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Abstract—The angular distribution of Auger electrons is considered, and the angular distribution anisotropy
parameter o, for (M3 —> NoNy), (M3 —> N3Ny), (Mg —> NjNy), (My —> NyNs), (My — N5Ns), and
(M4, 5 —= O, 30, 3) transitions in a xenon atom is calculated. The matrix elements are evaluated by the non-
relativistic Hartree—Fock method with LS coupling, as well as by the relativistic Hartree—-Fock method with jj
coupling (single-configuration approximation) and intermediate coupling (multiconfiguration approximation).
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INTRODUCTION

The anisotropy of the Auger electron angular distri-
bution in atoms was first predicted in [1]. Since then,
this effect has been the object of much theoretical and
experimental investigation. Of special interest is the
distribution of Auger electrons that arise upon filling
deep vacancies resulting from interaction between
atoms and synchrotron radiation [2]. The general the-
ory of Auger electron angular distribution anisotropy,
which is based on the density matrix formalism, was
developed in [3-6]. Later, the coefficients of the angu-
lar distributions were calculated [7-9]. However, the
existing discrepancy between theoretical predictions
and experimental data [6, 9, 10] necessitates further
investigation in this field. The reasons for the discrep-
ancy still remain unclear. One may be the roughness of
the theory (specifically, it ignoresinterference between
the final states of the ion—Auger electron system [11]).
Various approximations used in calculating the wave
functions of the initial and final states of the ions and
wave functions of the continuous spectrum may also be
afactor.

In this work, we use the theory of Auger electron
angular distribution developed in [6-8]. This theory is
generalized for the case of atoms with two unclosed
valence shells and includes both LSand jj couplings. In
addition, we derive expressionsfor theangular distribu-
tion anisotropy coefficient a, in the case of intermedi-
ate coupling, i.e., for the multiconfiguration relativistic
wave functions of the initial and final states of theions.
The wave functions of the ions are calculated by the

Hartree—Fock method and by the multiconfiguration
relativistic Hartree—-Fock—Dirac method.

The parameters of the Auger electron angular distri-
bution depend on the wave function of the continuous
spectrum. In early works, thisfunction did not take into
account exchange interaction between an electron of
the continuous spectrum and core-shell electrons and
ignored off-diagonal Lagrangean factors, which render
the wave function of the continuous spectrum orthogo-
nal to occupied single-electron states of theion. In this
work, we consider the effect of these factors on the
angular distribution parameter a,. In relativistic calcu-
lations, the wave function of the continuous spectrum
was found by solving the Hartree—-Fock—Dirac relativ-
istic equations. The influence of relativistic effects on
0, may be considerable, since the behavior of the con-
tinuous spectrum function near the core makes a major
contribution to the value of as.

In the next section, we outline the basic principles
underlying the calculation of the Auger electron angu-
lar distribution parameter a,. Then, we give the values
of a, calculated for the (Mg — N, 3N, 3), (M; —
Ny sNg 5), (My — NiNg), and (My 5 — O, 50, 5)
transitionsin axenon atom in different approximations.

GENERAL THEORY

The scattering of electrons or photons by an atom
A(Jy) may produce a vacancy A*(J,) in the inner shell.
The occupation of the vacancy is accompanied by the
emission of a photon or electron (Auger process). Let
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us consider the Auger process

A(L) +e —es+ e+ A'(J) )

A'(J) —A*J) +e,.

Here, e, and g, are scattered and knocked-out electrons,
respectively. The Auger process produces a doubly
charged ion A?*(J) and an Auger electron e, in the con-
tinuous spectrum. Sincethe lifetime of the excited state
is much longer than the time of collision, the scattering
process may be considered as proceeding in two steps:
the formation of a vacancy and Auger decay [1]. To
exclude interference between the states of the electrons
e and e,, we consider a process where the energies of
the scattered and Auger electrons differ. The quantum
states of the electrons e, and g, and those of the doubly
charged ion are disregarded. Also, we assume that nei-
ther the electron (€) nor the atom A(Jy) are polarized in
theinitia state A(YoJo)-

When electrons are scattered by an atom, a preferen-
tial direction appears in the system of colliding parti-
cles. This causes [12] anisotropy in the angular distri-
bution of the Auger electron flux intensity [(©). An
expression for the angular distribution 1(®) of Auger
electrons was obtained in [1, 4-7]. In [6], this distribu-
tion was described by using parameters A(KkQ), which
bear information on the dynamics and geometry of the
Auger process. In [6], a general expression for the
parameters A(KkQ) was derived:

A(KKQ) = J(2K + 1)(2k + 1)

Ji- Ml"';—ms
x5 5D
M, My, My mg, mg
O Dgl 1 E @
J, J, KOOz =
“Bu o2 2
M M'_ 1
! Q Dms_ms_QD

x [OIM, pOmyV|I3,M,00M, pOmy V]I MIF.

Here, V is the operator of electron—electron Coulomb
interaction:

= %z v(rrj),

i ]

v(r,r') =

©)

r=r’

(i) Intermediate coupling and jj coupling.
Expanding the wave function [p©m, of the Auger elec-
tron continuous spectrum in spherical wavesin view of
spin—orbit interaction [ 7], we come to an expression for
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the parameters A(KkQ):

A(KKQ) = LﬁpJ(ZK F)(2k+ 1)

(=) (ol -a}) I+ HjrQEl
X Z| e z(—l)
LT 0T

XJ(ZI+1)(2I'+1)(2j+1)(2j'+1)D J ‘]1 I 5 0@
' 3,0
o D@“kg
Z(ZX”) XI | 5ok XkDDZZ .
DOOODD—QOQDDJ ] KO
O xOB
0 0

x [(J, €))J1 VI 3,003, £]7) 4 VI 3,00

wherel +1'iseven, o,j isthe phase shift for an electron

of the continuous spectrum in a state [Ij|, and the 6] and
9j symboalic notation of Clebsch—Gordan coefficientsis
used [13].

The coefficients ax of the angular distribution are
related to the parameters A(KkQ) as[6]

a.(3) = AKOO)

A(000) ©)
It iseasy to check that

a = 0y VI, )Jll:% J(2K+1)(23,+1)
lj

2+1. |+|

J+3,-
XZZ(—l) C(K);jcos(o.—0)) (6)
TT
x D]1||V||(J1)J1DD]1”V"(Jj')\]lu
where
+2j 2 +1 2 +1
C(K);; = ~(-1)¥ 21/\/( j 2K)(+Jl )c |J<021+§
(7)
0JyJ, jd
X[ 0.
OK ' J.0

The matrix elements [J,|V]|(J,)J,[Jare determined
for the initial and final multielectron states of an arbi-
trary atom. Inthe general case, they are derived with the
Wigner—Eckart theorem [13, 14] if the multielectron

wave function W, , for theinitial state A*(J,) of the

ion, the wave function W, , for the final state A**(J) of
the ion, and the single-electron wave function Wjm for
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the Auger electron are known:

2
Jl 1 M, [V|IM, jnil (8)

JM ]m

[0,[VI(3, 1) 3.0 =

The wave functions W, \, and ¥, y can be calcu-

lated by the relativistic Hartree—-Fock—Dirac method in
the one-configuration approximation. In this case, the
coefficients a are determined for pure jj coupling. For
closed-shell atoms, such an approach is equivalent to
that worked out in [6-8] and applies only to closed-
shell heavy atoms, for which the final state A%*(J) of the
ion has vacancies on deep core levels. More correct
results can be obtained by the multiconfiguration Har-
tree—Fock method. With this method, one can, in partic-
ular, take into account the superposition of all relativis-
tic configurations that correspond to one nonrelativistic
configuration of the ion, i.e., configurations that have
the same occupancies of nonrelativistic shells (nl) and
different occupancies of the relativistic shells (nlj).
Such an approximation will be referred to as coupling
of the intermediate type. Intermediate coupling passes
to LScoupling, asit should, in the nonrelativistic limit.
However, thisis not true for pure jj coupling in closed-
shell systems, specifically, for ions with two vacancies
on inner levels.

In the particular case of atoms with closed valence
shells, the expression for the reduced matrix elements
(3] MI(J;)J,Lin hole representation for pure jj coupling
has the form

(3, &) 3 VI 3,0

_ G)+j . '] . . (9)
= (1) W 5 AlvI(hii, €lj)d0

wherel;jsand |} j; arethe quantum numbers of thetwo

vacancies in the ion A%*(J), and I;j; are the quantum
numbers of one vacancy in the initial state of the ion
AZ(J).

The parameter © takes half-integer values and
depends on the phase factors in the wave functions for
the initial and final states of the ion. Substituting (9)
into (4) and (6) eliminates the dependence of ©. In this
case, the additional phase factor is (-1)*I'*1. The
expressions for A(KkQ) and ay obtained in hole repre-
sentation are similar to (9) and (25) in [7].

The reduced matrix element in hole representation
for jj coupling was obtained in [15]. Its final form is
givenin [7]. In our notation,

s i) dlvI(Ljs, €lj)dO
= (1) 2]+ 1)(2) + 1)(23+ 1)
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1
<1>ZC- 12 lelk%
szko 'fszD i js 90

x R" (neleje, Nele i, milidi, €lj)

(10)

1
+ZC c2 HirikH
’fzko szkOD ji iy 30

xRk(nflfjf,n'fl'fj'f,slj,nihji)}

where the coefficient T depends on whether the two
vacancies of the ion A>*(J) are equivalent or not:
[0 (nel¢je) # (Nl )

11
(nel¢je) = (nel’J%). )

oqen

Radia integrals R¢ in (10) coincide with the stan-
dard radial integralsin the Hartree—-Fock—Dirac method
[16]

R(A B,C,D)
= Idrl dro[Pa(r)Pe(ry) + Qa(r) Qce(rly(rs, r2)
0

0

(12)

X [Pg(r)Pp(ry) + Qg(r)Qp(ry)l,

where A, B, C, and D are the numbers of reativistic
shells; P and Q are the major and minor components of
the radial wave function, respectively; and

k

Y o) = (13)

k+1
>

(ii) LS coupling. If relativistic effects are weak, the
ion states can be described in terms of LS coupling. To
find an expression for the parameters A(K0O) of the
angular distribution in the case of LScoupling, itisnec-
essary to pass from jj coupling to LS coupling. Then,
for the reduced matrix element with LS coupling, we
arrive at (see, eg., [17])

{3, &lj)Jq V13,0
= J(2L, +1)(2S,+ 1)(23 +1)(2j + 1)

HL s 3§ (14)
] ]

<01 10 Hsedsfums)a)
HLiS dig
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Using the Wigner—Eckart theorem, one easily finds

<%3 el ls]DJlllvn(Llsl)J>
(15)

- et 1)<Ers el 1sluvn<Llsl>>

In this case, instead of (14), we have

0, 2l)) V30 = 23+ DI+ D) (2] + 1)
I0

16
B<Ersa 1a||V||L1&> oo

S
1
2]
S Ji

(|

O

Then, the parameters A(KQO) in LS coupling are
given by

1
A(K00) =
4./2mp
x ¥ i Ve far+ 1)@+ el
L
——J Jo+l+1

(23, +1)2I+D(2j+1)(2]'+ 1)

<3 -’

0 0
51 .00 DEJlLlSlB &0
L JJ
xg2  'gn Y lgg I Lo sy
0, 00K j 3,00 | 10
ok tio oj 150
0 0
0 0
DJ1L151D
0 0
xgJ L SD<E_38I 181||V||L181>
0 10
o) 50
0 0

x < IserZusivi Llsl>.

Here, L,, S;, and J, are the quantum numbers describ-
ing the state of asingly charged ion A>*; L, S and J are
the gquantum numbers describing the state of a doubly
charged ion A**; and | and |' are the orbital quantum
numbers of an electron from the continuous spectrum
(Auger eectron). In the nonrelativistic approximation,
the wave function of an Auger electron is independent
of j; therefore, reduced matrix elements in (17) are
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independent of | and j'. Then, after summation over |
andj', formula (17) takes the form

A(K00) = (2J +1)(2J,+1)

[4

xS i R Er T DC,

DX GnoXE o
KI"J0O
2
UL saB
0 O0L L, 100L L, "D
x01 00O 00 0
EQXSLEDJl x §00J; x S0

x<§r3 1 L.SVI L1&>< {serusivi Llsl>.

The reduced matrix elements can be found with the
Wigner—Eckart theorem [13, 14] if the multielectron

wave function W, s wm, for theinitial state A* of

theion, the wave function Wy 5w, for thefinal state
A?* of the ion, and the single-electron wave function

qum , for the Auger electron are known:;
"2
2L, +1)(25,+1
<Er3 sllDLlslnvuLlsl> ! T )(Slsl )
(19

LML,Im SMg Im

x [L;M, S;Mg |VILM,, InT]

For atoms with closed valence shells, the reduced
matrix elements in (17) and (18) can be calculated in
hole representation [15] with pure jj coupling by an
expression similar to (9):

< IsedLsvi Llsl>

<B§ i FLslv ||%|—,||1£LS>

¢ +1;

= 1(-1)"" " J@2l + 1) (2l + 1)
X [(—1)Lz Rk(nflfa il nil;, €l)
K (20)
1;0 011, L D
x C|fo,koc:'?o,koD P
al; | kD
TECHNICAL PHYSICS Vol. 48 No. 12 2003



ANGULAR DISTRIBUTION OF AUGER ELECTRONS

+ (-1 Ri(ngl il elnil)
Uity Ld
xCIOkOCIOKOD "ol
Ol kO

where R{(nl, n'l', nyl;, nil}) istheradial integral:

k —
R(A, B,C,D) = IdrlIdrzPA(rl)PB(rz) 1)

X Yi(ry, 12)Pc(r1) Pp(ry).

(iii) Calculation of thewavefunctionsfor the con-
tinuous spectrum. In the nonrelativistic case, the wave
functions of the continuous spectrum were determined
in the Hartree-Fock approximation by solving the
eguation

1“' P (r) + ['('+1)+vc(r)} P.(r)
2r

(22)
+W®<(r) = ePsl(r) + Z)\sl,nlpnl(r)i
nl

where n and | are the quantum numbers of occupied
atomic shells of theion A*, A , are the off-diagonal
L agrangean factorsthat render the continuous spectrum
function P orthogonal to the atomic radial functions
P,, of the same symmetry, V(r) isthe Coulomb poten-
tial, and W, is the result of action of the nonlocal
exchange operator on the radial wave function of the
continuous spectrum.

The continuous spectrum function P, is normalized
to the d function in terms of energy: [P |P¢,[= d(€ —¢€").
Then, the asymptotics of Py has the form

P.(r) = jnzps:n(woo,

(23)
T=pr+ ZIn(2pr)—|1—T
p 2’

where p = ./2¢, Z istheion charge, and o, is the scat-
tering phase.

Joining an arbitrary unnormalized regular-at-zero
solution P (r) = NP.(r) to Eq. (22) and its derivative
with asymptotics (23), one can determine the normaliz-
ing factor N and the phase of the solution Pg (r). How-
ever, to provide a high accuracy, joining should be
accomplished over adistance of 10000 to 100000 a.u.;
in other words, asolution P (r) to (22) that isregular at

zero must be found over awide range of the radial vari-
able r. A much more efficient procedure is joining the
TECHNICAL PHYSICS Vol. 48
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solution and its derivative with alinear combination of
Coulomb functions F and G that are, respectively, reg-
ular and irregular at zero [18]:

Pe(Rn) = AF(Ry) + BG(Ry).

Here, R, is the position of the joint point. The Cou-
lomb functions can be effectively calculated with the
continued fraction technique [19]. In this case, thejoint
point can be taken in a domain where all radial atom
wave functions are negligibly small and the atomic
potential may be approximated by a Coulomb potential
with a high accuracy; that is, R ~ (20-50) au. The
normalizing factor N and the phase g, can be found
from the coefficients A and B:

AF( (24)

bos0, = {[Acos(o?) — BSin(a})] _
N = R+ B

0
ing, = %[Asin(o,o) + Beos(a?)] (25)

Here, 0,0 is the phase of the Coulomb functions[17]:
ol = agf(l+1+in), n = —. (26)

The relativistic wave functions of the continuous
spectrum were found in the Hartree-Fock—Dirac
approximation by solving the equation [16]

O-d g
0d o =

%"Dd rDst + VCPsk + W Spsk + Z)\sl nIPmE
: :
U

ol + K+ 1267+ VI Qu + W )
g 0
: :
l

iy £Q€k+ Z)\sl,nIan- [l
0 nl U

Here, P, and Q,, are the major and minor components
of the radial wave function for the continuous spec-
trum, P, and Q,,, are the mgjor and minor components
of the wave functions for occupied shellsin theion A%,

WL, and W2 are the major and minor components of

the effect of the nonlocal exchange operator on the two-
component radial wave function for the continuous
spectrum, and Kk is the relativistic quantum number.

Energy normalization for relativistic wave functions
has the form [20]

Idr[Ps(r)Pe'(r)+Qs(r)Qe'(r)] = 9(e-¢). (29
0

When normalized to the & function in terms of
energy, theradial wave function of the continuous spec-
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Table 1. Coefficients a, for several Auger transitionsin Xe (LS coupling)

Term oyt oy a,[10] a,[9] a,[25] a,[26]
Xe(MgN, 5N 5) g, -1.0000 -1.0000 -1.000 -1.000
Xe(MgN, 5N 5) 3p, —1.0000 —1.0000 —1.000 —1.000
Xe(MyN, sN, 5) 3p, —0.8000 —0.8000 —0.800 —0.800
Xe(MgN, 5N 5) 3p, 0.0 +0.7100 0.0 0.0
Xe(MgN, 5N 5) Ip, —0.2240 -0.1917 —0.167 —0.189
Xe(MgN, 5N 5) °F, +0.5817 -0.5867 +0.558 +0.55 +0.607
Xe(MgN, 5N 5) 3F, +0.4597 +0.4659 +0.43 +0.42 +0.493
Xe(M4N, 5N, 5) 3, —0.7513 —0.7390 —0.806 -0.82 —0.608
Xe(MyN, sN, 5) G, -0.6203 —0.6144 —0.640 —0.499
Xe(MsN, 5N 5) g, -1.0690 -1.0690 -1.069 -1.069 -1.069
Xe(MgNy 5N, 5) 3p, -1.0690 ~1.0690 ~1.069 ~1.069 -1.069
Xe(MsN, 5N 5) 3p, -0.7483 -0.7483 -0.749 -0.748 -0.748
Xe(MsNy 5Ny 5) P, —0.3818 —0.3818 —-0.371 —0.382 —0.382
Xe(MsN, 5N 5) Ip, —0.2394 -0.2050 -0.124 -0.178 —0.202
Xe(MsN, 5N 5) °F, +0.5157 -0.7134 +0.738 +0.0056 -0.02 +0.115
Xe(MsN, 5N 5) 3F, +0.3695 +0.3338 +0.336 +0.322 +0.32 +0.412
Xe(MsN, sN, 5) 3F, +0.4658* | +0.3774 +0.386 +0.435 +0.420 +0.506
Xe(MsN,, sN, 5) G, —0.6631 —0.6568 -0.710 —0.685 ~0.533

* For thisline, the experimental value of o, equals +0.4312 + 0.12 [23].
trum has (at large r) the asymptotics [20] irregular (P;, Q) at zero:
O 2 12 = ) + (R
EP([‘) _ %g nscg SIn(T +O_k) DDE( nt) APr(Rjnt) BPI(Rjr‘It) (32)
EQE( nt) = AQr(Rjnt) + BQi(Rjnt)-
EQ(V) = -DiD cos(T +0y), (29) The asymptotics of the relativistic Coulomb func-
tions may be taken in the form
Ti* 0 2 12
T = pr—nlogZpr—— 0 _lre+2ch 0
P(r) 0 Trp 7 sn(t+oy)
where D
Y ko ) - st
I* =0’ 30 O
H/-1, k<O, (30) 33)
1+ +2¢] D 0
y = JK=Z%IF, p = %A/(e + 02)2—04, |( ) == cOmp O COS(T +0y)
D
(31) 1 172
Z(e+c (r) ~ =00 +o°
h = (C_p> %Q.(r) S sn(r+ol)

Asinthe nonrelativistic case, o, here isthe phase of
the wave function for the continuous spectrum. Also, as
in the nonrelativistic case, the phase and normalizing
factor of an arbltrary unnormalized regular-at-zero

solution P, Q8 to the Dirac eguation were found by
joining this solution with a linear combination of rela-
tivistic Coulomb functions that are regular (P,, Q,) and

Here, 0'[2 is the phase of the reativistic Coulomb func-
tions. Using the standard expression [21], one easily finds

o) = aglf(I* +1+in)

[k+|r]c/(£ +c)|]

""rgD YKITK] +1n
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Table 2. Coefficients a, for several Auger transitionsin Xe for LSJ coupling and intermediate coupling (1)

1507

Term 0002 [7] a0z e a0z ap
Xe(M3N,N3)°P, o, -0.0905 0.0 -0.0836 —0.0000
Xe(M3N3N3)°P, o, +0.5431 +0.8000 +0.5332 +0.6212
Xe(M4N;Ns)°F, 0, -0.6805 -0.7948 —0.6706 -0.8266
Xe(M4NsNs)3F, o, +0.4161 +0.4409 +0.2703 +0.3837
Xe(MsN,4Ns)3F, a1 -0.6041 —0.8004 -0.6034 -0.8314
Xe(MsNsNs)°F, a5 +0.1544 +0.4370 +0.1688 +0.3796
Xe(M4N;N3)°P, a0, +0.4760 +0.6818 +0.5058 +0.5034

HFD

Note: azH F and a,  arethe anisotropy parameters of the photoelectron angular distribution for the wave functions calculated by the

Hartree—Fock and Hartree—Fock—Dirac methods.

Table 3. Coefficients a, for several Auger transitionsin Xe for LS coupling and intermediate coupling

Term Experiment [27] MHFD [10] HF(LS HFD(1)
Xe(N,0, 50, 9'S -1.000 -1.000 ~1.0000
Xe(N,0, 30, 3)°P, 0.72+0.13 0.231 0.000 ~0.1674
Xe(N,0, 30, 3)°P; -0.73+0.11 -0.837 -0.800 -0.8321
Xe(N,0, 30, 3)°Pg -1.000 -1.000 —1.0000
Xe(N4O, 505, 3)'D, 0.05 + 0.06 ~0.116 0.5160 0.3634
Xe(NsO, 50, 3)'S -1.069 -1.069 ~1.0690
Xe(N5O5, 30, 3)°P, 0.47 +0.13 -0.385 -0.382 -0.2017
Xe(N5Oy, 305, 3)°P; -0.77+0.17 -0.743 -0.748 —-0.7309
Xe(NsO,, 50, 3)%P, -1.07+0.10 -1.069 -1.069 ~1.0690
Xe(NsO, 30, 3)'D, 0.24+0.10 0.094 0.551 0.6167

For relativistic wave functions with asymptotics ond-order differential equations
(33), the Wronskian has the form ,
. [ d +|I(I’I+1)_2z*}P. _ gt pr
W= (PQ-PQ) = = (35) ar® r -
d> 1303 +1) 2Z*7 5 _ oy
To calculate the relativistic Coulomb functions, we [ dr? + (2 B }Q = 2e*Q,
applied a transformation [21, 22] that allows one to
reduce the radial Coulomb-like Dirac equation to tWo  \yhere
differential equations that formally coincide with non-
relativistic Schrédinger equations. This transformation 22 4
can be written as g* = (_S_f___(;__)_z___—__g_ = e%H f—g
2c 2c
o 0o U1 xH 2
=Urps U=0 d Z(e+c €
QY T OX 10 (36) Z* = —(-C-z-—) = Zd+ C—ZE, (38)
_Zk 1
X = Ry
clki[k +y |1‘=Ey’ k>0 ; =%V—l, k>0
Using the transformation U, one can obtain the sec- v-1, k<O 0y, k<O

TECHNICAL PHYSICS Vol. 48 No. 12 2003
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Table 4. Coefficients a, for the Xe(M,, sN4 sNs) Auger transition, where the orbital moment |, of the Auger electron takes
values 2, 4, and 6, for jj coupling

Term i a®% a% all
X e(McN;N) Eg, %0 ~1.0690 ~1.0690 ~1.0690
X e(McN;Ne) Eg, %2 —0.3059 +0.2014 —0.7881
Xe(MN,Ng) EBE’ %1 —0.8000 —0.8000 —0.8000
X e(MyN;No) E*g, 5252 +0.408 +0.0258 +0.0247
X e(MyNNo) Eg, 5253 +0.4616 +0.4574 +0.4553
X (M NNo) Eg’, %4 06398 —0.6644 —~0.4553
Xe(M;NeNq) Eg, %0 ~1,0000 ~1.0000 ~1.0000
Xe(MNgNg) %, %2 —0.7806 —0.7605 ~0.7591
X e(M;NgN) %’g, %4 01992 +0.1426 ~0.1441
X e(McN;Ne) Eg, %0 ~1.0690 —1.0690 ~1.0690
X e(MsN;N) EBE’ %2 _0.7877 _0.7873 07881
Xe(McN;N) E*g, %1 _0.7483 07483 —0.7483
Xe(McN;Ng) Eg, %2 01198 ~0.1346 ~0.1372
Xe(MeN,Ng) EBE %3 +0.3719 +0.3665 +0.3639
X e(McN;Ne) E*g, %4 05858 05951 ~0.5972
Xe(McNgNg) %, %0 —1.0690 ~1.0690 —1.0690
X e(McNeNe) %, %2 03255 ~0.3376 ~0.3401
X e(MgNeN) %, %4 +0.1994 +0.1874 +0.1839
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Differential equations (37) differ from those given
in [22] in that they are written in a form that is more
suitable for the solution of the problem stated. Regular
(F,) and irregular (G,) solutionsto thefirst equation in
(37), aswell asregular (F,) and irregular (G,) solutions
to the second equation in (37), can be found by the
same procedure [19] as in the nonrelativistic case.
Then, for the relativistic Coulomb functions, it is easy
to obtain

[l N
P = ——5(Fi-XF)
[l
N
EQr = —5(Fom XF),
(39)
O N
P = ‘)’(Z(Gl—xez)
0
No
R = —25(G,-XGy),
1-X°
0
where the normalizing factor N, is given by
2 _ (1=X9) elK]
No = —an [CE/"'lkl + C D:|. (40)

RESULTS AND DISCUSSION

We calculated the anisotropy parameter o, of the
Auger electron angular distribution for (M3N, 3N, 3),
(M4N;iN3), (MaNy 5N, 5), and (My, 50, 30, 5) transitions
in a xenon atom. Our results are in satisfactory agree-
ment with the only known experimental value of a, that
has been obtained for the Xe(MgN,4 sN, 5) transition:
0, =0.431+0.12[23] (Table 1). In therelativistic case
with intermediate coupling, the calculated value of o,
is 0.3796 (Table 2). For (M, 5O, 30, 3) Auger transi-
tions, agreement with experiment is much worse. For
some of thetransitions, o, differsevenin sign (Table 3),
which indicates a need for further research.

In calculations, we took into account exchange
interaction and orthogonalized the wave function of the
Auger electron partial waveto the core functions of A**
with Lagrangean factors. The computational results for
jj coupling are given in Table 4 with the foll owing nota-

tion: a3, orthogonalization and exchange are disre-

garded; o>, without orthogonalization; and o', both
orthogonalization and exchange are included. From
Table 4 it follows that a, greatly depends on whether
exchange and orthogonalization are taken into consid-
eration. Datalisted in Tables 1 and 2 are consistent with
calculations in [7, 9-11], where the atom wave func-
tions were obtained by solving the relativistic Hartree—
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Fock-Dirac equation with the procedure described in
[24]. Our calculations of the parameter a, for the
(Mg 5N, 5Ny 5) Auger transitionsin Xein the case of LS
and jj coupling showed that the inclusion of exchange
and orthogonalization (of the Auger electron wave
function to core orbitals) in combination affects the
value of a, amost to the same extent as relativistic
effects. The parameter o, varies most significantly in
the multiconfiguration case with intermediate coupling.
Aswasnoted [7], inthe LScoupling approximation, the
orbital moment | of the Auger electron partial waves
may take values | = 2 and 4, while for jj coupling, the
Auger electron state with | = 6 is aso taken into
account. Thevaluesof a, for| =2, 4, and 6 arelisted in
Table 4. Note that partial waves with | = 2 and/or 4
make a major contribution to a..

To conclude, we performed “first-principle” calcu-
lations of the angular anisotropy parameter for Auger
electrons produced by electron scattering by atoms.
The LS, jj, and intermediate coupling approximations
for single-electron and multielectron wave functions
were used. The parameter o, wasfound to be extremely
sensitive to a computational technique. This may be
used as a test for computational methods that are
applied in particle—atom scattering problems.
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Abstract—A solution to the problem of nonlinear surface vibration of a charged ideal liquid drop isfound in
athird-order approximation in initial multimode deformation of the equilibrium spherical shape by the method
of many scales. It is shown that the spectrum of modes that are responsible for the shape of the drop at an arbi-
trary timeinstant depends considerably on the spectrum of modes governing theinitial deformation of the drop.
The latter spectrum also has an effect on nonlinear corrections to the vibration frequencies and, consequently,
on anonlinear correction to the critical Rayleigh parameter, which specifiesthe stability of the drop against self-

charge. © 2003 MAIK “ Nauka/lInterperiodica” .

(1) The nonlinear dynamics and surface instability
of avariously configured charged liquid is of interest
for geophysical application, technical physics, scien-
tific instrumentation, and chemical engineering [1-3].

One of the early works that investigated the nonlin-
ear surface vibration of acharged drop of anideal liquid
is that by Tsamopolous and Brown [4]. They gave a
solution to the problem of nonlinear vibration of the
surface of acharged drop for single-modeinitial defor-
mation, when the initial shape of the drop in the spher-
ica coordinate system (r, 4, ¢) is described by the
equation

r = R+&,Py(cosd) +eP,,(cosd).

Here, € isan arbitrary small parameter determining the
initial deformation amplitude, P,(cosd) is an mth-
order Legendre polynomial, and &, is a constant taken
in such away that the volume of the drop at the given
initial deformation remains equal to the volume of a
spherical drop with aradius R. Also, Tsamopolous and
Brown [4] derived an analytical expression for the gen-
eratrix of anonlinearly vibrating drop that isaccurateto
the second order of smallness in initial deformation
amplitude. Finally, they analytically obtained nonlinear
third-order corrections to the vibration frequencies at
fixed initial deformations. These corrections fitted
experimental datawell [5]. However, these authors con-
sidered alimited spectrum of initial deformations of the
drop: the initia deformation was associated with the
second (n = 2), third (n = 3), or fourth (n = 4) mode.
The study initiated in [4] was pursued in [6], where
theinitia excitation of an arbitrary mth mode was ana-
lyzed in a second-order approximation in €. It was also
shown [6] that the spectrum of modes that are excited

in the second order of smallness because of nonlinear
interaction contains only even modes with numbers
from the range [0, 2m]. It turned out that the drop sur-
face nonlinearly vibrates in the vicinity of a prolate
spheroid and not a sphere, as follows from the linear
analysis.

The situation where the initial shape of the surface
is described by the expression

r = R+¢&,Py(cosd) + &,P,(cosd)
+¢(h, P, (cosd) +h, P, (cosd)),

where &, is a constant that is found from the condition
of the drop’s center-of-mass immovability at nonlinear
vibrationsand h,, and h,, are constants accounting for

the partial contribution of each mode to the initial
deformation of the spherical surface, was considered in
aquadratic approximation in € in [7]. In that work, the
mechanism of nonlinear resonance energy exchange
between modes, which takes place when

W, = 20,

where w, = (0/pR®) /n(n—1)(n+2-W) is the fre-
guency of an nth mode of capillary vibrations of the
drop and W = Q%(41oR®) is the Rayleigh parameter,
was also studied.

The case when theinitial deformation of thedropis
due to the superposition of an arbitrary finite number of
modes was analyzed in [8]. In such a situation, the initia
shape of the drop surface is described by the equation

r = R+ &,P,(cosd) + &,P,(cosd) + ¢ z h,P.(cosd),

mOQ
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where Q is a set of the numbers of initially excited
modes, h,,, is a constant accounting for the partial con-
tribution of an mth mode to the initial deformation of
the drop’s spherical shape. The results obtained in [8]
were accurate to the second order of smallness in €,
which made it possible to find nonlinear corrections to
the mode amplitudes. It appeared that the spectrum of
modes of the second order of smallness may contain
both even and odd modes. For example, when modes
with numbers n; and n, are excited, the second-order
spectrum contains only even modes with numbers from
the range [0, max{2n,, 2n,}] if n; and n, are simulta-
neously even or odd. If n; iseven and n, isodd, the sec-
ond-order spectrum contains even modes from the
range [0, max{ 2n,, 2n,}] and odd modes from the range
[Iny —nyl, ny +1ny).

In [9] the nonlinear vibration of a charged drop was
calculated in the third order of smallnessin initial defor-
mation amplitude for an arbitrary initial single-mode
deformation, and analytical expressions for the drop gen-
eratrix and nonlinear corrections to the frequencies were
obtained. In[10Q], it was shown that internal nonlinear res-
onances may occur in a charged drop under four-mode
interaction, when the initial deformation of the drop is
due to the superposition of several modes.

In thiswork, elaborating upon [9, 10], we study the
nonlinear vibration of adrop in thethird order of small-
ness in amplitude of the initial multimode deformation
and find third-order corrections to the vibration fre-
guencies.

(2) Let adrop of aperfectly conducting ideal liquid
have a density p and surface tension coefficient . The
drop has aradius R and a charge Q. We assume that the
flow of the liquid (capillary vibrations) in the drop is
potential with a velocity potential . The electrostatic
potentia of the self-charge near the drop is . The shape
of the drop is assumed to be axisymmetric at any
(including initial) time instant. In the dimensionless
variablesR = p = g = 1, the equation for the drop sur-
face at an any timet hasthe form

F(r,9,t) = r—1-£(9,1) = 0. (1)

The initial deformation of the shape of the drop is
given as a superposition of several modes,

t=0:& =&, Py(cosd) +&,P,(cosd)
2
+ smgg hy P (cosd);
and theinitial velocity of all points on the surfaceis set
equal to zero:
t=0:0¢& =0, (3)
where 9, denotes partial derivative with respect to t.

The complete mathematical statement of the prob-
lem of charged drop capillary vibrations includes,
along with Eq. (1) for the drop surface and initial con-

ZHAROV et al.

ditions (2) and (3), the following equations and condi-
tions[11, 12].

(i) The Laplace equations for the liquid velocity
potential and electric field potential:

A = 0; Ag = 0; (4)
(i) boundedness conditions for the potential:
r— 0: ¢ —0; 5)
r— +o00: Vo —0; (6)
(iii) kinematic and dynamic boundary conditions
r= 1+E(S,t):d—F =0; (7
dt
1
O +5(VY)* = p+ py=Pa—Po; ®

(iv) constancy condition for the volume of the drop:
2 . 41
resnddrddde = —;

‘v[ *3 )

V={r9,0|0sr<1+&;0<9<m; 0<¢<213};

(v) immovability condition for the center-of-mass of
the drop:

-

J’rrzsinﬁdrdﬁdq) = 0; (10)
\%
(vi) constancy condition for the total charge:
r=1+&(39,t):[nVedS = —41Q;
G JS’ ® Q 1)

S={rd,¢Ir=1+¢;, 0<I<m; 0<¢<21%;

(vii) constancy condition for the electric potential
over the drop surface:

r=1+&3,1): 0= ost). (12)

In expressions (4)—12), p is the equilibrium pres-
sureinthedrop; p, and p, are the electric field pressure
and capillary pressure, respectively; p; is the atmo-
spheric pressure; n isthe unit vector normal to the drop
surface; @5 isthe electric potential on the drop surface;
and A isthe Laplacian.

For convenience, we complement the set h,, of con-
stantssothat h,,=0atany mJ Q.

(3) Wewill solve problem (1)—(12) by the method of
many scales [13]. For this purpose, we introduce three
different timescalesT,,= €™ (m=0, 1, 2) and represent
the desired parameters in the form of the expansions

3
or9.1) = 3 "9™(r, 8, To, T, T) + O(e"), (13)
n=0
3

os(r, t) = Zos”cp‘s”(r,To, T, To) +0(e"), (14)
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3
W, 9.0 = 3 (9, To, 1, To) + O(e"),
n=1

. (15)

ZSHE‘“’(& To, T2, T2) + O(E®);

n=

¢(@,1) =

where @ = Q/r and ¢¥) = Q are zero-order solutions,
which correspond to the equilibrium (spherical) shape.

Substituting (13)—15) into (1)—(12), we obtain
problems of different orders of smallness, which are
discussed in Appendix A.

Since Laplace equation (4) is linear, the liquid-
velocity and electric-field potentials of any order of
smallness are solutions to Laplace equations (1A),
(10A), and (19A); hence, in view of the boundedness
conditions, they can be written in the form

w(m)(r, 9,To, T1,Ty)

z m (16)
= Zr Dn (T07 Tll T2)Pn(cos'8)v m = 1’ 2! 31

n=

(p(m)(rv '31 TO’ Tl! T2)
Fi" (To, T1, T))

n+1
r

00

" &

Note that in expression (16) summation starts with
n =1, because, asiswell known, the potential is deter-
mined accurate to an arbitrary function of time. Hence,

wemay set D" =0.
At any timeinstant, a function describing the devia-
tion of the shape of the drop from spherical can be rep-

resented in the form of an expansion in Legendre poly-
nomials:

(17)

P,(cosd); m=123.

E™(9, T, T1, T)
” ) (18)
= ZDM” (To, T, T,)P,(c0s®); m = 1,2, 3.

Substituting expressions (16)—(18) into Egs. (1A)—
(9A) yields explicit dependences of first-order quanti-
tieson Ty

M (To, T4, T2)

(1) (1) (19)

= a, (T, Ty)cos(w,To+ 1,7 (Ty, Ty));
D (T Ty, T2) = 01 MY (To, To, To)/n; (20)
FO(To T1 T2) = QMP(To, T, T). (2D)

In expression (19), the amplitude factor aﬁl’ (T, Ty)

and the nonlinear correction T (T,, T,) to the fre-

guency are functions depending only on thetime scales
T,and T,.
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When the problem in the first approximation in ini-
tial surface deformation is solved, the functions
a (T, T,) and ©7 (T, T,) should be taken to be con-
stants that are determined from initial conditions (9A):
(22)
From expressions (22), it follows that the parame-
ters a® (T,, T,) are other than zero only if n 0 Q.
When the problem in the third-order approximation
ininitial surface deformation issolved, al” (T,, T,) and

a =h, =0 nooq.

