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Abstract—The angular distribution of Auger electrons is considered, and the angular distribution anisotropy
parameter α2 for (M3  N2N3), (M3  N3N3), (M4  N1N3), (M4  N4N5), (M4  N5N5), and
(M4, 5  O2, 3O2, 3) transitions in a xenon atom is calculated. The matrix elements are evaluated by the non-
relativistic Hartree–Fock method with LS coupling, as well as by the relativistic Hartree–Fock method with jj
coupling (single-configuration approximation) and intermediate coupling (multiconfiguration approximation).
© 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The anisotropy of the Auger electron angular distri-
bution in atoms was first predicted in [1]. Since then,
this effect has been the object of much theoretical and
experimental investigation. Of special interest is the
distribution of Auger electrons that arise upon filling
deep vacancies resulting from interaction between
atoms and synchrotron radiation [2]. The general the-
ory of Auger electron angular distribution anisotropy,
which is based on the density matrix formalism, was
developed in [3–6]. Later, the coefficients of the angu-
lar distributions were calculated [7–9]. However, the
existing discrepancy between theoretical predictions
and experimental data [6, 9, 10] necessitates further
investigation in this field. The reasons for the discrep-
ancy still remain unclear. One may be the roughness of
the theory (specifically, it ignores interference between
the final states of the ion–Auger electron system [11]).
Various approximations used in calculating the wave
functions of the initial and final states of the ions and
wave functions of the continuous spectrum may also be
a factor.

In this work, we use the theory of Auger electron
angular distribution developed in [6–8]. This theory is
generalized for the case of atoms with two unclosed
valence shells and includes both LS and jj couplings. In
addition, we derive expressions for the angular distribu-
tion anisotropy coefficient α2 in the case of intermedi-
ate coupling, i.e., for the multiconfiguration relativistic
wave functions of the initial and final states of the ions.
The wave functions of the ions are calculated by the
1063-7842/03/4812- $24.00 © 21501
Hartree–Fock method and by the multiconfiguration
relativistic Hartree–Fock–Dirac method.

The parameters of the Auger electron angular distri-
bution depend on the wave function of the continuous
spectrum. In early works, this function did not take into
account exchange interaction between an electron of
the continuous spectrum and core-shell electrons and
ignored off-diagonal Lagrangean factors, which render
the wave function of the continuous spectrum orthogo-
nal to occupied single-electron states of the ion. In this
work, we consider the effect of these factors on the
angular distribution parameter α2. In relativistic calcu-
lations, the wave function of the continuous spectrum
was found by solving the Hartree–Fock–Dirac relativ-
istic equations. The influence of relativistic effects on
α2 may be considerable, since the behavior of the con-
tinuous spectrum function near the core makes a major
contribution to the value of α2.

In the next section, we outline the basic principles
underlying the calculation of the Auger electron angu-
lar distribution parameter α2. Then, we give the values
of α2 calculated for the (M3  N2, 3N2, 3), (M4 
N4, 5N4, 5), (M4  N1N3), and (M4, 5  O2, 3O2, 3)
transitions in a xenon atom in different approximations.

GENERAL THEORY

The scattering of electrons or photons by an atom
A(J0) may produce a vacancy A+(J1) in the inner shell.
The occupation of the vacancy is accompanied by the
emission of a photon or electron (Auger process). Let
003 MAIK “Nauka/Interperiodica”
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us consider the Auger process

(1)

Here, es and ek are scattered and knocked-out electrons,
respectively. The Auger process produces a doubly
charged ion A2+(J) and an Auger electron eA in the con-
tinuous spectrum. Since the lifetime of the excited state
is much longer than the time of collision, the scattering
process may be considered as proceeding in two steps:
the formation of a vacancy and Auger decay [1]. To
exclude interference between the states of the electrons
es and eA, we consider a process where the energies of
the scattered and Auger electrons differ. The quantum
states of the electrons es and ek and those of the doubly
charged ion are disregarded. Also, we assume that nei-
ther the electron (e) nor the atom A(J0) are polarized in
the initial state A(γ0J0).

When electrons are scattered by an atom, a preferen-
tial direction appears in the system of colliding parti-
cles. This causes [12] anisotropy in the angular distri-
bution of the Auger electron flux intensity I(Θ). An
expression for the angular distribution I(Θ) of Auger
electrons was obtained in [1, 4–7]. In [6], this distribu-
tion was described by using parameters A(KkQ), which
bear information on the dynamics and geometry of the
Auger process. In [6], a general expression for the
parameters A(KkQ) was derived:

(2)

Here, V is the operator of electron–electron Coulomb
interaction:

(3)

(i) Intermediate coupling and jj coupling.
Expanding the wave function 〈p(–)ms| of the Auger elec-
tron continuous spectrum in spherical waves in view of
spin–orbit interaction [7], we come to an expression for

A J0( ) e es ek A+ J1( )+ + +

A+ J1( ) A2 J( ) eA.+

A KkQ( ) 2K 1+( ) 2k 1+( )=

× 1–( )
J1 M1– 1

2
--- ms–+

ms ms',
∑

M M1 M1', ,
∑

× J1 J1 K

M1 M1'– Q– 
 
  1

2
--- 1

2
--- k

ms ms'– Q– 
 
 
 
 

× JM p –( )ms V J1M1,〈 〉 JM p –( )ms' V J1M1',〈 〉 *.

V
1
2
--- v ri r j,( ), v r r',( )

i j≠
∑ 1

r r'–
---------------.= =
the parameters A(KkQ):

(4)

where l + l' is even,  is the phase shift for an electron
of the continuous spectrum in a state 〈lj|, and the 6j and
9j symbolic notation of Clebsch–Gordan coefficients is
used [13].

The coefficients αK of the angular distribution are
related to the parameters A(KkQ) as [6]

(5)

It is easy to check that

(6)

where

(7)

The matrix elements 〈J1||V||(Jj)J1〉 are determined
for the initial and final multielectron states of an arbi-
trary atom. In the general case, they are derived with the
Wigner–Eckart theorem [13, 14] if the multielectron
wave function  for the initial state A+(J1) of the

ion, the wave function ΨJ, M for the final state A2+(J) of
the ion, and the single-electron wave function ψjm for

A KkQ( ) 1
4πp
--------- 2K 1+( ) 2k 1+( )=

× i l' l–( )e
i σl

j σl'
j'–( )

1–( )
J J1 j Q l'+ + + +

j j',
∑

l l',
∑

× 2l 1+( ) 2l' 1+( ) 2 j 1+( ) 2 j' 1+( ) J J1 j

K j' J1 
 
 

× 2X 1+( ) X l' l

0 0 0 
 
  K X k

Q– 0 Q 
 
 

1
2
--- 1

2
--- k

j' j K

l' l X 
 
 
 
 
 
 

X

∑

× J εj,( )J1 V J1〈 〉 J ε j',( )J1 V J1〈 〉 ,

σl
j

αK J( ) A K00( )
A 000( )
-------------------.=

αK J1 V J j( )J1〈 〉 2

lj

∑ 
 
 

1–

2K 1+( ) 2J1 1+( )=

× 1–( )
J J1 1/2– l'+ +

il l'+ C K( ) j j' σl' σl–( )cos
j j'

∑
ll'

∑
× J1 V J j( )J1〈 〉 J1 V J j'( )J1〈 〉 ,

C K( ) j j' 1–( )K 2 j'+– 2 j 1+( ) 2 j' 1+( )
2K 1+

-----------------------------------------C
j'

1
2
--- j  + 

1
2
---,–

K0=

× J J1 j

K j' J1 
 
 

.

ΨJ1 M1,
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the Auger electron are known:

(8)

The wave functions  and ΨJ, M can be calcu-
lated by the relativistic Hartree–Fock–Dirac method in
the one-configuration approximation. In this case, the
coefficients αK are determined for pure jj coupling. For
closed-shell atoms, such an approach is equivalent to
that worked out in [6–8] and applies only to closed-
shell heavy atoms, for which the final state A2+(J) of the
ion has vacancies on deep core levels. More correct
results can be obtained by the multiconfiguration Har-
tree–Fock method. With this method, one can, in partic-
ular, take into account the superposition of all relativis-
tic configurations that correspond to one nonrelativistic
configuration of the ion, i.e., configurations that have
the same occupancies of nonrelativistic shells (nl) and
different occupancies of the relativistic shells (nlj).
Such an approximation will be referred to as coupling
of the intermediate type. Intermediate coupling passes
to LS coupling, as it should, in the nonrelativistic limit.
However, this is not true for pure jj coupling in closed-
shell systems, specifically, for ions with two vacancies
on inner levels.

In the particular case of atoms with closed valence
shells, the expression for the reduced matrix elements
〈J1||V||(Jj)J1〉  in hole representation for pure jj coupling
has the form

(9)

where lf jf and  are the quantum numbers of the two
vacancies in the ion A2+(J), and li ji are the quantum
numbers of one vacancy in the initial state of the ion
A2+(J1).

The parameter Θ takes half-integer values and
depends on the phase factors in the wave functions for
the initial and final states of the ion. Substituting (9)
into (4) and (6) eliminates the dependence of Θ. In this
case, the additional phase factor is (–1)j + j' + 1. The
expressions for A(KkQ) and αK obtained in hole repre-
sentation are similar to (9) and (25) in [7].

The reduced matrix element in hole representation
for jj coupling was obtained in [15]. Its final form is
given in [7]. In our notation,

J1 V J j,( )J1〈 〉
2J1 1+

CJM jm,
J1M1

---------------------- J1M1 V JM jm,〈 〉 .=

ΨJ1 M1,

J εj,( )J1 V J1〈 〉

=  1–( )Θ j+ l f j f l f' j f',( )J v li ji εlj,( )J〈 〉 ,

l f' j f'

l f j f l f' j f',( )J v li ji εlj,( )J〈 〉

=  τ 1–( )
j f' ji+

2 j f 1+( ) 2 j f' 1+( ) 2J 1+( )
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where the coefficient τ depends on whether the two
vacancies of the ion A2+(J) are equivalent or not:

(11)

Radial integrals Rk in (10) coincide with the stan-
dard radial integrals in the Hartree–Fock–Dirac method
[16]

(12)

where A, B, C, and D are the numbers of relativistic
shells; P and Q are the major and minor components of
the radial wave function, respectively; and

(13)

(ii) LS coupling. If relativistic effects are weak, the
ion states can be described in terms of LS coupling. To
find an expression for the parameters A(K00) of the
angular distribution in the case of LS coupling, it is nec-
essary to pass from jj coupling to LS coupling. Then,
for the reduced matrix element with LS coupling, we
arrive at (see, e.g., [17])

(14)

× 1–( )J C
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1
2
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2
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1
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1
2
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j
1
2
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k
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τ
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1

2
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





=
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= r1 r2 PA r1( )PC r1( ) QA r1( )QC r1( )+[ ]γ k r1 r2,( )d

0

∞

∫d

0

∞

∫
× PB r1( )PD r1( ) QB r1( )QD r1( )+[ ] ,

γk r1 r2,( )
r<

k

r>
k 1+

----------.=

J εlj,( )J1 V J1〈 〉

=  2L1 1+( ) 2S1 1+( ) 2J 1+( ) 2 j 1+( )

×

L S J

l
1
2
--- j

L1 S1 J1 
 
 
 
 
 
 

 LS εl
1
2
---, 

  L1S1 
  J1 V L1S1( )J1 .
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Using the Wigner–Eckart theorem, one easily finds

(15)

In this case, instead of (14), we have

(16)

Then, the parameters A(K00) in LS coupling are
given by

(17)

Here, L1, S1, and J1 are the quantum numbers describ-
ing the state of a singly charged ion A2+; L, S, and J are
the quantum numbers describing the state of a doubly
charged ion A++; and l and l' are the orbital quantum
numbers of an electron from the continuous spectrum
(Auger electron). In the nonrelativistic approximation,
the wave function of an Auger electron is independent
of j; therefore, reduced matrix elements in (17) are

LS εl
1
2
---, 

  L1S1 
  J1 V L1S1( )J1

=  
2J1 1+( )

2L1 1+( ) 2S1 1+( )
---------------------------------------------- LS εl

1
2
---, 

  L1S1 V L1S1( ) .

J εlj,( )J1 V J1〈 〉 2J1 1+( ) 2J 1+( ) 2 j 1+( )=

×

L S J

l
1
2
--- j

L1 S1 J1 
 
 
 
 
 
 

 LS εl
1
2
---, 

  L1S1 V L1S1 .

A K00( ) 1

4 2πp
-----------------=

× i l' l–( )e
i σl σl'–( )

2l 1+( ) 2l' 1+( )Cl0 l0',
K0

l l',
∑

× 1–( )
1
2
--- J– J1– l l'+ +

2J1 1+( ) 2J 1+( ) 2 j 1+( ) 2 j' 1+( )
j j',
∑

×
1
2
--- j' l'

K l j 
 
 
 
 

J J1 j

K j' J1 
 
 

J1 L1 S1

J L S

j l
1
2
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 
 
 
 
 
 
 

×

J1 L1 S1

J L S

j' l'
1
2
---

 
 
 
 
 
 
 

 LS εl
1
2
---, 

  L1S1 V L1S1

× LS εl'
1
2
---, 

  L1S1 V L1S1 .
independent of j and j'. Then, after summation over j
and j', formula (17) takes the form

(18)

The reduced matrix elements can be found with the
Wigner–Eckart theorem [13, 14] if the multielectron
wave function  for the initial state A+ of

the ion, the wave function  for the final state

A2+ of the ion, and the single-electron wave function
 for the Auger electron are known:

(19)

For atoms with closed valence shells, the reduced
matrix elements in (17) and (18) can be calculated in
hole representation [15] with pure jj coupling by an
expression similar to (9):

(20)

A K00( ) 1

2
------- 1

4πp
--------- 2J 1+( ) 2J1 1+( )=

× i l' l–( )e
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∑
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x J1+

2x 1+( ) x J1 l

K l' J1 
 
 

x

∑

×
L S J

1
2
--- x S1

 
 
 
 
 

2

L L1 l

J1 x S1 
 
  L L1 l'

J1 x S1 
 
 

× LS εl
1
2
---, 
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1
2
---, 
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, , ,

ΨL MLS MS,,

ψ
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1
2
---ms,

LS εl
1
2
---, 
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2L1 1+( ) 2S1 1+( )

CLML lm,

L1ML1 CSMS lm,

S1MS1

--------------------------------------------------=

× L1ML1
S1MS1

V LML lm,〈 〉 .

LS εl
1
2
---, 
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=  l f
1
2
--- l f'

1
2
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  LS v εl
1
2
--- li

1
2
---, 

  LS
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l f li+

2l f 1+( ) 2l f' 1+( )

× 1–( )L Rk n f l f n f' l f' nili εl,, ,( )
k

∑

× Cl f 0 k0,
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l0 l f' l f L
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 
 
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where Rk(nl, n'l', n1l1, ) is the radial integral:

(21)

(iii) Calculation of the wave functions for the con-
tinuous spectrum. In the nonrelativistic case, the wave
functions of the continuous spectrum were determined
in the Hartree–Fock approximation by solving the
equation

(22)

where n and l are the quantum numbers of occupied
atomic shells of the ion A2+, λεl, nl are the off-diagonal
Lagrangean factors that render the continuous spectrum
function Pεl orthogonal to the atomic radial functions
Pnl of the same symmetry, VC(r) is the Coulomb poten-
tial, and Wex is the result of action of the nonlocal
exchange operator on the radial wave function of the
continuous spectrum.

The continuous spectrum function Pεl is normalized
to the δ function in terms of energy: 〈Pεl|Pε'l〉  = δ(ε – ε').
Then, the asymptotics of Pεl has the form

(23)

where p = , Z is the ion charge, and σl is the scat-
tering phase.

Joining an arbitrary unnormalized regular-at-zero

solution (r) = NPε(r) to Eq. (22) and its derivative
with asymptotics (23), one can determine the normaliz-

ing factor N and the phase of the solution (r). How-
ever, to provide a high accuracy, joining should be
accomplished over a distance of 10 000 to 100 000 a.u.;

in other words, a solution (r) to (22) that is regular at
zero must be found over a wide range of the radial vari-
able r. A much more efficient procedure is joining the

+ 1–( )S Rk n f l f n f' l f' εl nili, , ,( )
k

∑

× Cl f 0 k0,
l0 Cl f' 0 k0,

li0 l f' l f L

l li k 
 
 

,

n1' l1'

Rk A B C D, , ,( ) r1 r2PA r1( )PB r2( )d

0

∞

∫d

0

∞

∫=

× γk r1 r2,( )PC r1( )PD r2( ).

–
1
2
--- d

2

dr2
-------Pεl r( ) l l 1+( )

2r2
----------------- VC r( )+ Pεl r( )+

+ Wex r( ) εPεl r( ) λεl nl, Pnl r( ),
nl

∑+=

Pε r( ) . 
2

πp
------ τ σ l+( ),sin

τ pr
Z
p
--- 2 pr( )ln l

π
2
---,–+=

2ε

P̃ε

P̃ε

P̃ε
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solution and its derivative with a linear combination of
Coulomb functions F and G that are, respectively, reg-
ular and irregular at zero [18]:

(24)

Here, Rjnt is the position of the joint point. The Cou-
lomb functions can be effectively calculated with the
continued fraction technique [19]. In this case, the joint
point can be taken in a domain where all radial atom
wave functions are negligibly small and the atomic
potential may be approximated by a Coulomb potential
with a high accuracy; that is, Rjnt ~ (20–50) a.u. The
normalizing factor N and the phase σl can be found
from the coefficients A and B:

(25)

Here,  is the phase of the Coulomb functions [17]:

(26)

The relativistic wave functions of the continuous
spectrum were found in the Hartree–Fock–Dirac
approximation by solving the equation [16]

(27)

Here, Pεk and Qεk are the major and minor components
of the radial wave function for the continuous spec-
trum, Pnk and Qnk are the major and minor components
of the wave functions for occupied shells in the ion A2+,

 and  are the major and minor components of
the effect of the nonlocal exchange operator on the two-
component radial wave function for the continuous
spectrum, and k is the relativistic quantum number.

Energy normalization for relativistic wave functions
has the form [20]

(28)

When normalized to the δ function in terms of
energy, the radial wave function of the continuous spec-
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N
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N







 = A2 B2+ .

σl
0
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0 Γ l 1 iη+ +( ), ηarg

Z

2ε
----------.–= =

c –
d
dr
----- k

r
--+ 

  Qεk VCPεk Wex
P+ +  = εPεk λεl nl, Pnk

nl

∑+

c
d
dr
----- k

r
--+ 

  Pεk –2c2 VC+[ ]Qεk Wex
Q+ +

=  εQεk λεl nl, Qnk.
nl

∑+
























Wex
P Wex

Q

r Pε r( )Pε' r( ) Qε r( )Qε' r( )+[ ]d

0

∞
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Table 1.  Coefficients α2 for several Auger transitions in Xe (LS coupling)

Term α2 [10] α2 [9] α2 [25] α2 [26]

Xe(M4N4, 5N4, 5) 1S0 –1.0000 –1.0000 –1.000 –1.000

Xe(M4N4, 5N4, 5) 3P0 –1.0000 –1.0000 –1.000 –1.000

Xe(M4N4, 5N4, 5) 3P1 –0.8000 –0.8000 –0.800 –0.800

Xe(M4N4, 5N4, 5) 3P2 0.0 +0.7100 0.0 0.0

Xe(M4N4, 5N4, 5) 1D2 –0.2240 –0.1917 –0.167 –0.189

Xe(M4N4, 5N4, 5) 3F2 +0.5817 –0.5867 +0.558 +0.55 +0.607

Xe(M4N4, 5N4, 5) 3F3 +0.4597 +0.4659 +0.43 +0.42 +0.493

Xe(M4N4, 5N4, 5) 3F4 –0.7513 –0.7390 –0.806 –0.82 –0.608

Xe(M4N4, 5N4, 5) 1G4 –0.6203 –0.6144 –0.640 –0.499

Xe(M5N4, 5N4, 5) 1S0 –1.0690 –1.0690 –1.069 –1.069 –1.069

Xe(M5N4, 5N4, 5) 3P0 –1.0690 –1.0690 –1.069 –1.069 –1.069

Xe(M5N4, 5N4, 5) 3P1 –0.7483 –0.7483 –0.749 –0.748 –0.748

Xe(M5N4, 5N4, 5) 3P2 –0.3818 –0.3818 –0.371 –0.382 –0.382

Xe(M5N4, 5N4, 5) 1D2 –0.2394 –0.2050 –0.124 –0.178 –0.202

Xe(M5N4, 5N4, 5) 3F2 +0.5157 –0.7134 +0.738 +0.0056 –0.02 +0.115

Xe(M5N4, 5N4, 5) 3F3 +0.3695 +0.3338 +0.336 +0.322 +0.32 +0.412

Xe(M5N4, 5N4, 5) 3F4 +0.4658* +0.3774 +0.386 +0.435 +0.420 +0.506

Xe(M5N4, 5N4, 5) 1G4 –0.6631 –0.6568 –0.710 –0.685 –0.533

* For this line, the experimental value of α2 equals +0.4312 ± 0.12 [23].

α2
11 α2

00
trum has (at large r) the asymptotics [20]

(29)

where

(30)

(31)

As in the nonrelativistic case, σk here is the phase of
the wave function for the continuous spectrum. Also, as
in the nonrelativistic case, the phase and normalizing
factor of an arbitrary unnormalized regular-at-zero

solution ,  to the Dirac equation were found by
joining this solution with a linear combination of rela-
tivistic Coulomb functions that are regular (Pr, Qr) and

P r( ) . 
1
c
--- ε 2c2+

πp
----------------- 

 
1/2

τ σk+( )sin

Q r( ) . 
1
c
--- ε

πp
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 
1/2

τ σk+( ),cos








τ pr η 2 prlog–
πl*
2

--------,–=

l*
γ, k 0>
γ 1, k 0,<–




=

γ k2 Z2/c2– , p
1
c
--- ε c2+( )2

c4– ,= =

η Z ε c2+( )
c2 p

----------------------– .=

P̃ε Q̃ε
irregular (Pi, Qi) at zero:

(32)

The asymptotics of the relativistic Coulomb func-
tions may be taken in the form

(33)

Here,  is the phase of the relativistic Coulomb func-
tions. Using the standard expression [21], one easily finds

(34)

P̃ε Rjnt( ) APr Rjnt( ) BPi Rjnt( )+=

Q̃ε Rjnt( ) AQr Rjnt( ) BQi Rjnt( ).+=



Pr r( ) . 
1
c
--- ε 2c2+

πp
----------------- 

 
1/2

τ σk
0+( )sin

Qr r( ) . 
1
c
--- ε

πp
------ 

 
1/2

τ σk
0+( )cos ,









Pi r( ) . 
1
c
--- ε 2c2+

πp
----------------- 

 
1/2

τ σk
0+( )cos

Qi r( ) . 
1
c
---–

ε
πp
------ 

 
1/2

τ σk
0+( )sin .







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σk
0

σk
0 Γ l* 1 iη+ +( )arg=

+
1
2
--- k iηc2/ ε2 c2+( )+

γk/ k iη+
------------------------------------------ 

  .arg
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Table 2.  Coefficients α2 for several Auger transitions in Xe for LSJ coupling and intermediate coupling (I)

Term (00)α2 [7]

Xe(M3N2N3)3P2 α2 –0.0905 0.0 –0.0836 –0.0000

Xe(M3N3N3)3P2 α2 +0.5431 +0.8000 +0.5332 +0.6212

Xe(M4N4N5)3F4 α2 –0.6805 –0.7948 –0.6706 –0.8266

Xe(M4N5N5)3F4 α2 +0.4161 +0.4409 +0.2703 +0.3837

Xe(M5N4N5)3F4 α2 –0.6041 –0.8004 –0.6034 –0.8314

Xe(M5N5N5)3F4 α2 +0.1544 +0.4370 +0.1688 +0.3796

Xe(M4N1N3)3P2 α2 +0.4760 +0.6818 +0.5058 +0.5034

Note:  and  are the anisotropy parameters of the photoelectron angular distribution for the wave functions calculated by the

Hartree–Fock and Hartree–Fock–Dirac methods.

αHF LSJ( )
11( ) 2 αHFD

11( ) 2 α2
HFD I( )

α2
HF α2

HFD

Table 3.  Coefficients α2 for several Auger transitions in Xe for LS coupling and intermediate coupling 

Term Experiment [27] MHFD [10] HF(LS) HFD(I)

Xe(N4O2, 3O2, 3)1S0 –1.000 –1.000 –1.0000

Xe(N4O2, 3O2, 3)3P2 0.72 ± 0.13 0.231 0.000 –0.1674

Xe(N4O2, 3O2, 3)3P1 –0.73 ± 0.11 –0.837 –0.800 –0.8321

Xe(N4O2, 3O2, 3)3P0 –1.000 –1.000 –1.0000

Xe(N4O2, 3O2, 3)1D2 0.05 ± 0.06 –0.116 0.5160 0.3634

Xe(N5O2, 3O2, 3)1S0 –1.069 –1.069 –1.0690

Xe(N5O2, 3O2, 3)3P2 0.47 ± 0.13 –0.385 –0.382 –0.2017

Xe(N5O2, 3O2, 3)3P1 –0.77 ± 0.17 –0.743 –0.748 –0.7309

Xe(N5O2, 3O2, 3)3P0 –1.07 ± 0.10 –1.069 –1.069 –1.0690

Xe(N5O2, 3O2, 3)1D2 0.24 ± 0.10 0.094 0.551 0.6167
For relativistic wave functions with asymptotics
(33), the Wronskian has the form

(35)

To calculate the relativistic Coulomb functions, we
applied a transformation [21, 22] that allows one to
reduce the radial Coulomb-like Dirac equation to two
differential equations that formally coincide with non-
relativistic Schrödinger equations. This transformation
can be written as

(36)

Using the transformation U, one can obtain the sec-

W PiQr PrQi–( ) 1
cπ
------.= =

P'

Q' 
  U

P

Q 
  , U 1 X

X 1 
 
 

,= =

X
Z
c
--- k

k
----- 1

k γ+
--------------.–=
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ond-order differential equations

(37)

where

(38)

–
d2

dr2
-------

l1* l1* 1+( )
r2

------------------------ 2Z*
r

----------–+ P' 2ε*P',=
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γ 1,– k 0<
, l2*
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
 γ 1,– k 0>
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.= =
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Table 4.  Coefficients α2 for the Xe(M4, 5N4, 5N5) Auger transition, where the orbital moment  of the Auger electron takes
values 2, 4, and 6, for jj coupling

Term jj α00 α01 α11

Xe(M5N4N5) –1.0690 –1.0690 –1.0690

Xe(M5N4N5) –0.3059 +0.2914 –0.7881

Xe(M4N4N5) –0.8000 –0.8000 –0.8000

Xe(M4N4N5) +0.408 +0.0258 +0.0247

Xe(M4N4N5) +0.4616 +0.4574 +0.4553

Xe(M4N4N5) –0.6398 –0.6644 –0.4553

Xe(M4N5N5) –1.0000 –1.0000 –1.0000

Xe(M4N5N5) –0.7806 –0.7605 –0.7591

Xe(M4N5N5) –0.1992 +0.1426 –0.1441

Xe(M5N4N5) –1.0690 –1.0690 –1.0690

Xe(M5N4N5) –0.7877 –0.7873 –0.7881

Xe(M5N4N5) –0.7483 –0.7483 –0.7483

Xe(M5N4N5) –0.1198 –0.1346 –0.1372

Xe(M5N4N5) +0.3719 +0.3665 +0.3639

Xe(M5N4N5) –0.5858 –0.5951 –0.5972

Xe(M5N5N5) –1.0690 –1.0690 –1.0690

Xe(M5N5N5) –0.3255 –0.3376 –0.3401

Xe(M5N5N5) +0.1994 +0.1874 +0.1839

l1'
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Differential equations (37) differ from those given
in [22] in that they are written in a form that is more
suitable for the solution of the problem stated. Regular
(F1) and irregular (G1) solutions to the first equation in
(37), as well as regular (F2) and irregular (G2) solutions
to the second equation in (37), can be found by the
same procedure [19] as in the nonrelativistic case.
Then, for the relativistic Coulomb functions, it is easy
to obtain

(39)

where the normalizing factor N0 is given by

(40)

RESULTS AND DISCUSSION

We calculated the anisotropy parameter α2 of the
Auger electron angular distribution for (M3N2, 3N2, 3),
(M4N1N3), (M4N4, 5N4, 5), and (M4, 5O2, 3O2, 3) transitions
in a xenon atom. Our results are in satisfactory agree-
ment with the only known experimental value of α2 that
has been obtained for the Xe(M5N4, 5N4, 5) transition:
α2 = 0.431 ± 0.12 [23] (Table 1). In the relativistic case
with intermediate coupling, the calculated value of α2
is 0.3796 (Table 2). For (M4, 5O2, 3O2, 3) Auger transi-
tions, agreement with experiment is much worse. For
some of the transitions, α2 differs even in sign (Table 3),
which indicates a need for further research.

In calculations, we took into account exchange
interaction and orthogonalized the wave function of the
Auger electron partial wave to the core functions of A++

with Lagrangean factors. The computational results for
jj coupling are given in Table 4 with the following nota-

tion: , orthogonalization and exchange are disre-

garded; , without orthogonalization; and , both
orthogonalization and exchange are included. From
Table 4 it follows that α2 greatly depends on whether
exchange and orthogonalization are taken into consid-
eration. Data listed in Tables 1 and 2 are consistent with
calculations in [7, 9–11], where the atom wave func-
tions were obtained by solving the relativistic Hartree–

Pr
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Fock–Dirac equation with the procedure described in
[24]. Our calculations of the parameter α2 for the
(M4, 5N4, 5N4, 5) Auger transitions in Xe in the case of LS
and jj coupling showed that the inclusion of exchange
and orthogonalization (of the Auger electron wave
function to core orbitals) in combination affects the
value of α2 almost to the same extent as relativistic
effects. The parameter α2 varies most significantly in
the multiconfiguration case with intermediate coupling.
As was noted [7], in the LS coupling approximation, the
orbital moment l of the Auger electron partial waves
may take values l = 2 and 4, while for jj coupling, the
Auger electron state with l = 6 is also taken into
account. The values of α2 for l = 2, 4, and 6 are listed in
Table 4. Note that partial waves with l = 2 and/or 4
make a major contribution to α2.

To conclude, we performed “first-principle” calcu-
lations of the angular anisotropy parameter for Auger
electrons produced by electron scattering by atoms.
The LS, jj, and intermediate coupling approximations
for single-electron and multielectron wave functions
were used. The parameter α2 was found to be extremely
sensitive to a computational technique. This may be
used as a test for computational methods that are
applied in particle–atom scattering problems.
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Abstract—A solution to the problem of nonlinear surface vibration of a charged ideal liquid drop is found in
a third-order approximation in initial multimode deformation of the equilibrium spherical shape by the method
of many scales. It is shown that the spectrum of modes that are responsible for the shape of the drop at an arbi-
trary time instant depends considerably on the spectrum of modes governing the initial deformation of the drop.
The latter spectrum also has an effect on nonlinear corrections to the vibration frequencies and, consequently,
on a nonlinear correction to the critical Rayleigh parameter, which specifies the stability of the drop against self-
charge. © 2003 MAIK “Nauka/Interperiodica”.
(1) The nonlinear dynamics and surface instability
of a variously configured charged liquid is of interest
for geophysical application, technical physics, scien-
tific instrumentation, and chemical engineering [1–3].

One of the early works that investigated the nonlin-
ear surface vibration of a charged drop of an ideal liquid
is that by Tsamopolous and Brown [4]. They gave a
solution to the problem of nonlinear vibration of the
surface of a charged drop for single-mode initial defor-
mation, when the initial shape of the drop in the spher-
ical coordinate system (r, ϑ , ϕ) is described by the
equation

Here, ε is an arbitrary small parameter determining the
initial deformation amplitude, Pm(cosϑ) is an mth-
order Legendre polynomial, and ξ0 is a constant taken
in such a way that the volume of the drop at the given
initial deformation remains equal to the volume of a
spherical drop with a radius R. Also, Tsamopolous and
Brown [4] derived an analytical expression for the gen-
eratrix of a nonlinearly vibrating drop that is accurate to
the second order of smallness in initial deformation
amplitude. Finally, they analytically obtained nonlinear
third-order corrections to the vibration frequencies at
fixed initial deformations. These corrections fitted
experimental data well [5]. However, these authors con-
sidered a limited spectrum of initial deformations of the
drop: the initial deformation was associated with the
second (n = 2), third (n = 3), or fourth (n = 4) mode.

The study initiated in [4] was pursued in [6], where
the initial excitation of an arbitrary mth mode was ana-
lyzed in a second-order approximation in ε. It was also
shown [6] that the spectrum of modes that are excited

r R ξ0P0 ϑcos( ) εPm ϑcos( ).+ +=
1063-7842/03/4812- $24.00 © 1511
in the second order of smallness because of nonlinear
interaction contains only even modes with numbers
from the range [0, 2m]. It turned out that the drop sur-
face nonlinearly vibrates in the vicinity of a prolate
spheroid and not a sphere, as follows from the linear
analysis.

The situation where the initial shape of the surface
is described by the expression

where ξ1 is a constant that is found from the condition
of the drop’s center-of-mass immovability at nonlinear
vibrations and  and  are constants accounting for
the partial contribution of each mode to the initial
deformation of the spherical surface, was considered in
a quadratic approximation in ε in [7]. In that work, the
mechanism of nonlinear resonance energy exchange
between modes, which takes place when

where ωn = (σ/ρR3)  is the fre-
quency of an nth mode of capillary vibrations of the
drop and W = Q2/(4πσR3) is the Rayleigh parameter,
was also studied.

The case when the initial deformation of the drop is
due to the superposition of an arbitrary finite number of
modes was analyzed in [8]. In such a situation, the initial
shape of the drop surface is described by the equation

r R ξ0P0 ϑcos( ) ξ1P1 ϑcos( )+ +=

+ ε hn1
Pn1

ϑcos( ) hn2
Pn2

ϑcos( )+( ),

hn1
hn2

ωn1
2ωn2

,=

n n 1–( ) n 2 W–+( )

r = R ξ0P0 ϑcos( ) ξ1P1 ϑcos( ) ε hmPm ϑcos( ),
m Ω∈
∑+ + +
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where Ω is a set of the numbers of initially excited
modes, hm is a constant accounting for the partial con-
tribution of an mth mode to the initial deformation of
the drop’s spherical shape. The results obtained in [8]
were accurate to the second order of smallness in ε,
which made it possible to find nonlinear corrections to
the mode amplitudes. It appeared that the spectrum of
modes of the second order of smallness may contain
both even and odd modes. For example, when modes
with numbers n1 and n2 are excited, the second-order
spectrum contains only even modes with numbers from
the range [0, max{2n1, 2n2}] if n1 and n2 are simulta-
neously even or odd. If n1 is even and n2 is odd, the sec-
ond-order spectrum contains even modes from the
range [0, max{2n1, 2n2}] and odd modes from the range
[|n1 – n2|, n1 + n2].

In [9] the nonlinear vibration of a charged drop was
calculated in the third order of smallness in initial defor-
mation amplitude for an arbitrary initial single-mode
deformation, and analytical expressions for the drop gen-
eratrix and nonlinear corrections to the frequencies were
obtained. In [10], it was shown that internal nonlinear res-
onances may occur in a charged drop under four-mode
interaction, when the initial deformation of the drop is
due to the superposition of several modes.

In this work, elaborating upon [9, 10], we study the
nonlinear vibration of a drop in the third order of small-
ness in amplitude of the initial multimode deformation
and find third-order corrections to the vibration fre-
quencies.

(2) Let a drop of a perfectly conducting ideal liquid
have a density ρ and surface tension coefficient σ. The
drop has a radius R and a charge Q. We assume that the
flow of the liquid (capillary vibrations) in the drop is
potential with a velocity potential ψ. The electrostatic
potential of the self-charge near the drop is φ. The shape
of the drop is assumed to be axisymmetric at any
(including initial) time instant. In the dimensionless
variables R = ρ = σ = 1, the equation for the drop sur-
face at an any time t has the form

(1)

The initial deformation of the shape of the drop is
given as a superposition of several modes,

(2)

and the initial velocity of all points on the surface is set
equal to zero:

(3)

where ∂t denotes partial derivative with respect to t.
The complete mathematical statement of the prob-

lem of charged drop capillary vibrations includes,
along with Eq. (1) for the drop surface and initial con-

F r ϑ t, ,( ) r 1– ξ ϑ t,( )– 0.= =

t 0: ξ ξ 0P0 ϑcos( )= = ξ1P1 ϑcos( )+

+ ε hmPm ϑcos( );
m Ω∈
∑

t 0: ∂tξ 0,= =
ditions (2) and (3), the following equations and condi-
tions [11, 12].

(i) The Laplace equations for the liquid velocity
potential and electric field potential:

(4)
(ii) boundedness conditions for the potential:

(5)

(6)
(iii) kinematic and dynamic boundary conditions

(7)

(8)

(iv) constancy condition for the volume of the drop:

(9)

(v) immovability condition for the center-of-mass of
the drop:

(10)

(vi) constancy condition for the total charge:

(11)

(vii) constancy condition for the electric potential
over the drop surface:

(12)

In expressions (4)–(12), p is the equilibrium pres-
sure in the drop; pq and pσ are the electric field pressure
and capillary pressure, respectively; pat is the atmo-
spheric pressure; n is the unit vector normal to the drop
surface; φS is the electric potential on the drop surface;
and ∆ is the Laplacian.

For convenience, we complement the set hm of con-
stants so that hm ≡ 0 at any m ∈  Ω .

(3) We will solve problem (1)–(12) by the method of
many scales [13]. For this purpose, we introduce three
different time scales Tm = εmt (m = 0, 1, 2) and represent
the desired parameters in the form of the expansions

(13)

(14)

∆ψ 0; ∆φ 0;= =

r 0: ψ 0;

r +∞: —φ 0;

r 1 ξ ϑ t,( ): 
dF
dt
-------+ 0;= =

∂tψ
1
2
--- —ψ( )2+ p pq pat pσ;––+=

r2 ϑsin rd ϑd ϕd

V

∫ 4π
3

------;=

V r ϑ ϕ 0, , r 1 ξ ; 0 ϑ π; 0 ϕ 2π≤ ≤ ≤ ≤+≤ ≤{ } ;=

rr2 ϑsin rd ϑd ϕd

V

→

∫ 0;=

r 1 ξ ϑ t,( ): n —φ Sd⋅
S

→

∫+ 4πQ;–= =

S r ϑ ϕ r, , 1 ξ ; 0 ϑ π; 0 ϕ 2π≤ ≤≤ ≤+={ } ;=

r 1 ξ ϑ t,( ): φ+ φS t( ).= =

φ r ϑ t, ,( ) εnφ n( ) r ϑ T0 T1 T2, , , ,( )
n 0=

3

∑ O ε4( ),+=

φS r t,( ) εnφS
n( ) r T0 T1 T2, , ,( )

n 0=

3

∑ O ε4( ),+=
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(15)

where φ(0) = Q/r and  = Q are zero-order solutions,
which correspond to the equilibrium (spherical) shape.

Substituting (13)–(15) into (1)–(12), we obtain
problems of different orders of smallness, which are
discussed in Appendix A.

Since Laplace equation (4) is linear, the liquid-
velocity and electric-field potentials of any order of
smallness are solutions to Laplace equations (1A),
(10A), and (19A); hence, in view of the boundedness
conditions, they can be written in the form

(16)

(17)

Note that in expression (16) summation starts with
n = 1, because, as is well known, the potential is deter-
mined accurate to an arbitrary function of time. Hence,

we may set  = 0.
At any time instant, a function describing the devia-

tion of the shape of the drop from spherical can be rep-
resented in the form of an expansion in Legendre poly-
nomials:

(18)

Substituting expressions (16)–(18) into Eqs. (1A)–
(9A) yields explicit dependences of first-order quanti-
ties on T0:

(19)

(20)

(21)

In expression (19), the amplitude factor (T1, T2)

and the nonlinear correction (T1, T2) to the fre-
quency are functions depending only on the time scales
T1 and T2.

