2« j~p!!Nj~p!d j j 8 ,

where

dg~E!52
1

2p i F S E1 i
g

2D 21

2S E2 i
g

2D 21G ,
and Nj (p) is the occupation number of the atomic stat
Gr5G112G12.

2. A dashed line with an arrow is identified withiD l l 8
0 .

3. A wavy line with an arrow is identified with a facto
r l l 8

0 .
4. A node, denoted by a circle in a diagram, is identifi

with a factor (21)l 11( ie/m)p̂•Â. Sometimes we denote
node in a diagram by a dot. In that case the factor (21)l 11

is omitted.
5. At each interior node, integration over allr , R, t, and

z is understood.
6. At each exterior mode, integration overr and R is

understood.

Since the productF̃F̃ vanishes, it follows that each
Feynman diagram can either not containr l l 8

0 or contain the
function r l l 8

0 to no more than the first power. For examp
the Feynman diagram in Fig. 2 corresponds to the simp
polarization operator
-
.

he

ir

f
s
te

c-
s,

,

,
st

P̂ l 1l 2
52S e

mD 2

(
n1n2

E p̂n1Ân1Gl 1l 2
0 ~X1 ,X2!D l 1l 2

0

3~21! l 211p̂n2Ân2Gl 2l 1
0 ~X2 ,X1! dr1 dr2 dR1 dR2 ,

~16!

whereX5$r ,R,t%. We restrict ourselves to a two-level ap
proximation for the atoms including degeneracy. We contr
the subscriptm for the Zeeman sublevels of their excite
state with the subscriptm for the sublevels of the ground
state. For uniform filling of the sublevels, after integrating
Eq. ~16! with respect toR1 andR2 , in accordance with Eq
~15! for a uniform infinite medium in theN-representation
we find

P̂ r~E!5(
kl

@âklar
kl~E2Ĥph!âkl

1 1âkl
1 cr

kl

3~E2Ĥph!âkl#,

where

ar
kl~E!5

p~2 j m11!g r

2vmmkV

Nm

E1vmm1 ig/2
,

~17!

cr
kl~E!5

p~2 j m11!g r

2vmmkV

Nm

E2vmm1 ig/2
.

Here we have used the sum rule

(
mm

uPmm
l ~k!u25

p~2 j m11!g r

vmm
, ~18!

where g r is the spontaneous emission probability per u
time and j m is the orbital quantum number. The Doppl
effect is left out. When boundaries are present, the polar
tion operator~16! determines the Poynting vector of the r
flected radiation in the coherent channel to lowest appro
mation in the concentration of scatterers. For a plane-para
layer of thicknessL,24

^sl&~c!5k
sin2~k02L !

4k0z
4 V

ucklk0l0~k0 ,k0!u2N0 ,

k5$k0x ,k0y ,2k0z%.

Here it is assumed that

r12
0 ~E!52pd~E2k0N0!uNk0l0

&^Nk0l0
u.

In the linear approximation the reflection coefficient
given by

FIG. 2. Feynman diagram for2 i P̂ l l 8 in the G-technique.
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R~c!5
^sl&~c!

s0 , s05
k0N0

V
, ~19!

and

cklk0l0~k1 ,k2!

5(
mm

@Pmm
l ~k!#* Pmm

l0 ~k0!S nm

k12vmm1 ig/2

1
nm

vmm2k21 ig/2D ,

where

nm5
Nm

V
, nm5

Nm

V
, g5gm1gm .

The structure of this expression is analogous to that of
~5!. In particular, for the resonance frequenciesk5vmm,

R~c!;U~nm1nm!|3
g2

g U2

,1, |5
2p

k
. ~20!

The last equality serves as a condition for applicability of
theory. For multiple scattering processes, this paramete
raised to the appropriate power. Thus, the coherent scatte
channel can be studied by the methods of perturba
theory.

We now study the contribution of the incoherent scatt
ing channel to the Poynting vector. A number of things c
be said about this channel. We rewrite the equation for
propagatorD r in the form

D r
215~D r

0!212P̂ r , ~D r
0!215 i

]

]t
2Ĥph . ~21!

We now apply the operatorsD r
21 and Da

21 to the left and
right, respectively, of Eqs.~13! and ~14!. Since the matrix
r12

0 describes the free electromagnetic field, with the aid
Eq. ~21! we find

D r
21r12

~c!5~D r
0!21r12

0 ~11P̂ aDa!50,

D r
21r12Da

2152P̂ 12
~n! .

Now we operate on the right-hand side of this last eq
tion with the operatorD r and on the left with the operato
Da . According to Eq.~14!, we have

D rD r
21r12Da

21Da5r12
~n! , ~22!

but

r12~ t,t8!5 i D12~ t,t8!5^F̌1F̌&G . ~23!

Substituting Eq.~23! into Eq. ~22! shows that

r12
~n!5^Y̌1~z8,t8!Y̌~z,t !&G ,

where

Y̌5D rD r
21F̌.

Obviously, for t5t8 the diagonal elements ofr12
(n) are posi-

tive. If we go from the variablez to the argumentsN with the
aid of the functionF0, then it turns out that
q.

e
is
ng
n

-
n
e

f

-

r12
~n!~N,t,N,t !.0.

That the diagonal elements ofr12
(c) are positive definite is

almost obvious. For the free electromagnetic field we c
write

r12
0 5x0~x0!1.

Then, according to Eq.~13!,

r12
~c!5xx1, x5~11D rP̂ r !x

0.

Now it is clear that

r12
~c!~N,t,N,t !5x~N,t !x1~N,t !.0.

If

ŝ5
1

V (
kl

kâkl
1 âkl ~24!

is the operator expression for the Poynting vector and

^s&5Tr~ ŝr12!5(
N

ŝr12~N,t,N,t !,

then from Eqs.~12!–~14! and ~24!, we find

^s&5^s&~c!1^s&~n!,

where

^s&~c!5(
kl

~s!kl
~c! , ^s&kl

~c!5(
N

Nkl

V
kr12

~c!~N,t,N,t !,

~25a!

^s&~n!5(
kl

^s&kl
~n! , ^s&kl

~n!5(
N

Nkl

V
kr12

~n!~N,t,N,t !.

~25b!

The components of the Poynting vector corresponding
the coherent and incoherent scattering channels add vec
ally. Here there are no interference phenomena. Of grea
interest is Eq.~25b!, which indicates that the component o
the Poynting vector corresponding to the incoherent chan
can be written as a sum of components over different mod
each of which, in turn, can be expanded as a sum of pos
definite components corresponding to different configu
tions N of the scattered field. Here, also, there are no int
ference terms. Thus, if we limit the sum overN in Eq. ~25b!
to only the chosen configurations, we obtain a lower bou
on the absolute value of the vector^s&kl

(n) .
All these remarks apply fully to the reflection coeffi

cient,R as well. Below, in studying the incoherent scatteri
channel we limit ourselves to reflection processes that re
in the production of two photons in the reflected wave mo
(k,l). Including only these processes makes it possible,
the one hand, to obtain an estimated lower bound on
reflection coefficientR and, on the other, to reveal the cha
acteristic behavior of the incoherent scattering channel. S
cifically, we shall have in mind processes involving the sc
tering of photons by unexcited atoms, and the subsequ
stimulated emission of atoms excited by the scattered p
tons. Their contribution toR sets in only with the sixth orde
of perturbation theory. Then, in accordance with the disc
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FIG. 3. Diagrams of processes that p
two photons in the reflection mode.
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sion of Sec. 3, here we should expect the appearanc
singularities requiring the summation of an infinite subs
quence of Feynman diagrams.

Now it is clear that in this sort of problem, the contribu
tion of infinite subsequences of Feynman diagrams wh
first term shows up only in the sixth order of perturbatio
may end up being significant. The diagrams of Fig. 3 cor
spond to this process in the Green functionG-technique. The
arrows have been omitted in the retarded and advan
Green functions, as well as inr12

0 . The sum of the expres
sions corresponding to these diagrams yields the follow
formula for the reflection coefficient:

Rkk0

ll0~n!
5

p6~2 j m11!3g r
3nmdll0

Lzvmm
3 k0

2k0z
3 sin2~k0zL !d~k0x ,kx!

3d~k0y ,ky!dg~2k2k02vmm!dG
2~k02k!

3U nm

k2vmm1 ig/2U
2

, nm!nm . ~26!

For the polarization operatorP̂ 12
(n) we have used the di-

agonal approximation, which corresponds to an infinite
thick scattering layer. Equation~26! corresponds to the sixth
order proper of perturbation theory, withdG taken to mean
the standard Diracd-function. The square of this function
characterizes precisely the singularity mentioned above
order to eliminate the singularity, we sum an infinite sub
quence of Feynman diagrams, which is denoted in Fig. 3
thick dashed lines. A thick line denotes the complete Gre
function of a scattered (k,l) photon produced by the stimu
lated emission from an excited atom~Fig. 3a!. Also possible
is a process of spontaneous emission into the (k,l) mode,
which then induces stimulated scattering of the initial fie
(k0 ,l0) ~Fig. 3b–3e!. These processes can interfere~Fig.
3f–3i!. In all cases, the Green functionD r

0 of the photon
which provokes the stimulated processes is replaced byD r .
An expression valid for an infinite medium is used forD r . In
energy space this substitution has the form
of
-

e

-

ed

g

y

In
-
y
n

D r
0→D r5

1

E2k2P̂ r~E!
,

where P̂ r(E) is the polarization operator~17! in the N-
representation when a single photon is present in the (k,l)
mode. Accordingly,dG is understood to be the expression

d r~k02k!52
1

2p i F 1

k02k2P̂ r~k0!
2

1

k02k2P̂ a~k0!
G .

For single-mode occupation withnm!nm , according to Eqs.
~17! and ~18! we have

P̂ r~k0!5cr
kl~k0!5

p~2 j m11!g r

2vmm
2

nm

k02vmm1 ig/2
.

As Eq. ~26! implies, in the reflected ray the componen
kx andky coincide with the corresponding components of t
scattered flux, as dictated by the geometry of the proble
The componentkz may differ somewhat from2k0z . The
difference depends on the lifetime of the excited atom (g21)
and lifetime of the one-photon state in the mediu

(Im P̂ r)
21. Because of the resulting nonuniqueness ofkz ,

the reflected wave acquires a distribution in frequency a
angle.

We are interested in the relative intensities of the coh
ent and incoherent channels. For the coherent channel in
case of resonance frequencies, according to Eq.~19!, we
have

R~c!5dll0

p2g r
2~2 j m11!~nm1nm!2

k0z
4 vmm

2 g2 sin2~k0zL !.

A number of situations are possible for the incoherent ch
nel. Let

uP r~k!umax
2 5Up~2 j m11!

vmm
2

g r

g
nmU2

!g2, ~27!

i.e.,

nm|3
k0g r

g2 !1.



t

he

i-
in
e-
di
is

t
ra
en

-
th
l-
le

o

e
o

at

th
ly

e
l

ig
.
ic
ta

n

ve
rs.
u-

mes
la-
in

h.

of

297JETP 86 (2), February 1998 Veklenko et al.
According to Eq.~26!, for nm!nm andk0z@k0x ,k0y we now
have

(
k

Rkk0

ll0~n!
5

4nm

nm
R~c!. ~28!

Thus, for nm!nm the contribution of the incoheren
channel can be neglected. Whennm;nm , it must be taken
into account. And if perturbation terms beginning with t
sixth order contribute toR(n), their overall result will be
proportional toe4, owing to the above-mentioned singular
ties after summation of the diagrams. Even though with
creasingnm the contribution of the incoherent channel b
comes comparable to that of the coherent channel accor
to Eq. ~28!, under real thermal excitation conditions this
scarcely possible. In fact, when the inequality~27! is satis-
fied, light that is coherently reflected from a surface a
specular angle will be lost among the diffusely reflected
diation. The specular component becomes significant wh29

nm|3
g r

r
;1.

Inclusion of the Doppler effect, which facilitates the in
equality~27!, can hardly change the situation, at least in
visible region of the spectrum. Asnm increases, the inequa
ity ~27! is violated. With the experimentally easily attainab
inequality opposite to Eq.~27!, we have

(
k

Rkk0

ll0~n!
}

nm

~2 j m11!nm
R~c!

g2

k0g rnm|3 .

Under these conditions the integrated relative contribution
two-photon processes is negligible.

5. CONCLUSION

Since the reflection coefficient in the coherent chann
R(c)}(nm1nm)2, depends only on the total concentration
scatterers, but not onnm and nm individually, we have
dR(c)/dnm50. Allowance for the incoherent channel
small nm leads to the inequality

dR

dnm
5

d

dnm
~R~c!1R~n!!5

dR~n!

dnm
>0, ~29!

i.e., to a rise in the total selective reflection coefficient as
concentration of excited scatterers increases. As this ana
has shown, under real conditions the equality in Eq.~29! is
effectively realized and the total reflection coefficient los
its linear dependence onnm . In addition, in the semiclassica
theory of radiation, we have

dR

dnm
,0, for nm,nm ,

sinceR}(nm2nm)2 in this theory.
The predictions of semiclassical radiation theory and r

orous quantum electrodynamics are compared in Fig
There is a qualitative disagreement between them, wh
does not favor the semiclassical theory. Experimen
studies15–18thus far have had the goal of attainingR.1, and
were conducted on media with a population inversio
-

ng

a
-

e

f

l,
f

e
sis

s

-
4.
h
l

,

nm.nm . The simpler thermal excitation region that we ha
examined lay outside the field of view of the experimente
But even here, in highly inhomogeneous media, the stim
lated emission behaves in a nontrivial fashion. Asnm in-
creases, the discrepancy between the theories beco
greater, and in the population inversion region the calcu
tions should be exclusively quantum electrodynamical
character.
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Two-electron excitations in helium-like ions by inelastic photon scattering
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Inelastic photon scattering by helium atoms and helium-like ions with simultaneous excitation of
the two-electron transition 1s2→2s2 is examined in the nonrelativistic energy range
I !v!m ~I is the ionization potential,v is the photon energy,m is the electron mass, and
\5c51!. The electrons are assumed to be moving in the Coulomb field of the nucleus, and the
electron–electron interaction is taken into account in the lowest perturbation order. The
differential and total cross sections of the process and the autoionization width of the 2s2 energy
level are calculated. The numerical value of the autoionization width is found to agree with
the results of the more rigorous calculations of other researchers. ©1998 American Institute of
Physics.@S1063-7761~98!01102-0#
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1. INTRODUCTION

The two-electron transitions in an atom induced in c
lisions with photons or charged particles have been int
sively studied for about 30 years.1–8 The importance of such
studies is related to the possibility of effectively extracti
information about the role of electron correlations in t
atom. When there is a collision with a photon, two-electr
transitions are determined solely by the electron–electron
teraction. Among such transitions are double ionization, i
ization with excitation, and double excitation of an ato
which can be observed both in the scattering of a photon
in photon absorption. Double excitation in photoabsorpt
can occur only at resonance frequencies of the incident
diation, i.e., at low photon energies (v;I ), which we do not
consider here. At photon energiesv,h ~hereh is the aver-
age momentum of the atomic electron! the dominant pro-
cesses are those with photoabsorption, while atv.h the
dominant processes are those with photon scattering.6,7

The simplest two-electron systems are the helium a
and helium-like ions, and it is largely this simplicity tha
explains the interest in them. The processes that have
studied most thoroughly are double photoionization, the
moval of two atomic electrons in the absorption of a sin
photon,1–4,9–12and the double Compton effect—the doub
ionization in the scattering of a photon by atom
electrons.13–19 Ionization with excitation in photoabsorptio
was studied in Refs. 4, 10, 20 and 21, and the analog
two-electron transition in Compton scattering was studied
Refs. 15 and 21. In recent years there has also been an
surge of interest in the problem of double excitation of ato
by fast charged particles. Among the various papers dev
to this problem we mention Refs. 5 and 22–25.

This paper examines for the first time the process
double excitation of an atom by high-frequency photo
(v@I ). We study the two-electron transition 1s2→2s2 in
the helium atom and in helium-like ions in the inelastic sc
tering of x-ray photons (I !v!m). The electron–electron
2991063-7761/98/86(2)/6/$15.00
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interaction is taken into account in the first perturbation
der. In the zeroth approximation, for electrons we take
Coulomb wave functions and the Coulomb Green’s functi
We find the angular distribution of the scattered photons
the total cross section of formation of the autoionizati
2s2(1S) state of the helium atom. Using the same model,
calculate the width of the 2s2 level for Auger decay, or the
autoionization width. We find that there is good agreem
between our results and those found in the literature for
quantity,26,27 which justifies our approach.

It turns out that in the adopted approximation there is
forward scattering of photons. The total cross section of
process exhibits a sharp peak atv;h. The peak value of the
cross section issmax'4310228Z22 cm2 ~Z is the charge of
the nucleus!. It is interesting to compare the cross section
double and single excitations of the helium atom in the sc
tering of photons of equal energies. The formula for the cr
section of the one-electron transition 1s→2s was obtained
in Ref. 28. A calculation by this formula forv5h yields1!

s(1s2→1s2s)'2310226 cm2, which is 200 times the
cross section of the corresponding two-electron transition
Z52. This means that the electron–electron interaction
helium is relatively weak.

One must bear in mind that the final products of t
decay of the autoionization 2s2 state are a singly charged io
and an electron. Hence the process under investigation
vides a contribution~albeit insignificant! to the cross section
of formation of singly charged ions He1 by photon impact.

2. DERIVING THE EXPRESSION FOR THE PROCESS
AMPLITUDE

Let us consider electrons whose energiesv lie in the
range I !v!m. As shown in Ref. 16, theA2-term in the
electron–photon interaction operator plays the leading rol
one- and two-electron ionization in Compton scattering. T
same is true of ionization with excitation when a photon
© 1998 American Institute of Physics
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scattered by an atom.21 Proceeding in the same way as
Ref. 16, we can show that theA2-term is also the leading on
in the above energy range for double excitation by pho
scattering~DEPS!. By way of an example, we study the two
m
e
w

i
ct

th
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to
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n

electron transition from the ground state to the nearest
cited state of the helium atom or the helium-like ion, the 2s2

state. Bearing in mind what was said earlier, we depict
DEPS amplitude by the following Feynman diagrams:
.
(1)
nd
n

e

s
e

Here the dashed lines with arrows denote photons with
mentak1 andk2 and the solid lines, electrons. A wavy lin
denotes the electron–electron interaction. A vertex with t
photon lines corresponds to the operatorm21A2* A1 ~the
A2-term!. In the momentum representation, which we use
our calculations, this operator is represented by a fa
(4pa/A4v1v2)•(e2* –e1)/m, where a>1/137 is the fine
structure constant, ande1 ,v1 (e2 ,v2) are the polarization
vector and energy of a photon. Below, this factor and
factor 4pa from the electron–electron interaction will b
extracted from the amplitude and introduced explicitly in
the formulas for the cross section. The diagram~1a! takes
into account the electron–electron interaction in the ini
state and the diagram~1b!, in the final state. Since the pho
tons interact with each electron separately, the total am
tude must have two more diagrams with a photon vertex
the lower electron line. The contribution of such diagrams
equal to the contribution of~1!. Hence the total amplitude i
twice the amplitude~1!.

Earlier ~see Refs. 16 and 21! we found that in processe
involving ionization, the diagram allowing for the electron
electron interaction in the final state yields a small contrib
tion compared to the diagram that allows for this interact
in the initial state. Below we will show that in DEPS pro
cesses both diagrams are important, the reason for this b
that in the final state both electrons have an energy of o
I .

Thus, we can write the amplitude of the process in
following form:

M52~Ma1Mb!, ~2!

Ma~b!5E df

~2p!3

1

f 2 F~ f!Fa~b!~ f!, ~3!

F~ f!5E df8
~2p!3 ^2suf8&^f81fu1s&, ~4!

Fa~ f!5E df2 df1

~2p!6 ^2suk1f2&^f2uGauf1&^f12fu1s&, ~5!

Fb~ f!5E df2 df1

~2p!6 ^2suf1f2&^f2uGbuf1&^f12ku1s&, ~6!
o-

o

n
or

e

l
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n
s

-
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e

with k5k12k2 the momentum transferred to the atom, a
Ga[Gc(Ea) the Coulomb Green’s function for the electro
in diagram~1a!.

The functionGb is defined similarly. By virtue of energy
conservation,

Ea52E1s2E2s52 7
4 I , Eb52E2s2E1s5

1
2 I . ~7!

To calculateF and Fa(b) we need the Coulomb wav
functions in the momentum representation:

^f82fu1s&5N1S 2
]

]h1
D ^f8uVih1

uf&,

N1
25

h1
3

p
, h15h5maZ,

^f82fu2s&5N2Gh2S 2
]

]h2
D ^f8uVih2

uf&,

N2
25

h2
3

p
, h25

h

2
,

Gh2
511

h

2

]

]h2
, ^f8uVluf&5

4p

~ f82f!22l2 . ~8!

Now we can insert~8! into ~4!–~6! and perform several in-
tegrations. The result is

Ma5D̂S 2
]

]h2
D 1

l2 ^kuVih2
GaVimu0&, m5h11l,

~9!

Mb5D̂S 2
]

]h1
D 1

l2 ^kuVih1
GbVinu0&, n5h21l,

~10!

D̂5N2Gh2
Gl

]

]l
, Gl511

h

2

]

]l
,

N5N1N2 , l5
3

2
h. ~11!

The matrix elements in~9! and ~10! can be represented a
simple integrals.29 Here is the integral representation of th
matrix element in~10!:
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Jb5^kuVih1
GbVinu0&516p ipmE

0

1 t2 i jdt

a22bt1gt2 ,

~12!

p5pb5A2mEb5
h

&

, j5
h

p
5&, ~13!

a5a1a2 , a15~n2 ip !2, a25k21~h12 ip !2,

g5g1g2 , g15~n1 ip !2, g25k21~h11 ip !2,

b15b1b2 , b15n21p2, b25k21h1
21p2. ~14!

The integral representation forJa5^kuVih2
GaVimu0&

can be obtained from~12! by replacingh1 with h2 , n with
m, andpb with pa . Sincepa5A2mEa5 iA2muEau, the last
replacement is equivalent top→ iq and i j→z5h/q, where
because of~7! q5A2muEau5hA7/2. Clearly, after these
transformations have been carried out, the integralJa be-
comes real, and so does the entire amplitudeMa . Note that
the amplitudeMb is complex-valued.

The integral~12! can be expressed in terms of hyperge
metric functions, but the resulting calculations of four d
rivatives in ~9! and ~10! lead to cumbersome expression
We believe that there is a more rational path of reason
First we calculated all the derivatives and then integra
numerically. But still the expression obtained after calcul
ing the derivatives is too cumbersome to write it here, so
mention only several characteristic features of this exp
sion. The amplitudeM is dimensionless. If the photon en
ergy is expressed in units ofh, the dependence of the ampl
tude onZ is very simple:M}Z21. The angular dependenc
enters into the amplitude through the square of the mom
tum transfer:

k25v1
21v2

222v1v2 cosu. ~15!

Since

v12v252~E2s2E1s!5 3
2 I 5 3

4 ma2Z2,

we can assume thatv25v1 and put

k252v1
2~12cosu!.

The dependence of the amplitudesMa and Mb on the scat-
tering angleu calculated by~9! and ~10! for the photon en-
ergy v15h is listed in Table I.

TABLE I.

u 2aZMa3103 aZ ReMb3103 2aZ Im Mb3103

0 2.3287 2.3287 0.0000
18 2.5964 2.4123 0.1395
36 3.1085 2.5346 0.5711
54 3.3998 2.4102 1.1697
72 3.3460 1.9713 1.6092
90 3.0806 1.4548 1.7408

108 2.7602 1.0476 1.6735
126 2.4781 0.7813 1.5449
144 2.2700 0.6242 1.4295
162 2.1459 0.5434 1.3553
180 2.1049 0.5185 1.3301
-
-
.
g.
d
-
e
s-

n-

Here are two facts that follow from Table I:
1! The amplitudesMa and ReMb have close values bu

opposite signs, which leads to partial cancellation of th
contribution.

2! At u50 ~forward scattering! Ma52Mb , which
means that the amplitudes~1a! and ~1b! balance each othe
perfectly.

Of course, it is advisable to corroborate the numeri
results analytically, which we do in the next section.

3. FORWARD SCATTERING AMPLITUDE

It turns out that simple expressions can be derived
the amplitudesMa and Mb at u50. These expressions ca
be used to check the accuracy of the numerical calculatio
Let us go back to the general formulas~9! and ~10! and see
how they are altered whenk50 ~at u50 the square of the
momentum transfer,k2, is approximately (aZ)2h2, and on
the basis of~12! and ~14! we can putk50!. Using the ex-
pressions~8! for the 1s- and 2s-wave functions and the ex
pansion of the Coulomb Green’s function in the eigenfun
tions of the Schro¨dinger equation,

Gc~E!5(
n

ucn&^cnu
E2En

, ~16!

we obtain

Ma5ÂN2Gh2S 2
]

]h2
D ^0uVih2

GaVimu0&

5Â^2suGaVimu0&5
Â^2suVimu0&

Ea2E2s
,

Â5N1
2N2Gl

]

]l

1

l2 , ~17!

Mb5B̂N1S 2
]

]h1
D ^0uVih1

GbVinu0&

5B̂^1suGbVinu0&5
B̂^1suVinu0&

Eb2E1s
,

B̂5N1N2
2Gh2

Gl

]

]l

1

l2 . ~18!

The energiesEa andEb are defined in~7!.
We introduce the notationv5v12v2 . Then

Ea2E2s52~E1s2E2s!52v,

Eb2E1s52~E2s2E1s!5v. ~19!

Applying the operatorsÂ and B̂ to the matrix elements
to the right of these operators, we arrive at the followi
equality:

Â^2suVimu0&5B̂^1suVinu0&5
p

3l5 N2. ~20!

Inserting ~19! and ~20! into ~17! and ~18! and allowing for
the relationships



s
-

on

in

th

o
-

s

r
xi-
s.

the

its:

,

s as
ro-

n

ities
ring
and
va-
ss,
orb
the

red
any
tion
tics

a

ring

th

302 JETP 86 (2), February 1998 Amus’ya et al.
v5
3

4
aZh, l5

3

2
h, N25

h6

8p2 , ~21!

we find that

Mb~0!52Ma~0!5
1

aZ

1

8p S 2

3D 7

5
2.328731023

aZ
,

~22!

which coincides with the result listed in Table I~Ma(b)(0)
denotes the value ofMa(b) at u50!.

Since the amplitudeM of the process is 2(Ma1Mb),
there is no forward scattering of photons.

4. ANGULAR DISTRIBUTION OF PHOTONS AND THE
TOTAL CROSS SECTION

The differential cross section of the process is

ds5~4pa!2~4pr e!
2

ue2* –e1u2

4v1v2
uM u2

d3k2

~2p!3

32pd~2E2s1v22v122E1s!, ~23!

where r e5a/m is the classical electron radiu
(r e

257.95310226 cm2). Summing and averaging over pho
ton polarizations and integrating with respect tov2 , we ar-
rive at the following expression for the angular distributi
of the scattered photons:

ds

dV
5r e

2 32p2

Z2 ~11cos2 u!uaZ~Ma1Mb!u2, ~24!

whereu is the angle between the photon momentak1 andk2 .
As ~22! clearly shows, the product ofaZ and the amplitude
ceases to depend onZ if the photon energies are expressed
units ofh5maZ. From the distribution~24! over the photon
scattering angle we can proceed to the distribution over
momentum transfer if we replace cosu by (12k2/2v1

2) and
dV by pd(k2/v1

2).
The total cross section can be written as

s5r e
2 ~4p!3

Z2 E
21

11

~11x2!uaZ~Ma1Mb!u2dx, ~25!

with x5cosu. The angular distribution of the scattered ph
tons calculated by~24! is depicted in Fig. 1 for various val

FIG. 1. Angular distributions of scattered photons for different values of
energyv1 of the incident photon. The curves are labeled with values ofv1

in units of h.
e

-

ues ofv1 /h ~the labels on the curves indicate these value!.
What is interesting here is that forv1,h the angular distri-
butions have a broad maximum atu5180°. For values ofv1

slightly larger thanh, the maximum shifts to angles smalle
than 90°. If the energy is increased still further, the ma
mum in the distribution shifts to smaller angles and narrow

The dependence of the total cross section on
incident-photon energy is shown in Fig. 2. Atv1.0.9h the
cross section has a peak value ofs'4310228 Z22 cm2.
Here we also list the values of the cross section at two lim

v150.1h: s54.55310231Z22 cm2,

v1510h: s54.26310229Z22 cm2

~such values ofv1 land in the rangeI !v1!m only if Z is
small!. The drop in cross section with decreasingv1,h can
be explained by the fact thatk2 becomes small for all angles
and because of this the contributions of the diagrams~1a!
and~1b! are almost balanced. The cross section also drop
v1.h increases, which is due to a concentration of the p
cess neark;h or u;h/v1 ~see Eqs.~12!–~15!.

Qualitatively, such behavior of the cross sections~differ-
ential and total! can be understood if we turn to Compto
scattering by a free electron, where the energyD lost by the
photon is determined by the scattering angleu ~see Ref. 30!:

D5
v1

2

m
~12cosu!.

The rigorous relationship between these kinematic quant
is due to energy and momentum conservation. In scatte
by a bound electron, the correlation between the photon
electron variables is determined only by energy conser
tion, since there is a third body participating in the proce
the nucleus, which in view of its large mass is able to abs
any amount of momentum. As a result there emerges
possibility of a process in which a fixed energy is transfer
to the atom and the photon can be scattered through
angle. However, the greatest contribution to the cross sec
is provided by the range of angles closest to free kinema
~the kinematics of scattering by a free electron!. For v1!h
~soft photons!, even the maximum energy transferred to
free electron (Dmax52v1

2/m) is less than the energyv53I /2
transferred to the atom in the process. Since scatte

eFIG. 2. Total cross section of double excitation of the 2s2 state of a helium-
like ion as a function of incident photon energy.
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through anglesu;180° exhibits the least deviation from fre
kinematics, large angles dominate the scattering of soft p
tons by an atom. The cross section proper is small, since
process occurs in the region that is kinematically inacc
sible to scattering by a free electron. Forv1@h ~hard pho-
tons! the valuesD;v;I are possible only at small scatte
ing anglesu;h/v1 . The same angles prevail in inelast
scattering of hard photons by atoms. As the photon ene
rises, the small-angle range narrows, and its contribution
the total cross section diminishes.

Photons with energiesv1;h are the most strongly sca
tered by an atom. In this case the energy transferred to
atom is close to the energyD;(h2/m)(12cosu) transferred
to a free electron over a broad range of scattering angle

Unfortunately, at present there is nothing to compare
results with. To our knowledge there is not a single work
double excitation in photon scattering. Hence to establish
accuracy of our approach we calculated the rate of Au
decay of the 2s2 state of the helium atom under the sam
assumptions as in calculations of the excitation cross sec
for this state~i.e., we used the Coulomb wave functions f
the electrons and the first perturbation order in the electr
electron interaction! and compared the result with those
other researchers.

5. CALCULATING THE AUTOIONIZATION WIDTH OF THE
2s 2 LEVEL OF HELIUM

The autoionization widthGA and the ratewA of Auger
decay in the system of units in which\5c51 coincide:

GA5wA . ~26!

The amplitudeMA of Auger decay can be expressed by t
Feynman diagram

~27!

and is given by

MA5&E df df1 df2

~2p!9 ^cpuf1&^f11fu2s&
1

f 2

3^1suf2&^f22fu2s&. ~28!

The factor& appears because of the symmetry propertie
the wave function of our system.

Here is how it emerges. We use the nonrelativistic
proximation, in which the electron–electron interaction
spin-independent and the total wave function is the prod
of the spatial and spin functions. Because of its orthogon
ity, the spin part of the wave function does not change in
atomic transition, remains singlet~i.e., antisymmetric!, and
has no effect on calculations. The spatial part of the w
function in the initial and final states is symmetric:

C i~1,2!5c2s~1!c2s~2!,
o-
he
s-

y
to

he
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e
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e

C f~1,2!5
1

&

$cp~1!c1s~2!1cp~2!c1s~1!%. ~29!

The Auger transition amplitude is given by

MA5^C f~1,2!uV~1,2!uC i~1,2!&. ~30!

Since the electron–electron interaction operatorV(1,2) is
also symmetric under exchange 1↔2 of the electrons, both
terms inC f(1,2) yield the same contribution and we obta

MA5&E cp* ~r1!c1s~r2!V~r1 ,r2!

3c2s~r1!c2s~r2! dr1 dr2 . ~31!

Taking the Fourier transform of~31!, we arrive at~28!,
where^fu2s&5c2s(f), etc.

After the wave functions~8! have been inserted into
~28!, all integrals can be evaluated, with the result that
amplitude takes the simple form

MA5& B̂^cpuVin2Vih2
u0&. ~32!

The operatorB̂ is defined in~18!, n5h21l, h25h/2,
andl53h/2. The matrix elements in~32! were calculated in
Ref. 21 withcp taken either as a closed expression31 or as a
partial-wave expansion. In the latter case only thes-wave
(l 50) yields a nonvanishing contribution. Thus, the ejec
electron is in thes state with energy

E52E2s2E1s5
1

2
I

and momentum

p5A2mE5
h

&

.

For such an electron,

^cpuVimu0&54pNpw~m!, Np
252pj, ~33!

w~m!5
~m1 ip ! i j21

~m2 ip ! i j11 , j5
h

p
5&, ~34!

MA5& 4pNpB̂@w~n!2w~h2!#. ~35!

After all the derivatives inB̂ have been calculated, w
are left with terms that depend onw(n). Using the chain of
equalities

S n1 ip

n2 ip D i j

5expS 22j arctan
p

n D
5expS 22& arctan

1

2&
D [~exp!, ~36!

we can write the final expression forMA as

MA54p& NS 2

3D 9 ~exp!

h5 , N5NpN1N2
2 , ~37!

MA
25
&

h
~exp!2S 4

9D 9

. ~38!
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The differential and total Auger-decay rates assume the f

dwA5~4pa!2MA
2 d3p

~2p!3 2pd~E1E1s22E2s!

54ma2~exp!2S 4

9D 9

dVp ~39!

~dVp is the solid angle into which the final electron land!,
and

wA516pma2~exp!2S 4

9D 9

. ~40!

The expression~39! for dwA shows that the ionized electron
are distributed isotropically, as they should be for t
s-wave. If we wish to find the decay rate in ordinary un
(s21), we need to substitutema254.13431016 s21 into
~40!. This yields

wA52.0631014 s21. ~41!

The Auger width of the level in electron volt
(ma2527.212 eV) is

GA50.135 eV. ~42!

The autoionization width of the 2s2 level is calculated in
Ref. 26, where its value is 0.140 eV. Another very clo
value is given in Refs. 27 and 5:GA50.138 eV. However,
such good agreement is observed only for helium. The re
~42! is independent ofZ, while the widths obtained in the
diagonalization approximation26 increase withZ and reach
their asymptotic value of 0.226 eV byZ56. Thus, the dis-
crepancy between~42! and the results of more accurate ca
culation does not exceed 50% for any value ofZ. The same
accuracy can probably be guaranteed for the results of
calculations of the excitation cross section of 2s2 states of
helium-like ions done in the present paper.

The authors would like to express their gratitude to V.
Gorshkov for fruitful discussions.
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1!The one-electron transition cross section is independent ofZ if the photon

energy is expressed in units ofh.28
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19T. Surić, K. Pisk, and R. H. Pratt, Phys. Lett. A211, 289 ~1996!.
20R. L. Brown, Phys. Rev. A1, 341 ~1970!.
21M. Ya. Amus’ya and A. I. Mikha�lov, Zh. Éksp. Teor. Fiz.111, 862

~1997! @JETP84, 474 ~1997!#.
22J. O. P. Pedersen and P. Hvelplund, Phys. Rev. Lett.62, 2373~1989!.
23J. C. Straton, J. H. McGuire, and Z. Chen, Phys. Rev. A46, 5514~1992!.
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High-order perturbation theory for the hydrogen atom in a magnetic field
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Zh. Éksp. Teor. Fiz.113, 550–562~February 1998!

The states of a hydrogen atom with principal quantum numbersn<3 in a constant uniform
magnetic fieldH are studied. Coefficients in the expansion of the energy of these states in powers
of H 2 up to the 75th order are obtained. Series for the energies of the states and the wave
functions are summed to values ofH on the order of the atomic magnetic field. A generalization
of the moment method upon which these calculations are based can be used in other cases
in which a hydrogen atom is perturbed by a potential with a polynomial dependence on the
coordinates. ©1998 American Institute of Physics.@S1063-7761~98!01202-5#
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1. INTRODUCTION

A new aspect of the problem of the hydrogen atom
constant external electricE and magneticH fields has re-
cently been discovered. It has been noticed1 that the
asymptotic behavior of the perturbation series expansio
E changes significantly for certain values ofH. This change
is related to the influence of previously neglected comp
solutions of the classical equations of motion on t
asymptotic behavior. A look at this phenomenon from t
standpoint of the expansion in terms ofH might be useful.
Our work is oriented specifically in this direction; here w
propose an efficient method for constructing the perturba
series, and we discuss the asymptotic behavior of this se
in the Zeeman effect.

A moment method has been proposed2 for calculating
the higher orders of perturbation theory, which has a num
of additional possibilities compared to the conventional
currence methods. It was described as a means for stud
the 1/n-expansion~dimensional expansion! in the problem
leading to an effective isotropic anharmonic oscillator. Lat
it was applied to a 1/n-expansion for three interactin
bodies3 in which the effective anharmonic oscillator was a
isotropic.

We note that the perturbation of the hydrogen atom b
polynomial potential can also be conveniently studied by
moment method. Uniform electric and magnetic fields
perturbations of this kind. The advantages of the mom
method are clearly evident in the problem of the Zeem
effect. High orders of perturbation theory for this proble
have been studied elsewhere4–6; 36 coefficients in the expan
sion of the ground state energy of the hydrogen atom
powers ofH 2 have been published.6 For the excited states
no Zeeman coefficients in the perturbation theory have b
presented beyond the third order inH 2.7–10 In the Schro¨-
dinger equation for the Zeeman effect the variables do
separate, and this makes it difficult to calculate the hig
orders of perturbation theory. The moment method does
require separation of variables. In addition, as will be sho
here, this method can be applied to degenerate states. T
3051063-7761/98/86(2)/7/$15.00
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obviously an important possibility for most states of the h
drogen atom.

Logarithmic perturbation theory has probably been
most frequently used for recursive calculations of the per
bation theory coefficients.11–15 Because of its simple alge
braic structure, logarithmic perturbation theory has mad
possible to calculate corrections to the highest orders in s
cases. For example, 160 orders of perturbation theory for
Stark shift of the ground state of the hydrogen atom ha
been obtained in this way.16 Logarithmic perturbation theory
is not, however, free of limitations. Even a single node in t
wave function leads to a substantially more complica
computational scheme.17 Logarithmic perturbation theory
looks much more complicated when the variables are
separable. Without separation of variables, it has only b
used to calculate a few initial orders of perturbation theo
for the hydrogen atom in electric and magnetic fields.9,10,14

Here it is worth recalling an old variant of perturbatio
theory based on the generalized virial theorem and
Hellman–Feynman theory, which may be regarded as
predecessor of the modern method of moments. Recurre
relations have been written down for spherically symme
problems17,18 which make it as easy to calculate the corre
tions to the energies of states with nodes as to those with
nodes. However, the moments given in those papers w
diagonal, and this narrowed the range of applicability of t
method. For example, it has not been possible to recover
wave function using diagonal moments.

Theoretical approaches to studying the behavior of
hydrogen atom in constant electric and magnetic fields
reviewed by Lisitsa.20

In this paper we derive recurrence relations by Ade
moment method for the hydrogen atom in a uniform ma
netic field. Two examples illustrate how to apply them in t
case of a nondegenerate state and when degenerac
present. Then we examine the asymptotic behavior of
resulting numerical expansion coefficients for the level en
gies and present the result of summing these perturba
series. With the ground state as an example, it is shown
the wave function of the perturbed hydrogen atom can
obtained from the moments.
© 1998 American Institute of Physics
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2. BASIC RECURRENCE RELATION

Let us consider the stateuc0&5un,l & of the hydrogen
atom with principal quantum numbern, angular momentum
l , and zero projection of the momentumm50, perturbed by
a strong magnetic fieldH5Hz . We expand the energy o
this state and its wave function in the form

E5 (
k50

`

Ekg
2k, c~r !5 (

k50

`

ck~r !g2k, ~1!

where

g5n3H/H0 , H05e3m2c/\352.35•109 G.

Here ck is the correction of orderk to the Coulomb wave
function that satisfies the inhomogeneous equation

~Ĥ02E0!ck52Ĥ1ck211(
j 51

k

Ejck2 j , ~2!

where

Ĥ052
1

2
¹22

1

r
, Ĥ15

1

8
~r 22z2!.

We use atomic units.
In order to move from the differential equation to a

algebraic equation, we introduce the moments of orderk,

Psn
k 5^c̃0ur s2nznuck&, ~3!

whereuc̃0&5C exp(2r/n), ands andn are integers. In this
definition the wave functionuc̃0& only contains the exponen
tial factor of the unperturbed wave function, which carries
scale and has no nodes.~Note that the overall normalizatio
factor for all the moments can be arbitrary.! Thus, as has
been done before,2 we multiply Eq. ~2! on the left by

^c̃0ur s2nzn and use the fact that the hamiltonian can act
the left on explicitly known functions. As a result, we obta
recurrence relations for the moments of orderk:

~s2n!~s1n11!

2
Ps22,n

k 1
n~n21!

2
Ps22,n22

k

2
s112n

n
Ps21,n

k 1Psn
0 Ek5Rsn

k21, ~4!

where

Rsn
k21[

1

8
~Ps12,n

k21 2Ps12,n12
k21 !2 (

j 51

k21

Ej Psn
k2 j .

The right-hand side of Eq.~4! only contains moments o
preceding orders. The coefficientEk , which we refer to as
the hypersusceptibility of orderk, can also be expressed
terms of moments of preceding orders. This relation follo
from Eq. ~4! and will be written out separately below fo
each of the cases to be studied.

Similarly, we can examine another perturbation of t
same state if this perturbation has the form of a polynom
in r and z. For this it is sufficient just to change the righ
hand side of Eq.~4!. The expression in parentheses on t
right-hand side, which represents the contribution of
s

o

s

l

e
e

magnetic field, is replaced by another function of the m
ments of the preceding orders produced by the new per
bation.

The sequence of calculations relying on Eq.~4! can be
made more instructive if we depict points with integer coo
dinates of the columnss and rowsn on a lattice plane. The
subscripts of the moments required to calculate the cor
tions to the energies and wave functions lie in the sec
s>n21, n>0 of this lattice. In general, Eq.~4! couples
moments of orderk whose subscripts lie at the vertices of
triangle~see exampleA in Fig. 1!. As a result of the gradua
movement of this triangle over the lattice, all the couplin
of moments contained in Eq.~4! will appear in sequence
The first term on the left-hand side of Eq.~4! drops out if we
set s5n. Here the triangle~exampleA! degenerates into a
line segment beginning on the dashed lines5n21 repre-
senting the relation between two moments from differe
rows ~exampleB!. Equation~4! also couples the moments i
pairs along each of the lines withn50 andn51 ~examples
C andD!. In these cases the second term drops out from
left-hand side of Eq.~4!. With successive filling from left to
right of the rows withn50 andn51, the calculation of the
moments in each orderk begins. The initial~left! element of
the third row is calculated using Eq.~4! between a pair of
moments~see exampleB in Fig. 1!, while subsequent ele
ments of this row are obtained from the ‘‘triangle’’ relatio
~of form A in Fig. 1!, etc.

As a direct integration shows, fork50 those moments

^c̃0ur s2nznun,l & for which l 21<s,n22 are equal to
zero. If the perturbation is even, as in the case of the Zee
effect, then all the corrections to the wave function have
same parity. Thus, in all orders of perturbation theory tho
moments for which the sumn1 l is odd will go to zero.

3. ISOLATED STATES

A magnetic field does not mix states with opposite pa
ties, so besides the ground state, we must treat the 2s-, 2p-,
and 3p-states as nondegenerate. We shall show how the
ment method works in the latter case. Only moments w
odd n can be nonzero. In the zeroth order,

Ps,2k11
0 52

s~s13!!

18~2k13! S 3

2D s

, integer k. ~5!

FIG. 1. Subscripts for the moments of orderk coupled by the basic recur
rence relation. Each of the linesA, B, C, and D represents one of the
characteristic cases.
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In subsequent orders, an additional requirement is impo
corrections to the wave functionuc0& must be orthogonal to
it; i.e., ^c0uck&5d0,k . This condition is a standard eleme
of the Brillouin–Wigner perturbation theory,21 and was used
in Ref. 2. In the 3p-state, it takes the form of the following
additional relationship between the momenta:

P11
k 2

1

6
P21

k 5d0,k . ~6!

In order to obtain a formula forEk , we first substituten51,
s51 into the recurrence relation~4! and thenn51, s52.
The system of two linear equations has the solution

Ek5R11
k212

1

6
R21

k215
1

8
~P31

k212P33
k21!

2
1

48
~P41

k212P43
k21!, ~7!

with

P01
k 55R11

k212
1

3
R21

k21. ~8!

The sum containing the hypersusceptibilities of the previ
orders has dropped out of the final expression forEk because
of the orthogonality condition~6!.

Equations~4!, ~6!, and ~7! form a closed system of re
currence relations. In each orderk>1, the calculations pro-
ceed in this sequence: first Eq.~7! is used to calculateEk . In
the next stepn51 ands53 are substituted into the recu
rence relation~4!. In this form it, together with the orthogo
nality condition~6!, forms a system of equations that yield
the initial elements of the row of moments withn51:

P11
k 5

1

3
~R31

k212P31
0 Ek!5

1

6
P21

k .

By successively increasings by unity, it is easy to arrive a
the required limiting moment for this row using Eq.~4!.
Then substitutingn53 ands53 into Eq.~4!, we obtain the
initial moment for the next row:

P33
k 53~3P11

k 2R33
k211P33

0 Ek!

and so on.
The limiting moments, i.e., the moments with the ma

mum subscriptss and n within a given orderk, are deter-
mined by the following conditions. Calculating the hypersu
ceptibility of a higher orderK requires the momentsPsn

1 in
the regionn21<s<3K, 0<n<2K, the momentsPsn

2 in
the regionn21<s<3K23, 0<n<2K22, etc.

It is somewhat simpler to calculate the coefficientsEk

for the remaining isolated states.

4. DEGENERATE STATES IN THE MOMENT METHOD

As an example, let us consider the pair of statesu3s& and
u3d&, which are split by a magnetic field. Given the dege
eracy, with the aid of a function of the form

uc0&5cosau3s&1sin au3d&, uc̃0&;e2r /3,

it is easy to obtain the zeroth-order moments:
d:

s

-

-

Ps,2k
0 5

~s12!!

54~2k11! S 3

2D sFs~s11!

2
k~s13!~s14!

2k13
jG , ~9!

where

j5& tan a.

In all orders of perturbation theory, the moments in the o
rows are equal to zero; i.e.,Ps,2k11

k 50. The condition that
the corrections be normal to the wave function in its zer
approximation is equivalent to the following relation b
tween the moments:

12P10
k 2

1

3
~41j!P20

k 1jP22
k 518P00

k , k>1. ~10!

The hypersusceptibilityEk can be expressed in terms of th
moments of preceding orders in two independent ways.

a! The momentP21,0
k , needed in the next step for th

system of linear equations, can be obtained from Eq.~4! with
n50 ands50. Note that the coefficientEk dropped out of
Eq. ~4! becauseP00

0 50. A system of equations containingEk

results if we first setn50, s51 and thenn50, s52 in Eq.
~4!. Its solution is

Ek
~a!5

9

2
R00

k2123R10
k211

1

3
R20

k21, ~11a!

and

P00
k 529R00

k2116R10
k212

1

3
R20

k21. ~12!

The momentP00
k is obtained along the way, and is subs

tuted into the right-hand side of the orthogonality conditi
~10!.

b! Substitutingn52 ands52 into Eq. ~4!, as well as
the value found forP00

k , we obtain a second independe
expression forEk :

Ek
~b!5

1

2 S 9R00
k2126R10

k211
1

3
R20

k211R22
k21D . ~11b!

Equations~11a! and~11b! yield a common value of the mag
netic susceptibilityE1 for two values ofj :

j5j1,25
21363A41

10
. ~13!

This is a natural result that follows from the secular equat
in the Rayleigh–Schro¨dinger perturbation theory.

In the following the notation 3s is retained for the state
with a small admixture of d-wave and j5j1

5(3A41213)/10, while 3d denotes the state orthogonal
it, a mixture ofs- andd-waves. In the subsequent approx
mations, the uniqueness condition imposed on the hyper
ceptibility of the (k11)-st order,Ek11

(a) 5Ek11
(b) , is equivalent

to an equation coupling seven unknown moments of ordek.
There is still another relation between the moments, the
thogonality condition~10!. In order to obtain a closed sys
tem, the orthogonality and uniqueness conditions must
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supplemented by seven more equations that follow from
recurrence relation~4!. From the resulting system of nin
equations it is sufficient to determine just two moments:P10

k

andP22
k . Then, with the aid of the already known momen

and Eq.~4!, it is easy to calculate successively all the r
quired moments of the given order, passing row-by-r
through the array of subscripts, as in the case of the 3p-state.

In similar fashion it is possible to do the calculation f
a state with arbitraryn. We merely note the key elements
these calculations. The unperturbed wave function has a
tain parity and containsg energy-degenerate terms. In ea
orderk>1 there are two groups of moments. The recurre
relation ~4! couples the momentsPsn

k with s,n22 among
themselves and, separately, the moments withs>n22. The
moments from the different groups are coupled by the rec
rence relations only via moments of preceding orders. In
intermediate stage,g independent expressions for the coef
cientEk11 are obtained and the conditions for its uniquen
make it possible to express the momentsPsn

k from the region
s>n22 in terms of the moments from preceding orders

5. RESULTS

5.1. Energy levels

We have obtained the Zeeman hypersusceptibilitiesEk

up to the 75-th order for all levels withn<3 by the moment
method~see Table I!. The calculations were carried out to 3
~decimal! significant figures. Complete agreement was fou

TABLE I. Hypersusceptibilities of the hydrogen atom in a magnetic fiel

k

Ek

1s-state 2s-state 2p-state

1 12.5000•1021 13.5000•100 11.5000•100

2 22.7604•1021 21.5933•102 24.2000•101

3 11.2112•100 12.2508•104 14.2400•103

4 29.7554•100 25.5166•106 27.4365•105

5 11.8630•102 11.8817•109 11.8710•108

6 21.9593•103 28.2044•1011 26.2321•1010

7 14.2749•104 14.3896•1014 12.6362•1013

8 21.1869•106 22.8169•1017 21.3804•1016

9 14.0973•107 12.1373•1020 18.7878•1018

10 21.7252•109 21.8979•1023 26.7029•1021

25 14.9366•1040 15.3146•1073 16.0276•1071

50 23.1317•10109 21.8694•10173 29.9461•10170

75 13.3150•10189 15.8114•10283 12.0188•10281

3s-state 3p-state 3d-state

1 11.9579•101 19.0000•100 15.1715•100

2 27.9926•103 23.5311•103 21.0174•103

3 19.8654•106 13.4481•106 16.4414•105

4 22.0927•1010 25.4496•109 28.6478•108

5 15.8826•1013 11.1757•1013 11.6415•1012

6 22.0349•1017 23.1806•1016 24.1602•1015

7 18.3124•1020 11.0348•1020 11.3551•1019

8 23.9194•1024 23.9589•1023 25.4574•1022

9 12.1055•1028 11.7580•1027 12.6300•1026

10 21.2786•1032 28.9851•1030 21.4785•1030

25 11.3794•1094 12.5255•1092 11.0620•1092

50 29.3229•10211 27.3330•10209 26.1021•10209

75 12.8054•10340 11.3961•10338 11.7341•10338
e

-

er-

e

r-
e

s

d

with the results of Ref. 8 and of Ref. 7, which contains t
first five coefficientsEk for the ground state and three ea
of the initial coefficients for the 2s- and 2p-states in the
form of rational fractions. In Ref. 9 a discrepancy was note
between the equation for the coefficientE2 obtained there
and its value forl 51 in Ref. 7. This discrepancy is con
firmed here. The formula of Ref. 9 impliesE2

(2p)5245.556;
our result,E2

(2p)5242, agrees with Ref. 7.
The energy levelsE(g) of six states, obtained by sum

ming the corresponding perturbation theory series with
aid of the Pade´ approximant@L/L#(g2) and @L/L21#(g2),
are shown in Fig. 2. This figure also gives an idea of
convergence region for the Pade´ approximant. Without ex-
panding inH 2, with the aid of a spline method~one of the
modifications of the variational method!, the energy eigen-
values of these states are calculated elsewhere22 for several
values ofH, and these values are also shown in Fig. 2.
all the nonperturbative calculations, Ref. 22 has the best
curacy, with eight-place accuracy for the energy levels of
excited states, and it contains a comparison with a la

FIG. 2. The sum of perturbation series for the level energies taken using
Padé approximant. Smooth curvesE(g)5@25/25#(g2); dashed curves
E(g)5@25/24#(g2). The results of Ref. 22 are shown for comparison.
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number of previous calculations. The accuracy of the sum
the perturbation series taken with the Pade´ approximant is
fairly high. Wheng'1, 3–4 significant figures are attaine
for the level energy for the 2s- and 3p-states and at least tw
places for the remaining states. The convergence impro
rapidly with decreasingg, so that forg<0.3 the accuracy of
the perturbation theory sums exceeds that of the variatio
calculations.22

A modification of dimensional scaling has bee
developed23 for calculating the Zeeman effect wit
l5@11umu#21 serving as a small parameter. This semicl
sical method is convenient in that it is applicable over a w
range of external fields. The energy of the ground state
obtained23 to an accuracy of;1025, both for g50.1 and
g51, by expanding the expansion inl. Our calculations
yield the ground-state energy with an accuracy of;10213

for g50.1 and;1021 for g51.
With increasing order, the perturbation theory coe

cients Ek approach an asymptote whose principal term
the Zeeman effect has the form4,5

Ẽk5~21!k11
Dnl

p2n11/2 S n2

p D 2k

GS 2k12n211
~21! l

2 D .

~14!

For the levels discussed here,

D1s532, D2s5128, D2p564,

D3s5
215

34 S a12
a2

2&
D 2

, D3d5
215

34 S a21
a1

2&
D 2

,

where

a152S 1

2
1

13

6A41
D 1/2

, a25S 1

2
2

13

6A41
D 1/2

.

This result was obtained using the methods employed
Bender and Wu.24 First the barrier penetration was calculat
in the semiclassical approximation for an imaginary value
the magnetic field, then the dispersion relation in terms
H 2 was applied. According to the conditions of Ref.
strictly speaking Eq.~14! does not apply to the 3p-state.
However, it can be assumed that Eq.~14! encompasses a
six states being discussed here, and the coefficientD3p can
be selected by comparingEk and Ẽk for the higher orders.
This yieldsD3p5213/33. The approach of the exact coeffi
cientsEk to the asymptote~14! is illustrated in Fig. 3.

Corrections to the asymptoticẼk for several states, bu
not 2s, 2p, and 3p, were obtained in Refs. 4 and 5. Writin
the corrections in the form

Ek

Ẽk

5c01
c1

2k
1

c2

~2k!2
1... , ~15!

it is easy, following the method of Ref. 24, to find the coe
ficients ci ~see Table II!. In all cases considered her
uc021u,1026. As the number of corrections calculated
Eq. ~15! increases, the accuracy of the coefficientsci in-
creases. The stability of the values of the power series
rections on going to a large number of these corrections c
of

es

al

-
e
as

-
r

y

f
f

r-
n-

firms the validity of the determination of the principal ter
of the Ẽk for the 3p-state. Recall that by virtue of the dis
persion relation inH 2,5 the coefficientsci are related to the
corrections to the semiclassical approximation for the bar
penetration whenH 2,0. Direct calculation of the semi
classical corrections is a tedious task.

5.2. Wave functions

By analogy with the anharmonic oscillator,2 the correc-
tion uck& to the Coulomb wave function has the form of
polynomial ~in r and cosu! multiplied by the exponentia
uc̃0&. The perturbation is polynomial, but the operator on t
left-hand side of Eq.~2! does not alter the indicated structu
of the wave functionuck&. For the ground state

uck&5S (
j 50

k

(
i 52 j

3k

ai j
~k!r i cos2 j u D uc̃0&

[S (
j 50

k

(
i 52 j

3k

ai j
~k!r i 22 j z2 j D uc̃0&. ~16!

Let us clarify the origin of the limits on the sums. Th
dependence on the angleu comes only from the expressio
r 2 cos2 u in Ĥ1 , so that the minimum power of the radius
the inner sum of Eq.~16! coincides with the power of cosu,
while the maximum power of cos2 u coincides with the order
of perturbation theory. Using Eq.~2!, we can verify that the

FIG. 3. The approach of the exact hypersusceptibilitiesEk to the corre-

sponding asymptotesẼk for six states of the hydrogen atom.

TABLE II. Coefficientsci in the power-series corrections to the asympto

Ẽk for the hypersusceptibilities of the hydrogen atom.

State c1 c2 c3 c4

1s 22.61829 11.282 22.6 211
2s 28.938 137.44 2121 12.7•102

2p 24.6065 18.24 214.3 24
3p 211.227 159.5 2239 16•102
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maximum power of the radius inuck& is three units greate
than inuck21&. Equation~16! yields a system of linear equa
tions for the coefficientsai j

(k) :

(
j 50

k

(
i 52 j

3k

Pi 1a, j 1b
0 ai j

~k!5Pab
k ,

2b<a<3k, 0<b<k. ~17!

Instead of the values of the subscriptsa and b chosen
here, it is possible to choose another set, which yie
(2k11)(k11) independent values. This possibility is use
for checking the accuracy of the calculations. We also v
fied the orthogonality of the corrections~16! to the wave
functionsuc0&. In our calculations the orthogonality was r
tained with reasonable accuracy up to the 18th order of
turbation theory. The corrections to the wave functions up
the second order are given in Ref. 7. On comparing th
with our results, we noticed only one discrepancy. The co
ficient of r 3g2 in Ref. 7 has an incorrect sign and this caus
a nonorthogonality in the first order correction to the unp
turbed wave function in that paper.

We calculated the value ofuc(0)u2 by the moment
method, using the Pade´ approximant to sum the perturbatio
series for the normalization factor and for the wave funct
itself. The results are shown in Fig. 4. It is clear that with
orders of perturbation theory it is possible to advance
g'0.4. Here agreement is maintained with an ear
calculation25 of the ground-state wave function by oth
methods with an accuracy of;1023 for the magnetic fields
of interest to us.

6. CONCLUSION

The good agreement between energy eigenvalues
tained by summing perturbation series and the correspon
results of independent variational calculations serve, on
hand, to confirm the validity of calculating the perturbati
coefficients themselves, and on the other, to show that t
are no nonperturbative contributions to the energy of th
states~the summation technique has been chosen correc!.

The study described here demonstrates the high
ciency of the Ader moment method. Here we note the f
tures of this method that have made it possible to obtain h

FIG. 4. Ground-state wave function calculated by the moment method.
smooth curve was obtained using the Pade´ approximant@9/9#(g2), the
dashed, using@9/8#(g2). Asterisks indicate the results of Ref. 25.
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orders of perturbation theory for the Zeeman effect. Th
features can be useful in solving other perturbation the
problems.

