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100th ANNIVERSARY OF I.V. KURCHATOV’S BIRTH
Igor’ Vasil’evich Kurchatov: The Scientist and Doer
(January 12, 1903–February 7, 1960)
I.V. Kurchatov’s centenary is a significant date in
the history of Russian science, the right time to revere
thememory of an outstanding scientist and organizer,
one of the founding fathers of nuclear science and
industry in Russia.

Igor’ Vasil’evich Kurchatov was born in the village
of Sim, Ufa province, on January 12, 1903. His father,
V.A. Kurchatov, was a forest ranger and surveyor; his
mother, M.V. Kurchatova, née Ostroumova, was a
parish-school teacher [1]. Soon after the child’s birth,
the family moved to the Crimea, where Igor’ Kurcha-
tov went to a gymnasium and later enrolled at the
Faculty of Physics and Mathematics of Tavricheskiı̆
University. Having graduated ahead of time in 1924,
he decided to give himself to physics. After working in
a variety of research laboratories and the Azerbaijan
Polytechnic Institute in Baku for a year, he came to
the Leningrad Institute for Physics and Technology
(the Russian abbreviation of this famous institution
is LFTI) in 1925. There, at A.F. Ioffe’s famous school,
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his gift for experimentation and organization gradu-
ally came to light. Kurchatov’s early work was de-
voted to the physics of crystals—in particular, dielec-
tric and ferroelectric materials. He was soon at home
in what was then a new field and obtained a number
of important results there (such as the discovery of
the ferroelectric properties of Seignette’s salt [2]), for
which he was awarded the degree of doctor of physics
and mathematics, without presenting a dissertation,
in 1934.

However, as early as 1932, the watershed year in
nuclear physics, when the positron and neutron were
discovered, Kurchatov addressed nuclear physics,
which was to become the subject of his life’s work.
Even his early work [3–5] bears the hallmark of Kur-
chatov’s approach: an all-out attack on a scientific
problem, the drive to move to the front echelon as fast
as possible, and press the success without delay. He
took part, together with K.D. Sinel’nikov, in the work
on the first proton accelerator at the Ukrainian Insti-
tute for Physics and Technology in Kharkov (1933);
headed the organizing committee of the First All-
Union Conference on the Atomic Nucleus (1933);
studied neutron absorption by nuclei, discovering
nuclear isomerism (1935); conducted the famous
Kurchatov seminar on neutron physics (1935–1941),
while also working (initially with L.V. Mysovskii) at
the State Radium Institute (later, Radium Institute
of the USSR Academy of Sciences, abbreviated
in Russian as RIAN) (1935–1940); investigated
resonance neutron absorption by nuclei (1937); and
took part in the start of the RIAN cyclotron and the
development (jointly with A.I. Alikhanov) of the LFTI
cyclotron (before 1941, to be completed after WWII).
Finally, with the discovery of the fission process (by
O. Hahn and F. Strassman), the Kurchatov group
started an in-depth investigation of uranium. This re-
sulted in determining the number of secondary fission
neutrons; isolating uranium-235 as a fissile isotope;
and, finally, discovering the spontaneous fission of
uranium-238 (G.N. Flerov and K.A. Petrzhak, 1941),
a world-class result indeed. By 1941, the Kurchatov
group had joined the ranks of the leading laboratories
in Europe and the United States and, for all intents
and purposes, started work on chain reactions. Fully
aware of the unique prospects of this new research
area, Kurchatov became a member of the Uranium
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Committee at the Academy of Sciences (which was
headed by V.G. Khlopin, in 1940 and 1941) and
wrote to the government, arguing the need to boost
uranium research (Kurchatov, Flerov, Petrzhak, and
Yu.B. Khariton, 1940).

The outbreak of the war interrupted the Kurchatov
group’s investigations, and he was assigned the job
of degaussing combat vessels (with A.P. Aleksan-
drov and others, in 1941 and 1942), doing this in
Sevastopol, in the Caucasus, at the Caspian flotilla,
and in the town of Polyarnyi. However, in October
1942, under the State Defense Committee decree of
September 28, 1942, which initiated research into the
military use of atomic energy, Kurchatov, on Ioffe’s
initiative, returned to nuclear subjects, first as head
of a special laboratory in Kazan (1942) and afterward
as head of Laboratory no. 2 (LIPAN, later Institute
of Atomic Energy; now, Russian Research Centre
Kurchatov Institute) in Moscow. It was during his
work on the Soviet atomic project that Kurchatov’s
talents as a physicist and leader of large research
teams flourished. There, he worked for the rest of his
life, giving himself up to the development of atomic
weapons, the atomic industry, and the development of
nuclear science in his country.

Kurchatov’s work on the atomic project is sur-
rounded by legends. For more than fifty years, this
chapter of our history was shrouded in secrecy. It
was not until recently that it began to open up step
by step [6–16]. As real facts come to light, Kur-
chatov’s outstanding role in Soviet nuclear history
becomes increasingly apparent. From the end of 1942
to 1955, when the SovietUnion built its H-bomb, and
throughout the successive years to his death in 1960,
Kurchatov actually participated in, and was a scien-
tific leader of, a vast organizational and managerial
effort to coordinate a multitude of research and en-
gineering teams targeted at a uniquely complex task,
the creation of the Soviet Union’s nuclear weapons.

The Soviet nuclear project under Kurchatov falls
easily into three broad periods: the research phase
(1943 to 1945); the building of the atomic industry
and atomic weapons (1946 to August 1949); and
the progress of the atomic industry, the creation of
hydrogen weapons, and the birth of atomic power
generation and the atomic fleet in the Soviet Union
(1950 to 1957).

With the publication of new, once strictly confi-
dential, documents [6–16], we can now see the real
caliber of Kurchatov as a scientist and creative per-
sonality. At the first, research, phase, he assembled
the Ioffe school’s physicists and his own pupils and
enlisted the support of the familiar schools of the
RIAN, the Institute of Chemical Physics, and the In-
stitute of Physics of the Academy of Sciences (known
in the Soviet Union as FIAN) to work out physical
P

problems, viz., to obtain nuclear data needed for the
startup of a physical reactor and the modeling of
nuclear-blast physics, to obtain plutonium in “im-
pulse” and microgram quantities, and to develop a
process for obtaining ultrapure graphite and metallic
uranium. From early 1945, his team began to prepare
for the second, engineering and industrial, phase of
the project, and Kurchatov was not caught nodding
when a new political situation arose after the atomic
bombing of Hiroshima and Nagasaki in August 1945.

With the State Defense Committee decision of
August 20, 1945, to set up a Special Committee, a
Technical Board, and the First Main Administration,
put in charge of the implementation of the atomic
project, the second phase of the atomic project be-
gan, when Kurchatov and his research team had to
solve absolutely new problems theretofore unknown
to science. It was at that phase that they acted as
research supervisors of major engineering projects:
the startup of the first physical reactor, Ph (1946);
the design, construction, and startup of plants for
plutonium production, radiochemical extraction, and
metallurgy (Kurchatov, plants A, B, V, Chelyabinsk-
40, in 1948 and 1949); the development of a physical
reactor and an industrial heavy-water one (Alikhanov,
Laboratory no. 3, 1949; OK-180, Chelyabinsk-40,
1951); the development of a manufacturing tech-
nology of diffusion separation of uranium-235 and
uranium-238 (I.K. Kikoin, plant D-1, Sverdlovsk-65,
1949–1951); the development of industrial mass sep-
arators for the electromagnetic separation of isotopes
of uranium (L.A. Artsimovich, SU-20, Sverdlovsk-
45, 1950); and, finally, the design calculation, model-
ing, construction, and production of the first atomic
bomb (Khariton, Arzamas-16, 1946–1949). While,
at the first phase (the selection of principal work
directions and the design of the bomb), Kurchatov
and his team were able to avail themselves of data
gleaned by Soviet intelligence through its brilliant
operations in England and the United States [11], at
the second, industrial, phase, it was only thanks to
the superb engineering level of the Kurchatov team;
the talent of the body of engineers he had brought
together; the heroic dedication and commitment of
every worker at construction sites, plant floors, and
research laboratories that they could complete this
mission within the same time, three years, as the team
of Nobel prizewinners and other outstanding scien-
tists and engineers from many countries of Europe
and the United States that Roosevelt and Churchill
had brought together in the United States in 1942–
1945. The net result of the first Soviet nuclear test
was the solution of the main political task of the time,
that of the nation’s nuclear safety.

Kurchatov’s special, outstanding role follows from
the USSR Council of Ministers Decree no. 5070-
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1944ss/op, signed by Stalin (October 29, 1949), con-
cerning the award of atomic project participants [13],
in which Kurchatov’s name tops the list: “In view
of his exceptional service to the Soviet Fatherland
in the matter of solving the problem of utilization of
atomic energy and pursuant to the Council of Min-
isters Decree no. 626-258, of March 21, 1946, the
Council of Ministers of the Union of Soviet Socialist
Republics hereby DECREES: I. 1. KURCHATOV,
Igor’ Vasil’evich, academician, scientific leader of the
atomic reactor and atomic bomb project: to be nom-
inated for the title of Hero of Socialist Labor; to be
awarded a bonus of 500 000 rubles . . . “to bestow
uponAcademician I.V. Kurchatov the title of Laureate
of the Stalin Prize First Class; to build . . . and transfer
to Academician I.V. Kurchatov a town house and a
dacha . . ..”

At the end of 1949, the third period of Kurcha-
tov’s work on the atomic problem began. On one
hand, he acted as the scientific leader of the project
to perfect nuclear weapons and create hydrogen
weapons; on the other hand, he acted as a scientist
with a vision, building the foundation for the future
advance of nuclear science and engineering. The
group that made a special contribution to solv-
ing the first problem was composed of FIAN re-
searchers (I.E. Tamm, Z.S. Belenky, V.L. Ginzburg,
A.D. Sakharov, Yu.A. Romanov, and others) whose
services Kurchatov had enlisted in 1948. It was this
group that brought forth the idea of a unique design
of a nuclear–thermonuclear weapon, Sakharov Puff
(project RDS-6, 1953). In 1950, I.Ya. Pomeranchuk,
V.N. Klimov, N.N. Bogolyubov, and D.V. Shirkov
were included in this group. Then, a joint team headed
by Khariton (it included Ya.B. Zel’dovich, Yu.A. Trut-
nev, and Sakharov) independently discovered the
basic physical principle of modern thermonuclear
weapons, radiation implosion, and carried out a
successful test in 1955 [14]. This effectively solved
the strategic task of securing the Soviet Union’s
nuclear parity with the United States. A real basis
was created for stopping the atomic arms race, both
sides beginning slowly to move toward each other
and seeking new political solutions that could lead to
the discontinuance of the nuclear race and cessation
of nuclear tests, and Kurchatov was alive to the
necessity and importance of that next step.

There was more than one reason to make the
years from 1953 to 1957 a summarizing and water-
shed period for Kurchatov and his teammates: se-
ries AB and heavy-water reactors were constructed
and commercialized to service the atomic industry;
an atomic power plant—the Soviet Union’s or Eu-
rope’s first—went into operation in Obninsk (1954);
atomic-powered submarines and icebreakers began
to be built (1958, 1959); series D uranium-isotope-
separation plants began to work to capacity; and a
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
solutionwas finally found for a critical problem, that of
prospecting for, and production of, uranium ore [10].
Kurchatov ranked as the highest authority in govern-
ment circles, which gave him the opportunity to ad-
vance a number of new initiatives, first and foremost,
in the development of new research centers. Those
years saw the birth of nuclear research institutes in
Obninsk, Dubna, Dmitrovgrad, Tomsk, Krasnoyarsk,
and Snezhinsk and the rapid expansion of the scope
of the FIAN, Institute of Chemical Physics, Institute
of Physical Problems, TTL (Institute of Theoretical
and Experimental Physics), RIAN, Leningrad Nu-
clear Physics Institute, NIIYaF MGU (Institute of
Nuclear Physics at Moscow State University), and
many others, whose research efforts were not con-
fined to the nuclear area. Soviet science brought in
young talent (Moscow Engineering Physics Insti-
tute, Moscow Institute for Physics and Technology,
NIIYaF MGU, and specialized departments of many
institutions of higher learning), gained momentum,
and rose to the world level in coping not only with
applied but also with fundamental problems. Kur-
chatov became its recognized leader, who supported,
through the Academy of Sciences, the development of
science inmany directions. In 1949, it was his author-
ity that helped save quantum and relativistic physics
from ideological persecution; from the early 1950s,
the atomic industry became the breeding ground for
cybernetics, which had been noisily condemned be-
fore. From the mid-1950s, Kurchatov was seriously
preoccupied with the fate of biology in the Soviet
Union, which had been wrecked in the Lysenkoism
years, and, by way of backing it, established a radiobi-
ology department at LIPAN in 1958, which is now the
Institute of Molecular Genetics, Russian Academy of
Sciences.

As soon as the formidable tasks of the third phase
had been solved by 1956 to 1957, Kurchatov was in
the position to pose new problems, this time not only
as a scientist, but also as a prominent, foresighted
politician. He worked on these strategic tasks, which
he formulated and handled on a scale all his own, in
the closing stages of his life, despite a sharp decline in
his health. They constitute his testament. The most
important of these are the following:

(i) International cooperation of scientists and the
establishment of international control authorities in
the atomic field under the aegis of theUnited Nations.
The first steps in this directions were the First and
Second Geneva Conferences on the Peaceful Uses
of Atomic Energy (1955, 1958), Kurchatov’s talk at
Harwell during Khrushchev’s visit to England (1956),
and the establishment of an international nuclear re-
search institute at Dubna (1956). These initiatives led
to the creation of the IAEA and a number of interna-
tional committees to coordinate means of inspection
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of atomic tests and atomic weapons’ proliferation.
Kurchatov personally supervised the work of Soviet
representatives; determined the composition of dele-
gations and experts; and discussed reports, presen-
tations, and decisions. Simultaneously, he began to
engage, in nuclear research, academies of sciences in
Union republics and socialist countries.

(ii) Setting up new physical problems associated
with the harnessing of thermonuclear energy andwith
the development of acceleration engineering and of
transuranic-element physics. Direct evidence of Kur-
chatov’s initiatives along these lines is the launch
of a project for the utilization of fusion power at
LIPAN in 1951 (Golovin’s recollections [1, 17]) and
Kurchatov’s numerous talks on its behalf [18, 19];
the construction of high-power cyclotrons in Dubna
(synchrocyclotron, 1949; cyclotron U-300, 1960); his
support of Flerov’s work on transuranium-element
synthesis (Flerov’s recollections [1])—a totally new
field in nuclear physics, which is rapidly developing
today; and, finally, Kurchatov’s backing of the de-
signs for a proton synchrotron at the Joint Institute
for Nuclear Research and a high-current accelerator
(ITEP–Protvino), as well as G.I. Budker’s innovative
ideas concerning colliding-beam accelerators—these
ideas were born at LIPAN and materialized later on
in the Siberian Division of Russian Academy of Sci-
ences. Kurchatov was distinctly aware of the major
role of accelerator technology in particle physics.

(iii) Finally, his realization of the tangible envi-
ronmental threat of nuclear tests and encouragement
of early nuclear-ecology research, which was done,
in response to Kurchatov’s suggestion, by Sakharov
(1958) [20], leading to a major initiative, proposals for
the signing of the Limited Test Ban Treaty (1963),
and being the first step in the shaping of Sakharov’s
personality as an original researcher-cum-politician.

Therefore, beginning in the mid-1950s, Kur-
chatov started to create a base for the develop-
ment of Soviet science in new directions, which
opened right after WWII and which were associ-
ated with revolutions in quantum physics, nuclear
physics, and biophysics. Regrettably, these new
tasks for Soviet science, initiating its shift of fo-
cus from tactical, immediate questions to strategic
problems, which would radically change the role
of science in society in the new era and which
Kurchatov saw very clearly, were still far from a
solution in those years. They were handed down,
as Kurchatov’s testimony, by his teammates and
scientific school to the next generations of Soviet
scientists and their pupils. He himself had only
just had time to begin their realization. In 1956,
Kurchatov suffered his first stroke, recovered, and
again plunged into work not sparing himself. But
his health could no longer withstand permanent
P

overloads, and Kurchatov passed away on February 7,
1960.

His services to the nation were highly prized: he
had been three times Hero of Socialist Labor, winner
of a multitude of state prizes, holder of numerous
awards, elected an academician (1943) and member
of the Presidium of the Academy of Sciences (1946),
and a deputy of the Supreme Soviet. As an outstand-
ing statesman, he was buried near the Kremlin wall—
the ultimate honor accorded to heroes of his time.

His life’s work is alive and developing in Russia.
Russian nuclear science and the atomic industry, cre-
ated under his stewardship, is continuing to serve his
Fatherland.
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Abstract—The decay K− → µ−νπ0 has been studied using in-flight decays detected with the ISTRA+
setup operating in the 25-GeV negative secondary beam of the U-70 PS. About 112K events
were used for the analysis. The λ+ and λ0 slope parameters of the decay form factors f+(t)
and f0(t) have been measured: λ+ = 0.0321± 0.004(stat.)± 0.002(syst.), λ0 = 0.0209± 0.004(stat.)±
0.002(syst.); the correlation dλ0/dλ+ = −0.46. The limits on the possible tensor and scalar couplings
have been derived: fT /f+(0) = −0.021± 0.028(stat.)± 0.014(theor.), fS/f+(0) = 0.004± 0.005(stat.)±
0.005(theor.). c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The decay K → µνπ0(Kµ3) is known to be a key
one in hunting for phenomena beyond the Standard
Model (SM). In particular, significant efforts have
been invested into T -violation searches, by the mea-
surements of the muon transverse polarization σT . In
our analysis, based on∼112K events of the decay, we
present a new search for S and T interactions by fit-
ting theKµ3 Dalitz plot distribution, similar to that as
was done for theKe3 decay [1]. Another subject of our
study is the measurement of the V −A f+(t), f0(t)
form-factor slopes: λ+, λ0.

2. EXPERIMENTAL SETUP

The experiment is performed at the IHEP 70-GeV
proton synchrotron U-70. The experimental setup
ISTRA+ has been described in some detail in our
paper on Ke3 decay [1]. The setup is located in the
4-A negative unseparated secondary beam. The beam
momentum is ∼25 GeV with ∆p/p ∼ 2%. The ad-
mixture of K− in the beam is ∼3%. The beam inten-
sity is∼3× 106 per 1.9 s U-70 spill.

∗This article was submitted by the authors in English.
1)Institute for High Energy Physics, Protvino,Moscow oblast,
142284 Russia.

2)Institute for Nuclear Research, Russian Academy of
Sciences, pr. Shestidesyatiletiya Oktyabrya 7a, Moscow,
117312 Russia.
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3. EVENT SELECTION

During a 3-week physics run in March–April
2001, when the muon identification was in full op-
eration, 363M events were logged on tapes. This
information is supported by about 100M MC events
generated with GEANT 3 [2]. Some information
on the reconstruction procedure is presented in [1];
here, we touch only points relevant for theKµ3-event
selection.
The muon identification is based on the informa-

tion from the SP1, a 576-cell lead-glass calorime-
ter, and HC, a scintillator-iron sampling hadron
calorimeter, subdivided into seven longitudinal sec-
tions 7× 7 cells each [3]. The calorimeters are lo-
cated at the very end of the setup, after the main
magnet (M2) and the last elements of the tracking
system: drift tubes (DT ) and the matrix scintillation
hodoscope (MH). The first requirement is that the
energy of theSP1 cluster, associated with the charged
track, is less than∼2.5MIPs; theHC energy associ-
ated with the track should also be less than 2.5MIPs.
The last selection requires that more than 10% of
the HC associated energy be deposited in last two
layers (out of seven) of the HC. The efficiency of the
algorithm to muons is tested on K → µν events and
is found to be ∼70%. The π → µ misidentification
is measured on K− → π−π0 decay and is ∼3%.
After the muon identification, the selection of the
events with two extra showers results in the Mγγ

spectrum shown in Fig. 1. The π0 peak has a mass
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. The γγ mass spectrum for the events with the
identified muon and two extra showers. Arrows indicate
the cut value.

of Mπ0 = 134.8 MeV and a resolution of 8.6 MeV.
The missing mass squared (PK − Pµ − Pπ0)2, where
P are the corresponding 4-momenta, is presented in
Fig. 2. The cut is ±0.01 GeV2. The further selection
is done by the requirement that the event pass the 2C
K → µνπ0 fit. The missing energy EK − Eµ − Eπ0

after this selection is shown in Fig. 3. The peak
at low Emiss corresponds to the remaining K− →
π−π0 background. The corresponding cut is Emiss >
1.4GeV. The surviving background is estimated from
MC to be less than 4%. The detailed data reduction
information is shown in Table 1.

4. ANALYSIS

The event selection described in the previous sec-
tion results in selected 112K events in the 2001 data.
P

The distribution of the events over the Dalitz plot is
shown in Fig. 4. The variables y = 2Eµ/MK and z =
2Eπ0/MK , where Eµ and Eπ0 are the energies of the

muon and π0 in the kaon c.m.s., are used. The most
general Lorentz-invariant form of the matrix element
for the decayK− → µ−νπ0 is [4]

M =
GFVus

2
ū(pν)(1 + γ5) (1)

×
[
2mKfS− [(PK +Pπ)αf++(PK−Pπ)αf−]γα

+ i
2fT
mK

σαβP
α
KP β

π

]
v(pµ).

It consists of scalar, vector, and tensor terms; fS, fT ,
f± are functions of t = (PK − Pπ)2. In the SM, the
W -boson exchange leads to the pure vector term.
The “induced” scalar and/or tensor terms due to
EW radiative corrections are negligibly small; i.e., the
nonzero scalar/tensor form factors indicate physics
beyond the SM.

The term in the vector part proportional to f− is
reduced (using the Dirac equation) to a scalar form
factor. In the same way, the tensor term is reduced
to a mixture of scalar and vector form factors. The
redefined f+ (V ) and fS (S), and the corresponding
Dalitz plot density in the kaon rest frame (ρ(Eπ, Eµ))
are [5]
ρ(Eπ, Eµ) ∼ A|V |2 +BRe(V ∗S) + C|S|2; (2)

V = f+ + (mµ/mK)fT ,

S = fS + (mµ/2mK)f− +

(
1 +

m2
µ

2m2
K

− 2Eµ
mK

− Eπ
mK

)
fT ,

A = mK(2EµEν −mK∆Eπ)−m2
µ

(
Eν −

1
4
∆Eπ

)
, (3)

B = mµmK(2Eν −∆Eπ),

C = m2
K∆Eπ, ∆Eπ = Emax

π − Eπ, Emax
π =

m2
K −m2

µ +m2
π

2mK
.

Following [6], a scalar form factor f0 is introduced,

f0(t) = f+(t) +
t

m2
K −m2

π

f−(t),

and a linear dependence of f+ and f0 on t is assumed:
f+(t) = f+(0)(1 + λ+t/m
2
π) and f0(t) = f+(0)(1 +

λ0t/m
2
π). Then,

f− = f+(0)(λ0 − λ+)
m2
K −m2

π

m2
π

.
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the data; the histogram is MC.

The procedure for the experimental extraction of
the parameters λ+, λ0, fS, and fT starts from the
subtraction of the MC estimated background from
the Dalitz plot of Fig. 4. The background normal-
ization was determined by the ratio of the real and
generated K− → π−π0 events. Then the Dalitz plot
was subdivided into 20× 20 cells. The background-
subtracted distribution of the numbers of events in the
cells (i, j) over the Dalitz plot, for example, in the case
of simultaneous extraction of λ+, λ0, and fS/f+(0),
was fitted with the function

ρ(i, j) (4)
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Fig. 3. The missing energy for the µπ0 events. The points
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predicted K → π−π0 background. The arrow indicates
the cut value.
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∼
∑

ki; k1+k2+k3=0,1,2

Wk1k2k3(i, j)λ
k1
+ λk20 (fS/f+(0))k3 .

Here, Wk1k2k3 are MC-generated functions, which
are built up as follows: the MC events are gener-
ated with constant density over the Dalitz plot and
reconstructed with the same program as for the real
events. Each event carries the weight w determined
by the corresponding term in (2), calculated using
the MC-generated (“true”) values for y and z. The
radiative corrections according to [7] were taken into
account. Then Wk1k2k3 is constructed by summing
up the weights of the events in the corresponding
Dalitz plot cell. This procedure allows one to avoid
the systematic errors due to the “migration” of events
over the Dalitz plot because of the finite experimental
resolution.

5. RESULTS

The results of the fit are summarized in Table 2.
The first line corresponds to the pure V −A SM fit.
The first column is an independent fit of our Kµ3

data. The λ+–λ0 correlation parameter is
dλ0

dλ+
=

−0.2. The λ+ value λ
µ
+ = 0.0321 ± 0.004 is in good

agreement with that extracted from the analysis of
ourKe3 data [1]: λe+ = 0.0293 ± 0.0015; i.e., our data
do not contradict the µ–e universality. In the second
column, the results of the joined fit of our Ke3 and
Kµ3 data are presented (this is practically equiva-
lent to fixing the λ+ to its Ke3 value). This fit, of
course, assumes the µ–e universality. The λ0 value
λ0 = 0.0209 ± 0.0042 is in good agreement with the
calculations in the framework of the chiral pertur-
bation theory (ChPT) [6]: λth

0 = 0.017 ± 0.004. All
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Fig. 4. Dalitz plot (y = 2Eµ/MK , z = 2Eπ0/MK) for
the selectedK → µνπ0 events after the 2C fit.
3



108 AJINENKO et al.
Table 1. Event reduction statistics

Run April 2001

Nev on tapes 363 002 105

Beam track reconstructed 268 564 958 = 74%

One secondary track found 134 227 095 = 37%

Written to DST 107 215 783 = 30%

µ− identified and π0 identified 218 813

|M2
miss| < 0.01GeV2 195 799

K → µνπ0 accepted 166 495

Emiss > 1.4GeV 112.157

the errors presented are from the MINOS procedure
of the MINUIT program [8] and are larger than the
Gaussian ones. At present, we estimate an additional
systematic error in λ+ and λ0 to be ±0.002. The
estimate is made by varying cuts, cell size during the
fit of the Dalitz plots, etc.
In the second and in the third lines, the scalar and

the tensor terms are added into the fit. As is seen from
the second line of (2), the fS term is 100% anticor-
related with the V −A contribution (mµ/2mK)f−;
i.e., an independent estimate of this term is necessary.
By definition, f− = f+(0)(λ0 − λ+)(m2

K −m2
π)/m2

π .
The λ+ is, in fact, defined by the Ke3 data, and the
λ0 is calculated by ChPT: λth

0 = 0.017 ± 0.004. In
our fS fit, we fix λ0 to this, theoretical, value. The
error (±0.004) in the theoretical prediction induces an
additional error in fS equal to±0.005.
A possible example of theories that give nonzero

fS are the 2HDM [9] and the Weinberg 3HDM
model [10]. In these theories, the fS comes from the
diagram with the charged Higgs boson exchange
H−. The calculation of the contributions gives [11]

f2HDM
S /f+(0) =

mµ

2mK

m2
K

m2
H

tan2 β, (5)

f3HDM
S /f+(0) =

mµ

2mK

m2
K

m2
H1

Re(α∗
1γ1). (6)

Here, mH is the charged Higgs boson mass (mass
of the lightest H± in case of 3HDM); tan β = v2/v1

is the ratio of the vacuum expectation values for two
Higgs doublets; α and γ are complex couplings of the
3HDM Higgs boson to d quarks and leptons. From
our limit for fS ,

tanβ
mH

= 0.39± 0.2(stat.)± 0.2(theor.)GeV−1;

Re(α∗
1γ1)

m2
K

m2
H1
PH
Table 2. Results of the fit

µ−νπ0 µ−νπ0 + e−νπ0

λ+ 0.0321+0.0040
−0.0040 0.0296+0.0014

−0.0014

λ0 0.0197+0.0046
−0.0047 0.0209+0.0042

−0.0042

λ+ 0.0321+0.0040
−0.0040 0.0297+0.0014

−0.0014

λ0 0.017 0.017

fS/f+(0) 0.0034+0.0058
−0.0058 0.0039+0.0052

−0.0052

λ+ 0.0338+0.0037
−0.0037 0.0299+0.0014

−0.0014

λ0 0.017 0.017

fT /f+(0) −0.0240+0.0330
−0.0326 −0.0210+0.0278

−0.0274

χ2/ndf 1.5 1.5

Nbins 275

= 0.036 ± 0.047(stat.)± 0.047(theor.).

Our 2HDM limit is comparable with that from LEP
searches for the decay b → τντ [12]: 90% C.L. limit
is tan(β)/mH < 0.4–1 GeV−1 (depending on the
collaboration).
The results of the fit with the tensor term are

presented in the third line. The tensor term is also
correlated with the λ0, dfT /dλ0 = −3.5. That is why
we decided to apply the same approach for the tensor
term as for the scalar one; i.e., λ0 is fixed to its
theoretical value, and the induced error in fT , due
to the theoretical error in λ0, is calculated. The error
equals ±0.02 for the single Kµ3 fit and ±0.014 for
the combined one. The tensor coupling fT appears
naturally in the leptoquark models, as a result of
the Fierz transformation [11]. Unfortunately, we have
not found complete theoretical consideration for this
contribution.

6. SUMMARY AND CONCLUSIONS

The K−
µ3 decay has been studied using in-flight

decays of 25-GeV K−, detected by the ISTRA+
magnetic spectrometer. Due to the high statistics,
adequate resolution of the detector, and good sensi-
tivity over all the Dalitz plot space, the measurement
errors are significantly reduced as compared with the
previous measurements. The λµ+ parameter of the
vector form factor f+(t) is measured to be

λµ+ = 0.0321 ± 0.004(stat.)± 0.002(syst.)

and is in agreement with that obtained from our K−
e3

data:

λe+ = 0.0293 ± 0.0015(stat.)± 0.002(syst.).
YSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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The combined fit of both sets of data assuming the
µ–e universality gives

λ+ = 0.0296 ± 0.0014(stat.)± 0.002(syst.).

The λ0 parameter of the scalar form factor f0(t) is
measured to be

λ0 = 0.0209 ± 0.004(stat.)± 0.002(syst.).

It is, at present, the best measurement of this param-
eter. It is in good agreement with the ChPT prediction
as well as with a recent λ0 measurement from the
Γ(Kµ3)/Γ(Ke3) ratio [13].
The limits on the possible scalar and tensor cou-

plings are derived:

fS/f+(0) = 0.004 ± 0.005(stat.)± 0.005(theor.),
fT /f+(0) = −0.021 ± 0.028(stat.)± 0.014(theor.).

The second (theoretical) error comes from the uncer-
tainty in the ChPT prediction for λ0. Again, these are
the current best estimates for these parameters.
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Abstract—The first results obtained in 1998 by the Crystal Ball collaboration from a measurement of the
total and differential cross sections for the reaction π−p→ ηn are presented. These new experimental re-
sults for the total cross sections are compared with the predictions of theK-matrix model for pion–nucleon
scattering. The angular distribution at momenta near the reaction threshold (685 MeV/c) is determined
by the S-wave contribution. The P-wave contribution begins to manifest itself from a momentum of
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mained scanty and contradictory, especially near
the reaction threshold (685 MeV/c). There have
been no publications devoted to this subject since
1975. At the same time, it would be of paramount
importance to obtain accurate experimental data in
the threshold region for testing theoretical models
of η-meson production. Such data would also be
useful for evaluating the ηN scattering length and
for obtaining deeper insight into the properties of the
S11(1535) resonance, which decays through the ηn
channel with a probability of 35–55% (according to
the last Review of Particle Properties).

In order to measure π−p→ ηn cross sections, it is
necessary to detect either a neutron or photons from
the η-meson decay modes η → 2γ or η → 3π0 → 6γ,
and the Crystal Ball [1], which is now on the C6 pion-
beam line at the Brookhaven National Laboratory
(BNL), where the measurements described in this
article were performed, is an ideal detector for these
purposes. The layout of the Crystal Ball detector is
shown in Fig. 1. The detector consists of 672 sep-
arate NaI(Tl) crystals shaped as a truncated trian-
gular pyramid, which cover 93% of 4π steradians,
each crystal being of 16 radiation lengths. A liquid-
hydrogen target was arranged at the center of the
Crystal Ball detector. The target was surrounded by a
veto barrel made from four scintillation counters and
2003 MAIK “Nauka/Interperiodica”
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Fig. 2. Invariant-mass spectrum of two photons (N is the number of events). The right panel displays the η-meson region on
an enlarged scale.
intended for rejecting events that involve the emission
of charged particles.

The yield of the reaction π−p→ ηn was measured
in the threshold region at incident pion momenta of
up to 720 MeV/c. The absolute error in the pion
momentum was ±0.4%, while the momentum spread
∆P/P (FWHM) in the beam was 2.3%. The invari-
ant mass of the η meson (for the case where two
photons from its decay were detected in the Crystal
Ball detector) was calculated as

M inv
2γ =

√
2Eγ1Eγ2(1 − cos θγ1γ2),
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
where Eγ1(Eγ2) is the energy of the first (second)
photon and θγ1γ2 is the angle between the momenta
of the first and the second photon. A typical invariant
mass distribution for 2γ events is shown in Fig. 2. The
background under the η peak (right panel in Fig. 2)
was less than 6% and was subtracted in calculating
the yield. The background from an empty target was
about 2%.

The total cross section σtot was evaluated by the
formula

σtot =
Nη

Nπ−NpA · BR
,

3
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whereNπ− = Ntot(1−ne)(1−nµ);Nη is the number
of events under the peak of M inv

2γ (after the back-
ground subtraction); Nπ− is the number of pions
incident on the target per cycle; Np is number of
protons in the target (1/cm2); A is the acceptance of
the Crystal Ball for the detection of 2γ from the decay
η → 2γ (the quantity A also includes the efficiency
of the analysis)—at a momentum of 720 MeV/c, the
acceptance is approximately equal to 0.45; Ntot is the
beam monitor (the total number of particles, includ-
ing e, µ, and π, detected over a cycle); and ne and nµ
are the fractions of the electron and muon admixtures,
respectively.

In determining Nπ− and Np, we used information
from proportional chambers in order to reconstruct
the tracks of incident particles. The target had the
shape of a cylinder of diameter 10 cm and length
10 cm. The cylinder axis was aligned with the incident
beam. In data processing, we applied the cuts |x| <
3 cm and |y| < 2 cm at the entrance of the target,
whereby we selected only those tracks that traversed
the central part of the target.
P

Photon conversion in the scintillator of the veto
barrel and in the vacuum pipe was automatically
taken into account in calculating the acceptanceA by
the Monte Carlo method. The uncertainty in the veto-
barrel energy threshold could change the acceptance
by not more than 1%.

The systematic error (standard deviation) in the
total cross sections was 4.5%. The most important
contributions to this error are the following: (i) the
uncertainty in the electron and muon admixture in the
beam (4%); (ii) errors in the Monte Carlo calculation
of the acceptance (1%); (iii) errors in determining the
number of protons in the target (1%); (iv) the inac-
curacy of the procedure for subtracting the physical
background under the peak of the η-meson invariant
mass M inv

2γ (1%); and (v) the uncertainty in the veto-
barrel energy threshold (1%), this uncertainty affect-
ing the calculation of the acceptance A.

The total cross sections obtained in this study
are in good agreement with data from previous ex-
periments (see [2–8]), but the statistical accuracy
achieved here is higher than that of all published
experimental data (see Fig. 3).
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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As can be seen from Fig. 3, our results do not
completely agree with the predictions of theK-matrix
model of pion–nucleon scattering [9] (this model
takes into account the S- and P-wave contributions
to η-meson production).

The differential cross sections for the process
π−p→ ηn that were measured at the incident-pion
momenta of 705, 720, and 750 MeV/c are shown
in Fig. 4. At 720 MeV/c, the statistical accuracy is
higher than at 705 and 750 MeV/c. This is because,
at 720 MeV/c, we summed the results of 48 cycles of
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
measurements (in all, 6 × 105 η mesons produced on
the hydrogen target were detected). The errors shown
in the figure for the momentum of 720 MeV/c are
determined predominantly by the statistical errors of
the Monte Carlo evaluation of the acceptance A.

The distributions were approximated by a second-
order Legendre polynomial. One can see that, at the
momentum of 705 MeV/c, the main contribution to
the differential cross sections comes from the S-wave
amplitude. At the same time, higher waves must be
taken into account in order to describe the differential
cross sections at 720 and 750 MeV/c.

It can be seen from Fig. 3 that it is necessary to
investigate the reaction π−p→ ηn at momenta above
750 MeV/c. It is planned to perform such measure-
ments with a beam of momentum 2 GeV/c.
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Abstract—The A dependence of charged-particle spectra in π+, K+, and p interactions with Al and
Au targets at 250 GeV/c are presented and compared to predictions of the Quark–Gluon String
Model (QGSM). It is shown that the A dependence of invariant inclusive charged-particle spectra on
the Feynman variable x is very weak between Al and Au targets. The QGSM shows a larger difference
between fast-particle spectra for both Al and Au targets and different beam particles. The QGSM
prediction for the leading-particle spectrum over an energy range from 250 GeV to 10 TeV in pAu(Pb)
reactions is in a reasonable agreement with the results of NA22 data and a cosmic-ray experiment.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Hadron–nucleus interactions show a particular
sensitivity to the space-time structure of the mul-
tiparticle production mechanism. With these type
of reactions, the hadron-formation process and the
fragmentation of relatively-low-energy quark–gluon
jets or strings can be studied in nuclear matter.
Secondary-particle production shows a different
dependence on the atomic number A for different
inclusive reactions and different kinematical regions.

There is no clear understanding of a possible dif-
ference in the A dependence of leading-particle spec-
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tra for meson–nucleus and proton–nucleus interac-
tions. However, if it exists, this effect is very important
for the calculation of cosmic-ray cascade processes
in the atmosphere and for the interpretation of the
results of cosmic-ray experiments.
A detailed model description of hadron–nucleus

interactions is important in understanding the dy-
namics of the interaction and in making quantitave
predictions for the reactions of interest. Often, exist-
ing models are compared with experimental multi-
plicity or rapidity distributions, which are not sensi-
tive enough in the beam-fragmentation region.
In this paper, the A dependence of fast secondary-

particle yields was studied for π+, K+, and p beams
with a 250-GeV/c momentum on Al and Au targets.
Both the inclusive and leading-particle spectra were
analyzed. The 4π geometry and the complete event
information of the NA22 experiment grant the possi-
bility of investigating the full pt region and the partic-
ular role that coherent inelastic interactions play for
the A dependence of fast-particle spectra [1].
Furthermore, a comparison of the experimental

data with the Quark–Gluon String Model (QGSM)
was performed for an incident-particle momentum of
250 GeV/c, as well as for cosmic-ray experiments at
an energy of 10 TeV.
The paper is organized as follows. In Section 2

we present the experiment and the criteria used for
2003 MAIK “Nauka/Interperiodica”
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data selection. The QGSM is described in Section 3.
The inclusive-particle and leading-particle analyses
are presented in Sections 4 and 5, respectively. The
data on associated multiplicity are given in Section 6,
and model extrapolations to cosmic-ray experiments,
in Section 7. The conclusions of the analysis are
summarized in Section 8.

2. EXPERIMENTAL DATA
The experimental data presented here were ob-

tained by the NA22 collaboration using the European
Hybrid Spectrometer (EHS), which was exposed to
a beam of π+, K+, and p with a momentum of
250 GeV/c. An Al and Au foil of thickness 0.5% and
of an interaction length were inserted in the Rapid
Cycling Bubble Chamber (RCBC), filled with H2 and
used as an active vertex and track detector. The foils
were placed at a distance of 15.5 cm from the entrance
window. The main advantages of such a vertex de-
tector are the possibility of registering slow particles
and of identifying protons of laboratory momentum
plab < 1.2 GeV/c, as well as electrons with plab <
200 MeV/c. The pion mass was assigned to all other
particles. The angular acceptance for all inelastic in-
teractions in foils was equal to 4π. The experimental
conditions were identical for the two targets.
The experimental setup, theminimum bias trigger,

and the selection criteria for nuclear interactions are
described in more detail in [2, 3]. The aim of the
selection criteria was to isolate a set of well-measured
and reconstructed inelastic interactions in the foils,
eliminating both quasi-elastic and coherent interac-
tions.
The average momentum resolution ∆p/p varies

from a maximum of 2.5% at 30 GeV/c to 1.5% for
momenta larger than 100 GeV/c.
Multiplicity-dependent weights are introduced to

correct for the loss of events that is caused by the se-
lection criteria. Furthermore, each event is weighted
to correct for the losses induced by the interaction
trigger [2]. This weight strongly depends on the spa-
tial characteristics of the event. It is determined for
each reconstructed event from the overall azimuthal
symmetry around the beam axis. An x-dependent
systematic error on the trigger weight is added in
quadrature to the statistical error. Results of the mul-
tiplicity distribution for the selected event sample
were presented in [3, 4], and those on rapidity and
transverse-momentum distributions in [5]. General
features of coherent inelastic meson–nucleus inter-
actions obtained in this experiment are presented
in [1], those of target-diffractive interactions, in [6].
The present analysis is based on the following

samples of events passing the selection criteria:

π+ + Al→ C± +X (3301), (1)
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Fig. 1. The invariant inclusive spectra f(x) (7) for re-
actions (1)–(6) in comparison with QGSM predictions:
π+Al, π+Au,K+Al,K+Au, pAl, and pAu.

π+ + Au→ C± +X (2694), (2)

K+ + Al→ C± +X (1198), (3)

K+ + Au→ C± +X (966), (4)

p+ Al→ C± +X (181), (5)

p+ Au→ C± +X (178). (6)

Hadron–proton interactions taking place in the
hydrogen of the bubble chamber [2] are used for com-
parison.

3. THE QGSM MODEL

The QGSM, used for comparison with the experi-
mental data in this paper, is the Monte Carlo version
of the multiparticle production model, where hadrons
are produced in the fragmentation of quark–gluon
strings, or color “tubes,” created as a result of a
hadron–hadron collision [7, 8]. This model qualita-
tively describes both the inclusive charged-particle
spectra and the global correlation phenomena ob-
served [9–11] in the hadron–proton interactions at
250 GeV/cmeasured in the same experiment.
TheQGSMMonte Carlo version for hadron–nuc-

leus interactions was developed in [12]. In this model,
two quark–gluon strings are formed between the va-
lence quarks of the projectile particle and the quarks
of intranuclear nucleons. A part of the forward-
moving (i.e., in the direction of the projectile hadron)
string is excited and can fragment into hadrons. This
3
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Fig. 2. Comparison of the invariant inclusive spectra f(x) (7) for interactions of different types of projectiles on (a) Al and
(b) Au targets.
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Fig. 3. Comparison of the invariant inclusive spectra f(x) (7) for (a) π+ and (b)K+ interactions with different targets.
fragmentation can take place inside, as well as outside

the nucleus. The other part of the string is unexcited

and forms a “leading front” of the string which can

interact inside the nucleus. The same processes take
P

place in the second string, which moves in the target
direction.
The model includes all of the main diagrams of

hadron–nucleon interactions [9], the possibility of
meson–meson interactions, interactions between
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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Fig. 4. The function α(x) as calculated from a comparison of F (x) spectra according to (8) for Au with Al targets: (a) NA22
data and (b) QGSM.
strings, and resonance production [12]. As will be
seen below, the introduction of diagrams for diffractive
interactions reproduces the particle spectra at high
x. Coherent hadron interaction was not included in
the model. A comparison with the experimental data
was performed in [12] on proton–nucleus interactions
at projectile momenta of 4.2 and 200 GeV/c. In the
present paper, the model predictions are compared
with the meson–nucleus and proton–nucleus data
at 250 GeV/c, but the model predictions are also
extrapolated to much higher energies.
The choice of the QGSM parameters for this ex-

periment was made in [13], where the multiplicity
and charged-particle rapidity distributions from pre-
vious NA22 publications were compared with the
model. Two possible four-dimensional coordinates of
hadron formation (when the scattered hadron regains
the ability to interact) are the “constituent” hadron
formation time, corresponding to the point of string
breaking, and the “yo-yo” hadron formation time,
which corresponds to the intersection point of the
quark trajectories. Of these two, the “yo-yo” hadron
formation time was favored by our data.
The so-called “hot-cascade” process of particles
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
produced in string fragmentation was switched on in
the model. The coefficient of string tension was set to
0.9 GeV/fm. Using these parameters, a compromise
in the agreement with both our Al and Au results
was reached, but the particle multiplication in the
cascade process was slightly underestimated for Au
and slightly overestimated for Al.

4. INVARIANT INCLUSIVE FAST-PARTICLE
SPECTRA

The normalized invariant inclusive spectra,

f(x) =
1
Nev

2E∗
√
s

dN

dx
, (7)

of charged particles produced in reactions (1)–(6)
are presented in Fig. 1 for x > 0, together with the
corresponding QGSM predictions. The variable x is
calculated in the hadron–nucleon c.m.s. of each re-
action; dN is the total number of charged particles in
bin dx; Nev is the total number of events in the given
reaction; E∗ is the energy of the particle, and

√
s is

the total energy, both in the hadron–nucleon c.m.s. A
reasonable agreement is observed between the exper-
imental data and the QGSM predictions in the region
3
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Fig. 5. Leading charged-particle spectra for reactions
(1)–(6) in comparison with QGSM predictions: π+Al,
π+Au,K+Al,K+Au, pAl, and pAu.

x = 0–0.8. It was noted that the QGSM underes-
timates the number of fast particles at x > 0.8. As
the contribution of such fast particles in the inclusive
cross section is small (less than 5%), the average
value of 〈x〉 is in rather good agreement with the
experiment.
In Fig. 2a the f(x) spectra for the three types of

projectile are compared on the Al target, in Fig. 2b,
those on the Au target. No significant differences are
observed between the proton, pion, and kaon-induced
inclusive spectra. This result is in agreement with
those of previous experiments [14].
To demonstrate the effect of the size of the nuclear

target on the spectrum, the experimental data on π+p
reactions, obtained in the same experiment [2], are
compared in Fig. 3a to the spectra for pion–nucleus

Table 1. Inelastic cross sections (in mb) for
hadron–nucleus interactions interpolated to
250 GeV/c [15]

Beam particle Al Au α

π+ 327 ± 10 1420± 50 0.74 ± 0.03

K+ 291 ± 10 1360± 50 0.76 ± 0.03

p 415 ± 10 1702± 50 0.72 ± 0.01
PH
interactions. The corresponding spectra are shown for
the kaon projectile in Fig. 3b. A clear difference in the
spectra for proton and nuclear targets can be seen at
x > 0.6 (the deficiency of very fast particles) and at
x < 0.3 (an excess due to intranuclear cascading).
For a quantitative analysis of the A dependence,

the following parametrization of the invariant inclu-
sive spectra was used:

FhA(x) = Aα(x)Fhp(x), (8)

where F (x) = σinf(x), σin being the inelastic cross
section of the hadron–nucleus interaction.
First, the α(x) functions were calculated from a

comparison of the F (x) spectra in h+Al and h+Au
collisions using the inelastic hA cross sections pre-
sented in Table 1 [15]. The results are shown in
Fig. 4a for proton, pion, and kaon projectiles, sep-
arately. Figure 4a suggests that α(x) is nearly con-
stant for mesons and perhaps slowly decreasing with
increasing x for protons, but the statistical errors
are too large to make any conclusion. The corre-
sponding QGSM predictions (Fig. 4b) show a more
significant A dependence. The parameters of a linear
parametrization of α(x) are presented in the Table 2.
The parameter a defining the A dependence of the
x distribution shape between Al and Au seems to
be higher (in absolute value) in the QGSM than in
the data. The parameter b is well reproduced by the
QGSM simulation.
Second, the α(x) functions were calculated by a fit

of the corresponding hp, hAl, and hAu points by (8),
for each x bin. The fits are often bad, but the trend
observed in Fig. 4a (the difference in the parameter
α(x) for proton and meson projectiles) is supported
with higher statistical significance. Better agreement
is observed with the QGSM than above (see Table 2).
It was verified that α(x) does not change when

coherent events are included.

5. LEADING-PARTICLE SPECTRA

The physical definition of a leading particle is a fast
particle that has survived the collision with the same
quantum numbers as the projectile. The spectrum of
the leading particle reflects the number of interactions
of the projectile with the nucleons inside the nucleus,
but should not be sensitive to multiplication by in-
tranuclear secondary-particle interactions.
For a pion projectile this definition loses its mean-

ing because of two reasons: (1) many charged pions
produced in the interaction have the same quantum
numbers as the projectile pion and (2) the fast pion
can carry an electric charge opposite to that of the
projectile. Furthermore, the electric charge is not
determined in cosmic-ray experiments. So, for all
YSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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Table 2. Parameters of the linear fit α(x) = ax+ b of experimental data and QGSM predictions

NA22 QGSM

a b a b

pAu/pAl −0.34 ± 0.22 0.85 ± 0.04 −0.71± 0.17 0.86 ± 0.03

π+Au/π+Al −0.22 ± 0.06 0.78 ± 0.01 −0.43± 0.03 0.83 ± 0.04

K+Au/K+Al −0.19 ± 0.10 0.82 ± 0.02 −0.54± 0.08 0.85 ± 0.03

pp/Al/Au −0.44 ± 0.03 0.98 ± 0.02 −0.43± 0.02 0.88 ± 0.02

π+p/Al,Au −0.33 ± 0.01 0.96 ± 0.01 −0.23± 0.01 0.86 ± 0.01

K+p/Al/Au −0.31 ± 0.01 0.99 ± 0.01 −0.27± 0.01 0.89 ± 0.01
cases, the leading particle is simply defined here as the
charged (positive or negative) particle with the largest
momentum in the laboratory system.

The distribution in the fraction ŨL of incident
energy carried away by the charged leading particle in
the laboratory system is shown in Fig. 5 for reactions
(1)–(6), together with the corresponding QGSM
predictions. An agreement between the experimental
and the predicted leading-particle spectra is observed
for hadron–Al reactions, but for hadron–Au reac-
tions the QGSM slightly underestimates the number
of leading particles in the range ŨL = 0.6–0.9.

The average values of ŨL are presented in Table 3.
The experimental values of 〈ŨL〉 are slightly larger for
Al than for Au. The QGSM clearly predicts larger
energy losses in Au than in Al.

Table 3. Average values of the part of the incident energy
carried away by leading particles, 〈ŨL〉, for experimental
spectra and for QGSM predictions

Target
Projectile

p π+ K+

Al (NA22) 0.310± 0.018 0.300 ± 0.004 0.284 ± 0.006

Al (QGSM) 0.323± 0.005 0.304 ± 0.003 0.280 ± 0.005

Au (NA22) 0.281± 0.017 0.278 ± 0.004 0.274 ± 0.006

Au (QGSM) 0.246± 0.004 0.265 ± 0.003 0.248 ± 0.005
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
6. ASSOCIATED CHARGED-PARTICLE
MULTIPLICITIES

The charged-particle multiplicity associated with
a leading particle reflects the rate of particle cascading
in a nucleus. The model predictions are sensitive to
the particular form of the cascade multiplication of
secondary particles, since different mechanisms of
cascade multiplication can contribute to associated
multiplicities differently. Their relative contribution
depends on the leading-particle energy.
To compare associated multiplicities, it is impor-

tant to know whether the total charge–multiplicity
distributions PNch are in agreement with the cor-
responding model predictions. In Fig. 6, the total
charge–multiplicity distributions (including protons
with a momentum larger than 200 MeV/c [16]) are
shown for π+,K+, and p interactions onAl and Au, in
comparison to the QGSM predictions with the same
acceptance criteria. We do indeed find good agree-
ment between experiment and QGSM predictions.
In Fig. 7, the average associated multiplicity

〈N ass
ch 〉 is presented as a function of ŨL. The solid

curves correspond to the QGSM predictions. One
can see that for Al the associated multiplicity is

Table 4. Energy dependence of 〈UL〉, calculated in frames
of the QGSM for two variants of the hadron formation time

Formation time Energy 〈UL〉
“Yo-yo” 250 GeV 0.289± 0.005

“Constituent” 250 GeV 0.266± 0.007

“Yo-yo” 10 TeV 0.260± 0.007

“Constituent” 10 TeV 0.262± 0.007
3
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underestimated at ŨL > 0.5. For Au it is slightly
overestimated at low values of ŨL.

7. COMPARISON WITH COSMIC-RAY
EXPERIMENTS

To estimate the energy dependence of the leading-
particle spectrum, we compare our simulation with
the data obtained in a unique cosmic-ray experiment
at energies of 1–3 and >7 TeV. The experiment was
carried out at the Tien-Shan complex with a lead ion-
ization calorimeter [17]. The most energetic particle
P

produced in an interaction was selected as the leading
particle. This definition includes neutrals, because it
was imposible to distinguish protons and neutrons
in this setup. The experimental value of the energy
fractionUL carried by this most energetic particle was
determined by an analysis of fluctuations in the shape
of the individual cascades produced by high-energy
particles.

The distribution in ULdN/dUL obtained in this
experiment is shown in Fig. 8, together with the
spectrum calculated from the QGSM at an energy of
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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10 TeV. There are no clear contradictions between the
experimental data and the QGSM predictions.
To estimate the model energy dependence of the

leading-particle spectrum, we calculated the average
value ofUL in frames of the QGSM for two variants of
the hadron fomation time: “yo-yo” and “constituent”
for 250 GeV and 10 TeV (see Table 4). UL decreases
about 10% over the energy range from 250 GeV to 10
TeV, if we select the “yo-yo” hadron formation time.
For the “constituent” hadron formation time, the en-
ergy dependence is practically absent. As was shown
in Fig. 5 for the “yo-yo” formation time (main variant
of calculation), theQGSMdescribes the yield of lead-
ing particles in pAu collisions at energy 250 GeV, but
for “constituent” formation time, the QGSM gives
a smaller value of UL at 250 GeV/c than the “yo-
yo” variant. One can conclude that experimental data
over an energy range from 250 GeV to 10 TeV in
pAu(Pb) reactions is in a reasonable agreement with
the QGSM “yo-yo” variant prediction.

8. SUMMARY AND CONCLUSIONS
An analysis of inclusive charged-particle spectra

is presented for π+-, K+-meson, and proton inter-
actions with Al and Au targets at 250 GeV/c. The
experimental data were compared with predictions
of the QGSM. The following conclusions could be
drawn from this analysis.
(i) In agreement with earlier experimental data,

the A dependence of the invariant inclusive charged-
particle spectra on the Feynman variable x is very
weak in interactions with Al and Au targets.
(ii) A small difference may be present in the A de-

pendence of fast-particle inclusive spectra for meson-
and proton-induced reactions, as can be expected
from the fact that a larger inelastic cross section
for protons implies a larger number of intranuclear
collisions.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
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(iii) The coherent interactions do not influence the
α(x) parameter of the A dependence of the invariant
inclusive spectra.
(iv) The QGSM shows a larger difference between

fast-particle spectra on Al and Au targets and for
meson and proton projectiles than is observed in the
experiment.
(v) The QGSM prediction for the leading-particle

spectrum over an energy range from 250 GeV to
10 TeV in pAu(Pb) reactions is in reasonable agree-
ment with the results of NA22 data and with a
cosmic-ray experiment [17].
(vi) The associated charged-particle multiplicities

are reproduced by QGSM with some underestima-
tion for Al at large ŨL and some overestimation for
Au at low ŨL values.
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1. INTRODUCTION
The study of atmospheric muons at large un-

derground depths is the subject of experimental in-
vestigations because of the following reasons. First,
muons and muon-produced secondary particles are
the background for underground detectors designed
to search for rare events, including the tasks of neu-
trino and gamma-ray astronomy. Second, the cal-
culations of atmospheric muon and neutrino fluxes
are based on a hypothesis about the primary cosmic-
ray spectrum and hadron–hadron interactions. The
existing deep underground detectors are not able to
measure muon energy for the direct deduction of
energy spectrum. But they are able to measure the
muon “depth–intensity” curve. This curve shows the
vertical–muon flux as a function of the rock (water,
ice) depth and is related to the muon propagation
through the rock, the muon energy spectrum at sea
level, and then, to the primary cosmic-ray spectrum.
2003 MAIK “Nauka/Interperiodica”
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The connection to the muon propagation allows the
tests of the cross sections of the muon interactions
with the rock which have been used in the program
for the muon transport.

Themeasurements ofmuon intensity are made us-
ing the single detector and technique from a relatively
small depth to a large depth, where neutrino-induced
muons dominate and are of special interest. Such
an experiment observes muons at zenith angles from
the vertical to the horizontal direction. The statistics
for the measurement of neutrino-induced flux in the
horizontal direction are small enough, but the uncer-
tainties in detecting the muon direction are absent.
There is no need to suppress the flux of atmospheric
muons by a factor of about 106 using accurate time
measurements.

The Large Volume Detector (LVD) structure and
the complicated profile of the Gran Sasso moun-
tains provide an opportunity to measure the muon
depth–intensity curve for slant depths from 3 to
20 km w.e. and the neutrino-induced muon flux in
the horizontal direction, where the atmospheric muon
flux is suppressed due to the large slant depth. The
expected number of horizontal events caused by
neutrino-induced muons is small (about one—two
events per one LVD tower per year), therefore we
cannot at the moment make any conclusions about
neutrino oscillations.

In our previous paper [1] we have presented
our first results on the measurement of the muon
depth–intensity curve for the depth range of 3–20 km
w.e. Since that time we have improved the criteria
for event selection and increased the statistics. The
analysis of [2] was based on the events with all
multiplicities. Multiple muon events, especially for
large depths, are more difficult to reconstruct than
single muons. To avoid this problem, we have also
performed the analysis of singlemuons using stronger
criteria for the run and event selection. This analysis
is based on increased statistics, compared with our
previous publications.

In Section 2, the detector and the procedure of
data analysis and conversion of the muon intensity
to the vertical are briefly described. In Section 3, the
results of the analysis of the depth–vertical muon
intensity relation (Iµ(x)) are shown. In Section 4
we present the analysis of neutrino-induced events.
Section 5 contains our conclusions.