(T, T,) asfunctions of T, and T, are found from the
condition that secular terms in the second- and third-
order problems, respectively, vanish in view of initia
conditions (9A).

Substituting expressions (16)—21) into Egs. (13A)—
(18A) and eliminating the secular terms, we find that
thefunctions a'” (T, T,) and 1" (T, T,) do not depend
on the time scale T,. The explicit dependences of sec-
ond-order quantitieson thetime scale Ty in view of (22)
are given by

MS(To) = =5

mOQ

(a2 cos’ (W To) .
2m+ 1 ’

MP(T)) = Xmén'an 1€08(nTo) c0S(Wn- 1 To);
mOdQ
MP(To, Ty) = a2(T,)cos(0,To+TO(T))  (23)

DN

I,mOQ

+ A0 cos((0 — 0,) To));

(MmnCOS((0y + 00) T)

Fo) =0, FP(To, Ty T,) = QMP(T,, T))
(24)
+Q Z 1K, mma P al? cos(w To) cos(w, To); Nn=1;
I,mOQ
D{(To, Ty)
10
= DM (To. T+ Y (10 = 1)K = i)
0 \&5a (25)
W
% _|a|(1>a<1)

: O
I m Sin(wTy)cos(w,Te) O n=1;
O

where X, Ay AL Ky, and oy, are the coefficients

determined in Appendix B. The expressions for a’

and T2 that satisfy initial conditions (18A) have the
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form

(2 _ (+) () (2 _

a, = - ()\Imn Imn v Ty = 0. (26)
I,H%Q

Substituting  (16)—(21) and (23)«25) into

Egs. (22A)—<(28A) and eliminating secular terms from
the solutions, we find that the functions a'” (T),

a? (T,), and ©1? (T,) areindependent of the time scales
T, and T, and equal their initial valuesgiven by (22) and

(26). For the function rﬁl) (T,), we have
T(T,) = Tob,

L ha@(n-Day + =)
4(2n+1)

2
hk —n

Z . 2(2k+ ol

2(1)n

Xn lhn 1

2(+) 2(-)
———(Bn-1n1n-1ntBainin-1n

(27)

X ha 109 2(+)
—r;]_—ﬁ(Bn+l,n+l,l,n,n+ Bn+1,n+l,1,n,n

HOI) o

2(+)(+ 2(-) (=
Hokkn kr(1k31( )+ Hkr(1k)n( )+ (1-9%)

kDQ
+ 2(+H)(+ 2 D
*(Hian "+ Higon” + Hig )1 0

The coefficients of expansions (16)—18) are defined
as

2M(To)

@y —
MO (TO) - 2k+ 1

kOQ

———F——hcos(w,T,)

Kka k m I
3(21 +1)

km 1 0Q

——————C0S(w,Ty)cos(w,, Ty)cos(w,Ty);

6
M (To) = M7 (To)h,cos(w,To)

-3 Y KM (To)hneos(,To)

mOQk=0
- z z KimgKgi1hkhmh; cos(w, To)
g=0km10Q
x cos(wy, To) cos(w To);

ZHAROV et al.

k(z(n 1w, —=,)

€)
My"(To) = Z 16(2k + 1)y (w, + wy)

X (COS((wn + 2wk)To) — cos(w,To))

hahie(1—3,)(2(n— 1) w0, + =)
‘szQ 16(2K + 1) W, (w, — wy)

x (cos((wn —20,) To) + cos(w, To))

+ Xihhihy . g

4
k=n-110Q

(e T,) — cos(w,Ty))

0 (00— (W + 0y + 1 1)?)

(28)

X

1(- | +)(—
1D (cos(W ) 1 To) — cos(w,To))

+
2 >
(00— (W + Wy — Wy, 1)7)
2(+) ki In =)
+ ki1 +1,1,1,nD1n-1Dk 1+ 1(COSy 11 + 1To) — €OS(w, Tp))
2
(0 — (wy— 0 — w4 4) )

o Bl 110Dl 1(COS(Wicl 1, To) — coS(61To))
(n— (04— +6@11)°) 0

- hehh (Mg +
4

Img)

g=2km10Q
, PHign'(cos((@ + @) To) — cos(wyTo))
O Wh = (@4 + )’

Hﬁg‘n)(cos«wk @) To) = COS(@To))

((*)k g) D

h, h h DHifn?n( )(Cos(l]J(+)(+)T0) — cos(0, Ty))
— (@ + oy + ‘-'Om)z

+

k,m, 1 0Q
1(=-)(+ +)(=
+ kanl)n( )DIkam(COS(qJ(kIr)n( )To) — cos(w,Ty))
— (0 + W, _wm)z

, Hiin D" Diin( C0S(Wigm * To) = €0S(ey To))

2
— (0 — Wy — wy,)

, Himn Dy’ m':(cos(wm‘>To> — cos(@To))
—(W—wy + wm)z O

@7y = klp _k(k+1), [
I:0 (TO) - Q z 2| +| kml 2 Kka|:|

k,m | 0Q
x h.hhycos(w, T,) cos(w,To) cos(w, Ty);
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FI(To) = QMY (To) + 3 (k+ 1)Ky FO(To)
)= W19+ 5 5

Xhpoos(wnTo) +Q 35 (k=1)KimMi(To)

mOQm=0

1
D(To, T2) = 207, M (To) -

1

n
mOQk=1

+1

=Y S kk=1) ~ )My (T, Sin(To) (30)

kOQm=0

1 - tk(k—1) O

+ ﬁ Z Z O 2 Kkmg_akmga(k_z)Kglnwk
km10Qg=0

x hyhhsin(w, To) cos(w,To) cos(wT,), n=1.

Here, =, Bungins Bingins Hign » Hiaun » Higan

) and DI are the coefficients given in Appendix B

and 9, isthe Kronecker delta.

Substituting (18) into (1) yields an expression for
the drop generatrix:

19, To T) = 1+& 5 My (To, T2)Py(cos9)
+£7 5 (M (To) + MY (To)) Py (cosd).
n=0
(4) Prior to analyzing expression (31), we note that
the amplitudes of deviation of the drop surface from the
equilibrium (spherical) shape are proportional to the
sums (see expressions (23) and (28))
(2) 3)

Mgy~ O z Kimg:» My’ O Z
k,mOQ
where the coefficients K,,,,, are other than zero only if

k—m|<g<|k+m|and k+ m+ gisan even number.
Thus, if only one mode is initially excited (that is,
Q= {n}), only even modes with numbers from the
range O < g < 2n; are excited in the second order of
smallness. In the third order of smallness, even modes
from the range 0 < n < 3n; and odd modes from the
range 1 < n < 3n; are excited when n, is even and odd,
respectively. Thus, with even ny, the vibration of the
surface consists of even modes from the range [0, 3n,];
with odd n,, it consists of all the modes from the range

[0, 2n,] and odd modes from the range [2n; + 1, 3n,].

KMQKmm

g=0kmI10Q
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m k(k+3
x hkcos(wkTO) _Q z ( 2 )KkmgKgIn
g=0kmI0OQ
x h hhycos(w, To) cos(w, To)cos(wTy); n=1;

1-% :
—2h,b,Sin(,To)

> S (k(k= 1)Ky = ) DI (To) 1y 008(60,To)

If two modeswith the numbersn, and n, areinitially
excited (that is, Q = {ny, n,;}), aset of modes involved
in shaping the drop expands still further.

If n; and n, are even numbers, the spectrum of sec-
ond-order modes comprises only even modeswith indi-
ces from the range 0 < g < max{2n,, 2n,}, while the
third-order spectrum contains even modes with indices
from the range 0 < n < max{3n,, 3n,}. In other words,
the drop surface is shaped by even modes from the
range [0, max{ 3ny, 3n,}].

If the numbers n; and n, of initially excited modes
are odd, even modes with numbers from the range
0<g< max{2n,, 2n,} are excited in the second order
of smallness. In the third order of smallness, only odd
modes with numbers satisfying the condition 1 < n <
max{ 3n,, 3n,} shape the drop surface. Accordingly, the
surface is shaped by al modes from the range
[0, max{2n;, 2n,}] and by modes with odd numbers
from the interval [max{2n; + 1, 2n, + 1}, max{3n,,
3n,}].

If the numbers of initially excited modes are such
that n, iseven and n, is odd, the second-order spectrum
comprises modes with even numbers from the range
0< g < max{2n,, 2n,} and odd modes with numbers
satisfying the condition |n, —n,| < g< n; + n,. Thethird-
order spectrum comprises even modes with numbers
from the range 0 < n < max{3n;, n; + 2n,} and odd
modes with numbers from 1 < n < max{3n,, 2n, + n,}.
Eventually, the drop surface is shaped by even modes
with numbers from the range [0, max{3n,, h; + 2n,}]
and by odd modes with numbers from the interval
[1, max{3n,, 2n; + n,}]. It is seen that taking into
account quantities of the third order of smallnessinini-
tial deformation considerably expands the spectrum of
modes shaping the drop surface.

Also, taking into account quantities of the third
order of smallness leads to a nonlinear shift of the fre-
quencies of initially excited modes that is proportional
to the initial deformation amplitude squared €. The
sign of a frequency correction is always negative, and
its value depends considerably on the spectrum of
modes shaping the drop surface at the initia time
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Fig. 1. Coefficient b, asafunction of the Rayleigh parameter W= Q2/4Trfor different pairsof initially excited modes: (a) the second
and third modes, (b) the second and fourth modes, (c) the second and fifth modes, and (d) the second and sixth modes. The curve
numbers coincide with the numbers of theinitially excited modes.

instant and on the charge of the drop. For example, if
two modes, one of which is the fundamental mode n =
2, areinitially excited, frequency corrections increase
compared with the situation of single-mode initia
deformation [4]. Figure 1 plots frequency corrections
for different pairs of modes excited at the initial time
instant vs. the dimensionless parameter W. It is seen
that the correction to the frequency of the fundamental
mode depends on which of the modes is excited
together with it at the initial time instant: the correction
to the fundamental mode increases as the number of the
mode excited simultaneously with the fundamental one
grows. If it is remembered that the drop loses stability
when the square of the fundamental mode frequency

goes through zero as the parameter W grows [3, 9], it
becomes clear that allowance for the nonlinear correc-
tion to the fundamental mode frequency reduces the
critical value of the parameter W according to the rela-

tionship w5 + 2e2b, = 0 [9]. The higher the mode that
is excited simultaneously with the fundamental one at
the initial time instant, the larger the nonlinear correc-

tionto thecritical condition for drop instability that fol-
lows from the above relationship.

A discontinuity of the curvefor the correction to the
fourth-mode frequency in Fig. 1b is associated with
internal nonlinear resonant interaction between the
fourth and sixth modes [4, 8, 9].

TECHNICAL PHYSICS Vol 48

No. 12 2003



NONLINEAR VIBRATIONS OF A CHARGED DROP

-1.8

Fig. 2. Drop generatrix at theinitial excitation of the second
and third modesfor e =0.3, W=3.7,andh, = h3=0.5. t =
(1)0,(2) 1, (3)3,and (4) 4.

Numerical analysis of expression (31) shows that
surface elements adjacent to the symmetry axis deviate
from equilibrium to the greatest extent (Figs. 2, 3). This
is because individual modes add up only when 9 is
close to 0 and . Away from these values, a smoother
wavy surfaceis observed. Thistendency is enhanced as
the numbers of initially excited modes grow.

The electric field strength on the free surface of the
drop is given by

E=E"+¢ > EVP, (cosd)

mOQ

(32)

+¢° > (EP + eEPYP, (cos);
n=0

EY = Q=2/mw; E = Q(n-1)M’;

E? = (n+1)FP -2QMmP

+Q Z [(B=(m+1)(m+2))Kymn
k,mOQ
+ Ay e/ 2] i cos(w, To) cos(W To);

EY = (n+ DFY -2QMPY + Y (am—(m+1)

kOQ
m=20

X (M+ 2)Ki)hcos(@TF’ =Q 5 (k+ 4)(k—1)
m=20
kOQ
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Fig. 3. Drop generatrix at the initial excitation of the sixth
and seventh modes at € = 0.3, W=3.4,andhg=h;=0.5.t =
(1)0,(2) 05,(3) 1, and (4) 2.

X Kimhh00s(@ T +Q 5 [((k+ 1)(k+2)
g=0
k,mnOQ

X (k+3)/12-4)Kng—((I + 1)/2+ Kk + ) 0ymg] Kgin
x hyhhycos(w, T,) cos(w,, To) cos(w Ty).

Calculation by (32) shows that the self-charge field
in the vicinity of the nonlinearly vibrating drop
increases greatly at the poleswhen the drop is extended
(Figs. 4, 5) and may trigger a corona discharge. This
circumstance is of interest in the context of the initia-
tion of lightning discharge [14, 15]. According to cur-
rent concepts, lightning may originate from a corona
near alarge water-covered hailstone or water drop fall-
ing in a cloud. This mechanism of lightning initiation
has not gained recognition, since the self-charge of
drops that is detected in full-scale measurements (in
storm clouds) istoo small for acoronato beinitiated at
an undisturbed drop [16]. The fact that the electrostatic
field at the poles of anonlinearly vibrating drop is con-
siderably enhanced allows one to consider the problem
discussed from a new standpoint.

The calculations shown in Figs. 2-5 were made in
the absence of mode resonant interaction. This issue
callsfor specia consideration [17]. Nevertheless, reso-
nance energy exchange between modesis a possibility.

It is easy to check that expressions (28) for third-

order nonlinear corrections M (t) to the vibration

amplitudes have a resonance form: their denominators
vanish under certain conditions. All resonances other
than those obtained in the quadratic approximation
[4,8, 9] correspond to the four-mode interaction
between drop capillary vibrations when the frequencies
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31/4 )

T[I/ 4 T[I/2

Fig. 4. Electric field strength E near the drop surface as a
function of the polar angle 9 for the same parameter values
asinFig. 2.

of resonantly interacting modes are related to each
other by one of the relationships

Wt W twxw, = 0.

Among the many internal nonlinear resonances tak-
ing place in the charged drop, those where the funda-
mental mode (n = 2) amplitude increases by means of
energy transfer from higher modes at Rayleigh param-
eters W < 4 (which are subcritical in terms of self-
charge) are of greatest interest for the problem of light-
ing initiation in storm clouds [14, 15]. According to
second-order calculations [6, 8, 17, 18], when only
three-mode resonances are realized, the lowest mode
that gains energy from higher modes viaresonant inter-
action is the third mode. In third-order calculations,
when four-mode interaction occurs, the second mode

Numbers of modesinvolved in resonances and the associated
Rayleigh parameter

n I k m w

2 20 8 17 1.98141
2 29 12 24 1.39884
2 30 17 21 0.460245
2 9 6 6 0.0460245
2 17 11 11 1.35905
2 25 16 16 1.42339
2 28 18 18 2.9609

3 23 15 15 2.18618
3 28 18 18 0.450789
4 26 17 17 0.577818

ZHAROV et al.

10

/4 /2 31/4 o

Fig. 5. Electric field strength E near the drop surface as a
function of the polar angle 9 for the same parameter values
asinFig. 3.

also may resonantly build up. For example, if
W, t W —w—w, =0; W<A4,

more than ten four-mode resonances take place in the
range of mode numbers2 < n, k, |, m< 30 and seven of
them include the second mode. The first ten of the pos-
sible four-mode resonances are listed in the table. It is
seen that thefirst three are truly quadrimodal, while the
rest of them are degenerate: one of the modes is
involved in four-mode interaction twice.

CONCLUSIONS

Considering the initial multimode deformation of
the drop in the third-order approximation in deforma-
tion amplitude allows one to obtain nonlinear correc-
tions to the capillary vibration frequencies of the drop.
These corrections depend considerably on the charge of
the drop and on the spectrum of initially excited modes
and, in turn, generate nonlinear corrections to the criti-
cal Rayleigh instability parameter. In calculating the
generatrix of a nonlinearly vibrating drop, taking
account of the third-order quantities makes it possible
to discover the tendency of the drop to extend along its
symmetry axis. Thisisanindirect indication that alarge
number of modes shape emitting protrusions on the
drop surface [19].

APPENDIX A

Separation of Problems of Different Orders
of Smallness

Substituting expansions (13)—15) into the set of
Egs. (1)—(12) and collecting terms proportional to €2,
TECHNICAL PHYSICS Vol. 48

No. 12 2003
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one readily obtains the first-order problem:

AYY =0, AW = 0; (1A)
r—0:yY —0; (2A)
r—+o0: [ P —0; (3A)
r=1:0r8" = 0y, (4A)
1

or 4" = 7-0,¢07(3,6" +£79,,¢?) )

+2£(1) +AQE(1);

1 1

[€7d(cosd) = 0; [€VPyd(cos9) = 0; (6A)
-1 -1

1

[10.607 +£7(0,¢7 + 20,6} d(co® ) = 0; (7A)
-1

(p(1)+E(1)ar(p(0) — (p(sl)(t); (8A)
t =0 =¢ Z hoPm(cos9); 01 EY = 0. (9A)

mOQ

Terms proportional to € state the second-order
problem:

ap® =0; A¢? =0 (10A)
r—0:¢® —0; (11A)
r— +o0: [ ¥ —-0; (12A)
r=1. (13A)

0r & +0rg” = 0. + 2%, 4" - 0,87 0,0";
0 0@+ 07,0 +£90,, 0V + 20,4 )’
1 W2 _ 1 oc@, (05 (0
+2(a,9lIJ ) - 8T[{ZE ar arr(p

+(ED)’((0,09)" + 0,,,60,¢)

(1y2 (1y2 (273 o© (144)
+(0;07) +(3,¢7) +20,¢70,¢

+289(0,679,6"” +0,¢70,¢”))
+280 + AgE® - 2(6W) - 260
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[EP+E))d(cos9) =

. (15A)

[(267+3(E®))Prd(c0s9) = 0

-1

— -

@mp(” +&7(0,¢" +20,¢”) +£7(0,¢” + 20,¢%)

=

+@ 0,07+ 20,0% + 00T 00 0,0 H168)

(p O
xd(cosd) = 0;
(p(Z) + E(l)ar(p(l) + E(Z)ar(p(O)
1 (A7A)
+3(EM0,0% = 62 ();
t =0:
h,,Py(cost)
2) _ _ m' 0
&= Z 2m+1
mOQ
(18A)

3
2 z hhy K P1(cosd);
I,mOQ

0 8P +0: 8% = 0.

Thethird-order problem is defined by terms propor-
tional to €3 and has the form

ap® =0, ag® =0 (19A)
r—0:¢® - 0; (20A)
r—+oo: ¥ 0 (21A)

r=1
07,87 +07.87+ 0.8V = 0,4 -0,80,
~0,E%0,0® + €20,y + £7(0,5(20,y (Z2A)

~0,50) +0,0) + S0, 0 ;

Or b + 070 + 07, p® + €90,y + 0,1V 0, "
+0. 0,y + EP0,r YV + V(07w

+ 050 (9,5 ~050”) + 0,0, w)

1 . @2 w_ 18035 05 (0
+2(E )arrToqJ - 87'[%22 ar(p arr(p
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3 1
+ (E(l)) E)rr (O)arrr(p(O) + éar(p(())arrrr(p(o]:|

+2(0500,07 + 0,97 (50,6 +0,67)

+0,¢%0,¢” +£90,¢0,,¢) (23A)

+ 22(1)(2(2)((0” (0))2 + ar(p(o)a”r (O)) + arr (O)ar(p(z)

+0501(9,50 — 0,60 + 0,90, 0"

+0,079,.¢7) + (€7’ (0,, 90,6 + 20,679, ¢”

0
+9,¢%0,,¢%) O+ (24 D)E® + 28 (€M)

—(2+8g)E®) ~28PnoE™ +3(2") Aot
~ (@5EM) 0558 = 22,8 M) D0t ;

1
[(3E7+ 6578 + (59))dcos9) = 0; (248)
-1

1

I(z@) +38Mg@ 1 (£ DY) p (cos9)d(cos9) = 0;(25A)

2
1
I%rd?” +E9(0,¢% +20,¢%) + £2(0, ¢ + 20,¢")
|
]
+ () B0, 0% + 0,07 + 0, ¢

+ () 50,0 + 20,67 + 0,¢"
(26A)

+§0(67(0,1,9" + 40,6 +20,¢") +20,¢”

+ 0,07 =050, 0") — 058P 050™

—0,EW,¢® Hi(coss) = O;
]

DA 2 (25 D 33 0 1— 042 (1)
0¥ +£996% +£95,¢% + €996 + 5(€) 0,0
1 (27A)

+£990,,¢% + £(€9)°0,,¢” = ¢ (V);

hehihy

— 0@ — _
t=0:&7 = k 2.593(2' +1)Kk,mPO(cosﬁ)
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_§h2 z hkthka

k,mOdQ

(28A)
> O
+ z hkhmhl KkmgKglltpl(COSS);
g=0kmI0OQ D
08P +0:E?+ 0.8 = 0.
Here, K,yn = (Choy0)? and Clo,, are the Clebsch-Gor-
dan coefficients [20].

APPENDIX B
Expressions for the Coefficients of the Problem

1) — 1(+) 5 (+) 1(-) 0(-) .

Hkmln - Z Bkmgln)\lmg + 2 p—kmgln + Z p—kmglm
=2 =1 g=0

1) = 1) 1(+) 0(+) .

Hkmln - Z Bkmgln Ing + z ukmgln + z p-kmgln’
g=0

2(+)(+) — 2(+) (+) 1(+) 0(+) .
Hkan - z Bkmgln Img + z ukmgln + Z p‘kmglni
= g= 0

2000 = 2( ) 1(-) 0(=) .
Hkmln - Z Bkmgln Ing z ukmgln + z p—kmgln’
g=0

Horgn = (Mongn = Mingn @0y —ﬂmgan)(Aﬁ:rLg + M)

21(9% = (nmgn + nmgn("‘) Wy — ”mgnwg)(hfﬁ%g +A5) mmg)
Bifﬁg)m = rlkgn -
Birgin = Miign —

2(+) _ 0O 1
Bkmgln - I_Ikgn + I_Ikgn(’ok((")l + (’om) -

I—Ikgn("-)k((’ol + (*)m) - rIkgn((*)l + wm) ;
1 2 2
I_Ikgn(-")k((")l - wm) - I_Ikgn((-")l _wm) ;

2 2,
I_Ikgn((’ol + (*)m) ’

2(-) _ Qo 1 2 2.
Bimgin = Mign + Mign@i (0 — ) — Mign(@y — )

1-) _ 1 1 .

Ukmgln - /\kmgln_ I_kmgln(’om(’okv

1(+) _ 1 1 .

p'kmgln - Akmgln + rkmgln("om(")k’

0= — 0 .

IkagIn - /\kmgln_ rkmgln(")m(’ok!

o(+) _ 1 0 .

Himgin = Nkmgin + T kmgin®m®;

0 _ 2
Akmgln - ﬁ({ Kgln(ckag(kn(I + 3l _2(k + Z)W)

+2(k—2) ;) + Kymg(kn(4—6k(k + 1)
+(K=2(m+1)(m+2) -k’ (n-9)
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—Kk(3n + 2m(m + 3) — 22)W) — (k — )k(k — n — 2)w2?)
[1/2]
— 2knal g z (21 =4v + 1)Ky | _oy.n};

Ningin = (@ == DKgin = 0gin/D (M= 1) K ng — A rng/M)
X Gy + WK((g + 1) (I + N =g = 2)K gy + U gi) K
Memgin = ((K=1) (K=2(n+ 1)K/ 2
—((k=1)(M+ N) = M) 0t/ (kM) ) K gy,
+((k=1)(k=2)K4o/2 = (k= 2) 0ty /K) K gn:

Mingn = ~((9=N=1)Kgen— (0 +K) g/ (kD))
X ((m_ 1)Klmg_almg/m) _((g_ n-— 1) KgIn _agln/g)
X ((m_ 1)Kkmg_akmg/m);

Mo = @i (n—k+ 1) + 2kn(k + 1) + 2mn(m+ 1) —4n
+W(n—k=5)(k—1) + (m+ L)(k+ n—m—2))Ky,

+ (/K + NW) Qs
M = (M+ K =N —=2) Ky — (N + K+ M) 0/ (MK);
I_Iimn = (m_ n-— l)Kkmn_akmn/m;

i + 2K*(k + 1) — 4k — 5k(k — 1)W;

=
1

W+ W+ W MO = o +w —w:
k m (K} kml - k 'm (K}

= - .
km = W — Wy — Wy,

Ao = (Vi £ @@ N min)/ (07 — (00 £ 0)%);

Omin = —CroioContayiza/m(m+ 1)1 (1 +1);

Yiin = K[ 0m@—m+ 1) +2n(1( + 1) - 1) + ((m + 1)
—m(2m—2n+7) + 3)nW/2] +a [ we/m+ nW/2] ;
r]mln = Kmln(nlz_m"' l) + C‘mln(l + n/(2|))/m,

D:(rrr: =1- 6Im6kn-
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Abstract—Transition (molecul ar—viscous) isothermal channel flow of rarefied gasesis considered. Present-day
engineering physical models of transition gasflow and methods of simulation are analyzed and verified interms
of the kinetic theory on the micro- and macrolevels. © 2003 MAIK “ Nauka/Interperiodica” .

Analysis of evacuation under a medium vacuum,
which may be considered as a division of isothermal
channel dynamics of rarefied gas, presents considerable
difficulties. The basic problem in the description of the
transition channel flow of rarefied gasesisto match the
random walk of molecules in the molecular regime
with the laminar flow in the viscous regime.

The problem of qualitative and quantitative analysis
of the transition flow of rarefied gas in the molecular—
viscous range was stated by Knudsen and other scien-
tists as early as 1910.

The available models of rarefied gas transition flow
are based on experimental data for flows in openings,
long rectangular ducts, or circular pipes. The choice of
such configurations was dictated by the fact that, in the
case of openings, interaction of the gas with the metal
surface can be neglected, while for long channels,
boundary conditions may be known or given. Numeri-
cal solutions to the Boltzmann equation with a colli-
siona term that were obtained for Knudsen numbers
Kn < 100 coincide with measurements within 5%. The
hydraulic conductivity (hereafter, conductivity for
brevity) of openings and short pipes increases mono-
tonically with average pressure P,, throughout the tran-
sition flow range[1-6] (seeFig. 1, where J,,,, istheratio
of the conductivities in the molecular—viscous and
molecular regimes). At the boundary between the
molecular—viscous and viscous regimes (Kn 0 0.01),
the conductivities of an opening, short pipe, and long
pipe of equal diameter tend to the same value (Figs. 2
and 3, where = 1/Kn) [6]. As Kn decreases from 100
to 1, the conductivity of long pipes decreases and then,
with Kn diminishing from 1 to 0.01, monotonicaly
rises (the well-known Knudsen paradox [6]), asdemon-
strated in Fig. 3.

The presence of a minimal conductivity for long
channels and its absence in the case of openings has
become a key question in developing a physical model
of flow for arbitrary configurations of vacuum systems.
A change of boundary conditions, evenin simple cases,

created insurmountabl e obstaclesin taking the collision
integral by integral kinetic techniques [4-7].

Today, the dynamics of rarefied gas is usualy ana-
lyzed by simulating the physical process of momentum
transfer for determinate molecules. It is assumed that
the motion of molecules in rarefied gases is a random
process obeying the laws of statistical physics. Random
guantities and statistical errors of calculation are gener-
ated by the Monte Carlo method.

The fundamental difficulty in simulating the molec-
ular-viscous regime is that a model must be adequate
for the actual physical process of molecule collision
bothin rarefied flows and in continuous flowswhere the
gas concentration reaches several moles. Another prob-
lem is that our knowledge of the physics of a medium
vacuum and the behavior (interaction) of determinate
molecules on the microlevel is approximate and super-
ficial. It is difficult to simulate random quantities of a
physical process, such as the velocity, collision rate,

va
401
35
30
25+
20
151
10

5+

0

1
1 10 100

1
1000
P, Pa

avs

Fig. 1. Dimensionless conductivity J,, VS. average pressure
P, for a 140-mm-long circular step adapter with inlet and
outlet diameters of 400 mm and 25 mm, respectively, in the
molecular—viscous regime. Solid line, experimental data;
symboals, calculation by the method of probable directions.
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and direction of motion of molecules, especialy in
many-particle collisions.

To simulate the flow in the near-molecular range,
one may apply the Monte Carlo method (the probe par-
ticle method) if not only collisions with the inner sur-
face but also primary intermolecular collisions are con-
sidered [4-6]. However, with Kn < 10, the analysis can-
not be restricted to primary collisions and becomes
much more complicated [7].

A new concept of the probe particle method was
suggested by Haviland [8]. In his modification, the tra-
jectory of one particle through the entire flow field is
traced in view of pair elastic collisions with other par-
ticles distributed over the flow field. Uncertainty in the
molecule distribution over the flow field somewhat
detracts from the merit of this approach. Haviland's
algorithm was applied in[9] to calcul ate the conductiv-
ity of short glass capillaries through which helium or
argon flowswith Kn > 0.3 under the assumption of mir-
ror—diffuse reflection of molecules from the capillary
wall. The authors of [9] report the gas flow ratesfor the
capillaries and note that, as the molecular collision rate
increases, the conductivity grows more slowly, while
the fraction of mirror-reflected molecules rises. This
fact is consistent with the results of [10], where the
need for detailed consideration of the slip theory [11]
was argued. Satisfactory qualitative agreement
between computing and full-scale experiments in the
limiting cases (opening and long pipe) was obtained in
[9, 12]. The discrepancy observed in those works is
explained by the insufficient accuracy of the method
used and of the computational scheme, which isillus-
trated by a solution to the problem of gas self-diffusion
in ashort channel [12, 13].

For Kn between 100 and 0.1, the direct ssmulation
method is widely used [14-16]. This method has been
verified for avariety of problems[17, 18]. Note that the
applicability domain of Bird’'s method is restricted to
those Knudsen numbers at which only pair collisions
are observed. It was shown [10] that pair intermolecular
collisions dominate and, accordingly, Bird’s method
applies in the range 0.01 < & < 0.50 (6 = /Kn). With
0> 0.5, intermolecular collisions are not al pair; how-
ever, at 0.5 < < 10, the number of group collisionsis
relatively low (lessthan 10% of the total number of col-
lisions). Hence, the accuracy of Bird's method remains
sufficient for engineering purposes. For even lower
Knudsen numbers, pair collisions constitute a minor
part, so that one should take into account collective
molecular interaction. At present, direct statistical sim-
ulation asamethod of numerical calculation attractslit-
tle attention, athough its accuracy (compared with a
solution to the Boltzmann equation) and applicability
to problems concerned with dynamics of rarefied gas
remain unclear.

A probabilistic approach (the method of probable
directions) to simulating the transition flow of rarefied
gas has been suggested in [13]. Thismethod isbased on
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Fig. 2. Dimensional conductivity Jyp,, vs. the degree of rar-
efaction o for circular pipes and openingsin the case of slip
flow. (@) The method of probable directions and (CJ) full-
scale experiment for 55-mm-long pipelines with an inlet
diameter of 25 mm. (1) Full-scale experiment for a long
pipe of diameter 25 mm [2], (2) boundary layer model used
in continuum mechanics [6], and (M) full-scale experiment
for an opening of diameter 25 mm.
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Fig. 3. Dimensionless conductivity J,,, vs. Kn for circular
pipes in the molecular—viscous regime. The method of
probable directions with L/D = (1.4) 4, (1.8) 8, and (1.10)
10; solution of the linearized Boltzmann equation for L/D =
(3.5) 5and (3.10) 10 [15]; calculation for L/D = (4.5) 5and
(4.10) 10 [15]; and experiment for L/D = (2.4) 3.7 [2, 6].

a physical engineering model of transition flow the
basic advantage of which isthat it is consistent with the
concept of random walk of molecules in the molecular
regime and of laminar flow in the viscous regime. In
this model, it is assumed that the steady flow of arar-
efied gasisthe superposition of the molecular flow ran-
domized by many-particle interaction and the molecu-
lar flow in the direction of the concentration gradient
(directional flow) [19]. A gasflow isviewed as a coop-
erative motion of statistically independent similar
determinate materia (i.e., with a finite diameter and
mass) molecules. The number of moleculesinvolved in
momentum transfer between the inlet and outlet of the
channel increases with the D/A ratio (D is the channel
diameter and A is the mean free path of a molecule).
The integral characteristics of the gas flow are calcu-
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Fig. 4. Dimensionless conductivity Jp,, vs. Kn for arectan-
gular slotted channel in the molecular—viscousregime. Full-
scale experiments performed in (1) [1] and (4) [3], (2) the
method of probable directions, and (3) direct simulation
[14, 15].

lated by successively tracing the walk of individual
probe molecules in the channel. A random sample of
gas molecules that provides the desired accuracy of
Monte Carlo statistical processing is considered. The
trajectory of an individual molecule is described by a
piecewise linear function that represents a broken line
with segments equal to the free path A, of the molecule:

Ao = =AIn(R), (1)

where A isthe mean free path of the molecule and Ris
arandom number (R O [0, 1]) generated by the Monte
Carlo method.

Molecules striking the channel wall first adhereto it
and then leave according to the diffuse distribution. If a
molecule travels a length Ay without collision with the
wall, acollision with another moleculeis simulated. As
aresult of thiscollision, the molecules change direction
according to amodel of molecular interaction.

A model of interaction (collision) in a statistical
molecular ensembleis constructed in terms of the prob-
ability theory as applied to a large set of molecules
[20]. The model is based on the assumption that the
interaction potential issmall. Then, (i) in describing the
ensemble of molecules, the principle of superposition
can be considered as alinear combination of pair inter-
actions and (ii) the correlation length of pair intermo-
lecular forces in the collisional range of the rarefied
flow may exceed the mean free path of molecules (in
view of the collective motion of a group of molecules).

PECHATNIKOV

Considering the probabilistic approach, we assume
that the direction of each of the molecules after colli-
sionisrandom. In therange 0.01 < 6 < 0.50, where pair
collisions prevail, the directions of an individual statis-
tical molecule are taken to be equiprobable in a com-
plete solid angle of 4t sr [13]. Inthe range 0.5 < 3 <
100, astatistical regularity that definesthe postcollision
direction of an individual molecule in a complete solid
angle was found [10]. This regularity includes collec-
tive collisions of molecules [20] and random-to-lami-
nar flow transformation and aso defines the molecular
motion directivity in the flow after collision as a func-
tion of the molecule concentration in a microvolume
when Kn decreases [21-23].

Next, having determined the postcollision direction
of the molecule, we simulate its free motion in this
direction. Walks are simulated until the molecule
escapesthrough theinlet or outlet of avacuum element.

Analytical results for rarefied gas flow on the mac-
rolevel have been supported by full-scale measure-
ments made on circular and rectangular short and long
ducts, rectangular slots, and step adapters (Figs. 1-4)
[19-22]. The experiments have shown that probabilistic
simulation cuts the machine time 100-fold compared
with Bird's direct simulation method and at the same
time needs moderate computational resources [24-27].

Results obtained by the method of probable direc-
tions on the microlevel level shed light on physical pro-
cesses observed at the macrolevel [24, 25]. It should be
noted that the fraction of collective interactions
(including those at the channel walls) increases with .
It has been shown [10] that, with & [10.5, the tendency
toward directional (drift) motion in the molecular—vis-
Cous regime appears.

Consideration of molecular motion on the mac-
rolevel clarifies the reason why the conductivity of
openings and short (L/D < 4, where L isthe pipe length
and D isthe diameters of the pipe inlet) pipesincreases
throughout the transition flow range (Fig. 3). On the
macrolevel, (i) the number of molecules passing
through a vacuum element in the transition regime is
larger than in the molecular one, (ii) the number of mol-
ecules involved in the transport process also increases,
and (iii) the number of molecules passing through a
vacuum element ballisticaly (i.e., without collisions
with other molecules or walls) far exceeds the number
of calliding particles. In the range 1 > Kn > 0.01, the
conductivity grows at a higher rate. On the microlevel,
thisis explained by the fact that the flow becomes more
and more laminar.

Consideration of the molecular flow on the
microlevel clarifiesthe nature of the Knudsen paradox:
a decrease in the conductivity of long pipes as Kn
decreases from 100 to 1 and an increase in the conduc-
tivity when Kn diminishes from 1 to 0.01 (Fig. 3). On
the microlevel, the fraction of molecular pair collisions
grows, which makes the molecular motion along the
pipe difficult. In this situation, the number of molecules
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passing through a vacuum element decreases despite
the fact that the number of molecules involved in the
transfer process rises. With Kn between 1 and 0.01, the
conductivity grows monotonically for two reasons: the
number of moleculestaking part in the transfer process
increases and the flow becomes more directional
[20-22].

Considering the motion of molecules on the
microlevel, one sees that, as the length-to-diameter
ratio L/D drops from 40 to 5, the Kn dependence of the
conductivity smooths out (Fig. 3) because of adecrease
in the number of pair collisions compared with that for
long pipes. The minimum becomes less pronounced
and shifts toward larger Knudsen numbers (Fig. 3). For
pipes with L/D < 4, the dependence becomes smooth
and monotonic and extrema are absent (Fig. 3).

Consideration of the molecular motion on the
microlevel elucidates the effect observed at the bound-
ary between the molecular—viscous and pure viscous
regimes (Kn [0 0.01): the conductivities of short and
long channels of the same diameter approach each
other (Fig. 2). Under these conditions, most molecules
travel through a vacuum element, since the flow lami-
narizes.

The method of probable directions is still being
devel oped and defined [23-25].

Thus, qualitative and quantitative analysis of rar-
efied gastransition flow is such acomplex problem that
any step forward in this direction is of great value. Itis
related to the dip theory, the theory of gas diffusion,
and Boltzmann statistics. It is noteworthy that one of
the issues on the agenda of theinternational conference
“Vacuum Gas Dynamics’ held in Spain, July 2003, was
“Can we agree on away to model transition gas flow?”’

The models and methods used in simulating the
dynamics of rarefied gas were verified in [17, 18]. It
was shown that, throughout the molecular—viscous
range, solutions to equations of continuum mechanics
with empirical coefficients taken from the dlip theory
[11] are in most cases matched to results of direct sta-
tistical ssimulation [14]. Such an approach is formal,
since it cannot be given any physica interpretation.
Physical models underlying both methods are inconsis-
tent with each other.