1! Simple recurrence relations are obtained witho
separation of variables in the original equation. With th
help the procedure for calculating the corrections becom
purely algebraic.

2! Nodes of the wave function are not explicitly inco
porated in the moment method, and do not make the ca
lations more complicated. This makes it possible to consi
excited states.

3! Degeneracy of the levels, as demonstrated here for
first time, does not preclude the use of the moment meth
although it does lead to a more cumbersome procedure
solving the recurrence relations.

4! In addition, the set of moments obtained while det
mining the hypersusceptibilities contains information on t
wave function. Corrections to the Coulomb wave functio
like the corrections to the energy levels, can be obtain
purely algebraically.

We have limited ourselves to the casem50 here. Obvi-
ously, for any state with nonzero projection of the angu
momentum, the paramagnetic part of the perturbati
0.5gL̂z , owing to its diagonal nature, simply shifts the e
ergy by (m/2)g and does not change the wave function. T
effect of the diamagnetic part of the perturbation,g2Ĥ1, on
this state can be calculated by the moment method, rely
on a recurrence relation analogous to Eq.~4!.

As already noted, application of the moment method
the hydrogen atom is not restricted to the Zeeman eff
Any perturbation of the form

V~r !5( bi j r
i 2 j zj

yields the recurrence relation~4! with an obvious simple
change in the right hand side. Thus, for example, it is p
sible to include the combined effect of external electric a
magnetic fields that are uniform or take the form of a fin
sum of multipoles.

In conclusion, we would like to express our deep gra
tude to V. S. Popov, who read the manuscript and mad
number of valuable comments which led to improvemen
We also thank V. G. Ksenzov for useful discussions and
D. Mura and B. M. Karnakov for their interest in this work
One of the authors~V.A.G.! is indebted to V. L. Morgunov
and A. A. Panfilov for discussing several questions related
the numerical calculations.
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10A. V. Turbiner, Zh. Éksp. Teor. Fiz.84, 1329~1983! @Sov. Phys. JETP57,

770 ~1983!#.
11V. S. Polikanov, Zh. E´ ksp. Teor. Fiz.52, 1326~1967! @Sov. Phys. JETP

25, 882 ~1967!#.
12V. S. Pekar, Teor. Mat. Fiz.9, 140 ~1971!.
13A. D. Dolgov and V. S. Popov, Phys. Lett. B86, 185 ~1979!.
14Y. Aharonov and C. K. Au, Phys. Rev. A20, 2245~1979!; 22, 328~1980!.
15V. Privman, Phys. Rev. A22, 1833~1980!.
16V. L. Eletski� and V. S. Popov, Dokl. Akad. Nauk SSSR250, 74 ~1980!;

S. P. Alliluev, V. L. Eletsky, and V. S. Popov, Phys. Lett. A73, 103
~1979!.

17S. P. Alliluev, V. M. Va�nberg, V. L. Eletski�, and V. S. Popov, Zh. E´ ksp.
Teor. Fiz.82, 77 ~1982! @Sov. Phys. JETP55, 46 ~1982!#.
18R. J. Svenson and S. H. Danforth, J. Chem. Phys.57, 1734~1972!.
19J. Killingbeck, Phys. Lett. A65, 87 ~1978!.
20V. S. Lisitsa, Usp. Fiz. Nauk153, 379 ~1987! @Sov. Phys. Usp.30, 927

~1987!#.
21J. Ziman,Modern Quantum Theory@Russian translation#, Mir, Moscow

~1971!, Ch. 3.
22Jang-Huar Wang and Chen-Shiung Hsue, Phys. Rev. A52, 4508~1995!.
23C. M. Bender, L. D. Mlodinov, and N. Papanicolaou, Phys. Rev. A25,

1305 ~1982!.
24C. M. Bender and T. T. Wu, Phys. Rev. D7, 1620~1973!.
25D. Cabib, E. Fabri, and G. Fiorio, Nuovo Cimento10, 185 ~1972!.

Note added in proof (1 December 1997); We have released a more detaile
table of hypersusceptibilitiesEk as an electronic preprint, Physics/970800

Translated by D. H. McNeill



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 86, NUMBER 2 FEBRUARY 1998
Scattering of atoms in the field of counterpropagating light waves. Effect of initial
conditions
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The scattering of an atom in the field of counterpropagating light waves is studied under
conditions such that the state of the atom is a superposition of the ground and excited states. For
the case in which this superposition is created by the field of a traveling wave, the momentum
distribution function of the atom after scattering by a standing wave is found analytically in the
approximation of a short interaction time, when the atom’s motion can be neglected.
Longer interactions of the atom with the field are studied numerically. We also consider the case
of counterpropagating light waves consisting of Gaussian or supergaussian pulses. ©1998
American Institute of Physics.@S1063-7761~98!01302-X#
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1. The motion of atoms in the field of standing ligh
waves has been the subject of thorough study for m
years.1–6 This is because of the interesting physics of t
multiphoton processes that occur, as well as of the wi
spread applications of standing waves in various atomic
tics devices.7 It should be noted that essentially all pape
devoted to this topic have been concerned with the scatte
of atoms that are initially in the ground state. We ha
shown8 that this yields a substantially depleted picture of t
possible motion. It turns out that if the atom is initially in
coherent superposition of the ground and excited states
has been prepared in a certain way, then a new ef
occurs—an asymmetry in the scattering of the atom b
standing wave field. This phenomenon may serve as a b
for explaining the experimentally observed9,10 scattering pat-
tern of atoms in the field of short, counterpropagating la
pulses.

In this paper we analyze in detail the scattering of
atom in the field of a standing light wave in the case whe
at the beginning of the interaction with the standing lig
wave, the atom is in a coherent superposition of the gro
and excited states. In particular, we examine the interac
of the atom with a standing light wave in the parameter ra
where the Doppler effect is significant. Numerical simu
tions are also made of the interaction of atoms with the fi
of two counterpropagating waves whose envelopes hav
time dependence close to the time dependences of the
waves interacting with an atom in an experiment~Gaussian
and ‘‘supergaussian’’ pulses that are shifted in time!. We
assume that the time for the interaction of the atom with
light fields is short, so that spontaneous emission from
upper level can be neglected over the time in which the fie
act. In addition, as our goal is to clarify the qualitative effe
of the initial spatial modulation in the probability amplitude
of the ground or excited states on the scattering pattern
this paper we have restricted ourselves to a two-level mo
for the atom.

2. The Schro¨dinger equation describing the interaction
3121063-7761/98/86(2)/6/$15.00
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a two-level atom with an electromagnetic wave field has
form

i\Ċ5~H02d̂–E!C, ~1!

where

H05
p̂2

2m
1\v0ue&^eu, ~2!

p̂52 i\¹ is the momentum operator for the atom,m is its
mass,\v0 is the eigenvalue of the Hamiltonian of the m
tionless atom in the absence of the light fields that cor
sponds to the excited stateue& of the atom.~We assume tha
the eigenvalue corresponding to the ground state,ug&, equals
zero.!, d̂ is the dipole moment operator, andE is the electric
field strength of the light wave.

The interaction of an atomic beam with a standing wa
field is known to cause it to spread out in momentu
space.11,12The magnitude of this spreading increases linea
with time until the offset of the atomic transition from th
field frequency caused by the Doppler effect reduces the
ficiency of the interaction of the atoms with the field.

We first examine the scattering of an atom in a stand
wave field for short interaction times between the atom a
field, when the Doppler effect can be neglected.

Let an atom interact fort.0 with the standing wave
field

E52eE0 sin~kx!cos~vt !, ~3!

wheree is the unit vector in the direction of the electric field
We seek a solution of Eq.~1! in the form

C5ce~x,t !exp~2 iv0t !ue&1cg~x,t !ug&. ~4!

Substituting Eqs.~4! and~3! in Eq. ~1!, we find equations for
cg(x,t) andce(x,t) in the rotating wave approximation:

ċg~x,t !5 iV0 sin~kx!exp~ idt !ce~x,t !,
~5!

ċe~x,t !5 iV0 sin~kx!exp~2 idt !cg~x,t !,
© 1998 American Institute of Physics
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where we have introduced the notationV05^eud̂•eug&E0 /\
and d5v2v0 . We assume thatV0 is real and does no
change during the timet int within which the atom interacts
with the standing wave field. In deriving Eq.~5!, we have
neglected the motion of the atom during the time of t
interaction with the field and have left out the termp̂2/2m in
H0 . It is known7 that the motion of the atom can be n
glected fort int!TRN ~the Raman–Nath region!, where

TRN52p/A2dtV0. ~6!

Heredt5\k2/2m.
Upon solving Eq.~5!, we find

cg~x,t !5H cg~x,0!cosS Vt

2 D1
i

V
@2dcg~x,0!

12V0 sin~kx!ce~x,0!#sinS Vt

2 D J expS i

2
dt D ,

ce~x,t !5H ce~x,0!cosS Vt

2 D1
i

V
@dce~x,0!

12V0 sin~kx!cg~x,0!#sinS Vt

2 D J
3expS 2

i

2
dt D , ~7!

where the notationV5Ad214V0
2 sin2(kx) has been intro-

duced.
We find the average momentum transferred to the at

^Dp&52 i\E
2`

` FC* ~x,t !
]

]x
C~x,t !

2C* ~x,0!
]

]x
C~x,0!Gdx ~8!

up to time t after the onset of the interaction between t
atom and the standing wave field. Substituting Eq.~7! in Eq.
~8! yields

^Dp&5\kV0E
2`

` cos~kx!

V3 H @V3t2d2~Vt2sin~Vt!!#

3@rge~x!1reg~x!#12idV sin2S Vt

2 D @rge~x!

2reg~x!#12dV0 sin~kx!@Vt2sin~Vt!#@ree~x!

2rgg~x!#J dx, ~9!

where we have introduced the notation

rgg~x!5cg* ~x,0!cg~x,0!, ree~x!5ce* ~x,0!ce~x,0!,
~10!

rge~x!5cg* ~x,0!ce~x,0!, reg~x!5rge* ~x!.

At time t50, let the atom be described by a wave pac
and let x0 be some characteristic point in the packet th
describes its position in space, such as its ‘‘center of gr
ity:’’
,

t
t
v-

x05E
2`

`

x@rgg~x!1ree~x!#dx. ~11!

It can be shown that when the dependences ofrgg(x),
ree(x) andrge(x) on the coordinatex can be represented b
a function ofx2x0 ~i.e., the shape of the wave packet of th
atom in a system of coordinates attached to its ‘‘center
gravity’’ does not depend on its position relative to the nod
and antinodes of the standing wave!, the average of Eq.~9!
over x0 yields ^Dp&50. As an illustration, we consider th
case of exact tuning of the radiation frequency to the ato
transition frequency (d50). Then, for^Dp& we have

^Dp&5\kV0E
2`

`

cos~kx!@rge~x!1reg~x!# dx. ~12!

Upon introducing the notationrge(x)1reg(x)5 f (x2x0)
and making the variable substitutionx5x01x8 in the inte-
gral of Eq.~12!, we find

^Dp&5\kV0E
2`

`

cos~kx81kx0! f ~x8!dx8. ~13!

Averaging Eq. ~13! with respect tox0 over the interval
(0,2p/k) obviously yields^Dp&50. Thus, when the atomic
beam consists of an ensemble of atoms described by id
cal wave packets initially distributed in a region of wid
substantially greater than 2p/k, the average momentum
transfer to the atomic beam is zero. This conclusion is ba
on the form of the dependence of the sumrge(x)1reg(x) on
x, and x0 . If, for example, we setrge(x)1reg(x)
5 f (x2x0)cos(kx), it is easy to see that^Dp&Þ0. It might be
expected that a standing wave could transfer momentum
an atomic beam which is perpendicular to it
rge(x)1reg(x)5 f (x2x0) f 0(x), wheref 0(x) is an arbitrary
oscillatory function ofx with period 2p/k.

In the general case of an arbitrary frequency offset of
light from the atomic transition frequency,dÞ0, it can easily
be seen from Eq.~9! that the average momentum transferr
to an atom may be nonzero ifrge(x) and reg(x) contain
spatial harmonics with period 2p/k, or if rgg(x) or ree(x)
contain spatial harmonics with periodp/k.

We have proposed8 creating oscillatory dependences
rge(x) andreg(x) on x with period 2p/k using a traveling
wave that acts for some time on an atom before it intera
with the standing wave field. Oscillatoryrgg(x) andree(x)
with periodp/k can be created when the atoms interact w
an auxiliary standing wave field whose nodes are shif
relative to the main standing wave, which ensures a gui
change in the momentum of the atoms.4 Here the first wave
causes a spatial modulation in the populations of the gro
and excited states, while fordÞ0 the second wave causes
guided change in the momentum of the beam atoms.

Here we shall examine the first possibility, keeping t
simplicity of realizing it in mind~for example, an atom in the
field of counterpropagating pulses or an atomic beam in
secting two parallel spatially displaced and partially overla
ping laser beams!. In addition, in this case, the atoms do n
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have to interact for long with the field required to displa
them along the standing wave by a distance on the orde
the wavelength.

We find cg(x,0) andce(x,0), assuming that fort,2t
the atom is in the ground state and then interacts for a timt
with the standing wave field

E5eE0 sin~kx2vt1w!. ~14!

For w50 this field coincides with the field of one of the tw
travelling wave forming the standing wave~3!. As before,
we seek a solution of the Schro¨dinger equation~1! in the
form ~4!. Solving the equations forcg(x,t) andce(x,t),

ċg~x,t !52
V0

2
ce~x,t !exp~2 ikx1 idt2 iw!,

ċe~x,t !5
V0

2
cg~x,t !exp~ ikx2 idt1 iw! ~15!

with initial conditions cg(x,2t)5c(x) and ce(x,2t)50,
we find

cg~x,0!5Fcos
q

2
2

id

Ṽ
sin

q

2
GexpS i

dt

2
D c~x!,

~16!

ce~x,0!5
V0

Ṽ
sin

q

2
expS i

dt

2
1 ikx1 iw D c~x!,

where we have introduce the Rabi frequencyṼ5Ad21V0
2

and the pulse areaq5Ṽt of the traveling wave. Equation
~16!, together with Eqs.~4! and ~7!, determine the wave
function of the atom at timest beginning with its interaction
with the standing wave field.

The diffraction pattern of the atomic scattering in the
zone is described by the wave function of the atoms in w
vectorK space:

f g~K,t !5
1

A2p
E

2`

`

e2 iKxcg~x,t !dx,

~17!

f e~K,t !5
1

A2p
E

2`

`

e2 iKxce~x,t !dx.

Here we use the variableK which is related to the momen
tum p by the formulaK5p/\. We shall assume that at th
beginning of its interaction with the travelling wave field, th
atom is described by the probability amplitude

c~x!5
1

D1/2p1/4 expH 2
~x2x0!2

2D2 J . ~18!

In the case of exact tuning of the radiation frequency to
atomic transition (d50), the integrals in Eq.~17! can be
calculated and we find
of

r
e

e

f g~K,t !5p21/4D1/2 (
m52`

` FJ2m~V0t !cos
q

2

1J2m21~V0t !eiw sin
q

2 G
3expF2 iKx012imkx02

1

2
D2~K22mk!2G ,

f e~K,t !5p21/4D1/2 (
m52`

` FJ2m~V0t !eiw sin
q

2

1J2m11~V0t !cos
q

2 GexpH 2 iKx01 i ~2m11!

3kx02
1

2
D2@K2~2m11!k#2J . ~19!

For a prolonged interaction of the atom with the fie
(V0t@1), noting the asymptotic behavior of the Bessel fun
tion, we conclude that the momenta of the scattered atom
within the interval (2\kV0t,1\kV0t).

It is important that, even for a broad atomic beam, af
averaging overx0 the momentum distributions of the atom
in statesug& and ue& are asymmetric:

u f g~K,t !u25
D

2Ap
(

m52`

`

@J2m
2 ~V0t !~11cosq!

12J2m~V0t !J2m21~V0t !

3sin q cosw1J2m21
2 ~V0t !~12cosq!#

3exp@2D2~K22mk!2#,

u f e~K,t !u25
D

2Ap
(

m52`

`

@J2m11
2 ~V0t !~11cosq!

12J2m11~V0t !J2m~V0t !sin q

3cosw1J2m
2 ~V0t !~12cosq!#

3exp$2D2@K2~2m11!k#2%. ~20!

Figure 1 shows the distribution function averaged ov
x0 , u f g(K,t)u21u f e(K,t)u2. An asymmetry shows up only
when the atomic state is a superposition of the ground
excited states (qÞnp) and is greatest when their contribu
tions are equal~q5np1p/2, wheren is an integer!.

For the integral characteristics of atomic scattering in
standing wave field, it is natural to use the average mom
tum ^p& transferred to an atom and its dispersi
pd5A^p2&2^p&2, which can be calculated if the averag
value of the square of the momentum transfer to an atom
known. Here it is more convenient to use a coordinate r
resentation.

The average momentum of an atom is
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^p&5
\k

2
$12cosq1V0t sin q@cosw

1exp~2k2D2!cos~2kx01w!#%. ~21!

The time-independent part of Eq.~21! describes the mo
mentum acquired by an atom from the traveling wave, a
the part which is proportional to the time is due to interact
with the standing wave. In accordance with the preced
remarks, Eq.~21! implies that in the standing wave field, th
momentum of an atom varies only when the atom is in
coherent superposition of the ground and excited states a
beginning of the interaction with the standing wave~q
Þnp, wheren is an integer!. The momentum transferred t
the atom is greatest forw50, i.e., when the traveling wave i
in phase with the one of the traveling waves forming t
standing wave that corresponds to it.

The average of the square of the momentum of the a
is

^p2&52\2E
2`

`

C* ~x,t !
]2

]x2 C~x,t !dx

5
3\2

2D2 1
~\k!2

2
$~V0t !2@11exp~2k2D2!

3cos~2kx0!#12 exp~2k2D2!V0t sin q

3cos~2kx01w!112cosq%. ~22!

As an example, let us consider the caseq50.5p, w50,
and kx05np ~atoms interacting with a standing wave ne
its nodes!, when the momentum transfer to the atom is gre

FIG. 1. Momentum distribution function of atoms after scattering by
field of a standing wave in the case in which the initial state of the atom
a superposition of the ground and excited states created by a traveling
for d50. The width of the wave packet of the atom isD51/2k, V0t550.
Curves1, 2, and3 refer to the casesq50, q50.25p, andq50.5p.
d

g

a
the

m

r
t-

est. If the width of the wave packet is much less than
wavelength (Dk!1), thenpd!^p& and it can be assume
that the momentum of essentially all atoms changes by
same amount after crossing the standing wave. Note t
according to Eq.~16!, in this case the atom is in the diabat
state12

uf1&5
&

2
~ ug&1ue&), ~23!

corresponding to the potential\V0 sin(kx). It is acted on by
a forceF5\kV0 which causes the momentum to change
\kV0t over the timet the standing wave acts.

In the general case of an arbitrary initial position of t
atom, its wave function is already a superposition of tw
diabatic statesuf1& and uf2&, and the wave packet split
into two, each of which moves in its potential~the optical
analog of the Stern–Gerlach experiment!. If an atomic beam
much wider than the wave length interacts with the fie
then, as is easily seen from Eqs.~21! and~22! after integrat-
ing over x0 , the average momentum transferred to a be
atom and the change its squared average are independe
the width D of the atomic wave packets. This is consiste
with the fact that observations of the scattering of a bro
atomic beam cannot provide information on the degree
coherence of the plane waves describing an ato
ensemble.7 Thus, the values observed during scattering of
atomic beam can be obtained by solving the plane w
scattering problem and then averaging the result over
angular distribution of the plane waves. Neglecting the ob
ous effect of the initial momentum distribution of the atom
on the average momentum and dispersion of the scatt
beam, we model it with a plane wave in the following.

We now consider the effect of the offset of the fie
frequency from that of the atomic transition on the avera
momentum transferred to an atom and the average squa
the momentum. We are interested in the case of a long
teraction between the atom and the field,V0t@1. Retaining
only linear terms int in calculating^p& and quadratic terms
in t in calculating^p2&, we find

^p&5\kV0
4t

Ṽ cosw sin q2d sin w~12cosq!

Ṽ2~2V0
21d21uduA4V0

21d2!
, ~24!

and

^p2&5
~\kV0

2t !2

2V0
21d21uduA4V0

21d2
. ~25!

As can be seen from Eqs.~24! and ~25!, the average
momentum transfer falls off much faster as the offset is
creased (}d23) than does its dispersion (}d21), and, ulti-
mately, ford@V0 the momentum distribution of the atom
becomes almost symmetric. The change in the sign of^p& as
d increases is related mainly to the variation inq and, in the
limit d@V0 , takes place with a step size 2p/t determined
by the time of the interaction with the travelling wave.
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3. In the above theory we have left the kinetic ener
operator, which accounts for the motion of the atom, out
the HamiltonianH0 . In the general case of an arbitrary d
ration of the interaction between the atom and the light,
tially ( t,TRN) one should expect a rise in the momentu
transfer to the atom with time; then the Doppler effect cau
an offset of the atomic transition frequency from the lig
frequency which should lower the efficiency of the ato
field interaction and limit the further rise in the momentu
of the atom.

Noting that fort,TRN the change in the momentum o
the atom can reach\kV0t, we may expect that the averag
momentum transfer to the atom would be of ord
\kV0TRN .

From the Schro¨dinger equation~1! with the free-atom
Hamiltonian ~2!, including the translational motion and
field of the form

E5e@E0
~1 !~ t !sin~kx2vt !1E0

~2 !~ t !sin~kx1vt !#, ~26!

after transforming to the momentum representation~17!, we
can obtain the equations

ḟ g~K,t !52
i\

2m
K2f g~K,t !1

1

2
eidt@V0

~2 !~ t ! f e~K2k,t !

2V0
~1 !~ t ! f e~K1k,t !#,

~27!

ḟ e~K,t !52
i\

2m
K2f e~K,t !1

1

2
e2 idt@V0

~1 !~ t ! f g~K

2k,t !2V0
~2 !~ t ! f g~K1k,t !#,

whereV0
(6)(t)5^eud̂•eug&E0

(6)(t)/\; the momentum distri-
bution of the atoms can be found from Eq.~27!. Figure 2
shows a set of plots of the average atomic momentum
function of time obtained by solving Eq.~27! numerically.
The calculation has been done for the case of an atom in
acting with two counterpropagating waves of equal intens

FIG. 2. Average momentum of an atom in the field of counterpropaga
rectangular pulses of durationT52/dt as a function of time forV0510dt

~curve 1!, V0540 dt ~curve 2!, and V0590d r ~curve 3!. The time shift
between the pulses,t, obeys the conditionV0t50.5p, whereV0 is the Rabi
frequency in the field of a single travelling wave.
f

i-

s
t
-

r

a

r-
,

that are resonant with the atomic transition and have rec
gular envelopes of durationT, amplitudeV0 , and a time
shift t between them which has been chosen so t
V0t50.5p. The values ofV0 corresponding to the differen
curves are in the proportion 1:22:32. It is clear that the cor-
responding maximum average momenta of the atoms ar
the proportion1:2:3. On theother hand, the times~on the
order ofTRN! over which the momentum increases to the
values are in inverse proportion.

4. We have examined the interaction of an atom w
counterpropagating waves in the case where the time de
dence of the fields acting on the atom is given by rectang
pulses. A coherent superposition of the ground and exc
states is prepared while only the first wave is acting
atom, and then the atom is scattered in a standing w
Under real conditions, these two processes cannot alway
considered independently, so that the formation of a cohe
superposition of the ground and excited states prior to s
tering in the field of counterpropagating waves with comp
rable amplitudes and the scattering process, itself, canno
separated in the general case. One might suppose, for
ample, that this situation is probable during the interaction
an atomic beam with two spatially shifted counterpropag
ing laser beams that have gaussian radial intensity distr
tions.

Figure 3 shows plots of the momentum transferred to
atom beam as a function of the delay between counterpro
gating waves for a rectangular envelope, as well as for ga
ian and supergaussian light pulses defined by

E0
~6 !5E0 expF2S 2~ t6t/2!

T D 2sG , ~28!

found by numerical integration of the Schro¨dinger equation.
In order to separate effects associated with the motion

the atoms along the laser beam from the effect of the sh
of the envelope of the light pulses, Eq.~27! was solved in the
Raman–Nath approximation (t,TRN). As can be seen from

gFIG. 3. The average momentum transferred to at atom in the field of co
terpropagating gaussian~curve 1!, supergaussian withs52 and s54
~curves2 and3!, and rectangular~curve4! light pulses as functions of the
delay between pulses. For all these curvesV0t520, d50, anddt50.
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the figure,s has almost no effect on the delay at which t
momentum transferred to the atom beam is greatest, but
have a substantial effect on the magnitude of this mom
tum. For observing an asymmetry in the scattering of ato
in a standing wave, it is preferable to form this wave fro
the field of counterpropagating pulses whose envelopes h
a near rectangular shape~larges!, which essentially exclude
the intermediate interaction region where the formation o
coherent superposition of the ground and excited states o
atom can take place simultaneously with scattering of
atom in the field of the counterpropagating waves.

5. We have examined the scattering of atoms in the fi
of counterpropagating waves and shown that the initial in
action, within a certain time, of an atom with the field
only one of the waves causes the formation of a superp
tion of the ground and excited states of the atom, wh
interaction with the field of both counterpropagating wav
differs qualitatively from the scattering of a ground or e
cited state atom by a standing wave field. The result
asymmetry in the atomic scattering is caused by a spa
modulation in the amplitude of the excited state of the at
by the field of a traveling wave with a period equal to t
wavelength.
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Rotation and alignment of diatomic molecules and their molecular ions in strong laser
fields

M. E. Sukharev
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A theory of classical rotation and alignment of diatomic molecules with and without permanent
dipole moments and of their molecular ions in strong laser fields is developed. The
actions of both cw and pulsed laser fields is considered. Conditions under which molecular axes
are aligned with the field, which is presumed to be linearly polarized, have been determined.
The analysis leads to a conclusion that molecules exposed to ultrashort laser pulses continue to
rotate even after the end of the laser pulse. The effect of dynamical chaos on the rotational
angular velocity in strong laser field is discussed. ©1998 American Institute of Physics.
@S1063-7761~98!01402-4#
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1. INTRODUCTION

The problem of rotation and alignment of molecules a
molecular ions in strong ac field came up quite recently
the analysis of experiments on ionization and dissociation
molecules by intense laser fields.1–3 Of course, the alignmen
of molecules is random in the absence of external field. T
theoretical problem is in determination of classical dynam
of molecular rotation and oscillation, and also of their orie
tation in the external ac field. This classical problem is
sentially nonlinear because the molecules can rotate. Its
lution depends on the pecularities of the molecular sys
and the laser radiation parameters.

Most experiments with molecules are done at ambi
temperature. The characteristic energy of thermal rotatio
the diatomic molecule iskT.0.025 eV, wherek is Boltz-
mann’s constant andT is the absolute temperature. Even
the laser field intensity is relatively low,F553107 V/cm,
the typical energy perturbation in a molecule is of the or
of FaB;0.27 eV, i.e., it is considerably higher than the the
mal energy, and the latter can be neglected. In this case
molecule axis should rotate in the plane containing the ini
orientation of this axis and the polarization vector of t
laser field~in what follows we assume that the light is lin
early polarized!, so the problem is one-dimensional and the
is no precession of the molecular axis caused by the field
the case of a molecule with zero dipole moment, the cha
teristic perturbation energy is approximately@see Eq.~1! be-
low# aF2/4;0.03 eV when the field intensity has the valu
given above~the molecule’s polarizability is set at 30 a.u
see the example of Cl2 in Sec. 6!. This is comparable to the
thermal energy, but this estimate refers to the case of a w
field. At higher field intensities thermal rotation can be n
glected.

The internuclear distance in molecules and their io
will be assumed to be fixed, i.e., in our calculations we w
3181063-7761/98/86(2)/5/$15.00
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ignore the possibility of molecules dissociating while th
undergo classical rotation in space. It is clear that the
proximation of a frozen internuclear distance not apply to
cases. It presupposes that it is easier to turn a molecule
to stretch it. In the weak-field case this approximation
based on the smallness of rotational energies as compar
vibrational. In the case of a strong field, the approximation
based on an assumption that the typical times of molec
rotations are much shorter than the characteristic times
dissociation. The dissociation rate, in its turn, is slow b
cause is cannot be done without a Landau–Zehner trans
from the ground-state electronic level to the separation le
The probability of this transition is exponentially small if th
field is below the atomic field, or the internuclear distance
relatively small so that the gap between these electron le
is not very small.

The first parts of the paper are dedicated to the effec
monochromatic laser field with a constant amplitude. T
remaining calculations deal with laser pulses of finite amp
tude.

2. MOLECULES WITH ZERO DIPOLE MOMENT

Consider a diatomic molecule with zero dipole mome
~for example, a molecule of two identical atoms! in a laser
field. The angle between the molecule’s axis and field po
ization vector is denoted byu. The potential energy of such
system is

U52
1

2
aF2 cos2 vt cos2 u, ~1!

wherea is the static dipole polarizability of the molecule,F
is the laser field amplitude, andv is its frequency. This for-
mula is derived in the second order of the perturbation the
with respect to the applied field. From the formal viewpoi
the polarizability at the external field frequencyv should be
© 1998 American Institute of Physics
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involved, but this frequency is almost always lower than
frequency of electron transitions contributing to a diago
two-photon element of the polarizability matrix, so the sta
polarizability can be used. As for the time dependence in
~1!, it is meaningful only in cases of a low-frequency fiel
when the field changes slowly~the criterion is the same a
for the field frequency, i.e., the frequency should be low
comparison with the frequency of electron transitions in
molecular system!. In the case of an isolated atom, this tim
dependence is assumed to be in the Stark shift of the en
when the atom is exposed to a laser pulse and the p
envelope must be taken into account. Thus, it is unneces
to average Eq.~1! over time. At the same time, the rati
between the frequencyv and the molecule axis rotation fre
quency can be arbitrary@see Eq.~5! below#. Hence, New-
ton’s equation in this case has the form

d2u

dt2 1
1

2 S v0

v D 2

cos2 t sin 2u50. ~2!

Here the dimensionless time ist[vt and

v0
25

aF2

mR2 , ~3!

wherem is the reduced mass of the molecule andR is the
internuclear distance in the molecule. It is obvious that
frequencyv0 is the natural frequency of small oscillations
the molecule in a dc electric field. This frequency is undou
edly much smaller than the frequency of electron transiti
in the molecule. After linearization, Eq.~2! turns to a
Mathieu equation. It will be shown in the following section
that such a linearization is possible only in weak laser fie

Equation ~2! was solved numerically taking the initia
conditions in the form

u~0!5
p

4
,

du

dt
~ t50!50. ~4!

The first of these conditions defines the average angle
tween the molecular axis and field polarization vector, bu
reality this condition has little effect on the solution. Th
second condition in Eq.~4! derives from the absence of the
mal rotations in the molecule, which was discussed abov

Figure 1 shows the functionu~t! for the case of a weak
laser field, when (v0 /v)251023. We can see that the mo
lecular axis oscillates around the laser field polarization v
tor with the amplitude equal to the initial angle. The oscil
tion period can be easily calculated analytically using
Krylov–Bogolyubov–Mitropolskii approximation.4 By lin-
earizing Eq.~2! and replacing the square of the sine with 1
we obtain the dimensionless oscillation period

T52p&
v

v0
. ~5!

In this specific case we have 280, which is in a fair agr
ment with the numerical calculations plotted in Fig. 1.

Figure 2 shows a solution of Eq.~2! with initial condi-
tions ~4! for the case ofv5v0 . In this case the molecule
rotates swiftly and randomly. Sometimes the rotation dir
tion is reversed. This is a typical case of the onset of dyna
e
l
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cal chaos.5 If the chaotic motion is averaged over a larg
time interval, one can observe a diffusion-like time evoluti
of the rotation angle. Note that dynamical chaos usually
curs when the applied field frequency is comparable to
natural frequencies of the nonlinear system, which is the c
in this example.

3. MOLECULAR HYDROGEN ION

Ions of arbitrary molecules are rather difficult to tre
when the internuclear distances are small because of the
sence of data about the constant dipole moment. In the
of the hydrogen molecular ion the easiest case to study is
configuration in which the internuclear distanceR is larger
than the equilibrium value. By using a system of units
which the electron charge is unity, we can express the
potential energy in a monochromatic laser field in the for

U52
1

2
FR cosvt cosu. ~6!

FIG. 1. Deflection angle of a molecule~in radians! as a function of dimen-
sionless time for (v0 /v)251023.

FIG. 2. Same as in Fig. 1, but forv05v.
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The notation in this case is identical to that of the previo
section. The laser field is assumed to be linearly polarize
previously.

Newton’s equation for the angleu through which the
axis of the hydrogen molecule rotates as a function of dim
sionless timet5vt takes the form

d2u

dt2 1S V

v D 2

cost sin u50. ~7!

Here we have introduced the parameter

V5A F

2mR
. ~8!

This is the frequency of free oscillations of the molecu
axis in a dc electric field@similarly to Eq.~3!#.

Equation~7! was solved numerically with the initial con
ditions ~4!. Figure 3 shows the axis rotation angle as a fu
tion of dimensionless time for the case of weak field, wh
(V/v)251023. The curve in Fig. 3 looks like that in Fig. 1
One can see, however, that the period of molecular axis
cillations around the laser field polarization vector is cons
erably larger than in Fig. 1. This period can be also obtai
analytically. By linearizing Eq.~7!, we obtain the Mathieu
equation with a small parameter:

d2u

dt2 1S V

v D 2

cost•u50. ~9!

Its approximate solution can be found using the Whitta
technique.4 Let us find a solution of a more general Mathie
equation

d2u

dt2 1S d1S V

v D 2

cost D u50

in the form

FIG. 3. Deflection angle of the axis of a molecular hydrogen ion~in radians!
versus dimensionless time for (V/v)251023, R@Re .
s
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-

r

-
n

s-
-
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u~ t !5u0~ t !1S V

v D 2

u1~ t !1...

aroundd50. The parameterd should be also expanded i
powers of the small parameter. This procedure is in f
equivalent to separation of equations for the fast and s
components of the deflection angleu(t).

The coefficients of these power expansions are de
mined from the condition that secular~divergent! terms not
appear in the iteration procedure. In what follows we w
construct a solution satisfying the initial conditions~4! from
the two linearly independent solutions obtained earlier. Af
calculations we have

u~t!5u~0!cosS 1

&

S V

v D 2

t D . ~10!

Thus, the dimensionless oscillation period

T52p&S v

V D 2

. ~11!

In this specific case it is about 9000, which is in good agr
ment with the numerical solution illustrated by Fig. 3. No
that fast oscillations of the deflection angle with the fr
quency of the external field, whose amplitude is small, c
not be seen in the graph, given the scale on which is curv
plotted.

Equation ~7! was also solved in the case of modera
fields withV5v. It was found that the molecular ion rotate
rapidly and the rotation direction is determined by initi
conditions. In the case of strong field,V@v, small fluctua-
tions due to the different phase differences between the fi
and the rotation angles at different times are superposed
even faster rotations.

The solutions described above correspond to large in
nuclear separations in a hydrogen molecular ion. At sma
distances, includingR52 a.u. the potential energy has a ve
complex form. It was given in an earlier publication.6 Using
this energy and assuming the laser photon energy to be
eV ~a CO2 laser!, we also solved Newton’s equation wit
initial conditions ~4!. The solution for the case of the fiel
intensityF5109 V/cm and internuclear distanceR54 a.u. is
shown in Fig. 4. One can see that a large-amplitude ion
tation takes place sometimes accompanied by delays.
mode of rotation is also due to specific features of dynam
chaos.

In the case of a weak field and arbitrary internucle
distances, the molecular ion axis slowly oscillates around
laser field polarization vector. This situation is similar to t
case illustrated by Fig. 3.

4. MOLECULES WITH A CONSTANT DIPOLE MOMENT

The potential energy of a diatomic molecule with a co
stant dipole momentd in a laser field is expressed as

U52
1

2
aF2 cos2 vt cos2 u2dF cosvt cosu. ~12!

The notation is identical to that of the previous sections.
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In order to obtain a solution distinct from the two di
cussed in the previous sections, we need the two terms o
right-hand side of Eq.~12! of the same order of magnitude
namelyF;d/a. For example, in the case of the NO mo
ecule the field intensity amplitude should beF;2
3107 V/cm. This field is smaller than the atomic field
therefore the contributions from higher-order hyperpolar
abilities to Eq.~12! can be neglected.

In this case Newton’s equation for the molecule rotat
angle has the form

d2u

dt2 1S V

v D 2

cost sin u1
1

2 S v0

v D 2

cos2 t sin 2u50,

~13!

where the frequencyv0 is defined by Eq.~3! and

V5A dF

mR2. ~14!

Integration of Eq.~13! with initial conditions ~4! for
v05V5v yields the function shown in Fig. 5. Unlike th
previous cases, the following new effect occurs: the m
ecule rotates for some time, and after 106 turns it is alig
exactly with the laser field polarization vector. This res
derives from the KAM-theorem5 concerning the stabilization
of classical motion in an external field with an amplitu
below a certain critical value.

Equation~13! was also integrated in the case of a we
field. In this situation the solution is similar to that shown
Fig. 1, i.e., the molecular axis oscillates around the la
polarization vector with an amplitude equal to the init
angle. In a strong field, on the contrary, the molecule’s a
rotates randomly without limits owing to the dynamic
chaos effects.

The Schro¨dinger equation for this case was solved
Charronet al.7 In our opinion, the classical approach to th
problem is quite adequate because an external laser field
cites the molecule to states of molecular levels under con

FIG. 4. Same as in Fig. 3, but forF5109 V/cm, R54 a.u.
the

-

l-
d

t

r

is

x-
d-

eration with high rotational quantum numbers. We did n
however, compare this solution with the numerical one
cause this comparison required initial conditions defined
the form of a quasiclassical wave packet, and such co
tions were not introduced in the quantum problem.7

5. DISCUSSION OF EXPERIMENTAL DATA

The dynamics of molecular axis rotation in a strong la
field was investigated in experiments.3 Let us discuss align-
ment of the neutral Cl2 molecule in a laser pulse with
duration of 100 fs and a wavelength of 610 nm. The sta
polarizability of this molecule isa531.1 a.u., the reduced
mass of the molecule ism517.73 a.m.u., and the equilib
rium internuclear distance isR53.6 a.u.8 Then we derive
from Eq. ~2!, even forF51 a.u.,

S v0

v D 2

'0.01. ~15!

Thus, the situation corresponds to the case illustrated by
1. Figure 6 shows a numerical solution of Eq.~2! taking into
account the Gaussian envelope of a laser pulse with a d
tion of 100 fs. It is clear that the pulse ends after one per
of the molecular axis oscillation, then the molecule rota
with a constant velocity imparted by the laser pulse.

When the pulse duration increases to 2 ps, the pictur
essentially the same, but the final rotation velocity is tw
orders of magnitude lower. As the pulse duration increa
further, the final velocity tends to zero, in accordance w
the well-known adiabatic theorem.

Now let us turn to the singly ionized chlorine molecu
ion Cl2

1 . Let us assume that the internuclear distance
larger than the equilibrium value so that the results for
hydrogen molecular ion discussed above could apply. Fig
7 shows the dynamics of the chlorine molecular ion rotat
for the caseR510 a.u. The other parameters were set eq
to those of the neutral chlorine molecule~the pulse duration
was 100 fs!. It is clear that the molecule oscillates around t

FIG. 5. Rotation angle of a molecule with a constant dipole moment ve
dimensionless time forV5v05v.
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polarization vector, and after the end of the laser puls
rotates at a constant velocity owing to the nonadiabatic pr
erty of the pulse envelope.

It is obvious that molecules and their ions do not rot

FIG. 6. Rotation angle of Cl2 molecule versus dimensionless time due to t
action of a laser pulse with a duration of 100 fs, a wavelength of 610
and peak intensity of 1015 W/cm2.

FIG. 7. Same as in Fig. 6, but for a Cl2
1 ion at an internuclear distanceR

510 a.u.
it
p-

e

after a laser pulse if its duration is in the picosecond ran
much less if it is in the nanosecond range.

6. CONCLUSIONS

The following conclusions derive from our numeric
calculations.

The axes of diatomic molecules with zero dipole m
ment in a weak laser field oscillate around the polarizat
vector of the laser radiation~which is assumed to be linearl
polarized! with an amplitude equal to the initial angle be
tween the molecule axis and polarization vector. In high
fields effects of dynamic chaos set in, and the molecule
tates randomly. In ultrastrong field the rotation velocity
considerably larger, although irregular features persist in
form of rotation delays at some moments.

The axes of molecular ions in a weak field also oscilla
but at considerably lower frequencies. At higher field inte
sities they start to rotate. Molecules with constant dipole m
ments stabilize after fast rotation at certain values of the fi
intensity when the molecular axis is aligned with the las
field polarization. In ultrastrong fields the molecules rota
rapidly.

Taking into account the shape of an ultrashort la
pulse, we have come to the conclusion that after the pu
end the molecules and their ions rotate at a constant ang
velocity determined by initial conditions for the specific mo
ecule. We must stress once again that our conclusions ar
affected by specific values of the initial angle between
molecular axis and polarization vector chosen for the
merical calculations.

We are indebted to S. P. Goreslavskii, N. B. Delone,
M. Popov, and M. V. Fedorov for stimulating discussions
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Ionization of a molecular hydrogen ion by a strong low-frequency electromagnetic field
of laser radiation

M. B. Smirnov and V. P. Kra nov
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Simple analytical expressions are obtained for the energy and angular distributions of outgoing
electrons in ionization of a molecular hydrogen ion by a strong low-frequency
electromagnetic field as well as for the ionization probabilities per unit time. The cases of linear
and circular polarization of the laser radiation are studied. It is shown that in contrast to
the case of the ionization of atoms oscillations appear in the energy spectra of the photoelectrons
as a function of their kinetic energy. The well-known limits for the tunneling ionization
probabilities for the hydrogen atom by a strong low-frequency alternating field are obtained in
the case of large internuclear separations. ©1998 American Institute of Physics.
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1. INTRODUCTION

A series of theoretical and experimental works on
ionization of simple molecular systems by a strong field
low-frequency laser radiation has appeared in the last
years.1–5 In this case the ionization is of a tunneling chara
ter and there are no resonance effects. Specifically, in Re
the problem of the one-dimensional dynamics of a molecu
hydrogen ion with fixed internuclear separation was solv
by numerical methods. Three-dimensional calculations w
performed both with a fixed internuclear separation and w
internuclear separation varying in the process
dissociation.7 A useful simplification of the calculations i
the two-level approximation, which takes account of only t
lowest even and odd states of the molecular hydrogen
The problem is also simplified by the fact that the axis of
molecular ion is aligned in the direction of the field with
times much shorter than the duration of the laser pulse. T
has been confirmed theoretically8 and experimentally.5

In the present paper the Keldysh–Faisel–Re
approach9 is used to study analytically the ionization of
molecular hydrogen ion by a low-frequency laser field. T
Coulomb correction to the Volkov wave function of the fin
state in the continuous spectrum is taken into account
well-known approximation.10 Both linear and circular polar
izations are studied. The energy and angular distribution
the outgoing photoelectrons in the tunneling regime and
ionization probabilities per unit time are found.

2. COULOMB CORRECTION

In the Keldysh–Faisel–Reiss approach9 the so-called
Volkov wave function describing the motion of an electr
in the field of only an electromagnetic wave corresponds
the wave function of the final state in the continuous sp
trum. The core potential is taken into account in semicla
cal perturbation theory. This procedure reduces to the
pearance of an additional factor of the form
3231063-7761/98/86(2)/5/$15.00
e
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I 5expH 2 i E UdtJ . ~1!

in front of the Volkov wave function. HereU is the potential
energy of an electron in the field of the two nuclei of th
molecular hydrogen ion

U52
1

r a
2

1

r b
, ~2!

which consists of two potential wells. The quantitiesr a and
r b are the distances between the electron and the protoa
and b, respectively. Here and below atomic uni
e5\5me51 are used everywhere.

We calculate first one of the two integrals in Eq.~1! by
replacing the integration over time by integration over t
spatial coordinate:

E dt

r b
5E

r b

Ei /F drb

r bA2~2Ei1Fr b!
52 in ln

2

n2Fr b
.

~3!

Here the integral is calculated in the subbarrier region,Ei.0
is the binding energy of the initial electronic level of th
molecular hydrogen ion,F is the amplitude of the intensity
of the laser radiation field, andn51/A2Ei is the effective
quantum number in the potential well that is closest w
respect to the emission of an electron. We assume that
axis of the molecule is directed along the electric field ve
tor, since the ionization probability is much higher in th
case than for other orientations of the molecular axis.

The upper limit of integration in Eq.~3! corresponds to
the classical turning pointr b5Ei /F. Large distances intro-
duce only a phase factor in the Coulomb correction. Only
subbarrier region of distances determines the important c
tribution.

The contribution from the potential of the distant pote
tial well is calculated similarly
© 1998 American Institute of Physics
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E dt

r a
52 in* ln

2

n* 2Fr a
, ~4!

where the effective principal quantum number for the dist
well has the form

n* 5
1

A2~Ei1FR!
,

whereR is the internuclear separation and the quantityFR is
the shift between the levels in the left- and right-hand pot
tial wells.

Therefore the Coulomb correction equals

I ~H2
1!5S 2

n* 2Fr a
D n* S 2

n2Fr b
D n

@1. ~5!

If R→`, thenn*→0, n→1 and, as should be the case, t
factor ~5! goes over the well-known Coulomb correction f
the hydrogen atom10

I ~H !5
2

Fr
. ~6!

In the opposite limiting caseR→0 we obtain from Eq.~5!
the Coulomb correction for the hydrogen-like ion of the h
lium atom.

3. MATRIX ELEMENT

The amplitude of the transition from the initial statei of
the molecular hydrogen ion into the final state of the co
tinuous spectrum with electron momentump has the follow-
ing form in the Keldysh–Faisel–Reiss model11 taking ac-
count of the Coulomb correction:12

Aip52 i E ^Cp
~V!I uV̂uC i

~0!&dt. ~7!

Here the Coulomb correctionI is given by the relation~5!,
and the final state in the continuous spectrum is describe
the Volkov wave function

Cp
~V!5expH ipr2

i

2 E tS p1
1

c
AD 2

dt8J , ~8!

whereA is the vector potential of the electromagnetic fie
and

V̂5
1

c
pA1

1

2
A2 ~9!

is the interaction potential between the electron and the e
tromagnetic field. Finally,C i

(0) is the unperturbed wave
function of the initial electronic state of the molecular hydr
gen ion with binding energyEi .

Integrating by parts following Ref. 13 simplifies the e
pression for the transition amplitude~7!

Aip5S 1

2
p21Ei D E ^Cp

~V!uI uC i
~0!&dt. ~10!

In this section we shall calculate the matrix element
pearing in the expression~10! for the transition amplitude
For this, we study first the form of the unperturbed wa
t

-

-

-

by

c-

-

function of the initial electronic state of the molecular hydr
gen ion. There are two close states: the even ground stag
and the odd first excited stateu. They are strongly mixed by
the constant part of the external electromagnetic field a
result of the approximate degeneracy. Therefore

C i
~0!5~cosb•wg1sin b•wu!exp~ iEgt !. ~11!

The mixing angleb and the perturbed energyEg of the
ground state can be easily found in the two-lev
approximation.14

Using the variational approximation for the hydrogen o
bitals, we write the unperturbed wave functions of the ev
and odd states in the form15

wg5
a3/2

A2p~11S!
$exp~2ar a!1exp~2ar b!%. ~12!

and

wu5
a3/2

A2p~12S!
$exp~2ar a!2exp~2ar b!%. ~13!

Here a is a variational parameter~a'1 for R>324 a.u.!
andS is the overlap integral of the orbitals, i.e.

S5^exp~2ar a!uexp~2ar b!&.

We note thatS→0 for R@1.
The variational wave function~13! of the odd state is

unsatisfactory for small internuclear separations. In real
however, we shall not require the internuclear separation
be small, since in the process of dissociation of a molecu
hydrogen ion they are greater than the equilibrium inter
clear separation, equal to 2 a.u.

So we must actually calculate integrals of the form

Ka,b5E exp$2ar a,b2 ipr%Idr . ~14!

This is most simply done in elliptic coordinates

r a5
1

2
R~j1h!, r b5

1

2
R~j2h!,

1,j,`, 21,h,1. ~15!

The volume element is given by the relation

dr5pRrar bdj dh.

Next we have

2 ipr52 ip~ra2R/2!52 ip~jh11!R/21 ip iR/2.

Here pi is the projection of the electron momentum on t
axis of the molecular ion.

In calculating the integral~14! we make a series expan
sion in the small parameterh/j!1, corresponding to the
emission of an electron in directions close to the axis of
ion. Then we obtain

Ka5ZE E exp~2 ipr2ar a!jxdj dh, ~16!

where
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Z52pRS R

2 D xS 2

n2F D nS 2

n* 2F D n*
~17!

and

x522n2n* . ~18!

We find from Eq.~16!

Ka5
2p

ip
Z exp~ ip iR/2!LS x,

ia

p D . ~19!

Here we have introduced

L~x,y![E
1

` exp@2x* ~j21!#2exp@2x~j11!#

j2y
jxdj

~20!

and

x5
1

2
~a1 ip !R.

Similarly

Kb52
2p

ip
Z exp~2 ip iR/2!LS x* ,2

ia

p D . ~21!

It is easy to see that the integral

E exp~2 ipr !wgdr

is real, while the integral

E exp~2 ipr !wudr

is imaginary.
The probability of ionization of the mixed state d

scribed by the wave function~11! per unit time is given by
the relation

wip5cos2 b•wgp1sin2 b•wup . ~22!

Herewgp is the ionization probability of the even state a
wup is the ionization probability of the odd state.

We shall now find a simple, approximate expression
the integral~20!, using the inequalitiespR@aR@1 which
are satisfied for final-state energies of the electron gre
than the Rydberg energy. Integrating by parts, we find

LS x,
ia

p D'
2

ipR
. ~23!

Then we obtain for the matrix elements the simple expr
sions

^exp~ ipr !uI uwg&5
8pa3/2Z

A2p~11S!

cospiR

p2R
. ~24!

Similarly

^exp~ ipr !uI uwu&52 i
8pa3/2Z

A2p~12S!

sin piR

p2R
. ~25!
r

er

-

4. LINEAR POLARIZATION

The probability of a transition over the timet from an
electronic statei of the discrete spectrum of a molecular io
into a state with momentump in the continuous spectrum i
given by the square of the absolute value of the transit
amplitude

Wip5S Ei1
1

2
p2D 2

u^exp~ ipr !uI uw i&u2

3U E
0

t

exp@ igL~ t8!dt8#U2

. ~26!

Here the functiongL(t) is determined by the relation

gL~ t ![S Ei1
1

2
p21

F2

4v2D t1
piF

v2 cosvt

2
F2

8v3 sin 2vt. ~27!

The projection of the momentum on the direction of pola
ization of the laser field has the form

pi5p cosu'p~12u2/2!.

It is assumed that the laser pulse is long compared with
periodT52p/v of the oscillations.

To calculate the time integral we note that

exp@ igL~ t !#5exp~2 iS0!exp@ igL~ t12p/v!#, ~28!

where

S05
2p

v F1

2
p21Ei1

F2

4v2G . ~29!

Thus, for the timet52pK/v ~K is the integral number of
periods of the field! we find the following expression for the
integral over the time in Eq.~26!:

J[U E
0

t

exp@gL~ t8!#dt8U2

5U E
0

2p/v

exp@gL~ t !#dtU2 sin2~KS0/2!

sin2~S0/2!
. ~30!

Making the substitutionS0→S022pN, whereN is an inte-
ger ~the number of absorbed laser photons!, we pass to the
limit K→`

J5U E
0

2p/v

exp@ igL~ t !dt#dtU2 v2t

2p
dH 1

2
p2

1Ei1
E2

4v22NvJ . ~31!

Multiplying by the density of final statesdp/(2p)3, dividing
by the time t, and integrating over the magnitude of th
momentum, we obtain the emission probability of an ele
tron per unit time into a given solid angledV with the ab-
sorption ofN photons and with a fixed final momentum o
the electron:
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dwip

dV
5

v2p

2p S Ei1
1

2
p2D 2

u^exp~ ipr !uI uw i&u2

3U E
0

2p/v

exp@ igL~ t !dt#dtU2

. ~32!

The momentum in the final state is determined from the
of conservation of energy with absorption ofN photons

1

2
p21Ei1

F2

4v2 5Nv. ~33!

The integral over one period of the oscillations can
calculated by the saddle-point method assuming a tunne
regime of ionization

g5
vA2Ei

F
!1.

We obtain

U E
0

2p/v

exp@ igL~ t !#dtU2

5
v2

FA2Ei

expH 2
2~2Ei !

3/2

3F

3S 12
g2

10D2
p'

2 A2Ei

F
2

pi
2g3

3v J
~34!

~see also Ref. 15!. Herep'5p sinu'pu is the projection of
the electron momentum on a plane normal to the polariza
vector of the laser field. The axis of the molecular ion
assumed to be directed along the polarization vector of
field.

Using the expressions obtained above for the matrix
ement, we find the energy and angular distributions of
emitted electrons

dwip

dV
5

v4Ci
2

2~2p!4p3FA2Ei

$11cospiR%

3expH 2
2~2Ei !

3/2

3F S 12
g2

10D2
p'

2 A2Ei

F
2

pi
2g2

3v J .

~35!

Here

Ci5
16pa3/2Rx21

A2p~16S!
S Ei1FR

F D n* S Ei

F D n

. ~36!

Depending on the initial~perturbed! state, the energyEi

equals eitherEg or Eu ~and, correspondingly, the1 sign or
2 sign is chosen in Eq.~36!!.

Integrating over the angle of emission of the electron,
obtain the energy spectrum of the outgoing photoelectro

wip5
v4Ci

2

~2p!4p3FA2Ei
S Ei1

1

2
p2D 2

~11cospR!

3expH 2
2~2Ei !

3/2

3F S 12
g2

10D2
p2g3

3v J . ~37!
e
g

n

e

l-
e

e

In this expression the oscillatory factor, which originat
from interference, is what most distinguishes the tunnel
ionization of a molecular ion from tunneling ionization of a
atom.

Summing over all numbersN of absorbed photons we
find the ionization probability per unit time

wi5(
N

wip5E 1

v
wipd~Nv!5E

0

`

wip

p

v
dp. ~38!

Here the law of conservation of energy~33! with absorption
of photons is taken into account. The calculation of the in
gral in Eq.~38!, after substituting the expression~37!, gives
the final result

wi5
a3~2Ei !

3/4

2~16S!
A 3

pF S 8Ei

FRD 222xS 11
FR

Ei
D 2n*

3expH 2
2~2Ei !

3/2

3F S 12
g2

10D J . ~39!

We note that the oscillatory interference factor vanish
on integration over the energy of the outgoing photoelectr
In the limit R→` the expression~39! passes, as it should
into the well-known expression for the probability of tunne
ing ionization by a low-frequency linearly polarized fie
~see, for example, Ref. 16!.

5. CIRCULAR POLARIZATION

In the case of a circularly polarized field the functio
g(t) has the form

gC~ t !5S Ei1
1

2
p21

F2

2v2D t1
pF

v2 cosc cosvt. ~40!

Herec is the small angle between the direction of emiss
of the electron and the polarization plane of the laser rad
tion.

We calculate the integral

J5U E
0

t

exp@ igC~ t !#dtU2

by the same method as for the case of linear polarizat
expounded in detail in the preceding section. We obtain

J52pt (
N5N0

`

JN
2 S pF cosc

v2 D dS 1

2
p21Ei1

F2

2v22Nv D .

~41!

In the tunneling regime~adiabaticity parameterg!1! De-
bye’s asymptotic representation of the Bessel function
large argument and large index can be used to calculate
expression~41!:

JNS N

coshb D'
1

A2pNb
exp$2N~ tanhb2b!%. ~42!

Then we find

J5 (
N5N0

`
1

Ng
dH 1

2
p21Ei1

F2

2v22NvJ
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3expH 2
2~2Ei !

3/2

3F S 12
g2

15D J expH 2
FA2Ei

v2 c2

2
v4A2Ei

F3 ~DN!2J . ~43!

Here

DN[N2
F2

v32
4Ei

3v
.

Substituting the expression~43! into Eq. ~32!, we find the
energy and emission-angle distributions of the emitted e
trons

dwip

dV
5

vCi
2

8~2p!3A2Ei

expH 2
2~2Ei !

3/2

3F S 12
g2

15D
2

FA2Ei

v2 c2J (
DN

~11cospiR!

3u^exp~ ipr !uI uw i&u2 expH 2
v4A2Ei

F3 ~DN!2J .

~44!

Here the coefficientCi is determined by the expression~36!.
The quantitypi is the projection of the electron momentu
on the axis of the molecular ion.

Integrating over the angles and momenta of the outgo
photoelectron we find the ionization probability per unit tim

wi5
2Eia

3

p~16S! S 8Ei

FRD 222xS 11
FR

Ei
D 2n*

3H 11A 2v

pFR
cosS pR

v
2

p

4 D J . ~45!

In the limit of large internuclear separationsR→` this ex-
pression reduces, as it should, the probability of ionization
a hydrogen atom by a constant electric field17

wi5
4

F
expS 2

2

3F D .

In contrast to the case of linear polarization, small os
lations of the ionization probability as a function of the las
intensity remain in Eq.~45!.

6. CONCLUSIONS

In this paper we have obtained for the first time analy
cal expressions for the probability of ionization of a molec
lar hydrogen ion per unit time by low-frequency linearly a
c-

g

f

-
r

-
-

circularly polarized laser radiation fields~in the tunneling
regime!. The corresponding energy and emission-angle d
tributions of the outgoing electrons were also obtained. Th
are functions of the internuclear separation, and for la
separations they pass into the well-known expressions for
probability of tunneling ionization of a hydrogen atom by
low-frequency alternating field. For moderate values of
internuclear separation, the ionization probability was fou
to exhibit an interference dependence on this distance
result of the coherent summation of the transition amplitu
in the fields of the different nuclei. The oscillatory depe
dence is observed only in the energy spectrum of the ou
ing photoelectrons. After integration over the energies
oscillations vanish completely in the case of a linearly pol
ized field and remain partially in the case of a circula
polarized field. All calculations were performed for the ca
when the axis of the molecular ion is oriented along t
polarization vector of the linearly polarized radiation and
the polarization plane of the circularly polarized radiation
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Numerical modeling of the photoionization of Rydberg atoms by the field of an
electromagnetic wave

E. A. Volkova, A. M. Popov,* ) and O. V. Tikhonova

D. V. Skobel’tsin Scientific-Research Institute of Nuclear Physics, M. V. Lomonosov Moscow State
University, 119899 Moscow, Russia
~Submitted 13 August 1997!
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The ionization of excited hydrogen-like atoms in a femtosecond laser pulse is studied by direct
numerical integration of the time-dependent Schro¨dinger equation for a quantum system
in the field of an electromagnetic wave. Expressions are obtained for the ionization probability of
the system as a function of the parameters of the laser pulse and the initial state of the
atom. Ionization suppression is found, confirming the basic premises of the theory of interference
stabilization of Rydberg atoms. ©1998 American Institute of Physics.@S1063-7761~98!01602-3#
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1. INTRODUCTION

One of the most interesting physical phenomena in
physics of the interaction of intense light with atomic a
molecular systems is ionization suppression in intense e
tromagnetic fields.1–3 This effect is manifested as a decrea
in the ionization probability of the system with increasin
radiation intensity when the intensity of the field of the ele
tromagnetic wave exceeds some critical value or as sat
tion of the ionization probability at a level less than 1 a
observation of a residual atomic population that does
decrease with increasing intensity of the applied pulse.