2. DETECTOR AND DATA SELECTION

The LVD has been extensively described else-
where [1, 3, 4]. The detector is located at the Gran
Sasso Laboratory, Italy. The minimal rock overburden
is 3 km w.e. The LVD consists of three towers. Each
tower is made of 38 modules with dimensions of 2.1×
P

6.2 × 1.0 m3. Data were obtained using the first LVD
tower from June 1992, when it was put into operation,
until February 1998. The total live time was 36 500 h.
The tower is 13× 6.6× 12 m3. Each module contains
eight scintillator counters with the active volume of
1.0 × 1.5 × 1.0 m3 and the mass of liquid scintillator
of 1.2 tons, and a tracking detector is attached to the
bottom and one vertical side of the supporting struc-
ture. Each tracking detector is made up of four layers
of tubes operating in limited streamer mode. Each
layer has independent x and y readout strips. These
established the x and y coordinates of the hits. The
tracking system allows the measurements of particle
direction to be taken with an accuracy better than
0.5◦.

The mountain structure above the Gran Sasso
Laboratory allows the measurements of muons which
traversed a slant depth from 3 to more than 12 km w.e.
The depths correspond to the median muon energies
at sea level from 1.5 to 40 TeV at zenith angles from
0◦ to 90◦. In this analysis we have used the sample of
events containing only single muons. Events with all
multiplicities are usually studied in the experiments
with cosmic-ray muons. Such an analysis supposes
the accurate reconstruction of each event. The study
of depth–intensity curve with all muon events ob-
served by the LVD has been presented in [2]. The
multiple muons have been considered as independent
muons and the acceptance both single and multiple
muons has been assumed the same. This is a good
and well-proven approximation for the derivation of
the all-particle primary spectrum. The task requires,
however, the reconstruction of muon events with all
multiplicities and the measurements of the direction
and slant depths with good accuracy. This is a more
difficult task for multiple muon events than for single
ones. Most muons traverse small rock thicknesses. If
the slant depth for a small fraction of these events is
incorrectly defined, then the intensity in this direction
will not change much. However, these erroneously
reconstructed events can significantly contribute to
the muon intensity at large depths. To be sure of
the precise event reconstruction, in this analysis we
have dealt with single muons only. The size of one
LVD tower is small enough, and more than 90% of
muon events are single muons. The number of muons
in bundles is about 10–12% of the total number of
muons. Possible uncertainties from neglecting mul-
tiple muons are less than or comparable to the errors
from including multiple-muon events with erroneous
reconstruction. In the case of single-muon analysis
we need to correct the absolute intensity for the num-
ber of unreconstructed events (multiple muons and
muon-induced cascades).

The trigger for muon events has been defined
as follows: (i) the energy deposition is greater than
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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Fig. 1. The LVD acceptance for single muons as a function of the cosine of the zenith angle θ and azimuthal angle φ. The
angular cell for this plot was chosen as 0.02 (cos θ) × 2◦ (φ).
30 MeV in at least two scintillator counters in two
different modules and (ii) hits in at least three layers
in any three tracking detectors (hits in at least one
layer per detector). The data runs have been selected
as follows: runs have been accepted if they lasted
longer than an hour and the counting rate is within a
15% range around the mean value for the set of runs.
Moreover, we have required at least 36 of 38 tracking
modules and 240 of 304 scintillator counters of the
first tower to be operated during any particular run.
These criteria ensured the full and uniform accep-
tance of the detector. The final muon sample after
these cuts consisted of 3 151 580 events. 2 877 659
(91%) events have been reconstructed as single
muons. Multiple muons and muons accompanied by
cascades constituted 9%. All reconstructed single
muons were binned in a two-dimensional array with
a cell size of 1◦ at azimuthal angle φ and 0.01 at
cos θ, where θ is the zenith angle. The accuracy of
the reconstruction has been checked by observation
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
of the Moon shadowing effect with single-muon
data [5]. It is better than 0.65◦.

The acceptance for each angular bin has been
calculated using the simulation of muons traversing
the LVD, taking into account the detector response.
The thickness of the rock crossed by the muon was
determined from the mountain map.

The angular distribution Nµ(φ, cos θ) obtained in
the experiment has been converted to the depth–in-
tensity relation using the formula

Iµ(xm) (1)

=

∑
ij Nµ(xm(φj , cos θi))∑

ij(S(xm(φj , cos θi))ε(xm(φj , cos θi))ΩijT )
,

where the summing up has been done over all an-
gular bins (φj , cos θi) contributing to the depth xm,
S(xm(φj , cos θi)) is the cross section of the detector
in the plane perpendicular to the muon track at the
angle (φj , cos θi), ε(xm(φj , cos θi)) is the efficiency of
3
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Fig. 2. Depth–vertical muon intensity relation in Gran
Sasso rock. The LVDdata are presented togetherwith the
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muon detection and reconstruction, Ωij is the solid
angle for the angular bin, and T is the live time.
Angular bins with ε less than 0.03 were excluded from
the analysis. The acceptance A is defined as

A(cos θ, φ) = ε(cos θ, φ)Ω(cos θ, φ)S(cos θ, φ) (2)

and is shown in Fig. 1.
The intensity of muons at zenith angle θ was as-

sumed to be related to the vertical intensity I0 through
the relation

I(xm, θ) = I0(xm, θ = 0◦)/ cos θ∗i , (3)

where

cos θ∗i =
Icµ(xm, cos θ = 1)
Icµ(xm, cos θi)

(4)

is the ratio of the calculated muon intensity at
cos θ = 1 to that at cos θi. This relation is valid
for muons of atmospheric origin if we neglect the
contribution of the prompt muons from charmed
particles. According to the LVD data, the ratio of
prompt muons to pions does not exceed 2× 10−3 at a
95% confidence level [6].

For the depth–intensity relation, the bin width of
200 m w.e. has been chosen. For a depth more than
9 km w.e., we have chosen bins with the width of
P

500 km w.e. to increase the statistics for each bin. The
conversion of muon intensity to the middle points of
each depth bin has been done using formula

Imµ (xi) = Imµ (xm)
Icµ(xi)
Icµ(xm)

, (5)

where Imµ (xm) and Icµ(xm) are the measured and
calculated muon intensities at the weighted average
depth xm, which corresponds to the depth bin with
the middle value of xi; and Imµ (xi) and Icµ(xi) are the
derived and calculated muon intensities at the depth
xi, which is the middle point of the depth bin. The
values of xm have been obtained by averaging the
depths for all angular bins contributing to the given
depth bin with a weight equal to the detected number
of muons. To calculate the muon intensities at xm
and xi, we have used the muon spectrum at sea level
with previously estimated parameters [1, 2] (see also
Eq. (7)) and the simulated muon survival probabil-
ities. Since the width of depth bins is quite small
(200 m w.e. for depth bins with high statistics) and
the number of angular bins contributing to each depth
bin is quite large (several hundreds), the conversion
factor does not exceed 10%.

3. DEPTH–VERTICAL INTENSITY RELATION
IN GRAN SASSO ROCK

To calculate the intensity of muons underground
requires the intensity of muons at the surface as a
function of energy and zenith angle, and the survival
probability as a function of slant depth of rock tra-
versed:

Iµ(x, cos θ) =

∞∫
0

P (Eµ0, x)
dIµ0(Eµ0, cos θ)

dEµ0
dEµ0,

(6)

where P (Eµ0, x) is the probability of a muon with an
initial energyEµ0 at sea level to reach the depth x and
dIµ0(Eµ0, cos θ)/dEµ0 is the muon spectrum at sea
level at zenith angle θ. The intensity at the surface in
the units of (cm2 s sr GeV)−1 can be approximated
by [7]

dIµ0(Eµ0, cos θ)
dEµ0

= A · 0.14 ·E−γ
µ0 (7)

×
(

1
/(

1 +
1.1Eµ0 cos θ∗

115 GeV

)

+ 0.054
/(

1 +
1.1Eµ0 cos θ∗

850 GeV

))
,

where the values of cos θ have been substituted by
cos θ∗, which have been taken from [8]. Accord-
ing to [8], cos θ∗ = Ecr

π,K(cos θ = 1)/Ecr
π,K(cos θ),
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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Table 1. The value of power index of meson spectrum for
various depth ranges (the errors are statistical only)

Depth interval, km w.e. γ χ2/d.o.f.

3–12 2.76 ± 0.02 25.8/34

4–12 2.78 ± 0.03 19.0/29

5–12 2.79 ± 0.04 16.8/24

6–12 2.82 ± 0.06 14.8/19

7–12 2.94 ± 0.14 11.4/14

8–12 2.76 ± 0.22 6.7/9

9–12 2.60 ± 0.50 3.3/4

where Ecr
π,K are the critical energies of pions and

kaons. Equation (7) has been obtained under a
simple assumption of scaling in the high-energy
hadron–nucleus interactions. Under this assump-
tion, the power index of the primary spectrum, γ, is
expected to be equal to that of the meson (pion +
kaon) spectrum, γπ,K .

The muons were tracked through the rock using
the propagation code MUSIC [9] to calculate the
muon survival probabilities P (Eµ0, x). The random-
ness of all processes of muon interaction with mat-
ter (nuclear interaction, pair production, bremsstrah-
lung, and ionization) has been taken into account.
The cross sections were taken from [10–12]. The
muon intensities calculated with a bremsstrahlung
cross section from [12] are lower than those with a
bremsstrahlung cross section from [13], which was
used in our previous paper [1]. Using the cross sec-
tion from [13] will result in a higher power index
(softer muon spectrum) compared to the cross sec-
tion from [12]. The difference in power index is of the
order of 0.01.

The measured depth–intensity curve is shown in
Fig. 2 together with the best fit. The underground
muon flux observed at a slant depth x and zenith angle
θ has a two-component nature and can be presented
as:

Iµ(x, θ) = I(µ)
µ (x, θ) + I(ν)

µ (θ), (8)

where I(µ)
µ (x, θ) is the contribution of atmospheric

muons and I(ν)
µ (θ) denotes the contribution of muons

from neutrino interactions in the rock surrounding
the detector. For slant depths of 13–20 km w.e.
the muons seen in the LVD are of later origin. The
last experimental point in Fig. 2 corresponds to the
neutrino-induced muon flux. This flux was measured
at the depth of 13–20 km w.e. To convert the flux
of neutrino-induced muons to vertical intensity, we
used the calculated ratio of horizontal and vertical
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
Table 2. The number of muons at large depths h observed
by LVD (Nobs) and the calculated values (N atm

µ are at-
mospheric muons, Nν

µ are neutrino-induced muons, and
N tot

µ = N atm
µ +Nν

µ )

h, km w.e. N atm
µ Nν

µ N tot
µ Nobs

h > 13 0.45 3.75 4.20 5

h > 14 0.31 2.92 3.23 4

h > 15 0.03 1.50 1.53 2

fluxes of neutrino-induced muons, which is equal to
2.1 at an energy threshold of 1 GeV for most models
of atmospheric neutrino production:

Iνµ(x, θ = 0◦) = Iνµ(x, θ = 90◦)/2.1. (9)

The depth–intensity curve has been fitted to the
calculated function with two free parameters: the ad-
ditional normalization constant, A, and the power in-
dex of the atmospheric pion and kaon spectrum, γ. As
a result of the fitting procedure, the following values of
the free parameters have been obtained: A = 1.59 ±
0.50 and γ = 2.76 ± 0.05 for muon energies at sea
level from 1.5 to 40 TeV. The errors of the parameters
include both statistical and systematic uncertainties.
The latter takes into account possible uncertainties
in the depth, rock composition, and density and the
uncertainty in the cross sections used to simulate
muon transport through the rock. These values are in
good agreement with the results of a similar analysis
performed for the muon events with all multiplicities
observed by the first LVD tower during 21 804 h of live
time:A = 1.95± 0.50 and γ = 2.78± 0.05. Note that
the estimates of the parameters A and γ are strongly
correlated. The larger the value of γ is, the larger the
normalization factor A should be.

We have repeated the fitting procedure for re-
stricted depth ranges. The results of this test are
presented in Table 1. The results show that the power
index is the same within errors for all depth ranges.

Neutrino-induced muon flux has not been in-
cluded in the fit procedure but has been added to the
best fit at the 2.5× 10−13 cm−2 s−1 sr−1 level. Dashed
curves in Fig. 2 show the possible values of the muon
intensities if we take into account the uncertainties in
the calculation of atmospheric neutrino spectrum at
sea level and structure functions and the corrections
for quasielastic scattering, and the energy threshold
of the detector. The experimental value (2.9 ± 1.3) ×
10−13 cm−2 s−1 sr−1 is in agreement with the
calculated one (2.5 ± 0.5) × 10−13 cm−2 s−1 sr−1.
It also agrees with the compiled world results on
underground muon intensities presented by Crouch
3



128 AGLIETTA et al.
in [14], where the flux of neutrino-induced muons is
equal to (2.17 ± 0.21) × 10−13 cm−2 s−1 sr−1.

If the formula from [15] is used for the muon spec-
trum at sea level instead of Eq. (7), the best-fit value
of γ will be decreased by 0.04–0.05.

The value of γ obtained with the LVD data is
in reasonable agreement with the results of other
surface and underground experiments: DEIS [16],
MUTRON [17], MIPhI [18] (the energies of these
experiments correspond to first few points of our
depth–intensity curve), ASD [19], NUSEX [20],
MACRO [21], and MSU [22] (if we consider the
muon spectrum from [15] in the latter case). The
LVD data disagree with the results of the Baksan
Scintillator Telescope and the KGF [23, 24]. The
difference here is likely due to the different measure-
ment methods, the applied analysis procedure in each
experiment, and uncertainties in the knowledge of
overburden composition.

4. NEUTRINO-INDUCED MUONS

Let us describe the evaluation of the horizontal
neutrino-induced muon flux in more details. High-
energy neutrinos will produce high-energy muons in
the rock. These muons will have enough energy to
traverse the entire detector. The reconstructed muons
that traversed rock thickness greater than 12 km w.e.
have been considered as candidates for neutrino-
induced muons. These depths correspond to zenith
angles of more than 85◦. We have recorded 95 such
candidates during 36 500 h of the LVD lifetime. A
careful visual scan of all of these tracks eliminated
five candidates from the sample because of confusion
in the pattern recognition.

Since the timing of the LVD experiment (12.5 ns)
is not sufficient to determine the direction of a track
crossing one tower, there is a twofold ambiguity in
the direction for each measured track. In other words,
the LVD cannot discriminate between muon direction
(θ, φ) and (180◦ − θ, 180◦ + φ). For θ < 90◦, it is
reasonable to assume that muons come from above,
since the rock thickness is smaller above the horizon.
Gran Sasso mountain has a very complicated profile,
and for many bins at θ ≈ 90◦ with x > 12 km w.e. the
slant depth for inverse direction x1 appears to be less
than 8 km w.e. The muon intensity for 8 km w.e. is
80 times greater than the intensity for 12 km w.e.
In this case we assume that the muon came from
the direction with the smaller slant depth. Near-
horizontal muons with reconstructed slant depths
greater than 12 km w.e. and slant depth less than
8 km w.e. in the opposite direction were excluded as
neutrino-induced candidates and considered as bins
(θ, 180◦ + φ). Totally, we had 67 such events.
P

Some angular bins with slant depths greater than
12 km w.e. are surrounded by bins with smaller slant
depths. According to the calculations of [9], the aver-
age angular deviation of muons is 0.45◦ at 10 km w.e.
and it is mainly caused by multiple Coulomb scat-
tering. The probability of muon coming from the di-
rection with smaller slant depth is greater. We have
considered such a muon as coming from the direc-
tion with smaller depth, assuming that it had been
recorded into the bin with greater depth due to the
reconstruction error or scattering.

Five muons produced in neutrino interactions with
surrounding rock have survived all cuts for slant
depths x > 13 km w.e.; for x > 14 km w.e., we have
found four such events; and for x > 15 km w.e., there
are two neutrino-induced muons.

A Monte Carlo has been used to estimate the
expected number of neutrino-induced muons. The
spectrum of neutrino-induced muons has been cal-
culated following the formula

dNµ

dEµ
=

∞∫
Eµ

dNν

dEν

P (Eν , Eµ)
dEµ

dEν . (10)

dNν/dEν represents the neutrino spectrum and
P (Eν , Eµ)/dEµ is the probability that a neutrino
produces a muon in the interval (Eµ, Eµ + dEµ). We
have used the Bartol neutrino flux [25], which has
a systematic uncertainty ±14%, and the Morfin and
Tang [26], as well as Duke and Owens [27] parton
distribution functions, which result in a less than
1% difference in muon spectra. The major sources of
uncertainties in the neutrino-induced muon flux are
the uncertainty in the neutrino fluxes and neutrino
cross sections because of required extrapolations
of the structure functions to small x� 10−4. For
neutrino-induced muons, the calculations of atmo-
spheric neutrino flux by various authors differ by as
much as 17%. Different standard parametrizations of
charged current cross sections also differ by as much
as 13% [28]).

Table 2 shows the number of muons observed by
the LVD during 36 500 h, as well as calculated values
(the uncertainty of calculations is 20%).

The observed number of muons at large slant
depths agrees with the predictions within errors. The
measured neutrino-induced horizontal muon flux is
(6.1 ± 2.7) × 10−13 cm−2 s−1 sr−1, while the calcu-
lated one is (5.2 ± 1.1) ×
10−13 cm−2 s−1 sr−1. Our measured value agrees
with the results of other experiments: Soudan-2,
(5.00 ± 0.55 ± 0.51) × 10−13 cm−2 s−1 sr−1 [29];
Frejus (the flux recalculated for our energy thresh-
old), (4.77 ± 0.86) × 10−13 cm−2 s−1 sr−1 [30]; and
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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in a South African mine, (4.59 ± 0.42) ×
10−13 cm−2 s−1 sr−1 [31].

5. CONCLUSIONS
We have measured the underground muon inten-

sity as a function of the slant depth in the range of
3–20 km w.e. The analysis of depth–intensity relation
in the depth range of 3–12 km w.e. has been done
to obtain the power index of the differential energy
spectrum of the pions and kaons in the atmosphere,
γ = 2.76± 0.05 in the energy range of 1–40 TeV. The
errors include both statistical and systematic uncer-
tainties with the systematic error due to the domi-
nating uncertainty of the muon interaction cross sec-
tions. Our results are in good agreement with other
experiments. Muons that traversed a slant depth more
than 13 km w.e. were analyzed to obtain the horizon-
tal flux of neutrino-induced muons. This flux is equal
to (6.1 ± 2.7) × 10−13 cm−2 s−1 sr−1 and is consis-
tent with our calculations and the reported results
of other experiments. Our fit of the depth–intensity
curve to this data is in good agreement with the fit of
Crouch, which is a summary of various experiments.
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Abstract—The possibility of measuring the energy of cosmic-ray nuclei (for energies higher than 1 TeV)
by means of recording the greatest specific energy deposition in hadron showers generated in dense matter
is investigated. This method makes it possible to improve the accuracy of energy measurements by thin
calorimeters in studying high-energy cosmic rays at high altitudes. Attainable accuracies in measuring en-
ergy are considered for the cases of light and heavy nuclei. The results of a relevant simulation are compared
with data from the Kosmos-1713 satellite-borne experiment. c© 2003 MAIK “Nauka/Interperiodica”.
The ionization-calorimeter method [1] became a
traditional means for measuring the energy of high-
energy particles. Along with the use of a considerable
thickness of absorbers (whose mass may restrict the
potential of relevant experiments at high altitudes),
thin ionization calorimeters are also applied, which
incompletely record hadron showers initiated by a
primary particle [2]. With increasing energy, the cor-
responding cascade depth also increases [3]. As a
method appropriate for reconstructing the primary-
particle energy in this case, it was proposed to mea-
sure a specific energy deposition at the cascade max-
imum Km = (dE/dX)max. A high potential of the
new approach was demonstrated by a mathematical
simulation of hadronic showers initiated by protons
and helium nuclei in iron and lead absorbers [4]. The
simulation was performed with the aid of the GEANT
package [5], including the GHEISHA [5, 6], FLUKA
[5, 7, 8], and QGSM [9, 10] generators of inelastic
hadron interactions.
In order to extend the scale of charge of the nuclear

component of high-energy cosmic rays, a mathemat-
ical simulation of hadron showers initiated by carbon
and iron nuclei in the iron absorber is performed here
with the aim of investigating the specific energy de-
position at the cascade maximum. The simulation of
showers from heavy nuclei has some special features.
The large part of the energy carried away by spectator
nucleons in nucleus–nucleus interaction leads to a
strong dependence of the shape of the cascade curve
on the fragmentation of the residual nucleus. The de-
cay of such a nucleus into individual nucleons leads to
the smoothing of the cascade curve. Reinteractions of

*e-mail: ant@eas.npi.msu.ru
1063-7788/03/6601-0130$24.00 c©
heavy fragments may give rise to additional maxima.
This is why the simulation of hadron interactions was
based here on the QGSJET code [11] taking into
account, along with fragmentation, the production
of hadronic jets, which are peculiar to the region of
ultrahigh energies.

Thereupon, in analyzing simulated cascade curves
and in determining the maximum specific energy de-
position, we traced the segment of 17 shower lengths
after the first inelastic interaction. The resulting av-
erage values 〈Km〉 in an iron absorber are shown
in Fig. 1 versus the energy of (a) C and (b) Fe
nuclei. Also presented there for the sake of com-
parison are data from the Kosmos-1713 satellite-
borne experiment with Sokol-2 equipment [12, 13],
which were analyzed with allowance for transition
effects [14] caused by the structure of the absorber
used in this experiment. As can be seen, the results
of the calculations are close to these experimental
data. For Fe nuclei, the calculated value of 〈Km〉
is somewhat in excess (by 15–20%) of the experi-
mental result. This may be due to the presence of a
thin aluminum layer (3 cm) above the iron absorber
in the experimental facility, because the number of
nucleons from the incident nucleus that participate
in the interaction with aluminum is less than that in
the interaction with iron, so that the inelasticity factor
becomes smaller. The dependence of (dE/dX)max on
the primary energy E for various incident particles
could be approximated by a linear (〈Km〉 = CE + c)
or an exponential (〈Km〉 = AEa) function, with the
parameters being set to the values given in Table 1
(the data for protons and helium nuclei were taken
from [4]). The parameter values depend only slightly
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. Average specific energy deposition at the maxi-
mum of a hadron shower, 〈Km〉 = 〈(dE/dX)max〉, ver-
sus the energy of primary particles [(a) C and (b) Fe
nuclei] in an iron absorber according to calculations on
the basis of the QGSJETmodel. The experimental points
were obtained from an analysis of the data presented
in [12, 13].

on the primary-particle type. The energy deposition
at the cascade maximum is determined by the total
energy of the primary nucleus. The parameter values
derived for carbon and iron can be applied to the
nuclei of theM and the VH group, respectively. These
approximations can be used to determine the primary
energy as E = (Km/A)1/a or as E = (Km − c)/C.
Table 2 presents the calculated values of the rela-

tive fluctuationD(Km) = 〈(Km−〈Km〉)2〉1/2/〈Km〉.
At energies in excess of about 2 TeV per nucleus,
these values show only a weak dependence on en-
ergy. This makes it possible to compare the Km

distributions calculated at a fixed energy value with
generalized experimental data for a relatively wide
energy region. For the case of an iron absorber, Fig. 2
displays the Km/〈Km(E)〉 distributions obtained
for the nuclei of the (a) M and (b) VH groups by
using the formula 〈Km(E)〉 = AEa to approximate,
for energies of E > 2.5 TeV, the experimental data
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 20
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Fig. 2. Distribution of the energy deposition at the max-
imum of a shower, (1/N)(dN/d(Km/〈Km(E)〉)), in-
duced by (a) C and (b) Fe nuclei. The experimental points
were obtained from an analysis of the data presented
in [12, 13].

reported in [12, 13]. In this figure, the corresponding
results of a simulation for (a) C and (b) Fe nuclei
at an energy of 8 TeV are also given for the sake of
comparison.
Figure 3 shows the energy spectra deduced for the

nuclei of the (closed symbols) M group and (open
symbols) VH group from the data of the Sokol-2
experiment by means of the traditional method—that
is, by exploring the total energy deposition in an iron
absorber of thickness 85 cm—and by means of the
new method—that is, by using the specific energy
deposition at the cascade maximum (the maximum
was determined over a segment of 30 cm after the first
interaction vertex). An analysis reveals that the two
methods in question yield results that agree within the
statistical errors of the experiment.
The potential of the new method and the poten-

tial of the traditional one can be assessed in re-
lation to each other by comparing the root-mean-
square deviations D(E) in determining the energy
E from the specific energy deposition Km and from
the total energy deposition Eb in an absorber. Such
a comparison is illustrated in Fig. 4, which shows
the quantities D(E) versus the depth of evolution of
the shower (L = X −X0) initiated by 8-TeV (a) C
and (b) Fe nuclei in an iron absorber. It can be seen
03



132 RAPOPORT et al.
Table 1.Parameters in the approximation of the average energy deposition at the showermaximum,Km = (dE/dX)max:
〈Km〉 = AEa or 〈Km〉 = CE + c (E andKm are given in TeV and GeV/cm, respectively, while A is the average energy
deposition at E = 1 TeV)

Reaction Model,
experiment A a C c

pFe FLUKA 22.9 0.941 19.4 2.7

GHEISHA 20.9 0.961 18.9 1.5

QGSM 23.6 0.938 19.9 2.8

experiment 19.7 0.949 16.1 13.3

HeFe QGSM + FLUKA 20.4 0.937 17.1 2.4

experiment 18.7 0.948 13.5 22.7

CFe QGSJET 19.5 0.931 15.6 5.0

experiment 17.0 0.965 14.0 10.2

FeFe QGSJET 19.6 0.919 14.9 6.9

experiment 16.6 0.938 12.9 9.0

Table 2.Relative fluctuation of the energy deposition at the shower maximum,D(Km) = 〈(Km − 〈Km〉)2〉1/2/〈Km〉 (E
is given in TeV)

Reaction Model E = 0.5 E = 2 E = 8 E = 32

pFe FLUKA 0.37 0.36 0.38 0.38

GHEISHA 0.41 0.40 0.40 0.39

QGSM 0.38 0.38 0.39 0.38

HeFe QGSM + FLUKA 0.30 0.30 0.30 0.29

CFe QGSJET 0.26 0.20 0.20 0.18

FeFe QGSJET 0.33 0.17 0.17 0.16
that the energy E is determined more precisely by
using the quantityKm at small shower depths (where
the shower grows) and by using Eb at large depths.
In the boundary region, the methodological errors
become equal at L = 42 cm (23.9 shower lengths
from the first-interaction vertex) for C nuclei. This
depth corresponds to the relative error of D(E) =
0.23 in determining energy. For Fe nuclei, the re-
spective values are L = 37 cm (21.0 shower lengths)
and D(E) = 0.20. The boundary region corresponds
to the depth of the cascade maximum and exhibits
only a weak energy dependence. Since the energy of
photons from the decays of π0 mesons generated in
the first inelastic interaction is determined by energy
per nucleon, the depth L is smaller for heavier nuclei
P

at the same total energy. It is worth noting that,
in the case of C and Fe nuclei, the new method is
more precise than the traditional one up to greater
depths in relation to the case of protons and helium
nuclei. This is explained by fluctuations of the cascade
curve that are associated with the fragmentation of
the primary nucleus. Such fluctuations have a more
pronounced effect on the longitudinal development
of the cascade curve than on the maximum specific
energy deposition. Therefore, the new method is more
efficient in studying heavy nuclei by means of “short”
calorimeters.

The specific energy deposition at the maximum of
the hadron shower initiated by various high-energy
nuclei is well described on the basis of the package
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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Fig. 3. Energy spectra of (�, •) C and (�, ◦) Fe nuclei according to an analysis of experimental data from [12, 13] on the total
energy deposition [(�, �) experimental data; (solid lines) exponential approximation] and on the specific energy deposition at
the maximum [(•, ◦) experimental data; (dashed lines) exponential approximation].
of codes used. The results of the simulations are con-
firmed by experimental data. This makes it possible to
use the quantity in question as amethodological basis
for reconstructing, at cascade depths less than L,
the primary-particle energy to a precision higher than
that of the traditional method. For a fixed precision of
reconstruction of the primary energy E, this method
enables one to use absorbers of smaller thickness
and mass. Similar energy dependences of the specific
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Fig. 4. Relative root-mean-square deviation D in deter-
mining energy from the (solid curve) total and (dashed
curve) maximum energy deposition versus the depth of
evolution of the shower induced by 8-TeV (a) C and (b)
Fe nuclei.
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energy deposition at the cascade maximum for differ-
ent nuclear components (from protons to iron nuclei)
make it possible to apply this method to studying the
chemical composition of cosmic rays. The possibility
of using a thin absorber, together with one ionization
detector arranged below the absorber (in the case
where the first interaction can be localized in a thin
target above the absorber), is an experimental advan-
tage of the proposed method.
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Abstract—It is conjectured that in the origin of spacetime there lies a symplectic rather than metric struc-
ture. The complex symplectic symmetry Sp(2l, C), l ≥ 1 instead of the pseudoorthogonal one SO(1, d− 1),
d ≥ 4 is proposed as the spacetime local structure group. A discrete sequence of the metric spacetimes
of the fixed dimensionalities d = (2l)2 and signatures, with l(2l− 1) timelike and l(2l + 1) spacelike
directions, defined over the set of Hermitian second-rank spin tensors, is considered as an alternative to
the pseudo-Euclidean extra dimensional spacetimes. The basic concepts of the symplectic framework are
developed in general, and the ordinary and next-to-ordinary spacetime cases with l = 1, 2, respectively, are
elaborated in more detail. In particular, the scheme provides the rationale for the four-dimensionality and
1 + 3 signature of the ordinary spacetime. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, the ordinary spacetime is postulated
to be locally the Minkowski space, i.e., the pseudo-
Euclidean space of the dimensionality d = 4 with the
Lorentz group SO(1, 3) as the local symmetry group.
Nevertheless, the spinor analysis in the Minkows-
ki space heavily relies on the isomorphism for the
proper noncompact groups SO(1, 3) � SL(2, C)/Z2,
as well as that SO(3) � SU(2)/Z2 for their max-
imal compact subgroups (see, e.g., [1]). Moreover,
the whole relativistic field theory in four spacetime
dimensions can equivalently be formulated (and in a
sense it is even preferable) entirely in the framework
of spinors of the SL(2, C) group [2]. In this approach,
to a spacetime point there corresponds a Hermitian
tensor of the second rank.

From this point of view, a description of the ordi-
nary spacetime by means of the real four-vectors of
the SO(1, 3) group, rather than by the Hermitian ten-
sors of SL(2, C), is nothing but the (historically set-
tled) tradition of the spacetime parametrization. Nev-
ertheless, just this parametrization underlies the pro-
posed andwidely discussed spacetime extensions into
the (locally) pseudo-Euclidean spaces of the larger
dimensionalities d > 4 in the Kaluza–Klein fashion
(see, e.g., [3]). These extensions assume the em-
bedding of the local symmetry groups as SO(1, 3) ⊂
SO(1, d − 1). The pseudo-Euclidean extensions play
the crucial role in the attempts to construct a unified
theory of all the interactions including gravity [4].

In what follows, we stick to the viewpoint that
spinors are more fundamental objects than vectors.

∗This article was submitted by the author in English.
1063-7788/03/6601-0135$24.00 c©
Thus the spacetime structure group with spinors as
defining representations, i.e., the complex symplectic
group Sp(2, C), is considered to be more appropri-
ate than the pseudoorthogonal group SO(1, 3) with
vectors as defining representations and spinors just
as a kind of artifact. In other words, we assume
that the symplectic structure of the spacetime has a
deeper physical origin than the metric one, though
both approaches, symplectic and pseudoorthogonal,
are formally equivalent at an effective level in the ordi-
nary spacetime. Then, in searching for the spacetime
extradimensional extensions, a natural step would be
to look for the extensions in the symplectic framework
with the structure group Sp(2l, C), l > 1. The reason
is that the descriptions equivalent at l = 1 and d = 4
can result in principally different extensions at l >
1 and d > 4. This is the problem dealt with in the
present paper. We develop the basic concepts of the
general symplectic framework and elaborate in more
detail the ordinary and next-to-ordinary spacetime
cases with l = 1, 2, respectively.1)

2. STRUCTURE GROUP

It is assumed that an underlying physics described
effectively by a local symmetry (structure group)
constitutes the basis for the local properties of the
spacetime, i.e., for its dimensionality and signature.
Hence, to find possible types of spacetime extensions,
it is necessary first of all to find all the structure
groups isomorphic to each other at d = 4. In addition
to the well-known isomorphism of the real and
complex groups SO(1, 3) � SL(2, C)/Z2 relevant

1)An early version of the study can be found in [5].
2003 MAIK “Nauka/Interperiodica”
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to the ordinary spacetime, there exist the following
isomorphisms (up to Z2) for the proper complex
Lie groups: SL(2, C) � SO(3, C) � Sp(2, C) and,
respectively, for their maximal compact (real) sub-
groups: SU(2) � SO(3) � Sp(2). In other terms,
these isomorphisms look like A1 � B1 � C1, where
the groups considered are the first ones from the
complex Cartan series: Al = SL(l + 1, C), Bl =
SO(2l + 1, C), Cl = Sp(2l, C) and similarly for their
maximal compact subgroups SU(l + 1), SO(2l + 1),
Sp(2l) (see, e.g., [6]). Here, l ≥ 1 means the rank
of the corresponding Lie algebras. It is equal to the
half-rank of the proper noncompact Lie groups and
coincides with the rank of their maximal compact
subgroups. As the structure groups, all the groups
from the above series result in (locally) isomorphic
descriptions at l = 1. Therefore, at l > 1, the extended
structure groups may a priori be looked for in each
of the series with properly extended spinor space.
But the physical requirement for the existence of
an invariant bilinear product in the extended spinor
space restricts the admissible types of extension.

Namely, for all the complex groups, the complex
conjugate fundamental representations ψ̄ are not
equivalent to the representations ψ themselves. In ad-
dition, for all the complex series, there is no invariant
tensor in the spinor space that would match a spinor
representation and its complex conjugate. Hence, the
invariant bilinear product of Grassmann fields in the
form ψψ (and ψ̄ψ̄) is the only possible one (if any).
Such a product is admissible just for the symplectic
series Cl. This is due to the fact that, by definition,
there exists in this case the invariant (antisymmetric)
second-rank tensor. It is to be noted that the spinor
representations of the orthogonal groups Bl are
realized by the embedding of the latter ones into
the symplectic groups C2l−1 over the 2l-dimensional
spinor space. Only at l = 1, 2 do the isomorphisms
Bl � Cl take place. The spinors being assumed to be
more fundamental objects than vectors, it is natural to
consider directly the symplectic groups that are self-
sufficient for spinors, instead of the pseudoorthogonal
ones, which inevitably should appeal to symplectic
groups for justification of the spinor representations.

Just the existence of the alternating second-rank
tensor in the SL(2, C) group is, in essence, the
raison d’etre for the spinor analysis in four spacetime
dimensions being based traditionally on this group.
The symmetry structure that provides the alternating
tensor and, as a result, the invariant inner product
for spinors proves to be crucial for the whole physical
theory. But this structure survives in Sp(2l, C) and
is absent in SL(l + 1, C) at l > 1. This is why,
namely, the first groups, and not the second ones,
are to be considered as the structure groups of the
P

extended spacetime. Therefore, while constructing
extradimensional spacetimes we retain symplectic
structure, i.e., consider extensions in the series Cl.

To summarize, two alternative ways of spacetime
extension can be pictured schematically as

SO(1, 3) � Sp(2, C)

↓ ↓
SO(1, d − 1) �� Sp(2l, C).

(1)

The first commonly adopted way of extension corre-
sponds to the real structure groups, while the second
one relies on the complex groups. The scheme shows
that the isomorphism of the real and complex groups,
valid at d = 4 and l = 1, is no longer fulfilled at d >
4 and l > 1. In the first way of extension, the local
metric properties of the spacetime (i.e., dimensional-
ity and signature) are put in ab initio. In the second
way, these properties should not be considered as the
primary ones, but, instead, they have to emerge as a
manifestation of the inherent symplectic structure.

3. THE COMPLEX SYMPLECTIC SYMMETRY
Sp(2l, C)

Let ψA and ψ̄Ā ≡ (ψA)∗, as well as their respective
duals ψA and ψ̄Ā ≡ (ψA)∗, A, Ā = 1, . . . , n (n = 2l),
be the spinor representations of Sp(2l, C). It is well
known that there exist in the spinor space the non-
degenerate invariant second-rank spin tensors εAB =
−εBA and εAB = −εBA such that εACε

CB = δA
B ,

with δA
B being the Kronecker symbol (and similarly

for εĀB̄ ≡ (εBA)∗ and εĀB̄ ≡ (εBA)∗). Owing to these
invariant tensors, the spinor indices of the upper and
lower positions are pairwise equivalent (ψA ∼ ψA and
ψ̄Ā ∼ ψ̄Ā), so that there are left just two inequivalent
spinor representations (generically, ψ and ψ̄). Let us
call ψ and ψ̄ the spinors of the first and second kind,
respectively, and similarly for the corresponding in-
dices A and Ā.2)

Let us put in correspondence to an event point P
a second-rank spin tensor XA

B̄(P ), which is Hermi-
tian, i.e., XA

B̄ = (XB
Ā)∗ ≡ X̄B̄

A, or in other terms

2)Note that both the kind and the position of the indices are
changed under complex conjugation, contrary to the tradi-
tional definition of the dotted indices for SL(2, C) without
the position change: (ψA)∗ ≡ ψ∗

Ȧ
, etc. The advantage of the

definition adopted in the present paper is that, relative to the
maximal compact subgroup Sp(2l), the two kinds of indices
A and Ā in the same position are completely indistinguish-
able, while the similarA and Ȧwould enjoy this property only
after the implicit position change for Ȧ.
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XAB̄ = (XBĀ)∗. One can define the quadratic scalar
product as

trXX̄ ≡XA
B̄X̄B̄

A = XA
B̄XA

B̄ (2)

= −XAB̄X
AB̄ = −XAB̄(XBĀ)∗,

the last equality being due to the Hermiticity of
X. Clearly, trXX̄ is real, though not sign-definite.
In addition, the spin tensor XX̄ is antisymmetric,
(XX̄)AB = −(XX̄)BA, and hence it can be decom-
posed into the trace relative to ε and a traceless part.
Under S ∈ Sp(2l, C), one has in compact notation

X → SXS†, (3)

X̄ → S†−1X̄S−1,

so that XX̄ → SXX̄S−1 and trXX̄ is invariant,
indeed. In fact, the invariant (2) is at l > 1 just
the first one in a series of independent invariants
tr(XX̄)k, k = 1, . . . , l. By definition, set {X} en-
dowed with the structure group Sp(2l, C) and the
interval between pointsX1 andX2 defined as tr(X1 −
X2)(X̄1 − X̄2) constitutes the symplectic spacetime.
The noncompact transformations from the Sp(2l, C)
are counterparts of the Lorentz boosts in the ordinary
spacetime, while transformations from the compact
subgroup Sp(2l) = Sp(2l, C) ∩ SU(2l) correspond
to rotations. With allowance for translations XA

B̄ →
XA

B̄ + ΞAB̄ , where ΞAB̄ is an arbitrary constant
Hermitian spin tensor, the whole theory in the flat
symplectic spacetime should be covariant under the
inhomogeneous symplectic group.

Let us now fix for a while the extended boosts
and restrict ourselves to the extended rotations, i.e.,
to the maximal compact subgroup Sp(2l). Relative
to the latter, the indices of the first and second
kinds are indistinguishable in their transformation
properties (ψA ∼ ψ̄Ā), and one can temporarily label
XAB̄ in this case as XXY , where X,Y, . . . = 1, . . . , n
generically mean spinor indices irrespective of their
kind. Hence, while restricting oneself to the compact
subgroup, one can reduce the tensor XXY into two
irreducible parts, symmetric and antisymmetric ones:
XXY =

∑
±(X±)XY , where (X±)XY = ±(X±)Y X

have d± = n(n± 1)/2 dimensions, respectively. One
gets from (2) the following decomposition for the
scalar product:

trXX̄ =
∑
±

(∓1)(X±)XY [(X±)XY ]∗. (4)

At l > 1, one can further reduce spin tensor X− to

the trace X
(0)
− relative to ε and a traceless part X(1)

−

PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
as (X−)XY = (1/
√
n)X(0)

− εXY + (X(1)
− )XY so that

trXX̄ =X
(0)2
− + (X(1)

− )XY [(X(1)
− )XY ]∗ (5)

− (X+)XY [(X+)XY ]∗.

As a result, the whole extended spacetime can be
decomposed with respect to the rotation subgroup
into three irreducible subspaces of 1, (n− 2)(n +
1)/2, and n(n + 1)/2 dimensions. According to their
signature and transformation properties, the first two
subspaces correspond to the time dimensions, the
rotationally invariant and noninvariant ones, while
the third subspace corresponds to the spatial extra
dimensions. It is to be noted that the number of
components in the extended space, and hence that
in the spatial momentum, is equal to the number
of the noncompact transformations (boosts). Thus,
for a massive particle, there exists a rest frame with
zero spatial momentum. In the case n = 2, there is
a unique antisymmetric tensor (X−)XY ∼ εXY such
that the noninvariant time subspace is empty.

Of course, the particular decomposition of X into
two parts X± is noncovariant with respect to the
whole Sp(2l, C) and depends on the boosts. Never-
theless, the decomposition being valid at any boost,
the number of positive and negative components in
trXX̄ is invariant under the whole Sp(2l, C). In other
words, the metric signature of the symplectic space-
time

σd = (+1, . . .︸ ︷︷ ︸
d−

; −1, . . .︸ ︷︷ ︸
d+

) (6)

is invariant. Hence, at n = 2l > 2 the structure group
Sp(2l, C) of the nth rank and the n(n + 1)th or-
der, acting on the Hermitian second-rank spin ten-
sors with d = n2 components, is just a restricted
subgroup of the embedding pseudoorthogonal group
SO(d−, d+), of the rank n2/2 and the order n2(n2 −
1)/2, acting on the pseudo-Euclidean space of di-
mensionality d = n2. What distinguishes Sp(2l, C)
from SO(d−, d+) is the total set of independent in-
variants tr(XX̄)k, k = 1, . . . , l. The isomorphism be-
tween the groups is achieved only at l = 1, i.e., for
the ordinary spacetime d = 4, where there is just one
invariant trXX̄ .

It should be stressed that, in the approach under
consideration, neither the discrete set of dimensional-
ities, d = (2l)2, of the extended spacetime, nor its sig-
nature, nor the existence of the rotationally-invariant
one-dimensional time subspace is postulated ab ini-
tio. Rather, they are the immediate consequences of
the underlying symplectic structure. In particular, the
latter seems to provide a unique rationale for the four-
dimensionality of the ordinary spacetime, as well as
for its signature (+ −−−). Namely, these properties
3
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directly reflect the existence of one antisymmetric and
three symmetric second-rank Hermitian spin tensors
at l = 1. The set of such tensors, in turn, is the low-
est admissible Hermitian space to accommodate the
symplectic structure, the case l = 0 being trivial (d =
0). On the other hand, just the existence of the one-
dimensional time subspace allows one to (partially)
order the events at any fixed boosts, which serves
as a basis for the causality description. Hence, the
latter may ultimately be attributed to the underlying
symplectic structure too. At l > 1, because of the
extra times being mixed via boosts with the one-
dimensional time, the causality should approximately
be valid only at small boosts.

4. C, P , T SYMMETRIES
Let us charge double the spinor space, i.e., for each

ψA, (ψA)† ≡ ψ̄Ā introduce two copies ψ±
A , (ψ±

A)† ≡
(ψ̄∓)Ā, with ± being the “charge” sign.3) In analogy
to the ordinary case of SL(2, C) [1], one can define the
following discrete symmetries:

C : ψ±
A → ψ∓

A , (7)

P : ψ±
A → (ψ∓

A)† ≡ (ψ̄±)Ā,

T : ψ±
A → (ψ±

A)† ≡ (ψ̄∓)Ā,

and hence CPT : ψ±
A → ψ±

A (all up to the phase fac-
tors). UnderCPT invariance, only two of the discrete
operations (7) are independent ones. Without charge
doubling, just one combination CP ≡ T : ψA → ψ̄Ā

survives.
Now, let us introduce the Hermitian spin-tensor

current J = J† as follows:

JA
B̄ ≡

∑
±

(±1)ψ±
A (ψ±

B)† =
∑
±

(±1)ψ±
A(ψ̄∓)B̄ (8)

(ψ’s are the Grassmann fields). Under (7), the current
JA

B̄ transforms as follows:

C : JAB̄ → −JA
B̄, (9)

P : JAB̄ → −JB
Ā,

T : JAB̄ → JB
Ā.

Fixing boosts and decomposing current JAB̄ into
the symmetric and antisymmetric parts, JXY =∑

±(J±)XY , one gets from (9)

C : (J±)XY → −(J±)XY , (10)

P : (J±)XY → ∓(J±)XY ,

T : (J±)XY → ±(J±)XY .

3)We use here a dagger sign for complex conjugation to show
that the Grassmann fields should undergo the change of the
order in their products.
PH
This is in complete agreement with the signature
association for the symmetric (antisymmetric) part of
the Hermitian spin tensor X as the extended spatial
(time) components.

5. THE CASE l = 1
The noncompact group Sp(2l, C) has n(n + 1)

generators MAB = (LAB ,KAB), A,B = 1, . . . , n
(n = 2l), so that LAB = LBA and similarly for KAB .
The generators LAB are Hermitian and correspond to
the extended rotations, whereas those KAB are anti-
Hermitian and correspond to the extended boosts.
In the space of the first-kind spinors ψA, these
generators can be represented as (σAB, iσAB) with
(σAB)CD = 1/2(εACεBD + εADεBC), so that σAB =
σBA and (σAB)CD = (σAB)DC , (σAB)CC = 0. Sim-
ilar expressions hold true in the space of the second-
kind spinors ψ̄Ā. In these terms, a canonical formal-
ism can be developed at arbitrary l ≥ 1.

In the simplest case l = 1 corresponding to the
ordinary four-dimensional spacetime, there exists the
isomorphism B1 � C1 (or SO(3, C)� Sp(2, C)/Z2).
Due to this property, the structure of Sp(2, C) can
be brought to a mathematically equivalent but more
physically familiar form.4) Namely, let us introduce
for the SO(3, C) group the double set of the Pauli
matrices, (σi)AB̄ and (σ̄i)Ā

B, i = 1, 2, 3. They should
satisfy the anticommutation relations σiσ̄j + σjσ̄i =
2δijσ0 and σ̄iσj + σ̄jσi = 2δij σ̄0, where (σ0)AB ≡
δA

B, (σ̄0)Ā
B̄ ≡ δĀ

B̄ are the Kronecker symbols and
δij is the metric tensor of SO(3, C). Among these
matrices, σ0 and σ̄0 are the only independent ones
which can be chosen antisymmetric, (σ0)AB ≡ εAB
and (σ̄0)ĀB̄ ≡ εĀB̄. On the other hand, with re-
spect to the maximal compact subgroup SO(3),
all the matrices σi, σ̄i can be chosen both Her-
mitian and symmetric as (σi)XY = [(σi)Y X ]∗ and
(σi)XY = (σi)Y X (and the same for σ̄i). The matri-
ces σij ≡ (−i/2)(σiσ̄j − σj σ̄i) such that σij = −σji
and (σij)AB = (σij)BA (and similarly for (σ̄ij)ĀB̄ ≡
(i/2)(σ̄iσj − σ̄jσi)ĀB̄) are not linearly independent
from σi. They can be brought to the form (σij)XY =
εijk(σk)XY , with εijk being the Levi-Civita SO(3, C)
symbol.

The matrices (σij, iσij) can be identified as the
generators Mij = (Lij ,Kij) of the noncompact

4)We use here the complex group SO(3, C) instead of the real
one SO(1, 3) to show the close similarity with the next case
l = 2 where there is no real structure group. Because of the
complexity of SO(3, C) one should distinguish vectors and
their complex conjugate, the latter ones being omitted for
simplicity in what follows. The same remains true for the
SO(5, C) case corresponding to l = 2.
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SO(3, C) group in the space of the first-kind spinors.
Respectively, in the space of the second-kind spinors,
they are (−σ̄ij , iσ̄ij). The generators Lij of the
maximal compact subgroup SO(3) � Sp(2)/Z2 cor-
respond to rotations, while those Kij of the non-
compact transformations describe Lorentz boosts.
Relative to SO(3), one has σ̄0 = σ0, σ̄i = σi, and
σ̄ij = −σij . When restricted by the maximal compact
subgroup SO(3), the Hermitian second-rank spin
tensor can be decomposed into the complete set of
Hermitian matrices (σ0, σij) with real coefficients
X = (1/

√
2)(x0σ0 + (1/2)xijσij), so that trXX̄ =

x2
0 − (1/2)x2

ij . With identification xij ≡ εijkxk, one
gets, as usual, trXX̄ = x2

0 − x2
i . Both time and spa-

tial representations being irreducible under SO(3),
there takes place the usual decomposition 4 = 1 ⊕ 3
relative to the embedding SO(3, C) ⊃ SO(3).

6. THE CASE l = 2
This case corresponds to the next-to-ordinary

spacetime symplectic extension. Similarly to the case
l = 1, there takes place the isomorphism B2 � C2,
or SO(5, C) � Sp(4, C)/Z2. Cases l = 1, 2 are the
only ones where the structure of the symplectic group
gets simplified in terms of the complex orthogonal
groups. The double set of Clifford matrices (ΣI)AB̄

and (ΣI)Ā
B , I = 1, . . . , 5, satisfies equationsΣIΣJ +

ΣJΣI = 2δIJΣ0 and ΣIΣJ + ΣJΣI = 2δIJΣ0, where
(Σ0)AB ≡ δA

B , (Σ0)Ā
B̄ ≡ δĀ

B̄ are the Kronecker
symbols and δIJ is the metric tensor of SO(5, C).
Relative to the maximal compact subgroup SO(5),
they can be chosen Hermitian, (ΣI)XY = [(ΣI)Y X ]∗,
but antisymmetric, (ΣI)XY = −(ΣI)Y X (and simi-
larly for ΣI), like (Σ0)AB = εAB and (Σ0)ĀB̄ = εĀB̄ .
One can also require that (ΣI)XX = 0. Therefore,
under restriction by SO(5), six matrices Σ0, ΣI pro-
vide the complete independent set of antisymmetric
matrices in the four-dimensional spinor space. After
introducing matrices ΣIJ = (−i/2)(ΣIΣJ − ΣJΣI),
so that ΣIJ = −ΣJI , one gets the symmetry con-
dition for them: (ΣIJ)AB = (ΣIJ)BA (and similarly
for (ΣIJ)ĀB̄ = (i/2)(ΣIΣJ − ΣJΣI)ĀB̄). Hence, ten
matrices ΣIJ (or ΣIJ ) make up the complete set
of symmetric matrices in the spinor space. Under
SO(5), one hasΣ0 = Σ0,ΣI = ΣI , andΣIJ = −ΣIJ .

With respect to SO(5), the Hermitian second-
rank spin tensor X can be decomposed into the com-
plete set of matrices Σ0, ΣI , and ΣIJ with real co-
efficients X = 1/2(x0Σ0 + xIΣI + (1/2)xIJΣIJ). In
these terms, one gets

trXX̄ = x2
0 + x2

I −
1
2
x2
IJ . (11)
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There is one more independent invariant combina-
tion of x0, xI , and xIJ stemming from the invariant
tr(XX̄)2.

Relative to the embedding SO(5, C) ⊃ SO(5),
one has the following decomposition in the irreducible
representations:

16 = 1 ⊕ 5 ⊕ 10. (12)

Under discrete transformations (7), one gets

P : x0 → x0, xI → xI , xIJ → −xIJ , (13)

T : x0 → −x0, xI → −xI , xIJ → xIJ .

This means that, from the point of view of SO(5), xI
is the axial vector, whereas xIJ is the pseudotensor
(a counterpart of xij = εijkxk in three spatial dimen-
sions). Thematrices (ΣIJ , iΣIJ ) or (−ΣIJ , iΣIJ ) rep-
resent the SO(5, C) generators MIJ = (LIJ ,KIJ) in
the spaces of the spinors, respectively, of the first and
second kinds. A particular expression for the matrices
ΣI , ΣIJ in terms of σ0, σi depends on the fashion of
the embedding SO(3, C) ⊂ SO(5, C).

The rank of the algebraC2 being l = 2, an arbitrary
irreducible representation of the noncompact group
Sp(4, C) is uniquely characterized by two complex
Casimir operators I2 and I4, respectively, of the
second and fourth order, i.e., by four real quantum
numbers. Otherwise, an irreducible representation of
Sp(4, C) can be described by the mixed spin tensor

ΨB̄1...
A1...

of a proper rank. This spin tensor should be
traceless in any pair of indices of the same kind,
and its symmetry in each kind of indices should
correspond to a two-row Young tableau. In fact,
there exists the completely antisymmetric invariant
tensor of the fourth rank εA1A2A3A4 ≡ εA1A2εA3A4 −
εA1A3εA2A4 + εA1A4εA2A3 which corresponds to the
embedding SL(4, C) ⊃ Sp(4, C) (and similarly for
εĀ1Ā2Ā3Ā4

). By means of these invariant tensors,
three indices of the same kind with antisymmetry
are equivalent to one index, whereas four indices
with antisymmetry can be omitted altogether. Hence,
antisymmetry is possible in no more than pairs of
indices of the same kind. Therefore, an irreducible
representation of Sp(4, C) can unambiguously be
characterized by a set of four integers (r1, r2; r̄1, r̄2),
r1 ≥ r2 ≥ 0 and r̄1 ≥ r̄2 ≥ 0. Here, r1,2 (respectively,
r̄1,2) are the numbers of boxes in the first or second
rows of the proper Young tableau. The rank of the
maximal compact subgroup SO(5) � Sp(4)/Z2 (the
rotation group) being equal to l = 2, a state in a rep-
resentation is additionally characterized under fixed
boosts by two additive quantum numbers, namely, the
eigenvalues of the mutually commuting momentum
components of LIJ in two different planes, say, L12

and L45. Note that, in the Sp(2, C) case, the Young
3
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tableaux are at most one-rowed, and an irreducible
representation is characterized by a pair of integers
(r; r̄), with the complex dimensionality of the rep-
resentation being (r + 1)(r̄ + 1). In this case, there
remains just one diagonal component of the total
angular momentum, say, L12 ≡ L3.

7. ∆l = 1 REDUCTION

The ultimate attribute of the dimensionality in the
given approach is the discrete number l = 1, 2, . . .
corresponding to the dimensionality n = 2l of the
spinor space. The dimensionality d = (2l)2 of the
spacetime appears just as a secondary quantity. In
reality, the extended spacetime with l > 1 should
compactify to the ordinary one with l = 1 by means of
the symplectic gravity. Let us restrict ourselves to the
next-to-ordinary spacetime case with l = 2. Three
generic inequivalent types of spinor decomposition
relative to the embedding Sp(4, C) ⊃ Sp(2, C) are
conceivable: (i) 4 = 2 ⊕ 2, (ii) 4 = 2 ⊕ 2̄, and (iii) 4 =
2 ⊕ 1 ⊕ 1.

(i) Chiral spinor doubling

4 = 2 ⊕ 2 (14)

results in the decomposition of theHermitian second-
rank spin tensor 16 ∼ 4 × 4̄ as

16 = 4 · 4, (15)

i.e., in a collection of four four-vectors [more precisely,
of three vectors and one axial vector, as follows
from (12) and (13)]. As for matter fermions, according
to (14), the number of two-component fermions after
compactification is twice that of the number of four-
component fermions prior to compactification. If a
kind of family structure reproduces itself during the
compactification, it is necessary that there should be
at least two copies of the four-component fermions
in the extended spacetime with at least four two-
component copies of them in the ordinary space-
time. For phenomenological reasons, the fermions in
excess of three families should acquire rather large
effective Yukawa couplings as a manifestation of
the curled-up spacetime background. This is not
in principle impossible because the two-component
fermions in (14) distinguish extra dimensions. Note
that the requirement for the renormalization group
consistency of the Standard Model (SM) disfavors
the fourth heavy chiral family in the model without a
rather low cutoff [7]. But if due to decomposition (15)
for the gauge bosons, there appeared the additional
moderately heavy vector bosons with mass compara-
ble to that of the heavy fermions, this constraint could
in principle be evaded and the compactification scale
Λ could be envisaged to be both rather moderate and
high without conflict with the SM consistency. On
PH
the other hand, the extra timelike dimensions violate
causality and the proper compactification scale Λ
in the pseudoorthogonal case is stated to be not
less than the Planck scale [8]. Nevertheless, one
may hope that the latter restriction could somehow
be abandoned in the symplectic approach due to
approximate causality here. The causality should
be valid at small boosts or gravitational fields, so
that the compactification scale Λ could possibly be
admitted to be not very high. For this reason, the
given compactification scenario could still survive at
any Λ.

(ii) Vectorlike spinor doubling

4 = 2 ⊕ 2̄ (16)

results in the decomposition

16 = 2 · 4 ⊕ (3 + h.c.) ⊕ 2 · 1. (17)

In the traditional four-vector notation, one has X ∼
(x(1,2)
µ , x[µν], x(1,2)), µ, ν = 0, . . . , 3, with the ten-

sor x[µν] being antisymmetric and all the compo-
nents x being real. According to (16), after compact-
ification there should emerge pairs of ordinary and
mirror matter fermions. For phenomenological rea-
sons, one should require the mirror fermions to have
masses supposedly of the order of the compactifica-
tion scale Λ. Modulo reservations for the preceding
case, this compactification scenario could be valid at
any Λ too.

(iii) Spinor-scalar content

4 = 2 ⊕ 1 ⊕ 1 (18)

results in

16 = 4 ⊕
(
2 · 2 + h.c.

)
⊕ 4 · 1 (19)

or in the mixed four-vector and spinor notations X ∼
(xµ, x

(1,2)
A , x(1,2,3,4)), A = 1, 2. Due to (18), there

would take place the violation of the spin-statistics
connection for matter fields in the four-dimensional
spacetime if this connection was fulfilled in the ex-
tended spacetime. The scale of this violation should
be determined by the compactification scale Λ which,
in contrast with the two preceding cases, must safely
be high enough not to violate causality within the
experimental precision.