Figure 3 compares the direct ssmulation method
with the method of probable directions (relevant exper-
imental data are also shown) by plotting the Kn depen-
dence of the dimensionless conductivity I,,. Such a
representation is necessary when experimental data
from various publications are verified or compared in
terms of the theory of similarity [17]. Note that the
Knudsen number is the decisive similarity test for the
steady isothermal molecular—viscous flow of rarefied
gas in geometrically similar structures that have a sin-
gle characteristic length. This follows both from the
kinetic theory [17], where the gas flow is viewed asthe
flow of determinate molecules, and from the continu-
oustheory [9], whereintegral characteristics of rarefied
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gas flow are considered. It should be noted that such a
physical meaning of the Knudsen number has been sub-
stantiated in many full-scale experiments. Physical
guantitiesthat characterize agas of agiven sort are con-
stant quantities. Their effect should be taken into
account when the properties of a gas of one sort are
converted to those of a gas of another sort. Therefore,
for geometrically similar elements, the dependence of
Jmy 0N the properties of rarefied gas flow in the molec-
ular—viscous regime may be represented as

Jov = Jm(A, Kn, sort),

where J,,,, istheratio of the conductivitiesin the molec-
ular—viscous and molecular regimes, A isthe cross-sec-
tiona area of the inlet, and sort combines constant
parameters of agas of agiven sort (the effective molec-
ular diameter, etc.).

For example, for vacuum pipe fittings, we have
Jow = Jn(A, L/D, 9, sort),

where L/D is the effective length-to-effective diameter
ratio of avacuum element and d = /Kn.

The fact that the data (Figs. 2—4) obtained by the
method of probable directions, the direct simulation
method, and by solving the linearized Boltzmann equa-
tion qualitatively coincide indicates that the first two
methods provide reliable results. The deviation from
the full-scale measurements (curves 4, 5, Fig. 3; curve 3,
Fig. 4) may be associated with the extent to which the
Boltzmann equation is approximated by these methods
of numerical experiment, the accuracy of implementa-
tion of these methods, computer performance, and the
accuracy of numerical and full-scale experiments.

CONCLUSIONS

The model underlying the method of probable direc-
tions seems the most adequate for describing the transi-
tion flow of rarefied gas [24, 25]. It is based on funda-
mental concepts of the kinetic theory of gases and, at
the sametime, is consistent with the diffusion theory of
gases and the models of molecular and viscous flow on
the macro- and microlevels. Second, this model takes
into account not only pair but also collective molecular
collisions, aswell asthefinite mass and effective diam-
eter of molecules. Finaly, it shedslight on the Knudsen
paradox and accounts for the close values of hydraulic
conductivity that are observed in vacuum channels of
equal diameter but different length at the boundary
between the molecul ar—viscous and viscous regimes.
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Abstract—Electrical breakdown in alkali halide crystals subjected to ~10-ns-long electrical pulsesis studied.
Two, primary and basic, channels of the anodic discharge are noted. In the presence of the primary channel, the
other arises at static breakdown voltages. Otherwise, the basic channel forms at voltages exceeding the static
breakdown voltage by more than four times. The basic channel is assumed to form via a cascade of Auger tran-
sitions. The generation and migration of linear defects seem to play a significant role in the basic channel for-
mation. The enhancement of the pulsed dielectric strength of the crystalsisrelated to conditions of current pas-
sage through the metal—insul ator interface. © 2003 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

The prevention of pulsed electrica breakdown in
insulators remains a challenge for designers and users
of any electrotechnical devices (from high-voltage
equipment to microelectronic components). A specific
feature of pulsed breakdown in alkali halide crystals
[1-3] and complex ionic compounds (such as glass [1]
and ammonium perchlorate [4]) is that in the break-
down voltage increases as the pulse width decreases.
For pulse widths of =30 ns, athrough breakdown chan-
nel in the crystals forms at voltages =2.5 times greater
than the quasi-static breakdown voltage (i.e., when the
field application duration is 1 ps or more) [2]. The
structure of the anodic breakdown channel depends on
the field strength. In NaCl crystals, a primary break-
down channel oriented along the “cathodic” 1000
direction forms in the anode region at near-breakdown
voltages under static conditions. The extension of this
region varies from 50 to 500 um. Then, the discharge
channel propagates along the “allowable” [1100direc-
tion (basic channel). The primary channel propagated
with asubsonic vel ocity, while the propagation vel ocity
of the basic one in the allowable direction is ~107 cm/s.
As the voltage grows, the primary channel shrinks and
eventually becomes visualy indiscernible [2, 3].

Thus, it may be supposed that the primary and
allowable (basic) channels form by different break-
down mechanisms.

Inthiswork, we study electrical breakdown in alkali
halide crystals subjected to =10-ns-long pulses, exam-
ine the structure of the discharge channels, estimate
breakdown voltages, and consider the breakdown
mechanism in pulsed electric fields.

EXPERIMENTAL RESULTS

The objects investigated were 40 x 40-mm alkali
halide crystal specimens with a thickness d = 0.3—
6.0 mm. An electron beam from a GIN-400 accel erator
was used as a pul se source (the maximal energy of elec-
trons is =0.3 MeV; the beam current density,
=300 A/cm?; the pulse width, =18 ns). Aluminum elec-
trodes=8 mmin diameter and =1 mm in thicknesswere
made on both sides of the specimen (Fig. 1a). The elec-
tron beam fell on the lower electrode, thereby produc-
ing a capacitor with negative charge in the lower elec-
trode and induced positive charge in the upper elec-
trode. To prevent charge leakage, the lower electrode
was mounted on an insulating support. Irradiation was
performed at room temperature under a pressure of
0.13 Pa.

Thefield strength E was estimated by measuring the
pulsed current passing in the charging circuit at thetime
of irradiation [5, 6]. The displacement current density i
isrelated to E asi = eg,0E/dt, where €, is the absolute
permittivity of the specimen. The current density i at
the upper electrode is directly proportional to the per-
mittivity of the material and inversely proportional to
the specimen thickness in accordance with the plane
capacitor law. The field strength E(t) is found by inte-
grating i over time. The peak (maximal) intensity E,,
depends on the specimen thickness as E,,, ~ 1/d.

Figure 1b shows the time waveforms of the beam
current density I, displacement current density i, and
field strength E(t) for a 5.1-mm thick NaCl specimen.
Here, the FWHM of the pulseis=10 nsand E,= 1.1 x
106 V/cm.

The formation of the channels was studied under
different applied voltages (fields). At the time of field
application, the discharge channel appeared as a glow
between the electrodes. After the irradiation, it was
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Fig. 1. (a) Experimenta scheme: (1, 2) electrodes, (3) insu-
lator, (4) electron beam, and R, is the load resistance. (b) I,
electron beam current density; i, displacement current den-
sity; and E(t), field pulsein the 5.1-mm-thick NaCl sample.

visualized by breakdown traces. The discharge chan-
nels propagate from the positive electrode (usualy
under its edges). NaCl plates 5- to 6-mm-thick (E,, =
(0.9-1.12) x 10° V/cm) were broken down after ten to
twelve pulses. However, after the initial five or six
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pulses, the glow, as well as materia breakdown under
the positive electrode, was absent. Then, the channel
advanced from pulse to pulse up to the other electrode.
Near the anode, the glow isnot as bright asin the chan-
nel. It is essential that, for specimens 3.7 to 4.0 mm
thick (E,, = 1.5 x 106 V/cm is close to the static dielec-
tric strength [1]), neither the glow nor breakdown under
the anode is seen after the application of one or two ini-
tial pulses; the next pulse, however, breaks down the
specimen throughout its thickness. Wefailed to observe
a clear-cut primary channel in the [100Cdirection,
athough signs of it, afaint glow and minor damage to
the material near the anode [3], were detected. The
image of a typical discharge channel in the 5.1-mm-
thick NaCl crystal after the application of ten pulsesis
shown in Fig. 2. The basic channel propagates from the
upper surface (positive e ectrode) toward the lower one
along the allowable 110 direction and noticeably
damages the insulator. It seems that the primary chan-
nel is coincident with the basic one and therefore is
indistinguishable. The structure of the basic channel at
pulsed and static anodic discharges is the same. The
primary channel is absent if athrough channel appears
after thefirst pulse. In NaCl, such achannel is observed
at athickness of =1 mm (E,, = 5.6 x 106 V/cm).

For K1, NaCl, and LiF crystals, the basic discharge
channel are aligned with the [1100direction; for KBr,
RbCI, and KCI, with the [100Cdirection. For a pulse
width of =10 ns, the mean dielectric strength corre-
sponding to the one-pul se formation of athrough chan-
nel equals=2.24 MV/cm for KlI, =2.8 MV/cm for KBr,
=3.1 MV/cm for RbCI, =3.73 MV/cm for KClI,
=5.6 MV/cm for NaCl, and =185 MV/cm for LiF
According to these data, the pulsed dielectric strength
exceeds the static value by a factor of 3.7-4.0 (for LiF,
by a factor of 6). The field strength is kept at its peak
value for ~10 ns, and the basic channel length is
~1 mm; hence, the mean velocity is on the order of
~107 cm/s, which isin satisfactory agreement with data
obtained in [2, 3].

We studied the effect of X-ray radiation on the
dielectric strength of the crystals. X-ray radiation arose
when the electrons of the beam were decelerated in the
Al target. The maximum of the bremsstrahlung spec-
trum lies in the low energy range. The absorption of
radiation-induced F centers in the 3-mm-thick KBr
sample was estimated with a He—-Ne laser [7]. Without
the field, absorption at the positive electrode was virtu-
ally absent and the absorption peak was observed at the
negative Al electrode. With the lower Al electrode
replaced by a 1-mm-thick lead electrode, the absorp-
tion of F centers diminishes down to zero. No variation
in the dielectric strength of the samples was detected.

DISCUSSION

It seemsreasonable to analyze the resultstaking into
account the passage of through the metal—insulator
interface.
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In agap of width s between ametallic electrode and
insulator, the field strength is E; = eg,E,,. One should
take into account that the electrode surface always has
microtips of height h < s. At thetop of thetips, thefield
strength is E, = E;h/r = E;u, where r is the microtip
radius and p is the field enhancement factor. For s =
103102 cm, p = 100 [8, 9]. Hence, the actud field
strength at the top of the microtips may be =108 V/cm.

In an insulator, the Fermi level lies near the midgap
[1]. When an insulator comes into contact with ametal,
the Fermi levels are aligned (Fig. 3). The surface layer
of the metal is depleted by electrons. An electric field
on the order of 10® V/cm causes the €l ectrons to tunnel
from the valence band of the insulator to the metal.

The formation of a streamer in the bulk of an insu-
lator may be explained in terms of a cascade of Auger
transitions [10]. The basic ideas of this model are as
follows.

(1) In the crystal lattice, electronic excitation is
transferred from atom to atom according to the elec-
tronic configuration of a crystal. The table lists the
binding energy for the highest energy levels of the cat-
ions in the valence band (measured from the conduc-
tion band bottom), the width W, of the upper valence
subband, and the energy gap W, for akali halide crys-
tals[11, 12]. Two ways of streamer formation may be
singled out. One refers to crystals where the gap W,
between the center of the upper valence subband and
the highest cation energy level exceeds W (group I).
Such are Li compounds (LiF, LiCl, LiBr, and Lil), Na
compounds (NaF, NaCl, NaBr, and Nal), and KI. The
other way appliesto crystalsfor which W, < W, (group
I1). This condition is satisfied for K compounds (KF,
KCI, and KBr) and Rb compounds (RbF, RbCl, RbBr,
and Rbl). An external field resultsin asignificant bend
of the energy bands. As a result of tunnel transition,
holes accumulate at the insulator surface (for example,
one or two holes on the 3p level of Cl* ionsin NaCl;
Figs. 3a, 3b). The travel of the streamer is associated
with the relaxation of these holes and injection of elec-
tronsin the conduction band. In the crystals of group I,
the holes on the low-lying 1slevel of Li and 2p level of
Na cannot relax. It is most likely that they relax on a
nearby anion in the 1100 direction, for example,
through an interatomic Auger transition that transfers
the charge from the 3p level of Cl- (transition 1) with
the subsequent injection of the Auger electron into the
conduction band (Fig. 3a).

In the crystals of group I, the hole relaxation in
halogen ions takes place on cation high-lying levels.
For example, in KCl, the hole relaxation in CI* ions
takes place on the 3p level of K*. For resonant electron
transfer to occur, it is necessary that the 3p level of K*
in KCl beraised by =6.1 eV (Fig. 3b). Subsequent hole
relaxation in K** takes place as a result of the inter-
atomic Auger decay on the 3p level of CI-. In these
crystals, the streamer propagates in the [1000crystal
direction. Thefact that the breakdown isinitiated at the
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Fig. 2. Discharge channel in the NaCl sample.
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Fig. 3. Cascade Auger transitions in (a) NaCl and (b) KCl
under a strong electric field. W is energy; W, and W, are,
respectively, the conduction band bottom and the valence
band top; and W; and W are the Fermi level positionsin the
insulator and metal, respectively.

anode and propagates in certain crystal directions is
confined experimentally. For KBr, the values of W, and
W, are closeto each other, which is corroborated by the
change of breakdown direction from [100[1to [11000at
temperatures higher than 50°C [13].

(2) Over a distance on the order of the interatomic
spacing, the bend of the energy bands is comparable to
the energy gap of the insulator. The probability that an
Auger eectron will fal into the conduction band is
other than zero if the minimal energy gap between the
3p levels of neighboring chlorineionsin NaCl (Fig. 3a)
(or between the 3p level of K™ and 3p level of Cl-in
KCI, Fig. 3b) isno less than the energy gap of the crys-



1530 KULIKOV

6 — J—
6} MZMENMZ MZ —
4+ 3 X
< 4 2 !
of N !
!
0 5 10 15

Wg, eV

Fig. 4. Breakdown field E,, vs. energy gap W for various
insulators. (1) Quasi-static conditions [1], (2) pulse width
30 ns (sample thickness =0.15 mm) [2], and (3) experimen-
tal data.

tal. For a mean interatomic distance in the lattice of
=3 A (the spacing between Cl-ionsis=4 A), the exter-
nal field strength must be (2.5-3.0) x 108 V/cm. Such
values can be reached only near irregularities on the
electrode surface or at the end of the conducting chan-
nel. In high fields, electrons can be injected from the
valence band into the conduction bandsin two ways: by
the tunnel or the Auger mechanism. In akali halide
crystals, the dependence of the breakdown field E, on
the energy gap iscloseto linear, which favorsthe Auger
mechanism. In the case of tunnel transition, the E, vs.
W, dependence must be near-exponential.

(3) Multiply charged ions generate high electric
fields. Two holesin achlorine ion produce the effective
charge of Cl*; one holein aK* ion, the effective charge
of K**. The charge €* generates afield of =3 x 10" V/cm
over adistance of 34 A and =108 VV/cm over adistance
of 1 A. Such high fields are comparable to external
ones.

(4) The rate of breakdown depends on the time of
Auger transition. Bearing in mind that electrons in a
cascade of Auger transitions are transferred from atom
to atom, one can estimate the rate of breakdown asv =
1 cm/Nt, where N isthe number of ions over alength of
1cmand 1 = 10 sis the Auger transition time [14].
For NaCl, N = 3 x 107, yielding v = 107 cm/s, which is
in satisfactory agreement with experimental data.

It is of interest to compare the static and pulsed
dielectric strengths as a function of the energy gap for
various insulators (Fig. 4). When analyzing these data,
we took into consideration the mutual arrangement of
the electric field and breakdown channel. Inthe crystals
of group |1, the field E and the breakdown channel are
aligned with the [100direction. In the crystals of group |,
the breakdown propagates along the [110[Hirection. In
this case, the field component in the [110Cdirection is
less than E,, by afactor of 1.41 (in Fig. 4, the dielectric
strengths of NaCl, NaF, and LiF that are decreased by a
factor of 1.41 areindicated by arrows). Work [2], where
the dielectric strength ratio for NaCl plates with the
(1100and [100CWirections running across was found to
be =1/1.41, confirms our estimates. From Fig. 4, it fol-
lows that the E,, vs. W, dependence under static condi-
tionsisnear-linear but does not pass through the origin:

Electron binding energies and the parameters W,s, Wy, and W, of alkali halide crystals (eV) [11, 12]

Crystal lon state Binding energy W W W,
LiF 1sLi* 56.5 94 14.2 37.6
LiCl IsLi* 56.5 52 94 445
LiBr IsLi* 56.6 4.6 7.5 46.8
Lil 1sLi* 55.8 31 6.2 48.05
NaF 2pNa’* 33.0 10.2 117 16.2
NaCl 2pNa* 31.2 5.6 8.8 20.2
NaBr 2pNa* 30.8 45 71 20.95
Nal 2pNa* 30.9 45 5.9 23.75
KF 3pK* 174 7.2 114 24
KCl 3pK* 175 54 8.7 6.1
KBr 3pK* 17.0 4.2 7.5 74
Kl 3pK* 18.0 4.2 6.3 9.6
RbF 4pRb* 14.7 9.7 10.3 0.45
RbClI 4pRb* 14.6 57 8.3 34
RbBr 4pRb* 141 4.6 7.3 45
Rbl 4pRb* 139 34 6.3 5.9
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E, = E, + kW, (k is the proportionality coefficient and
E, isthe fieldgstrength at Wy = 0). Itislikely that the
bands are bent under the combined action of the exter-
nal field and the field of a holein the streamer channel.
Asaresult, the breakdown voltage decreases by E,. For
a pulse width of 30 ns, E, varies with W, almost in the
same way as under static conditions. For a 10-ns pulse,
the E, vs. W, curve is steeper.

In KBr crystals subjected to prebreakdown fields,
the generation of F centers near the anode was observed
[7]. Inakali halide crystals, color centers are produced
by the nonradiative decay of autolocalized excitons.
The excitons, in turn, arise when conduction electrons
are captured by the vacant state of autolocalized holes
[12]. It seems most probable that the generation of F
centers is associated with the generation of electron—
hole pairsin astrong electric field. If so, the generation
of free carriers countsin favor of the model of cascade
Auger transitions. Unfortunately, the electrooptic
method of estimating the field strength gave underesti-
mated values of E,, [7]. The pulsed current method
gives a field strength of =0.6 x 10° V/cm for a 3-mm-
thick sample.

Thus, the properties of the basic discharge channel
(the direction and rate of propagation and the growth of
the dielectric strength with the energy gap of the insu-
lator) are adequately described by the model of cascade
Auger transitions under both static and pulsed condi-
tions.

As was hoted above, the primary breakdown chan-
nel is aligned with the field in the [1000direction and
propagates with a subsonic velocity [2, 3]. It has been
found that a prebreakdown field applied to thin layers
of akali halide crystals generates point and linear
defects. Their concentration increases with temperature
and duration of the pulse [15]. The formation of the pri-
mary channel is likely to be associated with the gener-
ation and migration of linear defects, which create
channels and regions of easy charge transfer.

In our opinion, the increase in the breakdown volt-
age with decreasing pulse duration is related to the pas-
sage of current through the metal—insulator interface. It
is conceivable that there exists a blocking bend of the
bands on the insulator surface, which simultaneously
prevents electron tunneling from the valence band and
escape of the free electrons into the metal. In this case,
a positive charge does not accumulate in the insulator.
The effect of the bend can be reduced by either gener-
ating linear defects on the surface or rectifying the
energy bands. The former case requires long pulses
(quasi-static breakdown); the latter, nanosecond pulses
and high fields.
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CONCLUSIONS

Thus, pulsed electric fields applied to alkali halide
crystals produce two discharge channels (primary and
basic) propagating from the anode. In the basic chan-
nel, the carriersresponsible for animpact avalanche are
generated by the mechanism of cascade Auger transi-
tions in the valence band of the insulator. The primary
breakdown channel is most likely to be associated with
the generation and migration of linear defects, which
facilitate charge transfer. It appears that an increase in
the dielectric strength under pulsed conditions is
related to the fact that the current passage through the
metal-insulator interface is difficult in this case pre-
sumably because of ablocking bend of the bands on the
insulator surface. A decrease in the pulsed breakdown
voltage to static values in the presence of the primary
channel confirms this statement.
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Abstract—Equations that simulate the magnetic induction and current density distributions in half-space in
view of the power |-V characteristic are derived. The magnetization front velocity is determined for a given
mean rate of external magnetic field variation at the boundary of the sample. Anintegral condition for the elec-
trical resistance (nonlinearly depending on the magnetic field) under which the magnetic flux penetrates into
the sample with afinite rate is found. An analytical solution that simulates the power variation of the magnetic
field at the boundary is given. The Bean generalized model describing the current density distribution near the
critical current is considered. It is shown that solutions like shock waves may arise beyond the applicability
domain of the Bean model. © 2003 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

It is known that the magnetic field is fully expulsed
from type-11 superconductors in the Meissner phase at
H < Hg, where H,, is the lower critical field. In the
mixed state (Shubnikov phase) at H,; < H < H,, where
H, is the upper critical field, the magnetic field pene-
trates into a superconductor in the form of whirl lines
(or vortices). The critical field H.; depends on the Lon-
don penetration depth A, which definesthe typical scale
of electromagnetic response from a superconductor to
any externa disturbance. As the magnetic field
increases, the density of whirl lines increases until the
vortex cores start overlapping at H = H,.

Below, we consider the Maxwell equations, which
simulate the dynamics of the vortex system at the mac-
roscopic level, i.e.,, on space and time scales that far
exceed both the London penetration depth and charac-
teristic pinning-related scales. These equations should
be complemented by the -V characteristic j(E, B),
which simulates the superconductor’s electromagnetic
response, which, in turn, depends on the dynamic
behavior of the vortex system.

Nonlinearity in the -V characteristic may arise for
various reasons: thermal creep, melting of the vortex
lattice, pinning, etc. For example, in the case of mag-
netic flux creep, the vortex lattice (or at least its part)
starts moving [1, 2]. As the current increases to the
point where the Lorentz forceis higher than the pinning
force, the entire vortex lattice may be involved in
motion and the |-V curve becomes linear. In this case,
we are dealing with the viscous flow of the magnetic
flux [2].

As has been mentioned in [3], equations for the |-V
characteristic make it possible to analyze experimental
data for thermal stability of the superconducting state
of acomposite superconductor. Stability analysis of the

superconducting state is a basic challenge for engineer-
ing superconductivity [3]. In the theory of thermomag-
netic instability, an external magnetic field or a current
introduced into the specimen are considered as disturb-
ing factors; this is precisely the situation that we con-
sider below. We will restrict analysis to the case when
the superconductor temperature is kept almost constant
and equal to the coolant temperature.

We will show in the Introduction that the Maxwell
equations in linear statement may be reduced to the
Burgers equation with viscosity, where resistance
Prux(B) plays the role of “viscosity.” The laws of mag-
netic flux penetration into half-space are considered,
and integral conditions are imposed on the function
Prux(B). According to these conditions, (i) the undis-
turbed flux penetrates the half-space x > 0 an infinite
distance with an infinite velocity and (ii) a flux distur-
bance penetrates a finite distance with afinite velocity.
Obviously, property (i) is typical of solutions to linear
models, while property (ii) is inherent in solutions to
nonlinear problems. The associated model boundary-
value problem can be considered as the generalization
of the Bean model for the linear 1-V characteristic. The
generalization of this model for magnetic field induc-
tion to the power characteristicisimpossiblein the gen-
eral case, since the equation includes the term on the
order of (0B/0x)", where n is the exponent of the -V
characteristic. However, this can be done if the electri-
cal resistance does not depend on the magnetic field
induction.

Therefore, in Sect.1, we consider a model equation
for transport current density, show the possibility for
the occurrence of self-similar waves, and demonstrate
that the velocity with which self-similar waves pene-
trate into the sample depends on the dimensionless

parameter € = Eb‘['{2 . For example, at n =1, the current
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penetrates the sample with an infinite velocity and the
Bean model can be applied. For sufficiently small € >0
and n > 1, the current penetrates into the samplein the
form of adecaying density wave and, if n> 1, the Bean
model can be used again. In Sects. 2 and 3, we deter-
mine the magnetization front velocity v and show that

vOnandv (O Eb‘EIl ,i.e., isproportional to the average
rate of magnetic field increase on the sample surface.

This work was inspired by the results of [2], where
a similar problem was considered but the dependence
Prux(B) was not taken into account and the el ectromag-
netic field E decreased linearly within afinite depth. In
our paper, the magnetic induction and current density
also propagate to afinite depth but decrease by a power
law. As to the magnetic flux velocity, the results are
basically identical: at n —» oo, the critical state model
becomes valid. Exponential |-V curves were not con-
sidered in this paper.

The data above can be viewed as akind of generali-
zation of the Bean critical state model where the -V
slope is neglected. The results obtained in [2] can be
considered in asimilar way. Unlike [2], this work con-
sidersthe explicit dependence p;(B) for the linear -V
characteristic and generalizes the concept according to
which the current with adensity j.. isthe responseto any
disturbance. It turns out that taking into account weak
disturbancesin thevicinity of the point j =j.isof minor
importanceif thefield E penetrateswith a high velocity
(i.e., the Bean model isvalid) and leads to current den-
sity damping at low velocities. The inclusion of strong
disturbances in the vicinity of the critical value causes
a many-valued density shock wave to arise; however,
this issue cdls for further consideration. As a result,
taking into consideration even weak inhomogeneous
disturbances of the current density in the vicinity of the
critical current necessitates the use of a hydrodynamic
model of current distribution, while taking account of
the field dependence of the resistance makes us con-
sider the variation of the magnetic field gradient, i.e., in
essence, nonuniform current density (j # j.) distribu-
tions.

1. PROBLEM DEFINITION
Let us consider the system of equations

10B

divB = 0, curlE = T curlB = Woj, (1)

where B is the magnetic field induction, E is the elec-
tromagnetic field, j is the transport current density, and
Mo is the permeability of the medium.

The current dependence can be defined through the
shape of the I-V characteristic j(E, B). The -V charac-
teristic simulates the superconductor’s electromagnetic
response, which, in turn, depends on the dynamic
behavior of the vortical system.
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Fig. 1. Magnetic induction distribution for afinite propaga
tion velocity of disturbances (for nonlinear |-V characteris-
tics).

Let us consider a hard superconductor placed in an
external magnetic field H that is directed along the Z
axis parald to the surface x = 0 of the sample, which
occupies the half-space x > 0[2, Fig. 1]. The magnetic
field induction can then be expressed as [1]

B(X) = Hexp(—x/A) + B,(X),

wherethefirst term describes the M eissner state and the
second term is determined by the vortex distribution.

For B/(x) = 0, local coupling B = N®, takes place,
where N |s the vortex density and @, is a fluxon under
the condition that the London penetration depth is
much lessthan the typical scale B'LJof magnetic induc-
tion variation [2]. This meansthat Egs. (1) describe the
behavior of the vortex system on the macrolevel, i.e., on
space and time scales larger than those typical of pin-
ning [4]. In other words, this means that inequality j >
jc is satisfied. The reverse case j < j., where magnetic
induction B at every point is determined by vortices
localized in a domain on the order of A, is not consid-
ered here.

In the simplest case U < T, where T is the tempera-
ture, the value of therma activation barrier U that
makes vortex motion difficult can be disregarded. Then,
the properties of the sample can be simulated by the
expression [4]

E = pflux(B)j' (2)

Here, prux = PnB/H, and p,, isthe resistance in the nor-

mal state.
From Egs. (1) and (2), itiseasy to derivethe Burgers
equation

, 0p;(B
LB — pf()

(DB) = plow(B)AB,

where A isthe Lapl acian. Differentiating this equation
with respect to x and making substitution U = 0B/dx
brings this equation into the conventional Burgers
equation with “viscosity.”
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Interms of the critical state model, thisequation can
be reduced to

HoBt = Prux(B)AB.
From the expressions
0,E = —-0B and -0,B = ]
one easily obtains the equation
Ho0ij = AE,

which was studied in [2].
There are the following models of the I-V charac-
teristic: the linear model

g = PiBi—]o) for j>j

3
for j<j. ®)
and the nonlinear models [2]
e = g0,
‘o
: 4)

E = Ecexng—;%— E,,

where the current density j; and phenomenological
exponent n define the stegpness of the curve.

The current density j. is found at the electric field
intensity E.. In the Bean model of critical state, the
induction dependences of the current density, j(B), and
resistance, p;(B), can be neglected. It was shown [2]
that, for n — o0 and J5 — 0, models (4) turn into the
critical state model.

For linear model (3), one can write

v _ P
E =~ E. 5
v ®)

In the dimensionless variables e = E/Ey, X = X/Ly,
and T = t/ty, where

EX = jcpfi I—X = Jcpf/EB;[l

ty = Uojgpf/ EB'i
Eq. (5) takesthe form
d.e = A.. (6)
Below, wewill use the previous designation X — X.
Changing variables by averaging (B[] (see Appen-

dix) allows one to separate typical scales of rate of
change of the magnetic induction. In fact, in the

dynamic regime, B[] [0 N[J where NCis the mean
number of vortices (on the scales Ly and ty). Here, B [
B, according to the Bean generalized model [4]; i.e., the
magnetic induction is the induction of afield averaged

over aspecial scaea < [B{< A, whereaisthe spac-
ing between vortices. Sincetheinequality a < A issat-

, KRASNYUK

isfied at H > H, the quantity [B;J O N can be viewed
astherate of change of the density of vorticesthat |eave
or enter the sampl e through its surface [4, p. 1350] and
the quantity w ~ 1/t, can be considered as a frequency.

Equation (5) is supplemented by the following
boundary and initial conditions [2]:
0,E(0,t) =-9,B(0,t), E(O,t)=0, E(x0)=0,

wheret > 0 and x > 0. In the dimensionless variables,
these conditions are written as

0e,(0,t) =-1, elr) =0, ex0)=0. (6)
An electric field that is a solution to the mixed ini-
tial- and boundary-value problem given by (6) and (6")
is known to penetrate the half-space as a self-similar
wave with a linear law Xq(t, [BJ)) of magnetization
front propagation [2, Fig. 3].
Consider the same boundary-value problem for the
magnetic induction equation

0.8 = Zp((B)d,B.
Ho
If B ~ Hg, the dependence p;(B) can be neglected.

Then, in the dimensionless variables introduced in [2],
this equation can be written in the form

o _ o g Br
PR = 5.0 (7)
with the boundary and initial conditions
0b(0,t) =1 and b(x,0) = 0. (7

Solutionsin the class of self-similar functionsto the
problem given by (6) and (6") were constructed in [2].
Let us show that the boundary-value problem given by
(7) and (7') also have self-similar solutions. First, we
note that this problem can be recast as

ab = Ab 8)

with the boundary conditions written in the more gen-
eral form

b(0,t) = (L+t)" and u(x,0) = uy(x),

wherem=1,2, ....

In fact, for m =1, differentiation of edge condition
(8 with respect to time yields boundary condition (7°);
hence, every solution to problem (8)—(8") is a solution
to problem (7)—7"). Generdly speaking, a functional
boundary condition is found from an associated differ-
ential condition up to a constant, which may be set
equal to zero (since boundary and initial functions must
continuously match each other).

For m> 1, the boundary-value problem considered
(subject to b(eo, t) = 0) also has asdf-smilar solution [5]:

be(X, 1) = (1 +1)"0(0),
C=X(1+1)%

(8)
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with

ameal (1+m) 0l KE
" Texpm 4DH_(2m+1)Eﬁ]

where H,(2) is a Hermitean function and I'(m) is the
gamma function.

The form of the solution specifies the effective pen-
etration depth of the wave:

xg = Lg(1+1)Y

where {4(m) is determined from the condition 8({«) =
0.(0)/2 = 1/2.

This analytical solution is of interest because it
clearly demonstrates the dependence on the rate of
electromagnetic field penetration into a superconductor
(this electromagnetic field is induced by an increasing
external magnetic field).

The analysis of self-similar solutions with a power
condition at the boundary shows a natural regularity:
the more stringent the boundary condition (the rate of
increase of the external magnetic field), the higher the
velocity of the arising magnetic wave. In the case of a
power condition, the penetration depth of the magnetic
field isaso a power function. Schematically, the evolu-
tion of the self-similar penetration of the magnetic flux
generated by the increasing external field is similar to
that demonstrated in Fig. 1. It was shown [5, p. 52] that
a self-smilar solution is asymptotically stable against
disturbances of edge data. Accordingly, the self-similar
function B4({) correctly describes the magnetic wave
profileat t — co.

Similarly, for nonlinear 1-V characteristics, Eq. (4)
reduces to the equation

by = ((Prux(b), 1)By), (b= B/B,) )
with the boundary and initial conditions

b(0,t) = (L+1)™ and b(0,x) = up(x). (9)

Here, p; means some dimensionless value of the resis-
tance normalized to p;, where p; = B4, [0s such that the
variables L, and t, mentioned above are meaningful. In
particular, one may assume, without loss in generality,
that p; = p, for b =1 or p; = psux(Bo), Wwhere By isaprob-
lem-dependent equilibrium value of the magnetic field.

Based on Ohm’slaw e = p;,,i and the equality e=i", we
may assume that pg(b, i) O bi"~1, wherei =j/j..

Let py(b) O b% wherea > 0. (Below, we will show
that this condition has meaning for high-temperature
superconductors.) Then, it follows from [5, p. 67] that
boundary-value problem (12)—(12") has self-similar
solutions by = (1 + t)Y90(C), where 64 will be defined
later. In this case, the magnetic wave penetration depth
vs. timeisgiven by

X§ - Zef(l + in—lt)(1+ma)/2,

0s(¢) = 2
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Os(er) = 1/2.

In particular, for m = 1, boundary-value problem
(9)—9') admits a self-similar solution,

Us(X, ) =0s(Q), {=x(1+%,

which meets boundary condition (9) for m = 1. Here,
0.(¢) isasolution to the boundary-value problem

[N l 1
(pflux(e$)e$) + §e$ = 0:

05(0) =1, B4(») =0, (>0.

This solution (i.e., the penetration depth) isfinite or
infinite depending on whether or not Eq. (9) allows for
afinite propagation velocity of disturbances.

Let us restrict our analysis to the case where the
coefficient py,(b) is such that a disturbance has afinite
velocity [5]:

pflux(b) db < 00

[To—

0

For Eg. (9), this integral is equal to unity when
Prux(b) isalinear function or tends to infinity if pg, iS
b independent (sol utionsto the corresponding problems
are shown in Figs. 1, 2). If the resistance does not
depend on the magnetic induction, the propagation
velocity of magnetic flux disturbances is infinite and
the solution is likewise not finite (Fig. 1).

With flux creep taken into account, dissipation is
described by the expression

P(T, H) = po(H)exp[—(Uo(T, H)/T)].

The energy of activation was shown [6, 7] to have
the following scaling form:

Uy = A(H)(l—T/TC)m,
where A 0 1/HC.

by (t, x)

0 o)  x3(t) X

Fig. 2. Magnetic flux penetration for an infinite propagation
velocity of disturbances (for linear -V characteristics).
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If the barrier U, is small enough, expanding the
exponential into the Taylor series and taking into
account that H®/(H® + 1) = H® in a zero approximation
leads us to the relationship

(H)D—H

(:2

A similar expression was obtained in [8]:
Ug(j, H) OF@/ji)HO®[1 = (TIT ],

where T, is close to the critical temperature T. and
F(j/j;) ~ (J/i;)™in the case of collective flux creep [8].
Here, |; is some value of the current that depends on
iic 9]

The model worked out in [8] predicts the following
regimes. j <j. j <j. andj ~j.. We will consider only
the last one. Since the authors of [6] and [8] considered
the range 0.5 < a < 0.6 and the value of a = 0.55,
respectively, it will suffice to put a = 3/2 in the above
formulasin order to determine the penetration depth of
the traveling magnetic wave. This abstract result may
apparently be of value in considering specific problems
(e.g., YBa,Cu;0O; high-temperature ceramics [8, 9]).
Note that, for j < j, the resistance ps,,, depends on the
current distribution; therefore, we will consider an
equation that simulatesthe evolution of the current den-
sity in half-space taking into account an increase in the
electromagnetic field at the superconductor boundary.

As follows from the above, the definition py,(b) =
b® is meaningful. Then, for m = 1/a, the problem has
the self-similar solution by = (1 + t)¥@0(Q) (where
04(0) =[1—a¥2{]¥e and { = x/(1 + 1)), which ismerely
atraveling wave. In the general case, the solution has
the form

a>0.

Us = (1+1)"64(Q),

where { = x/(1 + t)@*+™)/2, This solution is plotted in
Fig. 2.

In such astatement, anonlinear |-V characteristicis
impossible to take into consideration: to do this it
would be necessary to analyze functional relationships
like e = (i, b) concurrently with a set of equations for
the functionsi and b. However, if the |-V characteristic
(Eq. (3)) islinear, the current density i in the diffusion
equation may be viewed as a parameter. Then, with the
current fixed, its effect can be taken into account by
substituting it for t in the solution mentioned above. As
aresult, we find the magnetic wave penetration depth

X§ 0 (it)(1+ ma)/2-

2. CURRENT DENSITY DISTRIBUTION

For nonlinear 1-V characteristics, we perform a
change of variables

E.= E,, Ly=E[BO t, = WojE B

MEDVEDEV, KRASNYUK

in the equation that relates the current to the electrical
field (see above). As aresult, we obtain the equation

o _ 1,7 9e
x> n ot

with the boundary conditions

9€0,1) = -1, e(0r ) = 0, e(x0) = O.
0x

Since for nonlinear characteristics e = (i), where
@isagiven function, we havei = i/i, this equation can

be reduced to the equation
0’ _ 1 i) 00() _
i ncp(u) = <p(|) cp(u) (10)
with the boundary condition
@(i(0, t)) (0 t) = -1 (bd=1). (11

For power characteristics, boundary condition (11)
is conveniently written in the form

0i _ 1l.1-n

X _F]||x=0,t[0)l (11)

and Eg. (11) may be represented in the form of the
Burgers equation

g 00 = ¢ Loi) " e)Z ()

with the additional conditionsi(co, T) =0andi(x, 0) =0
for x> 0.