At the present time two mechanisms of stabilization
the field of an electromagnetic wave are ordinarily dist
quished: interference stabilization, first studied in Ref. 4, a
stabilization in the Kramers–Henneberger regime.5

According to Ref. 4 interference stabilization arises a
consequence of coherent secondary filling of a group
close-lying Rydberg levels of an atom as a result of the c
pling of the levels via the continuum byL-type Raman tran-
sitions and subsequent destructive quantum interferenc
the amplitudes of the transition into the continuum fro
these coherently populated states. The threshold for the
pearance of this regime is determined by the overlapping
the ionization widths of neighboring Rydberg states and
be easily estimated in accordance wtih Fermi’s golden r
Using WKB expressions, found in Ref. 6, for the matr
elementsVnE coupling the states of the discrete spectrum a
the continuum, we obtain the following estimate for t
threshold intensity of the field of the wave:

«* }v5/3, ~1!

where« andv are the intensity and frequency of the field
the electromagnetic wave~atomic units are used!.

The main generalizations and an elaboration of
theory of interference stabilization are contained in Re
7–9.

An alternative stabilization mechanism can be realiz
even for a system with a single state in a discrete spectr
but it requires, as a rule, superatomic optical fields. In t
3281063-7761/98/86(2)/7/$15.00
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case it is convenient to use the Kramers noninertial coo
nate system, oscillating as a free electron in the field of
electromagnetic wave, to investigate the dynamics of the s
tem. In this coordinate system an electron ‘‘sees’’ the atom
nucleus oscillating with the frequency and amplitude of t
oscillations of a free electron. The potential of the nucle
averaged over one optical cycle is the Kramers–Hennebe
potential, and in strong fields it has the characteristic doub
well shape. Under certain conditions the quantum sys
demonstrates properties~structure of the energy spectrum!
which are characteristic for the Kramers–Henneberger
tential and is described well in terms of the stationary sta
of this potential, the states being highly stable with respec
ionization. Numerous investigations10–15 show the physical
reality of the existence of the Kramers–Henneberger po
tial describing the ‘‘atom1external electromagnetic field’
system and a decrease in the rate of ionization from it
fields above a threshold value.

In recent years the data obtained by direct numer
integration of the time-dependent Schro¨dinger equation for a
quantum system, taking account of the field of the elect
magnetic wave, have been playing a large role in the stud
the stabilization of atomic systems in intense light fields. T
data so obtained can be viewed as being the results of
merical experiments and provide a reliable basis for ass
ing the effectiveness of different analytical approaches.

For example, in Ref. 16 the three-dimensional tim
dependent Schro¨dinger equation for a hydrogen atom in th
1s ground state in a linearly polarized field of an electroma
netic wave was solved numerically for the paramet
\v527.2 eV andP54•101726.4•1018 W/cm2. The results
confirmed the fact that the rate of ionization of the syst
decreases with increasing radiation intensity. The dicho
mous structure of the electron wave function found in the
calculations is an important feature of the manifestation
the wave functions of the stationary states of the Krame
Henneberger potential and proves that the Krame
Henneberger method is effective for describing stabilizat
in the indicated range of the parameters.

We also mention Ref. 17, where a numerical soluti
© 1998 American Institute of Physics
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was obtained for the three-dimensional Schro¨dinger equation
describing the dynamics of ionization of a hydrogen at
from the 2p state for different values of the azimuthal qua
tum numberm by a circularly polarized electromagnet
field. It was shown that the stability of the system agai
ionization is determined by the quantum numberm, and it
was conjectured that the effect can be explained on the b
of the interference mechanism.4

At present there are few experimental works on the s
bilization phenomenon. The investigation of stabilization
the Kramers–Henneberger regime exceeds the capabilitie
modern laser technology. As regards interference stabil
tion, some data attesting to an increase in the ionization
bility of Rydberg atoms with increasing radiation intens
were obtained in Refs. 18–20.

Our objective in the present work is to investigate t
ionization of a real three-dimensional hydrogen-like atom
the range of parameters where it is possible for the inter
ence mechanism of stabilization to materialize. The poss
ity of making an adequate comparison of the numerical c
culations with the results of a theoretical analysis of
interference stabilization phenomenon is due primarily
Ref. 9, where an analytical solution of the time-depend
Schrödinger equation describing the space–time evolution
the electronic wave function in a strong electromagnetic fi
and the dynamics of the ionization process, with the ini
conditions for a Rydberg hydrogen atom was obtained on
basis of the WKB method.

In the present paper calculations of the ionization d
namics of Rydberg hydrogen atom are performed using
algorithm for direct numerical integration of the thre
dimensional time-dependent Schro¨dinger equation with the
linearly polarized field of an electromagnetic wave, for d
ferent values of the intensity and frequency of the laser
diation as well as different quantum numbers characteriz
the initial state of the system. The probabilities for fillin
different states of the discrete spectrum and for ionizat
toward the end of the laser action are calculated. The ion
tion suppression found in the calculations is explained on
basis of the interference mechanism of stabilization, p
posed in Ref. 4 and 7–9.

2. MODEL OF A THREE-DIMENSIONAL HYDROGEN-LIKE
SYSTEM

The Hamiltonian of the quantum system was chosen
the form

H052
1

2
¹22

1

Aa21r 2
, ~2!

where¹2 is the Laplacian,r is the magnitude of the radiu
vector, anda is a parameter smoothing the potential.

The stationary states of a system with the Hamilton
~2! in a spherical coordinate system (r ,u,w) are determined
by the expression

Fnlm~r ,u,w!5RnlYlm~u,w!,
t

sis

-
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n

where Rnl(r ) are the radial wave functions,Ylm(u,w) are
spherical harmonics, and (n,l ,m) is a set of quantum num
bers describing the state of the electron.

The radial wave function is a solution of the eigenval
problem

2
1

2

1

r

]2

]r 2 rRnl1Veff~r !Rnl5EnlRnl , ~3!

where

Veff5
l ~ l 11!

2r 2 2
1

Aa21r 2

is the effective potential andEnl are the energy levels of th
system.

In the casea50 the equation~3! possesses an analytic
solution, whereEnl521/2n2; for aÞ0 the problem~3!
must be solved numerically and the degeneracy with res
to the orbital angular momentum is lifted.

In our calculations we assumeda51/2 ~in atomic units!.
This choice ofa, on the one hand, preserves the structure
the spectrum of a real hydrogen atom and, on the ot
greatly simplifies the numerical calculations near the po
r 50. The results of the numerical calculations of the wa
functions of several stationary states are presented in Fig
Table I gives the values of the energy levels of a mo
system as well as of a real hydrogen atom. As one can
the largest difference is observed for the 1s ground state and
the lower excited states 2s, 2p. For states withn>3 the
energy levels are degenerate with respect to the orbital
gular momentum and their energies equal the energies o
states of a real hydrogen atom to within<2%.

3. INTERACTION WITH THE FIELD OF AN
ELECTROMAGNETIC WAVE

The interaction of a quantum system with the field of
electromagnetic wave is described in the dipole approxim
tion by the operator

W52d•«, ~4!

where«(t) is the electric field vector of the wave andd is the
dipole moment operator.

We shall assume that the electromagnetic wave is
early polarized, and we orient thez axis along the vector«.
Then

W52z«~ t !52r«~ t !cosu. ~5!

Let the initial state of the atom be characterized by a z
projection of the orbital angular momentum on thez axis
(m50). Since a linearly polarized field of an electroma
netic wave will give rise only to transitions without a chan
in the magnetic quantum numberm (Dm50), the electron
wave function is independent of the coordinatew for any
moment in time, and the evolution of the state of the atom
the field of the electromagnetic wave will be described
the two-dimensional time-dependent Schro¨dinger equation



he

nd

g

the
e

bed
e,

s to
ent

re-

an
cu-

330 JETP 86 (2), February 1998 Volkova et al.
i
]C

]t
52

1

2 F1

r

]2

]r 2 rC1
1

r 2

1

sin u

]

]u S sin u
]C

]u D G
2

1

Aa21r 2
C~r ,u,t !2«~ t !C~r ,u,t !r cosu.

~6!

FIG. 1. Probability densityuFnl(r,z)u2 ~wherez5r cosu, r5r sinu! for
the stationary states of a model hydrogen-like atom in the 5s ~a!, 5p ~b!, and
5d ~c! states. Contour lines:1—1022, 2—1023, 3—1024, 4—1025, 5—
1026.
We take as the initial condition a stationary state of t
quantum system

C~r ,u,t50!5Fnl~r ,u!5Rnl~r !Yl0~u,w!

5Rnl~r !Pl~cosu!. ~7!

HerePl(cosu) are the Legendre polynomials.
The calculations were performed for trapezoidal a

square-wave pulses:

«~ t !5H «0 cos~vt !t/t f , 0,t<t f ,

«0 cos~vt !, t f,t<t1t f ,

«0 cos~vt !F12
t2~t1t f !

t f
G , t1t f,t<t12t f ,

~8!

«~ t !5H «0 cos~vt !, 0<t<t,

0, t.t.
~9!

Here t f and t are the durations of the leading and trailin
edges and of the ‘‘shelf,’’ and«0 is the amplitude of the
electric field of the wave.

In the calculations the photon energy was varied in
range \v5125 eV and the intensity in the rang
P53•101223•1015 W/cm2. As a rule, the timest and t f

were equal tot f52T and t510T, whereT52p/v is the
duration of the optical cycle.

4. COMPUTATIONAL PROCEDURE

The numerical integration of Eq.~6! was performed in a
cylindrical coordinate system

z5r cosu, r5r sin u

by the finite-element method using the procedure descri
in Ref. 21. For this, the wave function of the initial stat
determined in spherical coordinates by means of Eq.~7!, was
discretized on a (r,z) grid.

The size of the computational region was chosen so a
be able to take into account at least 10 states with differ
values of the principal quantum numbern512nmax

(nmax510) and all orbital angular momentum states cor
sponding to a given value ofn: l 502(n21). Therefore
N5nmax(nmax11)/2555 states in the discrete spectrum c
be taken into account in the calculations. The control cal
TABLE I. Energy levels~eV! of a model hydrogen-like system.

l n51 n52 n53 n54 n55 n56 n57 n58 n59 n510

0 212.53 23.319 21.494 20.843 20.540 20.376 20.276 20.211 20.167 20.134
1 - 23.429 21.530 20.858 20.548 20.380 20.279 20.213 20.168 20.135
2 - - 21.525 20.852 20.545 20.378 20.278 20.213 20.168 20.135
3 - - - 20.848 20.543 20.377 20.277 20.212 20.168 20.135
4 - - - - 20.542 20.377 20.277 20.212 20.167 20.135
5 - - - - - 20.377 20.277 20.212 20.167 20.136
6 - - - - - - 20.277 20.212 20.167 20.136
7 - - - - - - - 20.212 20.167 20.136
8 - - - - - - - - 20.167 20.136
9 - - - - - - - - - 20.136
H 213.61 23.402 21.512 20.851 20.544 20.378 20.277 20.213 20.168 20.136
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lations showed that under the specified conditions the siz
the spatial region of the calculation should be at le
r max5180 Å For this reason, the Schro¨dinger equation was
discretized on a rectangular (r,z) grid in the region

uzu<zmax5180 Å,

0<r<rmax5180 Å.

The grid was constructed with a nonuniform step, so as
ensure the required computational accuracy near the p
r 50 in the region of rapidly varying potential. The tot
number of points in the spatial grid wasr3z54803960.
An imaginary component, ensuring ‘‘swallowing’’ of th
wave function and absence of reflection from the boundar
was introduced into the potential near the boundariesrmax,
zmax of the computational region.

The populations of different states of the discrete sp
trum were found by projecting the computed wave funct
C(r ,u,t) onto the basis of atomic states$Rnl(r )Pl(cosu)%
which are not perturbed by the field of the electromagne
wave:

Wnl~ t !5uCnl~ t !u2

5U E C* ~r ,u,t !Rnl~r !Pl~cosu!r 2dr dVU2

.

~10!

The ionization probability was calculated from the formul

Wi512 (
n51

nmax

(
l 50

n21

uCnl~ t !u2. ~11!

FIG. 2. Electron density distributionuFnl(r,z)u2 by the end of a laser pulse
with \v55 eV, t f52T, andt510T for initial state 5s and radiation in-
tensityP51013 W/cm2 ~a! and 3•1014 W/cm2 ~b!. The contour lines corre-
spond to Fig. 1.
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The calculations were performed in the range of intensi
for which the populations of states withn.nmax is negligibly
small.

An alternative approach to calculating the ionizati
probability is to calculate the fraction of the electron pro
ability density that is ‘‘eaten away’’ near the boundaries
the spatial region of the calculation at long times after la
action ceases. This approach was implemented in Refs
and 22. However, it should be kept in mind that the choice
a quite small spatial region for the purpose of decreasing
computational time and economizing memory~in Ref. 16 the
computational region did not exceed 75320 Å2! inevitably
will result in a loss of information about the population
the excited states and will automatically overestimate of
ionization probability, especially in strong fields.

5. MODELING RESULTS

The bulk of the calculations were performed for a tra
ezoidal laser pulse with the parameterst f52T andt510T
for \v55 eV. In this case the region of strong field
«/v5/3.1 corresponds to radiation intensit
P.2.531023 a.u. (;1014 W/cm2). Stationary states with
the quantum numbersn51•••7, l 50•••(n21) were chosen
as the initial states. For all states withn>2 ionization was a
single-photon process.

Figure 2 shows the typical electron density distributi
uC(r,z)u2 by the end of the laser pulse for different values
the radiation intensity and for the initial state 5s. Figure 3
shows the electron density distributionrc5uCc(r,z)u2 in the
continuum for the same conditions as for the data in Fig
These distributions were calculated as follows:

FIG. 3. Electron density distribution in the continuum for the paramet
corresponding to Fig. 2.



n

se
th
t

te

-

e
y
th
e

ls

ism
h
f
ve

la
gi
-

er
.
th

in
t

e

on
the

er,
s
of

iza-
m
the
to
ith

d in

for

ion
tate
5.

332 JETP 86 (2), February 1998 Volkova et al.
rc~r,z,t !5uCc~r,z,t !u25UC~r,z,t !

2(
n,l

Cnl~ t !Fnl~r,z!exp~2 iEnlt !U2

, ~12!

whereuCnlu2 is the probability, determined using the relatio
~10!, of observing the system in the statenl of the discrete
spectrum. We note that as the radiation intensity increa
the degree of spherical symmetry of the wave packet in
continuum increases, possibly as a result of an increase in
role of multiphoton processes and filling of continuum sta
with different values ofl .

Figure 4 shows how the ionization probabilityWi of a
hydrogen atom from the initial 5s state depends on the ra
diation intensity in the rangeP53310122331015 W/cm2

for \v55 eV, t f52T, andt510T. As one can see, in th
region of weak fieldsWi increases linearly with the intensit
of the wave, and above a critical value corresponding to
condition ~1! it reaches a plateau, i.e., the system stabiliz
A similar dependenceWi(P) is predicted in the latest mode
in the theory of interference stabilization.8,9

To determine the nature of the stabilization mechan
we investigated the ionization probability as a function of t
quantum numbersn and l characterizing the initial state o
the atom. The dependence of the ionization probability o
a pulse on the principal quantum number of the initials state
was obtained for radiation intensityP5331014 W/cm2

(«/v5/351.57). The data from the corresponding calcu
tions are presented in Fig. 5. As one can see, in the re
n>4 the functionWi(n) is approximated well by the expres
sion

Wi~n!}n23. ~13!

Such aWi(n) dependence agrees with the theory of interf
ence stabilization of Rydberg atoms~see, for example, Ref
9!. The computational results also permit asserting that
function ~13! obtained for Rydberg statesn@1 is actually
valid even for states with relatively small values of the pr
cipal quantum number. However, it should be noted tha

FIG. 4. Ionization probability for a hydrogen atom in the 5s state over the
pulse duration versus the radiation intensity for\v55 eV, t f52T, and
t510T.
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similar functionWi(n) is also obtained for weak fields on th
basis of Fermi’s golden rule, since in this case6

Ẇi}uVnEu2}1/n3. ~14!

HereẆi is the ionization probability per unit time.
The ionization probability was also studied as a functi

of the orbital angular momentum quantum number of
initial state of an electron forn55 ~see Fig. 6!. It was found
that the ionization stability of the system increases withl .
The reason for this is that the centrifugal potential barri
which ‘‘pries’’ the electron off the nucleus for larger value
of r , increases and hence the probability of absorption
photons from the field decreases. The increase in the ion
tion stability of states with a large orbital angular momentu
was discussed earlier in Ref. 23. We also note that in
quasiclassical theory9 the centrifugal potential is assumed
be weak, compared with the interaction of the electron w
the nucleus, for values ofl satisfying the condition

l ,v21/3. ~15!

For \v55 eV (v>0.18 a.u.) the condition~15! holds for
thes andp states. As one can see from the data presente

FIG. 5. Ionization probability of a hydrogen atom in thes state over the
pulse duration versus the initial value of the principal quantum number
P5331014 W/cm2, \v55 eV, t f52T, and t510T. Dashed curve—
Wi}n23.

FIG. 6. Ionization probability of a hydrogen atom over the pulse durat
versus the orbital angular momentum quantum number for an initial s
with n55. The parameters of the laser pulse are the same as for Fig.
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FIG. 7. Probability distribution for filling of dif-
ferent states in the discrete spectrum by the end
the laser pulse. The duration of the ‘‘shelf’’ wa
t55T ~a! and 20T ~b!. Radiation intensity was
P53•1014 W/cm2, \v55 eV.
g
te

n

io
rs
.

d
a
e
er
o

,

ra

u
d
it
io
, i

o
n

th
n
u

en
en
fo

on
ill
s

in
-

l

he
d
to
y.
of

ed
ili-

of
um
eter
the
nd
er-
d a

m in
m

d
er-
tem
the

are
Fig. 6 the ionization probabilities of the 5s and 5p states are
indeed close to one another, and the effect of the centrifu
potential is to decrease the ionization probability of sta
with l>2.

The probability density for filling of different states i
the discrete spectrum by the end of the laser action is
special interest. The results of the corresponding calculat
for the initial 5s state and laser radiation paramete
P53•1014 W/cm2 and \v55 eV are presented in Fig. 7
The data obtained show that thes states—mainly the 4s and
6s states which are coupled with the initial 5s state byL-
type two-photon transitions—are predominantly fille
Moreover, there exists a nonzero probability of nonreson
single-photon filling of the 5p state. For short laser puls
durations (t55T) it equals 2.7% by the end of the las
pulse, but it is higher than the probability of a resonant tw
photonL-transition 5s→5d ~see Fig. 7a!. As the duration of
the laser pulse increases tot520T ~see Fig. 7b! the prob-
ability of the transition 5s→5d increases substantially
while the probabilities of nonresonant 5s→np transitions
remain at the 1–2% level.

These calculations showed that for the initial 5s state
under conditions when the resonant two–photonL-
transitions predominate over nonresonant single-photon t
sitions the transitions 5s→4s, 6s, 5d are strongest in the
entire range of intensities investigated.

However, the role of states with a nonzero orbital ang
lar momentum in the dynamics of the ionization of a Ry
berg atom and the relation of the filling of these states w
the stabilization phenomenon and the form of the funct
Wi(P) are still not completely understood. For example
remains unclear whether or not the absence of the ‘‘valley
death’’ predicted in Ref. 4 is due to the fact that differe
orbital angular momentum states are taken into account8 or
to the failure of a number of approximations, such as
pole approximation and the rotating-wave approximatio9

which were used in Refs. 4 and 7. These questions all req
additional study.

It is also of interest to investigate the frequency dep
dence of the ionization probability of an excited hydrog
atom. It should be expected that under the conditions
which the method developed in Ref. 9 is applicable the i
ization probability over a laser pulse of fixed duration w
remain unchanged provided that the frequency and inten
of the radiation are chosen so that
al
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V5«/v5/35const. ~16!

Calculations for different values of the radiation frequency
the range\v5125 eV ~the corresponding radiation inten
sities varied in the range 1.41310122331014 W/cm2! were
performed for a 12.4 fs~which corresponds to 15 optica
cycles with \v55 eV! square pulse. For\v51 eV the
pulse duration was equal to only three optical cycles. T
computational results forWi(v,«/v5/35const) are presente
in Fig. 8 and show that the similarity criterion with respect
the parameter~16! holds to a quite high degree of accurac
This fact likewise supports the interference mechanism
stabilization in our range of parameter values.

6. CONCLUSIONS

The calculations of the ionization dynamics of an excit
hydrogen-like atom performed in this work showed stab
zation for intensities in the rangeP>231014 W/cm2 with
\v55 eV. It was proved on the basis of an investigation
the dependence of the ionization probability on the quant
numbers of the initial state of the atom and on the param
«/v5/3 as well as on the basis of the data obtained on
filling of different states in the discrete spectrum by the e
of the pulse that the observed stabilization is of an interf
ence nature. It should be noted that in the case studie
Rydberg hydrogen atom can be understood to be an ato
an excited state with a relatively small principal quantu
numbern>4.

We believe that it would be extremely important an
interesting to investigate the possibility of observing interf
ence stabilization in a three-dimensional quantum sys
with a short-range potential, when the number of states in

FIG. 8. Ionization probability versus radiation frequency in a 12.4 fs squ
pulse with a fixed value of the parameter«/v5/351.57.
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discrete spectrum is finite, and the degeneracy of the st
with respect to the orbital angular momentum is lifted.

The question of the connection between interference
bilization of an atom and stabilization in the Kramers
Henneberger regime also remains unsolved. In Ref. 24 it
shown that stabilization in the Kramers–Henneberger reg
can also arise in a situation when there is one state in
discrete spectrum. This circumstance attests convincingl
the fact that the physical mechanisms of both phenomena
different and one phenomenon does not reduce to the o
At the same time, the question arises of whether both st
lization mechanisms can exist simultaneously in superstr
fields under conditions when a double-well potential desc
ing a ‘‘dressed’’ atom is formed, and also the question of
competition between these mechanisms.

We thank M. V. Fedorov for a discussion of the form
lation of the problem as well as a discussion of the res
obtained.
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An exact solution is analyzed for the analogs of bound and scattering states in a nonstationary
quantum mechanical system whose potential has the form of two dispersing delta-wells.
For the delta-potentials explicit~in the form of operator kernels! expressions are found for the
integrals of the motion that depend on time and transform to the known integrals of the
motion for a free quantum particle as the interaction force with the potential approaches zero.
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1. Exact solutions of the Schro¨dinger equation for time-
dependent quantum mechanical Hamiltonians exist only f
few potentials. Thus, a variable frequency oscillator was
amined, and its wave functions~both Gaussian packets an
discrete analogs of bound states! found explicitly by
Husimi.1 A propagator for this problem in a Gaussian for
was also obtained there. The problem for a constant
quency oscillator acted on by a variable external force w
solved independently by Schwinger2 and Feynman.3 An in-
tegral of the motion that was quadratic in the coordinates
momentum and has the same form as an integral of mo
found by Ermakov4 for the classical parametric oscillato
was constructed by Lewis and Riesenfeld.5,6 Linear integrals
of the motion for the quantum parametric oscillator ha
been constructed for the one-dimensional7,8 and
multidimensional9 cases. Other nonstationary problems
which an exact solution has been obtained include cyclo
motion in a variable field,10 as well as problems with spe
cially selected time dependences.11

The delta-potential is a good model for short- ran
forces. A propagator for a stationary delta-well has been
tained as a function of the error function.12,13The propagator
for a single nonstationary delta-well has also be
examined.14 There is great interest in a model for to dispe
ing delta-wells. Exact solutions were first obtained by Z
danov and Chikhachev15 who constructed a symmetric solu
tion that transforms to the known bound state for a z
dispersion velocity and analogs of scattering states were
tained later.16 For nonquadratic potentials such as the de
wells, however, the integrals of the motion were unknow
The purpose of this paper is to study in detail the proper
of the solutions for two dispersing delta-wells, including t
antisymmetric solution. An explicit, time dependent expr
sion for the integral of the motion is also found for a sing
delta-well and the limiting transition to the case of free m
tion is studied.

2. Let us first consider the state of a particle with a sin
attractive delta-center at the pointx50. The equation for the
Green functionG in this case has the form
3351063-7761/98/86(2)/5/$15.00
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F i
]

]t
1

1

2

]2

]x2 1ad~x!GG~x,x8,t,t8!

5 id~x2x8!d~ t2t8!. ~1!

Using a representation ofG in the form of the sum

(
l

cl* ~x8,t8!cl~x,t !,

where thecl are the eigenfunctions of the operator

i
]

]t
1

1

2

]2

]x2 1ad~x!,

in a fashion similar to that used in Ref. 13, we can obtai

G5
1

A2p i ~ t2t8!
expF i

~x2x8!2

2~ t2t8! Gs~ t2t8!1a

3expF2a~ uxu1ux8u!1 i
a2~ t2t8!

2 G
2

a

p E
0

` dk

k21a2 $k sin@k~ uxu1ux8u!#

1a cos@k~ uxu1ux8u!#%5G01a

3expF2a~ uxu1ux8u!1
ia2~ t2t8!

2 G
2

a i

2p E
2`

` dk

k1 ia

3expF2 ik2
t2t8

2
2 ik~ uxu1ux8u!G , ~2!

where

s~t!51, t>0, s50 for t,0.
© 1998 American Institute of Physics
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The first term in the expression forG is the propagator for a
free particle, the second terms corresponds to the si
bound state of the particle, and the integral term is the s
over all the continuum states.

The integral term can be expressed in terms of
Moshinsky function:17

M ~x,k,t !5
i

2p E
2`

` dk8

k2k8
expF i S k8x2

k82t

2 D G .
Transforming this integral using the results of Ref.

makes it possible to write the Green function in the form

G~x,x8,t !5G0~x,x8,t !1aM1~u,a,t !, ~3!

where

G05
1

A2p i t
expF i

~x2x8!2

2t Gs~ t !,

M15
1

2
expS 2au1

ia2t

2 DerfS expS 3p i

4 D u2 iat

A2t
D ,

erf~z!5
2

Ap
E

0

z

exp~2x2!dx, u5uxu1ux8u.

Equation ~3! for the Green function differs from tha
derived in Ref. 17, since the casea,0, i.e., without a bound
state, was discussed there.

The explicit expressions~2! and ~3! for the propagator
also make it possible to find the integrals of motion for o
problem explicitly. In fact, it has been shown18 that, if the
evolution operatorÛ(t) of the system is given, i.e.,

Û~ t,t8!C~x,t8!5C~x,t !, ~4!

whereC(x,t8) is the initial value of the wave function a
time t8, then the operator

Î ~ t,t8!5Û~ t,t8!I ~ t8!Û21~ t,t8! ~5!

is an integral of the motion. This means thatdÎ/dt[0. The
Green function, by definition, is a matrix element of the ev
lution operator,

G~x,x8,t,t8!5^xuÛ~ t,t8!ux8&

in the coordinate representation, i.e., the kernel of the ev
tion operator.

We are examining a system with a hermitian Ham
tonian, so that the evolution operator is unitary. Equation~5!

implies that if the kernel of the operatorÎ (t8) in the coordi-
nate representation, i.e.,

I ~x,x8,t8!5^xu Î ~ t8!ux8&,

is known, then for the kernel of the integral of motionÎ (t,t8)
in this representation we have the expression

J~x,x8,t,t8!5E G~x,z,t,t8!I ~ t8!G* ~z,x8,t,t8!dz.

For concreteness we sett850 and consider separately th
cases of a coordinate and a momentum as the ope
Î u t850 .
le
m

e

r

-

u-

tor

For the coordinate operator, we obtain the equation

~ x̂0~ t !!xx85E
2`

`

z dz G~x,z,t !G* ~z,x8,t !

5
t

2p
d8~x2x8!expS i

x22x82

2t D
2 iaE

0

`

z dzsin
xz

t
expS i

z2

2t
2azD

3erfS expS 3p i

4 D z1ux8u2 iat

A2t
D

3expS i
x2

2t
2aUx8U1 ia2t

2 D
1 iaE

0

`

z dzsin
x8z

t
expS 2

iz2

2t
2azD

3erfS expS 2
3p i

4 D z1uxu1 iat

A2t
D

3expS 2
ix2

2t
2aUxU2 ia2t

2 D . ~6!

Similarly, for the momentum, we can obtain the formula

~ p̂0~ t !!xx85 i E
2`

`

dz G~x,z,t !
]

]z
G* ~z,x8,t !

52
x8

2p
d~x2x8!1

i

2p
d8~x2x8!

3expS i
x22x82

2t D
1aH 1

A22p i t
E

0

`

dz M1~ uxu1z,a,t !

3S x8

2t
sin

x8z

2t
2

z

2t
cos

x8z

2t D
3expS ix82

2t
1

iz2

2t D2
1

A2p i t
E

0

`

dz

3M1* ~ ux8u1z,a,t !S x

2t
sin

xz

2t
2

z

2t
cos

xz

2t D
3expS 2

ix2

2t
2

iz2

2t D J . ~7!

In Eqs. ~6! and ~7! the terms proportional toa are re-
sponsible for the difference between the analogous exp
sions for free particle motion. We note also that arbitra
functions of p̂0 and x̂0 are also integrals of motion. On th
other hand, any other integrals of the motion, such
E5p2/21ad(x), can be expressed in terms ofp̂0 and x̂0 .
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3. In the case of dispersing delta-wells, the system
eigensolutions consists of two ‘‘bound’’ states, or states
scribed by an exponentially decaying functions, and sta
with an oscillating asymptote.

As Dappen19 has done, we shall seek decaying solutio
that are symmetric and antisymmetric inx to the equation

H i
]

]t
1

1

2

]2

]x2 1a@d~x2vt !1d~x1vt !#J C~x,t !50.

~8!

For the symmetric solution we set

C~1 !5expS i
v2t

3 D (
s50

`

Cs
~1 !$exp@ iv~x2vt !

2~a12ivs!ux2vtu#1exp@2 iv~x1vt !

2~a12ivs!ux1vtu#%expF i t

2
~a12ivs!2G . ~9!

If Eq. ~9! satisfies Eq.~8!, then theCs
(1) can be represente

in the form

Cs
~1 !5

1

s! S a

2iv D sAa

2
expS ia

2v D .

Here, forv→0, the solution~8! transforms into a solution o
the equation

F i
]

]t
1

1

2

]2

]x2 12ad~x!GC~x,t !50,

corresponding to a bound state.~See Ref. 15.!
For the solution antisymmetric inx,

C~2 !5expS i
v2t

2 D(
s

Cs
~2 !$exp@ iv~x2vt !

2~a12ivs!ux2vtu#2exp@2 iv~x1vt !

2~a12ivs!ux1vtu#%expF i t

2
~a12ivs!2G ,

Cs
~2 !5

1

s! S 2
a

2iv D sAa

2
expS 2

ia

2v D . ~10!

The expressions forCs
(1) and Cs

(2) differ from the corre-
sponding expressions in Ref. 19 only by the facto
exp(ia/2v) and exp(2ia/2v).

These factors~which do not affect the probability o
charge exchange processes, have been calcu
elsewhere19! are introduced in order to ensure a smooth tr
sition to the casev→0.

At t50 the series forC (6) are easily summed as serie
for the exponentials:

C~1 !u t505(
s

1

s! S a

2iv D sAa

2
expS ia

2v D
3@exp~ ivx2auxu22ivsuxu!

1exp~2 ivx2auxu22ivsuxu!#
f
-
s

s

s

ted
-

5Aa

2
expS ia

2v D
3exp~2auxu!2 cos~vx!

3expF a

2iv
exp~22ivuxu!G , ~11!

and

C~2 !u t5052iAa

2
expS 2

ia

2v Dexp~2auxu!sin~vx!

3expF2
a

2iv
exp~22ivuxu!G . ~12!

Equations~11! and ~12! show that the important singularit
at v→0 vanishes after introducing the factors exp(6ia/2v).

For the continuum, which is characterized by oscillato
asymptotic behavior and corresponds to free motion w
momentumk, as in Ref. 13, we write thec-function in the
form of a sum,

ck5c̃k1
1

A2p
expS 2

ik2t

2
1 ikxD , ~13!

and in the following we calculate separately the parts that
symmetric and antisymmetric inx:

ck
~1 !5c̃k

~1 !1
1

A2p
expS 2

ik2t

2 D cos~kx!,

~14!

ck
~2 !5c̃k

~2 !1
i

A2p
expS 2

ik2t

2 D sin~kx!.

As in Ref. 15, the functionsc̃k
(6) can be sought in the form

of the sums

c̃k
~6 !5expS iv2t

2 D(
s

Cs
~6 !@exp~ ivx!ws~z2t !

6exp~2 ivx!ws~z1t !#, ~15!

where

ws~z,t !5expS 2asz1
ias

2t

2 D , z25ux2vtu,

z15ux1vtu.

For the coefficientsCs
(6) we obtain the system

(
s

Cs
~6 !H ~a2as!expS i

as
2t

2 D 6a

3expF i t

2
~as12iv !2G J

5
a

A2p
H expF2

i t

2
~k2v !2G

6expF2
i t

2
~k1v !2G J .
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This system is equivalent to the following:

(
s

H Cs
~6 !~a2as!expS i

as
2t

2 D 6aCs21
~6 !

3expF i t

2
~as2112iv !2G J

52
a

2A2p
H expF2

i t

2
~k2v !2G

6expF2
i t

2
~k1v !2G J . ~16!

To determine the coefficients Cs
(6) we set

as5 i @2uku1v(2s21)#, with a052 i (uku1v),
a152 i (uku2v), andC21

(6)50. Then,

C0
~6 !52

a

2A2p

1

a2a0
, C1

~1 !52
aa0

2A2p~a1a0!
,

and fors.1

Cs
~1 !~a2as!1aCs21

~1 ! 50,

Cs
~1 !us>152

a0

2A2p

1

2iv S a

2iv D s G~2j!

G~s2j11!
, ~17!

where

j5
a

2iv
1

k

2iv
1

1

2iv
5

a2a0

2iv
.

The coefficientsCs
(2) of the antisymmetric solution are de

termined by the equations

Cs
~2 !5~21!sCs

~1 ! , ~18!

and in the limitv→0 the solution for a singled-center, char-
acterized by the constant 2a, can be obtained. For¹50,

Cs
~1 !us>152

a0

2A2p

~2a!s

~a1 i uku!s11 ,

C0
~6 !52

a

2A2p

1

a1 i uku
,

and the seriesck
(1) is easily summed:

c̃k
~1 !5

2ia cos~ ukux!

i uku12a
expS 2

ik2t

2 D .

For k,0 the functionck
(1) does not change (c̃k

(1)5c̃2k
(1)),

while c̃k
(2) changes sign (c̃k

(2)52c̃2k
(2)).

The system of eigenfunctions determined by Eqs.~9!,
~10!, and~14! probably forms a complete system.

4. We now study the generalization of Eq.~8!–
dispersing delta-centers characterized by a different dept
the single bound state:

F i
]

]t
1

1

2

]2

]x2 1ad~x2vt !1bd~x1vt !GC50. ~19!
of

Here we consider a ‘‘bound’’ state of a nonstationary syst
corresponding to an asymptote that falls off exponentially
space.

We write the solution in a way similar to that don
before15,19 in the form

C~x,t !5expS 2
iv2t

2 D(
s

@Cs
~1!ws~z2 ,t !

3exp~ ivx!1Cs
~2!xs~z1 ,t !exp~2 ivx!#. ~20!

Here z75ux7vtu and the functionsws and xs satisfy the
equations

S i
]

]t
1

1

2

]2

]x2Dws~z,t !50, S i
]

]t
1

1

2

]2

]x2Dxs~z,t !50.

Substituting Eq.~20! in Eq. ~19! yields the equations

(
s

H Cs
~1!Faws~0,t !1

]ws

]t U
z50

G1aCs
~2!xs~2vt,t !

3exp~22iv2t !J 50,

(
s

H bCs
~1!ws~2vt,t !exp~22iv2t !1Cs

~2!

3Fbxs~0,t !1
2xs

]t U
z50

G J 50. ~21!

The equations forws andxs have solutions of the form

ws5expS 2asz1
ias

2t

2 D , xs5expS 2bsz1
ibs

2t

2 D ,

which makes it possible to transform the system of Eqs.~21!
for the coefficientsCs

(1,2) in the following way:

(
s

H Cs
~1!~a2as!expS i

as
2t

2 D 1aCs21
~2!

3expF i t

2
~bs2112iv !2G J 50,

(
s

H bCs21
~1! expF i t

2
~as2112iv !2G1~b2bs!Cs

~2!

3expS ibs
2t

2 D J 50. ~22!

On going from Eq.~21! to Eq.~22!, in the second term of the
first equation and in the first term of the second, the summ
tion indexs is replaced bys21.

Since Eqs.~22! are satisfied for arbitraryt, the following
equalities should be satisfied:

as5bs2112iv, bs5as2112iv.

In addition,

Cs
~1!~a2as!1aCs21

~2! 50,
~23!

bCs21
~1! 1~b2bs!Cs

~2!50.
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Let us setC21
(1)5C21

(2)50, thena05a andb05b. The con-
stantsC0

(1)5A andC0
(2)5B are not determined by Eqs.~23!.

From the recurrence relations foras andbs we can obtain

a15b12iv, b15a12iv,

a2s115b12iv~2s11!, b2s115a12iv~2s11!,
~24!

a2s5a12iv•2s, b2s5b12iv•2s.

It also follows from Eq.~23! that

C1
~1!52

aB

a2b22iv
, C1

~2!52
bA

b2a22iv
.

The recurrence relations~23!, as well as the initial values
C0,1

(1,2) satisfy the following expressions:

C2l
~1!5S 2

ab

16v2D l A

G~ l 11!

G~1/21~a2b!/4iv !

G~1/21 l 1~a2b!/4iv !
,

C2l 11
~1! 5

a

4iv S 2
ab

16v2D l B

G~ l 11!

G~1/22~a2b!/4iv !

G~3/21 l 2~a2b!/4iv !
,

C2l
~2!5S 2

ab

16v2D l B

G~ l 11!

G~1/22~a2b!/4iv !

G~1/21 l 2~a2b!/4iv !
,

C2l 11
~2! 5

b

4iv2 S 2
ab

16v2D l A

G~ l 11!

G~1/21~a2b!/4iv !

G~3/21 l 1~a2b!/4iv !
.

~25!

The series~20! for the unknown distribution functionC(x,t)
is convergent for any values of the constantsa, b, andx, as
well as for arbitraryx, t. We note here that, fora5b, on
using the doubling formulas for theG-function one can ob-
tain the same expressions forC as in Ref. 15.

Determining the constantsA andB is more complicated,
however, whenaÞb. These constants depend on the para
 -

etersa, b, andv and must be determined from the conditio
that the transition to the casev50 be smooth, when

C~x,t !5Aa1b

2
expF2~a1b!UxU2 i ~a1b!2

2
t G .

It should also be noted that explicit expressions for
c-functions in the nonstationary case can also be used
determining the probabilities of changes in the charge s
of atomic particles, as has been done before19 for the case
a5b.
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Oscillatory disintegration of nonevolutionary magnetohydrodynamic discontinuities
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Trans-Alfvénic shock waves are considered in the approximation of small amplitude and almost
parallel propagation of the magnetic field. Such shocks are nonevolutionary, since the
problem of time evolution of their small perturbation does not have a unique solution. Therefore,
they cannot exist as stationary configurations and must disintegrate or transform to some
more general, nonsteady flow. The disintegration configuration necessarily includes an Alfve´n
discontinuity that is also nonevolutionary. It is shown that the contradiction inherent in
the nonevolutionary configuration is removed if its time evolution has the form of oscillatory
disintegration, i.e., reversible transformation of one type of discontinuity to the other. In
this process fast and slow shock or rarefaction waves as well as contact discontinuities are emitted.
© 1998 American Institute of Physics.@S1063-7761~98!01802-2#
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1. INTRODUCTION

The problem of disintegration of hydrodynamic disco
tinuities has a long history since the publication of the pa
by Kotchine.1 He considered the disintegration of an arb
trary discontinuity into a set of other discontinuities and r
efaction waves in the framework of nonmagnetic hydrod
namics. Some time later, Bethe2 studied the disintegration o
a shock wave. Magnetic field complicates the situation,
larging the number of possible disintegration configuratio
For a small-amplitude arbitrary discontinuity such config
rations were obtained by Lyubarskii and Polovin.3 In gen-
eral, the problem cannot be solved in an analytic for
Gogosov4 has given a quantitative solution that determin
the type of the configuration, depending on the flow para
eters.

The disintegration of a shock wave is closely related
the problem of its evolutionarity, formulated in Refs. 5–7.
is suggested that small perturbations should be impose
the discontinuity surface to study the question of its disin
gration. In this case small-amplitude waves occur on b
sides of the surface. The amplitudes of these waves are
lated by the linearized boundary conditions obtained fr
conservation laws at the discontinuity. If the amplitudes
the outgoing waves cannot be determined unambiguo
from these conditions by the amplitudes of the incide
waves, then the problem of the time evolution of the infi
tesimal perturbations does not have a unique solution,
the discontinuity is called nonevolutionary. This problem
encountered when the number of unknown parameters~the
amplitudes of the outgoing waves and the discontinuity d
placement! is incompatible with the number of independe
equations.

Since a physical problem must have a unique solution
is not correct to assume that the perturbation of a nonev
tionary discontinuity is infinitesimal. Such a discontinui
cannot exist in a real medium as a stationary configurat
because the infinitesimal perturbation leads to a finite va
3401063-7761/98/86(2)/8/$15.00
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tion of the initial flow. This variation is the disintegration o
the discontinuity into other discontinuities, which mov
away from the place of their formation, or a transition to
more general nonsteady flow. In the ideal medium the dis
tegration is instantaneous in the sense that the secondary
continuities become separated in the beginning of the di
tegration process. In a dissipative medium the spatial profi
of the magnetohydrodynamic~MHD! properties are continu
ous. Nevertheless, the principal result remains the same
flow is rearranged toward a nonsteady state, and after a l
enough period of time the disintegration manifests itself.

The evolutionarity requirement gives additional~com-
pared to the Zemplen theorem! restrictions on the flow pa-
rameters at the shock surface. They follow from the fact t
the direction of wave propagation~toward the discontinuity
surface or away from it! and hence the number of the outg
ing waves depends on the flow velocity at the surface. If i
large enough, then the given wave may be carried down
the flow. Therefore, at an evolutionary discontinuity the flo
velocity must be such that it provides the compatibility of t
set of boundary equations. This form of evolutionarity co
dition was applied to MHD shock waves in Refs. 8–10.

As a result, the fast (I→II) and slow (III→IV) shocks,
for which the flow velocity both upstream and downstream
larger and smaller than the Alfve´n velocity, respectively, are
evolutionary, while the trans-Alfve´nic shock waves
~TASWs! are not. Here the Roman numbers indicate
states upstream and downstream of the shock, in which
values of the normal flow velocity fall into the interva
separated by the three phase velocities: fast magnetos
Alfvén, and slow magnetosonic velocities. These states
arranged in order of increasing entropy.

The important fact that favors the nonexistence of no
evolutionary shock transitions is that they can~while the
evolutionary ones cannot! be realized also through a set o
several shock and rarefaction waves.11–13 One more argu-
ment for the nonexistence of nonevolutionary shocks is t
they are isolated solutions of the Rankine–Hugoniot probl
© 1998 American Institute of Physics
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which do not have neighboring solutions corresponding
small deviation of boundary states.14 This is confirmed by
the fact that the configurations neighboring such shocks
time dependent.15,16 For such configurations the coplanari
of the boundary states is violated and therefore they are
solutions of the Rankine–Hugoniot problem.

The problem of structural instability of MHD shocks ha
recently progressed to a new point due to the considera
of a nonplanar shock structure.17–20Kennelet al.19 discussed
nonplanar shocks of small amplitude. They have dem
strated that the structure of nonevolutionary, TASWs, is
unique. Namely, the transitions II→III can be connected by
two integral curves, left-hand and right-hand polarized, a
the transitions I→III and II→IV allow an infinite number of
connecting integral curves. These conclusions are in ag
ment with those of Hau and Sonnerup,18 who analyzed the
stationary points of the MHD equations corresponding to
boundary states of the shock transitions in the case where
magnetic diffusivity is the only nonzero transport coefficie
Recall that under the assumption of a planar shock struc
the trans-Alfvénic transitions also do not have a uniqu
structure for all values of the dissipative transp
coefficients.21–23

It can be shown19 that the integral over the shock thick
ness of the out-of-plane component of the magnetic field
independent of time if the upstream and downstream st
of the small amplitude shock satisfy the Rankine–Hugon
conditions. This means that the flow outside the shock is
one plane. This integral, which characterizes the nonpla
structure, remains constant during the evolution of the ini
profile, and it labels uniquely the integral curve that conne
the given states. For the evolutionary, I→II and III→IV,
shocks the flow is planar, and the integral is zero. For
shock transition II→III the integral takes two values with
equal modules and opposite signs, and for the transit
II→IV and I→III it falls into some interval which describe
a one-parameter family of structures.

To remove the ambiguity of the solution for the TASW
Kennel et al.19 postulated that in addition to the bounda
states, the integral characterizing the nonplanar struc
should be fixed. The solution of the boundary value probl
describing the shock will then be unique. To assure t
uniqueness, however, one must assume that the configur
contains one shock. This is not the only possibility. As d
cussed above, the trans-Alfve´nic shock transitions can b
realized also through a set of several shock and rarefac
waves. Thus, the ambiguity of the structure connecting
nonevolutionary boundary states is not lifted,24 and the
TASW is structurally unstable. Nevertheless, the conse
tion of the quantity that fixes the structure of the nonpla
shock is an additional factor that governs the disintegra
process.

Indeed, at a TASW the tangential magnetic field chan
sign. Consequently, it must change sign at a secondary
continuity. This may take place either at another TASW o
an Alfvén discontinuity. As is known,25 the Alfvén disconti-
nuity is also nonevolutionary in the presence of arbitra
small, but nonzero dissipation. Since the evolution of a n
planar shock is related to its structure, it cannot be assu
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that the dissipation is absent. Therefore, the Alfve´n discon-
tinuity also cannot exist as a stationary configuration. In
present paper we suggest a new scenario for the evolutio
the TASW, oscillatory disintegration, i.e., reversible tran
formation of the Alfvén discontinuity. Such a form of evo
lution resolves the contradiction inherent in the nonevo
tionary configurations.

We consider the small-amplitude shocks that propag
almost parallel to the magnetic field. This approximation
lows us to use an analytical approach, and, at the same t
to determine some features of the behavior of fini
amplitude discontinuities. In Sec. 2 we obtain the disinteg
tion configuration for the TASW of small amplitude tha
propagate almost parallel to the magnetic field. In Sec. 3
discuss the evolutionarity and some other properties of n
planar shocks. In Sec. 4 we describe the time evolution of
TASW in the case where the transverse magnetic field is
small and in the case of almost parallel propagation. Fina
we present our conclusions in Sec. 5.

2. STRUCTURAL INSTABILITY OF TRANS-ALFVE´ NIC
SHOCKS

We first consider the disintegration configurations
small-amplitude, almost parallel MHD shocks. We choo
the frame of reference in whichBiv and thex axis is directed
along the normal to the discontinuity. We proceed from t
following jump conditions at the discontinuity surface:

D~rvx!50, ~1!

Dp1rvxDvx1
1

8p
D~By

2!50, ~2!

rvxDvy2
Bx

4p
DBy50, ~3!

vy5vxBy /Bx , ~4!

1

2
rvxD~v2!1

g

g21
D~pvx!50. ~5!

In solving this set of equations we imply that the vari
tions D of all MHD properties, exceptBy , are small com-
pared to their values at a reference state, and thatBy!Bx .
To the lowest order in the small parametersBy /Bx andDr/r
Eqs.~1!–~5! have the following solutions which describe th
relationship between the jumps of the MHD properties. F
the first four solutionsDBy*By .

DBy52ByS 16A112
VAx

2 2Vs
2

VAy
2

Dr

r D[ByA, ~6!

Dvy52«VAyA, ~7!

Dvx5«VDr/r, ~8!

Dp5Vs
2Dr, ~9!

where V5VAx and VA5B/A4pr is the Alfvén velocity.
Here «511 for the waves moving in the positivex direc-
tion and«521 for the waves moving in the opposite dire
tion. We assume for definiteness thatVAx.Vs . The plus
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(«1») sign in Eq.~6! will then correspond to a TASW an
the minus («2») sign will correspond to a fast shock wav
In zeroth approximation the propagation velocity of bo
waves isVAx . The TASW is of the II→III type, i.e.,

V11.vx1.VAx1 , VAx2.vx2.V22

if

21<
By1

By2
<2

1

2
. ~10!

and of I→III type, i.e.,

vx1.V11 , VAx2.vx2.V22

if

2
1

2
<

By1

By2
<0. ~11!

Here

V6
2 5

1

2
@VA

21Vs
26A~VA

21Vs
2!224Vs

2VAx
2 #

are the phase velocities of the fast~1! and slow~2! small-
amplitude waves, and the subscripts «1» and «2» indicate
states upstream and downstream of the shock, respectiv

Two more solutions of the set of equations~1!–~5!, for
which DBy!By , correspond to slow shocks. They are giv
by the formulas

DBy52
Vs

2By

VAx
2 2Vs

2

Dr

r
, ~12!

Dvy5«
VsVAyVAx

VAx
2 2Vs

2

Dr

r
, ~13!

and by Eqs.~8! and ~9! with V5Vs , whereVs5Agp/r is
the sound velocity. Expressions~8!, ~9!, ~12!, and~13! coin-
cide with those for small-amplitude waves. At the Alfve´n
discontinuity

DBy5By~6121!, Dvy52«VAy~6121!, ~14!

where the plus~1! sign is used if the discontinuity is abse
and the minus~2! sign is used if it rotates the magnetic fie
through 180°. Finally, the only nonzero jump at a cont
discontinuity isDr.

Assume now that the TASW with the amplitudeD0r
moves in the positivex direction. If the shock transition ca
be represented as a set of more than one discontinuity
amplitudes of the secondary discontinuities are determi
from the condition that the sums of the jumps of the MH
properties at them are equal to those at the initial shock
should be mentioned that in so doing the variation ofBy at
the secondary waves must be taken into account in Eqs.~6!–
~9! and ~12!–~14!, while the other quantities equal to the
values upstream of the initial shock may be substituted.
thus find that in zeroth approximation the trans-Alfve´nic
shock transition can be realized through a fast shock, w
the same amplitudeD f

(11)r5D0r, and the Alfvén disconti-
he
ly.

t

he
d

It

e

th

nuity moving in the same direction. However, since the
secondary waves move with zero velocity with respect
each other, there is no disintegration.

Let us now solve Eqs.~1!–~5!, taking into account
higher-order terms. For simplicity we assume thatBy

2/Bx
2

&Dr/r. Otherwise~when By
2/Bx

2@Dr/r!, the approxima-
tion of almost parallel propagation is violated. The corre
tions to the quantities~6!–~9! are determined by the expres
sions that follow from the expansion of Eqs.~1!–~5! in the
small parametersBy /Bx andDr/r.

DBy5By~A1a!, ~15!

Dvy52«VAyFA1a2
1

2
~11A!

Dr

r G . ~16!

Dvx5«VAx

Dr

r F12
1

2 S 12
1

AD Dr

r G , ~17!

Dp5Vs
2Dr1

VAx
2 ~Dr!2

rA
2

By
2

4p
a~11A!. ~18!

Here

a5
2A31~g14!A21b1A1b2

2A~11A!

Dr

r
, ~19!

b15212b22~l13!
VAx

2

VAy
2

Dr

r
, b252

Vs
2

VAy
2

Dr

r
. ~20!

The velocity in front of such shocks is

vx52«VAxF11
1

2 S 11
1

AD Dr

r G . ~21!

Next, we set equal again the sums of the jumps at
secondary waves to those at the initial TASW. In substitut
the relationship between the MHD properties for the wav
absent in zeroth approximation it is sufficient to use E
~6!–~9!, ~12!, and~13!, which are valid in the lowest order
because the amplitudes of these waves are small compar
the amplitude of the initial shock.

As a result, we find that the fast wave moving in th
direction opposite to the initial shock has the amplitude

D f
~21!r5

1

2

VAy1
2 A2~11A2!D0r

VAx
2 2Vs

2 . ~22!

The amplitude of the contact discontinuity is

Dcr52~g21!D0r
VAy1

2

Vs
2 A112

VAx
2 2Vs

2

VAy1
2

D0r

r
, ~23!

and the amplitudes of the slow waves moving in the posit
and negativex directions are

Ds
~«!r52

1

2
Dcr1«

VAx

Vs
D f

~21!r1
r~11A2!VAy1

2

2~VAx
2 2Vs

2!

3Fa11a21«
VAx

Vs
S a11a22

1

2

D0r

r D G . ~24!

HereA anda are given by Eqs.~6!, ~19!, and~20!, in which
By5By1 and Dr5D0r, and the subscripts ‘‘1’’ and ‘‘ 2’’
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correspond to the sign in Eq.~6!. It can be shown, with the
help of Eqs.~17! and ~21!, that the absolute value of th
normal flow velocity behind the fast shock moving in th
positivex direction is larger than the normal Alfve´n velocity
in front of the Alfvén discontinuity. Hence, these waves b
come separated as time goes on~Fig. 1!.

Note that ifVs is comparable withVAx , then the flow in
the fast and trans-Alfve´nic shocks, which is determined b
Eqs.~6!–~9!, is isentropic, but only to the lowest order. Th
jump of the entropy at such shocks is

Ds5
g

4

VAy
2

Vs
2

Dr

r
A2. ~25!

In case whereDr/r!VAy
2 /VAx

2 this expression coincide
with that obtained by Bazer and Ericson.26 After the disinte-
gration, the difference between the entropy jumps at
trans-Alfvénic and the fast shock is taken by the conta
discontinuity at which the entropy jump is of the same ord
of magnitude as the density jump

Ds5S ]s

]r D
p

Dr52
g

g21

Dr

r
. ~26!

Thus, the consideration of the corrections to zeroth
proximation reveals two properties of the disintegration c
figuration. First, the fast shock and the Alfve´n discontinuity
moving in the same direction as the initial shock acquir
small relative velocity. Second, the amplitudes of the disc
tinuities, which have finite velocity with respect to ea
other, become nonzero.

We emphasize that the absence of disintegration in
roth approximation is essentially a consequence of the
sumption that the tangential magnetic field is small. T
result is consistent with the fact that the exactly para
TASW can be represented as a switch-on and a switch
shock, but they do not become separated.10,11 However, the
parallel shock disintegrates when it collides with sma
amplitude shocks incident on both sides of the discontinu
surface.11 It should be mentioned that Eqs.~6! and~7! are not
valid for the exactly parallel shock, because it necessarily
a finite amplitude ifVs is not close toVAx .

We can also consider the caseVs!VAx , which was dis-
cussed by Kennelet al.19 Note that, on the other hand,Vs

2

must be much larger thanVAy
2 Dr/r ~or VAy

4 /VAx
2 ! for a small-

amplitude shock. The character of the disintegration chan
significantly whenVs&VAy . Under this condition the flow is
not isentropic in the lowest order@see Eqs.~23!, ~25!, and
~26!#. To this order the jumpsDcs, Dcr, andDs

(«)r, are not
equal to zero, in contrast with the caseVs@VAy . At the same

FIG. 1. Disintegration configuration for the trans-Alfve´nic shock in the case
Vs@VAy . In zeroth approximation the dotted lines are absent.
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time, the velocity of the slow shocksVs is small. Therefore,
in zeroth approximation they are not separated from the c
tact discontinuity which is at rest with respect to the mediu

As a result, the initial TASW disintegrates into tw
structures. The first structure, denoted byA1F, is formed by
the Alfvén discontinuity and the fast shock, which are at re
with respect to each other. The second, denoted byS1C
1S, is formed by two slow shocks and the contact disco
tinuity. These structures have the finite relative velocityVAx .
The peculiarity of such a configuration is that the only no
zero total jump at the structureS1C1S is Dcs, because, as
can be seen from Eqs.~22!–~24!, the total density jump
equals zero whenVs&VAy . Consequently, the disintegratio
in this case takes place in the lowest order, although its o
manifestation is the time-dependent entropy profile along
x axis ~Fig. 2!. In higher orders the profiles of the othe
MHD properties also become nonsteady.

3. EVOLUTIONARITY OF NONPLANAR SHOCKS

Next, we consider the influence of the nonplanar str
ture on the shock evolution. If the boundary states of
shock are coplanar, the evolution of the configuration
characterized by additional conservation laws. This can
understood, for example, from thez-component of the induc-
tion equation,

]Bz

]t
52

]

]x S Bzvx2Bxvz2nm

]Bz

]x D , ~27!

wherenm is the magnetic diffusivity. Since the flow outsid
the discontinuity is planar and homogeneous, the integra
over the thickness of the transition layerDx5x22x1 yields

]

]t Ex1

x2
Bzdx50. ~28!

Similarly, it follows from thez-component of the momentum
equation,

]rvz

]t
52

]

]x S rvxvz2
1

4p
BxBz2h

]vz

]x D , ~29!

that the integral of the quantityrvz is also conserved in the
process of time evolution of the configuration,

]

]t Ex1

x2
rvzdx50. ~30!

Hereh is the shear viscosity.
As shown in Ref. 19, if the integral ofBz over the profile

of the small amplitude almost parallel II→III shock is pre-

FIG. 2. Time-dependent entropy profile after the disintegration of the tra
Alfvénic shock in caseVs&VAy .
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scribed, then the ratioBy1 /By2 of the upstream to the down
stream values of the transverse magnetic field is fixed. T
the state behind the shock is unambiguously determined
the state in front of it. This gives us an additional equat
for the amplitudes of the waves that occur after the disin
gration. Assuming that this equation is valid to the seco
order in the amplitude, it can be shown with the help of E
~12!, ~13!, and ~15!–~18! that the amplitudes of the initia
and secondary TASWs are equal, while all other second
waves are absent. The same is true for the I→III shock. The
difference is that in the latter case there is no additio
equation, because the given integral over the profile allo
infinite number of boundary states.19 However, the fast wave
moving in the direction of the initial shock is absent. The
fore, the number of equations is again equal to the numbe
secondary waves. These equations have only a trivial s
tion. Consequently, in the approximation under considera
a TASW cannot appear after the disintegration as a sec
ary wave.

It should be mentioned that the conclusion about
relationship between the integral quantity, which charac
izes the structure, and the amplitude of the wave is mad
Ref. 19 only for isentropic flows. As shown in Sec. 2, this
not always the case for the almost parallel propagation. N
ertheless, this conclusion may be also made on the bas
the following reasoning. The consideration of the station
points of the MHD equations, corresponding to the bound
states of the shock transitions, shows that the transi
II→III can be realized through two integral curves, righ
hand and left-hand polarized, in contrast with the transitio
I→III (II→IV) and I→IV which are described by one- an
two-parameter families of curves, respectively~see, e.g., Ref.
18!. Since the structure of the II→III shock does not contain
free parameters other than the amplitude~although it is non-
unique!, for the given quantity characterizing the structu
and the given state in front of the shock its amplitude
fixed.