ψ r ϑ t, ,( ) εnψ n( ) r ϑ T0 T1 T2, , , ,( )
n 1=

3

∑ O ε4( ),+=

ξ ϑ t,( ) εnξ n( ) ϑ T0 T1 T2, , ,( )
n 1=

3

∑ O ε4( );+=

φS
0( )

ψ m( ) r ϑ T0 T1 T2, , , ,( )

=  rnDn
m( ) T0 T1 T2, ,( )Pn ϑcos( ); m

n 1=

∞

∑ 1 2 3;, ,=

φ m( ) r ϑ T0 T1 T2, , , ,( )

=  
Fn

m( ) T0 T1 T2, ,( )
rn 1+

--------------------------------------Pn ϑcos( ); m
n 0=

∞

∑ 1 2 3., ,=

D0
m( )

ξ m( ) ϑ T0 T1 T2, , ,( )

=  Mn
m( ) T0 T1 T2, ,( )Pn ϑcos( ); m

n 0=

∞

∑ 1 2 3., ,=

Mn
1( ) T0 T1 T2, ,( )

=  an
1( ) T1 T2,( ) ωnT0 τn

1( ) T1 T2,( )+( );cos

Dn
1( ) T0 T1 T2, ,( ) ∂T0

Mn
1( ) T0 T1 T2, ,( )/n;=

Fn
1( ) T0 T1 T2, ,( ) QMn

1( ) T0 T1 T2, ,( ).=

an
1( )

τn
1( )
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When the problem in the first approximation in ini-
tial surface deformation is solved, the functions

(T1, T2) and (T1, T2) should be taken to be con-
stants that are determined from initial conditions (9A):

(22)

From expressions (22), it follows that the parame-

ters (T1, T2) are other than zero only if n ∈  Ω .

When the problem in the third-order approximation

in initial surface deformation is solved, (T1, T2) and

(T1, T2) as functions of T1 and T2 are found from the
condition that secular terms in the second- and third-
order problems, respectively, vanish in view of initial
conditions (9A).

Substituting expressions (16)–(21) into Eqs. (13A)–
(18A) and eliminating the secular terms, we find that

the functions (T1, T2) and (T1, T2) do not depend
on the time scale T1. The explicit dependences of sec-
ond-order quantities on the time scale T0 in view of (22)
are given by

(23)

(24)

(25)

where χm, , , Klmn, and αlmn are the coefficients

determined in Appendix B. The expressions for 

and  that satisfy initial conditions (18A) have the

an
1( ) τn

1( )

an
1( ) hn, τn

1( ) 0, n Ω.∈= =

an
1( )

an
1( )

τn
1( )

an
1( ) τn

1( )

M0
2( ) T0( )

am
1( )( )2 ωmT0( )cos

2

2m 1+
--------------------------------------------;

m Ω∈
∑–=

M1
2( ) T0( ) χmam

1( )am 1+
1( ) ωmT0( ) ωm 1+ T0( );coscos

m Ω∈
∑=

Mn
2( ) T0 T1,( ) an

2( ) T1( ) ωnT0 τn
2( ) T1( )+( )cos=

+
al

1( )am
1( )

2
---------------- λ lmn

+( ) ωl ωm+( )T0( )cos(
l m Ω∈,
∑

+ λ lmn
–( ) ωl ωm–( )T0( ) );cos

F0
2( ) 0; Fn

2( ) T0 T1 T2, ,( ) QMn
2( ) T0 T1,( )= =

+ Q lKlmnal
1( )am

1( ) ωlT0( ) ωmT0( ); n 1;≥coscos
l m Ω∈,
∑

Dn
2( ) T0 T1,( )

=  
1
n
--- ∂T0

Mn
2( ) T0 T1,( ) l l 1–( )Klmn α lmn–( )

l m Ω∈,
∑+





×
ωl

l
-----al

1( )am
1( ) ωlT0( ) ωmT0( )cossin





; n 1;≥

λ lmn
+( ) λ lmn

–( )

an
2( )

τn
2( )
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form

(26)

Substituting (16)–(21) and (23)–(25) into
Eqs. (22A)–(28A) and eliminating secular terms from

the solutions, we find that the functions (T2),

(T1), and (T1) are independent of the time scales
T1 and T2 and equal their initial values given by (22) and

(26). For the function (T2), we have

(27)

The coefficients of expansions (16)–(18) are defined
as

an
2( ) hlhm

2
---------- λ lmn

+( ) λ lmn
–( )+( ), τn

2( )

l m, Ω∈
∑– 0.= =

an
1( )

an
2( ) τn

2( )

τn
1( )

τn
1( ) T2( ) T2bn=

=  
T2

2ωn

---------
hk

2Ξn

2 2k 1+( )
-----------------------

k Ω∈
∑ hn

2 2 n 1–( )ωn
2 Ξn+( )

4 2n 1+( )
-------------------------------------------------+





–
χn 1– hn 1–

2

4
---------------------- βn 1– n 1 n 1– n, , , ,

2 +( ) βn 1– n 1 n 1– n, , , ,
2 –( )+( )

–
χnhn

2

4
---------- βn 1+ n 1+ 1 n n, , , ,

1 –( ) βn 1+ n 1+ 1 n n, , , ,
2 +( )+( )

–
hk

2

4
----- Hnkkn

1 –( ) +( ) Hknkn
2 +( ) +( ) Hknkn

2 –( ) –( ) 1 δkn–( )+ + +[
k Ω∈
∑

× Hkknn
1 –( ) +( ) Hkknn

2 +( ) +( ) Hnkkn
2 –( ) –( )+ +( ) ]





.

M0
3( ) T0( )

2Mk
2( ) T0( )

2k 1+
------------------------hk ωkT0( )cos

k Ω∈
∑–=

–
Kkmlhkhmhl

3 2l 1+( )
-------------------------- ωkT0( ) ωmT0( ) ωlT0( );coscoscos

k m l, , Ω∈
∑

M1
3( ) T0( ) 6

5
---M1

2( ) T0( )h2 ω2T0( )cos–=

– 3 KkmlMk
2( ) T0( )hm ωmT0( )cos

k 0=

∞

∑
m Ω∈
∑

– KkmgKgl1hkhmhl ωkT0( )cos
k m l, , Ω∈
∑

g 0=

∞

∑
× ωmT0( ) ωlT0( );coscos
(28)

Mn
3( ) T0( )

hnhk
2 2 n 1–( )ωnωk Ξn–( )

16 2k 1+( )ωk ωn ωk+( )
------------------------------------------------------------

k Ω∈
∑–=

× ωn 2ωk+( )T0( )cos ωnT0( )cos–( )

–
hnhk

2 1 δnk–( ) 2 n 1–( )ωnωk Ξn+( )
16 2k 1+( )ωk ωn ωk–( )

----------------------------------------------------------------------------------
k Ω∈
∑
× ωn 2ωk–( )T0( )cos ωnT0( )cos+( )

+
χ lhkhlhl 1+

4
-------------------------

l Ω∈
∑

k n 1–=

n 1+

∑

×
βk l 1+ 1 l n, , , ,

1 +( ) ψk l l 1+, ,
+( ) +( ) T0( )cos ωnT0( )cos–( )

ωn
2 ωk ωl ωl 1++ +( )2–( )

---------------------------------------------------------------------------------------------------




+
βk l 1+ 1 l n, , , ,

1 –( ) Dk l 1+,
ln ψk l l 1+, ,

+( ) –( ) T0( )cos ωnT0( )cos–( )
ωn

2 ωk ωl ωl 1+–+( )2–( )
-------------------------------------------------------------------------------------------------------------------

+
βk l 1+ 1 l n, , , ,

2 +( ) Dl n 1–,
kl

Dk l 1+,
ln

ψk l l 1+, ,
–( ) –( ) T0( )cos ωnT0( )cos–( )

ωn
2 ωk ωl ωl 1+––( )2–( )

------------------------------------------------------------------------------------------------------------------------------

+
βk l 1+ 1 l n, , , ,

2 –( ) Dl n 1–,
kl ψk l 1 l,+,

+( ) –( ) T0( )cos ωnT0( )cos–( )
ωn

2 ωk ωl ωl 1++–( )2–( )
-------------------------------------------------------------------------------------------------------------------





–
hkhmhl λ lmg

+( ) λ lmg
–( )+( )

4
-----------------------------------------------

k m l, , Ω∈
∑

g 2=

∞

∑

×
Hkgn

0 +( ) ωk ωg+( )T0( )cos ωnT0( )cos–( )
ωn

2 ωk ωg+( )2–
--------------------------------------------------------------------------------------------





+
Hkgn

0 –( ) ωk ωg–( )T0( )cos ωnT0( )cos–( )
ωn

2 ωk ωg–( )2–
--------------------------------------------------------------------------------------------





+
hkhmhl

4
---------------

Hkmln
1 +( ) –( ) ψklm

+( ) +( )T0( )cos ωnT0( )cos–( )

ωn
2 ωk ωl ωm+ +( )2–

---------------------------------------------------------------------------------------




k m l, , Ω∈
∑

+
Hkmln

1 –( ) +( )Dlm
kn Dkm

ln ψklm
+( ) –( )T0( )cos ωnT0( )cos–( )

ωn
2 ωk ωl ωm–+( )2–

------------------------------------------------------------------------------------------------------------

+
Hkmln

2 +( ) +( )Dkl
mnDkm

ln ψklm
–( ) –( )T0( )cos ωnT0( )cos–( )

ωn
2 ωk ωl– ωm–( )2–

-------------------------------------------------------------------------------------------------------------

+
Hkmln

2 –( ) –( )Dkl
mnDml

kn ψklm
+( ) –( )T0( )cos ωnT0( )cos–( )

ωn
2 ωk ωl– ωm+( )2–

------------------------------------------------------------------------------------------------------------




;

F0
3( ) T0( ) Q

k 1+
2l l+
------------ α kml

k k 1+( )
2

--------------------Kkml– 
 

k m l, , Ω∈
∑=

× hkhmhl ωkT0( ) ωmT0( ) ωlT0( );coscoscos
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(29)

Fn
3( ) T0( ) QMn

3( ) T0( ) k 1+( )KkmnFk
2( ) T0( )

k 1=

∞

∑
m Ω∈
∑+=

× hm ωmT0( )cos Q k 1–( )KkmnMm
2( ) T0( )

m 0=

∞

∑
m Ω∈
∑+
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× hk ωkT0( )cos Q
k k 3+( )

2
--------------------KkmgKgln

k m l, , Ω∈
∑

g 0=

∞

∑–

× hkhmhl ωkT0( ) ωmT0( ) ωlT0( ); n 1;≥coscoscos
Dn
3( ) T0 T2,( ) 1

n
---∂T0

Mn
3( ) T0( )

1 δ1n–
n

----------------hnbn ωnT0( )sin–=

–
1
n
--- k k 1–( )Kkmn α kmn–( )Dk

2( ) T0( )hm ωmT0( )cos
k 1=

∞

∑
m Ω∈
∑

(30)

Here, Ξn, , , , , ,

, and  are the coefficients given in Appendix B
and δkn is the Kronecker delta.

Substituting (18) into (1) yields an expression for
the drop generatrix:

(31)

(4) Prior to analyzing expression (31), we note that
the amplitudes of deviation of the drop surface from the
equilibrium (spherical) shape are proportional to the
sums (see expressions (23) and (28))

where the coefficients Kkmg are other than zero only if
|k – m| ≤ g ≤ |k + m| and k + m + g is an even number.

Thus, if only one mode is initially excited (that is,
Ω = {n1}), only even modes with numbers from the
range 0 ≤ g ≤ 2n1 are excited in the second order of
smallness. In the third order of smallness, even modes
from the range 0 ≤ n ≤ 3n1 and odd modes from the
range 1 ≤ n ≤ 3n1 are excited when n1 is even and odd,
respectively. Thus, with even n1, the vibration of the
surface consists of even modes from the range [0, 3n1];
with odd n1, it consists of all the modes from the range
[0, 2n1] and odd modes from the range [2n1 + 1, 3n1].

+
1
n
--- k k 1–( ) α kmn–( )Mm

2( ) T0( )ωkhk ωkT0( )sin
m 0=

∞

∑
k Ω∈
∑

+
1
n
--- k k 1–( )

2
-------------------Kkmg α kmg– 

  k 2–( )Kglnωk

g 0=

∞

∑
k m l, , Ω∈
∑

× hkhmhl ωkT0( ) ωmT0( ) ωlT0( ), n 1.≥coscossin

βkmgln
1 ±( ) βkmgln

2 ±( ) Hkgn
0 ±( ) Hkmln

1 ±( ) ±( ) Hkmln
2 ±( ) ±( )

ψkml
±( ) ±( ) Dlm

kn

r ϑ T0 T2, ,( ) 1 ε Mn
1( ) T0 T2,( )Pn ϑcos( )

m Ω∈
∑+=

+ ε2 Mn
2( ) T0( ) εMn

3( ) T0( )+( )Pn ϑcos( ).
n 0=

∞

∑

Mg
2( ) Kkmg, Mn

3( ) KkmgKgln,
k m l, , Ω∈
∑

g 0=

∞

∑∼
k m, Ω∈
∑∼
If two modes with the numbers n1 and n2 are initially
excited (that is, Ω = {n1, n2}), a set of modes involved
in shaping the drop expands still further.

If n1 and n2 are even numbers, the spectrum of sec-
ond-order modes comprises only even modes with indi-
ces from the range 0 ≤ g ≤ max{2n1, 2n2}, while the
third-order spectrum contains even modes with indices
from the range 0 ≤ n ≤ max{3n1, 3n2}. In other words,
the drop surface is shaped by even modes from the
range [0, max{3n1, 3n2}].

If the numbers n1 and n2 of initially excited modes
are odd, even modes with numbers from the range
0 ≤ g ≤ max{2n1, 2n2} are excited in the second order
of smallness. In the third order of smallness, only odd
modes with numbers satisfying the condition 1 ≤ n ≤
max{3n1, 3n2} shape the drop surface. Accordingly, the
surface is shaped by all modes from the range
[0, max{2n1, 2n2}] and by modes with odd numbers
from the interval [max{2n1 + 1, 2n2 + 1}, max{3n1,
3n2}].

If the numbers of initially excited modes are such
that n1 is even and n2 is odd, the second-order spectrum
comprises modes with even numbers from the range
0 ≤ g ≤ max{2n1, 2n2} and odd modes with numbers
satisfying the condition |n1 – n2| ≤ g ≤ n1 + n2. The third-
order spectrum comprises even modes with numbers
from the range 0 ≤ n ≤ max{3n1, n1 + 2n2} and odd
modes with numbers from 1 ≤ n ≤ max{3n2, 2n1 + n2}.
Eventually, the drop surface is shaped by even modes
with numbers from the range [0, max{3n1, n1 + 2n2}]
and by odd modes with numbers from the interval
[1, max{3n2, 2n1 + n2}]. It is seen that taking into
account quantities of the third order of smallness in ini-
tial deformation considerably expands the spectrum of
modes shaping the drop surface.

Also, taking into account quantities of the third
order of smallness leads to a nonlinear shift of the fre-
quencies of initially excited modes that is proportional
to the initial deformation amplitude squared ε2. The
sign of a frequency correction is always negative, and
its value depends considerably on the spectrum of
modes shaping the drop surface at the initial time



1516 ZHAROV et al.
0 1
–20

–10

2 3 W

5

2

(c)

–5

–15

–5

–3

3

2

(a)

–2

–4

–1

bn

–15

–10

4

2
(b)

–5

4

0 1
–25

–10

2 3 W

6

2

(d)

–5

–15

–20

Fig. 1. Coefficient bn as a function of the Rayleigh parameter W = Q2/4π for different pairs of initially excited modes: (a) the second
and third modes, (b) the second and fourth modes, (c) the second and fifth modes, and (d) the second and sixth modes. The curve
numbers coincide with the numbers of the initially excited modes.
instant and on the charge of the drop. For example, if
two modes, one of which is the fundamental mode n =
2, are initially excited, frequency corrections increase
compared with the situation of single-mode initial
deformation [4]. Figure 1 plots frequency corrections
for different pairs of modes excited at the initial time
instant vs. the dimensionless parameter W. It is seen
that the correction to the frequency of the fundamental
mode depends on which of the modes is excited
together with it at the initial time instant: the correction
to the fundamental mode increases as the number of the
mode excited simultaneously with the fundamental one
grows. If it is remembered that the drop loses stability
when the square of the fundamental mode frequency
goes through zero as the parameter W grows [3, 9], it
becomes clear that allowance for the nonlinear correc-
tion to the fundamental mode frequency reduces the
critical value of the parameter W according to the rela-

tionship  + 2ε2b2 = 0 [9]. The higher the mode that
is excited simultaneously with the fundamental one at
the initial time instant, the larger the nonlinear correc-
tion to the critical condition for drop instability that fol-
lows from the above relationship.

A discontinuity of the curve for the correction to the
fourth-mode frequency in Fig. 1b is associated with
internal nonlinear resonant interaction between the
fourth and sixth modes [4, 8, 9].

ω2
2
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Numerical analysis of expression (31) shows that
surface elements adjacent to the symmetry axis deviate
from equilibrium to the greatest extent (Figs. 2, 3). This
is because individual modes add up only when ϑ  is
close to 0 and π. Away from these values, a smoother
wavy surface is observed. This tendency is enhanced as
the numbers of initially excited modes grow.

The electric field strength on the free surface of the
drop is given by

(32)

E En
0( ) ε En

1( )Pn ϑcos( )
m Ω∈
∑+=

+ ε2 En
2( ) εEn

3( )+( )Pn ϑcos( );
n 0=

∞

∑

En
0( ) Q 2 πW ; En

1( ) Q n 1–( )Mn
1( );= = =

En
2( ) n 1+( )Fn

2( ) 2QMn
2( )–=

+ Q 3 m 1+( ) m 2+( )–( )Kkmn[
k m Ω∈,
∑

+ α kmn/2 ]hkhm ωkT0( ) ωmT0( );coscos

En
3( ) n 1+( )Fn

3( ) 2QMn
3( )– α kmn m 1+( )–(

k Ω∈
m 0=

∞

∑+=

× m 2+( )Kkmn)hk ωkT0( )Fm
2( ) Q k 4+( ) k 1–( )

m 0=
k Ω∈

∞

∑–cos

–1.8 –0.9 0 0.9 1.8

–0.9

0

0.9

1.8

4 2 3 1 4 2 1 3

Fig. 2. Drop generatrix at the initial excitation of the second
and third modes for ε = 0.3, W = 3.7, and h2 = h3 = 0.5. t =
(1) 0, (2) 1, (3) 3, and (4) 4.
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Calculation by (32) shows that the self-charge field
in the vicinity of the nonlinearly vibrating drop
increases greatly at the poles when the drop is extended
(Figs. 4, 5) and may trigger a corona discharge. This
circumstance is of interest in the context of the initia-
tion of lightning discharge [14, 15]. According to cur-
rent concepts, lightning may originate from a corona
near a large water-covered hailstone or water drop fall-
ing in a cloud. This mechanism of lightning initiation
has not gained recognition, since the self-charge of
drops that is detected in full-scale measurements (in
storm clouds) is too small for a corona to be initiated at
an undisturbed drop [16]. The fact that the electrostatic
field at the poles of a nonlinearly vibrating drop is con-
siderably enhanced allows one to consider the problem
discussed from a new standpoint.

The calculations shown in Figs. 2–5 were made in
the absence of mode resonant interaction. This issue
calls for special consideration [17]. Nevertheless, reso-
nance energy exchange between modes is a possibility.

It is easy to check that expressions (28) for third-

order nonlinear corrections (t) to the vibration
amplitudes have a resonance form: their denominators
vanish under certain conditions. All resonances other
than those obtained in the quadratic approximation
[4, 8, 9] correspond to the four-mode interaction
between drop capillary vibrations when the frequencies

× Kkmnhk ωkT0( )Mm
2( ) Q k 1+( ) k 2+( )([

g 0=

k m n, , Ω∈

∞

∑+cos

× k 3+( )/2 4 )Kkmg– l 1+( )/2 k l+ +( )α kmg ]Kgln–

× hkhmhl ωkT0( ) ωmT0( ) ωlT0( ).coscoscos

Mn
3( )

1.8

0.6

–0.6

–1.8 –0.6 0.6 1.8

4 3 2 1

1

2

3
4

Fig. 3. Drop generatrix at the initial excitation of the sixth
and seventh modes at ε = 0.3, W = 3.4, and h6 = h7 = 0.5. t =
(1) 0, (2) 0.5, (3) 1, and (4) 2.
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of resonantly interacting modes are related to each
other by one of the relationships

Among the many internal nonlinear resonances tak-
ing place in the charged drop, those where the funda-
mental mode (n = 2) amplitude increases by means of
energy transfer from higher modes at Rayleigh param-
eters W < 4 (which are subcritical in terms of self-
charge) are of greatest interest for the problem of light-
ing initiation in storm clouds [14, 15]. According to
second-order calculations [6, 8, 17, 18], when only
three-mode resonances are realized, the lowest mode
that gains energy from higher modes via resonant inter-
action is the third mode. In third-order calculations,
when four-mode interaction occurs, the second mode

ωn ωk ωl ωm±±± 0.=

0

6

12

En

3

1

2

4

4

2

3

1

π/4 π/2 3π/4 ϑ

Fig. 4. Electric field strength E near the drop surface as a
function of the polar angle ϑ for the same parameter values
as in Fig. 2.

Numbers of modes involved in resonances and the associated
Rayleigh parameter

n l k m W

2 20 8 17 1.98141

2 29 12 24 1.39884

2 30 17 21 0.460245

2 9 6 6 0.0460245

2 17 11 11 1.35905

2 25 16 16 1.42339

2 28 18 18 2.9609

3 23 15 15 2.18618

3 28 18 18 0.450789

4 26 17 17 0.577818
also may resonantly build up. For example, if

more than ten four-mode resonances take place in the
range of mode numbers 2 ≤ n, k, l, m ≤ 30 and seven of
them include the second mode. The first ten of the pos-
sible four-mode resonances are listed in the table. It is
seen that the first three are truly quadrimodal, while the
rest of them are degenerate: one of the modes is
involved in four-mode interaction twice.

CONCLUSIONS

Considering the initial multimode deformation of
the drop in the third-order approximation in deforma-
tion amplitude allows one to obtain nonlinear correc-
tions to the capillary vibration frequencies of the drop.
These corrections depend considerably on the charge of
the drop and on the spectrum of initially excited modes
and, in turn, generate nonlinear corrections to the criti-
cal Rayleigh instability parameter. In calculating the
generatrix of a nonlinearly vibrating drop, taking
account of the third-order quantities makes it possible
to discover the tendency of the drop to extend along its
symmetry axis. This is an indirect indication that a large
number of modes shape emitting protrusions on the
drop surface [19].

APPENDIX A

Separation of Problems of Different Orders 
of Smallness

Substituting expansions (13)–(15) into the set of
Eqs. (1)–(12) and collecting terms proportional to ε1,

ωn ωk ωl– ωm–+ 0; W 4,≤=

3π/4π/2π/4 ϑ
0

5

10

15

En

4

2

3

1
3

2

1

4

Fig. 5. Electric field strength E near the drop surface as a
function of the polar angle ϑ for the same parameter values
as in Fig. 3.
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one readily obtains the first-order problem:

(1A)

(2A)

(3A)

(4A)

(5A)

(6A)

(7A)

(8A)

(9A)

Terms proportional to ε2 state the second-order
problem:

(10A)

(11A)

(12A)

(13A)

(14A)

∆Ψ 1( ) 0; ∆φ 1( ) 0;= =

r 0: ψ 1( ) 0;

r +∞: ∇φ 1( ) 0;

r 1: ∂T0
ξ 1( ) ∂rψ

1( );= =

∂T0
ψ 1( ) 1

4π
------∂rφ

0( ) ∂rφ
1( ) ξ 1( )∂rrφ

0( )+( )=

+ 2ξ 1( ) ∆Ωξ 1( );+

ξ 1( ) ϑcos( )d

1–

1

∫ 0; ξ 1( )P1 ϑcos( )d

1–

1

∫ 0;= =

∂rφ
1( ) ξ 1( ) ∂rrφ

0( ) 2∂rφ
0( )+( )+{ } ϑcos( )d

1–

1

∫ 0;=

φ 1( ) ξ 1( )∂rφ
0( )+ φS

1( ) t( );=

t 0:ξ 1( ) ε hmPm ϑcos( ); ∂T0
ξ 1( )

m Ω∈
∑ 0.= = =

∆ψ 2( ) 0; ∆φ 2( ) 0;= =

r 0: ψ 2( ) 0;

r +∞: ∇φ 2( ) 0;

r 1:=

∂T0
ξ 2( ) ∂T1

ξ 1( )+ ∂rψ
2( ) ξ 1( )∂rrψ

1( ) ∂ϑξ 1( )∂ϑψ 1( );–+=

∂T0
ψ 2( ) ∂T1

ψ 1( ) ξ 1( )∂rT0
ψ 1( ) 1

2
--- ∂rψ

1( )( )2
+ + +

+
1
2
--- ∂ϑψ 1( )( )2 1

8π
------ 2ξ 2( )∂rφ

0( )∂rrφ
0( ){=

+ ξ 1( )( )2 ∂rrφ
0( )( )2 ∂rrrφ

0( )∂rφ
0( )+( )

+ ∂ϑφ 1( )( )2 ∂rφ
1( )( )2

2∂rφ
2( )∂rφ

0( )+ +

+ 2ξ 1( ) ∂rrφ
0( )∂rφ

1( ) ∂rrφ
1( )∂rφ

0( )+( ) }

+ 2ξ 2( ) ∆Ωξ 2( ) 2 ξ 1( )( )2
– 2ξ 1( )∆Ωξ 1( );–+
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(15A)

(16A)

(17A)

(18A)

The third-order problem is defined by terms propor-
tional to ε3 and has the form

(19A)

(20A)

(21A)

(22A)

ξ 2( ) ξ 1( )( )2
+( ) ϑcos( )d

1–

1

∫ 0;=

2ξ 2( ) 3 ξ 1( )( )2
+( )P1 ϑcos( )d

1–

1

∫ 0;=

∂rφ
2( ) ξ 1( ) ∂rrφ

1( ) 2∂rφ
1( )+( ) ξ 2( ) ∂rrφ

0( ) 2∂rφ
0( )+( )-+ +





1–

1

∫

+ ξ 1( )( )2 1
2
---∂rrrφ

0( ) 2∂rrφ
0( ) ∂rφ

0( )+ + 
  ∂ϑξ 1( )∂ϑφ 1( )–





× d ϑcos( ) 0;=

φ 2( ) ξ 1( )∂rφ
1( ) ξ 2( )∂rφ

0( )+ +

+
1
2
--- ξ 1( )( )2∂rrφ

0( ) φS
2( ) t( );=

t 0:=

ξ 2( ) = 
hmP0 ϑcos( )

2m 1+
------------------------------

m Ω∈
∑–

–
3
2
--- hlhmKlmlP1 ϑcos( );

l m Ω∈,
∑

∂T0
ξ 2( ) ∂T1

ξ 1( )+ 0.=

∆ψ 3( ) 0; ∆φ 3( ) 0;= =

r 0: ψ 3( ) 0;

r +∞: ∇φ 3( ) 0;

r 1:=

∂T0
ξ 3( ) ∂T1

ξ 2( ) ∂T2
ξ 1( )+ + ∂rψ

3( ) ∂ϑξ 2( )∂ϑψ 1( )–=

– ∂ϑξ 1( )∂ϑψ 2( ) ξ 2( )∂rrψ
1( ) ξ 1( ) ∂ϑξ 1( ) 2∂ϑψ 1( )((+ +

– ∂rϑψ 1( ) ) ∂rrψ
2( ) ) 1

2
--- ξ 1( )( )2∂rrrψ

1( );+ +

∂T0
ψ 3( ) ∂T2

ψ 1( ) ∂T1
ψ 2( ) ξ 1( )∂rT1

ψ 1( ) ∂ϑψ 1( )∂ϑψ 2( )+ + + +

+ ∂rψ
1( )∂rψ

2( ) ξ 2( )∂rT0
ψ 1( ) ξ 1( ) ∂rT0

ψ 2( )(+ +

+ ∂ϑψ 1( ) ∂rϑψ 1( ) ∂ϑψ 1( )–( ) ∂rψ
1( )∂rrψ

1( ) )+

+
1
2
--- ξ 1( )( )2∂rrT0

ψ 1( ) 1
8π
------ 2ξ 3( )∂rφ

0( )∂rrφ
0( )---





=
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(23A)

(24A)

(25A)

(26A)

(27A)

+ ξ 1( )( )3 ∂rrφ
0( )∂rrrφ

0( ) 1
3
---∂rφ

0( )∂rrrrφ
0( )+ 

 

+ 2 ∂ϑφ 1( )∂ϑφ 2( ) ∂rφ
1( ) ξ 2( )∂rrφ

0( ) ∂rφ
2( )+( )+(

+ ∂rφ
0( )∂rφ

3( ) ξ 2( )∂rφ
0( )∂rrφ

1( ) )+

+ 2ξ 1( ) ξ 2( ) ∂rrφ
0( )( )2 ∂rφ

0( )∂rrrφ
0( )+( ) ∂rrφ

0( )∂rφ
2( )+(

+ ∂ϑφ 1( ) ∂rϑφ 1( ) ∂ϑφ 1( )–( ) ∂rφ
1( )∂rrφ

1( )+

+ ∂rφ
0( )∂rrφ

2( ) ) ξ 1( )( )2 ∂rrrφ
0( )∂rφ

1( ) 2∂rrφ
0( )∂rrφ

1( )+(+

---+ ∂rφ
0( )∂rrrφ

1( ) )




2 ∆Ω+( )ξ 3( ) 2ξ 1( ) ξ 1( )( )2(+ +

– 2 ∆Ω+( )ξ 2( ) ) 2ξ 2( )∆Ωξ 1( )– 3 ξ 1( )( )2∆Ωξ 1( )+

– ∂ϑξ 1( )( )2∂ϑϑ ξ 1( ) 1
2
--- ∂ϑξ 1( )( )2∆Ωξ 1( );–

3ξ 3( ) 6ξ 1( )ξ 2( ) ξ 1( )( )3
+ +( ) ϑcos( )d

1–

1

∫ 0;=

ξ 3( ) 3ξ 1( )ξ 2( ) ξ 1( )( )3+ +( )P1 ϑcos( ) ϑcos( )d

1–

1

∫  = 0;

∂rφ
3( ) ξ 3( ) ∂rrφ

0( ) 2∂rφ
0( )+( ) ξ 2( ) ∂rrφ

1( ) 2∂rφ
1( )+( )+ +





1–

1

∫

+ ξ 1( )( )3 1
6
---∂rrrrφ

0( ) ∂rrrφ
0( ) ∂rrφ

0( )+ + 
 

+ ξ 1( )( )2 1
2
---∂rrrφ

1( ) 2∂rrφ
1( ) ∂rφ

1( )+ + 
 

+ ξ 1( ) ξ 2( ) ∂rrrφ
0( ) 4∂rrφ

0( ) 2∂rφ
0( )+ +( ) 2∂rφ

2( )+(

+ ∂rrφ
2( ) ∂ϑξ 1( )∂rϑφ 1( )– ) ∂ϑξ 2( )∂ϑφ 1( )–

---– ∂ϑξ 1( )∂ϑφ 2( )





d ϑcos( ) 0;=

φ 3( ) ξ 1( )∂rφ
2( ) ξ 2( )∂rφ

1( ) ξ 3( )∂rφ
0( ) 1

2
--- ξ 1( )( )2∂rrφ

1( )+ + + +

+ ξ 1( )ξ 2( )∂rrφ
0( ) 1

6
--- ξ 1( )( )3∂rrrφ

0( )+ φS
3( ) t( );=

t 0: ξ 3( ) hkhmhl

3 2l 1+( )
----------------------KkmlP0 ϑcos( )

k m l, , Ω∈
∑–= =
(28A)

Here, Kmln = ( )2 and  are the Clebsch–Gor-
dan coefficients [20].

APPENDIX B

Expressions for the Coefficients of the Problem

– 
9
5
---h2 hkhmKkml

k m Ω∈,
∑




+ hkhmhlKkmgKgl1

k m l, , Ω∈
∑

g 0=

∞

∑ 



P1 ϑcos( );

∂T0
ξ 3( ) ∂T1

ξ 2( ) ∂T2
ξ 1( )+ + 0.=

Cm0l0
n0 Cm0l0

n0

Hkmln
1 +( ) –( ) βkmgln

1 +( ) λ lmg
+( )

g 2=

∞

∑ µkmgln
1 –( )

g 1=

∞

∑ µkmgln
0 –( ) ;

g 0=

∞

∑+ +=

Hkmln
1 –( ) +( ) βkmgln

1 –( ) λ lng
–( )

g 2=

∞

∑ µkmgln
1 +( )

g 1=

∞

∑ µkmgln
0 +( ) ;

g 0=

∞

∑+ +=

Hkmln
2 +( ) +( ) βkmgln

2 +( ) λ lmg
+( )

g 2=

∞

∑ µkmgln
1 +( )

g 1=

∞

∑ µkmgln
0 +( ) ;

g 0=

∞

∑+ +=

Hkmln
2 –( ) –( ) βkmgln

2 –( ) λ lng
–( )

g 2=

∞

∑ µkmgln
1 –( )

g 1=

∞

∑ µkmgln
0 –( ) ;

g 0=

∞

∑+ +=

Hmgn
0 +( ) = Πmgn

0 Πmgn
1 ωmωg– Πmgn

2 ωg
2–( ) λmmg

+( ) λmmg
–( )+( );

Hmgn
0 –( ) = Πmgn

0 Πmgn
1 ωmωg Πmgn

2 ωg
2–+( ) λmmg

+( ) λmmg
–( )+( );

βkmgln
1 +( ) Πkgn

0   Πkgn
1 ωk ωl ωm+( )–  – Πkgn

2 ωl ωm+( )2;=

βkmgln
1 –( ) Πkgn

0   Πkgn
1 ωk ωl ωm–( )–  – Πkgn

2 ωl ωm–( )2;=

βkmgln
2 +( ) Πkgn

0 Πkgn
1 ωk ωl ωm+( ) – Πkgn

2 ωl ωm+( )2;+=

βkmgln
2 –( ) Πkgn

0 Πkgn
1 ωk ωl ωm–( ) – Πkgn

2 ωl ωm–( )2;+=

µkmgln
1 –( ) Λkmgln

1 Γ kmgln
1 ωmωk;–=

µkmgln
1 +( ) Λkmgln

1 Γ kmgln
1 ωmωk;+=

µkmgln
0 –( ) Λkmgln

0 Γ kmgln
0 ωmωk;–=

µkmgln
0 +( ) Λkmgln

1 Γ kmgln
0 ωmωk;+=

Λkmgln
0 1

2k
------ Kgln α kmg kn l 3l2 2 k 2+( )W–+( )(({=

+ 2 k 2–( )ωk
2 ) Kkmg kn 4 6k k 1+( )–((+

+ k3 2 m 1+( ) m 2+( )– k2 n 9–( )–(
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– k 3n 2m m 3+( ) 22–+( ))W) k 1–( )k k n– 2–( )ωk
2 ))–

– 2knα kmg 2l 4ν– 1+( )Kg l 2ν– n, , } ;
ν 1=

l/2[ ]

∑

Λkmgln
1  = g n– 1–( )Kgln αgln/g–( ) m 1–( )Kkmg α kmg/m–( )

× ωm
2 Wnk g 1+( ) l n g– 2–+( )Kgln αgln+( )Kkmg;+

Γ kmgln
0 k 1–( )( k 2 n 1+( )–( )Kkmg/2=

– k 1–( ) m n+( ) m–( )α kmg/ km( ) )Kgln

+ k 1–( ) k 2–( )Kklg/2 k 2–( )α klg/k–( )Kgmn;

Γ kmgln
1 g n– 1–( )Kgkn n k+( )αgkn/ kg( ) )–(–=

× m 1–( )Klmg α lmg/m–( ) g n– 1–( )Kgln αgln/g–( )–

× m 1–( )Kkmg α kmg/m–( );

Πkmn
0  = ωk

2 n k– 1+( ) 2kn k 1+( ) 2mn m 1+( ) 4n–+ +(
+ nW n k– 5–( ) k 1–( ) m 1+( ) k n m– 2–+( )+( ))Kkmn

+ ωk
2/k nW+( )α kmn;

Πkmn
1  = m k n– 2–+( )Kkmn n k m+ +( )α kmn/ mk( );–

Πkmn
2 m n– 1–( )Kkmn α kmn/m;–=

Ξk ωk
2 2k2 k 1+( ) 4k– 5k k 1–( )W ;–+=

ψkml
+( ) +( ) ωk ωm ωl, ψkml

+( ) –( )+ + ωk ωm ωl;–+= =

ψkml
–( ) –( ) ωk ωm– ωl;–=

λmln
±( ) γmln ωmωlηmln±( )/ ωn

2 ωm ωl±( )2–( );=

αmln Cm0l0
n0 Cm 1–( )l1

n0 m m 1+( )l l 1+( );–=

γmln = Kmln ωm
2 n m– 1+( ) 2n l l 1+( ) 1–( ) l m 1+( )(+ +[

– m 2m 2n– 7+( ) 3 )nW /2 ] α mln ωm
2 /m nW /2+[ ] ;+ +

ηmln Kmln n/2 m– 1+( ) αmln 1 n/ 2l( )+( )/m;+=

Dlm
kn 1 δlmδkn.–=
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Abstract—Transition (molecular–viscous) isothermal channel flow of rarefied gases is considered. Present-day
engineering physical models of transition gas flow and methods of simulation are analyzed and verified in terms
of the kinetic theory on the micro- and macrolevels. © 2003 MAIK “Nauka/Interperiodica”.
Analysis of evacuation under a medium vacuum,
which may be considered as a division of isothermal
channel dynamics of rarefied gas, presents considerable
difficulties. The basic problem in the description of the
transition channel flow of rarefied gases is to match the
random walk of molecules in the molecular regime
with the laminar flow in the viscous regime.

The problem of qualitative and quantitative analysis
of the transition flow of rarefied gas in the molecular–
viscous range was stated by Knudsen and other scien-
tists as early as 1910.

The available models of rarefied gas transition flow
are based on experimental data for flows in openings,
long rectangular ducts, or circular pipes. The choice of
such configurations was dictated by the fact that, in the
case of openings, interaction of the gas with the metal
surface can be neglected, while for long channels,
boundary conditions may be known or given. Numeri-
cal solutions to the Boltzmann equation with a colli-
sional term that were obtained for Knudsen numbers
Kn < 100 coincide with measurements within 5%. The
hydraulic conductivity (hereafter, conductivity for
brevity) of openings and short pipes increases mono-
tonically with average pressure Pav throughout the tran-
sition flow range [1–6] (see Fig. 1, where Jmv is the ratio
of the conductivities in the molecular–viscous and
molecular regimes). At the boundary between the
molecular–viscous and viscous regimes (Kn ≅  0.01),
the conductivities of an opening, short pipe, and long
pipe of equal diameter tend to the same value (Figs. 2
and 3, where δ = 1/Kn) [6]. As Kn decreases from 100
to 1, the conductivity of long pipes decreases and then,
with Kn diminishing from 1 to 0.01, monotonically
rises (the well-known Knudsen paradox [6]), as demon-
strated in Fig. 3.

The presence of a minimal conductivity for long
channels and its absence in the case of openings has
become a key question in developing a physical model
of flow for arbitrary configurations of vacuum systems.
A change of boundary conditions, even in simple cases,
1063-7842/03/4812- $24.00 © 21522
created insurmountable obstacles in taking the collision
integral by integral kinetic techniques [4–7].

Today, the dynamics of rarefied gas is usually ana-
lyzed by simulating the physical process of momentum
transfer for determinate molecules. It is assumed that
the motion of molecules in rarefied gases is a random
process obeying the laws of statistical physics. Random
quantities and statistical errors of calculation are gener-
ated by the Monte Carlo method.

The fundamental difficulty in simulating the molec-
ular–viscous regime is that a model must be adequate
for the actual physical process of molecule collision
both in rarefied flows and in continuous flows where the
gas concentration reaches several moles. Another prob-
lem is that our knowledge of the physics of a medium
vacuum and the behavior (interaction) of determinate
molecules on the microlevel is approximate and super-
ficial. It is difficult to simulate random quantities of a
physical process, such as the velocity, collision rate,

1 10
0

15

100 1000

40
35
30
25
20

10
5

Jmv

Pav, Pa

Fig. 1. Dimensionless conductivity Jmv vs. average pressure
Pav for a 140-mm-long circular step adapter with inlet and
outlet diameters of 400 mm and 25 mm, respectively, in the
molecular–viscous regime. Solid line, experimental data;
symbols, calculation by the method of probable directions.
003 MAIK “Nauka/Interperiodica”
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and direction of motion of molecules, especially in
many-particle collisions.