Note that, if the magnetic flux penetrates into the
sample by diffusion, it may be assumed that

o0 | o°m _
aX aX

where averaging is carried out over the scalest, and L,.
Since these scales are chosen such that [h{J = congt,
boundary condition (11') is simplified to

mq 1EiEil

= _[th'

= Uy -=0,10-

Without loss of generality, we may put T — constt
in such away that the condition nl'[)= 1 is satisfied.
Then, the above relationship can be written as i*~"(0,
t)=1;i.e,

i(0,t) =1, t>0. (12)

Thus, we have arrived at the problem with the same
boundary conditionsasfor thelinear 1-V characterigtic,
but the linear diffusion equation here is replaced by
nonlinear Burgers equation (1'). The Burgers equation

TECHNICAL PHYSICS Vol 48
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is conveniently written as

Oi 1 26I _ 1 Q_
xT oD 32 non-n a1

Equation (13) has a simple physical meaning: for
n=1, it turnsinto a nonlinear equation for current dif-
fusion [2] (but in terms of electromagnetic field). For
n — oo, the limiting equation is di/ox = 0. This equa-
tion has the solution i = i;, which corresponds to the
Bean model: (—b) O i... For large but finite n, this equa-
tion reduces to the equation

n+1
a. _175ai
(n— 1) a_x2 =43 5

from which it follows that the steady-state distribution
of the current density has the form

i(x) Oi(0)exp(1l—n)x+ const.

Here, i(0) = 1 by virtue of boundary condition (12) and
the constant of integration can be chosen from the con-
dition i(e) = const.
In the general case, we must consider the equation
Oi o0 _
a—n(n )i Ix - ni o
Performing the compression of the spatial variable,
X —» n [b{Ix, we recast this equation in the form

a|n1

0T EbQ 0Xx

nal_l 6

EbQ o (14)
Let us determine the parameter € = [b'E{l, which

playstherole of average viscosity for Burgers equation
(14). For ¢ —= 0, we have

. n-1._.
ﬂ — _n _ 1|_Tﬂ =
ot O ox

Equation (14') has the form of the conventional

Burgers eguation without viscosity (where the spatial

variable plays the role of time). This equation is more
convenient to write as

(14)

dx(t) _ n-1-"%
dt (b '
Equalities (15) mean that every solution to Eq. (14"
istime-invariable along straight lines given by
n-1 1

Eb[{I(X t) "t = const.

It is known that solutions to the Burgers equation
may contain turning-over waves, that is, the solution
becomes multivalued in the vicinity of the point j = j,
(see, for example, [10, p. 189]). Such a situation may

g—{(x(t),t) -0 with (15)

X+
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occur at any n# 1 but isimpossible in the critical cur-
rent regime i = 1. Otherwise, we find that the current
penetrates into the samplein the form of asimple wave
whose shape is completely specified by the boundary
condition.

3. LAW OF MOTION OF THE MAGNETIZATION
FRONT

Let us“freeze” the coefficientsin Eq. (14'). In other
words, we consider the equation

a_i_n—l<i‘n?1> oi _ 0
ot [ ox

replace the current mean ([} by the induction mean
'C), and assume that the magnetic field has the prop-
erty of ergodicity (bl = b[J(see Appendix). Then, dif-
ferentiating this equation with respect to x in view of
the relationship OICT] (L)) yields

du n-1
ot ElbD D‘a
As follows from the properties of solutions to

Eqg. (16), the law of motion of the magnetization front
is given by the relationship

=0 (u=2di/dx).  (16)

n-1 nﬁ
X(t)D-E—EaEbEL ,

where '] — nB'L] by virtue of the above substitu-
tion.

A similar relationship was obtained in [2]:
n-1

x(t) O b "'t (17)

Thelaw of motion of the magnetization front is con-

veniently expressed by
n—10bT
x(t) O - EbEJt

This expression and representation (17) coincide up
to the order of smallness of (n + 1) ~ nL. Thisis
because the Burgers equation takes into account the
current spatial distribution, which is determined by the
gradient di/ox. Neglecting this term yields Eq. (17),
since the problem (after corresponding redefinitions) is
reduced to that considered in [2].

4. CONCLUSIONS

Thus, based on the Maxwell egquations, we derived
model equations: a diffusion nonlinear equation for
magnetic induction and a Burgers equation that simu-
lates the current distribution in view of external mag-
netic field variation at the boundary of half-space. For
the latter equation, two boundary-value problems are
considered: (1) the rate of change of the magnetic flux
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at the boundary is constant and (2) the rate of change of
the flux increases with time by a power law. Two situa-
tionsin case (1) are possible: (1a) the resistance py IS
constant and (1b) the resistance depends on b® linearly
or nonlinearly. In case 1a, a = 0 and the flux penetrates
into the sample with an infinite velocity (Fig. 2); in
case 1b, the magnetic wave penetrates into the sample
with afinite velocity if a > 1 (Fig. 1).

If condition 1b in case 2 is satisfied, the wave invari-
ably moves with a velocity higher than in a constant-
resistance medium with the same boundary regime,
since the resistance is an increasing function of the
magnetic field. The magnetic wave front (the point at
which by vanishes) moves with the same velocity:
X (t) = {(1 + )@+ M2, Schematically, the evolution of
the self-similar process is shown in Fig. 2 (the path of
the magnetic wave half-width is shown by the dashed
line).

When investigating the current density distribution,
we consider the Bean boundary conditions and study
the shape of current fluctuations only in the vicinity of
the critical state. In this case, the rate of pumping by
magnetic current and the exponent of the I-V character-
istic enter into the coefficients of the equation in
implicit form. It turns out that, with n —» oo, we come
to solutionsto the conventional Bean model. For v —
0, where v istherate of pumping by magnetic field, we
obtain the standard diffusion equation for current den-
sity, which was considered, for example, in [3]. For
v — oo, the equation degenerates into the Burgers
wave equation. Eventually, we again obtain the Bean
model of critical state; now, however, at j =j., asolution
represents a traveling wave with an amplitude . rather
than being a constant. For large fluctuations near j,
such a wave becomes unstable: it steepens giving rise
(if the Hugoniot conditions at discontinuity [10] are sat-
isfied) to a shock wave. However, this issue was not
considered in detail. To conclude, the equation for mag-
netic field induction and that for current density evolu-
tion, although written in different forms, are formally
identical: they can be expressed in the same form by
making a differential change of variables. The solution
of the joint set of equations was not considered in this
work; however, the current distribution for a plate [4]
may be involved in the coefficient pyq,(b) in specific
problems for the magnetic diffusion equation.

APPENDIX
L et averaging operators be designated as

M(B(x )] = (B2, = Iim\%I B(x, t)dt

to

MEDVEDEV, KRASNYUK

and
L

M,[B(x )] = [B(x, t)} = El—IB(x, t)dx

if the function B(X) is L,-periodic in x. Such afunction
can be expressed by the Fourier series

B(x) = ZBkexpikx.

k>0

Then, the application of the averaging operator
leads to the relationship

M, [B(xX)] = Bo;

i.e., averaging yieldsthe free term of the Fourier series.
Consider the function

B(wt) = ZBkexpikmt
k>0

and apply the time averaging operator. If thereisavec-
tor k = (ky, ky), taking the corresponding two-dimen-
sional integral for x = w;x and t = w,t yields (if w; and
w, are rationally incommensurable numbers) the same
result after averaging over variable x and timet [11]:

M, [B(X)] = M[B(wt)].

It isthis observation that was used above: in statisti-
cal mechanics, this relationship is known as the ergod-
icity of trajectories[10].

The basic reason for using this procedure was the
need to make nonlinear equations dimensionless. For
example, the substitutions L, = EJ/B; and t, =
Hoj EJ( B, )? allowed Romanovskii [2] to recast the dif-
fusion equation with a power 1-V characteristic in
dimensionlessform. Here, the question arises asto how
the parameterst, and L, should be treated. Obvioudly, it
will suffice to perform averaging [L,[01= EJ/B'LJin any
sense. Theresult of averaging over t depends, generally
speaking, on the parameter t; (for details, see [12]). In
most applied problems, the properties of solutions to
equations do not depend on t,; however, this is some-
times not the case. For example, the averaging of aran-
dom pinning potential [4, p. 1159] required the follow-
ing operation:

t

_ 1,
0.0= FO{(...)dt,

whereit isassumed that the averaging operator includes
taking thelimit at n — co implicitly.

Another important problem isto establish the funda-
mental possibility that such characteristic scales exist
(see, eg., [4]). In the case of viscous flux creep, the
characteristic time t, for a plate may be taken in the
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form

t, = I[T—dz
0" 2]|9;U[cvoH’

where U( j) isthe activation barrier, d isthe plate width,
cistheveocity of light, v, isthe“microscopic” veloc-
ity of vortices, and H isthe magnetic field intensity.
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Abstract—The tangential component of stray field on the surface of an elastically bent tube is evaluated under
the assumption that the internal magnetic field is constant. This component bears more information than the
normal one, since it allows one to determine the mean value of internal stresses of thefirst kind. © 2003 MAIK

“ Nauka/Interperiodica” .

INTRODUCTION

When aferromagnetic steel tube is bent (hereafter it
is assumed that its ends are hinged), it takes the shape
of ahalf-sinusoid [1]:

_ ™ lo_ _l

y = yocoslo, stsz. (D)
Here, |, is the tube length and v, is the sag in the mid-
section x = 0, where the bending stresses are maximal
(Fig. 1a). The sag specifies the curvature p and maxi-

mal value of bending stresses ;' in the midsection of

the tube along the generatrices a = 0 (extension) and
a = 180° (compression) of the surfacer, =r, (r, andr,
are the inner and outer radii of the tube, respectively,
and a isthe azimuth coordinate measured from the sur-
face of bend [1]):

_ _ T
Op = > EYofm )

where E is the Young's modulus; N is the bending
moment; and J is the inertia moment of the tube sec-
tion:

N
<

“lody 1o N dy
.J—411(r2 r), o EJ o (©)]

Asaresult, bending stresses at an arbitrary point of
the tube are given by [1]

o(x a,r) = obmricosa cosTl-R(; <r<r, (4

2 0

If the tube is long, shear stresses can be neglected.
Since the tube is in the weak terrestrial magnetic field
Hy (Hy <€ H,, where H. is the coercive force of stegl),
this field induces a low magnetization M(Hg,). The

action of high bending stresses (o} > o,, where g, is
the mean value of internal stresses[2]) causesirrevers-
ible displacements of 90° domain walls [2, 3] and,
accordingly, a significant magnetoelastic increment of
the magnetization, AM, > M(Hg).

Although the increment AM, depends on ¢ nonlin-
early and tendsto saturate [2, 3], it invariably increases
with the stress. Therefore, the magnetization distribu-
tion in an elastically bent tube will copy, albeit with a

MkAm @ v kA/m
L4507 T~ 375
- 250
250 125
1 1 1 1
100 --200 150 —500 50 150
g, MPa
75/— 15
m (©)
50 F 100 AMy, KA/m
/ 80
25150
40+
N
1 1 / 1 1 1 1 /—I\
150 -500 50 150 —150 —=30 | 50 150
g, MPa —-40 |- g, MPa
_80 L

Fig. 1. Magnetoel astic variation of the magnetizationin St 3
steel subjected to a permanent magnetic field of 40 A/m. (a)
Application and relief of tensile and compressive stresses,
the closed loops are their steady variations. (b, ) Amplitude

dependences of the irreversible (AM{R) and reversible

(AMq, ) parts of the total magnetoelastic increment AM,;.

1063-7842/03/4812-1540%$24.00 © 2003 MAIK “Nauka/ Interperiodica’



ON A RELATIONSHIP BETWEEN THE TANGENTIAL COMPONENT

nonlinear correction, the distribution o,(x, a, r) of
bending stresses. Eventually, al the features of the
function ay(x, a, r) (its extrema, their positions, the
“wavelength” of the stress, and points where the func-
tion changes sign) will be involved in the function
AMy(x, a, ).

A stray magnetic field AH(AM,) around the tube
will bear information on the magneti zation distribution.
Owing to the relationship between o,(x, a, r) and
AM(X, a, r), one can judge the value and distribution
of bending stresses in the tube by measuring the stray
field.

In [4], we found the distribution of magnetization
magnetoelastic increments AM: (x, a, r) in an elasti-
cally bent tube (see (4)) subjected to aweak longitudi-
nal magnetic field H,, knowing the stress distribution
in the tube and the values of the increments AM; due

to uniform extension (AM_,) or compression (AM;) [2,
3]. From this distribution, we determined the volume

magnetic charge distribution pj,(x, o, r) and then,

using available solutions to the eguations of magneto-
statics [5, 6] and a number of approximations, the stray
field AH,(x, a, r) normal to the tube surface [4].

At the same time, it is obvious that the tangential
component AH,(x, a, r) of the stray field may al so be of
interest for nondestructive inspection, since it bears
information on the distribution of the magnetizations
AM: in an elastically bent tube and, accordingly, on

the stress distribution in it. Therefore, in this work we
seek a relationship between the stray field tangentia
component on the tube surface and elastically bending
stresses.

DISTRIBUTION OF LONGITUDINAL
MAGNETIZATION IN AN ELASTICALLY BENT
TUBE

Asiswell known [2, 3], amagnetoel astic increment
of magnetization may take place in the presence of at
least aweak magnetic field and elastic stresses. It isthe
sum of theregular (reversible) change of magnetization
AM?,, (Ho, 0.), which is positive in the extended part of
the tube (+) and negative in its compressed part (), and
the general irreversibleincrement AM:;,, (Ho, 0.), which
is aways positive and makes a major contribution to

AM;, [2, 3]. Asthe number of loading cycles (the appli-
cation and relief of a stress of the same amplitude o}')
grows, the values of AM;, increase, tending to satura-

tion: AM;, (t —= ©) —» AM{; (Ho, OF), wheret is
time. Considering that the tube may experience several
loading cycles, the time variation of the stress at each
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point (X, a, r) of the tube is conveniently described by
the expressions [2—4]

o.(t) = oy (x a, r)sm EWD = 10 snzgg%, 5)

where the circular frequency w is assumed to be so
small that the loading and unloading processes are
quasi-static. According to (5), the first application of
the load of amplitude o,,, correspondsto wt = 1T, thefirst
relief, to wt = 211, and so on. Eventually, we have [3]

AM;(HO1 oiv t) = ANliil"r(HO’ O-ii t) + AI\/Iriev(Hm 0'1., t)!

. wt
AMi(t) = AMir(Ho, G:m)[l‘exp% 4nk%} ©

M (1) = +AM7, (Ho, oT)sn’ B

The values of AM;; and AM,, depend on the elas-
tic stress amplitude at a given point of the tube in a
given field Hy, and the parameters k* specify the rate of

approach of AM, (t) to saturation.

Figure 1ashowsthe magnetoel astic variations of the
magnetization in St 3 sted subjected to a permanent
inner magnetic field of 40 A/m and experiencing uni-
form load cycling (a stress amplitude of +150 MPa).
Also shown is the steady regular variation of the mag-
netization (tenth cycle).

As the amplitude g, grows, both components (6)
first increase and then tend toward saturation (in the
same field). Curves for AM{; (03) and AMp, (07 ) in
the range 0 £ 0, < 150 MPa are demonstrated in
Fig. 1b. As was shown [2, 3], the amplitude depen-

dences of AM;, and AM, generally obey the expo-
nential law

Eb"DTD
0.
iflx

EbEDZD
AMg (oY) _AMz(Ho)Eﬂ exp[ 0-=0 }D,
o5

Aerr(o-+) = AMI(HO)D]- eXp|: J:r.
(o}
(7

where the parameters o7 and o, should be determined
from experiments with given steel [2, 3].

In afirst approximation, the low-field dependences
of AM; and AM; arelinear:

AM;(HO) = BiHo’ AM;(HO) = BEHO' (8)

From (8) and Fig. 1, one easily evaluatesthe magne-
tization magnetoelastic incrementsin St 3 steel for any
other field if it is low: Hy < H.. Straightforward pro-
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cessing of the datain Figs. 1aand 1c according to (6)—
(8) yields the following model parameters (for St 3
sted): 0; = 0, = 0; = 0, =0, =100 MPa, B] =740,
B, =107, B; =150, B, =80, k" = 3, and k- = 6. From
(6)—(8), it is easy to derive a general expression for the
distribution of the magnetization AMZ in abent tube:

AM;[Ho, 1,03, 0, )] = A*(Ho, 01— expE—[f,—}E}
©

z(ot

+ |:| + .
A*(Ho t) = DBI[l—exp k@} t5n?9lH,
0 an™U 20

where only the stress amplitude is a function of (x, a,
r): oy awaysequalsa,(x, a,r).

STRAY FIELD NEAR AN ELASTICALLY

KULEJEW, LOPATIN

Substituting (9) and (4) in (10), we have

I 41'[%5['_’6”% r’cos’a

2

pm(X O, ) = A=
(11)
x sm—exp[ gh}

Inthis case, magnetic potentials d=(x, ', r') take the
form [5]

S

2 ..
| xJ’drIda pxa.n (19
! R(x,a”,r,x,a',r")
E0
where
R* = (X =x)°+r’+r?=2rr'cos(a’' —a®). (13)

Thetotal magnetic potentia ¢(x, o', r') of an elasti-
cally bent tube isthe sum of expressions (12) in view of
(13). The stray field components are calculated by the
formulas[5]

BENT TUBE aq)
Expressions (10) in view of (4) yield volume mag- AR 00T = e = Adir AL (19)
netic charges of density [5] P
; AH, (X, o', 1) = —5‘}’ = AL+AT, (19
m(X a,1) = —4ndiv(AM}) = —4n=—(AM3). (10
Pm(X, O, T) rdiv(AM) T~ (AM;). (10) where
|
2, (X - x)r cos’a sm—exp[-}——%
2 2
= I de’dr I da* 3 (16)
_IEO n [(X =x)?+r?+ (r')? = 2rr'cos(a* —a)]
omx U 02 g
[r'—rcos(a” —a")]r’ cos’a* sm—exp[-l—
lo 0100 .
_:III ——dxdrda”. 17

(X =x)"+1"+(r)°

In (12)—(17), thelimits of integration over a* and a~
are the same:

(18)
Ida‘ = Ida‘.

Expressions (12)—(18) are exact solutionsto magne-

—2rr'cos(a’ —a)]

tostatic problem (9) for agiven distribution of magneti-
zation magnetoel astic increments in an elastically bent
tube under the assumption that the inner magnetic field
is constant.

CALCULATION OF STRAY FIELD
COMPONENTS FOR A SPECIFIC TUBE

Since we measured stray fields on the surface of an
elastically bent tube made of St 20 stedl, it seems rea
sonableto calculatethefieldsfor this object. The length
of the tubeis2 m, r; = 10.5 mm, r, = 13.5 mm, and

=250 MPa. Bending stresses were applied to the
tube placed vertically, so that the vertical component of
TECHNICAL PHYSICS Vol 48
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the terrestrial magnetic field Ho, = 30 A/m was aigned
with the tube axis. Since the magnetization magne-
toelasticincrementsarelinear functions of thefield (see
(9)), the effective values of the increments are those
given in Fig. 1b times 0.74. The magnetization due to
thisfield is M(Hgy) 08 KA/m.

Let o, be 133 MPa. From (1)—(3), one easily finds
that the sag in this caseisy, = 20 mm. Using these data
and the model parameters for St 3 steel, we calculated
the tangential, AH,(x), and normal, AH,(x), compo-
nents of the stray field, taking into account the contri-
bution from the uniform magnetization M(H,,). To do
this, we supplemented expressions (14) and (15) for the
magnetization magnetoel astic increments with thefield
O0H(M(H,,)) of a point dipole (a base 2 m long with
magnetic charges M(H,,)S= 0.00181 kA m at its ends).
The components of the dipole field are

6Hx = [M(HOX)]

O

O
ad _

- 1810 X+ 100 - x—100 . ’19)
O 2 2 2 2
(x+100)"+24]" [(x—100)"+24]01

6Hr = [M(HOX)]

OO

_ 1813 1.85 .

Eﬂ(x +100)* + 3.42] 2 [(x—100)* + 3.42] O

1.85 20)

o

The integrals involved in (14) and (15) cannot be
taken analytically. Therefore, we used numerical inte-
gration agorithms to obtain an approximate solution.

RESULTS AND DISCUSSION

Figure 2 shows the tangential component distribu-
tion along the tube on its five generatrices, namely, a =
0° (maximal tensile stresses in the bent tube), a = 45°,
o = 90° (the neutral filament of the tube, where g, = 0),
o =135° and a = 180° (the generatrix where compres-
sion stresses are maximal), in both loaded (wt = T,
Fig. 2a) and unloaded (wt = 211, Fig. 2b) states. It isseen
that the curves in Figs. 2a and 2b differ only numeri-
caly: the extrema of the function AH(X) in the
unloaded state are somewhat higher than in the loaded
state, which is explained by the increased mean magne-
tization in the former case [4].

The function AH,(X) varies to the greatest extent on
the generatrix o = 0° and to the least extent on the gen-

eratrix a = 180°. Thisis because the value of AM; is

smaller than AM;, . Therest of the curves AH,(x) (onthe
generatrices a = 45°, 90°, and 135°) lie between these
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Fig. 2. Variation of the tangential component AH(x) of the

stray field due to the magnetization magnetoelastic incre-
ment on the surface of the elastically bent tube along its
generatricesa = 0°, 45°, 90°, 135°, and 180° (a) under max-
imal bending stresses and (b) under unloading. Dashed
curve 1 shows the variation of the relative magnetic charge

density prg = P/ pmax aong the tube.

two curves. The curves on the generatrices a = 135°
and 180° virtually coincide with each other.

The functions AH,(X) each have three maxima (at
x= 0 and +90 cm) and two minima (at x = 43 cm).
Dashed line 1 showsthe variation of therelative volume

magnetic charge density p,4(X) = Prm/(Pr )max: FrOM
Figs. 2aand 2b, it followsthat the extremaof p,g(X), X =
+64 cm coincide with the zeros of AH,(X). The curves
AH(X) (Fig. 2) are dmost completely associated with
the magnetoelastic increment of the magnetization,
since fields (19) and (20) have very narrow extrema at
the end faces of the tube (0.98 < x< 1 m) and are close
to zero in the remaining part.

The a dependences of AH, are omitted, since their
shape at any x = const remains the same: a broad peak
at a = 0°, followed by a smooth decline as a tends to
+180°. All the curves AH, (o) are symmetric about a = 0°.
Expressions (12), (13), (15), (17), and (20) for the nor-
mal component AH, of the stray field are given here,
since in [4] this field was calculated approximately.
Figures 3a and 3b demonstrate the exact calculation of
the curves AH,(X) on five generatrices of the tube (a =
0°, 45°, 90°, 135°, and 180°).
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Fig. 3. Variation of the normal component AH,(x) of the
stray field due to the magnetization magnetoelastic incre-
ment along the tube generatricesa = 0°, 45°, 90°, 135°, and
180° (a) under maximal bending stresses and (b) under
unloading; (1) the function p,(X).
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Fig. 4. Variation of the cross-section-averaged magnetiza-
tion along the tube. wt = 1, loading; wt = 21, unloading.

Asfollows from Figs. 3a and 3Db, the curves AH,(x)
taken at various a are similar to each other and to the
curve py(X) (dashed line 1): each of them has two
extrema(at x=£70 cm) and two inflection points. Inthe
unloaded state (wt = 2m), the curves AH,(X) are similar
to those in the loaded state but run 20% higher. Aswith
AH,(X), this is because the mean magnetization some-
what increases upon unloading [4]. At the ends of the
tube, the contribution of magnetic charges due to the

KULEJEW, LOPATIN

uniform magnetization M(H,,) prevails. As aresult, the
resultant normal component of the stray field tends to
the value predicted by (31): AH, —= +420 A/m with
X —=21m.

Finally, consider the distribution of the cross-sec-
tion-averaged magnetization

ANIG(x) = AME(X) + AM; (21)

along the tube. The first term on the right of (21) isthe
average over the extended half-section of the tube; the
latter is the average over the compressed half-section.
Such averaging, which is easy to perform with expres-
sion (9) inview of (4), isof interest, sinceit isthe cross-
section-averaged magnetization that is measured by the
ballistic method (using a feedthrough cail).

Figure 4 demonstrates the results of such a calcula-
tion. Once the bending load has been relieved (wt = 2m),

the curve AM, (X) runs somewhat higher than in the

stressed state (wt = 11). The bell-shaped form of this
curve suggeststhat it, in general, reflects adequately the
distribution of bending stresses in the tube.

Having calculated the tangential and normal com-
ponents of the stray field (Figs. 2, 3), aswell asthe vol-
ume magnetic charge density (Figs. 2, 3, curves 1) and
the distribution of the cross-section-averaged magneti-
zation (Fig. 4), we can trace the manner in which elastic
stresses (4) appear in these curves.

The curve o,(X) is a haf-sinusoid and, accordingly,
has a bell-shaped form with a peak at the center of the

tube. Curves AM: (x) (9) also have a bell-shaped form:
they reach a maximum at the center of the tube and fall

to zero at its ends. However, the values of A Mé expo-

nentially depend on the stress amplitude squared (see
(9)). Therefore, one can assume that the dependences
AM,(X) copy qualitatively the dependences o,,(X): as o,
increases, so does AM,, and both quantities vanish
simultaneously.

The derivative of AMy(x) with respect to x defines
the volume magnetic charge density p,(X) in the tube.
Clearly, the derivative of the bell-shaped curve AM(x)
yields two extrema of the function p,y(X): a maximum
and a minimum with two inflection points in between,
which arise because of the exponential

m
_0% 208 cod™
exp[ %Orpr COS O COS i|

(22)
lo

Itiseasy to check that this exponential isminimal at
the center of the tube (x = 0) and equals unity at itsends
(x = £ly/2). If the exponent in (22) were much smaller
than unity at any point of the tube (o, < g, in this case),
we could expand expressions (7) into a series and leave
only the first-order term, as was done in [4]. In this
case, the extrema of the function p,y(X) were at the
points x = £50 cm. Exponential (22), appearing in (10),
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shifts the extrema closer to the ends of the tube: x =
70 cm (Figs. 2, 3, curves 1).

Thus, measuring the normal component of the stray
field, one can judge the distribution p,g(X) of volume
magnetic chargesin an elastically bent tube and find the
region (near its end faces) where the effect of magnetic
chargesisthe most significant. Comparing the val ues of
the field AH,(x) at the points x = /2 with its value
given by (20) will makeit possibleto determinethe uni-
form magnetization. Also, graphically integrating the
curve AH,(x), one can recover the distribution of the

cross-section-averaged magnetization AM, (x) (21)

and, thereby, judge the distribution of bending stresses
in the tube.

The tangential component of the stray field (Fig. 2)
bears more information than the normal one. In moving
from the end of the tube toward its center, the first zero
of the function AH,(X) defines the boundary of the
region where the influence of magnetic chargesis sig-
nificant. The second zero is the position of the extrema
of the functions p,q(X) and AH,(X). The positions of the
minima of the function AH(X) (x =45 cmin our case)
specify the region where exponential (22) has a great
effect on the stray field components. In this region,
|o,(X)| > 0,, Where g is a characteristic stress outside
thisregion. It should be noted that this region cannot be
found from the positions of the inflection points. The
minimaof the curve AH,(X) (the pointsx = 43 cm) cor-
respond to the characteristic point of variation of expo-

nential (22): oy = 0, = 0,. Thus, the mean value of

internal stresses of the first kind in the tube material
may be found from the position of the minima.
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CONCLUSIONS

Nondestructive inspection techniques based on
measuring the tangential and normal components of a
stray field on the surface of an elastically bent tube
complement each other: although the tangential field is
more sensitive to the features of the p,y(X) curve and,
accordingly, provides more information, the normal
field distribution allows one to recover the distribution
of bending stresses in the tube.

Another advantage of the tangential field technique
is the possibility of finding regions where the bending
stress exceeds the stress g, that is characteristic of
given steel. This characteristic stress is related to the
mean value of internal stressesin the steel.

A disadvantage of the tangential field technique is
that this component is five to six times lower than the
normal one. Thisimpaoses stringent requirementson the
accuracy of positioning of the ferroprobe core.
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Abstract—The well-known phenomenon of asterism is used as the basis for the development of an X-ray topo-
graphic method to identify and measure plastic strains and residua elastic stresses in single crystallites more
than 3 um in size in polycrystalline diamond layers. The amount of asterism is used as a quantitative measure
of plastic strainsin crystallites. The distribution of crystallites over the amount of asterism in 40- to 670-um-
thick microwave-plasma-deposited polycrystalline diamond layers is obtained. Shear plastic strains, which
cause a misorientation from 0.4' to 1.5° between different areas of a crystalite, are observed for the first time.
The residual elastic stresses calculated in plastically strained crystallites vary between 2.7 kPa and 0.84 GPa.

© 2003 MAIK * Nauka/Interperiodica” .

INTRODUCTION

As applied to diamonds, X-ray topography (XRT)
has been used mainly to examine the defect structurein
natural diamond single crystals [1-3] and cracking in
homoepitaxia diamond films [4]. Using many-crystal
diffractometry, researchers have discovered and studied
the anomalous transmission of X rays in natural dia
mond crystals for pt < 1 (i is the linear X-ray absorp-
tion coefficient and t is the thickness of the material).
X-ray diffractometry (XRD) was used at times for the
phase analysisof artificial (synthesized) polycrystalline
diamond layers (PDLSs); however, the resolving power
of these methods leaves much to be desired. More fre-
guently, XRD methods were used to measure macro-
scopic elastic stresses in a PDL as a whole [5]. How-
ever, our recent results[6] indicate that the averaging of
elastic stressesover al PDL crystallitesistotally incor-
rect, sinceit isknowntoday that residual elastic stresses
in individua plastically strained crystallites of a layer
may differ by threeto five orders of magnitude, asdem-
onstrated in this study. Therefore, we propose another
approach: to detect plastically strained crystallites sep-
arately using the phenomenon of asterism, to measure
the amount of asterism from diffraction reflections on
the diffraction patterns, to calculate the misorientation
angle between different areas of the crystallite lattice,
to calculate residua elastic stresses in plastically
strained crystallites, and to construct the crystallite dis-
tribution over the amount of asterism. In addition, such
an approach allows one to distinguish between elasti-
cally and plastically strained crystallites.

In this work, we estimate mostly elastic strains
localized within acrystallite. The calculation of macro-

scopic elagtic strains in the PDL—substrate system as a
whole will be the subject of further investigation. It is
important to conceive the origin of local elastic stresses
that cause plastic strains in several or most crystallites
in the course of PDL growth on substrates [6], whereas
neighboring crystallitesin the same PDL remain elasti-
caly (but not plastically!) strained. The mathematical
foundation of an XRT method developed by the author
for the quantitative evaluation of plastic strainsin indi-
vidual crystallites is given below. In this method, the
misorientation between individual crystallites is mea
sured from the diffraction pattern (topogram in the con-
text of this article), and then residual elastic stressesin
these crystallites, albeit roughly (on the model level),
are calculated.

The need for studying thick (>1 pum) PDLs by non-
destructive XRT methods has become topical. In [6], a
brief review of methods for PDL study is given and an
original XRT method to measure crystallite sizes and
find the crystallite size distribution in 40- to 670-um-
thick PDLs is proposed. Because of the low X-ray
absorption coefficient of diamond, the nondestructive
XRT method can be used to examine PDL s throughout
the range of practical thicknesses. from several
micrometers to 1-5 mm.

EQUIPMENT AND METHODS FOR XRT STUDY
OF POLYCRYSTALLINE DIAMOND LAYERS

Polycrystalline diamond layers 80 to 670 um thick
were grown on single-crystal silicon substrates in a
microwave plasma-chemical reactor. Thinner layers
(1-40 um) were synthesized on silicon by the hot fila-

1063-7842/03/4812-1546%$24.00 © 2003 MAIK “Nauka/ Interperiodica’
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ment method. The layers start growing at many chaoti-
cally oriented nucleation centers (of size =5 nm) [6].
These centers grow up to crystalites and eventually
giverise to the polycrystalline structure of the layers.

Thereal structure of PDLswas examined by anum-
ber of XRT and XRD methods. Based on the method of
divergent beam from a quasi-point source (DBQPS)
[7-10] (URS-0.1 X-ray equipment), researchers at the
Institute of Radio Engineering and Electronics, Russian
Academy of Sciences, have developed an original XRT
technique [6] for the numerical evaluation of the crys-
tallite size distribution in an irradiated PDL area. Its
essence is that discontinuous Debye rings recorded on
a standard-size (9 x 12 cm) photographic plate, which
is used to take Laue patterns with an RKSO-1 X-ray
camera, contain diffraction reflections only from those
irradiated crystallites whose orientation meets the
Bragg diffraction condition (for the most part from
low-index crystallographic planes, such as {111},
{220}, or {311}). Note also that these reflections are
the most intense in polycrystalline diamond. Character-
istic radiations from MoKa, ,, CuKa; ,, NiKa; ,, or
CoKa, , anodes may be used.

The preferential orientations of crystallites were
determined by amore rapid XRD method [7-10] using
monochromatic CuKa, radiation. It was implemented
with adouble-crystal X-ray spectrometer—diffractome-
ter built around a DRON-2 diffractometer. The new
setup may accommodate (n; —n) geometry with the
automatic recording of diffraction curves by a potenti-
ometer.

In the configuration adopted, the DBQPS method
[7-10] providesalinear geometrical resolution of about
7 um when polychromatic (or white) X-ray radiationis
used. For CoKa,; (A = 1.78892 A) and MoKa,; (A =
0.70929 A) radiation, the resolution is 3 and about
1 um, respectively [ 7—10]. The photographic resolution
of the thick-film plates used is about 3 pm. This means
that the XRT method makes it possible to record dis-
crete reflections from individual crystallites of size
=3 um. With a smaller grain size, the Debye rings are
expected to become continuous when MoKa, or
MoKa, radiation, as well as higher wavelength
CuKa;, , or CoKay, , radiation, is used. Indeed, in the
case of fine-grained samples of thickness from 1 to
40 um, the rings observed in the topograms are, as a
rule, continuous. However, under specific growth con-
ditions (low rate of primary and secondary nucleation),
some of the crystallitesin layers of thicknessh =40 pm
were large enough for the intensity distribution to be
discontinuous not only in the Debye rings due to the
characteristic radiation but aso in reflections due to
polychromatic X-ray radiation.
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PLASTIC STRAIN IN CRYSTALLITES
OF POLYCRYSTALLINE DIAMOND LAYERS:
DETECTION AND MEASUREMENT

Topograms taken of relatively thick (40670 pm)
PDL samples demonstrated [6] the well-known phe-
nomenon of asterism of diffraction spots[11] from a set
of crystallites. Asterism shows up as a considerable
elongation of diffraction spots from crystallites in the
Bragg direction compared with the size of the same
spotsin the azimuthal direction; i.e., normal diffraction
spots transform into diffraction “tails’ along the radial
or Bragg direction. Inthetopogram fromaPDL sample
80 um thick, the Bragg size of individua reflectionsis
almost equal to, or even somewhat smaller than, their
azimuthal size (Fig. 1a). This means that the corre-
sponding crystallites are not prone to plastic deforma-
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Fig. 1. (a) General view of the X-ray topogram from crys-
tallites in a polycrystalline diamond layer 80 um thick;
(b) enlarged part of the topogram in Fig. 1a. Laue diffrac-
tion of characteristic CoKa, (outer ring) and CoKa, (inner
ring) radiation. Spots 1 and 5 without asterism; spots 24,
6, and 7 with asterism.
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(a)

200 pm | (b)

Fig. 2. (a) General view of the X-ray topogram from crys-
talites in the PDL 200 pm thick (MoKa; , radiations).
(b) Part of the topogram in Fig. 2a. Spots 1, 3, and 4 show
asterism in ascending order.

tion. In such crystallites (marked 1 and 2 in Fig. 1b),
only purely elastic strains and their associated elastic
stresses may be observed. However, the topogram from
the same sample exhibits a number of reflectionswhere
the Bragg size of spots exceeds their azimuthal size by
a factor of 2-3 or more, i.e,, demonstrates asterism
(crystalites 3, 4, 6, and 7 in Fig. 1b). Consequently, the
crystallites responsible for “asterism tails’ on the topo-
grams have experienced plastic deformation. Thus, the
XRT method for the first time visualized the fact that
the same area of arelatively thin (h = 40-80 um) PDL
sample may simultaneously contain elasticaly and
plastically strained crystallites. Such a result appeared
to be unexpected for both the author and other research-
ers. It raised a fundamental question: How do local
elastic stresses that are high enough to overcome the
high-temperature ultimate strength of polycrystalline
diamond and cause plastic deformation in some PDL

KUZNETSOV

crystallites, while being insufficient to plastically
deform other (neighboring) crystallites, arise? Below,
we will try to answer this question.

In PDL samples with thickness h > 100 pm, the
Bragg sizes of many or even the vast mgjority of reflec-
tions are several times larger than their azimuthal sizes
(see Fig. 2a and aso enlarged reflections 14 in
Fig. 2b). The pronounced asterism of the diffraction
spots suggests that many, though not all, diamond
grains are plasticaly strained [6, 11]. This serves as
direct evidence of the fact that the pressure exerted by
surrounding crystallites exceeded the high-temperature
ultimate strength of diamond. These loca elastic
stresses cause plastic strains in some of the crystallites
in samples of thickness 40-80 um or in the vast major-
ity of crystallitesin PDLs of thicknessh = 100 pm dur-
ing growth. Since the topogram also contains fairly
symmetric and even circular (according to the shape of
the X-ray tube focus) reflections, one may conclude
that the corresponding crystallites in the same poly-
crystalline diamond layer experience only some purely
elastic deformation. Thus, even rather thick PDL sam-
ples may exhibit both plastically strained and plasti-
cally unstrained crystallites.

Subject to a number of constraints, the length of the
diffraction tails in the Bragg direction may serve as an
approximate measure of plastic strains in crystallites.
On the topograms, the length of asterism spots in the
Bragg direction varied in the 10-170 um range, reach-
ing 1.0-2.5 mm in exceptional cases.

The size of one diffraction point in the Bragg direc-
tion isabout 3 pm for monochromatic CoKa, radiation
(=1 um for MoKa,) and =7 um for polychromatic radi-
ation. Then, in units of wavelength, areflected point in
a diffraction spot measures (in the Bragg direction)
OAq, = 5.4 x 107 A for monochromatic MoKa, and

CoKa, radiation and &\ = 2.0 x 10% A for white or
polychromatic radiation. For asterism tails on reflec-
tions formed by polychromatic radiation, this interval
would be A = (5.0-7.6) x 10 A or, in exceptional
cases, OAy = 0.11 A.