Below we restrict the discussion to the shocks of
II→III type. The evolution of these shocks is the most im
portant feature for the following reason. In contrast with t
other types, the nonevolutionarity of the II→III shocks is
essentially based on the fact that for normally propaga
waves the equations for the Alfve´n perturbations are sepa
rated from those for the magnetosonic and entro
perturbations.10 Therefore, the evolutionary criterion must b
satisfied separately for both groups of waves. This makes
shock nonevolutionary, although the total number of pert
bations is compatible with the total number of boundary c
ditions. Since under the assumption of a nonplanar sh
structure the separation does not take place,20 this argument
formally does not hold. Nevertheless, the coupling of Alfv´n
modes to magnetosonic and entropy modes does not alte
conclusions made on the basis of the evolutionarity princip
Let us clarify this point.

In the linear approximation Eqs.~27! and ~29! for the
perturbations proportional to exp(ivt) take the following
form after the integration overx:
s,
by
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ivE
x1

x2
dBzdx52DS vxdBz2Bxdvz2nm

]dBz

]x D , ~31!

ivE
x1

x2
vzdrdx1 ivE

x1

x2
rdvzdx52DS rvxdvz

2
1

4p
BxdBz2h

]dvz

]x D , ~32!

whered is the small perturbation, and the unperturbed qu
tities correspond to the stationary shock. The term resp
sible for the coupling is the first integral on the left-hand si
of Eq. ~32!.

Let us assume now that the Alfve´n wave, which transfers
only the perturbationsdvz anddBz , is incident on the II→III
shock. In this case there is one outgoing Alfve´n wave, whose
amplitude is the unknown parameter that should be de
mined from Eqs.~31! and ~32!. Because the perturbationdr
enters into Eq.~32!, whenvzÞ0, the latter becomes an ad
ditional equation for the amplitudes of outgoing magne
sonic and entropy waves which may be generated by
incident Alfvén wave. The perturbationdr inside the transi-
tion layer depends on the amplitudes of the waves outsid
and on the stationary shock structure. Sincedr should be
determined from Eq.~32!, the term withdr cannot be much
smaller than all other terms. Estimating the first terms on
left- and right-hand sides of Eq.~32!, we obtain in the order
of magnitude

vvz0dr0Dx;r0vx0Ddvz , ~33!

where the subscript 0 indicates some characteristic value
In general,Ddvz;dvz0 . In addition, the unperturbed

quantities and the discontinuity thickness do not depend
the frequency of the perturbation. Consequently, for the p
turbation with small enoughv the quantitydr0 /r0 is arbi-
trarily large compared todvz0 /vz0 . However, this result is
valid for any nonevolutionary shock; namely, as discussed
Sec. 1, infinitesimal incident perturbation~dvz in the present
case! causes a finite variation of the flow~dr!. Therefore,
since the coupling of the modes is weak, the contradict
inherent in the II→III shock is not resolved even in the ab
sence of the separation of the boundary conditions.

In connection with the nonunique shock structure, W20

argued that the shocks of the remaining types become
lutionary if the free parameters characterizing their struct
are added to the total number of perturbations of the sho
However, the additional free parameters on their own also
not resolve the contradiction. In the presence of dissipa
such parameters are provided, in particular, by the am
tudes of purely dissipative waves, which are absent in
ideal medium.25 The problem is that the boundary cond
tions, that follow from the conservation laws at the sho
are incompatible. Therefore, a free parameter contribute
the evolution only if it enters into the conservation laws. F
example, purely dissipative waves damp within the length
the order of the shock thickness. Consequently, their am
tudes do not enter into the boundary conditions, and t
should be disregarded when solving the problem of evolut
of a shock wave, unless it is of switch-off or switch-o
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type.25 At the same time, it can be shown that in the case
dissipative discontinuities inside inviscid shock waves
additional dissipative waves affect the evolution conditio
Apparently, the structure variations are also confined wit
the transition layer.

4. TIME EVOLUTION OF NONEVOLUTIONARY
DISCONTINUITIES

Let us now turn to the time evolution of the TASWs. F
an illustration we first consider the case in which the ra
By /Bx is not small. To the first order inDr/r we can then
reduce the expressions for the jumps of the MHD proper
at the TASW as follows:12

D0Qj5DAQj1A0 jD0r. ~34!

HereQ5(r,p,vx ,vy ,By) is the vector of state, i.e., the s
of MHD properties,A0 j are the known coefficients, andDA

are the jumps at the Alfve´n discontinuity given by Eq.~14!.
In the present case the jumpDuByu is small compared to
uByu; hence, the inequality~10! is satisfied, and the TASW is
of the II→III type.

The jumps at the fast and slow shock~or rarefaction!
waves coincide with those at the corresponding sm
amplitude waves. As a result, the equations that determ
the disintegration configuration take the form

(
i

Ai j D ir1DAQj5A0 jD0r1DAQj , ~35!

where the subscripti indicates the type of the discontinuity
andAi j are known quantities: The solution of these algebr
equations

D ir5aiD0r ~36!

expresses the amplitudes of secondary waves in terms o
amplitude of the initial TASW. The explicit expressions f
the quantitiesai are given in Ref. 12.

Thus, the initial nonevolutionary shock may disintegra
into a contact discontinuity, magnetosonic waves, and an
fvén discontinuity. At the same time, as shown by Roik
varger and Syrovatskii,25 the Alfvén and the contact discon
tinuities are also nonevolutionary in the presence of
arbitrarily small but nonzero dissipation and heat conducti
This stems from the fact that the flow velocity in this case
equal to the phase velocity of the Alfve´n and the entropy
wave, respectively. As a result, the wavelength of the sm
perturbation with a fixed frequency tends to zero. This ma
it necessary to account for the dissipation and, as a co
quence, leads to the occurrence of additional outgoing~dis-
sipative! waves that damp within the length much larger th
the discontinuity thickness.

However, the nonevolutionarity does not lead to the d
integration of the discontinuity if it cannot be represented
a set of several discontinuities. This is the case for a con
discontinuity. Indeed, under the condition thatBy is not
small the jumpsDvy and DBy at a TASW or at an Alfve´n
discontinuity are much larger than all other jumps. To p
vide no field reversal in sum, the disintegration configurat
must contain two discontinuities at whichBy andvy change
f
e
.
n

s

l-
e

c

he

l-
-

n
.

s

ll
s
e-

-
s
ct

-
n

sign or it must not contain them at all. In the latter case
equations for the jumps have only the trivial solution. It c
be readily verified, with the help of Eqs.~14! and ~35!, that
in the former caseDvy and DBy cannot be compensate
simultaneously, sinceDvy depends on the direction of propa
gation, whileDBy does not. Hence, the contact discontinu
is structurally stable. In contrast, the Alfve´n discontinuity is
unstable, and it may disintegrate.

On this basis we suggest a new scenario for evolution
the configurations with the magnetic field reversal, oscil
tory disintegration. Under the action of an infinitesimal pe
turbation the TASW disintegrate into a system of waves
cluding the Alfvén discontinuity. In this process the integra
~28! and ~30! over the nonplanar profile of the initial wav
are conserved and are equal to the integrals over the pr
of the Alfvén discontinuity, while the flow in the remaining
secondary waves is plane. In contrast with a shock wave,
out-of-plane structure of an Alfve´n discontinuity is not re-
lated to the boundary states due to their degeneration. Th
fore, such a disintegration configuration can always be
justed to the initial discontinuity. The Alfve´n discontinuity,
in turn, also disintegrates, producing the TASW with an a
plitude equal to that of the initial wave, which is unambig
ously determined by the quantity fixing the structure.

The amplitudes of the remaining waves satisfy Eq.~35!,
in which D0r is replaced on the right-hand side. Therefo
they are given by Eq.~36!, in which ai is replaced by2ai ;
i.e., shock waves instead of rarefaction waves occur and
versa, compared to the case of disintegration of the TAS
After that the process is repeated. The waves of differ
types may catch up with and outrun each other during th
propagation. Since the waves are structurally stable, t
types do not change in this process. If the characteristic t
between the disintegrations is not small, the waves of
same types catch up with each other at infinite time. In
approximation of small amplitudes the secondary waves
not interact with each other. This means that the feedb
effect of the disintegration on the nonevolutionary discon
nuity manifests itself in higher orders.

It should be mentioned that the contradiction associa
with the nonevolutionary behavior of the Alfve´n discontinu-
ity is also resolved if it has a time-dependent thickness.
some extent, the situation is similar to that for the corrug
tionally unstable shocks in the nonmagne
hydrodynamics.27,28 As is known,29,30 such shock transitions
can always be represented as a combination of several
continuities. This makes it possible to assume that the
stable shocks may disintegrate rather than undergo the g
ing undulation.30 However, as in the present case, t
physical mechanism that distinguishes whether the disco
nuity maintains itself during the evolution or transforms
another configuration remains unclear.

Let us return to the almost parallel shocks. In this ca
the equations that determine the disintegration configura
are not linear equations, in contrast with Eq.~35!. Neverthe-
less, to the lowest order, the amplitudes of waves occur
after the disintegration of the Alfve´n discontinuity and the
TASW are also equal in absolute value and have oppo
signs. This can be shown by indicating that the expressi
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for the variations of the MHD propertiesD at the rarefaction
waves coincide with those for shock waves. In the appro
mation of smallBy the equations describing the rarefacti
waves~see, e.g., Ref. 31! take the form

r
dBy

2

dr
5B224prVs

26S uBx
224prVs

2u

1
~Bx

214prVs
2!By

2

uBx
224prVs

2u D , ~37!

dvy

dBy
52

1

A4pr
, ~38!

dvx

dr
5

VA

r
, ~39!

dp

dr
5Vs

2. ~40!

We thus obtain to the lowest order Eqs.~6!–~9!, ~12!, and
~13! for the differencesD of the downstream to the upstrea
values.

In the case of smallBy the difference between the ve
locity of the fast shock and rarefaction waves is sm
Therefore, if the disintegration takes place at finite interva
these waves may catch up with each other at a finite ti
Moreover, under the conditionVs&VAy , the feedback effec
of the disintegration on the initial wave is of the same ord
of magnitude as its amplitude. A disintegration scheme
this case is presented in Fig. 3. In this figure the lowest-or
waves only are shown,U5S1C1S, and the TASW are
denoted byTA. As can be seen from Fig. 3, after the fa
rarefactionR3 catches up with the fast shockF2 the configu-
ration U4 that moves towardTA3 remains there. Since th
TASW are nonevolutionary and structurally unstable, th
interaction results in disintegration.

After the complete cycle of the oscillatory disintegratio
the system comes to the state shown in Fig. 4. The quant
s3 ands4 are

s35s11
g

4

VAy1
2

Vs
2

D0r

r S 12A12
VAx

2

VAy1
2 D 2

, ~41!

FIG. 3. Scheme of oscillatory disintegration of the initial trans-Alfve´nic
shock~denoted byTA! into the Alfvén discontinuity (A), the fast shock (F)
and rarefaction (R) waves, and the structureU5S1C1S. The vertical
arrows show the time evolution and the horizontal arrows indicate the
locity with respect to the nonevolutionary discontinuity.
i-
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s45s11g
VAy1

2

Vs
2

D0r

r S 11
VAx

2

VAy1
2 D . ~42!

This state resembles the state shown in Fig. 2, except for
configurationsU3 andU5 that compensate each other. Thu
the nonevolutionary shock emits the discontinuitiesS1C
1S in the process of its evolution.

5. CONCLUSIONS

We have examined the disintegration of small-amplitu
nonevolutionary shock waves. We have shown that in c
of almost parallel propagation to the magnetic field the sh
is structurally unstable in the second order in its amplitu
Such a shock transition can be represented as a set of se
discontinuities moving with respect to each other. As a
sult, the shock structure is ambiguous not only because
boundary states are connected by a nonunique integral cu
but also because the shock transition can be realized thro
the single shock and through the configuration that cons
of more than one discontinuity.

However, the disintegration configuration necessarily
cludes an Alfve´n discontinuity that is also nonevolutionary
The contradiction can be resolved if the further time evo
tion has the form of oscillatory disintegration, i.e., reversib
transformation to the Alfve´n discontinuity. In this process
shock and rarefraction waves, as well as contact disconti
ties, which move with respect to each other, are emitted

Such a process is similar to spontaneous emission
small-amplitude waves by a shock wave without a magn
field. This phenomenon was observed in the laborat
experiments.32,33 It appears in the special case of corrug
tional instability of the shock when its small perturbatio
does not grow with time, but propagates away from the d
continuity surface in the form of nondamping waves, who
energy is supplied from the whole moving medium. T
similarity is natural, because in this case the reflection a
refraction coefficients at the discontinuity surface tend to
finity in the presence of incident waves~see, e.g., Ref. 34!.
Consequently, such a shock is nonevolutionary, since
problem of small perturbation does not have a solution.24

At the same time, the oscillatory disintegration has tw
significant distinctions. First, the amplitudes of the emitt
waves, i.e., those occurring after the disintegration, are c
parable with the amplitude of the initial wave, Second, t

e-

FIG. 4. Entropy profile in the state of the system after the complete cycl
the disintegration.T1 andT2 are the moments of time at which the disinte
gration takes place.
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emission is associated with the transition from one type
discontinuity to the other, rater than with the oscillation
the discontinuity surface.

Thus, the scenario of time evolution of a trans-Alfve´nic
shock wave suggested by us is in agreement with the vi
point according to which the shock cannot exist as a stat
ary configuration.
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Filamentation and stimulated Brillouin scattering in a turbulent plasma
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This paper presents a theory of filamentation and stimulated Brillouin scattering~SBS! of high-
frequency electromagnetic radiation in a weakly collisional plasma with ion-acoustic
turbulence. When the square of the wavelength of the plasma perturbations is less than the
product of the two mean free path lengths of an electron with respect to its collisions with turbulent
fluctuations and with electrons, the influence of cold highly collisional electrons on the
parametric instabilities becomes apparent. It is shown that the plasma turbulence lowers the
filamentation threshold, and the SBS threshold can be either lowered or raised. The dependence of
the SBS and filamentation thresholds on the electron mean free path length in the turbulent
plasma and on the anisotropy of the plasma turbulence is determined. The corresponding
dependence of the spatial scale of the most efficiently growing filaments and their spatial
growth rate are found. ©1998 American Institute of Physics.@S1063-7761~98!01902-7#
ec
u
in
rg
t

an
re
n.
io
bi
in
a
s
ar
ra
t

.
ol
r
th

om
a

et
n-
fil
a
a
A

ar
n
h
re
a

tric
the

at
ich
la-
g
ron
e-
ve-
ly
gh

ns-
tic
be-
igh-
sed
u-
p
ric
ot
the
c-
on
a-
ute
s

ith
e-
kly

l in
aller
1. INTRODUCTION

The effect on a plasma produced by high-intensity el
tromagnetic radiation with a frequency above the Langm
frequency of the electrons to first order in the radiation
tensity leads to a low-frequency modulation of the cha
density. The density modulation arises both because of
effect of the ponderomotive force and because of heat tr
port and the heating of the electrons, which arise in the p
ence of inverse bremsstrahlung absorption of the radiatio1,2

A change in the electron density in a high-intensity radiat
field is the cause of such characteristic parametric insta
ties of nonlinear phenomena as filamentation and SBS. S
the density perturbation associated with the collisional he
ing of the electrons depends strongly on the characteristic
the heat transport, for those conditions when the prim
cause of the density modulation is the inverse bremsst
lung the filamentation and SBS mechanisms depend on
characteristics of the heat transport~see, for example, Refs
3, 4!. The heat transport was initially considered in the c
lisional plasma limit.5 However, it later became clear that fo
the conditions usually assumed to be collisionless, when
characteristic scale of the plasma perturbations is small c
pared with the mean free path of the electrons, there
always slow subthermal highly collisional electrons~the ve-
locity of which is less than thermal!. Taking this circum-
stance into account led to the development of the kin
theory of a weakly collisional plasma, in which new filame
tation and SBS mechanisms are discovered. Unusual
mentation mechanisms were revealed in Ref. 6 on the b
of numerical calculations in such a plasma and approxim
scaling of the nonlocal electron transport was proposed.
analytical theory of a weakly collisional plasma, necess
for describing filamentation, was constructed in Ref. 7 a
the exact scaling of the heat transport in a plasma wit
Maxwellian electron distribution was determined. The cor
sponding SBS theory was constructed in Refs. 8, 9. It w
3481063-7761/98/86(2)/9/$15.00
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shown in Ref. 9 that if the concept of nonlocal transport6 is
used in a weakly collisional plasma to describe parame
instabilities, then the heat transport that characterizes
damping of ionic sound differs qualitatively from the he
transport that determines the nonlinear interaction wh
forms the basis of filamentation theory. The theory of fi
mentation in a weakly collisional plasma in a fairly stron
radiation field, when the heating radiation makes the elect
distribution considerably different from Maxwellian, was d
veloped in Refs. 10, 11. We us emphasize that the achie
ments of the theory of parametric instabilities of a weak
collisional plasma pointed out here were obtained throu
consideration of the properties of a laminar plasma.

On the other hand, the theory of nonlocal electron tra
port of heat in a weakly collisional plasma with ion-acous
turbulence, when the heating of the plasma itself occurs
cause of the inverse bremsstrahlung absorption of the h
frequency field and when the plasma perturbation is cau
by a low-frequency electric potential, was recently form
lated~see Refs. 12, 13!. The results of Refs. 12, 13 open u
the possibility for constructing a theory of the paramet
instabilities—filamentation and SBS—under conditions n
previously considered when, first, the mean free path of
electronsl t , which determines the isotropization of the ele
tron distribution function, is not associated with electron–i
collisions but rather with their scattering at turbulent puls
tions and, secondly, which is most significant, the absol
magnitude of the wave vectork of the plasma perturbation
turns out to be so large that

Zll tk
2.1. ~1.1!

Here Zl is the mean free path of a thermal electron w
respect to its collisions with electrons. This inequality d
fines the conditions for which one must speak of a wea
collisional turbulent plasma. Sincel t! l , then in the presence
of turbulence the plasma turns out to be weakly collisiona
the case of perturbations whose spatial scale is much sm
© 1998 American Institute of Physics
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than the corresponding scale of the perturbations of the la
nar plasma. This corresponds to the fact that the conditio
the collisionless situation for a turbulent plasma is

klt.1. ~1.2!

The kinetic equation for the electrons in a plasma w
ion-acoustic turbulence, located in a high-frequency elec
magnetic field with frequencyv0 greater than the electro
Langmuir frequencyvL , constitutes the starting point for th
subsequent consideration. On the basis of the expressio
tablished earlier~see, for example, Ref. 14! for the collision
integral of the electrons with anisotropic ion-acoustic flu
tuations of the charge density expressions are derived fo
low-frequency perturbations of the electron density that a
both because of low-frequency oscillations of the elec
potential and also because of the inverse bremsstrahl
With the expression for the density modulation due to rad
tion absorption in the presence of electron–ion collisio
taken into account the spatial gain factor of the filamen
found. The spatial scale of the perturbations having
maximum gain factor is determined. The explicit depende
of the filamentation threshold on the plasma parameter
found. It is shown that in a turbulent plasma the spa
growth rate of the filament is a factor of (l / l t)

2/9.1 greater
than in a laminar plasma, and the scale of the most rap
growing perturbations and the filamentation threshold
smaller by factors of (l t / l )1/9,1 and (l t / l )2/7,1, respec-
tively. Because of the anisotropy of the turbulent noise
threshold value of the radiation intensity, the spatial grow
rate and the scale of the most rapidly growing perturbat
depend on the angle between the wave vector of the pe
bations and the direction of the density of the turbulen
producing force.

The effect of perturbations of the electron densi
caused both by fluctuations of the electric potential and
heating of the electrons in electron–ion collisions, on
SBS threshold is investigated. The modulation of the el
tron density because of collisional absorption leads to a l
ering of the instability threshold by a factor of (l t / l )2/7,1.
Conversely, the modulation of the density caused by fluct
tions of the electric potential leads to an extremely la
increase of the instability threshold by a factor of (l / l t)

5/7

@1. This is caused by the anomalous increase of the da
ing of the ion-acoustic perturbations due to collisions of s
thermal electrons. Since the regions in wavenumber spac
which these two causes of density perturbation appear do
coincide, the effect of the turbulent noise on SBS can
either to raise or to lower the instability threshold. In bo
cases, however, the SBS threshold, like the filamenta
threshold, has considerable anisotropy caused by the an
ropy of the nonlocal electron transport of heat in a plas
with anisotropic turbulent noise.

2. ELECTRON KINETICS IN A TURBULENT PLASMA

As is known, the quasistationary electric field¹f and
the electron pressure gradient¹p are causes of the develop
ment of ion-acoustic turbulence in a nonisothermal plas
If the effective force density acting on the electrons
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R52en¹f2¹p, ~2.1!

greatly exceeds the value corresponding to the threshold
the excitation of the ion-acoustic instability

R@Rth5neinmvs , ~2.2!

then the level of the low-frequency charge density fluctu
tions differs considerably from thermal. In Eqs.~2.1! and
~2.2! e is the charge,m is the mass,p5nmvT

2, vT is the
thermal velocity of the electrons,vs is the velocity of sound,
n is the electron density,

nei5nei~vT!5
4A2p Ze4n

3m2vT
3 L ~2.3!

is the collision frequency of the electrons with the ions ha
ing a chargeei5Zueu, andL is the Coulomb logarithm. Un-
der the conditions of the inequality~2.2! for describing slow
low-frequency electron motions, occurring during a tim
greater than the period of the Langmuir oscillations of t
electrons, it is sufficient to take account of only their scatt
ing by ion-acoustic fluctuations of the charge density and
usual electron–ion collisions can be ignored. If a quasis
tionary turbulent state is established because of the Ceren
interaction of waves with electrons and ions and the stim
lated scattering of waves by ions, the quasilinear collis
integral that describes the effect of turbulence on the sm
deviationd f of the electron distribution function from Max
wellian f m has the form14

StQL~d f !5n t

vT
3

v3 H ]

]j F ~12j2!X~A12j2!
]

]j
d f G

1
J~A12j2!

12j2

]2

]w2 d f J , ~2.4!

wherej5cosu, u andw are the angles of the velocity vecto
in the spherical coordinate system with the symmetry a
oriented along the direction of the effective force densityR.
The form of the turbulent collision frequencyn t and the
functions X andJ depends on the absolute magnitudeR of
the force:

n t5A9p/8 R/nmvs~11d!, R!RNL , ~2.5!

n t5A9p/8ARRNL/nmvs , R@RNL , ~2.6!

whereRNL5(11d2)nmvsvLi
2 r D

2 /6ptDi
2 , vLi andr Di are, re-

spectively, the Langmuir frequency and Debye radius of
ions,r D is the Debye radius of the electrons,d is the ratio of
the ion and electron Cerenkov damping rates of sound.
dimensionless anisotropic collision frequencies X andJ, re-
alized at large and smallR, are shown in Figs. 1 and 2.

Let us consider the interaction of a completely ioniz
turbulent plasma with a high-frequency electromagnetic fi
of the form

1

2
E~r ,t !exp~2 iv0t !1c.c., ~2.7!

where the amplitudeE(r ,t) varies slightly during the period
2p/v0 . We assume that the frequencyv0 exceeds both the
Langmuir frequency of the electronsvL and the effective
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collision frequency of electrons with ions and turbule
noise. Under these conditions the effect of low-frequen
long-wave fluctuations of the charge density on the vib
tional motion of the electrons with frequencyv0 is strongly
suppressed.15,16 Conversely, the comparatively rar
electron–ion collisions with small impact parameters of
dervT /v0!r D produce the primary influence on the rapid
varying motion of the electrons. The effect of these co
sions on the deviation of the distribution function from Ma
wellian can be described by an electron–ion collision in
gral of the form

St~d f !5A9p

8
nei~v !

]

]v i
~v2d i j 2v iv j !

]

]v j
d f ,

~2.8!

where the frequencynei(v) depends on the velocity accord
ing to Eq.~2.3!, in which vT is replaced byv and the maxi-
mum impact parameter of the Coulomb logarithm is equa
vT /v0 .

We will restrict consideration to comparatively low ra
diation intensities when the amplitude of the electron qui
velocity vE5ueE/mv0u in the electro-magnetic field is les
thanvT /AZ!vT . Then the effect of the high-frequency fie
on the electron distribution function can be taken into
count using perturbation theory. Moreover, the effect of
radiation ponderomotive force on the electrons will be
sumed to be small compared with the effect of the effect
force densityR given by~2.1!. This last assumption makes
possible to ignore the effect of the radiation on turbulen
Under these conditions we have an equation of the form

FIG. 1. Dimensionless effective collision frequency determining the re
ation of the electron velocity vector with respect to the polar angle. Curv1
corresponds toR/RNL50.03 and curve2 is valid for R@RNL .

FIG. 2. Dimensionless effective collision frequency determining the re
ation of the electron velocity vector with respect to the azimuth an
Curves1 and2 correspond to the same parameters as in Fig. 1.
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]

]t
d f 1v•

]

]r
d f 2St~d f , f m!2St~ f m ,d f !2StQL~d f !

5
e

m
~¹df !•

] f m

]v
1

1

4 S ]

]r
vE

2 D •

] f m

]v
1

1

8

]2f m

]v i]v j

3S ]

]t
1v•

]

]r DVi j 2Ap

8
vE

2vTnei

]

]v i
S f m

v i

v3D
2

3

2
Ap

8 S Vi j 2
2

3
d i j vE

2 D vTnei

]

]v i
S f m

v j

v3D
~2.9!

for the nonequilibrium correctiond f to the distribution func-
tion, caused by the perturbationdf of the potential of the
quasistationary electric field and by the high-frequency
diation, in a linear approximation in terms of the radiatio
intensity. HereVi j is the quiver velocity tensor,

Vi j 5vEivE j* 1vE jvEi* , ~2.10!

and the electron–electron collision integral St(d f , f m)
1St(f m ,d f ) is taken into account. Equation~2.9! makes it
possible to investigate the slow low-frequency motions
electrons in a turbulent plasma interacting with low
frequency radiation.

3. ELECTRON DENSITY PERTURBATION

Assuming that the quiver velocity tensorVi j and the per-
turbation of the potentialdf are low-frequency long-wave
perturbations of the form

;exp~ ikr 2 ivt !,

we use Eq.~2.9! to describe the perturbation of the electro
densitydn with frequencyv and wave vectork. Introducing
the functiond f c , which is related tod f by the expression

d f 5d f c2
edf

mvT
2 f m2I f m1

1

8
Vi j

]2f m

]v i]v j
, ~3.1!

whereI 5vE
2/4vT

2, we have

2 i ~v2k–v!d f c2St~d f c , f m!2St~ f m ,d f c!2StQL~d f c!

52Ap

8
vE

2vTnei

]

]v i
S f m

v i

v3D2
3

2
Ap

8

3S Vi j 2
2

3
d i j vE

2 D vTnei

]

]v i
S f m

v j

v3D2 ivI f m

2 iv
edf

mvT
2 f m1StQLS 1

8
Vi j

]2f m

]v i]v j
D , ~3.2!

for finding d f c . Since Eq.~3.2! is linear, all of the inhomo-
geneous terms on the right side contribute independentl
d f c . In particular, forv,kvT andkvT.n t the term contain-
ing df gives a contribution tod f c that leads to collisionless
Landau damping. Identifying only the collisionless contrib
tion from d f c and taking Eq.~3.1! into consideration, we
write the following expression for the density perturbation

-

-
.
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dnT52nF I 1
edf

mvT
2 S 11 i

v

kvT
Ap

2 D G , ~3.3!

which is caused by the effect of the potential perturbationdf
and the ponderomotive force on the bulk of electrons w
velocitiesv;vT . In this case the corrections to the effect
the ponderomotive force, caused by the termivI f m , are
ignored since they are small for the conditions to be d
cussed below.

Let us now consider Eq.~3.2! for subthermal collisional
electrons for the conditions

v!n t~v !5n tvT
3/v3, kv!n t~v !

and ignoring the termivI f m . We look for a solution in the
form d f c5d f 01d f a , where d f 05*dVd f c/4p, dV
5sin ududw, and the small anisotropic addition is foun
from the equation

ik–vd f 05StQL~d f a!. ~3.4!

Averaging the original Eq.~3.2! over the angles of the ve
locity vector and using the solution of Eq.~3.4!, we find that
d f 0 approximately satisfies

2 ivd f 01
v2

4n t~v !
~b ikz

21b'k'
2 !d f 0

2
1

Z
nei

vT
2

v2

]

]v S v2
]

]v
d f 0D52

iv

mvT
2 edf f m~v !

2Ap

8

vE
2

vvT
neif m~v !dS v2

2vT
2D , ~3.5!

wherekz5(k–n), k25kz
21k'

2 , n5R/R is the unit vector of
the effective force density, and the coefficientsb i andb' are
equal to

b i50.18, b'50.02, R!RNL , ~3.6!

b i50.25, b'50.80, R@RNL . ~3.7!

Equation~3.5! is analyzed below under the assumption th
the parameter

Nt5Z
vT

2

&n tnei

~b ikz
21b'k'

2 ! ~3.8!

is much greater than unity. In this limit the contribution fro
d f 0 to the density perturbation is caused by subthermal e
trons with velocitiesv;vTNt

21/7,vT . With this fact taken
into account two assumptions are made in the writing of
~3.5!. First, the electron–electron collision integral is writte
for slow electrons withv,vT and, secondly, on the righ
side of Eq.~3.5! the 1 is ignored compared with thed func-
tion. Following Refs. 7, 13, in the limitNt@1 and for

v!n t~v !@kv/n t~v !#2, ~3.9!

one can write the exact solution of Eq.~3.5! asymptotically.
Since the density perturbation is determined by particles w
velocitiesv;vTNt

21/7,vT , andNt@1, the results presente
below hold under the following restriction on the frequen
~see Eq.~3.9!! and the wave vector of the perturbations:
h

-

t

c-

.

h

v!Nt
2/7nei /Z, ~3.10!

klt~uk!@Al t~uk!/Zl. ~3.11!

The notations

l t~uk!5 l tb~uk!/&, ~3.12!

l t5vT /n t! l 5vT /nei , ~3.13!

b~uk!5b i cos2 uk1b' sin2 uk , ~3.14!

are used here, whereuk is the angle between the wave vect
of the perturbations and the direction of the effective for
density causing the turbulence. With these replaceme
taken into account, integrating the solution of Eq.~3.5! with
respect to the magnitude of the velocity and adding the c
tribution from the thermal electronsdnT ~3.3!, we find dn
5dnI1dnf ,

dnI52In~11b0ZNt
22/7!, ~3.15!

dnf52
edf

mvT
2 nS 11 iAp

2

v

kvT
1 ib1/2

v

nei
ZNt

25/7D ,

~3.16!

whereb051.16,b1/250.82. The relations~3.15! and ~3.16!
serve as the starting point for the further consideration
such electromagnetic phenomena as filamentation and st
lated Brillouin scattering.

In Eqs. ~3.15! and ~3.16! the weakly collisional contri-
bution of the subthermal electrons is found to be greater t
the collisionless for not too large values ofk. At the same
time the conditionNt@1 requires fairly large values ofk.
This leads to the following two relations. First, the effect
the ponderomotive force in Eq.~3.15! is small if

Z7/2.k2Zll t~uk!@1. ~3.17!

Secondly, the weakly collisional contribution to Eq.~3.16!
exceeds the collisionless Landau damping if

@Zl/ l t~uk!#
7/3.k2Zll t~uk!@1. ~3.18!

Here the conditionZ@1 is necessary to satisfy Eq.~3.17!. In
contrast to this no such condition is required in the case
Eq. ~3.18! sinceZ@1t(uk)/1 always holds.

On the other hand, in a turbulent plasma it can happ
that the perturbation of the electron density determined
the radiation intensity, is related to the ponderomotive for
and the perturbation~3.16! is related to the subthermal co
lisional electrons. This is true in the case when the condit

@Zl/ l t~uk!#
7/3.k2Zll t~uk!.Z7/2 ~3.19!

is satisfied for the wave vectork. This last condition is pos-
sible for an ionization multiplicity that is not too large,

Z,@ l / l t~uk!#
2. ~3.20!

In concluding this section we must point out that in wr
ing Eq. ~3.5! we completely ignored the time dependence
vT . If it is assumed that the heating radiation is sufficien
uniform and heat loss can be ignored, then the rate of va
tion of the thermal velocity with time is characterized by t
equation
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d

dt
vT

25
1

3
vE0

2 nei~vT!; ~3.21!

herevE0
5ueE0 /mv0u, whereE0 is the intensity of the spa

tially uniform radiation heating the plasma. Similarly to th
condition ~3.9!, the time dependence ofvT in Eq. ~3.5! can
be ignored for the condition

n t~v !@kv/n t~v !#2@vE0

2 nei~vT!/vT
2. ~3.22!

Taking into consideration thatv;vTNt
21/7, we can write the

final relation in the form

vT
2Nt

2/7/Z@vE0

2 . ~3.23!

SinceNt@1, the condition~3.23! is weaker than the previ
ously adopted restriction

vE0

2 !vT
2/Z, ~3.24!

which allows us to ignore how electron heating due to
verse bremsstrahlung alters the electron distribution funct

4. RADIATION FILAMENTATION

In order to consider the filamentation phenomenon
laser radiation we assume in Eq.~3.15! that the electric field
has the form

E~r ,t !5@E01dE1 exp~ iky!1dE21

3exp~2 iky!#ex exp~ ik0z!, ~4.1!

where E0 is the field intensity of the fundamental wav
dE61 are the small amplitudes of the filamentation pertur
tions, k0 is the wave number, andex is the unit radiation
polarization vector. Then to first order we have

uEu25uE0u21~dE1E0* 1E0dE21* !exp~ iky!1c.c. ~4.2!

In accordance with the previously obtained Eq.~3.15! a per-
turbation of the radiation field intensity leads to a perturb
tion of the electron density

dn52
n

16pncmvT
2 ~E0* dE11E0dE21* !

3~11b0ZNt
22/7~uk!!, ~4.3!

wherenc5mv0
2/4pe2 is the critical electron density anduk

is the angle between the component of the wave numbk
and the anisotropy direction of the turbulent noise. The te
in Eq. ~4.3! that is independent ofb0 describes the modula
tion of the electron density caused by the action of the p
deromotive force. Conversely, the term containingb0 char-
acterizes the density modulation due to heating of the s
electrons in the presence of inverse bremsstrahlung, bei
superposition of the fields of the test wave and the pertu
tions. In accordance with Maxwell’s equations the amp
tudes of the small electromagnetic field perturbations sat
truncated equations of the form

S 2ik0

d

dz
2k2D dE1~z!5

v0
2

c2

dn

nc
E0 , ~4.4!
-
n.

f

-

-

-

w
a

a-
-
fy

S 22ik0

d

dz
2k2D dE21* ~z!5

v0
2

c2

dn

nc
E0* . ~4.5!

We look for the solution of these equations in the form o
function increasing exponentially in the direction of the fu
damental wavedE1;dE21* ;exp(Gz). Taking Eq.~4.3! into
account, we find

G2~k!5S k

k0
D 2Fq2~k!2

k2

4 G , ~4.6!

q2~k!5
nv0

2

32pnc
2mvT

2c2 uE0u2~11b0ZNt
22/7! ~4.7!

from the system~4.4!, ~4.5! for the spatial gain factor of the
filament. The effect of turbulence on filamentation appe
for the conditions

b0Z@Nt
2/7[N0

2/7~k/k0!4/7@1, ~4.8!

when the modulation of the electron density is caused b
heating of the slow electrons in the presence of inve
bremsstrahlung. Within the wave number interval

~b0Z!7/4k0 /AN0@k@k0 /AN0[@Zll t~uk!#
21/2, ~4.9!

the spatial gain factor of the filament reaches the maxim
value

Gm~uk!5
3k0

2A5

Z5/9

@k0
2l l t~uk!#

2/9 F 5b0

112p

nv0
2uE0u2

nc
2mvT

2k0
2c2G7/9

~4.10!

for the wave number

km~uk!5
k0Z5/18

@k0
2l l t~uk!#

1/9 F 5b0

112p

nv0
2uE0u2

nc
2mvT

2k0
2c2G7/18

~4.11!

which satisfies the inequalitiesk0@km@Gm . The wave
numberkm corresponding to the maximum spatial gain li
within the interval of wave numbers~4.9! being considered if
the radiation and plasma parameters satisfy the conditio

~b0Z!9/2@
5b0

28

vL
2

c2

vE0

2

vT
2 Z2l l t~uk!@1. ~4.12!

For a plasma with multiply charged ions satisfyingZ@1 the
conditions ~4.12! hold over a wide interval of frequencie
and radiation intensities. Let us assume that the character
scale of variation of the plasma density is equal toL. Then,
using the estimateGmL52p, we find

uE0u th,uk

2

5
112p

5b0
S 4pA5

3k0L D 9/7

Z25/7@k0
2l l t~uk!#

2/7
nc

2

n
mS k0c

v0
vTD 2

~4.13!

for the filamentation threshold. An estimation of the wa
number at filamentation threshold, in turn, gives7

~km! th5k0S 4pA5

3k0L D 1/2

.1.22k0S 2p

k0L D 1/2

. ~4.14!
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Substituting this expression into the inequality~3.17!, we
obtain

Z7/2@60Zll t~uk!/l0L@1, ~4.15!

wherel052p/k0 is the pump wavelength. Let us compa
Eqs.~4.10!–~4.13! with their analogs, obtained earlier in th
theory of filamentation for a laminar plasma.7,10,11 Filamen-
tation in a plasma with ion-acoustic turbulence differs in tw
important ways from filamentation in a laminar plasm
First, the spatial gain factor of the filament in a turbule
plasma according to Eq.~4.10! is a factor of (l / l t)

2/9 greater,
the characteristic scale of the most efficiently increasing p
turbations ;1/km according to Eq.~4.11! is a factor of
( l t / l )1/9 less, and the filamentation threshold according
Eq. ~4.13! is a factor of (l t / l )2/7 lower because of the chang
in the electron mean free path. Secondly, the quanti
Gm(uk), km(uk) and uE0u th,uk

2 depend on the angleuk be-

tween the wave vector of the perturbations and the ani
ropy direction of the turbulent noise because of the anis
ropy of the electron scattering in a turbulent plasma. T
appearance of anisotropy in the filamentation phenome
depends on the level of turbulent noise. For example, fo
comparatively low turbulence level withR!RNL ~2.5!, we
have

Gm~uk50!

Gm~uk5p/2!
50.61,

km~uk50!

km~uk5p/2!
50.78,

uE0u th,uk50
2

uE0u th,uk5p/2
2 51.87. ~4.16!

Conversely, forR@RNL ~2.6! the ratio of the quantities be
ing considered foruk50 anduk5p/2 is changed:

Gm~uk50!

Gm~uk5p/2!
51.29,

km~uk50!

km~uk5p/2!
51.14,

uE0u th,uk50
2

uE0u th,uk5p/2
2 50.72. ~4.17!

The necessary conditions for these filamentation mechan
to occur are the inequalities~4.12!, which are realized com
paratively simply for a turbulent plasma with multipl
charged ions, in which the laser radiation heating the targ
absorbed efficiently.

5. STIMULATED BRILLOUIN SCATTERING

Let us examine the scattering of the test electromagn
wave

1

2
E0 exp~2 iv0t1 ik0r !1c.c. ~5.1!

with frequencyv05(vL
21k0

2c2)1/2 by ion-acoustic oscilla-
tions of the electron density

1

2
dn exp~2 ivt1 ikr !1c.c. ~5.2!

with frequencyv!v0 . As is usual, we represent the field
the scattered wave in the form
.
t

r-

o

s

t-
t-
e
n
a

ms

is

ic

1

2
E21 exp~2 iv21t1 ik21r !1c.c., ~5.3!

where the frequencyv215(vL
21k21

2 c2)1/2 and the wave
vectork21 are related tov0 , k0 andv, k by the expressions

v215v02v, k215k02k. ~5.4!

Assuming the field of the fundamental waveE0 is given, we
write a system of two linear equations of the form

Fv21
2 2k21

2 c22vL
2S 11

inei

v21
D GE21* 5

dn

2n
vL

2E0* , ~5.5!

~v22vs
212ivgs!dn5

e2n

4m2vT
2 vs

2S 1

v0
2 1

1

v21
2 D

3~11b0ZNt
22/7!E0E21* , ~5.6!

for the amplitude of the scattered wave field and for t
small amplitude of the perturbation of the electron dens
where vs5kvs /A11k2r D

2 is the frequency andgs is the
sound damping rate. The expression for the perturbation
the electron density~3.15!, arising both because of the effe
of the ponderomotive force and also because of the inve
bremsstrahlung absorption of the field, was used for writ
the right side of Eq.~5.6!. In accordance with Sec. 3 abov
this expression holds under the conditionNt5Zk2l l t(uk)
@1. The sound damping rate entering into Eq.~5.6! consists
of two partsgs5g i1ge , caused by the ion dampingg i and
electron dampingge . Ion damping arises as a consequen
of the Cerenkov interaction of sound with the ions and a
because of ion–ion collisions:

g i5Ap

8

vs
4

k3vTi

3 expS 2
vs

2

2k2vTi

2 D 1g i i , ~5.7!

wherevTi
is the thermal velocity of the ions, and the cont

bution to the damping rate from ion–ion collisions depen
on the relationship between the ion–ion collision frequen
n i i and the sound frequency

g i i 50.64k2vTi

2 /n i i , n i i @vs ,

g i i 50.8n i i k
2vTi

2 /vs
2, vs@n i i , ~5.8!

n i i 5
4Ape4n

3mi
2vTi

3 Z3L i , ~5.9!

mi is the ion mass, andL i is the ion Coulomb logarithm. The
effect of ion-acoustic turbulence on the motion of the th
mal ions is assumed to be small; this is valid forn i i

@n tvLi
2 /vL

2. Finally, using the expression for the time
dependent perturbation of the electron density~3.16!, we
write the sound damping rate by electrons13:

ge5vs

vLi

vL
S vs

kvs
D 3FAp

8
1

b1/2

2
~Zkl!2/7~klt~uk!!25/7G ,

~5.10!

where the termAp/8 refers to taking the collisionless Lan
dau damping into account.

Introducing the notations
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D5
c2

2v0
~k222k–k0!, gE5

neivL
2

2v0
2 , ~5.11!

and ignoring the small difference between the frequenc
v21 and v0 , we obtain from the system of Eqs.~5.5! and
~5.6! the dispersion equation for analyzing stimulated B
louin scattering in a plasma with ion-acoustic turbulence

2~v1D1 igE!~v22vs
212ivgs!5

vs
2

8v0r D
2 vE0

2

3$11b0Z5/7@k2l l t~uk!#
22/7%. ~5.12!

Here v5vs1dv, and the frequency shiftdv is relatively
small, dv!vs . Moreover, since we haveuk21u.uk0u, then
uDu!v0 holds. In order to investigate the SBS we assu
that the frequencyv has a small imaginary partg5Im v.
The growth rateg is maximum when the frequency shi
satisfiesdv50, and the shift satisfiesD52vs . Under these
conditions we find

g52
1

2
~gE1gs!1H 1

4
~gE2gs!

21
vsvE0

2

16v0r D
2

3@11b0Z5/7~k2l l t~uk!!22/7#J 1/2

~5.13!

from Eq. ~5.12!. According to Eq.~5.13! absolute instability
of SBS in a turbulent plasma arises when the square of
electron quiver velocity in the electromagnetic field
greater than

~vE0

2 ! th58nei

vT
2

v0vs
@11b0Z5/7~k2l l t~uk!!22/7#21

3H g i1gLF11A2

p
b1/2~Zkl!2/7~klt~uk!!25/7G J ,

~5.14!

where gL5Ap/8(vLi
/vL)vs

4(kvs)
23, and the growth rate

g i is described by Eqs.~5.7!–~5.9!. We recall that an expres
sion of the form ~5.14! holds in the limit Nt@1 or
Zk2l l t(uk)@1. The turbulence can affect the SBS thresh
for two reasons. First, because of the effect of turbulence
the density perturbation because of the inverse bremss
lung. This effect is evident in the interval of wave numbe
satisfying the condition~3.17!. Since l @ l t(uk), for such
wave numbers the threshold for the appearance of SBS
factor of @ l t(uk)/ l #

2/7 lower than in a laminar plasma.9 Be-
cause of the anisotropy of the electron scattering by turbu
noise the threshold valueuE0u th,uk

2 depends on the angle be

tween the scattering wave vector and the direction of
effective force density producing the turbulence. The deg
of anisotropy of the SBS threshold is characterized by E
~4.16! and~4.17!, the same as for the filamentation thresho

Secondly, turbulence affects the SBS threshold beca
of a change in the electron damping of sound. This effect
appear within the wave number interval~see Eq.~3.18!!

S 2

p
b1/2

2 D 7/6

Z2/3@ l / l t~uk!#
5/3@kl@A1/Zlt~uk!, ~5.15!
s

e
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e
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n

when the electron Landau damping is comparatively sm
In order for the turbulent noise to alter the SBS significan
the condition ensuring smallness of the ion damping
sound,

S 2

p
b1/2

2 D 7/6

Z2/3@ l / l t~uk!#
5/3~gL /g i !

7/3@kl, ~5.16!

must be satisfied in addition to the inequalities~5.15!. If gL

.g i holds, then the restriction~5.16! is weaker than~5.15!.
In the wave number interval~5.15!, ~5.16!, but outside the
interval ~3.17!, the increase of the SBS threshold in a turb
lent plasma caused by the effect of turbulence alone
sound damping compared with its value in a laminar plas
is characterized by the parameter@ l / l t(uk)#5/7@1. For these
same conditions the degree of anisotropy of the SBS thre
old is characterized by the expressions

uE0u th,uk50
2 /uE0u th,uk5p/2

2 50.21, R!RNL ,

uE0u th,uk50
2 /uE0u th,uk5p/2

2 52.3, R@RNL . ~5.17!

If conditions ~3.17!, ~5.15! and ~5.16! are satisfied simulta-
neously, then changes in either the effective ponderomo
force or the damping of sound in the plasma with turbule
noise affect the SBS threshold. The combined influence
these effects implies that the SBS threshold in the turbu
plasma is higher than in the laminar by the fact
@ l / l t(uk)#3/7@1. In this case the degree of anisotropy of t
SBS threshold is described by the relations

uE0u th,uk50
2 /uE0u th,uk5p/2

2 50.39, R!RNL ,

uE0u th,uk50
2 /uE0u th,uk5p/2

2 51.6, R@RNL . ~5.18!

The spatial growth rateG5Im k of the scattered wave
realized under SBS conditions is of interest for experimen
conditions. Let us consider the projectionG215Gk21 /k21

.Gk21 /k0 of the spatial growth rate onto the direction
the scattered wave. The quantityG21 has a maximum if the
displacement of the real part of the frequency is equa
zero, dv50. When dv50 holds, just as for a lamina
plasma, the spatial growth rateG21 is described by9

G215
neivL

2

2v0k0c2 F vE0

2

~vE0

2 ! th
21G , ~5.19!

where (vE0

2 )th , however, depends on the turbulent noise le

in accordance with Eq.~5.14!.

6. CONCLUSION

The theory presented above for the simplest nonlin
phenomena arising during the interaction of high-intens
high-frequency electromagnetic radiation with a turbule
plasma has made it possible to identify new features of fi
mentation and SBS under those conditions of a weakly c
lisional plasma when the nonlocal nature of electron h
transport is important. We will dwell in greater detail on
discussion of filamentation and SBS mechanisms establis
above. Let us first discuss the conditions for the appeara
of new filamentation mechanisms. According to Sec. 4
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wavenumber corresponding to the maximum spatial gain
the filament lies in the region where nonlocal theory is a
plicable if the radiation intensity satisfies the inequal
~4.12!. On the other hand, in order to ignore the evolution
the electron distribution with time the radiation intens
must be less than the value defined by the inequality~3.24!.
The simultaneous fulfilment of these inequalities is poss
if

Np ,~b0Z!9/2@ZNpvE0

2 /vT
2@1, ~6.1!

where the notation

Np5
5b0

28

vL
2

c2 Zll t~uk! ~6.2!

has been introduced. The inequalities~6.1! are consistent
when not onlyZ@1 but alsoNp@1 holds. The latter condi-
tion can be represented in the form

10b~uk!S 10

L D 2F 1019

n@cm23#GFT@eV#

100 G4 l t

Zl
@1. ~6.3!

According to Eqs.~6.1! and ~6.3! the effect of the nonloca
nature of the transport on radiation filamentation in a tur
lent plasma is evident for the typical parameters of a non
thermal laser plasma. In accordance with~4.11! the spatial
scale of the most efficiently amplified filament depends
the turbulent noise level, the electron density and temp
ture, and also on the radiation intensityI and wavelength
l052p/k0.2pc/v0 and has the form

lm@cm#52p/km

57.4•1024S 10

L D 2/9FT@eV#

100 G5/6F 1019

n@cm23#G
11/18

3Fb~uk!
l t

Zl G
1/9Fl0

2@mm#I F W

cm2G10215G27/18

,

~6.4!

whereI 5cuE0u2/4p. The scalelm is greater than the radia
tion wavelengthl0 but less than the characteristic filame
growth length

Lm52p/Gm5
2A5

3
lm

2 /l0@lm . ~6.5!

Finally, the threshold value of the radiation intensity for fil
mentation~4.13! depends strongly on the radiation wav
length and is equal to

I thF W

cm2G.5.5•1018S 10

L D 4/7 1

Z Fb~uk!
l t

Zl G
2/7S l0

L D 9/7

3F 1019

n@cm23#G
11/7FT@eV#

100 G15/7

@l0@mm##232/7, ~6.6!

wherel0 , L, l and l t are measured in the same units. F
example, for a plasma with the parametersn51019 cm23,
T5300 eV, Z55 and forb(uk) l t / l 50.1, l0 /L50.001 for
radiation with l051 mm the threshold intensity valu
amounts toI th.631014 W/cm2.
f
-

f

e

-
-

n
a-

r

Let us mention some experiments that have a bearing
the theory presented above. First of all let us mention a co
paratively recent paper17 in which filamentation was investi
gated experimentally under conditions such that nonlo
transport is important. The carbon dioxide plasma in Ref.
has the parametersn51020 cm23, T51 keV, Zeff53.5, for
which the electron mean free path is equal
l 50.005 cm. The effective wavenumber, determined by
filament size, amounts to17 km;(3 – 5)3103 cm21, which
giveskml;(15– 25) and makes it possible to speak of co
sionless thermal electrons. Theoretical representations
filamentation, which take account of both the ponderomot
force1 and nonlocal heat transport,6 are used to interpret the
results in Ref. 17. The need to take nonlocal transport i
account is pointed out. The analysis of the experiment
Ref. 17 must obviously also take account of the effect
turbulence on electron transport. The fact of the matter is
in the experiment of Ref. 17 the inhomogeneity scale of
density amounts toLn;100mm. If it is assumed that the
inhomogeneity scaleLT of the electron temperature does n
exceed 3Ln , then, following the theory of ion-acousti
turbulence,14 one can estimate the degree to which the io
acoustic instability exceeds threshold asp.0.5(vT /vs)
3( l /LT). Using the estimate of Ref. 17 forvs.3
3107 cm/sec, we findp;4. This makes it possible to spea
of the possibility of exciting ion-acoustic turbulence by a
electron heat flux. Following the theory presented above,
estimate the parameterNt;0.1Zkm

2 l l t;0.1(Z/p)(kml )2

;20– 50. SinceNt@1 holds, nonlocal heat transport can al
appear in the experiment of Ref. 17 in the turbulent state.
indirect proof of the excitation of turbulence could be o
tained by conducting an experiment on the apparatus of R
17 in order to detect anisotropy of the filamentation thre
old.

A plasma with densityn.631016 cm23 and a low tem-
peratureT.10 eV, also heated by CO2 laser radiation and
having a temperature inhomogeneity scaleLT.0.01 cm is
also an appropriate object for investigating filamentation i
turbulent plasma.18,19 In such a plasma, according to Ref
18, 19, ion-acoustic instability, the excitation threshold
which is exceeded by a factor of more than 10, is the ca
of heat-transport restriction. Effects that are most clea
caused by ion-acoustic turbulence are evident in the curr
carrying plasma of straight discharges, where an ion-acou
instability is easily excited by the current.20 For the estimates
let us choose plasma parameters which are already avai
for these apparatuses:n.1016 cm23, T.100 eV, Z55,
l t(uk)/ l .0.1, l .0.3 cm, L.50 cm. Let us consider the in
teraction of the radiation of a CO2 laser (l0510mm), usu-
ally used for investigating turbulent spectra~see, for ex-
ample, Ref. 21!, with such a plasma. Then we obtain a
estimate ofI th5531011 W/cm2 for the filamentation thresh
old from Eq.~6.6!. For such a radiation intensity the size
the most efficiently growing filament~6.4! amounts tolm

.0.1 cm, and its gain length~6.5! Lm.15 cm. In this case
the parameterNt;50 and the nonlocal heat transport must
taken into account.

Experiments to detect these filamentation mechanis
are also possible at microwave frequencies. As an exam
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of suitable experimental conditions we can point to tho
which are close to those implemented in Refs. 22, 23, aim
at an investigation of high-frequency heating and elect
transport anomalies. Let us point out that the possibility
the appearance of effects caused by ion-acoustic turbul
has already been mentioned in these experiments.24

Let us now discuss the possibility of observing SBS in
weakly collisional plasma under nonlocal electron transp
conditions. For greater clarity of the estimates we assu
that sound damping by ions is less than by electrons. Mo
over, let us also consider the situation when inequali
~5.15! and ~3.17! are satisfied simultaneously. In this situ
tion SBS mechanisms are realized that correspond to
simultaneous appearance of a change in sound damping
a renormalization of the effective ponderomotive force b
cause of nonlocal electron transport. In this situation
wavenumber of the acoustic vibrations determining the s
tering lies within the interval

Z5/4A l

l t~uk!
min$1,@ l /3AZlt~uk!#

7/6%@kl@A l

Zl t~uk!
.

~6.7!

For such wave numbers we have from Eq.~5.14! the follow-
ing expression for the radiation intensity corresponding
SBS threshold:

I thF W

cm2G.2•1011S L

10D S Z

AD 1/2

~Zkl!1/7l0
21@mm#

3Fn@cm23#

1019 GF 100

T@eV#G
1/2F Zl

l t~uk!
G3/7

, ~6.8!

whereA is the ratio of the ion and proton masses. In turn,
find

G21@cm21#54.4•1022S L

10D
3Fn@cm23#

1019 G2F 100

T@eV#G
3/2

l0
2@mm#S I

I th
21D .

~6.9!

from Eq. ~5.19! for the spatial growth rate. IfZ55, A/Z
52, n51019 cm23, T5300 eV, l051 mm, l / l t(uk)510,
then for kl55 we haveI th5731011 W/cm2 from Eq. ~6.8!.
An estimate ofG21.831023(I /I th21) cm21 follows from
Eq. ~6.9! for these same conditions. The SBS threshold
significantly lower than the filamentation threshold. Th
means that the characteristics of SBS under nonlocal tr
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port conditions in a turbulent plasma should be evident in
experiments considered previously in discussing the poss
ity of observing filamentation. Observation of these char
teristics would make it possible to obtain experimental inf
mation on the turbulent noise level as well as to establish
degree of anisotropy of the ion-acoustic fluctuations of
charge density.

This work was performed under Project No. 97-0
16779 of the Russian Fund for Fundamental Research.

We wish to thank the reviewer for encouraging us
include a more detailed discussion of the experiments.
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The possible occurrence of a ‘‘negative viscosity effect’’ is studied for Rossby wave and drift
wave turbulence. It is assumed that~i! the space and time scales of the wave field are
much smaller than the scales of the mean field, and~ii ! the small-scale field is sufficiently weak,
stationary, and maintained by an external source. Such a formulation is fruitful for studying
the effects~characterized by the effective viscosity! of smaller-scale motions upon larger-scale
ones. The criteria of large-scale instability due to the negative effective viscosity are
derived for the coherent wave motions as well as for small-scale isotropic wave turbulence.
© 1998 American Institute of Physics.@S1063-7761~98!02002-2#
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1. INTRODUCTION

The processes of pattern formation have been ex
sively studied in various hydrodynamic models. One of
aspects of this problem has been called ‘‘negative visc
ity.’’ This term was introduced when analyzing large-sca
geophysical experiments; see Refs. 1,2. In the modern lit
ture this term implies two connected classes of phenom
The first of these is related to the description of anomal
flows of the turbulent kinetic energy through the spectr
toward the region of small wavenumbers in two-dimensio
~2D! hydrodynamics and to the formation of stationary tu
bulent spectra. This problem has been studied in Ref. 3
2D homogeneous isotropic turbulence in a Navier–Sto
~NS! fluid with zero mean velocity, and for 2D magnetoh
drodynamics in Ref. 4. Using the same closure technique
the direct-interaction family, the authors show that the ne
tive eddy damping rate occurs for both cases. Another c
of phenomena, to which our paper is devoted, is related
pattern formation when the turbulent spectrum is assum
known. Here the negative-viscosity effect means the app
ance of a negative dissipative factor in the equation for
mean flow. From the theoretical viewpoint, generation
large-scale structures is understood as a manifestatio
long-wavelength instability in a system of small-scale vo
ces or waves, the energy of small-scale motions being c
stant~it is mathematically convenient to treat the small-sc
motions as generated by an external source!.

A number of analytical studies of the negative viscos
effect were initiated by two-dimensional flow of a visco
incompressible fluid, which is undamped due to the existe
of an external force periodic along one of the coordinates
this paper the instability criterion for a sinusoidal veloc
profile and the marginal stability curve were derived. Alo
with this paper, the problem has been considered in Re
3571063-7761/98/86(2)/10/$15.00
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and generalized to an arbitrary periodic velocity profile
Ref. 7.

When studying linear stability and nonlinear regimes a
pearing, it is convenient to use the two-scale expans
method. In this method it is assumed that the character
space and time scales of the basic initial motions are sma
than the scales of the secondary flows. Therefore, it is p
sible to introduce a small parameter characterizing the r
of the characteristic scale of small-scale motions to tha
large-scale secondary motions. The solution of the hydro
namic equations is sought in the form of an expansion in
small parameter, while the equation describing the evolut
of the large-scale component is obtained from the solvab
condition of the initial equations in the corresponding a
proximation order. Two-scale expansions are widely used
the other problems, which are connected with generation
large-scale fields and structures by small-scale fields and
tions. As examples, we mention the papers on the kin
a-effect8 and on generation of large-scale convective p
terns by helical turbulence.9

Using the two-scale formalism, the equations of
weakly nonlinear theory for the large-scale motions ha
been obtained and studied analytically and numerically
problems with the Kolmogorov flows.10,11 In the case when
the small-scale motions are describable as homogeneous
bulence, negative viscosity effects have been studied in
12. In particular, it has been shown for 2D NS flows tha
homogeneous isotropic small-scale turbulence does not
to negative eddy viscosity. A general multiscale formalis
for the study of eddy viscosities for incompressible flows
arbitrary dimensionality has been developed in Ref. 13.
this paper explicit expressions for eddy viscosity in terms
the correlation function of the small-scale basic flow ha
been derived for the low Reynolds number isotropic case~in
accordance with Ref. 12, eddy viscosity enhances molec
viscosity!, and for the parallel time-independent flow,
© 1998 American Institute of Physics
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which Kolmogorov flow is an example. Such parallel flo
undergoes a negative viscosity instability with respect
large-scale perturbations transverse to the basic flow. Am
the papers close in spirit to this group we also mention
previous work,14 where the negative viscosity effect wa
found during the excitation of a single drift wave~with
wavelength greater than the ion Larmor radius at elect
temperature! in a magnetized inhomogeneous plasma a
particular solutions of the weakly nonlinear equation
large-scale perturbations were studied.