8. GAUGE INTERACTIONS

Let DA
B̄ ≡ ∂A

B̄ + igGA
B̄ be the generic covari-

ant derivative, with g being the gauge coupling, the
Hermitian spin tensor GA

B̄ being the gauge fields,
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and ∂A
B̄ ≡ ∂/∂XA

B̄ being the ordinary derivative.
Now let us introduce the strength tensor5)

F
[B̄1B̄2]
{A1A2} ≡

1
ig

D
[B̄1

{A1
D
B̄2]
A2} (20)

=
1

4ig

(
DB̄1
A1

DB̄2
A2

−DB̄2
A2

DB̄1
A1

+ DB̄1
A2

DB̄2
A1

−DB̄2
A1

DB̄1
A2

)

and similarly for F̄ {B̄1B̄2}
[A1A2]

≡ (F [Ā2Ā1]
{B2B1})

∗, where {. . . }
and [. . . ] mean the symmetrization and antisym-
metrization, respectively. One gets

F
[B̄1B̄2]
{A1A2} = ∂

[B̄1

{A1
G
B̄2]
A2} + igG

[B̄1

{A1
G
B̄2]
A2} (21)

and similarly for F̄
{B̄1B̄2}
[A1A2] . These tensors are clearly

gauge-invariant. The total number of real compo-

nents in the tensor F
[B̄1B̄2]
{A1A2} is 2(n(n − 1)/2)n(n +

1)/2 = n2(n2 − 1)/2, and it exactly coincides with
the number of components of the antisymmetric
second-rank tensor F[αβ], α, β = 0, 1, . . . , n2 − 1,
defined in the pseudo-Euclidean space of the d =
n2 dimensions. But in the symplectic case, ten-
sor F is reducible and splits into a trace relative
to ε and a traceless part, F = F (0) + F (1), where

F (0)[B̄1B̄2]
{A1A2} ≡ F

(0)
{A1A2}ε

B̄1B̄2 and F (1)[B̄1B̄2]
{A1A2}εB̄1B̄2

=

0 (and similarly for F̄
{B̄1B̄2}
[A1A2]

). Hence, one has two
independent irreducible representations with the
real dimensionalities d0 = n(n + 1) and d1 = n(n−
2)(n + 1)2/2. At n = 4, one has in terms of the com-

plex tensors of SO(5, C) F
(0)
[IJ ] ≡ (ΣIJ)A1A2F

(0)
{A1A2}

and F (1)[B̄1B̄2]
[IJ ] ≡ (ΣIJ)A1A2F (1)[B̄1B̄2]

{A1A2}. At n = 2,

in terms of SO(3, C) there remains only F
(0)
[ij] ≡

(σij)A1A2F
(0)
{A1A2} or, equivalently, F

(0)
i ≡

1/2εijkF
(0)
[jk].

For an unbroken gauge theory with fermions, the
generic gauge, fermion, and mass terms of the La-
grangian L = LG + LF + LM are, respectively,

LG =
∑
s=0,1

(cs + iθs)F (s)F (s) + h.c., (22)

LF =
i

2

∑
±

(ψ±)†
↔
D ψ±,

LM =ψ+m0ψ
− +

∑
±

ψ±m±ψ
± + h.c.,

5)For simplicity, we do not distinguish in what follows the
relative column positions of the indices of different kinds.
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where F (s)F (s) ≡ F (s)[B̄1B̄2]
{A1A2}F

(s){A2A1}
[B̄2B̄1]

and
↔
D is the

covariant derivative acting to the right and to the left
with different signs. In the Lagrangian, m0 is the
generic Dirac mass, m± are Majorana masses, and
cs and θs are the real gauge parameters. One of the
parameters cs, supposedly c0 �= 0, can be normalized
at will. Equation (22) results in the following gener-
alization of the Dirac equation,

iDC
B̄ψ

±
C = m†

0ψ̄
±
B̄

+
∑
±

m†
±ψ̄

∓
B̄
, (23)

and the pair of Maxwell equations (c0 ≡ 1 and c1 =
θ1 = 0, for simplicity)

(1 + iθ0)DCB̄F (0)
{CA} − h.c. = 0, (24)

(1 + iθ0)DCB̄F (0)
{CA} + h.c. = 2gJAB̄ ,

with the fermion Hermitian current J given by (8).
The tensors F (s), s = 1, 2, are non-Hermitian, but

under restriction by the maximal compact subgroup
Sp(2l) (when there is no distinction between the
indices of different kinds), they split into a pair
of the Hermitian ones E(s) and B(s) as follows:
F (s) =E(s) + iB(s). Here, one has E(s)[Y1Y2]

{X1X2} ≡
(1/2)

[
F (s)[Y1Y2]

{X1X2}+
(
F (s){X2X1}

[Y2Y1]

)∗] andB(s)[Y1Y2]
{X1X2} ≡

(1/2i)
[
F (s)[Y1Y2]

{X1X2}−
(
F (s){X2X1}

[Y2Y1]

)∗] with

E(s)[Y1Y2]
{X1X2} = (E(s){X2X1}

[Y2Y1]
)∗ and similarly for B(s).

Introducing the duality transformation F (s) →
F̃ (s) ≡ −iF (s), so that Ẽ(s) = B(s) and B̃(s) =
−E(s), one gets ReF (s)F (s) = E(s)2 −B(s)2 and
ImF (s)F (s) = ReF̃ (s)F (s) = 2E(s)B(s). Though the
splitting into E(s) and B(s) is noncovariant with
respect to the whole Sp(2l, C), the duality transfor-
mation is covariant. The tensors E(s) and B(s) are
the counterparts of the ordinary electric and magnetic
strengths, and θ0 is the counterpart of the ordinary
T -violating θ parameter for the n = 2 case. Thus, θ1

is an additional T -violating parameter at n > 2. Note
that, in the framework of symplectic extension, the
electric and magnetic strengths stay on equal footing.
This is to be compared with the pseudoorthogonal
extension where these strengths have an unequal
number of components at d �= 4, and hence there is no
natural duality relation between them. The electric–
magnetic duality of the gauge fields (for imaginary
time) plays an important role in the study of the
topological structure of the gauge vacuum in four
spacetime dimensions. Therefore, a similar study
might be applicable to the case of extended symplectic
spacetimes with arbitrary l > 1.

Field equations (23) and (24) are valid in the flat
extended spacetime or, otherwise, refer to the inertial
3
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local frames. To go beyond, one can introduce the
Hermitian local frames eαA

B̄(X), eαAB̄ = (eαBĀ)∗,
with α = 0, 1, . . . , n2 − 1 being the world vector in-
dex, and the real world coordinates xα ≡ eα

A
B̄XA

B̄ ,
as well as the generally covariant derivative ∇α(e).
Now, (22) can be adapted to the d = n2 dimen-
sional curved spacetime equipped with a pseudo-
Riemannian structure (the real symmetric metrics
gαβ(x) = eα

A
B̄eβA

B̄) or to the curved coordinates.
In line with [9], one can also supplement gauge
equations by the generalized gravity equations in the
curved symplectic spacetime. But now the group of
equivalence of the local frames (structure group) is
not the whole pseudoorthogonal group SO(d−, d+)
but only its part isomorphic to Sp(2l, C). It leaves
more independent components in the local symplectic
frames compared to the pseudo-Riemannian frames.
The number of components in the latter ones being
equal to that in the metrics, the symplectic gravity
is not in general equivalent to the metric one. The
curvature tensor in the symplectic case, like the
gauge strength one, splits additionally into irreducible
parts which can a priori enter the gravity Lagrangian
with independent coefficients. The ultimate reason
for this may be that, in the symplectic approach, the
spacetime is likely to be not a fundamental entity.
Therefore, gravity as a generally covariant theory of
the spacetime distortions is to be meant just as an
effective theory. The latter admits the existence of
a number of free parameters, the choice of which
should be determined, in principle, by the physical
contents of the effective theory and should ultimately
be clarified by an underlying theory.

9. CONCLUSION

The hypothesis that the symplectic structure of
spacetime is superior to the metric one provides, in
particular, the rationale for the four-dimensionality
P

and 1 + 3 decomposition of the ordinary spacetime.
When looking for the extradimensional spacetime
extensions, the hypothesis predicts the discrete se-
quence of metric spacetimes of fixed dimensionalities
and signatures. The symplectic spacetime extension
proves to be not a priori inconsistent and provides
a viable alternative to the pseudoorthogonal one.
The emerging dynamics in the extended spacetime
is largely unorthodox and possesses a lot of new
features. The physical contents of the scheme require
further investigation. But beyond the physical ade-
quacy of the extradimensional spacetimes, by gener-
alizing from the basic case l = 1 to its counterpart for
general l > 1, a deeper insight into the nature of the
four-dimensional spacetime itself may be attained.
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Abstract—Previous results of the present authors, who showed that observables of the hard-
bremsstrahlung processpp → ppγ at beam energies ranging between 350 and 500MeVare highly sensitive
to the type of nucleon–nucleon potential (meson-exchange potentials versus the Moscow potential), are
generalized by means of a relativistic analysis, which includes, above all, a modified current operator. As a
result, the relevant cross sections decrease, while their angular dependence changes. However, the above
high sensitivity to the type of potential survives and becomes quite significant even at the lowest beam
energy of 280 MeV considered here, for which there are experimental data. They seem to favor one of the
versions of the Moscow potential. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

There are two radically different types of models
of the nucleon–nucleon interaction. The first type,
a traditonal one, employs phenomenological meson-
exchange potentials, which date back to the famous
idea put forth by Yukawa. They involve a repulsive
core associated with vector-meson exchange. We will
consider two currently employed potentials of this
type, the Paris and the Nijmegen one (see [1] and
[2], respectively). Potentials that are close to them
in a pragmatic aspect were obtained in some quark
models either on the basis of the resonating-group
method [3] or on the basis of a superposition of dif-
ferent 6q shell configurations [4].

The second type relies on the deep-attraction
Moscow potential involving forbidden states [5–8].
The Moscow potential features no repulsive core,
but, for S and P partial waves, there is a node in
the place of it, along with a loop of the radial wave
function to the left of this node. In terms of such a
potential supplemented with an imaginary part, it is
possible to describe data on nucleon–nucleon scat-
tering (differential cross sections and polarizations)
up to a laboratory-energy value of 5 to 6 GeV [6]
(with a meson-exchange potential, one can do this
only up to 2 GeV [9]), the S- and P-wave phase
shifts having positive values throughout this range (in
accordance with the generalized Levinson theorem,
the triplet S-wave phase shift at zero energy is

1)Khabarovsk State University of Technology, Tikhookean-
skaya ul. 136, Khabarovsk, 680034 Russia.

*e-mail: neudat@nucl-th.sinp.msu.ru
1063-7788/03/6601-0143$24.00 c©
equal to 2π and so on). Microscopically, the Moscow
potential corresponds to the situation where, owing to
a nonperturbative instanton-induced strong quark–
quark interaction [10], the nucleon–nucleon system
at short distances is dominated, for example, by
the excited quark configuration s4p2[42]X [42]ST (the
notation for the types of symmetry is identical to that
in [10, 11]). This interaction is attractive if the wave
function is symmetric with respect to the interchange
of the coordinates of two quarks in ST space, but it
is repulsive if the wave function is antisymmetric. In
the region of nucleon overlap, the above configuration
can therefore have a much lower energy than the
s6[6]X [23]ST configuration. Other reasons for the
dominance of the s4p2 configuration are also possible
(for example, the effect of the virtual color-excitation
channel NN ↔ cc featuring a very strong attraction
of color dipoles) [11, 12]. Such a situation, should
it be prevalent, will manifest itself in various pro-
cesses probing the baryon–baryon composition of the
deuteron [13], since the components involved in that
case will include N∗(1/2−, 3/2−)N∗(1/2−, 3/2−),
N∗∗(1/2+)N [N∗∗(1/2+) is the Roper resonance of
S-wave relative motion], and N∗(1/2−, 3/2−)N in
the P wave.

In our preceding studies [14–16], we showed that
the hard-bremsstrahlung process pp → ppγ occur-
ring at rather modest beam energies, those between
350 to 500 MeV, must clearly distinguish between
meson-exchange potentials, on one hand, and the
Moscow potential, on the other hand. In formal terms,
this is because potentials belonging to these two
2003 MAIK “Nauka/Interperiodica”
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types are not phase-equivalent—that is, the S matrix
for the Moscow potential has a pole corresponding to
a strongly bound forbidden state, and the correspond-
ing S- and P-wave phase shifts at low energies differ
by π from those for the meson-exchange potentials.
As was indicated above, these distinctions could be
recognized [5, 6] by analyzing elastic-scattering data
over the widest energy region extending up to 5 or
6 GeV, but by no means is this circumstance alone
sufficient for the purposes pursued here—fortunately,
the hard-bremsstrahlung process pp → ppγ opens an
independent possibility for this.

At the same time, it was indicated in [17] that the
hard-bremsstrahlung process in question furnishes
virtually no evidence (and much less the correspond-
ing soft process) for recognizing different meson-
exchange-potential versions, which are nearly phase-
equivalent.

Here, we pursue further investigations begun
in [14–16], going over from a nonrelativistic to
a relavistic treatment. This makes it possible to
remove the ambiguity in nonrelativistic results for
the Moscow potential, which were different in two
different c.m. frames of two protons, the primary and
secondary ones. This ambiguity was insignificant at
the beam energy of E0 = 280 MeV, but it became
quite pronounced at E0 = 450 MeV and very large
at E0 = 500 MeV. This suggests that relativistic
effects are of great importance there. On one hand,
the removal of the above ambiguity does not change
our conclusion that the observables of the above
hard-bremsstrahlung process are highly sensitive
to the form of nucleon–nucleon interaction, thereby
strengthening the argument behind this conclusion;
on the other hand, relativistic effects do indeed prove
to be of great importance (they are quite significant
even at the minimum beam-energy value of E0 =
280 MeV considered here).

2. DESCRIPTION OF FORMALISM

We rely on the relativistic quasipotential equation
introduced in [18]. In the c.m. frame, it has the form(

p̂2

m
+ V̂

)
χ(r) =

M2 − 4m2

4m
χ(r) =

1
2
Elabχ(r).

(1)

Here, V̂ is the phenomenological nucleon–nucleon
potential being discussed (in general, it is nonlocal),
M(q2) = 2w(q) = 2(m2 + q2)1/2 in the mass of the
system under consideration (m is the nucleon mass),
and q is the momentum of the relative motion of
the nucleons involved; in the following, we employ
the well-known relation [19] E =

√
M2 + P2, where

the total energy E =
√

m2 + p2
1 + m of the system
PH
in the laboratory frame, the total momentum P =
р1, and the kinetic energy Elab =

√
m2 + p2

1 −m of
the incident nucleon are expressed in terms of its
laboratory momentum р1. The quasipotential repre-
sentation [20] corresponds to the realization specified
by the equations p̂ = −i∂/∂r and V̂ = V̂ (r). This
enables us to use partly the formalism of our previous
investigations reported in [14–16]. As to the main
relativistic effects, they are absorbed in the current
operator, which we now proceed to discuss.

The bremsstrahlung amplitude Aif is given by the
well-known expression [14–16]

δ(Ei − Ef − k0)δ3(Pi − Pf − k)Aif (2)

=
√

2π
k0

∫
d3x 〈Pfχf |ε∗µĴµ(x) |Piχi〉 e−ik·x.

Our further analysis is based on the pointlike form of
relativistic dynamics [21–23], where the interaction
is present only in the components of the operator of
the 4-momentum P of the two-nucleon system in
question.

The formulas for thematrix elements of the current
have an especially simple form in the reference frame
where the sum of the 3-vectors representing the ve-
locities of the centers of mass of the initial and the final
nucleon–nucleon system vanishes; that is,

Gi + Gf = 0 (3)

with G = P/M . In this reference frame, we have [23]

〈Pfχf | Ĵµ(x) |Piχi〉 (4)

= 2
√

MiMfe
i(Pf−Pi)x 〈χf | ĵµ(k) |χi〉 ,

where k = (k0, k) is the photon 4-momentum. Thus,
we can recast the amplitude in (2) into the form

Aif =
√

2π
k0

· 16π3
√

MiMf 〈χf | ε∗µĵµ(h) |χi〉 , (5)

where integration is performed only with respect to
the internal variables of the proton–proton system. In
the transverse gauge, where

ε = (0, ε), (ε · k) = 0, (6)

the situation is simplified in that the component j0(k)
ceases to play any significant role. As is shown in
Appendix 1, the expression for the current ĵ(k) in the
reference frame specified by Eq. (3) has the form

ĵ(k) = 2iFme (7)

×
(
m

w
[S × h] +

w −m

wq2
[q× h](q · S)

)

+ 2ie
(

Fm
mw

+
Fe

w(w + m)

)
(h · [q× S])q
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+
Fee

w
q(I1(h) − I2(h)) − 2Fee(h · q)

wm
q

+
Mi −Mf

Mi + Mf
· 2ie

(
Fm
m

+
Fe

w + m

)
[q× T],

where, by virtue of relation (6), there are no vec-
tor terms parallel to k; (w −m)/wq2 = q2/w(w +
m)q2 = 1/w(w + m); S = s1 + s2; T = s1 − s2;
Fe(k) and Fm(k) are, respectively, the electric and the
magnetic form factor for the proton; h =
2(MiMf )1/2(Mi + Mf )−2k; and

Ij(h)χ(q) (8)

=




χ(d1) = χ

(
q − 2h

1 − h2
{w(q) − h · q}

)
, j = 1,

χ(d2) = χ

(
q +

2h
1 − h2

{w(q) − h · q}
)
, j = 2.

The nonrelativistic limit of formula (7), where |h| 

m and |q| 
 m, was used in our previous studies
reported in [14–16 ].

The way in which the operator Ij(h) acts in the
coordinate representation can be expressed as

Ij(h)χ(r) = exp[∓2i(ρ · h)
√

m2 + p̂2]χ(r)|ρ=r
(9)

(p̂ = −i∇), which can be verified by applying this
operator to a plane wave. Of course, we use the series
expansion

Ij(h) = e∓2i(ρ·h)

[
1 + i(ρ · h)

p̂2

m
+ . . .

]∣∣∣∣
ρ=r

(10)

(the substitution ρ → r is made upon applying the
Laplace operator).

It is convenient to transform the matrix element
appearing in (5) as follows:

〈χf | ε∗µĵµ(h) |χi〉 = 〈χf | ε∗̂j(h) |χi〉 (11)

= (〈χf | − 〈φf |)ε∗̂j(h)(|χi〉 − |φi〉)
+ 〈φf | ε∗̂j(h) |χi〉 + 〈χf | ε∗ĵ(h) |φi〉 .

Here, |fi〉 and |φf 〉 are the wave functions that de-
scribe the relative motion for noninteracting particles
(plane waves), the corresponding relative momenta
being qi for the former and qf for the latter. On the
whole, this representation makes it possible improve
the convergence of the partial-wave expansions of
the functions χ(r) − φ(r) (see our analysis in [14]).
Other matrix elements in (11), where the function
φi(r) [φf (r)] appears on the left- or on the right-hand
side, are calculable quite straightforwardly. The action
of the operator p̂Ij(h), for example, on the function
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
|χi(r) − φi(r)〉 in the coordinate representation can
be written in the form

p̂Ij(h) |χi − φi〉 (12)

= −i∇
[
exp[∓2ih · r

√
m2 + q2

i −mVẼ(r)]χi

− exp[∓2ih · r
√

m2 + q2
i ]φi

]
,

which is the most convenient for applications in
Eq. (1).

Further, relevant radial integrals are broken down
into two parts as

∫ R
0 and

∫∞
R , where R is chosen

to be a minimal large value at which the inequality
|mVẼ(R)| 
 m2 + q2 is satisfied (for example, R =
3 fm for the Moscow potential). In evaluating

∫ R
0

integrals, use ismade of the expansion of, for example,
the first exponential in powers of (q2

i −mVẼ(r))n in
the spirit of formula (10). The convergence is fast,
and quite an acceptable level of precision is achieved
at values as low as n ∼ 3. In Appendices 1 and 2,
we illustrate the technique for computing the matrix
elements of other components of the current operator.
Although this computational scheme seems cumber-
some, it is not more involved than a calculation in the
momentum representation, where there is also an un-
wieldy technical element associated with integration
over the solid angles specifying the orientations of the
vectors q and q ± 2hw(q) that has to be performed in
going over to one-dimensional radial integrals.

3. RESULTS OF THE CALCULATION
AND DISCUSSION

The differential cross sections for the bremsstrah-
lung process pp → ppγ are displayed in Figs. 1–6
for six values of energy. Here, the geometry (it was
realized in experiments reported in [24]) corresponds
to nearly the hardest photons.

No calculations within the full relativistic formal-
ism used here [22, 23] have been performed thus far
with the current operator (7)—the relativistic correc-
tions introduced in [25] concerned only spin variables,
their inclusion reducing the cross section by approxi-
mately 25%.

We would like to highlight the following special
features of the results displayed in Figs. 1–6. First,
relativistic effects are significant even at the beam
energy of E0 = 280 MeV; at higher energies, their
impact is so strong that the general pattern changes
completely, the cross section becoming by and large
much smaller. Specifically, the distinct forward and
backward maxima that arise in the differential cross
sections computed on the basis of the nonrelativistic
3
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Fig. 1. Differential cross section for the process pp→
ppγ as a function of the photon emission angle at E0 =
280 MeV for θ1 = 12.4◦ and θ2 = 12.0◦ in coplanar ge-
ometry (the product photon is emitted toward the angle
θ2). The results of the nonrelativistic calculations are
shown by the thin short-dashed curve for the Moscow
potential MP-92 and by the thin dash-and-dot curve
for the Paris potential (here, the results of nonrelativistic
calculations in the c.m. frame of primary protons are very
close to those in the c.m. frame of secondary protons). The
results of the relativistic calculations are represented by
the thick solid curve for the Moscow potential MP-92,
by the thick dash-and-three-dot curve for the Moscow
potential MP-97, by the thick long-dashed curve for the
Paris potential, and by the thick dotted curve for the
Nijmegen potential.

approach [14–16] with the Moscow potential MP-
92 [7] and which stem from the nodal character of
the radial wave function for the P-wave state of rel-
ative motion survive in the results of the relativistic
calculation only for the Moscow potential MP-97
[8], which features the maximum possible amplitude
of the aforementioned short-range oscillation in the
P wave. Second, there remains a large distinction
between the cross sections for meson-exchange po-
tentials, on one hand, and the cross sections for the
Moscow potential, on the other hand. This distinction
is also associated with the special features of the P
wave in the Moscow potential that were mentioned
above; that is, these features still strongly manifest
themselves, but their manifestations in the relativistic
consideration differ from those in the nonrelativistic
treatment. Naturally, the problem of distinctions in
the nonrelativistic treatment between the cross sec-
tions in the c.m. frame of primary protons and those in
the c.m. frame of secondary protons [14–16] becomes
nonexistent in the relativistic approach.

The results for the beam energy of E0 = 280 MeV
in Fig. 1 are of particular importance, since exper-
imental data already available at this energy value
[24] become critical to the choice of nucleon–nucleon
potential within the relativistic treatment. Specifi-
P
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Fig. 2. As in Fig. 1, but for the beam energy of E0 =
320 MeV. Here, two curves are presented for each version
of the nonrelativistic calculation, the upper (lower) one
being computed in the c.m. frame of secondary (primary)
protons.

cally, we can see that, while, in the nonrelativis-
tic approach [14–16], the theoretical results for the
Moscow potential MP-92 are very close to those
for the meson-exchange potentials considered here,
in the relativistic approach, the cross section in the
backward hemisphere for MP-92 is twice as large as
those for the meson-exchange potentials, thereby be-
ing much closer to the experimental value. Neverthe-
less, it is instructive to compare the cross sections for
the Moscow potentials MP-92 and MP-97. As can
be seen fromFig. 1, the results forMP-97 are in sharp
disagreement with experimental data, but these re-
sults are of great value from the methodological point
of view, furnishing a measure of the formidable effect
that can arise in response to a purposely increasing
the amplitude of the short-range oscillation (loop) of
the wave function in the P wave to an extent that is
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Fig. 3. As in Fig. 2, but for the beam energy of E0 =
350 MeV.
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Fig. 4. As in Fig. 2, but for the beam energy of E0 =
400 MeV.

still compatible with obtaining a correct description
of the energy dependence of the P-wave phase shifts
for nucleon–nucleon scattering. It can be seen that
a moderate increase in the depth of the potentials
for the P waves in the MP-92 version—this leads
to a comparatively small increase in the amplitude of
this loop—fits the theoretical curve to experimental
data. It should be emphasized that meson-exchange
potentials do not possess such a resource. Yet, these
considerations are of only a preliminary character, and
of greatest theoretical interest is of course a thorough
test of the above theoretical concepts at different en-
ergies. Thus, the problem of experimentally investi-
gating the hard-bremsstrahlung process in question
at intermediate energies of E0 = 300–500 MeV re-
mains pressing in the context of a comparison of po-
tentials belonging to the above two radically different
types.

The hard-bremsstrahlung process in question is
virtually insensitive to the node that theS wave devel-
ops at R = 0.5–0.6 fm in the Moscow potential [5–
8], and this important issue is worthy of experimental
investigation by a completely different method, that
which would employ the quasielastic-knockout reac-
tion 2Н(e, e′p)n at high energies over a wide region
of spectator-neutron recoil momenta that extends up
to 1 GeV/c (such data are already available [26]). In
analyzing experimental data with the aim of extract-
ing the momentum distribution of nucleons in the
deuteron, it should be borne in mind, however, that
the Moscow potential leads here to a strong final-
state neutron–proton interaction.

In all probability, the important experiments of a
different type that were reported in [27] and which
were aimed at studying the reaction 2H + γ → n +
p at energies as high as those in the region Eγ ≥
2 GeV, where the contribution of meson-exchange
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Fig. 5. As in Fig. 2, but for the beam energy of E0 =
450 MeV.

currents is suppressed and where the wave function
describing the relative motion in the neutron–proton
system can therefore be probed directly, are sensitive
(the inclusion of final-state interaction is mandatory
here) to the presence of wave-function nodes both in
the initial S-wave state and in the important final-
state partial P wave. We are going to analyze both
types of the above experiments in the future.

In conclusion, we note that our previous arti-
cles [15, 16] contained the erroneous conclusion that,
within the nonrelativistic treatment, the results for the
hard-bremsstrahlung process pp → ppγ that are ob-
tained with the nucleon–nucleon potential proposed
in [28] comply with those for the earlier versions of
the Moscow potential that were discussed here and
which are characterized, as was indicated above, by a
large amplitude of the short-range oscillation in the P
wave. In fact, the short-range oscillation of the wave
function describing the relative motion of nucleons in
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the P-wave state of the continuum is very strongly
suppressed in the nonlocal potential from [28], and
the differential cross section for the above process
treated with this potential is close to that computed
with the Nijmegen potential. This circumstance was
pointed out by M.A. Shikhalev, to whom we also owe
a valuable discussion on the role of different partial
waves in the formation of the amplitude for the pro-
cess pp → ppγ.
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APPENDIX 1

Here, we will derive formula (7), relying on the
results presented in [23] and supplementing them.
For a particle of 4-momentum p, we define the
Lorentz transformation associated with a boost g as
p → L(α(g))p, where [29]

α(g) =
g0 + 1 + σ · g√

2(g0 + 1)
. (A.1)

Here, g is the 4-velocity, while σ = (σx, σy, σz) are
the Pauli matrices. The transformation in question
is realized in the following way [29]: associating the
matrix p̌ = σµpµ with the vector p, we have

p0 = (p̌11 + p̌22)/2, p1 = (p̌12 + p̌21)/2, (A.2)
P

p2 = (−p̌12 + p̌21)/2i, p3 = (p̌11 − p̌22)/2.

The transformation

p̌ → α(g)p̌α(g)+, (A.3)

together with formulas (A.2), describes the action of
the boost p → L(α(g))p.

Further, we define the Poincaré group transforma-
tion characterized by a 4-shift a and a 4-rotation l as
[23]

U(a, l)ϕ(g) (A.4)

= exp(img′a)D(s;α(g)−1lα(g′))ϕ(g′),

where ϕ(g) is a normalizable spinor function, s is the
spin operator, and g′ = L(l)g. In our case of spin-
1/2 particles, we are dealing with the fundamental
representation [29]; that is,

D(s; lα(g)−1lα(g′)) = α(g)−1lα(g′). (A.5)

We specify the operator l by going over to a two-
particle system. Here, we have the particle 4-momen-
ta pi = migi (i = 1, 2) and the c.m. 4-velocity G. In
the c.m. frame, the particle momenta are given by [23]

qi= L[α(G)]−1migi, q1 = q = −q2. (A.6)
Bearing in mind that the reaction pp → ppγ is the
main subject of our analysis and choosing the co-
ordinate frame specified by Eq. (3), we consider the
general expression for the current within the pointlike
form of dynamics [23]:
jν(h) =
∑
i=1,2

L

(
L[α(f)]

qi
mi

, L[α(f ′)]
di
mi

)µ
ν

D

[
sk;α

(
qk
mk

)−1

α(f)−1α(f ′)α
(

dki
mk

)]
(A.7)

×D

[
si;α

(
qi
mi

)−1

α(f)−1α

(
L[α(f)]

qi
mi

, L[α(f ′)]
di
mi

)
α(fi)

]
jνi (h)

×D

[
si;α(f ′

i)
−1α

(
L[α(f)]

qi
mi

, L[α(f ′)]
di
mi

)
α(f ′)α

(
di
mi

)]
miwi(qi)
wi(di)

(
M(di)
M(qi)

)3/2

Ii(h).
In this formula, k = 2 if i = 1 and k = 1 if i = 2.
The quantities f are defined as

f = L(G,G′)−1
G, f ′ = L(G,G′)−1G′. (A.8)

These are the 4-velocities of the center of mass in the
initial and the final state in the coordinate frame spec-
ified by Eq. (3). We also have f2 = f ′2 = 1, f + f′ =
0, f0 = f ′

0 = (1 + f2)1/2; L(G,G′) = L(α(G,G′)),
α(G,G′) = α((G + G′)/|G + G′|); and d1 =
(ω1(d1),d1), d2 = (ω2(d2),d2), d12 = L[α(f ′)−1 ×
H

α(f)]q2 = (ω2(d1),−d1), d21 = L[α(f ′)−1α(f)]q1 =
(ω1(d2),d2), where d1 and d2 are given by (8).

Finally, jνi (h) is the current of particle i. Specifically,

we have

j0
i (hi) = eFe


− 4m2h2

i√
1 − h2

i


 , (A.9)
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ji(hi) = − ie√
1 − h2

i

Fm


− 4m2h2

i√
1 − h2

i


 [hi × si] ,

where Fe and Fm are, respectively, the electric and the
magnetic form factor, while the vectors hi are defined
below.

Expression (A.7) does not involve a contribution
from particle interaction because, in the pointlike
form of dynamics, such a contribution is absorbed
in j||(h) [23]; however, this component is removed by
the transverse gauge, as was indicated in the main
body of the text.

Photon energies Eγ below 500 MeV, which are
actually considered in this study, correspond to |h| 

1. In this approximation, Fe(h) 
 Fe(0) = 1 and
Fm(h) ≈ Fm(0) = 2.793/m; we also have

d1 = (w − 2hqz, qx, qy, qz − 2hw),
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
d2 = (w + 2hqz,−qx,−qy,−qz − 2hw)

(h is directed along the z axis, andw = w(q) = (m2 +
q2)1/2),

d12 = (w − 2hqz,−qx,−qy,−qz + 2hw),

d21 = (w + 2hqz, qx, qy, qz + 2hw),

1
ω(d1)

(
M(d1)
M(q)

)3/2

=
w − hqz

w2
,

1
ω(d2)

(
M(d2)
M(q)

)3/2

=
w + hqz

w2
;

h1 = h2 = f1 = f2 =

(
1,− 2hqzqx

m(w + m)
,− 2hqzqy

m(w + m)
,
2h(m(w + m) + q2

x + q2
y)

m(w + m)

)
,

f ′
1 = f ′

2 =

(
1,

2hqzqx
m(w + m)

,
2hqzqy

m(w + m)
,−

2h(m(w + m) + q2
x + q2

y)
m(w + m)

)
;

L[α(f)]
q1

m
= m−1 (w + hqz, qx, qy, qz + hw) ,

L[α(f ′)]
q1

m
= m−1 (w − 3hqz , qx, qy, qz − 3hw) ;


 (A.10)

z1 =
L[α(f)]

d1

m
+ L[α(f ′)]

d1

m∣∣∣∣L[α(f)]
q1

m
+ L[α(f ′)]

d1

m

∣∣∣∣
= (w − hqz, qx, qy, qz − hw).

For z2, there is the analogous formula where it is necessary to make the substitution q → −q.

Going over to a general notation, where, for example,

di ∼= (w ∓ 2(h · q),±q− 2hw), (A.11)

we can write the following approximate expression:

L

(
L[α(f)]

qi
mi

, L[α(f ′)]
di
mi

)
ji(hi) ≡ L(zi)ji(hi) (A.12)

∼=
(
Fee

m
(w ∓ (h · q)) ± 4iFme

m2
(h · [q × si])w,±Fee

m
(q ∓wh)

+ 4iFme

(
[si × h] +

(h · [q× si])q
m2

+
(q · si)[q × h]
m(w + m)

))
.

Employing, finally, the realization in (A.5), we obtain

D

[
sk, α

(
qk
mk

)−1

α(f)−1α

(
dki
mk

)]
∼= 1 ± i

w + m
(h · [σk × q]), (A.13)
3
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D

[
sk, α

(
qi
mi

)−1

α(f)−1α

(
L[α(f)]

qi
mi

, L[α(f ′)]
di
mi

)
α(fi)

]
(A.14)

∼= D

[
sk, α(f ′

i)
−1α

(
L[α(f)]

qi
mi

, L[α(f ′)]
di
mi

)−1

α(f ′)α
(

di
mi

)]
∼= 1 ± i(m + 2w)

2m(w + m)
(h · [σi × q]).
Substituting all the above into formula (A.7), we ar-
rive at expression (7) (apart from terms parallel to h,
which are of little importance).

APPENDIX 2

For a few examples, we will illustrate here the
technique for computing the matrix elements of var-
ious components of the relativistic current operator.
We have

(∇ · S)∇µ = − 1√
3

[
[∇ × ∇](0) × S

](1)
µ

(A.15)

−
√

5
3

[
[∇ × ∇](2) × S

](1)
µ

,

(h · [∇ × S])∇µ = −i

√
6

3
(A.16)

×
(√

15
2

[
[[∇ × ∇](2) × S](2) × h

](1)
µ

PH
+
[
[[∇ × ∇](0) × S](1) × h

](1)
µ

−
√

5
2

[
[[∇ × ∇](2) × S](1) × h

](1)
µ

)
,

〈Lf , Sf = 1;JfMf |
[
[∇ × ∇](k) × S

](n)

µ
(A.17)

× f(r) |Li, Si = 1;JiMi〉 =

C
JfMf

JiMinµ




Lf 1 Jf

Li 1 Ji

k 1 n



√

6(2(Ji + 1)(2n + 1))

× 〈Lf | |[∇ × ∇](k)f(r)| |Li〉 ,
〈
Lf

∣∣∣∣
∣∣∣∣[∇ × ∇](2)

f(r)
r

∣∣∣∣
∣∣∣∣Li
〉

(A.18)

=

√
2Lf + 1

√
6CLf 0

Li020

1
r

(
δLiLf

(
−1 +

3(2L2
i + 2Li − 1)

√
2(2Li + 1)

(2Li − 1)(2Li + 1)(2Li + 3)

)(
d2

dr2
− Li(Li + 1)

r2

)
f(r)

+ δLiLf−2
3(Li + 1)(Li + 2)

√
2(2Li + 1)

(2Li + 1)(2Li + 3)(2Li + 5)

(
d2

dr2
− (2Li + 3)

r

d

dr
+

(Li + 3)(Li + 1)
r2

)
f(r)

+ δLiLf +2
3Li(Li − 1)

√
2(2Li + 1)

(2Li + 1)(2Li − 3)(2Li − 1)

(
d2

dr2
+

(2Li − 1)
r

d

dr
+

Li(Li − 2)
r2

)
f(r)

)
.

Here, the upper index in parentheses stands for the
tensor rank of an operator.
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Institute of Theoretical and Experimental Physics,
Bol’shaya Cheremushkinskaya ul. 25, Moscow, 117259 Russia

Received April 8, 2002

Abstract—We consider near-threshold a0(980)-meson production in πN andNN collisions. An effective
Lagrangian approach with one-pion exchange is applied to analyze different contributions to the cross
section for different isospin channels. The Reggeon exchange mechanism is also evaluated for comparison.
The results from πN reactions are used to calculate the contribution of the a0 meson to the cross sections
and invariantKK̄ mass distributions of the reactions pp → pnK+K̄0 and pp → ppK+K−. It is found that
the experimental observation of a+

0 mesons in the reaction pp → pnK+K̄0 is much more promising than
the observation of a0

0 mesons in the reaction pp → ppK+K−. Effects of isospin violation in the reactions
pN → da0, pd → 3He(3H)a0, and dd → 4Hea0, which are induced by a0(980)–f0(980) mixing, are also
analyzed. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The structure of the lightest scalar mesons a0(980)
and f0(980) is still under discussion (see, e.g., [1–
7] and references therein). Different authors inter-
preted them as unitarized qq̄ states, as four-quark
cryptoexotic states, as KK̄ molecules, or even as
vacuum scalars (Gribov’s minions). Although it has
been possible to describe them as ordinary qq̄ states
(see [8–10]), other options cannot be ruled out up to
now. Another problem is the possible strong mixing
between the uncharged a0(980) and the f0(980)
due to a common coupling to KK̄ intermediate
states [11–17]. This effect can influence the structure
of the uncharged component of the a0(980)- and
implies that it is important to perform a comparative
study of a0

0 and a
+
0 (or a−0 ). There is no doubt that new

data on a0
0 and a+

0 (a
−
0 ) production in πN and NN

reactions are quite important to shed new light on the
a0 structure and the dynamics of its production.
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In our recent paper [18], we have considered
a0 production in the reaction πN → a0N near the
threshold and at GeV energies. An effective La-
grangian approach and the Regge pole model were
applied to investigate different contributions to the
cross section of the reaction πN → a0N . In [19],
we have employed the latter results for an analysis
of a0 production in NN collisions. Furthermore,
in [17], we have considered the a0–f0 mixing in
reactions involving the lightest nuclei d, 3H, 3He, and
4He. Here, we give an overview of those results and
present a comparative analysis of a0(980)-resonance
production and nonresonant background channels
in the reactions πN → a0N → KK̄N and NN →
a0NN → KK̄NN . Our study is particularly rele-
vant to the current experimental program at COSY
(Jülich) [20–22].

Our paper is organized as follows. In Section 2,
we discuss the KK̄ and πη decay channels of the
a0(980). An analysis of a0(980)-resonance produc-
tion and nonresonant background in the reactions
πN → KK̄N andNN → a0NN → KK̄NN is pre-
sented in Section 3. Section 4 is devoted to the cal-
culation of the cross sections for the reactionsNN →
NNa0 and NN → a0NN → KK̄NN in compari-
son to nonresonant KK̄ production. In Section 5,
we consider a0(980)–f0(980) mixing and isospin vi-
olation in the reactions pN → da0, pd → 3He(3H) a0,
and dd → 4Hea0.
2003 MAIK “Nauka/Interperiodica”
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2. THE KK̄ AND πη DECAY CHANNELS
OF THE a0(980)

The a0(980) invariant mass distribution in theKK̄
and πηmodes can be parametrized by the well-known
Flatté formula [23] which follows from analyticity and
unitarity for the two-channel T matrix.

For example, in the case of the reaction NN →
a0NN → KK̄NN , the mass distribution of the final
KK̄ system can be written as a product of the total
cross section for a0 production (with the “running”
massM ) in theNN → NNa0 reaction and the Flatté
mass distribution function

dσKK̄

dM2
(s,M) = σa0(s,M) (1)

× CF
MRΓa0KK̄(M)

(M2 −M2
R)2 +M2

RΓ
2
tot(M)

with the total width Γtot(M) = Γa0KK̄(M) +
Γa0πη(M). The partial widths

Γa0KK̄(M) = g2
a0KK̄

qKK̄

8πM2
, (2)

Γa0πη(M) = g2
a0πη

qπη
8πM2
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
are proportional to the decay momenta in the c.m.s.
(in case of scalar mesons)

qKK̄

=
[(M2 − (mK +mK̄)

2)(M2 − (mK −mK̄)
2)]1/2

2M
,

qπη

=
[(M2 − (mπ +mη)2)(M2 − (mπ −mη)2)]1/2

2M

for a meson of mass M decaying to KK̄ and πη,
respectively. The branching ratiosBr(a0 → KK̄) and
Br(a0 → πη) are given by the integrals of the Flatté
distribution over the invariant mass squared dM2 =
2MdM :

Br(a0 → KK̄) (3)

=

∞∫
mK+mK̄

dM
2MCFMRΓa0KK̄(M)

(M2 −M2
R)2 +M2

RΓ
2
tot(M)

,

Br(a0 → πη) =

∞∫
mK+mK̄

dM
2MCF MRΓa0πη(M)

(M2 −M2
R)2 +M2

RΓ
2
tot(M)

(4)

+

mK+mK̄∫
mπ+mη

dM
2MCFMRΓa0πη(M)

(M2 −M2
R −MRΓa0KK̄(M))2 +M2

RΓ2
a0πη(M)

.

The parameters CF, gKK̄ , and gπη have to be fixed
under the constraint of the unitarity condition

Br(a0 → KK̄) + Br(a0 → πη) = 1. (5)

Choosing the parameter Γ0 = Γa0πη(MR) in the in-
terval 50–100 MeV (as given by the PDG [24]), one
can fix the coupling gπη according to (2). In [25], a
ratio of branching ratios has been reported,

Ra0(980) =
Br(a0 → KK̄)
Br(a0 → πη)

= 0.23± 0.05, (6)

for ma0 = 0.999 GeV, which gives Br(a0 → KK̄) =
0.187. In another recent study [26], the WA102 col-
laboration reported the branching ratio

Γ(a0→KK̄)/Γ(a0→πη) = 0.166 ± 0.01 ± 0.02, (7)

which was determined from the measured branching
ratio for the f1(1285) meson. In our present analysis,
we use the results from [25], however, keeping inmind
that this branching ratio Br(a0 → KK̄) more likely
gives an “upper limit” for the a0 → KK̄ decay.
Thus, the other two parameters in the Flatté
distribution CF and ga0KK̄ can be found by solv-
ing the system of integral equations, for example,
Eq. (3) for Br(a0 → KK̄) = 0.187 and the unitarity
condition (5). For our calculations, we choose either
Γa0πη(MR) = 70 or 50MeV, which gives two sets of
independent parameters ga0KK̄ , ga0πη, and CF for a
fixed branching ratio Br(a0 → KK̄) = 0.187:

set 1 (Γa0πη = 70MeV) : (8)

ga0KK̄= 2.3GeV, ga0πη= 2.2GeV, CF= 0.365;

set 2 (Γa0πη = 50MeV) : (9)

ga0KK̄= 1.9GeV, ga0πη= 1.9GeV, CF= 0.354.

Note that, for theK+K− orK0K̄0 final state, one has
to take into account an isospin factor for the coupling
constant, i.e., ga0K+K− = ga0K0K̄0 = ga0KK̄/

√
2,

whereas ga0K+K̄0 = ga0K−K̄0 = ga0KK̄ .
3



154 KONDRATYUK et al.

 

π

 

N N

K

K
–

 

f

 

1

 

a

 

0

 

π

 

N N

K
K
–

 

a

 

0

 

N

 

π

 

N N

K
K
–

 

a

 

0

 

N

 

π

 

N N

K

K
–

 

η

 

a

 

0

 

π

 

N N

K

K
–

 

π

 

, 

 

η

 

K

 

*

 
(

 
a

 
) (

 
b

 
)

(

 

c

 

) (

 

d

 

)

(

 

e

 

)

Fig. 1. (a–d) Diagrams for a0 production in the reaction
πN → a0N → K̄K near the threshold and (e) diagram
for nonresonant K̄K “background” production.

3. THE REACTIONS πN → a0N
AND πN → KK̄N

3.1. An Effective Lagrangian Approach

The simplest mechanisms for a0 production in the
reaction πN → a0N near the threshold are described
by the pole diagrams shown in Figs. 1a–1d. It is
known experimentally that a0 couples strongly to the
channels πη and πf1(1285) because πη is the domi-
nant decay channel of a0, while πa0 is one of the most
important decay channels of f1(1285) [24]. The am-
plitudes, which correspond to the t-channel exchange
of η(550) and f1(1285)mesons (see Figs. 1b and 1a),
can be written as

M t
η(π

−p→ a−0 p) = gηπa0gηNN ū(p′2)γ5u(p2) (10)

× 1
t−m2

η

Fηπ a0(t)FηNN (t),

M t
f1(π

−p → a−0 p) = gf1πa0gf1NN (11)

× (p1 + p′1)µ

(
gµν −

qµqν
m2
f1

)
ū(p′2)γνγ5u(p2)

× 1
t−m2

f1

Ff1π a0(t)Ff1NN (t).

Here, p1 and p′1 are the 4-momenta of π− and a−0 ,
whereas p2 and p′2 are the 4-momenta of the initial
and final protons, respectively; furthermore, q = p′2 −
p2 and t = (p′2 − p2)2. The functions Fj present form
factors at the different vertices j (j = f1NN, ηNN ),
which are taken of the monopole form

Fj(t) =
Λ2
j −m2

j

Λ2
j − t

, (12)

where Λj is a cutoff parameter. In the case of η ex-
change, we use gηNN = 6.1 and ΛηNN = 1.5 GeV
P
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Fig. 2. The differential cross sections dσ/dt for the re-
actions π−p→ a−0 p and π

−p→ a0
0n at 2.4 GeV/c. The

long-dash-dotted line corresponds to the η exchange, and
the solid and long-dashed lines (upper part) show the
f1 contributions within sets A and B, respectively. The
rare-dotted and dash-double-dotted lines indicate the s
and u channels, while the solid line (lower part) describes
the coherent sum of s- and u-channel contributions in-
cluding interference. The dotted and short-dash-dotted
lines present the results within the ρ2 and ρ2, b1 Regge
exchange model, respectively (see text).

from [27] and ga0πη is defined by (8). The contribution
of the f1 exchange is calculated for two parameter
sets:
set A: gf1NN = 11.2, Λf1NN = 1.5GeV [28],
set B: gf1NN = 14.6, Λf1NN = 2.0GeV [29],
and gf1a0π=2.5 for both cases. The latter value for
gf1a0π corresponds to Γ(f1 → a0π) = 24 MeV and
Br(f1 → a0π) = 34%.

In Fig. 2 (upper part), we show the differential
cross sections dσ/dt for the reaction π−p → a−0 p
at 2.4 GeV/c corresponding to η (long-dash-dotted
line) and f1 exchanges with set A (solid line) and
set B (long-dashed line). A soft cutoff parameter (set
A) close to the mass of f1 implies that all the con-
tributions related to f1 exchange become negligibly
small. On the other hand, for the parameter values
given by set B, the f1-exchange contribution is much
larger than that from η exchange. Note that this large
uncertainty in the cutoff presently cannot be con-
trolled by data, and we will discuss the relevance of
the f1-exchange contribution for all reactions sepa-
rately throughout this study. For set B, the total cross
section for the reaction π−p → a−0 p is about 0.5mb at
2.4 GeV/c [cf. Fig. 3 (upper part)], while the forward
differential cross section is about 1 mb/GeV2.
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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The η and f1 exchanges, however, do not con-
tribute to the amplitude of the charge-exchange re-
action π−p → a0

0n. In this case, we have to consider
the contributions of the s- and u-channel diagrams
(Figs. 1c and 1d):

M s
N (π

−p→ a0
0n) = ga0NN

fπNN
mπ

1
s−m2

N

FN (s) (13)

× p1µū(p′2)[(p1 + p2)αγα +mN ]γµγ5u(p2),

Mu
N (π

−p→ a0
0n) = ga0NN

fπNN
mπ

1
u−m2

N

FN (u)

(14)

× p1µū(p′2)γµγ5[(p2 − p′1)αγα +mN ]u(p2),

where s = (p1 + p2)2, u = (p2 − p′1)
2, and mN is the

nucleon mass.

The πNN coupling constant is taken as
f2
πNN/4π = 0.08 [27], and the form factor for each
virtual nucleon is taken in the so-called monopole
form

FN (u) =
Λ4
N

Λ4
N + (u−m2

N )2
. (15)

Following [18], we adopt here a cutoff parameter
ΛN = 1.24 GeV (see also discussion below).

The rare-dotted and dash-double-dotted lines in
the lower part of Fig. 2 show the differential cross
section for the charge-exchange reaction π−p → a0

0n
at 2.4 GeV/c corresponding to s- and u-channel di-
agrams, respectively. Due to isospin constraints, only
the s channel contributes to the π−p → a−0 p reaction
(rare-dotted line in the upper part of Fig. 2). In these
calculations, the cutoff parameter ΛN = 1.24 GeV
and g2

a0NN
/4π � 1 have been employed in line with

the Bonn potential [27]. The solid line in the lower
part of Fig. 2 describes the coherent sum of the s-
and u-channel contributions, including the interfer-
ence of the amplitudes. Except for the very forward
region, the s-channel contribution (rare-dotted line)
is rather small compared to the u channel for the
charge-exchange reaction π−p → a0

0n, which may
give a backward differential cross section of about
1 mb/GeV2. The corresponding total cross section
can be about 0.3 mb at this energy (cf. Fig. 3, middle
part).

There is a single experimental point for the forward
differential cross section of the reaction π−p → a0

0n at
2.4 GeV/c ([30], lower part of Fig. 2),

dσ

dt
(π−p → a0

0n)
∣∣∣∣
t≈0

= 0.49 mb/GeV2
.
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Since in the forward region (t ≈ 0) the s- and u-
channel diagrams only give a smaller cross sec-
tion, the charge-exchange reaction π−p → a0

0n is
most probably dominated at small t by the isovec-
tor b1(1+−)- and ρ2(2−−)-meson exchanges (see,
e.g., [11]). Though the couplings of these mesons
to πa0 and NN are not known, we can estimate
dσ(π−p → a0

0n)/dt in the forward region using the
Regge pole model as developed by Achasov and
Shestakov [12]. Note that the Regge pole model is
expected to provide a reasonable estimate for the
cross section at medium energies of about a few GeV
and higher (see, e.g., [31, 32] and references therein).

3.2. The Regge Pole Model

The s-channel helicity amplitudes for the reaction
π−p → a0

0n can be written as

Mλ′2λ2
(π−p → a0

0n) = ūλ′2(p
′
2) (16)

×
[
−A(s, t) + (p1 + p′1)αγα

B(s, t)
2

]
γ5uλ2(p2),

where the invariant amplitudes A(s, t) and B(s, t) do
not contain kinematical singularities and (at fixed t
and large s) are related to the helicity amplitudes as

M++ ≈ −sB, M+− ≈
√
tmin − tA. (17)
3
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The differential cross section then can be expressed
through the helicity amplitudes in the standard way
as

dσ

dt
(π−p → a0

0n) (18)

=
1

64πs
1

(pc.m.
1 )2

(|M++|2 + |M+−|2).

Usually, it is assumed that the reaction π−p → a0
0n

at high energies is dominated by the b1 Regge pole
exchange. However, as shown by Achasov and Shes-
takov [12], this assumption is not compatible with the
angular dependence of dσ(π−p → a0

0n)/dt observed
at Serpukhov at 40 GeV/c [33, 34] and Brookhaven
at 18 GeV/c [35]. The reason is that the b1 Regge
trajectory contributes only to the amplitude A(s, t),
giving a dip in differential cross section at forward
angles, while the data show a clear forward peak
in dσ(π−p → a0

0n)/dt at both energies. To interpret
this phenomenon, Achasov and Shestakov [12] in-
troduced a ρ2 Regge pole exchange conspiring with
its daughter trajectory. Since the ρ2 Regge trajectory
contributes to both invariant amplitudes, A(s, t) and
B(s, t), its contribution does not vanish at the forward
scattering angle θ = 0, thus giving a forward peak
due to the term |M++|2 in dσ/dt. At the same time,
the contribution of the ρ2 daughter trajectory to the
amplitude A(s, t) is necessary to cancel the kinemat-
ical pole at t = 0 introduced by the ρ2 main trajectory
(conspiracy effect). In this model, the s-channel he-
licity amplitudes can be expressed through the b1 and
the conspiring ρ2 Regge trajectories exchange as

M++ ≈ Mρ2
++(s, t) (19)

= γρ2(t) exp
[
−i

π

2
αρ2(t)

]( s

s0

)αρ2 (t)

,

M+− ≈ M b1
+−(s, t) =

√
(tmin − t)/s0 γb1(t) (20)

× i exp
[
−i

π

2
αb1(t)

]( s

s0

)αb1
(t)

,

where γρ2(t) = γρ2(0) exp(bρ2t), γb1(t) = γb1(0) ×
exp(bb1t), tmin ≈ −m2

N (m
2
a0

−m2
π)/s

2, and s0 ≈
1 GeV2, while the meson Regge trajectories have the
linear form αj(t) = αj(0) + α′

j(0)t.

Achasov and Shestakov describe the Brookhaven
data on the t distribution at 18 GeV/c for −tmin ≤
−t ≤ 0.6GeV2 [35] by the expression

dN

dt
= C1

[
eΛ1t + (tmin − t)

C2

C1
eΛ2t

]
, (21)

where the first and second terms describe the ρ2 and
b1 exchanges, respectively. They found two fits: (i)
PH
Λ1 = 4.7 GeV−2, C2/C1 = 0; (ii) Λ1 = 7.6 GeV−2,
C2/C1 ≈ 2.6 GeV−2, Λ2 = 5.8 GeV−2. This im-
plies that at 18 GeV/c the b1 contribution yields
only 1/3 of the integrated cross section. Moreover,
using the available data on the reaction π−p →
a0

2(1320)n at 18 GeV/c and comparing them with
the data on the π−p → a0

0n reaction, they esti-
mated the total and forward differential cross sections
σ(π−p → a0

0n → π0ηn) ≈ 200 nb and [dσ(π−p →
a0

0n → π0ηn)/dt]t=0 ≈ 940 nb/GeV2. Taking
Br(a0

0 → π0η) ≈ 0.8, we find σ(π−p → a0
0n) ≈

0.25 µb and [dσ(π−p → a0
0n)/dt]t=0 ≈ 1.2 µb/GeV2.

In this way, all the parameters of the Regge model
can be fixed, and we will employ it for the energy
dependence of the π−p → a0

0n cross section to obtain
an estimate at lower energies too.

The mass of ρ2(2−−) is expected to be about
1.7 GeV (see [36] and references therein), and the
slope of the meson Regge trajectory in the case
of light (u, d) quarks is 0.9 GeV−2 [37]. Therefore,
the intercept of the ρ2 Regge trajectory is αρ2(0) =
2− 0.9m2

ρ2 ≈ −0.6. Similarly—in the case of the
b1 trajectory—we have αb1(0) ≈ −0.37. At forward
angles, we can neglect the contribution of the b1
exchange (see discussion above) and write the energy
dependence of the differential cross section in the form

dσRegge

dt
(π−p → a0

0n)
∣∣∣∣
t=0

≈ dσρ2
dt

∣∣∣∣
t=0

(22)

∼ 1
(pc.m.

1 )2

(
s

s0

)−2.2

.

This provides the following estimate for the forward
differential cross section at 2.4 GeV/c,

dσRegge

dt
(π−p → a0

0n)
∣∣∣∣
t=0

≈ 0.6mb/GeV2
, (23)

which is in agreement with the experimental data
point [30] (lower part of Fig. 2). Since the b1 and ρ2

Regge trajectories have isospin 1, their contribution
to the cross section for the reaction π−p → a−0 p is a
factor of 2 smaller,

dσRegge

dt
(π−p→ a−0 p) =

1
2
dσRegge

dt
(π−p→ a0

0n).

(24)

In Fig. 2, the dotted lines show the resulting dif-
ferential cross sections for dσRegge(π−p → a−0 p)/dt
(upper part) and dσRegge(π−p → a0

0n)/dt (lower part)
at 2.4 GeV/c corresponding to ρ2 Regge exchange,
whereas the short-dash-dotted lines indicate the
contribution for ρ2 and b1 Regge trajectories. For
t → 0, both Regge parametrizations agree; however,
YSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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at large |t| the solution including the b1 exchange
gives a smaller cross section. The cross section
dσRegge(π−p → a−0 p)/dt in the forward region ex-
ceeds the contributions of η, f1 (set A), and s-channel
exchanges, but is a few times smaller than the f1-
exchange contribution for set B. On the other hand,
the cross section dσRegge(π−p → a0

0n)/dt is much
larger than the s- and u-channel contributions in the
forward region, but much smaller than the u-channel
contribution in the backward region.

The integrated cross sections for π−p → a−0 p (up-
per part) and π−p → a0

0n (middle and lower part) for
the Regge model are shown in Fig. 3 as a function
of the pion laboratory momentum by dotted curves
for ρ2 exchange and by short-dash-dotted curves for
ρ2, b1 trajectories. In the few-GeV region, the cross
sections are comparable with the u-channel contri-
bution. At higher energies, the Regge cross section
decreases as s−3.2 in contrast to the non-Reggeized
f1-exchange contribution, which increases with en-
ergy and seems to be too large at 2.5 GeV/c for
parameters from the set B. We thus expect parameter
set B to be unrealistic.

Themain conclusions of this subsection are as fol-
lows. In the region of a few GeV, the dominant mech-
anisms of a0 production in the reaction πN → a0N
is the u-channel nucleon exchange (cf. middle part
of Fig. 3). A similar cross section (� 0.4–1.0 mb) is
predicted by the Regge model with conspiring ρ2 (or
ρ2 and b1) exchanges, normalized to the Brookhaven
data at 18 GeV/c (lower part of Fig. 3). The contri-
butions of s-channel nucleon and t-channel η-meson
exchanges are small (cf. upper and middle parts of
Fig. 3).

3.3. Possible Signals of a0 Production
in the Reaction πN → KK̄N

In Fig. 4, we show the existing experimental data
on the reactions π−p → nK+K−, π−p → nK0K̄0,
π+p → pK+K̄0, and π−p → pK0K− taken from [38].
The solid curves describe s- and u-channel contribu-
tions, calculated using the dipole nucleon form factor
(F 2

N (u)) with ΛN = 1.35 GeV. The short-dashed
and long-dashed curves describe η and f1 t-channel
exchanges, respectively. Two different choices of the
Regge pole model are shown by the dash-dotted
curves, which describe ρ2 exchange (upper) and ρ2, b1
exchange (lower). The crossed solid curves display
the background contribution (see Fig. 1e), which
was calculated using parameters of the K∗ exchange
from the Jülich model [3]. It is important that, for
the reactions π+p → pK+K̄0 and π−p → pK0K−,
where theKK̄ pair has isospin 1, the main contribu-
tions come from P-wave KK̄-pair production from
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
the ππ state and from S-wave KK̄-pair production
from the ηπ state. These selection rules follow from
G-parity conservation (note that the G parity of the
KK̄ system with orbital momentum L and isospin
I is given by (−1)L+I ). At the same time, for the
reactions π−p → nK+K− and π−p → nK0K̄0, the
essential contribution to the background stems from
S-wave KK̄-pair production from the isoscalar ππ
state. Let us note that the parametrization of the
total cross sections for the reactions πN → KK̄N
has been discussed previously in [39]. Here, we also
analyze contributions from different channels to the
total cross sections.