In the Laue transmission geometry for PDLSs, the
position of a diffraction reflection from an individual
crystallite is determined by the following relationships
(in the case of characteristic Ka; or Ka, radiation):

|, = Btan26, (1)
|, = Btan(20 + 2A8), (2
Al = |,—1, = Btan(26 + 2A6) —Btan26.  (3)

Here, |; and |, are the distances from the center of the
incident beam to the end points of an asterism spot (the
length of an asterism tail isAl =1, —1;); Bisthedistance
between the PDL sample and photographic plate (usu-
ally B = 40 mm); and 6 is the Bragg angle for diffrac-
tion from low-index {111} planes, which have a high
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repetition factor in the cubic lattice of diamond. Dif-
fraction reflections from these planes are one of the
most intense for individual crystallites in PDLs. Since
the length Al of asterism tails is easy to measure from
topograms, the amount of asterism may be found from
Eqg. (3) inangular units 2A8:

208 = arctan{[Al/[B + Btan’20 + Altan20]]} . (4)

The amount of asterism is then used to calculate
elastic stresses, which are related to plastic strains, in
individual crystallites.

Obviously, formula (4) is applicable for 8 < 45°.
Having measured the linear asterism Al from the dif-
fraction reflection for any of the crystallitesin the topo-
gram and having converted this value to its angular
equivalent, one may numerically evaluate residual elas-
tic stresses responsible for plastic strains in the given
crystallite. Since the generation of dislocations is an
elementary mechanism of shear plastic deformation,
dislocation boundaries will divide a crystalite (like a
tiny single crystal) into several mutually misoriented
areas. Taking the actual amount of asterism measured
in the topogram as the angle of maximal misorientation
between all areas of a crystallite, we may assume in
model calculations that an incoherent dislocation sub-
boundary divides the crystallite into only two mutually
misoriented areas. We will apply the approximate theo-
retical model formula for an incoherent dislocation
boundary [12, 13]

o= Eby/h, (5)

where E = 1143 GPa is the Young's modulus of dia-
mond [15, 16], b isthe projection of the Burgers vector
of dislocations onto the plastic shear boundary, and his
the crystalite thickness. For low misorientations
between incoherent dislocation boundaries, by, = bA6
and h = b/AB. Then, (5) transforms into the convenient
computational formula

o = E(AB)°. (6)

Thus, knowing the angular amount of asterism, one
can approximately evaluate residual €lastic strains,
which are related to plastic strains, in each of the PDL
crystallites on the topogram.

As follows from Figs. 1a and 1b (topograms taken
of 40- to 80-um-thick PDLS), relatively small (<5 um)
elastically (but as yet not plastically) strained crystal-
lites appear as small spots, and their sizes in the Bragg
and azimuthal directions are practically the same. Dif-
fraction spots elongate in the Bragg direction (with the
formation of diffraction tails) when adjacent areas in
the crystallite lattice irradiated by monochromatic
CoKay , or MoKa, , radiation turn out to be misori-
ented relative to each other. It is precisely this situation
that occursin single crystals under shear plastic defor-
mation [14]. Each grainin apolycrystal may be viewed
as atiny single crystal. Thus, the asterism observed in
our paper seemsto be associated primarily with misori-

TECHNICAL PHYSICS Vol. 48

No. 12 2003

1549

A
ey oy "
I~ Y - . . 4 :
- fe \‘.-u;-'."l *
- o - ‘ “\‘ g .’ . ~ " --
-l R v -
R T -
ot il r 0 =Y f';
- e - - » -~ -'_‘ p
. # b J
- _{ Y N b .‘ > >
’. v r",' sz A", ‘.‘ -
M . » - »
s i . -
- L3 -
- ’ -~
' ’ ."I ’

S (a)

Fig. 3. (a) General view of the X-ray topogram from crys-
tallites in the PDL 670 pum thick (MoKa; , radiation).
(b) Part of the topogram in Fig. 3athat showsthe crystallite
with a maximal asterism.

entation between separate areas of a crystalite that
experienced shear plastic deformation. This is consis-
tent with the concept of asterism put forward in [11].

As follows from the above measurements, the
length of asterism spots in the Bragg direction lies
between 10 and 170 pum but may reach 1.0-2.5 mm (see
the topograms taken from the 200- and 670-um-thick
PDLs; Figs. 2 and 3, respectively). Then, in the case of
MoKa, radiation, the minimal asterism for plastically
strained diamond crystallites that is estimated by (4) is
AB; = 0.007069° or AB; = 0.42'; the strong asterism for
a set of crystalites ranges up to A8, = 0.107597° or
6.6'; and, finally, the maximal asterism observed in
some of the crystalitesis as high as AB; = 0.315622°
(19') or even AB, = 1.551969°, asfollowsfrom the mea-
surements and calculations.

Using approximate formula (6), one can calculate
residual elastic stresses in the plastically strained crys-
tallites for which misorientations caused by shear plas-
tic deformation are known. From the misorientations
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Fig. 4. Crystallite asterism distribution for four PDLs of
thickness ((J) 40, (O) 80, (A) 200, and (A) 670 um.

given above, we find that the elastic stress is 0; =
17.4 kPafor the minimal plastic strain; o, = 4.0 MPaor
05 = 0.21 GPa for large strains;, and as high as g, =
0.84 GPafor the maximal plastic strain in a number of
crystallites. Such are the residual dastic stresses in
plastically strained crystallites of relatively thick (h =
100 pm) PDL samples.

Inrelatively thin (h = 40-80 um) PDLs, the asterism
of the spots was in the range 10-300 pum, as measured
from the topograms taken with CoKa, , radiation.
According to (4), the minimal angular asterism of crys-
tallites in 40- to 80-um-thick PDLs is thus equal to
AB,, = 0.002778°, and the corresponding residua elas-
tic stressesin these plastically strained crystalliteswere
found to be o,,, = 2.7 kPa. Thus, during the growth of
relatively thin (<100 um) samples, a significant plastic
strain arises only in a number of crystallites. Asis evi-
dent from the topographic measurements and calcula-
tions, the elastic stresses vary from 2.7 to 17.4 kPa for
crystalliteswith alow asterism, from 2.4 to 4.0 MPafor
those with a high asterism, and from 0.7 to 0.84 GPain
crystallites where the asterism is maximal. The lower
and upper limits of these ranges refer to the thin (40—
80 pm) and thick (100-670 um) layers, respectively.

The DBQPS data for the asterism of the images of
crystallites in different PDL samples can be treated
mathematically in the same manner as data for crystal-
lite sizes [6]. The crystallite distributions with the
amount of asterism (expressed in micrometers) are pre-
sented in Fig. 4 for four PDL samples. Most of the crys-
tallites fall into the first (the highest) maximum, the
positions of which arevirtually the samefor three of the
four samples. The amount of asterism corresponding to
this basic maximum is almost 20 um. The data for the
thin (40 and 80 um) and thick (=200 um) PDL samples
can be conveniently compared with the table, which
lists all the measurements and calculations. In each of
these plastically strained crystallites, the residual elas-

KUZNETSOV

tic stresses corresponding to the basic maximum are
Om = 10.75 kPa and o,,, = 17.4 kPa for the thin and
thick PDLs, respectively. In addition, three weaker
maxima with an asterism of 60, 85, and 125 um are
present in Fig. 4. However, they appear only in the case
of relatively thick (h = 100 um) PDLs. The number of
crystallites covered by these additional maximais con-
siderably less (1 to 10%) than in the basic maximum

(Fig. 4).

The sharpest and highest maxima are observed for
the fourth sample, where the position of the basic max-
imum in the case of MoKa, , radiation shiftsto 28 pm.
The second asterism maximum in this sample is only
dlightly lower (80% of the basic maximum). In addi-
tion, the second maximum (Al, =55 um), aswell asthe
rather broad third (from Algy, = 75 pm to Algy, =
105 um) and fourth ones, are several times higher than
the corresponding maxima for the rest of the samples.
It should be added that the third maximum is so broad
that its upper part appears as an inclined straight line
extending from 75 to 105 um of linear asterism with the
height decreasing from 42 to 25% of the basic maxi-
mum. The fourth maximum issplit into two submaxima
at Al,, =125 pm and Al,, = 135 um. The last maximum
lies at Al = 180 pm. It should be emphasized that the
fourth and third samples have the same thickness,
200 pum. Moreover, both were grown at the Institute of
General Physics, Russian Academy of Sciences, by the
same method and with the same setup. However,
according to our XRT data, the crystallite distributions
over the amount of asterism in these samplesdiffer dra-
matically. Therefore, one can argue that, during growth,
the conditions for initiation and evolution of plastic
deformation in crystallites of these equally thick PDLs
weretotally different. Conversely, for samples 1, 3, and
5, which were grown by two different methods and at
different institutes (sample 1 to 40 pm thick was grown
at the Institute of Physical Chemistry, Russian Acad-
emy of Sciences, by the hot filament method, while
samples 3 (2 to 200 um thick) and 5 (670 um thick)
were grown in a microwave plasma at the Institute of
General Physics Institute, Russian Academy of Sci-
ences), striking agreement is observed between the
crystallite asterism distributions. The basic maximain
these samples are amost coincident. The distinctive
feature of these PDLsisthat the width of the basic max-
imum increases slightly with the layer thickness. It
seems quite logical to expect this feature. However, the
shift of the basic asterism maximum to 28 um and the
formation of four much higher extra maxima in the
fourth sample 200 um thick with increasing asterism
lead usto think that the growth conditions for this sam-
ple were so changed that shear plastic deformation was
initiated in amuch greater number of crystallites. In the
fifth sample, which was grown in the same setup but is
much thicker (670 vs. 200 pm!), the same tendency
toward the formation of extra maxima with a higher
asterism is observed, but these maxima are one order of
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Asterism of individual crystallites, as well as of groups of crystalites, in the maxima of the crystallite asterism distribution
curves. Thecrystalliteswere plastically deformed during the growth of polycrystalline diamond layers. The asterism was mea-
sured by the diffraction reflectionsin the topograms. Also given are the cal culated values of the residual elastic stressesg,, in

plasticaly strained crystallites

: Residual elastic stresses
Sample no. thickEDesLs, | élgﬁb{) i Amount of asterism Al in separate groups of crystallites
pHm deg kPa MPa GPa
1 40 CoKa , 10 0.002778 2.7 - -
20 0.005555 10.75 - -
2 80 CoKaj » 10 0.002778 2.7 - -
20 0.005555 10.75 - -
100 0.043573 661.0 - -
300 0.129810 - 5.87 -
3 200 MoKay , 10 0.007069 17.4 - -
20 0.012673 56.0 - -
60 0.038008 - 0.50 -
85 0.053835 - 10 -
125 0.079145 - 22 -
170 0.107597 - 4.03 -
4 200 MoKay , | Aljm=10 0.007069 | 0, = 17.4 - -
Al,=28 0017742 | o,,=110 - -
Al,=55 0034843 | 0,=422.7 - -
Nlypg=75 | 0047505 | 0= 7858 - -
Alsy, =105 | 0.066492 - Ogen = 15 -
Aly, =125 0.079156 - 04, =2.18 -
Alp=135 | 0.085469 - Oy = 2.54 -
Al = 180 0.113917 - 05 = 4.52 -
5 670 MoKay, | 10um 0.007069 17.4 - -
20 pm 0.012674 56.0 — -
170 um 0.107597 - 4.0 -
1mm 0.315622 - - 0.21
2.5 mm 1.551969 — — 0.84

magnitude lower than those in the fourth sample
(200 pm thick).

Thus, with the same PDL growth technology, the
variation of the growth conditions even for not very
thick layers results in different distributions of plasti-
cally strained crystallites over the amount of asterism
and in different residua elastic stresses in them.

POSSIBLE REASONS FOR HIGH ELASTIC
STRESSES IN GROWING POLYCRY STALLINE
DIAMOND LAYERS

The room-temperature ultimate strength of natural
single-crystalline diamond varies from 9 to 190 GPa
[15, 16] depending on the type of deformation (com-
pression, tension, or shear), whereas for commercial
diamonds, it is considerably lower, ranging from 0.23
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to 0.48 GPa [16]. Calculations and measurements give
approximately the same values of shear strength: 121
and 132 GPa, respectively [16].

The cubic lattice parameters of silicon, a, = 5.4282 A,
and diamond, a, = 3.5676 A, differ substantialy. The
lattice mismatch for the (111)Si—diamond system is
about 42%. When diamond layers grow on a single-
crystalline silicon substrate, an intermediate layer of
hexagonal silicon carbide (6H-SIC) is known to form,
as confirmed by our XRD examination of the phase
composition of the PDL/(001)Si system and by optical
measurements [6]. In this system, the planar {111}C
network of diamond is brought into contact with the
(0001)SiC hexagonal plane. In this case, the mismatch
decreases to 41.4%, i.e., becomes dlightly less than for
adiamond layer grown directly onthe (111)Si substrate
without the intermediate layer.
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For our system, representations and formulas (1.5—
1.9) from [17] have the form

Oy = [Ex/(1-V,)]€
= [E,/(1=v,)]{6f,(h, + h,)/[(E,hE,h,)
+(E,h3/h,) + 6hyh, + 4h? + 4h3]} h,
—[ 120y + (A12)(E,h5/E; — h2)/(Eohy/E; + hy),

where

Oxx =

A = [Ep/(1=Vv){6f ,(hy + hy)/[(Eh3/E hy)
+ (E,h3/h,) + 6h;h, + 4h% + 4h3]} h,.

Using these relationships, we can calculate tensile
stresses in the PDL under conditions of isostructural
heteroepitaxy. The calculation also takes into account
the elastic relaxation of the system due to bending
stresses and the great difference in the Young's moduli
for silicon, E; = 176.58 GPa, and polycrystalline dia-
mond clusters, E, = 1143 GPa[15, 16], aswell asin the
Poisson’s ratios: v; = 0.215 and v, = 0.0691, respec-
tively. Then, for a substrate thickness h, =3 mm and a
PDL thickness h, = 600 um, we find that the tensile
stress in the polycrystalline diamond layer is 0y, =
Oyy)2 = 274.7 GPa, which exceeds the tensile strength
0 = 190 GPa of natural single-crystalline diamond at
room temperature.

Thus, in the case of isostructural heteroepitaxy,
stresses caused by the lattice mismatch would exceed
the ultimate strength of natural single-crystalline dia-
mond, to say nothing of synthetic PDLs, for which the
ultimate strength is much lower. The internal stresses
arising in thick PDLs may hardly be related to only the
large diamond—substrate lattice mismatch. At the initial
stage of growth, when diamond nuclei grow on the sil-
icon substrate, a kind of isostructural heteroepitaxy
through the 6H-SIC intermediate layer may take place;
however, the above calculations give the result for the
heteroepitaxial layer—substrate system as awhole.

Our XRT data clearly show that, during growth,
local elastic stresses in some of the crystallites start to
exceed the high-temperature ultimate strength of dia-
mond, causing these crystallites to experience plastic
(specifically, shear) deformation.

The basic physical reason for the plastic deforma-
tion of individual crystallites in PDLs is likely to be
intercrystallite pressure in the PDL, which appears
when the nuclei, reaching the size of the crystalites,
come into contact with each other. Sincethe crystallites
arerandomly oriented, they may apply pressureto each
other through both crystallographic planes and sharp
edges. In other words, a growing PDL plastically
deformsitself. Intergranular spacers are also afactor in
this process. As is well known, they may trap lattice
imperfections, such as point and linear defects, as well
as nondiamond phases of carbon.

(8)

KUZNETSOV

The elementary act of plastic deformation in single
crystalsis the generation of adislocation loop or semi-
loop that eventually emerges on the free surface of the
single crystal. In our case, the semiloop emerges on the
surface of a crystallite; i.e., it comes out into the inter-
granular space. In particular, dislocations generated in
the single-crystalline body of acrystallite and emerging
on its surface may form a grain boundary. However,
neither ordered planar dislocation clusters nor seg-
ments of curvilinear dislocations have been detected in
diamond single crystals and PDLs. Otherwise, they
might be used to evaluate local elastic stressesactingin
real single crystals or individual PDL crystallites dur-
ing the generation and pinning of dislocations in the
crystal. Similar XRT measurements and calculations
were carried out by the author for 111-V semiconduc-
tors[18].

Texture. The relative intensities of diffraction
reflections obtained with the double-crystal spectrome-
ter—diffractometer by the pseudorocking curve tech-
nique [6, 8, 19] show that the (111) reflections from the
lower part of the polycrystalline diamond, where the
texture only starts to evolve, have a maximal intensity
(asisthe case for diamond powderslisted inthe ASTM
index). In the upper part of each of the layers (evenin
the 80-pum-thick samples), the most intense reflections
come from the (331)-oriented crystalites. In the
670-um-thick samples, the reflections from the
(110)-oriented crystallites, which run parallel to the
growing surface, are the most intense; i.e., the texture
forms during the growth process. The (110) texture is
characteristic of optical-grade films synthesized in a
microwave discharge [6, 20].

CONCLUSIONS

(1) Based on the DBQPS technique and the well-
known phenomenon of asterism, we devel oped an orig-
inal XRT method for the identification and measure-
ment of plastic strainsin individual PDL grains exceed-
ing 3 um in size. It enables one to measure and calcu-
late residual €elastic stresses in plagtically strained
crystallites, as well as to separate out reflections from
purely elastically strained crystallites.

(2) The amount of asterism is used as a quantitative
measure of plastic strains in specific crystallites of
polycrystals. A mathematical substantiation of the
quantitative XRT analysisis given.

(3) From XRT data, the crystallite asterism distribu-
tion is constructed for PDLs of thickness ranging from
40 to 670 um. Based on the effect of asterism in X-ray
diffraction, shear plastic strains in crystallites of dia-
mond layers 240 um thick are found for the first time.
The strains cause a misorientation between the crystal-
lites in the range from 0.4' to 1.5°. The corresponding
residual elastic stresses in plastically strained crystal-
lites were calculated to be in the range from 2.7 kPa to
0.84 GPa. Thelatter value exceedsthe ultimate strength
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of artificial polycrystaline diamonds (crystalites
rather than intergranular spacers).

(4) This XRT method may be used to examine crys-
tallites in thin layers of any polycrystalline metals or
other materials.
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Abstract—The electrodynamic properties of coaxial two-dimensional Bragg resonators with two-dimensional
distributed feedback are analyzed. These resonators are made of coaxia waveguide sections with doubly peri-
odic corrugation, which provides coupling and mutual scattering of four partial waves. Two of them propagate
along the waveguide, while the other two propagate in the transverse (azimuthal) direction. It is shown that the
high azimuthal index selectivity of two-dimensional Bragg resonators may be related to aqualitative difference
in topology of the dispersion characteristics of azimuth-symmetric and asymmetric normal waves propagating
in infinite waveguides of such a geometry. For the finite-length systems used as two-dimensional Bragg reso-
nators, the eigenmode spectrum is found for two types of boundary conditions that correspond to the limiting
cases of perfectly matched (open) systems and, conversely, of systems closed for the extraction of transverse
electromagnetic fluxes. Perimeter-to-length ratios of the resonator at which the Q factor of the fundamental azi-
muth-symmetric modeis greater than those of the other modes are determined. The applicability domain of the
geometrical approach, which was earlier applied to two-dimensional Bragg resonators, is discussed. © 2003

MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Distributed two-dimensional feedback as a means
for providing the spatial coherence of radiation from
hollow and ribbon-shaped electron beams with adiam-
eter much exceeding the wavelength was suggested in
[1-3]. Thismechanism can beimplemented with planar
or coaxial two-dimensional Bragg resonators. Millime-
ter-wave free-electron masers (FEMs) using the new
feedback mechanism are being experimentally studied
today [4, 5]. Therefore, a detailed examination of the
electrodynamic characteristics of two-dimensional
Bragg resonators seemsto betopical. In previousworks
(except for [6]), the geometrical optics approximation,
ignoring diffraction effects, was used. This approxima-
tion made it possible to find the eilgenmode spectrum of
two-dimensional Bragg resonators and demonstrated a
high transverse (azimuthal) index selectivity of the
devices. Also, a nonlinear nonstationary theory of
FEMsthat was devel oped within the framework of geo-
metrical optics [3, 6-8] for the most part corroborated
the conclusion of the linear theory that two-dimen-
sional Bragg structures may provide the spatial coher-
ence of radiation from fully developed relativistic elec-
tron beams. At the same time, it is clear that a more
thorough quasi-optical analysismay not only determine
the applicability domain of the geometrical approach
but also reveal additional features of two-dimensional
Bragg structures.

This paper extends the analysis to coaxial Bragg
resonators. Section 1 describes a basic model, which
relies on the method of coupled waves for four partial
electromagnetic energy fluxesthat propagatein thelon-

gitudina and transverse (azimuthal) directions and
experience mutual scattering on the two-dimensional
Bragg structure. Basic equations that allow for diffrac-
tion effects are also presented in Sect. 1. In Sect. 2, we
consider the dispersion characteristics of normal waves
ininfinitely long two-dimensional coaxia Bragg struc-
tures. The behavior of the dispersion curves for asym-
metric normal wave near the Bragg frequency is shown
to be qualitatively distinct from the behavior for asym-
metric waves (hereafter, the waves are classified in
terms of the azimuthal structure of partial waves that
propagate in the longitudina direction). This distinc-
tion is, in fact, the reason for the selectivity of two-
dimensional Bragg resonators. In Section 3, we con-
sider finite-length systems. The eigenmode spectrum is
found for two limiting cases: perfectly matched (open)
systems and systems closed for the extraction of trans-
verse electromagnetic fluxes (subsequently referred to
as closed systems for brevity). It is shown that even
closed systems offer a high azimuthal index selectivity
when the resonator’s perimeter is one order of magni-
tude greater than the wavelength. Precise matching
between the output channels for transverse energy
fluxes is expected to improve the selectivity and pro-
vide the possibility of further increasing the resonator
perimeter.

1. MODEL AND BASIC EQUATIONS

Let an electrodynamic system (Fig. 1a) represent a
coaxial corrugated waveguide with a mean diameter r,.
The corrugation is made as a superposition of two

1063-7842/03/4812-1554%$24.00 © 2003 MAIK “Nauka/Interperiodica’



EFFECT OF DIFFRACTION ON THE ELECTRODYNAMIC CHARACTERISTICS

oppositely wound helices (doubly periodic corruga-
tion):

a = a,cos(h,z)cos(Mo)

a o @
= Sl cos(hz—M¢) + cos(h.z+ M9)],

where 2a, isthe corrugation depth; h, = 217d,; d,isthe

corrugation period along the zaxis; M isthe number of
corrugation starts along the circumference; and zand ¢
are the longitudinal and azimuthal coordinates, respec-
tively.

We al so assume that the curvature of the waveguide
issmall;i.e., itsradiusfar exceedsthe wavelength A and
spacing (gap) a, between the conductors:

ro> A, ry> a,. 2

Under these assumptions, the dispersion relation for
the eigenmodes of the coaxia waveguide can be
reduced to the form [9]

2
w 2 2
= = hi+h+ky, (3)
C
which is similar to the dispersion relation for a planar
waveguide. Here, h, is the longitudina wavenumber;
h, = M/r, is the azimuthal wavenumber; K, = pTva, is
the radial wavenumber; and M and p are the numbers of
wave variations in the azimuthal and radial directions,
respectively.

If the corrugation depth is small, h,xa, < 1, the
field inthe system can be represented as a superposition
of four coupled wave flows, two of which, A,, propa
gate in the longitudinal +z direction and the other two,
B., propagate azimuthally:

E = Re[(A.E% ™ +AE% ™ @
+B,E% "™ + B_E% ")e“],

where X = ry0 is the azimuthal position; A,(x, z) and
B. (X, 2) are the wave flow amplitudes, which are dowly
varying functions of the longitudinal and azimuthal
coordinates; and Eiz(r) are functions describing the

radial structure of the wave flows, which coincideswith
the mode structure of a coaxial waveguide.

On Bragg lattice (1), partial wave flows (4) couple

and mutually scatter if the geometrical parameters hy .
of the lattice are such that the propagation constants
h, , satisfy the Bragg resonance condition (Fig. 1b)

h,=h,, (5a)
h, = hy, (5b)
where hy = M /r,.
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Fig. 1. (a) Schematic of a coaxia two-dimensiona Bragg
waveguide with a hollow electron beam moving in the +z
direction and (b) the diagram illustrating the scattering of
the partial waves by the two-dimensional Bragg lattice,

where h, = h,x%+ h, 20 are the lattice vectors.

We will assume that
hx = b, = B, 6)

which corresponds to the scattering of wave flows that
have the same number p of variations aong the azi-
muth. In this case, the geometrical parameters of the

system are related as M /r, = 217d,. For simplicity, we
will restrict our consideration to the scattering of lower
order waves whose field does not vary along the radius;
i.e., we set p = 0. In this case, TE, o waves A, with
small azimutha indices (including the lowest order
TEM wave with M = 0), which propagate along the
waveguide, couple with TEy, , waves B, with large azi-
muthal indices M > 1, which propagate in the trans-
verse (azimuthal) direction. Note that, when conditions
(2) aresatisfied, the structure of the TE,, , wavesissim-
ilar to that of TEM waves (i.e., dispersion relation (3)
applies).

Under conditions (2) and (6), the mutual scattering
of four electromagnetic flows can be described by the
equations of coupled waves (cf. [3, 6])

J.r—£—*+i6Ai+i(x(B++B_) =0,
_i_aZBiJraBi
2|’_'] aZZ Y )'¢

(7)

+idB,+ia(A,+A) = 0.

Here, d = (w — @)/c is the frequency offset from the
exact Bragg resonance frequency @ = hc and a isthe
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wave coupling coefficient, which for TE,, , waves
equals
_ ah
= 2
when the corrugations on both conductors are in phase.
Note that the equation for partial flows B,, which
propagate in the transverse +x (+¢) direction, is para
bolic and alows for diffraction effects (it is clear that
these waves are trapped in afinite-length system if dif-
fraction spreading is disregarded). At the same time,
these effects are neglected for the A, waves, which
propagate in the longitudinal +z direction, because they

do not qualitatively change the characteristics of the
system.

Since the system is coaxial, al the partial wave
flows must meet the cyclicity condition

B.(x+1, 2) = B.(x 2),
A(x+1,2) = Ax 2),
wherel, = 211 is the perimeter of the system.

Due to the cyclicity condition, we can expand the
fields into the Fourier series

(8

(9)

A+(X Z) - Z A ( ) 21t mx/I,

m=—oo

(10)
2mtimx/1,

B.(X 2) = Z B (2)e

m=—oo

and treat each of the harmonics as a normal wave char-
acterized by the index m. Substituting expansions (10)
into Egs. (7) for the amplitudes of harmonics, weobtain
the system of ordinary differential equations

i%+i6A'+_"+ia(BT+ B™ =0,

1 d°BY

2h g7 ' %

According to relationships (4) and (5) for the partial
B, waves, which propagate in the azimuthal direction,

the index misacomplement to the azimuthal index M .
Thus, considering the usual set of waves in a coaxia
waveguide where the highest-Q mode hasm= 0 (which
subsequently will be referred to as the symmetric
mode), we may say that only the A, waves are actually
symmetric, whereas the partia B, waves have a non-

zero azimuthal index M. In the general case, for nor-
mal waves in an infinitely long system (Sect. 2) or for
the eigenmodes of a finite-length resonator (Sect. 3), a
normal wave (eigenmode) with an index mis a super-
position of coupled partial A, waves (with an index m)

(11)
+ 2T 4 o (AT + AT) = 0.

I O
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and B, waves (with anindex M + m). The applicability
condition for Eq. (10) is M > m.

2. DISPERSION CHARACTERISTICS
OF NORMAL WAVES IN DOUBLY PERIODIC
CORRUGATED COAXIAL WAVEGUIDES

Assuming that a coaxial structure with doubly peri-
odic corrugations on itswallsisinfinitely long and rep-

resenting a solution to Egs. (11) as A} = a; €2 and

B = b} €2 wearrive at the dispersion relation for the
normal waves

D5 - 2h2’Tm Fﬂ%h6+2h2nm rd
l (12)

x (& —%) = 8a°hd(2hd-T?).

It is clear that, in the general case, dispersion rela-
tion (12) describes coupling between four partial
waves. When the coupling coefficientisa =0, therela
tion splitsinto four equations that describe two longitu-
dinal waves A, whose dispersion characteristics are
determined by the relationships

o ==l (13a)
and two quasi-critical modes B, that propagate in the
azimuthal direction with the dispersion law

2nm+ r2

2R3 = + 2h= (13b)

Note that, under the above assumptions, dispersion
characteristics (13) for the partiadl waves can be
obtained directly from initial dispersion relation (3).

Near the Bragg frequency, w = @ + ¢d = c(h + 9),

where 8 < h. Then, in view of the condition M > m
and Bragg condition (5b), Eq. (3) for the partial waves
B., propagating in the transverse direction, yields

_2 _
%+295:h§+(_M__+5m)_ ﬁith

C c ro l'o

Assuming that h, = ', we arrive at dispersion rela-
tion (13b). Similarly, for the partial waves A,, which
propagate in the longitudinal direction, we substitute
the wavenumber h, = +h + I into dispersion relation (3)
and take into account (5a). Neglecting the terms of the
higher order of smallness, we abtain

2
—+2 6 = (zh +T)° +—:ﬁ +2hr,
¢ r2
which is equivalent to dispersion relation (13a).

Figure 2 shows dispersion diagrams for the normal
waves for m = 0 and m # 0. Comparing these curves
with the asymptotes given by Egs. (13) and shown by
thin lines, we can conclude that branches 1 and 2 refer
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to the partial A, waves, while branches 3 and 4 refer to
the B, waves. On the whole, the basic difference
between these dispersion diagrams and the correspond-
ing characteristics of one-dimensional Bragg structures
is the presence of a transmission band near the exact
Bragg frequency ® (i.e., in thevicinity of & = 0). This
feature is due to the fact that, under Bragg resonance
conditions (5), the scattering process involves quasi-
critical B, waves whose unperturbed dispersion charac-
teristics (13b) pass near the Bragg frequency.

Of still greater importance is the qualitative differ-
ence in the behavior of the dispersion characteristics of
the normal waves with zero and nonzero azimuthal
indices near the Bragg frequency (i.e., in the vicinity of
0 =0). At m= 0, unperturbed dispersion characteristics
(13b) of the partial waves merge together. When cou-
pling is taken into account (o # 0), dispersion relation
(12) reducesto

(2h8-T?)(8°=T?) = 8a’hs3,

) (14)
2hd = 2.

Equation (14) implies that one of the branches does
not obey the conventional parabolic dependence of the
frequency on the wavenumber squared near the Bragg
frequency (such behavior is typical near the stop band
boundaries, for example, in one-dimensional Bragg
structures [10-12]). Instead, it exhibits a fourth-degree
dependence (cf. [6]):

r* = 8a°hs. (15)

Thus, near the Bragg frequency (& = 0), both the
wave's group velocity and its derivative vanish. The
significant difference of the dispersion curves for the
symmetric normal waves from those for the partia
waves near the Bragg frequency isillustrated in Fig. 3.
Here, the dispersion characteristics are shown on an
enlarged scale compared with Fig. 2a, i.e., on a scale
comparable to the mode separation (eigenmodes with a
different number of longitudinal variations are shown
by closed circles). As is seen from Fig. 3, the funda
mental mode has an extremely low group velocity of
the normal wave (m= 0, n = 1). Asisshown in Sect. 2,
thisisthe specific feature of the given mode, because of
which its Q factor is much higher than those of other
symmetric and asymmetric modes.

Let us pursue our analysis in terms of geometrical
optics. Formally, this means passage to the limit A — 0
(i.e, h —= oo inview of (5)) in Egs. (11). In this case,
the term ~d?B}'/dz2, which describes the diffraction
spreading of the B, waves, may be neglected in Egs. (11).
Accordingly, dispersion relation (12) reduces to

ALIE 2T, <2 2y _ 252
%_TD%HTD@ -T% = 40°8°.  (16)
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Fig. 2. Dispersion diagrams for normal waves in an infi-

nitely long coaxial Bragg structureat h /o = 35for (a) sym-
metric waves m= 0 and (b) asymmetric waveswithm=+1
(classification in terms of the structure of longitudinal par-
tial waves). Thin lines, dispersion curves for the partial
waves; dashed lines, dispersion curvesfor the normal waves
within the geometrical optics approximation. The circles
refer to the positions of (a) symmetric modes near the Bragg
frequency and (b) asymmetric modes shownin Fig. 9 (aly =
al,=5).

o/a

0.10F
0; 4

0.051
0; 3)
0;2)

0 1 1 I (m = O;I n= 1)
-2 S0 2 r/a

Fig. 3. Differencein dispersion laws for the symmetric nor-
mal wave (thick line) and for the partial quasi-critical wave
(thin line) near the Bragg frequency at h /a = 35. The cir-
clesindicate the position of the symmetric modes of theres-
onator at al, = 5.

Dispersion characteristics described by Eq. (16) are
shown in Fig. 2 by dashed lines. For small wavenum-
bers ' < a, these characteristics are fitted well by the
dispersion curves obtained within the quasi-optica
approximation, i.e., by Egs. (12). Even the geometrical
approximation reveals the qualitative difference in the
behavior of the dispersion curves for the normal sym-
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metric (m = 0) and asymmetric (m# 0) waves near the
Bragg frequency. Ultimately, this difference is respon-
sible for the azimuthal index selectivity of the system.
At the sametime, curves 3 and 4 at m= 0 transform into
the straight line & = 0. As a result, the geometrical
approximation encounters problems in describing the
spectrum of the resonator’s symmetric modes with a
different longitudinal index, because these modes are
degenerate in eigenfrequency (the eigenfrequencies of
al the modes equal to the Bragg frequency). In addi-
tion, these modes have no diffraction losses; i.e., for-
mally they have an infinitely high Q factor. However, as
was first shown in [6], allowance for diffraction effects
removes this degeneracy, transforming the correspond-
ing dispersion curve into that described by Eqg. (15).

3. MODE SELECTION IN TWO-DIMENSIONAL
COAXIAL BRAGG RESONATORS

To calculate the eigenmode spectrum of a two-
dimensional Bragg resonator in the form of a section of
a coaxial waveguide with doubly periodic corrugation
over a region of finite length 1,, it is necessary to set
edge conditions for the system, i.e., at z=0and z=1..
Consider two limiting cases: (a) a perfectly matched
(open) system and (b) a closed system. In case (a), we
assume that the partial modes propagating both longi-
tudindly (A, and transversely (B,) are perfectly
matched at the ends of the system. In a desired fre-
guency range, this can, in general, be achieved by spe-
cialy profiling the waveguide's cross section and
selecting the corrugation parameters. We also assume
that external electromagnetic energy flows associated
with either the partial A, waves or the partial B, waves
are absent. Under these conditions, for the partial A,
waves, we have, as in the case of one-dimensional
Bragg resonators (cf. [10-12]),

A,(x,z=0) =0, A(x,z=1) =0. a7

Essentially, conditions (17) mean that the longitudi-
nal electromagnetic energy flows leave the system
without reflecting from its ends z = 0 and |, (however,
the distributed scattering of these wavesinto B, waves,
which is described by Egs. (10), still exists inside the
resonator). Assuming that a similar situation aso
occurs for the transversely propagating B, waves, one
should set the so-called no-reflection condition at the
corrugation boundaries (cf. [13])

dB; . —D*_ZT[m m _
et I

(18)
dB! . p O, 2T m _
At R B*Llfo'

Provided that this condition is satisfied and the
waves are uncoupled (a = 0), the fields B, freely dif-
fract through the boundaries, as in the case of aregular
waveguide.
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However, the electrodynamic system at the ends of
the resonator (at the corrugation boundaries) is irregu-
lar, which may cause refl ections primarily for the quasi-
critical B, waves. Therefore, it is of interest to study a
completely closed resonator as the opposite limiting
case (case (b)). This case can be redlized by placing
below-cutoff (for the quasi-critical B, waves) tapers at
the ends of the corrugated region. If these waves are
totally reflected from the resonator’s ends, the bound-
ary conditions are

B,(x,z=0) =0, B,(x,z=1) = 0. (29

We also assume that the A, waves, which propagate
along the structure, do not “sense” the irregularity of
the waveguide's cross section and so do not reflect from
the corrugation boundary. Thus, boundary conditions
(17) for these waves remain valid.

(i) Matched (open) system. Applying boundary
conditions (17) and (18) to dispersion relation (14) for
the azimuth-symmetric modes (m = 0), we arrive at the
characteristic equation given in the Appendix. For
strongly coupled (al, , > 1) highest-Q azimuth-sym-
metric modes at a frequency close to the Bragg fre-
guency (0 < a), the complex eigenfrequenciesin view
of specific dispersion law (15) are given by [6]

n* . n'n®
"8ha’l?  4aha®®
wheren=1, 2, 3, ... isthelongitudinal mode index.

These modes are indicated by closed circles in the
dispersion curve shown in Fig. 3. Their eigenfrequen-
cies wy, , and quality factors Qy, , are given by

(20)

Wy = W+ CcRe(d, ),

_ @ (21)
Qmn = 2cim(3,, )’

As follows from relationships (20) and (21), the
mode with one longitudinal field variation (n = 1) has
the highest Q factor (i.e., the lowest diffraction |osses).
Asthelongitudinal mode number increases, the diffrac-
tion losses grows as ~n*. Note that, with the same
geometry and coupling coefficient, the loss factor for a
conventional Bragg resonator in the form of asection of
acorrugated coaxia waveguideisexpressed as[10-12]

Im(3,) = "ZTTSZ

(22)

Comparing relationships (20) and (22) shows that,
with the same coupling coefficient a, a two-dimen-
sional Bragg resonator has a much higher Q factor and
a much higher selectivity (including the longitudinal
index (n) selectivity). This is a consequence of disper-
sion law (15) mentioned above. For the two-dimen-
sional resonator, the longitudinal partial-wave distribu-
tion at the fundamental moden=1foral,=al,=5is
shownin Fig. 4a.
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Fig. 4. Longitudinal structure of the partial A, and B, wavesfor modes (m= 0, n= 1) with (a) d=0, (b) d = —2a, and (c) d = +2a

for the matched (open) resonator at h /o = 35 and al, = al, = 5. The circles show the field structures obtained within the quasi-
optical approximation. The dashed lines bound the corrugated region.

The analytically found Q factors (loss factors) for
the symmetric modes are in good agreement with a
numerical solution to the complete characteristic equa
tion that follows from system of linear equations (11)
subject to boundary conditions (18) and represents a
sixth-order determinant. The complex eigenfrequen-
cies were calculated as zeroes of an analytical function
using the principle of argument [14].