To simulate the flow in the near-molecular range,
one may apply the Monte Carlo method (the probe par-
ticle method) if not only collisions with the inner sur-
face but also primary intermolecular collisions are con-
sidered [4–6]. However, with Kn < 10, the analysis can-
not be restricted to primary collisions and becomes
much more complicated [7].

A new concept of the probe particle method was
suggested by Haviland [8]. In his modification, the tra-
jectory of one particle through the entire flow field is
traced in view of pair elastic collisions with other par-
ticles distributed over the flow field. Uncertainty in the
molecule distribution over the flow field somewhat
detracts from the merit of this approach. Haviland’s
algorithm was applied in [9] to calculate the conductiv-
ity of short glass capillaries through which helium or
argon flows with Kn > 0.3 under the assumption of mir-
ror–diffuse reflection of molecules from the capillary
wall. The authors of [9] report the gas flow rates for the
capillaries and note that, as the molecular collision rate
increases, the conductivity grows more slowly, while
the fraction of mirror-reflected molecules rises. This
fact is consistent with the results of [10], where the
need for detailed consideration of the slip theory [11]
was argued. Satisfactory qualitative agreement
between computing and full-scale experiments in the
limiting cases (opening and long pipe) was obtained in
[9, 12]. The discrepancy observed in those works is
explained by the insufficient accuracy of the method
used and of the computational scheme, which is illus-
trated by a solution to the problem of gas self-diffusion
in a short channel [12, 13].

For Kn between 100 and 0.1, the direct simulation
method is widely used [14–16]. This method has been
verified for a variety of problems [17, 18]. Note that the
applicability domain of Bird’s method is restricted to
those Knudsen numbers at which only pair collisions
are observed. It was shown [10] that pair intermolecular
collisions dominate and, accordingly, Bird’s method
applies in the range 0.01 < δ < 0.50 (δ = 1/Kn). With
δ > 0.5, intermolecular collisions are not all pair; how-
ever, at 0.5 < δ < 10, the number of group collisions is
relatively low (less than 10% of the total number of col-
lisions). Hence, the accuracy of Bird’s method remains
sufficient for engineering purposes. For even lower
Knudsen numbers, pair collisions constitute a minor
part, so that one should take into account collective
molecular interaction. At present, direct statistical sim-
ulation as a method of numerical calculation attracts lit-
tle attention, although its accuracy (compared with a
solution to the Boltzmann equation) and applicability
to problems concerned with dynamics of rarefied gas
remain unclear.

A probabilistic approach (the method of probable
directions) to simulating the transition flow of rarefied
gas has been suggested in [13]. This method is based on
TECHNICAL PHYSICS      Vol. 48      No. 12      2003
a physical engineering model of transition flow the
basic advantage of which is that it is consistent with the
concept of random walk of molecules in the molecular
regime and of laminar flow in the viscous regime. In
this model, it is assumed that the steady flow of a rar-
efied gas is the superposition of the molecular flow ran-
domized by many-particle interaction and the molecu-
lar flow in the direction of the concentration gradient
(directional flow) [19]. A gas flow is viewed as a coop-
erative motion of statistically independent similar
determinate material (i.e., with a finite diameter and
mass) molecules. The number of molecules involved in
momentum transfer between the inlet and outlet of the
channel increases with the D/λ ratio (D is the channel
diameter and λ is the mean free path of a molecule).
The integral characteristics of the gas flow are calcu-

505
0.5

5.0

500 5000 δ

Jmv

1 2

Fig. 2. Dimensional conductivity Jmv vs. the degree of rar-
efaction δ for circular pipes and openings in the case of slip
flow. (d) The method of probable directions and (h) full-
scale experiment for 55-mm-long pipelines with an inlet
diameter of 25 mm. (1) Full-scale experiment for a long
pipe of diameter 25 mm [2], (2) boundary layer model used
in continuum mechanics [6], and (j) full-scale experiment
for an opening of diameter 25 mm.
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Fig. 3. Dimensionless conductivity Jmv vs. Kn for circular
pipes in the molecular–viscous regime. The method of
probable directions with L/D = (1.4) 4, (1.8) 8, and (1.10)
10; solution of the linearized Boltzmann equation for L/D =
(3.5) 5 and (3.10) 10 [15]; calculation for L/D = (4.5) 5 and
(4.10) 10 [15]; and experiment for L/D = (2.4) 3.7 [2, 6].



 

1524

        

PECHATNIKOV

                                                      
lated by successively tracing the walk of individual
probe molecules in the channel. A random sample of
gas molecules that provides the desired accuracy of
Monte Carlo statistical processing is considered. The
trajectory of an individual molecule is described by a
piecewise linear function that represents a broken line
with segments equal to the free path λ0 of the molecule:

(1)

where λ is the mean free path of the molecule and R is
a random number (R ∈  [0, 1]) generated by the Monte
Carlo method.

Molecules striking the channel wall first adhere to it
and then leave according to the diffuse distribution. If a
molecule travels a length λ0 without collision with the
wall, a collision with another molecule is simulated. As
a result of this collision, the molecules change direction
according to a model of molecular interaction.

A model of interaction (collision) in a statistical
molecular ensemble is constructed in terms of the prob-
ability theory as applied to a large set of molecules
[20]. The model is based on the assumption that the
interaction potential is small. Then, (i) in describing the
ensemble of molecules, the principle of superposition
can be considered as a linear combination of pair inter-
actions and (ii) the correlation length of pair intermo-
lecular forces in the collisional range of the rarefied
flow may exceed the mean free path of molecules (in
view of the collective motion of a group of molecules).

λ0 λ R( ),ln–=

100

1

Jmv

1
2

4

3

2

20 30 40 50 60 70 80 90 100 Kn

Fig. 4. Dimensionless conductivity Jmv vs. Kn for a rectan-
gular slotted channel in the molecular–viscous regime. Full-
scale experiments performed in (1) [1] and (4) [3], (2) the
method of probable directions, and (3) direct simulation
[14, 15].
Considering the probabilistic approach, we assume
that the direction of each of the molecules after colli-
sion is random. In the range 0.01 < δ < 0.50, where pair
collisions prevail, the directions of an individual statis-
tical molecule are taken to be equiprobable in a com-
plete solid angle of 4π sr [13]. In the range 0.5 < δ <
100, a statistical regularity that defines the postcollision
direction of an individual molecule in a complete solid
angle was found [10]. This regularity includes collec-
tive collisions of molecules [20] and random-to-lami-
nar flow transformation and also defines the molecular
motion directivity in the flow after collision as a func-
tion of the molecule concentration in a microvolume
when Kn decreases [21–23].

Next, having determined the postcollision direction
of the molecule, we simulate its free motion in this
direction. Walks are simulated until the molecule
escapes through the inlet or outlet of a vacuum element.

Analytical results for rarefied gas flow on the mac-
rolevel have been supported by full-scale measure-
ments made on circular and rectangular short and long
ducts, rectangular slots, and step adapters (Figs. 1–4)
[19–22]. The experiments have shown that probabilistic
simulation cuts the machine time 100-fold compared
with Bird’s direct simulation method and at the same
time needs moderate computational resources [24–27].

Results obtained by the method of probable direc-
tions on the microlevel level shed light on physical pro-
cesses observed at the macrolevel [24, 25]. It should be
noted that the fraction of collective interactions
(including those at the channel walls) increases with δ.
It has been shown [10] that, with δ ≅  0.5, the tendency
toward directional (drift) motion in the molecular–vis-
cous regime appears.

Consideration of molecular motion on the mac-
rolevel clarifies the reason why the conductivity of
openings and short (L/D < 4, where L is the pipe length
and D is the diameters of the pipe inlet) pipes increases
throughout the transition flow range (Fig. 3). On the
macrolevel, (i) the number of molecules passing
through a vacuum element in the transition regime is
larger than in the molecular one, (ii) the number of mol-
ecules involved in the transport process also increases,
and (iii) the number of molecules passing through a
vacuum element ballistically (i.e., without collisions
with other molecules or walls) far exceeds the number
of colliding particles. In the range 1 > Kn > 0.01, the
conductivity grows at a higher rate. On the microlevel,
this is explained by the fact that the flow becomes more
and more laminar.

Consideration of the molecular flow on the
microlevel clarifies the nature of the Knudsen paradox:
a decrease in the conductivity of long pipes as Kn
decreases from 100 to 1 and an increase in the conduc-
tivity when Kn diminishes from 1 to 0.01 (Fig. 3). On
the microlevel, the fraction of molecular pair collisions
grows, which makes the molecular motion along the
pipe difficult. In this situation, the number of molecules
TECHNICAL PHYSICS      Vol. 48      No. 12      2003
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passing through a vacuum element decreases despite
the fact that the number of molecules involved in the
transfer process rises. With Kn between 1 and 0.01, the
conductivity grows monotonically for two reasons: the
number of molecules taking part in the transfer process
increases and the flow becomes more directional
[20−22].

Considering the motion of molecules on the
microlevel, one sees that, as the length-to-diameter
ratio L/D drops from 40 to 5, the Kn dependence of the
conductivity smooths out (Fig. 3) because of a decrease
in the number of pair collisions compared with that for
long pipes. The minimum becomes less pronounced
and shifts toward larger Knudsen numbers (Fig. 3). For
pipes with L/D < 4, the dependence becomes smooth
and monotonic and extrema are absent (Fig. 3).

Consideration of the molecular motion on the
microlevel elucidates the effect observed at the bound-
ary between the molecular–viscous and pure viscous
regimes (Kn ≅  0.01): the conductivities of short and
long channels of the same diameter approach each
other (Fig. 2). Under these conditions, most molecules
travel through a vacuum element, since the flow lami-
narizes.

The method of probable directions is still being
developed and defined [23–25].

Thus, qualitative and quantitative analysis of rar-
efied gas transition flow is such a complex problem that
any step forward in this direction is of great value. It is
related to the slip theory, the theory of gas diffusion,
and Boltzmann statistics. It is noteworthy that one of
the issues on the agenda of the international conference
“Vacuum Gas Dynamics” held in Spain, July 2003, was
“Can we agree on a way to model transition gas flow?”

The models and methods used in simulating the
dynamics of rarefied gas were verified in [17, 18]. It
was shown that, throughout the molecular–viscous
range, solutions to equations of continuum mechanics
with empirical coefficients taken from the slip theory
[11] are in most cases matched to results of direct sta-
tistical simulation [14]. Such an approach is formal,
since it cannot be given any physical interpretation.
Physical models underlying both methods are inconsis-
tent with each other.

Figure 3 compares the direct simulation method
with the method of probable directions (relevant exper-
imental data are also shown) by plotting the Kn depen-
dence of the dimensionless conductivity Imv. Such a
representation is necessary when experimental data
from various publications are verified or compared in
terms of the theory of similarity [17]. Note that the
Knudsen number is the decisive similarity test for the
steady isothermal molecular–viscous flow of rarefied
gas in geometrically similar structures that have a sin-
gle characteristic length. This follows both from the
kinetic theory [17], where the gas flow is viewed as the
flow of determinate molecules, and from the continu-
ous theory [9], where integral characteristics of rarefied
TECHNICAL PHYSICS      Vol. 48      No. 12      2003
gas flow are considered. It should be noted that such a
physical meaning of the Knudsen number has been sub-
stantiated in many full-scale experiments. Physical
quantities that characterize a gas of a given sort are con-
stant quantities. Their effect should be taken into
account when the properties of a gas of one sort are
converted to those of a gas of another sort. Therefore,
for geometrically similar elements, the dependence of
Jmv on the properties of rarefied gas flow in the molec-
ular–viscous regime may be represented as

where Jmv is the ratio of the conductivities in the molec-
ular–viscous and molecular regimes, A is the cross-sec-
tional area of the inlet, and sort combines constant
parameters of a gas of a given sort (the effective molec-
ular diameter, etc.).

For example, for vacuum pipe fittings, we have

where L/D is the effective length-to-effective diameter
ratio of a vacuum element and δ = 1/Kn.

The fact that the data (Figs. 2–4) obtained by the
method of probable directions, the direct simulation
method, and by solving the linearized Boltzmann equa-
tion qualitatively coincide indicates that the first two
methods provide reliable results. The deviation from
the full-scale measurements (curves 4, 5, Fig. 3; curve 3,
Fig. 4) may be associated with the extent to which the
Boltzmann equation is approximated by these methods
of numerical experiment, the accuracy of implementa-
tion of these methods, computer performance, and the
accuracy of numerical and full-scale experiments.

CONCLUSIONS

The model underlying the method of probable direc-
tions seems the most adequate for describing the transi-
tion flow of rarefied gas [24, 25]. It is based on funda-
mental concepts of the kinetic theory of gases and, at
the same time, is consistent with the diffusion theory of
gases and the models of molecular and viscous flow on
the macro- and microlevels. Second, this model takes
into account not only pair but also collective molecular
collisions, as well as the finite mass and effective diam-
eter of molecules. Finally, it sheds light on the Knudsen
paradox and accounts for the close values of hydraulic
conductivity that are observed in vacuum channels of
equal diameter but different length at the boundary
between the molecular–viscous and viscous regimes.
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Abstract—Electrical breakdown in alkali halide crystals subjected to ~10-ns-long electrical pulses is studied.
Two, primary and basic, channels of the anodic discharge are noted. In the presence of the primary channel, the
other arises at static breakdown voltages. Otherwise, the basic channel forms at voltages exceeding the static
breakdown voltage by more than four times. The basic channel is assumed to form via a cascade of Auger tran-
sitions. The generation and migration of linear defects seem to play a significant role in the basic channel for-
mation. The enhancement of the pulsed dielectric strength of the crystals is related to conditions of current pas-
sage through the metal–insulator interface. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The prevention of pulsed electrical breakdown in
insulators remains a challenge for designers and users
of any electrotechnical devices (from high-voltage
equipment to microelectronic components). A specific
feature of pulsed breakdown in alkali halide crystals
[1–3] and complex ionic compounds (such as glass [1]
and ammonium perchlorate [4]) is that in the break-
down voltage increases as the pulse width decreases.
For pulse widths of ≈30 ns, a through breakdown chan-
nel in the crystals forms at voltages ≈2.5 times greater
than the quasi-static breakdown voltage (i.e., when the
field application duration is 1 µs or more) [2]. The
structure of the anodic breakdown channel depends on
the field strength. In NaCl crystals, a primary break-
down channel oriented along the “cathodic” 〈100〉
direction forms in the anode region at near-breakdown
voltages under static conditions. The extension of this
region varies from 50 to 500 µm. Then, the discharge
channel propagates along the “allowable” 〈110〉  direc-
tion (basic channel). The primary channel propagated
with a subsonic velocity, while the propagation velocity
of the basic one in the allowable direction is ~107 cm/s.
As the voltage grows, the primary channel shrinks and
eventually becomes visually indiscernible [2, 3].

Thus, it may be supposed that the primary and
allowable (basic) channels form by different break-
down mechanisms.

In this work, we study electrical breakdown in alkali
halide crystals subjected to ≈10-ns-long pulses, exam-
ine the structure of the discharge channels, estimate
breakdown voltages, and consider the breakdown
mechanism in pulsed electric fields.
1063-7842/03/4812- $24.00 © 21527
EXPERIMENTAL RESULTS

The objects investigated were 40 × 40-mm alkali
halide crystal specimens with a thickness d = 0.3–
6.0 mm. An electron beam from a GIN-400 accelerator
was used as a pulse source (the maximal energy of elec-
trons is ≈0.3 MeV; the beam current density,
≈300 A/cm2; the pulse width, ≈18 ns). Aluminum elec-
trodes ≈8 mm in diameter and ≈1 mm in thickness were
made on both sides of the specimen (Fig. 1a). The elec-
tron beam fell on the lower electrode, thereby produc-
ing a capacitor with negative charge in the lower elec-
trode and induced positive charge in the upper elec-
trode. To prevent charge leakage, the lower electrode
was mounted on an insulating support. Irradiation was
performed at room temperature under a pressure of
0.13 Pa.

The field strength E was estimated by measuring the
pulsed current passing in the charging circuit at the time
of irradiation [5, 6]. The displacement current density i
is related to E as i = εε0∂E/∂t, where εε0 is the absolute
permittivity of the specimen. The current density i at
the upper electrode is directly proportional to the per-
mittivity of the material and inversely proportional to
the specimen thickness in accordance with the plane
capacitor law. The field strength E(t) is found by inte-
grating i over time. The peak (maximal) intensity Em
depends on the specimen thickness as Em ~ 1/d.

Figure 1b shows the time waveforms of the beam
current density I, displacement current density i, and
field strength E(t) for a 5.1-mm thick NaCl specimen.
Here, the FWHM of the pulse is ≈10 ns and Em ≈ 1.1 ×
106 V/cm.

The formation of the channels was studied under
different applied voltages (fields). At the time of field
application, the discharge channel appeared as a glow
between the electrodes. After the irradiation, it was
003 MAIK “Nauka/Interperiodica”
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visualized by breakdown traces. The discharge chan-
nels propagate from the positive electrode (usually
under its edges). NaCl plates 5- to 6-mm-thick (Em =
(0.9–1.12) × 106 V/cm) were broken down after ten to
twelve pulses. However, after the initial five or six
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Fig. 1. (a) Experimental scheme: (1, 2) electrodes, (3) insu-
lator, (4) electron beam, and Rl is the load resistance. (b) I,
electron beam current density; i, displacement current den-
sity; and E(t), field pulse in the 5.1-mm-thick NaCl sample.
pulses, the glow, as well as material breakdown under
the positive electrode, was absent. Then, the channel
advanced from pulse to pulse up to the other electrode.
Near the anode, the glow is not as bright as in the chan-
nel. It is essential that, for specimens 3.7 to 4.0 mm
thick (Em ≈ 1.5 × 106 V/cm is close to the static dielec-
tric strength [1]), neither the glow nor breakdown under
the anode is seen after the application of one or two ini-
tial pulses; the next pulse, however, breaks down the
specimen throughout its thickness. We failed to observe
a clear-cut primary channel in the 〈100〉  direction,
although signs of it, a faint glow and minor damage to
the material near the anode [3], were detected. The
image of a typical discharge channel in the 5.1-mm-
thick NaCl crystal after the application of ten pulses is
shown in Fig. 2. The basic channel propagates from the
upper surface (positive electrode) toward the lower one
along the allowable 〈110〉  direction and noticeably
damages the insulator. It seems that the primary chan-
nel is coincident with the basic one and therefore is
indistinguishable. The structure of the basic channel at
pulsed and static anodic discharges is the same. The
primary channel is absent if a through channel appears
after the first pulse. In NaCl, such a channel is observed
at a thickness of ≈1 mm (Em ≈ 5.6 × 106 V/cm).

For KI, NaCl, and LiF crystals, the basic discharge
channel are aligned with the 〈110〉  direction; for KBr,
RbCl, and KCl, with the 〈100〉  direction. For a pulse
width of ≈10 ns, the mean dielectric strength corre-
sponding to the one-pulse formation of a through chan-
nel equals ≈2.24 MV/cm for KI, ≈2.8 MV/cm for KBr,
≈3.1 MV/cm for RbCl, ≈3.73 MV/cm for KCl,
≈5.6 MV/cm for NaCl, and ≈18.5 MV/cm for LiF.
According to these data, the pulsed dielectric strength
exceeds the static value by a factor of 3.7–4.0 (for LiF,
by a factor of 6). The field strength is kept at its peak
value for ~10 ns, and the basic channel length is
~1 mm; hence, the mean velocity is on the order of
~107 cm/s, which is in satisfactory agreement with data
obtained in [2, 3].

We studied the effect of X-ray radiation on the
dielectric strength of the crystals. X-ray radiation arose
when the electrons of the beam were decelerated in the
Al target. The maximum of the bremsstrahlung spec-
trum lies in the low energy range. The absorption of
radiation-induced F centers in the 3-mm-thick KBr
sample was estimated with a He–Ne laser [7]. Without
the field, absorption at the positive electrode was virtu-
ally absent and the absorption peak was observed at the
negative Al electrode. With the lower Al electrode
replaced by a 1-mm-thick lead electrode, the absorp-
tion of F centers diminishes down to zero. No variation
in the dielectric strength of the samples was detected.

DISCUSSION

It seems reasonable to analyze the results taking into
account the passage of through the metal–insulator
interface.
TECHNICAL PHYSICS      Vol. 48      No. 12      2003



        

ELECTRICAL BREAKDOWN IN IONIC CRYSTALS 1529

  
In a gap of width s between a metallic electrode and
insulator, the field strength is E1 = εε0Em. One should
take into account that the electrode surface always has
microtips of height h < s. At the top of the tips, the field
strength is E2 = E1h/r = E1µ, where r is the microtip
radius and µ is the field enhancement factor. For s =
10−3–10–2 cm, µ ≈ 100 [8, 9]. Hence, the actual field
strength at the top of the microtips may be ≥108 V/cm.

In an insulator, the Fermi level lies near the midgap
[1]. When an insulator comes into contact with a metal,
the Fermi levels are aligned (Fig. 3). The surface layer
of the metal is depleted by electrons. An electric field
on the order of 108 V/cm causes the electrons to tunnel
from the valence band of the insulator to the metal.

The formation of a streamer in the bulk of an insu-
lator may be explained in terms of a cascade of Auger
transitions [10]. The basic ideas of this model are as
follows.

(1) In the crystal lattice, electronic excitation is
transferred from atom to atom according to the elec-
tronic configuration of a crystal. The table lists the
binding energy for the highest energy levels of the cat-
ions in the valence band (measured from the conduc-
tion band bottom), the width Wvs of the upper valence
subband, and the energy gap Wg for alkali halide crys-
tals [11, 12]. Two ways of streamer formation may be
singled out. One refers to crystals where the gap W1
between the center of the upper valence subband and
the highest cation energy level exceeds Wg (group I).
Such are Li compounds (LiF, LiCl, LiBr, and LiI), Na
compounds (NaF, NaCl, NaBr, and NaI), and KI. The
other way applies to crystals for which W1 < Wg (group
II). This condition is satisfied for K compounds (KF,
KCl, and KBr) and Rb compounds (RbF, RbCl, RbBr,
and RbI). An external field results in a significant bend
of the energy bands. As a result of tunnel transition,
holes accumulate at the insulator surface (for example,
one or two holes on the 3p level of Cl+ ions in NaCl;
Figs. 3a, 3b). The travel of the streamer is associated
with the relaxation of these holes and injection of elec-
trons in the conduction band. In the crystals of group I,
the holes on the low-lying 1s level of Li and 2p level of
Na cannot relax. It is most likely that they relax on a
nearby anion in the 〈110〉  direction, for example,
through an interatomic Auger transition that transfers
the charge from the 3p level of Cl– (transition 1) with
the subsequent injection of the Auger electron into the
conduction band (Fig. 3a).

In the crystals of group II, the hole relaxation in
halogen ions takes place on cation high-lying levels.
For example, in KCl, the hole relaxation in Cl+ ions
takes place on the 3p level of K+. For resonant electron
transfer to occur, it is necessary that the 3p level of K+

in KCl be raised by ≈6.1 eV (Fig. 3b). Subsequent hole
relaxation in K++ takes place as a result of the inter-
atomic Auger decay on the 3p level of Cl–. In these
crystals, the streamer propagates in the 〈100〉  crystal
direction. The fact that the breakdown is initiated at the
TECHNICAL PHYSICS      Vol. 48      No. 12      2003
anode and propagates in certain crystal directions is
confined experimentally. For KBr, the values of Wg and
W1 are close to each other, which is corroborated by the
change of breakdown direction from 〈100〉  to 〈110〉  at
temperatures higher than 50°C [13].

(2) Over a distance on the order of the interatomic
spacing, the bend of the energy bands is comparable to
the energy gap of the insulator. The probability that an
Auger electron will fall into the conduction band is
other than zero if the minimal energy gap between the
3p levels of neighboring chlorine ions in NaCl (Fig. 3a)
(or between the 3p level of K++ and 3p level of Cl– in
KCl, Fig. 3b) is no less than the energy gap of the crys-
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1 

m
m

Fig. 2. Discharge channel in the NaCl sample.
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Fig. 3. Cascade Auger transitions in (a) NaCl and (b) KCl
under a strong electric field. W is energy; Wc and Wv are,
respectively, the conduction band bottom and the valence
band top; and Wf and WF are the Fermi level positions in the
insulator and metal, respectively.
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tal. For a mean interatomic distance in the lattice of
≈3 Å (the spacing between Cl– ions is ≈4 Å), the exter-
nal field strength must be (2.5–3.0) × 108 V/cm. Such
values can be reached only near irregularities on the
electrode surface or at the end of the conducting chan-
nel. In high fields, electrons can be injected from the
valence band into the conduction bands in two ways: by
the tunnel or the Auger mechanism. In alkali halide
crystals, the dependence of the breakdown field Eb on
the energy gap is close to linear, which favors the Auger
mechanism. In the case of tunnel transition, the Eb vs.
Wg dependence must be near-exponential.
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Fig. 4. Breakdown field Eb vs. energy gap Wg for various
insulators. (1) Quasi-static conditions [1], (2) pulse width
30 ns (sample thickness ≈0.15 mm) [2], and (3) experimen-
tal data.
(3) Multiply charged ions generate high electric
fields. Two holes in a chlorine ion produce the effective
charge of Cl+; one hole in a K+ ion, the effective charge
of K++. The charge e+ generates a field of ≈3 × 107 V/cm
over a distance of 3–4 Å and ≈108 V/cm over a distance
of 1 Å. Such high fields are comparable to external
ones.

(4) The rate of breakdown depends on the time of
Auger transition. Bearing in mind that electrons in a
cascade of Auger transitions are transferred from atom
to atom, one can estimate the rate of breakdown as ν =
1 cm/Nτ, where N is the number of ions over a length of
1 cm and τ ≈ 10–14 s is the Auger transition time [14].
For NaCl, N ≈ 3 × 107, yielding ν ≈ 107 cm/s, which is
in satisfactory agreement with experimental data.

It is of interest to compare the static and pulsed
dielectric strengths as a function of the energy gap for
various insulators (Fig. 4). When analyzing these data,
we took into consideration the mutual arrangement of
the electric field and breakdown channel. In the crystals
of group II, the field E and the breakdown channel are
aligned with the 〈100〉 direction. In the crystals of group I,
the breakdown propagates along the 〈110〉  direction. In
this case, the field component in the 〈110〉  direction is
less than Eb by a factor of 1.41 (in Fig. 4, the dielectric
strengths of NaCl, NaF, and LiF that are decreased by a
factor of 1.41 are indicated by arrows). Work [2], where
the dielectric strength ratio for NaCl plates with the
〈110〉  and 〈100〉  directions running across was found to
be ≈1/1.41, confirms our estimates. From Fig. 4, it fol-
lows that the Eb vs. Wg dependence under static condi-
tions is near-linear but does not pass through the origin:
Electron binding energies and the parameters Wvs, Wg, and W1 of alkali halide crystals (eV) [11, 12]

Crystal Ion state Binding energy Wvs Wg W1

LiF 1sLi+ 56.5 9.4 14.2 37.6

LiCl 1sLi+ 56.5 5.2 9.4 44.5

LiBr 1sLi+ 56.6 4.6 7.5 46.8

LiI 1sLi+ 55.8 3.1 6.2 48.05

NaF 2pNa+ 33.0 10.2 11.7 16.2

NaCl 2pNa+ 31.2 5.6 8.8 20.2

NaBr 2pNa+ 30.8 4.5 7.1 20.95

NaI 2pNa+ 30.9 4.5 5.9 23.75

KF 3pK+ 17.4 7.2 11.4 2.4

KCl 3pK+ 17.5 5.4 8.7 6.1

KBr 3pK+ 17.0 4.2 7.5 7.4

KI 3pK+ 18.0 4.2 6.3 9.6

RbF 4pRb+ 14.7 9.7 10.3 0.45

RbCl 4pRb+ 14.6 5.7 8.3 3.4

RbBr 4pRb+ 14.1 4.6 7.3 4.5

RbI 4pRb+ 13.9 3.4 6.3 5.9
TECHNICAL PHYSICS      Vol. 48      No. 12      2003
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Eb = E0 + kWg (k is the proportionality coefficient and
E0 is the field strength at Wg = 0). It is likely that the
bands are bent under the combined action of the exter-
nal field and the field of a hole in the streamer channel.
As a result, the breakdown voltage decreases by E0. For
a pulse width of 30 ns, Eb varies with Wg almost in the
same way as under static conditions. For a 10-ns pulse,
the Eb vs. Wg curve is steeper.

In KBr crystals subjected to prebreakdown fields,
the generation of F centers near the anode was observed
[7]. In alkali halide crystals, color centers are produced
by the nonradiative decay of autolocalized excitons.
The excitons, in turn, arise when conduction electrons
are captured by the vacant state of autolocalized holes
[12]. It seems most probable that the generation of F
centers is associated with the generation of electron–
hole pairs in a strong electric field. If so, the generation
of free carriers counts in favor of the model of cascade
Auger transitions. Unfortunately, the electrooptic
method of estimating the field strength gave underesti-
mated values of Em [7]. The pulsed current method
gives a field strength of ≈0.6 × 106 V/cm for a 3-mm-
thick sample.

Thus, the properties of the basic discharge channel
(the direction and rate of propagation and the growth of
the dielectric strength with the energy gap of the insu-
lator) are adequately described by the model of cascade
Auger transitions under both static and pulsed condi-
tions.

As was noted above, the primary breakdown chan-
nel is aligned with the field in the 〈100〉  direction and
propagates with a subsonic velocity [2, 3]. It has been
found that a prebreakdown field applied to thin layers
of alkali halide crystals generates point and linear
defects. Their concentration increases with temperature
and duration of the pulse [15]. The formation of the pri-
mary channel is likely to be associated with the gener-
ation and migration of linear defects, which create
channels and regions of easy charge transfer.

In our opinion, the increase in the breakdown volt-
age with decreasing pulse duration is related to the pas-
sage of current through the metal–insulator interface. It
is conceivable that there exists a blocking bend of the
bands on the insulator surface, which simultaneously
prevents electron tunneling from the valence band and
escape of the free electrons into the metal. In this case,
a positive charge does not accumulate in the insulator.
The effect of the bend can be reduced by either gener-
ating linear defects on the surface or rectifying the
energy bands. The former case requires long pulses
(quasi-static breakdown); the latter, nanosecond pulses
and high fields.
TECHNICAL PHYSICS      Vol. 48      No. 12      2003
CONCLUSIONS
Thus, pulsed electric fields applied to alkali halide

crystals produce two discharge channels (primary and
basic) propagating from the anode. In the basic chan-
nel, the carriers responsible for an impact avalanche are
generated by the mechanism of cascade Auger transi-
tions in the valence band of the insulator. The primary
breakdown channel is most likely to be associated with
the generation and migration of linear defects, which
facilitate charge transfer. It appears that an increase in
the dielectric strength under pulsed conditions is
related to the fact that the current passage through the
metal–insulator interface is difficult in this case pre-
sumably because of a blocking bend of the bands on the
insulator surface. A decrease in the pulsed breakdown
voltage to static values in the presence of the primary
channel confirms this statement.
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Abstract—Equations that simulate the magnetic induction and current density distributions in half-space in
view of the power I–V characteristic are derived. The magnetization front velocity is determined for a given
mean rate of external magnetic field variation at the boundary of the sample. An integral condition for the elec-
trical resistance (nonlinearly depending on the magnetic field) under which the magnetic flux penetrates into
the sample with a finite rate is found. An analytical solution that simulates the power variation of the magnetic
field at the boundary is given. The Bean generalized model describing the current density distribution near the
critical current is considered. It is shown that solutions like shock waves may arise beyond the applicability
domain of the Bean model. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

It is known that the magnetic field is fully expulsed
from type-II superconductors in the Meissner phase at
H < Hc1, where Hc1 is the lower critical field. In the
mixed state (Shubnikov phase) at Hc1 < H < Hc2, where
Hc2 is the upper critical field, the magnetic field pene-
trates into a superconductor in the form of whirl lines
(or vortices). The critical field Hc1 depends on the Lon-
don penetration depth λ, which defines the typical scale
of electromagnetic response from a superconductor to
any external disturbance. As the magnetic field
increases, the density of whirl lines increases until the
vortex cores start overlapping at H = Hc2.

Below, we consider the Maxwell equations, which
simulate the dynamics of the vortex system at the mac-
roscopic level, i.e., on space and time scales that far
exceed both the London penetration depth and charac-
teristic pinning-related scales. These equations should
be complemented by the I–V characteristic j(E, B),
which simulates the superconductor’s electromagnetic
response, which, in turn, depends on the dynamic
behavior of the vortex system.

Nonlinearity in the I–V characteristic may arise for
various reasons: thermal creep, melting of the vortex
lattice, pinning, etc. For example, in the case of mag-
netic flux creep, the vortex lattice (or at least its part)
starts moving [1, 2]. As the current increases to the
point where the Lorentz force is higher than the pinning
force, the entire vortex lattice may be involved in
motion and the I–V curve becomes linear. In this case,
we are dealing with the viscous flow of the magnetic
flux [2].

As has been mentioned in [3], equations for the I–V
characteristic make it possible to analyze experimental
data for thermal stability of the superconducting state
of a composite superconductor. Stability analysis of the
1063-7842/03/4812- $24.00 © 21532
superconducting state is a basic challenge for engineer-
ing superconductivity [3]. In the theory of thermomag-
netic instability, an external magnetic field or a current
introduced into the specimen are considered as disturb-
ing factors; this is precisely the situation that we con-
sider below. We will restrict analysis to the case when
the superconductor temperature is kept almost constant
and equal to the coolant temperature.

We will show in the Introduction that the Maxwell
equations in linear statement may be reduced to the
Burgers equation with viscosity, where resistance
ρflux(B) plays the role of “viscosity.” The laws of mag-
netic flux penetration into half-space are considered,
and integral conditions are imposed on the function
ρflux(B). According to these conditions, (i) the undis-
turbed flux penetrates the half-space x > 0 an infinite
distance with an infinite velocity and (ii) a flux distur-
bance penetrates a finite distance with a finite velocity.
Obviously, property (i) is typical of solutions to linear
models, while property (ii) is inherent in solutions to
nonlinear problems. The associated model boundary-
value problem can be considered as the generalization
of the Bean model for the linear I–V characteristic. The
generalization of this model for magnetic field induc-
tion to the power characteristic is impossible in the gen-
eral case, since the equation includes the term on the
order of (∂B/∂x)n, where n is the exponent of the I–V
characteristic. However, this can be done if the electri-
cal resistance does not depend on the magnetic field
induction.

Therefore, in Sect.1, we consider a model equation
for transport current density, show the possibility for
the occurrence of self-similar waves, and demonstrate
that the velocity with which self-similar waves pene-
trate into the sample depends on the dimensionless

parameter ε = . For example, at n = 1, the currentb'〈 〉 t
2–
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penetrates the sample with an infinite velocity and the
Bean model can be applied. For sufficiently small ε > 0
and n > 1, the current penetrates into the sample in the
form of a decaying density wave and, if n @ 1, the Bean
model can be used again. In Sects. 2 and 3, we deter-
mine the magnetization front velocity v  and show that

v  ∝  n and v  ∝  , i.e., is proportional to the average
rate of magnetic field increase on the sample surface.

This work was inspired by the results of [2], where
a similar problem was considered but the dependence
ρflux(B) was not taken into account and the electromag-
netic field E decreased linearly within a finite depth. In
our paper, the magnetic induction and current density
also propagate to a finite depth but decrease by a power
law. As to the magnetic flux velocity, the results are
basically identical: at n  ∞, the critical state model
becomes valid. Exponential I–V curves were not con-
sidered in this paper.

The data above can be viewed as a kind of generali-
zation of the Bean critical state model where the I–V
slope is neglected. The results obtained in [2] can be
considered in a similar way. Unlike [2], this work con-
siders the explicit dependence ρflux(B) for the linear I–V
characteristic and generalizes the concept according to
which the current with a density jc is the response to any
disturbance. It turns out that taking into account weak
disturbances in the vicinity of the point j = jc is of minor
importance if the field E penetrates with a high velocity
(i.e., the Bean model is valid) and leads to current den-
sity damping at low velocities. The inclusion of strong
disturbances in the vicinity of the critical value causes
a many-valued density shock wave to arise; however,
this issue calls for further consideration. As a result,
taking into consideration even weak inhomogeneous
disturbances of the current density in the vicinity of the
critical current necessitates the use of a hydrodynamic
model of current distribution, while taking account of
the field dependence of the resistance makes us con-
sider the variation of the magnetic field gradient, i.e., in
essence, nonuniform current density (j ≠ jc) distribu-
tions.

1. PROBLEM DEFINITION

Let us consider the system of equations

(1)

where B is the magnetic field induction, E is the elec-
tromagnetic field, j is the transport current density, and
µ0 is the permeability of the medium.

The current dependence can be defined through the
shape of the I–V characteristic j(E, B). The I–V charac-
teristic simulates the superconductor’s electromagnetic
response, which, in turn, depends on the dynamic
behavior of the vortical system.

b'〈 〉 t
1–

divB 0, curlE
1
c
---∂B

∂t
------, curlB– µ0 j,= = =
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Let us consider a hard superconductor placed in an
external magnetic field H that is directed along the Z
axis parallel to the surface x = 0 of the sample, which
occupies the half-space x > 0 [2, Fig. 1]. The magnetic
field induction can then be expressed as [1]

where the first term describes the Meissner state and the
second term is determined by the vortex distribution.

For Bγ(x) ≡ 0, local coupling B = NΦ0 takes place,
where N is the vortex density and Φ0 is a fluxon under
the condition that the London penetration depth is
much less than the typical scale 〈B'〉 t of magnetic induc-
tion variation [2]. This means that Eqs. (1) describe the
behavior of the vortex system on the macrolevel, i.e., on
space and time scales larger than those typical of pin-
ning [4]. In other words, this means that inequality j >
jc is satisfied. The reverse case j < jc, where magnetic
induction B at every point is determined by vortices
localized in a domain on the order of λ, is not consid-
ered here.

In the simplest case U < T, where T is the tempera-
ture, the value of thermal activation barrier U that
makes vortex motion difficult can be disregarded. Then,
the properties of the sample can be simulated by the
expression [4]

(2)

Here, ρflux = ρnB/Hc2 and ρn is the resistance in the nor-
mal state.

From Eqs. (1) and (2), it is easy to derive the Burgers
equation

where ∆ is the Laplacian. Differentiating this equation
with respect to x and making substitution U = ∂B/∂x
brings this equation into the conventional Burgers
equation with “viscosity.”

B x( ) H x/λ–( )exp Bγ x( ),+=

E ρflux B( ) j.=

µ0Bt'
∂ρ f B( )

∂B
-----------------– ∇ B( )2 ρ f low B( )∆B,=

t1 < t2 < t3 < t4

t1

t2

t3

t4

0

bss(t, x)

x

ρflux b( )
b

------------------ bd
0

1

∫ ∞=

Fig. 1. Magnetic induction distribution for a finite propaga-
tion velocity of disturbances (for nonlinear I–V characteris-
tics).
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In terms of the critical state model, this equation can
be reduced to

From the expressions

one easily obtains the equation

which was studied in [2].
There are the following models of the I–V charac-

teristic: the linear model

(3)

and the nonlinear models [2]

(4)

where the current density jδ and phenomenological
exponent n define the steepness of the curve.

The current density jc is found at the electric field
intensity Ec. In the Bean model of critical state, the
induction dependences of the current density, jc(B), and
resistance, ρf (B), can be neglected. It was shown [2]
that, for n  ∞ and Jδ  0, models (4) turn into the
critical state model.

For linear model (3), one can write

(5)

In the dimensionless variables e = E/EX, X = x/LX,
and τ = t/tX, where

Eq. (5) takes the form

(6)

Below, we will use the previous designation X  x.