In contrast to the papers on liquid hydrodynamics m
tioned above, the present paper deals with negative visco
in Rossby wave turbulence and drift wave turbulen
Rossby turbulence is a widespread type of wave motion
the ocean and atmosphere; see, for example, Refs. 15 an
Drift turbulence is widespread in magnetized inhomog
neous plasmas of numerous thermonuclear devices and
ionosphere; see, for example, Refs. 17 and 18. It is w
known that, despite the quite different physical origin
these motions, their formal description is very similar19

Moreover, Rossby wave turbulence and drift wave turb
lence obey identical nonlinear partial differential equatio
~in the simplest description!. Therefore, it is natural to dis
cuss them both together. In order to clarify the discuss
and the results, we use the simplest method of analysis w
allows us to elucidate in a uncomplicated way the appe
ance of nontrivial effects and to find out how they diff
from non-wave hydrodynamic problems. We assume tha
is possible to divide the fields into a large-scale slowly va
ing part and a small-scale rapidly evolving part. The sm
scale field is a wave field, whose level is kept stationary d
to the existence of an external source~external force! in the
initial equation. The evolution of the large-scale part is c
culated by averaging over the small-scale part. In suc
formulation the effective~turbulent! viscosity determining
the evolution of the large-scale field is a functional of t
given spectrum of waves. We use the simplest model spe
to demonstrate the contrast with the hydrodynamic proble
mentioned above. In particular, we show that small-scale
tropic Rossby and drift wave turbulence can act as a nega
effective viscosity on large-scale perturbations. This poi
to a more substantial role of a nonlocal energy transfer fr
small scales to larger ones in the case of the Rossby and
wave turbulence than in the case of 2D NS turbulence.

2. EQUATION FOR THE LARGE-SCALE FIELD EVOLUTION

We start from the well-known model two-dimension
equation, which describes the space–time evolution of
stream function in the Rossby wave theory.20 In dimension-
less units,

]c

]t
2

]

]t
Dc2

]c

]x
1nD2c2@¹c,¹Dc#z5F. ~2.1!

Here ¹5ex]/]x1ey /]/]y, D5]2/]x21]2/]y2, and n is
the ~dimensionless! molecular viscosity of the gas or liquid
Following the familiar method, used in the turbulen
o
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theory, we introduce a source into the right hand side of
~2.1!. The role of this source is to maintain the stationa
level of the wave turbulence.

For the Rossby wave thex-axis denotes the latitude di
rection~from west to east! and they-axis denotes the meridi
onal one~from south to north!. We note that usually for drift
waves thex-axis denotes the radial direction in a therm
nuclear device, or the direction in which plasma density v
ies, while they-axis denotes the azimuthal direction, and
one has to replace]c/]x by 2]c/]y in Eq. ~2.1! in order to
follow the conventional notation used in drift wave theor
Thenc is the dimensionless potential, andn is the ~dimen-
sionless! ion viscosity for magnetized plasmas. However,
this paper, for definiteness, we use the ‘‘Rossby wave co
dinate frame,’’ i.e., that in which Eq.~2.1! is written. Obvi-
ously, the final results can be easily reproduced in a ‘‘d
wave coordinate frame.’’

In the linear approximation Eq.~2.1! describes the wave
propagation with the frequency

vR52
kx

11k2 , ~2.2!

and the damping rate

nR5
nk4

11k2 , ~2.3!

wherek is the wave vector,k25kx
21ky

2.
Now we divide the fieldc into mean and fluctuating

~turbulent! components:

c5c̄1cT; ~2.4!

the bar denotes statistical averaging and ‘‘T’ ’ means ‘‘tur-
bulent.’’ After averaging Eq.~2.1! we get

]c̄

]t
2

]

]t
Dc̄2

]c̄

]x
1nD2c̄

5@¹c̄3¹Dc̄#z1@¹cT3¹DcT#z . ~2.5!

To get a closed equation forc̄ it is necessary to express

Q5@¹cT3¹DcT#z ~2.6!

in terms of c̄. The equation forcT is obtained from Eqs.
~2.1! and ~2.5!:

]cT

]t
2

]

]t
DcT2

]cT

]x
1nD2c2@¹c̄3¹DcT#z2@¹cT

3¹Dc̄#z2~@¹cT3¹DcT#z2@¹cT3¹DcT#z!. ~2.7!

Hence the closed equation forc̄ implies the application of
some closure procedure. Since we are interested her
negative viscosity effects for large-scale flows, we use
following approach. Assume that the mean quantities vary
space and time scales which are larger than the characte
scales of the fluctuation fields. We introduce the characte
tic sizel of the small-scale field and the characteristic sizeL
of the large-scale field. Then we estimate the ratio of
quantities nD2cT,@¹c̄3¹DcT#z , @¹cT3¹Dc̄#z , @¹cT

3¹DcT#z . They stand in the ratios
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1:
l

L
ReL :

l 3

L3 ReL :Rel ,

where ReL'V̄L/n is the Reynolds number of the large-sca
motions and Re'VTl/n is the Reynolds number of the sma
scale ones~V̄ and VT are characteristic velocities of large
scale and small-scale motions, respectively!. Therefore, for
sufficiently small Rel we can neglect terms in Eq.~2.7!
which are quadratic incT. Furthermore, in accordance wit
multiscale expansion schemes, we introduce the ‘‘slo
variable X and the fast variablex. The average quantitie
depend on the slow variable only, while the fluctuating co
ponents depend on both the fast and slow variables.
following inequality holds:

U ]

]XU'uK u!U ]

]xU'uku, ~2.8!

whereK andk are large-scale and small-scale wave vecto
respectively.

Thus, we can find the solution forcT as an expansion in
powers ofK, that is,

cT5c~0!~x,t !1c~1!~x,X,t !1...1c~4!~x,X,t !. ~2.9!

The solution to orderK4 is presented in Appendix A. Then
the functional dependence ofQ throughc̄ is obtained there.
So instead of Eq.~2.5! we get the following equation for the
large-scale part ofc:

L̂c̄5S ]c̄

]X

]

]Y
Dsc̄2

]c̄

]Y

]

]X
Dsc̄ D

1«mn« jkFhmpk

]3c̄

]Xp]Xn]Xj
2nmk

~1!
]2Dsc̄

]Xn]Xj

1nmpk
~2!

]

]X S ]3c̄

]Xp]Xn]Xj
D 1nmlpk

~3!
]4c̄

]Xl]Xn]Xp]Xj

1« rqNmlkq
~1!

]2

]Xl]Xn
S ]c̄

]Xr

]c̄

]Xj
D

1« rqNkpmq
~2!

]c̄

]Xj

]3c̄

]Xp]Xn]Xr

2« rqNkpnq
~3!

]2c̄

]Xm]Xj

]2c̄

]Xp]Xr
G , ~2.10!

where

L̂5
]

]t
2

]

]t
Ds2

]

]X
1nDs

2. ~2.11!

Ds[
]2

]X2 1
]2

]Y2 . ~2.12!

( j ,l ,m,n,p,q,r )5x,y,«mn is the unit second-rank antisym
metric tensor,

«115«2250, «1252«2151, ~m,n!51,2,

hmpk5E E dkdvP1~k,v!2kmkpkkk
2~v2vR!,
’’

-
he

s,

nmk
~1!5E E dkdvP1~k,v!nRkmkkk

2,

nmpk
~2! 5E E dkdvP2~k,v!4kmkpkkk

2nR~v2vR!.

nmlpk
~3! 5E E dkdvP2~k,v!8kmklkpkkk

2

3@nk2~nR
22~v2vR!2!1vnR~v2vR!#,

Nmlkq
~1! 5E E dkdvP2~k,v!2kmklkqkkk

2

3@~v2vR!22nR
2 #,

Nkpmq
~2! 5E E dkdvP2~k,v!2kkkpkmkqk4~k211!21,

~2.13!

P1~k,v!5
F~k,v!

~11k2!@~v2vR!21nR
2 #

,

P2~k,v!5
F~k,v!

~11k2!2@~v2vR!21nR
2 #2 , ~2.14!

andF~k,v! is the space–time spectral density for the sma
scale field.

Let us discuss the meaning of the terms in Eqs.~2.10!,
~2.13!. The first term inQ gives the correction to the fre
quency in the dispersion equation for the large-scale m
tions. The next three terms inQ are the ones which lead
either to damping~positive effective viscosity! or to growth
~negative effective viscosity! of the large-scale motions. Th
last three terms describe the nonlinear interaction of
large-scale motions. In this paper we are interested mainl
terms of the viscous type. We consider the effects depend
on the properties of small-scale wave turbulence. Howe
in order to make the discussion simpler and to clarify t
differences between our paper and the papers mentio
above, in the next section we demonstrate for the case o
2D flow of a viscous incompressible fluid what effect can
responsible for the appearance of the negative effective~tur-
bulent! viscosity.

3. QUALITATIVE CONSIDERATION OF THE ORIGIN OF THE
NEGATIVE VISCOSITY TERM

In order to simplify the discussion as much as possib
we consider here the equation for the stream function of a
incompressible viscous fluid:21

]

]t
Dc2nD2c1@¹c3¹Dc#z5F. ~3.1!

Insertingc in the form ~2.4!, we get equations analogous
Eqs.~2.5!–~2.7!:

]

]t
Dc̄2nD2c̄2@¹cT3¹DcT#z50, ~3.2!

]

]t
DcT2nD2cT1@¹c̄3¹DcT#z1@¹cT3¹Dc̄#z5F.

~3.3!
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It is noteworthy that the third and fourth terms on the le
hand side of Eq.~3.3! describe the interaction between sma
and large-scale fields. The term@¹c̄3¹DcT#z describes the
transport of the fluctuation vorticityWz

T5DcT by the mean
flow ^V&5@ez3¹c̄#, while the term @¹cT3¹Dc̄#z de-
scribes the transport of the mean vorticity by the fluctuat
component. As in Sec. 2, we introduce the natural phys
assumption that the space and time scales of the ave
quantities are larger than the scales of the fluctuations. In
ducing fast and slow variables~x and X, respectively!, we
use the Fourier transform over the fast variable:

cT~x,t !5E dkdv

~2p!3 ĉT~k,v!exp~2 ivt1 ik–x!.

We note that in the Fourier representation the term@¹c̄
3¹DcT#z describes the Doppler shift of the fluctuation fr
quency. From Eq.~3.3! we get

ĉT~k,v!'
F̂~k,v!

k2~ iv2nk2! H 11
1

iv2nk2 S ikn«mn

]c̄

]Xm

2
ikm

k2 «mn

]3c̄

]Xn
3D J . ~3.4!

where it is assumed for simplicity that the terms contain
slow spatial derivatives are small. We note once more
the interaction of the fluctuationscT with the mean flowc̄
~in Eq. ~3.4! the terms with the first and third slow deriva
tives are due to this interaction! causescT to depend on the
slow coordinate. This fact implies that among the terms
tering into2^@¹cT3¹DcT#z& the following term occures:

«mn

]cT

]xm

]

]Xn
Dsc

T, ~3.5!

whereDs is the slow Laplacian, as before, andD has to be
replaced byDs in the first two terms in Eq.~3.2!.

Inserting Eq.~3.4! into Eq. ~3.5!, we can see that Eq
~3.5! gives rise to the following terms in the left-hand side
Eq. ~3.2!:

2«mn« jknmk
~1!

]2

]Xn]Xj
Dsc̄1«mn« jkmm j

]4

]Xn]Xk
3 Dsc̄,

~3.6!

nmk
~1!5E dkdv^F̂2&k,v

nk2

k4~v21n2k4!2 kmkk , ~3.7!

mm j5E dkdv^F̂2&k,v

nk2

k6~v21n2k4!2 kmkj . ~3.8!

The first term in Eq.~3.6! is due to the transport of th
fluctuation vorticity by the mean flow, while the second te
is caused by the transport of the mean vorticity by the fl
tuation velocity. The first term corresponds tonmk

(1) , which is
calculated for the Rossby wave turbulence in Sec. 2; see
~2.13!. It can be seen that even for isotropic fluctuations
former effect makes a negative contribution to the turbul
viscosity. Indeed, let (F̂2)k,v be an isotropic function ofk.
Then,
n
al
ge
o-

g
at

-

-

qs.
e
t

nmk
~1!5n~1!dmk , mm j5mdm j , n~1!,m.0

and Eq.~2.6! is rewritten in the form

n~1!Ds
2c̄1mS ]4

]X4 1
]4

]Y4DDsc̄. ~3.9!

Therefore, the term withn (1) gives a negative contribution to
the turbulent viscosity. The term withm describes the dissi
pation of the large-scale component and bounds the insta
ity region for small wavenumbers.

Thus, the interaction between the large-scale flow a
small-scale velocity fluctuations, which manifests its
mainly in the transport of the small-scale fluctuations by
mean flow, gives rise to a viscous term with a negative v
cosity coefficient in the equation for the mean compone
We stress that this conclusion is valid both for the 2D mo
of viscous incompressible fluid, see Eq.~3.1!, and for the
wave model; see Eq.~2.1!.

The above treatment is obviously incomplete: it on
points to the mechanism for the appearance of the visc
terms with negative viscosity coefficient in the equation
the mean flow. A detailed consideration demands more
curate analysis of Eqs.~3.2! and ~3.3! with the two-scale
dependence of fluctuations taken into account. The com
mentary viscous terms can suppress the negative cont
tion, which is controlled by the transport of the turbule
fluctuations by the large-scale flow. In order to compare
results with those of other authors studying turbulent visc
ity by means of the two-scale expansion, and to call atten
to the differences between the turbulent viscosity for the
NS flows and that for the Rossby and drift waves, in Appe
dix B we obtain and analyze the equation for the avera
stream function of 2D incompressible viscous fluid@see Eq.
~B1!#. It is a limiting case of Eq.~2.10! if we neglect disper-
sion (11k2→k2) and the eigenfrequency (vR50) of the
waves. In Appendix B we demonstrate that our results c
respond to those of Refs. 12 and 13 for 2D NS flows. W
also demonstrate that isotropic small-scale fluctuations
not give rise to a negative viscosity in the framework of 2
NS equations. The negative contribution to the eddy visc
ity given by n (1) in Eq. ~3.9! is balanced by the positive
contribution. However, in the next Section we demonstr
that this is not the case for the isotropic wave turbulence

4. NEGATIVE VISCOSITY FOR MODEL SPECTRA OF THE
WAVE TURBULENCE

Let us explore the consequences of the general exp
sions~2.10!–~2.14!. We consider the problems arising her
taking the tensornmk

(1) as the way of example; see Eqs.~2.13!.
This tensor is a functional of the space–time spectral fu
tion F(k,v) of a given small-scale field. The spectrum has
peak onv at v'vR and some characteristic widthgk . The
spectrum is multiplied by the Lorentzian curve

nR

~v2vR!21nR
2 ,

and integrated overv and k. Obviously, the result of inte-
gration overv depends on the ratio between the characte
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tic widths of the multiplied functions, that is,gk and nR ,
whereas the result of integration overk depends on the de
gree of spectral anisotropy ink. Under these circumstance
it is natural to consider first the simplest model wave spe
leading to the negative viscosity. Thus, we consider the
lowing examples:

1. A small-scale coherent field, that is, the frequency a
wavenumber spectra are narrower than the other charac
tic widths of the problem.

2. A small-scale isotropic turbulent field. Such a fie
can be formed in a small-scale region (k>1) due to mode
coupling, which isotropizes the spectrum~see, e.g., Ref. 22!.

4.1. Coherent wave spectrum

We take the wave spectrum as follows:

F~k,v!5
^c2&

2
@d~v2v0!d~k2k0!

1d~v1v0!d~k1k0!#, ~4.1!

where^c2& is the variance of the fluctuations,

v0~k0!52
k0x

11k0
2 .

This case implies that the frequency spectrum is sufficie
narrow:

gk0
!nR~k0!. ~4.2!

Inserting Eq.~4.1! into Eqs. ~2.10!–~2.14!, we get the fol-
lowing equation forc̄:

L̂c̄5S ]c̄

]X

]

]Y
Dsc̄2

]c̄

]Y

]

]X
Dsc̄ D

1
A2

2
n21k0

22Fk0y
2 ]4c̄

]X422k0xk0y

]4c̄

]X3]Y

22k0xk0y

]4c̄

]Y3]X
1k0

2 ]4c̄

]X2]Y2 1k0x
2 ]4c̄

]Y4G
14A2n21k0

24F2k0x
2 k0y

2 ]4c̄

]X4 12k0xk0y~k0x
2

2k0y
2 !

]4c̄

]X3]Y
12k0xk0y~k0y

2 2k0x
2 !

]4c̄

]Y3]X

1~4k0x
2 k0y

2 2k0x
4 2k0y

4 !
]4c̄

]X2]Y22k0x
2 k0y

2 ]4c̄

]Y4G
2A2n22k0

26Fk0xk0yS ]2

]Y22
]2

]X2D1~k0x
2

2k0y
2 !

]2

]X]YG S k0x

]c̄

]Y
2k0y

]c̄

]XD 2

1
A2

2
n22k0

24Fk0xk0yS ]2c̄

]Y22
]2c̄

]X2D 1~k0x
2

a
l-

d
ris-

ly

2k0y
2 !

]2c̄

]X]YG S k0y

]

]X
2k0x

]

]YD 2

c̄

1A2n22k0
24S k0y

]

]X
2k0x

]

]YD Fk0xk0yS ]2c̄

]Y2

2
]2c̄

]X2D 1~k0x
2 2k0y

2 !
]2c̄

]X]YG S k0y

]c̄

]X
2k0x

]c̄

]YD .

~4.3!

For simplicity we consider the case when the small-sc
field propagates along thex-axis,k05k0ex . Taking c̄ in the
form

c̄5exp~2 iVt1 iK–X!,

we get a linear dispersion equation for the large-scale per
bations:

V5
2Kx

11K22
i

11K2 FnKx
41S 7^c2&

n
12n DKx

2Ky
2

2S ^c2&
n

2n DKy
4G . ~4.4!

It is worth noting that this equation describes not only t
waves but also the large-scale structures. Indeed, it follo
from Eq. ~4.4! that the most ‘‘dangerous’’~that is, rapidly
growing! are those large-scale perturbations, which are p
pendicular to the direction of the wave propagation, that
Kx50 and ReV50. This implies that the negative viscosit
effect leads not only to nonlocal energy transfer from sm
scale waves to large-scale waves, but also to the genera
of stationary structures highly elongated along one of
coordinates. We return once more to the discussion of th
possibilities below. The growth rate of such perturbations

Im V5S ^c2&
n

2n D Ky
4

11Ky
2 . ~4.5!

Im V.0 if ^c2&.n2. We stress that in this case we cann
take n→0 because such a limit is in contradiction with th
inequality ~4.2!. For ‘‘the drift wave coordinate frame’’ one
has to replaceKy by Kx in Eq. ~4.5!.

The effect described is analogous to the Kolmogor
flow instability of a 2D viscous incompressible fluid.5 For a
single drift wave with wavelength greater than the ion La
mor radius at electron temperature in a magnetized pla
this effect has been studied in Ref. 14. Nonlinear station
structures formed due to the negative viscosity effect h
been also studied there.

4.2. Isotropic wave spectrum

We consider the case when the wave spectrum is iso
pic in k. This case is close to that considered in Appendix
so below we compare the equations of the Appendix w
those obtained in this section. Here the model Lorentz
time spectrum is used:

V~k,v!5
1

p

gk

~v2vR!21gk
2 F~k!. ~4.6!
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The width gk is a complicated function ofF(k), but its
explicit form is not discussed here. It should be stressed
we choose the Lorentzian shape for convenience only. It
be easily verified that the result is not changed qualitativ
if one chooses other shapes, for example, a Gaussian
the form of a step; see Eqs.~B6! wherev→v2vR .

Introducing Eq.~4.6! into Eqs. ~2.13!, taking the inte-
grals overv and using the subsidiary integrals~B7!, we ar-
rive at Eqs.~B8! for the viscous terms, where instead of Eq
~B9! we get

n~1!5pE dk k3F~k!
k2

11k2

1

nR1gk
,

n~3!5pE dk k3F~k!
k4

~11k2!2

2nk21gk

~nR1gk!
2 . ~4.7!

It is worthwhile to note that if we set 11k2→k2 ~no disper-
sion!, then, we naturally get Eqs.~B9! from Eqs.~4.7!. As
before, n (1) and n (3) give negative and positive contribu
tions, respectively, to the effective viscosity. However, d
to the wave character of the small-scale perturbations
balance between the two contributions is changed. Ind
instead of Eq.~B10! we get

S ]

]t
2

]

]t
Ds2

]

]XD c̄1neffDs
2c̄5~12P!S ]c̄

]X

]

]Y
Dsc̄

2
]c̄

]Y

]

]X
Dsc̄ D , ~4.8!

where

neff5n2n~1!1n~3!

5n1pE dkF~k!
k5

~11k2!2

nk42gk

~nR1gk!
2 ,

P5pE
0

`

dk
k5F~k!@~11k2!gk1nk2~k222!#

~11k2!2~gk1nR!2 . ~4.9!

For the case of 2D NS flowsneff.0 holds for any ratio
between the spectral width andnk2; see Eq.~B11!. In con-
trast, as we can see, two possibilities exist for the Ros
waves.

The first possibility is characterized bygk!nR ~narrow
isotropic spectrum!. This case corresponds to the one wh
the wave intensity is sufficiently low that the broadening
the spectral linesgk is small in comparison not only withvR

~a widely used definition of weak turbulence!, but also with
nR , which, in turn, is less thanvR ~the damping rate is les
than the eigenfrequency!. Then, settinggk→0, we get

neff5n1
^c2&
2n

. ~4.10!

This result coincides with Eq.~B12! and points to the ab
sence of nonlocal energy transfer to the large-scale regi

The second possibility is realized in the limitgk@nR

~broad isotropic spectrum!. This inequality implies that the
intensity of the waves is greater than in the previous ca
at
n

y
in

.

e
e
d,

y

n
f

.

e.

However, due to the smallness of the damping rate we m
still retain the framework of weak turbulence. In this ca
from Eq. ~4.9! one gets

neff5n2pE
0

`

dkF~k!
k5

~11k2!2gk
. ~4.11!

andneff can be negative for a sufficiently high Rossby wa
level. We may roughly estimate the criterion for the negat
viscosity as

^c2&.ng, ~4.12!

where g is some effective spectral line broadening. It r
sembles the analogous criterion for the coherent waves;
Eq. ~4.5!.

The evolution equation for the large-scale perturbatio
has the form~4.8!, where

P5pE
0

`

dkF~k!
k5

~11k2!gk
.

Looking for c̄ in the form

c̄5exp~2 iVt1 iK–X!, ~4.13!

and inserting Eq.~4.13! into Eq. ~4.8!, we get the following
dispersion equation for the large-scale perturbations:

V52
Kx

11K22 i
neffK

4

11K2 . ~4.14!

Equation~4.14! describes two types of motion. The first on
(KxÞ0) is the large-scale wave, while the second one (Kx

50) is the large-scale stationary structure, ReV50. There-
fore, if neff,0 holds, two possibilities exist for the energ
flow from the small-scale region. The first one is nonloc
energy transfer from the small-scale waves to the large-s
ones. The large-scale waves grow, and it can happen tha
spectral gap between the two wave regions disappears
two-scale approximation is violated, and the turbulence
comes nonstationary. We note, however, that this circu
stance does not invalidate our treatment, because we
sider the initial stage of instability only. Another possibilit
is related to energy flow from small-scale waves to larg
scale stationary structures highly elongated along one of
coordinates. We remind that as in Sec. 4.1 for ‘‘the dr
wave coordinate frame’’ one has to replaceKx by 2Ky in
Eq. ~4.14!.

In this theory there are no limits on the growth rate
the large scale instability asK increases. Such restriction
can be obtained by taking into account the higher-or
terms in the expansion in powers ofK; see Sec. 3. This
procedure has been carried out for a single drift wave i
magnetized plasma in Ref. 14. It has been shown that
terms of orderK6 in the growth rate of the large-scale inst
bility lead to damping of perturbations in the rangeK
.Kmax and to the appearance of a maximum of the grow
rate for smallK.

Since the large-scale perturbations grow due to the ne
tive viscosity effect, the nonlinear term in Eq.~4.8! becomes
important. For the subsequent investigation of large-sc
structures it is necessary to analyze the nonlinear equati
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5. RESULTS

Here we have studied new effects of generation of lar
scale structures. These appear for Rossby wave turbulen
atmosphere and ocean and for drift wave turbulence in m
netized plasmas. The physical reason for their appearan
related to the change in the sign of the effective~turbulent!
viscosity in large-scale motions of the medium~negative vis-
cosity!. Therefore, the damping of large-scale motions is
placed by growth, which has to be limited due to nonline
effects. The small-scale field is stationary and maintained
an external source. Such a formulation is fruitful for studyi
the effects ~characterized by the effective viscosity! of
smaller-scale motions upon the larger-scale motion. The
sults obtained are as follows:

1. With the scope of the two-scale expansion, an eq
tion is obtained which describes the evolution of the me
stream function in the presence of the small-scale Ros
wave field or the evolution of the mean potential in the pr
ence of the small-scale drift-wave field. General expressi
are obtained for the terms describing the influence of sm
scale motion, namely, the viscous terms, the dispersion t
and the terms nonlinear in the large-scale field. These exp
sions allow one to study the evolution of large-scale motio
with the assumption that the spectrum of the station
small-scale field is known.

2. The results obtained admit a transition to the hyd
dynamics of a viscous incompressible fluid. The previou
known results on the eddy viscosity of the small-scale fl
motions are recovered.

3. The qualitative reason for the negative viscosity eff
to appear is the transport of small-scale vorticity by the m
flow. This effect leads to the negative-viscosity contributi
to the effective viscosity governing the large-scale motio

4. It is shown that the coherent wave motions lead t
negative effective viscosity. The criterion of large-scale
stability due to the negative viscosity effect is derived.

5. In contrast to the case of the small-scale isotro
motions of a viscous incompressible fluid, small-scale iso
pic Rossby wave and drift wave motions can lead to a ne
tive effective viscosity. It is demonstrated that the effect
viscosity can be negative if the spectral line broadening
greater than the linear damping rate.

This work has been done in the framework of t
‘‘Structure’’ Project, which is financed by the Nationa
Academy of Sciences of the Ukraine.

APPENDIX A

Derivation of Q

In this Appendix the termQ in Eq. ~2.6! is derived. We
introduce ‘‘slow’’ variables together with the ‘‘fast’’ ones
The spatial operators are now written in the form:

]

]x
→

]

]x
1

]

]X
,

D→D'12
]2

]xp]Xp
1Ds ,
-
in

g-
is

-
r
y

e-

a-
n
y-
-
s

ll-
m
s-

s,
y

-
y
d

t
n

.
a
-

c
-

a-

is

D2→D'
2 12D'Ds14

]2

]xp]Xp
D'14

]2

]xp]Xp
Ds1Ds

2

14S ]2

]xp]Xp
D 2

. ~A1!

Here

Ds[
]2

]Xp]Xp
, D'5

]2

]xp]xp
.

Then, according to Eqs.~2.9!, the termQ can be written in
the form

Q~x,X,t !5q~01!1q~02!1q~03!1q~04!1q~10!1q~20!

1q~30!1q~40!1q~11!1q~12!1q~13!1q~21!

1q~22!1q~31!1O~K5,K6,...!, ~A2!

where

q~00!5«mnK ]c~0!

]xm

]

]xn
D'c~0!L 50

due to the homogeneity of the turbulence,

q~01!5«mnK ]c~0!

]xm
S ]3

]xn]xp
2 12

]3

]xn]xp]Xp
1

]3

]xn]Xp
2

1
]3

]xp
2]Xn

12
]3

]xp]Xp]Xn
1

]3

]Xp
2]Xn

Dc~1!L ,

q~10!5«mnK S ]

]xm
1

]

]Xm
Dc~1!

]

]xn
D'c~0!L . ~A3!

The remaining terms in Eq.~A2! have similar structure.
We retain in Eq.~A2! only those terms which are of orde
K1,...,K4. As will be seen below it is just these terms whic
give rise to the negative viscosity effect.

To calculate the terms in Eq.~A2! it is necessary to ge
expressions forc (0),c (1),...,c (4). Using Eqs.~A1! and ~27!
one finds the the following equations:

O~K0!:
]c~0!

]t
2

]

]t
D'c~0!2

]c~0!

]x
1nD'

2 c~0!5F,

~A4!

O~K1!:
]c~1!

]t
2

]

]t
D'c~1!2

]c~1!

]x
1nD'

2 c~1!

2« jk

]c̄

]Xj

]

]xK
D'c~0!50, ~A5!

O~K2!:
]c~2!

]t
2

]

]t
D'c~2!2

]c~2!

]x
1nD2c~2!2

]c~1!

]X

22
]3c~1!

]t]xp]Xp
14n

]2

]xp]Xp
D'c~1!

2« jk

]c̄

]Xj

]

]xk
D'c~1!50. ~A6!

We calculate only the termsc (0), c (1), andc (2), since the
terms c (3), c (4) do not contribute toQ, as will be seen
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below. Eqs.~A4!, ~A5! and ~A6! can be solved using th
Fourier transform over the fast variablex, that is, e.g.,

c~0!~x,t !5E dkĉ~0!~k,t !eikx. ~A7!

Then, Eq.~A4! can be transformed to

]ĉ~0!

]t
1~ ivR1nR!ĉ~0!5

F~k,t !

11k2 , ~A8!

where

vR52
kx

11k2 , nR5
nk4

11k2 .

The solution of Eq.~A8! is

ĉ~0!~k,t !5E
2`

t

dt8
F~k,t8!

11k2 exp~ iVk~ t82t !!. ~A9!

HereVk5vR2 inR . The solutions of Eqs.~A5!, ~A6! can be
obtained in a similar way.

ĉ~1!~X,k,t !52« jk

ikkk
2

11k2

]c̄

]Xj
E

2`

t

dt8

3ĉ~0!~k,t8!exp~ iVk~ t82t !!, ~A10!

ĉ~2!~X,k,t !52« jk

ikkk
2

~11k2!2

]2c̄

]X]Xj

3E
2`

t

dt8eiVk~ t82t !E
2`

t8
dt9

3ĉ~0!~k,t9!exp~ iVk~ t92t8!!

12« jk

kkkpk2

~11k2!2

]2c̄

]Xp]Xj
E

2`

t

dt8

3ĉ~0!~k,t8!exp~ iVk~ t82t !!

22« jk

kpkkk
2

~11k2!2 iVk

]2c̄

]Xp]Xj
E

2`

t

dt8

3exp~ iVk~ t82t !!E
2`

t8
dt9

3ĉ~0!~k,t9!exp~ iVk~ t92t8!!

14n« jk

kpkkk
4

~11k2!2

]2c̄

]Xp]Xj
E

2`

t

dt8

3exp~ iVk~ t82t !!E
2`

t8
dt9

3ĉ~0!~k,t9!exp~ iVk~ t92t8!!

2« jk« lq

kkkqk2

~11k2!2

]c̄

]Xl

]c̄

]Xj
E

2`

t

dt8

3exp~ iVk~ t82t !!E
2`

t8
dt9
3ĉ~0!~k,t9!exp~ iVk~ t92t8!!. ~A11!

Now calculate the sumQ(1)5q(01)1q(10). Using the
Fourier transform over the fast variables we get

q~01!~X,t !5«mnE E dkdk8ikmF2 ikn8k8222kn8kp8
]

]Xp

1 ikn8
]2

]Xp
22k82

]

]Xn
12ikp8

]2

]Xp]Xn

1
]3

]Xp
2]Xn

G^ĉ~0!~k,t !ĉ~1!~X,k8,t !&

3exp~ i ~k1k8!•x!. ~A12!

It can be easily seen that some terms cancel due to

«mnkmkn50.

Using Eq.~A10! we get

^ĉ~0!~k,t !ĉ~1!~k8,X,t8!&

52« jk

ikk8k82

11k82

]c̄

]Xj
E

2`

t8
dt1^ĉ

~0!~k,t !

3ĉ~0!~k8,t1!&exp~ iVk8~ t82t1!!. ~A13!

Here the assumption about the slow time evolution oc̄
in comparison with the turbulent termĉ (0) is used. This al-
lows us to take the term]c̄/]Xj out of the integral.

For homogeneous turbulence we have

^ĉ~0!~k,t !ĉ~0!~k8,t1!&5F~k,t2t1!d~k1k8!. ~A14!

Then we use the Fourier transform over time,

F~k,t2t1!5E dvF~k,v!exp~2 iv~ t2t1!!. ~A15!

Inserting Eqs.~A15!, ~A14! into Eq.~A13! and then into
Eq. ~A12!, we can calculateq(10)(X,t).

Analogous calculations are employed forq(10)(X,t),
which is equal to

q~10!~X,t !5«mnE E dkdk8S ikm1
]

]Xm
D ~2 ikn8k82!

3^ĉ~1!~X,k,t !ĉ~0!~k8,t !&exp~ i ~k1k8!x!.

~A16!

Then,Q(1) has the form

Q~1!5q~01!1q~10!5«mn« jkS hmpk

]3c̄

]Xp]Xn]Xj

2nmk
~1!

]2Dsc̄

]Xn]Xj
D , ~A17!

wherehmpk, nmk
(1) are determined according to Eqs.~2.13!.

For Q(2) one gets

Q~2!5q~02!1q~20!,
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q~02!5~X,t !5«mnK ]c~0!

]xm
S ]

]xn
D'12

]3

]xp]xn]Xp

1
]

]xn
Ds1

]

]Xn
D'12

]3

]xp]Xp]Xn
Dc~2!L ,

~A18!

q~20!~X,t !5«mnK S ]

]xm
1

]

]Xm
Dc~2!

]

]xn
D'c~0!L .

~A19!

Carrying out a Fourier transform over the fast variab
and inserting the solution forĉ (2) into Eqs.~A18! and~A19!,
we get

Q~2!~X,t !5«mn« jkH nmpk
~2!

]

]X S ]3c̄

]Xp]Xn]Xj
D

2nmlpk
~3!

]4c̄

]Xl]Xn]Xp]Xj

1« rqNmlkq
~1!

]2

]Xl]Xn
S ]c̄

]Xr

]c̄

]Xj
D J . ~A20!

It is easily seen that the sumsq(03)1q(30), q(12)1q(21)

and q(04)1q(40) vanish by symmetry. Then the sumq(13)

1q(31) is equal to zero to fourth order inK. Therefore, only
an expression forq(11) need be obtained:

q~11!~X,t !5«mnK S ]c~1!

]xn

]

]Xn
D'c~1!

12
]c~1!

]xm

]3c~1!

]xm]Xp]Xn
1

]c~1!

]Xm

]

]xn
D'c~1!

12
]c~1!

]Xm

]3c~1!

]xp]xn]Xp

1
]c~1!

]Xm

]

]Xn
D'c~1!D L . ~A21!

Insertingĉ (1) ~see Eq.~A10!! into Eq. ~A21! we get

q~11!~X,t !5«mn« jk« rqS Nkpmq
~2!

]c̄

]Xj

]3c̄

]Xp]Xn]Xr

1Nkpnq
~3!

]2c̄

]Xm]Xj

]2c̄

]Xp]Xr
D . ~A22!

Now, summing up expressions forQ(1), Q(2) and q(11)

we get the final expression forQ to orderK4; see Eq.~2.10!.

APPENDIX B

Eddy viscosity of 2 D NS flows: a comparison with previous
results

In this Appendix we demonstrate the transition from t
formula of Sec. 2 and Appendix A to those describing t
turbulent viscosity of a 2D viscous incompressible fluid. I
allows us, firstly, to compare our results with those of oth
authors studying turbulent viscosity in hydrodynamics in
framework of two-scale expansion, and, secondly, to po
e

r
e
t

out the differences arising between calculations of the tur
lent viscosity in 2D NS flows and in Rossby waves; see Se
4.

The coefficients in the equation for the mean stre
function of viscous incompressible fluid are obtained fro
Eqs.~2.13! by setting 11k2→k2 ~no dispersion! andvR50
~zero eigenfrequency!. We do not discuss effects nonlinear
c̄ and, therefore, neglect all nonlinear terms. Further,
havenmpk

(2) 50 because this term is determined by that w
]/]x in Eq. ~2.1!. Therefore, we have the following equatio
for c̄

]

]t
Dc̄2nD2c̄1«mn« jkS hmpk

]3c̄

]Xp]Xn]Xj

2nmk
~1!

]2

]Xn]Xj
Dsc̄1nmlpk

~3!
]4c

]Xl]Xn]Xp]Xj
D 50, ~B1!

where

hmpk5E dkdv
F~k,v!

v21n2k42vkmkpkk,

nmk
~1!5E dkdv

F~k,v!

v21n2k4nk2kmkk, ~B2!

nmk
~3!5E dkdv

F~k,v!

~v21n2k4!28n3k4kmklkpkk.

Naturally, these results can be obtained if we start fr
Eq. ~3.1! and use the method described in Appendix A.

Thus, the sign and the value of the turbulent viscos
are determined by the terms withnmk

(1), nmlpk
(3) . As is shown in

Sec. 3, the term withnmk
(1) is due to the transport of turbulen

voriticity fluctuations by the mean flow. Even for the isotr
pic small-scale fluctuations this term makes a negative c
tribution to the turbulent viscosity. However, the terms w
nmlpk

(3) can, of course, compensate the negative contributi
At first, we note that the results which stem from Eq

~B1! and ~B2! are in accord with the results of Ref. 12
Indeed, let an external source in Eq.~3.1! be homogeneous in
space and uncorrelated in time. Then, instead of Eqs.~B2!
we have

nmk
~1!5E dk

kmkk

k4

^Ŵ0
2&k

2nk2 ,
~B3!

nmlpk
~3! 5E dk

kmklkpkk

k6

3^Ŵ0
2&k

nk2 ,

where^W0
2&k is the spatial spectrum of the zeroth-order a

proximation of the small-scale field vorticity. Equation~B1!
leads to the equation for the Fourier transform of the lar

scale vorticityŴ̄(K ,t):

]

]t
Ŵ̄~K ,t !5g~K !Ŵ̄~K ,t !2nK2Ŵ̄~K ,t !, ~B4!

where

g~K !5E dk^Ŵ0
2&k

@K3k#z
2

2nk6 S 12
6~K3k!2

k2K2 D . ~B5!
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Equation~B5! coincides with the main term of the ex
pansion in powers ofK/k of Eq. ~2.15! of Ref. 12.

The case of isotropic small-scale turbulence is the s
plest, so we start just from this one. We also use the Lor
zian shape for the spectral line broadening:

F~k,v!5
1

p

gk

v21gk
2 F~k!.

The Lorentzian shape is generally used: however,
may convince oneself that the result is not changed qua
tively by using another shape instead of Lorentzian one,
example, Gaussian.

F~k,v!5
1

A2pgk

expS 2
v2

2gk
2DF~k!, ~B6!

or the ‘‘step-like’’ shape,

F~k,v!5H 1

2gk
F~k!, uvu<gk

0, uvu>gk

.

For the isotropic spectrum we havehmpk50. When cal-
culating nmk

(1) , nmlpk
(3) we use the following subsidiary inte

grals over the azimuthal anglew of the wavenumberk:

E
0

2p

dwkmkn5pk2dmn ,

E
0

2p

dwkmklkpkk5
p

4
k4~dmldpk1dmpd lk1dmkd lp!.

~B7!

Then

nmk
~1!5n~1!dmk ,

nmk
~3!5n~3!~dmldpk1dmpd lk1dmkd lp!, ~B8!

where

n~1!5pE dk k3
F~k!

nk21gk
,

n~3!5pE dk k3F~k!
2nk21gk

~nk21gk!
2 . ~B9!

Equation~B1! has the form

]

]t
Dsc̄5neffDs

2c̄, ~B10!
-
t-

e
a-
r

where

neff5n2n~1!1n~3!5n1pE dk k3F~k!
nk2

~nk21gk!
2 .

~B11!

It follows from the expressions obtained that the isotro
small-scale fluctuations do not give rise to a negative visc
ity in the framework of the 2D NS equations for viscou
incompressible fluid. The negative contribution2n (1) is
compensated by the positive contributionn (3) arising in an
accurate calculation of all the viscous terms in the fram
work of our scheme.

If we setgk→0 in Eq. ~B11!, then instead of Eq.~B10!
we get

]

]t
Dsc̄5S ^c2&

2n
1n DDs

2c̄ , ~B12!

where^c2& is the variance of small-scale fluctuations. Th
result has been obtained by another method in Ref. 13.
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We construct an algorithm for calculating the generating function for the number of skeleton
graphs of the irreducible self-energy and vertex parts in the diagram technique for
problems with a Gaussian random field. The exact recursion relation, defining the number of
graphs in any order of perturbation theory, and the asymptotics in the high-order limit are found.
The results obtained are applied to an analysis of the problem of an electron in a Gaussian
random field with a white-noise correlator. A closed integral equation for the one-electron Green’s
function, the kernel of which is determined by the generating function, can be constructed
in the approximation of equal skeleton graphs for the self-energy part in a given order of
perturbation theory. An analysis shows that the approximation considered gives a
qualitatively correct description of the tail of the state density in the region of negative energies
and, probably, is fully applicable in the most interesting region of strong scattering near
the edge of the original band where the asymptotics of the Green’s function and the state density
can be determined in the limit of infinitely strong scattering. ©1998 American Institute of
Physics.@S1063-7761~98!02102-7#
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1. INTRODUCTION

Methods of summing Feynman diagrams are wid
used in the consideration of a broad class of problems
theoretical physics in which the propagation of element
perturbations~or quasiparticles! in statistically random fields
created by an inhomogeneity is investigated. The simp
example of such a system is an electron propagating
system of impurity atoms. It was precisely for this proble
that the diagram technique to be considered in this paper
first formulated.1,2 A similar technique is used in considerin
problems of statistical radiophysics and optics associa
with the propagation of electromagnetic waves in disorde
media.3 The equivalent mathematical approach is applica
for a number of problems in the theory of critical phenome
in disordered systems,4 in the problem of a polymer chain
with an excluded volume and other problems in the phys
of polymer systems.5 Exactly the same diagram techniqu
describes the regular model of critical phenomena with
zero-component order parameter.4

Information about the combinatorial analysis of grap
i.e., about the number of diagrams of a given type in a giv
order of perturbation theory, is extremely useful in consid
ing problems associated with the summation of Feynm
diagrams. In this paper we will investigate in detail the qu
tion of the combinatorial analysis of diagrams in the abo
mentioned class of problems.

2. GENERATING FUNCTION OF SKELETON DIAGRAMS:
RECURSION RELATION

To be specific we will discuss the problem of an electr
with energyE and momentump, propagating in a Gaussia
random field~a system of random impurities!.1,2 The average
3671063-7761/98/86(2)/8/$15.00
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one-particle Green’s function is defined by the diagram
ries shown in Fig. 1a. This expansion is reduced in the us
fashion to the Dyson form:

G~E,p!5
1

E2«p2S~E,p!
, ~1!

where«p5p2/2m is the spectrum of a free electron, and t
eigen-energy partS(E,p) is determined by the skeleto
graphs of Fig. 1b, in which the interior electron line repr
sents the total~or dressed! Green’s functionG(E,p).

The total number of graphs in theNth order of perturba-
tion theory in the expansion of Fig. 1a, as it is easy to see
equal to

GN5~2N21!!! 5
~2N21!!

2N21~N21!!
, ~2!

this is determined simply by the number of methods of co
necting 2N vertices byN impurity lines. The problem of
determining the analogous number of graphsSN in the ex-
pansion of Fig. 1b is much more complicated, and as fa
we know there is no exact answer in the literature. T
simple inequality

~2N21!!! .SN.~2N23!!!, ~3!

was found in Ref. 6, which only gives a fairly rough estima
of the quantitySN . As we will see, the problem can b
solved exactly. This follows directly from the exact solutio
of the problem of an electron in a random potentialV(r )
5V, where the quantityV does not depend on the spati
coordinate r but has a Gaussian distribution with widt
^V2&5W2. It is natural that in this case the diagram tec
nique has the standard form of Fig. 1, and each line of
purity interaction transfers zero momentum, i.e., it cor
© 1998 American Institute of Physics
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FIG. 1. Diagram series for average one-electron Gree
function ~a! and self-energy part~b!. Dashed line corre-
sponds to mean-square correlator of random field,G0 is the
free Green’s function.
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sponds~in the momentum representation! to the correlator
(2p)dW2d(q) ~d is the dimensionality of space!.7,8 All con-
tributions of the same order in the expansion of Fig. 1a t
out to be the same, and the series for the Green’s functio
represented in the form7

G~E,p!5G0~E,p!H 11 (
N51

`

~2N21!!! G0
2N~E,p!W2NJ .

~4!

Then through the use of the representation

~2N21!!! 5
1

A2p
E

2`

`

dt t2N22e2t2/2 ~5!

the series~4! is easily summed and we obtain1!

G~E,p!5
1

W
CS 1

WG0~E,p! D , ~6!

where the function

C~z!52
1

A2p
E

2`

`

dt e2t2/2
1

t2z
, ~7!

has been introduced.
Let us consider the self-energy part, corresponding to

Green’s function~6!. Since the addition of an impurity line
leads in this problem simply to the additional multipli
W2G2, the self-energy part defined by the expansion of F
1b can be written in the form

S5Q~W2G2!W2G, ~8!

whereQ(x) is some function. We will see that this functio
is the generating function of the number of skeleton gra
for the self-energy part, i.e., its Taylor series expansion
efficients give the desired numbersSN .

Let us write the Dyson equation for the problem bei
considered:

G5G01G0SG5G0~11Q~W2G2!W2G2!. ~9!

Introducingz5(WG0)21 and y5W2G2, we obtain the
following parametric representation ofQ(y) from Eqs. ~6!
and ~9!:

11yQ~y!5zC~z!5zAy,

y5C2~z!. ~10!
n
is

e

.

s
-

This representation of the functionQ is rather inconvenient.
Let us show that a differential equation can be obtained
it. It is easy to prove that the functionC(z) satisfies the
usual dispersion relation2!

Re C~z!5
1

p E
2`

`

dt
Im C~ t !

t2z
,

1

p
Im C~ t !57

1

A2p
e2t2/2, ~11!

from which it follows immediately thatC(z) satisfies the
differential equation

dC

dz
512zC ~12!

with the initial condition

C~z56 i0!57 iAp/2 . ~13!

Differentiating the first equation in~10! with respect toy, we
obtain

dz

dy
5

1

2
y23/2H 2y2

dQ~y!

dy
1yQ~y!21J . ~14!

Differentiating the second equation in~10! with respect toz
and using Eq.~12!, we have

dy

dz
52C~z!

dC~z!

dz
52C~z!~12zC~z!!

522y3/2Q~y!. ~15!

By equating Eqs.~14! and ~15!, we obtain a nonlinear dif-
ferential equation forQ(y):

dQ~y!

dy
5

1

2y2 $12Q21~y!1y~Q!~y!%. ~16!

Using Eqs. ~10! and ~13!, we obtain y5C2(z)uz56 i0

52p/2, so that

QS 2
p

2 D5
zC~z!21

7 U
z56 i0

5
2

p
, ~17!
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TABLE I.

N GN5aN bN5aN /(2N11)!! SN5aN21 UN5(2N21)aN21

1 1 0.3333 1 1
2 4 0.2667 1 3
3 27 0.2571 4 20
4 248 0.2624 27 189
5 2830 0.2722 248 2232
6 38232 0.2829 2830 3120
7 593859 0.2930 38232 497016
8 10401712 0.3019 593859 8907885
9 202601898 0.3158 10401712 176829104

10 4342263000 0.3211 202601898 3849436062

N@1
1

e F12
5

4NG~2N11!!!
1

e F12
5

4NG 1

e F12
5

4NG~2N21!!!
1

e F12
9

4NG~2N11!!!
m

e

.

la-

s
bi-
th

ly,

em

l

r

e
of
r
ing
-

n

which is the initial condition for Eq.~16!. Note that the point
Q(0)51, with an obviousness that follows from the diagra
representation forS, is a singular point for Eq.~16! and
cannot serve as the initial condition.

Equation~16! can be rewritten in a form that is mor
convenient for further analysis

Q~y!511y
d

dy
yQ2~y!. ~18!

We are interested in the Taylor series expansion ofQ(y):

Q~y!5 (
n50

`

anyn. ~19!

Since the number of skeleton diagrams ofNth order for the
self-energy part is simply the coefficient forW2N in the se-
ries expansion ofS in powers ofW2, it is easy to see that Eq
~8! gives the desiredSN in the form

SN5aN21 . ~20!

This also means that the functionQ(y) is the generating
function for the combinatorial factorsSN of interest to us.

The substitution of Eq.~19! into ~18! leads to the follow-
ing recursion relation for the coefficientsan :

an5n (
m50

n21

aman212m , ~21!

FIG. 2. Diagram series for the total vertex partG ~a!, for the irreducible
vertexU ~b!, and the Bethe–Salpeter equation interrelatingG andU ~c!.
wherea051. It follows directly froma051 thatQ(0)51. It
is precisely in this sense that this point is singular—the re
tion Q(0)51 is satisfied for any initial conditions for which
Eq. ~18! has a solution.

From Eq.~21! it is easy to find thean values for smalln;
the corresponding results are listed in Table I.

By knowing the combinatorial analysis of the diagram
for the self-energy part, we can easily reproduce the com
natorial analysis for the two-particle Green’s function—bo
for the total vertex partG and for the irreducible vertexU,
the diagram expansion for which is given in Fig. 2. Actual
the self-energy partS is related to the total vertexG by the
equation represented graphically in Fig. 3. For a probl
with zero transferred momentum7,8 this equation has the
form

S5W2G~11G2G!. ~22!

Therefore, for the number ofNth-order diagrams in the tota
vertexGN we obtain immediately

GN5SN115aN . ~23!

Thus, the functionQ(y) is also the generating function fo
the number of diagrams of the total vertex part.

The number ofNth-order diagrams for the irreducibl
vertexUN can easily be obtained if it is noted that a break
any of the 2N21 interior Green’s lines in the diagram fo
the Nth-order self-energy part generates the correspond
diagram for theNth-order contribution to the irreducible ver
tex U ~Fig. 4!. Therefore,

UN5~2N21!SN5~2N21!aN21 . ~24!

In the Appendix we rederive the differential equatio
~18! for the generating functionQ(y) using only the Bethe–

FIG. 3. Equations relating the eigen-energy part to the total vertex.
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Salpeter equation, which relatesU to G, and the Ward iden-
tity, without using the explicit form of the Green’s functio
~6!.

3. ASYMPTOTICS FOR THE NUMBER OF DIAGRAMS FOR
LARGE N

In the high-order limitN@1 it becomes inconvenient t
use the recursion relation~21! in view of the factorial in-
crease in the number of diagrams.6 At the same time the very
fact of factorial growth can be used for a considerable s
plification of the problem. We rewrite Eq.~21! in the form

an5na0an211na1an221na2an231..., ~25!

wherea051, a151, a254. It is natural to assume that in th
limit of large n we have an'(2n1b)an21 ; then an22

'an21 /(2n221b), etc. The substitution of these expre
sions into Eq.~25! immediately givesb51 and

an5S 2n111OS 1

nD Dan21 . ~26!

This means that in the limit of largen we havean;(2n
11)!! We definebn as

bn5
an

~2n11!!!
. ~27!

Substituting Eq.~27! into ~21!, we obtain a recursion relatio
for bn :

bn5n (
m50

n21
~2m11!!! ~2n22m21!!!

~2n11!!!
bmbn212m ,

~28!

and b051. In the limit of largen and taking into accoun
b151/3, b254/15, which limits the accuracy to the order
b/n2 ~whereb;bn;bn21;bn22;bn23!, we obtain

Dbn5bn2bn215
5

4

bn21

n2 1OS b

n3D . ~29!

Thus, in the limit of largen we can write the following
differential equation forbn :

dbn

dn
5

5

4

bn

n2 1OS b

n3D , ~30!

from which it immediately follows that

bn5b expS 2
5

4

1

n
1OS 1

n2D D5bH 12
5

4

1

n
1OS 1

n2D J .

~31!

Of course, on the basis of such an analysis it is impossibl
determine the constantb5 lim bn as n→`. A numerical

FIG. 4. Breaking of any of 2N21 interior lines of the Green’s function in
Nth-order skeleton diagram for self-energy part produces corresponding
gram forU.
-

to

analysis of the behavior ofbn using the recursion relation
~28! completely corroborates the relationship~31! ~see Fig.
5! and givesb51/e50.36787944...~Calculations were car-
ried out up ton55000, which ensures the stated accurac!
We know of no analytical method for obtaining this curio
result.

Finally, the asymptotics of the number of diagrams
different types for largeN have the form3!

SN5aN215bN21~2N21!!!

5
1

e H 12
5

4

1

N
1OS 1

N2D J ~2N21!!!

5
1

Ape
H 12

5

4

1

N
1OS 1

N2D J 2NGS N1
1

2D ,

~32!

GN5aN5
1

e H 12
5

4

1

N
1OS 1

N2D J ~2N11!!!

5
1

Ape
H 12

5

4

1

N
1OS 1

N2D J 2N11GS N1
3

2D , ~33!

UN5~2N21!aN215
1

e H 12
5

4

1

N
1OS 1

N2D J ~2N21!

3~2N21!!! 5
1

e H 12
9

4

1

N
1OS 1

N2D J ~2N11!!!

5
1

Ape
H 12

9

4

1

N
1OS 1

N2D J 2N11GS N1
3

2D . ~34!

It is interesting to note that

SN

GN
5bN215

1

e H 12
5

4

1

N
1OS 1

N2D J→ 1

e
, ~35!

UN

GN
512

1

N
1OS 1

N2D→1. ~36!

ia-

FIG. 5. Behavior ofbn with increase inn. Points correspond tobn values
obtained from recursion relation~28!, the curve corresponds to th
asymptotic dependencee21(125/4n), the dashed line corresponds to th
asymptotic function 1/e.
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FIG. 6. ~a!—base graph used in constructing approximation
eigen-energy part,~b!—expanded sequence of maximally inte
secting graphs gives ladder in the case of system invariance
respect to time reversal operation.
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Table I summarizes the principal results for the number
graphs of different types.

4. ELECTRON IN GAUSSIAN RANDOM FIELD WITH WHITE-
NOISE CORRELATOR

As an example of the practical use of the results obtai
above let us consider the problem of an electron in a Ga
ian random field with a white-noise correlator when the i
purity interaction line corresponds to the expression1,2,9

v~p1 ,p2 ,p3 ,p4!5W2d~p12p21p32p4!, ~37!

whereW25rV2, r is the density of impurity atoms, andV is
the Born amplitude of scattering at a point impurity. It
well-known that the principal difficulties in this problem
arise at energies defined by the condition9

uEu&g~E! or uEu&Esc , ~38!

whereg(E)5prV2N(E) is the Born damping~N(E) is the
state density, corresponding to the energyE!, Esc

;md/(42d)(rV2)2/(42d) is the characteristic size of the crit
cal region near the band edge, where strong scattering ar
These difficulties are associated primarily with the impos
bility of selecting a particular dominant sequence of Fe
man diagrams similarly to what is done in the weak scat
ing region4!

E@g(E), E@Esc.
1,2 Actually, all diagrams for the self-

energy part are of the same order in theuEu&Esc region and
must be taken into account.

The perturbation theory series for the self-energy par
shown in Fig. 1b in terms of skeleton graphs. By means
simple variable replacements one can show that all th
order graphs in this expansion are equal to one another~dia-
grams of Fig. 1b~1–4!!. Although this equality breaks dow
in even the next order, it is reasonable to formulate an
proximation in which it is assumed that all graphs of th
type are equal in each order of perturbation theory. Such
approximation should give satisfactory results primarily
the critical regionuEu&Esc , where all contributions have a
least the same order of magnitude. We choose as the
graph in each order the maximally intersecting type shown
Fig. 6a. The sequence of interaction lines entering into it
systems that are invariant with respect to time reversal ca
transformed into a ladder, as shown in Fig. 6b. Then
complete series for the self-energy part in our approxima
is represented in the form

S~p!5 (
n51

`

W2Sn(
p1

(
p2

@W2G~p11p21p!G

3~2p2!#n21G~p1!
f

d
s-
-

es.
i-
-
r-

is
f
-

p-

n

se
n
r
be
e
n

5(
p1

W2QFW2(
p2

G~p12p21p!G~p2!GG~p1!,

~39!

where the definitions~19! and~20! were used, as well as th
propertyG(p)5G(2p) in an isotropic system. Correspond
ingly, we obtain the closed equation for the average o
particle Green’s function in the form

G21~p!5G0
21~p!2W2(

q
QFW2(

p1

G~p12q!

3G~p1!GG~p1q!, ~40!

whereG0
21(p)5E2p2/2m. The entire nontrivial part of the

problem being considered is now expressed by means o
generating functionQ(y), which determines the kernel o
the complex nonlinear integral equation~40!. Restricting
consideration to the first term of the expansion~19! gives
Q51, and Eq.~40! reduces to the standard problem of su
ming nonintersecting graphs.1,2 An obvious advantage of the
result~40! compared with the standard approach,1,2 based on
identifying the dominant sequence of diagrams~for example,
taking account of only the first graph in Fig. 1b!, is that it
formally accounts for all diagrams, which is done, howev
in the approximation that all skeleton graphs for the se
energy part are equal in a given order of perturbation theo

Equation~40! is an extremely complicated nonlinear in
tegral equation and cannot be solved in general form,
what is more we do not know the general form of the fun
tion Q(y) ~which, moreover, enters into Eq.~40! as a func-
tion of a complex argument!. We will restrict ourselves be-
low to some qualitative analysis of the consequences ari
from Eq. ~40!. We write Eq.~40! in compact form as

G21~p!5G0
21~p!2W2Q@W2G^ G# ^ G, ~41!

where the generalized product~or convolution! of functions

F ^ F5(
p

F~p2q!F~p!, ~42!

has been introduced, and we return to the system of Eqs.~10!
which define the functionQ parametrically. The second
equation in~10! is now written as

G^ G5
1

W2 C2~z!. ~43!

We saw above thatz5W21G0
21 holds in the problem with

zero transferred momentum. Let us examine the limitW
→0 in Eq. ~43!. Then the left side of Eq.~43! is reduced to
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G0^ G0 , and on the right side one can assume, by anal
with the problem with zero transferred momentum,z
;W21 and can use the asymptotic formC(z)'1/z for uzu
@1. There is some error here since the exact form ofC(z) is

C~z!5R~z!7 iAp

2
e2z2/2, ~44!

where an asymptotic expansion of the form

R~z!5e2z2/2E
0

z

et2/2dt5
1

z
1

1

z3 1
3

z5

1...S 2
p

4
,arg z,

p

4 D . ~45!

exists for R(z). We use the asymptotic formC(z)'1/z,
which is not completely true, but the results obtained
using this approximation are corroborated in a more rigor
but much more lengthy analysis. Thus, in the lim
W→0 Eq. ~43! reduces to

G0^ G05
1

W2z2 or z5
11O~W2!