2003
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It should be noted that, along with the family of
modes near the Bragg frequency (& = 0), there exists a
family of high-Q symmetric modes with frequencies
lying near &= +2a (Figs. 4b, 4c), i.e., hear extraextrema
of the dispersion characteristics. Obviously, the group
velocity of normal waves at these extrema al so tends to
zero. However, unlike the dispersion branch that passes
near the Bragg frequency, here the second derivative
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Fig. 5. Longitudinal structure of the partial A, and B, waves
for the highest-Q asymmetric mode m= 1 in the case of the
matched resonator at h /o = 35 and al, = al,=5. The fre-
quency of thismode is shown in Fig. 2b by the asterisk.
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Fig. 6. Mode spectrum of the matched resonator at h /o =
35 and al, = al, = 5. Circles, symmetric modes m = 0;
crosses, asymmetric modes m= 1.

remains nonzero. As a result, the Q factor of these
modes is considerably lower than those of the modes
near 5= 0.

For asymmetric modes (m # 0), complex eigenfre-
guencies were also found by numerical simulation. It
turned out that, of the asymmetric modes differing in
longitudinal index n, the mode whose frequency lies
near the minimum of the dispersion curve (i.e., near the
zero of the group velocity) has the lowest losses (high-
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est Q factor) (cf. [9, 15]). In the dispersion diagram
(Fig. 2b), the position of thismode at m= 1 isindicated
by the asterisk. Figure 5illustrates the spatial structures
of the partial waves of thismode. However, it should be
noted that the second derivatives of the asymmetric
modes a so remain nonzero. Therefore, the Q factor of
the asymmetric modes is significantly lower than that
of the fundamental symmetric mode, whose frequency
is near the Bragg frequency. In addition, the highest-Q
asymmetric modes feature alarge number of longitudi-
nal variations of partiad waves and a much smaller
intensity of longitudinal partial waves compared with
the transverse partial waves (cf. Figs. 4, 5). Thus, these
modes can be additionally selected by an electron beam
because of the significant differencein the synchronism
conditions or therelatively small amplitude of the oper-
ating wave (when describing interaction with an elec-
tron beam [3, 6-8], we assume that the synchronous
wave isthe A, wave, which propagates in the positive z
direction).

Thus, our analysis of the resonator’s eigenmodes
shows that, when the perimeter of the system equalsits
length, the losses of asymmetrical modes are more than
an order of magnitude higher than those of the funda-
mental symmetric mode (Fig. 6). This provides a high
electrodynamic selectivity of the resonator.

At the same time, as the |, of the system increases
with its length |, remaining unchanged, the selectivity
of a two-dimensional Bragg resonator somewhat
degrades. This may be explained by the fact that, asthe
perimeter |, increases, dispersion curves 3 and 4 for
asymmetric waves (m # 0) flatten and, in the limit
I, — o (see Eq. (12)), approach the perimeter-inde-
pendent dispersion characteristic of the symmetric
wave. Yet this circumstance places very weak con-
straints on the system’ stransverse dimension. Figure 7a
plots the minimum loss factor Im(d) versus the perime-
ter of the system for the asymmetric modes (m=1) at
al, = 5. The dashed line here shows the diffraction
losses of the fundamental (highest-Q) symmetric mode.
The losses of these modes become equal at a perimeter
al, = 80. Theirregularity of the curvesin Fig. 7 stems
from the fact that the variation of the perimeter shifts
the position of the dispersion curve so that its extremum
covers modes with different numbers n of longitudinal
variations. Thus, as the perimeter varies, the number of
longitudinal variations of the highest-Q mode changes.
Anincrease in the azimuthal index mis equivalent to a
decrease in the effective perimeter of the system to

Iff = I /m, as follows from dispersion relation (12).
Therefore, asfollowsfrom Fig. 7, anincreasein the azi-

muthal index, in general, does not increase the Q factor
of spurious modes.

It should also be noted that, increasing the length |,
in proportion to the perimeter |,, one can retain the
selectivity of the resonator at large perimeters via an
increase in the Q factor of the fundamental symmetric
No. 12

TECHNICAL PHYSICS Vol. 48 2003



EFFECT OF DIFFRACTION ON THE ELECTRODYNAMIC CHARACTERISTICS

mode (according to (20), the loss factor of this mode

decreases as |5). For comparison, Fig. 7b shows the
minimum losses versus perimeter at al, = 10inthefam-
ily of asymmetric modes m= 1. Asthelength increases
twofold, the maximum width of the system at which the
resonator retains its selectivity (i.e., the Q factor of the
fundamental symmetric mode remains higher than the
Q factor of the asymmetric modes) grows to al, < 300.
Also note that al the relationships presented above
involve the normalized length and perimeter of the res-
onator (al, and al,). Thus, there is an additional way of
maintaining the selectivity: to increase the geometrical
(absolute) value of the perimeter and simultaneously
diminish the coupling coefficient a (for example, by
decreasing the corrugation depth), thus keeping the
normalized perimeter value constant. Clearly, the
length of the resonator |, should be increased in the
same proportion.

Since the nonlinear dynamics of FEMs with two-
dimensional Bragg resonators was analyzed in terms of
geometrical optics [3, 6-9], it isimportant to compare
our results (the quasi-optical approach) with earlier
results for coaxial two-dimensional Bragg resonators
(the geometrical optics approximation). In the latter
case, the partial wave field distribution over the corru-
gated region for the fundamental symmetric mode (& =
0) isshown by closed circlesin Fig. 4a. The structure of
the fundamental modeisvirtually the same except for a
small region near the corrugation boundary. Thus, in
simulating electron beam—wave interaction, the operat-
ing wave (A,) field structure calcul ated within the geo-
metrical optics approximation adequately describes
beam bunching and energy extraction from the beam.
At the same time, it is clear that, while the field struc-
ture of the B, waves has a discontinuity at the corruga-
tion boundary in terms of geometrical optics, allowance
for diffraction through the boundary makes the solu-
tions continuous. Figures 4b and 4c compare the partial
field structures obtained within these two approxima-
tionsfor modeswith & = £2a. For these modes, the geo-
metrical optics approach also approximates well their
spatial  structure. The complex eigenfrequencies
obtained by the two approaches are also in good agree-
ment. In particular, for the mode illustrated in Fig. 4c,
the quasi-optical approximation gives & = 2.09 +
i0.032, while the geometrical optics approximation
gives & = 2.09 +i0.035.

The problem of degeneracy in the longitudinal index
and the problem of the infinite Q factor for azimuth-
symmetric modes, which arise when the nonlinear
dynamics of FEMsissimulated in terms of geometrical
optics, were solved as follows. It was assumed that the
diffraction Q factor of the symmetric modesfar exceeds
the ohmic Q factor. This means that the Q factor of
these modesislimited by ohmic losses, whilethe Q fac-
tor of the azimuth-asymmetric modesislimited by dif-
fraction losses. Within such amodel, degeneracy in the
longitudinal index is removed when interaction with
2003
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Fig. 7. Diffraction loss factor Im(d) for the highest-Q mode
m= 1 versusthe system’s perimeter al, for the matched res-
onator at h/a =35and al, = (a) 5 and (b) 10. Dashed line,

loss factor of the symmetric mode m= 0 with the maximum
Q factor.

the electron beam is taken into account (the admittance
due to the electron beam varies significantly with the
number of longitudinal variations of the mode excited
in the resonator).

(ii) Closed system. For a resonator that totally
reflects transverse electromagnetic energy flows from
the corrugation boundaries, the field structure of partial
waves that is obtained for the highest-Q azimuth-sym-
metric mode m = 0 by numerically solving Egs. (10)
with boundary conditions (17) and (19) is given in
Fig. 8. This mode has one longitudina field variation
for the A, modes and two longitudinal variationsfor the
B. modes, and its frequency is close to the exact Bragg
resonance frequency as before. It is clear that energy
extraction from the closed resonator is released only by
means of A, wave radiation (in Fig. 8, the amplitude of
the A, wave at the resonator end z= |, isnonzero though
very small).

For asymmetric waves, numerica simulation
reveals several families of high-Q modes. As for the
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Fig. 8. Longitudinal structure of the partial A, and B, waves
for the fundamental high-Q mode m = 0 of the closed reso-

nator at h/a =35andal, = al,=5.

open resonator, modes of the first family are near the
minimum of the group velocity and their eigenfre-
guency is thus markedly different from the Bragg fre-
guency. The structure of the partial wavesfor the asym-
metric mode m = 1, which has the highest Q factor in
this family, is shown in Fig. 9a; its frequency is indi-
cated by the asterisk in Fig. 2b.

The second family of high-Q asymmetric modeslies
near the Bragg frequency (& = 0). Thisisdirectly asso-
ciated with boundary condition (19) and with the mode
spectrum generated by this condition (in the absence of
corrugation (a = 0), these modes have an infinite Q fac-
tor). At a = 0, these modes consist only of the partial B,
waves, which circulate in the azimuthal direction. In
general, corrugation decreases the Q factor of these
modes because of reradiation into the longitudinal A,
modes. However, in the case of doubly periodic corru-
gation, interference between scattered A, and A_ waves
may result in asituation where the energy flux from the
resonator is absent and the Q factor of some modes
tends to infinity even at a nonzero coupling coefficient.
Indeed, if the condition

2
i _ 2mm 23
2h12 Ik
is met, one can easily obtain the solution
= = i UJ_[[
B.=0, B, cSan%,
(24)
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Fig. 9. Longitudinal structure of the partial A, and B, waves
for asymmetric modesm= 1, which have amaximum Q fac-
tor among modes from two different families, in the case of
the closed resonator at h/a = 35, al, = al, = 5, and

Re(d/a) = (a) —0.91 and (b) 0.37. The frequencies of these
modes are indicated by the asterisk and diamond, respec-
tively, in Fig. 2.

to Egs. (10) at the exact Bragg frequency (6 =0) inview
of boundary conditions (19).

Since electromagnetic energy fluxes through the
resonator boundary iszero (A, = A_=0), the Q factor of
this mode tends to infinity. Note, however, that this
mode exists only if the partia waves B, are almost
totally reflected and the geometrical dimensions of the
system are related by (23). Even a small deviation of
the dimensions from those defined by formula (23)
adversely affects the Q factor of this mode family. In
particular, the simulation of the two-dimensional Bragg
resonator with al, = al, = 5 show (Fig. 9b) that, when
condition (23) is violated, the partial waves of these
modes are no longer symmetric, A, (X, 2) # -A(X, 2),
and, accordingly, B_(X, 2) # 0. The eigenfrequencies of
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these modes can be roughly evaluated from the rela-
tionship Re(3,) = T@n%/2hl> — 2rml,. Eventually, for
the parameters chosen, the Q factors of the spurious
modes considered become much lower than the Q fac-
tor of the fundamental azimuth-symmetric mode. It is
also noteworthy that, as for the open (matched) resona-
tor, high-Q asymmetric modes have a considerably
greater number of longitudinal variations, and the A,
wave synchronous with the electron beam has a lower
amplitude compared with these parametersfor the sym-
metric fundamental mode (Fig. 9). This circumstance
extends the possibility of electronically selecting these
waves when they interact with the electron beam,
because resonance excitation conditions for the spuri-
ous modes are bound to differ from the synchronism
condition for the fundamental mode. In addition, since

the structural factor is AT% /B! < 1, these waves are
coupled to the beam more weakly.

In general, a closed resonator seems to have the
more complex design from the standpoint of provision
of selectivity. Nevertheless, our analysis shows that the
Q factor of the fundamental azimuth-symmetric mode
may far exceed the Q factors of the other modesevenin
asubstantially overmoded resonator (Fig. 10).

To conclude, the parametersal, = al, =5 of the two-
dimensional Bragg resonator that were used in the sim-
ulation meet the experimental conditions in which a
coaxia FEM with two-dimensional distributed feed-
back wasinvestigated with a high-current accelerator at
Strathclyde University [5]. In those experiments, the
two-dimensional Bragg resonator designed for cou-
pling the TEM and TE,s o waves (with coupling coeffi-
cient a = 0.2 cm!) at an operating wavelength of 8 mm
had a characteristic length I, and perimeter |, of about
25 cm. Thus, the given r%onator can be used for mode
selection by azimuthal and longitudinal indices under
any boundary conditions (specified by the shape of the
resonator and corrugation) imposed on the transverse
B, flows.
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APPENDIX

Let us derive formulas for the complex frequencies
of symmetric modes lying near the Bragg frequency,
i.e., of those belonging to branch 3 of the dispersion
diagram in Fig. 2a. For azimuth-symmetric waves, the
set of equations (11) can be reduced to

dA,
dz

(A1)
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Fig. 10. Mode spectrum in the closed resonator at h /o = 35
and aly, = al, = 5. Circles, symmetric modes (m = 0);
crosses, asymmetric modes (m = 1).

dA
E—IEA —2iaB = 0, (A2
1d°
——+0B+a(A,+A) =0 A3
47 ( ) (A3)
with the boundary conditions
—iA/2F16B|Z:0 =0,
(A4)

—+|A/2h65|z ., =0.

Representl ng the partial waves as A, = a,e** and

= be??, we obtain dispersion relation (14), which is
a fourth degree algebraic equation in A and, conse-
guently, has four roots A, (k = 1-4).

Next, we calculate the eigenvectors of the matrix T
of coefficients for the system of eguations (A1)—(A3):

W
T%"‘D = ixk%"m
T8 2o
(b (b

(here, by isthe derivative of B); represent the solution
as

Nz,

4 4
A.(2) = chaiemkz, B(z) = chbke (A5)
k=1 k=1



1564

and substitute (A5) into boundary conditions (A4) to
obtain a characteristic equation for the complex eigen-
frequencies &:

A = 0. (A6)

Here, A isthe determinant of the matrix of coefficients
for arbitrary constants c,. In the case || < 1 under
study, dispersion relation (14) can be approximately
written as

A* = 8ha?s.
The roots A, of this equation are four values of

4/8ha®s. Let X bethat branch of the root correspond-
ing to a positive real number at a positive real d. The
complex plane & is cut along the imaginary semiaxis

Imd= 0 (the samerefersto theterm «/ZThé in boundary
conditions (14)). Thus, we can write A; , = +\ and
A3 4= +i A . Now we drop the terms of higher order of
smallnessin 4/3 to obtain

1 -1 i —
iAl AL, . AL . Al
A=| €7 - e ‘e
i —i 1 -1
S N Y R VS Y
e =l —
1 -1 i —
iAl AL, . AL LAl
+ | o (A7)
| —I | |
P S S VI YR
e —| —!
O
1 -1 I —i E
AL, Al . AL LAl
N e’ —e E
i —i 1 -1 |0
= - = | O
iAL . il Al Al
z z —j z _Ie z |:|
O
where
e = dh
= ,—.
20°

GINZBURG et al.

With (A7), characteristic equation (A6) reduces to

Al, Al

@ —e Z)(e—ii|z_eii|z) - ¢ (eXIZ—e_MZ)

PR - _— - (A8)
9 (e—mz + emlz) —i(eMz + e_Mz)(e_IMZ—eIMZ)} .

It is easy to check that, a al, > 1, the roots of
Eqg. (A8) are given by the approximate expressions

Xlzznn+ IE,
which yield formula (20).
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Abstract—The tuning efficiency of microstrip filters that use ferroelectric capacitors as control elements
depends on the properties of the capacitors and the filter's resonators. The properties of these components are
included if the quality criterion of atunablefilter isdefined astheratio of the center frequency tuning bandwidth
to the passband of thefilter. A quality criterion suggested in thiswork allows one to estimate the limiting char-
acteristics of tunable filters. © 2003 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Planar tunable filters may find wide application in
modern telecommunication systems. These filters are
fabricated by several competing technologies, which
differ in the way in which the center frequency of the
filter's resonators is tuned. This parameter may be
tuned mechanically [1] or with ferromagnetic media
[2], semiconductor varactors [3], microel ectromechan-
ical capacitors [4], or ferroelectric (FE) capacitors [5].
Thelast three methods use, in essence, electrically con-
trolled variable capacitors. Tunable filters with FE
capacitors seem to be the most promising, since they
offer rapid center frequency tuning and are easy to fab-
ricate (and, accordingly, cheap).

The basic parameters of tunable filters are the same
as those of filters with a fixed center frequency (pass-
band, insertion loss, wavefront steepness, etc.). How-
ever, in the former case, these parameters must be
defined at the upper and lower limits of the center fre-
guency tuning bandwidth. Usually, the quality of atun-
able filter is described by the ratio of the center fre-
guency tuning bandwidth to the geometrical mean of its
passbands at the lower and upper center frequencies
[6]. Such an estimate suffers from a serious disadvan-
tage: it does not include insertion losses. The quality
criterion suggested in thiswork isrelated to the Q factor
of the microstrip lines and losses in FE capacitors. It
also depends on the coefficient of coupling between the
capacitors and microstrip lines of the resonators.

TUNABLE MICROSTRIP FILTERS

(i) Structureof theresonators. Consider two types
of microstrip resonators with FE capacitors (Fig. 1).
The electrical lengths of the microstrip lines of the res-
onators are designated by ©, and ©g; C is the variable
capacitance of the FE resonator, which depends on the
applied voltage. The choice of these resonators stems

from the fact that they are readily compatible with the
planar technology of microstrip tunable filters.

(if) Tuning ability of the resonators. Resonance
conditions for short- and open-circuited resonators are
written as

Yo

Kc—tan(eo) +cot(©y) = 0, (18
Y _
Koc + cot(O,) + cot(Q,) = 0, (1b)
(a) (b)
@g Og
9 9

1

Fig. 1. Tunable microstrip resonators with FE capacitors:
(a) short-circuited resonator and (b) open-circuited resona-
tor.

1063-7842/03/4812-1565%$24.00 © 2003 MAIK “Nauka/Interperiodica’
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Fig. 2. Shift of therelative center frequency of the short-cir-
cuited resonator vs. electrica lengths of the microstrip sec-
tions.

respectively, where ©, and ©, are the electrical lengths
of microstrips at a resonance frequency .

Clearly, for resonance to occur, the conditions

tan(©,) — cot(©,4) >0, (29)
cot(©,) + cot(©y) <0 (2b)
should be satisfied.

Let us introduce a parameter that relates the tuning
bandwidth of the resonator to the relative shift of the
center frequency:

y = /ey, 3)

where wf" and wy” arethe lower and upper center fre-
quenciesandy > 1.
Hereafter, the electrical lengths ©, and ©, will be

calculated at the lower frequency w'oc’w. At the upper
center frequency, the electrical lengths will be equal to
v, and yQ,, respectively. With (3), resonance condi-
tions (1a) and (1b) can be transformed into
_ tan(y ©,) — cot(y Q)
tan(©,) — cot(Q,)

(42)

<I>

n _ cot(y8y) + cot(y Q)
y  cot(Qp)+cot(0,)

wheren = C,/C, isthetuning ability of an FE capacitor.
Equations (4a) and (4b) are solved numericaly for v.
Figures 2 and 3 show the tuning coefficient y vs. the
electrical lengths ©, and © for resonators of the two
types with atuning ability n= 2.

(4b)

PLESKACHEV, VENDIK
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Fig. 3. Shift of the relative center frequency of the open-cir-
cuited resonator vs. electrica lengths of the microstrip sec-
tions.

For the short-circuited resonator, the maximal rela-
tive shift of the center frequency is 1.2 for ©, = 45° and
©4 = 90°. For the open-circuited resonator, the shift
equals 1.13 for ©, = 120° and ©, = 120°.

(iif) Q factor of the resonators. The Q factor of
microstrip resonators with tunable FE capacitorsis cal-
culated with the method described in [5]. The Q factor
of ashort-circuited resonator is given by

Q=0Q (53)
?o + 299 + tan(©,) — cot(9,)
cos (©p) sin"(Q,)
% ,_ % ., (tan(©,) — cot(0,))2Q,tand

c0s’(@,) sn“(O,)

where Q, is the Q factor of the microstrip lines, which
is defined astheratio of the propagation constant of the
line to the double damping factor, and tand isthe loss
tangent of the FE capacitor.

The Q factor of an open-circuit resonator is given by

Q=Q (5b)

N Oy

> +— —(cot(9,) + cot(0y))

Cos (©y) sin"(Qy)

CR N 9,
sin(@,)°  sn“(9,)

(cot(®,) + cot(Og))ZQOtanES.

Aswith the resonance conditions, only a definite set
of pairs of electrical lengths that satisfy inequalities
(2a) and (2b) may be used to calculate Q.

TECHNICAL PHYSICS Vol. 48
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Fig. 4. Modified quality criterion of the tunable filter with
short-circuited resonators.

QUALITY CRITERION
FOR A TUNABLE FILTER

Thereisan empirical relationship between theinser-
tion losses (in dB) and the intrinsic Q factor of afilter

[7]:
4.34N
= —_— 6
Borlen)Q ©
where N isthefilter order, Auwy isthefilter passband, wy

isthe center frequency of thefilter, and Qistheintrinsic
Q factor.

Since Q = wy/Aw, where Aw, is the 3-dB width of
the resonance curve, expression (6) can be recast as

Aoy = Aw——. ()

The quality criterion of a tunable filter that was
introduced in [6] is

WP —
JAGPAW™

With (7), we rearrange (8) into the form

F= ©)

Lumew wgp_wgow
4.34N W
Expression (9) can be written as

- JLPL N1y |

where Q' and Q" are theintrinsic Q factors of thefil-
ter at the lower and upper center frequencies and

F =

(9)

(10)
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Fig. 5. Modified quality criterion of the tunable filter with
open-circuited resonators.

JLPL'™ isthe geometrical mean of the losses at both
frequencies.

One may use amodified definition of the quality cri-
terion of atunable filter. In this case, the quality crite-
rion depends not only on the number of tuning band-
widths (order) but also on insertion losses:

1 _ 1 Jy =110y _
JoPLew 434N Q") Q™

Figures 4 and 5 show the modified quality criterion
for a third-order tunable microstrip filter with short-
and open-circuited resonators, respectively. To calcu-
late the modified quality criterion, we used the param-
eters of copper microstrip resonators made on a two-
layer insulating substrate (a 0.5-mm-thick Polikor layer
and a 1-um-thick BSTO layer) with a permittivity of
1000 and a loss tangent of 0.01. Integrated FE capaci-
tors represent 5- to 10-um-wide gaps between two seg-
ments of the microstrip line of the resonator. The width
of the capacitors was selected such that it provided a
desired capacitance value. The loss tangents of the FE

capacitors (n = 2) were tand,,, = 0.01 (for the zero

control voltage) and tand,, = 0.005 (for the maximal

control voltage). The layout of the tunable microstrip
filter is presented in Fig. 6. Each of the resonators is
equipped with a special bias circuit to control the
capacitance of the FE capacitor. Measured and calcu-
lated characteristics of the filter are demonstrated in
Fig. 7. The center frequency shifts from 4.4 to
4.65 GHz. Concurrently, the insertion losses decrease
from 15 to 8 dB. The geometrical mean value of the
passband equals 80 MHz. Table 1 lists the parameters
of the FE capacitor at various control voltages. These

F=F (12)
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20 mm

20 mm

Fig. 6. Layout of a tunable filter prototype with short-cir-
cuited resonators.

parameters were derived from the experimental charac-
teristics of thefilter. The quality criterion F' was found

to be F,,, =0.34 dB, which agrees well with the cal-
culated value F,. = 0.38 dB™.
If the Q factor of the microstrip linesfar exceedsthe

reciprocal value of tand of the FE capacitor, the mod-
ified quality criterion does not depend on the electrical

Table 1. Parameters of the planar BSTO capacitor that cor-
respond to the characteristicsin Fig. 7

u,v C, pF tand
0 0.35 0.044
50 0.29 0.034
100 0.23 0.023
150 0.19 0.017

Table 2. Modified quality criterion of a tunable filter with
perfect microstrip lines

K
5000

F,dB!
41
2.7
20
7.1
4.7
35
2.8

15000

O b~ WONDdWDN 2

PLESKACHEV, VENDIK

MS21, dB
0~
F=0.34

s U=150V

—10+

-15

_35 1 1 1
42 43 44 45 46 47 48 49

Frequency, GHz

Fig. 7. Experimental and calculated characteristics of the
tunable filter shown in Fig. 6.

lengths of the microstrips of the resonator. As follows
from calculations, the modified quality criterion of a
tunable microstrip filter depends only on the order N of
the filter and on the switching parameter K of the FE

capacitor provided that the condition Q, > tand " is
satisfied (as in the case of superconducting microstrips
lines). The switching parameter is given by [6]

(n-1)°
© ntand,,tand,,’ (12)
In this case, the modified quality criterion of atun-
ablefilter isfound by the formula

F' 1 JK.

8.68N (13)

The modified quality criterion of alossless tunable
filter incorporated into microstrip lines is a limiting
quantity achievable with tunable capacitors of given
quality. The estimates of thislimit are given in Table 2
for filters of different order that use capacitors of a
given quality. At afrequency of 10 GHz, the switching
parameter of the best FE capacitors reaches 5000.

CONCLUSIONS

The limiting characteristics of tunable microstrip
filters are presented. A modified quality criterion of
tunable filtersisintroduced. This parameter allows one
to estimate the performance of a tunable filter vs. the
parameters of its microstrip lines and the quality of the
control capacitors.
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Abstract—The dynamics of arelativistic electron beam propagating in anion channel with aperiodically vary-
ing density is considered. The behavior of the ion hose instability at different parameters of the beam—ion
channel system is studied using the spread mass model. Conditions are determined under which the ion hose
instability does not hinder the beam propagation over distances on the order of 100 betatron lengths of the beam.

© 2003 MAIK “ Nauka/Interperiodica” .

One of the new promising methods for guiding rel-
ativistic electron beams (REBS) in gas—plasmamediais
based on the idea of transporting an electron beam
through a preformed plasma channel produced artifi-
cialy by ionizing the neutral component of the back-
ground gas with auxiliary UV laser radiation. The role
of the plasma channel so produced is twofold. On the
one hand, it neutralizes the perturbing effect of various
external forces on the beam, so that an REB propagates
along a nearly straight path. On the other hand, the
channel ensures equilibrium conditions for guiding
beams with radii of 1-10 cm and with currents signifi-
cantly higher than the current of a transversely stabi-
lized REB propagating in a spatially uniform plasma.

The distance over which an REB can be guided with
an artificially preformed plasma channel is determined
by a variety of dynamic processes that gradualy
destroy the beam.

The evolution of a beam—channel system such that
the beam duration is comparable to the characteristic
bounce period of the plasma channel ions in the poten-
tial well of the beam is governed by the common
dynamics of the REB electrons and channel ions. Both
theory and experiment show that, in such an interac-
tion, conditions in the beam—channel system may
become favorable for the onset of various instabilities,
the most dangerous of which is ion hose instability
(IHI) [1-9].

In [10], it was proposed that, in an undulator of a
free electron laser, an ion channel with a periodically
varying density be used to guide electron beams over
distances on the order of several betatron lengths of the
beam and to excite transverse oscillations of the beam
electrons over the same distances. Studies on this sub-
jectwere continuedin[11, 12] on the basis of the model
of arigid beam. In this model, the growth of IHI is
absolute. That is why, in [11, 12], the effect of phase

mixing of the beam electron trgjectories was taken into
account by introducing the dissipation coefficient. The
results obtained in [10-12] showed that, in the absence
of externa focusing fields, a beam in which the outer
electrons execute cylindrically symmetric oscillations
can be stably guided over distances of several betatron
lengths by means of anion channel in which the spatial
period of density variation is equal to the betatron
length of the beam.

In this paper, we investigate the onset and behavior
of the IHI of an REB propagating over alarge distance
along an ion channel with a periodically varying den-
sity and analyze how the instability dynamics depends
on different parameters of the beam—channel system. In
contrast to [11, 12], we do not assume that the ampli-
tudes of transverse oscillations of the beam electrons
and channel ions are small.

We consider a paraxial axisymmetric REB propa-
gating in the z direction along a preformed plasma
channel with aperiodicaly varying density. We assume
that the plasma electrons are instantaneously pushed
away from the beam path in the radial direction by the
strong electric field of the beam front, so that the beam
is guided against the background of positively charged
channel ions, which partially neutralize the beam space
charge. The spatial period of density variationintheion
channel, L, varies from 0 to 2Ag., where Ag is the
wavelength of the betatron oscillations of the beam
electrons. The density variation in the ion channd is
such that the degree of charge neutralization of the
beam, f, hasthe form f(z) = o[ 1 + f,cos(21Z/L )] . Here,
fo isthe degree of charge neutralization of abeamin an
ion channel with uniform (nonvarying) density (the
case in which an electron beam is guided along a uni-
form ion channel in the ion-focused regime), the coef-
ficient f; varies from 0 to f,, and z is the ion channel
length. We consider both narrow and wide ion chan-

1063-7842/03/4812-1570$24.00 © 2003 MAIK “Nauka/Interperiodica’
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nels, i.e., those whose characteristic radii are, respec-
tively, smaller and larger than the beam radius. The
length of the el ectron beam, X, measured from the beam
front, isset equal to 2Ag;, where Ag; isthe wavelength of
oscillations of the channel ions about the beam. The
distance z over which an REB is transported in an ion
channel is set equal to 100 (in units of the betatron
length A, of the beam).

Unfortunately, the behavior of IHI can be studied
analytically only in the linear stage and only in a few
cases. The nonlinear instability stage, in which the dis-
placements of the beam with respect to the plasma
channel are comparable to the transverse size of the
beam or the channel, can only be studied by numerical
methods.

In order to investigate unstable excited states of the
beam—channel system, we apply the spread mass
model, which was developed in [13, 14] and was used
in[1] to study the guiding of abeam with auniformion
channel whose radiusis larger than the beam radius.

In this model, the beam (channel) is divided into
segments, each of thickness At in the longitudina
direction, in the form of a sequence of rigid disks hav-
ing the same density profile asthe beam (channel). The
mass of the segment changes from disk to disk and
ranges between an infinitely large value (which corre-
spondsto aparticle far from the system axis) and anon-
zero minimum value (which corresponds to a particle
near the axisr = 0).

The common dynamics of the disksis described by
the set of partia differential equationsformulatedin[1,
13]. For Gaussian radial profiles of the beam electron
density and theion density in the channel, the equations
have the form

.2 2 2
Y, > a O (Y,-D)"[D
T = —2nk 1 - exp| =2,
007 "Y,-Dp 2a° [0
0
2 2 2
D, a’> O D,-Y)’ [0
> = —ZVkEiD _Ygl—exp —# ,
Bax v 2a° |0

where Y, and D, are theradial displacements of the nth
disk of the beam and the vth disk of the channel, the
variable x = ct — z is the distance from the beam front,
zplaystherole of atime variable, and c isthe speed of
light.

The maximum displacements Y and D of the centers
of mass of the beam and channel segments are related
to the displacements of the disks by the expressions

1

Y = Ique(n)dn,
0
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1

D = '!)'Dvwi(v)dv.

For Gaussian density profilesin the beam and in the
channel, the weighting functions w,, ; have the form [1]

we(n) =wi(n) = 12n%(1 —n). Therest of the notationin
the above equations is as follows: kée is the squared

betatron wavenumber of the beam electrons; kéi isthe

squared wavenumber corresponding to the frequency of
theradial oscillations of theionsin the channel; and the

quantity in the denominatorsis expressed asa? = (R} +

Ri )/2, where R, and R, are the beam and channel radii,
respectively.

We consider atest beam with a current of 5 kA and
aradiusof 1 cm, the electron energy being E=4.5MeV
(inwhich casetherelativistic factor y = 10). The degree
of charge neutralization f, is equal to 0.1. The radius of
theion channel is set equal to 0.1 cm for anarrow chan-
nel and 1 or 5 cm for wide channels. To be specific, we
assumethat theradial profiles of the beam el ectron den-
sity and the density of the channel ions are both Gaus-
sian.

First, we investigate the case of a narrow channel
such that the characteristic radius of the electron beam
islarger than the characteristic channdl radius, R, > R..

Inanion channel inwhich f; = 0.1f, and theion den-
sity varies periodically on the spatia scale L, =
0.25\ ¢, the maximum amplitude Y., of oscillations of
the centers of mass of the beam segments behaves in
essentially the same manner as in the case of IHI in a
uniform ion channel (with f; =0 and L,, = 0). The IHI
saturates at the level Y, = 3.1 for )fz 2\g (Fig. 1,
curve 1). Here and below, the quantities Y,,,,, and Y are
normalized to the initial beam radius R,. The behavior
of individual beam segmentsisalso analogoustothat in
a uniform ion channel. For f; = 0.4f,, the maximum
amplitude Y, a the end of the beam pulse exhibits
oscillatory behavior and the period of oscillations of the
beam segmentsislonger than that in auniform channel.
Theinstability saturates and becomes stabilized. Simu-
lations carried out for alarger value of the coefficient f;,
namely, 0.8f,, showed that, from approximately the
beginning of the second half of the beam pulse (X =
Agi), the maximum amplitude Y, starts to oscillate
between the values 3.2 and 7, in which case the insta-
bility, as before, saturates.

When the spatial period L, of density variation in
theion channel isequal to O.2§ABE and f; = 0.1f,, the IHI
reaches saturation and the maximum amplitude Y,
executes small oscillations. In this case, the plot of the
function is gentler than that for R, = R, and the oscilla-
tion amplitude is smaller. A representative behavior of
an individual segment isillustrated in Fig. 2b. For f; =
0.4f,, the instability is stabilized and, at distances
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Fig. 1. Dependence of the normalized maximum beam dis-
placement Y}y, 0n the normalized beam length X for differ-
ent ratios of the beam radius to the channel radius: Ry/R. =
(1) 10, (2) 1,and (3) 0.2.

longer than X = 0.025A;, the maximum amplitude in
the instability saturation stage oscillates between the
values 1 and 6. A further increasein the coefficient f; to
0.8f, leads to a detuning between the oscillations of the
electron beam and theion channel. With thisvalue of f,,
even the oscillating segments in the leading portion of
the beam deviate substantially from the axis of the
beam—channel system; nevertheless, an REB can be
successfully transported over the distance z = 12.5A,
which is longer than the corresponding distance z =
10Ag, for R, = R; and for a beam pulse length of about
1AB|.

In anion channel in which f; = 0.1f, and the spatial
period of density variation L., is equal to the betatron
length Age of the beam, the behavlor of individual beam
segments differs from that in a uniform ion channel.
That iswhy, during thefirst half of the beam pulse, the
maximum amplitude Y., exhibitsasomewhat different
behavior. Nevertheless, the overall behavior of Y, is
gualitatively the same asthat in a uniform ion channel.
The IHI is stabilized and, at the end of the beam pulse,
the maximum amplitude Y,,,, saturates at alevel of 3.5.
For a coefficient f; equal to 0.4f,, the IHI also saturates,
but the plot of the function Y, during the second half
of the beam pulse is of oscillatory nature. The maxi-
mum amplitude Yy, is equal to 1 at X = 0.66\g and
reaches a value of 10 at the end of the pulse. For f, =

ZELENSKY, KOLESNIKOV

0.8f,, the IHI grows in an uncontrolled manner. How-
ever, with such ion channels, REBs with pulse lengths
of about 0.1Ag, can be successfully guided over dis-
tances on the order of 2= 25N

In an ion channel in which f, = 0.1f, and the spatial
period of density variation L is equal to 1.25),, the
maximum amplitude Yy, behaveﬁ in assentlall3 the
same manner as in a uniform ion channel. The IHI is
suppressed and the maximum amplitude Y., saturates
at alevel of 3.5 at the end of the beam pulse. Inanion
channel with f, = 0.4f,, the behavior of Y, is anao-
gousto that in achannel with Le = Age. The instability,
as before, saturates, but during the second half of the
beam pulse the maximum amplitude Y, exhibits
oscillatory behavior and becomes aslarge as 10 at X =
2Ag. Note that the behavior of individual beam seg-
ments is similar to that in the case of R, = R, but the
amplitude Y of oscillations of the center of mass of a
segment is smaller. For example, at X = 0.06Ag, the

amplitude Y is 0.02, while for R, = R; it is 0.03. An
increase in the coefficient f, to 0.8f, eads to a detuning
between the oscillations of the beam and ion channel,
in which case, however, an REB with a pulse length of
about ~0.1A; can be transported over a distance on the
order of 26Ag.

In an ion channel with f; = 0.1f, and with a longer
period L, of density variation (1.5Ay,), the behavior of
Yimax IS agaln essentially the sameasm the case of IHI
inauniformion channel, and the value of Y in the beam
segments in the front part of the beam oscillate at a
higher frequency in comparison with that for L
1.25\g,. For f; = 0.4f,, the IHI reaches a saturation stage
such t%at thefunction Y, becomesaslarge as 15 at the
end of the beam pulse and exhibits a pronounced oscil-
latory behavior during the second half of the pulse. In
anion channel in which the coefficient f; isincreased to
0.8f,, ion hose oscillations grow in an uncontrolled
manner; however, such ion channels aso provide the
possibility of transporting REBs with pulse lengths of
about 0.1\ over long distances (on the order of 27Ag,).

In the case of IHI in an ion channel with f; = 0.1f,
and Lo = 2, the plot of Y, is again analogous to
that for a unlform channel: the maximum amplitude
Ymax F€aChes avalue of 5 and the amplitude Y of oscil-
lations of the beam segments between the oscillati on
bursts is smaller than that in a channel with L,
1.5Age. Inion channels with f, = 0.4f—0.8f,, the maxi-
mum ampl itude Y/, behavesin amanner similar to the
behavior of Y, in achannel with L, = 1.5Ag,.

Calculations show that, in systems in which the
characteristic radius of the electron beam is smaller
than or equal to that of theion channel (R,<R,), thelHI
possesses al of the regular features revealed above.

Figure 1 shows the dependence of the maximum
beam displacement Y,,,, (normalized to the beam radius
Rb) on the beam pulse length X (expressed in units of

Agi) for Lo = 0.25Ag, and f; = 0.1f, and for different
ratlos of the beam rad|us to the channd radius: R/R. =
TECHNICAL PHYSICS Vol 48
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10 (curve 1), 1 (curve 2), and 0.2 (curve 3). We can see
that, in an ion channel with such parameters, the IHI
saturates and the maximum amplitude Y, in a wide
channel is larger than in a narrow channel. Note that
this conclusion is also valid for an REB propagating in
auniform ion channel.

The effect of the dimensions of an ion channel with
Lper = 0.5Ag¢ and f; = 0.1f, on the behavior of the nor-
malized (to the beam radius R,) amplitude Y of oscilla-
tions of the center of mass of the beam segment at X =
0.06Ag; isillustrated in Fig. 2, from which we can see
how the instability is excited. In such a channel, the
center of mass of the segment starts to oscillate earlier
than in awide channel and the maximum amplitude Y
of the radia oscillations of the segment is six times
smaller. The plots show clearly that the wider the chan-
nel, the longer the distance the beam segment travels
between two successive pronounced oscillation bursts.
It can al so be seen that the spatial period of density vari-
ation inthe ion channel influences the duration of oscil-
lation bursts: the bursts become five to six timeslonger.