Changing variables by averaging  (see Appen-
dix) allows one to separate typical scales of rate of
change of the magnetic induction. In fact, in the
dynamic regime,  ∝  〈N〉 , where 〈N〉  is the mean
number of vortices (on the scales LX and tX). Here, B ∝
Bγ according to the Bean generalized model [4]; i.e., the
magnetic induction is the induction of a field averaged
over a special scale a !  < λ, where a is the spac-
ing between vortices. Since the inequality a ! λ is sat-

µ0Bt' ρflux B( )∆B.=

∂xE ∂tB and ∂xB–– µ0 j= =

µ0∂t j ∆E,=

E
ρ f B( ) j jc–( ) for j jc>
0 for j jc<




=

E Ec
j
jc
---- 

  n

;=

E Ec

j jc–
jδ

------------ 
 exp E0,–=

Et'
ρ f

µ0
-----∂xxE.=

EX jcρ f , LX jcρ f / Bt'〈 〉 ,= =

tX µ0 jc
2ρ f / B〈 〉 t

2,=

∂τe ∆e.=

Bt'〈 〉

Bt'〈 〉

Bt'〈 〉
isfied at H @ Hc1, the quantity  ∝  N can be viewed
as the rate of change of the density of vortices that leave
or enter the sample through its surface [4, p. 1350] and
the quantity ω ~ 1/tx can be considered as a frequency.

Equation (5) is supplemented by the following
boundary and initial conditions [2]:

where t > 0 and x > 0. In the dimensionless variables,
these conditions are written as

(6')

An electric field that is a solution to the mixed ini-
tial- and boundary-value problem given by (6) and (6')
is known to penetrate the half-space as a self-similar
wave with a linear law X0(t, ) of magnetization
front propagation [2, Fig. 3].

Consider the same boundary-value problem for the
magnetic induction equation

If B ~ Hc2, the dependence ρf (B) can be neglected.
Then, in the dimensionless variables introduced in [2],
this equation can be written in the form

(7)

with the boundary and initial conditions

(7')

Solutions in the class of self-similar functions to the
problem given by (6) and (6') were constructed in [2].
Let us show that the boundary-value problem given by
(7) and (7') also have self-similar solutions. First, we
note that this problem can be recast as

(8)

with the boundary conditions written in the more gen-
eral form

(8')

where m = 1, 2, … .
In fact, for m = 1, differentiation of edge condition

(8') with respect to time yields boundary condition (7');
hence, every solution to problem (8)–(8') is a solution
to problem (7)–(7'). Generally speaking, a functional
boundary condition is found from an associated differ-
ential condition up to a constant, which may be set
equal to zero (since boundary and initial functions must
continuously match each other).

For m > 1, the boundary-value problem considered
(subject to b(∞, t) = 0) also has a self-similar solution [5]:

bss(x, t) = (1 + t)mθss(ζ),

ζ = x/(1 + t)1/2,

Bt'〈 〉

∂xE 0 t,( ) = ∂tB 0 t,( ), E ∝ t,( )–  = 0, E x 0,( ) = 0,

∂ex 0 τ,( ) 1, e ∝ τ,( )– 0, e x 0,( ) 0.= = =

Bt'〈 〉

∂tB
1
µ0
-----ρ f B( )∂xxB.=

∂b
∂t
------

∂2b

∂x2
-------- b

B
Bc2

-------= 
 =

∂tb 0 t,( ) 1 and b x 0,( ) 0.= =

∂tb ∆b=

b 0 t,( ) 1 t+( )m and u x 0,( ) u0 x( ),= =
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with

where Hν(z) is a Hermitean function and Γ(m) is the
gamma function.

The form of the solution specifies the effective pen-
etration depth of the wave:

where ζef(m) is determined from the condition θss(ζef) =
θss(0)/2 = 1/2.

This analytical solution is of interest because it
clearly demonstrates the dependence on the rate of
electromagnetic field penetration into a superconductor
(this electromagnetic field is induced by an increasing
external magnetic field).

The analysis of self-similar solutions with a power
condition at the boundary shows a natural regularity:
the more stringent the boundary condition (the rate of
increase of the external magnetic field), the higher the
velocity of the arising magnetic wave. In the case of a
power condition, the penetration depth of the magnetic
field is also a power function. Schematically, the evolu-
tion of the self-similar penetration of the magnetic flux
generated by the increasing external field is similar to
that demonstrated in Fig. 1. It was shown [5, p. 52] that
a self-similar solution is asymptotically stable against
disturbances of edge data. Accordingly, the self-similar
function θss(ζ) correctly describes the magnetic wave
profile at t  ∞.

Similarly, for nonlinear I–V characteristics, Eq. (4)
reduces to the equation

(9)

with the boundary and initial conditions

(9')

Here, ρf means some dimensionless value of the resis-
tance normalized to ρf, where ρf = 〈ρflux〉  is such that the
variables Lx and tx mentioned above are meaningful. In
particular, one may assume, without loss in generality,
that ρf = ρn for b = 1 or ρf = ρflux(B0), where B0 is a prob-
lem-dependent equilibrium value of the magnetic field.
Based on Ohm’s law e = ρfluxi and the equality e = in, we
may assume that ρflux(b, i) ∝  bin – 1, where i = j/jc.

Let ρflux(b) ∝  bα, where α > 0. (Below, we will show
that this condition has meaning for high-temperature
superconductors.) Then, it follows from [5, p. 67] that
boundary-value problem (12)–(12') has self-similar
solutions bss = (1 + t)1/αθss(ζ), where θss will be defined
later. In this case, the magnetic wave penetration depth
vs. time is given by

 = ζef(1 + in – 1t)(1 + mα)/2,

θss ζ( ) 22m 1+ Γ 1 m+( )
π1/2

---------------------- ζ2

4
-----– 

 exp H– 2m 1+( )
ζ
2
--- 

  ,=

xef
ss ζ ef 1 t+( )1/2,=

bt' ρflux b( ) j,( )bx( )x b B/Bc2=( )=

b 0 t,( ) 1 t+( )m and b 0 x,( ) u0 x( ).= =

xef
ss
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θss(ζef) = 1/2.

In particular, for m = 1, boundary-value problem
(9)–(9') admits a self-similar solution,

uss(x, t) = gss(ζ), ζ = x/(1 + t)1/2,

which meets boundary condition (9') for m = 1. Here,
θss(ζ) is a solution to the boundary-value problem

This solution (i.e., the penetration depth) is finite or
infinite depending on whether or not Eq. (9) allows for
a finite propagation velocity of disturbances.

Let us restrict our analysis to the case where the
coefficient ρflux(b) is such that a disturbance has a finite
velocity [5]:

For Eq. (9), this integral is equal to unity when
ρflux(b) is a linear function or tends to infinity if ρflux is
b independent (solutions to the corresponding problems
are shown in Figs. 1, 2). If the resistance does not
depend on the magnetic induction, the propagation
velocity of magnetic flux disturbances is infinite and
the solution is likewise not finite (Fig. 1).

With flux creep taken into account, dissipation is
described by the expression

The energy of activation was shown [6, 7] to have
the following scaling form:

where A ∝  1/Hα.

ρflux θss( )θss'( )' 1
2
---θss'+ 0,=

θss 0( ) 1, θss ∞( ) 0, ζ 0.>= =

ρflux b( )
b

----------------- bd

0

1

∫ ∞.<

ρ T H,( ) ρ0 H( ) U0 T H,( )/T( )–[ ]exp .=

U0 A H( ) 1 T /Tc–( )m,=

0 < t1 < t2 < t3

t1

t2

t3

0

bss(t, x)

x

t = 0

x3
ss (t2) xss

î(t2)

ρflux b( )
b

------------------ bd
0

1

∫ ∞<

Fig. 2. Magnetic flux penetration for an infinite propagation
velocity of disturbances (for linear I–V characteristics).

Φ
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If the barrier U0 is small enough, expanding the
exponential into the Taylor series and taking into
account that Hα/(Hα + 1) ≈ Hα in a zero approximation
leads us to the relationship

A similar expression was obtained in [8]:

where Tx is close to the critical temperature Tc and
F( j/ji) ~ ( j/ji)–n in the case of collective flux creep [8].
Here, ji is some value of the current that depends on
j/jc [9].

The model worked out in [8] predicts the following
regimes: j ! jc, j < jc, and j ~ jc. We will consider only
the last one. Since the authors of [6] and [8] considered
the range 0.5 < α < 0.6 and the value of α = 0.55,
respectively, it will suffice to put α = 3/2 in the above
formulas in order to determine the penetration depth of
the traveling magnetic wave. This abstract result may
apparently be of value in considering specific problems
(e.g., YBa2Cu3O7 high-temperature ceramics [8, 9]).
Note that, for j < jc, the resistance ρf lux depends on the
current distribution; therefore, we will consider an
equation that simulates the evolution of the current den-
sity in half-space taking into account an increase in the
electromagnetic field at the superconductor boundary.

As follows from the above, the definition ρflux(b) =
bα is meaningful. Then, for m = 1/α, the problem has
the self-similar solution bss = (1 + t)1/αθss(ζ) (where
θss(ζ) = [1 – α1/2ζ]1/α and ζ = x/(1 + t)), which is merely
a traveling wave. In the general case, the solution has
the form

where ζ = x/(1 + t)(1 + mα)/2. This solution is plotted in
Fig. 2.

In such a statement, a nonlinear I–V characteristic is
impossible to take into consideration: to do this it
would be necessary to analyze functional relationships
like e = φ(i, b) concurrently with a set of equations for
the functions i and b. However, if the I–V characteristic
(Eq. (3)) is linear, the current density i in the diffusion
equation may be viewed as a parameter. Then, with the
current fixed, its effect can be taken into account by
substituting it for t in the solution mentioned above. As
a result, we find the magnetic wave penetration depth

2. CURRENT DENSITY DISTRIBUTION

For nonlinear I–V characteristics, we perform a
change of variables

ρ H( ) B
Hc2
--------Hα , α 0.>∝

Uef j H,( ) F j/ ji( )H0.55 1 T /T x( )–[ ] 2,∝

uss 1 t+( )mθss ζ( ),=

xef
ss it( ) 1 mα+( )/2.∝

Ex Ec, Lx Ec Bt'〈 〉 , tx µ0 jcEc Bt'〈 〉 2
= = =
in the equation that relates the current to the electrical
field (see above). As a result, we obtain the equation

with the boundary conditions

Since for nonlinear characteristics e = φ(i), where
φ is a given function, we have i = i/ic, this equation can
be reduced to the equation

(10)

with the boundary condition

(11)

For power characteristics, boundary condition (11)
is conveniently written in the form

(11')

and Eq. (11) may be represented in the form of the
Burgers equation

(10')

with the additional conditions i(∞, τ) = 0 and i(x, 0) = 0
for x > 0.

Note that, if the magnetic flux penetrates into the
sample by diffusion, it may be assumed that

where averaging is carried out over the scales tx and Lx.
Since these scales are chosen such that  = const,
boundary condition (11') is simplified to

Without loss of generality, we may put τ  constτ
in such a way that the condition n〈b'〉  = 1 is satisfied.
Then, the above relationship can be written as i1 – n(0,
t) = 1; i.e.,

(12)

Thus, we have arrived at the problem with the same
boundary conditions as for the linear I–V characteristic,
but the linear diffusion equation here is replaced by
nonlinear Burgers equation (1'). The Burgers equation

∂2e

∂x2
--------

1
n
---e

1 n–
n

-----------∂e
∂τ
-----,=

∂e
∂x
------ 0 τ,( ) 1, e ∝ τ,( )– 0, e x 0,( ) 0.= = =

∂2φ
∂x2
--------

1
n
---φ i( )

1 n–
n

-----------∂φ i( )
∂τ

------------- 1
n
---φ i( )

1 n–
n

-----------

φ' i( ) ∂i
∂τ
-----= =

φ' i 0 t,( )( ) ∂i
∂x
------ 0 t,( ) 1 bt'〈 〉 1=( ).–=

∂i
∂x
------

1
n
---i x 0= t,| 〉0

1 n– ,–=

φ'' i( ) ∂i
∂x
------ φ' i( ) ∂2i

∂x2
--------+

1
n
---φ i( )

1 n–
n

-----------

φ' i( ) ∂i
∂τ
-----=

∂ i〈 〉 t

∂x
-----------–

∂2 b〈 〉 t

∂x2
---------------–∝ bt'〈 〉 ,–=

bt'〈 〉

∂ i〈 〉 t

∂x
----------- 1

n
--- i〈 〉 t

1 n–∝ b'〈 〉 t x 0= t,| 〉0.=

i 0 t,( ) 1, t 0.>=
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is conveniently written as

(13)

Equation (13) has a simple physical meaning: for
n = 1, it turns into a nonlinear equation for current dif-
fusion [2] (but in terms of electromagnetic field). For
n  ∞, the limiting equation is ∂i/∂x = 0. This equa-
tion has the solution i = ic, which corresponds to the
Bean model: (–∇ b) ∝  ic. For large but finite n, this equa-
tion reduces to the equation

from which it follows that the steady-state distribution
of the current density has the form

Here, i(∂) = 1 by virtue of boundary condition (12) and
the constant of integration can be chosen from the con-
dition i(∞) = const.

In the general case, we must consider the equation

Performing the compression of the spatial variable,
x  n x, we recast this equation in the form

(14)

Let us determine the parameter ε = , which
plays the role of average viscosity for Burgers equation
(14). For ε  0, we have

(14')

Equation (14') has the form of the conventional
Burgers equation without viscosity (where the spatial
variable plays the role of time). This equation is more
convenient to write as

(15)

Equalities (15) mean that every solution to Eq. (14')
is time-invariable along straight lines given by

It is known that solutions to the Burgers equation
may contain turning-over waves; that is, the solution
becomes multivalued in the vicinity of the point j = jc
(see, for example, [10, p. 189]). Such a situation may

∂i
∂x
------

1
n 1–( )

----------------i2 ∂2i

∂x2
--------+

1
n n 1–( )
--------------------i

1 n+
n

------------ ∂i
∂τ
-----.=

n 1–( )∂i
∂
---- ∂2i

∂x2
--------+

1
n
---i

n 1+
n

------------ ∂i
∂τ
-----,=

i x( ) i 0( ) 1 n–( )xexp const.+∝

∂i
∂τ
----- n n 1–( )i

n 1+
n

------------– ∂i
∂x
------– ni

n 1+
n

------------– ∂2i

∂x2
--------.=

bt'〈 〉

∂i
∂τ
-----

n 1–
b'〈 〉 t

-----------i
n 1–

n
-----------– ∂i

∂x
------–

1
b'〈 〉 t

----------i
n 1–

n
-----------– ∂2i

∂x2
--------.=

b'〈 〉 t
1–

∂i
∂τ
-----

n 1–
b'〈 〉 t

-----------i
n 1–

n
-----------– ∂i

∂x
------– 0.=

dj
dt
----- x t( ) t,( ) 0 with

dx t( )
dt

------------ n 1–
bt'〈 〉

-----------i
n 1–

n
-----------–

.–= =

x
n 1–

b'〈 〉 t

-----------i x t,( )
n 1–

n
-----------–

t+ const.=
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occur at any n ≠ 1 but is impossible in the critical cur-
rent regime i = 1. Otherwise, we find that the current
penetrates into the sample in the form of a simple wave
whose shape is completely specified by the boundary
condition.

3. LAW OF MOTION OF THE MAGNETIZATION 
FRONT

Let us “freeze” the coefficients in Eq. (14'). In other
words, we consider the equation

replace the current mean 〈i 〉x by the induction mean
〈b'〉x, and assume that the magnetic field has the prop-
erty of ergodicity 〈b〉x = 〈b 〉 t (see Appendix). Then, dif-
ferentiating this equation with respect to x in view of
the relationship 〈i 〉 ∝  (–〈b 〉x) yields

(16)

As follows from the properties of solutions to
Eq. (16), the law of motion of the magnetization front
is given by the relationship

where 〈b'〉 t  n〈b'〉 t by virtue of the above substitu-
tion.

A similar relationship was obtained in [2]:

(17)

The law of motion of the magnetization front is con-
veniently expressed by

This expression and representation (17) coincide up
to the order of smallness of (n + 1)–1 ~ n–1. This is
because the Burgers equation takes into account the
current spatial distribution, which is determined by the
gradient ∂i/∂x. Neglecting this term yields Eq. (17),
since the problem (after corresponding redefinitions) is
reduced to that considered in [2].

4. CONCLUSIONS

Thus, based on the Maxwell equations, we derived
model equations: a diffusion nonlinear equation for
magnetic induction and a Burgers equation that simu-
lates the current distribution in view of external mag-
netic field variation at the boundary of half-space. For
the latter equation, two boundary-value problems are
considered: (1) the rate of change of the magnetic flux

∂i
∂τ
-----

n 1–
b'〈 〉 t

----------- i
n 1–

n
-----------–

x
∂i
∂x
------– 0,=

∂u
∂τ
------

n 1–
bt'〈 〉

----------- u〈 〉 x
∂u
∂x
------– 0 u ∂i/∂x=( ).=

X t( ) n 1–
b'〈 〉 t

----------- b'〈 〉 x

n 1–
n

----------- t

,∝

x t( ) b'〈 〉 t

n 1–
n 1+
------------

t.∝

x t( ) n 1–
n

-----------
b'〈 〉 x

b'〈 〉 t

-----------t.∝
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at the boundary is constant and (2) the rate of change of
the flux increases with time by a power law. Two situa-
tions in case (1) are possible: (1a) the resistance ρflux is
constant and (1b) the resistance depends on bα linearly
or nonlinearly. In case 1a, α = 0 and the flux penetrates
into the sample with an infinite velocity (Fig. 2); in
case 1b, the magnetic wave penetrates into the sample
with a finite velocity if α > 1 (Fig. 1).

If condition 1b in case 2 is satisfied, the wave invari-
ably moves with a velocity higher than in a constant-
resistance medium with the same boundary regime,
since the resistance is an increasing function of the
magnetic field. The magnetic wave front (the point at
which bss vanishes) moves with the same velocity:
xf(t) = ζf(1 + t)(1 + mα)/2. Schematically, the evolution of
the self-similar process is shown in Fig. 2 (the path of
the magnetic wave half-width is shown by the dashed
line).

When investigating the current density distribution,
we consider the Bean boundary conditions and study
the shape of current fluctuations only in the vicinity of
the critical state. In this case, the rate of pumping by
magnetic current and the exponent of the I–V character-
istic enter into the coefficients of the equation in
implicit form. It turns out that, with n  ∞, we come
to solutions to the conventional Bean model. For v  
0, where v  is the rate of pumping by magnetic field, we
obtain the standard diffusion equation for current den-
sity, which was considered, for example, in [3]. For
v  ∞, the equation degenerates into the Burgers
wave equation. Eventually, we again obtain the Bean
model of critical state; now, however, at j = jc, a solution
represents a traveling wave with an amplitude jc rather
than being a constant. For large fluctuations near jc,
such a wave becomes unstable: it steepens giving rise
(if the Hugoniot conditions at discontinuity [10] are sat-
isfied) to a shock wave. However, this issue was not
considered in detail. To conclude, the equation for mag-
netic field induction and that for current density evolu-
tion, although written in different forms, are formally
identical: they can be expressed in the same form by
making a differential change of variables. The solution
of the joint set of equations was not considered in this
work; however, the current distribution for a plate [4]
may be involved in the coefficient ρflow(b) in specific
problems for the magnetic diffusion equation.

APPENDIX

Let averaging operators be designated as

Mt B x t,( )[ ] B z( )〈 〉 t0

1
ν
--- B x t,( )dt

t0

t0 ν+

∫ν ∞→
lim= =
and

if the function B(x) is Lx-periodic in x. Such a function
can be expressed by the Fourier series

Then, the application of the averaging operator
leads to the relationship

i.e., averaging yields the free term of the Fourier series.
Consider the function

and apply the time averaging operator. If there is a vec-
tor k = (k1, k2), taking the corresponding two-dimen-
sional integral for x = ω1x and t = ω2t yields (if ω1 and
ω2 are rationally incommensurable numbers) the same
result after averaging over variable x and time t [11]:

It is this observation that was used above: in statisti-
cal mechanics, this relationship is known as the ergod-
icity of trajectories [10].

The basic reason for using this procedure was the
need to make nonlinear equations dimensionless. For
example, the substitutions Lx = Ec/  and tx =

µ0jcEc/( )2 allowed Romanovskii [2] to recast the dif-
fusion equation with a power I–V characteristic in
dimensionless form. Here, the question arises as to how
the parameters tx and Lx should be treated. Obviously, it
will suffice to perform averaging 〈Lx〉  = Ec/〈B'〉 t in any
sense. The result of averaging over t depends, generally
speaking, on the parameter t0 (for details, see [12]). In
most applied problems, the properties of solutions to
equations do not depend on t0; however, this is some-
times not the case. For example, the averaging of a ran-
dom pinning potential [4, p. 1159] required the follow-
ing operation:

where it is assumed that the averaging operator includes
taking the limit at η  ∞ implicitly.

Another important problem is to establish the funda-
mental possibility that such characteristic scales exist
(see, e.g., [4]). In the case of viscous flux creep, the
characteristic time t0 for a plate may be taken in the

Mx B x t,( )[ ] B x t,( )〈 〉 x
1
Lx

----- B x t,( )dx

t0

Lx

∫= =

B x( ) Bk ikx.exp
k 0>
∑=

Mx B x( )[ ] B0;=

B ωt( ) Bk ikωtexp
k 0>
∑=

Mx B x( )[ ] Mt B ωt( )[ ] .=

Bt'

Bx'

…〈 〉 1
t0
--- …( )dt,

0

t0

∫=
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form

where U( j) is the activation barrier, d is the plate width,
c is the velocity of light, v 0 is the “microscopic” veloc-
ity of vortices, and H is the magnetic field intensity.
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Abstract—The tangential component of stray field on the surface of an elastically bent tube is evaluated under
the assumption that the internal magnetic field is constant. This component bears more information than the
normal one, since it allows one to determine the mean value of internal stresses of the first kind. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

When a ferromagnetic steel tube is bent (hereafter it
is assumed that its ends are hinged), it takes the shape
of a half-sinusoid [1]:

(1)

Here, l0 is the tube length and y0 is the sag in the mid-
section x = 0, where the bending stresses are maximal
(Fig. 1a). The sag specifies the curvature ρ and maxi-

mal value of bending stresses  in the midsection of
the tube along the generatrices α = 0 (extension) and
α = 180° (compression) of the surface r1 = r2 (r1 and r2
are the inner and outer radii of the tube, respectively,
and α is the azimuth coordinate measured from the sur-
face of bend [1]):

(2)

where E is the Young’s modulus; N is the bending
moment; and J is the inertia moment of the tube sec-
tion:

(3)

As a result, bending stresses at an arbitrary point of
the tube are given by [1]

(4)

If the tube is long, shear stresses can be neglected.
Since the tube is in the weak terrestrial magnetic field
H0 (H0 ! Hc, where Hc is the coercive force of steel),
this field induces a low magnetization M(H0x). The

y y0
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action of high bending stresses (  > , where  is
the mean value of internal stresses [2]) causes irrevers-
ible displacements of 90° domain walls [2, 3] and,
accordingly, a significant magnetoelastic increment of
the magnetization, ∆Mσ @ M(H0x).

Although the increment ∆Mσ depends on σ nonlin-
early and tends to saturate [2, 3], it invariably increases
with the stress. Therefore, the magnetization distribu-
tion in an elastically bent tube will copy, albeit with a
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Fig. 1. Magnetoelastic variation of the magnetization in St 3
steel subjected to a permanent magnetic field of 40 A/m. (a)
Application and relief of tensile and compressive stresses;
the closed loops are their steady variations. (b, c) Amplitude

dependences of the irreversible (∆ ) and reversible

(∆ ) parts of the total magnetoelastic increment ∆Mσ.
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nonlinear correction, the distribution σb(x, α, r) of
bending stresses. Eventually, all the features of the
function σb(x, α, r) (its extrema, their positions, the
“wavelength” of the stress, and points where the func-
tion changes sign) will be involved in the function
∆Mσ(x, α, r).

A stray magnetic field ∆H(∆Mσ) around the tube
will bear information on the magnetization distribution.
Owing to the relationship between σb(x, α, r) and
∆Mσ(x, α, r), one can judge the value and distribution
of bending stresses in the tube by measuring the stray
field.

In [4], we found the distribution of magnetization

magnetoelastic increments ∆ (x, α, r) in an elasti-
cally bent tube (see (4)) subjected to a weak longitudi-
nal magnetic field H0x, knowing the stress distribution

in the tube and the values of the increments ∆  due

to uniform extension (∆ ) or compression (∆ ) [2,
3]. From this distribution, we determined the volume

magnetic charge distribution (x, α, r) and then,
using available solutions to the equations of magneto-
statics [5, 6] and a number of approximations, the stray
field ∆Hr(x, α, r) normal to the tube surface [4].

At the same time, it is obvious that the tangential
component ∆Hx(x, α, r) of the stray field may also be of
interest for nondestructive inspection, since it bears
information on the distribution of the magnetizations

∆  in an elastically bent tube and, accordingly, on
the stress distribution in it. Therefore, in this work we
seek a relationship between the stray field tangential
component on the tube surface and elastically bending
stresses.

DISTRIBUTION OF LONGITUDINAL 
MAGNETIZATION IN AN ELASTICALLY BENT 

TUBE

As is well known [2, 3], a magnetoelastic increment
of magnetization may take place in the presence of at
least a weak magnetic field and elastic stresses. It is the
sum of the regular (reversible) change of magnetization

∆ (H0, σ±), which is positive in the extended part of
the tube (+) and negative in its compressed part (–), and

the general irreversible increment ∆ (H0, σ±), which
is always positive and makes a major contribution to

∆  [2, 3]. As the number of loading cycles (the appli-

cation and relief of a stress of the same amplitude )

grows, the values of ∆  increase, tending to satura-

tion: ∆ (t  ∞)  ∆ (H0, ), where t is
time. Considering that the tube may experience several
loading cycles, the time variation of the stress at each
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point (x, α, r) of the tube is conveniently described by
the expressions [2–4]

(5)

where the circular frequency ω is assumed to be so
small that the loading and unloading processes are
quasi-static. According to (5), the first application of
the load of amplitude σm corresponds to ωt = π; the first
relief, to ωt = 2π; and so on. Eventually, we have [3]

(6)

The values of ∆  and ∆  depend on the elas-
tic stress amplitude at a given point of the tube in a
given field H0, and the parameters k± specify the rate of

approach of ∆ (t) to saturation.

Figure 1a shows the magnetoelastic variations of the
magnetization in St 3 steel subjected to a permanent
inner magnetic field of 40 A/m and experiencing uni-
form load cycling (a stress amplitude of ±150 MPa).
Also shown is the steady regular variation of the mag-
netization (tenth cycle).

As the amplitude σm grows, both components (6)
first increase and then tend toward saturation (in the

same field). Curves for ∆ ( ) and ∆ ( ) in
the range 0 ≤ σm ≤ 150 MPa are demonstrated in
Fig. 1b. As was shown [2, 3], the amplitude depen-

dences of ∆  and ∆  generally obey the expo-
nential law

(7)

where the parameters  and  should be determined
from experiments with given steel [2, 3].

In a first approximation, the low-field dependences

of ∆  and ∆  are linear:

(8)

From (8) and Fig. 1, one easily evaluates the magne-
tization magnetoelastic increments in St 3 steel for any
other field if it is low: H0 ! Hc. Straightforward pro-
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cessing of the data in Figs. 1a and 1c according to (6)–
(8) yields the following model parameters (for St 3

steel):  =  =  =  = σ0 = 100 MPa,  = 740,

 = 107,  = 150,  = 80, k+ = 3, and k– = 6. From
(6)–(8), it is easy to derive a general expression for the

distribution of the magnetization ∆  in a bent tube:

(9)

where only the stress amplitude is a function of (x, α,

r):  always equals σb(x, α, r).

STRAY FIELD NEAR AN ELASTICALLY
BENT TUBE

Expressions (10) in view of (4) yield volume mag-
netic charges of density [5]

(10)
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Substituting (9) and (4) in (10), we have

(11)

In this case, magnetic potentials ϕ±(x', α', r') take the
form [5]

(12)

where

(13)

The total magnetic potential ϕ(x', α', r') of an elasti-
cally bent tube is the sum of expressions (12) in view of
(13). The stray field components are calculated by the
formulas [5]
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In (12)–(17), the limits of integration over α+ and α–

are the same:

(18)

Expressions (12)–(18) are exact solutions to magne-
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tostatic problem (9) for a given distribution of magneti-
zation magnetoelastic increments in an elastically bent
tube under the assumption that the inner magnetic field
is constant.

CALCULATION OF STRAY FIELD 
COMPONENTS FOR A SPECIFIC TUBE

Since we measured stray fields on the surface of an
elastically bent tube made of St 20 steel, it seems rea-
sonable to calculate the fields for this object. The length
of the tube is 2 m, r1 = 10.5 mm, r2 = 13.5 mm, and
σt = 250 MPa. Bending stresses were applied to the
tube placed vertically, so that the vertical component of
TECHNICAL PHYSICS      Vol. 48      No. 12      2003
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the terrestrial magnetic field H0x = 30 A/m was aligned
with the tube axis. Since the magnetization magne-
toelastic increments are linear functions of the field (see
(9)), the effective values of the increments are those
given in Fig. 1b times 0.74. The magnetization due to
this field is M(H0x) ≅  8 kA/m.

Let  be 133 MPa. From (1)–(3), one easily finds
that the sag in this case is y0 = 20 mm. Using these data
and the model parameters for St 3 steel, we calculated
the tangential, ∆Hx(x), and normal, ∆H1(x), compo-
nents of the stray field, taking into account the contri-
bution from the uniform magnetization M(H0x). To do
this, we supplemented expressions (14) and (15) for the
magnetization magnetoelastic increments with the field
δH(M(H0x)) of a point dipole (a base 2 m long with
magnetic charges M(H0x)S = 0.00181 kA m at its ends).
The components of the dipole field are

(19)

(20)

The integrals involved in (14) and (15) cannot be
taken analytically. Therefore, we used numerical inte-
gration algorithms to obtain an approximate solution.

RESULTS AND DISCUSSION

Figure 2 shows the tangential component distribu-
tion along the tube on its five generatrices, namely, α =
0° (maximal tensile stresses in the bent tube), α = 45°,
α = 90° (the neutral filament of the tube, where σb = 0),
α = 135°, and α = 180° (the generatrix where compres-
sion stresses are maximal), in both loaded (ωt = π,
Fig. 2a) and unloaded (ωt = 2π, Fig. 2b) states. It is seen
that the curves in Figs. 2a and 2b differ only numeri-
cally: the extrema of the function ∆Hx(x) in the
unloaded state are somewhat higher than in the loaded
state, which is explained by the increased mean magne-
tization in the former case [4].

The function ∆Hx(x) varies to the greatest extent on
the generatrix α = 0° and to the least extent on the gen-

eratrix α = 180°. This is because the value of ∆  is

smaller than ∆ . The rest of the curves ∆Hx(x) (on the
generatrices α = 45°, 90°, and 135°) lie between these
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two curves. The curves on the generatrices α = 135°
and 180° virtually coincide with each other.

The functions ∆Hx(x) each have three maxima (at
x = 0 and ±90 cm) and two minima (at x = 43 cm).
Dashed line 1 shows the variation of the relative volume

magnetic charge density ρrel(x) = /( )max. From
Figs. 2a and 2b, it follows that the extrema of ρrel(x), x =
±64 cm coincide with the zeros of ∆Hx(x). The curves
∆Hx(x) (Fig. 2) are almost completely associated with
the magnetoelastic increment of the magnetization,
since fields (19) and (20) have very narrow extrema at
the end faces of the tube (0.98 ≤ x ≤ 1 m) and are close
to zero in the remaining part.

The α dependences of ∆Hx are omitted, since their
shape at any x = const remains the same: a broad peak
at α = 0°, followed by a smooth decline as α tends to
±180°. All the curves ∆Hx(α) are symmetric about α = 0°.
Expressions (12), (13), (15), (17), and (20) for the nor-
mal component ∆Hr of the stray field are given here,
since in [4] this field was calculated approximately.
Figures 3a and 3b demonstrate the exact calculation of
the curves ∆Hr(x) on five generatrices of the tube (α =
0°, 45°, 90°, 135°, and 180°).

ρm
± ρm

±

–100 –60
–0.3

–0.1

–20 0 20 60 100

–0.2

0

0.1

0.2

0.3

1.0

0.5

0

–0.5

–1.0

x, cm

α = 0°
α = 45°
α = 90°
α = 135°
α = 180°

(b)

ρ r
el

∆H
x,

 A
/c

m
ω

t =
 π

; M
(H

0x
) 

=
 8

 k
A

/m

1

–0.3

–0.1

–0.2

0

0.1

0.2

0.3

1.0

0.5

0

–0.5

–1.0

α = 0°
α = 45°
α = 90°
α = 135°
α = 180°

(a)

ρ r
el

∆H
x,

 A
/c

m
ω

t =
 π

; M
(H

0x
) 

=
 8

 k
A

/m

1

Fig. 2. Variation of the tangential component ∆Hx(x) of the
stray field due to the magnetization magnetoelastic incre-
ment on the surface of the elastically bent tube along its
generatrices α = 0°, 45°, 90°, 135°, and 180° (a) under max-
imal bending stresses and (b) under unloading. Dashed
curve 1 shows the variation of the relative magnetic charge

density ρrel = ρm/  along the tube.ρm
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As follows from Figs. 3a and 3b, the curves ∆Hr(x)
taken at various α are similar to each other and to the
curve ρrel(x) (dashed line 1): each of them has two
extrema (at x = ±70 cm) and two inflection points. In the
unloaded state (ωt = 2π), the curves ∆Hr(x) are similar
to those in the loaded state but run 20% higher. As with
∆Hx(x), this is because the mean magnetization some-
what increases upon unloading [4]. At the ends of the
tube, the contribution of magnetic charges due to the
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Fig. 3. Variation of the normal component ∆Hr(x) of the
stray field due to the magnetization magnetoelastic incre-
ment along the tube generatrices α = 0°, 45°, 90°, 135°, and
180° (a) under maximal bending stresses and (b) under
unloading; (1) the function ρrel(x).

–100 –60
0

10

–20 0 20 60 100

ωt = π
ωt = 2π

50

40

30

20

∆Mσ, kA/m
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uniform magnetization M(H0x) prevails. As a result, the
resultant normal component of the stray field tends to
the value predicted by (31): ∆Hr  ±420 A/m with
x  ±1 m.

Finally, consider the distribution of the cross-sec-
tion-averaged magnetization

(21)

along the tube. The first term on the right of (21) is the
average over the extended half-section of the tube; the
latter is the average over the compressed half-section.
Such averaging, which is easy to perform with expres-
sion (9) in view of (4), is of interest, since it is the cross-
section-averaged magnetization that is measured by the
ballistic method (using a feedthrough coil).

Figure 4 demonstrates the results of such a calcula-
tion. Once the bending load has been relieved (ωt = 2π),

the curve (x) runs somewhat higher than in the
stressed state (ωt = π). The bell-shaped form of this
curve suggests that it, in general, reflects adequately the
distribution of bending stresses in the tube.

Having calculated the tangential and normal com-
ponents of the stray field (Figs. 2, 3), as well as the vol-
ume magnetic charge density (Figs. 2, 3, curves 1) and
the distribution of the cross-section-averaged magneti-
zation (Fig. 4), we can trace the manner in which elastic
stresses (4) appear in these curves.

The curve σb(x) is a half-sinusoid and, accordingly,
has a bell-shaped form with a peak at the center of the

tube. Curves ∆ (x) (9) also have a bell-shaped form:
they reach a maximum at the center of the tube and fall

to zero at its ends. However, the values of ∆  expo-
nentially depend on the stress amplitude squared (see
(9)). Therefore, one can assume that the dependences
∆Mσ(x) copy qualitatively the dependences σb(x): as σb
increases, so does ∆Mσ, and both quantities vanish
simultaneously.

The derivative of ∆Mσ(x) with respect to x defines
the volume magnetic charge density ρrel(x) in the tube.
Clearly, the derivative of the bell-shaped curve ∆Mσ(x)
yields two extrema of the function ρrel(x): a maximum
and a minimum with two inflection points in between,
which arise because of the exponential

(22)

It is easy to check that this exponential is minimal at
the center of the tube (x = 0) and equals unity at its ends
(x = ±l0/2). If the exponent in (22) were much smaller
than unity at any point of the tube (σb < σ0 in this case),
we could expand expressions (7) into a series and leave
only the first-order term, as was done in [4]. In this
case, the extrema of the function ρrel(x) were at the
points x = ±50 cm. Exponential (22), appearing in (10),
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shifts the extrema closer to the ends of the tube: x =
±70 cm (Figs. 2, 3, curves 1).

Thus, measuring the normal component of the stray
field, one can judge the distribution ρrel(x) of volume
magnetic charges in an elastically bent tube and find the
region (near its end faces) where the effect of magnetic
charges is the most significant. Comparing the values of
the field ∆Hr(x) at the points x = ±l0/2 with its value
given by (20) will make it possible to determine the uni-
form magnetization. Also, graphically integrating the
curve ∆Hr(x), one can recover the distribution of the

cross-section-averaged magnetization (x) (21)
and, thereby, judge the distribution of bending stresses
in the tube.

The tangential component of the stray field (Fig. 2)
bears more information than the normal one. In moving
from the end of the tube toward its center, the first zero
of the function ∆Hx(x) defines the boundary of the
region where the influence of magnetic charges is sig-
nificant. The second zero is the position of the extrema
of the functions ρrel(x) and ∆Hr(x). The positions of the
minima of the function ∆Hx(x) (x = ±45 cm in our case)
specify the region where exponential (22) has a great
effect on the stray field components. In this region,
|σb(x)| > σ0, where σ0 is a characteristic stress outside
this region. It should be noted that this region cannot be
found from the positions of the inflection points. The
minima of the curve ∆Hx(x) (the points x = ±43 cm) cor-
respond to the characteristic point of variation of expo-

nential (22):  = σ0 = . Thus, the mean value of
internal stresses of the first kind in the tube material
may be found from the position of the minima.

∆Mσ

σb
m σi
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CONCLUSIONS

Nondestructive inspection techniques based on
measuring the tangential and normal components of a
stray field on the surface of an elastically bent tube
complement each other: although the tangential field is
more sensitive to the features of the ρrel(x) curve and,
accordingly, provides more information, the normal
field distribution allows one to recover the distribution
of bending stresses in the tube.

Another advantage of the tangential field technique
is the possibility of finding regions where the bending
stress exceeds the stress σ0 that is characteristic of
given steel. This characteristic stress is related to the
mean value of internal stresses in the steel.

A disadvantage of the tangential field technique is
that this component is five to six times lower than the
normal one. This imposes stringent requirements on the
accuracy of positioning of the ferroprobe core.
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Abstract—The well-known phenomenon of asterism is used as the basis for the development of an X-ray topo-
graphic method to identify and measure plastic strains and residual elastic stresses in single crystallites more
than 3 µm in size in polycrystalline diamond layers. The amount of asterism is used as a quantitative measure
of plastic strains in crystallites. The distribution of crystallites over the amount of asterism in 40- to 670-µm-
thick microwave-plasma-deposited polycrystalline diamond layers is obtained. Shear plastic strains, which
cause a misorientation from 0.4′ to 1.5° between different areas of a crystallite, are observed for the first time.
The residual elastic stresses calculated in plastically strained crystallites vary between 2.7 kPa and 0.84 GPa.
© 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

As applied to diamonds, X-ray topography (XRT)
has been used mainly to examine the defect structure in
natural diamond single crystals [1–3] and cracking in
homoepitaxial diamond films [4]. Using many-crystal
diffractometry, researchers have discovered and studied
the anomalous transmission of X rays in natural dia-
mond crystals for µt < 1 (µ is the linear X-ray absorp-
tion coefficient and t is the thickness of the material).
X-ray diffractometry (XRD) was used at times for the
phase analysis of artificial (synthesized) polycrystalline
diamond layers (PDLs); however, the resolving power
of these methods leaves much to be desired. More fre-
quently, XRD methods were used to measure macro-
scopic elastic stresses in a PDL as a whole [5]. How-
ever, our recent results [6] indicate that the averaging of
elastic stresses over all PDL crystallites is totally incor-
rect, since it is known today that residual elastic stresses
in individual plastically strained crystallites of a layer
may differ by three to five orders of magnitude, as dem-
onstrated in this study. Therefore, we propose another
approach: to detect plastically strained crystallites sep-
arately using the phenomenon of asterism, to measure
the amount of asterism from diffraction reflections on
the diffraction patterns, to calculate the misorientation
angle between different areas of the crystallite lattice,
to calculate residual elastic stresses in plastically
strained crystallites, and to construct the crystallite dis-
tribution over the amount of asterism. In addition, such
an approach allows one to distinguish between elasti-
cally and plastically strained crystallites.