The most important point is that for all the re-
actions the background is essentially below the data
at the c.m. energy release Q ≤ 300 MeV. In the case
of the reactions π+p → pK+K̄0 and π−p → pK0K−

this, in our opinion, can only be due to a contribution
of a0. Of course, in the reactions π−p → nK+K−

and π−p → nK0K̄0, both scalar mesons, f0 and a0,
can contribute. In a series of bubble chamber ex-
periments performed in the 1960–1970s, a structure
was reported in the mass distribution of the K0

SK
0
S

system produced in the reaction π−p → nK0
SK

0
S (see,

e.g., [40] and references therein). Usually, this struc-
ture was attributed to f0(980). In our previous work,
we used the data on π−p → nf0 → nK0

SK
0
S to find a

restriction on the branching Br(f0 → KK̄) [41]. We
see here from Fig. 4 (upper right) that an impor-
tant contribution to the cross section of the reaction
π−p → nK0K̄0 at Q ≤ 300 MeV also comes from
a0. We cannot exclude that there can also be some
contribution from a0(980) at Q ≥ 300 MeV. If this is
really the case, our restriction on Br(f0 → KK̄) [41]
has to be corrected. This problem, however, requires
further analysis.

Let us note that the amplitude corresponding to
the Feynman diagram in Fig. 1e would predict a
sharply rising cross section forQ ≥ 400MeV. To sup-
press this unrealistic behavior, we used a Reggeized
K∗ propagator multiplying the Feynman propagator
of the vector meson in all the amplitudes by the
Regge power (s/s0)(αK∗ (0)−1) with αK∗(0) � 0.25
and

√
s0 = 2mK +mN . The background curves are

in reasonable agreement with the data on the reac-
tions π+p → pK+K̄0 and π−p → pK0K− at Q ≥
400 MeV (see the crossed solid curves in the two
lower panels of Fig. 4).

The Regge polemodel for a0 production, especially
the set with b1 and ρ2 exchange, is in good agreement
with the data for all the reactions at Q ≤ 300 MeV,
giving a cross section of the reaction πN → a0N →
KK̄N of about 20–30 µb at Q � 100–300 MeV. At
3
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Fig. 4. The total cross sections for the reactionsπ−p→ nK+K−, π−p→ nK0K̄0, π+p→ pK+K̄0, and π−p→ pK0K− as
a function ofQ =

√
s−√

s0. Experimental data are taken from [38]. The solid curves describe s- and u-channel contributions,
calculatedwith the dipole nucleon form factorF 2

N (u)withΛN = 1.35GeV. The short-dashed and long-dashed curves describe
η and f1 t-channel exchanges, respectively. Two different choices of the Regge pole model are shown by the dash-dotted curves
which describe ρ2 exchange (upper) and conspiring ρ2, b1 exchange (lower). The crossed solid curves show the background
contribution from diagram in Fig. 1e.
larger Q, it drops very fast. The u-channel contribu-
tion is also in good agreement with the data on the
reaction π+p → pK+K̄0, but the coherent sum of the
u- and s-channel contributions is below the data for
the reactions π−p → nK+K− and π−p → nK0K̄0.
The t-channel η- and f1-exchange contributions are
small and can be neglected.

Note that both invariant mass distributions of the
K−K̄0 and K0

SK
0
S systems presented in [40] show

a resonance-like structure near the KK̄ threshold
at Q ≤ 300 MeV. However, because of a compara-
tively small number of events for each fixed initial
momentum, those distributions are averaged over a
large interval of about 1 GeV/c in plab. Unfortunately,
those distributions cannot be directly compared with
theoretical ones at any fixedQ, especially in the near-
threshold region. In order to give another strong ar-
gument that the a0 contribution is really necessary to
explain the existing experimental data, let us consider
the energy dependence of the total cross section of
PH
the reaction π−p → pK−K̄0. Averaging the existing
data from [38] versus plab over the intervals 2.0± 0.15
and 3.0± 0.15 GeV/c, we find σav = 34.9 ± 3.3 and
73.8 ± 7.6 µb, respectively. The ratio of those cross
sections is equal toR21 � 2.1± 0.05. The energy be-
havior of the background contribution in our model is
σbg ∼ Q2.3. If we assume that, in the interval of Q =
250–630 MeV (which corresponds to the interval of
plab = 2–3 GeV/c), the background contribution is
present only, we get Rbg

21 � 5.5. This means that at
3GeV/cwe should expect a cross section of� 200 µb
instead of ∼ 70 µb. Evidently, experimental data are
inconsistent with this assumption.

Let us formulate the main conclusions of this
subsection. The existing data on the reactions π+p →
pK+K̄0 and π−p → pK0K− give rather strong
evidence that, at low energy above threshold (Q ≤
300MeV), they are dominated by a0 production. The
same is also true for the reactions π−p → nK+K−
YSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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Coefficients in Eq. (25) for different mechanisms of the pp → ppa0
0, pp → pna+

0 , pn → ppa−0 , and pn → pna0
0 reactions

Reaction j Mechanism α ξπ
j(α)[ab; cd] ξπ

j(α)[ab; dc] ξπ
j(α)[ba; dc] ξπ

j(α)[ba; cd]

pp → ppa0
0 t(η), t(f1) +1/

√
2 −1/

√
2 +1/

√
2 −1/

√
2

s(N) +1/
√
2 −1/

√
2 +1/

√
2 −1/

√
2

u(N) +1/
√
2 −1/

√
2 +1/

√
2 −1/

√
2

Regge 0 0 0 0

pp → pna+
0 t(η), t(f1) −

√
2 0 0 +

√
2

s(N) 0 +
√
2 −

√
2 0

u(N) +2
√
2 −

√
2 +

√
2 −2

√
2

Regge −1 +1 −1 +1

pn → ppa−0 t(η), t(f1) +1 −1 0 0

s(N) −2 +2 −1 +1

u(N) 0 0 +1 −1
Regge +1/

√
2 −1/

√
2 −1/

√
2 +1/

√
2

pn → pna0
0 t(η), t(f1) −1 0 +1 0

s(N) −1 −2 +1 +2

u(N) −1 +2 +1 −2
Regge 0 +

√
2 0 −

√
2

and π−p → nK0K̄0, where some smaller contribu-
tion of f0 may also be present. The value of the
a0-production cross section is reasonably described
by the Regge pole model with ρ2, b1 exchange as
proposed by Achasov and Shestakov [12]. The u-
channel exchange mechanism also gives a reasonable
value of the cross section.

4. THE REACTION NN → NNa0

4.1. An Effective Lagrangian Approach with
One-Pion Exchange

We consider a0
0, a

+
0 , a

−
0 production in the reac-

tions j = pp → ppa0
0, pp → pna+

0 , pn → ppa−0 , and
pn → pna0

0 using the effective Lagrangian approach
with one-pion exchange (OPE). For the elemen-
tary πN → Na0 transition amplitude, we take into
account different mechanisms α corresponding to
t-channel diagrams with η(550)- and f1(1285)-
meson exchanges (α = t(η), t(f1)) as well as s- and
u-channel graphs with an intermediate nucleon (α =
s(N), u(N)) (cf. [18]). The corresponding diagrams
are shown in Fig. 5. The invariant amplitude of the
NN → NNa0 reaction then is the sum of the four
basic terms (diagrams in Fig. 5) with permutations of
nucleons in the initial and final states

Mπ
j(α)[ab; cd] = ξπj(α)[ab; cd]Mπ

α[ab; cd] (25)
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
+ ξπj(α)[ab; dc]Mπ
α[ab; dc] + ξπj(α)[ba; dc]

×Mπ
α[ba; dc] + ξπj(α)[ba; cd]Mπ

α[ba; cd],

where the coefficients ξπj(α) are given in the table. The

amplitudes for the t-channel exchange with η(550)
and f1(1285) mesons are given by

Mπ
t(η)[ab; cd] = ga0ηπFa0ηπ (26)

×
(
(pa − pc)2, (pd − pb)2

)
gηNNFη

(
(pa − pc)2

)
× 1
(pa − pc)2 −m2

η

ū(pc)γ5u(pa)Π(pb; pd),

Mπ
t(f1)[ab; cd] = −ga0f1πFa0f1π (27)

×
(
(pa − pc)2, (pd − pb)2

)
gf1NNFf1

(
(pa − pc)2

)
× 1
(pa − pc)2 −m2

f1

(pa − pc + 2(pb − pd))µ

×
(
gµν −

(pa − pc)µ(pa − pc)ν
m2
f1

)

× ū(pc)γ5γνu(pa)Π(pb; pd),

with

Π(pb; pd) =
fπNN
mπ

Fπ
(
(pb−pd)2

)
(pb−pd)β (28)
3
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Fig. 5.Diagrams for a0 production in the reactionNN →
a0NN .

× ū(pd)γ5γβu(pb)
1

(pb − pd)2 −m2
π

.

The amplitudes for the s and u channels (lower part of
Fig. 5) are given as

Mπ
s(N)[ab; cd] = Π(pb; pd) (29)

× fπNN
mπ

Fπ
(
(pd − pb)2

)
ga0NN

×
FN
(
(pa + pb − pd)2

)
(pa + pb − pd)2 −m2

N

(pd − pb)µ ū(pc)

× [(pa + pb − pd)δγδ +mN ]γ5γµu(pa),

Mπ
u(N)[ab; cd] = Π(pb; pd) (30)

× fπNN
mπ

Fπ
(
(pd − pb)2

)
ga0NN

×
FN
(
(pc + pd − pb)2

)
(pc + pd − pb)2 −m2

N

(pd − pb)µū(pc)γ5γµ

× [(pc + pd − pb)δγδ +mN ]u(pa).

Here, pa, pb and pc, pd are the 4-momenta of the initial
and final nucleons, respectively. As in the previous
section, we mostly employ coupling constants and
form factors from the Bonn–Jülich potentials (see,
e.g., [27, 28, 42]).

For the form factors at the a0f1π (as well as a0ηπ)
vertex, factorized forms are applied following the as-
sumption from [43, 44],

Fa0f1π(t1, t2) = Ff1NN (t1)FπNN (t2), (31)

where Ff1NN (t), FπNN (t) are taken in the monopole
form (see previous section). Usually, the cutoff pa-
rameter ΛπNN is taken in the interval 1–1.3 GeV.
Here, we take ΛπNN = 1.05 GeV (see also the dis-
cussion in [19]).

As shown in the analysis of [18], the contribution
of the η exchange to the amplitude πN → a0N is
small (cf. also Section 3). Note that in [45] only this
mechanism was taken into account for the reaction
pn → pp a−0 . Here, we also include the η exchange
P
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Fig. 6. The total cross sections for the reactions pp→
ppa0

0 and pp→ pna+
0 as a function of the excess energy

Q =
√
s−√

s0 calculated with FSI.

because it might be noticeable in those isospin chan-
nels where a strong destructive interference of u- and
s-channel terms can occur (see below).

Since we have two nucleons in the final state, it
is necessary to take into account their final-state in-
teraction (FSI), which has some influence on meson
production near the threshold. For this purpose, we
adopt the FSI model from [46] based on the (realis-
tic) Paris potential. We use, however, the enhance-
ment factor FNN (qNN )—as given by this model—
only in the region of small relative momenta of the
final nucleons qNN ≤ q0, where it is larger than 1.
Having in mind that this factor is rather uncertain
at larger qNN , where, for example, contributions of
nonnucleon intermediate states to the loop integral
might be important, we assume that FNN (qNN ) = 1
for qNN ≥ q0.

In Fig. 6, we show the total cross section as a
function of the energy excess Q =

√
s−√

s0 for the
reactions pp → ppa0

0 (upper part) and pp → pna+
0

(lower part). As seen from Fig. 6, the u and s channels
give the dominant contribution; the t(f1) channel
is small for both isospin reactions. For the reac-
tion pp → pna+

0 , the Regge exchange contribution
(extended to low energies) becomes important. For
the pp → ppa0

0 channel, the Regge model predicts
no contribution from ρ2 and ρ2, b1 exchanges due to
isospin arguments (i.e., the vertex with a coupling
of three neutral components of isovectors vanishes);
thus, only s, u, t(η), and t(f1) channels are plotted in
the upper part of Fig. 6.
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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Here, we have to point out the influence of the
interference between the s and u channels. Ac-
cording to the isospin coefficients from the OPE
model presented in the table, the phase (of inter-
ference α) between the s and u channels Mπ

s(N) +
exp(−iα)Mπ

u(N) is equal to zero; i.e., the sign be-
tween Mπ

s(N) and Mπ
u(N) is “plus.” The solid curves

in Fig. 6 indicate the coherent sum of s(N) and u(N)
channels including the interference of the amplitudes
(s+ u + int.). One can see that, for the pp → pna+

0
reaction, the interference is positive and increases the
cross section, whereas, for the pp → ppa0

0 channel,
the interference is strongly destructive since we have
identical particles in the initial and final states and the
contributions of s and u channels are very similar.

Here, we would like to comment on an extension
of the OPE model to a one-boson exchange (OBE)
approximation, i.e., accounting for the exchange of
σ, ρ, ω, . . . mesons as well as for multimeson ex-
changes. Generally speaking, the total cross section
of a0 production should contain the sum of all the
contributions:

σ(NN → NNa0) =
∑
j

σj,

where j = π, σ, ρ, ω, . . .. Depending on their cutoff
parameters, the heavier meson exchanges might give
a comparable contribution to the total cross section
for a0 production. An important point, however, is
that, near threshold (e.g., Q ≤ 0.3–0.6 GeV), the
energy behavior of all those contributions is the same,
i.e., it is proportional to the three-body phase space
σj ∼ Q2 (when the FSI is switched off and the narrow
resonance width limit is taken). In this respect, we
can consider the OPE as an effective one and normal-
ize it to the experimental cross section by choosing
an appropriate value of Λπ. The most appropriate
choice for Λπ is about 1–1.3 GeV. Another question
is related to the isospin of the effective exchange. As is
known from a series of papers on the reactionsNN →
NNX,X = η, η′, ω, φ, the most important contribu-
tions to the corresponding cross sections near the
threshold come from π and ρ exchanges (see, e.g., the
review [47] and references therein). In line with those
results, we assume here that the dominant contribu-
tion to the cross section of the reactionNN → NNa0
also comes from the isovector exchanges (like π and
ρ). In principle, it is also possible that some baryon
resonances may contribute. However, there is no in-
formation about resonances that couple to the a0N
system. Our assumptions thus enable us to make ex-
ploratory estimates of the a0-production cross section
without introducing free parameters that would be out
of control by existing data. Themodel can be extended
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
accordingly when new data on a0 production become
available.

Another important question is related to the choice
of the form factor for a virtual nucleon, which—in
line with the Bonn–Jülich potentials—we choose as
given by (15), which corresponds to monopole form
factors at the vertices. In the literature, furthermore,
dipole-like form factors (at the vertices) are also often
used (cf. [44, 47, 48]). However, there are no strict
rules for the “correct” power of the nucleon form fac-
tor. In physics terms, the actual choice of the power
should be irrelevant; we may have the same predic-
tions for any reasonable choice of the power if the
cutoff parameter ΛN is fixed accordingly. Note that
ΛN may also depend on the type of mesons involved at
the vertices. In our previous work [18], we have fixed
ΛN for the monopole related form factor (15) in the
interval 1.2–1.3 GeV fitting the forward differential
cross section of the reaction pp → da+

0 from [49].
On the other hand, the same data can be described
rather well using a dipole form factor (at the vertices)
with ΛN = 1.55–1.6 GeV. If we employ this dipole
form factor with ΛN = 1.55–1.6 GeV in the present
case, we obtain practically identical predictions for
the cross sections of the channels pp → pna+

0 , pn →
pna0

0, and pn → ppa−0 , where the u-channel mech-
anism is dominant and u–s interference is not too
important. In the case of the channel pp → ppa0

0, we
obtain cross sections up to a factor of 2 larger for the
dipole-like form factor in comparison to the monopole
one. This is related to the strong destructive interfer-
ence of the s- and u-exchange mechanisms, which
slightly depends on the type of form factor used. How-
ever, our central result, that the cross section for the
pna+

0 final channel is about an order of magnitude
higher than the ppa0

0 channel in pp collisions, is ro-
bust (within less than a factor of 2) with respect to
different choices of the form factor.

As seen from Fig. 6, we get the largest cross sec-
tion for the pp → pna+

0 isospin channel. For this reac-
tion, the u channel gives the dominant contribution;
the s-channel cross section is small such that the
interference is not so essential as for the pp → pp a0

0
reaction.

As was already discussed in our previous study
[18], an effective Lagrangian model (ELM) cannot
be extrapolated to high energies because it predicts
the elementary amplitude πN → a0N to rise fast.
Therefore, such a model can only be employed not
far from the threshold. On the other hand, the Regge
model is valid at large energies and we have to worry
about how close to the threshold we can extrapolate
corresponding amplitudes. According to duality ar-
guments, one can expect that the Regge amplitude
can be applied at low energy, too, if the reaction
3
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For more details, see the text.

πN → a0N does not contain essential s-channel res-
onance contributions. In this case, the Regge model
might give a realistic estimate of the πN → a0N and
NN → NNa0 amplitudes even near the threshold.

Anyway, as we have shown in [18] (see also Sec-
tion 3), the Regge and u-channel model give quite
similar results for the π−p → a0

0n cross section in the
threshold region; some differences in the cross sec-
tions of the reactionsNN → NNa0—as predicted by
those two models—can be attributed to differences
in the isospin factors and effects of NN antisym-
metrization, which is important near the threshold
(the latter was ignored in the Reggemodel formulated
for larger energies).

4.2. Reaction NN → NNa0 → NNKK̄

4.2.1. Numerical results for the total cross
section. In the upper part of Fig. 7, we display the
calculated total cross section [within parameter set 1
(8)] for the reaction pp → pna+

0 → pnK+K̄0 in com-
parison to the experimental data for pp → pnK+K̄0

(dots) from [38] as a function of the excess energy
Q =

√
s−√

s0. The dash-dotted and solid curves in
Fig. 7 correspond to the coherent sum of s(N) and
u(N) channels with interference (s+ u+ int.), cal-
culated with a monopole form of the form factor (15)
withΛN = 1.24GeV and with a dipole form (FN (u)2)
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Fig. 8. The K+K− invariant mass distribution for the
pp→ ppK+K− reaction at plab = 3.67GeV/c. The dot-
ted curves indicate the 4-body phase space with constant
interaction amplitude, the dash-dotted curves show the
coherent sum of s(N) and u(N) channels with inter-
ference. The solid curves with open circles correspond
to the f0 contribution from [41]. The thick solid curves
show the sum of all contributions including the decay
φ → K+K−. The experimental data are taken from [50].

with ΛN = 1.35 GeV, respectively. We mention that
the latter (dipole) result is in better agreement with
the constraints on the near-threshold production of
a0 in the reaction π+p → K+K̄0p (see Section 3). In
the middle part of Fig. 7, the solid curves with full
dots and with open squares present the results within
the ρ2 and ρ2, b1 Regge exchange model. The dotted
curve shows the 4-body phase space (with constant
interaction amplitude), while the dashed curve is the
parametrization from Sibirtsev et al. [39]. We note,
that the cross sections for parameter set 2 (9) are
similar to set 1 (8) and larger by a factor of about 1.5.

In the lower part of Fig. 7, we show the calculated
total cross section (within parameter set 1) for the re-
action pp → ppa0

0 → ppK+K− as a function of Q =√
s−√

s0 in comparison to the experimental data.
The closed circles indicate the data for pp → ppK0K̄0

from [38], the open square for pp → ppK+K− is from
the DISTO collaboration [50], and the closed trian-
gles show the data from COSY-11 [51].

For the pp → ppa0
0 → ppK+K− reaction (as for

pp → ppa0
0), there is no contribution from meson

Regge trajectories; s and u channels give similar
contributions such that their interference according
to the effective OPE model (curve s+ u+ int.) is
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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strongly destructive (cf. upper part of Fig. 6). The
t(f1) contribution (dotted curve) is practically neg-
ligible, while the t(η) channel (rare-dotted curve)
becomes important closer to the threshold.

Thus, our model gives quite small cross sec-
tions for a0

0 production in the pp → ppK+K− reac-
tion, which complicates its experimental observation
for this isospin channel. The situation looks more
promising for the pp → pna+

0 → pnK+K̄0 reaction
since the a+

0 -production cross section is an order of
magnitude larger than the a0

0 one. Moreover, as has
been pointed out with respect to Fig. 6, the influence
of the interference is not as strong as that for the
pp → pp a0

0 → ppK+K− reaction.
Here, we stress again the limited applicability of

the ELM at high energies. As seen from the upper
part of Fig. 7, the ELM calculations at high energies
go through the experimental data, which is not real-
istic since other channels also contribute to K+K̄0

production in pp reactions (cf. dashed curve from [39],
Fig. 7, middle part). Moreover, the ELM calculations
are higher than the Regge model predictions, which
indicates that the ELM amplitudes at high energies
have to be Reggeized.

4.2.2. Numerical results for the invariant mass
distribution.As follows from the lower part of Fig. 7,
the a0 contribution to the K+K− production in
the pp → ppK+K− reaction near the threshold is
hardly seen.With increasing energy, the cross section
grows; however, even at Q = 0.111 GeV, the full
cross section with interference (s+ u+ int.) gives
only a few percent contribution to the 0.11± 0.009 ±
0.046 µb “nonresonant” cross section (without φ →
K+K−) from the DISTO collaboration [50].

To clarify the situation with the relative contri-
bution of a0

0 to the total K+K− production in pp
reactions, we calculate the K+K− invariant mass
distribution for the pp → ppK+K− reaction at plab =
3.67 GeV/c, which corresponds to the kinematical
conditions for the DISTO experiment [50]. The differ-
ential results are presented in Fig. 8. The upper part
shows the calculation within parameter set 1, where-
as the lower part corresponds to set 2. The dash-
dotted curves indicate the coherent sum of s(N) and
u(N) channels with interference for the a0 contribu-
tion. However, one has to consider also the contribu-
tion from the f0 scalar meson, i.e., the pp → ppf0 →
ppK+K− reaction. The f0 production in pp reactions
has been studied in detail in [41]. Here, we use the
result from [41] and show in Fig. 8 the contribution
from the f0 meson (calculated with parameter set A
from [41]) as the solid curve with open circles.

We find that, when adding the f0 contribution to
the phase space of nonresonant K+K− production
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
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Fig. 9. Diagrams describing different mechanisms of
nonresonant KK̄ production in the reaction NN →
NNKK̄ .

(the dotted curves in Fig. 8) and the contribution
from φ decays (resonance peak around 1.02 GeV),
the sum (thick solid) curves almost perfectly describe
the DISTO data. This means that there is no visi-
ble signal for an a0

0 contribution in the DISTO data
according to our calculations, while the f0 meson
gives some contribution to theK+K− invariant mass
distribution at low invariant massesM , that is, about
12% of the total “nonresonant” cross section from the
DISTO collaboration [50]. Thus, the reaction pp →
pnK+K̄0 is more promising for a0 measurements, as
has been pointed out above.

4.2.3. Nonresonant background. Following
[39], we consider two mechanisms of nonresonant
KK̄ production, related to pion and kaon exchanges,
which are described by the diagrams in Fig. 9. The
pion-exchange amplitude can be calculated using
the results of Section 3. As concerning the kaon-
exchange mechanism, the amplitude of the reaction
NN → NNa0 → NNKK̄ can be written as

MK-exch(pa, pb; pc, pd, k1, k2) (32)

=
F 2
K(q

2)
q2 −m2

K

ū(pc)AKN→KN(pc, k1; pa, q)u(pa)

× ū(pd)AK̄N→K̄N (pd, k2; pb, q)u(pb)

with permutations of nucleons in the initial and final
states. Here, pa, pb and pc, pd are the 4-momenta of
the initial and final nucleons, respectively; k1 and k2

are the momenta of the final kaons; q is the momen-
tum of the virtual kaon; and FK(q2) is the kaon form
factor, which we take in the monopole form with the
cutoff parameter Λ = 1.2 GeV.

The antikaon–nucleon amplitude AK̄N→K̄N has
been taken from [52] explicitly. Since near threshold
the KN → KN cross section depends mainly on the
normalization of the amplitude, but not on its spin
dependence, we adopt the simplest approximation
that the amplitude AKN→KN is a Lorentz scalar.
This allows us to connect the AKN→KN amplitude
(squared) by simple kinematical factor to the KN →
KN cross section, where the parametrization for the
elastic K+p → K+p cross section has been taken
from [53] and theK0p → K+n cross section has been
parametrized according to the existing data [38, 54].
3
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The results of our calculations are shown in
Fig. 10 in comparison to the experimental data.
The contribution of the pion-exchange mechanism
is shown by the dotted curves. The dashed curves
describe the K-exchange mechanism. The thin solid
curves show the total background, which in ourmodel
is the sum of pion- and kaon-exchange contribution.
This background can be compared with the a0-
production cross section shown by the thick solid
curves. In the case of the reaction pp → pnK+K̄0

(upper part), the a0-production cross section is much
larger than the background, while, in the case of the
reaction pp → ppK+K− (lower part), the a0(980)-
resonance contribution appears to be much smaller
than the nonresonant background. We mention that
the disagreement with the DISTO (Q � 100 MeV)
and COSY–11 (Q � 17MeV) data should be related
to theK−pp FSI, which is known to be strong.

4.2.4. Concluding remarks on a0a0a0 produc-
tion in pNpNpN reactions. In this section, we have
estimated the cross sections of a0 production in
the reactions pp → ppa0

0 and pp → pna+
0 near the

threshold and at medium energies. Using an effective
Lagrangian approach with OPE, we have analyzed
different contributions to the cross section corre-
sponding to t-channel diagrams with η(550)- and
f1(1285)-meson exchanges as well as s- and u-
channel graphs with an intermediate nucleon. We
additionally have considered the t-channel Reggeon
exchange mechanism with parameters normalized to
the Brookhaven data for π−p → a−0 p at 18 GeV/c
P

[35]. These results have been used to calculate the
contribution of a0 mesons to the cross sections of the
reactions pp → pnK+K̄0 and pp → ppK+K−. Due
to unfavorable isospin Clebsh–Gordan coefficients as
well as rather strong destructive interference of the s-
and u-channel contributions, our model gives quite
small cross sections for a0

0 production in the pp →
ppK+K− reaction. However, the a+

0 -production
cross section in the pp → pna+

0 → pnK+K̄0 reac-
tion should be larger by about an order of mag-
nitude. Therefore, the experimental observation of
a+

0 in the reaction pp → pnK+K̄0 is much more
promising than the observation of a0

0 in the reaction
pp → ppK+K−. We note in passing that the πη
decay channel is experimentally more challenging
since, due to the larger nonresonant background [55],
the identification of the η meson (via its decay into
photons) in a neutral-particle detector is required.

We have also analyzed invariant mass distribu-
tions of theKK̄ system in the reaction pp → pNa0 →
pNKK̄ at different excess energies Q not far from
the threshold. Our analysis of the DISTO data on the
reaction pp → ppK+K− at 3.67 GeV/c has shown
that the a0

0 meson is hardly seen in dσ/dM at low
invariant masses; however, the f0 meson gives some
visible contribution. In this respect, the possibility of
measuring the a+

0 meson in dσ/dM for the reaction
pp → pnK+K̄0 (or → dK+K̄0) looks much more
promising not only due to a much larger contribution
for the a+

0 , but also due to the absence of the f0 meson
in this channel. It is also very important that the non-
resonant background is expected to be much smaller
than the a0 signal in the pp → pnK+K̄0 reaction.

Experimental data on a0 production in NN colli-
sions are practically absent (except for the a0 obser-
vation in the reaction pp → dX [49]). Such measure-
ments might give new information on the a0 struc-
ture. According to Atkinson et al. [56], a relatively
strong production of a0 [the same as for the b1(1235)]
in nondiffractive reactions can be considered as ev-
idence for a qq̄ state rather than a qqq̄q̄ state. For
example, the cross section of a0 production in γp
reactions at 25–50 GeV is about 1/6 of the cross sec-
tions for ρ and ω production. Similar ratios are found
in the two-body reaction pp → dX at 3.8–6.3GeV/c,
where σ(pp → da+

0 ) = (1/4–1/6)σ(pp → dρ+).
In our case, we can compare a0 and ω production.

Our model predicts σ(pp → pna+
0 ) = 30–70 µb at

Q � 1 GeV, which can be compared with σ(pp →
ppω) � 100–200 µb at the same Q. If such a large
cross section could be detected experimentally, this
would be a serious argument in favor of the qq̄ model
for a0.
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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To distinguish between the threshold cusp sce-
nario and a resonance model, one can exploit differ-
ent analytical properties of the a0-production ampli-
tudes. In case of a genuine resonance, the amplitude
of ηπ and KK̄ production through a0 has a pole
and satisfies the factorization property. This implies
that the shapes of the invariant mass distributions in
the ηπ and KK̄ channels should not depend on the
specific reaction in which a0 resonance is produced
(for Q ≥ Γtot). On the other hand, for the threshold
cusp scenario, the a0 bump is produced through the
πη FSI. The corresponding amplitude has a square
root singularity and in general cannot be factorized
(see, e.g., [46], where the factorization property was
disproven for pp FSI in the reaction pp → ppM ). This
implies that, for a threshold bump, the invariant mass
distributions in the ηπ andKK̄ channels are expected
to be different for different reactions and will depend
on kinematical conditions (i.e., momentum transfer)
even at the same value of excess energy, e.g., Q �
1GeV.

5. a0(980)–f0(980) MIXING AND ISOSPIN
VIOLATION IN THE REACTIONS pN → da0,

pd → 3He(3H)a0, AND dd → 4He a0

5.1. Hints for a0(980)–f0(980)Mixing

As was suggested long ago in [11], the dynamical
interaction of the a0(980) and f0(980) mesons with
states close to the KK̄ threshold may give rise to
a significant a0(980)–f0(980) mixing. Different as-
pects of this mixing and the underlying dymanics, as
well as the possibilities of measuring this effect, have
been discussed in [3, 12–17]. Furthermore, it has
been suggested by Close and Kirk [16] that the new
data from the WA102 collaboration at CERN [26]
on the central production of f0 and a0 in the reac-
tion pp → psXpf provide evidence for a significant
f0–a0-mixing intensity as large as |ξ|2 = (8± 3)%.
In this section, we will discuss possible experimental
tests of this mixing in the reactions

pp → da+
0 (a), pn → da0

0 (b),

pd → 3H a+
0 (c), pd → 3He a0

0 (d),

dd → 4He a0
0 (e)

near the corresponding thresholds. We recall that
the a0 meson can decay to πη or KK̄. Here, we
only consider the dominant πη-decay mode. Note
that the isospin-violating anisotropy in reaction (b)
due to the a0(980)–f0(980) mixing is very similar
to that which might arise in the reaction pn → dπ0

because of the π0–ηmixing (see [57]). Recently, mea-
surements of the charge-symmetry breaking in the
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
reactions π+d → ppη and π−d → nnη near the η-
production threshold were performed at BNL [57].
A similar experiment, comparing the reactions pd →
3Heπ0 and pd → 3Hπ+ near the η-production thresh-
old, is now being performed at COSY (Jülich) (see,
e.g., [58]).

5.2. Reactions pp → da+
0 and pn → da0

0

5.2.1. Phenomenology of isospin violation.
In reactions (a) and (b), the final da0 system has
isospin If = 1; for lf = 0 (S-wave production close
to threshold), it has spin-parity JPf = 1

+. The initial

NN system cannot be in the state Ii = 1, JPi = 1
+

due to the Pauli principle. Therefore, near threshold,
the da0 system should be dominantly produced in the
P wave with quantum numbers JPf = 0

−, 1−, or 2−.
The states with JPi = 0

−, 1−, or 2− can be formed by
an NN system with spin Si = 1 and li = 1 and 3. At
the beginning, for qualitative discussion, we neglect
the contribution of the higher partial wave (li = 3).5)
In this case, we can write the amplitude of reaction
(a) in the following form:

T (pn → d a+
0 ) = α+(p · S)(k · e∗) (33)

+ β+(p · k)(S · e∗) + γ+(S · k)(p · e∗),

where S = φTNσ2σφN is the spin operator of the initial
NN system; p and k are the initial and final c.m. mo-
menta; e is the deuteron polarization vector; and α+,
β+, and γ+ are three independent scalar amplitudes
that can be considered as constants near threshold (at
k → 0).

Due to the mixing, a0
0 may also be produced via f0.

In this case, the a0
0d system will be in the S wave and

the amplitude of reaction (b) can be written as

T (pn → da0
0) = α0(p · S)(k · e∗) (34)

+ β0(p · k)(S · e∗) + γ0(S · k)(p · e∗) + ξF (S · e∗),
where ξ is the mixing parameter and F is the f0

production amplitude. In the limit k → 0, F is again
a constant. The scalar amplitudes α, β, and γ for
reactions (a) and (b) are related to each other by a
relative factor of

√
2 as α+ =

√
2α0, β+ =

√
2β0, and

γ+ =
√
2γ0.

The differential cross sections for reactions (a) and
(b) have the form (up to terms linear in ξ)

dσ(pp → da+
0 )

dΩ
= 2

k

p

(
C0 + C2 cos2 θ

)
, (35)

5)See, e.g., phenomenological analysis in [59], where this par-
tial wave was also taken into account.
3
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Fig. 11. Diagrams describing (a–d) different mecha-
nisms of a0- and f0-meson production in the reaction
NN → da0(f0)within the framework of the TSM and (e)
the nonresonant πη production.

dσ(pn → da0
0)

dΩ
=

k

p

(
C0 + C2 cos2 θ + C1 cos θ) ,

(36)

where

C0 =
1
2
p2k2

[
|α0|2 + |γ0|2

]
, (37)

C1 = pkRe((ξF )∗(α0 + 3β0 + γ0)),

C2 =
1
2
p2k2

[
3|β0|2

+ 2Re(α0β0∗ + α0γ0∗ + β0γ0∗)
]
.

Similarly, the differential cross section of the reaction
pn → df0 can be written as

dσ(pn → df0)
dΩ

=
3k
2p

|F |2. (38)

The mixing effect—described by the term C1 cos θ in
Eq. (36)—then leads to an isospin violation in the
ratioRba of the differential cross sections for reactions
(b) and (a),

Rba =
1
2
+
1
2

C1 cos θ
C0 + C2 cos2 θ

, (39)

and to the forward–backward asymmetry for reaction
(b),

Ab(θ) =
σb(θ)− σb(π − θ)
σb(θ) + σb(π − θ)

=
C1 cos θ

C0 + C2 cos2 θ
.

(40)

The latter effect has been already discussed in [60],
where it was argued that the asymmetry Ab(θ =
0) can reach 5–10% at an energy excess of Q =
5–10MeV. However, if we adopt a mixing parameter
|ξ|2 = (8± 3)%, as follows from the WA102 data,
we can expect a much larger asymmetry. We note
P
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meson with a cutMπ+η ≥ 0.85 GeV andΛN = 1.2 GeV
(dash-dotted curve) or 1.3 GeV (solid curve).

explicitly that the coefficient C1 in (37) depends
not only on the magnitude of the mixing parameter
ξ, but also on the relative phases with respect to
the amplitudes of f0 and a0 production, which are
unknown so far. This uncertainty has to be kept in
mind for the following discussion.

If a0 and f0 were very narrow particles, then near
threshold the differential cross section (35), domi-
nated by the P wave, would be proportional to k3

or Q3/2, where Q is the c.m. energy excess. Due
to S-wave dominance in the reaction pn → df0, one
would expect that the cross section scales like ∼k
or ∼

√
Q. In this limit, the a0–f0 mixing leads to an

enhancement of the asymmetry Ab(θ) as 1/k near
the threshold. In reality, however, both a0 and f0

have widths of about 40–100 MeV. Therefore, at
fixed initial momentum, their production cross section
should be averaged over the corresponding mass dis-
tributions. This will essentially change the threshold
behavior of the cross sections. Another complication
is that broad resonances are usually accompanied by
background lying underneath the resonance signals.
These problems will be discussed below in the follow-
ing subsections.

5.2.2. Model calculations. In order to estimate
isospin-violation effects in the differential cross-
section ratio Rba and in the forward–backward
asymmetry Ab, we use the two-step model (TSM),
which was successfully applied earlier to the descrip-
tion of η-, η′-, ω-, and φ-meson production in the
reaction pN → dX in [61, 62]. Recently, this model
has been also used for an analysis of the reaction
pp → da+

0 [18].
The diagrams in Fig. 11 describe the different

mechanisms of a0- and f0-meson production in the
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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reaction NN → da0(f0) within the framework of the
TSM. In the case of a0 production, the amplitude
of the subprocess πN → a0N contains three differ-
ent contributions: (i) the f1(1285)-meson exchange
(Fig. 11a), (ii) the η-meson exchange (Fig. 11b), and
(iii) s- and u-channel nucleon exchanges (Figs. 11c
and 11d). As it was shown in [18], the main contri-
bution to the cross section for the reaction pp → d a+

0
stems from the u-channel nucleon exchange (i.e.,
from the diagram of Fig. 11d) and all other contri-
butions can be neglected. In order to preserve the
correct structure of the amplitude under permutations
of the initial nucleons (which is antisymmetric for the
isovector state and symmetric for the isoscalar state),
the amplitudes of a0 and f0 production can be written
as the following combinations of the t- and u-channel
contributions:

Tpn→da0
0
(s, t, u) = Apn→da0

0
(s, t)−Apn→da0

0
(s, u),

(41)

Tpn→df0(s, t, u) = Apn→df0(s, t) +Apn→df0(s, u),

where s = (p1 + p2)2; t = (p3 − p1)2; u = (p3 − p2)2;
and p1, p2, p3, and p4 are the 4-momenta of the initial
protons, meson M , and the deuteron, respectively.
The structure of the amplitudes (41) guarantees that
the S-wave part vanishes in the case of direct a0

production since it is forbidden by angular momen-
tum conservation and the Pauli principle. Also, higher
partial waves are included in (41) (in contrast to the
simplified discussion in Subsection 5.1).

In the case of f0 production, the amplitude of the
subprocess πN → f0N contains two different con-
tributions: (i) the π-meson exchange (Fig. 11b) and
(ii) s- and u-channel nucleon exchanges (Figs. 11c
and 11d). Our analysis has shown that, similar to the
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
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case of a0 production, the main contribution to the
cross section of the reaction pn → df0 is due to the
u-channel nucleon exchange (i.e., from the diagram
of Fig. 11d); the contribution of the combined ππ
exchange (Fig. 11b) as well as the s-channel nucleon
exchange can be neglected. In this case, we get for
the ratio of the squared amplitudes

|Apn→df0(s, t)|2
|Apn→da0(s, t)|2

=
|Apn→df0(s, u)|2
|Apn→da0(s, u)|2

=
|gf0NN |2
|ga0NN |2 .

(42)

If we take ga0NN = 3.7 (see, e.g., [27]) and gf0NN =
8.5 [28], then we find for the ratio of the ampli-
tudes R(f0/a0) = gf0NN/ga0NN = 2.3. Note, how-
ever, that Mull and Holinde [28] give a different value
for the ratio of the coupling constants R(f0/a0) =
1.46, which is lower by about 37%. In the following,
we use R(f0/a0) = 1.46–2.3.

The forward differential cross section for reaction
(a) as a function of the proton beam momentum is
presented in Fig. 12. The thick dash-dotted and solid
curves (taken from [18] and calculated for the zero
width limit) describe the results of the TSM for differ-
ent values of the nucleon cutoff parameter, ΛN = 1.2
and 1.3 GeV, respectively.

In order to take into account the finite width of
a0, we use a Flatté mass distribution with the same
parameters as in [19]: theK-matrix pole at 999 MeV,
Γa0→πη = 70 MeV, and Γ(KK̄)/Γ(πη) = 0.23 (see
also [24] and references therein). The thin dash-
dotted and solid curves in Fig. 12 are calculated
within TSM using this mass distribution with the
cut Mπ+η ≥ 0.85 GeV and ΛN = 1.2 and 1.3 GeV,
respectively. The corresponding π0η invariant mass
3
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Fig. 15. Differential cross section of the reaction pn→
da0

0 at Tlab = 2.6 GeV as a function of θc.m.. The solid
curve corresponds to the case of isospin conservation,
i.e., |ξ|2 = 0. The dash-dotted curves include the mix-
ing effect with |ξ|2 = 0.05 for the lower curves (1a and
2a) and |ξ|2 = 0.11 for the upper curves (1b and 2b).
The curves 1a, 1b and 2a, 2b have been calculated for
R(f0/a0) = 1.46 and 2.3, respectively.

distribution for the reaction pn → da0
0 → dπ0η at

3.4 GeV/c is shown in Fig. 13 by the dashed curve.

In the case of the f0 meson, where Br(KK̄) is not
yet fixed [24], we use the Breit–Wigner mass dis-
tribution with MR = 980 MeV and ΓR � Γf0→ππ =
70MeV.

The calculated total cross sections for the reac-
tions pn → da0 and pn → df0 (as a function of Tlab for
ΛN = 1.2 GeV ) are shown in Fig. 14. The solid and
dashed curves describe the calculations with zero and
finite widths, respectively. In the case of f0 production
in the ππ mode, we take the same cut in the invariant
mass of the ππ system, Mππ ≥ 0.85 GeV. The curves
denoted by 1 and 2 are obtained for R(f0/a0) = 1.46
and 2.3. Comparing the solid and dashed curves, we
see that near the threshold the finite-width correc-
tions to the cross sections are quite important. The
most important changes are introduced to the energy
behavior of the a0-production cross section. (Com-
pare also thick and thin curves in Fig. 12.)

In principle, mixing can modify the mass spectrum
of the a0 and f0. However, in this case, the effect
is expected to be less spectacular than for the ρ–ω
case where the widths of ρ and ω are very different
(see, e.g., the discussion in [57] and references there-
in). Nevertheless, the modification of the a0

0 spec-
tral function due to a0–f0 mixing can be measured
comparing the invariant mass distributions of a0

0 with
that of a+

0 . According to our analysis, a much cleaner
signal for isospin violation can be obtained from the
measurement of the forward–backward asymmetry
in the reaction pn → da0

0 → dπ0η for the integrated
strength of the a0. That is why, for all calculations
P

on isospin-violation effects below, the strengths of f0

and a0 are integrated over the invariant masses in the
interval 0.85–1.02 GeV.

The magnitude of the isospin-violation effects is
shown in Fig. 15, where we present the differen-
tial cross section of the reaction pn → da0

0 at Tlab =
2.6GeV as a function of θc.m. for different values of the
mixing intensity |ξ|2 = 0.05 and 0.11. For reference,
the solid curve shows the case of isospin conserva-
tion, i.e., |ξ|2 = 0. The dash-dotted curves include
the mixing effect. Note that all curves in Fig. 15
were calculated assuming maximal interference of the
amplitudes describing the direct a0 production and
its production through f0. The maximal values of the
differential cross section may also occur at θc.m. = 0◦
depending on the sign of the coefficientC1 in Eq. (36).

It follows from Fig. 15 in either case that the
isospin-violation parameter Ab(θ) for θc.m. = 180◦
may be quite large, i.e.,

Ab(180◦) = 0.86 − 0.96 or 0.9 − 0.98 (43)

for R(f0/a0) = 1.46 or 2.3, respectively. Note that
the asymmetry depends rather weakly on R(f0/a0).
It might be more sensitive to the relative phase of a0

and f0 contributions.
5.2.3. Background. The dash-dotted curve in

Fig. 13 shows our estimates of possible background
from nonresonant π0η production in the reaction
pn → dπ0η at Tlab = 2.6 GeV (see also [63]). The
background amplitude was described by the diagram
shown in Fig. 11e, where η and π mesons are created
through the intermediate production of ∆(1232)
(in the amplitude πN → πN ) and N(1535) (in the
amplitude πN → ηN ). The total cross section of the
nonresonant πη production due to this mechanism
was found to be σbg � 0.8 µb for a cutoff in the OPE
Λπ = 1GeV.

The background is charge-symmetric and cancels
in the difference of the cross sections σ(θ)− σ(π− θ).
Therefore, the complete separation of the background
is not crucial for a test of isospin violation due to the
a0–f0 mixing. There will also be some contribution
from π–η mixing as discussed in [57, 58]. According
to the results of [57], this mechanism yields a charge-
symmetry breaking in the ηNN system of about 6%:

R = dσ(π+d → ppη)/dσ(π−d → nnη)
= 0.938 ± 0.009.

A similar isospin violation due to π–ηmixing can also
be expected in our case.

The best strategy to search for isospin violation
is a measurement of the forward–backward asym-
metry for different intervals of Mπ0η. As follows from
Fig. 13, we have σa0(σbg) = 0.3(0.4), 0.27(0.29), and
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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0.19(0.15) µb forMπ0η ≥ 0.85, 0.9, and 0.95GeV, re-
spectively. For Mπ0η ≤ 0.7 GeV, the resonance con-
tribution is rather small and the charge-symmetry
breaking will be mainly related to π–η mixing and,
therefore, will be small. On the other hand, in the
interval Mπ0η ≥ 0.95 GeV, the background does not
exceed the resonance contribution and we expect a
comparatively large isospin breaking due to a0–f0
mixing.

5.3. Reaction pn → df0 → dππ

The isospin-violation effects can also be measured
in the reaction

pn → df0 → dπ+π−, (44)

where, due to mixing, the f0 may also be produced via
the a0. The corresponding differential cross section is
shown in Fig. 16. The differential cross section for
f0 production is expected to be substantially larger
than for a0 production, but the isospin-violation effect
turns out to be smaller than in the πη-production
channel. Nevertheless, the isospin-violation param-
eter A is expected to be about 10–30% and can be
detected experimentally.

5.4. Reactions pd → 3H a+
0 and pd → 3He a0

0

We continue with pd reactions and compare the
final states 3H a+

0 (c) and 3He a0
0 (d). Near the thresh-

old, the amplitudes of these reactions can be written
as

T (pd → 3H a+
0 ) =

√
2DaSA · e, (45)

T (pd → 3He a0
0) = (Da + ξDf )SA · e, (46)

with SA = φTAσ2σφN . Da and Df are the scalar S-
wave amplitudes describing the a0 and f0 production
in the case of ξ = 0. The ratio of the differential cross
sections for reactions (d) and (c) is then given by

Rdc =
|Da + ξDf |2
2|Da|2

=
1
2
+
2Re(D∗

aξDf ) + |ξDf |2
|Da|2

.

(47)

The magnitude of the ratio Rdc now depends on the
relative value of the amplitudesDa andDf . If they are
comparable (|Da| ∼ |Df |) or |Df |2 � |Da|2, the de-
viation of Rdc from 0.5 (which corresponds to isospin
conservation) might be 100% or more. Only in the
case |Df |2 � |Da|2 will the difference of |Rdc|2 from
0.5 be small. However, this seems to be very unlikely.

Using the two-step model for the reactions pd →
3He a0

0 and pd → 3He f0, involving the subprocesses
pp → dπ+ and π+n → p a0/f0 (cf. [64, 65]), we find

σ(pd → 3He a0
0)

σ(pd → 3He f0)
� σ(π+n → p a0

0)
σ(π+n → p f0)

. (48)
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According to the calculations in [18], we expect
σ(π+n → pa0

0) = σ(π−p → na0
0) � 0.5–1 mb at

1.75–2GeV/c. A similar value forσ(π−p → nf0) can
be found using the results from [41]. According to the
latter study, σ(π−p → nf0 → nK+K−) � 6–8 µb at
1.75–2 GeV/c and Br(f0 → K+K−) � 1%, which
implies that σ(π−p → nf0) � 0.6–0.8 mb. Thus, we
expect that near threshold |Da| ∼ |Df | . This would
imply that the effect of isospin violation in the ratio
Rdc can become quite large.

Recently, the cross section of the reaction pd →
3HeK+K− has been measured by the MOMO
collaboration at COSY (Jülich) [66]. It was found
that σ = 9.6± 1.0 and 17.5 ± 1.8 nb for Q = 40
and 56 MeV, respectively. The authors note that the
invariant K+K− mass distributions in those data
contain a broad peak which follows phase space.
However, as was shown in [19], the form of the
invariant mass spectrum, which follows phase space,
cannot be distinguished from the a0-resonance con-
tribution at such small Q. Therefore, the events from
the broad peak in [66] can also be related to a0 and/or
f0. Moreover, due to the phase-space behavior near
the threshold, one would expect a dominance of two-
body reactions. Thus, the real cross section of the
reaction pd → 3He a0

0 → 3He π0η is not expected to
be substantially smaller than its upper limit of about
40–70 nb atQ = 40–60MeV, which follows from the
MOMO data [66].

5.5. Reaction dd → 4He a0
0

The direct production of a0 in the reaction dd →
4He a0

0 is forbidden. It thus can only be observed due
3
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to the f0–a0 mixing:

σ(dd → 4He a0
0)

σ(dd → 4Hef0)
= |ξ|2. (49)

Therefore, it will be very interesting to study the reac-
tion

dd → 4He(π0η) (50)

near the f0-production threshold. Any signal of the
reaction (50) then will be related to isospin breaking.
It is expected to be much more pronounced near the
f0 threshold as compared to the region below this
threshold.

In summarizing this section, we have discussed
the effects of isospin violation in the reactions pN →
da0, pn → df0, pd →3 He(3H)a0, and dd → 4He a0,
which can be generated by f0–a0 mixing. It has
been demonstrated that, for a mixing intensity of
about (8± 3)%, the isospin violation in the ratio
of the differential cross sections of the reactions
pp → da+

0 → dπ+η and pn → da0
0 → dπ0η as well as

in the forward–backward asymmetry in the reaction
pn → da0

0 → dπ0η not far from the threshold may be
about 50–100%. Such large effects are caused by the
interference of direct a0 production and its production
via the f0 (the former amplitude is suppressed close
to threshold due to the P-wave amplitude, whereas
the latter is large due to the S-wave mechanism).
A similar isospin violation is expected in the ratio
of the differential cross sections of the reactions
pd → 3H a+

0 (π
+η) and pd → 3He a0

0(π
0η). Finally,

we have also discussed the isospin violation effects in
the reactions pn → df0(π+π−) and dd → 4Hea0. All
reactions together—once studied experimentally—
are expected to provide detailed information on the
strength of the f0–a0 mixing. Corresponding mea-
surements are now in preparation for the ANKE
spectrometer at COSY (Jülich) [67].
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21. M. Büscher et al., Beam-Time Request for COSY
Proposal #55 “Study of a+

0 Mesons at ANKE”
(2000); http://www.fz-juelich.de/ikp/anke.
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Abstract—For the reaction 138Ва(n, n′γ) induced by a beam of fast reactor neutrinos, the gamma
spectrum, the angular distributions of gamma radiation, and its linear polarizations are measured, along
with the half-lives of the excited states involved. The known diagram of energy levels and gamma transitions
is supplemented. The multipole-mixture ratios δ are found for many transitions between the energy levels in
question, and half-lives are determined for some excited states. c© 2003 MAIK “Nauka/Interperiodica”.
The 138Ва nucleus is of interest because it belongs
to the chain of nuclei having the magic number of
neutrons that is equal to N = 82, the levels of these
nuclei up to an energy of 3 to 4MeV being determined
primarily by proton excitations. In (n, n′γ) reactions,
the 140Се and 142Nd isotopes, which are members
of this chain and for which excitations of the type in
question must be controlled, in just the same way as
for 138Ва, by the interaction of protons occurring in
the 1g7/2 and 2d5/2 shells, were previously explored in
[1] and [2], respectively.

The bulk of information about the diagram of en-
ergy levels and gamma transitions in 138Ва was ob-
tained from the investigation of the beta decay of
138Cs and the relevant (n, γ) reaction. The latest
survey of available experimental data on 138Ва can be
found in [3], whence one can deduce that there are
many uncertainties in the features of the levels and
that reliable information about multipole mixtures in
gamma transitions is scanty.

In this article, the results obtained by studying
the spectrum of gamma rays from the reaction
138Ва(n, n′γ) induced by fast reactor neutrons and
the angular distributions and linear polarizations
of these gamma rays are presented along with the
measured lifetimes of the levels involved. In relation
to [4], where the investigation was performed only
for the angular distributions of gamma rays from
this reaction, the investigation reported here has a
higher statistical accuracy; moreover, it also includes
an analysis of the possible errors in determining
multipole mixtures in [4]. As a result, information
about multipole mixtures in gamma transitions is
substantially supplemented; in addition, the features
of many levels in 138Ва, including their half-lives, are
determined unambiguously.
1063-7788/03/6601-0017$24.00 c©
1. RESULTS OF THE MEASUREMENTS

Themeasurements were performed at the IR-8 re-
actor installed at the Russian Research Centre Kur-
chatov Institute. A detailed account of the exper-
imental and data-processing procedures used was
given in [5]. In forming a beam of fast neutrons, a
set of filters—it included 1 mm of Cd, 10 mm of
B4С, 50 mm of metallic uranium, and a replace-
able filter formed by 10 mm of 10В powder—was ar-
ranged to remove thermal and low-energy resonance
neutrons from the beam and gamma radiation from
the reactor-core region. The germanium detectors
used to record gamma radiation had an efficiency of
10% and a resolution of 2.0 keV at Eγ = 1.3 MeV.
A 138ВаСО3 sample of mass 28.7 g and thickness
1.7 g/cm2 enriched in 138Ва to 99.8% (the concen-
trations of theA = 136 and 137 barium isotopes were
0.04 and 0.16%, respectively) was taken for a target.
The gamma-ray spectra were measured at angles of
90◦, 105◦, 115◦, 125◦, 135◦, 142◦, and 150◦ with
respect to the neutron beam. The self-absorption of
gamma rays in the sample was taken into account. In
order to normalize the intensities of gamma radiation
at different angles, dedicated measurements with a
natural mixture of barium isotopes were performed,
which made it possible to use the isotropic 0+–2+

gamma transition of energy 760.49 keV in 136Ва.
The angular distributions that we obtained exhibit a
systematic deviation from those reported by Dioszegi
et al. [4], which is probably due to a difference in
normalization. Unfortunately, those authors did not
describe their normalization method, nor did they
present their results on the angular distribution for the
0+–2+ gamma transition of energy 754 keV. Possi-
bly, the 191.9-keV gamma transition was taken as an
isotropic one in [4] for normalization, but its isotropy
is not confirmed by our data. In all probability, the
2003 MAIK “Nauka/Interperiodica”
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orientation of a 138Ва nucleus in ВаСО3 cannot be
lost completely within the lifetime of the level from
which the transition occurs (its half-life is 0.8 µs). It
is obvious that an error in normalization entails errors
in all multipole-mixture ratios δ.
The linear polarization of the gamma rays in ques-

tion was measured by a two-crystal Compton po-
larimeter [5].
Table 1 presents the values that we obtained for the

energy (at an angles of θ = 90◦ between the direc-
tion of gamma-radiation detection and the neutron-
beam axis) and the relative intensities (at θ = 125◦)
of gamma transitions in 138Ва. Given in the third
column of Table 1 are the energies (Ei) of 138Ва levels
from which these gamma transitions occur.
The diagram of energy levels and gamma tran-

sitions in 138Ва that was composed on the basis of
our results and data compiled in the review article
of Tuli [3] is given in Table 2. Also quoted in this
table are the values that we obtained for the coef-
ficients a2 and a4 in the expansion of the angular
distributions of gamma radiation in Legendre polyno-
mials [W (θ) = A0(1 + a2P2(cos θ) + a4P4(cos θ))],
the relative populations of levels in the relevant
(n, n′γ) reaction induced by fast reactor neutrons
(Ps =

∑
I inγ −

∑
Ioutγ ), and the values found for the

multipole-mixture parameter δ or for themultipolarity
ML (see [5]). The uncertainties in a2, a4, and δ corre-
spond to a 68% confidence level. The uncertainties in
the δ values and their signs are given according to the
system adopted in [3].
The results obtained by measuring the linear

polarization Pγ of gamma rays for 138Ва are quoted
in Table 3. In order to select δ unambiguously (of
two possible values) by using measurements of
gamma-ray angular distributions (with respect to the
neutron-beam axis) alone, very small uncertainties in
determining the coefficient a4 were required in some
cases. If this could not be achieved, data on the linear
polarization of gamma rays were invoked to select one
of the two values of δ. Accordingly, the last column of
Table 3 presents the conclusion concerning the δ-
ellipse branch on which the sought value of δ occurs
(a4 ∼ 0 or |a4| > 0, which usually corresponds to
small or large values of |δ|).
Experimental results for the half-lives of the 138Ba

levels involved are quoted in Table 4. These results
were obtained from measurements with a metallic-
barium sample containing a natural isotope mixture
that were based on a method that employs the at-
tenuation of the Doppler shift of gamma-transition
energies in inelastic fast-neutron scattering. For the
details of the procedure used, the interested reader is
referred to [6–9]. The measurements were performed
PH
at three gamma-ray emission angles of 90◦, 125◦,
and 150◦ simultaneously with a measurement of the
gamma-ray spectrum of a radioactive 56Co source.
This made it possible to take into account possible
time variations in the parameters of the spectrometric
channel.
Experimental results for the factor F characteriz-

ing the attenuation of the Doppler shift of gamma-
transition lines due to the moderation of 138Ва recoil
nuclei in a sample material are given in the fourth
column of Table 4. On the basis of these values,
the half-lives T1/2 of the levels involved were cal-
culated according to Blaugrund–Lindhard–Scharff–
Shiott theory [9]. For the correction factor fnucl taking
into account inconsistencies between the theory of
nuclear losses and the actual moderation processes,
we employed the value of fnucl = 1.47, which was
determined in [6]. The problem of assessing this factor
was discussed anew in connection with the emer-
gence of a new study that was devoted to a resonance
excitation of some levels in 138Ba [10]. Use was made
of all known values of (Γ0)2/Γ (where Γ and Γ0 are,
respectively, the total level width and the partial width
with respect to the transition to the ground state) and
of the diagram of deexcitation of the 2218-, 3339-,
and 3367-keV levels. The data available in the lit-
erature for the 2218-keV level are quite consistent
both in (Γ0)2/Γ and in the diagram of deexcitation
of this state (Γ0/Γ is 0.98 according to [3] and 0.97
according to our results). Data on the 3339- and
3367-keV states are characterized by a significant
scatter. In all of the preceding studies, the ratio Γ0/Γ
was set to 0.77(4) for the 3339-keV level. This value
relies on the investigation of 138Cs beta decay in [11],
where the intensity of the second (1903.0-keV) tran-
sition from the 3339-keV level was determined with
a very large uncertainty (30%). Our measurements
yield the value of Γ0/Γ = 0.901(15). The validity of
this result is confirmed by the fact that it leads to
consistent values for the lifetimes of the 3339- and
3367-keV levels in all studies, with the exception of
that reported by Metzger in [12], who explored the
resonance excitation of 138Ba levels. This is also in
accord with the results of our experiment (the factors
F and the half-lives for the two levels in question
agree to a high precision), which are independent of
the diagram of excited-state deexcitation. The values
found in [10, 12, 13] for the half-life T1/2 of the 3339-
keV level exhibit rather wide variations, between 30.1
and 44.1 fs if our value of Γ0/Γ is taken into account,
the average half-life value being T1/2 = 34.5(51) fs
in this case. According to data available from the
literature, the average half-life value for the 3367-keV
level, which is deexcited through a single transition to
the ground state, is 36.2(38) fs. The choice of fnucl =
YSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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1.47 corresponds to optimum agreement between our
data on the lifetimes and the results of studies that
are devoted to the resonance excitation of the 2218-,
3339-, and 3367-keV levels.