WAG0^ G0

. ~46!

Correspondingly, in the limitW→0 we can write

G^ G5
1

W2 C2S 1

WAG0^ G0
D . ~47!

in place of ~43!. Let us consider the energy regionE,0,
where the fluctuational tail of the state density arises.9,10 In
this case we havezPRe from Eq.~46!. By means of Eqs.
~44! and ~46! we obtain

G^ G'G0^ G02 i
2

W
Ap

2
AG0^ G0

3expH 2
1

2W2G0^ G0
J , ~48!

from ~47!, where, as we now see, the second term also p
duces a fluctuational tail of the state density. Using

(
q

G^ G5(
p

(
q

G~p2q!G~p!5S (
p

G~p! D 2

.

we obtain immediately from Eq.~48! the state density in the
form

N~E!52
1

p (
p

Im GR~E,p!

5
1

A2pW

(qAG0^ G0 exp$21/~2W2G0^ G0!%

u(pG0~E,p!u
.

~49!

Thereafter everything is determined by the specific form
G0^ G0 in spaces of different dimension.

In the one-dimensional (d51) case all of the integrals
entering into Eq.~49! are calculated exactly. After rathe
involved but fairly elementary calculations we obtain
y

y
s

o-

f

N~E!5
1

2p
A2m

uEu
expH 2&

uEu3/2

m1/2W2J . ~50!

The argument of the exponential in Eq.~50! differs from the
known exact result of Halperin11 ~see also Chapter 11 in Re
10! by the absence of a 4/3 multiplier. The pre-exponen
function in Eq. ~50! also differs from the exact, which is
;uEu/W2.11 Nevertheless, the behavior of the state dens
tail is reproduced quite satisfactorily in a qualitative sense
our approximation. In this regard let us recall the widespre
notion that the state density tail cannot be obtained at
from perturbation theory.

Analogous ~but still approximate! calculations of the
state density using Eq.~49! for d53 yield

N~E!;expH 2&
uEu1/2

m3/2W2J . ~51!

Here the exponential once more coincides with the kno
result of the nonperturbative instanton approach within
accuracy of a constant.9,12–14The pre-exponential multiplier
omitted in Eq.~51!, following from Eq.~49!, does not coin-
cide with any of the known versions obtained in the cit
papers. Nevertheless, the result~51! for the dominant expo-
nent is also quite satisfactory despite the approximate c
acter of Eq.5! ~40!.

An analysis of the consequences of Eq.~40! in the
strong-coupling region,9 defined by condition~38!, i.e., in the
vicinity of the edge of the initial band where a transitio
from spatial to localized states occurs, is of special inter
There is every basis for assuming that in this region
approximation of equal contributions to the self-energy p
in a given order of perturbation theory can turn out to
good simply because of the known fact that they are equa
order of magnitude. A strong condition of the type~38!,
obviously, is equivalent to passing to the limitW→`. In this
limit in the zeroth approximation one can ignore in Eq.~41!
the first term on the right side compared with the second
can write

G21~p!52W2Q@W2G^ G# ^ G. ~52!

We see that this corresponds to the limitz56 i0 in Eq.~43!
for y52p/2 in Eq. ~10!. In this case Eq.~43! is reduced to

W2G^ G5C~z56 i0!52p/2, ~53!

and we have from Eq.~17!

Q@W2G^ G#52/p. ~54!

The formal solution of Eq.~53! has the form

G56 iAp

2

1

WAN
, ~55!

whereN 5(p1 is the number of states in the band. It is ea
to see that this equation is satisfied by the direct substitu
of Eqs.~55! and~54! into ~52!. Thus, in a first approximation
in the limit W→` one can write the Green’s function~41! in
the form
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G~p!5
1

G0
21~p!2~2/p!W2(pG~p!

, ~56!

which agrees surprisingly well with the result of the se
consistent Born approximation~the first diagram in Fig. 1b
or Fig. 3!1,2 to within the redundant multiplier 2/p. Equation
~56! leads in an obvious manner to the state density of
Born approximationN0(E), which practically coincides for
d53 with the state density of the free electron model~with a
one-loop displacement of the band edge taken into accou!.
Figure 7 shows a comparison of the results following fro
Eq. ~56! for the state density in a one-dimensional (d51)
system with the exact Halperin result,11 demonstrating satis
factory agreement of these results in the strong-coupling
gion uEu,Esc;m1/3W4/3, the width of which increases with
an increase inW. It must be pointed out that although the ta
of the state density is suppressed with an increase inW ~see
Eq. ~50!!, the intermediate region whereuEu;Esc increases.

It is possible that a result of the form~56! makes it
possible to justify qualitatively using the simplest Born a
proximation for the one-electron Green’s function in a
proaches such as the self-consistent localiza
theory9,15—the mobility threshold occurs in the strong
coupling regionuEu&Esc ~38!, where the approximation~56!
turns out to be quite satisfactory and the Green’s funct
actually has the simple Born form.

This work was partially supported by the Russian Fu
for Fundamental Research~Project 96-02-16065! and was
also carried out within the framework of Project IX.I of th
Statistical Physics Government Program of the Russian M
istry of Science. The authors are grateful to A. I. Posazh
nikova for assisting with the numerical calculations.

APPENDIX

Let us derive Eq.~18! for the generating functionQ(y)
without using the explicit form of the one-particle Green

FIG. 7. State density in one-dimensional system for different values of
mean square of random fieldW2(2m)1/2/E0

3/2 : 1—0.25,2—2, 3—16. Solid
curves represent exact solution, dotted curves represent self-consisten
approximation~56!. Energy is given in units ofE0 and the state density in
units of A2m/E0, whereE0 is arbitrary.
e

t
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n

n
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function ~6!. In problems with zero momentum transfer m
mentum the Bethe–Salpeter equation of Fig. 2c has the f

G5U1UG2G, ~A1!

so that

G5
U

12UG2 . ~A2!

Using Eqs.~A2! and~22!, we obtain an equation relating th
self-energy part to the irreducible vertexU:

( 5
W2G

12UG2 . ~A3!

We use the Ward identity

W2
]

]WU
G

S

W
5UG, ~A4!

the validity of which is easy to see by means of Eqs.~8! and
~24!, and Eq.~A2! in order to write

W2
]

]WU
G

S

W
5UG5

1

G H 12W2
G

S J
or

S5W2G1W2GS
]

]WU
G

S

W
. ~A5!

Using Eq.~8!, we obtain the desired differential equation f
Q:

Q~W2G2!511W2GQ~W2G2!
]

]WU
G

WGQ~W2G2!

511W2G2
d

d~W2G2!
W2G2Q2~W2G2!,

which is rewritten as

Q~y!511y
d

dy
yQ2~y!. ~A6!

Note, however, that from these arguments it is impossible
find the correct boundary condition~17!, which is closely
related to the relation~11!, reflecting the causality principle

1!From a mathematical viewpoint this means Borel summation.
2!The sign of the imaginary part corresponds to treating the retarde

advanced Green’s functions.
3!An asymptotic limit of the form~32!, SN'c•2NG(N1b), was obtained in

Ref. 6 by the Lipatov method; however, the coefficientsc andb were not
found.

4!In this case the nonintersecting diagrams dominate, so that one can
account of only the first diagram in Fig. 1b.

5!For d.4 knowledge of the asymptotic form~32! and the statistical analy-
sis of Ref. 6 make it possible to determine the correct exponent ofW21 in
the pre-exponential function of the state density. In this case our appr
mation is equivalent to the hypothesis, used in Ref. 6, that the high-o
contributions are stationary, which is valid ford.4.
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Vacancy formation energy in icosahedral structures
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A method is developed for calculating the formation energy of vacancies that is applicable to
crystalline, amorphous, and quasicrystalline structures. Calculations are performed in the
strong-binding approximation for Amman–Mackey networks with different types of decorations.
It is shown that the most closely packed structure, for which the formation energy of
vacancies is much less than the crystalline state, has the smallest vacancy formation energy. This
can explain the experimental data on the increased concentration of vacancies in quasicrystals
compared with crystalline objects@R. Chidambaram, M. K. Sanyal, V. S. Raghunathan, P. M. G.
Nambissan, and P. Pen, Phys. Rev. B48, 3030~1993!#. © 1998 American Institute of
Physics.@S1063-7761~98!02202-1#
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1. INTRODUCTION

It has been found experimentally by the positron ann
lation method that the concentration of point defects in q
sicrystals is several orders of magnitude higher than in
crystalline case. The assumption was put forth that struct
models of icosahedral quasicrystals based on the Amm
Mackey network~two-fragment model of the structural ske
eton of a quasicrystal! cannot explain such concentrations
point defects.1 However, this assumption was not corrob
rated by reliable physical arguments, primarily because
the topological complexity of the structure of icosahed
quasicrystals. The purpose of this paper is to show tha
increased concentration of vacancies can be explaine
terms of the two-fragment structural model of a quasipe
odic object. To do this a method is developed in this pa
for calculating the formation energy of vacancies in icosa
dral structures using a recursion~or continued fraction!
method. Since the numerical calculations for an actual q
sicrystal are rather lengthy, an Amman–Mackey netw
cluster, obtained by the projection of a six-dimensional sp
and decorated by iron atoms in different positions, was c
sen as the object of the investigations in order to study
general relationships. The choice of iron made it possible
restrict consideration to the interaction of nearest neighb
in calculations by the strong-binding method, in view of t
localized character of thed orbitals. The calculations wer
carried out for solitary vacancies~Schottky defects!.

The layout of this paper is as follows. The calculati
method is presented in Sec. 2. The results of calculations
their analysis are presented in Sec. 3. Section 4 cont
conclusions.

2. CALCULATION METHOD

The formation energy of a vacancy is defined in the f
lowing manner:

EV5E~N21,V!2E~N21,0!, ~1!
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whereE(N21,V) andE(N21,0) are the energies of cluste
of N21 atoms with and without a vacancy, respective
This expression can be rewritten in the form2

EV5@E~N21,V!2E~N,0!#1@E~N,0!2E~N21,0!#,
~2!

whereE(N,0) is the energy of a cluster ofN atoms.
The first term inside the brackets corresponds to the

ergy needed to remove an atom from the cluster to infin
the second term describes the change in the energy o
ideal cluster when the number of atoms is changed fromN
21 to N. For largeN one can assume

E~N,0!2E~N21,0!'
E~N,0!

N
. ~3!

Substituting Eq.~3! into ~2!, we obtain

EV5E~N21,V!2E~N,0!1
E~N,0!

N
. ~4!

The total energy of a cluster can be written in the fo
of a sum, containing the attraction, caused by the cova
hybridization of the electron states at the different atoms
addition to the Born–Meyer repulsion of ionic shells, dete
mined in the pair approximation3:

Etot5
1

2 (
i , j

8w~ ur i j u!12E
2`

EF
r~E!EdE. ~5!

The prime on the summation sign in the first term means
the term withi 5 j is omitted;EF is the Fermi energy. De-
noting the first term in Eq.~5! by W, we can rewrite Eq.~4!
in the following manner:

EV5~W12W2!12H E
2`

EF1
r1~E!EdE

2E
2`

EF2
r2~E!EdEJ 1

1

N

3S W212E
2`

EF2
r2~E!EdED . ~6!
© 1998 American Institute of Physics
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where the indices 1 and 2 refer, respectively, to clusters w
and without a defect.

The strong-binding approximation, which is valid in th
case of the transition metals, can be used for constructing
cluster Hamiltonian, which is required to calculate the s
ond and third terms in Eq.~6!. The Hamiltonian of the prob-
lem is

H5(
i ,l

u il&E d
i ^ ilu1( 8

i , j
l,m

u il&hil, j m^ j mu, ~7!

wherei , j are indices labeling the atoms of the cluster;l, m
are the indices of the atomicd orbitals; ^ ilu j m&5d i j dlm

~basis orthogonality!; andhil, j m are the Koster–Slater matri
elements in the two-center approximation.4 The prime on the
summation sign in the second term means that the term
i 5 j is omitted. In view of the one-component nature of t
system all atomic levels with energiesE d

i can be assumed t
be identical and set equal to zero.

It is easy to show~see Appendix! that Eq.~6! with ~7!
taken into account can be rewritten as

EV5~W12W2!1
1

N H W212E
2`

EF
r~E!EdEJ

12 (
a51

5 H(
i

zia
~2!2(

i
pia

~2!1~Npa
~2!2Nza

~2!!EFJ ,

~8!

wherer andEF are the state density and Fermi energy o
defect-free cluster, calculated by means of a recurs
method~see Appendix!; zia

(2) ~or pia
(2)! are the zeros~or poles!

of the matrix element of the resolvent, obtained from t
Hamiltonian with a21 removed rows and columns, lyin
below the Fermi energy of the defect-free structure; andNza

(2)

~or Npa
(2)! is the number of zeroszia

(2) ~or polespia
(2)!.

Relaxation effects in the formation of a vacancy we
ignored in this paper. This approximation is justified to
certain degree for close-packed structures, where relaxa
effects make a contribution to the vacancy formation ene
amounting to a few percent.5

3. FORMATION ENERGY OF VACANCIES IN
QUASICRYSTALLINE CLUSTERS

The formation energy of vacancies was calculated in
strong-binding approximation for three types of decorat
of the Amman–Mackey network rhombohedrons by iron
oms. The Amman–Mackey network~three-dimensional Pen
rose packing!, which is one of the most widely used mode
of the structural skeleton of quasicrystals, is obtained
means of two structural blocks,6–9 acute and obtuse rhombo
hedrons. If these rhombohedrons are filled with atoms~atoms
are placed at the vertices, at the centers of the faces, e!,
then the so-called decorated Amman–Mackey network is
tained. All of the packing is characterized by the edge len
aR of the rhombohedron, which for real quasicrystals is
the order of several angstroms~5–6 Å!.8,9

The topology of the structure was investigated for ea
type of decoration—from 20 to 121 different local config
rations of atoms were selected. The formation energy o
th

he
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h
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vacancy in BCC iron was calculated to verify the method.
cluster consisting of 1024 atoms was used. In order to s
press surface effects the calculations were performed for
interior portion of the cluster~the first three coordination
spheres from the center site for BCC iron!. Since iron is a 3d
transition metal, the atoms of the first two coordinati
spheres were taken into account in the calculation of
electron contribution~increasing the size of the cluster an
the number of coordination spheres taken into account
fected the result only slightly!. Although relaxation was ig-
nored, it should be pointed out that the relaxation correct
in BCC iron can amount to 40–50% of the calculated v
cancy formation energy.10 The calculated vacancy formatio
energy amounted to 1.94 eV, which agrees well with
experimental data, which lie in the energy interval from 1
eV to 1.6 eV for iron with the BCC structure.11 Thus, the
calculation results confirmed the good applicability of t
method for normal crystalline objects.

For each cluster investigated~a fragment of an Amman–
Mackey network was used as the cluster! the topology was
analyzed beforehand in order to identify nonequivalent lo
atomic configurations.

The Henley classification12 was used in the topologica
analysis of the primitive Amman–Mackey network~the at-
oms are located only at the vertices of the rhombohedrons! to
denote the different local topological configurations. In t
consideration of the atoms on the nearest three coordina
spheres the local configuration is characterized by four in
ces (abg)p , wherea is the number of a bonds coming ou
from a site~a is the radius of the first coordination sphere!; b
is the number ofb bonds, coming out froma site ~b is the
radius of the second coordination sphere!; g is the number of
c bonds, coming out from a site~c is the radius of the third
coordination sphere!; andp is the number ofb bonds form-
ing a nearly complete ring about thea bonds.12

According to this classification 27 different configur
tions can be identified in the primitive decoration case.

The frequency at which a local configuration is encou
tered can be determined from the formula

j~abg!p
5 lim

N→`

N~abg!p

N
, ~9!

whereN(abg)p
is the number of local configurations in th

portion of the cluster being investigated, having a cert
(abg)p ; N is the number of atoms in the portion of th
cluster being investigated.

In the case of more complex decorations the search
topologically nonequivalent local configurations of atom
was conducted in the following manner. Atoms located
the first three coordination spheres were also considere
nearest neighbors. Each local configuration of atoms w
characterized by a set of three parameters:na , nb and nc ,
where na , is the number of atoms belonging to the fir
coordination sphere;nb andnc are the number of atoms o
the second and third sphere, respectively~here the radii of
the coordination spheres are different from the quantitiesa,
b and c for the primitive decoration!. The atom configura-
tions were considered to be different if at least one of
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FIG. 1. Vacancy formation energy in deco
rated Amman–Mackey networks: a! primi-
tive decoration~18 local nonequivalent con-
figurations!; b! atoms at centers of
rhombohedron edges~121 local nonequiva-
lent configurations!; c! bonds leading to
structure porosity of local nonequivalen
configurations are ignored; d! atoms at ver-
tices and at centers of rhombohedron edg
~74 local nonequivalent configurations!.
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parameters did not coincide whenna , nb andnc were com-
pared for these configurations. It was found that in the c
tral portion of the resulting cluster of 978 iron atoms, locat
at the centers of the rhombohedron edges, 121 nonequiv
configurations are realized.

In the case of the Amman–Mackey network, in whi
the bonds are lengthened, leading to structure porosity~c are
the bonds mentioned above!,12 the topological analysis re
vealed 84 nonequivalent configurations of atoms in the c
tral portion of the cluster.

For the decoration of the vertices and centers of
rhombohedron edges with atoms the procedure for iden
ing nonequivalent local configurations was altered in the
lowing manner in view of the greater complexity of th
structure. Each local configuration was characterized by
parameters:na , nb , nc , nd andne , wherena is the number
of nearest neighbors lying on the first sphere,nb on the sec-
ond sphere,nc , nd , ne are the number of atoms on the thir
fourth and fifth spheres, respectively. Any two local atom
configurations were considered to be equivalent in the c
when all five parametersna , nb , nc , nd andne were equal.
With this approach 74 nonequivalent local configurations
atoms are found in the investigated portion of the clus
with atoms lying at the vertices and centers of the rhom
hedron edges.

Figure 1a–d shows the results of a calculation of
vacancy formation energy in clusters on the basis of
Amman–Mackey network with four different decoration
The large diversity of local configurations in the decora
Amman–Mackey networks leads to a wide range of vaca
formation energies. In the primitive Amman–Mackey ne
work ~Fig. 1a! the vacancy formation energy varies from 0
to 1.8 eV, and the configurations with a small vacancy f
mation energy have a high encounter frequency. In
Amman–Mackey network with iron atoms at the centers
the rhombohedron edges~Fig. 1b! most of the vacancy for-
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mation energies lie in the interval of values from 2.4 to 3
eV, although some energies lie near a value of 4 eV. Ob
ously, taking relaxation corrections into account should
duce these values significantly because of the fact that
structure has a low structure packing factor. In the case o
Amman–Mackey network with excluded minimal bonds t
results show~Fig. 1c! that the spread in vacancy formatio
energy is reduced. Most of the vacancy formation energ
lie within the interval from 2.1 to 2.7 eV, i.e., the loca
configurations have become more alike. When atoms are
cated at the vertices and at the centers of the rhombohe
edges~Fig. 1d!, the spread in the vacancy formation energ
spans the interval from 0.49 eV to 1.83 eV. This interval h
become narrower than in the two previous cases; this in
cates an increased filling homogeneity of the space in
cluster and a reduction in the contribution of relaxation c
rections.

Thus, one can conclude that an increased concentra
of vacancies in quasicrystals can be explained by the e
tence of a large fraction of local configurations in the dec
rated Amman–Mackey networks that have a rather low
cancy formation energy.

4. CONCLUSIONS

The method we have developed for calculating the f
mation energy of vacancies has made it possible to inve
gate the effect of the type of decoration of the Amma
Mackey network on the spectrum of vacancy formati
energies. An investigation of the vacancy formation ene
was performed for four types of decoration of the Amma
Mackey network with only iron atoms in order to determin
the general relationships. A preliminary calculation for cry
talline BCC iron showed excellent agreement with expe
ment. The small vacancy formation energies in a quasicry
compared with the crystalline case arise because the d
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rated Amman–Mackey network has a large set of nonequ
lent local topological configurations, in which the vacan
formation energy varies within wide limits. With an increa
in the degree of packing and the homogeneity of the qu
periodic structure the interval of vacancy formation energ
is shifted to lower energies; this is explained by a reduct
in the role of the relaxation corrections. Thus, the results
our analysis show that the experimentally observed incre
in the concentration of point defects in quasicrystals is
plainable within the framework of the model of a decorat
Amman–Mackey network with ‘‘favorable’’ sites existing i
it for the formation of vacancies. Calculations for speci
quasicrystalline alloys are the subject of a separate pape

APPENDIX

Equation~6! for the vacancy formation energy is tran
formed into the final Eq.~8! in the following manner.

We denote the expression inside the braces in Eq.~6! by
$ %.

Since the model to be considered for the formation o
defect in a quasicrystalline cluster presumes conservatio
the number of electrons, we have

E
2`

EF1
r1~E!dE5E

2`

EF2
r2~E!dE. ~A1!

With Eq. ~A1! taken into account, we rewrite$ % in the
following manner:13

$ %5E
2`

EF
~E2EF!~r1~E!2r2~E!!dE. ~A2!

The index onEF is omitted, since the small displacement
the Fermi level between the two structures has already b
taken into account in the derivation of Eq.~A2!. Now the
quantityEF means the Fermi energy of an ideal cluster. In
contour-integral representation Eq.~A2! is written in the
form

$ %5
1

2p i R
c
~E2EF!~Tr@EI2H1#21

2Tr@EI2H2#21!dE, ~A3!

wherec is the integration contour in the complex plane, e
compassing all poles Tr@EI2H2#21 lying below the Fermi
energyEF of the ideal cluster;H1 andH2 are the Hamilto-
nians of the cluster with and without defects.

We denote

N5Tr@EI2H#21. ~A4!

Then Eq.~A3! is rewritten as

$ %5
1

2p i R
c
~E2EF!DNdE, ~A5!

whereDN5N12N2 .
Using the well-known relation

Tr@EI2H#215
]

]E
ln~det@EI2H# !, ~A6!

we can write
a-

i-
s
n
f
se
-

a
of

en

a

-

DN5N12N25
]

]E
ln

det@EI2H1#

det@EI2H2#
. ~A7!

Let us examine the block structure of the matrices of
HamiltoniansH1 andH2 :

H15H0 ,

H25FEA Ṽ1

V1 H0
G . ~A8!

HereEA is the matrix of resonance integrals for an isolat
atom A; V1 is the matrix describing the interaction of th
atomA being considered with the rest of the cluster; andH0

is the matrix describing the rest of the cluster. We can writ13

det @EI2H1#5det @EI2H0#,

det @EI2H2#5det G2
21 det @EI2H0#, ~A9!

whereG2 is ann3n submatrix in the upper left corner of th
matrix G5@EI2H2#21 ~when onlyd orbitals are taken into
account we haven55). The expression for detG2 can be
written in the form13

det G25Ḡ0Ḡ1Ḡ2 ...Ḡn21 , ~A10!

whereḠi5@EI2H2i #11
21, i.e., this is the element in the uppe

left corner of the matrix@EI2H2i #
21, H2i is an (N2 i )

3(N2 i ) matrix, formed by removing the firsti rows and
columns of the matrixH2 , i 50, n21 (n55).

Then

DN5
]

]E
ln~det G2!. ~A11!

If

~G2!ab5^au@EI2H2#21ub&, ~A12!

wherea and b are basisd orbitals, then, taking Eq.~A10!
into account, we write

det G25Ḡ21Ḡ22Ḡ23Ḡ24Ḡ25, ~A13!

where Ḡ2a5^au@EI2H̄2a#21ua&, a51,...,5. HereH̄2a is
the matrix formed by removing the first (a21) rows and
columns inH2 . Substituting Eq.~A13! into ~A11!, we have

DN5 (
a51

5
]

]E
ln Ḡ2a . ~A14!

A recursion method14 can be used to determineḠ2a

~a51...5!. If uw& is a localized orbital, then the matrix ele
ment of the resolvent operatorG5^wu@EI2H#21uw& can be
represented in the form of the continued fraction

G5
1

E2a02
b1

E2a12
b2

¯

~A15!

We write the continued fraction, calculated up to t
coefficientsap , bp11, in the form
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G5
~p21!th degree polynomial

rth degree polynomial
~A16!

or

G5
P i 51

p21~E2zi !

P i 51
p ~E2pi !

, ~A17!

where zi ~or pi! are the zeros~or poles! of G. Then Eq.
~A14! is rewritten as

DN5 (
a51

5 H (
i 51

p21
1

E2zza
~2!2(

i 51

p
1

E2pia
~2!J , ~A18!

where zia
(2) ~or pia

(2)! are the zeros~or poles! of the matrix
element of the resolventḠ2a .

Substituting Eq.~A18! into ~A5!, we have

$ %5 (
a51

5 H(
i

zia
~2!2(

i
pia

~2!1~Npa
~2!2Nza

~2!!EFJ ,

~A19!

whereNpa
(2) ~or Nza

(2)! are the number of poles~or zeros! of the
matrix element of the resolvent of the ideal cluster, obtain
from the matrix of the Hamiltonian witha21 removed rows
d

and columns. The zeros and poles lying below the Fe
energy of the defect-free cluster are taken into account.

As a result, we obtain the final formula~8!.
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Transverse runaway of hot electrons and the electron-temperature approximation
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This paper discusses the transverse runaway effect in the electron-temperature approximation.
The combinations of scattering mechanisms and the corresponding threshold electric
fields for which transverse runaway develops are determined. It is shown that the transverse-
runaway effect is not associated with any approximation. ©1998 American Institute
of Physics.@S1063-7761~98!02302-6#
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Let us consider a semiconductor in crossed strong e
tric and magnetic fieldsE and H. The isotropic part of the
nonequilibrium distribution function of hot electrons fo
quasi-elastic energy scattering by various types of phon
and for momentum scattering by phonons or defects can
written as~see, for example, Ref. 1!

f 0~x!}expF2
dx

11E2Q~x!G , ~1!

where

Q~x!5
1

E0
2

x~ t1s!/2

11hxt ~2!

is the heating function,

E0[
)k0T

e~ l 0l̃ 0!1/2
, h5S H

H0
D 2

, H0[
~2mc2k0T!1/2

el0
,

x5«/k0T, k0T is the thermal energy, ande and m are the
charge and effective mass of the electron. It is assumed
the energy dependence of the mean free paths with respe
momentum,l , and with respect to energy,l̄ , can be written
as

l ~x!5 l 0x~11t !/2, l̃ 5 l̃ 0x~11s!/2, ~1a!

The values oft and s for all known scattering mecha
nisms are given in Ref. 1.

As can be seen from Eqs.~1! and~2!, the nonequilibrium
distribution function depends on the scattering mechani
via the heating function and the internal~applied plus Hall!
field. In his study of the asymptotic behavior of the heati
function, Levinson2 classified the types of runaway. How
ever, it was shown in Refs. 3 and 4 that there is a new t
of runaway of hot electrons, associated with the depende
of the internal~heating! field on the scattering mechanism
This type of runaway was namedtransverse runaway.3 It has
a threshold character. Combinations of energy- a
momentum-scattering mechanisms have been found
which transverse runaway occurs with threshold values b
in applied electric fields and in magnetic fields.

The question naturally arises whether the transve
runaway effect has a universal character or whether it is
sociated with the hot-electron quasi-elastic scattering
3801063-7761/98/86(2)/3/$15.00
c-

ns
be

at
t to

s

e
ce

d
or
th

e-
s-
p-

proximation. To find the answer to this question, we ha
studied runaway in the electron-temperature approximat
This article presents the results of these studies.

Following the electron-temperature method, we assu
that the nonequilibrium scattering function is the Maxwelli
function

f ~x!5A expS 2
x

Q D , ~3!

whereQ5Te /T, Te is the electron temperature, andA is a
normalizing factor. We shall determine the electron tempe
ture from the energy-balance equation5

j•E5nk0T
Q21

^te&
, ~4!

where n is the electron density,̂te& is the mean energy
relaxation time,j is the current density:

j52enH m1E1m2

E3H

H J . ~5!

The mobilitiesm1 andm2 are determined in terms off (x):

m1

m0
5

G~3/2!

G~~ t15!/2!

J1

J0
,

m2

m0
5

G~3/2!

G~~ t15!/2!
Ah

J2

J0
, ~6!

where

J15E
0

`S 2
] f

]xD x~ t13!/2

11hxt dx, ~7!

J25E
0

`S 2
] f

]xD x~2t13!/2

11hxt dx, ~8!

J05E
0

`

x1/2f dx, ~9!

m0 is the mobility in zero electric field, andG(t) is the
gamma function.

Using Eq.~1a!, for ^te& we get

^te&5te
0 G~~31s!/2!

G~3/2!
Qs/2, ~10!

wherete
05 l̄ 0(2mk0T)1/2.
© 1998 American Institute of Physics
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Let there be a rectangular semiconductor sample and
an electric fieldEx be applied and a currentj x flow along the
x axis. A magnetic field is also applied along thez axis. We
consider the regime in which the current direction is giv
~open Hall contacts!. Then the Hall fieldEy is determined
from the conditionj y50, while the energy-balance equatio
takes the form

Ex
2 G~~31s!/2!

G~3/2!

em0te
0

k0T

J1

J0
F11hS J2

J1
D 2GQs/22Q1150.

~11!

It can be seen from this that the electron temperaturQ
is a function of the applied electric and magnetic fields a
the parameterst and s. There is interest in the question:
there a combination of scattering mechanismst and s for
which the solution of Eq.~11! goes to infinity as a function
of one of the parametersEx , H? In the limit Q→`, the
distribution function is not normalized; i.e., runaway of th
hot electrons occurs.

An analytical solution of Eq.~11! is possible only in the
approximation of strong (hx̄t@1) and weak (hx̄t!1) mag-
netic fields.

Strong magnetic field case.Dropping the 1 in the de-
nominators of Eqs.~7! and ~8! and computing the integral
J1 andJ2 , we can rewrite the energy-balance equation a

a1Ex
2Q~ t1s!/21

a2

h
Ex

2Q~s2t !/22Q1150, ~12!

where

a1[
em0te

0

k0T

G2~5/2!

G~3/2!G~~s2t !/2!
,

a2[
em0te

0

k0T

G~~s2t !/2!

G~3/2!
.

The condition for the appearance of runaway with
spect to the applied electric field,]Q/]Ex→` ~with
H5const!, is fulfilled when

a1

t1s

2
Ex

2Q~ t1s22!/21
a2

h

s2t

2
Ex

2Q~s2t22!/251. ~13!

Consequently, Eq.~13! is the equation for the asymptoti
values ofQ. When it is satisfied for a definiteEx value, we
have Q→`. We first find the combinations of scatterin
mechanisms for which we haveQ→` for finite Ex . To do
this, we separately consider positive and negative valuest
for any values ofs.

~1! Let t.0. Then the inequalityt1s22.2t1s22 is
always satisfied. In this case, the first term in Eq.~13! is the
main one. Dropping the second term and determiningEx

2 , it
is easy to convince oneself that, whenQ→`, the finiteness
of Ex is ensured only for scattering mechanisms that sat
the conditiont1s52.

Substitutingt.0 andt1s52 into Eq.~12!, we find for
the asymptotic solution of this equation

Q5
1

12~Ex /E01!
2 . ~14!
let

d

-

f

fy

Runaway takes place in the limit Ex→E01;
E01...E04;(k0T/em0te

0)1/2 is the characteristic electric field
~2! Now let t,0. It is obvious thats2utu22,s1utu22,

and the main term in this case is the second term, while
finiteness ofEx asQ→` is ensured by the scattering mech
nismss1utu52.

Taking t,0 ands1utu52 into account in Eq.~12!, we
get for the asymptotic solution ofQ

Q5F12
1

h S Ex

E02
D 2G21

. ~15!

Runaway occurs asEx→AhE02.
Thus, in a strong magnetic field, runaway develops

the scattering mechanisms

t.0, t1s52; t,0, s1utu52.

The threshold value ofEx here is independent of the mag
netic field in the first case, and it depends on the magn
field in the second case.

Weak magnetic field case.Because of the smallness o
hxt in comparison with unity, we drop it out of the denom
nators of Eqs.~7! and ~8!, after which the energy-balanc
equation takes the form

b1hEx
2Q~3t1s!/21b2Ex

2Q~s1t !/22Q1150, ~16!

where

b1[
em0te

0

k0T

G~~31s!/2!

G~3/2!

G2~~2t15!/2!

G2~~ t15!/2!
,

b25b1

G2~~ t1s!/2!

G2~2t1s/2!
.

The runaway condition]Q/]Ex→` is given by

b1h
3t1s

2
Q~3t1s22!/21b2Ex

2 s1t

2
Q~s1t22!/251. ~17!

Carrying out a treatment analogous to the strong m
netic field case, we find the following:

~1! For t.0, the finiteness of the applied electric field
ensured by the condition 3t1s52, and, from Eq.~16!, we
get for the asymptotic solution

Q5
1

12h~Ex /E03!
2 . ~18!

Runaway occurs asEx→E03/Ah,.
~2! In the caset,0, runaway arises fors2utu52, while

the asymptotic value ofQ has the form

Q5
1

12~Ex /E04!
2 . ~19!

Runaway occurs asEx→E04.
Thus, runaway develops under strong magnetic fi

conditions when

t.0, t1s52; t,0, s1utu52;

and it develops under weak magnetic field conditions wh

t.0, 3t1s52; t,0, s2utu52.
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Let us now clarify the character of these runaways.
already said, transverse runaway is the name applied to
away for which the heating field grows without limit becau
of the Hall field. The heating field can be written as

E25Ex
2@11~m2 /m1!2#.

Computingm1 andm2 in the strong and weak magnet
field approximations, we get, respectively,

E25Ex
2F11

G2~5/2!

G2~~52t !/2!
hQ tG

and

E25Ex
2F11

G2~~51t !/2!

G2~~512t !/2!
hQ tG .

It can be seen from these expressions that transv
runaway takes place only fort.0 andt1s52, 3t1s52 for
the threshold values of the applied electric field given
Eqs.~14! and~18!, respectively, and this precisely coincid
with the threshold values ofEx obtained in the quasi-elasti
scattering approximation.3,4 As far as negativet is con-
cerned, transverse runaway does not develop for these
ues, since we haveE→Ex for runaway@Q→` in Eqs.~15!
and~19!#; i.e., no Hall field is formed in this case. It is eas
to convince oneself by investigating the asymptotic forms
the heating functions given by Eq.~2! that runaway takes
place for negativet, associated with the so-called limited
restraining scattering mechanism.2
s
n-

se

y

al-

f

We conclude from this that transverse runaway subs
tially differs from other types of runaway. It is associate
with unlimited growth of the heating~Hall! field. This is
physically associated with the fact that, fort.0, as the mean
energy increases, the scattering frequency goes to zero
the Lorentz force acts more effectively.

It can apparently be concluded from these results t
transverse runaway is a universal effect. It is not associa
with any approximation and occurs for the same combi
tions of scattering mechanisms and for the same thres
values of the applied fields.

We are deeply grateful to I. P. Zvyagin and A. G
Mironov for discussing the results and for a number of use
comments.
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Electrophysical parameters of single and double delta-doped layers in GaAs epitaxial films
grown by the metal-organic chemical vapor deposition have been systematically investigated in the
temperature range of 4.2 to 300 K. The 2D electron gas density distribution is affected by
the overlap of wave functions in neighboring quantum wells, as a result of which the peak on the
curve of the Hall mobility in the 2D electron gas versus the separation between the quantum
wells shifts. The persistent photoconductivity in delta-doped layers is due to the change in the
surface potential caused by the neutralization of the negative charge of surface states by
photoexcited holes. A method for comparing delta-doped layers grown under different conditions
at different depths from the sample surface has been suggested. ©1998 American
Institute of Physics.@S1063-7761~98!02402-0#
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1. INTRODUCTION

Semiconducting structures with highly nonuniform do
ing of homogeneous semiconductors, when the dopan
concentrated in a very narrow layer~in the limiting case, in
an atomic monolayer!, are usually referred to as structur
with delta-doped layers or simply delta-layers. The charge
doping impurities in the delta-layer generates a V-sha
potential well. As a result, the structure contains a tw
dimensional~2D! electron gas. One can find in scientifi
journals several detailed reviews of 2D electron gas prop
ties in delta-layers.1–3

In 1993 Zhenget al.4 published their first report abou
the Hall mobility increase in GaAs structures with doub
delta-layers as compared to similar structures with sin
delta-layers in the temperature range of 77 to 300 K. Late
similar effect was observed in silicon-based structures.5 On
the other hand, in earlier publications an increase in the
bility in GaAs structures with periodic delta-doping at liqui
helium temperatures was reported.6 This increase in the mo
bility is attributed to the redistribution of the electron dens
in real space in higher size-quantized subbands owing to
overlap of wave functions in neighboring quantum wel
This redistribution reduces the electron scattering due to
ized impurities in the doping planes in the middle of t
quantum wells. The large spread in the results obtained
different researchers who measured mobilities in both dou
and single delta-layers was probably caused by different
widths of doping layers obtained in the process of growt7

On the other hand, it is well known8,9 that at a fixed
doping level both the concentration of 2D electrons in
delta-layer in GaAs and their mobility strongly depend
the separation between the layer and surface. This is du
partial depletion of delta-layers by the negative surface
tential. As a result, the potential well becomes asymmetri
3831063-7761/98/86(2)/5/$15.00
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which leads to a shift of the ‘‘centers of mass’’ of electro
wave functions and a redistribution of electrons among d
ferent size-quantized subbands. Therefore delta-layers
equal dopant concentrations but grown at different depths
not equivalent, and it is incorrect to compare their propert
considering them as functions of growth conditions only.

The next important experimental fact is that persist
photoconductivity occurs in structures with delta-layers
temperatures below 100 K.10 Several models of the persiste
photoconductivity have been discussed in literature. It is
cribed to photoionization of DX-centers in GaAs resona
with the conduction band in the delta-layer,11 which can lead
to splitting of photoionized electron–hole pairs by the ele
tric field generated by the delta-layer so that electrons rem
in the potential well and holes go into the bulk of th
material.12 This model, which ignores both the surface a
semi-insulating substrate, predicts a logarithmically long
cay time of minority carriers due to the separation of no
equilibrium electrons and holes. A mechanism of persist
photoconductivity assuming photogeneration of a conduc
hole channel parallel to the delta-layer in the semiconduc
surface region was also suggested.10

All these facts indicate that no consistent approach
characterization of delta-layers has yet been developed
certain problems arise when measurements of electronic
rameters of delta-layers obtained by different resea
groups are compared.

In the present work we have conducted systematic m
surements of Hall concentrations and mobilities for sin
and double delta-layers in GaAs at temperatures rang
from 4.2 K to room temperature. As in earlier experiment4

we have detected in structures with double layers a peak
the curve of mobility as a function of separation betwe
layers at liquid-nitrogen and room temperatures. At t
liquid-helium temperature, however, the mobility is found
© 1998 American Institute of Physics
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be independent of the separation between layers within
experimental uncertainty. This effect is due to the stro
dependence of the potential well shape and conditions for
overlapping of wave functions in neighboring wells on te
perature. We have also demonstrated directly in an exp
ment with a biased gate that persistent photoconductivit
at least partially controlled by the notable drop in the surfa
potential after exposure to light due to annihilation of ph
toexcited holes and electrons that were previously in equ
rium and occupied surface states. On the base of the ana
of experimental data, we have come to a conclusion
comparison of properties of different delta-layers is sens
at low temperature in the persistent conductivity regim
when the effect of surface potentials on the quantum w
shape is reduced considerably.

2. SAMPLES

GaAs epitaxial films containing silicon delta-doped la
ers were grown by metal-organic chemical vapor deposi
at a temperature of 600 °C on semi-insulating GaAs s
strates. The total width of the lightly dopedn2-GaAs epitax-
ial layer @n5(1 – 2)31015 cm23 was 600 nm plus the sepa
ration d between the layers. The separation between
delta-layers and surface wasz5100 nm. A doping level in
delta-layers wasND5331012 cm22. In structures with
double delta-layers the distance between the two layers
8 to 48 nm.

The fabricated delta-layers were tested using
secondary-ion mass spectroscopy and measurement
capacitance–voltage characteristics. A typical silicon c
centration profile in a structure containing delta-layers
rived from secondary-ion mass-spectroscopic measurem
is shown in Fig. 1. The measured FWHM of the donor d
tribution was 10 nm, whereas the spatial resolution provid
by the technique was about 7 nm. The latter was estima
by measuring the profile of Al concentration around the h
erojunction in a GaAs/AlGaAs structure performed in t
same regime of the secondary-ion mass spectroscopy
measurements of silicon concentration in delta-layers. T
method of estimating the spatial resolution of silicon conc
tration measurements is not precise; nonetheless, it yiel

FIG. 1. Profile of silicon donor concentration measured using secondary
mass-spectroscopy;z is the depth with respect to the sample surface.
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realistic estimate of the FWHM in a delta-layer. The es
mated half-width of the silicon donor distribution in delta
layers is 7 nm.

A typical donor concentration profile derived from me
surements of capacitance–voltage characteristics (C–V) is
given in Fig. 2. Measurements were performed on sate
samples fabricated concurrently with the main samples
on conductingn1-GaAs substrates. For measuring donor d
tributions by this method, we deposited aluminum or go
Schottky barriers on epitaxial film surfaces. The FWHM
impurity concentration profiles derived fromC–V character-
istics was 4 nm. It is known that the width of the concent
tion profile derived fromC–V measurements is determine
by the spatial width of the ground state wave function in
V-shaped potential well.13 The width of the obtainedC–V
profile depends weakly on the dopant distribution width b
low 5 nm. Published data on calculations ofC–V concen-
tration profiles of delta-layers13 as functions of the dopan
distribution width have allowed us to set the latter parame
at 5–6 nm, which is in fair agreement with secondary-i
mass-spectroscopic measurements and, as will be show
low, with measurements of the Hall mobility in structure
with double delta-layers.

3. MEASUREMENTS OF HALL PARAMETERS AND
DISCUSSION

The Hall mobility and concentration were measured
both Hall bridge samples and Van-der-Pauw geometry.
room and liquid-nitrogen temperatures, measurements w
performed in magnetic fields of up to 0.4 T, and at the liqu
helium temperature of 4.2 K in fields of up to 8 T. We al
measured Hall parameters of some samples over the
perature range from 4.2 to 300 K, but these measurem
did not yield any additional information of fundamental im
portance, so they are not discussed in this paper. Note
that the measurements of the Hall mobility in the tes
samples in the temperature range of 4.2 to 300 K dem
strated a peak at temperatures around that of liquid nitrog
just as in homogeneously doped bulk semiconductors.

nFIG. 2. Profile of bulk donor concentrationN3D derived fromC–V charac-
teristics measured on satellite samples;z2 l is the distance from the sampl
surface. Before deposition of the Schottky barrier a surface layer of th
nessl'75 nm was etched off.



rre
n-
te

e
f
b

n
a-
ffe
. T
oa
u
m

, i

k
i

ve
a

id-
s,
t

o
le
n

all
c-
i

n

b

re

is

Hall

the

d
the
on-

nd
lar,
eas-

on
lta-
bil-

in
er
in

lec-
on
in-

at
e
the

nd

as
nd
,
of

to-
In the
gen
dis-
er-

dis-
ly.
on
al
ions
bo-

ide

ity
m-

385JETP 86 (2), February 1998 Valyaev et al.
measurements were performed in the dc mode at a cu
across samples of 100mA. Testing measurements demo
strated that this current did not heat up the electronic sys
even at liquid-helium temperatures.

In all samples, the Hall mobility at 300 K was in th
range 2000– 3000 cm2/V•s, which is close to the mobility o
the best GaAs samples with delta-layers grown
molecular-beam epitaxy.14

Figure 3 shows measurements of the conductivity a
Hall mobility of epitaxial structures containing double delt
layers as functions of the separation between layers at di
ent temperatures. Note the main features of these curves
Hall mobility versus separation between layers has a br
peak at room temperature, a more pronounced peak at liq
nitrogen temperature, and is rather flat at liquid-helium te
perature. These data refer to measurements in the dark
no persistent photoconductivity was generated.

At this point, it is appropriate to make several remar
on measurements of the Hall concentration and mobility
structures with delta-layers. In structures with a doping le
of 331012 cm22 ~the measured Hall concentration is set
2.531012 cm22! the number of occupied subbands at liqu
helium temperature is three.15 As the temperature increase
higher subband are naturally partially populated owing
thermal activation.

In delta-layers with several populated subbands, the c
tribution of scattering on the ionized impurities in the midd
of the potential well to the resistivity is notably higher tha
that due to the intersubband scattering.9 The mobilities in
structures with delta-doping are relatively sm
(1000– 5000 cm2/V•s), so transport properties of the ele
tron gas in the delta-layer are usually described by assum
that each subband contains electrons with concentrationi

and mobility m i , and the conductivitys is determined by
adding conductivities due to electrons from different su
bands:

s5e(
i

nim i . ~1!

Note that, if such a description is applied to 2D structu

FIG. 3. Hall mobility mH ~open squares! and conductivitys ~filled squares
V21/h) as functions of separationd between delta-layers.
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with high mobilities, where the intersubband scattering
important, it is a very rough approximation.16

In experiments the measured parameters are the
concentrationnH and Hall mobilitymH , which are related to
the conductivities and populations in the subbands by
following expressions:

nH5
~(nim i !

2

(nim i
2 , ~2!

mH5
(nim i

2

(nim i
. ~3!

It follows that measurements of the Hall mobility yiel
rather inaccurate information concerning properties of
electronic system. The more appropriate parameter is c
ductivity. In our experiments the curves of conductivity a
Hall mobility versus separation between layers are simi
so the observed effects can be discussed in terms of incr
ing mobility.

As in Ref. 4, we observed in our experiments a peak
the curve of mobility versus separation between the de
layers at liquid-nitrogen and room temperatures. The mo
ity peak at room temperature was centered atd0'13 nm.
This fact is attributed to the overlap of wave functions
neighboring quantum wells, primarily those of the high
subbands. In this case the probability of finding electrons
the region between the layers is considerably higher. E
trons are farther from scattering impurities in comparis
with the case of a single delta-layer, which leads to an
crease in both mobility and conductivity.4

When the separation between layers is larger thand0 ,
the overlap between the wave functions is smaller, and
separations smaller thand0 it becomes comparable to th
width of the dopant distribution which causes the peak on
mobility curve.

It turned out, however, that at 4.2 K the conductivity a
mobility are independent of the separationd between the
layers. This observation can be qualitatively interpreted
follows. The depth and width of the V-shaped well depe
sensitively on the temperature.17 The lower the temperature
the narrower the potential well, so the peak on the curve
mobility versus separation between layers should shift
ward smaller separations as the temperature decreases.
studied structures, the peak was detected at liquid-nitro
temperature at 13 nm, whereas the width of the dopant
tribution was, as noted above, 5 to 7 nm. Therefore the ov
lap of the wave functions takes place when the dopant
tributions in the quantum wells also overlap considerab
Moreover, at liquid-nitrogen temperature the contributi
from electrons thermally excited to higher two-dimension
subbands can be quite considerable, and their wave funct
overlap at larger distances. The latter statement is corro
rated by the presence of the long tail of mobility on the s
of larger separations at the liquid-nitrogen temperature.

4. PERSISTENT PHOTOCONDUCTIVITY

In all structures studied, the persistent photoconductiv
was observed at the liquid-nitrogen and liquid-helium te
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peratures. In structures with single delta-layers, the resis
ity decreased by 10–20% after illumination atT577 K and
by 30–40% at the liquid-helium temperature. In doub
delta-layers the persistent photoconductivity was essent
smaller and equal to;5% of the dark conductivity.

As was noted above, photoionization of DX-cente
whose energy is lower than the Fermi level, can be one of
causes of the persistent photoconductivity.11 It is well
known,18 however, that DX-centers in GaAs do not reson
with conduction electrons when the donor concentration
single delta-layer isND5331012 cm22, i.e., their energy is
above the Fermi level since the DX-center energy is 15
300 meV above the conduction band bottom. Nonetheles
the studied samples with the Hall concentration of electr
in the layern52.531012 cm22 (ND5331012 cm22) persis-
tent conductivity is observed at liquid-nitrogen temperatu
and lower. The model suggested by Sanchez–Dehesaet al.12

for interpreting the persistent photoconductivity does
take into account the surface potential, which should play
important role in thin epitaxial GaAs films~in GaAs the
surface potential determined by charged surface states ra
between 0.7 and 0.8 V, depending on the surface proces
technique19!. Emergence of a hole layer near the surfac10

seems very improbable because it requires a surface pote
of an unknown nature which should remain constant b
under illumination and when the light is off.

The following cause of the persistent photoconductiv
is more realistic in our opinion. Owing to the presence of
surface potential in GaAs, the delta-layer that is closer to
surface is slightly depleted. There is a constant electric fi
between the delta-layer and the surface in the absenc
additional doping:

E5ws /z,

wherews is the surface potential andz is the depth at which
the delta-layer is located. The negative charge of the sur
states is

Qs5eS ND2(
i

ni D ,

whereND is the two-dimensional concentration of donors
the delta-layer. Under interband illumination, electron–h
pairs generated in the region of the surface electric field s
up. Electrons are driven to the delta-layer, and holes ann
late with electrons in surface states. The well-known eff
of band flattening under illumination takes place. When
light is off, electrons from the delta-layer partially occup
emptied surface states. The full recovery, however, is imp
sible because of the potential barrier created between
layer and surface. If the barrier cannot be tunneled throug
can be passed over only by thermally activated electro
therefore, the lower the temperature, the larger the rela
decrease in the delta-layer resistance in comparison with
dark resistance, as was observed in experiments.

In order to check out this assumption, we performed
simple experiment on gated samples with single delta-lay
The idea of the experiment was that the charge of surf
states could be regenerated owing to the delta-layer elect
driven to surface states via an external electric circuit if
v-

lly

,
e

e
a

–
in
s

s

t
n

ges
ing

tial
h

e
e

ld
of

ce

e
lit
i-
t
e

s-
he
it
s,
e

he

a
s.
e
ns
e

suggested model is correct. A diagram of the experime
configuration is shown in the insert to Fig. 4. Measureme
were performed at 4.2 K. The sample was cooled in the d
The delta-layer resistance was measured with a ‘‘hung’’ g
~the region on the left oft0 in Fig. 4!. It was 600V/h. Then
a filament lamp placed in the cryostat next to the sample
switched on for some time. Owing to the photoconductiv
~during the time interval fromt0 to t1 , Fig. 4! the measured
resistivity was 300V/h. Then the illumination was turned
off. Within a few seconds the resistivity increased to 4
V/h and remained constant. The persistent photoresisti
remained constant to within 0.5% for 24 h~betweent1 and
t2!. Then the gate was connected to one of the ohmic c
tacts, and as a result, the resistivity increased to 520V/h,
although it did not return to the initial value~the region on
the right of t2 in Fig. 4!. After warming up and subsequen
cooling in the dark, the initial resistivity of the sample wa
restored.

It is impossible to restore the initial sample resistivity b
connecting the gate to the delta-layer because similar
cesses associated with optical recharging of deep level
the interface region or in the interior of the semi-insulati
GaAs should also take place on the side of the se
insulating substrate. Note that the nontransparency of
gate had little effect because neutralization of the nega
surface charge due to illumination near gate edges led to
total neutralization of charges under the metal gate beca
surface states are separated from the gate only by a
tunnel layer of natural GaAs oxide.

In testing experiments, the sample was illuminated b
lamp through a GaAs filter in order to cut off the interba
light. In this case no photoconductivity was detected.

Fu and Willander20 showed that the electron mobility in
the delta-layer increased with the surface potential genera
for example, by changing the gate voltage. This was att
uted to a shift of the wave functions away from scatteri
impurities in the delta-layer~Fig. 5!.

In our experiments, however, we detected an oppo
effect. For example, in structures with a single delta-dop
layer the Hall mobility in the dark was 2900 cm2/V•s and in
the presence of persistent photoconductivity it w
4100 cm2/V•s.

This controversy can be tentatively explained as follow

FIG. 4. Resistivity of a Hall-bridge structure with an aluminum gate vers
time ~the experimental configuration is shown in the insert! before (t
,t0), during (t0,t,t1) and after (t1,t,t2) illumination, and after filling
surface states with photogenerated electrons (t.t2). The time scale on dif-
ferent sections of the curve is different.
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Our calculations indicate that the electron concentration
creases by about 20% when the surface potential is redu
Eighty-five percent of them go to higher subbands, where
mobility is a factor of about five higher than that in th
ground-state subband.16 In our model calculations we use
the values of the surface potentialws50.1 V in the presence
of persistent photoconductivity andws50.8 V for dark con-
ductivity. This redistribution of electrons is attributed to th
fact that the potential well becomes wider and more sy
metrical when the surface potential is lowered~Fig. 5!.
Simple estimates by Eq.~3! yield the 20% increase in th
Hall mobility, which is in a fair agreement with experiment
data.

An important point is that two processes making opp
site contributions to the resulting Hall mobility occur concu
rently when the surface potential increases:~1! electrons are
repelled from the plane of scatterers, which should lead
higher electron mobility, primarily in the higher subband
where the wave function shift is larger;20 ~2! elevation of
higher subbands in a more narrow asymmetrical poten
well, as a result of which the population of higher subban
with higher mobilities decreases. Our data indicate that
second effect dominates, at least in the studied structu
and the Hall mobility drops with the surface potential.

The investigation of the nature of persistent photoc
ductivity has shown, in particular, that it is incorrect to com
pare properties of double delta-layers with those of sin
layers because of the presence of the surface potential.

FIG. 5. Self-consistent calculation of the bands in the potential well aro
the delta-layer:Ec

f is the conduction band edge in the regime of persist
photoconductivity forws50.1 V ~solid curve!; Ec

d is the conduction band
edge in darkness withws50.8 V ~dashed curve!; E0 , E1 , andE2 are ener-
gies of size-quantized levels; solid lines show energies in the persi
conductivity regime, and dashed lines plot energies in darkness. All ene
are measured with respect to the Fermi level,EF50; z is the distance to the
surface. Concentration of donors in the delta-layer isND5331012 cm22,
the temperature in calculations isT54 K. For the levelE2 the graph shows
the wave functionsF2 : the solid curve is the wave function in the persiste
photoconductivity regime, the dashed line shows the wave function with
illumination. The curves of the wave functions are shifted along the vert
axis, their vertical scale is arbitrary. It is clearly seen that in the dark reg
the wave function is farther from the doping plane shown by the vert
dashed line.
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5. CONCLUSIONS

In double delta-layers the conductivity is higher becau
of the overlap of the wave functions and the displacemen
electrons away from scatterers. This effect, however,
pends on temperature and broadening of the dopant distr
tion in delta-layers. The persistent photoconductivity in e
taxial GaAs films containing delta-layers at low temperatu
is due to flattening of bands outside the potential well af
exposure to interband light. Comparison between proper
of delta-layers grown under different conditions at differe
depths from the sample surface is possible only in the p
ence of persistent photoconductivity at low temperatures
small surface potential. The Hall conductivity in delta-laye
depends on the surface potential~gate voltage! as a result of
the competition among various processes caused by cha
in the surface potential. The Hall mobility in delta-laye
with widths of the donor distribution of 5 to 6 nm in th
vertical direction is essentially smaller at high surface pot
tials and low temperatures.

The work was supported by the Russian Fund for F
damental Research, Project No. 95-02-06328.
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Fine structure of localized exciton levels in quantum wells
S. V. Gupalov, E. L. Ivchenko,* ) and A. V. Kavokin
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A theory is constructed for the long-range exchange and retarding interactions between an
electron and a hole in a quantum well. A method is developed that makes it possible to calculate
the ground and excited states of an exciton localized as a whole on a width fluctuation of a
quantum well in the form of a rectangular island. It is shown that taking into account the
electron–hole interaction mechanisms considered here causes the radiation doublet of the
exciton to split into two components polarized along the sides of the rectangle. The dependence
of the magnitude and sign of this splitting on the linear dimensions of the island and the
level number of the localized exciton are analyzed. ©1998 American Institute of Physics.
@S1063-7761~98!02502-5#
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1. INTRODUCTION

In an ideal semiconductor heterostructure with a qu
tum well, the motion of the charge carriers~electrons or
holes! is quantized in the growth direction of the structu
and is free in the plane of the interfaces. In actual structu
grown by even the most perfect molecular-beam epitaxy,
heteroboundary is not ideally flat and, in the best case,
surface whose sections lie in two adjacent planes separ
by a monomolecular layer. The topology of this surface
pends on the materials of the heterojunction and the pro
conditions, in particular on the temperature and the time
which growth was terminated. If there is no correlation b
tween the interfaces, the width of the well fluctuates, ass
ing one of three values. As a result, a quasi-two-dimensio
carrier finds itself in a fluctuation potential whose amplitu
is determined by the difference of the size-quantization
ergies in two ideal wells with widths that differ by one o
two monolayers. In this potential, a tail of localized excit
states is formed, corresponding to the low-temperature p
toluminescence of undoped structures with quant
wells.1–3 In the papers that we know of, localized excito
were calculated for an axially symmetric Gaussian potent4

or in a circular-island model.5 In structures of the GaAs
AlGaAs~001! type, the state of such a localized exciton, o
tically active in the interface plane, is doubly degenerate
is clear that axial symmetry of the localized potential is
exception and, as a rule, it is anisotropic in the interfa
plane. A decrease in the symmetry must remove the de
eracy of the radiation doublet and affect the polarization
the photoluminescence when the excitons are optically
ented.

A theory of excitons localized on anisotropic islands o
monolayer fluctuation of the width of a quantum well is co
structed in this paper. It is assumed that the linear size of
island exceeds the Bohr radius of a quasi-two-dimensio
exciton. It is shown that the splitting of the doublet caus
by the long-range exchange interaction of the electron
hole in the exciton in this case is several tens of microe
3881063-7761/98/86(2)/7/$15.00
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tron volts when the sides of the rectangular island differ b
factor of 1.5 or 2. Such splitting significantly exceeds t
natural linewidth\/t of the radiation of a localized exciton
since a typical value for its lifetime is about 1029 sec. Gam-
monet al.6 recently studied the photoluminescence spectr
of a localized exciton from an individual island in a GaA
AlGaAs~001! quantum well in the optical near-field regim
and detected splitting of thee12hh1(1s) doublet into two
components polarized along the@110# and@11̄0# axes. In the
photoluminescence excitation spectrum, the same aut
observed excitation of a state of an exciton localized on
island as a single whole. For the ground and four exci
states, the splittingD5E11̄02E110 between the sublevels po
larized along the@11̄0# and @110# directions equalled225,
141, 145, 222, and247 meV, respectively. It was there
fore of interest to elucidate whether it is possible to choo
the size of the rectangular island so as to reproduce the
dicated sequence of signs of the splittingD. Preliminary re-
sults of this work were presented in Ref. 7.