In this work, we estimate mostly elastic strains
localized within a crystallite. The calculation of macro-
1063-7842/03/4812- $24.00 © 1546
scopic elastic strains in the PDL–substrate system as a
whole will be the subject of further investigation. It is
important to conceive the origin of local elastic stresses
that cause plastic strains in several or most crystallites
in the course of PDL growth on substrates [6], whereas
neighboring crystallites in the same PDL remain elasti-
cally (but not plastically!) strained. The mathematical
foundation of an XRT method developed by the author
for the quantitative evaluation of plastic strains in indi-
vidual crystallites is given below. In this method, the
misorientation between individual crystallites is mea-
sured from the diffraction pattern (topogram in the con-
text of this article), and then residual elastic stresses in
these crystallites, albeit roughly (on the model level),
are calculated.

The need for studying thick (@1 µm) PDLs by non-
destructive XRT methods has become topical. In [6], a
brief review of methods for PDL study is given and an
original XRT method to measure crystallite sizes and
find the crystallite size distribution in 40- to 670-µm-
thick PDLs is proposed. Because of the low X-ray
absorption coefficient of diamond, the nondestructive
XRT method can be used to examine PDLs throughout
the range of practical thicknesses: from several
micrometers to 1–5 mm.

EQUIPMENT AND METHODS FOR XRT STUDY 
OF POLYCRYSTALLINE DIAMOND LAYERS

Polycrystalline diamond layers 80 to 670 µm thick
were grown on single-crystal silicon substrates in a
microwave plasma-chemical reactor. Thinner layers
(1–40 µm) were synthesized on silicon by the hot fila-
2003 MAIK “Nauka/Interperiodica”
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ment method. The layers start growing at many chaoti-
cally oriented nucleation centers (of size ≈5 nm) [6].
These centers grow up to crystallites and eventually
give rise to the polycrystalline structure of the layers.

The real structure of PDLs was examined by a num-
ber of XRT and XRD methods. Based on the method of
divergent beam from a quasi-point source (DBQPS)
[7–10] (URS-0.1 X-ray equipment), researchers at the
Institute of Radio Engineering and Electronics, Russian
Academy of Sciences, have developed an original XRT
technique [6] for the numerical evaluation of the crys-
tallite size distribution in an irradiated PDL area. Its
essence is that discontinuous Debye rings recorded on
a standard-size (9 × 12 cm) photographic plate, which
is used to take Laue patterns with an RKSO-1 X-ray
camera, contain diffraction reflections only from those
irradiated crystallites whose orientation meets the
Bragg diffraction condition (for the most part from
low-index crystallographic planes, such as {111},
{220}, or {311}). Note also that these reflections are
the most intense in polycrystalline diamond. Character-
istic radiations from MoKα1, 2, CuKα1, 2, NiKα1, 2, or
CoKα1, 2 anodes may be used.

The preferential orientations of crystallites were
determined by a more rapid XRD method [7–10] using
monochromatic CuKα1 radiation. It was implemented
with a double-crystal X-ray spectrometer–diffractome-
ter built around a DRON-2 diffractometer. The new
setup may accommodate (n; –n) geometry with the
automatic recording of diffraction curves by a potenti-
ometer.

In the configuration adopted, the DBQPS method
[7–10] provides a linear geometrical resolution of about
7 µm when polychromatic (or white) X-ray radiation is
used. For CoKα1 (λ = 1.78892 Å) and MoKα1 (λ =
0.70929 Å) radiation, the resolution is 3 and about
1 µm, respectively [7–10]. The photographic resolution
of the thick-film plates used is about 3 µm. This means
that the XRT method makes it possible to record dis-
crete reflections from individual crystallites of size
≥3 µm. With a smaller grain size, the Debye rings are
expected to become continuous when MoKα1 or
MoKα2 radiation, as well as higher wavelength
CuKα1, 2 or CoKα1, 2 radiation, is used. Indeed, in the
case of fine-grained samples of thickness from 1 to
40 µm, the rings observed in the topograms are, as a
rule, continuous. However, under specific growth con-
ditions (low rate of primary and secondary nucleation),
some of the crystallites in layers of thickness h ≥ 40 µm
were large enough for the intensity distribution to be
discontinuous not only in the Debye rings due to the
characteristic radiation but also in reflections due to
polychromatic X-ray radiation.
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PLASTIC STRAIN IN CRYSTALLITES
OF POLYCRYSTALLINE DIAMOND LAYERS: 

DETECTION AND MEASUREMENT

Topograms taken of relatively thick (40–670 µm)
PDL samples demonstrated [6] the well-known phe-
nomenon of asterism of diffraction spots [11] from a set
of crystallites. Asterism shows up as a considerable
elongation of diffraction spots from crystallites in the
Bragg direction compared with the size of the same
spots in the azimuthal direction; i.e., normal diffraction
spots transform into diffraction “tails” along the radial
or Bragg direction. In the topogram from a PDL sample
80 µm thick, the Bragg size of individual reflections is
almost equal to, or even somewhat smaller than, their
azimuthal size (Fig. 1a). This means that the corre-
sponding crystallites are not prone to plastic deforma-

7 6

5

3
4

2
1200 µm (b)

(a)

Fig. 1. (a) General view of the X-ray topogram from crys-
tallites in a polycrystalline diamond layer 80 µm thick;
(b) enlarged part of the topogram in Fig. 1a. Laue diffrac-
tion of characteristic CoKα1 (outer ring) and CoKα2 (inner
ring) radiation. Spots 1 and 5 without asterism; spots 2–4,
6, and 7 with asterism.
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tion. In such crystallites (marked 1 and 2 in Fig. 1b),
only purely elastic strains and their associated elastic
stresses may be observed. However, the topogram from
the same sample exhibits a number of reflections where
the Bragg size of spots exceeds their azimuthal size by
a factor of 2–3 or more, i.e., demonstrates asterism
(crystallites 3, 4, 6, and 7 in Fig. 1b). Consequently, the
crystallites responsible for “asterism tails” on the topo-
grams have experienced plastic deformation. Thus, the
XRT method for the first time visualized the fact that
the same area of a relatively thin (h = 40–80 µm) PDL
sample may simultaneously contain elastically and
plastically strained crystallites. Such a result appeared
to be unexpected for both the author and other research-
ers. It raised a fundamental question: How do local
elastic stresses that are high enough to overcome the
high-temperature ultimate strength of polycrystalline
diamond and cause plastic deformation in some PDL

1

2

3

4

200 µm (b)

(a)

Fig. 2. (a) General view of the X-ray topogram from crys-
tallites in the PDL 200 µm thick (MoKα1, 2 radiations).
(b) Part of the topogram in Fig. 2a. Spots 1, 3, and 4 show
asterism in ascending order.
crystallites, while being insufficient to plastically
deform other (neighboring) crystallites, arise? Below,
we will try to answer this question.

In PDL samples with thickness h ≥ 100 µm, the
Bragg sizes of many or even the vast majority of reflec-
tions are several times larger than their azimuthal sizes
(see Fig. 2a and also enlarged reflections 1–4 in
Fig. 2b). The pronounced asterism of the diffraction
spots suggests that many, though not all, diamond
grains are plastically strained [6, 11]. This serves as
direct evidence of the fact that the pressure exerted by
surrounding crystallites exceeded the high-temperature
ultimate strength of diamond. These local elastic
stresses cause plastic strains in some of the crystallites
in samples of thickness 40–80 µm or in the vast major-
ity of crystallites in PDLs of thickness h ≥ 100 µm dur-
ing growth. Since the topogram also contains fairly
symmetric and even circular (according to the shape of
the X-ray tube focus) reflections, one may conclude
that the corresponding crystallites in the same poly-
crystalline diamond layer experience only some purely
elastic deformation. Thus, even rather thick PDL sam-
ples may exhibit both plastically strained and plasti-
cally unstrained crystallites.

Subject to a number of constraints, the length of the
diffraction tails in the Bragg direction may serve as an
approximate measure of plastic strains in crystallites.
On the topograms, the length of asterism spots in the
Bragg direction varied in the 10–170 µm range, reach-
ing 1.0–2.5 mm in exceptional cases.

The size of one diffraction point in the Bragg direc-
tion is about 3 µm for monochromatic CoKα1 radiation
(≈1 µm for MoKα1) and ≈7 µm for polychromatic radi-
ation. Then, in units of wavelength, a reflected point in
a diffraction spot measures (in the Bragg direction)
δ  ≈ 5.4 × 10–5 Å for monochromatic MoKα1 and

CoKα1 radiation and δλ ≈ 2.0 × 10–4 Å for white or
polychromatic radiation. For asterism tails on reflec-
tions formed by polychromatic radiation, this interval
would be δλ = (5.0–7.6) × 10–4 Å or, in exceptional
cases, δλmax ≈ 0.11 Å.

In the Laue transmission geometry for PDLs, the
position of a diffraction reflection from an individual
crystallite is determined by the following relationships
(in the case of characteristic Kα1 or Kα2 radiation):

(1)

(2)

(3)

Here, l1 and l2 are the distances from the center of the
incident beam to the end points of an asterism spot (the
length of an asterism tail is ∆l = l2 – l1); B is the distance
between the PDL sample and photographic plate (usu-
ally B = 40 mm); and θ is the Bragg angle for diffrac-
tion from low-index {111} planes, which have a high

λKα1

l1 B 2θ,tan=

l2 B 2θ 2∆θ+( ),tan=

∆l l2 l1– B 2θ 2∆θ+( )tan B 2θ.tan–= =
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repetition factor in the cubic lattice of diamond. Dif-
fraction reflections from these planes are one of the
most intense for individual crystallites in PDLs. Since
the length ∆l of asterism tails is easy to measure from
topograms, the amount of asterism may be found from
Eq. (3) in angular units 2∆θ:

(4)

The amount of asterism is then used to calculate
elastic stresses, which are related to plastic strains, in
individual crystallites.

Obviously, formula (4) is applicable for θ < 45°.
Having measured the linear asterism ∆l from the dif-
fraction reflection for any of the crystallites in the topo-
gram and having converted this value to its angular
equivalent, one may numerically evaluate residual elas-
tic stresses responsible for plastic strains in the given
crystallite. Since the generation of dislocations is an
elementary mechanism of shear plastic deformation,
dislocation boundaries will divide a crystallite (like a
tiny single crystal) into several mutually misoriented
areas. Taking the actual amount of asterism measured
in the topogram as the angle of maximal misorientation
between all areas of a crystallite, we may assume in
model calculations that an incoherent dislocation sub-
boundary divides the crystallite into only two mutually
misoriented areas. We will apply the approximate theo-
retical model formula for an incoherent dislocation
boundary [12, 13]

(5)

where E = 1143 GPa is the Young’s modulus of dia-
mond [15, 16], b|| is the projection of the Burgers vector
of dislocations onto the plastic shear boundary, and h is
the crystallite thickness. For low misorientations
between incoherent dislocation boundaries, b|| ≈ b∆θ
and h ≈ b/∆θ. Then, (5) transforms into the convenient
computational formula

(6)

Thus, knowing the angular amount of asterism, one
can approximately evaluate residual elastic strains,
which are related to plastic strains, in each of the PDL
crystallites on the topogram.

As follows from Figs. 1a and 1b (topograms taken
of 40- to 80-µm-thick PDLs), relatively small (≤5 µm)
elastically (but as yet not plastically) strained crystal-
lites appear as small spots, and their sizes in the Bragg
and azimuthal directions are practically the same. Dif-
fraction spots elongate in the Bragg direction (with the
formation of diffraction tails) when adjacent areas in
the crystallite lattice irradiated by monochromatic
CoKα1, 2 or MoKα1, 2 radiation turn out to be misori-
ented relative to each other. It is precisely this situation
that occurs in single crystals under shear plastic defor-
mation [14]. Each grain in a polycrystal may be viewed
as a tiny single crystal. Thus, the asterism observed in
our paper seems to be associated primarily with misori-

2∆θ ∆l/ B B 2θtan
2 ∆l 2θtan+ +[ ][ ]{ } .arctan=

σ Eb||/h,≈

σ E ∆θ( )2.≈
TECHNICAL PHYSICS      Vol. 48      No. 12      2003
entation between separate areas of a crystallite that
experienced shear plastic deformation. This is consis-
tent with the concept of asterism put forward in [11].

As follows from the above measurements, the
length of asterism spots in the Bragg direction lies
between 10 and 170 µm but may reach 1.0–2.5 mm (see
the topograms taken from the 200- and 670-µm-thick
PDLs; Figs. 2 and 3, respectively). Then, in the case of
MoKα1 radiation, the minimal asterism for plastically
strained diamond crystallites that is estimated by (4) is
∆θ1 ≈ 0.007069° or ∆θ1 ≈ 0.42′; the strong asterism for
a set of crystallites ranges up to ∆θ2 ≈ 0.107597° or
6.6′; and, finally, the maximal asterism observed in
some of the crystallites is as high as ∆θ3 ≈ 0.315622°
(19′) or even ∆θ4 ≈ 1.551969°, as follows from the mea-
surements and calculations.

Using approximate formula (6), one can calculate
residual elastic stresses in the plastically strained crys-
tallites for which misorientations caused by shear plas-
tic deformation are known. From the misorientations

250 µm (b)

(a)

Fig. 3. (a) General view of the X-ray topogram from crys-
tallites in the PDL 670 µm thick (MoKα1, 2 radiation).
(b) Part of the topogram in Fig. 3a that shows the crystallite
with a maximal asterism.
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given above, we find that the elastic stress is σ1 ≈
17.4 kPa for the minimal plastic strain; σ2 ≈ 4.0 MPa or
σ3 ≈ 0.21 GPa for large strains; and as high as σ4 ≈
0.84 GPa for the maximal plastic strain in a number of
crystallites. Such are the residual elastic stresses in
plastically strained crystallites of relatively thick (h ≥
100 µm) PDL samples.

In relatively thin (h = 40–80 µm) PDLs, the asterism
of the spots was in the range 10–300 µm, as measured
from the topograms taken with CoKα1, 2 radiation.
According to (4), the minimal angular asterism of crys-
tallites in 40- to 80-µm-thick PDLs is thus equal to
∆θm ≈ 0.002778°, and the corresponding residual elas-
tic stresses in these plastically strained crystallites were
found to be σm ≈ 2.7 kPa. Thus, during the growth of
relatively thin (<100 µm) samples, a significant plastic
strain arises only in a number of crystallites. As is evi-
dent from the topographic measurements and calcula-
tions, the elastic stresses vary from 2.7 to 17.4 kPa for
crystallites with a low asterism, from 2.4 to 4.0 MPa for
those with a high asterism, and from 0.7 to 0.84 GPa in
crystallites where the asterism is maximal. The lower
and upper limits of these ranges refer to the thin (40–
80 µm) and thick (100–670 µm) layers, respectively.

The DBQPS data for the asterism of the images of
crystallites in different PDL samples can be treated
mathematically in the same manner as data for crystal-
lite sizes [6]. The crystallite distributions with the
amount of asterism (expressed in micrometers) are pre-
sented in Fig. 4 for four PDL samples. Most of the crys-
tallites fall into the first (the highest) maximum, the
positions of which are virtually the same for three of the
four samples. The amount of asterism corresponding to
this basic maximum is almost 20 µm. The data for the
thin (40 and 80 µm) and thick (≥200 µm) PDL samples
can be conveniently compared with the table, which
lists all the measurements and calculations. In each of
these plastically strained crystallites, the residual elas-

20

200

400

0

800

600

Number of crystallites

40 60 80 100 140 160120
Asterism, µm

Fig. 4. Crystallite asterism distribution for four PDLs of
thickness (h) 40, (s) 80, (n) 200, and (m) 670 µm.
tic stresses corresponding to the basic maximum are
σm1 ≈ 10.75 kPa and σm2 ≈ 17.4 kPa for the thin and
thick PDLs, respectively. In addition, three weaker
maxima with an asterism of 60, 85, and 125 µm are
present in Fig. 4. However, they appear only in the case
of relatively thick (h ≥ 100 µm) PDLs. The number of
crystallites covered by these additional maxima is con-
siderably less (1 to 10%) than in the basic maximum
(Fig. 4).

The sharpest and highest maxima are observed for
the fourth sample, where the position of the basic max-
imum in the case of MoKα1, 2 radiation shifts to 28 µm.
The second asterism maximum in this sample is only
slightly lower (80% of the basic maximum). In addi-
tion, the second maximum (∆l2 = 55 µm), as well as the
rather broad third (from ∆l3bg = 75 µm to ∆l3en =
105 µm) and fourth ones, are several times higher than
the corresponding maxima for the rest of the samples.
It should be added that the third maximum is so broad
that its upper part appears as an inclined straight line
extending from 75 to 105 µm of linear asterism with the
height decreasing from 42 to 25% of the basic maxi-
mum. The fourth maximum is split into two submaxima
at ∆l4a = 125 µm and ∆l4b = 135 µm. The last maximum
lies at ∆l5 = 180 µm. It should be emphasized that the
fourth and third samples have the same thickness,
200 µm. Moreover, both were grown at the Institute of
General Physics, Russian Academy of Sciences, by the
same method and with the same setup. However,
according to our XRT data, the crystallite distributions
over the amount of asterism in these samples differ dra-
matically. Therefore, one can argue that, during growth,
the conditions for initiation and evolution of plastic
deformation in crystallites of these equally thick PDLs
were totally different. Conversely, for samples 1, 3, and
5, which were grown by two different methods and at
different institutes (sample 1 to 40 µm thick was grown
at the Institute of Physical Chemistry, Russian Acad-
emy of Sciences, by the hot filament method, while
samples 3 (2 to 200 µm thick) and 5 (670 µm thick)
were grown in a microwave plasma at the Institute of
General Physics Institute, Russian Academy of Sci-
ences), striking agreement is observed between the
crystallite asterism distributions. The basic maxima in
these samples are almost coincident. The distinctive
feature of these PDLs is that the width of the basic max-
imum increases slightly with the layer thickness. It
seems quite logical to expect this feature. However, the
shift of the basic asterism maximum to 28 µm and the
formation of four much higher extra maxima in the
fourth sample 200 µm thick with increasing asterism
lead us to think that the growth conditions for this sam-
ple were so changed that shear plastic deformation was
initiated in a much greater number of crystallites. In the
fifth sample, which was grown in the same setup but is
much thicker (670 vs. 200 µm!), the same tendency
toward the formation of extra maxima with a higher
asterism is observed, but these maxima are one order of
TECHNICAL PHYSICS      Vol. 48      No. 12      2003
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Asterism of individual crystallites, as well as of groups of crystallites, in the maxima of the crystallite asterism distribution
curves. The crystallites were plastically deformed during the growth of polycrystalline diamond layers. The asterism was mea-
sured by the diffraction reflections in the topograms. Also given are the calculated values of the residual elastic stresses σn in
plastically strained crystallites

Sample no. PDL
thickness, µm

X-ray
radiation

Amount of asterism ∆l Residual elastic stresses
in separate groups of crystallites

µm deg kPa MPa GPa

1 40 CoKα1, 2 10 0.002778 2.7 – –

20 0.005555 10.75 – –

2 80 CoKα1, 2 10 0.002778 2.7 – –

20 0.005555 10.75 – –

100 0.043573 661.0 – –

300 0.129810 – 5.87 –

3 200 MoKα1, 2 10 0.007069 17.4 – –

20 0.012673 56.0 – –

60 0.038008 – 0.50 –

85 0.053835 – 1.0 –

125 0.079145 – 2.2 –

170 0.107597 – 4.03 –

4 200 MoKα1, 2 ∆llim = 10 0.007069 σmin = 17.4 – –

∆lm = 28 0.017742 σm = 110 – –

∆l2 = 55 0.034843 σ2 = 422.7 – –

∆l3bg = 75 0.047505 σ3bg = 785.8 – –

∆l3en = 105 0.066492 – σ3en = 1.5 –

∆l4a = 125 0.079156 – σ4a = 2.18 –

∆l4b = 135 0.085469 – σ4b = 2.54 –

∆l5 = 180 0.113917 – σ5 = 4.52 –

5 670 MoKα1, 2    10 µm 0.007069 17.4 – –

   20 µm 0.012674 56.0 – –

   170 µm 0.107597 – 4.0 –

   1 mm 0.315622 – – 0.21

   2.5 mm 1.551969 – – 0.84
magnitude lower than those in the fourth sample
(200 µm thick).

Thus, with the same PDL growth technology, the
variation of the growth conditions even for not very
thick layers results in different distributions of plasti-
cally strained crystallites over the amount of asterism
and in different residual elastic stresses in them.

POSSIBLE REASONS FOR HIGH ELASTIC 
STRESSES IN GROWING POLYCRYSTALLINE 

DIAMOND LAYERS

The room-temperature ultimate strength of natural
single-crystalline diamond varies from 9 to 190 GPa
[15, 16] depending on the type of deformation (com-
pression, tension, or shear), whereas for commercial
diamonds, it is considerably lower, ranging from 0.23
TECHNICAL PHYSICS      Vol. 48      No. 12      2003
to 0.48 GPa [16]. Calculations and measurements give
approximately the same values of shear strength: 121
and 132 GPa, respectively [16].

The cubic lattice parameters of silicon, a1 = 5.4282 Å,
and diamond, a2 = 3.5676 Å, differ substantially. The
lattice mismatch for the (111)Si–diamond system is
about 42%. When diamond layers grow on a single-
crystalline silicon substrate, an intermediate layer of
hexagonal silicon carbide (6H-SiC) is known to form,
as confirmed by our XRD examination of the phase
composition of the PDL/(001)Si system and by optical
measurements [6]. In this system, the planar {111}C
network of diamond is brought into contact with the
(0001)SiC hexagonal plane. In this case, the mismatch
decreases to 41.4%, i.e., becomes slightly less than for
a diamond layer grown directly on the (111)Si substrate
without the intermediate layer.
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For our system, representations and formulas (1.5–
1.9) from [17] have the form

(7)

where

(8)

Using these relationships, we can calculate tensile
stresses in the PDL under conditions of isostructural
heteroepitaxy. The calculation also takes into account
the elastic relaxation of the system due to bending
stresses and the great difference in the Young’s moduli
for silicon, E1 = 176.58 GPa, and polycrystalline dia-
mond clusters, E2 = 1143 GPa [15, 16], as well as in the
Poisson’s ratios: ν1 = 0.215 and ν2 = 0.0691, respec-
tively. Then, for a substrate thickness h1 = 3 mm and a
PDL thickness h2 = 600 µm, we find that the tensile
stress in the polycrystalline diamond layer is σ(xx)2 ≈
σ(yy)2 = 274.7 GPa, which exceeds the tensile strength
σ = 190 GPa of natural single-crystalline diamond at
room temperature.

Thus, in the case of isostructural heteroepitaxy,
stresses caused by the lattice mismatch would exceed
the ultimate strength of natural single-crystalline dia-
mond, to say nothing of synthetic PDLs, for which the
ultimate strength is much lower. The internal stresses
arising in thick PDLs may hardly be related to only the
large diamond–substrate lattice mismatch. At the initial
stage of growth, when diamond nuclei grow on the sil-
icon substrate, a kind of isostructural heteroepitaxy
through the 6H-SiC intermediate layer may take place;
however, the above calculations give the result for the
heteroepitaxial layer–substrate system as a whole.

Our XRT data clearly show that, during growth,
local elastic stresses in some of the crystallites start to
exceed the high-temperature ultimate strength of dia-
mond, causing these crystallites to experience plastic
(specifically, shear) deformation.

The basic physical reason for the plastic deforma-
tion of individual crystallites in PDLs is likely to be
intercrystallite pressure in the PDL, which appears
when the nuclei, reaching the size of the crystallites,
come into contact with each other. Since the crystallites
are randomly oriented, they may apply pressure to each
other through both crystallographic planes and sharp
edges. In other words, a growing PDL plastically
deforms itself. Intergranular spacers are also a factor in
this process. As is well known, they may trap lattice
imperfections, such as point and linear defects, as well
as nondiamond phases of carbon.

σxx σyy E2/ 1 ν2–( )[ ]ε xx= =

=  E2/ 1 ν2–( )[ ] 6 f 12 h1 h2+( )/ E2h2
3/E1h1( )[{

+ E1h1
3/h2( ) 6h1h2 4h1

2 4h2
2 ] } h2+ + +

– f 12h1 A/2( ) E2h2
2/E1 h1

2–( )+[ ] / E2h2/E1 h1+( ),

A E2/ 1 ν2–( )[ ] 6 f 12 h1 h2+( )/ E2h2
3/E1h1( )[{=

+ E1h1
3/h2( ) 6h1h2 4h1

2 4h2
2 ] } h2.+ + +
The elementary act of plastic deformation in single
crystals is the generation of a dislocation loop or semi-
loop that eventually emerges on the free surface of the
single crystal. In our case, the semiloop emerges on the
surface of a crystallite; i.e., it comes out into the inter-
granular space. In particular, dislocations generated in
the single-crystalline body of a crystallite and emerging
on its surface may form a grain boundary. However,
neither ordered planar dislocation clusters nor seg-
ments of curvilinear dislocations have been detected in
diamond single crystals and PDLs. Otherwise, they
might be used to evaluate local elastic stresses acting in
real single crystals or individual PDL crystallites dur-
ing the generation and pinning of dislocations in the
crystal. Similar XRT measurements and calculations
were carried out by the author for III–V semiconduc-
tors [18].

Texture. The relative intensities of diffraction
reflections obtained with the double-crystal spectrome-
ter–diffractometer by the pseudorocking curve tech-
nique [6, 8, 19] show that the (111) reflections from the
lower part of the polycrystalline diamond, where the
texture only starts to evolve, have a maximal intensity
(as is the case for diamond powders listed in the ASTM
index). In the upper part of each of the layers (even in
the 80-µm-thick samples), the most intense reflections
come from the (331)-oriented crystallites. In the
670-µm-thick samples, the reflections from the
(110)-oriented crystallites, which run parallel to the
growing surface, are the most intense; i.e., the texture
forms during the growth process. The (110) texture is
characteristic of optical-grade films synthesized in a
microwave discharge [6, 20].

CONCLUSIONS

(1) Based on the DBQPS technique and the well-
known phenomenon of asterism, we developed an orig-
inal XRT method for the identification and measure-
ment of plastic strains in individual PDL grains exceed-
ing 3 µm in size. It enables one to measure and calcu-
late residual elastic stresses in plastically strained
crystallites, as well as to separate out reflections from
purely elastically strained crystallites.

(2) The amount of asterism is used as a quantitative
measure of plastic strains in specific crystallites of
polycrystals. A mathematical substantiation of the
quantitative XRT analysis is given.

(3) From XRT data, the crystallite asterism distribu-
tion is constructed for PDLs of thickness ranging from
40 to 670 µm. Based on the effect of asterism in X-ray
diffraction, shear plastic strains in crystallites of dia-
mond layers ≥40 µm thick are found for the first time.
The strains cause a misorientation between the crystal-
lites in the range from 0.4′ to 1.5°. The corresponding
residual elastic stresses in plastically strained crystal-
lites were calculated to be in the range from 2.7 kPa to
0.84 GPa. The latter value exceeds the ultimate strength
TECHNICAL PHYSICS      Vol. 48      No. 12      2003
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of artificial polycrystalline diamonds (crystallites
rather than intergranular spacers).

(4) This XRT method may be used to examine crys-
tallites in thin layers of any polycrystalline metals or
other materials.
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Abstract—The electrodynamic properties of coaxial two-dimensional Bragg resonators with two-dimensional
distributed feedback are analyzed. These resonators are made of coaxial waveguide sections with doubly peri-
odic corrugation, which provides coupling and mutual scattering of four partial waves. Two of them propagate
along the waveguide, while the other two propagate in the transverse (azimuthal) direction. It is shown that the
high azimuthal index selectivity of two-dimensional Bragg resonators may be related to a qualitative difference
in topology of the dispersion characteristics of azimuth-symmetric and asymmetric normal waves propagating
in infinite waveguides of such a geometry. For the finite-length systems used as two-dimensional Bragg reso-
nators, the eigenmode spectrum is found for two types of boundary conditions that correspond to the limiting
cases of perfectly matched (open) systems and, conversely, of systems closed for the extraction of transverse
electromagnetic fluxes. Perimeter-to-length ratios of the resonator at which the Q factor of the fundamental azi-
muth-symmetric mode is greater than those of the other modes are determined. The applicability domain of the
geometrical approach, which was earlier applied to two-dimensional Bragg resonators, is discussed. © 2003
MAIK “Nauka/Interperiodica”.
INTRODUCTION

Distributed two-dimensional feedback as a means
for providing the spatial coherence of radiation from
hollow and ribbon-shaped electron beams with a diam-
eter much exceeding the wavelength was suggested in
[1–3]. This mechanism can be implemented with planar
or coaxial two-dimensional Bragg resonators. Millime-
ter-wave free-electron masers (FEMs) using the new
feedback mechanism are being experimentally studied
today [4, 5]. Therefore, a detailed examination of the
electrodynamic characteristics of two-dimensional
Bragg resonators seems to be topical. In previous works
(except for [6]), the geometrical optics approximation,
ignoring diffraction effects, was used. This approxima-
tion made it possible to find the eigenmode spectrum of
two-dimensional Bragg resonators and demonstrated a
high transverse (azimuthal) index selectivity of the
devices. Also, a nonlinear nonstationary theory of
FEMs that was developed within the framework of geo-
metrical optics [3, 6–8] for the most part corroborated
the conclusion of the linear theory that two-dimen-
sional Bragg structures may provide the spatial coher-
ence of radiation from fully developed relativistic elec-
tron beams. At the same time, it is clear that a more
thorough quasi-optical analysis may not only determine
the applicability domain of the geometrical approach
but also reveal additional features of two-dimensional
Bragg structures.

This paper extends the analysis to coaxial Bragg
resonators. Section 1 describes a basic model, which
relies on the method of coupled waves for four partial
electromagnetic energy fluxes that propagate in the lon-
1063-7842/03/4812- $24.00 © 21554
gitudinal and transverse (azimuthal) directions and
experience mutual scattering on the two-dimensional
Bragg structure. Basic equations that allow for diffrac-
tion effects are also presented in Sect. 1. In Sect. 2, we
consider the dispersion characteristics of normal waves
in infinitely long two-dimensional coaxial Bragg struc-
tures. The behavior of the dispersion curves for a sym-
metric normal wave near the Bragg frequency is shown
to be qualitatively distinct from the behavior for asym-
metric waves (hereafter, the waves are classified in
terms of the azimuthal structure of partial waves that
propagate in the longitudinal direction). This distinc-
tion is, in fact, the reason for the selectivity of two-
dimensional Bragg resonators. In Section 3, we con-
sider finite-length systems. The eigenmode spectrum is
found for two limiting cases: perfectly matched (open)
systems and systems closed for the extraction of trans-
verse electromagnetic fluxes (subsequently referred to
as closed systems for brevity). It is shown that even
closed systems offer a high azimuthal index selectivity
when the resonator’s perimeter is one order of magni-
tude greater than the wavelength. Precise matching
between the output channels for transverse energy
fluxes is expected to improve the selectivity and pro-
vide the possibility of further increasing the resonator
perimeter.

1. MODEL AND BASIC EQUATIONS

Let an electrodynamic system (Fig. 1a) represent a
coaxial corrugated waveguide with a mean diameter r0.
The corrugation is made as a superposition of two
003 MAIK “Nauka/Interperiodica”
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oppositely wound helices (doubly periodic corruga-
tion):

(1)

where 2a1 is the corrugation depth;  = 2π/dz; dz is the

corrugation period along the z axis;  is the number of
corrugation starts along the circumference; and z and ϕ
are the longitudinal and azimuthal coordinates, respec-
tively.

We also assume that the curvature of the waveguide
is small; i.e., its radius far exceeds the wavelength λ and
spacing (gap) a0 between the conductors:

(2)

Under these assumptions, the dispersion relation for
the eigenmodes of the coaxial waveguide can be
reduced to the form [9]

(3)

which is similar to the dispersion relation for a planar
waveguide. Here, hz is the longitudinal wavenumber;
hx = M/r0 is the azimuthal wavenumber; κp = pπ/a0 is
the radial wavenumber; and M and p are the numbers of
wave variations in the azimuthal and radial directions,
respectively.

If the corrugation depth is small, a1 ! 1, the
field in the system can be represented as a superposition
of four coupled wave flows, two of which, A±, propa-
gate in the longitudinal ±z direction and the other two,
B±, propagate azimuthally:

(4)

where x = r0ϕ is the azimuthal position; A±(x, z) and
B±(x, z) are the wave flow amplitudes, which are slowly
varying functions of the longitudinal and azimuthal

coordinates; and (r) are functions describing the
radial structure of the wave flows, which coincides with
the mode structure of a coaxial waveguide.

On Bragg lattice (1), partial wave flows (4) couple
and mutually scatter if the geometrical parameters 
of the lattice are such that the propagation constants
h1, 2 satisfy the Bragg resonance condition (Fig. 1b)

(5a)

(5b)

where  = /r0.

a a1 hzz( )cos Mϕ( )cos=

=  
a1

2
----- hzz Mϕ–( )cos hzz Mϕ+( )cos+[ ] ,
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c2
------ hz

2 hx
2 κ p

2 ,+ +=

hz x,

E Re A+E1
0e

ih1z
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0e
i– h1z

+([=

+ B+E2
0e
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)eiωt ] ,+

E1 2,
0

hx z,

h1 hz,≈

h2 hx,≈

hx M
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We will assume that

(6)

which corresponds to the scattering of wave flows that
have the same number p of variations along the azi-
muth. In this case, the geometrical parameters of the
system are related as /r0 = 2π/dz. For simplicity, we
will restrict our consideration to the scattering of lower
order waves whose field does not vary along the radius;
i.e., we set p = 0. In this case, TEM, 0 waves A± with
small azimuthal indices (including the lowest order
TEM wave with M = 0), which propagate along the
waveguide, couple with TEM, 0 waves B± with large azi-
muthal indices M @ 1, which propagate in the trans-
verse (azimuthal) direction. Note that, when conditions
(2) are satisfied, the structure of the TEM, 0 waves is sim-
ilar to that of TEM waves (i.e., dispersion relation (3)
applies).

Under conditions (2) and (6), the mutual scattering
of four electromagnetic flows can be described by the
equations of coupled waves (cf. [3, 6])

(7)

Here, δ = (ω – )/c is the frequency offset from the

exact Bragg resonance frequency  =  and α is the

hx hz h,= =

M

∂A±

∂z
---------± iδA± iα B+ B–+( )+ + 0,=

i

2h
------

∂2B±

∂z2
-----------

∂B±

∂x
--------- iδB± iα A+ A–+( )+ +± 0.=

ω
ω hc

(a)

(b)

a0
z

e–

lz

z

x(ϕ) h2 B+

h1

A+

h2B–

A–
–
h+h1

–
h–

Fig. 1. (a) Schematic of a coaxial two-dimensional Bragg
waveguide with a hollow electron beam moving in the +z
direction and (b) the diagram illustrating the scattering of
the partial waves by the two-dimensional Bragg lattice,
where  = x0 ± z0 are the lattice vectors.h± hx hz
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wave coupling coefficient, which for TEM, 0 waves
equals

(8)

when the corrugations on both conductors are in phase.
Note that the equation for partial flows B±, which

propagate in the transverse ±x (±ϕ) direction, is para-
bolic and allows for diffraction effects (it is clear that
these waves are trapped in a finite-length system if dif-
fraction spreading is disregarded). At the same time,
these effects are neglected for the A± waves, which
propagate in the longitudinal ±z direction, because they
do not qualitatively change the characteristics of the
system.

Since the system is coaxial, all the partial wave
flows must meet the cyclicity condition

(9)

where lx = 2πr0 is the perimeter of the system.

Due to the cyclicity condition, we can expand the
fields into the Fourier series

(10)

and treat each of the harmonics as a normal wave char-
acterized by the index m. Substituting expansions (10)
into Eqs. (7) for the amplitudes of harmonics, we obtain
the system of ordinary differential equations

(11)

According to relationships (4) and (5) for the partial
B± waves, which propagate in the azimuthal direction,

the index m is a complement to the azimuthal index .
Thus, considering the usual set of waves in a coaxial
waveguide where the highest-Q mode has m = 0 (which
subsequently will be referred to as the symmetric
mode), we may say that only the A± waves are actually
symmetric, whereas the partial B± waves have a non-

zero azimuthal index . In the general case, for nor-
mal waves in an infinitely long system (Sect. 2) or for
the eigenmodes of a finite-length resonator (Sect. 3), a
normal wave (eigenmode) with an index m is a super-
position of coupled partial A± waves (with an index m)

α
a1h
2a0
--------,=

B± x lx+ z,( ) B± x z,( ),=

A± x lx+ z,( ) A± x z,( ),=
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m z( )e
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m α A+
m A–
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M

M

and B± waves (with an index  ± m). The applicability

condition for Eq. (10) is  @ m.

2. DISPERSION CHARACTERISTICS
OF NORMAL WAVES IN DOUBLY PERIODIC 

CORRUGATED COAXIAL WAVEGUIDES
Assuming that a coaxial structure with doubly peri-

odic corrugations on its walls is infinitely long and rep-

resenting a solution to Eqs. (11) as  = eiΓz and

 = eiΓz, we arrive at the dispersion relation for the
normal waves

(12)

It is clear that, in the general case, dispersion rela-
tion (12) describes coupling between four partial
waves. When the coupling coefficient is α = 0, the rela-
tion splits into four equations that describe two longitu-
dinal waves A± whose dispersion characteristics are
determined by the relationships

(13a)

and two quasi-critical modes B± that propagate in the
azimuthal direction with the dispersion law

(13b)

Note that, under the above assumptions, dispersion
characteristics (13) for the partial waves can be
obtained directly from initial dispersion relation (3).
Near the Bragg frequency, ω =  + cδ = c(  + δ),

where δ ! . Then, in view of the condition  @ m
and Bragg condition (5b), Eq. (3) for the partial waves
B±, propagating in the transverse direction, yields

Assuming that hz = Γ, we arrive at dispersion rela-
tion (13b). Similarly, for the partial waves A±, which
propagate in the longitudinal direction, we substitute
the wavenumber hz = ±h + Γ into dispersion relation (3)
and take into account (5a). Neglecting the terms of the
higher order of smallness, we obtain

which is equivalent to dispersion relation (13a).
Figure 2 shows dispersion diagrams for the normal

waves for m = 0 and m ≠ 0. Comparing these curves
with the asymptotes given by Eqs. (13) and shown by
thin lines, we can conclude that branches 1 and 2 refer
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to the partial A± waves, while branches 3 and 4 refer to
the B± waves. On the whole, the basic difference
between these dispersion diagrams and the correspond-
ing characteristics of one-dimensional Bragg structures
is the presence of a transmission band near the exact
Bragg frequency  (i.e., in the vicinity of δ = 0). This
feature is due to the fact that, under Bragg resonance
conditions (5), the scattering process involves quasi-
critical B± waves whose unperturbed dispersion charac-
teristics (13b) pass near the Bragg frequency.

Of still greater importance is the qualitative differ-
ence in the behavior of the dispersion characteristics of
the normal waves with zero and nonzero azimuthal
indices near the Bragg frequency (i.e., in the vicinity of
δ = 0). At m = 0, unperturbed dispersion characteristics
(13b) of the partial waves merge together. When cou-
pling is taken into account (α ≠ 0), dispersion relation
(12) reduces to

(14)

Equation (14) implies that one of the branches does
not obey the conventional parabolic dependence of the
frequency on the wavenumber squared near the Bragg
frequency (such behavior is typical near the stop band
boundaries, for example, in one-dimensional Bragg
structures [10–12]). Instead, it exhibits a fourth-degree
dependence (cf. [6]):

(15)

Thus, near the Bragg frequency (δ = 0), both the
wave’s group velocity and its derivative vanish. The
significant difference of the dispersion curves for the
symmetric normal waves from those for the partial
waves near the Bragg frequency is illustrated in Fig. 3.
Here, the dispersion characteristics are shown on an
enlarged scale compared with Fig. 2a, i.e., on a scale
comparable to the mode separation (eigenmodes with a
different number of longitudinal variations are shown
by closed circles). As is seen from Fig. 3, the funda-
mental mode has an extremely low group velocity of
the normal wave (m = 0, n = 1). As is shown in Sect. 2,
this is the specific feature of the given mode, because of
which its Q factor is much higher than those of other
symmetric and asymmetric modes.