2. DISCUSSION OF THE RESULTS

Examining the dependence Ps(Ei) and consider-
ing that the most intense transitions have already
been included in the diagram of levels and gamma
transitions, one can state that, at energies below
3MeV, there are no J ≤ 5 levels (J is the total angular
momentum) in 138Ba other than those that are quoted
in Table 2.
For some specific levels, the results obtained in the

present study are discussed immediately below.
Level at 1899 keV. An angular distribution of

gamma rays that is characterized by a value of a2 ≈
0.32 is expected for the 4+–2+ gamma transitions
in an experiment employing fast reactor neutrons. A
reduction of this value for the 462.79-keV gamma
transition to a2 = 0.233 is due to a higher cascade
population and the half-life of 2.17 ns.

Level at 2091 keV.A value of a2 ≈ 0.3 is expected
for the 6+–4+ gamma transition. The smoothing of
the angular distribution to that which is characterized
by a2 = +0.074 is caused primarily by a very long
half-life of 0.8 µs.

Level at 2190 keV. That the angular distribution
of 754.05-keV gamma rays is isotropic and that the
population Ps of this level is low make it possible to
establish reliably its spin–parity of Jπ = 0+. There
is no 2190-keV gamma transition in the gamma-ray
spectrum—an upper limit on its intensity does not
exceed 0.02 relative units.

Level at 2203 keV. The 304.0-keV gamma tran-
sition that was found in our study and which is char-
acterized by a low intensity is possibly associated
with the deexcitation of this level. For the 112.51-keV
gamma transition, the second value of δ = +0.60(10)
is improbable because of a small value of a4.

Level at 2307 keV.Data on a4 and on polarization
for the 408.96-keV transition rule out the ambiguity
in δ. The value of δ = −0.23, which is quoted in the
review article of Tuli [3], would correspond to a2 =
+0.20 here; at the same time, the observed value is
a2 = +0.322(11).

Level at 2415 keV.An unambiguous value of δ for
the 516.70-keV gamma transition follows from data
on a4 and Pγ . The value of δ(516.70 keV) = −0.11
given in [3] would correspond to a2 = −0.4 here, but
the observed value is a2 = −0.121(10). The value of
Pγ for the 324.83-keV transition favors the small
value of δ; however, the value of δ = −4.0(4) cannot
be ruled out definitively in view of experimental errors.
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For the 212.28-keV transition, the second value of
δ = −6.4 + 6 – 8 is incompatible with a small value
of a4.

Level at 2445 keV. The values of Pγ and a4 make
it possible to find unambiguously the value of δ for the
1009.70- and 546.93-keV gamma transitions.

Level at 2583 keV. In experiments employing
fast reactor neutrons, values of a2 ≈ +0.28 and a2 ≈
−0.09 are expected for the 2+–0+ and the 1–0+

transition, respectively. Accordingly, the gamma line
at 2582.92 keV corresponds to the 1–0+ transi-
tion. This expected distinction between the angular
distributions for the 1–0+ and 2+–0+ transitions
makes it possible to select unambiguously angular-
momentum values for the levels at 2639, 2931, 3050,
3339, 3367, 3442, 3504, 3601, 3643, 3734, 3800,
4001, 4026, and 4323 keV as well. Since the second
value of δ = −2.0 + 6–7 is less probable because of
the value of Pγ for the gamma line at 1147.16 keV, we
do not present it in the table.

Level at 2779 keV. The angular distribution for
the 1343.54-keV gamma transition is somewhat
smoothed (a2 = +0.234 instead of the expected value
of +0.32). In all probability, the peak at 1343.54 keV
in the gamma-ray spectrum corresponds to two
unresolved lines. The second line may be associated
with the deexcitation of the level at 3242 keV. On
the basis of the population expected for the level at
2779 keV, we have Iγ ≈ 1.7 for the transition to the
level at 1436 keV.

Level at 2796-keV? In the (n, γ) reaction, a
2795.68–5815.77 keV cascade of the observed
gamma lines can be composed, which gives sufficient
grounds to assume the presence of a level at 2796
or at 5816 keV. A population of Ps ≈ 2 must be ob-
served for the 2796-keV level in the (n, n′γ) reaction;
however, the 2796-keV gamma transition is not seen
in the spectrum (Iγ < 0.03 relative units). We were
unable to find other gamma lines for the deexcitation
of the level at 2796 keV. In view of this, we can state
that there is no level at 2796 keV in 138Ва.

Level at 2881 keV. The values of a4 and Pγ make
it possible to rule out a large contribution of M2
radiation for the 1444.86-keV gamma transition.

Level at 2917 keV? This level was introduced in
studying the (n, γ) reaction in view of the possible
2916.86–5694.56 keV cascade. The intensity of the
2917-keV gamma line in the (n, n′γ) reaction is less
than 0.01 relative units (the expected value is Ps ≈
1.5). Therefore, there is no level at 2917 keV in 138Ва.

Level at 2931 keV. Data on a4 and Pγ for the
1495.59-keV transition proved to be insufficient for
pinpointing a single value of δ for this transition.
3
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Table 1. Energies and intensities of 138Ba gamma lines

Eγ(∆Eγ), keV Iγ(∆Iγ), rel. units Ei, keV Eγ(∆Eγ), keV Iγ(∆Iγ), rel. units Ei, keV

107.8(2) 0.20(3) 2415 980.7(3) 0.070(12) 3184
112.51(3) 2.87(20) 2203 1009.70(2) 3.7(3) 2446
138.10(7) 0.32(3) 2446 1028.7(2) 0.096(12)
191.95(2) 8.8(6) 2091 1033.1(2) 0.086(11)
193.9(2) 0.115(10) 2639 1040.42(4) 0.52(4) 3486
212.28(3) 0.93(7) 2415 1054.2(2) 0.091(11) 3935
227.71(6) 0.214(17) 2446 1064.20(9) 0.20(3) 3155
304.0(2) 0.057(9) 2203 1068.27(8) 0.296(25) 3286?
324.83(2) 1.69(12) 2415 1082.8(3) 0.108(13)
333.68(8) 0.199(16) 2779 1093.1(3) 0.166(16) 3184
363.88(4) 0.51(4) 2779 1116.66(8) 0.33(3) 3562
365.10(11) 0.227(19) 2583 1147.16(3) 1.81(13) 2583
375.6(2) 0.051(7) 3155 1151.38(14) 0.252(21) 3050
385.1(2) 0.066(9) 1158.1(2) 0.293(24)
408.96(2) 3.60(25) 2308 1177.0(2) 0.106(14)
421.41(11) 0.206(16) 2639 1186.9(3) 0.179(18)
436.0(2) 0.049(6) 2852? 1203.6(2) 0.11(2) 2839
438.3(3) 0.040(7) 3622 1251.7(3) 0.092(15) 3442?
449.2(3) 0.033(6) 3633 1256.25(11) 0.249(22) 3155
462.79(2) 33.2(23) 1899 1264.63(12) 0.34(3) 3163
516.70(2) 2.55(18) 2415 1279.2(7) 0.061(10)
524.5(2) 0.057(7) 1284.4(3) 0.229(19) 4165?
546.93(3) 1.39(10) 2446 1307.9(3) 0.107(11)
648.1(2) 0.035(7) 1337.0(2) 0.114(11)
669.3(3) 0.040(9) 1343.54(2) 2.12(15) 2779 + 3242?
683.65(7) 0.31(2) 2991 1358.80(6) 0.32(2) 3257
717.67(17) 0.103(11) 3163 1387.0(4) 0.096(10) 3286?
735.85(9) 0.240(19) 1392.9(2) 0.113(11)
739.44(19) 0.130(13) 3155 1407.1(4) 0.038(8) 3610
754.05(2) 1.90(13) 2190 1415.71(3) 1.88(13) 2852
760.8(2) 0.076(9) 1426.3(3) 0.055(8)
766.09(14) 0.182(16) 3647 1435.86(2) 100(7) 1436
773.16(5) 0.39(3) 2991 1444.86(2) 2.8(2) 2881
775.0(5) 0.053(11) 1478.28(17) 0.168(15) 3377
782.12(10) 0.27(2) 2218 1481.24(10) 0.33(3) 3380?
792.8(3) 0.043(8) 1490.8(3) 0.075(8)
796.7(3) 0.051(8) 3242 1495.59(3) 1.48(10) 2931
813.0(4) 0.080(10) 1500.6(3) 0.043(7)
855.7(3) 0.072(9) 3163 1507.9(5) 0.037(8)
871.68(2) 3.9(3) 2308 1512.9(2) 0.080(10)
880.70(15) 0.23(3) 2779 1515.8(4) 0.042(9) 3931
921.1(6) 0.063(13) 1536.2(5) 0.031(9)
930.3(3) 0.061(8) 1541.0(2) 0.076(10)
934.77(9) 0.258(20) 3242 1555.25(4) 0.66(5) 2991
944.7(3) 0.21(17) 3360 1566.2(2) 0.070(10)
952.90(11) 0.267(22) 2852 1572.2(2) 0.072(9)
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Table 1. (Contd.)

Eγ(∆Eγ), keV Iγ(∆Iγ), rel. units Ei, keV Eγ(∆Eγ), keV Iγ(∆Iγ), rel. units Ei, keV

1582.0(4) 0.041(7) 3800 2232.0(4) 0.055(7)
1587.6(4) 0.039(7) 3486 2240.6(4) 0.058(9)
1596.8(4) 0.037(7) 2373.3(2) 0.048(9)
1605.4(2) 0.110(10) 3504 2391.4(5) 0.046(9)
1614.08(3) 1.89(13) 3050 2402.8(7) 0.064(10)
1620.5(4) 0.071(11) 2437.1(5) 0.067(8)
1627.8(4) 0.071(9) 3935 2447.7(5) 0.050(7)
1649.0(4) 0.089(12) 2486.1(8) 0.028(8) 3922
1653.5(3) 0.207(18) 2499.3(3) 0.070(8) 3935
1655.9(2) 0.131(14) 2511.3(5) 0.041(7)
1663.2(5) 0.055(10) 3562 2582.92(10) 0.36(3) 2583
1674.8(3) 0.095(10) 2639.39(3) 2.64(19) 2639
1684.3(2) 0.119(11) 2731.8(9) 0.045(10) 4630
1727.03(6) 0.62(4) 3163 2753.1(6) 0.062(10)
1743.95(18) 0.212(18) 3642.6? 2806.3(11) 0.069(8) 4242
1746.9(3) 0.097(12) 2831.2(6) 0.097(12)
1750.5(6) 0.031(9) 2931.3(3) 0.100(15) 2931
1806.80(18) 0.202(16) 3242 3027.8(6) 0.045(7)
1821.31(8) 0.49(4) 3257 3049.42(11) 0.42(3) 3050
1832.2(4) 0.126(12) 3061.2(6) 0.059(8)
1850.30(10) 0.32(2) 3286? 3150.4(5) 0.050(10)
1903.0(4) 0.067(9) 3339 3157.0(8) 0.052(10)
1909.3(6) 0.059(11) 3179.62(15) 0.258(20) 4615
1914.3(3) 0.125(15) 3338.81(8) 0.61(4) 3339
1940.80(9) 0.44(3) 3377 3366.73(7) 0.57(4) 3367
1960.9(3) 0.158(14) 3860? 3437.0(7) 0.055(10)
1993.0(4) 0.054(8) 3442.12(18) 0.201(18) 3442
1999.5(4) 0.051(8) 3504.1(2) 0.204(17) 3504
2023.5(3) 0.180(16) 3922 3539.9(6) 0.063(10)
2032.6(3) 0.139(14) 3931 3600.7(3) 0.104(11) 3601
2068.1(4) 0.107(12) 3504 3642.8(2) 0.29(2) 3643
2071.8(5) 0.064(11) 3684.6(3) 0.139(13) 3685
2092.1(5) 0.064(8) 3734.3(3) 0.155(14) 3734
2136.4(5) 0.062(9) 3800.1(3) 0.159(14) 3800
2164.8(3) 0.121(12) 3601 4001.2(4) 0.126(13) 4001
2182.0(4) 0.111(10) 3618 4012.9(9) 0.041(9)
2197.8(3) 0.073(8) 4025.8(4) 0.137(14) 4026
2210.9(3) 0.097(9) 3647 4051.3(9) 0.070(10)
2217.86(2) 9.2(6) 2218 4323.2(4) 0.110(12) 4323
Level at 2991 keV. For the 1555.25-keV gamma
transition, the small value of δ = +0.32(2) is ruled out
by data on a4 and Pγ .

Level at 3050 keV. On the basis of Pγ , we pre-
sented, in Table 2, the small value of δ for the 1614.08-
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
keV gamma transition, ruling out the value of δ =
+1.58(8).

Level at 3085 keV? This level was introduced in
studying the (n, γ) reaction. For a level at this energy,
the value of Ps is expected to be about 1.5. Since we
were unable to find gamma lines of this total intensity
3
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Table 2.Diagram of levels and gamma transitions in 138Ba

Ei, keV Jπ
i Eγ , keV Iγ , rel. units Ef , keV Jπ

f Ps a2 a4 δ ± ∆δ; ML
1435.87(2) 2+

1 1435.86 100 0 0+ 41 +0.261(9) −0.095(12) E2
1898.66(3) 4+

1 462.79 33.2 1436 2+ 14.3 +0.233(9) −0.047(12) E2
2090.61(4) 6+

1 191.95 8.8 1899 4+ 3.5 +0.074(8) −0.001(12)
(10.6)∗∗

2189.92(3) 0+
2 754.05 1.9 1436 2+ 1.70 +0.001(13) −0.009(20) Isotropic

2203.12(5) 6+
2 304.0∗ 0.057 1899 4+ 3.8

112.51 2.87 2091 6+ +0.31(2) −0.01(3) +0.03± 7
(5.0)∗∗

2217.88(2) 2+
2 2217.86 9.2 0 0+ 8.1 +0.270(9) −0.092(12) E2

782.12 0.27 1436 2+ +0.17(5) −0.02(7) −0.02 ± 8
or+2.5 + 7− 4

2307.58(3) 4+
2 871.68 3.9 1436 2+ 5.7 +0.311(11) −0.067(15) E2

408.96 3.6 1899 4+ +0.322(11) +0.002(15) +0.03 ± 2
2415.40(4) 5+

1 516.70 2.55 1899 4+ 4.6 −0.121(10) +0.029(15) +0.059± 7
324.83 1.69 2091 6+ 0.00(9) 0.00(8) −0.10 ± 2

(1.75)∗∗

212.28 0.93 2203 6+ −0.03(2) +0.03(3) −0.07 ± 2
(1.04)∗∗

107.8 0.20 2308 4+ −0.17(21) +0.02(33)
(0.36)∗∗

2445.58(3) 3+
1 1009.70 3.7 1436 2+ 4.5 −0.181(9) −0.002(14) +0.018± 7

546.93 1.39 1899 4+ +0.021(13) −0.012(19) −0.13 ± 2
227.71 0.214 2218 2+ −0.12(7) +0.10(10) +0.01 ± 8

(0.24)∗∗ or−5.6 + 18 − 46
138.10 0.32 2308 4+

(0.48)∗∗

2583.03(4) 1+
1 2582.92 0.36 0 0+ 2.4 −0.10(4) 0.00(6) M1

1147.16 1.81 1436 2+ +0.014(14) −0.001(21) −0.19± 11
365.10 0.227 2218 2+ 0.00(8) 0.00(12) −0.1 ± 6

or−2.6 + 18−∞
2639.42(3) 2+

3 2639.39 2.64 0 0+ 3.1 +0.276(11) −0.082(15) E2
1203.6 0.11 1436 2+

421.41 0.206 2218 2+ +0.15(7) +0.01(11) −0.08± 12 or
+2.9 + 18− 9

193.9 0.115 2446 3+

(0.135)∗∗

2779.37(3) 4+
3 1343.54 ∼1.7 1436 2+ ∼ 2.6 +0.234(12) −0.074(17) (E2)

880.70 0.23 1899 4+

363.88 0.51 2415 5+ +0.02(4) +0.03(6) −0.11 ± 3 or
−4.7 + 6− 9

333.68 0.199 2446 3+

2851.58(4) 4+
4 1415.71 1.88 1436 2+ 2.2 +0.349(14) −0.083(19) E2

952.90 0.267 1899 4+ −0.28(6) −0.10(9) −1.5 ± 5
(the other is
−5 + 2− 9)436.0∗? 0.049 2415 5+

2880.74(3) 3−1 1444.86 2.8 1436 2+ 2.2 −0.164(10) +0.001(15) +0.04 ± 2
2931.47(4) 2+

4 2931.3 0.100 0 0+ 1.58 +0.21(9) −0.08(12) E2
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Table 2. (Contd.)

Ei, keV Jπ
i Eγ , keV Iγ , rel. units Ef , keV Jπ

f Ps a2 a4 δ ± ∆δ; ML
1495.59 1.48 1436 2+ −0.183(11) −0.048(17) −0.75± 4 (or

−4.2 + 4− 5)

2991.11(4) 3+
2 1555.25 0.66 1436 2+ 1.36 +0.19(2) +0.10(3) +9.8 + 21− 14

773.16 0.39 2218 2+ −0.40(4) +0.03(6) −2.5 ± 3
(or−0.18 ± 4)

683.65 0.31 2308 4+ +0.14(5) +0.04(7) −2.5 ± 5
(or−0.27 ± 6)

3049.96(4) 2+
5 3049.82 0.42 0 0+ 2.6 +0.30(4) −0.08(5) E2

1614.08 1.89 1436 2+ +0.255(14) −0.063(19) +0.16 ± 2
1151.38 0.252 1899 4+ +0.12(14) −0.01(19)

3154.91(11) 4+
5 1256.25 0.249 1899 4+ 0.71? −0.18(7) −0.07(10) −1.0 + 2− 3

or 1/δ = 0.00 ± 1

1064.20 0.20 2091 6+

739.44 0.130 2415 5+

375.6∗ 0.051 2779 4+

3162.99(6) 2+
6 1727.03 0.62 1436 2+ 1.14 +0.22(3) −0.02(4) +0.05 ± 5

(or+2.0 + 5− 3)

1264.63 0.34 1899 4+ +0.09(7) +0.04(10) (E2)
855.7 0.072 2308 4+

717.67 0.103 2446 3+

3183.8(3) 8+
1 1093.1 0.166 2091 6+ 0.16

980.7 0.070 2203 6+

3242.42(9) 3+
3 1806.80 0.202 1436 2+ ∼0.9 +0.01(6) +0.05(9) +0.17 ± 5

or−28 + 16−∞
1343.5? ∼0.4 1899 4+

934.77 0.258 2308 4+ −0.31(6) −0.01(8) +0.25 ± 7
or+8 + 6− 3

796.7∗ 0.051 2446 3+

3257.34(7) 3+, (4+) 1821.31 0.49 1436 2+ 0.81 +0.28(4) 0.00(5) +0.46 ± 4
or+4.2 + 7− 6

1358.80 0.32 1899 4+ −0.17(5) +0.02(7) +0.11 ± 6
or−50 + 40− 600

3286.16(8)∗? (2+, 3+) 1850.30 0.32 1436 2+ 0.71 +0.34(5) −0.12(7) +0.7 ± 5
(Jπ

i = 2+)

1387.0 0.096 1899 4+

1068.27 0.296 2218 2+ −0.01(6) −0.15(9)
3338.85(8) 2+ 3338.81 0.61 0 0+ 0.68 +0.27(3) −0.09(4) E2

1903.0 0.067 1436 2+

3360.1(3) (7+
1 ) 944.7 0.210 2415 5+ 0.21 +0.25(8) −0.06(11) (E2)

3366.77(7) 2+ 3366.73 0.57 0 0+ 0.57 +0.27(3) −0.06(4) E2
3376.68(9)∗ 3+ 1940.80 0.44 1436 2+ 0.61 +0.47(4) +0.01(6) + 0.9 + 4− 3

1478.28 0.168 1899 4+ −0.02(10) −0.09(14) −0.13± 12
or−4 + 1− 6

3379.90(10)∗? (5+) 1481.24 0.33 1899 4+ 0.33 +0.37(5) +0.12(7) +3.0 ± 4
3442.17(18) 2+ 3442.12 0.201 0 0+ 0.29? +0.24(7) −0.06(9) E2

1251.7∗? 0.092 2190 0+

3486.00(5)∗ 1040.42 0.52 2446 3+ 0.56
1587.6 0.039 1899 4+
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24 GOVOR et al.
Table 2. (Contd.)

Ei, keV Jπ
i Eγ , keV Iγ , rel. units Ef , keV Jπ

f Ps a2 a4 δ ± ∆δ; ML
3504.1(2) 2+ 3504.1 0.204 0 0+ 0.42 +0.25(7) −0.09(9) E2

2068.1∗ 0.107 1436 2+ +0.27(12) 0.00(18)
1605.4∗ 0.110 1899 4+

3562.24(8) (4)− 1663.2∗ 0.055 1899 4+ 0.38
1116.66∗ 0.33 2446 3+ −0.14(7) +0.01(11) +0.07 ± 4

3600.7(3) 1 3600.7 0.104 0 0+ 0.23 −0.07(12) 0.00(18) E1 orМ1
2164.8∗ 0.121 1436 2+ +0.10(15) 0.00(20)

3610.2(4) (7+, 8+) 1407.1 0.038 2203 6+ 0.04
3617.9(4) (0+) 2182.0 0.111 1436 2+ 0.11 0.00(8) −0.03(12)
3622.1(4) 10+

1 438.3 0.040 3184 8+ 0.04
3633.0(4) (9−1 ) 449.2 0.033 3184 8+ 0.03
3642.9(2) 2+ 3642.8 0.29 0 0+ 0.29 +0.30(5) −0.06(7) E2
3642.62(18)? 1743.95 0.212 1899 4+ 0.21 +0.22(7) +0.09(10)
3646.83(14) (3)− 2210.9 0.097 1436 2+ 0.28

766.09 0.182 2881 3− +0.23(8) +0.01(11) −0.07± 10
or+1.5 ± 6

3684.6(3)∗ 1 3684.6 0.139 0 0+ 0.14 +0.01(9) 0 E1 orМ1
3694.1(4) 1387.0 0.096 2308 4+ 0.18

813.0 0.080 2881 3−

3734.3(3)∗ 2+ 3734.3 0.155 0 0+ 0.16 +0.29(11) −0.24(16) E2
3800.0(3)∗ 2+ 3800.1 0.159 0 0+ 0.20 +0.27(11) −0.08(15) E2

1582.0 0.041 2218 2+

3859.6(3)? (5)− 1960.9∗ 0.158 1899 4+ 0.16 −0.19(11) +0.01(17) (E1)
3922.2(3) (3)− 2486.1 0.028 1436 2+ 0.21

2023.5 0.180 1899 4+ −0.14(9) −0.03(12) (E1)
3931.3(3)∗ 3+, 4+, 5 2032.6 0.139 1899 4+ 0.18 +0.04(11) +0.01(16)

1515.8 0.042 2415 5+

3935.0(2) (2+) 2499.3 0.070 1436 2+ 0.23
1627.8∗ 0.071 2308 4+

1054.2 0.091 2881 3−

4001.2(4)∗ 2+ 4001.2 0.126 0 0+ 0.13 +0.26(15) −0.16(19) E2
4025.8(4) 1− 4025.8 0.137 0 0+ 0.14 −0.17(9) 0.00(13) E1
4165.1(3) (4)− 1284.4∗? 0.229 2881 3− 0.23
4242.2(11) 2806.3 0.069 1436 2+ 0.07
4323.2(4) (1)− 4323.2 0.110 0 0+ 0.11 −0.14(13) +0.01(18) E1
4615.32(15)∗ 3179.62 0.258 1436 2+ 0.26 −0.02(7) −0.02(9)
4630.5(9) 2731.8 0.045 1899 4+ 0.05

∗ Values established for the first time.
∗∗ Transition intensities with allowance for conversion.
for the deexcitation of the level at 3085 keV, we deem
that there is no such level in 138Ва.

Level at 3163 keV. The spin–parity of Jπ = 3+

is impossible for this level because of a small value of
|a4| and the value of Pγ for the 1727.03-keV gamma
transition, while the spin–parity of Jπ = 3− is ruled
out by the value of a2—for an Е1 transition, it corre-
P

sponds to δ = +0.40, which is improbable for 138Ва.
The angular distribution of 1264.63-keV gamma rays
is compatible with that which is expected for the
2+–4+ quadrupole transition.

Level at 3242 keV. The spin–parity of Jπ = 4+

is ruled out by the value of a2 for the 1806.80-keV
gamma transition, while the spin–parity of Jπ = 2+
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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Table 3. Linear polarization of gamma rays in the 138Ba(n, n′γ) reaction

Eγ , keV Jπ
i Jπ

f
P calcγ

P
expt
γ

Conclusions

a4 ∼ 0 |a4| > 0

324.83 5+
1 6+

1 0.62(2) 0.46(2) 0.9(2) a4 ∼ 0?

408.96 4+
2 4+

1 3.30(4) 0.94(4) 3.1(+12,−4) a4 ∼ 0

462.79 4+
1 2+

1 2.17(9) 2.1(+6,−2) Corresponds to Е2

516.70 5+
1 4+

1 0.51(1) 1.20(1) 0.68(10) a4 ∼ 0

546.93 3+
1 4+

1 0.69(1) 0.47(1) 0.75(16) a4 ∼ 0

773.16 3+
2 2+

2 0.70(3) 1.62(1) 1.2(+7,−4) |a4| > 0?

782.12 2+
2 2+

1 1.93(5) 0.73(1) 1.1(+10,−6)

871.68 4+
2 2+

1 3.2(2) 3.5(+15,−7) Corresponds to Е2

952.90 4+
4 4+

1 1.1(2) 0.60(+16,−9) 1.2(+10,−6) a4 ∼ 0

1009.70 3+
1 2+

1 0.56(1) 1.52(1) 0.60(11) a4 ∼ 0

1147.16 1+
1 2+

1 0.93(2) 0.81(1) 1.0(2)

1343.54 4+
3 2+

1 2.2(3) 3.3(+18,−8) Corresponds to Е2

1415.71 4+
4 2+

1 3.9(4) 2.7(+14,−7) Corresponds to Е2

1435.86 2+
1 0+

1 2.32(11) 2.4(+7,−4) Corresponds to Е2

1444.86 3−1 2+
1 1.9(2) 1.6(+5,−3) Corresponds to Е1

1495.59 2+
4 2+

1 1.74(3) 0.98(2) 1.4(+5,−3) a4 ∼ 0?

1555.25 3+
2 2+

1 0.34(1) 1.21(3) 4(+7,−2) |a4| > 0

1614.08 2+
5 2+

1 1.77(4) 0.76(1) 1.4(+6,−4) a4 ∼ 0

1727.03 2+ 2+
1 1.92(6) 0.73(2) 1.5(+22,−9) Jπ

i = 2+, a4 ∼ 0

3+ 2+
1 0.32(2)
is incompatible with the a2 value observed for the
934.77-keV gamma transition. A negative parity is
unlikely because of the value of δ for the 934.77-keV
gamma transition.

Level at 3257 keV. The spin–parity of Jπ = 2+

is excluded by the value of a2 for the 1358.80-keV
gamma transition, while the spin–parity of Jπ = 3−
is at odds with the value of δ for the 1821.31-keV
gamma transition. The quantum numbers Jπ = 4+

are questioned because of the value of a4 for the
1821.31-keV gamma transition (the value of a4 =
−0.075 is expected for the 4+–2+ transition). The
value of δ in Table 2 is given for the Jπ = 3+ initial
state.

Level at 3286 keV? This level can be introduced
on the basis of the energies of three gamma transi-
tions. The most probable spin–parity assignment for
this level would be that of 2+ or that of 3+. However,
the 1850.30- and the 1068.27-keV transition have
been observed neither in studying the beta decay of
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
138Ва nor in studying the relevant (n, γ) reaction, in
which case the population of the 2+ level is expected;
therefore, the existence of a Jπ = 2+ level at this
energy is questionable. The values of a4 for the tran-
sitions in question are incompatible with Jπ = 3+.

Level at 3352 keV? A 3352.6-keV transition of
low intensity was discovered in studying the beta
decay of 138Cs, and the level at the same energy
was introduced on this basis. In the spectrum for
the (n, n′γ) reaction, the intensity of the 3352.6-keV
transition is equal to 0.030(10) at the expected popu-
lation Ps of this level about 0.5. In all probability, this
transition proceeds to the first 2+ level, in which case
the energy of the initial state is 4789 keV. A 3823.56-
keV transition that could correspond to a transition
from a capture state to this level was discovered in the
relevant (n, γ) reaction.

Level at 3360 keV. The angular distribution of
944.7-keV gamma rays is consistent with the spin–
parity assignment of 7+ for this level.
3
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Table 4.Measured half-lives of some 138Ba levels in the (n, n′γ) reaction

Elev, keV Jπ Eγ , keV F
T1/2, ps

our study [3]∗∗

2189.92 0+ 754.05 −0.019(56) ≥0.8 −
2217.88 2+ 2217.86 0.257(14)∗ 0.140(10) 0.123(14)

2445.58 3+ 1009.70 0.035(31) ≥0.7 5(4)

546.93 0.050(88)

2583.03 1+ 2582.92 0.27(11) 0.134(+42,−29) ≤7

1147.16 0.270(52)

2639.42 2+ 2639.39 0.103(20) 0.42(+12,−8) 0.30(8)

2851.58 4+ 1415.71 −0.001(31) ≥1.5 ≤11

2880.74 3− 1444.86 0.491(26) 0.055(6) ≤11

2931.47 2+ 1495.59 0.21(4) 0.19(+5,−4) −
3049.96 2+ 3049.82 0.21(10) 0.33(+14,−8) −

1614.08 0.124(36)

3162.99 2+ 1727.03 0.15(9) 0.28(+55,−12) −
3338.85 2+ 3338.81 0.650(65) 0.031(+9,−8) 0.029(6)∗∗

3366.77 2+ 3366.73 0.650(74) 0.031(+10,−8) 0.070(13)∗∗

3504.1 2+ 3504.1 0.19(19) ≥0.2 −
3600.7 1 3600.7 0.37(33) ≥0.09 −
3642.9 2+ 3642.8 0.75(13) 0.019(+16,−11) 0.024(10)

3734.3 2+ 3734.3 0.42(21) 0.08(+13,−4) −
3800.1 2+ 3800.1 0.38(23) 0.09(+21,−6) −
4025.8 1− 4025.8 0.87(25) ≤35 fs 0.54(19) fs

∗ A partial population of this level by cascade gamma transitions from higher levels [6] is taken into account.
∗∗ See main body of the text.
Level at 3377 keV. The value of a2 for the
1940.80-keV gamma transition is not compatible
with the spin–parity values of 1, 2+, 3−, and 4+ for
this level; in addition, it unambiguously determines
the value of δ (the value of δ corresponding to the
experimental results for a2 and a4 occurs at the
extremely right point of the δ ellipse).

Level at 3380 keV? We have proposed this level
to ensure the placement of the 1481.24-keV tran-
sition. The intensity of this transition complies well
with the population expected for the Jπ = 5+ level
at this energy value. The angular distribution for the
1481.24-keV transition is at odds with the spin–
parity values of Jπ = 2+ and 4+, and the population
is not consistent with Jπ = 3+.

Level at 3437 keV? The level was introduced
PH
because of the presence of a 3437.5(6)-keV gamma
transition in the beta decay of 138Cs and the
3436.18(9)-keV gamma transition in the (n, γ) reac-
tion. The 3437.0(7)-keV transition of low intensity in
the (n, n′γ) reaction (Iγ = 0.055) is unable to ensure
a value of Ps ≈ 0.4 expected for this level, but it
may be involved in the deexcitation of the 4872.9(7)-
keV level to the first 2+ level. The 3738.22(7)-keV
transition observed in the (n, γ) reaction may be a
transition from a capture state to this level.

Level at 3442 keV. This level was found in study-
ing the (n, γ) reaction. Its population determined here
is somewhat lower than that which is expected for
a 2+ level at this energy value. Possibly, there is a
transition that proceeds to the level at 2639.42 keV
YSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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Energy-level diagrams for 138Ва, 140Се, and 142Nd along with the energy-level diagram computed for 138Ва in [4] on the basis
of the shell model.
and which coincides, in the measured spectrum, with
the intense background line of lead at 803 keV.

Level at 3486 keV.We have introduced this level
on the basis of the 1040.42-keV transition, which has
a relatively high intensity. Because of its intensity,
this transition cannot be associated with the deexci-
tation of a higher lying level (in particular, the level at
3922.5 keV, as was assumed in [3]). In the energy-
level diagram, there is also no placement for it at
energies below 2.5 MeV.

Level at 3562 keV. The Jπ = (4)− level was in-
troduced upon studying the (d, p) reaction. The inten-
sity of the gamma line at 1116.66 keV complies well
with the Ps value expected for a level at this energy.
The angular distribution of 1116.66-keV gamma rays
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agrees with that which is expected for a 4−–3+ tran-
sition.

Level at 3618 keV. A Jπ = 0+ level at 3612 keV
was found in the (t, p) reaction. The 2182.0-keV
transition is a good candidate for that which could
deexcite the 0+ level at this energy since the intensity
Iγ of this transition has an appropriate value and since
it produces gamma rays distributed isotropically. The
discrepancy between the energies is within the errors
in determining them in the (t, p) reaction.

Level at 3643 keV. The value of a2 for 1743.95-
keV gamma rays is slightly greater than that which is
expected for the 2+–4+ transition, and this transition
is observed neither in the beta decay of 138Cs nor in
the (n, γ) reaction. At the same time, the 3643.6-
keV transition was discovered in these processes. The
3
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Table 5. Values of δ in the deexcitation of some levels in 138Ba, 140Ce, and 142Nd

Transition
Jπ

i –Jπ
f

138
56Ва82

140
58Се82 [1]

142
60Nd82 [2]

2+
2 –2+

1 −0.02 ± 8 or+ 2.5 + 7− 4 +0.5 + 6− 2 +0.16 + 6− 5

2+
3 –2+

1 – −0.17± 2 −0.28 ± 3

2+
4 –2+

1 −4.2 + 4−5 or−0.75 ± 4 −1.5 + 4− 10 −0.6 + 2− 3 or−6 + 3− 29

2+
5 –2+

1 +0.16 ± 2 or+ 1.58 ± 8 +0.7 ± 3 +0.1 < δ < +1.5

3+
1 –2+

1 +0.018± 7 −0.056± 12 −0.07 ± 2

3+
1 –4+

1 −0.13± 2 +0.19± 4 or+13 + 11− 5 −0.08 ± 2

4+
2 –4+

1 +0.03± 2 +0.5 + 3− 4 −0.09 ± 3

4+
3 –4+

1 – −0.04± 2 −0.08 ± 4

5+
1 –4+

1 +0.059± 7 −0.069± 15 −0.038± 10

5+
1 –6+

1 −0.10± 2 −0.19 ± 10 −0.06 ± 2 or−7.0 + 10− 15

6+
2 –6+

1 +0.03± 7 −0.19± 4 −0.13 ± 4

Table 6. Experimental and theoretical values of δ for gamma transitions in 138Ba

Transition
Jπ

i –Jπ
f

Experiment
Theory [4]

Our study [3, 4]

3+
1 –2+

1 +0.018± 7 −2.90± 15 −0.41

3+
2 –2+

1 +9.8 + 21− 14 +0.21 ± 4 +0.81

3+
2 –2+

2 −2.5 ± 5 −2.0 ± 6 −1.92

4+
2 –4+

1 +0.03± 2 −0.23 ± 7 +0.01

5+
1 –6+

1 −0.10± 2 −7.8 ± 18 −1.25

6+
2 –6+

1 +0.03± 7 −0.27± 12 −0.02
total intensity Iγ of the two transitions in question
is overly great for the level at the energy value being
considered. Possibly, there are two levels at this en-
ergy.

Level at 3685 keV. The 3684.6-keV transition
can be associated only with the deexcitation of this
level to the ground state because, even for the transi-
tion to the 2+

1 level, the expected intensity must be
2 to 3 times lower [according to the regularities in
the behavior of Ps(Ei) for the fast-reactor-neutron-
induced reaction in question, which, for 138Ва, are re-
flected in Table 2 (column Ps)]. Using this argument,
we have also introduced levels at 3734.3, 3800.0,
4001.2, and 4615.32 keV.
P

3. COMPARISON OF THE RADIATIVE
PROPERTIES OF 138Ва, 140Се, AND 142Nd

LEVELS

The energy-level diagrams for 138Ва, 140Се [1],
and 142Nd [2] are shown in the figure for the excita-
tion-energy region extending up to about 3 MeV.
Also given there is the energy-level diagram for 138Ва
according to the shell-model calculations in [4]. From
the figure, it is obvious that, up to an excitation energy
of about 3 MeV, all J < 5 levels have been revealed
in these nuclei. (Only the position of the 0+

3 level in
138Ва has not yet been fixed.)
The values of δ that correspond to the deexci-

tation of some levels in the nuclei being considered
are quoted in Table 5. In comparing these values, it
is necessary to pay special attention to the sign of
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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δ, because it must greatly depend on the structure
of excited states involved in a given transition. For
the Jπ = 2+ levels, the sign of δ remains unchanged
in going over from one nucleus of the above set to
another and the value of this parameter changes in-
significantly, while, for the majority of the levels char-
acterized by different values of J , the sign of δ may
be different for the different nuclei. In this case, the
sign of δ must be affected by different contributions of
the 2d5/2 and 1g7/2 proton states. We emphasize the
opposite signs of δ for the 2+

2 –2+
1 and 2

+
3 –2+

1 transi-
tions in 140Се and 142Nd, since this is peculiar to the
majority of medium-mass even–even nuclei [14].
In Table 6, the values of δ that were computed in [4]

on the basis of the shell model are contrasted against
their experimental counterparts found in [4] and in our
present study. The model used in those calculations
explains only half of our data on δ values.
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Abstract—For several years the data on different p̄p(JPC = 0−+) → 3 mesons channels presented by the
Crystal Barrel collaboration were successfully analyzed by extracting the leading amplitude singularities—
pole singularities—with the aim of obtaining information about two-meson resonances. But these analyses
do not take three-body final-state interactions into account in an explicitly correct way. This paper is
devoted to the consideration of this problem. It is shown how the coupled three-body equations could be
written for the π0π0π0, ηπ0π0, ηηπ0, and K̄Kπ0 channels in the p̄p annihilation at rest using the three-body
dispersion-relationN/D method. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

For several years Crystal Barrel collaboration has
presented high-statistics data on the three-meson
production from p̄p annihilation at rest. These data
were successfully analyzed (see, for example, [1–4])
with the aim of searching for new meson resonances
in the 1000–1600 MeV region using the K-matrix
formalism or a simplified dispersion N/D method.
There is a strong expectation based on QCD [5],
as well as on lattice calculations [6] that the lowest
scalar glueball is located in this region. Thus, the
identification of scalar resonances in the mass region
800–2000 MeV and their classification in q̄q nonets
should be done to trap the lightest scalar glueball. The
quark–gluon structure of these resonances can be
determined from the analysis of coupling constants of
these states to pseudoscalar mesons [7]. The question
is whether theK-matrix approximation—or the sim-
plifiedN/D method—is sufficient for this purpose.

In this paper the three-body dispersion N/D
method is presented, which is based on the two-
body unitarity condition and allows one to take into
account the final-state interaction (FSI) of three
mesons. The basic principles of this technique were
developed in 1960s and they were applied to the
calculation of FSI in the K-meson decay into three
pions (see [8, 9] and references therein). Recently this
technique was used for the calculation of the η → 3π
decay [10] and φ-meson production in pp̄ annihilation
at rest [11].

∗This article was submitted by the author in English.
**e-mail: aanisovi@iname.com
1063-7788/03/6601-0172$24.00 c©
This paper is organized as follows. In Section 2,
the two-particle discontinuity of the decay amplitude
is written out, and the integral equation is derived. It is
shown how to take into account not only the S-wave
binary interactions, but also interactions with higher
angular momentum (P and D waves). In Section 3,
this technique is generalized for the resonance and
nonresonance two-particle interactions. The com-
plete three-body dispersion equation is written so that
may be used for the analysis of various three-particle
reactions. In Section 4, it is shown how the coupled
three-body equations could be written for π0π0π0,
ηπ0π0, ηηπ0, and K̄Kπ0 channels in p̄p annihilation
from the 0−+ state.

2. TWO-PARTICLE DISCONTINUITY
OF THE DECAY AMPLITUDE

Let us start with the consideration of the decay of
a scalar particle with the mass M and momentum
P into three scalar particles with masses m1, m2,
and m3 and momenta k1, k2, and k3. I would like to
show that the energy dependence of this transition
amplitude may be derived from the unitarity and an-
alyticity. The imaginary part of the amplitude An for
the transition 1 → n is given by

ImMn =
1
2

∑
n′

(2π)4δ

(
P −

n′∑
i=1

ki

)
T ∗
n′nMn′ , (1)

where Tn′n is the scattering matrix. Equation (1)
may be simplified if the approximation is used, where
(i) binary interactions of particles are taken into ac-
count, neglecting three-particle forces; and (ii) there
are no transitions through intermediate states with
2003 MAIK “Nauka/Interperiodica”
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more than three particles. It is also supposed that
there are no transitions through intermediate states
involving other particles; still, this is not a crucial
restriction. Below it is shown how the production of
new particles in the intermediate state may be taken
into account. In this approximation, one can write
Eq. (1) as follows:

ImM3 =
1
2
(2π)4δ(P − k1 − k2 − k3)T ∗

33M3. (2)

Neglecting three-particle forces, the amplitude
M3 for the three-particle production is a sum of four
terms: (i) the direct production amplitude
λ(s12, s13, s23), which is assumed, for the sake of
simplicity, to be free of singularities; (ii) the amplitude
a12, where the last interaction is that of particles 1 and
2; likewise, there are similar terms (iii) a13, and (iv)
a23. Taken into account are FSI with different orbital
angular momenta L. Hence, the amplitude aij can be
expressed through the L-wave amplitudes ALij(sij)
and is written as follows:

aij =
∑
L

FLA
L
ij(sij). (3)

Here, sij is the two-particle invariant mass squared,
sij = (ki + kj)2. The function FL defines the angular
distribution of decaying particles. In the case of the
S-wave binary interaction F0 = 1, but for the higher
wave interaction the amplitude depends on the angle
between interacting and spectator particles as well.

2.1. S-Wave Interaction

Let us begin with the S-wave pair interactions.
The decaying amplitude is given by

M(s12, s13, s23) = λ(s12, s13, s23) +A0
12(s12) (4)

+ A0
13(s13) + A0

23(s23).

The connected part of the matrix T33 is not known,
so the contribution from three-particle intermediate
state into the imaginary part of M cannot be directly
calculated and writing down the corresponding dis-
persion integral is impossible. So, the two-particle
unitarity condition will be explored, in order to de-
rive the integral equation for the amplitude A0

ij . This
method was described in detail in [8]. The idea of such
an approach is that one should consider the case of
small external mass M < m1 + m2 +m3 when only
the scattering reactions are physically possible. A
simple relation can be written in this case, and then
the analytic continuation of the final equation over the
mass M back to the decay region is performed. Let
us stress that the obtained expression differs from the
contribution from the disconnected part of T in the
imaginary part M satisfying the three-body unitarity
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
condition, in which the three particles interact only in
pairs [12].

Thus, an ordinary unitarity condition for the scat-
tering in the channel of particles 1 and 2 is written
down. This means that (M + m3) < s12 is assumed.
The discontinuity of the amplitude is equal to

disc12M(s12, s13, s23) =
1
2

∫
dΦ12(k1, k2) (5)

× (λ + A0
12(s12) + A0

13(s13) + A0
23(s23))A0∗

2→2(s12),

where dΦ12(k1, k2) is the phase volume of particles 1
and 2:

dΦ12(k1, k2) = (2π)4δ4(P − k1 − k2) (6)

× d4k1d
4k2

(2π)6
δ(m2

1 − k2
1)δ(m

2
2 − k2

2).

A0
2→2 is the S-wave two-particle scattering ampli-

tude, which can be written in the dispersion N/D
method as a series
A0

2→2(s) = GL
0 (s)GR

0 (s) + GL
0 (s)B0(s)GR

0 (s) (7)

+ GL
0 (s)B2

0(s)GR
0 (s) + ... =

GL
0 (s)GR

0 (s)
1 −B0(s)

.

Here, GL
0 and GR

0 are the left and right vertex func-
tions andB0(s) is the dispersion representation of the
loop diagram:

B0(s) =

∞∫
(mi+mj)2

ds′

π

GL
0 (s′)ρij(s′)GR

0 (s′)
s′ − s

, (8)

where ρij is the two-particle phase space

ρij(s) =
1

16πs

√
[s− (mi + mj)][s − (mi −mj)].

(9)

The vertex functions contain left-hand singularities
related to the t-channel exchange diagrams, while
the B function has singularities due to the elastic
scattering. It is not specified from the consideration
of the scattering amplitude A0

2→2 of (6) whether both
vertices GL

0 and GR
0 have these singularities or only

one of them. In the case of three-body decay the situ-
ation is quite the opposite. On the first sheet the decay
amplitude has only singularities at sij = (mi +mj)2,
which are associated with the elastic scattering in
the subchannel of particles i and j. This means that
the vertex GR

0 is an analytic function. For the sake of
simplicity,

GR
0 = 1. (10)

Now return to Eq. (6). Since the λ functions do not
have the two-particle threshold singularity and thus
do not have a discontinuity, the left-hand side of (6) is

disc12M(s12, s13, s23) = disc12A
0
12(s12). (11)
3



174 ANISOVICH
As was stressed in [13], only one rescattering of
particles 1 and 2 can be considered in the final state
and a full set of binary rescatterings can be taken
into account multiplying by (1 −B0(s12))−1. Thus,
the two-particle discontinuity in this special case of
one rescattering is defined as

disc12A
0
12(s12) =

1
2

∫
dΦ12(k1, k2) (12)

× (λ(s12, s13, s23) + A0
13(s13) + A0

23(s23))GL
0 (s12).

It is convenient to perform the phase-space integra-
tion in Eq. (12) in the c.m.s. of particles 1 and 2. In
this frame,

s13 = m2
1 + m2

3 − 2k10k30 + 2z13|k1||k3|, (13)

k10 =
s12 + m2

1 −m2
2

2
√
s12

, |k1| =
√
k2
10 −m2

1,

k30 =
s12 + m2

3 − s

2
√
s12

, |k3| =
√
k2
30 −m2

3,

where z13 = cos θ13, θ13 is the angle between particles
1 and 3 in the c.m.s. of particles 1 and 2, and s = M2.
The expression for s23 is obtained fromEq. (13) by the
replacement 1 ↔ 2. From Eq. (12) one has

disc12A
0
12(s12) = (λS(s12) + 〈A0

13(s13)〉0 (14)

+ 〈A0
23(s23)〉0)GL

0 (s12)ρ12(s12),

where the following notation is used:

〈A0
i3(si3)〉0 =

∫
Ci(s12)

dzi3
2

A0
i3(si3). (15)

λS is the S-wave projection of λ:

λS(s12) =

1∫
−1

dz13

2
λ(s12, s13, s23). (16)

Analytic continuation over external mass M from
the scattering to the decay region allows one to define
correctly the rules of integration over z. This integra-
tion should be carried out along the contour Ci(s12),
whose position at different s12 is described in detail in
[8]. Here, note that only at small s12,

(m1 + m2)2 ≤ s12 ≤ mis

mi + m3
(17)

+
m3

mi + m3
(m1 + m2 −mi)2 −mim3,

which coincides with the phase-space integration
contour

−1 ≤ zi3 ≤ 1, (18)

and contains an additional piece at larger s12.
PH
Equation (14) allows us to write down the disper-
sion integral for the amplitude with one pair rescat-
tering in the final state:

A0
12(s12) = λS(s12)B0(s12) +

∞∫
(m1+m2)2

ds′12
π

(19)

× ρ12(s′12)G
0
L(s′12)

s′12 − s12
(〈A0

13(s
′
13)〉0 + 〈A0

23(s
′
23)〉0).

Here, λS is excluded from the dispersion integral,
but it is also possible to include it: in both cases the
unitarity is satisfied but with different behavior of the
amplitude at infinity, which cannot be defined by the
unitarity and analyticity only. After the transition from
one rescattering to the full set of binary interactions in
the final state, one has

A0
12(s12) =

λS(s12)B0(s12)
1 −B0(s12)

+
1

1 −B0(s12)
(20)

×
∞∫

(m1+m2)2

ds′12
π

ρ12(s′12)G
L
0 (s′12)

s′12 − s12

× (〈A0
13(s

′
13)〉0 + 〈A0

23(s
′
23)〉0).

Let us now check that the extraction of the FSI
does not violate the unitarity condition (6). To calcu-
late the left-hand side of (6), the Eq. (20) is rewritten
as follows:

A0
12(s12) =

1 −B∗
0(s12)

|1 −B0(s12)|2
(bλ(s12) + J(s12)), (21)

where
bλ(s12) = λS(s12)B0(s12), (22)

J(s12) =

∞∫
(m1+m2)2

ds′12
π

ρ12(s′12)G
L
0 (s′12)

s′12 − s12
(23)

×
(
〈A0

13(s
′
13)〉0 + 〈A0

23(s
′
23)〉0

)
.

Thus,

disc12A
0
12(s12) (24)

=
1

|1 −B0(s12)|2
(ImB0(s12)bλ(s12)

+ (1 −B0(s12))Imbλ(s12) + ImB0(s12)J(s12)
+ (1 −B0(s12))discJ(s12)).

Taking into account that

discB0(s12) = ImB0(s12) = ρ12(s12)GL
0 (s12), (25)

discbλ(s12) = Imbλ(s12) = ρ12(s12)GL
0 (s12)λS ,

discJ(s12) = ρ12(s12)GL
0 (s12)〈A0

13 + A0
23〉0,

the result is the right-hand side of (6); hence, the
unitarity condition is fulfilled.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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2.2. P-Wave Interaction in the Final State

First, let us determine the structure of the ampli-
tude, where particles 1 and 2 interact in the P wave
and the particle 3 is a spectator. The easiest way to
do this is to transform the decay amplitude into the
scattering amplitude. To perform this transformation
the antiparticle 3 with the momentum (−k3) is con-
sidered instead of particle 3 itself. The assumed form
of the amplitude is O1µQ1µA

1
12(s12).Operator Q1 de-

scribes the P-wave angular distribution of particles 1
and 2 in the final state and is defined as the relative
momentum of these particles:

Q1µ = k1µ − k2µ −
m2

1 −m2
2

s12
(k1 + k2)µ. (26)

Operator O1 should be constructed as the relative
momentum of the initial state and antiparticle 3. Tak-
ing into account the fact thatQ1µ(k1 + k2)µ = 0, one
can define O1 as

O1µ = k3µ. (27)

As is seen from (3),

F1 = O1µQ1µ, (28)

and it is easy to find that F1 is proportional to z13 in
the c.m.s. of particles 1 and 2.

Hereafter, the procedure of the above section is
used to write down the two-particle unitarity condi-
tion and the integral equation for A1. The P-wave
two-particle scattering amplitude of particles 1 and 2
in theN/D method can be written as

A1
2→2(s12) = Q1µ

GL
1 (s12)

1 −B1(s12)
Q1µ, (29)

where the B function is equal to

B1(sij) =

∞∫
(mi+mj)2

ds′

π

GL
1 (s′)ρij(s′)〈Q1µQ1µ〉

s′ − sij

(30)

and 〈· · · 〉means the averaging over space angle.
As the first step, one should consider a triangle

diagram with one P-wave rescattering of particles 1
and 2. The discontinuity of this diagram is equal to:

disc12A
1
12(s12) (31)

=
1
2

∫
dΦ12(k1, k2)a13(s13, z13)Q1µG

L
1 (s12)

= GL
1 (s12)ρ12(s12)

∫
dΩ
4π

Q1µa13(s13, z13).

The integration over the space angle is performed in
the c.m. frame of particles 1 and 2. In this frame, Q1
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turns into k12. With the z axis directed along k3, the
components of k12 are equal to

k12x = k12 sin θ13 cosφ, k12y = k12 sin θ13 sinφ,
k12z = k12 cos θ13,

k12 =
√

1
s12

[s12 − (m1 + m2)2][s12 − (m1 −m2)2],

(32)

where φ is azimuthal angle. The integration over φ in
(32) keeps the only components ofQ1µ with µ = z:∫

dΩ
4π

Q1x . . . =
∫

dΩ
4π

Q1y . . . = 0, (33)∫
dΩ
4π

Q1z . . . = k12

∫
dz13

2
z13 . . . .

Let us introduce the vector k⊥3 with only z component
unequal to zero in the c.m.s.:

k⊥3µ = k3µ − pµ
pk3

p2
, (34)

where p = k1 + k2. Then it follows from (32):

disc12A
1
12(s12) = k⊥3µρ12(s12)GL

1 (s12)
k12√
−(k⊥3 )2

(35)

×
∫

C3(s12)

dz13

2
z13a13(s13, z13),

where

−(k⊥3 )2 =
[(M −m3)2 − s12][(M + m3)2 − s12]

4s12
.

(36)

The invariant part of the P-wave amplitude can
be written as a dispersion integral over the energy
squared of particles 1 and 2 in the intermediate state,
while k⊥3 in (35) defines the operator structure of
the P-wave amplitude. Thus, the P-wave triangle
diagram is equal to

k⊥3µ

∞∫
(m1+m2)2

ds′12
π

ρ12(s′12)G
L
1 (s′12)

s′12 − s12
〈a13(s13, z)〉1,

(37)

where

〈a13(s13, z)〉1 (38)

=
k12√
−(k⊥3 )2

∫
C3(s12)

dz

2
za13(s13, z).

Equation (37) should be multiplied by the operator
Q1 which describes angular distribution of particles 1
3
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and 2 in the final state. Using k⊥3µQ1µ = O1µQ1µ, one
may conclude that the operator part of a12 is correctly
reconstructed. To take into account binary rescatter-
ing in the final state, it is necessary to multiply (37) by
the factor (1 −B1(s12))−1.

The same steps should be done if a13 is replaced by
the direct production term λ(s12, s13, s23). Still, the
energy dependence of λ is not usually known; there-
fore, a simpler assumption is used. Let us introduce
the constants λPij , which define the direct production
amplitude of particles i and j in the P wave. Then the
following integral equation for the amplitude A1

12 can
be written as

A1
12(s12) =

λP12B1(s12)
1 −B1(s12)

+
1

1 −B1(s12)
(39)

×
∞∫

(m1+m2)2

ds′12
π

ρ12(s′12)G
L
1 (s′12)

s′12 − s12
(〈a13〉1 + 〈a23〉1).

2.3.D-Wave Interaction in the Final State

Likewise, the case of D-wave interaction in the
final state may be investigated. The amplitude, where
particles 1 and 2 have the last interaction in the D
wave, has the form O2Q2A

2
12(s12). The operator Q2

is a traceless tensor of the range 2 made up of the
relative momenta of particles 1 and 2:

Q2µν = k12µk12ν −
1
3
k2
12g

⊥
µν , (40)

where

k12µ = k1µ − k2µ −
m2

1 −m2
2

s12
(k1 + k2)µ, (41)

g⊥µν = gµν −
pµpν
p2

. (42)

Another operator, O2, can be defined as

O2µν = k3µk3ν . (43)

Below, it will be proved that O2 can be defined in this
way. Let us note here that the operator part of theD-
wave decaying amplitude is proportional to 3z2

13 − 1.
Let us define the D-wave scattering amplitude of

particles 1 and 2 inN/D representation as

A2
2→2(s12) = Q2µν

GL
2 (s12)

1 −B2(s12)
Q2µν . (44)

Here, the definition of B2 is similar to (30), with
the replacement Q1µ → Q2µν . The discontinuity of
the triangle diagram with the D-wave rescattering of
particles 1 and 2 is equal to

disc12A
2
12(s12) =

1
2

(45)
P

×
∫

dΦ12(k1, k2)a13(s13, z13)Q2µνG
L
2 (s12)

= GL
2 (s12)ρ12(s12)

∫
dΩ
4π

Q2µνa13(s13, z13).

The integration over the space angle is performed in
the c.m. frame of particles 1 and 2. Equation (32) is
used, and only the following components of the tensor
k12µk12ν are not equal to zero:∫

dΩ
4π

k12xk12x . . . =
∫

dΩ
4π

k12yk12y . . . (46)

= k2
12

∫
dz13

4
(1 − z2

13) . . . ,∫
dΩ
4π

k12zk12z · · · = k2
12

∫
dz13

2
z2
13 . . . .