Figure 3 illustrates the behavior of the normalized
(to the beam radius R,) amplitude Y of oscillations of
the center of mass of the beam segment at X = 0.31Ag;
inion channelswhoseradiusisequal to the beam radi us
(R,=R,) andinwhichthe spatial period of density vari-
ation L,y is 0.5A5 and the coefficient f; is varied
between 0.1f, and 0.8f,. We can see that the larger the
coefficient, the larger the amplitude of oscillations of
the centers of mass of the beam segments. Moreover, as
the coefficient is increased, the maximum oscillation
amplitude is seen to increase and to occur closer to the
entrance to the channel.

An analysis of the results of numerical simulations
allows us to draw the following conclusions:

(i) The main parameter that determines the devel op-
ment of IHI is the coefficient f;. In ion channels in
which the density varies periodically on a spatial scale
of O to 2Ag. and the coefficient f, is smaller than 0.4f,,
transverse oscillations of the beam and channel seg-
ments saturate and the IHI is stabilized, in which case
an REB can be guided over distances on the order of
100 betatron lengths of the beam, regardless of the
value of the ratio of the beam radius to the channel
radius. For larger values of the coefficient f;, the IHI is
not suppressed. However, the calculations show that
here, too, a beam with a length on the order of 0.1A;
can be transported over a distance of up to 50Ag in an
ion channel with the appropriate spatial period of den-
sity variation and the appropriate ratio between the
transverse dimensions of the beam and the channel.

(i) Short-period density variations (Lpe < 0.3Age) in
anion channel have practically no effect on the dynam-
ics of IHI development. In an ion channel in which the
ion density varies periodically on a spatial scale Ly

~0.5A e Or longer, the maximum amplitude of the trans.
verse OSCIIIatI ons of the beam segments is markedly
larger than that in the case of an REB transported in a
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uniform channel. The pattern of these transverse oscil-
lations also differs qualitatively from that in a uniform
ion channel: there are no pronounced oscillation bursts.

(iii) The maximum amplitude Y, of the transverse

oscillations of the beam segments depends on the ratio
RJ/R.. Specificaly, the smaller the ratio, the larger the
amplitude Y., and the longer the distance the beam
segments travel between two successive pronounced
oscillation bursts.

NP

o A~
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Abstract—Twist observed in growing bacterial colonies at the macrolevel is explained in terms of the self-
assembly (self-organization) of film-forming protein clusters, since the in vitro and in vivo behavior and sym-
metry properties of protein in an open thermodynamically nonequilibrium system areidentical. The self-assem-
bly of elastic protein filmsin the course of condensation in the protein—water system obeysthe laws of the elas-
ticity theory. As the viscosity of the system grows, the transition of the protein from the liquid-crystal to the
solid phase occurs. Thistransition has a nonlinear dynamics, which aso shows up at the macrolevel. Opposite
vorticities (twist) appear in the system. Such amadification of protein has been named protos. It ishypothesized
that the formation of an elastic nonequilibrium protos film is consistent with the behavior and orientation of
elastic forces and magnetic fields in the presence of unlike electric charges. © 2003 MAIK “ Nauka/Interperi-

odica” .

INTRODUCTION

It has been found recently that, when the nutrient
medium dries out, bacteria of growing colonies unex-
pectedly start spiraling in opposite directions [1, 2].
This amazing phenomenon, which is observed under a
microscope, has not yet found a sound scientific
description in terms of an adequate mathematical
model. The questionsto betackled are asfollows. What
is the reason for the helical “dance” of bacteria? What
forces make individual bacteria rotate simultaneously?
Do bacterial cells themselves or their derivatives
rotate? Earlier, Mendelson observed a similar effect,
twisting mations during the formation of fibers from
growing bacterial colonies, under a microscope (i.e.,
macroscopically) [3-5]. Later, a team of American
researchers supposed that this effect is of genera char-
acter, i.e,, reflects the dastic properties of condensing
matter, and, based on experimental data for the behav-
ior of the fibers, worked out a dynamic mathematical
model in terms of the elasticity theory. The prognostic
value of this model, e.g., as applied to the appearance
of Sun bursts, turned out to be higher than that of the
rubber model available at that time. Yet a number of
important issues remained unclear: What components
of the living matter cause the processes mentioned
above?What are their mechanisms? What is the reason
for opposite helical motions when fibers grow in bio-
logical objects?

It iswell known that growing fibers of any biologi-
cal cells are the product of synthesis. In our opinion,
clusters of protein molecules, rather than protein indi-
vidual molecules, are synthesized; in other words, we
are dealing with the self-assembly of protein films.
Many such films produce twisted fibers observed at the
macrolevel in experiments.

It has been recently reported that cellular organelle
catalysts (Golgi apparatus, endoplasmic network, etc.)
may be responsible for protein synthesis and transport.
The basic components of these catalysts are also self-
organized stacked membranes (films). In addition,
experimental data obtained by Noji [6] suggest that
gamma fibers in protein may rotate about the vertical
axis. Noji observed the rotation at the microlevel and
conjectured that this effect is driven by phosphores-
cence.

From the above, it seemingly follows that the dance
of bacterial coloniesisduethe helical motion of protein
gamma fibers during its microscopic self-organization.
However, aquestion now arises. Why does the process,
observed only at the microlevel (the rotation of gamma
fibers of protein about the vertical axis), show up at the
macrolevel asthe helical motion of the entire systemin
opposite directions? To clarify the role of protein, we
carried out experiments (described below) on the self-
assembly of protein at the micro-, meso-, and macros-
cales (the classification of the scalesis given elsewhere
[7-12]), eliminating other components of the living
matter from the reaction.

EXPERIMENTAL

We studied the condensation dynamics in water—
protein colloids under equilibrium and nonequilibrium
conditions. Different amounts of the samples (in bulk
or as droplets) were applied in vitro on the same sub-
strates (microscope dide). On some of the substrates,
the system was open; on the others, closed (covered by
a special glass cover). In the open system, the water
evaporates much faster and the process Kkinetics
changes compared with the closed system. Thus, at
room temperature and normal atmospheric pressure,

1063-7842/03/4812-1575%$24.00 © 2003 MAIK “Nauka/ Interperiodica’
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the protein condensed under different kinetic and ther-
modynamic conditions.

The phenomenology and symmetry of the conden-
sation product and arising flows were visualized with
optical, MIN-8 polarizing, JEOL scanning electron,
and confocal laser scanning (CLS) microscopes. Five
series (atotal of more than 25000) of experimentswere
carried out with 15 water-soluble proteins (egg protein,
bull serum albumin, human and rabbit globulin, human
hemoglobin, human crystallin, lysozyme, fibrin, etc.).

RESULTS

The basic results of the experiments are as follows.
In the drying open protein—water colloid placed on a
transparent hard wettable substrate, autowave pro-
cesses are observed and defects forming ordered regu-
lar structures in the form of blocks or cells appear [7—
12] (Fig. 1). During the dehydration, the front of three-
dimensional different-colored multiple-scale fluctua-
tionsisin continuous motion, causing alternating den-
sity zones. These zones have a spira shape and super-
pose on one another like sustained standing autowaves.

Fig. 1. (8 Division of a protein nonequilibrium film by
large-scale straight and helical defects into cells with mus-
sel-type nuclel and (b) three-dimensional opposite vortici-
ties observed during nucleation. Optical microscope, x200.

RAPIS

Then, during the in vitro condensation of the open
water—protein colloid, liquid crystal films with various
large-scal e defects always appear. The amount of these
defects grows with the formation of a discontinuous
helical structure of mirror and chiral symmetry, fol-
lowed by the spontaneous formation of clusters of cells
or domains with nuclei. On both the nano- and micros-
cale, the denser phase appears as differently colored
stacked thin films. In the experiments we often
observed highly anisotropic pairs (cascades) of oppo-
site vortices producing three-dimensional conic self-
complementary dendritic film structures (Figs. 1, 2)
[10-12]. Thesefilms have a network of fine defectsthat
cut their surface and produce discontinuous “bird's
wing” or “porcupine” space symmetry [13, 14]. Thisis
consistent with earlier observations [15]. The defects
move in an avalanche-like manner, and bright fluores-
cent bending lines and films are observed in the CLS
microscope (Fig. 3). Asarule, such films consist of two
oppositely rotating half-moon-like branches off a
mutual frame. The branches end up with a thin line
(tail). Thetails connect severa pairs of such films, asif
describing parallel structured ellipsoidal orbits with
defects. The orbits resemble lines of stellar magnetic
force. Branches of opposite rotation may connect to
form patterns with discontinuous helical and chiral
symmetry. Such behavior isreminiscent of that of mag-
netic forces (see, .., [16]) in high-temperature super-
conductors of the second kind that exhibit antiferro-
magnetic properties [17].

The results of our experiments suggest that the
behavior of protos protein filmsis similar to the growth
of bacterial colonies. In both cases, we see opposite
flows of the material at the macrolevel (twist). This
means that the behavior of bacterial colonies follows
theunified laws of protein self-organization in vitro and
in vivo. That is why, when the nutrient medium dries
(i.e., the water concentration in growing bacterial colo-
nies decreases), the sudden cooperative transition of the
protein (as on the glass) from the liquid to denser phase
occurs (as soon as the density of the medium reaches a
critical value) and the self-assembly of the films with
nonlinear random dynamics is observed.

From the above, one may assume that the process of
protein self-assembling becomes more extensive, more
energy-consuming, and synchronous under changing
conditions. Like a typhoon in the terrestria atmo-
sphere, this pracessinvolves not only forming fibers but
also bacterial cells, causing the dance with vorticity and
mirror symmetry on the macrolevel. Thisisavivid and
extremely rare macrodynamic demonstration of helical
mirror and chiral symmetry in the course of living pro-
tein self-organization on glass (in vitro and in vivo).

Thus, one may argue that twist in the culture of
growing bacterial colonies and their cellular fibers in
vivo, aswell asin the consolidating protein filminvitro,
isnothing more than material (protein) particlesthat are
visualized at the meso- and macrolevels. It may be con-
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Fig. 2. (a) Further stabilization of the process: the appear-
ance of straight defects in the cell nucleus. (b) Division of
the central field with theformation of two coil-like daughter
vorticesin vitro. Optical microscope, x140.

jectured that they move along helical lines of force that
form a specularly symmetric pattern. It is known that
only lines of magnetic force may be optically visual-
ized asmovingin an electric field [18]. Therefore, there
is reason to suppose that the above-described visualiza:
tion of material flowsalong elliptic lines of forceisdue
to the presence of a magnetic field in the system pro-
vided that the polarization of the protein film is found.

Based on available experimental data for the polar-
ization of biological systems (the presence of unlike
polesin cells, protein microtubules, the protein spindle
during mitosis, embryonic structures, etc.) [19-23], we
can state with agreat degree of certainty that the protos
protein film in our experiments is aso polarized. This
statement is supported by autowave processes, semi-
transparent hemispheres moving toward each other
with different velocities, left-hand and right-hand rota-
tions, etc., occurring in the film [9-11].
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Fig. 3. Fluorescence of a solid unstable protein (alternating
zones of different brightness), nucleation, and conical hano-
structuresin vitro. CL S microscope, x1 000 000.

Thus, the presence of unlike poles (hence, the pos-
sibility of polarization) may be considered to be
proved. However, this fact cannot yet be substantiated
quantitatively. In addition, this phenomenon (if it does
exist) is hard to explain by the presence of electrolytes
and magnetic dipoles in the protein colloidal system
[24]. In particular, it remains unclear how dipole-
dipole interactions may produce two polesin a biolog-
ical object. Of interest in this respect are new data on
the properties of colloidal suspensions such asaprotein
solution. It has been found that suspension particlesin
this open system behave in a nontrivial manner upon
condensation. They form a long chain of like-charge
attractions [25]. It is likely that the properties of a pro-
tein colloid that are observed upon condensation cause
attractive unlike poles to appear. However, a genera
theory of formation of unlike electric polesin biologi-
cal objectsthat is adequate for experimental conditions
is still lacking.

Today, we may only hypothesize that the formation
of aprotein elastic film correlates with the behavior and
orientation of magnetic fields due to material polariza-
tion. Here are several examplesin favor of this hypoth-
esis. First, the prognostic value of the mathematical
model (in terms of the elagticity theory) that was
worked out based on the behavior of twisting bacterial
fibers has been proved [3-5]. Also, it has been experi-
mentally found that protein films show a number of
phenomenological properties that are characteristic of
magnetic fields [9-11] and living biological objects.
These are discontinuous mirror and chiral symmetry,
bird’'s wing symmetry (also called magnetic symme-
try), high anisotropy, the halving of biological cells
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(their nuclel and cytoplasm) [10, 11], the reconnection
of magnetic lines of force[26-29], the presence of den-
dritic conic structures with fractal properties; the con-
nection of oppositely rotating branches (akin to antifer-
romagnetic connection), the formation of stacked films
with alternating colors (Fig. 3), optical activity, and
sensitivity to magnetic field [10, 11]. These space-time
features are typical of systems with random nonlinear
behavior (see, e.g., [29-31)).

CONCLUSIONS

Our experimental data, showing the complex space—
time pattern of the self-assembly process in growing
bacterial colonies at the macrolevel, may be described
in terms of the behavior of nonlinear dynamic systems.
The interpretation given in this work is based on the
known polarization-related effects in protein: the pres-
ence of helical mirror and chiral symmetry at the meso-
and macrolevel (the fact established in our previous
works), sensitivity to magnetic field, and al the other
analogies listed above. This suggests that the self-
assembly of protein nonequilibrium films follows the
general physical laws of condensation and self-organi-
zation. No doubt, our hypothesis needs quantitative
verification (in particular, the relevant parameters of the
system, such as elasticity, electrical conductivity, etc.,
should be measured). Yet even today our experiments,
which shed light on the on-glass behavior of protos pro-
tein, basically clarify the reason for twist in bacterial
colonies in vitro. However, of most importance is the
fact that our experiments have made it possible to work
out a simple and realistic model of dynamics of non-
equilibrium protein film that provides further insight
into the twist of bacteria in opposite directions upon
assembling protein films not only in bacterial colonies
but aso in other biological systems. A quantitative
mathematical model is now under development and
will be described in subsequent publications.
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Abstract—The effect of hydrodynamic fluctuations on noise in molecular electronic transducersis studied. It
is shown that turbulent pulsation also makes a considerable contribution to the self-noise of molecular elec-
tronic transformers, along with laminar flow fluctuations. A method for qualitative and quantitative calculation
of the noise induced by turbulent pulsation that arises when a liquid flows aong the electrode surface
is proposed. A quantitative relationship that relates the rms pressure pul sation to the liquid head and an expres-
sion for the total spectral density of the hydrodynamic noise in molecular electronic transducers are obtained.
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INTRODUCTION

Molecular €éectronic transducers (METSs) of the
parameters of motion and oscillating fields have
recently found wide application in wide-band and |ow-
noise seismic sensors [1]. This is associated largely
with the progress in low-noise sensor electronics,
where the self-noise referred to the input has become
comparable to the minimum signal level measured in
seismology. Therefore, the problem of investigating
and reducing MET self-noiseis of current interest.

The self-noise of METSs consists of charge carrier
concentration fluctuations and hydrodynamic fluctua-
tions. The latter are due to the local fluctuations of the
liquid velocity. The noise related to the concentration
fluctuations was investigated in [2]. It was shown that
these fluctuations expressed in terms of the acceleration

spectral density are much lower than 10° m/s?/ ,/Hz.
Bearing in mind that the noise of METs is typically at
least one order of magnitude higher, one may argue that
hydrodynamic fluctuations make a basic contribution to
the noise of METS[3]. Electrolyte velocity fluctuations
arising when the laminar liquid flows aong the trans-
ducer channel were studied in[4]. It was shown [4] that,
when expressed in terms of acceleration, the spectral
density of noise of thisis frequency independent:

2k TR,
o ®

dal =

where R, isthe hydrodynamic impedancein the system,
p isthe electrolyte density, | is the length of the trans-
ducer channel, T is the absolute temperature, and kg is
Boltzmann's constant.

For R,=5x10% (N s)/m®and | =5 x 102 m, which
are typical of present-day molecular electronic seis-
mometers, the noise associated with laminar fluctua-

tionsis 3 x 108 m/s/./Hz. It is evident that the noise
due to concentration fluctuations may be neglected.

From formula (1), it follows that a decrease in the
hydrodynamic impedance R, or anincreasein thetrans-
ducer channel length | suppresses hydrodynamic fluctu-
ations. This statement was checked in experimentswith
prototype transducers. It was found that the self-noise
of the transducers depends on the above parametersin
amore complex manner than predicted by formula (1).
In particular, if R, decreases by a factor of 2000 and |
increases threefold, the noise decreases by approxi-
mately 20 dB rather than by 40 dB as could be
expected. It was also found that the noiseincreaseswith
the external signal amplitude. Thus, the experimental
data suggest that hydrodynamic noise of a type other
than that considered in [4] also makes a considerable
contribution to the self-noise spectrum of the trans-
ducer. Such may be noise due to the vortical pulsation
of both pressure and local velocities. The pulsation may
be associated with fluctuations that arise when the el ec-
trolyte flows over the metal mesh electrodes of the
transducer (even for not too large Reynolds numbers).
In this study, we investigate noise of this kind from the
theoretical standpoint.

MATHEMATICAL STATEMENT
OF THE PROBLEM

Toinvestigate vortical pulsation in amolecular €lec-
tronic transducer, we will first find a relationship
between the pressure and local velocity in the near-
electrode boundary layer. Since this problem is hard to
solve for area system, we consider a simple model of
the boundary layer.

Suppose that an ideal liquid strikes an infinite
impermeabl e plane. At some distance z, from the plane,
the velocity of the liquid has only the component nor-
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mal to the surface. In the cylindrical coordinate system,
the normal component has the form

V(zp,r) = -U a O0<r<R,
V,(zo,r) =0 a rz=zR

Here, the z axis is perpendicular to the plane and is
directed outward. Withinthedomain {r <R, z< z}, the
distributions of the liquid velocity and pressure have a
number of properties typical of the boundary layer (in
particular, the derivative dv,/dz is significant). In our
model, the quantity R is the characteristic size of the
real electrode, the planez=0 (at r < R) isthe electrode
surface, and z, is the upper bound of the layer on the
electrode surface. This model makes it possible to eas-
ily evaluate the potential ¢(z, r) and velocity distribu-
tion. In the polar coordinate system, the equation for
potential has the form

0’0, 199 0% _
F-Frar 0r (3)

)

Passing from the spatial variable r to the variable s
by means of the Hankel transformation and taking into
account boundary conditions (2), we arrived at the fol-
lowing expression for the potential:

1( Rs) cosh(zs)

bzr) = s smh(zos)

(4)

where J,(Rs) isthe Bessdl function of the first kind.

Using the relationships v, = 0¢/0z and v, = dd/or,
we can now find the components of the liquid velocity.
In the boundary layer region of interest (r < R, z< z,),
the pressure is given by

“1- cosh(zs)Jy(rs)J,(Rs)

sinh(z,s)s ds

202 2
_Y 2R gl;::((zzo?)\ll(Rs)Jo(rs)ds} )
0

2

U ggi((zzoss))Jl(Rs)Jl(rs)ds} E;

Since the integrals entering into (5) cannot be taken
exactly, we will consider approximate estimates. The
function J;(Rs) in the integrands of (5) is the fastest
oscillating function; therefore, s< 1/R make adominant
contribution to the integrals. Then, assuming that z <
Z, < R, the hyperbolic functionsin (5) can be expanded
into the Taylor series up to the terms of the least order
of smallness in ZR and z/R. Having calculated the
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resulting integrals, we obtain

p(zr) . U’ aj_U_ZU_Z ]
5 275 22§D2+Z (6)

The pressure on the electrode surface (averaged
over itsareq) is given by

_ PR uh
p= 820an°+25' 7)

where z, = 0.

By varying (7), it is easy to find a relation between
the spectral density of pulsation of the electrode-area-

averaged pressure 6pr, and the spectral density of pul-
sation of the velocity ﬁ ;

_pR

5p2 (w6 +UABU2, )

The presence of two termsin (8) indicates that the
pressure pulsation depends on both the flow accelera-
tion and the liquid head variation. From (8), the accel-
eration-to-head contribution ratio is as follows:

dw’ _ &
— = = 9)
U A
Here, A = U/w (where w is the pulsation frequency) is
the characteristic size of a vortex resulting from the
velocity pulsation of the liquid.

PRESSURE PULSATION SPECTRUM

Asisseen from (8), the pressure pulsation spectrum
is defined by the spectrum of velocity pulsation. Sup-
pose that the velocity pulsation in our system is
described by the Kolmaogorov spectrum [5]. By anal ogy
with [6], we consider the velocity correlator inthe form

3 2 2 5

4«/28 2£3U3f 3,

27(2m)°k®

where f is the pulsation frequency, € is the quantity
characterizing the rate of energy dissipation over vari-
ous scales of turbulence (its value is equal to the mean
rate of kinetic energy dissipation per unit mass of the
liquid), and k isadimensionless constant close to unity.

Similarly to [7], we assume that the velocity fluctu-
ation spectrum has the form of (10) down to the cutoff

frequency

dU? = (10)

U
fo Dg
and then (at frequencies below f;,) tends to a constant.
For characteristic liquid velocities in the transducer
channel and thicknesses of the boundary layer, the

(11)
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value of f, is roughly equal to 100 Hz. Since frequen-
cies below 100 Hz are of primary interest for seismol-
ogy, the velocity pulsation spectrum is assumed to be
independent of frequency:

2 2 5

3,13¢ 3

3
27(2m)°k°

(12)

For frequencies f < f,, the vortex size A = U/2nf
exceeds the thickness & of the boundary layer; there-
fore, the term containing w? in (8) may be omitted. For
typical values of the MET parameters, the values of &/R

obtained experimentally are equal to 0.25-0.40, where
Ristheradius of the wire of which the electrode grid is
made. The smallness of the ratio &/R substantiates the
use of the two-dimensional model of the boundary
layer in areal electrode system.

Therate € of energy dissipation can be eval uated by
using the analogy between the motion of aliquid in a
cylindrical channel and the flow of electric current in a
conductor. In our case, the hydrodynamic impedance R,
plays the role of ohmic resistance:

USSR, _ UeSR,

m pl

: (13)

where U, is the mean velocity of the electrolyte in the
transducer channel, S, isthe cross-sectional area of the
channel, and | is the length of the channel.

Here,
_ pla
U - P!
° SR,
where aisthe effective acceleration of gravity near the
Earth’'s surface at the point of observation.

Thevelocity U, isrelated to the characteristic liquid
velocity U near the surface of the metal mesh electrode
by the relationship

(14)

(15

nly

Y
U

where Sisthetotal areaof holesin the metal mesh elec-
trode.

Thus, for the spectral density of the rms pressure
pulsation at frequencies below the cutoff frequency fo,
we have

wIin

S
Spi~ 2 R 0S R 3[&5 (16)
P BEBD pSKJ 0020
108(2m)°
11.s. Zakharov, private communication.
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As is customary in hydroacoustics [7], we recast
formula (16) into the form

Jop? = L,

2

where a isthe factor depending on the properties of the
flow and abody in stream.

Experimental values of a found from hydroacoustic
measurements lie between 1.9 x 102 and 5.7 x 103
[7, 8]. Integrating the spectral density of pressure pul-
sation over the entire frequency range yields the rms
pressure

17

1 5
7 - oo o

hence,

_ R DSZRhD 555
a 0014EBD Sk oo

Substituting typical values of the system’s parame-
tersinto (19), we find that a = 5.5 x 103, which agrees
with the above experimental data.

Next, from the spectral density of turbulent pressure
pulsation, we derive the spectral density of turbulent
noise (expressed in terms of acceleration):

(19)

8’ = dp2lp2l>. (20)

With allowance for laminar fluctuation noise (1), we
arrive at the final formula for the spectral density of
total hydrodynamic noise (in terms of acceleration) in
METs at frequencies below f, = 100 Hz:

5
'\/_ @@@3@0@3 1 +2kBTRh 21
s3I 50 050 1 (21)
432(2m)° RS

From (21), it follows that the spectral density of the
noise (expressed in acceleration) does decrease mono-
tonically with increasing length | of the transducer
channel but more slowly than could be expected from
formula (1). This is consistent with the experimental
data. For afixed length |, the spectral density asafunc-
tion of R, has a minimum. The hydrodynamic imped-
ance R, at which the noiseis minimum varies as

5
Ry, OI°.

dal =

(22)

For the channel lengths| = 0.05 and 0.16 m, J;zf
as afunction of R, is plotted in the figure. With these
values, the optimum values of the hydrodynamic
impedance are 5 x 10° and 1 x 107 (N s)/m°, respec-
tively.
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Jazaf, 107 x m/(s2/Hz)

1
2 4 6 8 10
Ry, 107 X N s/m>

Spectral density of electrolyte acceleration fluctuations in
the channel of a molecular electronic transducer vs. hydro-
dynamic impedance. | = (1) 0.05and (2) 0.16 m.

CONCLUSIONS

The investigation of self-noise in METs that is per-
formed in this study enables one to conclude that turbu-
lent fluctuations contribute considerably to the total
hydrodynamic noise beginning from a level of (1.5—

3.0) x 108 m/s¥./Hz, while the spectral density of
total noise remains frequency independent down to fre-
guencieson the order of 100 Hz. It isimportant that this
noise increases with signal amplitude. This circum-
stance is significant when molecular electronic seismic
detectors are used in observatories where the natural
seismic background islow. The quantitative estimate of

KOZLOV, SAFONOV

thefactor a, which relates the rms pressure pul sation to
the liquid head, agrees well with hydroacoustic mea-
surements. Thus, it is hoped that noise of such a kind
may be separated out from the total noise of the system.
Of basic importance is the expression for the spectral
density of the MET self-noise asafunction of the phys-
ical and geometrical parameters of the transducer. This
expression makesit possibleto optimize the parameters
of the transducer in terms of noise minimization. Since
the noise as afunction of the hydrodynamic impedance
of the transducer has a pronounced minimum (at afixed
length of the transducer channel), the accuracy of eval-
uating the hydrodynamic impedance becomes of cru-
cial importance.
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Abstract—In [1] the image force was shown to impose additional conditions for the electrostatic suspension
of a sphere without dynamic control of the electrode potential, and the dependence of the critical voltage
between the electrodes on the sphere radius was derived experimentally. In this work, this dependence is found
analytically by calculating electrical forcesin the third-order approximation in shift of the sphere from equilib-

rium. © 2003 MAIK “ Nauka/Interperiodica” .

Let a potential distribution U, f(6) be given on the
surface of aspherical cavity filled with adielectric fluid
with a permittivity €, The distribution U,f(8) is such
that thefield inside the cavity is centrosymmetric (here,
U, is the characteristic potential drop across the elec-
trodes). The origin of the spherical coordinate system
(r, 6, ) is placed at the center of the cavity. The angle
8 is measured relative to the polar axis z.

L et asphere of radius Rand permittivity €, be placed
at the center of the cavity. The potentials u,, and Uy in
the fluid and sphere, respectively, satisfy the set of
equations

P "don  an’
= f(0),

where n is the outer norma to an element ds of the
spherical surface and A isthe Laplacian. Also, r — R,
U— Uy, c=D/R, and € = g/,

By virtue of the field symmetry, the sphere is in
equilibrium. Let us find the electrical force acting on
the sphere when it shifts from equilibrium along and
normal to the symmetry axis.

When the sphere shifts along the symmetry axisz by
9, < 1, the changes in the potentials u,, and u, have the
same order of magnitude as &,. A solution to problem (@)
is represented as the third-order expansion in the
shift &,

(D

r==a,

Z [UD @9 + a5, + a8 + a¥%Y)

+r (O 4 pP5, + HP52 + b‘f’éf)}Pn(cose)!

b= 3 r0 e da o7 7D os),

NOp 2n+1
" 2%- (E 1)n —(2n+1]:|
(n+ 1)e+n U

XIf(B)Pn(cose)snede.
0

Here, P,(cosB) are Legendre polynomials. The coeffi-

cients al”, a?, and a®¥ are calculated from the con-

dition that the potential on the cavity surface is undis-
turbed:
a’+c "V =0, i=1,23. ©)
When the sphere is displaced normally to the sym-
metry axis (i.e., aong the x axis), we use the coordinate
system (r, 6", $") where the angle 6' is counted relative
tothex axisand theangle ¢', relative to the zaxisin the
yz plane. The potential distribution function in the new

coordinate system is designated as f(6', ¢'). Note that
cost = —sinB'cosd' in this case.

When the sphere shiftsalong the x axisby §, < 1, a
solution to (1) is represented in the form

0 n n
= Z zDD[[D @@ +a)s, +a?s2+ a5
=0k=0

# DB, + B, + BT + BLSE) Foosky
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x sinkg') HPh(cos®"),
(4)

=3 T CODAANE A+ ADE, + ADE) coskdy
=0k=0

£ (O + pés, + @82 + p53) sinkd' ) PX(cose')),
(2n+1)(n—=k)!

G(OL _ 2w (n + k)!
n, .\ (e—l)nc_(2n+l)
e(n+1)+n

21T
X J'J’f (8, ¢')P¥(cos8") cosk'sin@'de'dd,
k=0w =2 k#0:w = 1.

Here, Pﬁ (cosB") are associated Legendre polynomials.

LIMONOV, SEMENOV

Solving problem (1) by expanding in shift of the
sphere, we find the coefficientsin (2) and (4) under the
condition that the potential disturbance on the cavity
surface vanishes.

It is known [2] that an external electrostatic field
acts on a body with aforce given by the formula

_ Z_mnf[E(n [E) —%Ezn}ds. (5)

Substituting the potential u,,, on the spherical surface
from (2) and (4) into (5) yields expressions for the
forces acting on the sphere shifted along and normally
to the symmetry axis of the field:

F,= FU8,+FO8 + ...,

Fo= FU8,+FO8 + ...,

F = -2 z (n+1)c " (a by + a2 1by),

FO = -2y (n+ 1)c "y

n=0

0 3 1 2 2 1 3) (0)
X (a)1br” + a‘nilb< Y+ allibl + anyibi),

= 2y 3 OELe

0) R(1) (1) R(0) 0) (1) 1) (0
X(Ohs1Bn +0n1Bn” + YneiXn +VYne1Xn )

(0+1+K)! e (6)
(n=Kk)!

+ 1+ k)! —n+1
FO = ZZ z(n(n k)l) (n+1)

0) R(3) (1) Q2 (2) (1) (3) R(0)
X (Apy1Bn +0nsaBn +0nsaBn” + 0B

0) (3 (1) (2 2 1) 3) 0
+Yne1Xn FYne1Xn FtYne1Xn FYne1Xn )

Estimating from (6) the shifts 85 and &, for which

the forces acting on the sphere along and normally to
the symmetry axis of the field reach maximal values,
we find expressions for the maximal forces:

F(l) |:|2

Fr=F %—%
* 03F®
(7)
D F(l) |:|2
Fr=FOG—=-0.
03F%0

TECHNICAL PHYSICS Vol. 48 No. 12 2003



STABILITY ANALYSIS OF A SPHERICAL ELECTROSTATIC SUSPENSION 1585

Equating (7) to an external body force acting on the ACKNOWLEDGMENTS

sphere, one may estimate the minimal (critical) voltage - : ;
U across the electrodes that provides a balance of (. 'Igr;gs_(\;vgé\évara(s:ﬁzpP;)r:tt%dob%{r_mgll?gcsglag)Foundat| on
forces. The figure shows the analytical dependence 9 ' '

(curve 1) of the critical voltage on the sphere radiusin

the gravitational field. The parameters of the experi- REFERENCES
ment were the same asin [1], and the potential distribu- )
" : - 1. V. A. Semenov, Zh. Tekh. Fiz. 57, 2056 (1987) [Sov.
tion function on the cavity surface wastaken to be Phys. Tech. Phys. 32, 1244 (1987)].
1 2 2. L. D. Landau and E. M. Lifshitz, Course of Theoretical
f(0) = §(3COS 8-1) = P,(cosb). Physics, Vol. 8: Electrodynamics of Continuous Media

(Nauka, Moscow, 1982; Pergamon, New York, 1984).

The experimental (curve 2) and calculated results
are seen to be in qualitative agreement. Translated by V. |saakyan
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Abstract—Theinfluence of the discharge conditions on the dynamics of energy releaseisconsidered for pulsed
arcsinair at initial pressures from 10° to 8 x 10° Paand alow-voltage capacitor voltage of up to 400 V. A novel
method for determining the resistance of the discharge channel in the final stage of a spark discharge is pro-
posed. The method is applied to estimating the discharge channel parameters. © 2003 MAIK “ Nauka/Inter pe-

riodica” .

INTRODUCTION

Thermodynamic equilibrium that is achieved in
high-pressure steady-state arcs provides optimum con-
ditions for the Joule heating of the gas medium. Obvi-
ously, studying the transition from aspark to an arc dis-
charge assists in solving the problem of rapidly and
efficiently heating gas media. The short duration of the
transient process makes it possible to produce a
plasma—wave system for the formation of intense shock
waves, which, in turn, will allow one to create new
technological devices, such as gasdynamic pulsed det-
onation-combustion lasers and direct-flow pulsed air
propulsion engines [1].

PROBLEMS SOLVED IN STUDYING PULSED
ARCS IN GASES

Thetransition from aspark to an arc isaccompanied
by a change in the character of collisions|eading to gas
ionization in the discharge channel. In the initial stage
of the transition, electron-impact ionization of neutral
molecules is dominant, which is followed by step ion-
ization and then ionization via collisions of excited
molecules with neutral ones. The latter type of ioniza-
tion takes place when the gas temperature becomes suf-
ficiently high. By step ionization, we mean the ioniza-
tion of molecules via subsequently passing through
excited states. The ionization processes are accompa-
nied by achangeinthe electric field strength in the dis-
charge channel.

Hence, by setting the electrode voltage (which only
dlightly differs from the potential drop across the posi-
tive column of an equilibrium arc), it is possible to gen-
erate an arc discharge.

It should be noted that afairly high degree of ioniza-
tion is achieved in the spark channel. Nevertheless, a

necessary condition for an electric discharge to occur is
that the threshold voltage should be maintained at the
electrodes. This voltage depends, in particular, on the
gas temperature in the discharge channel. It is believed
that, a a low electrode voltage, the electric field
strength is insufficient to provide electron-impact ion-
ization of the gas molecules in the channel. If energy
releasein aspark dischargeislow and, accordingly, the
gas kinetic temperature in the channel is also low, then
the threshol d voltage appears to be higher than the el ec-
trode voltage corresponding to a steady-state arc dis-
charge. If the discharge current continues to flow after
the spark discharge stage is finished, while the elec-
trode voltageis maintained at alevel close to the poten-
tial drop across the positive column of an equilibrium
arc, then we can conclude that a high gas kinetic tem-
perature in the discharge channel has been reached in
the final stage of the spark. Having determined the
resistance of the spark channel in the final stage of its
evolution in a given discharge gap, one can analyze to
what extent the gas parametersin the discharge channel
at this time correspond to the gas parameters in a
steady-state arc.

In view of the above, the problem arises of deter-
mining the resistance of the discharge channel by esti-
mating the threshold voltage at which the current con-
tinuesto flow in agiven electric circuit at afixed energy
released in a spark discharge. As applied to plasma—
wave systems, this parameter should be estimated for
the conditions under which the energy deposited in the
spark discharge is lower than 1 J per 1 cm of the gap
length. In addition, it is necessary to determine how the
period and dynamics of energy release in a pulsed arc
depend on the charging voltage at alow-voltage capac-
itor, the interel ectrode distance, and theinitial gas pres-
sure in the discharge gap. The determination of these
parameters makes it possible to estimate the fields of
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application of pulsed arcsintechnological devicesfrom
the standpoint of the required rate of energy release.

EXPERIMENT

1. Characteristics of the Experimental Device
and Range of Investigation

The €electric circuit of the experimental device is
showninFig. 1. Thiscircuit allowsthe amplitude of the
high-voltage pulse at the secondary winding of trans-
former T to be varied in the range up to 26 kV. The
charge voltage at |ow-voltage capacitor C, was varied
intherange 0—400V. Thetransformation ratio of pulsed
transformer Twas1: 2. Thetransformer core was made
of an ET 3424 electrical steel with a cross section of
7.5 cm? and an average length of the magnetic field line
of 0.44 m. As high-voltage capacitor C,, we used KVI-
3 capacitors with atotal capacitance of 6 x 680 pF. The
maximum value of the energy deposited in the spark
discharge was lower than 0.7 J. Since capacitor C, was
included in a circuit with a completely discharging
capacitive storage and the transformer efficiency was
nearly 90%, the energy deposited in the spark discharge
could be determined with a fairly good accuracy. Our
experiments were carried out for dischargesin air at an
initial temperature of 293 K and gas pressures in the
range 10° to 8 x 10° Pa. The interelectrode distances
were 0.9, 1.9, and 3 mm. The electrodes were made of
Kh18N10T steel. In order to take into account the effect
of the electric field inhomogeneity, we have measured
the static breakdown voltages at atmospheric condi-
tionsfor the above interel ectrode distances. These volt-
ages were found to be 3, 5, and 9 kV, respectively. At
longer distances, discharges were not ignited because
of the limited duration of the high-voltage pulse[2].

2. Estimate of the Resistance of the Discharge Channel
in the Final Sage of Spark Evolution

The resistance of the discharge channel was esti-
mated as follows. Spark discharges were produced
across afixed discharge gap. Varying the charging volt-
age at low-voltage capacitor C,, we measured the time
evolution of the current in the discharge circuit.
Thereby, for a fixed length of the discharge gap, we
could determine the minimum voltage U, a which the
discharge current continued to flow. Since the mini-
mum discharge current | ., is determined by the thresh-
old current of the cathode spot, the channel resistance R
in the final stage of the spark discharge can be deter-
mined from the formulaR = U, ; /I - According to the
data of [3], the threshold spot current for an iron cath-
odeisl,=1.5A.

In studying the generation of a pulsed arc across a
0.9-mm discharge gap, we determined the minimum
voltage required for the current to flow through the gap.
It can be seen from Fig. 2 that the current continues to
flow at adischarge voltage of 35V and the amplitude of
the discharge current for the given discharge capaci-
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Fig. 1. Diagram of the pulsed-arc circuit: (1) charging
device, (2) switch, R measuring shunt, and (3) discharge
gap.