Let us pursue our analysis in terms of geometrical
optics. Formally, this means passage to the limit λ  0
(i.e.,   ∞ in view of (5)) in Eqs. (11). In this case,

the term ~d2 /dz2, which describes the diffraction
spreading of the B± waves, may be neglected in Eqs. (11).
Accordingly, dispersion relation (12) reduces to

(16)

ω
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Γ4 8α2hδ.=

h
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δ 2πm
lx

-----------– 
  δ 2πm
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Dispersion characteristics described by Eq. (16) are
shown in Fig. 2 by dashed lines. For small wavenum-
bers Γ ≤ α, these characteristics are fitted well by the
dispersion curves obtained within the quasi-optical
approximation, i.e., by Eqs. (12). Even the geometrical
approximation reveals the qualitative difference in the
behavior of the dispersion curves for the normal sym-
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0 3 6
Γ /α

4

3

1

2

3
(b)
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3(4)

1
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3
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Fig. 2. Dispersion diagrams for normal waves in an infi-
nitely long coaxial Bragg structure at /α = 35 for (a) sym-
metric waves m = 0 and (b) asymmetric waves with m = ±1
(classification in terms of the structure of longitudinal par-
tial waves). Thin lines, dispersion curves for the partial
waves; dashed lines, dispersion curves for the normal waves
within the geometrical optics approximation. The circles
refer to the positions of (a) symmetric modes near the Bragg
frequency and (b) asymmetric modes shown in Fig. 9 (αlx =
αlz = 5).
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Fig. 3. Difference in dispersion laws for the symmetric nor-
mal wave (thick line) and for the partial quasi-critical wave
(thin line) near the Bragg frequency at /α = 35. The cir-
cles indicate the position of the symmetric modes of the res-
onator at αlz = 5.
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metric (m = 0) and asymmetric (m ≠ 0) waves near the
Bragg frequency. Ultimately, this difference is respon-
sible for the azimuthal index selectivity of the system.
At the same time, curves 3 and 4 at m = 0 transform into
the straight line δ = 0. As a result, the geometrical
approximation encounters problems in describing the
spectrum of the resonator’s symmetric modes with a
different longitudinal index, because these modes are
degenerate in eigenfrequency (the eigenfrequencies of
all the modes equal to the Bragg frequency). In addi-
tion, these modes have no diffraction losses; i.e., for-
mally they have an infinitely high Q factor. However, as
was first shown in [6], allowance for diffraction effects
removes this degeneracy, transforming the correspond-
ing dispersion curve into that described by Eq. (15).

3. MODE SELECTION IN TWO-DIMENSIONAL 
COAXIAL BRAGG RESONATORS

To calculate the eigenmode spectrum of a two-
dimensional Bragg resonator in the form of a section of
a coaxial waveguide with doubly periodic corrugation
over a region of finite length lz, it is necessary to set
edge conditions for the system, i.e., at z = 0 and z = lz.
Consider two limiting cases: (a) a perfectly matched
(open) system and (b) a closed system. In case (a), we
assume that the partial modes propagating both longi-
tudinally (A±) and transversely (B±) are perfectly
matched at the ends of the system. In a desired fre-
quency range, this can, in general, be achieved by spe-
cially profiling the waveguide’s cross section and
selecting the corrugation parameters. We also assume
that external electromagnetic energy flows associated
with either the partial A± waves or the partial B± waves
are absent. Under these conditions, for the partial A±
waves, we have, as in the case of one-dimensional
Bragg resonators (cf. [10–12]),

(17)

Essentially, conditions (17) mean that the longitudi-
nal electromagnetic energy flows leave the system
without reflecting from its ends z = 0 and lz (however,
the distributed scattering of these waves into B± waves,
which is described by Eqs. (10), still exists inside the
resonator). Assuming that a similar situation also
occurs for the transversely propagating B± waves, one
should set the so-called no-reflection condition at the
corrugation boundaries (cf. [13])

(18)

Provided that this condition is satisfied and the
waves are uncoupled (α = 0), the fields B± freely dif-
fract through the boundaries, as in the case of a regular
waveguide.

A+ x z 0=,( ) 0, A– x z, lz=( ) 0.= =

dB±
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---------- i 2h

2πm
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-----------± δ+ 
  B±

m–
z 0=

0,=
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---------- i 2h

2πm
lx

-----------± δ+ 
  B±

m+
z lz=

0.=
However, the electrodynamic system at the ends of
the resonator (at the corrugation boundaries) is irregu-
lar, which may cause reflections primarily for the quasi-
critical B± waves. Therefore, it is of interest to study a
completely closed resonator as the opposite limiting
case (case (b)). This case can be realized by placing
below-cutoff (for the quasi-critical B± waves) tapers at
the ends of the corrugated region. If these waves are
totally reflected from the resonator’s ends, the bound-
ary conditions are

(19)

We also assume that the A± waves, which propagate
along the structure, do not “sense” the irregularity of
the waveguide’s cross section and so do not reflect from
the corrugation boundary. Thus, boundary conditions
(17) for these waves remain valid.

(i) Matched (open) system. Applying boundary
conditions (17) and (18) to dispersion relation (14) for
the azimuth-symmetric modes (m = 0), we arrive at the
characteristic equation given in the Appendix. For
strongly coupled (αlx, z @ 1) highest-Q azimuth-sym-
metric modes at a frequency close to the Bragg fre-
quency (δ ! α), the complex eigenfrequencies in view
of specific dispersion law (15) are given by [6]

(20)

where n = 1, 2, 3, … is the longitudinal mode index.
These modes are indicated by closed circles in the

dispersion curve shown in Fig. 3. Their eigenfrequen-
cies ωm, n and quality factors Qm, n are given by

(21)

As follows from relationships (20) and (21), the
mode with one longitudinal field variation (n = 1) has
the highest Q factor (i.e., the lowest diffraction losses).
As the longitudinal mode number increases, the diffrac-
tion losses grows as ~n4. Note that, with the same
geometry and coupling coefficient, the loss factor for a
conventional Bragg resonator in the form of a section of
a corrugated coaxial waveguide is expressed as [10–12]

(22)

Comparing relationships (20) and (22) shows that,
with the same coupling coefficient α, a two-dimen-
sional Bragg resonator has a much higher Q factor and
a much higher selectivity (including the longitudinal
index (n) selectivity). This is a consequence of disper-
sion law (15) mentioned above. For the two-dimen-
sional resonator, the longitudinal partial-wave distribu-
tion at the fundamental mode n = 1 for αlx = αlz = 5 is
shown in Fig. 4a.
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Fig. 4. Longitudinal structure of the partial A+ and B+ waves for modes (m = 0, n = 1) with (a) δ ≈ 0, (b) δ ≈ –2α, and (c) δ ≈ +2α
for the matched (open) resonator at /α = 35 and αlx = αlz = 5. The circles show the field structures obtained within the quasi-
optical approximation. The dashed lines bound the corrugated region.
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(a)

(b)

(c)
The analytically found Q factors (loss factors) for
the symmetric modes are in good agreement with a
numerical solution to the complete characteristic equa-
tion that follows from system of linear equations (11)
subject to boundary conditions (18) and represents a
sixth-order determinant. The complex eigenfrequen-
cies were calculated as zeroes of an analytical function
using the principle of argument [14].
TECHNICAL PHYSICS      Vol. 48      No. 12      2003
It should be noted that, along with the family of
modes near the Bragg frequency (δ ≈ 0), there exists a
family of high-Q symmetric modes with frequencies
lying near δ ≈ ±2a (Figs. 4b, 4c), i.e., near extra extrema
of the dispersion characteristics. Obviously, the group
velocity of normal waves at these extrema also tends to
zero. However, unlike the dispersion branch that passes
near the Bragg frequency, here the second derivative
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remains nonzero. As a result, the Q factor of these
modes is considerably lower than those of the modes
near δ ≈ 0.

For asymmetric modes (m ≠ 0), complex eigenfre-
quencies were also found by numerical simulation. It
turned out that, of the asymmetric modes differing in
longitudinal index n, the mode whose frequency lies
near the minimum of the dispersion curve (i.e., near the
zero of the group velocity) has the lowest losses (high-

0 1 2 3 4 5 αz

1

2

3

|B+|

|A+|

|B–|

|A+|, |B±|, arb. units

Fig. 5. Longitudinal structure of the partial A+ and B± waves
for the highest-Q asymmetric mode m = 1 in the case of the
matched resonator at /α = 35 and αlx = αlz = 5. The fre-
quency of this mode is shown in Fig. 2b by the asterisk.
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Fig. 6. Mode spectrum of the matched resonator at /α =
35 and αlx = αlz = 5. Circles, symmetric modes m = 0;
crosses, asymmetric modes m = 1.
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est Q factor) (cf. [9, 15]). In the dispersion diagram
(Fig. 2b), the position of this mode at m = 1 is indicated
by the asterisk. Figure 5 illustrates the spatial structures
of the partial waves of this mode. However, it should be
noted that the second derivatives of the asymmetric
modes also remain nonzero. Therefore, the Q factor of
the asymmetric modes is significantly lower than that
of the fundamental symmetric mode, whose frequency
is near the Bragg frequency. In addition, the highest-Q
asymmetric modes feature a large number of longitudi-
nal variations of partial waves and a much smaller
intensity of longitudinal partial waves compared with
the transverse partial waves (cf. Figs. 4, 5). Thus, these
modes can be additionally selected by an electron beam
because of the significant difference in the synchronism
conditions or the relatively small amplitude of the oper-
ating wave (when describing interaction with an elec-
tron beam [3, 6–8], we assume that the synchronous
wave is the A+ wave, which propagates in the positive z
direction).

Thus, our analysis of the resonator’s eigenmodes
shows that, when the perimeter of the system equals its
length, the losses of asymmetrical modes are more than
an order of magnitude higher than those of the funda-
mental symmetric mode (Fig. 6). This provides a high
electrodynamic selectivity of the resonator.

At the same time, as the lx of the system increases
with its length lz remaining unchanged, the selectivity
of a two-dimensional Bragg resonator somewhat
degrades. This may be explained by the fact that, as the
perimeter lx increases, dispersion curves 3 and 4 for
asymmetric waves (m ≠ 0) flatten and, in the limit
lx  ∞ (see Eq. (12)), approach the perimeter-inde-
pendent dispersion characteristic of the symmetric
wave. Yet this circumstance places very weak con-
straints on the system’s transverse dimension. Figure 7a
plots the minimum loss factor Im(δ) versus the perime-
ter of the system for the asymmetric modes (m = 1) at
αlz = 5. The dashed line here shows the diffraction
losses of the fundamental (highest-Q) symmetric mode.
The losses of these modes become equal at a perimeter
αlx ≥ 80. The irregularity of the curves in Fig. 7 stems
from the fact that the variation of the perimeter shifts
the position of the dispersion curve so that its extremum
covers modes with different numbers n of longitudinal
variations. Thus, as the perimeter varies, the number of
longitudinal variations of the highest-Q mode changes.
An increase in the azimuthal index m is equivalent to a
decrease in the effective perimeter of the system to

 = lx/m, as follows from dispersion relation (12).
Therefore, as follows from Fig. 7, an increase in the azi-
muthal index, in general, does not increase the Q factor
of spurious modes.

It should also be noted that, increasing the length lz

in proportion to the perimeter lz, one can retain the
selectivity of the resonator at large perimeters via an
increase in the Q factor of the fundamental symmetric

lx
eff
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mode (according to (20), the loss factor of this mode

decreases as ). For comparison, Fig. 7b shows the
minimum losses versus perimeter at αlz = 10 in the fam-
ily of asymmetric modes m = 1. As the length increases
twofold, the maximum width of the system at which the
resonator retains its selectivity (i.e., the Q factor of the
fundamental symmetric mode remains higher than the
Q factor of the asymmetric modes) grows to αlx ≤ 300.
Also note that all the relationships presented above
involve the normalized length and perimeter of the res-
onator (αlx and αlz). Thus, there is an additional way of
maintaining the selectivity: to increase the geometrical
(absolute) value of the perimeter and simultaneously
diminish the coupling coefficient α (for example, by
decreasing the corrugation depth), thus keeping the
normalized perimeter value constant. Clearly, the
length of the resonator lz should be increased in the
same proportion.

Since the nonlinear dynamics of FEMs with two-
dimensional Bragg resonators was analyzed in terms of
geometrical optics [3, 6–8], it is important to compare
our results (the quasi-optical approach) with earlier
results for coaxial two-dimensional Bragg resonators
(the geometrical optics approximation). In the latter
case, the partial wave field distribution over the corru-
gated region for the fundamental symmetric mode (δ ≈
0) is shown by closed circles in Fig. 4a. The structure of
the fundamental mode is virtually the same except for a
small region near the corrugation boundary. Thus, in
simulating electron beam–wave interaction, the operat-
ing wave (A+) field structure calculated within the geo-
metrical optics approximation adequately describes
beam bunching and energy extraction from the beam.
At the same time, it is clear that, while the field struc-
ture of the B± waves has a discontinuity at the corruga-
tion boundary in terms of geometrical optics, allowance
for diffraction through the boundary makes the solu-
tions continuous. Figures 4b and 4c compare the partial
field structures obtained within these two approxima-
tions for modes with δ ≈ ±2α. For these modes, the geo-
metrical optics approach also approximates well their
spatial structure. The complex eigenfrequencies
obtained by the two approaches are also in good agree-
ment. In particular, for the mode illustrated in Fig. 4c,
the quasi-optical approximation gives δ = 2.09 +
i0.032, while the geometrical optics approximation
gives δ = 2.09 + i0.035.

The problem of degeneracy in the longitudinal index
and the problem of the infinite Q factor for azimuth-
symmetric modes, which arise when the nonlinear
dynamics of FEMs is simulated in terms of geometrical
optics, were solved as follows. It was assumed that the
diffraction Q factor of the symmetric modes far exceeds
the ohmic Q factor. This means that the Q factor of
these modes is limited by ohmic losses, while the Q fac-
tor of the azimuth-asymmetric modes is limited by dif-
fraction losses. Within such a model, degeneracy in the
longitudinal index is removed when interaction with

lz
5
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the electron beam is taken into account (the admittance
due to the electron beam varies significantly with the
number of longitudinal variations of the mode excited
in the resonator).

(ii) Closed system. For a resonator that totally
reflects transverse electromagnetic energy flows from
the corrugation boundaries, the field structure of partial
waves that is obtained for the highest-Q azimuth-sym-
metric mode m = 0 by numerically solving Eqs. (10)
with boundary conditions (17) and (19) is given in
Fig. 8. This mode has one longitudinal field variation
for the A± modes and two longitudinal variations for the
B± modes, and its frequency is close to the exact Bragg
resonance frequency as before. It is clear that energy
extraction from the closed resonator is released only by
means of A± wave radiation (in Fig. 8, the amplitude of
the A+ wave at the resonator end z = lz is nonzero though
very small).

For asymmetric waves, numerical simulation
reveals several families of high-Q modes. As for the

0 200 400 600
αlx

0.0001

0.0002

0.0003 (b)
25

(a)

50 75 100

0.001

0

0.002

0.003

0.004

Im(δ/α)

Fig. 7. Diffraction loss factor Im(δ) for the highest-Q mode
m = 1 versus the system’s perimeter αlx for the matched res-

onator at /α = 35 and αlz = (a) 5 and (b) 10. Dashed line,
loss factor of the symmetric mode m = 0 with the maximum
Q factor.

h
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open resonator, modes of the first family are near the
minimum of the group velocity and their eigenfre-
quency is thus markedly different from the Bragg fre-
quency. The structure of the partial waves for the asym-
metric mode m = 1, which has the highest Q factor in
this family, is shown in Fig. 9a; its frequency is indi-
cated by the asterisk in Fig. 2b.

The second family of high-Q asymmetric modes lies
near the Bragg frequency (δ ≈ 0). This is directly asso-
ciated with boundary condition (19) and with the mode
spectrum generated by this condition (in the absence of
corrugation (α = 0), these modes have an infinite Q fac-
tor). At α = 0, these modes consist only of the partial B±
waves, which circulate in the azimuthal direction. In
general, corrugation decreases the Q factor of these
modes because of reradiation into the longitudinal A±
modes. However, in the case of doubly periodic corru-
gation, interference between scattered A+ and A– waves
may result in a situation where the energy flux from the
resonator is absent and the Q factor of some modes
tends to infinity even at a nonzero coupling coefficient.
Indeed, if the condition

(23)

is met, one can easily obtain the solution

(24)

π2n2

2hlz
2

---------- 2πm
lx

-----------=

B– 0, B+≡ C
nπ
lz

------z 
  ,sin=

A+ A––
iα lx

nπ
---------C 1

nπ
lz

------z 
 cos– 

 –= =

1

1.0

0.5

|A+|, |B±|, arb. units

0 5432 αz

|A+|

|B±|

Fig. 8. Longitudinal structure of the partial A+ and B± waves
for the fundamental high-Q mode m = 0 of the closed reso-
nator at /α = 35 and αlx = αlz = 5.h
to Eqs. (10) at the exact Bragg frequency (δ = 0) in view
of boundary conditions (19).

Since electromagnetic energy fluxes through the
resonator boundary is zero (A+ = A– = 0), the Q factor of
this mode tends to infinity. Note, however, that this
mode exists only if the partial waves B± are almost
totally reflected and the geometrical dimensions of the
system are related by (23). Even a small deviation of
the dimensions from those defined by formula (23)
adversely affects the Q factor of this mode family. In
particular, the simulation of the two-dimensional Bragg
resonator with αlx = αlz = 5 show (Fig. 9b) that, when
condition (23) is violated, the partial waves of these
modes are no longer symmetric, A+(x, z) ≠ –A–(x, z),
and, accordingly, B–(x, z) ≠ 0. The eigenfrequencies of

0 1 2 3 4 5 αz

0.005

0.010

0.015 (b)

|A+|

|A+|, |B±|, arb. units

|B+|

|B–|

(a)1.0

0.5

0

|A+|
|B+|

|B–|

Fig. 9. Longitudinal structure of the partial A+ and B± waves
for asymmetric modes m = 1, which have a maximum Q fac-
tor among modes from two different families, in the case of
the closed resonator at /α = 35, αlx = αlz = 5, and
Re(δ/α) = (a) –0.91 and (b) 0.37. The frequencies of these
modes are indicated by the asterisk and diamond, respec-
tively, in Fig. 2.
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these modes can be roughly evaluated from the rela-

tionship Re(δn) = π2n2/2  – 2πm/lx. Eventually, for
the parameters chosen, the Q factors of the spurious
modes considered become much lower than the Q fac-
tor of the fundamental azimuth-symmetric mode. It is
also noteworthy that, as for the open (matched) resona-
tor, high-Q asymmetric modes have a considerably
greater number of longitudinal variations, and the A+
wave synchronous with the electron beam has a lower
amplitude compared with these parameters for the sym-
metric fundamental mode (Fig. 9). This circumstance
extends the possibility of electronically selecting these
waves when they interact with the electron beam,
because resonance excitation conditions for the spuri-
ous modes are bound to differ from the synchronism
condition for the fundamental mode. In addition, since

the structural factor is /  ! 1, these waves are
coupled to the beam more weakly.

In general, a closed resonator seems to have the
more complex design from the standpoint of provision
of selectivity. Nevertheless, our analysis shows that the
Q factor of the fundamental azimuth-symmetric mode
may far exceed the Q factors of the other modes even in
a substantially overmoded resonator (Fig. 10).

To conclude, the parameters αlx = αlz = 5 of the two-
dimensional Bragg resonator that were used in the sim-
ulation meet the experimental conditions in which a
coaxial FEM with two-dimensional distributed feed-
back was investigated with a high-current accelerator at
Strathclyde University [5]. In those experiments, the
two-dimensional Bragg resonator designed for cou-
pling the TEM and TE25, 0 waves (with coupling coeffi-
cient α ≈ 0.2 cm–1) at an operating wavelength of 8 mm
had a characteristic length lz and perimeter lx of about
25 cm. Thus, the given resonator can be used for mode
selection by azimuthal and longitudinal indices under
any boundary conditions (specified by the shape of the
resonator and corrugation) imposed on the transverse
B± flows.
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APPENDIX

Let us derive formulas for the complex frequencies
of symmetric modes lying near the Bragg frequency,
i.e., of those belonging to branch 3 of the dispersion
diagram in Fig. 2a. For azimuth-symmetric waves, the
set of equations (11) can be reduced to

(A1)

hlz
2

A+
max B+

max

dA+

dz
--------- iδA+ 2iαB+ + 0,=
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(A2)

(A3)

with the boundary conditions

(A4)

Representing the partial waves as A± = a±eiλz and
B± = beiλz, we obtain dispersion relation (14), which is
a fourth-degree algebraic equation in λ and, conse-
quently, has four roots λk (k = 1–4).

Next, we calculate the eigenvectors of the matrix T
of coefficients for the system of equations (A1)–(A3):

(here,  is the derivative of B); represent the solution
as

(A5)

dA–

dz
--------- iδA– 2iαB–– 0,=

1

2h
------d2B
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--------- δB α A+ A–+( )+ + 0=

dB
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------- i 2hδB z 0=– 0,=
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Fig. 10. Mode spectrum in the closed resonator at /α = 35
and αlx = αlz = 5. Circles, symmetric modes (m = 0);
crosses, asymmetric modes (m = 1).

h



1564 GINZBURG et al.
and substitute (A5) into boundary conditions (A4) to
obtain a characteristic equation for the complex eigen-
frequencies δ:

(A6)

Here, ∆ is the determinant of the matrix of coefficients
for arbitrary constants ck. In the case |δ| ! 1 under
study, dispersion relation (14) can be approximately
written as

The roots λk of this equation are four values of

. Let  be that branch of the root correspond-
ing to a positive real number at a positive real δ. The
complex plane δ is cut along the imaginary semiaxis

Imδ ≥ 0 (the same refers to the term  in boundary

conditions (14)). Thus, we can write λ1, 2 ≈ ±  and

λ3, 4 ≈ ±i . Now we drop the terms of higher order of

smallness in  to obtain

(A7)

where
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λ4 8hα2δ.=

8hα2δ4 λ̃
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,

ε δh

2α2
---------4 .=
With (A7), characteristic equation (A6) reduces to

(A8)

It is easy to check that, at αlz @ 1, the roots of
Eq. (A8) are given by the approximate expressions

which yield formula (20).
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Abstract—The tuning efficiency of microstrip filters that use ferroelectric capacitors as control elements
depends on the properties of the capacitors and the filter’s resonators. The properties of these components are
included if the quality criterion of a tunable filter is defined as the ratio of the center frequency tuning bandwidth
to the passband of the filter. A quality criterion suggested in this work allows one to estimate the limiting char-
acteristics of tunable filters. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Planar tunable filters may find wide application in
modern telecommunication systems. These filters are
fabricated by several competing technologies, which
differ in the way in which the center frequency of the
filter’s resonators is tuned. This parameter may be
tuned mechanically [1] or with ferromagnetic media
[2], semiconductor varactors [3], microelectromechan-
ical capacitors [4], or ferroelectric (FE) capacitors [5].
The last three methods use, in essence, electrically con-
trolled variable capacitors. Tunable filters with FE
capacitors seem to be the most promising, since they
offer rapid center frequency tuning and are easy to fab-
ricate (and, accordingly, cheap).

The basic parameters of tunable filters are the same
as those of filters with a fixed center frequency (pass-
band, insertion loss, wavefront steepness, etc.). How-
ever, in the former case, these parameters must be
defined at the upper and lower limits of the center fre-
quency tuning bandwidth. Usually, the quality of a tun-
able filter is described by the ratio of the center fre-
quency tuning bandwidth to the geometrical mean of its
passbands at the lower and upper center frequencies
[6]. Such an estimate suffers from a serious disadvan-
tage: it does not include insertion losses. The quality
criterion suggested in this work is related to the Q factor
of the microstrip lines and losses in FE capacitors. It
also depends on the coefficient of coupling between the
capacitors and microstrip lines of the resonators.

TUNABLE MICROSTRIP FILTERS

(i) Structure of the resonators. Consider two types
of microstrip resonators with FE capacitors (Fig. 1).
The electrical lengths of the microstrip lines of the res-
onators are designated by Θ0 and Θg; C is the variable
capacitance of the FE resonator, which depends on the
applied voltage. The choice of these resonators stems
1063-7842/03/4812- $24.00 © 21565
from the fact that they are readily compatible with the
planar technology of microstrip tunable filters.

(ii) Tuning ability of the resonators. Resonance
conditions for short- and open-circuited resonators are
written as

(1a)

(1b)

y0

ω0C
---------- Θ0( )tan– Θg( )cot+ 0,=

y0

ω0C
---------- Θ0( )cot Θg( )cot+ + 0,=

(a) (b)

Θg Θg

Θ0 Θ0

C C

Fig. 1. Tunable microstrip resonators with FE capacitors:
(a) short-circuited resonator and (b) open-circuited resona-
tor.
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respectively, where Θ0 and Θg are the electrical lengths
of microstrips at a resonance frequency ω0.

Clearly, for resonance to occur, the conditions

(2a)

(2b)

should be satisfied.
Let us introduce a parameter that relates the tuning

bandwidth of the resonator to the relative shift of the
center frequency:

(3)

where  and  are the lower and upper center fre-
quencies and γ > 1.

Hereafter, the electrical lengths Θ0 and Θg will be

calculated at the lower frequency . At the upper
center frequency, the electrical lengths will be equal to
γΘ0 and γΘg, respectively. With (3), resonance condi-
tions (1a) and (1b) can be transformed into

(4a)

(4b)

where n = C1/C2 is the tuning ability of an FE capacitor.
Equations (4a) and (4b) are solved numerically for γ.
Figures 2 and 3 show the tuning coefficient γ vs. the
electrical lengths Θ0 and Θg for resonators of the two
types with a tuning ability n = 2.

Θ0( ) tan  Θg( )cot– 0,>

cot Θ0( ) cot Θg( )+ 0<

γ ω0
up/ω0

low,=

ω0
low ω0

up

ω0
low

n
γ
---

γΘ0( )tan γΘg( )cot–
Θ0( )tan Θg( )cot–

---------------------------------------------------,=

n
γ
---

γΘ0( )cot γΘg( )cot+
Θ0( )cot Θg( )cot+

----------------------------------------------------,=
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Fig. 2. Shift of the relative center frequency of the short-cir-
cuited resonator vs. electrical lengths of the microstrip sec-
tions.
For the short-circuited resonator, the maximal rela-
tive shift of the center frequency is 1.2 for Θ0 = 45° and
Θg = 90°. For the open-circuited resonator, the shift
equals 1.13 for Θ0 = 120° and Θg = 120°.

(iii) Q factor of the resonators. The Q factor of
microstrip resonators with tunable FE capacitors is cal-
culated with the method described in [5]. The Q factor
of a short-circuited resonator is given by

(5a)

where Q0 is the Q factor of the microstrip lines, which
is defined as the ratio of the propagation constant of the
line to the double damping factor, and  is the loss
tangent of the FE capacitor.

The Q factor of an open-circuit resonator is given by

(5b)

As with the resonance conditions, only a definite set
of pairs of electrical lengths that satisfy inequalities
(2a) and (2b) may be used to calculate Q.

Q Q0=
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Fig. 3. Shift of the relative center frequency of the open-cir-
cuited resonator vs. electrical lengths of the microstrip sec-
tions.
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QUALITY CRITERION 
FOR A TUNABLE FILTER

There is an empirical relationship between the inser-
tion losses (in dB) and the intrinsic Q factor of a filter
[7]:

(6)

where N is the filter order, ∆ωf is the filter passband, ω0f
is the center frequency of the filter, and Q is the intrinsic
Q factor.

Since Q = ω0f/∆ωr, where ∆ωr is the 3-dB width of
the resonance curve, expression (6) can be recast as

(7)

The quality criterion of a tunable filter that was
introduced in [6] is

(8)

With (7), we rearrange (8) into the form

(9)

Expression (9) can be written as

(10)

where Qlow and Qup are the intrinsic Q factors of the fil-
ter at the lower and upper center frequencies and

L
4.34N

∆ωf/ω0f( )Q
-----------------------------,=

∆ωf ∆ωr
4.34N

L
---------------.=

F
ω0

up ω0
low–

∆ωf
up∆ωf

low
------------------------------.=

F
LupLlow

4.34N
---------------------

ω0
up ω0

low–

∆ωr
up∆ωr

low
------------------------------.=

F
LupLlow

4.34N
--------------------- γ 1/ γ–

Qup( ) 1–
Qlow( ) 1–

-----------------------------------------,=

80
60

40
20

04080120160
0

0.5

1.5

1.0

2.0

Θ0, deg
Θ g,

 de
g

F
', 

dB
–1

Fig. 4. Modified quality criterion of the tunable filter with
short-circuited resonators.
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 is the geometrical mean of the losses at both
frequencies.

One may use a modified definition of the quality cri-
terion of a tunable filter. In this case, the quality crite-
rion depends not only on the number of tuning band-
widths (order) but also on insertion losses:

(11)

Figures 4 and 5 show the modified quality criterion
for a third-order tunable microstrip filter with short-
and open-circuited resonators, respectively. To calcu-
late the modified quality criterion, we used the param-
eters of copper microstrip resonators made on a two-
layer insulating substrate (a 0.5-mm-thick Polikor layer
and a 1-µm-thick BSTO layer) with a permittivity of
1000 and a loss tangent of 0.01. Integrated FE capaci-
tors represent 5- to 10-µm-wide gaps between two seg-
ments of the microstrip line of the resonator. The width
of the capacitors was selected such that it provided a
desired capacitance value. The loss tangents of the FE
capacitors (n = 2) were  = 0.01 (for the zero

control voltage) and  = 0.005 (for the maximal
control voltage). The layout of the tunable microstrip
filter is presented in Fig. 6. Each of the resonators is
equipped with a special bias circuit to control the
capacitance of the FE capacitor. Measured and calcu-
lated characteristics of the filter are demonstrated in
Fig. 7. The center frequency shifts from 4.4 to
4.65 GHz. Concurrently, the insertion losses decrease
from 15 to 8 dB. The geometrical mean value of the
passband equals 80 MHz. Table 1 lists the parameters
of the FE capacitor at various control voltages. These
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Fig. 5. Modified quality criterion of the tunable filter with
open-circuited resonators.
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parameters were derived from the experimental charac-
teristics of the filter. The quality criterion F ' was found
to be  = 0.34 dB–1, which agrees well with the cal-

culated value  = 0.38 dB–1.

If the Q factor of the microstrip lines far exceeds the
reciprocal value of  of the FE capacitor, the mod-
ified quality criterion does not depend on the electrical

Fexp'

Fcalc'

δtan

20 mm

Ferroelectric
capacitor

20
 m

m

Fig. 6. Layout of a tunable filter prototype with short-cir-
cuited resonators.

Table 1.  Parameters of the planar BSTO capacitor that cor-
respond to the characteristics in Fig. 7

U, V C, pF tanδ

0 0.35 0.044

50 0.29 0.034

100 0.23 0.023

150 0.19 0.017

Table 2.  Modified quality criterion of a tunable filter with
perfect microstrip lines

K N F', dB–1

5000 2 4.1

3 2.7

4 2.0

15 000 2 7.1

3 4.7

4 3.5

5 2.8
lengths of the microstrips of the resonator. As follows
from calculations, the modified quality criterion of a
tunable microstrip filter depends only on the order N of
the filter and on the switching parameter K of the FE

capacitor provided that the condition Q0 @  is
satisfied (as in the case of superconducting microstrips
lines). The switching parameter is given by [6]

(12)

In this case, the modified quality criterion of a tun-
able filter is found by the formula

(13)

The modified quality criterion of a lossless tunable
filter incorporated into microstrip lines is a limiting
quantity achievable with tunable capacitors of given
quality. The estimates of this limit are given in Table 2
for filters of different order that use capacitors of a
given quality. At a frequency of 10 GHz, the switching
parameter of the best FE capacitors reaches 5000.

CONCLUSIONS

The limiting characteristics of tunable microstrip
filters are presented. A modified quality criterion of
tunable filters is introduced. This parameter allows one
to estimate the performance of a tunable filter vs. the
parameters of its microstrip lines and the quality of the
control capacitors.
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Fig. 7. Experimental and calculated characteristics of the
tunable filter shown in Fig. 6.
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Abstract—The dynamics of a relativistic electron beam propagating in an ion channel with a periodically vary-
ing density is considered. The behavior of the ion hose instability at different parameters of the beam–ion
channel system is studied using the spread mass model. Conditions are determined under which the ion hose
instability does not hinder the beam propagation over distances on the order of 100 betatron lengths of the beam.
© 2003 MAIK “Nauka/Interperiodica”.
One of the new promising methods for guiding rel-
ativistic electron beams (REBs) in gas–plasma media is
based on the idea of transporting an electron beam
through a preformed plasma channel produced artifi-
cially by ionizing the neutral component of the back-
ground gas with auxiliary UV laser radiation. The role
of the plasma channel so produced is twofold. On the
one hand, it neutralizes the perturbing effect of various
external forces on the beam, so that an REB propagates
along a nearly straight path. On the other hand, the
channel ensures equilibrium conditions for guiding
beams with radii of 1–10 cm and with currents signifi-
cantly higher than the current of a transversely stabi-
lized REB propagating in a spatially uniform plasma.

The distance over which an REB can be guided with
an artificially preformed plasma channel is determined
by a variety of dynamic processes that gradually
destroy the beam.

The evolution of a beam–channel system such that
the beam duration is comparable to the characteristic
bounce period of the plasma channel ions in the poten-
tial well of the beam is governed by the common
dynamics of the REB electrons and channel ions. Both
theory and experiment show that, in such an interac-
tion, conditions in the beam–channel system may
become favorable for the onset of various instabilities,
the most dangerous of which is ion hose instability
(IHI) [1–9].

In [10], it was proposed that, in an undulator of a
free electron laser, an ion channel with a periodically
varying density be used to guide electron beams over
distances on the order of several betatron lengths of the
beam and to excite transverse oscillations of the beam
electrons over the same distances. Studies on this sub-
ject were continued in [11, 12] on the basis of the model
of a rigid beam. In this model, the growth of IHI is
absolute. That is why, in [11, 12], the effect of phase
1063-7842/03/4812- $24.00 © 21570
mixing of the beam electron trajectories was taken into
account by introducing the dissipation coefficient. The
results obtained in [10–12] showed that, in the absence
of external focusing fields, a beam in which the outer
electrons execute cylindrically symmetric oscillations
can be stably guided over distances of several betatron
lengths by means of an ion channel in which the spatial
period of density variation is equal to the betatron
length of the beam.

In this paper, we investigate the onset and behavior
of the IHI of an REB propagating over a large distance
along an ion channel with a periodically varying den-
sity and analyze how the instability dynamics depends
on different parameters of the beam–channel system. In
contrast to [11, 12], we do not assume that the ampli-
tudes of transverse oscillations of the beam electrons
and channel ions are small.

We consider a paraxial axisymmetric REB propa-
gating in the z direction along a preformed plasma
channel with a periodically varying density. We assume
that the plasma electrons are instantaneously pushed
away from the beam path in the radial direction by the
strong electric field of the beam front, so that the beam
is guided against the background of positively charged
channel ions, which partially neutralize the beam space
charge. The spatial period of density variation in the ion
channel, Lper, varies from 0 to 2λβe, where λβe is the
wavelength of the betatron oscillations of the beam
electrons. The density variation in the ion channel is
such that the degree of charge neutralization of the
beam, f, has the form f(z) = f0[1 + f1cos(2πz/Lper)]. Here,
f0 is the degree of charge neutralization of a beam in an
ion channel with uniform (nonvarying) density (the
case in which an electron beam is guided along a uni-
form ion channel in the ion-focused regime), the coef-
ficient f1 varies from 0 to f0, and z is the ion channel
length. We consider both narrow and wide ion chan-
003 MAIK “Nauka/Interperiodica”
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nels, i.e., those whose characteristic radii are, respec-
tively, smaller and larger than the beam radius. The
length of the electron beam, X, measured from the beam
front, is set equal to 2λβi, where λβi is the wavelength of
oscillations of the channel ions about the beam. The
distance z over which an REB is transported in an ion
channel is set equal to 100 (in units of the betatron
length λβe of the beam).

Unfortunately, the behavior of IHI can be studied
analytically only in the linear stage and only in a few
cases. The nonlinear instability stage, in which the dis-
placements of the beam with respect to the plasma
channel are comparable to the transverse size of the
beam or the channel, can only be studied by numerical
methods.

In order to investigate unstable excited states of the
beam–channel system, we apply the spread mass
model, which was developed in [13, 14] and was used
in [1] to study the guiding of a beam with a uniform ion
channel whose radius is larger than the beam radius.

In this model, the beam (channel) is divided into
segments, each of thickness ∆τ in the longitudinal
direction, in the form of a sequence of rigid disks hav-
ing the same density profile as the beam (channel). The
mass of the segment changes from disk to disk and
ranges between an infinitely large value (which corre-
sponds to a particle far from the system axis) and a non-
zero minimum value (which corresponds to a particle
near the axis r = 0).

The common dynamics of the disks is described by
the set of partial differential equations formulated in [1,
13]. For Gaussian radial profiles of the beam electron
density and the ion density in the channel, the equations
have the form

where Yη and Dν are the radial displacements of the ηth
disk of the beam and the νth disk of the channel, the
variable x = ct – z is the distance from the beam front,
z plays the role of a time variable, and c is the speed of
light.

The maximum displacements Y and D of the centers
of mass of the beam and channel segments are related
to the displacements of the disks by the expressions

∂2Yη
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2 a2
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For Gaussian density profiles in the beam and in the
channel, the weighting functions we, i have the form [1]
we(η) = wi(η) = 12η2(1 – η). The rest of the notation in

the above equations is as follows:  is the squared

betatron wavenumber of the beam electrons;  is the
squared wavenumber corresponding to the frequency of
the radial oscillations of the ions in the channel; and the

quantity in the denominators is expressed as a2 = (  +

)/2, where Rb and Rc are the beam and channel radii,
respectively.

We consider a test beam with a current of 5 kA and
a radius of 1 cm, the electron energy being E = 4.5 MeV
(in which case the relativistic factor γ = 10). The degree
of charge neutralization f0 is equal to 0.1. The radius of
the ion channel is set equal to 0.1 cm for a narrow chan-
nel and 1 or 5 cm for wide channels. To be specific, we
assume that the radial profiles of the beam electron den-
sity and the density of the channel ions are both Gaus-
sian.

First, we investigate the case of a narrow channel
such that the characteristic radius of the electron beam
is larger than the characteristic channel radius, Rb > Rc.

In an ion channel in which f1 = 0.1f0 and the ion den-
sity varies periodically on the spatial scale Lper =
0.25λβe, the maximum amplitude Ymax of oscillations of
the centers of mass of the beam segments behaves in
essentially the same manner as in the case of IHI in a
uniform ion channel (with f1 = 0 and Lper = 0). The IHI
saturates at the level Ymax = 3.1 for X = 2λβi (Fig. 1,
curve 1). Here and below, the quantities Ymax and Y are
normalized to the initial beam radius Rb. The behavior
of individual beam segments is also analogous to that in
a uniform ion channel. For f1 = 0.4f0, the maximum
amplitude Ymax at the end of the beam pulse exhibits
oscillatory behavior and the period of oscillations of the
beam segments is longer than that in a uniform channel.
The instability saturates and becomes stabilized. Simu-
lations carried out for a larger value of the coefficient f1,
namely, 0.8f0, showed that, from approximately the
beginning of the second half of the beam pulse (X ≥
λβi), the maximum amplitude Ymax starts to oscillate
between the values 3.2 and 7, in which case the insta-
bility, as before, saturates.

When the spatial period Lper of density variation in
the ion channel is equal to 0.25λβe and f1 = 0.1f0, the IHI
reaches saturation and the maximum amplitude Ymax
executes small oscillations. In this case, the plot of the
function is gentler than that for Rb = Rc and the oscilla-
tion amplitude is smaller. A representative behavior of
an individual segment is illustrated in Fig. 2b. For f1 =
0.4f0, the instability is stabilized and, at distances

D Dνwi ν( ) ν .d

0

1

∫=

kβe
2

kβi
2

Rb
2

Rc
2
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longer than X = 0.025λβi, the maximum amplitude in
the instability saturation stage oscillates between the
values 1 and 6. A further increase in the coefficient f1 to
0.8f0 leads to a detuning between the oscillations of the
electron beam and the ion channel. With this value of f1,
even the oscillating segments in the leading portion of
the beam deviate substantially from the axis of the
beam–channel system; nevertheless, an REB can be
successfully transported over the distance z = 12.5λβe,
which is longer than the corresponding distance z =
10λβe for Rb = Rc and for a beam pulse length of about
0.1λβi.