To perform the space integration in the invariant form,
let us define the tensor g⊥⊥

µν as

g⊥⊥
µν = gµν −

pµpν
p2

−
k⊥µ3k

⊥
ν3

(k⊥3 )2
. (47)

In the c.m. frame of particles 1 and 2, the tensor g⊥⊥
µν

has only two nonzero diagonal elements:

g⊥⊥
µν → diag(0,−1,−1, 0). (48)

Thus, Eq. (47) can be rewritten as∫
dΩ
4π

k12µk12ν . . . (49)

= −g⊥⊥
µν k2

12

∫
dz13

4
(1 − z2

13) . . .

−
k⊥µ3k

⊥
ν3

(k⊥3 )2
k2
12

∫
dz13

2
z2
13 . . .

Equation (49) should be placed into (45) for the dis-
continuity of triangle diagrams. Taking into account
that this expressionmust bemultiplied by the external
operator Q2, one can see that only the third term
in Eq. (49) contributes to (45). Moreover, one could
replace k⊥3 by k3. Finally, as follows from (45),

disc12A
2
12(s12) = k3µk3νρ12(s12) (50)

×GL
2 (s12)〈a13(s13, z)〉2,

where

〈a13(s13, z)〉2 (51)

=
k2
12

(k⊥3 )2

∫
C3(s12)

dz

4
(1 − 3z2)a13(s13, z).

The invariant part of the D-wave amplitude can be
written as a dispersion integral, and a full set of binary
rescatterings in the final state is defined by the factor
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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(1 −B2(s12))−1. The result is the following integral
equation for the amplitude A2

12:

A2
12(s12) =

λD12B2(s12)
1 −B2(s12)

(52)

+
1

1 −B2(s12)

∞∫
(m1+m2)2

ds′12
π

ρ12(s′12)G
L
2 (s′12)

s′12 − s12

× (〈a13(s13, z)〉2 + 〈a23(s23, z)〉2),

where the constant λDij stands for the direct produc-
tion amplitude of particles i and j in theD wave.

3. DISPERSION EQUATIONS
WITH THE RESONANCE

AND NONRESONANCE PRODUCTION
OF PARTICLES

In this section a realistic case is considered, when
there are resonance and nonresonance interactions
between two particles. This situation happens, for
example, in the 0++ wave of the pion–pion amplitude,
where there is a nonresonance background and a
set of resonances at energies above 1 GeV. Figuring
out the dispersion representation of the two-particle
amplitude is the first step for this particular case. For
the sake of simplicity, we consider the S-wave one-
channel amplitude. The first resonance term of the
amplitude can be written as∑

α

g(α)2(s)
M2
α − s

, (53)

where Mα is a pure (nonphysical) mass of reso-
nance α, and the function g(α)(s) describes its decay
into two particles. Below, we assume a universal s-
dependence of g(α):

g(α)(s) = g(α)φ(s). (54)

The second term of the amplitude with one virtual
loop is equal to∑

αα′

g(α)2(s)
M2
α − s

g(α)g(α′)b(s)
g(α′)2(s)
M2
α′ − s

, (55)

where b(s) is the loop diagram with the cutoff func-
tion. The behavior of φ(s) at large s (or at small
distances r) is not known, and a simple way to avoid
the uncertainties is to assume that the contribution
from r < r0 is equal to zero. Then the cutoff function
Λ(s) is defined as follows:

Λ(s) =
∫

d3reik·rΘ(r − r0)
∫

d3k′

(2π)3
e−ik

′·rφ2(s′);

(56)
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and b(s) is equal to

b(s) = iρ(s) + P

∫
ds′

π

ρ(s′)
s′ − s

Λ(s′). (57)

The phase space ρ is given by (9), with mi = mj ≡
mπ. Summing up the terms with different number
of loops, one obtains the following expression for the
amplitude:

A =

∑
α

g(α)2(s)
M2
α − s

1 − b(s)
∑
α

g(α)2(s)
M2
α − s

. (58)

For nonresonance interaction of particles defined by
the vertex function f(s), Eq. (58) should be rewritten
as follows:

A =

∑
α

g(α)2(s)
M2
α − s

+ f(s)

1 −
{
b(s)

∑
α

g(α)2(s)
M2
α − s

+ bf (s)

} , (59)

where

bf (s) = iρ(s) + P

∫
ds′

π

ρ(s′)
s′ − s

Λf (s′), (60)

and Λf (s) is given by (56) with the replacement of
φ2(s) by f(s). It should be noted here that if φ and
f are constants, then the cutoff functions are equal to
zero, and the dispersion representation coincides with
the K-matrix approach. Equation (59) can easily be
generalized for the case of the two-particle interaction
with orbital angular momentum L:

AL = QL,µ

∑
α

g(α)2(s)
M2
α − s

+ f(s)

1 −
{
b(s)

∑
α

g(α)2(s)
M2
α − s

+ bf (s)

}QL,µ,

(61)

where b(s) and bf (s) are given by Eqs. (57) and (60),
with the cutoff functions Λ(s) and Λf (s), respectively,
which are equal to

Λ(s) =
∫

d3reik·rΘ(r − r0) (62)

×
∫

d3k′

(2π)3
e−ik

′·rφ2(s′)〈QL,µQL,µ〉,

Λf (s) =
∫

d3reik·rΘ(r − r0) (63)

×
∫

d3k′

(2π)3
e−ik

′·rf(s′)〈QL,µQL,µ〉.
3
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The same formalism can be applied to the case
of a multichannel amplitude. The decay of resonance
α into particles m and n is given by the function

g
(α)
mn(s) = g

(α)
mnφmn(s), and the nonresonance tran-

sition from the channel with particles m and n to
the channel with particles m′ and n′ is given by
fmn;m′n′(s). Here, the expression for multichannel
amplitude is not given in an explicit form; its com-
position can be found in detail, for example, in [14].
Note that the denominator of (59), which describes
the rescattering of particles in multichannel case, has
the matrix form (Î − B̂)−1, where Î is an identity
matrix and the B-matrix element is equal to

Bmn;m′n′ = bmn;m′n′(s)
∑
α

g
(α)
mng

(α)
m′n′

M2
α − s

+ βmn;m′n′(s),

(64)

bmn;m′n′(s) = iρmn(s) (65)

+ P

∫
ds′

π

ρmn(s′)
s′ − s

Λmn;m′n′(s′),

where

βmn;m′n′(s) = iρmn(s) (66)

+ P

∫
ds′

π

ρmn(s′)
s′ − s

Λf,mn;m′n′(s′).

Let us generalize the results of the previous sec-
tions and write the dispersion equations for the three-
particle decay amplitude. The amplitude for the pro-
duction of three different particles k,m, and n, which
is denoted asMkmn, is as follows:

Mkmn = akm;n(s12, z) + anm;k(s23, z) (67)

+ akn;m(s13, z),

where the first term in the right-hand side gives the
amplitude with the last interaction between particles
k and m, and so on. The interaction of two particles,
for example, n and m, can happen in different chan-
nels. Here, the isospin is neglected (let I = 0), so the
two-particle momentum describes the type of inter-
action. Hence, the amplitude anm;k can be written as

anm;k =
∑
J

FJA
0J
nm;k, (68)

where A0J
nm;k is the amplitude of the last interaction of

particles n andm with the angular momentum J and
isospin I = 0. The integral equation for A0J

nm;k can
be written as a generalization of Eqs. (20), (39), and
(52). First, we use the term where only the particles
m and n interact with each other and the particle
PH
k is a spectator. The resonance and nonresonance
production of these particles from the initial state is

λ0J
mn;k(s) =

∑
α

=
C

(α)
k g

(α)
mn(s)

M2
α − s

+ Φ0J
mn;k, (69)

where C
(α)
k is the production constant of resonance

α and particle k, Φ0J
mn;k corresponds to the direct

production of the particles m and n with the relative
momentum J . The rescattering of particles m and n
gives the following amplitude:∑

(m′n′)

λ0J
m′n′;k{(Î − B̂)−1}0J

m′n′;nm, (70)

where the summation over intermediate states with
the production ofm′ and n′ particles is performed. The
expression for triangle diagram can be written in the
same way. Finally, the result is the following three-
body dispersion relation:

A0J
mn;k =

∑
(m′n′)

λ0J
m′n′;k{(Î − B̂)−1}0J

m′n′;mn (71)

+
∑

(m′n′)

∑
(m′′n′′)

{(Î − B̂)−1}0J
m′′n′′;mn

×
∫

ds′12
π

ρm′n′(s′12)N
0J
m′n′;m′′n′′(s′12, s12)

s′12 − s12

× (〈an′k;m′(s′13, z)〉J + 〈am′k;n′(s′23, z)〉J ),

where

N0J
m′n′;mn(s

′
12, s12) = Λf,m′n′;mn (72)

+
∑
α

g
(α)
m′n′(s′12)g

(α)
mn(s12)

M2
α − s12

Λ̄(s′12),

and Λ̄(s′) is the cutoff function obtained in (62) with
the help of φm′n′(s).

4. DISPERSION EQUATIONS
FOR THE COUPLED DECAY CHANNELS

p̄p(0−+) → π0π0π0, ηπ0π0, ηηπ0, K̄Kπ0

The proton–antiproton annihilation in the state
JPC = 0−+ can originate from the two isospin states
I = 0 and I = 1. Due to isospin conservation in
strong interactions, there exist two integral equations
for the following decay channels:

p̄p(IJPC = 10−+) → π0π0π0, ηηπ0, K̄Kπ0

and

p̄p(IJPC = 00−+) → ηπ0π0, K̄Kπ0.

Let us write the integral equations for the decay
from I = 1 state.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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4.1. The Reaction p̄p (10−+) → π0π0π0

For this reaction the only difference from the anal-
ysis given above is that one should take into account
the isospin structure of the amplitude. The same anal-
ysis has been done in [10, 13], where the unitarity
condition in the ππ channel was used to derive the
amplitude for the η → 3π0 decay. This decay goes
with the violation of isospin symmetry; therefore, the
initial states have the same quantum numbers in both
cases. Because of that, the results of [10] and [13]
are reproduced here, and the contribution from the
ηη and K̄K states is also taken into account. The
annihilation amplitude into 3π0 is

Mπ0π0π0 = aπ0π0;π0(s12, z) (73)

+ aπ0π0;π0(s13, z) + aπ0π0;π0(s23, z),

where

aπ0π0;π0 = a0
ππ;π0 +

4
3
a2
ππ;π0, (74)

and aIππ;π0 is the amplitude with the last pions in-
teracting in the isospin state I. It should be noted
that, due to the C invariance, there is no term in
(74) with pion interactions in the state I = 1. For
the channel with isospin I = 0, the S- and D-wave
interactions should be taken into account; this allows
one to properly calculate the production of f0 and f2
resonances, so

a0
ππ;π0 = A00

ππ;π0 + F2A
02
ππ;π0 . (75)

In the channel with isospin I = 2, only the S-wave
interaction should be taken into account; therefore,

a2
ππ;π0 = A20

ππ;π0 . (76)

The integral equations for A0J
ππ;π0 have the following

form:

A0J
ππ;π0 = λ0J

ππ;π0{(Î − B̂)−1}0J
ππ;ππ (77)

+ {(Î − B̂)−1}0J
ππ;ππ

∫
ds′12
π

×
ρππ(s′12)N

0J
ππ;ππ(s′12, s12)

s′12 − s12

×
(〈

2
3
a0
ππ;π0(s′13, z)

〉
J

+
〈

20
9
a2
ππ;π0(s′23, z)

〉
J

+
〈

4
3
a1
ππ;π0(s′23, z)

〉
J

)
+ ∆ηη + ∆K̄K ,

where the contributions from the ηη and K̄K inter-
mediate states are:

∆ηη = λ0J
ηη;π0{(Î − B̂)−1}0J

ηη;ππ (78)

+ {(Î − B̂)−1}0J
ηη;ππ

∫
ds′12
π
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×
ρηη(s′12)N

0J
ηη;ππ(s′12, s12)

s′12 − s12
〈2aπ0η;η(s

′
13, z)〉J ,

∆K̄K = λ0J
K̄K;π0{(Î − B̂)−1}0J

K̄K;ππ (79)

+ {(Î − B̂)−1}0J
K̄K;ππ

∫
ds′12
π

×
ρK̄K(s′12)N

0J
K̄K;ππ

(s′12, s12)

s′12 − s12
〈2aπ0K;K̄(s′13, z)〉J .

The amplitude a1
ππ;π0 in (77) can be found only from

the p̄p annihilation into charged pions; theferore, in
our approach it could be simply replaced by the direct
production amplitude of ρ+π−. In the integral equa-
tion for A20

ππ;π0 , only ππ intermediate states are taken
into account, so one has:

A20
ππ;π0 = λ20

ππ;π{(Î − B̂)−1}20
ππ;ππ (80)

+ {(Î − B̂)−1}20
ππ;ππ

∫
ds′12
π

×
ρππ(s′12)N

20
ππ;ππ(s′12, s12)

s′12 − s12
(〈a0

ππ;π0(s′13, z)〉0

+
〈

1
3
a2
ππ;π0(s′23, z)

〉
0

+ 〈a1
ππ;π0(s′23, z)〉0).

4.2. The Reactions p̄p(0−+) → ηηπ0

In the ηπ0 channel the S- and D-wave interac-
tions with the production of a0 and a2 resonances are
taken into consideration. The annihilation amplitude
is as follows:

Mηηπ0 = aηη;π0(s12, z) + aηπ0;η(s13, z) (81)

+ aηπ0;η(s23, z),

where

aηη;π0 = A00
ηη;π0 + F2A

02
ηη;π0 , (82)

aηπ0;η = A10
ηπ0;η + F2A

12
ηπ0;η. (83)

The integral equation for theA0J
ηη;π0 amplitude has the

following form:

A0J
ηη;π0 = λ0J

ππ;π0{(Î − B̂)−1}0J
ππ;ηη (84)

+ {(Î − B̂)−1}0J
ππ;ηη

∫
ds′12
π

×
ρππ(s′12)N

0J
ππ;ηη(s′12, s12)

s′12 − s12

(〈
2
3
a0
ππ;π0(s′13, z)

〉
J

+
〈

20
9
a2
ππ;π0(s′23, z)

〉
J

+
〈

4
3
a1
ππ;π0(s′23, z)

〉
J

)
+ ∆ηη + ∆K̄K ,
3
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where contributions from the ηη and K̄K intermedi-
ate states are:

∆ηη = λ0J
ηη;π0{(Î − B̂)−1}0J

ηη;ηη (85)

+ {(Î − B̂)−1}0J
ηη;ηη

∫
ds′12
π

×
ρηη(s′12)N

0J
ηη;ηη(s′12, s12)

s′12 − s12
〈2aπ0η;η(s

′
13, z)〉J ,

∆K̄K = λ0J
K̄K;π0{(Î − B̂)−1}0J

K̄K;ηη (86)

+ {(Î − B̂)−1}0J
K̄K;ηη

∫
ds′12
π

×
ρK̄K(s′12)N

0J
K̄K;ηη

(s′12, s12)

s′12 − s12
〈2aπ0K;K(s′13, z)〉J .

Here, 2aπ0K;K = aπ0K;K̄ + aπ0K̄;K . The integral
equation for the A1J

ηπ0;η amplitude is

A1J
ηπ0;η = λ1J

ηπ0;η{(Î − B̂)−1}1J
ηπ0;ηπ0 (87)

+ {(Î − B̂)−1}1J
ηπ0;ηπ0 ×

∫
ds′12
π

×
ρηπ0(s′12)N

1J
ηπ0;ηπ0(s′12, s12)

s′12 − s12
(〈aηη;π0(s′13, z)〉J

+ 〈aηπ0;η(s
′
23, z)〉J ).

4.3. Reactions p̄p(0−+) → K̄Kπ0

These annihilation amplitudes are

Mπ0K̄K = aπ0K;K̄(s12, z) + aπ0K̄;K(s13, z) (88)

+ aK̄K;π0(s23, z).

As before, in the K̄K channel the S- and D-wave
interactions and K∗ resonances in the Kπ channel
are accounted for. So, one has

aK̄K;π0 = A00
K̄K;π0 + F2A

02
K̄K;π0, (89)

aK̄π0;K = A
1/2,1

K̄π0;K
. (90)

Here, the isotopic spin I = 1/2. For these amplitudes,
one can get the following integral equations:

A
1/2,1

K̄π0;K
= λ

1/2,1

K̄π0;K
{(Î − B̂)−1}1/2,1

π0K;π0K
(91)

+ {(Î − B̂)−1}1/2,1
π0K;π0K

∫
ds′12
π

×
ρπ0K(s′12)N

1/2,1
π0K;π0K

(s′12, s12)

s′12 − s12
(〈aK̄π0;K(s′13, z)〉J

+ 〈aK̄K;π0(s′23, z)〉J ).
P

The integral equation for the A0J
K̄K;π0 amplitude has

the following form:

A0J
K̄K;π0 = λ0J

ππ;π0{(Î − B̂)−1}0J
ππ;K̄K (92)

+ {(Î − B̂)−1}0J
ππ;K̄K

∫
ds′12
π

×
ρππ(s′12)N

0J
ππ;K̄K

(s′12, s12)

s′12 − s12

(〈
2
3
a0
ππ;π0(s′13, z)

〉
J

+
〈

20
9
a2
ππ;π0(s′23, z)

〉
J

+
〈

4
3
a1
ππ;π0(s′23, z)

〉
J

)
+ ∆ηη + ∆K̄K ,

where contributions from the ηη and K̄K intermedi-
ate states are as follows:

∆ηη = λ0J
ηη;π0{(Î − B̂)−1}0J

ηη;K̄K (93)

+ {(Î − B̂)−1}0J
ηη;K̄K

∫
ds′12
π

×
ρηη(s′12)N

0J
ηη;ηη(s′12, s12)

s′12 − s12
〈2aπ0η;η(s

′
13, z)〉J ,

∆K̄K = λ0J
K̄K;π0{(Î − B̂)−1}0J

K̄K;K̄K (94)

+ {(Î − B̂)−1}0J
K̄K;K̄K

∫
ds′12
π

×
ρK̄K(s′12)N

0J
K̄K;K̄K

(s′12, s12)

s′12 − s12
〈2aπ0K;K(s′13, z)〉J .

A set of integral equations for the reactions p̄p (IJPC =
00−+) → ηπ0π0, K̄Kπ0 may be written in the same
way.

5. CONCLUSION

To summarize, the two-particle discontinuity of
the decay amplitude is written, and the integral equa-
tion is obtained which takes into account not only
the S-wave binary interactions, but also interactions
with higher angular momenta (P and D wave).
These equations are generalized for the resonance
and nonresonance types of two-particle interactions.
A complete three-body dispersion equation is derived,
which may be used for the analysis of various three-
particle reactions. It was demonstrated how the
coupled three-body equations can be written for the
π0π0π0, ηπ0π0, ηηπ0, and K̄Kπ0 channels in p̄p
annihilation at rest.
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ELEMENTARY PARTICLES AND FIELDS
Theory
Hadronization as Valon Confinement
in the Course of Nuclear-Matter Cooling

I. I. Royzen* and O. D. Chernavskaya**

Lebedev Institute of Physics, Russian Academy of Sciences, Leninskiı̆ pr. 53, Moscow, 117335 Russia
Received March 6, 2002

Abstract—The updated three-phase concept of nuclear-matter evolution in the course of cooling—
from a quark–qluon plasma (QGP) through an intermediate phase involving massive constituent
quarks Q (valons), pions, and kaons (QπK) to hadronic matter (H)—is exploited to describe rel-
ative hadronic yields from the midrapidity region in heavy-ion collisions at high energies. Atten-
tion is given primarily to the QπK phase, which is argued to permit a correct description with-
in the ideal-gas approximation. This phase must exist until the mean spacing between valons ap-
proaches the confinement radius (at the temperature of TH � 115± 10 MeV), in which case val-
ons begin fusing to form final hadrons. The hadronic yields obtained by means of a thermo-
dynamical treatment of the QπK phase and a simple combinatorial approach to the hadron-
production process are shown to fit available experimental data from AGS, SPS, and RHIC quite
well. This approach provides an alternative insight into the actual origin of the observed rela-
tive hadronic yields; it is free, to a considerable extent, from well-known puzzles inherent in con-
ventional models that assume an early (high-temperature) chemical freeze-out of hadronic mat-
ter. (Within those models, the ideal-gas approximation is in fact employed to describe hadronic
matter where hadrons have to be tightly packed and even overlap, which seems doubtful.) Many
predictions for the yields of other hadrons that could be observed at these facilities, as well
as at the LHC accelerator (under construction in CERN), are made. c© 2003 MAIK “Nau-
ka/Interperiodica”.
1. INTRODUCTION

The conventional way of describing heavy-ion
collisions at high energies incorporates quark–gluon
plasma (QGP) as a short-lived initial phase of
nuclear matter formed in the central rapidity re-
gion as soon as the nuclei involved collide. Af-
ter that, cooling down to the temperature of the
chiral-breakdown transition, Tc � 200 MeV, occurs
fast, whereupon hot and dense hadronic matter is
formed and is finally converted into experimentally
observed free hadrons. Relative yields of different
species of these hadrons depend on the equation
of state (EoS) of nuclear matter from which they
originate. It was indicated in [1] that SPS data
on hadronic yields are quite compatible with the
assumption of “early chemical freeze-out,” which
implies that, at a relatively high temperature of
Tch � 170 MeV (it is rather close to the chiral-
breakdown temperature), the chemical content of
the hadronic matter appears to be fixed. Here, one
has to assume that this “frozen” hadronic matter
is an ideal gas of crucially modified in-medium

*e-mail: royzen@lpi.ru
**e-mail: chernav@lpi.ru
1063-7788/03/6601-0182$24.00 c©
hadrons, so that their effective radii do not exceed
about 0.3 fm!1) It was also shown [2] that a similar
thermodynamic description can be used to clarify
AGS and SIS data as well, if it is assumed that
the chemical freeze-out temperature Tch is to vary
along with the baryonic chemical potential of the
fireball (that is, an expanding nuclear medium),
this potential being about 110 and 60 MeV for
AGS and SIS, respectively. As a result, a doubtful
suggestion that a low-temperature QGP can exist
was put forth and then discussed in some more
detail [2, 3]. Both attributes of this approach—
crucially modified (but still surviving!) in-medium
hadrons and a low-temperature chiral transition—
seem rather controversial and mysterious. That is
why a feeling of dissatisfaction remains, and searches
for some more consistent description of what occurs
as nuclear matter undergoes cooling seems quite
reasonable.
In this connection, it is reasonable to recall the

rather old-fashioned notion of massive constituent

1)A straightforward estimation shows that a nearly ideal gas
of slightly modified hadrons could not exist at corresponding
particle (hadron) densities, since the wave functions for ordi-
nary hadrons would overlap substantially.
2003 MAIK “Nauka/Interperiodica”
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quarks (valons), Q, linked properly to corresponding
current quarks; first of all, we imply light valonsQ(q),
q ≡ u, d (mQ(u,d) ≡ mQ(q) � 330 MeV), and strange
onesQ(s) (mQ(s) � 480 MeV)—that is, hypothetical
particles that had been widely and fruitfully exploited
before QCD was developed as a consistent field the-
ory not incorporating valons as its inalienable entities.
Until now, however, QCDhas in fact remained quite a
workable theory of hard processes, but it suffers from
the lack of even qualitative results for processes at low
and intermediate energies—that is, precisely for those
that proceed within nuclear matter below the tem-
perature Tc of the chiral-breakdown transition. Thus,
embedding the valons unambiguously into the body
of QCD is perhaps still waiting for its turn, although
known attempts were futile [4]. Qualitative physical
arguments in favor of the possibly important role of
the valonic mass scale and of an intermediate phase
involving valons and separating QGP and hadronic
ones were put forth long ago [5–8]. It is worth noting
that an experimentally observed significant excess
of the low-mass dilepton (e+e−) yield in nucleus–
nucleus collisions in relation to what is obtained by
naively extrapolating data on proton–nucleus colli-
sions can be described quite well within the approach
allowing for the QπK phase [9].
Recently, a general idea was put forth [10] that

could provide deeper insight into the physical reasons
behind the unified thermal description of yields of
various hadron species observed in heavy-ion colli-
sions. In the present study, we show in more detail
how valons could aid in describing relative hadronic
yields, getting rid of the aforementioned curiosities
inherent in the conventional approaches. The theory
is constructed against the available results fromAGS,
SPS, and RHIC; in addition, many other ratios of
hadronic yields are predicted (for LHC as well).

2. GENERAL MOTIVATION AND PROBLEMS

In all probability, nuclear matter admits a dual
description just below the temperature of chiral-
symmetry breakdown [9]: it can be treated either as
a highly compressed “hadronic liquid” or as a state
where most of the hadronic species cannot survive
(with the exception of pions and kaons—see below),
so that valons rather than hadrons become dominant
degrees of freedom.2) Of course, one can choose
either. To take the first way, however, one is supposed
to know, at least, the relevant EoS of the medium
under consideration. But who knows it? Actually, one
has to postulate an EoS. A basic point of the second
approach suggested here is that the valons produced

2)The presence of massive valons is indicative of chiral-
symmetry breakdown.
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Fig. 1. Processes that are taken into account in deriving
the detailed-balance equation (see Appendix) controlling
the relative content of different components in a QπK
gas. The diagrams in Figs. 1b and 1c actually correspond
to two cross channels of the same diagram.

in the course of chiral-symmetry breakdown must
be reasonably treated as an ideal gas from the very
beginning (in contrast to hadrons!) because of their
actually small size [11], r � 0.3 fm. Even at T =
170–200 MeV, the particle density within the ideal
Boltzmann valonic gas is indeed about

12T 3

π2

[
2
(mQ(q)

T

)2
K2

(mQ(q)

T

)
cosh(µQ(q)/T )

+
(mQ(s)

T

)2

K2

(mQ(s)

T

)
cosh(µQ(s)/T )

]
� 1 fm−3.

For the chemical potentials µQ(q) and µQ(s) of Q(q)
and Q(s) valons, respectively, use is made here of
values typical of heavy-ion collisions.3) Hence, the
“valonic bodies” themselves occupy only about 10%
of the total volume. This, rather optimistic, estimate
becomes noticeably less favorable upon taking into
account a certain balancing fraction of “large-sized”
pions and kaons, which inevitably exist as the chem-
ical equilibrium sets in4) (see Fig. 1). Fortunately,

3)We disregard here the distinction between the chemical po-
tentials ofQ(u) andQ(d) valons that is due to the difference
in the proton and neutron content of heavy colliding nuclei,
but, at low energies and large values ofµQ(q)/T (SIS, AGS),
this may lead to a noticeable effect.
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YA

HIC
s = 130GeV

LHC√
s � 5.5GeV

1 M2 M1 M2

5 0.158 0.1 0.08

7 0.67 1 1

83 0.143 0.119 0.107

56 0.127 0.119 0.107

69 0.136 0.119 0.107

97 0.097 0.097 0.097

51 0.034 0.033 0.027

9 0.23 0.28 0.25

7 1.12 1 1

25 0.725 1 1

68 0.148 0.121 0.121

97 0.174 0.121 0.121

52 0.852 1 1

1 1 1

14 0.015 0.018 0.008

4 0.04

= 0.026
H � 0
± 10MeV

µq/TH � 0
µs/TH � 0

TH = 110MeV

5MeV

h = 0.04
h ≤ 0.01
190MeV

µq � 0
µs � 0
Tch =?

≤ 1 (see main body of the text); T ThHD
f is the kinetic

P
H
Y
S
IC
S
O
F
A
T
O
M
IC
N
U
C
L
E
I
V
ol.66

N
o.1

2003
Comparison of experimental and theoretical data (ratio of total yields of various hadronic species,Ni/Nj)

i/j
AGS

Au + Au, Elab = 11GeV
SPS

Pb+ Pb,Elab = 160GeV
R

Au+ Au,
√

expt. M1 M2 expt. M∗ M1 M2 expt. M

p/π 1 0.78 0.86 0.228 0.238 0.209 0.240 0.1

p/p 5× 10−4 4.7× 10−4 4.7× 10−4 0.067 0.055 0.084 0.08 0.67 0.6

K+/π 0.175 0.196 0.177 0.16 0.165 0.17 0.1

K−/π 0.034 0.044 0.035 0.085 0.106 0.091 0.16 0.1

K0
S/π 0.123 0.107 0.125 0.137 0.136 0.133 0.1

η/π 0.097 0.097 0.081 0.087 0.09 0.09 0.0

Λ/π 0.061 0.058 0.077 0.096 0.069 0.073 0.0

Λ/K0
S 0.5 0.54 0.63 0.76 0.52 0.47 0.2

K+/K− 5.14 4.45 4.89 1.85 1.9 1.54 1.89 1.1 1.0

Λ̄/Λ 0.001 0.001 0.131 0.1 0.103 0.102 0.8 0.7

Ξ−/Λ 0.09 0.093 0.101 0.11 0.109 0.107 0.1

Ξ+/Λ̄ 0.478 0.478 0.188 0.185 0.21 0.22 0.1

Ξ+/Ξ− 0.002 0.002 0.232 0.228 0.2 0.2 0.85 0.8

Ω+/Ω− 0.013 0.013 0.383 0.53 0.385 0.382 1

φ/π 0.008 0.0076 0.021 0.019 0.013 0.013 0.0

∆2 0.17 0.035 0.36 0.42 0.49 0.0

M1, M2 µq/TH = 1.4
µs/TH = 0.59

TH = 115± 10MeV

µq/TH = 0.47
µs/TH = 0.16

TH = 115± 10MeV

µq/TH

µs/T
TH = 115

T ThHD
f 115± 5MeV 105±
M∗ µq/Tch = 1.47

µs/Tch = 0.6
Tch = 125MeV

µq/Tch = 0.52
µs/Tch = 0.14
Tch = 170MeV

µq/Tc
µs/Tc
Tch =

Notes: M∗ stands for the model from [1, 2], while M1 and M2 represent two versions of our model at 〈j〉1 = 0.5 and 0.7 ≤ j2
freeze-out temperature obtained from thermal hydrodynamical models.
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Fig. 2. Typical processes that accompany the hadronization phase transition (T � TH). The dotted and wavy lines represent
attendant pions and gluons, respectively, the latter being absorbed by a medium.
this hadronic fraction never exceeds 25% (see below);
therefore, this three-component QπK phase can still
be treated reasonably as a gas,5) although quasi-
ideality of this gas becomes somewhat more ques-
tionable. That is why we rely below, as far as possible,
on a more general consideration based exclusively
on chemical kinetics and then contrast the results
against what one can obtain in the self-consistent
ideal-gas approximation. We will see a posteriori that
the results obtained by these two methods are quite
compatible.

Thus, the general pattern of evolution of a hot nu-
clear fireball that is produced in the course of heavy-
ion collisions is as follows.While expanding and cool-
ing down from Tc to TH , nuclear matter is gradually
enriched in pions and kaons and impoverished in
valons. The situation changes dramatically as soon
as the mean spacing between valons becomes com-

5)What is themost relevant in the context of the problemunder
discussion is that this is especially true near the hadroniza-
tion temperature TH .
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 20
mensurate with the confinement radius. As a result,
the gradually increasing color-screening length ap-
proaches the critical value, and hadrons themselves
rather than valons (since they are to be bound into
color-singlet objects) become dominant degrees of
freedom. The bulk of hadrons are formed in precisely
this way. The process described above is a phase
transition if hadronization proceeds at the same tem-
perature near T � TH (or at close temperatures);
otherwise, this is a phase crossover. Lattice calcula-
tions indicate that the special features of the phase
transition and even its occurrence are controlled by
the chemical potential (or by the net baryonic density)
within nuclear matter. Here, we do not dwell upon
this delicate question but concentrate on the pattern
linked to a certain phase transition. This pattern is
shown below to face no obvious contradictions with
the available data within the existing accuracy (see
table). Relevant hadron-production diagrams are de-
picted in Fig. 2.
03
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Fig. 3. µT phase diagram allowing for the QπK phase.
The solid line 1 refers to the QGP → QπK phase transi-
tion; the strip 2 between two dashed lines is our prediction
for the temperature interval around T = 115 MeV where
the QπK → H phase transition is expected to occur;
and two lines 3 (the solid and dashed ones correspond to
〈E〉/N = 1.0 and 0.94 GeV, respectively) were borrowed
from [2] and are related to an early chemical freeze-out
within the assumption of direct QGP→ H phase transi-
tion.

3. CALCULATIONS AND RESULTS

In the course of the hadronization phase transition
(T = TH), all hadron species are generally produced
in the same manner. In contrast to what we have in
the QπK phase, the correlation length here remains
large in relation to the mean spacing between the
particles (or even infinite, if there occurs a second-
order phase transition) over the entire stage of this
phase transition. Therefore, multiparticle interactions
dominate at this stage. One can also assume rea-
sonably that, here, all hadrons, once created, survive
because the confinement mechanism comes into play,
suppressing disintegration.
Thus, final (observable) pions and kaons are pro-

duced in two ways at two stages of fireball evolu-
tion: first, there are equilibrium (primary) pions and
kaons mentioned above (those that are accumulated
in the course of the evolution of the QπK phase be-
fore overall hadronization—see Fig. 1); second, there
are pions coming from Q(q)Q̄(q) → π + X reac-
tions and kaons coming similarly from Q(q)Q̄(s) →
K+(K0) + X and Q(s)Q̄(q) → K−(K̄0) + X re-
actions precisely at T = TH . The latter are produced
only at the stage of hadronization, just like other
P

hadron species (see Fig. 2). The number of primary
pions is

nπ � bn

1 − b
, (1)

where n is the total number of color particles with-
in the fireball and b is the pionic fraction, which is
calculated in the Appendix [see Eqs. (A.1)–(A.6)] on
the basis of taking into account direct and inverse
reactions shown in Fig. 1a. The numerical value of
b appeared to be rather stable for SPS, RHIC, and
LHC (b � 0.22), but it was considerably lower for
AGS (b � 0.13). Making use of the diagrams in
Figs. 1b and 1c, we can similarly estimate the number
of primary kaons [see (A.7)]. The result is

nK+ � nK0 �
4nπ + 3nQ(q)

6(4nπ + 3nQ̄(q))
nQ̄(s), (2)

where nQ(q) (nQ̄(q)) is the number ofQ(q) (Q̄(q)) and
nQ̄(s) is the number of Q̄(s). The number ofK

− (K̄0)

is obtained by making here the substitutionQ ↔ Q̄.

As to secondary pions, their number can be esti-
mated by tracing the fate of a valonQ(q) [an antivalon
Q̄(q)] within nuclear matter undergoing hadroniza-
tion. While moving over the mean free path, it coa-
lesces with an antivalon (valon) with the probability6)

nQ̄(q)/n (nQ(q)/n), the total rate of such collisions
thus being nQ(q)nQ̄(q)/n. Each collision results in the
π +X state, where X may also include a number
j of pions (see Fig. 2), the same being true for the
production of other hadrons. With allowance for Eq.
(1), the total yield of negative pions, which is assumed
to be equal to one-third of the total pion rate, is

Nπ− � 1
3

[
bn

1− b
+
(1 + 〈j〉)nQ(q)nQ̄(q)

n

]
(3)

+
〈j〉
3
[NB +NB̄ + (NK − nK) + . . . ],

whereNB (NB̄) andNK are the total yields of baryons
(antibaryons) and kaons, respectively; 〈j〉 is the mean
value of j [it can easily be estimated to be within
the range 0 ≤ j ≤ 1 because the phase space is
bounded7)]; and the ellipsis stands for small terms
whose inclusion is meaningless within the available
accuracy of both the theory and the data. Following

6)It is natural to assume that, at the hadronization stage,
any valonic interaction that could result in the production
of a hadron does indeed produce it. As to valon–hadron
interaction, it is insignificant at this stage.

7)The results appear to be weakly sensitive to the value of 〈j〉
within this range.
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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a similar line of reasoning and making use of (2), we
find for theK-meson yield that

NK+ � NK0 �
4nπ + 3nQ(q)

6(4nπ + 3nQ̄(q))
nQ̄(s) (4)

+
nQ(q)nQ̄(s)

2n
.

We also have

NK0
S
� NK0

L
� 0.5(NK0 +NK̄0). (5)

As to NK− and NK̄0 , they were obtained in the same
way as before [see (2)]. The yields of some other
mesons can easily be estimated by means of similar
combinatorial and/or relevant cross-section consid-
erations. For example, we have

Nφ �
nQ(s)nQ̄(s)

n
. (6)

The relative η-meson yield Nη/Nπ0 can be imme-
diately calculated by comparing the corresponding
cross sections, since the two channels involved,
Q(q)Q̄(q)→ ππ0 and Q(q)Q̄(q)→ πη (see Fig. 2c),
directly compete with each other. Apart from the dis-
tinction between the masses of these mesons—this
alone results in the contraction of the πη final phase
space by a factor of about 2 to 3 in relation to the ππ0

phase space at the relevant energies/temperatures—
one must consider that no ρ-meson intermediate
state is allowed in the π+η channel. Being integrated
with respect to energy, the corresponding excess of
the ππ yield results in an extra factor of about 4 to
5, thus making finallyNη/Nπ0 � 0.08–0.1. Unfortu-
nately, this estimate admits rather wide variations.
Some additional special features must be taken

into account in deriving formulas for the baryon rates.
(i) In calculating the number of collisions, one

must avoid double (or triple) counting for the same
(anti)valons treated as a target and a projectile;
for this, it is sufficient to introduce the factor (1 +
2n2

Q(q)/n
2)−1 for nucleons, the factor

(1 + nQ(q)nQ(s)/n
2)−1 for Λ and Ξ hyperons, and

the factor (1 + 2n2
Q(s)/n

2)−1 for a Ω− hyperon (here,

Q → Q̄ for corresponding antiparticles).8)

(ii) One should bear in mind that, on one hand,
Λ (Λ̄) particles detected experimentally represent ac-
tually the sum Λ(Λ̄) + Σ0(Σ̄) [since Σ0 (Σ̄0) decays
into Λ(Λ̄) + γ within about 10−19 s]; on the other
hand, the same initial states can produce eitherΛ orΣ
hyperons, with the final phase spaces being different
(see the above comment on the η/π0 yield ratio),

8)Actually, these factors may be significant only for nucleon
production (and antinucleon production at RHIC and LHC).
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
along with the corresponding combinatorial factors
for the production of neutral and charged hyperons
(see the diagram in Fig. 2h).9) Thus, we arrive at

Np � Nn �
n3
Q(q)

2n2(1 + 2n2
Q(q)/n

2)
, (7)

Np̄ � Nn̄ �
n3
Q̄(q)

2n2(1 + 2n2
Q̄(q)

/n2)
;

NΛ +NΣ+ +NΣ− (8)

�
nQ(s)n

2
Q(q)

n2(1 + nQ(q)nQ(s)/n2)
� 1.6NΛ,

NΛ̄ +NΣ̄+ +NΣ̄− (9)

�
nQ̄(s)n

2
Q̄(q)

n2(1 + nQ̄(q)nQ̄(s)/n
2)

� 1.6NΛ;

NΞ0 � NΞ− �
nQ(q)n

2
Q(s)

2n2(1 + nQ(q)nQ(s)/n2)
, (10)

NΞ̄0 � NΞ̄+ �
nQ̄(q)n

2
Q̄(s)

2n2(1 + nQ̄(q)nQ̄(s)/n
2)
;

NΩ− �
n3
Q(s)

n2(1 + 2n2
Q(s)/n

2)
, (11)

NΩ̄+ �
n3
Q̄(s)

n2(1 + 2n2
Q̄(s)

/n2)
;

and so on.
A comparison of the above predictions for the

baryon and antibaryon rates with experimental da-
ta requires a more careful discussion (especially for
antibaryons at AGS). A theoretical consideration of
antibaryon production is a subtle point of any model
because it implies the details of the evolution dy-
namics of nuclear matter undergoing hadronization.
In contrast to mesons, which, once produced in the
course of hadronization, retain their identity until final
(kinetic) freeze-out (they undergo virtually no inter-
actions other than elastic scattering), (anti)baryons
begin to annihilate immediately after their produc-
tion, the lower being T , the larger the annihilation
cross section. A rather high density of surrounding
baryons (large chemical potential) at AGS and a very
large annihilation cross section, σpp̄ � 100 mb, favor
very strong absorption, which crucially diminishes the
number of antibaryons before hadrons scatter away
and stop interacting—only those that remain then
hit the detectors used. Of course, this effect is dis-
regarded in the above formulas. However, the p̄/π+

9)As a result, the rate of Λ (Λ̄) production turns out to be
almost twice as large as that of both Σ± and Σ̄± hyperons.
3
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yield measured at AGS [13] involving a small num-
ber of nucleons participating in the formation of the
nuclear fireball (about 20) is about twice as large as
that in central collisions (that is, in the case where
about 80 to 100 nucleons participate). This can be
explained under the assumption that about half of
product antiprotons have time to annihilate in the
process of large-fireball cooling from the hadroniza-
tion temperature TH to kinetic freeze-out at Tf ; in
the case of a small, rapidly expanding fireball, this
is impossible. The simplest (of course, naive) esti-
mate shows that this assumption is quite reasonable.
Indeed, we can easily estimate the dynamics of the
number of antiprotons for Tf ≤ T ≤ TH as

Np̄(t) � Np̄(0) exp(−vρpσp̄pt),

where ρp � [V0(1 +Nπ/Np)]−1, V0 being the mean
volume per particle, and v is mean thermal velocity
of nucleons. Using here the values of Np/Nπ � 0.8
(see table), V0 � (4π/3)(1.1 fm)3 (this corresponds
to the mean nucleon density in nuclei), and v � 2/3,
we obtain

Np̄(t) � Np̄(0) exp(−0.7t),
where the time is measured in fm units. Hence, the
experimental result reported in [13] can be explained if
the difference of the times of large- and small-fireball
expansion is ∆t � 1 fm (for example, if the first is
about 1 fm, while the second is much less than 1 fm).
These were precisely the values adopted in compos-
ing the table. At SPS, the p̄/π yield ratio appeared
to be virtually independent of the fireball size [14].
Most probably, this was caused by a considerable
increase in the pion fraction among product hadrons
and a decrease in the chemical potential (either of
these factors “dilutes” the baryon content and re-
duces the probability of proton–antiproton collisions)
rather than by a fast expansion of the fireball. At
RHIC and LHC, the absorption of antiprotons (and
of protons as well, their number being nearly equal
there to the number of antiprotons) must not play any
noticeable role.
The results of our calculations are quoted in

the table (M1 column). The ratios nQ(q)/nQ̄(q),
nQ(s)/nQ̄(s), and nQ(q)/nQ(s) and the value of 〈j〉
were found by minimizing the sum of squared devi-
ations,

∆2 � min


 k∑
i=0

(
1− aitheor

aiexpt

)2

,

where k is the number of measured relative yields of
various species.
It should be noted that, so far, we have made no

specific assumptions concerning the properties of the
P

QπK gas. The assumption of its quasi-ideality be-
comes unavoidable if we try to extract the hadroniza-
tion temperature TH from ideal-gas formulas. We
then have
nQ(q)

nQ̄(q)

= exp(2µQ(q)/T ),
nQ(s)

nQ̄(s)

= exp(2µQ(s)/T ),

nQ(q)

nQ(s)
�
(
mQ(q)

mQ(s)

)3/2

exp
[
mQ(s) −mQ(q)

T

]

× exp
[
µQ(q) − µQ(s)

T

]
.

On doing this, we obtain nearly the same tempera-
ture, TH � (115± 10) MeV (see Fig. 3), for all of the
experiments under consideration—namely, for AGS,
SPS, and RHIC. The predictions given in the table
for future experiments at LHC were obtained for the
same hadronization temperature TH and zero values
of all chemical potentials (see Fig. 3), µi = µ = 0.

4. DISCUSSION AND CONCLUDING
REMARKS

It is worth mentioning that the above results are
quite similar to those that one can obtain without
precautions, describing the QπK phase as an ideal
gas from the very beginning instead of employing
detailed-balance equations (compare the columns
M1 and M2 in the table). This implies either that
the valon–pion–kaon gas is indeed similar to an
ideal gas or that the relative content of different
components in this gas is a crude characteristic (this
seems quite plausible) that is rather insensitive to its
fine tuning. Anyway, the compatibility of the results
seems indicative of the validity of the approach itself.
It is important that the hadronization-temperature

value of TH � 115 MeV found here is quite close to
the thermal-freeze-out temperature (at which strong
interactions cease to occur and free divergence be-
gins) as estimated in [15] on the basis of thermal
hydrodynamic models by analyzing the transverse-
momentum spectra of hadrons. For SPS and RHIC,
it appears to be about 105–115 MeV. If so, then
fireball evolution from TH to Tf occurs within a rather
short time (of a few fm), and one can qualitatively
understand why antiproton absorption in the course
of and just after hadronization is crucially significant
only for AGS (in which case the relative content
of nucleons is very high). In particular, this is the
reason why we do not need a special (and artificial)
antiproton-regeneration mechanism (see, for exam-
ple, [16]), but such a mechanism is mandatory within
any approach assuming early freeze-out of hadronic
matter.
That the hadronization temperature takes approx-

imately the same value in the experiments at AGS,
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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SPS, and RHIC, although the corresponding chem-
ical potentials differ substantially, which is expected
to result in different EoS’s, is yet another point that
deserves a dedicated discussion. As a matter of fact,
we cannot state that this result is quantitatively cor-
rect. Theminimization of∆2 can hardly be considered
as a reliable method for treating the data from AGS
and RHIC, since the number of parameters to be
varied is only slightly less than the number of fitted
experimental results presently obtained at these ac-
celerators. Moreover, very small values of ∆2 should
not be taken too seriously because the accuracy of
data is insufficient.

The possible dependence of the hadronization
temperature on the valonic chemical potential (and,
hence, on the energy of colliding ions) is closely
related to the very interesting hypothesis [7] that
the color (more precisely, valonic) deconfinement
is reasonably expected to occur even at very low
interaction energies (the ion kinetic energy in the
laboratory frame being as low as about 300 MeV)
because the matter density in nucleons is only about
three times larger than that in a normal nucleus, and
only a small amount of effort is required in order that
valous stop distinguishing “their original nucleons”
from their neighbors (this means that the color-
screening length is less than the confinement radius).
If this is so, then, in particular, a thermal treatment
of hadron production must be applicable even at
such low energies. The success of such an approach
would be a direct indication of the validity of the very
notion of the valon itself. Of course, a high-luminosity
machine equipped with high-precision detectors is
required for implementing attempts at searches for
relevant manifestations.

Thus, we can conclude that the proposed approach
provides quite a successful treatment of available data
on hadron yields, as well as on low-mass-dilepton
production [9], in heavy-ion collisions. At the same
time, it is free from crucial inconsistencies inherent in
some conventional approaches, although some sig-
nificant questions still remain unanswered.
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APPENDIX

Being averaged over particle distributions, the
detailed-balance equation takes the form

νQ(q)(T )Ωπ(T ) � νπ(T )ΩQ(q)(T ), (A.1)

where Ωi are the mean values of the correspond-
ing final-state phase spaces.10) Since each antivalon
Q̄(q) of specific color and flavor encounters the corre-
sponding valon Q(q) with the probability nQ(q)/(n +
nπ), the rate ofQ(q)Q̄(q) collisions is

dνQ(q) =
(1− b)nQ(q)nQ̄(q)

n

dt

〈t〉 , (A.2)

〈t〉 being the mean free time between successive
collisions. Quite similarly, a π0 meson encounters
another π meson with the probability b, the total
rate of π0π collisions being therefore (2/9)bnπdt/〈t〉
(π0π+ collisions) plus (bnπ/18)dt/〈t〉 (π0π0 colli-
sions); the number of π+π− collisions is obviously
equal to (bnπ/9)dt/〈t〉.
Of course, π+π+ and π−π− collisions are out of

the game in the detailed-balance-principle equation
(within the above approximation), since they never
result in a two-valonic final state. For the total rate of
ππ collisions to be taken into account, one therefore
has

dνπ =
7
18

bnπ
dt

〈t〉 . (A.3)

The averaged valonic and pionic phase spaces are,
respectively,

ΩQ(q) � N2
f (2SQ + 1)

2Ncp2
Q(q) (A.4)

and

Ωπ � (2Iπ + 1)2p2
π,

where SQ is the valonic spin; Iπ is the pionic isospin;
pQ(s)(pπ) is the valonic or pionic momentum in the
c.m. frame of two interacting valons or pions; and
Nc and Nf are the numbers of, respectively, colors
and flavors [Nc appears in (A.4) instead of N2

c , since
only the color-singlet sector of the total two-valon
phase space is considered]. For the mean energy of a
particle of mass m, a straightforward averaging over
the Boltzmann distribution yields

E2(m,T ) = T 2

[
3
m

T

K1(m/T )
K2(m/T )

+ 12 +
m2

T 2

]
, (A.5)

10)Only binary reactions are considered, because 2 → 4 re-
actions are substantially suppressed by limitations on the
typical thermal final-state phase space at T � TH .
3
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where K1,2 are the corresponding Bessel functions.

The c.m. value of p2
π (p

2
Q(q)) of each particle in the

pionic (valonic) final state is obviously obtained by
substituting m = mπ (m = mQ(q)) into this expres-
sion, subtracting m2

π (m
2
Q(q)), and taking half of this

difference. Combining Eqs. (A.1)–(A.5), we easily
obtain

b �


1 + 2.5


nQ(q)nQ̄(q)

n2

p2
π

p2
Q(q)




−1/2


−1

, (A.6)

where p2
i are taken from (A.5).

We now consider the equilibrium kaon fraction
and estimate the K0,+-meson content in the QπK
medium. In order to do this, one must take into ac-
count the diagrams in Figs. 1b and 1c. It is easy
to verify that, at relevant temperatures, the mean
squares of c.m. momenta are nearly equal for all four
states under consideration; therefore, the correspond-
ing detailed-balance equation takes the form11)

(2IK + 1)
(2Iπ + 1)

nπnQ̄(s) +
(2IK + 1)(2Iπ + 1)

(2SQ + 1)2
(A.7)

×
nQ̄(s)nQ(q)

Nc
� (2Iπ + 1)
(2IK + 1)

nQ̄(q)nK

+
(2SQ + 1)2Nc

(2IK + 1)(2Iπ + 1)
nπnK ,

where K stands for K+ or K0 and Ii is the relevant
isospin. This leads to Eq. (2).
Making use of these formulas, one can easily find

that the kaon-induced correction to the value of b

is indeed quite small—for example,
δb

b
� +(4–5)×

10−2 for SPS—and that it is undoubtedly absorbed
into the inaccuracy of the approach itself.
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Abstract—TheNc dependence of PPPγ vertices, where P is a pseudoscalar meson andNc is the number
of colors, is analyzed with allowance for the Nc dependence of the quark charges. It is shown that the
reactions Kγ → Kπ and π±γ → π±η and the decay η → π+π−γ are the best processes for determining
Nc. The cross section σ(π−γ → π−η) as measured by using the VES facility at IHEP agrees with the value
ofNc = 3. c© 2003 MAIK “Nauka/Interperiodica”.
A chiral anomaly [1] is a fundamental property
of quantum field theories involving chiral fermions,
such as the Standard Model (SM). It is a quantum-
mechanical violation of a classical chiral symmetry
such that its manifestations at the hadronic scale
are unambiguously determined. This property distin-
guishes a chiral anomaly from other predictions of the
SM; as a matter of fact, it is the only effect of quark–
lepton interactions at short distances that admits a
description in terms of hadronic fields without intro-
ducing additional phenomenological parameters. For
this reason, experimental investigation of the chiral
anomaly would provide a test of theoretical founda-
tions of elementary particle physics.

Phenomenological implications of the chiral ano-
maly can be taken into account by supplementing
the Lagrangian of chiral perturbation theory with the
Wess–Zumino–Witten (WZW) functional [2, 3]1)

S[U, �, r](Nc=3)
WZW = − iNc

48π2
(1)

×
∫
d4xεµναβ

〈
U�µ�ν�αU

†rβ

+
1
4
U�µU

†rνU�αU
†rβ

+ iU∂µ�ν�αU †rβ + i∂µrνU�αU †rβ

− iΣL
µ�νU

†rαU�β + ΣL
µU

†∂νrαU�β

− ΣL
µΣL

νU
†rαU�β + ΣL

µ�ν∂α�β + ΣL
µ∂ν�α�β

− iΣL
µ�ν�α�β +

1
2
ΣL
µ�νΣ

L
α�β − iΣL

µΣL
νΣL

α�β

〉
*e-mail: rogalyov@mx.ihep.su
1)In (1), it is assumed that the charge matrix is given by
expression (3) for all Nc; however, it is shown below that
this assumption is incorrect. For this reason, expression (1)
is valid only forNc = 3.
1063-7788/03/6601-0191$24.00 c©
− (L↔ R),

where Nc is the number of colors (Nc = 3); the an-
gular brackets 〈. . . 〉 denote the trace over the flavor
indices;

ΣL
µ = U †∂µU ; ΣR

µ = U∂µU †; (2)

U = exp
(
iΦ

√
2/F

)
;

rµ = �µ = eAµQ = eAµ diag
(

2
3
, −1

3
, −1

3

)
; (3)

Aµ is the electromagnetic field; F = 93 MeV;

Φ =




π0
√

2
+ η8√

6
+ η0√

3
π+ K+

π− − π0
√

2
+ η8√

6
+ η0√

3
K0

K− K̄0 −2η8√
6

+ η0√
3


;

and the symbol (L↔ R) denotes the substitutions
U ↔ U †, �µ ↔ rµ, and ΣL

µ ↔ ΣR
µ .

The functional in (1) determines the low-energy
behavior of the amplitudes of the reactions π0 → γγ,
η → γγ, η → π+π−γ, π+γ → π+π0, π+γ → π+η,
K+γ → K+π0, and so on. Some of these reactions
(π0 → γγ, η → γγ, η → π+π−γ, and π+γ → π+π0)
were used to determine the number of colorsNc.

However, a recent analysis of PPPγ and Pγγ
vertices (P is a pseudoscalar meson) revealed [4] that,
in a self-consistent theory, the π0γγ and π0π+π−γ
vertices are independent of Nc, although it is pre-
cisely these vertices that were used to determine Nc.
Moreover, it was stated in any textbook on elementary
particle physics (see, for example, [5]) that the width
with respect to the decay π0 → γγ is proportional to
N2
c ; therefore, the width Γ(π0 → γγ) is considered
2003 MAIK “Nauka/Interperiodica”
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reactions.

as an important source of experimental information
about the value ofNc. The point is that the statement
that the amplitudes Aπ+γ→π+π0 and Aπ0→γγ are de-
pendent onNc stems from an implicit (and erroneous)
assumption that the quark charges Qu = 2/3, Qd =
−1/3, and Qs = −1/3 are independent of Nc. If this
assumption were true, the triangle anomalies in the
quark sector (atNc + 3) would not cancel those in the
lepton sector, with the result that the SM would not
be renormalizable. But assuming renormalizability of
the SM for all Nc, we find that Nc and the quark
charges are related by the equations

Qu =
1
2

(
1
Nc

+ 1
)
, Qd =

1
2

(
1
Nc

− 1
)
. (4)

On the basis of these equations, one can show that
the amplitudes of processes involving only π mesons
and having an anomalousG parity (such as π0 → γγ,
π+γ → π+π0, and η → γγ) are independent of Nc.
The anomalous γπ0π+π− and γηπ+π− vertices were
studied theoretically (in the case ofNc = 3) in [6] and
experimentally in processes that lead to the Coulomb
production of π0 [7] and η [8] mesons on nuclei at the
IHEP facility. It should be noted that the experiment
reported in [7] and devoted to measuring the cross
section σ(π+γ → π+π0) was motivated by the de-
sire to determine the number of colors; however, this
could not be done in this experiment according to the
above. At the same time, experimental data obtained
by Amelin et al. [8] can well be used to determineNc.
As of now, the only vertex involving light mesons that
has been used to determine the number of colorsNc is
ηπ+π−γ. It was studied in the decay η → π+π−γ [9]
and in the scattering process π+γ → π+η [8]. The
expression for this vertex for an arbitrary value ofNc is
presented below. With allowance for this expression,
P

the experiments mentioned immediately above favor
Nc = 3.

The present study, as well as that of Bär andWiese
[4], is not aimed at questioning the entire body of
experimental data indicating that Nc = 3; here, we
pursue rather unpretentious goals. Bär and Wiese [4]
propose that, in lending experimental support to the
fact that there are three colors in our world, the decay
η → π+π−γ should replace the textbook examples
π0 → γγ, and η → γγ because the width with respect
to the decay η → π+π−γ depends on Nc, whereas
the widths with respect to the decays π0 → γγ and
η → γγ and the cross section for the reaction π+γ →
π+π0 do not. In this study, we analyze theNc depen-
dence of the cross sections for the reactions Kγ →
Kπ andKγ → Kη, which can also be used to deter-
mine Nc. A detailed study of the relevant amplitudes
is required because the ultimate expressions obtained
in [4] for PPPγ vertices {formulas (5.11) in [4]} are
erroneous despite the fact that the analysis in [4] of
the Nc dependence of the vertices of the anomalous
Lagrangian is rather sophisticated and comprehen-
sive. For instance, formulas (5.11) taken at Nc = 3
disagree with those obtained from the WZW func-
tional (1). This error may stem from an improper anti-
symmetrization in formulas (5.12), where the authors
of [4] deal with expressions antisymmetric in two
operators instead of three operators that should be
involved in the case of four-point Green’s functions.

The effective Lagrangian for PPPγ vertices can
be calculated by either of the following two methods:

(i) The first consists in straightforwardly comput-
ing the group-theoretical coefficients of quark dia-
grams contributing to the respective Green’s function
with antisymmetrization in axial currents and with
allowance for relations (4). Strictly speaking, this
procedure yields only the ratios of coefficients of the
same type, the known π0γγ and π+π−π0γ vertices
being used as reference values.

(ii) The second involves substituting the explicit
expression for the matrix U [formula (2)] into the
expression obtained by generalizing the WZW La-
grangian (1) to the case of Nc 
= 3. This generaliza-
tion, proposed in [4], has the form

S = S(Nc=3) +
(

1 − Nc
3

)
SGW, (5)

where S GW is the Goldstone–Wilczek current [10],

SGW[U,Aµ] =
e

48π2
(6)

×
∫
d4xεµναβAµtr[(U †∂νU)(U †∂αU)(U †∂βU)]

− ie2

32π2

∫
d4xεµναβAµFναtr[Q(∂βUU † + U †∂βU)].
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In considering PPPγ vertices, the third line in (6) can
be omitted.