2. EXCHANGE AND RETARDING MECHANISMS OF
ELECTRON–HOLE INTERACTIONS

A consistent theory of electron–hole exchange inter
tion in semiconductors has been developed by Pikus
Bir.8,9 In the effective-mass approximation, the Coulom
interaction operator between an electron and a hole i
semiconductor crystal includes three contributions, desc
ing, respectively, the direct, or intraband, Coulomb inter
tion (UC) and the long-range (Uexch

long) and short-range
(Uexch

short) exchange interaction. We introduce the two-partic
excited states of the crystalum,ke ;n,kh&, whereke,h is the
wave vector of the electron or hole, and the indicesm andn
label the degenerate states of the electron in the conduc
band and the hole in the valence band atke,h50 ~for defi-
niteness, a direct semiconductor with cubic symmetry and
extremum at theG point is considered!. Then the matrix
elements of theUC andUexch

long operators between these stat
can be written as
© 1998 American Institute of Physics
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^m8,ke8 ;n8,kh8uUCum,ke ;n,kh&

52
1

V

4pe2

k0uke2ke8u
2 dm8mdn8ndke1kh ,k

e81k
h8
, ~1!

^m8,ke8 ;n8,kh8uUexch
~long!um,ke ;n,kh&

5
1

V

4pe2\2

kbm0
2Eg

2

~K•pm8n̄8!~K•pmn̄!*

K2 dke1kh ,k
e81k

h8
.

~2!

HereK is the total wave vector,ke1kh5ke81kh8; m0 is the
free-electron mass;Eg is the band gap;pmn̄ is the matrix
element of the momentum operator, calculated between
electronic Bloch functionsum,k50& and un̄,k50& ~the hole
staten,k and the electron staten̄,2k are coupled to each
other by the time-inversion operator!; k0 andkb are the per-
mittivities, low-frequency and high-frequency~at the
electron–hole-pair excitation frequency!; e is the charge of
the electron; andV is the volume of the crystal. The interac
tion given by Eq.~2! is described by the sequence of di
grams in Fig. 1, where a pair of lines represents the Gre
function of electron–hole excitation, while a wavy line re
resents the Fourier component of the unscreened Coul
potential 4pe2/Vuke2khu2. This interaction can thus be in
terpreted as the result of the virtual recombination and g
eration of an electron–hole pair, and it is reduced by a fac
of kb when the chain of virtual electron–hole excitatio
induced by the Coulomb potential is taken into account
the diagrams. Equation~2! can be obtained by one mor
method: the macroscopic electric field generated by
electron–hole pair can be calculated, and the self-consis
effect of this field on the energy of the pair can be taken i
account.

The Fourier components of the Coulomb potential w
wave vectorsb1ke82ke , whereb are nonzero reciproca
lattice vectors, contribute to the short-range interacti
Whenke andkh are small enough to satisfy the criterion f
the applicability of the effective-mass method, the opera
Uexch

short has the character of a contact interaction and can
represented in the formDm8n8,mna0

3d(re2rh), wherea0 is
the lattice constant and the factora0

3 is separated out so tha
the coefficientsDm8n8,mn will have the dimension of energy
The dependence of these coefficients on the band indic
found from symmetry considerations, while their absolu
magnitudes are determined by comparing theory with exp
ment by studying the fine structure of the exciton levels~see,
for example, Refs. 10–12!. The number of linearly indepen
dent coefficients coincides with the number of irreducib
representations contained in the direct productGc3Gv ac-
cording to which the electron states at the bottom of
conduction band and at the top of the valence band tra
he
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form. For illustration, let us consider the pair of bandsG6

and G7 in GaAs-type semiconductors:G63G75G21G5 . It
is convenient to go to a basis of electron–hole excitations
which the three statesun,ke ,kh& (n5x,y,z) are optically
active in the polarizatione in, while the optical transition to
the fourth stateuG2 ,ke ,kh& is forbidden. The exchange inter
action given by Eq.~2! involves only the statesun,ke ,kh&
and has in the new basis the form

^n8,ke8 ,kh8uUexch
~long!un,ke ,kh&5

4p

kbV S e\p0

m0Eg
D 2 Kn8Kn

K2 dK8,K ,

~3!

wherep0 is the interband matrix element of the momentu
operator for the optical transition to the stateun&.

We have generalized Pikus and Bir’s theory,8 taking into
account the retarding interaction that results from the suc
sive emission and absorption of a transverse photon by
electron–hole pair, described by the diagram in Fig. 2. H
the dashed line represents the photon Green’s function
medium with permittivitykb , while the vertex correspond
to the factor2 i /\ as well as the electron–photon interactio
matrix element

2
e

m0
S 2p\

VvKkb
D 1/2

e•pmn̄

for photon absorption or the complex-conjugate express
for photon emission, where the photon frequency
vK5(c/Akb)K, ande is its polarization vector. As a resul
we get

Sel2phot~n8,ke8 ,kh8 ;n,ke ,kh ;v!52
4p

kbV S e\p0

m0Eg
D 2

3S dnn82
KnKn8

K2 D k2

K22k22 i0
dK8,K , ~4!

for the matrix elements of the retarding interaction, whe
k5Akb(v/c) and v is the excitation frequency of the
electron–hole pair or, in rigorous diagram language, the
gument of the self-energy function that appears when
calculates the Green’s function of an electron–hole pair,
the productvvK is replaced with (Eg /\)2 in the common
factor. The real and imaginary parts ofSel-phot determine,
respectively, the renormalization of the energy and
damping of the pairwise excitation caused by photon em

FIG. 2.
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sion. In deriving Eq.~4! we took into account that the matri
e1,n8e1,n1e2,n8e2,n ~where e1'e2'K ) is the projection op-
erator onto a plane perpendicular to the vectorK .

An exciton calculated taking into account only the ma
interaction given by Eq.~1! is called a mechanical exciton.13

A Coulomb exciton is found neglecting the retardation: a
cording to Eq.~3!, the splitting between the longitudinal an
transverse states of a 1s exciton is associated with the m
croscopic parameterp0 by the relationship

\vLT5
4

kbaB
3 S e\p0

m0Eg
D 2

, ~5!

whereaB is the exciton Bohr radius. Finally, taking the r
tarding interaction into account results in transverse exc
polaritons. When we haveK;k, the splitting of the polar-
iton branches substantially exceeds the longitudin
transverse splitting\vLT , and the polariton effect can b
neglected by comparison with the long-range exchange in
action only whenK@k.

3. ELECTRON–HOLE INTERACTION IN A QUANTUM WELL

Let us consider electron–hole excitations in a semic
ductor quantum well in which the single-frequency states
characterized by the size-quantization subband number
the two-dimensional wave vectorki5(kx ,ky), and by spin
indices m,n, running over two values. In quantum wel
grown using GaAs-type semiconductors, we havem561/2
for an electron andn563/2 for a heavy hole orn561/2
for a light hole. If intersubband mixing is neglected, the e
velope of the two-frequency wave function has the form

C~re ,rh!5S21 exp@ i ~ke
i
•re1kh

i
•rh!#we~ze!wh~zh!.

~6!

Herer is the component of three-dimensional vectorr in the
interface plane (x,y), S is the area of the sample, andwe(ze)
andwh(zh) are single-frequency size-quantization function
In a symmetrical quantum well, these functions are char
terized by a definite parity with respect to reflection in
plane passing through the center of the well,z50. For defi-
niteness, we shall assume in what follows th
we,h(2z)5we,h(z).

Let us calculate the matrix elements of the long-ran
exchange and retarding interactions between a quasi-
dimensional electron and hole. To do this, it is necessar
multiply the sum of the matrix elements of the operato
Uexch

long andUel-phot by

exp@ i ~Kzz2Kz8z8!#we~z8!wh~z8!we~z!wh~z!,

to sum overKz8 and Kz , and to integrate overz8 and z.
Taking into account the symmetry of the functionswe,h(z),
we get

S~m8,n8,ke8 ,kh8 ;m,n,ke ,kh ;v!

5
4p

Skb
S e\

m0Eg
D 2

dk
e81k

h8 ,ke1khH @~q•pm8n̄8!~q•pn̄m!

2~pm8n̄8•pn̄m!k2#
iP~g!

2g
1pm8n̄8

z pn̄m
z

-

n

–

r-

-
e
by

-

.
c-

t

e
o-
to
s

3FQ1
i

2
gP~g!G J , ~7!

where we have writteng5Ak22q2 and k25(v/c)2kb as
before, the superscripti on the two-dimensional vectorske

andkh is omitted,q is a two-dimensional vector with com
ponents (ke,x1kh,x ,ke,y1kh,y), and

P~g!5E dz8E dzwe~z8!wh~z8!we~z!wh~z!

3exp~ iguz2z8u!, Q5E dzwe
2~z!wh

2~z!.

The separate contribution of the long-range exchange in
action is obtained from Eq.~7! by formally going to the limit
c→`, i.e.,k→0 or g5Ak22q2→ iq. The diagonal compo-
nents ofS become real in this case, since their imagina
parts are associated exclusively with the photon-emiss
process. An expression for the matrix elements of the lo
range exchange interaction between an electron and a ho
a quantum well was obtained earlier in Ref. 14 and is rep
sented in a more unwieldy form, containing not the envelo
we,h(z) but their Fourier components

C~kz!5E dz exp~2 ikzz!w~z!.

Neglecting intersubband mixing, we write the envelo
of the wave function of a free exciton in an ideal quantu
well in the form

Cexc~re ,rh!5S21/2 exp~ iq•Ri! f ~r!we~ze!wh~zh!, ~8!

where r5re2rh , and Ri is the center of gravity of the
exciton in thexy plane. The fine structure and the dispersi
of free quasi-two-dimensional excitons in quantum we
taking into account exchange interaction and retardation~or
the polariton effect!, has been calculated in a number
papers.14–17 Using Eq.~7!, we get, in accordance with Refs
14–17,

E152
2p

kb
i S e\p0

m0Eg
D 2 k2

Ak22q2
P~Ak22q2! f 2~0!.

E252
2p

kb
i S e\p0

m0Eg
D 2

Ak22q2P~Ak22q2! f 2~0!,

E35
2p

kb
i S e\p08

m0Eg
D 2FQ2

i

2
Ak22q2P~Ak22q2!G f 2~0!,

~9!

for the dispersion of the 1s exciton with a heavy (hh1) or a
light ( lh1) hole, whereEa5Ea82 iEa9 is the complex en-
ergy, the real part of which equalsEa85\(v2v0) ~\v0 is
the energy of a mechanical exciton atq50!, while the
imaginary part determines the radiative lifetime of the ex
ton, t52\/Ea9 ; the subscripta51,2,3 indicates the polar
ization of the exciton; axis 1 is perpendicular to the pla
that contains thez axis and wave vectorq, axis 2 is parallel
to q, axis 3 is parallel to thez axis, p0(e12hh1)5pcv ,
p0(e12 lh1)5pcv /), p08(e12hh1)50, p08(e12 lh1)
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52pcv /), andpcv is the interband matrix elementi ^SupzuZ&
in direct semiconductors with the zincblende structure.

For excitons with a heavy hole, we go to two basis sta
un,ke ,kh&, polarized along the fixed axesx,y, and two opti-
cally inactive states with total spinm1n562. In this basis,
Eq. ~7! takes the form

S~n8,ke8 ,kh8 ;n,ke ,kh ;v!5
1

S f2~0!
FE1S dn8n2

qn8qn

q2 D
1E2

qn8qn*

q2 Gdk
e81k

h8 ,ke1kh

5
2p

Skb
i S e\p0

m0Eg
D 2 qn8qn2k2dn8n

Ak22q2

3P~Ak22q2!dk
e81k

h8 ,ke1kh
.

~10!

4. LOCALIZED EXCITON STATES IN THE MODEL OF
INFINITELY HIGH BARRIERS

Let us consider the energy and exchange splitting of
exciton localized at the width fluctuations of a quantum we
Beyond the limits of the island, the quantum well consists
N monomolecular layers~in GaAs, the width of a monolaye
is a0/252.8 Å!. One of the interfaces of the barrier is fla
while the second interface in the region of the island sh
by a monolayer in the depth of the barrier; i.e., the width
the well equals (N11)a0/2 in this region. The island is cho
sen in the shape of a rectangle oriented along thex and y
axes.

For an estimate, we shall first carry out the treatmen
terms of a simple model of infinitely high barriers and n
glect the spread of the exciton beyond the limits of the
land. Assuming that the linear dimensionsLx andLy of the
rectangle exceed the exciton Bohr radiusaB , we write the
envelope of the exciton wave function in the form

Cexc~re ,rh!5F~X,Y! f ~r!we~ze!wh~zh!, ~11!

where f , we , andwh are the functions introduced into Eq
~8! and characterize the state of a free exciton in an id
well of width (N11)a0/2, X and Y are the components o
vector Ri , and the functionF(X,Y) describes the localiza
tion of the 1s exciton as a whole in the plane of the inte
faces. Using as boundary conditions the vanishing of
function at the perimeter of the rectangle, we get a se
solutions in the form

F~X,Y!5Fx~X!Fy~Y!, ~12!

where Fa(xa) (a5x,y) are one-dimensional size
quantization functions

A 2

La
H cos~p jxa /La! for odd j ,

sin~p jxa /La! for even j .
~13!

The energy of the localized exciton, measured from the b
tom of the exciton band in a (N11)-monolayer well, is char-
acterized by the two indicesj and j 8:
s

n
.
f

s
f

n
-
-

al

is
f

t-

Ej j 85
\2

2M F S j

Lx
D 2

1S j 8

Ly
D 2G , ~14!

whereM is the translational mass of the exciton as it mov
in the xy plane. Each levelEj j 8 consists of four sublevels
which, for a heavy exciton in GaAs/AlGaAs-type quantu
wells, are characterized by the projection of the total s
m1n561,62. Let us choose the basis states in the fo
u j , j 8,x&, u j , j 8,y&, and u j , j 8,62&, where u j , j 8,x&
5(u j , j 8,1&1u j , j 8,21&)/&, and u j , j 8,y&5(u j , j 8,1&
2u j , j 8,21&)/&. For normal incidence of the light, the ma
trix element of the optical excitation of an exciton is propo
tional to the integral*dXdYF(X,Y). SublevelsEj j 8,x and
Ej j 8,y with odd j , j 8 are therefore optically active in the po
larizationse i x ande i y, respectively, while all other exci
ton statesu j , j 8,62& with any j , j 8 and u j , j 8,x&, u j , j 8,y&
with at least one even indexj or j 8 are optically inactive.
However, the long-range exchange interaction given by
~10! causes splitting between sublevelsEj j 8,x andEj j 8,y for
arbitrary j and j 8. Specifically, going from the functions
F(x) to the Fourier components

F~q!5E dx F~x!e2 iqx

and using Eq.~10! for the self-energy functionS, we find the
renormalization of the energy of localized excitonu j , j 8,n&
(n5x,y):

DEn5
2p

Skb
S e\p0

m0Eg
D 2

(
q

qn
22k2

Aq22k2
Fx

2~qx!Fy
2~qy!

3@u~q2k!P~Ak22q2!2 iu~k2q!Im P~Ak22q2!#,

~15!

where u(t)51 holds for t.0 and u(t)50 for t,0,
k5Akbv j j 8 /c, \v j j 85E1s(N11)1Ej j 8 , andE1s(N11) is
the excitation energy of a free 1s exciton withqx5qy50 in
an (N11)-monolayer quantum well.1! Since the sum in Eq.
~15! includes the squares of the Fourier componentsFa(qa),
this sum is nonzero for states with either odd or even indi
j and j 8. Note that the imaginary unit in the square brack
under the summation sign is compensated by the imagin
ness of the square rootAq22k2 for k.q, whereas, when
k,q, the quantityP(Ak22q2) is real. Estimates show tha
the contribution to the sum from thek.q region is negli-
gible for typical quantum wells, and this contribution is in
cluded in Eq.~15! for generality. In Fig. 3, the dashed curve
show the dependence onLy of the splittingEx2Ey between
the radiative statesu1,1, x& and u1,1, y&, calculated for three
different values ofLx for a 10-monolayer GaAs/AlGaAs
quantum well and an 11-monolayer island. It can be s
from Fig. 3 that, in the range of island sizes considered h
the splitting lies within the limits of650 meV. This is much
less than the energy spacing between the levels of the lo
ized states~of the order of meV or more!, and this makes it
possible to restrict oneself to first-order perturbation the
when calculating the exchange corrections.
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5. LOCALIZED EXCITON STATES IN THE
FACTORIZED-ENVELOPE APPROXIMATION

The differenceE1s(N)2E1s(N11)[U of the excita-
tion energies of free 1s excitons in N- and
(N11)-monolayer quantum wells determines the height
the barrier that localizes the exciton in the island. In
GaAs/Al0.3Ga0.7As structure, the value ofU for N510 is 11
meV. In this section, we analyze the effect of the finiten
of barrier U on the exciton levelsEj j 8 and their exchange
splitting. ForLx ,Ly.aB , the envelopeCexc(re ,rh) can be
approximately represented in the form of Eq.~11!, bearing in
mind that f (r), we(ze), andwh(zh) are the functions calcu
lated for an (N11)-monolayer well if the coordinatesX and
Y lie inside the island or for anN-monolayer well in the
region outside the island. Then the envelopeF(X,Y) satisfies
the two-dimensional Schro¨dinger equation

F2
\2

2M S ]2

]X2 1
]2

]Y2D2UuS Lx

2
2uXu D uS Ly

2
2uYu D G

3F~X,Y!52«F~X,Y!, ~16!

where « is the localization energy of the exciton («.0),
associated with energy Ej j 8 by the relationship
Ej j 85U2« j j 8 . It is assumed that the envelopeF(X,Y) and
its derivative in the direction perpendicular to the side of
rectangle are continuous on the perimeter of the island.
efficient approximate method of solving such an equat
was proposed in Ref. 18. FunctionF(X,Y) is sought in the
form of a product of functionsFx(X) andFy(Y) that satisfy
the system of equations

F2
\2

2M

d2

dX2 2UPyuS Lx

2
2uXu D GFx~X!52«xFx~X!,

F2
\2

2M

d2

dY2 2UPxuS Ly

2
2uYu D GFy~Y!52«yFy~Y!,

~17!

FIG. 3. Splitting of the radiation doublet in a~1,1! exciton, calculated in the
model of infinitely high barriers~dashed curves! and in the factorized-
envelope approximation~solid curves! for three values of the length
Lx5950 Å ~1!, 700 Å ~2!, and 450 Å~3!.
f

s

e
n
n

coupled with each other via the quantities

Px5E
2Lx/2

Lx/2

Fx
2~X!dX, Py5E

2Ly/2

Ly/2

Fy
2~Y!dY.

These quantities differ from unity to the extent that functio
Fx(X) andFy(Y) penetrate under the potential barriers. T
localization energy of the exciton is expressed in terms
auxiliary energies «x and «y in the form
«5«x1«y2UPxPy . As before, the localized states a
characterized by the pair of indicesj and j 8, wherej 21 and
j 821 determine the number of zeroes of functionsFx(X)
andFy(Y), respectively. In Fig. 4, the solid curves show t
localization energy of the ground state of an exciton bou
on an island in a GaAs/AlGaAs~001! quantum well whose
width fluctuates from 10 to 11 monolayers. For comparis
the same figure also shows theE11(Ly) dependence calcu
lated forLx5450 Å in the model of infinitely high barriers
U→` ~dashed curve!. In this case we havePx5Py51, «
→`, while U2« remains a finite quantity. A comparison o
the dashed curve with solid curve3 shows that the model o
infinitely high barriers rather strongly exceeds the ene
values of the localized excitons. The discrepancy betw
the results of the two calculations increases even further
excited levelsEj j 8 with j 1 j 8.2. On the other hand, replac
ing Px and Py with unity in the system of Eqs.~17!, as a
consequence of which this system splits into two uncoup
one-dimensional Schro¨dinger equations, produces resu
that virtually coincide with the calculation in the approxim
tion of factorized envelopes.

6. DISCUSSION OF THE RESULTS

The solid curves in Fig. 3 were calculated from Eq.~15!
in the approximation of a factorized envelopeF(X,Y), i.e.,
with functions that satisfy Eqs.~17! substituted into Eq.~15!.
It can be seen that, unlike energyE11, the splittingEx2Ey is
not very sensitive to the method of calculation. Figure
shows how the energyEj j 8 and splittingEj j 8,x2Ej j 8,y de-
pend on the length of one of the sides of the rectangle fo

FIG. 4. Energy of the~1,1! ground state of a localized exciton vs lengthLy

for a fixed value ofLx5950 Å ~curve1!, 700 Å ~curve2!, and 450 Å~curve
3!. The dashed curve is calculated forLx5450 Å in the model of infinitely
high barriers.
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FIG. 5. Energy levelsEj j 8 of a localized ex-
citon ~a! and splittingEx2Ey between local-
ized statesu j , j 8,x& andu j , j 8,y& ~b! vs length
Ly for a fixed value ofLx5950 Å ~see inset!
in a GaAs/Al0.3Ga0.7As quantum well 28 Å
wide (N510). The curves show pairs of in
dexesj j 8 designating the exciton states. Th
solid and dashed sections of the curves co
respond to positive and negative splitting.
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fixed lengthLx5950 Å of the other side. The sequence
signs of the splitting observed in Ref. 6 is reproduced in
regionLy5420– 480 Å.

According to Eq. ~15!, the sign of the splitting
Ex2Ey[DEx2DEy is mainly determined by the sign of th
difference of the mean squares^qx

2& and ^qy
2&. Using Eq.

~17!, it can be shown that̂qx
2&2^qy

2&5(«y2«x)•2M /\2. At
j 5 j 8 the splitting of theEj j 8,x andEj j 8,y levels is evidently
negative forLy,Lx and positive forLy.Lx , and this agrees
with curves 11 and 22 in Fig. 5. As the quantum numbej
increases, the dispersion of^qn

2& increases, while the energ
«n decreases correspondingly. Therefore, for close-lyingLx

andLy , the signs of the differencesEj j 8,x2Ej j 8,y and j 2 j 8
coincide.

The short-range exchange interaction also splits
statesu j j 8,x& andu j j 8,y&. In calculating the short-range con
tribution, the island-induced admixture of the61/2 states of
the light hole into the states of the heavy hole with mom
tum projection63/2 must be taken into account. Estimat
show that this contribution toEx2Ey can be neglected by
comparison with the analogous contribution of the lon
range exchange interaction to the extent that the width of
quantum well is small in comparison with the size of t
island in the interface plane.

As already pointed out, in consequence of the rectan
lar symmetry of the localizing potential, statesu j , j 8,n& with
even j or j 8 do not interact with photons propagating alo
thez axis. Optical transitions to the excited states of a loc
ized exciton with oddj , j 8 are allowed, but the probabilitie
wj j 8,n of such transitions are a factor of about (j j 8)2 less
than with excitation of the ground state withj 5 j 851. The
observation in the photoluminescence excitation spectr6

of a set of doublets whose components are polarized a
the @110# and @11̄0# axes can be explained by assuming th
the localizing anisotropic islands extend along one of th
axes, but that its shape is not quite invariant to reflection
the~110! and~11̄0! planes. In other words, it can be assum
when the exchange splitting is calculated that these sym
try elements are present in the system, and, for definiten
a rectangular shape can be chosen for the islands, whe
when the transition probabilitieswj j 8,n are calculated, distor
tion of the shape of the island can be taken into acco
f
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-
e

u-
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causing the ground stateu1,1,n& to be mixed into the excited
statesu j , j 8,n&. For all the excited levels, the probabilitie
wj j 8,n will then be nonzero but small by comparison wi
w11,n . It can be assumed as an alternative that the lines
served in the photoluminescence excitation spectrum co
spond to the ground states of excitons that are localized
different islands located at a small distance from one anot
so that tunneling transitions from one island to another,
duced by acoustic phonons, are possible. In this case, a
nation of the signs of the splittingE11̄02E110 would mean
that some of the islands are oriented along the@11̄0# axis,
while others are oriented along the@110# axis. This conflicts
with Fig. 1 from Ref. 6, which shows a scanning electr
micrograph of the GaAs surface.

The theory developed here can thus be used to exp
the order of magnitude and sign alternation of the splitting
the ground and excited states of an exciton localized on
anisotropic island in a structure with a quantum well, o
served in Ref. 6. We assume that the splitting of radiat
exciton states detected in GaAs/AlGaAs quantum wells
Ref. 19 is also associated with anisotropy of the localiz
islands. In the structures with quantum wells studied
Heller and Bockelmann,20 optical orientation of localized ex
citons was observed only when an external magnetic fi
was applied; it is natural to explain this on the assumpt
that a radiation doublet was split. In conclusion, note that
character of the orientation of anisotropic islands m
strongly depend on the choice of heterojunction and the te
nology used to grow the structure. In particular, it is possi
for the islands to be distributed randomly over direction
that the structure is isotropic in the middle in the plane of
interface. The overwhelming majority of islands are nev
theless anisotropic, and this local anisotropy, which cau
splitting of the radiative states of localized excitons, can
effectively studied by the method of optical orientation a
by aligning the excitons in a magnetic field.

This work was supported by the Russian Fund for Fu
damental Research~Grant 95-02-06038!, INTAS ~Grant 93-
3657-Ext!, and also by the Volkswagen Fund.
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Electronic structure and superconductivity of k-„BEDT-TTF…2X salts

V. A. Ivanov,* ) E. A. Ugolkova, and M. E. Zhuravlev
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Russia
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We have analyzed the electronic structure and superconducting properties of layered crystals
based on BEDT-TTF salts~hereafter denoted as ET!, in which intramolecular interaction among
electrons is important. For the case of realistick-packing of ET-molecules in a plane of ET2

dimers we have calculated the electron density of states. Using the calculated electronic structure,
we have analyzed the symmetry of the anisotropic superconducting pairing. The critical
value of the effective attraction between electrons for formation of a bound pair in an empty
lattice has been estimated. The relation between the nodes of thed-type order parameter on the
anisotropic Fermi surface and superconducting properties of the condensate is discussed in
the Bardeen–Cooper–Schrieffer~BCS! model. The results are in agreement with the known band
parameters of the normal phase and measurements of the magnetic field penetration depth,
heat capacity as a function of temperature in the low-temperature range, and NMR ink-ET2X
superconducting salts. ©1998 American Institute of Physics.@S1063-7761~98!02602-X#
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1. INTRODUCTION

The progress in studies of conductivity1 and
superconductivity2 of organic materials made since their di
covery is a clear indication of their importance for both fu
damental science and applications. After the synthesis of
bis~ethylendithio!tetrathiafulvalene~BEDT-TTF, in what fol-
lows ET! and the discovery of superconductivity in th
b-ET2I3 salt at normal pressures,3 the k-ET2X compounds4

have attracted a lot of attention on account of the diversity
their properties. Although their electronic and crystal stru
ture are quite similar and they all have half a hole per
molecule, we can find amongk-ET2X compounds semicon
ductors, such as those with X5Cu@N~CN!2#Cl and
d8-Cu@N~CN!2#Br, and both normal and superconductin
metals, for example, so-called 10 K-class superconduc
with Tc.10 K under ambient pressure, name
X5Cu@N~CN!2#Br, Cu@N~CN!2#CN, and Cu~NCS!2. Or-
ganic superconductors of thek-ET2X family have the high-
est superconducting transition temperatures among org
superconductors, up toTc.13 K. At the same time, the
k-ET2X compounds were the first organic metals who
Fermi-surface topology was determined using Shubni
oscillations.5,6 Comprehensive experimental studies of rec
years7–9 have yielded enough information to draw a pictu
of k-ET2X properties and develop a common approach
them.

In the conducting plane ET molecules are bound in
nor ET2 dimers located at lattice sites, and neighbori
dimers are aligned perpendicularly to one another~Fig. 1!.
This configuration is calledk-ordering of ET molecules
Layers of singly charged ET2 cation radicals alternate with
polymer layers of linear and multiply bent X anions. Th
separation between layers is 15 Å, which equals the lat
constant of bismuth-based high-Tc superconductors of the
3951063-7761/98/86(2)/10/$15.00
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2-2-1-2 group and is slightly larger than the layer separat
in 1-2-3 superconductors~12 Å!. ET2 dimers are located a
sites of a plane lattice composed of equilateral triang
whose unit cell is a rectangle with sidesa andA3 a contain-
ing two ET2 dimers ~in what follows we assume that th
lattice constant isa51!. Quantum-chemical calculation
yield a higher electron density at sulphur and carbon ato
in the plane central fragment C2S4 of the ET molecule. The
distance between two plane molecules in each dimer is
Å, whereas the mean distance between geometrical cen
of neighboring ET2 dimers is about 8 Å. The preferentia
localization of electron density peaks in the central fra
ments of ET molecules and the small overlap between
wave functions of the molecules are responsible for the h
energyUET of intramolecular Coulomb repulsion betwee
electrons and the narrow energy bandwidths ink-ET2X ma-
terials. Note that at presentk-ET2X organic salts are mate
rials with stronger electron correlations than those in in
ganic materials, such as HTSCs and transitional m
oxides. Recently the group of layered organic materials
been supplemented with two novel superconductors, nam
ET4X with halogen-mercury layers and the organic me
ET8X8~CH6H5Cl!2.

10

The importance of electron–electron interaction in la
ered organic salts based on the ET molecule was indic
by Bulaevskii11 and Toyotaet al.12 Kino and Fukuyama13

analyzed magnetic properties ofk-ET2X salts,a-ET2I3, and
ET2MHg~SCN!4, taking into account these interactions
the Hartree–Fock approximation.

Strong electron correlations suppress charge den
fluctuations near the top of the band and lead to a wea
electron–phonon interaction. At the same time, the C–S
C5C phonon modes do not contribute to the supercond
ing isotopic shiftDTc , as follows from measurements ofTc

in k-ET2X superconducting salts with isotope34S and
© 1998 American Institute of Physics
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13C513C in the central fragment of the ET molecule,8 nor do
they affect normal properties of salts. Thus the role of cen
vibronic modes and electron–phonon interaction canno
crucial for normal and superconducting properties
k-ET2X salts. Therefore we ignore such modes in our ana
sis.

Unlike the Hartree–Fock approximation, for generaliz
Hubbard–Okubo operators14 the diagram technique allow
one to take adequately into account strong electron corr
tions. This technique describes an insulator–metal transi
and indicates that allk-ET2X salts that are known at prese
are close to the phase-transition boundary. The latter is
termined by the ratio between the amplitudes for the in
dimer and intradimer tunneling of electrons.

The analysis of the electronic structure ofk-ET2X salts
and their superconducting properties described in the p
is based on the energies characterizing these materials,
spective of the superconducting pairing mechanis
UET>1 eV ~intramolecular Coulomb repulsion between ele
trons!, t0.0.2 eV ~the integral of electron hopping betwee
ET molecules within ET2 dimer!, t1,2,3.0.1 eV~the integrals
of electron hopping between molecules of neighbor
dimers!. To simplify our calculations we assume th
UET /t1,2,3@1. Since there are three electrons for each E2

1

dimer, i.e., each hole, ET2
15(ETaETb)1, the hole represen

tation is preferable in this case. In the effective dimer Ham
tonian approximation13–16 each dimer is described as a s
with two degenerate orbitals,a and b. In other words,
k-ET2X metals can be described by a doubly degene
Hubbard model with one carrier per lattice site~dimer! and
with two sites~dimers! in one unit cell of a triangular lattice
The electron dispersion laws have been derived in the ti
binding approximation for correlated electrons. The densi
of electron states for both normal and superconduc
phases have been calculated. Anisotropic superconduc
pairing of various symmetry modes has been investiga
and the critical value of the effective attraction between el
trons needed for formation of Cooper pairs has been e
mated. Strong electron correlations manifest themse

FIG. 1. Alignment of ET2 dimers at sites of the triangular lattice. The rat
between the sides of the unit cell shown by dashed lines is 1:).
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through renormalization of both electron transfer integr
and chemical potential due to correlation factors. It turns
that nodes of the order parameter on the anisotropic Fe
‘‘surface’’ control such parameters ofk-ET2X salts as non-
activation electron specific heat, NMR relaxation rate, a
penetration depth of a weak magnetic field. The carrier s
tering due to nonmagnetic impurities has different effects
coupling constants for symmetry modes with differe
parities17 and is inessential for nonspherical Ferm
surfaces.18–21 In this paper we limit our consideration to th
case of purek-ET2X crystals without impurities.

2. ELECTRON DENSITY OF STATES IN THE NORMAL
PHASE

In k-ET2X compounds internal degrees of freedom
the ET2 plane are important, namely the dimerization of E
molecules and the presence of two ET-dimers in one u
cell. In k-ET2X salts with different X2 anions the weak
asymmetry of molecule positions in the dimer leads to
difference between the interdimer integralst1,2,3 responsible
for intermolecular hopping.22 Here t2 is the azimuthal inte-
gral of electron hoppings along theb-axis of the crystal
lattice,22 which coincides in this paper with they-axis. The
following electron dispersion functions in the normal~non-
superconducting! phase for a triangular dimer lattice wit
different interdimer integrals~the azimuthal integral such a
t2 and nonazimuthal integrals such ast1 andt3! in the tight-
binding approximation were calculated16:

«p
65t2 cospy6At1

21t3
212t1t3 cos~)px! cos

py

2
, ~1!

where the quasimomenta belong to the first Brillouin zo
upyu<p, u)pxu<p. The splitting of the one-particle spec
trum ~1! is caused by the presence of two dimers in a u
cell. The dimerization of ET molecules leads to further sp
ting of the spectrum so that each pair of one-particle ener
in Eq. ~1! generates the upper anti-binding and lower bind
bands in accordance with the formulaEp56t06«p

6 , where
t0 is the intradimer hopping integral. Note the two-sheet n
ture of the two-dimensional Fermi ‘‘surface’’~Fermi line!
due to the branches of spectrum~1!. The «1 branch defines
open sections of the Fermi ‘‘surface,’’ and«2 its closed
section. The pointG(px5py50) in the Brillouin zone is a
saddle point on the dispersion surface«2(px ,py). In the
range of small quasimomentap the sections«1 degenerate
to elliptic arcs, and«2 to a pair of hyperbolic branches.16

Without taking into account electron correlations, the to
carrier density of states~per spin and per unit cell! has the
form

r~«!5 (
px ,py

@d~«2«1/t2!1d~«2«2/t2!#,

r~«!

5
1

p2 E
21

1 dyu«2yu

A~12y!~y12y!~y2y2!~y2y3!~y2y4!~y11!
~2!
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with the energy« expressed in the dimensionless form usi
the azimuthal hopping integralt2 . In Eq. ~2! y5cospy and

y1,25«1
D2

4
6DA1

2 S «111
D2

8 D ,

y3,45«1
d2

4
6dA1

2 S «111
d2

8 D , ~3!

where

D5
t11t3

t2
, d5

ut12t3u
t2

.

The density of states~2! cannot be expressed analyticall
but its singular points can be determined by detecting p
wise equality of the roots~3! included in the denominator o
the integrand in Eq.~2!. It follows from Eq. ~2! that the
normal electron density of states has split logarithmic pe
at «5212d2/8 and«512D around the point«521.
.
-

-
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a
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rm
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s

In the limiting case of equal nonazimuthal hopping int
grals~d50, t35t1! but t2Þt1,3 in k-ET2X salts, one-particle
energies~1! are reduced to

«p
65t2 cospy62t1 cos

py

2
cos
)px

2
. ~4!

Then the total density of states is expressed, in accorda
with Eq. ~2!, as

r~«!5
1

p2 E
21

1 dy

A~12y!~y12y!~y2y2!~y11!
, ~5!

wherey1,2 are defined by Eq.~3!. In the energy band2(1
1D)/2,«,12D the density of states can be expressed
plicitly as

r~«!5
&

p2qADA212«1D2/4
KS 1

q
D ,
q5!S 12«2
D2

2
1

D

2
A212«1

D2

4
D S 11«1

D2

2
1

D

2
A212«1

D2

4
D

2DA212«1
D2

4

, ~6!
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the

rac-
ular
tion

c-
ela-
on-
ns

ar
whereas for the energies 12D,«,11D we obtain

r~«!5
&

p2ADA212«1D2/4
K~q!, ~7!

whereK(x) is the complete elliptic integral of the first kind
As follows from Eqs.~6! and ~7!, the density of states di
verges logarithmically at the energies«521 and «51
2D.

In the limiting case of fully isotropic interdimer hop
pings (t35t15t2) Eqs.~6! and~7! coincide with the electron
density of states given in Refs. 14 and 15. Note that
density of states used in Ref. 23 was determined for a dif
ent energy band, so the triangular lattice was considered
square one with electron hopping to second nearest ne
bors in the diagonal direction.

In the specific case of one dimensionality,D50 and the
resulting density of states transforms to the well-known fo

r~«!5
2

p2A~12«!~11«!
K~0!.

It does not contain a logarithmic peak, but square-root V
Hove singularities occur on the boundaries of the allow
energy bands~«521, «51! owing to energy factors in
front of the elliptic integrals in Eqs.~6! and ~7!.
e
r-
s a
h-

n
d

3. ANISOTROPIC SUPERCONDUCTING PAIRING

In the study of superconductivity ink-ET2X salts,14 only
the effective attraction between electrons of nearest ne
bors on a square lattice was taken into account, whereas
dispersion equations were derived with due account of d
onal electron hoppings to the next nearest neighbors. In
reference system defined in this paper, the effective att
tion between carriers at nearest sites of the regular triang
lattice with the one-point basis is determined by the equa

V~p2p8!52FV1 cos~py2py8!1V2

3cos
)~px2px8!1py2py8

2
1V3

3cos
)~px2px8!2~py2py8!

2 G . ~8!

Equation ~8! for the effective attraction between ele
trons does not change the symmetry of the dispersion r
tions for elementary excitations, irrespective of the superc
ducting pairing mechanism. Its expansion in basis functio
$h i(p)% of the irreducible representation of the triangul
lattice point group in the isotropic case (V1,2,35V) has the
form

V~p2p8!52V(
i 51

6

h i~p!h i~p8!, ~9!
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where

h1~p!5
1

)

S cospy12 cos
py

2
cos
)px

2 D ,

h2~p!5
2

A6
S cospy2cos

py

2
cos
)px

2 D ,

h3~p!5& sin
py

2
sin
)px

2
,

h4~p!5
1

)

S sin py12 sin
py

2
cos
)px

2 D ,

h5~p!5
2

A6
S sin py2sin

py

2
cos
)px

2 D ,

h6~p!5& cos
py

2
sin
)px

2
. ~10!

Here the basis functionsh1(p), h2(p), andh3(p) describe
the isotropic singlet s* -pairing, dx22y2-pairing, and
dxy-pairing, respectively, in the chosen reference frame~see
Sec. 1!, and the basis functionsh4,5,6(p) are linear combina-
tions of basis functions for the tripletp-pairing. Let us con-
sider the general equation of the standard BCS theory for
superconducting order parameterD~p! at finite temperatures

D~p!5 (
p8,a56

V~p2p8!D~p8!

3
tanh@A~jp

a~p8!!21D2~p8!/2T#

2A~jp
a~p8!!21D2~p8!

, ~11!

where the one-particle energies of correlated carriers are

jp
a5 f «p

a2m ~12!

~f 51/4 is the correlation factor14–16 for the actual band fill-
ing in k-ET2X salts with one hole per dimer!, the energies
«p are defined by Eq.~4! at t15t2 , and m is the chemical
potential. Summation is performed over carrier quasim
mentap in the ET2 plane.

In reality, closed sections of the Fermi surface (jp
250)

are separated from the open sections (jp
150) by a small gap

owing to the weak anisotropy of the interdimer hopping
tegral (t1Þt2) so that transitions of Cooper pairs betwe
the sections of the Fermi surface with different curvatu
can be neglected~11!. In the general case the two-ban
model of superconductivity should be considered.24,25

In order to determine the type of the Cooper pairing
our model, let us expand the expression for the gap in
~11! in terms of the basis functions$h i(p)% in Eq. ~10!:

D~p!5(
i 51

6

D ih i~p!.

As a result, the integral equation for the critical temperat
Tc deriving from Eq.~11! with due account of expansion~9!
is reduced to a system of algebraic equations
e

-

-

s

q.

e

D i52V (
p,

j 51,a56

6 tanh~jp
a/2Tc!

2jp
a D jh i~p!h j~p!. ~13!

In this case, the temperatureTc is determined by the solv
ability condition for Eq.~13!, i.e., the vanishing of the 6
36 determinant:

Ud i j 22V (
p,a56

tanh~jp
a/2Tc!

2jp
a D jh i~p!h j~p!U50. ~14!

For the triangular lattice under consideration most of
nondiagonal elements of the matrix defined by Eq.~14! are
zero because the integrands are odd with respect to the
ablespx and py , therefore the only pairs of coupled func
tions areh1(p), h2(p) andh4(p), h5(p).

Measurements of the Knight shift7,8 give evidence in fa-
vor of singlet superconductivity ink-ET2X salts. Aniso-
tropic singletd- ands* -pairing types with nodes of the orde
parameter on the Fermi ‘‘surface,’’ as follows from Eq.~14!,
decompose into the one-dimensionaldxy-pairing and mixed
s* 1dx22y2-pairing with the basis functionsh3(p) and
h1(p)1h2(p), respectively. In the case when all constan
of effective attraction are different,V1ÞV2ÞV3 @Eq. ~8!#, all
the types of singlet pairing are intermixed, but separa
from the tripletp-wave pairing.

4. SYMMETRY OF THE SUPERCONDUCTING ORDER
PARAMETER

Next we must calculate in the secular equation~14! the
following matrix elements

(
p,a56

tanh~jp
a/2Tc!

2jp
a h i~p!h j~p!

5E
2`

`

d«
tanh~jp

a/2Tc!

2jp
a Fi j ~«!, ~15!

where

Fi j ~«!5(
p

d~«2«p
1!h i~p!h j~p!

1(
p

d~«2«p
2!h i~p!h j~p!

5
)

4p2 E2p

p

dpyE
2p/)

p/)

dpxdS «2cospy

22 cos
py

2
cos
)px

2 Dh i~p!h j~p!

1
)

4p2 E
2p

p

dpyE
2p/)

p/)

dpxdS «2cospy

12 cos
py

2
cos
)px

2 Dh i~p!h j~p!. ~16!

The resulting functionsFi j (t) defined by Eq.~16! with vari-
ablet5A312« have the following forms for different type
of superconducting singlet pairing:
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F11~ t !5
1

3p2 H 4I 222~11t2!I 11F ~ t221!2

4
222t2G I 0J ,

F22~ t !5
1

6p2 H I 21~ t225!I 11F ~ t221!2

4
112t2G I 0J ,

F33~ t !5
1

2p2 H I 22
~ t221!2

2
I 212~31t2!I 1

1F ~ t221!2

4
211t2G I 0J ,

F12~ t !5
&

3p2 H I 22
t2211

4
I 12F ~ t221!2

8
122

t2

2 G I 0J . ~17!

Here we use the functions

I 05E
21

1 dy

AG~y!
, I 15E

21

1 ydy

AG~y!
,

I 215E
21

1 dy

~y11!AG~y!
,

I 25E
21

1 ~y11!2dy

AG~y!
5

t213

2
~ I 01I 1!

2S t221

2 D 2

I 211
AG~y!

y11
.

G~y!5~y11!S y2
t22122t

2 D S t22112t

2
2yD ~12y!,

~18!

which can be expressed in terms of elliptic integrals. Spec
cally, in the case of dimensionless energies in the ra
23/2,«,21, i.e., 0,t,1, the integrals in Eq.~18! reduce
to quadratures:

I 05
4

A~32t !~11t !3
K~k!,

I 15
4

A~32t !~11t !3 F2K~k!

1
~ t21!2

2
PS p

2
,

4t

~11t !2 ,kD G ,
I 215

4

~ t21!2A~32t !~11t !3 F ~32t !~ t11!

2
E~k!

1
~ t21!2

2
K~k!G , ~19!

wherek2516t/(32t)(11t)3.
In the energy interval21,«,3, i.e., 1,t,3, the inte-

grals ~18! are expressed in the following form:

I 05
1

At
K~q!,
-
e

I 15
1

At
F2K~q!1

~ t21!2

2
PS p

2
,
~32t !~ t11!

4
,qD G ,

I 215
4

~ t21!2~ t11!2At
F2tE~q!1

~ t21!2

2
K~q!G ~20!

with the modulusq51/k. In Eqs.~19! and~20! the functions
K(k), E(k), andP(p/2,n,k) denote complete elliptic inte
grals of the first, second, and third kind, respectively, in
normal Legendre form.

Of all possible symmetry types of superconducti
phases described by solutions of Eq.~14!, the phase with the
highest superconducting transition temperatureTc is real-
ized. The symmetry of the corresponding superconduc
order parameter determines the desired form of the an
tropic pairing. The matrix elements~15! of Eq. ~14! are
transformed to

E
2`

`

d«
tanh~jp/2Tc!

2jp
Fi j ~«!

5E
2vc

vc
d«

tanh~jp/2Tc!

2jp
Fi j ~«!

5E
j~2vc!

j~vc!

dj
tanh~j/2Tc!

2j f
Fi j ~«~j!!,

wherevc is the cut-off parameter of the pairing interactio
~8! in Eqs.~13! and~14!. In the latter equation the singularit
point j50 corresponds to«5m/ f , where the chemical po
tential m/ f 520.415 was calculated in Ref. 16 and corr
sponds to the real filling of the energy bands ink-ET2X
salts.

By applying the logarithmic approximation to the el
ments of secular equation~14!, we find out that for the
dxy-wave pairing the transition temperatureTc is determined
by a single equation

15
2V

f
F33 ln

vcf

2Tc
, ~21!

so the corresponding coupling constant atf 51/4 @cf. Eq.
~17!# is

lxy58VF33~1.47!. ~22!

The critical temperature for superconductivity with th
order parameter of mixed symmetrys* 1dx22y2 is deter-
mined by the quadratic equation

U128VF11 ln
vc

8Tc
28VF12 ln

vc

8Tc

28VF12 ln
vc

8Tc
128VF22 ln

vc

8Tc

U50. ~23!

In the calculation of the coefficientsFi j in the matrix ele-
ments @Eqs. ~17!–~20!# the following numerical values o
elliptic integrals are useful:K(0.99)53.35; E(0.99)51.03;
P(p/2;0.94;0.99)524.65. After substituting them into Eq
~16!, we obtain
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F11~1.47!5
1.60

p2 ; F22~1.47!5
0.36

p2 ;

F33~1.47!5
2.09

p2 ; F12~1.47!5
~20.48!

p2 .

Then it follows from Eq.~23! that the coupling constants o
the mixed-symmetry dx22y21s* -pairing are lx22y21s*
58VF1,2, where F151.76/p2 and F250.20/p2, i.e, both
constants are smaller than the coupling constant in Eq.~21!
for the superconductingdxy-wave pairing. It follows that the
pairing type with thedxy-symmetry is preferable in ou
model of superconductingk-ET2X salts.

For the amplitude of the effective pair interactionV0

50.022 transformed to the dimensionless form using the
terdimer hopping integralt, the ratio of the critical tempera

tures isTc
dxy/Tc

s* 1dx22y2
51.65. If the cut-off parametervc of

the effective attractionV is approximately equal to the hop
ping integral, i.e.,vc't.0.1 eV, in the logarithmic ap-
proximation the superconducting transition temperatureTc

for the dxy-wave pairing, which is realized in experiment,
10 K @Eq. ~21!#.

5. ELECTRON PAIR IN AN EMPTY LATTICE OF ET 2 DIMERS

In the previous section we calculated the supercond
ing pairing constant and showed that anisotropicd-pairing
should occur. In the case of scattering of a pair of particle
the Coopers-channel~with zero orbital quantum numberl
50!, the positive phase shiftd l 50(EF).0 due to scattering
on the two-dimensional lattice at a nonzero Fermi energy
~the Cooper superconducting instability! entails the phase
shift d l 50(0).0 in an empty lattice~bound two-particle
state!.26,27

Unlike the case ofs-pairing, the formation of a Coope
pair and a bound state of two electrons in the empty lat
are essentially different problems in the case of thed- and
p-pairing, and the solutions of these problems should be
tained independently. In the model of superconductivity
k-ET2X under consideration, Cooper pairs can be formed
intensities of the effective interelectron attraction sma
than that needed for pair formation in the empty lattice.
order to calculate the critical value of the interaction amp
tude at which a bound electron pair is formed in an em
triangular lattice, one should start with the Bethe–Salpe
equation for the scatteringT-operator, which is expressed a

Tpp8~E!5Vpp81
V

~2p!2 E E Vpp8Tp8p9~E!

E22«p
2 dpx9dpy9 ,

~24!

where «p
2 is the one-particle energy derived from Eq.~4!,

andV5) is the volume of the unit cell of the dimer lattic
under consideration~its constantsa51, as stated in the In
troduction!.

In the case of the anisotropicdxy-pairing described in the
previous section the pairing interaction is described by
equation
-

t-

in

e

e

b-

t
r

-
y
r

e

Vpp8522V sin
px

2
sin

py

2
sin

px8

2
sin

py8

2
.

Assuming that the scattering operator has the same sym
try and substituting the expression for it in the form

Tpp8~E!5C sin
px

2
sin

py

2
sin

px8

2
sin

py8

2

into Eq. ~24!, we obtain an equation for the amplitudeC of
the scattering operator:

C522V2C
V

t

V

~2p!2

3E E dy dz

«2z
A12F cosy2z

2 cos~y/2!G
2 S sin

y

2D 2

,

~25!

where the integration is performed over the region ofx andy
where the integrand in Eq.~25! is real. Since we are seekin
the condition for formation of a bound pair in an emp
lattice, the pair energy« is slightly lower than the bottom o
the band,«min

2 /t523/2. In order to estimate the integral i
Eq. ~25!, we replace the factors in the integrand outside
square root with their values at the maximum of the in
grand. Thereafter one can easily obtain the critical value
the interaction amplitudeV at which the scattering operato
changes its sign and a bound state of two electrons occu

Vcr.
2p

3
t, ~26!

where the numerical factor is determined by the triangle
tice symmetry.

It is noteworthy that the critical value of the interactio
amplitude given by Eq.~26! for a bound pair in the
dxy-channel of our triangle lattice ET2 is smaller than that for
a square lattice in the Hubbard model,28 but is slightly larger
than the critical value calculated for thet –J model on a
square lattice.29 Earlier30–32it was derived from the Hubbard
model in the mean-field approximation by assuming that
volvement of second nearest neighbors in a square la
also reduces the critical threshold attraction needed
s-pairing.

6. DENSITY OF ELECTRON STATES IN THE
SUPERCONDUCTING PHASE

The nodes of the superconducting order parameterDd

obtained in Sec. 4 on both open and closed sections of
two-sheet Fermi surface manifest themselves in the den
of electron states in the superconducting phase and are
sential for interpretation of such measured physical para
eters as the electron heat capacity, NMR relaxation r
magnetic field penetration depth in the superconduct
state, etc.

The density of states in the superconducting phase
energyE.0 is determined by the formula

rs
6~E!5

)

4p2 E
2p

p

dpyE
2p/)

p/)

d~E2A~jp
6!21Dp

2!dpx ,

~27!



t
-
o

e
es

he

o

t
o
s,
e
e

t

th

t

la

ing

o-

the

q.
ac

s

lds
:

ated
eat
tice

ters
both

tes
ctron

401JETP 86 (2), February 1998 Ivanov et al.
where the order parameter is

Dp5D0 sin
py

2
sin
)px

2

and one-particle energies of correlated carriers are

jp
65 f tS cospy62 cos

py

2
cos
)px

2 D2m,

@cf. Eq. ~12!#. In deriving Eq.~27! we have used the fact tha
the coherence factors 16jp /Ajp

21Dp
2 cancel out under inte

gration because the second terms are odd with respect t
energyjp .

The parameterDp is small near its four nodes on th
Fermi surface within the first Brillouin zone around the lin
px50 and py50. Let us expandjp and Dp in Eq. ~26! in
powers of their small deviations from their values at t
nodes of the order parameter,Dp50, on the Fermi surface
m(px ,py). From these calculations we derive the density
electron statesrs

1(E) as

rs
1~E!5

E

2pD0f t sin2
py

2 S 2 cos
py

2
11D ~28!

near the node

px50, py52 arccosSA3

4
1

m

2 f t
2

1

2D
on the open section of the Fermi surface (j150). Similarly,
around the node

py50, px5
2

)

arccosS 1

2
2

m

2 f t D
on the closed section of the Fermi surface (j250) the den-
sity of states is expressed as

rs
2~E!5

E

2pD0f t sin2
)px

2

. ~29!

Inside conventional superconducting gap of thes-wave
type the density of electron states is zero. In the case of
anisotropicdxy-wave type order parameter the density
electron states~28!, ~29! in the superconducting phase i
naturally, gapless and has a linear dependence on en
near the Fermi surface. Note that sections of the Fermi
ergy with different curvatures~j1 and j2! yield different
contributions to these linear function.

By comparing Eqs.~28! and~29! and taking into accoun
the chemical potential given above, (m/t) f 520.415,16 we
find that the factor in the linear density of states due to
saddle section of the Fermi surface,jp

250 @Eq. ~29!# is
larger by a factor of three than that due to the open shee
the Fermi surface,jp

150 @Eq. ~28!#. This fact is essential for
interpretation of superconducting phase parameters in
ered organic materials, such ask-ET2X.
the

f

he
f

rgy
n-

e
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y-

7. CHARACTERISTICS OF THE SUPERCONDUCTING
PHASE

Owing to the small coherence length in superconduct
k-ET2X salts, the London penetration depthlaa of the mag-
netic field alonga-direction is expressed in the local electr
dynamic approximation33,34 by the formula

c2

4pne2 laa
225(

p
S ]jp

]pa
D 2H 2

]NF~jp!

]jp

2F2
]NF~Ep!

]Ep
G J , ~30!

wheren is the concentration of superconducting carriers,a is
the direction of the superconducting screening current,NF is
the Fermi–Dirac distribution function,jp is the one-particle
electron energy in the normal phase@Eq. ~4!# with respect to
the Fermi energym, and Ep5Ajp

21Dp
2. In calculating the

penetration depth of the magnetic field perpendicular to
ET2 layer, one should substitute into Eq.~30! the appropriate
dispersion functionsjp , i.e., j1 for the calculation oflxx

andj2 for lyy . At zero temperature the second term in E
~30! goes to zero, and the derivative of the Fermi–Dir
distribution function becomes ad-function. As a result, we
have

lxx
22}

3

4p2 f 2$2I 2
x1~2m14!I 1

x1~32m2!I 0
x%,

lyy
22}

1

p2 f 2H 32m2

4
I 0

y2
m

2
I 1

y1
~m11!2

2
I 21

y 2
1

4
I 2

yJ .

~31!

HereI 0
i , I 21

i , I 1
i , andI 2

i are determined by elliptic integral

I 2
i 5S m

f t
13D I 1

i 1S m

f t
13D I 0

i 1S m

f t
11D 2

I 21
i 1

AG~y!

y11
,

where integration of functions determiningI 0
i , I 21

i , I 1
i , and

I 2
i is performed fromy2 to m for lxx and fromm to y1 for

lyy , andy1 andy2 are defined by Eq.~3!.
Electron correlations generate coefficientsf and f 2 in

Eq. ~31! and renormalize the chemical potentialm, influenc-
ing lxx,yy via incomplete elliptic integrals.

By calculatingI 0
i , I 21

i , I 1
i , andI 2

i in Eq. ~31!, we obtain
the ratio between penetration depths of magnetic fie
aligned with thex- andy-axes in the dimer triangular lattice

lxx

lyy
'1.1. ~32!

The density of states in the superconducting state calcul
in the previous section allows us to obtain the electron h
capacity as a function of temperature and the spin–lat
relaxation rate due to conduction electrons in the ET2 plane.
Unlike the magnetic field penetration depth, these parame
are determined by the density of states averaged over
portions of the Fermi surface.

The linear energy dependence of the density of sta
leads to a quadratic temperature dependence of the ele
heat capacity per unit cell of the ET2 dimer layer:
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Cs52(
pa

jp
a ]NF

]T
52E

0

`

bE2
]NF

]T
dE

56bT2E
0

` x2dx

ex11
59bz~3!T2510.8bT2. ~33!

Hereb is the sum of the coefficients in front of the energyE
in the superconducting density of states derived from E
~28! and~29!, andz is the Riemann zeta-function. Note th
the main contribution to the heat capacity~33! is due to
electrons on the closed saddle-shaped section of the F
surface jp

250. By substituting realistic parameters fo
k-ET2X into Eq. ~33!, namely t50.12 eV, D
5(2.5– 3.5)Tc ,35,36 and Tc510 K, we obtain the electron
heat capacity per mole in the superconducting phase in
form Cm5aT2, where a5NAbkB

3/2 varies between 1.59
and 2.23 mJ/K3•mol, which is in satisfactory agreement wit
experimental data,37 namely 2.2 mJ/K3•mol for the samples
of the k-~ET!2Cu@N~CN!!2#Br superconductor withTc

511.6 K, and less than 3.53 mJ/K3
•mol for

k-~ET!2Cu~NCS!2 with Tc510 K.
At low temperatures the spin–lattice relaxation rateR

51/T1 of nuclear magnetic moments of central13C atoms of
the ET molecule due to conduction electrons is determine
the superconducting phase by the equation33

Rs'(
p

(
p8

EpEp81DpDp81jpjp8
2EpEp8

3
NF~Ep!2NF~Ep8!

exp@~Ep2Ep8!/T#21
d~Ep82Ep2n!, ~34!

whereEp5Ajp
21Dp

2 andn is the high frequency of the mag
netic field. Near the nodes the following equations apply

Dp856DpS 11
n

Ep
D , jp8

a
56jp

aS 11
n

Ep
D .

The integration regions in Eq.~34! determine the sign
change inDp and Dp8 , as well as injp and jp8 . After
calculations we obtain an expression for the ratio of the
laxation rates in the superconducting and normal phases

Rs

Rn
5

2

T E
0

w b2E2

r2~m!

exp~E/T!

~eE/T11!~e~E1n!/T11!
dE. ~35!

Here the parameterb is the same as in Eq.~33!, r is the
normal density of states on the Fermi level,w is the bound-
ary energy below which the superconducting density
states is linear. Given that the high frequencyn satisfies
;10 MHz;1024 K and at low temperatures we havew
@T, we obtain

Rs

Rn
5

2T2b2z~2!

r2~m! S 12
n

T

ln 2

z~2! D . ~36!

In the normal phase, in accordance with the Korringa la
Rn}T, we, therefore haveRs}T3.

Electron correlations affect the factorb in Eqs.~33! and
~36! through the correlation factorf 51/4 and the renormal
ized chemical potential.
s.

mi

he

in

-

f

,

The resulting function on the right-hand side of Eq.~36!
is quite different from the exponentially small functionRs

}exp(2D/T), which occurs at low temperatures in superco
ductors with conventionals-wave pairing.