In an ion channel in which f1 = 0.1f0 and the spatial
period of density variation Lper is equal to the betatron
length λβe of the beam, the behavior of individual beam
segments differs from that in a uniform ion channel.
That is why, during the first half of the beam pulse, the
maximum amplitude Ymax exhibits a somewhat different
behavior. Nevertheless, the overall behavior of Ymax is
qualitatively the same as that in a uniform ion channel.
The IHI is stabilized and, at the end of the beam pulse,
the maximum amplitude Ymax saturates at a level of 3.5.
For a coefficient f1 equal to 0.4f0, the IHI also saturates,
but the plot of the function Ymax during the second half
of the beam pulse is of oscillatory nature. The maxi-
mum amplitude Ymax is equal to 1 at X = 0.66λβi and
reaches a value of 10 at the end of the pulse. For f1 =

1

0.01

0.1

1

10

Ymax

3

2
1

2
X

Fig. 1. Dependence of the normalized maximum beam dis-
placement Ymax on the normalized beam length X for differ-
ent ratios of the beam radius to the channel radius: Rb/Rc =
(1) 10, (2) 1, and (3) 0.2.

0

0.8f0, the IHI grows in an uncontrolled manner. How-
ever, with such ion channels, REBs with pulse lengths
of about 0.1λβe can be successfully guided over dis-
tances on the order of z = 25λβi.

In an ion channel in which f1 = 0.1f0 and the spatial
period of density variation Lper is equal to 1.25λβe, the
maximum amplitude Ymax behaves in essentially the
same manner as in a uniform ion channel. The IHI is
suppressed and the maximum amplitude Ymax saturates
at a level of 3.5 at the end of the beam pulse. In an ion
channel with f1 = 0.4f0, the behavior of Ymax is analo-
gous to that in a channel with Lper = λβe. The instability,
as before, saturates, but during the second half of the
beam pulse the maximum amplitude Ymax exhibits
oscillatory behavior and becomes as large as 10 at X =
2λβi. Note that the behavior of individual beam seg-
ments is similar to that in the case of Rb = Rc, but the
amplitude Y of oscillations of the center of mass of a
segment is smaller. For example, at X = 0.06λβi, the
amplitude Y is 0.02, while for Rb = Rc it is 0.03. An
increase in the coefficient f1 to 0.8f0 leads to a detuning
between the oscillations of the beam and ion channel,
in which case, however, an REB with a pulse length of
about ~0.1λβi can be transported over a distance on the
order of 26λβe.

In an ion channel with f1 = 0.1f0 and with a longer
period Lper of density variation (1.5λβe), the behavior of
Ymax is again essentially the same as in the case of IHI
in a uniform ion channel, and the value of Y in the beam
segments in the front part of the beam oscillate at a
higher frequency in comparison with that for Lper =
1.25λβe. For f1 = 0.4f0, the IHI reaches a saturation stage
such that the function Ymax becomes as large as 15 at the
end of the beam pulse and exhibits a pronounced oscil-
latory behavior during the second half of the pulse. In
an ion channel in which the coefficient f1 is increased to
0.8f0, ion hose oscillations grow in an uncontrolled
manner; however, such ion channels also provide the
possibility of transporting REBs with pulse lengths of
about 0.1λβi over long distances (on the order of 27λβe).

In the case of IHI in an ion channel with f1 = 0.1f0
and Lper = 2λβe, the plot of Ymax is again analogous to
that for a uniform channel: the maximum amplitude
Ymax reaches a value of 5 and the amplitude Y of oscil-
lations of the beam segments between the oscillation
bursts is smaller than that in a channel with Lper =
1.5λβe. In ion channels with f1 = 0.4f0–0.8f0, the maxi-
mum amplitude Ymax behaves in a manner similar to the
behavior of Ymax in a channel with Lper = 1.5λβe.

Calculations show that, in systems in which the
characteristic radius of the electron beam is smaller
than or equal to that of the ion channel (Rb ≤ Rc), the IHI
possesses all of the regular features revealed above.

Figure 1 shows the dependence of the maximum
beam displacement Ymax (normalized to the beam radius
Rb) on the beam pulse length X (expressed in units of
λβi) for Lper = 0.25λβe and f1 = 0.1f0 and for different
ratios of the beam radius to the channel radius: Rb/Rc =
TECHNICAL PHYSICS      Vol. 48      No. 12      2003
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10 (curve 1), 1 (curve 2), and 0.2 (curve 3). We can see
that, in an ion channel with such parameters, the IHI
saturates and the maximum amplitude Ymax in a wide
channel is larger than in a narrow channel. Note that
this conclusion is also valid for an REB propagating in
a uniform ion channel.

The effect of the dimensions of an ion channel with
Lper = 0.5λβe and f1 = 0.1f0 on the behavior of the nor-
malized (to the beam radius Rb) amplitude Y of oscilla-
tions of the center of mass of the beam segment at X =
0.06λβi is illustrated in Fig. 2, from which we can see
how the instability is excited. In such a channel, the
center of mass of the segment starts to oscillate earlier
than in a wide channel and the maximum amplitude Y
of the radial oscillations of the segment is six times
smaller. The plots show clearly that the wider the chan-
nel, the longer the distance the beam segment travels
between two successive pronounced oscillation bursts.
It can also be seen that the spatial period of density vari-
ation in the ion channel influences the duration of oscil-
lation bursts: the bursts become five to six times longer.

Figure 3 illustrates the behavior of the normalized
(to the beam radius Rb) amplitude Y of oscillations of
the center of mass of the beam segment at X = 0.31λβi
in ion channels whose radius is equal to the beam radius
(Rb = Rc) and in which the spatial period of density vari-
ation Lper is 0.5λβe and the coefficient f1 is varied
between 0.1f0 and 0.8f0. We can see that the larger the
coefficient, the larger the amplitude of oscillations of
the centers of mass of the beam segments. Moreover, as
the coefficient is increased, the maximum oscillation
amplitude is seen to increase and to occur closer to the
entrance to the channel.

An analysis of the results of numerical simulations
allows us to draw the following conclusions:

(i) The main parameter that determines the develop-
ment of IHI is the coefficient f1. In ion channels in
which the density varies periodically on a spatial scale
of 0 to 2λβe and the coefficient f1 is smaller than 0.4f0,
transverse oscillations of the beam and channel seg-
ments saturate and the IHI is stabilized, in which case
an REB can be guided over distances on the order of
100 betatron lengths of the beam, regardless of the
value of the ratio of the beam radius to the channel
radius. For larger values of the coefficient f1, the IHI is
not suppressed. However, the calculations show that
here, too, a beam with a length on the order of 0.1λβi
can be transported over a distance of up to 50λβe in an
ion channel with the appropriate spatial period of den-
sity variation and the appropriate ratio between the
transverse dimensions of the beam and the channel.

(ii) Short-period density variations (Lper ≤ 0.3λβe) in
an ion channel have practically no effect on the dynam-
ics of IHI development. In an ion channel in which the
ion density varies periodically on a spatial scale Lper
~0.5λβe or longer, the maximum amplitude of the trans-
verse oscillations of the beam segments is markedly
larger than that in the case of an REB transported in a
TECHNICAL PHYSICS      Vol. 48      No. 12      2003
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Fig. 2. Effect of the dimensions of an ion channel on the
amplitude Y of oscillations of the center of mass of the beam
segment at X = 0.06λβi for (a) f1 = 0, Lper = 0, and Rb = Rc;
(b) f1 = 0.1f0, Lper = 0.5λβe, and Rb = 10Rc; (c) f1 = 0.1f0,
Lper = 0.5λβe, and Rb = Rc; and (d) f1 = 0.1f0, Lper = 0.5λβe,
and Rb = 0.2Rc.

Fig. 3. Behavior of the amplitude Y of oscillations of the
center of mass of the beam segment at X = 0.31λβi for Lper =
0.5λβe and Rb = Rc and for three different values of the coef-
ficient f1: (a) 0.1f0, (b) 0.4f0, and (c) 0.8f0.
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uniform channel. The pattern of these transverse oscil-
lations also differs qualitatively from that in a uniform
ion channel: there are no pronounced oscillation bursts.

(iii) The maximum amplitude Ymax of the transverse
oscillations of the beam segments depends on the ratio
Rb/Rc. Specifically, the smaller the ratio, the larger the
amplitude Ymax and the longer the distance the beam
segments travel between two successive pronounced
oscillation bursts.
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Abstract—Twist observed in growing bacterial colonies at the macrolevel is explained in terms of the self-
assembly (self-organization) of film-forming protein clusters, since the in vitro and in vivo behavior and sym-
metry properties of protein in an open thermodynamically nonequilibrium system are identical. The self-assem-
bly of elastic protein films in the course of condensation in the protein–water system obeys the laws of the elas-
ticity theory. As the viscosity of the system grows, the transition of the protein from the liquid-crystal to the
solid phase occurs. This transition has a nonlinear dynamics, which also shows up at the macrolevel. Opposite
vorticities (twist) appear in the system. Such a modification of protein has been named protos. It is hypothesized
that the formation of an elastic nonequilibrium protos film is consistent with the behavior and orientation of
elastic forces and magnetic fields in the presence of unlike electric charges. © 2003 MAIK “Nauka/Interperi-
odica”.
INTRODUCTION

It has been found recently that, when the nutrient
medium dries out, bacteria of growing colonies unex-
pectedly start spiraling in opposite directions [1, 2].
This amazing phenomenon, which is observed under a
microscope, has not yet found a sound scientific
description in terms of an adequate mathematical
model. The questions to be tackled are as follows. What
is the reason for the helical “dance” of bacteria? What
forces make individual bacteria rotate simultaneously?
Do bacterial cells themselves or their derivatives
rotate? Earlier, Mendelson observed a similar effect,
twisting motions during the formation of fibers from
growing bacterial colonies, under a microscope (i.e.,
macroscopically) [3–5]. Later, a team of American
researchers supposed that this effect is of general char-
acter, i.e., reflects the elastic properties of condensing
matter, and, based on experimental data for the behav-
ior of the fibers, worked out a dynamic mathematical
model in terms of the elasticity theory. The prognostic
value of this model, e.g., as applied to the appearance
of Sun bursts, turned out to be higher than that of the
rubber model available at that time. Yet a number of
important issues remained unclear: What components
of the living matter cause the processes mentioned
above? What are their mechanisms? What is the reason
for opposite helical motions when fibers grow in bio-
logical objects?

It is well known that growing fibers of any biologi-
cal cells are the product of synthesis. In our opinion,
clusters of protein molecules, rather than protein indi-
vidual molecules, are synthesized; in other words, we
are dealing with the self-assembly of protein films.
Many such films produce twisted fibers observed at the
macrolevel in experiments.
1063-7842/03/4812- $24.00 © 21575
It has been recently reported that cellular organelle
catalysts (Golgi apparatus, endoplasmic network, etc.)
may be responsible for protein synthesis and transport.
The basic components of these catalysts are also self-
organized stacked membranes (films). In addition,
experimental data obtained by Noji [6] suggest that
gamma fibers in protein may rotate about the vertical
axis. Noji observed the rotation at the microlevel and
conjectured that this effect is driven by phosphores-
cence.

From the above, it seemingly follows that the dance
of bacterial colonies is due the helical motion of protein
gamma fibers during its microscopic self-organization.
However, a question now arises: Why does the process,
observed only at the microlevel (the rotation of gamma
fibers of protein about the vertical axis), show up at the
macrolevel as the helical motion of the entire system in
opposite directions? To clarify the role of protein, we
carried out experiments (described below) on the self-
assembly of protein at the micro-, meso-, and macros-
cales (the classification of the scales is given elsewhere
[7–12]), eliminating other components of the living
matter from the reaction.

EXPERIMENTAL

We studied the condensation dynamics in water–
protein colloids under equilibrium and nonequilibrium
conditions. Different amounts of the samples (in bulk
or as droplets) were applied in vitro on the same sub-
strates (microscope slide). On some of the substrates,
the system was open; on the others, closed (covered by
a special glass cover). In the open system, the water
evaporates much faster and the process kinetics
changes compared with the closed system. Thus, at
room temperature and normal atmospheric pressure,
003 MAIK “Nauka/Interperiodica”



 

1576

        

RAPIS

                    
the protein condensed under different kinetic and ther-
modynamic conditions.

The phenomenology and symmetry of the conden-
sation product and arising flows were visualized with
optical, MIN-8 polarizing, JEOL scanning electron,
and confocal laser scanning (CLS) microscopes. Five
series (a total of more than 25000) of experiments were
carried out with 15 water-soluble proteins (egg protein,
bull serum albumin, human and rabbit globulin, human
hemoglobin, human crystallin, lysozyme, fibrin, etc.).

RESULTS

The basic results of the experiments are as follows.
In the drying open protein–water colloid placed on a
transparent hard wettable substrate, autowave pro-
cesses are observed and defects forming ordered regu-
lar structures in the form of blocks or cells appear [7–
12] (Fig. 1). During the dehydration, the front of three-
dimensional different-colored multiple-scale fluctua-
tions is in continuous motion, causing alternating den-
sity zones. These zones have a spiral shape and super-
pose on one another like sustained standing autowaves.

(a)

(b)

Fig. 1. (a) Division of a protein nonequilibrium film by
large-scale straight and helical defects into cells with mus-
sel-type nuclei and (b) three-dimensional opposite vortici-
ties observed during nucleation. Optical microscope, ×200.
Then, during the in vitro condensation of the open
water–protein colloid, liquid crystal films with various
large-scale defects always appear. The amount of these
defects grows with the formation of a discontinuous
helical structure of mirror and chiral symmetry, fol-
lowed by the spontaneous formation of clusters of cells
or domains with nuclei. On both the nano- and micros-
cale, the denser phase appears as differently colored
stacked thin films. In the experiments we often
observed highly anisotropic pairs (cascades) of oppo-
site vortices producing three-dimensional conic self-
complementary dendritic film structures (Figs. 1, 2)
[10–12]. These films have a network of fine defects that
cut their surface and produce discontinuous “bird’s
wing” or “porcupine” space symmetry [13, 14]. This is
consistent with earlier observations [15]. The defects
move in an avalanche-like manner, and bright fluores-
cent bending lines and films are observed in the CLS
microscope (Fig. 3). As a rule, such films consist of two
oppositely rotating half-moon-like branches off a
mutual frame. The branches end up with a thin line
(tail). The tails connect several pairs of such films, as if
describing parallel structured ellipsoidal orbits with
defects. The orbits resemble lines of stellar magnetic
force. Branches of opposite rotation may connect to
form patterns with discontinuous helical and chiral
symmetry. Such behavior is reminiscent of that of mag-
netic forces (see, e.g., [16]) in high-temperature super-
conductors of the second kind that exhibit antiferro-
magnetic properties [17].

The results of our experiments suggest that the
behavior of protos protein films is similar to the growth
of bacterial colonies. In both cases, we see opposite
flows of the material at the macrolevel (twist). This
means that the behavior of bacterial colonies follows
the unified laws of protein self-organization in vitro and
in vivo. That is why, when the nutrient medium dries
(i.e., the water concentration in growing bacterial colo-
nies decreases), the sudden cooperative transition of the
protein (as on the glass) from the liquid to denser phase
occurs (as soon as the density of the medium reaches a
critical value) and the self-assembly of the films with
nonlinear random dynamics is observed.

From the above, one may assume that the process of
protein self-assembling becomes more extensive, more
energy-consuming, and synchronous under changing
conditions. Like a typhoon in the terrestrial atmo-
sphere, this process involves not only forming fibers but
also bacterial cells, causing the dance with vorticity and
mirror symmetry on the macrolevel. This is a vivid and
extremely rare macrodynamic demonstration of helical
mirror and chiral symmetry in the course of living pro-
tein self-organization on glass (in vitro and in vivo).

Thus, one may argue that twist in the culture of
growing bacterial colonies and their cellular fibers in
vivo, as well as in the consolidating protein film in vitro,
is nothing more than material (protein) particles that are
visualized at the meso- and macrolevels. It may be con-
TECHNICAL PHYSICS      Vol. 48      No. 12      2003
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jectured that they move along helical lines of force that
form a specularly symmetric pattern. It is known that
only lines of magnetic force may be optically visual-
ized as moving in an electric field [18]. Therefore, there
is reason to suppose that the above-described visualiza-
tion of material flows along elliptic lines of force is due
to the presence of a magnetic field in the system pro-
vided that the polarization of the protein film is found.

Based on available experimental data for the polar-
ization of biological systems (the presence of unlike
poles in cells, protein microtubules, the protein spindle
during mitosis, embryonic structures, etc.) [19–23], we
can state with a great degree of certainty that the protos
protein film in our experiments is also polarized. This
statement is supported by autowave processes, semi-
transparent hemispheres moving toward each other
with different velocities, left-hand and right-hand rota-
tions, etc., occurring in the film [9–11].

(a)

(b)

Fig. 2. (a) Further stabilization of the process: the appear-
ance of straight defects in the cell nucleus. (b) Division of
the central field with the formation of two coil-like daughter
vortices in vitro. Optical microscope, ×140.
TECHNICAL PHYSICS      Vol. 48      No. 12      2003
Thus, the presence of unlike poles (hence, the pos-
sibility of polarization) may be considered to be
proved. However, this fact cannot yet be substantiated
quantitatively. In addition, this phenomenon (if it does
exist) is hard to explain by the presence of electrolytes
and magnetic dipoles in the protein colloidal system
[24]. In particular, it remains unclear how dipole–
dipole interactions may produce two poles in a biolog-
ical object. Of interest in this respect are new data on
the properties of colloidal suspensions such as a protein
solution. It has been found that suspension particles in
this open system behave in a nontrivial manner upon
condensation. They form a long chain of like-charge
attractions [25]. It is likely that the properties of a pro-
tein colloid that are observed upon condensation cause
attractive unlike poles to appear. However, a general
theory of formation of unlike electric poles in biologi-
cal objects that is adequate for experimental conditions
is still lacking.

Today, we may only hypothesize that the formation
of a protein elastic film correlates with the behavior and
orientation of magnetic fields due to material polariza-
tion. Here are several examples in favor of this hypoth-
esis. First, the prognostic value of the mathematical
model (in terms of the elasticity theory) that was
worked out based on the behavior of twisting bacterial
fibers has been proved [3–5]. Also, it has been experi-
mentally found that protein films show a number of
phenomenological properties that are characteristic of
magnetic fields [9–11] and living biological objects.
These are discontinuous mirror and chiral symmetry,
bird’s wing symmetry (also called magnetic symme-
try), high anisotropy, the halving of biological cells

Fig. 3. Fluorescence of a solid unstable protein (alternating
zones of different brightness), nucleation, and conical nano-
structures in vitro. CLS microscope, ×1 000 000.
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(their nuclei and cytoplasm) [10, 11], the reconnection
of magnetic lines of force [26–29], the presence of den-
dritic conic structures with fractal properties; the con-
nection of oppositely rotating branches (akin to antifer-
romagnetic connection), the formation of stacked films
with alternating colors (Fig. 3), optical activity, and
sensitivity to magnetic field [10, 11]. These space–time
features are typical of systems with random nonlinear
behavior (see, e.g., [29–31]).

CONCLUSIONS

Our experimental data, showing the complex space–
time pattern of the self-assembly process in growing
bacterial colonies at the macrolevel, may be described
in terms of the behavior of nonlinear dynamic systems.
The interpretation given in this work is based on the
known polarization-related effects in protein: the pres-
ence of helical mirror and chiral symmetry at the meso-
and macrolevel (the fact established in our previous
works), sensitivity to magnetic field, and all the other
analogies listed above. This suggests that the self-
assembly of protein nonequilibrium films follows the
general physical laws of condensation and self-organi-
zation. No doubt, our hypothesis needs quantitative
verification (in particular, the relevant parameters of the
system, such as elasticity, electrical conductivity, etc.,
should be measured). Yet even today our experiments,
which shed light on the on-glass behavior of protos pro-
tein, basically clarify the reason for twist in bacterial
colonies in vitro. However, of most importance is the
fact that our experiments have made it possible to work
out a simple and realistic model of dynamics of non-
equilibrium protein film that provides further insight
into the twist of bacteria in opposite directions upon
assembling protein films not only in bacterial colonies
but also in other biological systems. A quantitative
mathematical model is now under development and
will be described in subsequent publications.
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Abstract—The effect of hydrodynamic fluctuations on noise in molecular electronic transducers is studied. It
is shown that turbulent pulsation also makes a considerable contribution to the self-noise of molecular elec-
tronic transformers, along with laminar flow fluctuations. A method for qualitative and quantitative calculation
of the noise induced by turbulent pulsation that arises when a liquid flows along the electrode surface
is proposed. A quantitative relationship that relates the rms pressure pulsation to the liquid head and an expres-
sion for the total spectral density of the hydrodynamic noise in molecular electronic transducers are obtained.
© 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Molecular electronic transducers (METs) of the
parameters of motion and oscillating fields have
recently found wide application in wide-band and low-
noise seismic sensors [1]. This is associated largely
with the progress in low-noise sensor electronics,
where the self-noise referred to the input has become
comparable to the minimum signal level measured in
seismology. Therefore, the problem of investigating
and reducing MET self-noise is of current interest.

The self-noise of METs consists of charge carrier
concentration fluctuations and hydrodynamic fluctua-
tions. The latter are due to the local fluctuations of the
liquid velocity. The noise related to the concentration
fluctuations was investigated in [2]. It was shown that
these fluctuations expressed in terms of the acceleration

spectral density are much lower than 10–9 m/s2/ .
Bearing in mind that the noise of METs is typically at
least one order of magnitude higher, one may argue that
hydrodynamic fluctuations make a basic contribution to
the noise of METs [3]. Electrolyte velocity fluctuations
arising when the laminar liquid flows along the trans-
ducer channel were studied in [4]. It was shown [4] that,
when expressed in terms of acceleration, the spectral
density of noise of this is frequency independent:

(1)

where Rh is the hydrodynamic impedance in the system,
ρ is the electrolyte density, l is the length of the trans-
ducer channel, T is the absolute temperature, and kB is
Boltzmann’s constant.

For Rh = 5 × 108 (N s)/m5 and l = 5 × 10–2 m, which
are typical of present-day molecular electronic seis-
mometers, the noise associated with laminar fluctua-

Hz

δaf
2 2kBT Rh

ρ2l2
-------------------,=
1063-7842/03/4812- $24.00 © 21579
tions is 3 × 10–8 m/s/ . It is evident that the noise
due to concentration fluctuations may be neglected.

From formula (1), it follows that a decrease in the
hydrodynamic impedance Rh or an increase in the trans-
ducer channel length l suppresses hydrodynamic fluctu-
ations. This statement was checked in experiments with
prototype transducers. It was found that the self-noise
of the transducers depends on the above parameters in
a more complex manner than predicted by formula (1).
In particular, if Rh decreases by a factor of 2000 and l
increases threefold, the noise decreases by approxi-
mately 20 dB rather than by 40 dB as could be
expected. It was also found that the noise increases with
the external signal amplitude. Thus, the experimental
data suggest that hydrodynamic noise of a type other
than that considered in [4] also makes a considerable
contribution to the self-noise spectrum of the trans-
ducer. Such may be noise due to the vortical pulsation
of both pressure and local velocities. The pulsation may
be associated with fluctuations that arise when the elec-
trolyte flows over the metal mesh electrodes of the
transducer (even for not too large Reynolds numbers).
In this study, we investigate noise of this kind from the
theoretical standpoint.

MATHEMATICAL STATEMENT
OF THE PROBLEM

To investigate vortical pulsation in a molecular elec-
tronic transducer, we will first find a relationship
between the pressure and local velocity in the near-
electrode boundary layer. Since this problem is hard to
solve for a real system, we consider a simple model of
the boundary layer.

Suppose that an ideal liquid strikes an infinite
impermeable plane. At some distance z0 from the plane,
the velocity of the liquid has only the component nor-

Hz
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mal to the surface. In the cylindrical coordinate system,
the normal component has the form

(2)

Here, the z axis is perpendicular to the plane and is
directed outward. Within the domain {r < R, z < z0}, the
distributions of the liquid velocity and pressure have a
number of properties typical of the boundary layer (in
particular, the derivative ∂v r/∂z is significant). In our
model, the quantity R is the characteristic size of the
real electrode, the plane z = 0 (at r < R) is the electrode
surface, and z0 is the upper bound of the layer on the
electrode surface. This model makes it possible to eas-
ily evaluate the potential ϕ(z, r) and velocity distribu-
tion. In the polar coordinate system, the equation for
potential has the form

(3)

Passing from the spatial variable r to the variable s
by means of the Hankel transformation and taking into
account boundary conditions (2), we arrived at the fol-
lowing expression for the potential:

(4)

where J1(Rs) is the Bessel function of the first kind.

Using the relationships v z = ∂ϕ/∂z and v r = ∂ϕ/∂r,
we can now find the components of the liquid velocity.
In the boundary layer region of interest (r < R, z < z0),
the pressure is given by

(5)

Since the integrals entering into (5) cannot be taken
exactly, we will consider approximate estimates. The
function J1(Rs) in the integrands of (5) is the fastest
oscillating function; therefore, s ≤ 1/R make a dominant
contribution to the integrals. Then, assuming that z <
z0 ≤ R, the hyperbolic functions in (5) can be expanded
into the Taylor series up to the terms of the least order
of smallness in z/R and z0/R. Having calculated the
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resulting integrals, we obtain

(6)

The pressure on the electrode surface (averaged
over its area) is given by

(7)

where z0 ≡ δ.
By varying (7), it is easy to find a relation between

the spectral density of pulsation of the electrode-area-

averaged pressure  and the spectral density of pul-

sation of the velocity :

(8)

The presence of two terms in (8) indicates that the
pressure pulsation depends on both the flow accelera-
tion and the liquid head variation. From (8), the accel-
eration-to-head contribution ratio is as follows:

(9)

Here, λ = U/ω (where ω is the pulsation frequency) is
the characteristic size of a vortex resulting from the
velocity pulsation of the liquid.

PRESSURE PULSATION SPECTRUM
As is seen from (8), the pressure pulsation spectrum

is defined by the spectrum of velocity pulsation. Sup-
pose that the velocity pulsation in our system is
described by the Kolmogorov spectrum [5]. By analogy
with [6], we consider the velocity correlator in the form

(10)

where f is the pulsation frequency, ε is the quantity
characterizing the rate of energy dissipation over vari-
ous scales of turbulence (its value is equal to the mean
rate of kinetic energy dissipation per unit mass of the
liquid), and κ is a dimensionless constant close to unity.

Similarly to [7], we assume that the velocity fluctu-
ation spectrum has the form of (10) down to the cutoff
frequency

(11)

and then (at frequencies below f0) tends to a constant.
For characteristic liquid velocities in the transducer
channel and thicknesses of the boundary layer, the
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value of f0 is roughly equal to 100 Hz. Since frequen-
cies below 100 Hz are of primary interest for seismol-
ogy, the velocity pulsation spectrum is assumed to be
independent of frequency:

(12)

For frequencies f < f0, the vortex size λ = U/2πf
exceeds the thickness δ of the boundary layer; there-
fore, the term containing ω2 in (8) may be omitted. For
typical values of the MET parameters, the values of δ/R
obtained experimentally are equal to 0.25–0.40,1 where
R is the radius of the wire of which the electrode grid is
made. The smallness of the ratio δ/R substantiates the
use of the two-dimensional model of the boundary
layer in a real electrode system.

The rate ε of energy dissipation can be evaluated by
using the analogy between the motion of a liquid in a
cylindrical channel and the flow of electric current in a
conductor. In our case, the hydrodynamic impedance Rh
plays the role of ohmic resistance:

(13)

where U0 is the mean velocity of the electrolyte in the
transducer channel, S0 is the cross-sectional area of the
channel, and l is the length of the channel.

Here,

(14)

where a is the effective acceleration of gravity near the
Earth’s surface at the point of observation.

The velocity U0 is related to the characteristic liquid
velocity U near the surface of the metal mesh electrode
by the relationship

(15)

where S is the total area of holes in the metal mesh elec-
trode.

Thus, for the spectral density of the rms pressure
pulsation at frequencies below the cutoff frequency f0,
we have

(16)

1 I.S. Zakharov, private communication.
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As is customary in hydroacoustics [7], we recast
formula (16) into the form

(17)

where α is the factor depending on the properties of the
flow and a body in stream.

Experimental values of α found from hydroacoustic
measurements lie between 1.9 × 10–3 and 5.7 × 10–3

[7, 8]. Integrating the spectral density of pressure pul-
sation over the entire frequency range yields the rms
pressure

(18)

hence,

(19)

Substituting typical values of the system’s parame-
ters into (19), we find that α = 5.5 × 10–3, which agrees
with the above experimental data.

Next, from the spectral density of turbulent pressure
pulsation, we derive the spectral density of turbulent
noise (expressed in terms of acceleration):

(20)

With allowance for laminar fluctuation noise (1), we
arrive at the final formula for the spectral density of
total hydrodynamic noise (in terms of acceleration) in
METs at frequencies below f0 = 100 Hz:

(21)

From (21), it follows that the spectral density of the
noise (expressed in acceleration) does decrease mono-
tonically with increasing length l of the transducer
channel but more slowly than could be expected from
formula (1). This is consistent with the experimental
data. For a fixed length l, the spectral density as a func-
tion of Rh has a minimum. The hydrodynamic imped-
ance Rh0 at which the noise is minimum varies as

(22)

For the channel lengths l = 0.05 and 0.16 m, 
as a function of Rh is plotted in the figure. With these
values, the optimum values of the hydrodynamic
impedance are 5 × 106 and 1 × 107 (N s)/m5, respec-
tively.

δp2 αρU2

2
----------,=

δp2 0.014
R
δ
--- 

 
2 S2Rh

ρS0lκ
-------------- 

 
1
3
---

δ
U
---- 

 
5
6
---
ρU2

2
----------;=

α 0.014
R
δ
--- 

 
2 S2Rh

ρS0lκ
-------------- 

 
1
3
---

δ
U
---- 

 
5
6
---

.=

δaf
2 δpf

2/ρ2l2.=

δaf
2 = 

23

432 2π( )
8
3
---

----------------------- R
δ
--- 

 
4 Sa

S0
------ 

 
2
3
---

δρa
S

--------- 
 

5
3
---

1

l
1
3
---

Rh

5
3
---

----------
2kBT Rh

ρ2l2
-------------------.+

Rh0 l
5
8
---

.∼

δaf
2



1582 KOZLOV, SAFONOV
CONCLUSIONS

The investigation of self-noise in METs that is per-
formed in this study enables one to conclude that turbu-
lent fluctuations contribute considerably to the total
hydrodynamic noise beginning from a level of (1.5–

3.0) × 10–8 m/s2/ , while the spectral density of
total noise remains frequency independent down to fre-
quencies on the order of 100 Hz. It is important that this
noise increases with signal amplitude. This circum-
stance is significant when molecular electronic seismic
detectors are used in observatories where the natural
seismic background is low. The quantitative estimate of

Hz

42

2

4

7

10

1

2

6 8 10
Rh, 107 × N s/m5

δaf
2, 

Spectral density of electrolyte acceleration fluctuations in
the channel of a molecular electronic transducer vs. hydro-
dynamic impedance. l = (1) 0.05 and (2) 0.16 m.

10–9 × m/(s2        )HHz

the factor α, which relates the rms pressure pulsation to
the liquid head, agrees well with hydroacoustic mea-
surements. Thus, it is hoped that noise of such a kind
may be separated out from the total noise of the system.
Of basic importance is the expression for the spectral
density of the MET self-noise as a function of the phys-
ical and geometrical parameters of the transducer. This
expression makes it possible to optimize the parameters
of the transducer in terms of noise minimization. Since
the noise as a function of the hydrodynamic impedance
of the transducer has a pronounced minimum (at a fixed
length of the transducer channel), the accuracy of eval-
uating the hydrodynamic impedance becomes of cru-
cial importance.
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Abstract—In [1] the image force was shown to impose additional conditions for the electrostatic suspension
of a sphere without dynamic control of the electrode potential, and the dependence of the critical voltage
between the electrodes on the sphere radius was derived experimentally. In this work, this dependence is found
analytically by calculating electrical forces in the third-order approximation in shift of the sphere from equilib-
rium. © 2003 MAIK “Nauka/Interperiodica”.
Let a potential distribution U0 f(θ) be given on the
surface of a spherical cavity filled with a dielectric fluid
with a permittivity εm. The distribution U0 f(θ) is such
that the field inside the cavity is centrosymmetric (here,
U0 is the characteristic potential drop across the elec-
trodes). The origin of the spherical coordinate system
(r, θ, ϕ) is placed at the center of the cavity. The angle
θ is measured relative to the polar axis z.

Let a sphere of radius R and permittivity εp be placed
at the center of the cavity. The potentials um and up in
the fluid and sphere, respectively, satisfy the set of
equations

(1)

where n is the outer normal to an element ds of the
spherical surface and ∆ is the Laplacian. Also, r  R,
u  U0, c = b/R, and ε = εm/εp.

By virtue of the field symmetry, the sphere is in
equilibrium. Let us find the electrical force acting on
the sphere when it shifts from equilibrium along and
normal to the symmetry axis.

When the sphere shifts along the symmetry axis z by
δz ! 1, the changes in the potentials um and up have the
same order of magnitude as δz. A solution to problem (1)
is represented as the third-order expansion in the
shift δz:
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(2)

Here, Pn(cosθ) are Legendre polynomials. The coeffi-

cients , , and  are calculated from the con-
dition that the potential on the cavity surface is undis-
turbed:

(3)

When the sphere is displaced normally to the sym-
metry axis (i.e., along the x axis), we use the coordinate
system (r, θ', ϕ') where the angle θ' is counted relative
to the x axis and the angle ϕ', relative to the z axis in the
yz plane. The potential distribution function in the new
coordinate system is designated as f(θ', ϕ'). Note that
cosθ = –sinθ'cosθ' in this case.

When the sphere shifts along the x axis by δx ! 1, a
solution to (1) is represented in the form
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(4)

Here, (cosθ') are associated Legendre polynomials.
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Figure.
Solving problem (1) by expanding in shift of the
sphere, we find the coefficients in (2) and (4) under the
condition that the potential disturbance on the cavity
surface vanishes.

It is known [2] that an external electrostatic field
acts on a body with a force given by the formula

(5)

Substituting the potential um on the spherical surface
from (2) and (4) into (5) yields expressions for the
forces acting on the sphere shifted along and normally
to the symmetry axis of the field:

(6)

Estimating from (6) the shifts  and  for which
the forces acting on the sphere along and normally to
the symmetry axis of the field reach maximal values,
we find expressions for the maximal forces:
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Equating (7) to an external body force acting on the
sphere, one may estimate the minimal (critical) voltage
U∗  across the electrodes that provides a balance of
forces. The figure shows the analytical dependence
(curve 1) of the critical voltage on the sphere radius in
the gravitational field. The parameters of the experi-
ment were the same as in [1], and the potential distribu-
tion function on the cavity surface was taken to be

The experimental (curve 2) and calculated results
are seen to be in qualitative agreement.

f θ( ) 1
2
--- 3 θcos

2
1–( ) P2 θcos( ).= =
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Abstract—The influence of the discharge conditions on the dynamics of energy release is considered for pulsed
arcs in air at initial pressures from 105 to 8 × 105 Pa and a low-voltage capacitor voltage of up to 400 V. A novel
method for determining the resistance of the discharge channel in the final stage of a spark discharge is pro-
posed. The method is applied to estimating the discharge channel parameters. © 2003 MAIK “Nauka/Interpe-
riodica”.
INTRODUCTION

Thermodynamic equilibrium that is achieved in
high-pressure steady-state arcs provides optimum con-
ditions for the Joule heating of the gas medium. Obvi-
ously, studying the transition from a spark to an arc dis-
charge assists in solving the problem of rapidly and
efficiently heating gas media. The short duration of the
transient process makes it possible to produce a
plasma–wave system for the formation of intense shock
waves, which, in turn, will allow one to create new
technological devices, such as gasdynamic pulsed det-
onation-combustion lasers and direct-flow pulsed air
propulsion engines [1].

PROBLEMS SOLVED IN STUDYING PULSED 
ARCS IN GASES

The transition from a spark to an arc is accompanied
by a change in the character of collisions leading to gas
ionization in the discharge channel. In the initial stage
of the transition, electron-impact ionization of neutral
molecules is dominant, which is followed by step ion-
ization and then ionization via collisions of excited
molecules with neutral ones. The latter type of ioniza-
tion takes place when the gas temperature becomes suf-
ficiently high. By step ionization, we mean the ioniza-
tion of molecules via subsequently passing through
excited states. The ionization processes are accompa-
nied by a change in the electric field strength in the dis-
charge channel.

Hence, by setting the electrode voltage (which only
slightly differs from the potential drop across the posi-
tive column of an equilibrium arc), it is possible to gen-
erate an arc discharge.

It should be noted that a fairly high degree of ioniza-
tion is achieved in the spark channel. Nevertheless, a
1063-7842/03/4812- $24.00 © 21586
necessary condition for an electric discharge to occur is
that the threshold voltage should be maintained at the
electrodes. This voltage depends, in particular, on the
gas temperature in the discharge channel. It is believed
that, at a low electrode voltage, the electric field
strength is insufficient to provide electron-impact ion-
ization of the gas molecules in the channel. If energy
release in a spark discharge is low and, accordingly, the
gas kinetic temperature in the channel is also low, then
the threshold voltage appears to be higher than the elec-
trode voltage corresponding to a steady-state arc dis-
charge. If the discharge current continues to flow after
the spark discharge stage is finished, while the elec-
trode voltage is maintained at a level close to the poten-
tial drop across the positive column of an equilibrium
arc, then we can conclude that a high gas kinetic tem-
perature in the discharge channel has been reached in
the final stage of the spark. Having determined the
resistance of the spark channel in the final stage of its
evolution in a given discharge gap, one can analyze to
what extent the gas parameters in the discharge channel
at this time correspond to the gas parameters in a
steady-state arc.

In view of the above, the problem arises of deter-
mining the resistance of the discharge channel by esti-
mating the threshold voltage at which the current con-
tinues to flow in a given electric circuit at a fixed energy
released in a spark discharge. As applied to plasma–
wave systems, this parameter should be estimated for
the conditions under which the energy deposited in the
spark discharge is lower than 1 J per 1 cm of the gap
length. In addition, it is necessary to determine how the
period and dynamics of energy release in a pulsed arc
depend on the charging voltage at a low-voltage capac-
itor, the interelectrode distance, and the initial gas pres-
sure in the discharge gap. The determination of these
parameters makes it possible to estimate the fields of
003 MAIK “Nauka/Interperiodica”
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application of pulsed arcs in technological devices from
the standpoint of the required rate of energy release.

EXPERIMENT
1. Characteristics of the Experimental Device

and Range of Investigation

The electric circuit of the experimental device is
shown in Fig. 1. This circuit allows the amplitude of the
high-voltage pulse at the secondary winding of trans-
former T to be varied in the range up to 26 kV. The
charge voltage at low-voltage capacitor C1 was varied
in the range 0–400 V. The transformation ratio of pulsed
transformer T was 1 : 2. The transformer core was made
of an ET 3424 electrical steel with a cross section of
7.5 cm2 and an average length of the magnetic field line
of 0.44 m. As high-voltage capacitor C2, we used KVI-
3 capacitors with a total capacitance of 6 × 680 pF. The
maximum value of the energy deposited in the spark
discharge was lower than 0.7 J. Since capacitor C2 was
included in a circuit with a completely discharging
capacitive storage and the transformer efficiency was
nearly 90%, the energy deposited in the spark discharge
could be determined with a fairly good accuracy. Our
experiments were carried out for discharges in air at an
initial temperature of 293 K and gas pressures in the
range 105 to 8 × 105 Pa. The interelectrode distances
were 0.9, 1.9, and 3 mm. The electrodes were made of
Kh18N10T steel. In order to take into account the effect
of the electric field inhomogeneity, we have measured
the static breakdown voltages at atmospheric condi-
tions for the above interelectrode distances. These volt-
ages were found to be 3, 5, and 9 kV, respectively. At
longer distances, discharges were not ignited because
of the limited duration of the high-voltage pulse [2].

2. Estimate of the Resistance of the Discharge Channel 
in the Final Stage of Spark Evolution

The resistance of the discharge channel was esti-
mated as follows. Spark discharges were produced
across a fixed discharge gap. Varying the charging volt-
age at low-voltage capacitor C1, we measured the time
evolution of the current in the discharge circuit.
Thereby, for a fixed length of the discharge gap, we
could determine the minimum voltage Umin at which the
discharge current continued to flow. Since the mini-
mum discharge current Imin is determined by the thresh-
old current of the cathode spot, the channel resistance R
in the final stage of the spark discharge can be deter-
mined from the formula R = Umin/Imin. According to the
data of [3], the threshold spot current for an iron cath-
ode is Imin = 1.5 A.