The results of the calculations by these two meth-
ods coincide; the required vertices have the form

LPPPγWZW =
ie

4π2F 3
εµναβAβ

(
∂µπ

0∂νπ
+∂απ

− (7)

+
Nc

3
√

3
∂µη

8∂νπ
+∂απ

−

+
Nc + 3

6
∂µπ

0∂νK
+∂αK

−

+
Nc − 1

2
∂µπ

0∂νK
0∂αK̄

0

+
9 −Nc
6
√

3
∂µη

8∂νK
+∂αK

−

−
√

3(Nc − 1)
2

∂µη
8∂νK

0∂αK̄
0

− Nc − 3
3
√

2
∂µπ

−∂νK
+∂αK̄

0

+
Nc − 3
3
√

2
∂µπ

+∂νK
−∂αK

0

+
√

6
9
∂µη

0∂νK
+∂αK

− +
Nc

√
6

9
∂µη

0∂νπ
+∂απ

−
)
,

where η0 and η8 are the singlet and octet states:

η = η8 cos θP − η0 sin θP , (8)

η′ = η8 sin θP + η0 cos θP , θP � 20◦.

Formula (7) is the main result of the present study. It
should be noted that the K+K0π−γ and K−K̄0π+γ
vertices do not appear in the anomalous action2) only
in the case of Nc = 3. For this reason, the thresh-
old behavior of the cross sections for the reactions
K+γ → K0π+ and K0γ → K+π− serves as a good
indicator of a deviation of the parameter Nc from the
value of Nc = 3. To put it differently, only at Nc =
3 does the chiral anomaly make a contribution to
the amplitudes of the reactions K+γ → K+π0 and
K0γ → K0π0 and make no contribution to the am-
plitudes of the reactions K+γ → K0π+ and K0γ →
K+π−. As a consequence, the cross sections for the
reactions K+γ → K+π0 and K0γ → K0π0 near the
threshold are one to two orders of magnitude larger
than the cross sections for the reactions K+γ →
K0π+ andK0γ → K+π−. These cross sections were
calculated (in the case of Nc = 3) in [11], where the
possibility of experimentally studying them was also
discussed. Measurement of the cross sections for
the reactionsK+γ → K+π0,K0γ → K0π0,K+γ →

2)The K+K0π−γ and K−K̄0π+γ vertices are not presented
in [4].
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K0π+, and K0γ → K+π− is of particular interest
because of theirNc dependence presented in (7).

However, formulas (7) describe correctly the am-
plitudes only at sufficiently low momenta. To de-
scribe the reactions Kγ → Kπ and π±γ → π±η and
the decay η → π+π−γ at physical values of momen-
ta and masses, it is necessary to take into account
the contribution of the 1−− resonances. This can be
done on the basis of the vector-meson-dominance
model. In what follows, we use the version of the
vector-meson-dominance model from [12] because
it is precisely this version of the model that reduces
to chiral perturbation theory in the chiral limit and
because the formalism proposed in [12] is well suited
for taking the chiral anomaly into consideration. The
Lagrangian of this model and its application to the
above-mentioned processes can be found in [11–
13]; here, we only comment on its dependence on
the number of colors. In the normal part of this La-
grangian, the Nc dependence is entirely absorbed in
the effective coupling g. The anomalous terms must
be multiplied by Nc/3 in order to obtain the WZW
Lagrangian in the vicinity of the chiral limit; the quark
charges are considered to be functions of Nc ac-
cording to (4). Within the vector-meson-dominance
model, the reactions π±γ → π±η and the decay η →
π+π−γ were analyzed in [6]. From the expressions
presented in [6], it follows that both diagrams for these
processes are proportional to Nc(Qu −Qd) = Nc, so
that the dependence of the amplitudes onNc is readily
determined.

As to Kγ → Kπ reactions, they present a chal-
lenge: a straightforward computation of the ampli-
tudes is needed. The respective Feynman diagrams
are shown in the figure.

The calculations were performed with the FORM
package [14]. The result has the form

AKγ→Kπ =
−ie

16π2F 3
εµναβqµpνbp

α
2 ε
β (9)

×
(
C0 +

CsM
2
K∗

s−M2
K∗ + iΓK∗

√
s

+
CtM

2
ρ

t−M2
ρ

+
CuM

2
K∗

u−M2
K∗

)
,

where ε is the photon polarization vector; the mo-
menta q, pb, and p2 are defined in the table; s = (q +
pb)2; t = (pb − p2)2;u = (q − p2)2; MK∗ and Mρ are
the masses of the K∗ and ρ mesons; and ΓK∗ is the
K∗-meson width. The coefficients C0, Cs, Ct, and
Cu for specific processes are presented in the table as
functions ofNc.

Thus, measurement of the cross sections for the
reactions K+γ → K+π0 and K+γ → K0π+ would
compensate for a deficiency that arises in experimen-
tal facts giving evidence for Nc = 3 upon the exclu-
sion of the decays π0 → γγ and η → γγ and the reac-
tion π+γ → π+π0 from the experimental-data sample
3
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Coefficients C0, Cs, Ct, and Cu in formula (9)

Reaction C0 Cs Ct Cu

K+(pb)γ(q) → K+(p2)π0(p1)
Nc + 3

3
1 Nc + 1 1

K+(pb)γ(q) → K0(p2)π+(p1)

√
2(Nc − 3)

3
√

2
√

2(Nc − 2) −2
√

2

π+(pb)γ(q) → π+(p2)η(p1)
2Nc

√
3

9
Pθ 0

2Nc

√
3

3
Pθ 0

Note: Allowance for the η–η′ mixing (8) gives rise to the factor [6] Pθ = (F/F8) cos θP − (F/F0) sin θP , where the distinctions
between the decay constants Fπ± = F , F0, and F8 must also be taken into consideration. The quantity F0 (F8) parametrizes the
matrix element of the axial current between vacuum and purely singlet (octet) state. A calculation in the one-loop approximation of
chiral perturbation theory yieldsF0 ≈ 1.04F andF8 ≈ 1.30F [15]; the mixing angle is θP = 20◦. All this makes theoretical predictions
for the decays η → π+π−γ and η′ → π+π−γ and the reactions π±γ → π±η(η′) less precise than the predictions for the reactions
Kγ → Kπ.
used to determine Nc. Moreover, measurement of
the cross sections for the reactions Kγ → Kπ would
make it possible to test phenomenological implica-
tions of the chiral anomaly in the world with three
(rather than two) light quarks. This is of importance
because theWZWLagrangian was derived under the
assumption that there are precisely three light quarks.

ACKNOWLEDGMENTS

I am grateful to M.I. Polikarpov for interest in this
study.

REFERENCES
1. J. Bell and R. Jackiw, Nuovo Cimento 60, 47 (1969);

S. Adler, Phys. Rev. 177, 2426 (1969); W. A. Bardeen,
Phys. Rev. 184, 1848 (1969).

2. J.Wess and B. Zumino, Phys. Lett. B 37B, 95 (1971).
3. E. Witten, Nucl. Phys. B 223, 422 (1983).
4. O. Bär and U.-J. Wiese, Nucl. Phys. B 609, 225

(2001); hep-ph/0105258.
5. C. Itzykson and J. B. Zuber, Introduction to Quan-
tum Field Theory (McGraw-Hill, New York, 1980;
Mir,Moscow, 1984); T.-P. Cheng and L.-F. Li,Gauge
PH
Theory of Elementary Particle Physics (Clarendon,
Oxford, 1984; Mir, Moscow, 1987).

6. B. R. Holstein, Phys. Rev. D 53, 4099 (1996);
E. P. Venugopal and B. R. Holstein, Phys. Rev. D 57,
4397 (1998); A. V. Kiselev and V. A. Petrov, Yad. Fiz.
63, 571 (2000) [Phys. At. Nucl. 63, 499 (2000)].

7. Y. M. Antipov et al., Phys. Rev. D 36, 21 (1987).
8. D. V. Amelin et al., Yad. Fiz. 62, 496 (1999) [Phys.

At. Nucl. 62, 454 (1999)].
9. M. Gormley et al., Phys. Rev. D 2, 501 (1970).
10. J. Goldstone and F. Wilczek, Phys. Rev. Lett. 47, 986

(1981).

11. R. N. Rogalyov, Yad. Fiz. 64, 72 (2001) [Phys. At.
Nucl. 64, 68 (2001)].

12. M. Bando, T. Kugo, and K. Yamawaki, Phys. Rep.
164, 217 (1988).

13. T. Fujiwara et al., Prog. Theor. Phys. 73, 926 (1985).
14. J. A. M. Vermaseren, Symbolic Manipulation with

FORM, Version 2 (CAN, Amsterdam, 1991).

15. J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 465
(1985).

Translated by R. Rogalyov
YSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003



Physics of Atomic Nuclei, Vol. 66, No. 1, 2003, pp. 195–202. Translated from Yadernaya Fizika, Vol. 66, No. 1, 2003, pp. 199–206.
Original Russian Text Copyright c© 2003 by Petrukhin, Timashkov.

ELEMENTARY PARTICLES AND FIELDS
Theory
Photoproduction as the Limiting Case of Inelastic Scattering

A. A. Petrukhin and D. A. Timashkov
Moscow Engineering Physics Institute (State University), Kashirskoe sh. 31, Moscow, 115409 Russia

Received August 2, 2001; in final form, November 23, 2001

Abstract—On the basis of the vector-dominance model and Regge theory, formulas are derived that make
it possible to obtain a unified description of the photoproduction cross section and the nucleon structure
functions determining the cross section for inelastic lepton scattering at low Q2. c© 2003 MAIK “Nau-
ka/Interperiodica”.
INTRODUCTION

Inelastic photon–hadron interaction is one of the
simplest inelastic processes in elementary-particle
physics, and investigation of this interaction is of
great interest. At the same time, photoproduction can
be interpreted as an extreme case of electroproduction
at lowmomentum transfers in the quasistatic limit for
Q2 → 0, where perturbative QCD ceases to be ap-
plicable. The Feynman diagram for photoproduction
on a proton is equivalent to the hadronic vertex of
the diagram for inelastic charged-lepton (electron or
muon) scattering on hadrons (see Fig. 1). Therefore,
investigation into photoproduction makes it possible
to deduce important information not only about the
interaction of high-energy photons with matter but
also about the limiting behavior of the cross sections
for inelastic lepton–proton processes and about the
proton structure functions.

With the aim of obtaining simple formulas that
would describe the cross sections for photo- and elec-
troproduction processes and relations between them,
we analyze here various phenomenological models of
these processes.

1. BASIC RELATIONS

The photoproduction cross section is determined
by the hadronic tensor identical to that which appears
in the cross section for inelastic lepton–proton inter-
action; that is,

σ(γp → X) =
4π2αe
K

εµ∗ενWµν , (1)

where αe is the fine-structure constant. For a real
photon, K = Eγ and the polarization vectors εµ and
εν lie in the plane orthogonal to the photon mo-
mentum. If we are dealing with a virtual photon, its
transverse polarizations do not exhaust the possible
states of this photon; moreover, the choice of the flux
1063-7788/03/6601-0195$24.00 c©
factorK is ambiguous in this case. Usually, it is taken
to be

K = ν − Q2

2M
. (2)

As is well known (see [1]), the hadronic tensor de-
pends on the hadron and virtual-photon 4-momenta
and two dimensionless structure functions

F1 = MW1 =
Mν

4π2αe
(1 − x)σT , (3)

F2 = νW2 =
Q2

4π2αe
(1 − x)

1 + σL/σT
1 +Q2/ν2

σT . (4)

By x, we hereafter imply the Bjorken variable

x =
Q2

2Mν
. (5)

In the limit of photoproduction, the cross section σT
for a transversely polarized photon reduces to σγp,
while the cross section σL for a longitudinally polar-
ized photon vanishes. From Eqs. (3) and (4), one can
deduce that, in this case, the structure functions F1
and F2 satisfy the simple relation

F1 =
F2

2x
, (6)
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tion: basic conventions.
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196 PETRUKHIN, TIMASHKOV
which is known as the Callan–Gross relation [2] and
which can be obtained on the basis of the quark–
parton model for inelastic scattering at highQ2.

Formulas (1), (3), and (4) reveal a close relation
between the processes of photo- and electroproduc-
tion. However, this relation, which manifests itself at
the level of Feynman diagrams and form factors, does
not admit a direct transition from electro- to photo-
production for Q2 → 0, if for no other reasons than
the fact that different particles are involved in these
processes. This is also reflected in the kinematical
constraint on the minimum momentum transfer in
inelastic scattering:

Q2 > Q2
min =

m2
l y

2

1 − y
. (7)

Here, ml is the lepton (incident particle) mass and
y = ν/E is the energy-transfer fraction. With al-
lowance for relation (7), the limit of photoproduction
in inelastic lepton–proton scattering is reached only
for y → 0, which, at a given value of the energy trans-
fer ν, implies E → ∞.

The inelastic-scattering cross section can be ex-
pressed in terms of the cross section for virtual-
photon scattering on a proton as [3]

dσin
dQ2dν

= αeΓTσγ∗p, (8)

where ΓT is the flux factor (see [3]) and
σγ∗p = σT + εσL. (9)

If the lepton mass is disregarded, the polarization
factor is usually defined at lowQ2 as

ε =
(

1 +
Q2 + ν2

2EE′ −Q2/2

)−1

, (10)

while the flux factor is defined as

ΓT =
1

πQ2ν

(
1 − y + y2/2

)
. (11)

Here, the parenthetical expression can vary from 1/2
to 1. It was mentioned above that, in the limit of low
Q2, the cross section for a longitudinally polarized
photon can be disregarded against the cross section
for a transversely polarized photon. In this case, rela-
tion (9) takes the form

σγ∗p ≈ σT .

Considering that the limit of photoproduction corre-
sponds to low y and that the parenthetical expression
in (11) is close to unity in this case, we can represent
the inelastic-scattering cross section in the region of
lowQ2 as

dσin
dQ2dν

≈ αe
π

σT (Q2, ν)
Q2ν

. (12)
PH
The photoproduction process and inelastic elec-
tron (muon) scattering on a proton at low Q2 is
usually described on the basis of the vector-meson-
dominance model and various modifications of this
model that enable one to sidestep difficulties arising
in QCD at low momentum transfers and to derive
boundary conditions determining the behavior of the
proton structure functions in the limitQ2 → 0.

2. VECTOR-MESON-DOMINANCE MODELS

The first model that described inelastic real-
photon (or virtual-photon) scattering on a proton was
the rho-dominance model. First, the idea that there is
a hadronic component in the photon wave function
was applied to describe photoproduction [4]. Further,
Sakurai [5] employed this idea to describe virtual-
photon interaction with a proton.

Since the rho-dominance model had been unable
to ensure the required value of the cross section for
virtual-photon scattering, the contributions of heav-
ier vector mesons were included in order to describe
the cross section σγ∗p more accurately; that is, this
cross section was taken in the form

σγ∗p =
∑
V

αe
αV

σV p
(1 +Q2/m2

V )2
, (13)

where αV stands for the photon–meson coupling
constants, mV is the mass of a vector meson, and
σV p is the cross section for the interaction of a vector
meson with a proton.

If, however, one took only a finite number of vector
mesons (ρ, ω, ϕ), the structure function F2 would
decrease with increasing momentum transfer, but this
would contradict the scaling behavior that was dis-
covered at high Q2 in electron–proton scattering at
SLAC [6]. In view of this, the generalized vector-
meson-dominance model, where summation in (13)
is performed over the entire infinite mass spectrum
of vector mesons, was proposed in the early 1970s
[7, 8]. According to this model, the cross section for
the scattering of a transversely polarized photon on a
proton varies in proportion to 1/Q2, which is in accord
with the scaling behavior of the structure functions.

As was shown in [9], the infinite sum in expression
(13) can be replaced by an integral, whereupon one
arrives at

σγ∗p(Q2, ν) = αe

∞∫
m2

0

ρ(m2, ν)
(1 +Q2/m2)2

dm2, (14)

where ρ(m2, ν) is the dynamical density of vector
meson states.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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The dynamical density is normalized to the photo-
production cross section as

αe

∞∫
m2

0

ρ
(
m2, ν

)
dm2 = σγp. (15)

We note that ν = K = Eγ for the case of photopro-
duction. From a dimensional analysis, it follows that
the dependence ρ on m2 must have the form ρ ∼
1/m4.

Formulas proposed in [10, 11] to describe the cross
section for virtual-photon scattering,

σγ∗p(Q2, ν) =
σγp(K)

1 +Q2/m2
0

, (16)

correspond to the choice of density function in the
simplest form

ρ ∼ σγp/m
4. (17)

In those studies, the value ofm2
0 was determined from

a fit to experimental data and was set approximately
to 0.4 GeV2.1)

The value of this lower limit of integration in (14)
can be obtained more accurately by invoking rather
simple considerations. By definition, m0 is the lower
boundary of the mass spectrum of vector mesons.
The lightest of these, the ρ meson, has the mass of
mρ = 0.77 GeV and the width of Γρ = 0.151 GeV,
whence it follows that, for the lower boundary of the
meson spectrum, one can take the value

m2
0 = (mρ − Γρ/2)2 = 0.483 GeV2. (18)

It should be noted that the values of m2
0 obtained

in [10–12] agree well with the value in (18).

3. PHOTOPRODUCTION CROSS SECTION

In order to determine the form of the dependence
ρ(m2, ν) on both variables m2 and ν, we use the
method of Regge poles. In Regge theory [15], the am-
plitude for the elastic scattering of two high-energy
particles can be represented as

A(s, t) ∼ sα(t), (19)

where s is the square of the c.m. energy and t is the 4-
momentum transfer. The optical theorem relates the

1)In order to attain a higher precision, one can take either
two terms corresponding to the contribution of light (m2

1 =
0.54 GeV2) and heavy (m2

2 = 1.8 GeV2) vector mesons [12]
or a greater number of terms [13]. As was shown in [14], how-
ever, even the formulas obtained on the basis of the simplest
model specified by Eq. (17) describe well the cross section for
inelastic scattering and muon energy losses induced by this
process if one uses a sufficiently accurate expression for σγp.
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imaginary part of the amplitude for elastic scattering
in the forward direction to the total cross section as

ImA = sσ, (20)

the cross section being expressed in terms of the
Regge trajectories at t = 0 (so-called intercepts).
Two intercepts are usually considered in the case of
inelastic scattering: that of a Reggeon,αR = 1/2, and
that of a Pomeron, αP ≈ 1. Therefore, we have

σ =
∑
i=R,P

cis
αi−1. (21)

By using the Regge method for photoproduction
and by assuming that the exchanges of a Reggeon
and a Pomeron are dominant in the limiting cases of,
respectively, low and high energies, we can express
the photoproduction cross section in terms of one
intercept weakly dependent on the photon energy;
that is,2)

σγp ∼ sα(s)−1, (22)

s = M2 + 2MEγ . (23)

We also have

α(Eγ → 0) → αR, (24)

α(Eγ → ∞) → αP. (25)

The intercept cannot depend on energy more
strongly than a logarithm of energy (otherwise, the
pole concept losesmeaning); therefore, we choose the
dependence α(s) in such away as to ensure fulfillment
of relations (24) and (25); that is,

α(s) = αR + (αP − αR)
f(s)

1 + f(s)
, (26)

f(s) = ln

√
1 +

s−M2

m2
= ln

√
1 +

2MEγ
m2

. (27)

It follows that, with allowance for the asymptotic
behavior in the form (22) (see, for example, [17]) and
for the results of a dimensional analysis, the dynami-
cal density of meson states can be represented as

ρ(m2, s) =
π3

m4

( s

m2

)α(s)−1
. (28)

Upon substituting expressions (26)–(28) into
Eq. (15) and making the change of variables

u = m2/s, (29)

2)The concept of an effective intercept taking into account
the contributions of varoius trajectories was used previously
(see, for example, [16]).
3
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Fig. 2. Photoproduction cross section as a function of the photon energy: (solid curve) result of the calculation by formula (30)
at αP = 1.065, (dashed curve) fit from [19], and (dotted curve) result of the calculation by the formulas from [12]. Experimental
data were borrowed from [18].
we obtain

σγp =
π3αe
s

∞∫
u0

du

u1+α(u)
, (30)

where

u0 =
m2

0

s
, (31)
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the H1 collaboration [24].
PH
α(u) =
αR + αPf(u)

1 + f(u)
, (32)

f(u) = ln
√

1 + u−1(1 −M2/s).

The photoproduction cross section (30) as a func-
tion of the photon energy is displayed in Fig. 2, along
with relevant experimental data from [18]. Also given
in this figure are the main fits to σγp that were pro-
posed previously in [12, 19]. Corrections in the low-
energy region [20] were taken into account in the
formula from [12].

It can seen from Fig. 2 that the cross section (30),
which was obtained on the basis of the vector-meson-
dominance model and Regge theory, faithfully repro-
duces experimental data both in the region adjacent to
resonances (around a few GeV) and at high energies.
In order to describe the resonance region, one can use
standard Breit–Wigner formulas (see Appendix).

4. INELASTIC SCATTERING IN THE LIMIT
OF LOW Q2

Let us consider the case of a virtual photon. The
relevant scattering cross section is given by expres-
sion (14) with the density function in the form (28).

Instead of the variable s, which, in the case of
photoproduction, is equal to the square of the sum of
the real-photon and proton 4-momenta, we will use
YSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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the variable W 2 defined as the square of the sum of
the virtual-photon and proton 4-momenta,

W 2 = M2 + 2Mν −Q2.

BothW 2 and s have the meaning of the square of the
mass of the final hadron state, and we haveW 2 = s in
the limit of photoproduction.

Substituting expression (28) into the integral
in (14) and making the change of variable according
to (29), we obtain the cross section for virtual-photon
scattering on a nucleon in the form

σγ∗p =
π3αe
W 2

∞∫
u0

u1−α(u)du

(u+Q2/W 2)2
. (33)

In the limit of low Q2, the cross sections for scatter-
ing of a real and a virtual photon are related by the
equation

σγ∗p = σγp

∞∫
u0

u1−α(u)du

(u +Q2/W 2)2

/ ∞∫
u0

du

u1+α(u)
. (34)

The structure functions for inelastic scattering are
given by (3) and (4). Disregarding the contribution
of the longitudinal component and assuming that
Q2 � ν2, we express the proton structure function
F2 in terms of the cross section for virtual-photon
scattering as

F2 =
Q2

4π2αe
(1 − x)σγ∗p. (35)

Using relation (33) and disregarding the square of the
4-momentum transfer Q2 in the expression for W 2,
we represent F2 as a function of x and Q2:

F2

(
x,Q2

)
=

π

4
x

1 + xM2/Q2
(36)

×
∞∫
u0

u1−α(u)du

(u+ x/(1 + xM2/Q2))2
.

In the limit of low Q2, the proton structure function
F2 depends on the variable

xT =
x

1 + xM2/Q2
(37)

rather than onQ2 and x individually, and we can write

F2 (xT ) =
π

4
xT

∞∫
u0

u1−α(u)du

(u+ xT )2
. (38)

The structure function F1 can be obtained from
(35)–(38) with the aid of relation (6).
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In Fig. 3, the behavior of the proton structure
function F2 in the region of low Q2 is depicted along
with experimental data obtained both with fixed tar-
gets (closed symbols) and with colliding beams (open
symbols). It can be seen from Fig. 1 that, in the region
of x values above 0.001, the results of the calculations
agree well with the experimental data. The growth
of the structure function with increasing Q2 in the
region of very low x is caused by the anomalous
growth of the Pomeron intercept at high energies and
momentum transfers (see next section).

5. HIGH-ENERGY REGION

In Regge theory, the behavior of the cross sec-
tion at high energies is controlled by the Pomeron
intercept—that is, by a pole that is characterized
by the vacuum quantum numbers (αP ≈ 1). How-
ever, the values of αP that are obtained from a fit to
data on inelastic scattering in the region of low x
are greater. It is important to note that the broad-
ening of the experimentally explored region toward
higher interaction energies leads to greater values of
the Pomeron intercept. The value of αP as deter-
mined on the basis of data from [25–27] in the region
x > 10−4, which corresponds to energy transfers sat-
isfying the condition ν < 1 TeV, was 1.06 (ALLM91
parametrization [28]). In order to describe the first
data obtained at the HERA collider in the region
x > 10−5 (ν < 10 TeV) [29–32], αP was taken to
be close to 1.08 (see parametrizations in [33, 34]).
Still greater values of αP = 1.2 (see the review article
3



200 PETRUKHIN, TIMASHKOV
of Kaidalov [35]) and 1.4 [36] were deduced from
analyses of HERA data in the energy-transfer region
extending up to a few tens of TeV (50 TeV).

Thus, the lower the value of x—that is, the higher
the energy transfer—the greater the Pomeron inter-
cept value that is obtained from a fit to experimen-
tal data on inelastic interaction. Qualitatively, this
can be explained by the fact that, with increasing
energy, more complicated mechanisms of Pomeron
exchange (double Pomeron, perturbative Pomeron,
triple Pomeron, etc., mechanisms) come into play.
In order to describe such behavior of αP quantita-
tively, one can therefore use the concept of an effec-
tive Pomeron intercept that is weakly dependent on
energy. This effective Pomeron intercept will go over
to a soft Pomeron (αP ≈ 1.06–1.07) at low energies
and a hard Pomeron (αP ≈ 1.2–1.4) at high energies,
and so on.

The effective Pomeron intercept depending on
kinematical variables (on Q2) was used previously to
describe the anomalous growth of F2 at low x [37].
But in that case, it was assumed that the intercept
depends only on Q2 and that only the soft Pomeron
contributes to the photoproduction cross section. In
recent years, however, it was sometimes hypothesized
that a hard Pomeron may manifest itself even for
Q2 → 0 [38]. This can be understood if the photo-
production limit is considered as a nonperturbative
component in the low-x region. Since the regions
of low Q2 and x intersect for Q2 → 0, it would be
reasonable to make an attempt at describing them in
a unified manner with the aid of an effective Pomeron
intercept.

It is known that, in the perturbative region, the
dependence of αP on x (and, hence, on energy) is
used in the form of the square root of a logarithm [39].
Assuming that, in the limit of low Q2, the effec-
tive Pomeron intercept exhibits the same functional
growth with increasing energy, we can write

αeff
P = 1 + k0

√
ln (s/M2). (39)

In order to illustrate the potential of this formula,
we compare the cross section σγp calculated on the
basis of expression (39) with new experimental data
on the photoproduction cross section that were ob-
tained by the ZEUS collaboration at the HERA col-
lider [40]. These data were deduced by rescaling the
inelastic-electroproduction cross sectionmeasured in
the low-Q2 region (∼0.5 GeV2) to the value of Q2 =
0 and are possibly plagued by some methodological
error since there is a jumplike discrepancy between
the ZEUS data and the results of other photoproduc-
tion experiments. Nevertheless, it can be seen from
Fig. 4 that the energy dependence of the cross section
is much stronger than that which is ensured by a
PH
soft Pomeron (dashed сurve). The solid curve repre-
sents the cross section corresponding to the effective
Pomeron intercept (39) at k0 = 0.028.

Since there is no complete theory of Pomeron ex-
changes and inelastic processes in the low-x region,
the energy dependence of αeff

P can be chosen in some
other form that does not contradict experimental data.
In our opinion, however, the choice of αeff

P in the
form (39) gives hopes to develop a unified approach
to describing the low-x region both for Q2 → 0 and
for ν → ∞.

CONCLUSION

On the basis of the generalized vector-meson-
dominance model and Regge theory, we have derived
formulas that provide a unified description of the pho-
toproduction cross section and structure functions in
the limit of lowQ2.

The approach used here makes it possible to sup-
plement, if necessary, the formula for the photopro-
duction cross section with resonance terms. In addi-
tion, it has been shown that the anomalous growth
of the structure functions for inelastic scattering at
low x and of the photoproduction cross section in the
region of high energies can be described by using an
effective Pomeron intercept.

In the present study, we have also obtained a for-
mula for the virtual-photon-interaction cross section
and a formula for the proton structure function at
low Q2 [Eqs. (33) and (38), respectively]. These for-
mulas may serve as a guideline in ensuing searches
for a unified approach to describing the inelastic-
scattering cross section over the entire allowed region
of kinematical variables.

APPENDIX

Region of Nucleon Resonances

In order to take into account the contributions of
resonances, we represent the photoproduction cross
section in the form

σγp(Eγ) =

{
ϕ(Eγ)

π3αe
s

∞∫
u0

du

u1+α(u)
(A.1)

+
1
m2

0

∑
i

AiK
(i)
BW

}
θ(Eγ −mthr),

where θ(x) is the Heaviside step function and

K
(i)
BW =

(Eres
i Γi)2

(s− (Eres
i )2)2 + (Eres

i Γi)2
(A.2)
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Fig. 5. Photoproduction cross section in the resonance region.
stands for functions that describe Breit–Wigner
curves.

The function ϕ (Eγ) specifies the threshold behav-
ior of the cross section, its parameters usually being
determined from a fit to experimental data (see, for
example, [41]). If ϕ (Eγ) is represented in the form

ϕ (Eγ) =
Eγ −mthr

Eb +Eγ −mthr
, (A.3)

thenmthr and Eb can be expressed in terms of the ∆-
resonance parameters as

mthr =
(M∆ − Γ∆)2 −M2

2M
≈ 190 MeV, (A.4)

Eb =
(M∆ + Γ∆)2 −M2

2M
≈ 505 MeV. (A.5)

In Eq. (A.1), the number of terms that must be re-
tained in order to describe the photoproduction cross
section in the resonance region depends on the re-
quired accuracy. By way of example, available ex-
perimental data are contrasted in Fig. 5 against the
results of the calculations by formula (A.1) that take
into account five terms corresponding to the ∆ res-
onance (P33); the total contribution of the P11, D13,
and S11 excitations; the F15 resonance; the total con-
tribution of the S31, F35, and F37 resonances; and the
contribution of heavy nucleon resonances, the values
of the parameters Гi (in MeV), Eres

i (in MeV), and Ai
YSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
being the following:

Eres
1 = 1220, Γ1 = 120, A1 = 0.55;

Eres
2 = 1500, Γ2 = 160, A2 = 0.20;

Eres
3 = 1680, Γ3 = 115, A3 = 0.10; (A.6)

Eres
4 = 1900, Γ4 = 230, A4 = 0.05;

Eres
5 = 2300, Γ5 = 500, A5 = 0.02.

From Fig. 5, it can be seen that good agreement
with experimental data can be achieved by taking
into account these five terms. If a higher precision is
necessary, any number of resonances may be included
in Eq. (A.1) by using the same procedure.
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Abstract—The paper presents a short review of our knowledge today on vacuum condensates in quantum
chromodynamics (QCD). The condensates are defined as vacuum averages of the operators which arise due
to nonperturbative effects. The important role of condensates in determining physical properties of hadrons
and of their low-energy interactions in QCD is underlined. The special value of the quark condensate,
connected to the existence of baryon masses, is mentioned. Vacuum condensates induced by external fields
are discussed. QCD at low energy is checked on the basis of the data on hadronic τ decay. In theoretical
analysis, the terms of perturbation theory (PT) up to α3

s are accounted for; in the operator product expansion
(OPE), those up to dimension 8. The total probability of the decay τ → hadrons (with zero strangeness)
and of the τ-decay structure functions are best described at αs(m2

τ ) = 0.330 ± 0.025. It is shown that the
Borel sum rules for τ-decay structure functions along the rays in the q2-complex plane are in agreement
with experiment, having an accuracy of ∼2% at the values of the Borel parameter |M2| > 0.8 GeV2. The
magnitudes of dimension 6 and 8 condensates were found, and the limitations on gluon condensates were
obtained. The sum rules for the charmed-quark vector-current polarization operator were analyzed in
three loops (i.e., in order α2

s). The value of the charmed-quark mass (in an MS regularization scheme)
was found to be mc(m2

c) = 1.275 ± 0.015 GeV, and the value of gluon condensate was estimated as
〈0|(αs/π)G2|0〉 = 0.009 ± 0.007 GeV4. The general conclusion is that the QCD described by PT + OPE
is in good agreement with experiment atQ2 � 1GeV2. c© 2003 MAIK “Nauka/Interperiodica”.
1. A FEW WORDS ABOUT IGOR’
VASIL’EVICH

It is a great honor and at the same time a great
pleasure for me to write a paper for the issue of
Physics of Atomic Nuclei dedicated to 100th an-
niversary since the birth of Igor’ Vasil’evich Kurcha-
tov. Kurchatov was a very extraordinary person: an
organizer of the highest class; I know of no one with
such excellent organizational abilities. Without him,
the Soviet atomic project would most likely not have
been realized, at the least not in such short a time.
Kurchatov had the strongest sense of responsibility
not only for the work entrusted to him—the atomic
project—but much wider—for the good of science in
our country and, moreover, for the good of all whole
mankind. I shall relate an episode not well known.
As A.P. Aleksandrov witnessed [1], Kurchatov was
deeply depressed when returning from the tests of the
first hydrogen bomb (those who were present at the
tests noticed the same). He said, “What a terrible
thing we have made. The only thing we should worry
about is to forbid all of this and to exclude nuclear

∗This article was submitted by the author in English.
**e-mail: ioffe@vitep1.itep.ru
1063-7788/03/6601-0030$24.00 c©
war.” In March 1954, Kurchatov, Alikhanov, Kikoin,
and Vinogradov wrote a paper in which they con-
cluded that mankind faces the menace of the end of all
of life on earth. The paper was also signed by theMin-
ister of theMediumMachine Building V.A.Malyshev,
who sent it to Malenkov, Khrushchev, and Molo-
tov. Khrushchev, however, rejected the paper, calling
the words on the possible ruin of world civilization
“theoretically wrong and politically harmful” (see [2]).
The position of the Soviet leaders remained as before:
world war should lead to the fall of the capitalism.
The same responsibility was inherent to Kurchatov

when constructing atomic reactors and atomic power
stations—I gave examples of this earlier [3]. I think
that, if Kurchatov were alive, RBMK reactors, princi-
pally unsafe as physical systems, would not have been
built and wewould have avoided the Chernobyl catas-
trophe. However, on the other hand, Igor’ Vasil’evich
was a person of his time... (see [3]).
He liked science and, first of all, his main speciali-

ty—nuclear physics. He was deeply interested in the
development of elementary particle physics, and he
thought it necessary to develop such investigations
in the Soviet Union. He supported the suggestion of
Alikhanov and Vladimirsky to construct the 7-GeV
hard-focusing proton accelerator at the Institute of
2003 MAIK “Nauka/Interperiodica”
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Theoretical and Experimental Physics (ITEP), and
then, using the ITEP project, of the 50-GeV pro-
ton accelerator (later, 70 GeV) near Serpukhov. In
1954, such a decision was adopted at the meeting
of the Scientific-Technical Council at the Ministry of
MediumMachine Building chaired by Kurchatov.

2. INTRODUCTION

Nowadays, it has been reliably established that
the true (microscopic) theory of strong interaction is
quantum chromodynamics (QCD), a gauge theory of
interacting quarks and gluons. It has also been es-
tablished that, unlike, e.g., quantum electrodynamics
(QED), a vacuum in QCD has a nontrivial struc-
ture: due to nonperturbative effects, i.e., not admit-
ting expansion in the interaction constant (even if
it is small), nonzero fluctuations of gluon and quark
fields persist in a QCD vacuum. (Examples of such
nonperturbative fields are instantons [4]—classical
solutions of equations for a gluon field, which realize
the minimum of actions in the QCD Lagrangian.)1)

The nontrivial structure inQCDmanifests itself in the
presence of vacuum condensates, analogous to those
in condensed matter physics (for instance, sponta-
neous magnetization). Vacuum condensates are very
important in elucidating the QCD structure and in
describing hadron properties at low energies. Con-
densates, in particular, quark and gluon, have been
investigated since the 1970s. Here, first should be
noted the QCD sum rule method by Shifman, Vain-
shtein, and Zakharov [5], which is based on the idea
of the leading role of condensates in the calculation of
masses of the low-lying hadronic states. In the papers
of 1970s–1980s, it was adopted that the perturba-
tive interaction constant is comparatively small (e.g.,
αs(1 GeV) ≈ 0.3), so that it is enough to restrict
oneself to the first-order terms in αs and sometimes
even disregard perturbative effects in the region of
masses larger than 1 GeV. At present, it is clear
that αs is considerably larger (αs(1 GeV) ∼ 0.6). In
a number of cases, there have appeared results of
perturbative calculations in orders α2

s and α3
s . New,

more precise experimental data at low energies were
obtained. Thereby, on one hand, it is necessary, and
on the other, it appears possible, to compare QCD
with experiment in the low energy region on a higher
level of precision. The results of such a comparison
are presented in this paper.
In Section 3, I define condensates, describe their

properties, and give numerical values obtained previ-
ously. In Section 4, the data on hadronic decays of a

1)This statement refers to Euclidean space; in the Minkows-
ki space, instantons realize tunneling transitions between
Hilbert spaces with different topological quantum numbers.
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τ lepton are compared with theoretical expectations
obtained on the basis of the operator product expan-
sion in QCD with perturbative terms up to α3

s taken
into account. The values of condensates and the cou-
pling constant αs(m2

τ ) are obtained. In Section 5, the
polarization operator of the vector current of charmed
quarks is analyzed in the three-loop approximation
(i.e., taking into account terms ∼α2

s), the value of the
charmed quark and the value of gluon condensate are
found. Section 6 presents our conclusions.

3. DEFINITION OF CONDENSATES
AND THEIR MAIN PROPERTIES

In QCD (or in the more general case, in quantum
field theory) by condensates are meant the vacuum
mean values 〈0|Oi|0〉 of local (i.e., taken at a single
spacetime point) operators Oi(x), which arise due
to nonperturbative effects. The latter point is very
important and needs clarification. When determining
vacuum condensates, averaging only over nonper-
turbative fluctuations is implied. If, for some oper-
ator Oi, the nonzero vacuum mean value appears
also in perturbation theory, it should not be taken
into account in determining the condensate—in other
words, when determining condensates the perturba-
tive vacuum mean values should be subtracted in the
calculation of the vacuum averages. One more spec-
ification is necessary. The perturbation theory series
in QCD are asymptotic. So, vacuum mean operator
values may appear due to one or another summing
of asymptotic series. Such vacuum mean values are
commonly referred to as vacuum condensates.
Separation of perturbative and nonperturbative

contributions to vacuum mean values has some
arbitrariness. Usually [6, 7], this arbitrariness is
avoided by introduction of some normalization point
µ2 (µ2 ∼ 1 GeV2). Integration over momenta of
virtual quarks and gluons in the region below µ2 is
referred to as condensates; above µ2, to perturbative
theory. In such a formulation, condensates depend
on the normalization point µ: 〈0|Oi|0〉 = 〈0|Oi|0〉µ.
Other methods for determining condensates are also
possible (see below).
In perturbation theory, corrections to the conden-

sates appear as a series in the coupling constant
αs(µ):

〈0|Oi|0〉Q = 〈0|Oi|0〉µ
∞∑
n=0

C(i)
n (Q,µ)αns (µ). (1)

The running coupling constant αs on the right-hand
side of (1) is normalized at the point µ. The left-
hand side of (1) represents the value of the condensate

normalized at the point Q. Coefficients C
(i)
n (Q,µ)
3
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may have logarithms lnQ2/µ2 in powers up to n for

C
(i)
n . Summing up the terms with highest powers of
logarithms leads to the appearance of the so-called
anomalous dimension of operators, so that in a gen-
eral form it can be written as

〈0|Oi|0〉Q = 〈0|Oi|0〉µ
(
αs(µ)
αs(Q)

)γ
(2)

×
∞∑
n=0

c(i)n (Q,µ)αns (µ),

where γ is an anomalous dimension (number) and

c
(i)
n already has no leading logarithms. If there exist
several operators of the given (canonical) dimension,
then their mixing is possible in perturbation theory.
Then (1), (2) become matrix relations.

In their physical properties, condensates in QCD
have much in common with condensates appearing
in condensed matter physics such as superfluid liq-
uid (Bose condensate) in liquid 4He, a Cooper pair
condensate in a superconductor, and spontaneous
magnetization in magnets. This is why, analogous
to effects in the physics of condensed matter, it can
be expected that if one considers QCD at a finite
temperature T , with T increasing at some T = Tc,
there will be a phase transition and condensates (or
a part of them) will be destroyed. Particularly, such a
phenomenon must hold for condensates responsible
for spontaneous symmetry breaking—at T = Tc they
should vanish and symmetry must be restored. (In
principle, surely, QCD may have a few phase transi-
tions.)

Condensates in QCD are divided into two types:
conserving and violating chirality. As is known, the
masses of u, d, s light quarks in the QCD Lagrangian
are small compared to the characteristic scale of
hadronic masses M ∼ 1 GeV. In neglecting light
quark masses, the QCD Lagrangian becomes chiral-
invariant: left-hand and right-hand (in chirality) light
quarks do not interact with each other, and both
vector and axial currents are conserved (except for
a flavor-singlet axial current, the nonconservation of
which is due to an anomaly). The accuracy of neglect-
ing light quark masses corresponds to the accuracy of
isotopical symmetry, i.e., a few percent in the case of u
and d quarks and of the accuracy of SU(3) symmetry,
i.e., 10–15% in the case of s quarks. In the case of
condensates violating chiral symmetry, perturbative
vacuum mean values are proportional to light quark
masses and are zero within mu = md = ms = 0.
So, such condensates are determined in the theory
much better than those conserving chirality and, in
principle, may be found experimentally with higher
accuracy.
PH
Among chiral-symmetry-violating condensates of
most importance is the quark condensate 〈0|q̄q|0〉
(q = u, d are the fields of u and d quarks). 〈0|q̄q|0〉
may be written in the form

〈0|q̄q|0〉 = 〈0|q̄LqR + q̄RqL|0〉, (3)

where qL, qR are the fields of left-hand and right-
hand (in chirality) quarks. As follows from (3), the
nonzero value of quark condensate means the tran-
sition of left-hand quark fields into right-hand ones
and its not small value would mean chiral-symmetry
violation in QCD. (If chiral symmetry is not violated,
then, at smallmu,md, 〈0|q̄q|0〉 ∼ mu,md.) By virtue
of isotopical invariance,

〈0|ūu|0〉 = 〈0|d̄d|0〉. (4)

For a quark condensate there holds the Gell-Mann–
Oakes–Renner relation [8]

〈0|q̄q|0〉 = −1
2

m2
πf

2
π

mu + md
. (5)

Heremπ, fπ are the mass and constant of π+-meson
decay (mπ = 140 MeV, fπ = 131 MeV); mu and md
are the masses of u and d quarks. Relation (5) is ob-
tained in the first order in mu,md,ms (for its deriva-
tion, see, e.g., [9]). To estimate the value of a quark
condensate, one may use the values of quark masses
mu = 4.2 MeV, md = 7.5 MeV [9]. (These values
were suggested by Weinberg [10]; within the errors
they coincide with other estimates—see, for example,
[11].) Substituting these values into (5) we get

〈0|q̄q|0〉 = −(243MeV)3. (6)

Value (6) has a characteristic hadronic scale. This
shows that chiral symmetry, which is fulfilled with
good accuracy in the light quark Lagrangian
(mu,md/M � 0.01,M is hadronic mass scale,M ∼
0.5–1GeV), is spontaneously violated in the hadronic-
state spectrum.
Another argument in favor of spontaneous vio-

lation of chiral symmetry in QCD is the existence
of massive baryons. Indeed, in the chiral-symmetry
theory, all fermionic states should be either massless
or parity-degenerate. Obviously, baryons, in particu-
lar, nucleons, do not possess this property. It can be
shown [9, 12] that both these phenomena—the pres-
ence of the chiral-symmetry-violating quark con-
densate and the existence of massive baryons—are
closely connected with each other. According to the
Goldstone theorem, the spontaneous symmetry vio-
lation leads to the appearance of massless particles in
the physical-state spectrum—of Goldstone bosons.
In QCD, Goldstone bosons can be identified with a
π-meson triplet within mu,md → 0, ms �= 0 (SU(2)
symmetry) or with an octet of pseudoscalar mesons
(π, K, η) within the limit mu,md,ms → 0 (SU(3)
YSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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symmetry). The presence of Goldstone bosons in
QCD makes it possible to formulate the low-energy
chiral effective theory of strong interactions (see
reviews [9, 13, 14]).
A quark condensate may be considered as an or-

der parameter in QCD corresponding to spontaneous
violation of chiral symmetry. At the temperature of
restoration of the chiral symmetry T = Tc it must
vanish. The investigation of the temperature depen-
dence of quark condensate in chiral effective theory
[15] (see also the review [9]) shows that 〈0|q̄q|0〉 van-
ishes at T = Tc ≈ 150–200. Similar indications were
obtained also in the lattice calculations [16].
Thus, the quark condensate (1) has the lowest

dimensions (d = 3) as compared with other conden-
sates in QCD, (2) determines masses of usual (non-
strange) baryons, and (3) is the order parameter in the
phase transition between the phases of violated and
restored chiral symmetry. These three facts determine
its important role in low-energy hadronic physics.
Let us estimate the accuracy of the numerical

value of (6). The Gell-Mann–Oakes–Renner rela-
tion is derived up to correction terms linear in quark
masses. In the chiral effective theory, one succeeds
in estimating the correction terms and thereby the
accuracy of Eq. (5) appears of order 10%. However,
it is not a single origin of errors in determining the
quark condensate value. The quark condensate, as
well as quark masses, depends on the normalization
point and has anomalous dimensions equal to γm =

−γq̄q =
4
9
. In the mass values taken above, normal-

ization point µ was not fixed exactly (in fact, it was
taken as µ ∼ 1GeV). In addition, the accuracy of the
above value of mu + md = 11.7 MeV which enters
into (5) seems to be on the order of 10–20%. The
value of the quark condensate may be also found from
the sum rules for the proton mass. Analysis [17] gave
for it a value very close to (6) (with a 3% difference)
at normalization point µ = 1 GeV. The accuracy of
these sum rules seems to be on the order of 10–15%.
Concludingly, it may be believed that the value of the
quark condensate is given by (6) at normalization
point µ = 1 GeV with 10–20% accuracy. The quark
condensate of strange quarks somewhat differs from
〈0|ūu|0〉. In [12] it was found that

〈0|s̄s|0〉/〈0|ūu|0〉 = 0.8 ± 0.1. (7)

The next, in dimension (d = 5), condensate violating
chiral symmetry is quark gluonic one:

−g

〈
0
∣∣∣∣q̄σµν λn2 Gnµνq

∣∣∣∣0
〉
≡ m2

0〈0|q̄q|0〉. (8)

HereGnµν is the gluon field strength tensor, λn are the
Gell-Mann matrices, and σµν = (i/2)(γµγν − γνγµ).
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The value of parameterm2
0 was found in [18] from the

sum rules for baryonic resonances,

m2
0 = 0.8GeV2. (9)

Consider now condensates conserving chirality. Play-
ing the fundamental role here is the gluon condensate
of the lowest dimension:〈

0
∣∣∣αs
π
GnµνG

n
µν

∣∣∣0〉. (10)

Due to the fact that the gluon condensate is pro-
portional to the vacuum mean value of the trace of
the energy–momentum tensor θµν , its anomalous
dimension is zero. The existence of the gluon conden-
sate was first indicated by Shifman, Vainshtein, and
Zakharov [5]. They also obtained, from the sum rules
for charmonium, its numerical value:〈

0
∣∣∣αs
π
GnµνG

n
µν

∣∣∣0〉= 0.012 GeV4. (11)

As was shown by the same authors, the nonzero and
positive value of gluon condensate means that the
vacuum energy is negative in QCD: the vacuum en-
ergy density in QCD is given by ε =
−(9/32)〈0|(αs/π)G2|0〉. Therefore, if a quark is em-
bedded in the vacuum, this results in its excitation,
i.e., in increasing energy. In this way, the explanation
of the bag model could be obtained in QCD: in the
domain around the quark there appears an excess of
energy, which is treated as the energy density B in
the bag model [although the magnitude ofB probably
does not agree with the value of ε that follows from
(11)]. In [5], perturbative effects were taken into
account only in the order αs, the value for αs being
taken twice smaller than the modern one. Later,
many attempts were made to determine the value of
the gluon condensate by studying various processes
and applying various methods. However, the results
of different approaches were inconsistent with each
other and with (11), and sometimes the difference
was even very large—the values of the condensate
appeared to be severalfold larger. All of this requires

reanalyzation of 〈0|αs
π
G2|0〉 determination based

on contemporary values which will be performed in
Sections 4 and 5.

The d = 6 gluon condensate has the form

g3fabc〈0|GaµνGbνλGcλµ|0〉 (12)

(fabc are structure constants of the SU(3) group).
There are no reliable methods to determine it from
experimental data. There is only an estimate which
follows from the method of dilute instanton gas [19]:

g3fabc〈0|GaµνGbνλGcλµ|0〉 =
4
5

(12π2) (13)
3
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× 1
ρ2
c

〈
0
∣∣∣αs
π
G2
µν

∣∣∣0〉,
where ρc is the instanton effective radius in the
given model (for an estimation, one may take ρc ∼
1/3–1/2 fm).

The general form of d = 6 condensates is

αs〈0|q̄iOαqi · q̄kOαqk|0〉, (14)

where qi, qk are quark fields of u, d, s quarks and Oα
are Dirac and SU(3)matrices. Following [5], Eq. (14)
is usually factorized: in the sum over the intermediate
state in all channels (i.e., if necessary, after Fierz
transformation), only the vacuum state is taken into
account. The accuracy of such an approximation is
∼1/N2

c , whereNc is the number of colors, i.e.,∼10%.
After factorization Eq. (14) reduces to

αs〈0|q̄q|0〉2. (15)

The anomalous dimension of (15) is 1/9, and it can
be approximately set to zero. Finally, the d = 8 quark
condensates, assuming factorization, reduce to

αs〈0|q̄q|0〉 ·m2
0〈0|q̄q|0〉. (16)

(The notation of (8) is used.) It should be noted,
however, that the factorization procedure in the d = 8
condensate case is uncertain. For this reason, it is
necessary to require that their contribution be small.

Let us also dwell on onemore type of condensates—
those induced by external fields. The meaning of such
condensates can be easily understood by comparison
with analogous phenomena in the physics of con-
densed media. If the above-considered condensates
can be compared, for instance, with ferromagnets,
where magnetization is present even in the absence
of external magnetic field, condensates induced by
external field are similar to dia- or paramagnetic
materials. Consider the case of the constant exter-
nal electromagnetic field Fµν . In its presence there
appears a condensate induced by external field (in the
linear approximation in Fµν):

〈0|q̄σµνq|0〉F = eqχFµν〈0|q̄q|0〉. (17)

As was shown in [20], in a good approximation,
〈0|q̄σµνq|0〉F is proportional to eq—the charge of
quark q. The field-induced vacuum expectation value
〈0|q̄σµνq|0〉F violates chiral symmetry. So, it is nat-
ural to separate 〈0|q̄q|0〉 as a factor in Eq. (17).
The universal quark-flavor-independent quantity χ
is called the magnetic susceptibility of the quark
condensate. Its numerical value was found in [21]
using a special sum rule:

χ = −(5.7 ± 0.6) GeV−2. (18)
PH
Another example is external constant axial isovector
field Aµ, the interaction of which with light quarks is
described by the Lagrangian

L′ = (ūγµγ5u− d̄γµγ5d)Aµ. (19)

In the presence of this field, there appear condensates
induced by it:

〈0|ūγµγ5u|0〉A = −〈0|d̄γµγ5d|0〉A = f2
πAµ, (20)

where fπ = 131 MeV is the constant of π → µν de-
cay. The right-hand side of Eq. (20) is obtained as-
suming mu,md → 0, m2

π → 0 and follows directly
from consideration of the polarization operator of axial
currents ΠAµν(q) in the limit q → 0, when the nonzero
contribution to ΠAµν(q)q→0 emerges only from a one-
pion intermediate state. Equality (20) was used to
calculate the axial coupling constant qA in β decay
[22]. A relation analogous to (20) holds in the case of
an octet axial field. Of special interest is the conden-
sate induced by the singlet (in flavors) constant axial
field,

〈0|j(0)
µ5 |0〉 = 3f2

0A
(0)
µ , (21)

j
(0)
µ5 = ūγµγ5u + d̄γµγ5d + s̄γµγ5s, (22)

and the Lagrangian of interaction with external field
has the form

L′ = j
(0)
µ5 A

(0)
µ . (23)

Constant f0 cannot be calculated by the method used
when deriving Eq. (20), since the singlet axial current
is not conserved by virtue of anomaly and the singlet
pseudoscalar meson η′ is not a Goldstone particle.
Constant f2

0 is proportional to the topological sus-
ceptibility of a vacuum [23],

f2
0 =

4
3
N2
fχ

′(0), (24)

where Nf is the number of light quarks, Nf = 3, and
the topological susceptibility of the vacuum χ(q2) is
defined as

χ(q2) = i

∫
d4xeiqx〈0|T{Q5(x), Q5(0)}|0〉. (25)

Q5(x) =
αs
8π

Gnµν(x)Gnµν(x). (26)

Using the QCD sum rule, one may relate f2
0 to the

part of proton spin Σ carried by quarks in polarized
ep (or µp) scattering [23]. The value of f2

0 was found
from the self-consistency condition of the sum rule
obtained (or from the experimental value of Σ):

f2
0 = (2.8 ± 0.7) × 10−2GeV2. (27)
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The related value of the derivative at q2 = 0 of vacuum
topological susceptibility χ′(0) (more precisely, its
nonperturbative part) is equal to

f2
0 = (2.8 ± 0.7) × 10−2 GeV2. (28)

The value χ′(0) is of essential interest for studying
vacuum properties in QCD.

4. TEST OF QCD AT LOW ENERGIES
ON THE BASIS OF τ DECAY:
DETERMINATION OF αs(m2

τ )
AND CONDENSATE VALUES

Recently, collaborations ALEPH [24], OPAL [25]
and CLEO [26] measured with good accuracy the
relative probability of hadronic decays of τ lepton
Rτ = B(τ → ντ + hadrons)/B(τ → ντeνe) and the
vector (V ) and axial (A) spectral functions. Below I
present the results of the theoretical analysis of these
data based on the operator product expansion (OPE)
in QCD [27, 28]. In the perturbation theory series, the
terms up to α3

s will be taken into account; in OPE, the
operators up to dimension 8.
Consider the polarization operator of hadronic

currents,

ΠJµν(q) = i

∫
eiqx〈TJµ(x)Jν(0)†〉dx (29)

= (qµqν − gµνq
2)Π(1)

J (q2) + qµqνΠ
(0)
J (q2),

where

J = V,A; Vµ = ūγµd, Aµ = ūγµγ5d.

The spectral functions measured in τ decay are imag-

inary parts of Π(1)
J (s) and Π(0)

J (s), s = q2,

v1/a1(s) = 2πImΠ(1)
V/A(s + i0), (30)

a0(s) = 2πImΠ(0)
A (s + i0).

Functions Π(1)
V (q2) and Π(0)

A (q2) are analytical func-
tions in the q2 complex plane with a cut along the

right-hand semiaxis starting from 4m2
π for Π(1)

V (q2)

and 9m2
π for Π(0)

A (q2). Function Π(1)
A (q2) has kine-

matical pole at q2 = 0. This is a specific feature of
QCD following from chiral symmetry withinmassless
u and d quarks and from spontaneous violation of
it. The kinematical pole appears due to the one-pion
state contribution to ΠA(q), which has the form [27]

ΠAµν(q)π = −f2
π

q2
(qµqν − gµνq

2) − m2
π

q2
qµqν

f2
π

q2 −m2
π

.

(31)

Consider first the ratio of the total probability of
hadronic decays of τ leptons into states with zero
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
strangeness to the probability of τ → ντeνe. This
ratio is given by the equality [29]

Rτ,V+A =
B(τ → ντ + hadronsS=0)

B(τ → ντeν̄e)
(32)

= 6|Vud|2SEW

m2
τ∫

0

ds

m2
τ

(
1 − s

m2
τ

)2

×
[(

1 + 2
s

m2
τ

)
(v1 + a1 + a0)(s) − 2

s

m2
τ

a0(s)
]
,

where |Vud| = 0.9735 ± 0.0008 is the matrix element
of the Kobayashi–Maskawa matrix; SEW = 1.0194 ±
0.0040 is the electroweak correction [30]. Only the
one-pion state practically contributes to the last term
in (32) and it appears to be small:

∆R(0)
τ = −24π2 f

2
πm

2
π

m4
τ

= −0.008. (33)

Denote
ω(s) ≡ v1 + a1 + a0 (34)

= 2πIm[Π(1)
V (s) + Π(1)

A (s) + Π(0)
A (s)] ≡ 2πImΠ(s).

As follows from Eq. (31), Π(s) has no kinematical
pole, but only a right-hand cut. It is convenient to
transform the integral in Eq. (32) into that over the
circle of radiusm2

τ in the complex s plane [31–33]:

Rτ,V+A = 6πi|Vud|2SEW
∮

|s|=m2
τ

ds

m2
τ

(
1 − s

m2
τ

)2

(35)

×
(

1 + 2
s

m2
τ

)
Π(s) + ∆R(0)

τ .