Fig. 2. Current and voltage oscillograms. The sweep speed
is50 pg/division, the current scaleis 5.4 A/division, and the
voltage scaleis 500 V/division.

tance is about 3 A. When capacitor C; was charged
below 30 V, no current was observed in the discharge
circuit. To exclude the opportunity of disrupting the
discharge due to the limitation of the discharge current
to the starting arc current by the circuit parameters, we
produced discharges through relay contacts with the
same electric circuit. The current amplitude in this case
was up to 100 A (Fig. 3). Measurements of the above
minimum voltage across a 1.9-mm discharge gap gave
avalue of about 45V at a discharge-current amplitude
of up to 6 A. In discharges through relays, the ampli-
tude of the discharge current at this voltage was larger
than 160 A. In both cases, the energy deposited in the
spark discharge was dightly above 0.1 J. With this
energy deposition in the spark discharge, the resistance
of the spark channel in the final stage of its evolution
was found to be R = 23 and 30 Q for the 0.9- and
1.9-mm gaps, respectively. A comparison of these val-
ues with the resistance of the positive columns of
steady-state arcs shows that, under identical discharge
conditions, the latter resistance islesser by one order of
magnitude [3]. It follows from here that further devel-



1588 DOVBNYA et al.

Fig. 3. Current oscillogram for a discharge through relay
contacts. The discharge voltage is U; = 35V, the sweep
s_peed is0.2 mg/division, and the current scale is 27 A/divi-
sion.

Fig. 4. Current and voltage oscillogramsfor acharging volt-
age of (@) 100 and (b) 400 V. The sweep speed is 20 pg/divi-
sion. The current scalesare (a) 270 and (b) 1351 A/division,
and the voltage scales are (a) 1000 and (b) 200 V/division.

opment of the discharge at alow voltage acrossthe dis-
charge gap proceeds via step ionization of the gas.

We note that, at the minimum voltage ensuring the
current to flow through the discharge gap, low-voltage
capacitor C, isdischarged only partially. Consequently,
this electrode voltage does not sustain the degree of
ionization that was produced in the discharge channel
by the spark discharge. As aresult, the discharge chan-
nel resistance increases, and, accordingly, the discharge
terminates.

Therefore, from the known voltage at low-voltage
capacitor C; at which it completely discharges, we can
determine the value of the threshold voltage for igniting
apulsed arc. It was found that the threshold voltage for
an energy depositionin aspark of lessthan 1 Jper 1 cm
of the gap length is higher than 60 V/mm. It should be
noted that the threshold voltage is affected by the
inductance of the transformer’s secondary winding and
the capacitor's self-inductance. These inductances
increase the current rise time, thereby affecting the bal-
ance of the ionization and recombination processes.
Hence, the above value of the threshold voltage is only
an approximate estimate.

3. Influence of the Charging Voltage of the Low-Voltage
Capacitor and the Interelectrode Distance
on the Dynamics of Energy Release in a Pulsed Arc

Studying the waveforms of the current and voltage
in the discharge circuit allowed us to compare the dis-
charge duration and the dynamics of energy release
under different discharge conditions. A characteristic
feature revealed in comparing these curves was that the
discharge duration decreased with increasing charging
voltage at the low-voltage capacitor at afixed length of
the discharge gap. For instance, when the charging volt-
age of capacitor C; was 100 V, the duration of the
pulsed arc was nearly 0.14 ms, whereas at a voltage of
400V, this duration was nearly 0.06 ms (Fig. 4).

We note that, in studying the dynamics of energy
release with thisdischarge circuit, it israther difficult to
determine exactly the influence of each of the discharge
parameters. This is because the parameters of both the
load and some elements of the discharge circuit are
nonlinear. For this reason, the influence of the external
circuit parameters was examined by changing the dis-
charge gap with a lower resistance load. It was found
that the current rise time and the extent to which the dis-
charge duration depends on the charging voltage of
capacitor C, are determined, in particular, by the circuit
parameters. Therefore, the influence of particular dis-
charge conditions was examined at fixed values of the
other parameters.

At fixed charging voltages of the capacitors, the dis-
charge duration insignificantly increased and the ampli-
tude of the discharge current decreased asthe interel ec-
trode distance increased. Thus, when the voltage at
capacitor C; was 200 V, the duration of the pulsed arc
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across the 0.9-mm gap was 0.075 ms, whereas it was
0.08 ms at a gap length of 3 mm. In this case, the
decreasein the current amplitude was 30 A, the current
amplitude being larger than 1000 A.

4. Influence of the Initial Gas Pressureinthe Discharge
Gap on the Duration and Dynamics of Energy Release
in the Discharge Circuit

This study was carried out with air discharges in
“open” gapsof lengths 0.9 and 1.9 mm at agas pressure
intherange 10° to 8 x 10° Paand an initial gas temper-
ature of 293 K. The term “open” here implies that the
volume of the discharge cavity is several orders of mag-
nitude larger than the volume of the discharge channel.
To decrease the measurement error, we only varied the
air pressure in the discharge cavity; the charging volt-
ages of the capacitors were fixed.

The results of these studies showed that, as the ini-
tial gas pressure in the discharge cavity increased, the
discharge amplitude decreased, but the discharge dura-
tion increased. This was especialy pronounced when
we increased the voltage U; of capacitor C;. For
instance, at U; = 200V, the increase in the initial pres-
sureto 5.8 x 10° Paresulted in adecrease in the current
amplitude of more than 30 A. At U; = 60 V and the
same increase in pressure, the current amplitude
decreased by nearly 12 A. Theincreasein the discharge
duration in the former case was about 5 ms, whereasin
the latter case it was nearly 20 ms. Taking into account
the voltage applied to the discharge gap, such an influ-
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ence of theinitial pressure can be explained by the fact
that this parameter affects the resistance of the dis-
charge channel.

CONCLUSIONS

The proposed method for determining the resistance
of the discharge channel at thefinal stage of aspark dis-
charge allows one to estimate the gas parametersin the
discharge channel. It has been found how the discharge
duration and the dynamics of energy release in the
pulsed-arc circuit depend on the charging voltage of the
low-voltage capacitor, the interelectrode distance, and
theinitial gas pressurein the discharge gap. An analysis
of the dynamics of energy release shows that such a
pulsed-arc circuit can be used in plasma—wave systems
for the formation of intense shock waves.
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Abstract—A novel method for generating apulsed arc in gasis considered. The method can be used in devices
inwhich rapid and efficient heating of the working gaseous medium isrequired. Electric circuits for generating
pulsed arcs are analyzed. For the chosen discharge circuit, the dynamics of energy release in the column of a
pulsed arcisexperimentally investigated. M ethodsfor estimating the discharge circuit parameters are proposed.
Results of estimating these parameters in an existing experimental device are presented. © 2003 MAIK

“ Nauka/Interperiodica” .

INTRODUCTION

In recent years, the problem of creating devices in
which the electric-discharge energy is used to produce
intense shock waves has attracted considerable interest.
To solve this problem, a novel method for generating a
pulsed arc is proposed. The method can be used in a
plasma—wave system for the formation of intense shock
waves [1].

REQUIREMENTS FOR THE CONDITIONS
OF AN ELECTRIC DISCHARGE
IN A PLASMA-WAVE SYSTEM

The specific features of a discharge in a plasma—
wave system stem from the requirement for the gasin
the positive column of a pulsed arc to rapidly relax to a
quasi-equilibrium thermodynamic state. The study of
the breakdown mechanisms and the development of
discharges in gases allowed one to determine the con-
ditions for generating discharges in such systems.
These conditions are the following. A high-voltage
pulse should provide spark breakdown of a gas-filled
discharge gap. The further development of the dis-
charge occurs at a lower electrode voltage. The low-
voltage power supply should provide a high discharge
current until a quasi-equilibrium thermodynamic state
of the working gas is reached in the discharge. In this
case, the energy deposited in the spark discharge is
expected to be at least one order of magnitude lower
than the energy released during the short-duration arc
discharge. It is believed that, for such a discharge sce-
nario, the discharge energy balance, which is governed
by the electron—molecule interaction, can be changed
by varying the electric field strength. A high electrode

voltage ensures a high ionization rate of gas molecules.
When the voltage is low, the fraction of the energy that
istransferred from electronsto the rotational degrees of
freedom of moleculesand is spent on elastic |osses sub-
stantially increases [2]. As a result, the rate and effi-
ciency with which electric energy is converted into the
kinetic energy of the gas molecules also increases.

In addition to the achievement of a quasi-equilib-
rium thermodynamic state of the gasin the discharge, it
is necessary to provide the required rate of energy dep-
osition in the discharge channdl. This rate can be lim-
ited by the parameters of the circuit e ements.

As applied to plasma—wave systems, the total dis-
charge duration should be shorter than 5 x 10° s and
the required amount of energy released during the dis-
charge should be larger than 10 J. The voltage applied
to the electrodes of the discharge gap during thearc dis-
charge should differ dlightly from the steady-state arc
voltage.

CHOICE OF THE CIRCUIT FOR GENERATING
A PULSED ARCWITH REQUIRED PARAMETERS

When electric circuits with an additiona trigger
electrode for the preliminary ionization of the working
gas in the discharge gap are used, the voltage at the
main electrodes should be substantially higher than the
minimum arc voltage. This stems from the necessity of
applying an additional potential between the electrodes
in order to form the main current channel. A decrease
in this potential resultsin an increase in the time delay
of the formation of the main current channel or evenin
the disruption of the discharge. In particular, we should
mention the three-electrode circuit [3] in which adis-
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charge initiated in the semi-enclosed volume produces
a directed flow of the ionized gas, which bridges the
main discharge gap (Fig. 1a). For the rapid formation of
the directed gasflow, arapid and efficient heating of the
working gas is also required, which makes this circuit
inapplicable in our case.

For electric circuits in which high-voltage and low-
voltage sources connected in paralel to the discharge
gap are used, precautions must be taken to ensure the
simultaneous operation of the voltage sources (Fig. 1b).
To protect the low-voltage source from a high-voltage
pulse, active and reactive elements (e.g., a protective
choker) are connected in series with the circuit. As a
result, requirements for either the efficiency or the
energy-release rate are not satisfied.

It is evident that the use of a pulse transformer
directly connected to the discharge gap is hardly possi-
ble. The reason is that very different requirements are
imposed upon the discharge dynamics at different
stages, so that it is technically impossible to realize a
transformer with the necessary output parameters
(Fig. 1c).

Having examined different circuits for generating
pulsed arcs, we chose an electric circuit that best
matched our requirements (see Fig. 1d). This decision
was made on the following grounds. Applying the high
and low voltages in series ensures a continuous current
throughout the entire discharge phase, so that the total
discharge duration shortens. The circuit provides a
decrease in the reactive component of the circuit
because the pulse transformer operates in the switch
regime. This makes it possible to achieve the required
rate of energy release.

EXPERIMENT

Dynamics of the Energy-Release in the Electric
Discharge Circuit under Study

Theelectric circuit presented in Fig. 1d was put into
practice. The pulse transformer produced high-voltage
pulses with an amplitude of up to 26 kV. The charging
voltage of the low-voltage capacitor was varied in the
range 0—400 V. Such parameters of the device alowed
us to study the dynamics of energy release in air gaps
with alength of up to 3 mm under normal atmospheric
conditions. The use of a capacitor of the MBGN type
with a rating value of 200 mF as low-voltage energy
storage provided the required discharge dynamics
(Fig. 2).

An analysis of the energy-release dynamics shows
that this electric circuit can be used in plasma—wave
systems for the formation of intense shock waves.

In view of the nonlinear characteristic of the load,
the question arises as to how the discharge circuit
parameters influence the energy-release dynamics. The
results of the study of these parameters are presented
below.
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Fig. 1. (a—) Electric discharge circuits and (d) pulsed arc
circuit: (1) charging devices, (2) switch, (3) transformer,
(4) discharge gap, and (R) measuring shunt.

Sudy of the Influence of the Salf-Inductance
of the Capacitive Storage on the Discharge Dynamics

One of the capacitor parameters that affects the dis-
charge duration is the self-inductance of the capacitor.
In order to determine how the self-inductance of the
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Fig. 2. Oscillograms of the current | and voltage U. The
sweep speed is 20 mg/division, the current scale is
1351 A/division, and the voltage scale is 200 V/division.

—~

Fig. 3. Oscillograms of the current for a capacitor charging
voltage of (1) 200 and (2) 100 V. The sweep speed is
10 mg/division, and the current scale is 270 A/division.

\J

Fig. 4. Oscillograms of the current. The capacitor charging
voltageis 100V, the current scale is 270 A/division, and the
sweep speed is 0.1 mg/division.

available capacitor influences the discharge duration, it
was proposed to trace the dynamics of the discharge
current when the capacitor discharges through athyris-
tor and a low-resistance shunt.

Thetype of thyristor was chosen taking into account
the maximum values of the voltage and current in the
discharge circuit and the value of the potentia drop in
the cathode and anode regions (this value should be
much lower than the potential drop acrossthe discharge
gap). When the current growth rateis high, the effect of
nonlinearity of the current—voltage characteristic of the
thyristor can be ignored. In this case, the current rise
time should be at least one order of magnitude shorter
than the total discharge duration.

The MBGN capacitor discharged through a TChl-
100 thyristor. The capacitor charging voltage was var-
ied in the range 0400 V. Using this type of thyristor,
we succeeded in substantially decreasing the influence
of the characteristic of the electronic switch on the
energy-release dynamics.

By comparing the waveforms of the current for the
cases in which the capacitor discharged through the
thyristor and through the pulsed arc circuit, we could
determine the influence of the capacitor’s self-induc-
tance on the energy-release dynamics in the given dis-
charge circuit. It was found that, in our case, the capac-
itor’s self-inductance results in a gradual current rise
during an arc discharge (Fig. 3).

Sudy of the Combined Effect of the Nonlinear
Resistances of the Circuit Elements on the Discharge
Dynamics

This study was performed by including a relay
(instead of the discharge gap) in the pulsed arc circuit.
Thedischarge circuit with capacitor C, was not used. In
thisversion, no “externa” saturation of the transformer
core occurred, which resulted in distorted information
about the actual influence of the circuit parameters on
the discharge dynamics. However, these studies madeit
possible to determine the maximum attainable ampli-
tude of the discharge current in the given circuit at a
fixed initial charging voltage of capacitor C,. This esti-
mate allowed usto separate the influence of the state of
the gas in the discharge channel from the influence of
the circuit parameters on the energy-release dynamics
in the given discharge circuit.

In this case, the main requirements for the relay
parameters are a minimal influence of the relay flutter
on the energy-release dynamics and alow resistance of
the relay contacts. The latter implies the use of arelay
with alarge contact area.

In the relay used in our experiments, the total con-
tact areawas 39.25 mm?. Figure 4 shows the waveform
of the discharge current. We note that the use of arelay
causes the problem of synchronization with the mea-
suring equipment. This can result in a shift of the start
time of scanning. However, on the whole, the time evo-
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lution of the discharge current remained stable. An
analysisof curves showsthat, when an additional trans-
former-core saturation produced by an external current
source was absent, an oscillatory process occurred in
the discharge circuit. This means that the discharge cir-
cuit shown in Fig. 1b is unsuitable. The absence of
sharp current spikes indicates a rather short period of
relay flutter. A comparison of the waveforms of the dis-
charge current through the discharge gap and through
the relay contacts showsthat threshold values of the arc
voltage are determined by the state of the gasinthe dis-
charge channel, rather than the disruption of the dis-
charge current due to the influence of the discharge-cir-
cuit parameters. The observed waveforms of the dis-
charge current through the relay contacts alow us to
determine how the nonlinear resistances of the electric
circuit elements influence the current dynamics in the
pulsed arc circuit.

CONCLUSIONS

In this paper, we studied an electric circuit for gen-
erating a low-voltage pulsed arc. It was found that the
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given circuit can be used in plasma—wave systems for
the formation of intense shock waves and other devices
in which fast and efficient heating of the working gas-
eous medium is required. The proposed versions of
experimental studies of the influence of resistances of
the electric circuit elements on the discharge dynamics
allow oneto estimate the applicability range of adevice
based on this circuit and find a way of optimizing the
device parameters.
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Abstract—Styrene vapor contained in air in small amountsis decomposed when the air is subjected to a pulsed
electron beam and non-self-maintained space discharge. The physical laws of the process and the final products
of styrene vapor conversion are found. Experimental data make it possible to consistently describe the styrene
vapor elimination from air exposed to a pulsed electron beam and relate the beam parameters to the properties
of the gas flow being irradiated. © 2003 MAIK “ Nauka/Interperiodica” .

The process of organic synthesis, aswell asthe pro-
duction of plastics and plastic products, inevitably gen-
erates effluents that sometimes contain toxic volatiles
in dangerous concentrations. The vapors of aromatic
and nonsaturated compounds, such as styrene, benzene,
and thelike, are the most dangerous. One way of reduc-
ing the toxicant concentration in the gaseous effluents
is to irradiate them by pulsed electron beams. It has
been shown [1, 2] that irradiation may reduce signifi-
cantly the concentration of inorganic substances with-
out consuming much energy. In this work, we report
experimental data for styrene vapor removal by irradi-
ating the air with pulsed nanosecond el ectron beams.

EXPERIMENTAL CONDITIONS

We experimented with model nitrogen : oxygen =
80 : 20 gas mixtures at atmospheric pressure and room
temperature. The styrene vapor concentration was var-
ied from 50 to 1000 ppm. The concentration of the sty-
rene and styrene conversion products in the gas phase
was measured chromatographically [3]. The error in
measuring the impurity concentration was no more
than 5% in the 100-1000 ppm range and 12% in the
10-100 ppm range.

The experiments were carried out with a setup based
on the RADAN nanosecond electron accelerator [4].
The accelerator generated a 180-keV pulsed electron
beam with a current of 800 A, cross-sectional area of
1 cm?, half-height duration of 3 ns, and repetition rate
of 10 s*. The beam irradiated a 1-cm-long gas-filled
gap with avolume of about 10 cm? between agrid elec-
trode, through which the beam was injected into the
gas, and asolid metallic electrode, connected to a13-nF
storage capacitor. The voltage across the storage capac-
itor was varied from 0 to 10 kV. The energy delivered to
the test gas volume (about 4.2 x 102 J per pulse) was
measured by standard film dose meters. This energy

plus the energy of the storage capacitor initiated a non-
self-maintained discharge. The total volume of the dis-
charge chamber was 3 |. A fan built in the chamber
made the gas flow through the gap with amean velocity
of 0.5 m/s. Such an experimental scheme simulates
multistage purification, where the gas flow is repeat-
edly irradiated. In addition, it improves the reproduc-
ibility and decreasesthe error of measurements by aver-
aging the styrene vapor concentration in the air.

The gas was irradiated by trains of pulses. In the
course of experiments, we determined the absolute
change AC in the impurity concentration, the degree of
impurity conversion (i.e., the degree of purification),
and the energy spent to remove a styrene molecule. The
conversion ) and the energy consumption per molecule
€ (evV/mol) were calculated as

n = ACIC,, € = (W, +Wg)N/eAC.

Here, AC = C, — C (cm™) is the change in the styrene
concentration per train; C, and C (cm™) are the initial
and current impurity concentrations in the mixture,
respectively; W, isthe electron beam energy introduced
into the gas; W, (Jcm?) is the discharge energy intro-
duced into the gas; N is the number of pulses per train;
and e (C) isthe electron charge. Thetotal error in deter-
mining € (including the error in determining the
absorbed energy W = W, + W,) was ho more than
0.3 eV/mol.

EXPERIMENTAL RESULTS

It was found that the styrene concentration drops
with increasing number of nanosecond irradiating
pulses (Fig. 1). Thevalue of € dependsontheinitial sty-
rene impurity concentration. Typically, € lies in the
range from 2 to 10 eV/mol for C, = 100-1000 ppm. At
low impurity concentrations (from 50 to =300 ppm),
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C varieswith N by anear-exponential law (Fig. 1). Typ-
ical dependences of the logarithm of the initial-to-cur-
rent concentration ratio, In(Cy/C), on the energy W
delivered to the gasare shownin Fig. 2. At low concen-
trations (curves 1, 2), the curves approach straight lines,
indicating that the concentration varies exponentially.

The slope of these straight lines may serve as an
energy coefficient B (e.g., in units of Jcm?) that relates
the purification efficiency to the energy consumption [5]:

In(C,/C) = WIB. 1)

Physically, this coefficient shows the amount of
energy that is necessary to apply to the gas for the
impurity concentration to decrease by a factor of e =
2718 ....

It turned out that B depends on the initial impurity
concentration C,. As C, grows, the dependence
becomes nonlinear (Fig. 3).

The final product of styrene vapor conversion is
polystyrene, which covers the gas chamber wallsin the
form of thin film. A small amount of benzaldehyde, the
product of styrene oxidation, was a so detected in small
amounts. Benzaldehyde forms when styrene combines
with ozone and other active oxygen species generated
by the electron beam. It was found experimentally that
the concentration C,, of benzaldehyde is much lower
than the initial styrene concentration C,. After irradia-
tion, the benzaldehyde concentration was estimated
with the parameter o = (C, — C)/C,,, which shows the
number of benzaldehyde molecules produced per
removed styrene molecule.

Provided that the number of irradiating pulses
(hence, the energy introduced into the gas) isthe same,
this parameter was found to have a constant value. For
example, if the number of irradiating pulsesis N = 8 x
103, 0 = 0.18 + 0.02. Thismeansthat, if the initial con-
centration of the styrene is Cy = 1000 ppm, the benzal-
dehyde concentration after irradiation by N pulses will
be C, = 180 ppm; if C, =300 ppm, C,,= 54 ppm.

We carried out experiments with a non-self-main-
tained discharge in the electrode gap. The current con-
centrations of styrene and benzaldehyde vapors were
measured as afunction of the electric field strength E in
the discharge column. The parameters 3 and ¢ were
found to depend on thefield strength. The experimental
dependence of 3 on E in the discharge column for C, =
300 ppmisshownin Fig. 4 (curve 1). It is seen that the
energy consumption is minimal for E = 500 V/cm.

Curve 2 in Fig. 4 shows o vs. E for the number of
irradiating pulses N = 5 x 10%. Thereis an optimal field
strength at which the number of benzaldehyde mole-
cules produced decreases severalfold compared with
the case when the field is absent. If the initial styrene
concentration is C, = 300 ppm, the parameter o equals
0.06 after irradiation by N =5 x 10° pulses of the non-
self-maintained discharge with a field strength E =
800-1000 V/cm in the discharge column. Thisvalueis
much less than 0.19 in the absence of the discharge.
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Fig. 1. Styrene vapor concentration C vs. the number N of
irradiating pulses. The initial concentration Cy = (1) 75,
(2) 310, (3) 460, and (4) 520 ppm.
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Fig. 2. Dependence of In(Cy/C) on the energy W applied to
the gasfor Cy = (1) 75, (2) 310, (3) 460, and (4) 520 ppm.
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Fig. 4. Parameters (1) B and (2) o vs. eectric field strength E.
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Fig. 5. Parameter 3 vs. O, concentration in the mixture.

One more series of experiments was concerned with
the effect of oxygen concentration on styrene vapor
removal. If oxygen is absent in the mixture, the styrene
is virtualy not eliminated. An increase in the O, con-
centration results in a drastic reduction of {3, and the
related experimental curve (Fig. 5) isdescribed well by
the relationship

B = KC[O]"?, )

where K isanumerical conversion factor.

FORMAL DESCRIPTION OF THE PROCESS

Simple expressions (1) and (2), which fit experi-
mental data for styrene vapor removal from air by
means of pulsed electron beams, allow one to suggest a
formal approach to the process. The most extensively
employed approach in this case is the formal kinetic
description of kinetic reactions involving two or more
reagents [6]. The process in this case is described by
simple equations where reagent concentrations and
running time are parameters. Our empirical equations
relate impurity concentration and energy introduced

NOVOSELOV, FILATOV

into the gas; therefore, the description which follows
may be called the formal energy approach by analogy.

Without considering complex reactions of styrene
conversion, the parameter 3 may be formally termed
the characteristic energy by analogy with the formal
kinetic approach. The smaller (3, the higher the effi-
ciency of the approach.

As follows from Fig. 3, B depends on the initial
impurity concentration C,. When the styrene vapor
concentration tends to zero, the energy needed to
achieve agiven degree of purification tendsto adefinite
nonzero value,

lim(B) = const = By, 3
C-0

which is called the initial characteristic energy. Based
on the curves shown in Fig. 3, one may assume that 3,
fallsinto the range (7-10) x 102 Jcm?® when styreneis
irradiated by apulsed el ectron beam. At low initial con-
centrations (C, = 50-300 ppm), By =7 x 102 Jcm?® and
remains practically unchanged.

Using the analogy of the description suggested and
the formal Kkinetic approach used in [6], it may be
inferred (see (2)) that one oxygen moleculeisresponsi-
ble for the removal of one styrene molecule. The most
plausible explanation for thisfact isthe participation of
atomic oxygen or ozonein the basic route of the styrene
conversion reaction.

The above experimental data suggest that, when a
pulsed electron beam acts on styrene vapor to initiate
the styrene conversion reaction, the characteristic
energy [3 depends on the initial styrene concentration
C, and oxygen concentration [O,]. Generaly, 3 may
also depend on the concentration of other reagents that
appear under the action of the beam. A detailed formal
description of the process involving several reagentsis
givenin|[7].

In terms of the characteristic energy, the basic
parameters of impurity conversion in air (the degree of
purification and the energy needed to remove one mol-
ecule) are given by

n=(1-C/ICy) = 1—-exp(-WIB), (4)

= —AB(NCy) " In(1-n), 5)
where A isanumerical conversion factor.

If B isexpressed in Jcm?; the concentrations C and
Co, in ppm; and €, in €V/moal, the factor A roughly
equals 0.236 (eV cm? ppm)/J.

From (5), it follows that one cannot judge the effi-
ciency of different techniques of impurity conversionin
air based on the energy consumption € alone. Correct
comparison also includes the initial characteristic
energy 3.

Therulesand parameters of the processfound in our
experiments alow one to estimate the throughput V
(I/s) of apurifier, i.e., the flow rate of a gas being puri-
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fied, and its power P(W) for agiveninitial styrene vapor
concentration C, and adesired degree of purification n:

V = PIW=—P/[BIn(1-n)]. (6)

For example, if it is necessary to remove styrene of
concentration C, = 200 ppm from air flowing with arate
of 100 I/s and attain a degree of purification of 50%
with an electron accelerator (in thiscase, =3, = 7 %
1073 Jcmd), the electron energy must be equal to about
500 W according to (6). With a streamer or any ionizer
other than a non-self-maintained discharge or with an
increasein C,, this value will certainly change.

Thus, asfollows from our experiments on removing
styrene vapor by a pulsed electron beam, the initia
characteristic energy B, may be used as an efficiency
parameter. This parameter definesthe amount of energy
that must be applied to polluted air for the pollutant
concentration (tending to zero) to decrease by a factor
of e = 2.718 .... The parameters 3 and g, along with
expressions (4)—(6), completely characterize the pro-
cess of styrene vapor removal from air with a pulsed
electron beam.

TECHNICAL PHYSICS Vol. 48 No. 12 2003
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Abstract—The physical grounds of aninertial navigation method that measures the resultant vector of specific
forces (absolute acceleration) are stated. The problem of combining this method with the conventional
method based on measuring the vector of the apparent acceleration is discussed. © 2003 MAIK “ Nauka/lnter-

periodica” .

The design and operation of a device for measuring
the absolute linear acceleration of a moving object, as
well as the potentiality for using this meter in inertia
navigation systems (INSs), were described in [1]. The
measurement accuracy was predicted to be as high as
~10™ m/s?, which meets well practical demands at
present and in the immediate future. Without question-
ing the conclusions drawn in [1], we will point to a
number of features of the new meters that should be
taken into account when viewing them as candidates
for INS elements.

Asiswell known [2], an INS functions according to
eguations that describe the motion of aunit-mass mate-
rial point (dynamic equations) and the evolution of a
frame of reference (kinematic equations, which are
sometimes called Poisson’s eguations) where the
motion of the object (point) is considered. Below, we
will refer to equations of the first group.

In the absolute (inertial) frame of reference, the
equation of motion of a point unit mass has the form

R =g+f.

Here, overcircles above the radius vector of the position

of the mass mean absolute derivatives. Accordingly, R
is the absolute acceleration and g and f are the vectors
of gpecific gravitational and nongravitational (e.g.,
drag, engine thrust, etc.) forces. Thus, measuring the
absolute acceleration R is nothing but measuring the
total (resultant) specificforce(g+f ). Itisprecisely this
way of measuring thisforce and the device used that are
dealt with in [1]. This device will be called a gf meter
in order to distinguish it from a standard newtonmeter
[3], or f meter, which measures the forcef.

In a frame of reference rotating with an absolute
angular velocity o(t), the dynamic equations for INS

perfect operation have the form [2]
R = —wxR+V, R(0) = R,,
V = —oxV+g(R)+f, V(0) = V,,

where R is the radius vector of the point (objective), V
is the vector of its absolute linear velocity, g(R) is the
vector of gravitational forces, f is the vector of al the
other forces, and overcircles stand for local time deriv-
atives.

When designing a conventional INS, one must
know the gravitational field model (that is, the model of
specific force g(R)) and the way of measuring the spe-
cific force f (and, in general, the vector @(t); thisissue
is disregarded here). For gf measurements, a model of
9(R) isnot necessary (aswas justly noted in [1]), since
the vector g(R) + f isassumed to be known (with instru-
mental accuracy). Without going into detail, we also
note that the three-component INS scheme is unstable
in both cases, although the character of instability is
different [2, 5].

Let us identify the rotating frame of reference with
aright-handed moving (ideal) Cartesian trihedron Ox =
0x;X,%5 such that the Ox; axis is aligned with the vector
R. We assume that Oy = Oy,Y,y,, a device trihedron
where all measurements are taken, is the physical
model of the trihedron Ox.

Consider the case when both inertial measurements
(f and g measurements) are taken simultaneously.
Assuming that the mutual orientation of the trihedra Ox
and Oy is described through asmall angle of rotation a,
we may represent f and gf measurements as

J; = (E+a)f +Af,,

(D)

J, = (E+a)(9(R) +f) +Af,,

where E isthe unity matrix and Af, and Af,, are the vec-
tors of the instrument errors.

1063-7842/03/4812-1598%24.00 © 2003 MAIK “Nauka/Interperiodica’
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Comparing both available measurements yields a
new one:

J; = J,—J; = (E+@)g(R) +Af, 2

where Af = Af, — Af;.

For small enough Af and a, measurement (2) can be
used as a test measurement of gravitational fields that
are poorly understood.

If agravitationa field iswell studied and its model
is known, the solution of (1) may numericaly yield a
vector g(R"), where R' = R — 3R, 8R = (a,r, —a,r, or)"
isthevector of inaccuraciesinvolvedin R calculated by
model (1) in the projections onto the axes of the trihe-
dron Oy, and r = |R]. Comparing J; and g(R"), we then
find

J=J,-g(R) = dg(R)—Q%—(g-)BR+Af. 3)

Apparently, measurement (3) can be used to correct
a dynamic group of INS malfunctions. For navigation
inthe central gravitational field (the exterior field of ter-
restrial gravitation may be considered as central, since
the central component essentially prevailsin the expan-
sion of the Earth’s gravitational potential), (3) takesthe
form

J= 2w§(r)6r +A?, 4

where ? is the third component of the vector Af, wy, =

(W/r3)Y2 is the Shuler frequency, and | is the Earth’'s
gravitational potential.

From (4) it is easy to see that a pair of inertial mea-
surements (f and gf measurements) is equivalent to the
noninertial (e.g., radar, barometric, etc.) measurement
of the object’s altitude with instrumental inaccuracy

At

Ah = .
20
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For example, with |Af,| = 10 m/s? (asin [1]) and
|AF4| = |AF,|, we have |Ah| < 70 m at the Earth’s surface.

It should be noted that the state-measurement sys-
tem produced by measurement equation (4) and equa-
tionsfor INS dynamic errors (the latter are obtained by
varying Egs. (1)) is observable (at least when the object
moves with a constant velocity along parallels of lati-
tude) in the general (Kalman's [4]) sense. Thisimplies
the possibility of constructing asymptotically robust
correction algorithms for this group of INS malfunc-
tions[5].

Thus, the basic conclusions that can be drawn from
our analysisareasfollows. (i) When theinaccuracies Af
and a meet obvious conditions, the use of a gf meter
(together with an f meter) seems to be promising for
probing little-studied gravitational fields; (ii) the com-
bined use of gf and f metersraisesthe information inde-
pendence of an INS, since INS malfunction (in particu-
lar, dynamic errors) can be reliably corrected based
solely oninertial information; (iii) theuse of aprecision
(for example, radar) atimeter virtually eliminates the
problem of deciding between f and gf meters asinertial
information sources (in the case of comparable accura-
cies): onemay choosethe onewhich ispreferable based
on technical, economical, service, etc., parameters.
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Abstract—A holographic screen that makes it possible to display 3D images by the method of point-focused
aspects (of asceneto be displayed) or by projecting narrow line hologramsis suggested and implemented. The
image thus formed reconstructs only horizontal parallax, which allows one to cut the body of information nec-
essary for 3D imaging. Projection through the screen and away of recording the screen are considered. © 2003

MAIK “ Nauka/Interperiodica” .

Earlier, amethod of 3D imaging where an image is
formed with an array of point-focused aspects of a
scene to be displayed was reported [1-3]. At the first
step, a set of aspects of a scene to be displayed is
recorded. The array is produced by a scanning laser
beam into which the scene’s aspects recorded from dif-
ferent points are introduced. At the stage of projection,
the aspects are illuminated by a point-focused laser
beam. Scanning the screen, this beam generates an
array of luminous points through each of which one of
the aspects of the 3D sceneis seen. The observer seesa
local 2D image whose configuration varies according
to the point of observation asin the observation of areal
3D object. Thus, theillusion that the image projected is
three-dimensional arises. It was noted that the problem
of recording and projecting a 3D image may be consid-
erably simplified if only the horizontal paralax of a
scene being displayed is reconstructed. A drawback of
this approach is that the square field of vision through
which the observer seesthe image istransformed into a
narrow horizontal line, making observation difficult.
This line may be extended in the vertical direction by
introducing a special 1D diffuser screen into the pro-
jecting system. However, designing a two-component
optical scheme consisting of a very large lens and 1D
diffuser screen isachallenge.

Here, we suggest a special holographic screen that
focuses and diffuses the light in the vertical direction
simultaneously. The scheme for recording such a
screen is shown in Fig. 1. A cylindrical lens focuses
laser radiation to form a narrow vertical line in the
planeof diffuser D. Then, thediffuselight fallson light-
sensitive medium (photoplate) P. Wave front W is also
directed to the light-sensitive medium and converges at
point Sbhehind it. Hologram H, which isrecorded in the

area where the two beams meet, has the form of an
ellipse extended in the horizontal direction. Holograms
were recorded on PFG-03M photoplates and devel oped
in a GP-3 holographic devel oper.

The holographic optical element (screen) thus
recorded is capable of “imaging” the radiation from
point Sas vertical diffuseline DL (Fig. 1). When a 3D
image is projected through the screen, the luminous
points where different aspects of the scene are focused
lieaong horizontal line LL (Fig. 2). The screen, aswas
noted above, projects each of the points onto field of
vision FV in the form of vertica diffuse line DL.
Through each of the points of this line, observer h sees

Fig. 1. Recording of the holographic screen: W, wave front
converging to point S; D, diffuser on which the cylindrical
lens projects vertical diffuselight line DL; and P, light-sen-
sitive material (photoplate) with recorded hologram H.

1063-7842/03/4812-1600$24.00 © 2003 MAIK “Nauka/Interperiodica’
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Fig. 2. Reconstruction of the holographic screen reproduc-
ing horizontal parallax. P, light-sensitive material (photo-
plate) with recorded hologram H; LL, reconstructing light
line; FV, field of vision produced by a set of reconstructed
vertical diffuselines DL; and h, observer.

1601

Fig. 3. Recording a set of double-beam line holograms of
the 3D scene. L, laser; M and M, mirrors; MO, microob-
jective lens; O, object; Ly, lens; H, light-sensitive medium;
PH, pinhole; and S, split diaphragm.

Fig. 4. Images of the 3D scene on the holographic screen for three positions of the observer’s eye.

the image of the same aspect that is projected from a
given point of horizontal light line LL. Other aspects of
the 3D scene are seen through their corresponding ver-
tical linesDL.

Thus, the points of field of vision FV are extended
vertically. This enables the observer to see the image
projected even if the eye is considerably shifted in the
vertical direction.

Such a screen may be used to project 3D images by
projecting aspects obtained with conventional photog-
raphy or by projecting hologram-generated aspects
(since the radiation from each of the hologram points
may be considered as an aspect). In the latter case, the
screen provides large-scale images with the help of a
narrow line hologram. In experiments, we studied this
type of projection by recording line double-beam holo-
grams of a3D scenethat consisted of two objects O and
mirrors M; and M, (Fig. 3). Additional illumination
from the mirrors enhanced the apparent depth of the
scene. The objects, two 6-cm-high busts made of white
mat marble, were arranged at different distances from
the mirrors and recording medium H. Objects O were
illuminated by a part of the collimated beam, which
then fell on mirror M; and reflected fromit, additionally
illuminating the objects. The part of the collimated
2003
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beam that reflects from the mirror M, forms areference
beam. Recording medium H (PFG-03M holographic
photoplates) was placed in the plane where the refer-
ence and object beams meet. Split digphragm S, which
cuts a harrow horizontal strip from the incident beams,
was fixed in front of the photoplate. As a result, holo-
grams had the form of 1.5- to 2-mm-high (wide) strips
of length to 75 mm. Narrower strips had a worse
recording resolution. The photoplate was moved verti-
cally relative to the horizontal dot, so that a set of line
holograms was recorded. Up to 40 holograms were
recorded on a 9 x 12-cm photoplate, each registering
either achangein the mutual arrangement of the objects
or the appearance of a new one. The line holograms
were reconstructed with a beam in the form of alumi-
nous line, and the reconstructed image was directed on
holographic screen H recorded as shown in Fig. 1. The
3D scene was observed in the plane of holographic
screen H, and the horizontal motion of the eye created
the effect of an exploded view of the scene. In the hor-
izontal direction, the viewing angle of the scene was
somewhat restricted both by the geometry of the
recording scheme and by the small effective size of the
hologram due to the insufficient intensity of the expos-
ing radiation.
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The screen-projected image, while recovering such
a3D effect asan exploded view, isdlightly defocused at
points out of the screen plane (Fig. 4).

Thus, our experiments demonstrated the possibility
of projecting a 3D image with a one-component screen
made using simple technology.
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