8. DISCUSSION OF RESULTS

Analytically defined branches~1! of the energy disper-
sion relations in the model ofk-ET2X salts under consider
ation provide a two-sheet Fermi surface~Fermi lines! with an
open section of positive curvature and a closed sad
shaped section. The Fermi surface anisotropy manifests i
in features of the density of electron states in the norm
~Sec. 2! and superconducting~Sec. 6! phases and, naturally
determines the symmetry of the effective attraction betw
electrons@Eqs. ~8! and ~9! in Sec. 3#. In the case of singlet
pairing in pure crystals, our model leads to superconductiv
with the order parameter of thed-wave symmetry:

Dp5D0 sin
py

2
sin
)px

2

~Sec. 4! in the reference system defined in Sec. 2. The or
parameter has a pair of nodes on each section of the F
surface within the first Brillouin zone along the linespx50
and py50. According to Secs. 4 and 5, the correspond
constant of superconducting pairing is provided by the a
plitude of the effective attraction between carriers,V,Vc ,
which is, however, insufficient for formation of bound ele
tron states in thed-channel in an empty lattice. Properties
the energy dispersion relations~1! manifest themselves no
only in the normal density of electron states analyzed in S
2, but also in the density of states in the superconduc
condensate phase with the anisotropic order parameter c
lated in Sec. 4. The superconducting density of elect
states calculated in Sec. 6 has no gaps around the node
the Fermi surface and is linear in the energy@Eqs.~28!, ~29!#.
As a result, the number of elementary thermal excitation
not exponential in temperature but proportional to a pow
function. Consequently, in the superconducting phase at
temperatures the electron heat capacity is quadratic in t
perature@Eq. ~33!# and the spin–lattice relaxation rate 1/T1

is cubic in temperature.
The effect of the topology of the anisotropic Fermi su

face on the density of electron states and characteristic
the superconducting phase in the case of isotropics-wave
pairing was investigated long ago.38 At present, the aniso-
tropic superconducting order parameter is usually analy
assuming an isotropic Fermi surface and quadratic disper
relations for electrons. In three-dimensional superconduc
with anisotropicd-wave pairing the density of electron stat
near the nodes of the order parameter on a spherical F
surface is proportional to the energy squared, as follows fr
symmetry considerations39 or calculations.40

In the reported work we have studied the effect of t
topology of a two-dimensional Fermi surface on propert
of the superconducting condensate, with a particular at
tion to k-ET2X salts. According to Eqs.~28! and ~29!, the
density of electron states on the saddle-shaped section o
Fermi surface is a factor of three higher than on the op
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section, which manifests in the superconducting spec
heat. Therefore contributions to the heat capacity prop
tional toT2 should be smaller in ET-superconductors witho
saddle-shaped surfaces. Specifically, Fermi surfaces
a-ET2NH4Hg~SCN!4 layered superconductors have n
saddle-shaped sections and, as follows from the experime
data,41,42 there is no substantial contribution to their sup
conducting heat capacity proportional toT2. Thus, in analyz-
ing properties ofk-ET2X salts we should not describe the
Fermi surfaces as circles~cylinders!, as is often done43 by
the analogy with free electron gas.

Note, however, that, according to Eq.~32!, the Fermi
surface anisotropy has little effect on the main values of
tensor of the magnetic field penetration depth in the E2

plane.
The calculated cubic temperature dependence of the

relaxation rate due to conduction electrons is in agreem
with experimental data concerning nuclear magnetic m
ments of carbon isotopes,Rs(

13C)}T3 in k-ET2X
superconductors44–46 at low temperaturesT!Tc . The
Hebel–Slichter peak is missing in these measurementsT
<Tc because of the strong electron correlations only nor
averages contribute to the nuclear spin relaxation r
whereas one-site anomalous averages like^a↑

(1)(t)a↓
(1)&

vanish, provided thatUET /t1,2,3@1.47 The contribution of ad-
ditional relaxation mechanisms, such as impurity relaxati
however, should not be neglected. In this paper, we disc
only the case of superconductors without impurities and
glect damping of elementary excitations. Equation~34! does
not apply to the proton spin–lattice relaxation on the ed
fragments of ET molecules, where the relaxation due to n
mal electrons in vortex cores should be taken into accou

Note that a quadratic temperature dependence of
electron heat capacity was detected previously in 1-2-3 h
Tc superconductors.48 A cubic dependence of the spin
lattice relaxation rate,Rs}T3,49,50 and the absence of th
Knight shift were also detected in cuprate high-Tc supercon-
ductors. These experimental results were interpreted in te
of superconducting pairing with the order parameter of
dx22y2-wave symmetry in CuO2 layers.51,52This pairing type
corresponds to thedxy-wave symmetry in the reference sy
tem used in our analysis.

The correlation factorf 5(423n)/4, wheren51 is the
number of holes per dimer, affects the properties of the
perconducting condensate, includingTc . In the normal phase
this factor alters the energy dispersion relation~1! to ~12! for
correlated carriers. The resulting four-fold narrowing of t
conduction energy band may be responsible for the dif
ence between optical and cyclotron masses53–55 and for the
reduction in the areas of hole orbits derived from quant
magnetic oscillations in thek-ET2Cu@N~CN!2#Br salt.56 It
follows from Eq. ~12! that the gap between the closed a
open portions of the Fermi surface required for the magn
breakdown should be

jp
12jp

252 f cos
py0

2
ut12t3u.

ut12t3u
4

'4 meV
c
r-
t
of

tal
-

e

in
nt
-
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e,

,
ss
-

e
r-
t.
e

h-

s
e

u-

r-

ic

(py0'2p/3) for a realistic difference between nonazimuth
hopping integralst1 and t3 . This value is in agreement with
experimental data.57–60

Komatsuet al.61 detected in their copper ESR signals
change in the Cu21 concentration on the acceptor layer of th
k-ET2Cu2~CN!35k-ET2

12xCu22x
1 Cux

21(CN2)3 supercon-
ductor, i.e., an increase in the concentration of Cu21 para-
magnetic ions leads to a reduction in the concentration
2x of holes in the ET2 donor layer, which leads to an in
crease in the correlation factorf 5(113x)/4 and a decrease
in Tc , in accordance with Eqs.~20! and~21! of Sec. 4. This
conclusion is in agreement with experimental data.61

The existing pressure technique allows the experime
ers to apply stress along certain crystal axes of synthes
k-ET2X samples. In this connection, the proposed analyti
formulas describing the electronic structure and propertie
k-ET2X salts in terms of the intradimer hopping integralt0

and interdimer hopping integralst1,2,3 could be useful.
It is noteworthy that Eqs.~33! and~34! yield the follow-

ing formula relating the nuclear spin relaxation rate~in zero
magnetic field! and the electron heat capacity in the sup
conducting phase ofk-ET2X:

RsCn
2

RnCs
2 5

4z3~2!

81z2~3!
50.29, ~37!

where the normal electron heat capacity is defined asCn

52z(2)r(m)T. It is of interest to check Eq.~37! in experi-
ments, since a deviation from Eq.~3! would indicate the
existence of additional relaxation mechanisms.
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Long-lived excited states and photoluminescence excitation spectra in single crystals
of fullerene C 60
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and R. K. Nikolaev
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Photoluminescence, optical absorption spectra, and photoluminescence excitation spectra were
measured on large~2–3 mm!, very pure crystals of fullerene C60 at 5 K. It is shown that
the main contribution to the photoluminescence of these crystals is from singlet and triplet excitons
captured on crystal defects. The concentration of these defects does not exceed 1018 cm23,
and the lifetime of triplet excitons on these defects is about 3 ms. It is shown that the symmetry
distortion of the C60 molecules at the defects is rather large and causes the oscillator
strength of the zero-phonon optical transitions to be comparable to the most intense optical
transitions with the participation of intramolecular vibrations. ©1998 American Institute of
Physics.@S1063-7761~98!02702-4#
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1. INTRODUCTION

The photoluminescence of an isolated C60 molecule is
determined by optical transitions between the lowest un
cupied molecular orbitals~LUMO! and the highest occupie
molecular orbitals~HOMO!. According to theoretical calcu
lations ~see, for instance, Refs. 1–3!, there are three LUMO
levels of the singlet electronic excitations of the C60 mol-
ecule, whose symmetry corresponds to the irreducible re
sentationsT1g , T2g , and Gg of the point symmetry group
I h . All these lie about 2 eV above theAg ground~HOMO!
state. The calculated energy positions of theT1g , T2g , and
Gg LUMO levels are so close that theory does not make
possible to unambiguously determine in what order they
cur. For example, calculations using theARGUS program~see
Ref. 4! give 1.86, 1.90, and 1.93 eV for these energy leve
the computations of Ref. 5 give 2.10, 2.17, and 2.23 eV,
the CNDO/S method was used in Ref. 1 to obtain the val
2.33, 2.29, and 2.34 eV. Besides singlet excited states, t
are the levels of the triplet electronic excited states, the lo
est of which are, respectively,3T1g and 3T2g . The triplet
levels lie somewhat lower than the singlet levels~by about
0.2 eV!. Because theAg ground state and the lowest excite
statesT1g , T2g , andGg have the same parity, single-photo
transitions between them are dipole-forbidden. Therefo
optical transitions between the HOMO and LUMO levels
an isolated molecule are possible only when odd-symm
intramolecular vibrational modes of the C60 molecule are
excited,1,6,7so that1Ag–1T1g transitions are allowed with the
participation of a0 -, t1u- , and hu-vibrations, while
1Ag–1T2g transitions are allowed with the participation
gu- andhu-vibrations. Thus, the photoluminescence spec
for an isolated molecule are a series of lines with energ
E0 – 02\vvibr , while the absorption spectra~and the photo-
luminescence excitation spectra! are a series of lines with
4051063-7761/98/86(2)/7/$15.00
c-

e-

it
-

,
d
s
re
-

e,

ry

a
s

energiesE0 – 01\vvibr , where vvibr are the frequencies o
the corresponding intramolecular vibrational modes a
E0 – 0 is the energy difference between the HOMO and
LUMO levels ~see, for example, Ref. 8!.

The electronic spectrum of crystalline C60 must differ
from that of an isolated molecule because of intermolecu
interactions. In the standard one-electron approximation,
totality of the occupied valence band must be formed fr
the 1Ag ground HOMO level, while the singlet and triple
exciton bands and the conduction band must be formed f
the unoccupied LUMO levels. The bottom of the conducti
band must of course lie above the bottom of the sing
exciton band by an amount equal to the exciton binding
ergy, which can be roughly estimated as 0.3–0.4 eV. T
overlap of the electronic wave functions of adjacent m
ecules in the crystal is small, and the allowed energy ba
are rather narrow~about 0.5 eV!. This means that electron–
electron correlations and polaron effects can have a very
stantial effect on the electronic spectrum and the electro
properties of C60 crystals. Thus, it is not yet completely clea
to what degree crystalline C60 can be regarded as an ordina
semiconductor with one-electron energy bands. It is also
clear to what extent the symmetry distortion of the molecu
by intermolecular interactions makes the zero-phonon opt
0–0 transitions allowed in an actual crystal.

A rich set of lines is experimentally observed in the ph
toluminescence spectra of C60 crystals in the energy interva
from 1.9 to 1 eV. References 4 and 7 ascribed the phot
minescence lines to recombination of free singlet Fren
excitons with the participation of various intramolecular v
brational modes~see Table I!. Reference 9 found that th
intensity of a series of lines in the photoluminescence sp
trum of C60 crystals varies from sample to sample and ev
from place to place in one sample. Based on this, part of
photoluminescence lines were ascribed to Frenkel excit
localized on crystal defects.9,10 It was assumed in this cas
© 1998 American Institute of Physics
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TABLE I. Energy positions of certain photoluminescence lines inC40 crystals and their interaction according
to Refs. 4 and 9.
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that, as for free molecules, the probability of 0–0 transitio
is negligible, and that the observed photoluminescence l
are shifted in energy from the electronic 0–0 transitions
the energy of thehu and t1u intramolecular vibrations. On
the other hand, it was shown in Ref. 11 that part of
photoluminescence lines can be interpreted in terms of z
phonon 0–0 transitions corresponding to recombination
singlet excitons on deep traps.

The presence of photoluminescence lines associated
the recombination of triplet excitons can be expected in
energy region below 1.6 eV. Measurements of the opt
absorption at triplet excitons and experiments in ESR giv
relatively short lifetime of these excitons—from 40ms to
several hundredms,12,13 which is evidence that nonradiativ
processes have high efficiency. In this connection, the po
bility of observing the luminescence of triplet excitons see
extremely problematic. However, distortion of the symme
of the molecules~as in the case of singlet excitons! can
strongly increase the probability of radiative recombinat
of triplet excitons. Indeed, in Ref. 14 it was found that trip
phosphorescence is very weak in a solution of C60 in methyl
cyclohexane but becomes much stronger in a solution of60

in N8N-diethyl aniline. As far as we know, the first succes
s
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ful observation of triplet-exciton photoluminescence in C60

crystals was reported in Ref. 15, where lines with energ
1.501, 1.467, 1.450, 1.439, and 1.406 eV were detec
These lines were ascribed to the recombination of triplet
citons at two types of traps, with the 1.439- and 1.406-
lines being ascribed to recombination at deep traps form
by pairs~dimers! of C60 molecules.

In order to improve the understanding of the electro
properties of C60 crystals, the temporal characteristics of t
photoluminescence spectra were experimentally studied
this paper, and the excitation spectra of individual photo
minescence lines and the optical absorption spectra were
measured in large high-purity C60 crystals.

2. SAMPLES AND EXPERIMENTAL TECHNIQUE

Single crystals of C60 were grown at the Solid-Stat
Physics Institute, Russian Academy of Sciences, by a ph
cal vapor-transport method~sublimation! in an evacuated
ampule at a temperature of about 500 °C. The starting60

material, after being purified by chromatography and af
traces of solvent were removed by multiple resublimation
vacuum, had a purity no worse than 99.95%.
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The photoluminescence spectra of the crystals were
corded by means of a cooled FE´ U-62 photomultiplier or a
cooled germanium photoresistor. The overall spectral se
tivity of the apparatus was calibrated by recording the sp
tra of an incandescent tungsten lamp. The photolumin
cence spectra were then normalized by means of
calibration curve. Thus, the spectra shown in this paper
respond to radiation density on an energy sca
dNph(E)/dE, whereNph(E) is the number of radiated pho
tons with energyE.

The photoluminescence was excited by a He–Ne la
(Eexc51.959 eV) with a power of 3 mW, which was atten
ated to the necessary power by a rotatable polarizer. To
tain the photoluminescence excitation spectra, it was
corded at a fixed wavelength while excitation was provid
by radiation from a halogen lamp transmitted through a f
monochromator. The photoluminescence excitation spe
were normalized to the spectral density of the exciting lig
calibrated by means of a thermistor power meter.

To measure the relaxation time of the photolumin
cence, the exciting radiation of the laser was modulated
frequencyF by a lithium niobate-based electrooptic mod
lator, and the photoluminescence spectra were recorde
this frequency by means of a lock-in amplifier. The rela
ation time corresponding to specific lines in the photolum
nescence spectrum was computed from the dependenc
the intensity of these lines on the modulation frequency. T
method of determining the excited-state lifetime differs fro
the conventional method based on directly observing the
netics of the photoluminescence decrease after a laser p
and is far more sensitive.

The photoluminescence was measured at a tempera
of 5 K. To avoid unwanted effects associated with pho
stimulated polymerization~dimerization! and other irrevers-
ible photostimulated processes in the test samples, all
measurements were made with a laser excitation densit
greater than 2.5 mW/mm2. The photoluminescence spect
of the samples do not change during the measuremen
this case and are very reproducible from measuremen
measurement.

3. EXPERIMENTAL RESULTS

Figure 1 shows the photoluminescence spectra of on
the samples, recorded with a pump density of 0.25 mW/m2

at two modulation frequenciesF517 Hz and 306 Hz. It can
be seen that the photoluminescence spectrum contai
large number of lines, whose half-width ranges from 7 to
meV. The energy positions of the best resolved lines
given in Table I. It should be pointed out that the positi
and even the width of the photoluminescence lines are re
duced with good accuracy in different samples, but the re
tive intensity of the different photoluminescence lines c
vary appreciably from one batch of crystals to another. T
amplitudes of the highest-energy photoluminescence l
~1.815, 1.762, 1.728, and 1.688 eV! vary especially strongly.

The observed photoluminescence lines can be sepa
into two categories: lines whose amplitudes are indepen
of F in the frequency range that we used~from 10 Hz to 10
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kHz! and lines whose intensities sharply decrease eve
modulation frequencies of about 300 Hz. The first group
lines corresponds to short-lived excited states~with lifetimes
t known to be shorter than 1025 sec!, whereas the secon
group corresponds to states with a surprisingly long lifeti
~more than 1023 sec!. The lines corresponding to long-live
states are distinguished in Table I by boldface.

The photoluminescence spectra recorded at modula
frequenciesF.500 Hz correspond only to short-lived state
while the photoluminescence spectra of the long-lived sta
can be obtained by subtracting the photoluminescence s
tra recorded at low (F,20 Hz) and high (F.500 Hz)
modulation frequencies. Figure 2 also shows the differe
spectra measured at several laser-excitation densities.
intensity of the spectra is normalized to the excitation d
sity. Unlike the photoluminescence lines of the short-liv
states, which virtually do not saturate in the range of exc
tion power that we investigated~from 0.05 to 3 mW/mm2!,
the photoluminescence lines of the long-lived states quic
saturate, and their relative contribution to the photolumin
cence spectrum is small at high excitation powers. Figur
shows the experimental dependences of the intensity of

FIG. 1. Photoluminescence spectra of crystal R15, recorded at 5 K and a
power ofP50.25 mW/mm2 from a He–Ne laser~632.8 nm! at two modu-
lation frequencies: 17 Hz~continuous curve1! and 306 Hz~dotted curve2!.

FIG. 2. Photoluminescence spectra of the long-lived states of crystal R
obtained by subtracting the spectra recorded atF517 Hz and 570 Hz;
T55 K, excitation by a He–Ne laser, spectrum1 corresponds to
P50.1 mW/mm2, 2—P50.4 mW/mm2, 3—P52.3 mW/mm2.
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tain long-lived photoluminescence lines on excitation pow
P. The intensities are normalized to the excitation power a
are reduced to unity atP50.1 mW/mm2 to make them easy
to compare. For comparison, Fig. 3 also presents data fo
short-lived lines~points3!, which show that there is no satu
ration within the limits of accuracy of the measurement.

The continuous curves in Fig. 3 are calculated in
simplest model, which assumes that the excited-state lifet
t is independent of the excitation intensity~the tau approxi-
mation!. In this case, the numberNPL of excited molecules
that contribute to a given photoluminescence line is
scribed by the simple kinetic equation

]NPL /]t5G~12NPL /N0!2NPL /t, ~1!

whereN0 is the total number of C60 molecules that can con
tribute to the given photoluminescence line,t is the excited-
state lifetime, andG is the generation rate, which is propo
tional to the powerP of the laser radiation,G5aP.
Equation~1! has a simple solution:

NPL~ t !5G/~G/N011/t!1~NPL~ t50!2G/~G/N011/t0!!

3exp~2~G/N011/t!t !. ~2!

The photoluminescence intensity is proportional
NPLt/tR , wheretR is the radiative recombination time o
the excited state. In order to compute the experiment
measured signalA at the output of the lock-in amplifier at
given modulation frequencyF, Eq. ~2! was substituted into
an integral equation corresponding to the transfer function
the lock-in amplifier:

A}E
0

1/2F

NPL~ t,G5G0!dt2E
1/2F

1/F

NPL~ t,G50!dt, ~3!

and the steady-state amplitudeA for repetition of the modu-
lation cycles was computed self-consistently. In this case,
adjustable parameters that determine the calculated de
dences ofA on P and onF were the quantitiest anda/N0 .

As can be seen from Fig. 3, the theoretical curves ca
lated in the tau approximation agree well with the expe
mental data. In this model, the photoluminescence sig

FIG. 3. Total intensityA of the photoluminescence line divided by excit
tion powerP vs excitation power from a He–Ne laser atT55 K; 1—long-
lived lines 1.402 and 1.379 eV,2—long-lived lines 1.472 and 1.427 eV
3—short-lived lines. The points show the experimental data, the continu
curves are calculated in the tau approximation, and the dashed cu
~18 and 28! are calculated for a two-particle reaction.
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saturates because the fill factor of the excited sta
f 5NPL /N0 approaches unity whenG.N0 /t. This is pos-
sible only if one is dealing with the photoluminescence
excitons trapped at defects of the crystal lattice, i.e., wh
the numberN0 is much less than the total number of mo
ecules in the crystal. In the case of free excitons,N0 almost
corresponds to the total number of molecules in the crys
and NPL!N0 . In this case, saturation of the photolumine
cence could be explained on the assumption that, asNPL

increases, the probability of nonradiative recombination
creases because of some two-particle processes:

]NPL /]t5G2NPL /t02aNPL
2 . ~4!

Theoretical curves calculated from Eq.~4! are shown in Fig.
3 by dashed curves. It can be seen that they describe
experimental behavior significantly worse than the tau
proximation.

Figure 4 shows the dependence of the photolumin
cence intensity of the long-lived states on the modulat
frequencyF. The theoretical curve calculated in the tau a
proximation gives a good description of the experimen
dependence for values of the adjustable parametert around
3 ms.

To obtain additional information on the nature of th
photoluminescence, we measured the excitation spectra
individual photoluminescence lines. The results are show
Fig. 5. Curve3 corresponds to the photoluminescence sp
tra recorded with excitation by a He–Ne las
(E51.959 eV), while curves1, 2, 4, and5 correspond to the
excitation spectra of the photoluminescence lines with en
gies of 1.688, 1.654, 1.626, and 1.379 eV, respectively.
make it easy to compare them, the excitation spectra
reduced to unity at an excitation energy ofE51.959 eV,
corresponding to the He–Ne laser.

Figure 6 shows the absorption spectrum of the sa
crystal ~curve A!. For comparison, Fig. 6 also shows th

us
es
FIG. 4. Total intensity of long-lived photoluminescence lines with energ
1.402 and 1.379 eV vs modulation frequencyF at T55 K. The points show
experimental data, and the continuous curve is calculated fort52.98 ms.
The inset shows the calculated time dependence of the photoluminesc
intensity at two modulation frequencies.



en
ro

in
nc

s
s
o
o
th
re

ec-
80
em-
tion

n

lu-
x-
tion

en
nly
a-
i-

4

e
ions
In
free
d to
in-
cts

m of
eV
e

i-

the
his
l

onds
he
es-
be

ho

se
e

e

409JETP 86 (2), February 1998 Kveder et al.
photoluminescence excitation spectrum of the lines with
ergies 1.688 and 1.626 eV. As can be seen, a rather st
absorption edge ~above 200 cm21! corresponds to
E51.82 eV. This energy almost coincides with the step
the excitation spectrum of the 1.688-eV photoluminesce
line. However, some absorption~at a level of about
10– 30 cm21! is also observed below this edge, and this ha
pronounced structure in the form of overlapping lines who
position coincides with the position of the lines in the ph
toluminescence excitation spectrum. It should be pointed
that the indicated features are observed in all the crystals
were studied, but that the value of the absorption in the
gion E,1.82 eV varies from sample to sample.

FIG. 5. Photoluminescence excitation spectra, measured for various p
luminescence lines in crystal R5 atT510 K. Dotted curve3 shows the
photoluminescence spectrum with excitation by a He–Ne la
(E51.959 eV), and curves1, 2, 4 and5 show the excitation spectra for th
photoluminescence lines with energies 1.688, 1.654, 1.626, and 1.379
respectively~see arrows on the photoluminescence spectra!. The excitation
spectra are reduced to unity atE51.959 eV.
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Figure 7 shows the absorption spectra of a C60 crystal at
various temperatures. The variations of the absorption sp
tra are insignificant in the temperature interval from 5 to
K. An appreciable decrease of the energy is observed at t
peratures above 90 K, corresponding to the strong absorp
edge, whereas the weak absorption lines~in the 1.65–
1.76-eV region! almost do not shift but only broade
slightly.

4. DISCUSSION OF THE RESULTS

There is currently no doubt that the short-lived photo
minescence of C60 crystals is caused by singlet Frenkel e
citons. Many investigators have assumed that the selec
rules for optical transitions are the same in crystalline C60 as
in an isolated molecule, i.e., that optical transitions betwe
the electronic HOMO and LUMO states are possible o
with excitation of the corresponding intramolecular vibr
tions. Table I shows the interpretation of certain photolum
nescence lines in C60 crystals according to the data of Refs.
and 9. It is assumed in those papers that the energyE0 – 0 of
the free singlet1T1g exciton equals 1.871 eV, while all th
observable photoluminescence lines correspond to transit
with the participation of vibrational molecular modes.
Ref. 4, all the photoluminescence lines are ascribed to
excitons, whereas, in Ref. 9, some of the lines are ascribe
excitons bound at shallow exciton traps. Following this
terpretation, it can be expected that, even if polaron effe
are neglected, the photoluminescence excitation spectru
free excitons must start with an energy of about 1.871
1\vvibr @i.e., with an energy of about 1.96 eV for one of th
softest active modeshu ~0.09 eV!#.

As can be seen from Fig. 5, for the 1.688-eV photolum
nescence line, there actually is a substantial difference~of
about 150 meV! between the step atE51.84 eV in the pho-
toluminescence excitation spectrum and the position of
line. In this case, the step of the excitation spectrum of t
line virtually coincides with the edge of the ‘‘strong’’ optica
absorption of the crystals~see Fig. 6!.

We assume that the strong absorption edge corresp
to the excitation of free singlet excitons in the crystal. T
difference of 150 meV between the 1.688-eV photolumin
cence line and the step in its excitation spectrum could

to-

r

V,
n
for
FIG. 6. Absorption spectrum of crystal R5 atT510 K ~continuous
curveA!. Curves1 and4 show the photoluminescence excitatio
spectra of the lines with energies 1.688 and 1.626 eV, reduced
comparison.
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ascribed to excitation of the corresponding vibronic mode
it is assumed that the line with energy 1.688 eV also co
sponds to free singlet excitons. This would mean that ze
phonon transitions are, as before, forbidden for an ‘‘idea
~defect-free! crystal.

However, it is possible that the line with energy 1.6
eV corresponds not to free excitons but to excitons at s
low traps. Then it is possible that the indicated difference
energies~150 meV! can correspond to the binding energy
an exciton with these traps and to the polaron effect~i.e., an
energy decrease due to deformation of the molecule or
crystal lattice by an exciton!. Thus, we cannot exclude tha
both the line with energy 1.688 eV and the strong absorp
edge correspond to zero-phonon optical transitions~it is pos-
sible that ordinary crystal phonons, which are very shall
in C60 molecules, participate here!. In this case, the strong
absorption lines with energies 1.841 and 1.876 eV~see Fig.
6! can be ascribed to zero-phonon optical transitions fr
the1A1g ground state to thek'0 states of the singlet-excito
bands formed from the1T1g and 1T2g levels ~the difference
of about 35 meV between them agrees with the calcula
values1,4,5!. Then the absorption lines with energies 1.9
and 1.966 eV can correspond to a vibronic sideband of
first two lines with the participation of thehu mode ~0.09
eV!, while the 2.010 and 2.047-eV lines correspond to
vibronic sideband with participation of other modes with
energy of about 170 meV@for example,t1u ~0.178 eV! or hu

~0.157 eV!#.
The excitation spectra of the photoluminescence li

beginning with an energy of 1.65 eV and below are ve
similar to each other and sharply differ from the excitati
spectra of the photoluminescence lines with higher ene
~see Fig. 5!. The experimental data make it possible to a
sume that these lines correspond to excitons at deep ex
traps caused by crystal-lattice defects. In this case, all
short-lived states evidently correspond to singlet excito
The very small difference between the edge of the excita
spectrum and the position of the photoluminescence l
1.65 eV and 1.63 eV, means that at least these lines co
spond to zero-phonon transitions, i.e., that the deformatio

FIG. 7. Absorption spectrum of crystal R14, measured atT55, 70, 120, and
300 K.
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C60 molecules in these defects because of intermolecular
teractions is rather small. Then the group of short-lived p
toluminescence lines in the energy region below 1.55 eV
be regarded as a vibronic sideband of the lines in the reg
with energy 1.7–1.6 eV involving a vibrational mode with a
energy of about 0.18 eV. These conclusions correlate w
those of Ref. 16, where is was also shown that deep exc
traps can make a large contribution to the photoluminesce
of C60 crystals and that the probability of zero-phonon tra
sitions can be large for these traps.

Following Ref. 15, we assume that the long-lived ex
tations that we observed in the photoluminescence co
spond to triplet excitons localized on crystal-lattice defec
The photoluminescence spectra of triplet excitons in
crystals differ from those observed in Ref. 15. The lifetim
of these excitations also strongly differ from those in R
15: in our case,t'3 ms, whereast'0.4 ms in Ref. 15. This
means that the defects that dominate our samples d
somewhat from those observed in Ref. 15. Starting from
data on the saturation of the long-lived photoluminescen
an upper limit for the concentration of these defects in o
samples can be estimated. In the tau approximation, sa
tion of the photoluminescence corresponds to the situatio
which the concentration of triplet excitons captured on tho
defects that possess a large ratiot/tR becomes comparabl
with the concentration of these defects. Recalling that t
occurs at a laser power of about 1 mW/mm2, while the pen-
etration depth of the He–Ne-laser radiation is about 10mm,
we find that the defect concentration does not exc
331018 cm23 even if it is assumed that all the excitons ge
erated by the laser radiation are captured only on the in
cated defects.

Thus, the concentration of deep traps discussed h
does not exceed 1023– 1024 of the total number of C60 mol-
ecules. In this connection, one needs to explain why, w
such a small concentration of defects, they virtually co
pletely determine the photoluminescence spectrum of the
crystals. Indeed, the photoluminescence from the deep e
ton traps is dominant in our crystals not only with excitati
by a He–Ne laser (E51.96 eV), but also with excitation by
an argon laser having an energy ofE52.41 eV. As follows
from the absorption spectra, the fraction of photons absor
directly by defects is very small in both cases~especially in
the case of the argon laser!. Therefore, the only reasonab
explanation of this fact is to assume that free excitons in60

crystals are very mobile and possess a rather large diffu
coefficient even at a temperature of 5 K. In this case,
overwhelming majority of free excitons manage to be ca
tured on deep traps during their lifetime, and excitons
defects therefore dominate in the photoluminescence s
trum.

If it is not assumed that the excitons have high mobili
it has to assumed that the luminescence quantum yiel
defects is greater by three orders of magnitude than the q
tum yield from C60 molecules found in an ideal crystallin
neighborhood. Of course, the quantum yield can be expe
to be enhanced at defects because of the removal of the
biddenness on zero-phonon transitions, but it is hard to s
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pose that the quantum yield can increase by three order
magnitude in this case.

Recalling that the crystals studied for this paper w
fabricated from very pure raw material and were subjecte
multiple resublimation in vacuum, we assume that the
fects under discussion are intrinsic defects of the crystal
are not associated with impurities. It is possible that th
defects result from plastic deformation of the crystals dur
growth under the action of their own weight, since C60 crys-
tals are very plastic at the growth temperature~about 450–
470 °C!.

5. CONCLUSION

This paper has discussed comparatively large~2–3 mm
across! pure C60 crystals grown by resublimation in vacuum
It has shown that the photoluminescence spectra in such60

crystals mainly corresponds to excitons captured at d
traps caused by crystal-lattice defects. The atomic concen
tion of defects is at most 1023– 1024, and the fact that they
dominate in the photoluminescence means that the free e
tons have high mobility even at 5 K. The very large cont
bution to the photoluminescence at low excitation dens
comes from long-lived excitations with a lifetime of about
ms, which probably corresponds to triplet excitons captu
at crystal defects. A comparison of the photoluminesce
spectra and their excitation spectra shows that, at least in
case of crystal defects, distortion of the symmetry of C60

molecules due to intermolecular interactions removes
forbiddenness on zero-phonon optical transitions.
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Self-consistent solutions of the problem of the interaction of a two-frequency field with
a system of three-level atoms in the form of a phase-modulated simulton and a
Raman soliton

A. V. Andreev* )

M. V. Lomonosov Moscow State University, 119899 Moscow, Russia
~Submitted 28 April 1997!
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This paper discusses features of the interaction of a system of three-level atoms with a
bichromatic electromagnetic field. Steady-state solutions are found in the form of unimodal and
nonunimodal solitary waves corresponding to a pair of pulses in the form of a simulton or
a Raman soliton. An analytic form of the solutions is found, corresponding to a phase-modulated
simulton and a Raman soliton. The conditions are determined for exciting them. The
resulting solutions are of interest from the standpoint of the mechanism for forming the two-
frequency coupled excitations observed in various experiments. ©1998 American
Institute of Physics.@S1063-7761~98!02802-9#
s
ig
ic
h
fre
i

rd
e
re
el
le
-

n

th

he
n
o
e
m

n

in
th
wi
,
e
in
tio
h
rs
e

te
ions
ff-

of

t-

n

m
ro-

the
1. INTRODUCTION

The study of nonsteady-state coherent processes in a
tem of three-level atoms has continued to interest invest
tors for many years. This interest has both purely theoret
and applied aspects. The applied aspect is associated wit
successful development of systems for converting the
quency and shape of pulses, i.e, for obtaining pulses w
high contrast and a frequency shift upward or downwa
The discovery of simulton solutions served as a spur to
tend the methods of the inverse scattering problem to th
level media.1 Significant interest in the study of three-lev
media was associated with the development of inversion
amplification systems2 and with the experimental and theo
retical study of the coherent population-capture effect.3 Suc-
cessful experiments on the observation of Raman solito
carried out recently in various laboratories,4–7 have caused
increased interest in developing a consistent theory of
indicated phenomena.5,8,9

Most of the models used in theoretically analyzing t
dynamics of the formation of Raman solitons are based o
treatment of two-frequency interaction in a medium of tw
level atoms with a dipole-forbidden transition. These mod
are probably adequate to explain the experiments on sti
lated Raman scattering in hydrogen,4–6 in which the fre-
quency of the pump pulse is far from resonance with a
transition. However, in experiments with NH3 gas,7 the ra-
diation frequency of the CO2 laser used as a pump pulse is
quasi-resonance with the vibrational frequency, while
frequency of the Stokes quantum is in quasi-resonance
the rotational transitions of the NH3 molecule. In this case
the parameters of the soliton strongly depend on the valu
the frequency offset, and a consistent model must take
account the population dynamics both at the pump transi
and at the Stokes transition. It should be pointed out t
simulton solutions were found by the methods of the inve
scattering problem only when the adjacent transitions w
exactly in resonance and had equal oscillator strengths.1,10 In
4121063-7761/98/86(2)/8/$15.00
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this paper, we find solutions in the form of steady-sta
pulses when the oscillator strengths at adjacent transit
are different, and the pump-pulse frequency is arbitrarily o
set from the frequency of the corresponding transition.

2. BASIC EQUATIONS

The interaction Hamiltonian of an extended system
atoms with a polychromatic field has the form

H5Ha1H int1H f , ~1!

whereHa is the Hamiltonian of a free system of atoms,

Ha5(
i 51

N

(
k

\vkbki
1bki ,

H int is the interaction Hamiltonian,

H int52
1

c E j•AdV,

and H f is the Hamiltonian of the free field. The curren
density operatorj has the form

j5(
i 51

N

(
k

(
l

mklbki
1bli d~r2r i !,

where mkl5 ivkldkl is the matrix element of the transitio
current between thekth andl th levels of the atom, anddkl is
the dipole moment of the transition.

Let us consider the interaction of the three-level ato
whose energy-level diagram is shown in Fig. 1 with a bich
matic field. Let transition 1↔2 be dipole-forbidden,d1250.
This case corresponds to the so-calledL system. However,
as is well known, these results are easily generalized to
case of theV system and theJ system, which will be done
below.

The vector potentialA(r ,t) of the electromagnetic field
can conveniently be represented in the form
© 1998 American Institute of Physics
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A~z,t !5A1
1~z,t !expF iv31S 12

z

cD G
1A2

1~z,t !expF iv32S 12
z

cD G1c.c. ~2!

Using the Hamiltonian of Eq.~1! and assuming thatA1,2
1 (z,t)

are slowly varying amplitudes, it is not difficult to obtain th
following system of equations:

]a1

]t
1

]a1

]z
5b1b3

1b1 ,
]b1,2

]t
5b3a1,2,

~3!
]a2

]t
1

]a2

]z
2 ida25b2b3

1b2 ,
]b3

]t
52b1

1a12b2
1a2 ,

where

ai5
i t

\c
m3i* •A i

1 ,

bi5
1

AN/V

1

V1
(

nPV1

^b̂in&expF iv i S t2
zn

c D G ,
b i5

2pv3i ud3i u2

\

N

V
t2, d52p~x~v32!2x~v31!!v32t.

The dimensionless vector potentiala1,2 in Eq. ~3! is normal-
ized in such a way that the energy density of the field has
form

wf5S \v31

ua1u2

b1
1\v32

ua2u2

b2
D N

V
,

where N/V is the density of atoms. After introducing th
probability amplitude wave of exciting thei th level, we av-
eraged over the physically small volumeV1 . We have intro-
duced dimensionless timet85t/t and positionz85z/L into
Eqs. ~3!, whereL is the length of the medium andt5L/c.
The primes in Eqs.~3! and the succeeding expressions ha
been omitted. The parameterd in Eqs.~3! takes into accoun
the dispersion, i.e., the difference of the polarizabilit
x(v3i) at frequenciesv3i . It is easy to see that by using th
transformationsa285a2e2 idz andb285b2e2 idz, we can elimi-
nate the parameterd from Eqs. ~3!, and therefore we se
d50 in what follows.

The system of Eqs.~3! is a system of equations for th
slowly varying field amplitudes that satisfy the conditio
u]ai /]tu!v3i uai u and the probability amplitudebi of the ex-

FIG. 1. Energy-level diagram.
e

e

s

citation of thei th level. One can go from the quantum Eq
~3! to the semiclassical equations by using semiclassical
couplings of the form̂ bi

1ak&5^bi
1&^ak& ~see Ref. 11 for

more detail!.

3. INTEGRALS OF THE MOTION

Let us find some of the integrals of the motion of th
system of Eqs.~3!, which we shall use in obtaining analyti
solutions.

We represent the amplitudes of the waves in Eqs.~3! as

ai~z,t !5Ai~z,t !exp@ iw i~z,t !#,

bi~z,t !5Bi~z,t !exp@ ic i~z,t !#,

and then the system of Eqs.~3! assumes the form

Ȧ11A185b1B3B1 cos~c12c32w1!,

Ȧ21A285b2B3B2 cos~c22c32w2!,

Ḃ352B1A1 cos~c12c32w1!2B2A2

3cos~c22c32w2!,

Ḃ25B3A2 cos~c22c32w2!.

Ḃ15B3A1 cos~c12c32w1!,

~ ẇ11w18!A15b1B3B1 sin~c12c32w1!, ~4!

~ ẇ21w28!A25b2B3B2 sin~c22c32w2!,

ċ3B352B1A1 sin~c12c32w1!2B2A2

3sin~c22c32w2!,

ċ2B25B3A2 sin~c22c32w2!,

ċ1B152B3A1 sin~c12c32w1!.

The partial derivative with respect to time in Eqs.~4! is
denoted by a dot, and that with respect to the spatial coo
nate is denoted by a prime.

The system of Eqs.~4! possesses the following integra
of the motion and conservation laws:

B1
2~z,t !1B2

2~z,t !1B3
2~z,t !

5B1
2~z,0!1B2

2~z,0!1B3
2~z,0!, ~5!

ċ1~z,t !B1
2~z,t !1ċ2~z,t !B2

2~z,t !5ċ3~z,t !B3
2~z,t !, ~6!

~ ẇ i~z,t !1w i8~z,t !!Ai
2~z,t !52b i ċ i~z,t !Bi

2~z,t !, ~7!

]Ai
2~z,t !

]t
1

]Ai
2~z,t !

]z
5b i

]Bi
2~z,t !

]t
. ~8!

Equation~5! is the law of conservation of the number o
excitations or of the number of atoms in the system. Eq
tion ~6! can be interpreted as the law of conservation
angular momentum. Equations~7! have the same meaning
Equations~8! are continuity equations. Indeed, adding Eq
~8! for i 51,2, we get
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]

]t S ua1u2

b1
1

ua2u2

b2
112ub1u22ub2u2D

1
]

]z S ua1u2

b1
1

ua2u2

b2
D50.

As we pointed out above,ua1u2/b1 is the number density o
quanta of fieldA1 , normalized to the number density of a
oms N/V, while 12ub1u22ub2u25ub3u2. Consequently,
variation of the sum of the number of the quanta of fieldsA1

andA2 and of the number of atoms on level 3 in volumeV is
associated only with a flux of quanta through the surface
bounds volumeV,

]

]t Ez1

z2S ua1u2

b1
1

ua2u2

b2
1ub3u2Ddz

5S ua1u2

b1
1

ua2u2

b2
D U

z5z1

2S ua1u2

b1
1

ua2u2

b2
D U

z5z2

.

4. THE RESONANCE CASE

Let us first consider the resonance case, for which

ẇ i5ċ i50. ~9!

In this case, the system of Eqs.~4! assumes the form

Ȧ15A185b1B3B1 , Ḃ15B3A1 , Ḃ25B3A2 ,
~10!

Ȧ21A285b2B3B2 , Ḃ352B1A12B2A2 .

Such solutions of the system of Eqs.~4!, in which am-
plitudesA1,2 depend only on the delay time

Ai~z,t !5Ai S t2
z

v D ,

correspond to self-consistent propagation of pulses, whev
is the velocity of the self-consistent propagation of t
pulses.

In problems involving the interaction of a two-frequen
field with a system of three-level atoms, two main types
self-consistent solutions are possible. In the first, the fie
on both adjacent transitions have the form of solitary pul
whose amplitude goes to zero ast→6`. Such solutions are
called simultons. In the second, ast→2`, the amplitude of
one of the fields tends to a constant, while the amplitude
the second field tends to zero. The field that has nonz
amplitude ast→2` acts as a pump pulse. Such solutio
are called Raman solitons.

For self-consistent pulse propagation, Eqs.~8! assume
the form

Bi
2~z,t !1

1

b i
S 1

v
21DAi

2S t2
z

v D
5Bi

2~z,t0!1
1

b i
S 1

v
21DAi

2S t02
z

v D , ~11!

wheret0 is an arbitrary instant.
As can be seen from Eqs.~11!, various dynamics of the

self-consistent pulse propagation are possible, dependin
the sign of the coefficientki5(12v)/b iv. For theL system,
at

f
s
s

f
ro

on

the frequenciesv3i are positive, and therefore the coeffi
cientsb i are positive. Consequently, parameterki is positive
whenv,1 and negative whenv.1. For theV system, co-
efficientsb i,0, and parameterki is positive whenv.1 and
negative whenv,1. The normalized pulse velocity is les
than unity when the pulse propagates in an initially abso
ing medium. This means that, ast→6`, the conditions
ub3(t→6`)u, ub2(t→6`)u,ub1(t→6`)u must be satis-
fied for theL system and the reverse inequalities for theV
system. In initially excited media, the velocity of a stead
state pulse can be greater than that of light. In what follo
we shall consider initially unexcited media. Consequen
we assume thatki.0 for theL system andki,0 for theV
system. However, these results can easily be generalize
initially excited media.

„a… The L system

We first consider the caseki.0. In this case, the right-
hand side of Eqs.~11! is positive, and we can rewrite them a

Bi
21kiAi

25Ci
2,

or

Ai5g iACi
22Bi

2. ~12!

where

Ci
25Bi

2~z,t0!1
1

b i
S 1

v
21DAi

2S t02
z

v D ,
~13!

g i5A1

ki
5A b iv

12v
.

Using Eqs.~12! and ~5!, it is easy to obtain the following
closed system of equations for amplitudesB1 andB2 :

Ḃ15g1AC1
22B1

2A12B1
22B2

2,
~14!

Ḃ25g2AC2
22B2

2A12B1
22B2

2.

Let us introduce the new variablesx1,2,

B15C1 cosx1 , B25C2 cosx2 ,
~15!

A15g1C1 sin x1 , A25g2C2 sin x2 .

The equations of motion forx1,2 have the form

ẋ152g1A12C1
2 cos2 x12C2

2 cos2 x2,
~16!

ẋ252g2A12C1
2 cos2 x12C2

2 cos2 x2.

It is easy to see that the variablesx1,2 are connected by the
relationship

x12x105
g1

g2
~x22x20!.

Consequently, the coupled motion of the self-consist
pulses at transitions 3↔2 and 3↔1 is determined by the
following equation of motion for the variablex5x1 :

ẋ52g1A12C1
2 cos2 x2C2

2 cos2@a~x2x0!#, ~17!

where
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a5
g2

g1
5Ab2

b1
, x05x102

g1

g2
x20.

Equation~17! has the form of the law of conservation o
energy for a mechanical particle,

K1U50,

where

K5
ẋ2

2
, U5

g1
2

2
~C1

2 cos2 x1C2
2 cos2@a~x2x0!#21!.

Based on this analogy, we can easily analyze the charact
the dynamics of an optical system. The self-consistent pro
gation of a solitary pulse corresponds to the motion o
mechanical particle from the maximumxn of potentialU(x),
determined by the conditionsU8(xn)50 and U9(xn),0,
with zero initial velocity and ending at the maximumxm .
With x050 and integral values ofa, the maximum points of
U(x) are the pointsxn5pn. The initial velocity of a particle
from the maximum points equals zero provided that

C1
21C2

251. ~18!

In this case, Eq.~17! assumes the form

ẋ52g1AC1
2 sin2 x1C2

2 sin2 ax. ~19!

„b… Simultons

The solution of Eq.~19! whena51 has the form

cosx5tanhFgS t2
z

v D G . ~20!

whereg5g11g2 . Consequently, the field amplitudesA1,2

andB1,2 have the form

A15gC1 /coshF, B15C1 tanhF,
~21!

A25gC2 /coshF, B25C2 tanhF,

where

F5
1

t0
S t2

z

v D ,
1

t0
5g5A bv

12v
. ~22!

As can be seen, the solutions given by Eqs.~21! describe the
simultaneous propagation of pulses at the adjacent transi
3↔2 and 3↔1, appearing when the well-known condition
for the equality of the oscillator strengths at adjacent tran
tions are satisfied:

b15b2 or v31ud31u25v32ud32u2, ~23!

whered31 is the matrix element of the dipole moment at t
transition 3↔1.

In the casea52, the solution of Eq.~19! has the form

A15g1C1A 11p2

cosh2 F1p2, B15
C1 sinh F

Acosh2 F1p2
,

~24!

A25g2C2

2 sinhFA11p2

cosh2 F1p2 ,
of
a-
a

ns

i-

B25C2S 122
11p2

cosh2 F1p2D ,

where

F5
1

t0
S t2

z

v D ,
1

t0
5Ag1

2C1
21g2

2C2
2, p5

2C2

C1
.

~25!

The solutions given by Eqs.~24! are a new form of solutions
of the simulton type. The conditions for their appearan
differ from the conditions given by Eqs.~23! and have the
form

4v31ud31u25v32ud32u2. ~26!

As can be seen from Eqs.~24!, the intensity profiles of the
pulses in adjacent transitions are different, which dist
guishes the solutions given by Eqs.~24! from the conven-
tional simulton solutions given by Eqs.~21!. The intensity
profiles of the pulses in adjacent transitions and the dynam
of the population amplitudes of the levels are shown in F
2 for a51 ~a and b!, a52 ~c and d!, anda53 ~e and f!.

„c… Raman solitons

The solutions given by Eqs.~21! and ~24! for Eq. ~17!
were obtained forx050. We now consider the cas
x05p/2a. Equation~17! in this case acquires the form

ẋ52g1A12C1
2 cos2 x2C2

2 sin2 ax. ~27!

For integrala andC1.C2 , potentialU(x) reaches maxima
at the pointsxn5pn. The initial velocity of a particle from a
maximum point equals zero provided thatC151.

Whena51, the solution of Eq.~27! has the form

cosx5tanhFgA12C2
2 S t2

z

v D G . ~28!

Consequently, the field amplitudesA1,2 and B1,2 have the
form

A15g/coshF, B15tanhF,
~29!

A25gC2 tanhF, B25C2 /coshF,

where

F5
1

t0
S t2

z

v D ,
1

t0
5gA12C2

25A bv
12v

~12C2
2!.

~30!

As can be seen from Eqs.~29!, a ‘‘bright’’ soliton occurs in
the transition 3↔1, and a ‘‘dark’’ soliton occurs in the tran
sition 3↔2. Such an excitation, by analogy with Refs. 4,
8, and 9, can be called a resonance Raman soliton. The
dition for them to be excited is that Eqs.~23! are satisfied.

Whena52, the solution of Eq.~27! has the form

A15g1C1A 124C2
2

cosh2 F24C2
2, B15

C2 sinh F

Acosh2 F24C2
2

,

A25g2C2

2 sinhFA124C2
2

cosh2 F24C2
2 ,

~31!
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FIG. 2. Dynamics of the population amplitudes of the first~1!, second~2!, and third~3! levels and intensity profiles of the pulses in the 3↔1 transitions~curve
4! and the 3↔2 transition~curve5! for a51 ~a and b!, a52 ~c and d!, andv53 ~e and f!.
n
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B25C2S 122
124C2

2

cosh2 F24C2
2D ,

where

F5
1

t0
S t2

z

v D ,
1

t0
5Ag1

22g2
2C2

2.

It is easy to see that the solutions given by Eqs.~31! are a
generalization of the solutions corresponding to resona
Raman solitons for the casea52, i.e., when the frequencie
and matrix elements of the transitions satisfy the condit
given by Eq.~26!.

The intensity profiles of the pulses and the dynamics
the population amplitudes of the levels are shown in Fig
for a52 ~a, b, and c! anda53 ~d, e, and f!.

It can be seen from Eq.~27! that when C151 and
aC2.1, solutions in the form of a pair of bright and da
ce

n

f
3

solitons exist for an arbitrary value ofa. Figure 4 shows the
dynamics of the population amplitudes of the levels~a! and
the profiles of the bright soliton~b! and the dark soliton~c!
for a5p/2.

„d… The V system

As we pointed out above, the relationships between
amplitudesA1,2 and B1,2 determined by the integral of th
motion in Eqs.~11! are qualitatively different in the case
ki.0 andki,0, which will undoubtedly affect the characte
of the propagation dynamics of the pulses. We conside
the caseki.0 above. Now letki,0. In this case, the integra
of the motion in Eqs.~11! assumes the form

Bi
2~z,t !2

1

b i
S 12

1

v DAi
2S t2

z

v D5Bi0
2 2

1

b i
S 12

1

v DAi0
2 .

~32!
-

s

FIG. 3. Dynamics of the population ampli
tudes of the first~1!, second~2!, and third
~3! levels and intensity profiles of the pulse
in the 3↔1 transitions~curve 4! and the
3↔2 transition~curve5! for a52 ~a, b, and
c!, anda53 ~d, e, and f!.
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Self-consistent solutions in the form of a solitary pulse a
pear only under the condition that

Bi0
2 2

1

b i
S 12

1

v DAi0
2 50,

which leads to the following connection of amplitudesA1,2

andB1,2:

Ai5g iBi , ~33!

where the parametersg i are determined here by the expre
sion

g i5Aub i uv
12v

.

Equations~33! lead to the following equations of motion fo
the amplitudesB1,2:

Ḃ15g1B1A12B1
22B2

2,
~34!

Ḃ25g2B2A12B1
22B2

2.

It is easy to see that Eqs.~34! have an integral of the motion
of the form

B25CB1
g2 /g1. ~35!

Consequently, the coupled motion of the self-consist
pulses in transitions 3↔2 and 3↔1 is described by

Ḃ5g1BA12B22C2B2g2 /g1. ~36!

Wheng15g2 , the solution of Eq.~36! has the form

A15
g

A11C2 coshF
, B15

1

A11C2 coshF
,

FIG. 4. Dynamics of the population amplitudes of the first~1!, second~2!,
and third~3! levels and intensity profiles of the pulses at the 3↔1 transi-
tions ~b! and the 3↔2 transition~c! for the value of the parametera5p/2.
~37!
-

t

A25
Cg

A11C2 coshF
, B25

C

A11C2 coshF
,

where

F5
1

t0
S t2

z

v D ,
1

t0
5g.

As can be seen, these solutions correspond to the cas
which all the atoms are in level 3 at the initial instant, whi
corresponds to bichromatic superradiation for theL system,
and to copropagating propagation of pulses in resona
with the adjacent transitions for theV system.

„e… Coherent trapping of populations

As we pointed out at the beginning of this section, t
case in which the inequality

ub3~ t→6`!u,ub2~ t→6`!u,ub1~ t→6`!u

is not satisfied corresponds to an initially excited medium.
this case, the equations of motion for the variablesb1,2 can
result in a Hamiltonian form with potential energy

U~b1 ,b2!5
g1

2
~b1

42b1
2!1

g2

2
~b2

42b2
2!1

g11g2

2
b1

2b2
2.

This potential has the form of the bowl shown in Fig. 5. T
potential has the following extrema:b15b250 ~point O!,
b150, b251/2 ~point A!, b151/2, b250 ~point C! and the
points symmetric to them. PointO is the maximum, while
pointsA andC, depending on the ratio of the parametersg1

and g2 , are either saddle points or minima. Solutions th
start from a saddle point correspond to Raman solito
while the minimum of the potential corresponds to the st
of coherent trapping of populations.

5. THE NONRESONANCE CASE

„a… The V system

In the nonresonance case, along with the integral of
motion given by Eqs.~11!, we must also take into accoun
the integral of the motion given by Eqs.~7!. The combined
solution of these two equations determines the conditions
the coupling of amplitudesA1,2 andB1,2:

FIG. 5. Form of the potential surface in coordinates (b1 ,b2); O is a local
maximum point,A andB are saddle points, andC is a local minimum point.
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~ ẇ i1w i8!Ai
21b i ċ iBi

250,
~38!

Bi
21

1

b i
S 1

v
21DAi

25Bi0
2 1

1

b i
S 1

v
21DAi0

2 .

Comparison of these two equations shows that whenki.0, a
self-consistent solution can be only phase-modulated.
deed, we get from Eqs.~38! that

Bi
2F ẇ i1w i81~121/v !ċ i

ẇ i1w i8
G5Ci

2.

Consequently, theBi are constants for constantẇ i , ċ i ,
andw i8 .

In the caseki,0, the quantitiesẇ i , ċ i , andw i8 can be
constant; we obtain from Eqs.~38! that

1

b i
S 12

1

v
D 52

ẇ i1w i8

b i ċ i

.

Assuming that

w i~z,t !5w i S t2
z

v D , ~39!

we get

ẇ i5D i , ċ i52D i .

Thus, in the caseki.0, the equations of motion, Eqs
~34!, are easy to generalize and take the form

Ḃ156g1B1A12S D1

g1
D 2

2B1
22B2

2,
~40!

Ḃ256g2B2A12S D2

g2
D 2

2B1
22B2

2.

When the condition

D15D2Ab1 /b2, ~41!

is satisfied, the system of Eqs.~40! again has an integral o
the motion of the form of Eq.~35!, and the equation o
coupled self-consistent motion of the pulses takes the fo

Ḃ56g1BA12~D1 /g1!22B22~11C2!B2g2 /g1. ~42!

The solution of Eq.~42! in the caseg15g2 has the form
n-

A15A12~D/g!2

11C2

g

coshF
,

B15A12~D/g!2

11C2

1

coshF
,

~43!

A25A12~D/g!2

11C2

gC

coshF
,

B25A12~D/g!2

11C2

C

coshF
,

where

F5
1

t0
S t2

z

v D ,
1

t0
5Ag22D2.

„b… Phase-modulated simultons

In the caseki.0, a self-consistent solution can have t
form of only a phase-modulated pulse. As follows from t
first equation of the system of Eqs.~38!, ẇ i and ċ i can be
represented in the form

ẇ i5k iBi
2, ċ i5m iAi

2, ~44!

where

m i5
k i

b i
S 1

v
21D5

k i

g i
2 .

Substituting Eq.~44! into the second Eq.~9!, it is easy to get
the following equations for the amplitudesB1,2:

Ḃ15g1AC1
22B1

2A12~11C1
2G1

2!B1
21G1

2B1
42B2

2,
~45!

Ḃ25g2AC2
22B2

2A12~11C2
2G2

2!B2
21G2

2B2
42B1

2.

whereCi is determined by Eq.~13!, while

G i5m ig i5k iYA b iv
12v

.

Let us introduce the following replacement of variable

Bi5Ci cosg ixi , Ai5g iCi sin g ixi ,

and then the system of Eqs.~45! assumes the form
ẋ152A12C1
2 cos2 g1x12C2

2 cos2 g2x22G1
2C1

4 sin g1x1 cosg1x1,
~46!

ẋ252A12C1
2 cos2 g1x12C2

2 cos2 g2x22G2
2C2

4 sin g2x2 cosg2x2.
It can be seen from Eqs.~46! that whenC1
21C2

251, the
velocities areẋ1,250 at the points

g1x1n5pn, g2x2m5pm.

Then, in the caseC1
21C2

251 andG1C15G2C2 , the solution
of the system of Eqs.~45! has the form
A15g1C1A 12G1
2C1

2

cosh2 F2G1
2C1

2, B15
C1 sinh F

Acosh2 F2G1
2C1

2
,

~47!

A25
k1

k2
A1 , B25

k1

k2
B1

and
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ẇ15k1

C1
2 sinh2 F

cosh2 F2G1
2C1

2 ,

where

F5
1

t0
S t2

z

v D ,
1

t0
5C1Ag1

22C1
2k1

2. ~48!

„c… Phase-modulated Raman soliton

WhenC151, the points at whichḂ1,250 will be B151,
B25C2 . Using this circumstance, it is easy to obta
coupled self-consistent solutions of the system of Eqs.~48!
in the form of solitary pulses. Thus, wheng15g2 and
G15G2C2

2, they have the form

A15g1A 12G1
2

cosh2 F2G1
2, B15

sinh F

Acosh2 F2G1
2

,

~49!

A15
C2 sinh F

Acosh2 F2G1
2

, B15C2A 12G1
2

cosh2 F2G1
2.

The dynamics of the phases of the pulses are determine
the equations

ẇ15k1

sinh2 F

cosh2 F2G1
2 , ẇ25k2

C2
2~12G1

2!

cosh2 F2G1
2 , ~50!

where

F5
1

t0
S t2

z

v D ,
1

t0
5g1A12G1

22C2
2.

It can be seen from Eqs.~50! that ast→6`, the pump
pulse, i.e., the pulse in quasi-resonance with transition 1↔3,
is offset from exact resonance byk1 . At the maximum of the
pump pulse, its offset from resonance goes to zero, whe
the offset of the Stokes pulse reaches a maximum equa
ẇ25k2C2

2 at that instant.

6. CONCLUSION

The analysis given here has made it possible to de
mine the form of self-consistent solutions in the form
steady-state pulses in adjacent transitions of a three-l
atom whose intensity profile has both a unimodal and a n
unimodal shape. The conditions for steady-state pulse
appear depend upon the parametera, which is determined by
the ratio of the oscillator strengths on the adjacent tra
tions:

a5Ab2

b1
5Av32ud32u2

v31ud31u2,
by

as
to

r-

el
n-
to

i-

the parametersC1,2, which are determined by the initia
populations of the levels and the field amplitudes, and
parametersk i , which determine the initial offsets of th
pulse frequencies or the value of the chirp.

In exact resonance, simulton solutions for theL system
arise for integral values ofa. In this case, a pulse at a tran
sition with a large oscillator strength has multiple peaks,
number of peaks beinga. Solutions in the form of Raman
solitons appear for an arbitrary value ofa, and the number of
dips in a dark soliton is determined by the integer part of
numbera. In the case of theV system, simultons can exis
both in the resonance case and in the nonresonance cas
the nonresonance case, the frequency offsets of the puls
adjacent transitions are related by Eq.~41!. Solutions in the
form of a phase-modulated simulton and Raman soliton a
for certain relationships~indicated by us! between the initial
offsets of the pulses and the oscillator strengths at adja
transitions, and depend on the initial populations and fi
amplitudes.

Since the profiles of the steady-state pulses are descr
in analytic form, this can be extremely useful in studying t
properties of soliton-like excitations observed in various e
periments.
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