In studying the generation of a pulsed arc across a
0.9-mm discharge gap, we determined the minimum
voltage required for the current to flow through the gap.
It can be seen from Fig. 2 that the current continues to
flow at a discharge voltage of 35 V and the amplitude of
the discharge current for the given discharge capaci-
TECHNICAL PHYSICS      Vol. 48      No. 12      2003
tance is about 3 A. When capacitor C1 was charged
below 30 V, no current was observed in the discharge
circuit. To exclude the opportunity of disrupting the
discharge due to the limitation of the discharge current
to the starting arc current by the circuit parameters, we
produced discharges through relay contacts with the
same electric circuit. The current amplitude in this case
was up to 100 A (Fig. 3). Measurements of the above
minimum voltage across a 1.9-mm discharge gap gave
a value of about 45 V at a discharge-current amplitude
of up to 6 A. In discharges through relays, the ampli-
tude of the discharge current at this voltage was larger
than 160 A. In both cases, the energy deposited in the
spark discharge was slightly above 0.1 J. With this
energy deposition in the spark discharge, the resistance
of the spark channel in the final stage of its evolution
was found to be R = 23 and 30 Ω for the 0.9- and
1.9-mm gaps, respectively. A comparison of these val-
ues with the resistance of the positive columns of
steady-state arcs shows that, under identical discharge
conditions, the latter resistance is lesser by one order of
magnitude [3]. It follows from here that further devel-

R

C1

C2
1

2

3

1

Fig. 1. Diagram of the pulsed-arc circuit: (1) charging
device, (2) switch, R measuring shunt, and (3) discharge
gap.

T

I

U

Fig. 2. Current and voltage oscillograms. The sweep speed
is 50 µs/division, the current scale is 5.4 A/division, and the
voltage scale is 500 V/division.
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Fig. 3. Current oscillogram for a discharge through relay
contacts. The discharge voltage is U1 = 35 V, the sweep
speed is 0.2 ms/division, and the current scale is 27 A/divi-
sion.

I

U

U

I

(a)

(b)

Fig. 4. Current and voltage oscillograms for a charging volt-
age of (a) 100 and (b) 400 V. The sweep speed is 20 µs/divi-
sion. The current scales are (a) 270 and (b) 1351 A/division,
and the voltage scales are (a) 1000 and (b) 200 V/division.
opment of the discharge at a low voltage across the dis-
charge gap proceeds via step ionization of the gas.

We note that, at the minimum voltage ensuring the
current to flow through the discharge gap, low-voltage
capacitor C1 is discharged only partially. Consequently,
this electrode voltage does not sustain the degree of
ionization that was produced in the discharge channel
by the spark discharge. As a result, the discharge chan-
nel resistance increases, and, accordingly, the discharge
terminates.

Therefore, from the known voltage at low-voltage
capacitor C1 at which it completely discharges, we can
determine the value of the threshold voltage for igniting
a pulsed arc. It was found that the threshold voltage for
an energy deposition in a spark of less than 1 J per 1 cm
of the gap length is higher than 60 V/mm. It should be
noted that the threshold voltage is affected by the
inductance of the transformer’s secondary winding and
the capacitor’s self-inductance. These inductances
increase the current rise time, thereby affecting the bal-
ance of the ionization and recombination processes.
Hence, the above value of the threshold voltage is only
an approximate estimate.

3. Influence of the Charging Voltage of the Low-Voltage 
Capacitor and the Interelectrode Distance

on the Dynamics of Energy Release in a Pulsed Arc

Studying the waveforms of the current and voltage
in the discharge circuit allowed us to compare the dis-
charge duration and the dynamics of energy release
under different discharge conditions. A characteristic
feature revealed in comparing these curves was that the
discharge duration decreased with increasing charging
voltage at the low-voltage capacitor at a fixed length of
the discharge gap. For instance, when the charging volt-
age of capacitor C1 was 100 V, the duration of the
pulsed arc was nearly 0.14 ms, whereas at a voltage of
400 V, this duration was nearly 0.06 ms (Fig. 4).

We note that, in studying the dynamics of energy
release with this discharge circuit, it is rather difficult to
determine exactly the influence of each of the discharge
parameters. This is because the parameters of both the
load and some elements of the discharge circuit are
nonlinear. For this reason, the influence of the external
circuit parameters was examined by changing the dis-
charge gap with a lower resistance load. It was found
that the current rise time and the extent to which the dis-
charge duration depends on the charging voltage of
capacitor C1 are determined, in particular, by the circuit
parameters. Therefore, the influence of particular dis-
charge conditions was examined at fixed values of the
other parameters.

At fixed charging voltages of the capacitors, the dis-
charge duration insignificantly increased and the ampli-
tude of the discharge current decreased as the interelec-
trode distance increased. Thus, when the voltage at
capacitor C1 was 200 V, the duration of the pulsed arc
TECHNICAL PHYSICS      Vol. 48      No. 12      2003
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across the 0.9-mm gap was 0.075 ms, whereas it was
0.08 ms at a gap length of 3 mm. In this case, the
decrease in the current amplitude was 30 A, the current
amplitude being larger than 1000 A.

4. Influence of the Initial Gas Pressure in the Discharge 
Gap on the Duration and Dynamics of Energy Release 

in the Discharge Circuit

This study was carried out with air discharges in
“open” gaps of lengths 0.9 and 1.9 mm at a gas pressure
in the range 105 to 8 × 105 Pa and an initial gas temper-
ature of 293 K. The term “open” here implies that the
volume of the discharge cavity is several orders of mag-
nitude larger than the volume of the discharge channel.
To decrease the measurement error, we only varied the
air pressure in the discharge cavity; the charging volt-
ages of the capacitors were fixed.

The results of these studies showed that, as the ini-
tial gas pressure in the discharge cavity increased, the
discharge amplitude decreased, but the discharge dura-
tion increased. This was especially pronounced when
we increased the voltage U1 of capacitor C1. For
instance, at U1 = 200 V, the increase in the initial pres-
sure to 5.8 × 105 Pa resulted in a decrease in the current
amplitude of more than 30 A. At U1 = 60 V and the
same increase in pressure, the current amplitude
decreased by nearly 12 A. The increase in the discharge
duration in the former case was about 5 ms, whereas in
the latter case it was nearly 20 ms. Taking into account
the voltage applied to the discharge gap, such an influ-
TECHNICAL PHYSICS      Vol. 48      No. 12      2003
ence of the initial pressure can be explained by the fact
that this parameter affects the resistance of the dis-
charge channel.

CONCLUSIONS

The proposed method for determining the resistance
of the discharge channel at the final stage of a spark dis-
charge allows one to estimate the gas parameters in the
discharge channel. It has been found how the discharge
duration and the dynamics of energy release in the
pulsed-arc circuit depend on the charging voltage of the
low-voltage capacitor, the interelectrode distance, and
the initial gas pressure in the discharge gap. An analysis
of the dynamics of energy release shows that such a
pulsed-arc circuit can be used in plasma–wave systems
for the formation of intense shock waves.
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Abstract—A novel method for generating a pulsed arc in gas is considered. The method can be used in devices
in which rapid and efficient heating of the working gaseous medium is required. Electric circuits for generating
pulsed arcs are analyzed. For the chosen discharge circuit, the dynamics of energy release in the column of a
pulsed arc is experimentally investigated. Methods for estimating the discharge circuit parameters are proposed.
Results of estimating these parameters in an existing experimental device are presented. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

In recent years, the problem of creating devices in
which the electric-discharge energy is used to produce
intense shock waves has attracted considerable interest.
To solve this problem, a novel method for generating a
pulsed arc is proposed. The method can be used in a
plasma–wave system for the formation of intense shock
waves [1].

REQUIREMENTS FOR THE CONDITIONS
OF AN ELECTRIC DISCHARGE
IN A PLASMA–WAVE SYSTEM

The specific features of a discharge in a plasma–
wave system stem from the requirement for the gas in
the positive column of a pulsed arc to rapidly relax to a
quasi-equilibrium thermodynamic state. The study of
the breakdown mechanisms and the development of
discharges in gases allowed one to determine the con-
ditions for generating discharges in such systems.
These conditions are the following. A high-voltage
pulse should provide spark breakdown of a gas-filled
discharge gap. The further development of the dis-
charge occurs at a lower electrode voltage. The low-
voltage power supply should provide a high discharge
current until a quasi-equilibrium thermodynamic state
of the working gas is reached in the discharge. In this
case, the energy deposited in the spark discharge is
expected to be at least one order of magnitude lower
than the energy released during the short-duration arc
discharge. It is believed that, for such a discharge sce-
nario, the discharge energy balance, which is governed
by the electron–molecule interaction, can be changed
by varying the electric field strength. A high electrode
1063-7842/03/4812- $24.00 © 21590
voltage ensures a high ionization rate of gas molecules.
When the voltage is low, the fraction of the energy that
is transferred from electrons to the rotational degrees of
freedom of molecules and is spent on elastic losses sub-
stantially increases [2]. As a result, the rate and effi-
ciency with which electric energy is converted into the
kinetic energy of the gas molecules also increases.

In addition to the achievement of a quasi-equilib-
rium thermodynamic state of the gas in the discharge, it
is necessary to provide the required rate of energy dep-
osition in the discharge channel. This rate can be lim-
ited by the parameters of the circuit elements.

As applied to plasma–wave systems, the total dis-
charge duration should be shorter than 5 × 10–5 s and
the required amount of energy released during the dis-
charge should be larger than 10 J. The voltage applied
to the electrodes of the discharge gap during the arc dis-
charge should differ slightly from the steady-state arc
voltage.

CHOICE OF THE CIRCUIT FOR GENERATING 
A PULSED ARC WITH REQUIRED PARAMETERS

When electric circuits with an additional trigger
electrode for the preliminary ionization of the working
gas in the discharge gap are used, the voltage at the
main electrodes should be substantially higher than the
minimum arc voltage. This stems from the necessity of
applying an additional potential between the electrodes
in order to form the main current channel. A decrease
in this potential results in an increase in the time delay
of the formation of the main current channel or even in
the disruption of the discharge. In particular, we should
mention the three-electrode circuit [3] in which a dis-
003 MAIK “Nauka/Interperiodica”
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charge initiated in the semi-enclosed volume produces
a directed flow of the ionized gas, which bridges the
main discharge gap (Fig. 1a). For the rapid formation of
the directed gas flow, a rapid and efficient heating of the
working gas is also required, which makes this circuit
inapplicable in our case.

For electric circuits in which high-voltage and low-
voltage sources connected in parallel to the discharge
gap are used, precautions must be taken to ensure the
simultaneous operation of the voltage sources (Fig. 1b).
To protect the low-voltage source from a high-voltage
pulse, active and reactive elements (e.g., a protective
choker) are connected in series with the circuit. As a
result, requirements for either the efficiency or the
energy-release rate are not satisfied.

It is evident that the use of a pulse transformer
directly connected to the discharge gap is hardly possi-
ble. The reason is that very different requirements are
imposed upon the discharge dynamics at different
stages, so that it is technically impossible to realize a
transformer with the necessary output parameters
(Fig. 1c).

Having examined different circuits for generating
pulsed arcs, we chose an electric circuit that best
matched our requirements (see Fig. 1d). This decision
was made on the following grounds. Applying the high
and low voltages in series ensures a continuous current
throughout the entire discharge phase, so that the total
discharge duration shortens. The circuit provides a
decrease in the reactive component of the circuit
because the pulse transformer operates in the switch
regime. This makes it possible to achieve the required
rate of energy release.

EXPERIMENT

Dynamics of the Energy-Release in the Electric 
Discharge Circuit under Study

The electric circuit presented in Fig. 1d was put into
practice. The pulse transformer produced high-voltage
pulses with an amplitude of up to 26 kV. The charging
voltage of the low-voltage capacitor was varied in the
range 0–400 V. Such parameters of the device allowed
us to study the dynamics of energy release in air gaps
with a length of up to 3 mm under normal atmospheric
conditions. The use of a capacitor of the MBGN type
with a rating value of 200 mF as low-voltage energy
storage provided the required discharge dynamics
(Fig. 2).

An analysis of the energy-release dynamics shows
that this electric circuit can be used in plasma–wave
systems for the formation of intense shock waves.

In view of the nonlinear characteristic of the load,
the question arises as to how the discharge circuit
parameters influence the energy-release dynamics. The
results of the study of these parameters are presented
below.
TECHNICAL PHYSICS      Vol. 48      No. 12      2003
Study of the Influence of the Self-Inductance
of the Capacitive Storage on the Discharge Dynamics

One of the capacitor parameters that affects the dis-
charge duration is the self-inductance of the capacitor.
In order to determine how the self-inductance of the

(a)

(b)

C1 C2

C1

C2RL

(c)

C1 C2

(d)

C2

C1

R

1

3

2

1

Fig. 1. (a–c) Electric discharge circuits and (d) pulsed arc
circuit: (1) charging devices, (2) switch, (3) transformer,
(4) discharge gap, and (R) measuring shunt.
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Fig. 2. Oscillograms of the current I and voltage U. The
sweep speed is 20 ms/division, the current scale is
1351 A/division, and the voltage scale is 200 V/division.

1

2

Fig. 3. Oscillograms of the current for a capacitor charging
voltage of (1) 200 and (2) 100 V. The sweep speed is
10 ms/division, and the current scale is 270 A/division.

Fig. 4. Oscillograms of the current. The capacitor charging
voltage is 100 V, the current scale is 270 A/division, and the
sweep speed is 0.1 ms/division.
available capacitor influences the discharge duration, it
was proposed to trace the dynamics of the discharge
current when the capacitor discharges through a thyris-
tor and a low-resistance shunt.

The type of thyristor was chosen taking into account
the maximum values of the voltage and current in the
discharge circuit and the value of the potential drop in
the cathode and anode regions (this value should be
much lower than the potential drop across the discharge
gap). When the current growth rate is high, the effect of
nonlinearity of the current–voltage characteristic of the
thyristor can be ignored. In this case, the current rise
time should be at least one order of magnitude shorter
than the total discharge duration.

The MBGN capacitor discharged through a TChI-
100 thyristor. The capacitor charging voltage was var-
ied in the range 0–400 V. Using this type of thyristor,
we succeeded in substantially decreasing the influence
of the characteristic of the electronic switch on the
energy-release dynamics.

By comparing the waveforms of the current for the
cases in which the capacitor discharged through the
thyristor and through the pulsed arc circuit, we could
determine the influence of the capacitor’s self-induc-
tance on the energy-release dynamics in the given dis-
charge circuit. It was found that, in our case, the capac-
itor’s self-inductance results in a gradual current rise
during an arc discharge (Fig. 3).

Study of the Combined Effect of the Nonlinear 
Resistances of the Circuit Elements on the Discharge 

Dynamics

This study was performed by including a relay
(instead of the discharge gap) in the pulsed arc circuit.
The discharge circuit with capacitor C2 was not used. In
this version, no “external” saturation of the transformer
core occurred, which resulted in distorted information
about the actual influence of the circuit parameters on
the discharge dynamics. However, these studies made it
possible to determine the maximum attainable ampli-
tude of the discharge current in the given circuit at a
fixed initial charging voltage of capacitor C1. This esti-
mate allowed us to separate the influence of the state of
the gas in the discharge channel from the influence of
the circuit parameters on the energy-release dynamics
in the given discharge circuit.

In this case, the main requirements for the relay
parameters are a minimal influence of the relay flutter
on the energy-release dynamics and a low resistance of
the relay contacts. The latter implies the use of a relay
with a large contact area.

In the relay used in our experiments, the total con-
tact area was 39.25 mm2. Figure 4 shows the waveform
of the discharge current. We note that the use of a relay
causes the problem of synchronization with the mea-
suring equipment. This can result in a shift of the start
time of scanning. However, on the whole, the time evo-
TECHNICAL PHYSICS      Vol. 48      No. 12      2003
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lution of the discharge current remained stable. An
analysis of curves shows that, when an additional trans-
former-core saturation produced by an external current
source was absent, an oscillatory process occurred in
the discharge circuit. This means that the discharge cir-
cuit shown in Fig. 1b is unsuitable. The absence of
sharp current spikes indicates a rather short period of
relay flutter. A comparison of the waveforms of the dis-
charge current through the discharge gap and through
the relay contacts shows that threshold values of the arc
voltage are determined by the state of the gas in the dis-
charge channel, rather than the disruption of the dis-
charge current due to the influence of the discharge-cir-
cuit parameters. The observed waveforms of the dis-
charge current through the relay contacts allow us to
determine how the nonlinear resistances of the electric
circuit elements influence the current dynamics in the
pulsed arc circuit.

CONCLUSIONS

In this paper, we studied an electric circuit for gen-
erating a low-voltage pulsed arc. It was found that the
TECHNICAL PHYSICS      Vol. 48      No. 12      2003
given circuit can be used in plasma–wave systems for
the formation of intense shock waves and other devices
in which fast and efficient heating of the working gas-
eous medium is required. The proposed versions of
experimental studies of the influence of resistances of
the electric circuit elements on the discharge dynamics
allow one to estimate the applicability range of a device
based on this circuit and find a way of optimizing the
device parameters.
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Abstract—Styrene vapor contained in air in small amounts is decomposed when the air is subjected to a pulsed
electron beam and non-self-maintained space discharge. The physical laws of the process and the final products
of styrene vapor conversion are found. Experimental data make it possible to consistently describe the styrene
vapor elimination from air exposed to a pulsed electron beam and relate the beam parameters to the properties
of the gas flow being irradiated. © 2003 MAIK “Nauka/Interperiodica”.
The process of organic synthesis, as well as the pro-
duction of plastics and plastic products, inevitably gen-
erates effluents that sometimes contain toxic volatiles
in dangerous concentrations. The vapors of aromatic
and nonsaturated compounds, such as styrene, benzene,
and the like, are the most dangerous. One way of reduc-
ing the toxicant concentration in the gaseous effluents
is to irradiate them by pulsed electron beams. It has
been shown [1, 2] that irradiation may reduce signifi-
cantly the concentration of inorganic substances with-
out consuming much energy. In this work, we report
experimental data for styrene vapor removal by irradi-
ating the air with pulsed nanosecond electron beams.

EXPERIMENTAL CONDITIONS
We experimented with model nitrogen : oxygen =

80 : 20 gas mixtures at atmospheric pressure and room
temperature. The styrene vapor concentration was var-
ied from 50 to 1000 ppm. The concentration of the sty-
rene and styrene conversion products in the gas phase
was measured chromatographically [3]. The error in
measuring the impurity concentration was no more
than 5% in the 100–1000 ppm range and 12% in the
10–100 ppm range.

The experiments were carried out with a setup based
on the RADAN nanosecond electron accelerator [4].
The accelerator generated a 180-keV pulsed electron
beam with a current of 800 A, cross-sectional area of
1 cm2, half-height duration of 3 ns, and repetition rate
of 10 s–1. The beam irradiated a 1-cm-long gas-filled
gap with a volume of about 10 cm3 between a grid elec-
trode, through which the beam was injected into the
gas, and a solid metallic electrode, connected to a 13-nF
storage capacitor. The voltage across the storage capac-
itor was varied from 0 to 10 kV. The energy delivered to
the test gas volume (about 4.2 × 10–3 J per pulse) was
measured by standard film dose meters. This energy
1063-7842/03/4812- $24.00 © 21594
plus the energy of the storage capacitor initiated a non-
self-maintained discharge. The total volume of the dis-
charge chamber was 3 l. A fan built in the chamber
made the gas flow through the gap with a mean velocity
of 0.5 m/s. Such an experimental scheme simulates
multistage purification, where the gas flow is repeat-
edly irradiated. In addition, it improves the reproduc-
ibility and decreases the error of measurements by aver-
aging the styrene vapor concentration in the air.

The gas was irradiated by trains of pulses. In the
course of experiments, we determined the absolute
change ∆C in the impurity concentration, the degree of
impurity conversion (i.e., the degree of purification),
and the energy spent to remove a styrene molecule. The
conversion η and the energy consumption per molecule
ε (eV/mol) were calculated as

Here, ∆C = C0 – C (cm–3) is the change in the styrene
concentration per train; C0 and C (cm–3) are the initial
and current impurity concentrations in the mixture,
respectively; Wb is the electron beam energy introduced
into the gas; Wd (J/cm3) is the discharge energy intro-
duced into the gas; N is the number of pulses per train;
and e (C) is the electron charge. The total error in deter-
mining ε (including the error in determining the
absorbed energy W = Wb + Wd) was no more than
0.3 eV/mol.

EXPERIMENTAL RESULTS

It was found that the styrene concentration drops
with increasing number of nanosecond irradiating
pulses (Fig. 1). The value of ε depends on the initial sty-
rene impurity concentration. Typically, ε lies in the
range from 2 to 10 eV/mol for C0 = 100–1000 ppm. At
low impurity concentrations (from 50 to ≈300 ppm),

η ∆C/C0, ε Wb Wd+( )N /e∆C.= =
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C varies with N by a near-exponential law (Fig. 1). Typ-
ical dependences of the logarithm of the initial-to-cur-
rent concentration ratio, ln(C0/C), on the energy W
delivered to the gas are shown in Fig. 2. At low concen-
trations (curves 1, 2), the curves approach straight lines,
indicating that the concentration varies exponentially.

The slope of these straight lines may serve as an
energy coefficient β (e.g., in units of J/cm3) that relates
the purification efficiency to the energy consumption [5]:

(1)

Physically, this coefficient shows the amount of
energy that is necessary to apply to the gas for the
impurity concentration to decrease by a factor of e =
2.718 ….

It turned out that β depends on the initial impurity
concentration C0. As C0 grows, the dependence
becomes nonlinear (Fig. 3).

The final product of styrene vapor conversion is
polystyrene, which covers the gas chamber walls in the
form of thin film. A small amount of benzaldehyde, the
product of styrene oxidation, was also detected in small
amounts. Benzaldehyde forms when styrene combines
with ozone and other active oxygen species generated
by the electron beam. It was found experimentally that
the concentration Cba of benzaldehyde is much lower
than the initial styrene concentration C0. After irradia-
tion, the benzaldehyde concentration was estimated
with the parameter σ = (C0 – C)/Cba, which shows the
number of benzaldehyde molecules produced per
removed styrene molecule.

Provided that the number of irradiating pulses
(hence, the energy introduced into the gas) is the same,
this parameter was found to have a constant value. For
example, if the number of irradiating pulses is N = 8 ×
103, σ = 0.18 ± 0.02. This means that, if the initial con-
centration of the styrene is C0 = 1000 ppm, the benzal-
dehyde concentration after irradiation by N pulses will
be Cba ≈ 180 ppm; if C0 = 300 ppm, Cba ≈ 54 ppm.

We carried out experiments with a non-self-main-
tained discharge in the electrode gap. The current con-
centrations of styrene and benzaldehyde vapors were
measured as a function of the electric field strength E in
the discharge column. The parameters β and σ were
found to depend on the field strength. The experimental
dependence of β on E in the discharge column for C0 =
300 ppm is shown in Fig. 4 (curve 1). It is seen that the
energy consumption is minimal for E ≈ 500 V/cm.

Curve 2 in Fig. 4 shows σ vs. E for the number of
irradiating pulses N ≈ 5 × 103. There is an optimal field
strength at which the number of benzaldehyde mole-
cules produced decreases severalfold compared with
the case when the field is absent. If the initial styrene
concentration is C0 = 300 ppm, the parameter σ equals
0.06 after irradiation by N ≈ 5 × 103 pulses of the non-
self-maintained discharge with a field strength E =
800–1000 V/cm in the discharge column. This value is
much less than 0.19 in the absence of the discharge.

C0/C( )ln W /β.=
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Fig. 1. Styrene vapor concentration C vs. the number N of
irradiating pulses. The initial concentration C0 = (1) 75,
(2) 310, (3) 460, and (4) 520 ppm.
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Fig. 2. Dependence of ln(C0/C) on the energy W applied to
the gas for C0 = (1) 75, (2) 310, (3) 460, and (4) 520 ppm.
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One more series of experiments was concerned with
the effect of oxygen concentration on styrene vapor
removal. If oxygen is absent in the mixture, the styrene
is virtually not eliminated. An increase in the O2 con-
centration results in a drastic reduction of β, and the
related experimental curve (Fig. 5) is described well by
the relationship

(2)

where K is a numerical conversion factor.

FORMAL DESCRIPTION OF THE PROCESS

Simple expressions (1) and (2), which fit experi-
mental data for styrene vapor removal from air by
means of pulsed electron beams, allow one to suggest a
formal approach to the process. The most extensively
employed approach in this case is the formal kinetic
description of kinetic reactions involving two or more
reagents [6]. The process in this case is described by
simple equations where reagent concentrations and
running time are parameters. Our empirical equations
relate impurity concentration and energy introduced

β KC0 O2[ ] 1/2,=
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Fig. 4. Parameters (1) β and (2) σ vs. electric field strength E.
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Fig. 5. Parameter β vs. O2 concentration in the mixture.
into the gas; therefore, the description which follows
may be called the formal energy approach by analogy.

Without considering complex reactions of styrene
conversion, the parameter β may be formally termed
the characteristic energy by analogy with the formal
kinetic approach. The smaller β, the higher the effi-
ciency of the approach.

As follows from Fig. 3, β depends on the initial
impurity concentration C0. When the styrene vapor
concentration tends to zero, the energy needed to
achieve a given degree of purification tends to a definite
nonzero value,

(3)

which is called the initial characteristic energy. Based
on the curves shown in Fig. 3, one may assume that β0

falls into the range (7–10) × 10–3 J/cm3 when styrene is
irradiated by a pulsed electron beam. At low initial con-
centrations (C0 = 50–300 ppm), β0 = 7 × 10–3 J/cm3 and
remains practically unchanged.

Using the analogy of the description suggested and
the formal kinetic approach used in [6], it may be
inferred (see (2)) that one oxygen molecule is responsi-
ble for the removal of one styrene molecule. The most
plausible explanation for this fact is the participation of
atomic oxygen or ozone in the basic route of the styrene
conversion reaction.

The above experimental data suggest that, when a
pulsed electron beam acts on styrene vapor to initiate
the styrene conversion reaction, the characteristic
energy β depends on the initial styrene concentration
C0 and oxygen concentration [O2]. Generally, β may
also depend on the concentration of other reagents that
appear under the action of the beam. A detailed formal
description of the process involving several reagents is
given in [7].

In terms of the characteristic energy, the basic
parameters of impurity conversion in air (the degree of
purification and the energy needed to remove one mol-
ecule) are given by

(4)

(5)

where A is a numerical conversion factor.
If β is expressed in J/cm3; the concentrations C and

C0, in ppm; and ε, in eV/mol, the factor A roughly
equals 0.236 (eV cm3 ppm)/J.

From (5), it follows that one cannot judge the effi-
ciency of different techniques of impurity conversion in
air based on the energy consumption ε alone. Correct
comparison also includes the initial characteristic
energy β0.

The rules and parameters of the process found in our
experiments allow one to estimate the throughput V
(l/s) of a purifier, i.e., the flow rate of a gas being puri-

β( )
C 0→
lim const β0,= =

η 1 C/C0–( )≡ 1 W /β–( ),exp–=

ε Aβ ηC0( ) 1– 1 η–( ),ln–=
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fied, and its power P(W) for a given initial styrene vapor
concentration C0 and a desired degree of purification η:

(6)

For example, if it is necessary to remove styrene of
concentration C0 = 200 ppm from air flowing with a rate
of 100 l/s and attain a degree of purification of 50%
with an electron accelerator (in this case, β = β0 = 7 ×
10–3 J/cm3), the electron energy must be equal to about
500 W according to (6). With a streamer or any ionizer
other than a non-self-maintained discharge or with an
increase in C0, this value will certainly change.

Thus, as follows from our experiments on removing
styrene vapor by a pulsed electron beam, the initial
characteristic energy β0 may be used as an efficiency
parameter. This parameter defines the amount of energy
that must be applied to polluted air for the pollutant
concentration (tending to zero) to decrease by a factor
of e = 2.718 …. The parameters β and σ, along with
expressions (4)–(6), completely characterize the pro-
cess of styrene vapor removal from air with a pulsed
electron beam.

V P/W P/ β 1 η–( )ln[ ] .–≡=
TECHNICAL PHYSICS      Vol. 48      No. 12      2003
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Abstract—The physical grounds of an inertial navigation method that measures the resultant vector of specific
forces (absolute acceleration) are stated. The problem of combining this method with the conventional
method based on measuring the vector of the apparent acceleration is discussed. © 2003 MAIK “Nauka/Inter-
periodica”.
The design and operation of a device for measuring
the absolute linear acceleration of a moving object, as
well as the potentiality for using this meter in inertial
navigation systems (INSs), were described in [1]. The
measurement accuracy was predicted to be as high as
~10−4 m/s2, which meets well practical demands at
present and in the immediate future. Without question-
ing the conclusions drawn in [1], we will point to a
number of features of the new meters that should be
taken into account when viewing them as candidates
for INS elements.

As is well known [2], an INS functions according to
equations that describe the motion of a unit-mass mate-
rial point (dynamic equations) and the evolution of a
frame of reference (kinematic equations, which are
sometimes called Poisson’s equations) where the
motion of the object (point) is considered. Below, we
will refer to equations of the first group.

In the absolute (inertial) frame of reference, the
equation of motion of a point unit mass has the form

Here, overcircles above the radius vector of the position

of the mass mean absolute derivatives. Accordingly, 
is the absolute acceleration and g and f are the vectors
of specific gravitational and nongravitational (e.g.,
drag, engine thrust, etc.) forces. Thus, measuring the

absolute acceleration  is nothing but measuring the
total (resultant) specific force (g + f ). It is precisely this
way of measuring this force and the device used that are
dealt with in [1]. This device will be called a gf meter
in order to distinguish it from a standard newtonmeter
[3], or f meter, which measures the force f.

In a frame of reference rotating with an absolute
angular velocity w(t), the dynamic equations for INS

Ṙ̇ g f .+=

Ṙ̇

Ṙ̇

1063-7842/03/4812- $24.00 © 21598
perfect operation have the form [2]

(1)

where R is the radius vector of the point (objective), V
is the vector of its absolute linear velocity, g(R) is the
vector of gravitational forces, f is the vector of all the
other forces, and overcircles stand for local time deriv-
atives.

When designing a conventional INS, one must
know the gravitational field model (that is, the model of
specific force g(R)) and the way of measuring the spe-
cific force f (and, in general, the vector w(t); this issue
is disregarded here). For gf measurements, a model of
g(R) is not necessary (as was justly noted in [1]), since
the vector g(R) + f is assumed to be known (with instru-
mental accuracy). Without going into detail, we also
note that the three-component INS scheme is unstable
in both cases, although the character of instability is
different [2, 5].

Let us identify the rotating frame of reference with
a right-handed moving (ideal) Cartesian trihedron 0x =
0x1x2x3 such that the 0x3 axis is aligned with the vector
R. We assume that 0y = 0y1y2y3, a device trihedron
where all measurements are taken, is the physical
model of the trihedron 0x.

Consider the case when both inertial measurements
( f and g measurements) are taken simultaneously.
Assuming that the mutual orientation of the trihedra 0x
and 0y is described through a small angle of rotation α,
we may represent f and gf measurements as

where E is the unity matrix and ∆f1 and ∆f2 are the vec-
tors of the instrument errors.

Ṙ –w R× V, R 0( )+ R0,= =

V̇ –w V× g R( ) f , V 0( )+ + V0,= =

J1 E α̂+( )f ∆f1,+=

J2 E α̂+( ) g R( ) f+( ) ∆f2,+=
003 MAIK “Nauka/Interperiodica”
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Comparing both available measurements yields a
new one:

(2)

where ∆f = ∆f2 – ∆f1.

For small enough ∆f and α, measurement (2) can be
used as a test measurement of gravitational fields that
are poorly understood.

If a gravitational field is well studied and its model
is known, the solution of (1) may numerically yield a
vector g(R'), where R' = R – δR, δR = (α2r, –α1r, δr)T

is the vector of inaccuracies involved in R calculated by
model (1) in the projections onto the axes of the trihe-
dron 0y, and r = |R|. Comparing J3 and g(R'), we then
find

(3)

Apparently, measurement (3) can be used to correct
a dynamic group of INS malfunctions. For navigation
in the central gravitational field (the exterior field of ter-
restrial gravitation may be considered as central, since
the central component essentially prevails in the expan-
sion of the Earth’s gravitational potential), (3) takes the
form

(4)

where  is the third component of the vector ∆f, ω0 =
(µ/r3)1/2 is the Shuler frequency, and µ is the Earth’s
gravitational potential.

From (4) it is easy to see that a pair of inertial mea-
surements ( f and gf measurements) is equivalent to the
noninertial (e.g., radar, barometric, etc.) measurement
of the object’s altitude with instrumental inaccuracy

J3 J2 J1– E α̂+( )g R( ) ∆f ,+= =

J J3 g R'( )– α̂g R( ) ∂g R( )
∂R

---------------– δR ∆f .+= =

J 2ω0
2 r( )δr ∆ f̃ ,+=

f̃

∆h
∆ f̃

2ω0
2

---------.=
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For example, with |∆f2| = 10–4 m/s2 (as in [1]) and
|∆f1| = |∆f2|, we have |∆h| ≤ 70 m at the Earth’s surface.

It should be noted that the state–measurement sys-
tem produced by measurement equation (4) and equa-
tions for INS dynamic errors (the latter are obtained by
varying Eqs. (1)) is observable (at least when the object
moves with a constant velocity along parallels of lati-
tude) in the general (Kalman’s [4]) sense. This implies
the possibility of constructing asymptotically robust
correction algorithms for this group of INS malfunc-
tions [5].

Thus, the basic conclusions that can be drawn from
our analysis are as follows. (i) When the inaccuracies ∆f
and α meet obvious conditions, the use of a gf meter
(together with an f meter) seems to be promising for
probing little-studied gravitational fields; (ii) the com-
bined use of gf and f meters raises the information inde-
pendence of an INS, since INS malfunction (in particu-
lar, dynamic errors) can be reliably corrected based
solely on inertial information; (iii) the use of a precision
(for example, radar) altimeter virtually eliminates the
problem of deciding between f and gf meters as inertial
information sources (in the case of comparable accura-
cies): one may choose the one which is preferable based
on technical, economical, service, etc., parameters.
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Abstract—A holographic screen that makes it possible to display 3D images by the method of point-focused
aspects (of a scene to be displayed) or by projecting narrow line holograms is suggested and implemented. The
image thus formed reconstructs only horizontal parallax, which allows one to cut the body of information nec-
essary for 3D imaging. Projection through the screen and a way of recording the screen are considered. © 2003
MAIK “Nauka/Interperiodica”.
Earlier, a method of 3D imaging where an image is
formed with an array of point-focused aspects of a
scene to be displayed was reported [1–3]. At the first
step, a set of aspects of a scene to be displayed is
recorded. The array is produced by a scanning laser
beam into which the scene’s aspects recorded from dif-
ferent points are introduced. At the stage of projection,
the aspects are illuminated by a point-focused laser
beam. Scanning the screen, this beam generates an
array of luminous points through each of which one of
the aspects of the 3D scene is seen. The observer sees a
local 2D image whose configuration varies according
to the point of observation as in the observation of a real
3D object. Thus, the illusion that the image projected is
three-dimensional arises. It was noted that the problem
of recording and projecting a 3D image may be consid-
erably simplified if only the horizontal parallax of a
scene being displayed is reconstructed. A drawback of
this approach is that the square field of vision through
which the observer sees the image is transformed into a
narrow horizontal line, making observation difficult.
This line may be extended in the vertical direction by
introducing a special 1D diffuser screen into the pro-
jecting system. However, designing a two-component
optical scheme consisting of a very large lens and 1D
diffuser screen is a challenge.

Here, we suggest a special holographic screen that
focuses and diffuses the light in the vertical direction
simultaneously. The scheme for recording such a
screen is shown in Fig. 1. A cylindrical lens focuses
laser radiation to form a narrow vertical line in the
plane of diffuser D. Then, the diffuse light falls on light-
sensitive medium (photoplate) P. Wave front W is also
directed to the light-sensitive medium and converges at
point S behind it. Hologram H, which is recorded in the
1063-7842/03/4812- $24.00 © 21600
area where the two beams meet, has the form of an
ellipse extended in the horizontal direction. Holograms
were recorded on PFG-03M photoplates and developed
in a GP-3 holographic developer.

The holographic optical element (screen) thus
recorded is capable of “imaging” the radiation from
point S as vertical diffuse line DL (Fig. 1). When a 3D
image is projected through the screen, the luminous
points where different aspects of the scene are focused
lie along horizontal line LL (Fig. 2). The screen, as was
noted above, projects each of the points onto field of
vision FV in the form of vertical diffuse line DL.
Through each of the points of this line, observer h sees

S

H

P

W

DL

D

Fig. 1. Recording of the holographic screen: W, wave front
converging to point S; D, diffuser on which the cylindrical
lens projects vertical diffuse light line DL; and P, light-sen-
sitive material (photoplate) with recorded hologram H.
003 MAIK “Nauka/Interperiodica”
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LL

P H DL FV h

Fig. 2. Reconstruction of the holographic screen reproduc-
ing horizontal parallax. P, light-sensitive material (photo-
plate) with recorded hologram H; LL, reconstructing light
line; FV, field of vision produced by a set of reconstructed
vertical diffuse lines DL; and h, observer.

L MO PH L1

M1

M2O

H
S

Fig. 3. Recording a set of double-beam line holograms of
the 3D scene. L, laser; M1 and M2, mirrors; MO, microob-
jective lens; O, object; L1, lens; H, light-sensitive medium;
PH, pinhole; and S, split diaphragm.

(a) (b) (c)

Fig. 4. Images of the 3D scene on the holographic screen for three positions of the observer’s eye.
the image of the same aspect that is projected from a
given point of horizontal light line LL. Other aspects of
the 3D scene are seen through their corresponding ver-
tical lines DL.

Thus, the points of field of vision FV are extended
vertically. This enables the observer to see the image
projected even if the eye is considerably shifted in the
vertical direction.

Such a screen may be used to project 3D images by
projecting aspects obtained with conventional photog-
raphy or by projecting hologram-generated aspects
(since the radiation from each of the hologram points
may be considered as an aspect). In the latter case, the
screen provides large-scale images with the help of a
narrow line hologram. In experiments, we studied this
type of projection by recording line double-beam holo-
grams of a 3D scene that consisted of two objects O and
mirrors M1 and M2 (Fig. 3). Additional illumination
from the mirrors enhanced the apparent depth of the
scene. The objects, two 6-cm-high busts made of white
mat marble, were arranged at different distances from
the mirrors and recording medium H. Objects O were
illuminated by a part of the collimated beam, which
then fell on mirror M1 and reflected from it, additionally
illuminating the objects. The part of the collimated
TECHNICAL PHYSICS      Vol. 48      No. 12      2003
beam that reflects from the mirror M1 forms a reference
beam. Recording medium H (PFG-03M holographic
photoplates) was placed in the plane where the refer-
ence and object beams meet. Split diaphragm S, which
cuts a narrow horizontal strip from the incident beams,
was fixed in front of the photoplate. As a result, holo-
grams had the form of 1.5- to 2-mm-high (wide) strips
of length to 75 mm. Narrower strips had a worse
recording resolution. The photoplate was moved verti-
cally relative to the horizontal slot, so that a set of line
holograms was recorded. Up to 40 holograms were
recorded on a 9 × 12-cm photoplate, each registering
either a change in the mutual arrangement of the objects
or the appearance of a new one. The line holograms
were reconstructed with a beam in the form of a lumi-
nous line, and the reconstructed image was directed on
holographic screen H recorded as shown in Fig. 1. The
3D scene was observed in the plane of holographic
screen H, and the horizontal motion of the eye created
the effect of an exploded view of the scene. In the hor-
izontal direction, the viewing angle of the scene was
somewhat restricted both by the geometry of the
recording scheme and by the small effective size of the
hologram due to the insufficient intensity of the expos-
ing radiation.
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The screen-projected image, while recovering such
a 3D effect as an exploded view, is slightly defocused at
points out of the screen plane (Fig. 4).

Thus, our experiments demonstrated the possibility
of projecting a 3D image with a one-component screen
made using simple technology.
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