Calculate first the perturbative contribution to Eq. (35).
To this end, use the Adler functionD(Q2):

D(Q2) ≡ −2π2dΠ(Q2)
d lnQ2

=
∑
n≥0

Kna
n, (36)

a ≡ αs/π, Q2 ≡ −s,

the perturbative expansion of which is known up to
terms of ∼ α3

s . In the MS regularization scheme,
K0 = K1 = 1, K2 = 1.64 [34], K3 = 6.37 [35] for
three flavors, and for K4 there is the estimate K4 =
25 ± 25 [36]. The renormalization-group equation
yields

da

d lnQ2
= −β(a) = −

∑
n≥0

βna
n+2 (37)

→ ln
Q2

µ2
= −

a(Q2)∫
a(µ2)

da

β(a)
.
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Fig. 1. The applicability region of PT and OE in the
complex plane s. In the dashed region, PT +OE does not
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In the MS scheme for three flavors β0 = 9/4, β1 =
4, β2 = 10.06, β3 = 47.23 [37, 38]. Integrating over
Eq. (36) and using Eq. (38) we get

Π(Q2) =
1

2π2

a(Q2)∫
a(µ2)

D(a)
da

β(a)
. (38)

Set µ2 = m2
τ and choose some (arbitrary) value

a(m2
τ ). With the help of Eq. (37) one may then deter-

mine a(Q2) for anyQ2 and by analytical continuation
for any s in the complex plane. Then, calculating (38),
find Π(s) in the whole complex plane. Substitution
of Π(s) into Eq. (35) determines Rτ for the given
a(m2

τ ) up to power corrections. Thereby, knowing
Rτ from experiment, it is possible to find the a(m2

τ )
corresponding to it. Note that, with such an ap-
proach, there is no need to expand the denominator in
Eqs. (37) and (38) in the inverse powers of lnQ2/µ2.
Particularly, there is no expansion on the right-hand
semiaxis in powers of the parameter π/ ln(Q2/µ2),
which is not small in the investigated region of Q2.
Advantages of transformation of the integral over the
real axis (32) in the contour integral are as follows.
It can be expected that the applicability region of the
theory presented as PT+OPE in the complex s plane
is off the shadowed region in Fig. 1. It is evident that
at positive and comparatively small s, PT + OPE do
not work. At negative s = −Q2 in the αs order, a
nonphysical pole appears; in higher orders, according
to (9), it is replaced by a nonphysical cut, which starts
from point−Q2

0, determined by the formula

ln
Q2

0

µ2
= −

∞∫
a(µ2)

da

β(a)
. (39)

Integration over the contour allows one to obviate
the dashed region in Fig. 1 [except for the vicinity
of the positive semiaxis, the contribution of which is
P

suppressed by the factor (1 − s

m2
τ

)2 in Eq. (6)], i.e.,

to work in the applicability region of PT + OPE. The
OPE terms, i.e., power corrections to the polarization
operator, are given by formula (5):

Π(s)nonpert =
∑
n≥2

〈O2n〉
(−s)n

(
1 + cn

αs
π

)
(40)

× αs
6πQ4

〈GaµνGaµν〉
(

1 +
7
6
αs
π

)
+

128
81Q6

παs〈q̄q〉2

×
[
1 +

(
29
24

+
17
18

ln
Q2

µ2

)
αs
π

]
+

〈O8〉
Q8

(αs corrections to the first and second terms in
Eq. (39) were calculated in [39] and [40], respec-
tively). Contributions of the operator with d = 2
proportional tom2

u,m
2
d and of the condensate 2(mu +

md)〈0|q̄q|0〉 are neglected. (The latter is an order of
magnitude smaller than the gluon condensate contri-
bution.) In calculating the d = 6 term, factorization
hypothesis was used. It can be readily seen that d = 4
condensates (up to small αs corrections) give no
contribution to the integral over contour in Eq. (35).
The contribution from the condensate 〈O8〉 may be
estimated as |〈O8〉| < 10−3 GeV8 and appears to be
negligibly small. Rτ,V+A may be represented as

Rτ,V+A = 3|Vud|2SEW
(

1 + δ′em + δ(0) + δ
(6)
V+A

)
(41)

+ ∆R(0) = 3.475 ± 0.022,

where δ′em = (5/12π)αem(m2
τ ) = 0.001 is the elec-

tromagnetic correction [41], δ
(6)
A+V = −(5 ± 2) ×

10−3 is the contribution of the d = 6 condensate (see
below), and δ(0) is the PT correction. The right-hand
side presents the experimental value obtained as a
difference between the total probability of hadronic
decays Rτ = 3.636 ± 0.021 [42] and the probability of
decays in states with the strangeness S = −1Rτ,s =
0.161 ± 0.007 [43, 44]. For perturbative correction it
follows from Eq. (41) that

δ(0) = 0.206 ± 0.010. (42)

Employing the above-described method in [28], the
constant αs(m2

τ ) was found from (42):

αs(m2
τ ) = 0.355 ± 0.025. (43)

The calculation was made taking into account terms
∼α3

τ ; the estimate of the effect of the terms ∼α4
s is

accounted for in the error. Perhaps the error is under-
estimated (by 0.010–0.015), since the theoretical and
experimental errors were added in quadratures.
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I determine now the values of condensates based
on the data [24–26] on spectral functions. It is conve-
nient first to consider the difference ΠV − ΠA, which
is not contributed by perturbative terms and there
remains only the OPE contribution:

Π(1)
V (s) − Π(1)

A (s) =
∑
d≥4

OV−A
d

(−s)d/2

(
1 + cd

αs
π

)
. (44)

The gluon-condensate contribution falls out in the
V −A difference, and only the following condensates
with d = 4, 6, 8 remain:

OV−A
4 = 2(mu + md)〈q̄q〉 = −f2

πm
2
π, (45)

OV−A
6 = 2παs〈(ūγµλad)(d̄γµλau) (46)

− (ūγ5γµλ
ad)(d̄γ5γµλ

au)〉 = −64παs
9

〈q̄q〉2,

OV−A
8 = 8παsm2

0〈q̄q〉2, (47)

where m2
0 is determined in Eq. (9). In the right-

hand side of (46), (47), factorization hypothesis was
used. Calculation of the coefficients at αs in Eq. (44)
gave c4 = 4/3 [39] and c6 = 89/48 [40]. The value
of αs(m2

τ ) (43) corresponds to αs(1 GeV2) = 0.60.
Thus, if we take for the quark condensate at the
normalization point µ2 = 1 GeV2 the value (6), then
vacuum condensates taking into account αs correc-
tions appear to be equal (at µ2 = 1GeV2):

O4 = −4.22 × 10−4 GeV4, (48)

O6 = −3.75 × 10−3 GeV6, (49)

O8 = 2.5 × 10−3 GeV8. (50)

(In what follows, indices V −A will be omitted and
OD will mean condensates with the account of αs
corrections.)

Our aim is to compare OPE theoretical predic-
tions with experimental data on V −A structure
functions measured in τ decay, and the values of
O6 and O8 found from experiment with Eqs. (49)
and (50). Numerical values of O6 and O8 in (49)
and (50) do not differ strongly. This indicates that
OPE asymptotic series (44) at Q2 = −s ∼ 1 GeV2

converge badly and maybe even diverge, and the role
of higher dimension operators may be substantial.
Therefore, it is necessary either to work at larger
Q2, where, however, experimental errors increase, or
to improve the convergence of the series. The most
plausible method is to use the Borel transformation.

Write for Π(1)
V − Π(1)

A the subtractionless dispersion
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relation

Π(1)
V (s) − Π(1)

A (s) =
1

2π2

∞∫
0

v1(t) − a1(t)
t− s

dt +
f2
π

s

(51)

(the last term on the right-hand side is the kinematic
pole contribution). We now set s = siφ0 (φ = 0 on the
upper edge of the cut) and perform the Borel trans-
formation in s0. As a result, we get the following sum
rules for the real and imaginary parts of (51):

∞∫
0

exp
( s

M2
cosφ

)
cos
( s

M2
sinφ

)
(52)

× (v1 − a1)(s)
ds

2π2
= f2

π +
∞∑
k=1

(−1)k
cos (kφ)O2k+2

k!M2k
,

∞∫
0

exp
( s

M2
cosφ

)
sin
( s

M2
sinφ

)
(53)

× (v1 − a1)(s)
ds

2π2M2
=

∞∑
k=1

(−1)k
sin (kφ)O2k+2

k!M2k+2
.

The use of the Borel transformation along the rays
in the complex plane has a number of advantages.
The exponent index is negative at π/2 < φ < 3π/2.
Choose φ in the region π/2 < φ < π. In this region,
on one hand, the shadowed area in Fig. 1 in the
integrals (52), (53) is touched to a lesser degree, and,
on other hand, the contribution of large s, particu-
larly, s > m2

τ , where experimental data are absent, is
exponentially suppressed. At definite values of φ, the
contribution of some condensates vanishes, which
may be also used. In particular, the condensate O8

does not contribute to (52) at φ = 5π/6 or to (53)
at φ = 2π/3, while the contribution of O6 vanishes
at φ = 3π/4. Finally, a well-known advantage of the
Borel sum rules is factorial suppression of higher
dimension terms of OPE. Figures 2 and 3 present
the results of the calculations of the left-hand sides
of Eqs. (52) and (53) on the basis of the ALEPH [24]
experimental data compared with OPE predictions—
the right-hand side of these equations.
The experimental data are best described at the

values [27]

O6 = −(6.8 ± 2.1) × 10−3 GeV6, (54)

O8 = −(7 ± 4) × 10−3 GeV8. (55)

When estimating errors in (54) and (55), an uncer-
tainty of the higher dimension–operator contribution
was taken into account in addition to experimental
errors. (For details see [27].)
3
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Fig. 3. The same for Eq. (53): (a) φ = 2π/3; (b) φ = 3π/4.
As is seen from the figures, at these values of
condensates, good agreement with experiment starts
rather early—at M2 > 0.5 GeV2. In paper [27], the
sum rules for the moments and the Gaussian sum
rules were also considered. All of them agree with the
condensate values in (54) and (55), but the accuracy
of their determination is worse. The values in (54) and
(55) are by a factor of 1.5–2 larger than those in (49)
and (50). As was discussed above, the accuracy of
P

(49) and (50) is on the order of 50%. Therefore, most
plausible is that the real value of condensates O6, O8

is somewhere close to the lower edge of errors in (54)
and (55).

Consider now the polarization operator Π(s) de-
fined in (34) and condensates entering into the OPE
forΠ(s) (see (40)). In principle, the perturbative terms
contribute to chirality-conserving condensates. If
we follow the separation method of perturbative
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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Fig. 4. The results of the Borel transformation of V + A
correlator for two values αs(m

2
τ = 0.355 and αs(m

2
τ ) =

0.330. The widths of the bands correspond to PT errors;
dots with errors, to experimental data. The dotted curve
is the sum of the perturbative contribution at αs(m

2
τ ) =

0.330 andO4,O6 condensates.

and nonperturbative contributions by introducing
infrared cutoff [6, 7], then such a contribution would
actually appear due to the region of virtualities smaller
than µ2. In the present paper, according to [28],
another method is exploited, when the β function is
expanded only in the number of loops (see Eq. (11)
and the text following it) but not in 1/ lnQ2. So, the
dependence of condensates on normalization point
µ2 is determined only by perturbative corrections, as
is seen in (40). Condensates determined in such a
way may be called n-loop ones (in the given case,
three-loop). Consider the Borel transformation of the
sum Π(s)pert + Π(s)nonpert, where Π(s)pert is given
by Eq. (38), and Π(s)nonpert, by Eq. (13). Figure 4
presents the results of three-loop calculation for two
values of αs(m2

τ )—0.355 and 0.330. The widths of
the bands correspond to theoretical error taken to
be equal to the last accounted term K3a

2 in the
Adler function (36). (The same result for the error
is obtained if one takes four loops in the β function
and sets K4 = 50 ± 50.) The dotted line corresponds
to the sum of contributions of gluon condensate (11)
and condensate OV+A

6 in (13) with a numerical value
corresponding to OV−A

6 (54). The dots with errors
represent experimental data. (The contribution of the
d = 4 and d = 6 operators is given separately in the
inset.)

It is seen that the curve with αs(m2
τ ) = 0.330 and

condensate contributions can be matched with ex-
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periment starting from M2 = 1.1 GeV2, the agree-

ment being improved at smaller values 〈0|αs
π
G2|0〉

than (11). The curve withαs(m2
τ ) = 0.355 taking into

account condensates coincides with experiment only
at M2 > 1.5 GeV2. The same tendency persists for
the Borel sum rules taken along the rays in the s
complex plane at various φ. Figure 5 gives the sum
rule for φ = 5π/6. From consideration of this and of
other sum rules, the estimation for gluon condensate
follows:〈

0
∣∣∣αs
π
GaµνG

a
µν

∣∣∣0〉= 0.006 ± 0.012 GeV4. (56)

The best agreement of the theory with experiment in
the low Q2 region (up to ∼2% at M2 > 0.8 GeV2)
is obtained at αs(m2

τ ) = 0.330, which corresponds to
αs(m2

z) = 0.118.
Let us now make some remarks on modifications

of QCD in the low-energy region.
1. Analytical perturbative QCD [45, 46]. It is

assumed that αs(q2) is an analytical function of q2

[45], or, in a more general case, it is supposed that
the perturbative part of the polarization operator is
an analytical function of q2. The comparison of this
approach with the τ-decay data showed [28] that in
the analytical QCD,

αanals (m2
z) = 0.140, (57)

which strongly disagrees with the world mean value
αs(m2

z) = 0.119 ± 0.002.
3
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2. Renormalon summing leading to the tachion
mass λ2 in gluon propagator [47]. The restriction to
the tachion mass

−λ2 = 0.1 ± 0.15 GeV2 (58)

was found from τ-decay.

3. Instantons. It was shown [28] that in the
dilute-instanton-gas approximation [48], instantons
barely affect determination of αs(m2

τ ) and the Borel
sum rules. Their effect, however, appears to be con-
siderable and strongly dependent on the value of the
instanton radius ρc in the sum rules obtained by
integration over closed contours in the complex plane
s at the radii of the contours s < 2GeV2.

5. SUM RULES FOR CHARMONIUM
AND GLUON CONDENSATE

The value of the gluon condensate was found
by Shifman, Vainstein, and Zakharov from the sum
rules for the polarized operator of vector currents
of charmed quarks [5], but in these calculations,
the constant αs was taken as comparatively small

(αs(1 GeV2) ≈ 0.3; Λ(3)
QCD = 100 MeV) and pertur-

bative corrections were taken into account only in the
first order. It is clear now that αs(Q2) in the region
Q2 ∼ 1–10 GeV2 is approximately twice as large,
so that taking into account higher order corrections
became necessary. (In what follows, I formulate the
main results of [49].)
PH
Consider the polarization operator of charmed
vector currents,

i

∫
dxeiqx〈TJµ(x)Jν(0)〉 = (qµqν − gµνq

2)Π(q2),

(59)

Jµ = c̄γµc.

The dispersion representation for Π(q2) has the form

R(s) = 4πImΠ(s + i0), (60)

Π(q2) =
q2

4π2

∞∫
4m2

R(s)ds
s(s− q2)

,

where R(∞) = 1 in the partonic model. In the ap-
proximation of infinitely narrow widths of resonances,
R(s) can be written as sums of contributions from
resonances and the continuum:

R(s) =
3π

Q2
cα

2
em(s)

∑
ψ

mψΓψ→eeδ(s −m2
ψ) (61)

+ θ(s− s0),

where Qc = 2/3 is the charge of charmed quarks, s0

is the continuum threshold (in what follows,
√
s0 =

4.6 GeV), α(s) is the running electromagnetic con-
stant, and α(m2

J/ψ) = 1/133.6. Following [5], to sup-
press the contribution of higher states and the con-
tinuum, we study the polarization operator moments

Mn(Q2) ≡ 4π2

n!

(
− d

dQ2

)n
Π(−Q2) (62)

=

∞∫
4m2

R(s)ds
(s + Q2)n+1

.

According to (61), the experimental values of mo-
ments are determined by the equality

Mn(Q2) =
27π
4α2

em

6∑
ψ=1

mψΓψ→ee
(m2
ψ + Q2)n+1

(63)

+
1

n(s0 + Q2)n
.

It is reasonable to consider the ratios of moments
Mn1(Q2)/Mn2(Q2) from which the uncertainty due
to error in ΓJ/ψ→ee markedly falls out. The theoretical
value for Π(q2) is presented as a sum of perturbative
and nonperturbative contributions. It is convenient to
express the perturbative contribution via R(s), mak-
ing use of (60) and (62):

R(s) =
∑
n≥0

R(n)(s, µ2)an(µ2), (64)
YSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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Fig. 7. The dependence ofm(m) on 〈0|(αs/π)G2|0〉 obtained from the moments (horizontal bands) and their ratios (vertical
bands) at different αs. The left-hand figure: Q2 = 4m2, n = 10, M10/M12; the right-hand figure: Q2 = 8m2, n = 15,
M15/M17.
where a(µ2) = αs(µ2)/π. At present, three terms of
expansion in (64) are known: R(0) [51], R(1) [52], and
R(2) [53]. They are represented as functions of quark
velocity v =

√
1 − 4m2/s, where m is the pole mass

of the quark. Since they are cumbersome, I will not
present them here.
Nonperturbative contributions to the polarization

operator have the form (restricted by d = 6 operators)

Πnonpert(Q2) =
1

(4m2)2
〈

0
∣∣∣αs
π
G2
∣∣∣0〉 (65)

× [f (0)(z) + af (1)(z)] +
1

(4m2)3
g3fabc

× 〈0|GaµνGbνλGcλµ|0〉F (z), z = −Q2/4m2.

Functions f (0)(z), f (1)(z), and F (z) were calculated
in [5], [54], and [55], respectively. The use of the quark
pole mass is, however, unacceptable. The matter is
that in this case, the PT corrections to moments are
very large in the region of interest and the perturbative
series seems to diverge. For instance, at

M (1)

M (0)
= 13.836,

M (2)

M (0)
= 193.33, (66)

M (G,1)

M (G,0)
= 13.791

(hereM (k) mean the coefficients at the contributions
of terms ∼ak to the moments; M (G,k) are similar
coefficients for the gluon condensate contribution. In
the region of interest a ∼ 0.1). At Q2 = 0, the situa-
tion is even worse. So, it is reasonable to turn to the
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
MS mass m(µ2), taken at the point µ2 = m2. After
turning to theMS massm(m2)we get instead of (66)

M̄ (1)

M̄ (0)
= 0.045,

M̄ (2)

M̄ (0)
= 1.136, (67)

M̄ (G,1)

M̄ (G,0)
= −1.673. (68)

At a ∼ 0.1 and at the ratios of moments given by
(67), there is good reason to believe that the PT series
converges well. Such a good convergence holds (at
n > 5) only in the case of sufficiently large Q2; at
Q2 = 0, one does not succeed in finding such n that
perturbative corrections, αs corrections to gluon con-
densates, and contribution of the term ∼〈G3〉 would
simultaneously be small.
It is also necessary to choose a scale—normaliza-

tion point µ2 where αs(µ2) is taken. In (64), R(s) is a
physical value and cannot depend on µ2. Since, how-
ever, we take into account in (64) only three terms,
with an unsuitable choice of µ2, such a µ2 dependence
may arise due to neglected terms. At large Q2, the
natural choice is µ2 = Q2. It can be thought that at
Q2 = 0 the reasonable scale isµ2 = m2, though some
numerical factor is not excluded in this equality. This
is why it is reasonable to take the interpolation form

µ2 = Q2 + m2, (69)

but one must check the dependence of final results on
a possible factor atm2. Equating the theoretical value

of somemoment at fixedQ2 (in the region whereM (1)
n

3
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andM (2)
n are small) to its experimental value, one can

find the dependence of m on 〈(αs/π)G2〉 (neglecting
the terms∼〈G3〉). Such a dependence for n = 10 and
Q2/4m2 = 0.98 is presented in Fig. 6.
To fix both m and 〈(αs/π)G2〉 one should, except

for moments, take their ratios. Figure 7 shows the
value of m obtained from the moment M10 and the
ratio M10/M12 at Q2 = 4m2 and from the moment
M15 and the ratio M15/M17 at Q2 = 8m2. The best
values of the masses of a charmed quark and the
gluon condensate are obtained from Fig. 7:

m̄(m̄2) = 1.275 ± 0.015 GeV, (70)〈αs
π
G2
〉

= 0.009 ± 0.007 GeV4.

Up to now, the corrections ∼〈G3〉 have not been
taken into account. It appears that, in the region of n
andQ2 used to findm and the gluon condensate, they
are comparatively small and, hardly not changing m,
increase 〈(αs/π)G2〉 by 10–20% if the term∼〈G3〉 is
estimated according to (13) at ρc = 0.5 fm.
It should be noted that improvement of the ac-

curacy of ΓJ/ψ→ee would make it possible to refine
the value of the gluon condensate: the widths of the
horizontal bands in Fig. 7 are determined mainly just
by this error. In particular, this, perhaps, would allow
one to exclude the zero value of the gluon condensate,
which would be extremely important. Unfortunately,
Eq. (69) does not allow one to do this for sure. Reduc-
tion of theoretical errors which determine the width of
vertical bands seems to be less realistic.

6. CONCLUSIONS

In this paper I compared the results of the recent
precise measurements of τ-lepton hadronic decays
[24–26] with QCD predictions in the low-energy re-
gion. The perturbative terms up to α3

s and the terms
of the OPE up to d = 8 were taken into account. It
is shown that QCD taking into account OPE terms
agrees with experiment up to ∼2% at the values of
the complex Borel parameter |M2| > 0.8–1.0 GeV2

in the left-hand half-plane of the complex plane. The
following was found:
1. The values of the QCD coupling constant

αs(m2
τ ) = 0.355 ± 0.025 from the total probability of

τ decays and αs(m2
τ ) = 0.330 from the sum rules

at low energies. (The latter value corresponds to
αs(m2

z) = 0.118.)
2. The value of the quark condensate squared (as-

suming factorization)

αs〈0|ψ̄ψ|0〉2 = (2.25 ± 0.70) × 10−4 GeV6
PH
and of quark-gluon condensate of d = 8.
3. The value of the gluon condensate
(a) from the τ-decay data,〈

0
∣∣∣αs
π
G2
∣∣∣0〉= 0.006 ± 0.012 GeV4;

(b) from the sum rules for charmonium,〈
0
∣∣∣αs
π
G2
∣∣∣0〉= 0.009 ± 0.007 GeV4.

It was shown that the sum rules for charmonium
are in agreement with experiment when accounting
for perturbative corrections ∼α2

s and for OPE terms
proportional to 〈(αs/π)G2〉 and to 〈G3〉.
The main conclusion is that in the range of low-

energy phenomena under consideration, perturbation
theory and operator expansion, i.e., the idea of vac-
uum condensates in QCD, are in excellent agreement
with experiment starting fromQ2 ∼ 1GeV2.
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NUCLEI
Experiment
Measurements of the Partial Cross Section for the Reaction
48Ti(n, γ1)49Ti and Estimation of the Radiative Strength Functions

for E1 and M1 Transitions

A. V. Voinov*, D. G. Serov, Yu. P. Popov, N. A. Gundorin, A. P. Kobzev, and S. S. Parzhitski
Joint Institute for Nuclear Research, Dubna, Moscow oblast, 141980 Russia
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Abstract—The partial cross section for radiative neutron capture by 48Ti nuclei wasmeasured as a function
of neutron energy. The method of neutron spectrometry used is based on the shift in the energy of the
primary γ transition in response to a change in the energy of the captured neutron. The reaction 7Li(p,
n)7Be was used as a neutron source. Protons were accelerated by a Van de Graaff electrostatic generator
up to energies of 60 keV above the reaction threshold, which provided neutron energies in the range from
10 to 120 keV. The partial widths of some resonances were determined. The radiative strength functions of
E1 andM1 transitions to the first excited state were calculated. c© 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

At present, there is a large body of experimental
data on the parameters of neutron resonances in nu-
clei, as well as experimental and evaluated data on the
cross sections for radiative neutron capture. At the
same time, there is a large deficit in data on the partial
cross sections. This is because the partial cross sec-
tions for the reactions under discussion are small,
are difficult to measure by standard methods, and
require using high-efficiency experimental methods
with spectrometry of the accompanying γ radiation.
In this study, we measured the partial cross sections
for radiative neutron capture by a method based on
the proportionality between the incident-neutron en-
ergy and the energy of the primary γ transition to
a low-lying level of the nucleus [1–3]. Previously,
we used Fe and Ni samples for which the partial
γ widths of the strongest resonances were measured
by the time-of-flight method. This provided us with
referencing to absolute values in the cross-section
measurements. Here, we continue our studies using
the reaction 48Ti(n, γ1)49Ti. The corresponding γ
decay is schematically shown in Fig. 1.

DESCRIPTION OF THE EXPERIMENT

In our experiment, we recorded the primary γ tran-
sitions populating the first excited state of the 49Ti
daughter nucleus. The spin and parity of the final
state is 3/2−; thus, the multipolarities of the primary
γ transition areE1 for s-wave resonances andM1 for

*e-mail: voinov@nf.jinr.ru
1063-7788/03/6601-0044$24.00 c©
p-wave resonances. The layout of the experiment is
shown in Fig. 2. A ring-shaped sample made of a nat-
ural titanium mixture is 4 mm thick. The sample was
irradiated with a neutron flux from the reaction 7Li(p,
n)7Be. Protons were accelerated by a Van de Graaff
electrostatic generator up to energies of 60 keV above
the reaction threshold, which provided the sample
irradiation with neutrons of energy in the range from
10 to 120 keV. A lead block shielded the germanium
detector from hard γ radiation of the 7Li(p, γ)8Be
reaction. The compact geometry of the experiment
allowed an optimum efficiency to be achieved both
for detecting γ-ray photons and for irradiating the
sample with neutrons.

The measurements were carried out in short
(one-hour-long) series. The resulting spectra were
summed after prior electronic-gain-drift correction.
The background spectrum was measured with a
graphite sample instead of a titanium one. The sample
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Fig. 1. Diagram of the γ decay of a compound 49Ti
nucleus after neutron capture.
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Fig. 2. Layout the experimental setup: (a) front view and
(b) side view.

thickness was chosen to provide equivalent neutron
scattering.
The energy resolution of the method was deter-

mined by the resolution of the germanium detector,
which, in turn, was about 8 keV in the spectral range
under study. Part of the experimental spectrum for
the γ transition to the first excited state (1381.6 keV,
3/2−) of the daughter nucleus is shown in Fig. 3.
The corresponding background is also shown in the
figure; we see no background peaks that could distort
the effect. The arrows in Fig. 3 indicate the positions
of the known (n, γ) resonances for the isotope under
study and their energies (in keV). The thermal peak in
this spectrum was produced by the capture of thermal
neutrons that are present abundantly in the experi-
mental hall. This peak provides a good possibility of
determining the zero reference point for the neutron
energies.

RESULTS AND THEIR ANALYSIS

The area of the peak corresponding to the ith
resonance for a thin sample can be expressed by the
formula

Ai ∼ kφiεigi
ΓniΓ

p
γi

Γi
, (1)

where Γni is the neutron width of the ith resonance,
Γpγi is the partial radiative width, Γi is the total reso-
nance width, φi is the neutron flux, gi is the spin fac-
tor, and k is the coefficient used below for the absolute
normalization of the cross sections {k was deter-
mined from additional measurements for the reaction
58Ni(n, γ0)59Ni whose partial cross section is known
from our previous experiments [4]}.
The effective spectrum of incident neutrons was

calculated from the kinematics of the reaction
7Li(p, n)7Be [5] with allowance made for the con-
figuration of the setup (Fig. 4).
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
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Fig. 3. Part of the γ spectrum including the
48Ti(n, γ1)49Ti resonance structure.

The partial cross section for the reaction 48Ti(n,
γ1) (see Fig. 5) was calculated after the background
subtraction. The area under the peak of each res-
onance was determined through computer fitting
with the fixed peak positions corresponding to the
neutron-resonance energies according to the expres-
sion cited in Fig. 1. This allowed us to calculate the
partial resonance parameters of the reaction.

In addition to the strong resonances responsible
for the formation of the peaks, the experimental spec-
trum includes a large number of weak resonances.
These weak resonances were assumed to form a con-
tinuous intensity distribution of γ transitions in the
region of well-resolved strong peaks. Therefore, the
adjustable function used in the fit was defined as the
sum of Gaussian peaks and smooth functions.

The partial parameters gΓniΓ
p
γi/Γi calculated by

using formula (1) are listed in the table, where the
errors are purely statistical. The resonance energies,
well-known data from [6], and our experimental data
are given in the first, fourth and fifth columns of the
table, respectively.

 
Arb. units

0 30 60 90 120
Neutron energy, keV

150

Fig. 4. Effective spectrum of the neutrons involved in the
reaction on the sample.
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Fig. 5. Partial cross section for the reaction 48Ti(n, γ1).

Hence, the radiative strength functions forE1 and
M1 transitions can be estimated as

Sγ(E1) =
〈Γpγ(E1)〉
D0E3

γ

, (2)

Sγ(M1) =
〈Γpγ(M1)〉
D1E3

γ

,

where D0 = 13 keV and D1 = 8.5 keV are the mean
level spacings calculated from the systematic da-
ta of other authors [5] and Eγ = (8142 − 1382) =
6760 keV is the energy of the γ transition of the
compound nucleus to the first excited state.
The radiative strength functions obtained for the

first time for 48Ti are

Sγ(M1) = (5.0 ± 4.0) × 10−8 MeV−3,

Sγ(E1) = (2.5 ± 2.0) × 10−8 MeV−3.

For comparison, we used systematic data from [7]:
for the nuclei with a mass of about 48, the values of
the radiative strength functions are 2 × 10−8 MeV−3

Data on the resonance parameters of the 48Ti(n, γ1) reac-
tion

En, keV Jπ l gΓnΓγ/Γ, meV [6] gΓnΓp
γ/Γ, meV

11.49 – 1 280 68 ± 20

13.42 – 1 320 73 ± 30

17.60 1/2+ 0 2600 54 ± 20

21.61 – 1 190 58 ± 10

36.80 1/2+ 0 3000 190 ± 10

51.9 1/2+ 0 1500 64 ± 10
P

for E1 transitions and 1 × 10−8 MeV−3 forM1 tran-
sitions. Thus, we may conclude that the values of
the radiative strength functions determined by our
method are in agreement with the systematic data of
other authors.
The significant errors for the radiative strength

functions are attributable to the small number of res-
onances over which they were averaged.

CONCLUSION

The potential of the new neutron-spectrometry
method demonstrated above showed its value in in-
vestigating one more isotope. This study uncovered
hitherto unknown information that can be used in
other studies. Although the energy resolution (and,
hence, the accuracy) of this method is largely deter-
mined by the HPGe-detector resolution in the energy
range used in our measurements (∼6MeV), there are
ways for improving the capabilities of this method. In
our subsequent studies, we plan to use background-
suppression methods to increase the sensitivity of the
method in measurements and to reduce its statistical
error.
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Abstract—In the angular range 10◦–120◦, the angular distributions of tritons from the reaction
13C(3He, t)13N induced by 3He nuclei of energy 60 MeV are measured for transitions to the ground state
(Jπ = 1/2−) of the 13N nucleus and to its excited states at Ex = 2.365 MeV (1/2+) and Ex = 3.51 MeV
(3/2−) + 3.55 MeV (5/2+). A theoretical analysis of these data is performed within the distorted-wave
method under the assumption of the one-step charge-exchange mechanism. This analysis employs a
microscopic form factor that takes into account the central and tensor components of nucleon–nucleon
interaction. It is shown that an acceptable description of the experimental data in question is achieved with
potentials whose volume integrals do not exceed 300MeV fm3. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Charge-exchange reactions—in particular, (3Не, t)
reactions—provide the most universal means for
studying the spin–isospin structure of nuclei, since
it is possible in this case to perform investigations
over the entire excitation-energy region, including
the region inaccessible to beta-decay explorations. In
describing such reactions, use is usually made of the
microscopic distorted-wave method, where effective
interaction is represented as the sum of interactions
between projectile and target nucleons [1–6]. In prin-
ciple, this model furnishes the possibility of deducing
information about the structure of nuclei, but this
possibility can actually be realized only in the case
where the reaction under study proceeds through the
one-step charge-exchangemechanism andwhere the
effective interaction is well known.

Yet another difficulty involved in the calculation
of cross sections on the basis of the distorted-wave
method is that which is associated with the ambi-
guity in choosing optical potentials. For a long time
since the studies reported in [7, 8], it seemed that
the discrete-ambiguity problem had been removed
and that, by analyzing elastic scattering measured at
fairly high projectile energies, in which case nuclear-
rainbow effects caused by the refractive properties of
the potential clearly manifest themselves in angular
distributions, the potential could be determined nearly
unambiguously. Later on, there appeared, however,
a large number of studies [6, 9, 10–12], where it
was shown that some degree of ambiguity remains

1)Institute of Nuclear Physics, National Nuclear Center of
the Republic of Kazakhstan, Almaty, 480082 Republic of
Kazakhstan.
1063-7788/03/6601-0047$24.00 c©
because of a correlation between the real and the
imaginary part of the potential. By way of example,
we indicate that, in exploring the elastic scattering of
3Не on 13С at energies of 50 and 60 MeV, eight po-
tentials were found in [9] that describe equally well the
measured angular distributions over the entire region
of angles. An analysis revealed that the experimental
cross sections can be reproduced at nearly all values
of the volume integral JV of the real part of the poten-
tial that lie in the range 200–450 MeV fm3; therefore,
the value of JV cannot be determined from scattering
data alone without imposing additional constraints
on its parameters. Despite a distinct manifestation of
nuclear-rainbow effects in scattering, the ambiguity
in choosing potentials remains because of a strong
correlation between their imaginary and real parts,
which makes it possible to compensate for variations
in a real part, even within a rather wide region, by the
appropriate variations in the corresponding imaginary
part (and vice versa) without spoiling the quality of a
fit.

The present article reports on studying the reac-
tion 13С(3Не, t)13N at a projectile energy of 60 MeV.
Our attention was focused primarily on the following
questions:

(i) How do refractive effects manifest themselves
in this charge-exchange reaction?

(ii) Is it possible to reduce the ambiguity in choos-
ing optical potentials by supplementing the analysis
of elastic scattering with the analysis of the charge-
exchange reaction in question?
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. Angular distributions of tritons from the reac-
tion 13С(3He, t)13N induced by 60-MeV 3He nuclei
that proceeds through the channels involving transi-
tions to the ground state (Jπ = 1/2−) of the 13N nu-
cleus and to its excited states at 2.365 MeV (1/2+)
and 3.51 MeV (3/2−) + 3.55 MeV (5/2+). The solid
curves represent the results of the calculation by the
distorted-wave method under the assumption of the one-
step charge-exchange mechanism. The dashed and dot-
ted curves were obtained by decomposing the cross sec-
tions into the near and the far component, respectively.
The upper solid curves correspond to the calculation for
the far component with zero imaginary part of the optical
potential. Points (open circles) represent experimental
data of our present study.
P

2. EXPERIMENTAL PROCEDURE
AND EXPERIMENTAL RESULTS

The (3Не, t) reaction in question was explored at
the isochronous cyclotron of the Institute of Nuclear
Physics (National Nuclear Center of the Republic of
Kazakhstan), the beam energy being 60 MeV in this
experiment. For a target, we used a self-supporting
carbon film of thickness 1.2 mg/cm2 enriched in the
13С isotope to 86%. Charged reaction products were
recorded by a telescope consisting of a thin (200-
µm-thick) surface-barrier silicon detector and a thick
Ge(Li) detector whose sensitive region had a depth
of up to 7 mm. The product tritons were identified
by employing a computer-based system for a ∆E–
E two-dimensional analysis. The energy resolution
was not poorer than 600 keV and was determined
primarily by the beam-energy spread and the tar-
get thickness. The angular distributions of tritons
for transitions to the ground state (Jπ = 1/2−) of
the 13N nucleus and to its excited states at Ex =
2.365 MeV (Jπ = 1/2+) and Ex = 3.51 MeV (Jπ =
3/2−) + 3.55 MeV (Jπ = 5/2+) were obtained in the
angular range 10◦–120◦. The results are displayed in
Fig. 1. It can be seen from this figure that, for transi-
tions to the ground state (1/2−) and to the states at
3.51 MeV (3/2−) + 3.55 MeV (5/2+), which are un-
resolved in our experiment, the angular distributions
in question have a broad maximum in the angular
range 40◦–50◦ and exhibit a monotonic exponential
decrease at larger angles. With respect to the rainbow
maximum that was observed in the elastic scattering
of 3He by 13C at the same energy in [9], the above
maximum is shifted by 10◦–15◦ toward smaller an-
gles. In the case of the transition to the 1/2+ state at
2.365 MeV, there are no structures of the above type
in the angular range 40◦–50◦.

3. ANALYSIS OF THE RESULTS
It was assumed that the reaction (3Не, t) proceeds

through the one-step charge-exchange mechanism.
In calculating the differential cross sections, we relied
on the distorted-wave method and employed a micro-
scopic form factor. Within this method, the amplitude
of the process has the form

Tif =
∫

dr χ(−)∗
f (kf , r)F (r) χ(+)

i (ki, r),

where χi(f) represents distorted waves that describe
the relative motion of participant nuclei in the input
(output) channel and r is the distance between the
centers of mass of colliding nuclei. Within a micro-
scopic model, the reaction form factor can be written
as

F (r) =
∑
i,j

〈bB|vij |aA〉,
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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Fig. 2. Experimental angular distributions for the reaction 13С(3He, t)13N proceeding through transitions to the ground state
of the 13N nucleus at the beam energies of (closed boxes) 40, (open circles) 60, and (asterisks) 72 MeV. The scale of angles
was reduced to the energy of 60 MeV (θ′ = θ(Ei/60) MeV).
where aA and bB are the internal wave functions for,
respectively, the initial- and the final-state nuclei and
vij is the effective interaction between the ith nucleon
of the projectile nucleus and the jth nucleon of the
target nucleus.

The effective interaction between the nucleons of
colliding nuclei included the central and the tensor
component; that is,

vij(rij) = {[Vτ + Vστ (σi · σj)]g(rij)
+ VTSijgT (rij)}(τi · τj),

where Vτ , Vστ , and VT are the strength parameters
of, respectively, the isospin, the spin–isospin, and the
tensor interaction; Sij = (3/r2)(σi · rij)(σj · rij) −
(σi · σj) is the relevant tensor operator; and rij =
r + ri − rj , ri(j) being the nucleon coordinates with
respect to the center of mass of nucleus a (A). The ra-
dial dependence of the central interaction was chosen
in the Yukawa potential form g(r) = exp(−µr)/(µr),
with the parameter being set to µ = 0.7 fm−1. The
tensor interaction was taken in the form of the one-
pion-exchange potential with the same value of µ.
The strength parameters had the values of Vτ =
6.0 MeV, Vστ = 4.0 MeV, and VT = 2.0 MeV. A
normalization factor was introduced in order to fit the
absolute values of the theoretical cross sections to
the experimental results. The interaction-parameter
values indicated above are close to those from [5].
The volume integrals for the central interaction (Jτ =
219.8 MeV fm3, Jστ = 146.5 MeV fm3) comply with
the corresponding values obtained from an analysis
of the relevant (p, n) reaction by using the Yukawa
potential at µ = 1.0 fm−1 [13].
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
The calculations were performed with the aid of
the standard DWUCK4 code [14] implementing the
distorted-wave method and disregarding the dimen-
sions of a projectile particle, its internal wave function
being taken in the delta-function form.

The transitions from the ground state of the 13C
nucleus to the excited states of the 13N nucleus
at 2.365 MeV (1/2+) and 3.51 MeV (3/2−) +
3.55 MeV(5/2+) were considered as the transitions
of a nucleon from the 1p1/2 shell, respectively, to
the 2s1/2 shell and to the 1p3/2 and 1d5/2 shells.
The single-particle wave functions were computed
for the Woods–Saxon potential at the radius values
set to r0 = 1.25 fm and rC = 1.30 fm and the dif-
fuseness parameter set to a = 0.65 fm. The depth
of the potential was determined from a fit to the
nucleon binding energy. For each of the transitions
being considered, the selection rules for the one-
step charge-exchange mechanism admit two values
of the total-angular-momentum transfer. These are
∆Jπ = 0+, 1+; ∆Jπ = 0−, 1−; and ∆Jπ = 1+, 2+

for the transitions to the ground state, the excited
state at 2.365 MeV (1/2+), and the excited state at
3.51 MeV (3/2−), respectively.

In order to describe the distortions of the rela-
tive motion of the nuclei, the same phenomenologi-
cal potentials whose radial dependence involves the
Woods–Saxon form and its derivative were used both
for the input and for the output channel. These poten-
tials are given by

U(r) = V fR(r) + i(WfI(r) + 4WDaDdfD(r)/dr)
3
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Parameters of the optical potential used in calculating distortions in the reaction 13С(3He, t)13N

−V ,
MeV

rV ,
fm

aV ,
fm

−W ,
MeV

rW ,
fm

aW ,
fm

WD ,
MeV

rD ,
fm

aD,
fm

Vso,
MeV

rso,
fm

aso,
fm

J∗
V ,

MeV fm3

142.6 0.67 0.81 3.95 2.58 0.42 6.35 1.1 0.48 6.84 0.38 1.24 215

∗ This is the volume integral per pair of interacting particles (a projectile and a target nucleus).
+ (h/(mπc))2Vso(1/r)(dfso(r)/dr)(L · σ) + VC(r),

where fi(r) = [1 + exp((r −Ri)/ai)]−1 is the
Woods–Saxon form factor, with Ri = riA

1/3 and ai
being its radius and diffuseness parameter; V,W,WD ,
and Vso are the depths of the real, the volume imagi-
nary, the surface imaginary, and the spin–orbit poten-
tial, respectively; and VC is the Coulomb potential of
a uniformly charged sphere of radius RC = 1.3A1/3.

4. DISCUSSION OF THE RESULTS

It was indicated above that, for the transitions to
the ground state of the 13N (1/2−) nucleus and to
its excited states at 3.51 MeV (3/2−) + 3.55 MeV
(5/2+), the experimental angular distributions of tri-
tons have a broad maximum in the angular range
40◦–50◦ and exhibit a sharp exponential decrease at
larger angles. This behavior of the cross sections is
similar to the behavior of the elastic-scattering cross
section measured in [9] at the same energy value. The
only difference is that, in elastic scattering, the maxi-
mum in question is observed at an angle of about 60◦.
It is well known that this maximum owes its existence
to the refractive properties of the nuclear potential. In
classical physics, it corresponds to the boundary de-
flection angle, also known as the rainbow-scattering
angle. We will now show that the maxima observed
in the (3He, t) reaction and in elastic scattering are
of the same origin. We will illustrate this statement
by merely comparing the experimental angular dis-
tributions for the reaction 13C(3He, t)13N that are
measured at different values of the 3He energy. In
the semiclassical approximation, the differential cross
sections are described by the Airy function in the
vicinity of the rainbow maximum, the position of the
maximum changing with energy according to the
1/E law.We note that the shift of ordinary oscillations
with energy is in inverse proportion to the square root
of it. The angular distributions of tritons from the
reaction 13C(3He, t)13N proceeding via the transition
to the ground state of the 13N nucleus are given in
Fig. 2, where the cross sections measured in [5] at
energies of 40 and 72 MeV are shown in addition
to our data. For the clarity of presentation, the scale
of energy is reduced to the energy value of 60 MeV
PH
(θ′ = θ(Ei/60 MeV)). In doing this, no additional
normalization of the cross sections was performed. As
might have been expected, the cross sections at all
three energy values agree in the region of the rainbow
bump. Distinctions are observed only at small angles,
in the region of Fraunhofer oscillations, and at large
angles (there, the experimental points corresponding
to the energy of 40 MeV lie considerably higher).
A rainbow character of the angular distributions in
(3He, t) reactions was predicted in [15, 16] and, for
the first time, was comprehensively explored in [5, 6].
It should be noted, however, that rainbow effects do
not manifest themselves in the transition to the state
at Ex = 2.365 MeV (1/2+). The reason for this will
be discussed below.

Our calculations were performed with potentials
that were found from an analysis of the elastic scat-
tering of 3He on 13C at an energy of 60 MeV. Their
parameters are given in [9]. In order to reproduce
experimental data, the calculated cross sections were
increased by a factor of 2.5 for the transition to the
ground state of the 13Nnucleus, by a factor of 2 for the
transition to its excited state at 2.365 MeV (1/2+),
and by a factor of 1.5 for the transition to its ex-
cited states at 3.51 MeV (3/2−) + 3.55 MeV (5/2+).
These normalization factors do not exhibit a siz-
able dependence on the potential used. However, the
shape of the angular distributions is described well
only in the case where the volume integral of the real
part of a potential does not exceed 300MeV fm3. Cal-
culations with potentials of greater strength (JV ∼
400 MeV fm3) predict the rainbow-maximum posi-
tion in the vicinity of 60◦ (that is, in the region where
it occurs in elastic scattering), but this is at odds
with the experimental differential cross sections for
the (3He, t) reaction in question. Figure 1 shows the
computed differential cross sections along with their
experimental counterparts. The optical potential that
provides the best fit to experimental data is specified
in the table. At present, values of the volume integral
JV around 400 MeV fm3 are thought to be the most
reasonable for the interaction of 3He nuclei and alpha
particles with p-shell nuclei. This follows both from
the predictions of folding models and from data of a
global phenomenological analysis of elastic scatter-
YSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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ing in the energy range between 10 and 200 MeV
[17, 18].

Proceeding to discuss previous investigations of
(3He, t) reactions, we would like to emphasize that by
no means is it always possible to obtain an acceptable
description of such a reaction by using potentials
found from an analysis of elastic scattering. For ex-
ample, Ball and Cerny [2], who studied (3He, t) reac-
tions on p-shell nuclei at an energy of about 40 MeV,
found that cross sections calculated with such poten-
tials do not reproduce a deep minimum observed in
the angular range 35◦–45◦ for transitions involving
an angular-momentum transfer of L = 0. Agreement
with experimental data was attained only upon a 7%
reduction of the real part of the optical potential.

In order to reproduce the shapes of the angular
distributions of tritons in the angular range 20◦–40◦

that originate from the (3He, t) reactions on nuclei
from 12C to 90Zr, Van der Wef et al. [4] had to reduce
the depth of the real and the imaginary potential for
the output channel by 15%.

In order to match the computed and measured
cross sections for the transitions to the states at
2.31MeV (0+) and 3.95MeV (1+) of the 14Nnucleus
in the reaction 14C(3He, t)14N, the depth of the real
potential for the triton was reduced by 30% in relation
to that for 3He [6]. As to the case of the transition to
the ground state, only by modifying the form factor in
the surface region could one achieve there agreement
with respective experimental data [6]. The distinction
between the nuclear potentials for 3H and 3He is
due to their isospin dependence—by and large, the
potential is shallower for 3H than for 3He. However,
this distinction (about 2 to 3%) is not as great as
that which is required for a satisfactory description
of experimental data. As to the case of the mirror
reaction 13C(3He, t)13N, the optical potentials for 3H
and 3He are identical there. In the above examples,
where the parameters of the optical potentials that
were found from an analysis of elastic scattering had
to be modified in order to attain agreement with ex-
perimental data, the volume integrals JV were greater
than 300 MeV fm3. Thus, the data of our analysis
and the results of previous investigations indicate
that, by studying the reaction (3He, t), the ambiguity
in choosing optical potentials can be reduced in a
sense that data on this reaction are compatible only
with those potentials whose volume integrals do not
exceed JV = 300 MeV fm3.

Apart from the full results for the calculated cross
sections, Fig. 1 displays the cross sections corre-
sponding to the decomposition of the reaction ampli-
tude into the near (dashed curves) and the far (dotted
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 20
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Fig. 3. Theoretical charge-exchange form factors for
transitions to the ground state (Jπ = 1/2−) of the 13N
nucleus and to its excited states at 2.365MeV (1/2+) and
3.51 MeV (3/2−). The relevant quantum numbers lsj are
indicated on the curves.

curves) component [19]. It can be seen that the var-
ious types of behavior of the experimental differential
cross sections for the transitions to the ground and
excited states of the 13N nucleus in the rainbow-
maximum region and at large angles are well re-
produced by the far component. In terms of clas-
sical mechanics, this component is associated with
trajectories going on the farther side of the target
nucleus, corresponding to particle scattering by a nu-
clear field at negative angles. Both the theoretical and
the experimental cross sections have broadmaxima in
the angular range 40◦–50◦ for the transitions to the
ground state (1/2−) and to the excited states at Ex =
3.51 MeV (3/2−) + 3.55 MeV (5/2+), but they do
not exhibit such a maximum for the transition to the
excited state at 2.365MeV (1/2+). These distinctions
03
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are the most pronounced in the behavior of the cross
sections that were calculated for the far components
at W , WD = 0 and which are represented by the
upper solid curves in Fig. 1. From Fig. 1, it can also
be seen that the point of intersection of the cross-
section curves corresponding to the near and the far
component lies in the vicinity of 0◦; in the case of
elastic scattering, it occurs at 25◦ [9]. This shift can
be explained in the following way: the amplitude of
the charge-exchange reaction in question is deter-
mined by short-range nuclear forces, whence one can
conclude that the interaction region does not extend
beyond the nuclear volume even if the final parti-
cle is emitted at small angles; in the case of elastic
scattering, however, the long-range Coulomb field,
which plays the role of a scattering lens, shifts the
characteristic structure of the angular distributions
toward larger angles. This is precisely the reason
why the rainbow maximum in the reaction 13C(3He,
t)13N is shifted with respect to the maximum in the
corresponding elastic-scattering process.

The structures observed in the angular distribu-
tions can be explained by the distinctions between
the charge-exchange form factors for the transitions
being considered (see Fig. 3). The form factor for
the transition to the ground state (1/2−) of the
13N nucleus and the form factor for the transition
to its excited state at 3.51 MeV (3/2−) contain
three components each, which are specified by the
quantum numbers lsj (as usual, l, s, and j are,
respectively, the orbital-angular-momentum transfer,
the spin transfer, and the total-angular-momentum
transfer) of 000, 011, and 211 for the former and 011,
211, and 202 for the latter. The monopole compo-
nents (lsj = 000, 011) enhance the role of central
trajectories, and rainbow maxima in the angular
range 40◦–50◦ clearly manifest themselves in the
angular distributions of tritons. On the contrary, the
form factor for the transition to the excited state
at 2.365 MeV (1/2+) is determined by the orbital-
angular-momentum transfer of l = 1, and this leads
to the reduction of the contribution from trajectories
at distances of 1.5 to 2.5 fm. It is not surprising that,
in this case, the far component of the cross section
features no structures in the angular range 40◦–
50◦. The role of central trajectories in the formation
of the rainbow maximum is demonstrated by the
calculations for the transition to the ground state
of the 13N nucleus that involve a cutoff form factor
(Fig. 4): a cutoff up to r = 1 fm has virtually no effect
on the shapes of the angular distributions, but, even
at r = 1.5–2.5 fm, the rainbowmaximum disappears,
which is accompanied by the emergence of diffractive
oscillations over the entire interval of angles.
P

Thus, the description of (3He, t) reactions is highly
sensitive to the behavior of the relevant form factor;
if this form factor is known to an insufficiently high
precision, this may lead to inadequate results in
describing experimental data with potentials found
from an analysis of elastic scattering. The relia-
bility of the form factor used in analyzing charge-
exchange reactions depends on whether the internal
nuclear wave functions and the effective interaction
are known quite well. Demyanova et al. [20], who
studied the reaction (6Li,6He) at an energy of 93MeV,
showed that, by modifying the form factor, one
can improve agreement with experimental data for
potentials whose volume integral JV is greater than
300 MeV fm3. However, it is hardly possible to refine
the form factor empirically because of the ambiguity
in choosing optical potentials.

Analyzing the results, we did not go beyond the
one-step charge-exchange mechanism. In consider-
ing the possible contribution of two-step processes,
it is necessary, above all, to take into account the
mechanism of sequential one-nucleon transfers ac-
cording to the 3He–d–t and 3He–α–t schemes. The
calculations performed in [3] reveal that the shapes of
the angular distributions for the one-step mechanism
may differ significantly from those for the two-step
mechanism. The theoretical cross sections for the
one-step mechanism decrease more sharply. There-
fore, the two-step mechanism can no longer be taken
into account implicitly by renormalizing the calcu-
lated cross sections. Similar results were also ob-
tained in studying different charge-exchange reac-
tions, (7Li, 7Be) in [21] and (6Li, 6He) in [22].

Let us estimate the relationship between the one-
and the two-step mechanism in (3He, t) reactions. In
order to evaluate the cross section for the two-step
mechanism (σs), we make use of the rough approxi-
mation

σs =
Aσ1σ2√
E
,

where σ1 and σ2 are the cross sections for one-
nucleon transfer at, respectively, the first and the sec-
ond step of the reaction; E is the projectile energy;
and A is a constant. In the case being considered,
σ1 stands for the cross sections for the (3He, α)
and (3He, d) reactions, while σ2 represents the cross
sections for the (α, t) and (d, t) reactions. This energy
dependence is confirmed by more rigorous calcula-
tions (see, for example, [23, 24]) in which sequential
nucleon transfer was taken into account within the
coupled-channel method. The cross sections mea-
sured for (3He, α) [25–27], (α, t) [28, 29], (3He, d)
[30–32], and (d, t) [33, 34] reactions in the energy
range between 15 and 60 MeV change only slightly
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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with energy at small angles and, at zero angle, are
approximately equal to 10–15 mb/sr. Therefore, σ1

and σ2 can also be treated, to a high precision, as
constants. For an absolute normalization of the cross
section, we make use of the experimental value (σ =
2 mb/sr) measured in the (3He, t) reaction at an
energy of 14 MeV [35], assuming that it is fully
determined by the two-step mechanism. The energy
dependence obtained in this way is represented by the
solid curve in Fig. 5.

The energy dependence of the cross section for the
direct charge-exchange process was borrowed from
[36]. According to the calculations presented in [36],
the cross section for direct charge exchange in the re-
action 12C(12C,12N)12Bgrows exponentially with en-
ergy, reaching saturation at an energy ofE = 40MeV
per nucleon. It is expected that the cross sections
for (3He, t) reactions depend similarly on energy per
nucleon. The dotted curve in Fig. 5 represents the en-
ergy dependence of the cross sections for the reaction
13C(3He, t)13Ng.s.. These results were normalized to
the experimental cross sections for zero angle that
were measured at the 3He-beam energies of 200 [37]
and 600MeV [38] under conditions ensuring the one-
step character of the process. From Fig. 5, it can be
seen that the contribution of the two-step mechanism
realized through sequential nucleon transfer is negli-
gible at 3He energies in excess of 100 MeV, but that
it may become as great as 50% at 60–70 MeV.

It follows that more rigorous calculations involv-
ing both mechanisms may significantly change the
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
shape of the theoretical angular distribution; taking
this into consideration, one can imagine that agree-
ment with experimental data will also become pos-
sible with physically reasonable potentials character-
ized by JV > 300 MeV fm3.

At present, however, it is still unclear why data
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on (3He, t) reactions favor, among potentials found
from analyses of elastic scattering, those that are
unphysical according to current ideas.

In order to draw definitive conclusions, it is neces-
sary to perform additional investigations that would
make it possible to estimate directly the possible con-
tribution of two-step processes to the reaction being
considered.

5. CONCLUSION

The reaction 13C(3He, t)13N induced by 3He pro-
jectiles of energy 60 MeV has been investigated at
the isochronous cyclotron of the Institute of Nu-
clear Physics (National Nuclear Center of the Re-
public of Kazakhstan). The angular distributions of
tritons in the angular range 10◦–120◦ have been
measured for transitions to the ground state (1/2−)
of the 13N nucleus and to its excited states at Ex =
2.365 MeV (1/2+) and Ex = 3.51 MeV (3/2−) +
3.55 MeV (5/2+). For the transitions to the negative-
parity states, the angular distributions exhibit a broad
maximum in the angular range 40◦–50◦. This maxi-
mum, which owes its existence to the refractive prop-
erties of the nuclear potential, is shifted by 10◦ to
15◦ toward smaller angles with respect to the rain-
bow maximum in the elastic scattering of 3He on
13C at the same energy. No special features in the
angular distributions for the transition to the state at
2.365 MeV (1/2+) have been observed in the angular
range 40◦–50◦.

Our analysis has been based on the distorted-
wave method and has been performed with a mi-
croscopic form factor under the assumption of the
one-step charge-exchange mechanism. In calculat-
ing distortions, use has been made of the potentials
found from an analysis of the elastic scattering of
3He on 13C at an energy of 60 MeV. It has been
shown that an acceptable description of the angu-
lar distributions in question can be achieved only
with potentials whose volume integrals do not exceed
300 MeV fm3. However, it is currently thought that
JV values around 400 MeV fm3 are the most reason-
able for the interaction of 3He and alpha particles with
p-shell nuclei.

Distinctions between the shapes of the angular
distributions for the transitions studied here have
been explained by special features of the relevant
charge-exchange form factors. In (3He, t) reactions,
the rainbow effect disappears if the form factor does
not involve l = 0 components.

So far, it has remained unclear why the (3He, t) re-
action considered here selects, among the potentials
P

found from an analysis of elastic scattering, unphys-
ical ones characterized by the volume integral of the
real part in the region JV < 300 MeV fm3.

Dedicated investigations are required in order to
answer this question; first of all, it is desirable to take
into account, via calculations based on the coupled-
channel method, the possible contribution of two-
step processes to the reaction in question.
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Abstract—As a preparation for the new experiment to measure the ne scattering length ane, the total
neutron cross section of gaseous argon has been obtained by the time-of-flight method at the Dubna
booster IBR-30 in the energy range from ∼5 eV to ∼30 keV. A combined one-level analysis of the newly
obtained and other known data on cross sections of Ar and 36Ar has made it possible to improve some
neutron parameters and calculate the scattering cross section σs and the scattering length a separately for
36Ar and 40Ar at any energy. c© 2003 MAIK “Nauka/Interperiodica”.
1. IMPROVED METHOD FOR ne
SCATTERING LENGTH MEASUREMENT

Ahistorically first, rather difficult, way of observing
the ne interaction by neutron scattering in a gas
[1] successfully resulted in obtaining one of the best
estimates of the ne scattering length ane [2]. Since
then, there have been no other attempts to use this
method. It seems, however, that the resources of the
method are far from being exhausted and it can be
significantly improved as shown in [3]. Actually, at
slow neutron scattering, the ne interaction leads to a
rise of a small forward–backward asymmetry against
the background of a stronger asymmetry because of
kinematics as illustrated in Fig. 1 by the example of
the ratio R of scattering intensities at two angles ϑ1

and ϑ2 = π − ϑ1.

Using the cadmium difference method alone, the
authors of [2] could only obtain 〈R〉, i.e., the integral
effect of ane over the entire thermal neutron spectrum.
A much more informative way is to obtain the differ-
ential effect R(E) as a function of the neutron energy
E by the time-of-flight method.

To extract ane from 〈R〉 or R(E), it is necessary
(i) to take into account the anisotropy caused by the
movement of the center of mass (see [2, 3]) and (ii)
to use precise values of the quantities entering into
combination determining the ne effect in 〈R〉 and
R(E):

K =
aNcohZane

σNs

A + 1
A

[f(E,ϑ1) − f(E,ϑ2)] ,

†Deceased.
∗This article was submitted by the authors in English.
1063-7788/03/6601-0056$24.00 c©
where aNcoh is the coherent nuclear scattering length;
σNs is the total nuclear scattering cross section; and
A, Z, and f(E,ϑ) are the mass number, number of
electrons, and the electron form factor of the atom.

Of the four noble gases, we chose argon for the first
experiments. It has K/ane(∼0.13 fm−1), which is a
little larger than that of krypton (∼0.10 fm−1) and a
little smaller than that of xenon (∼0.15 fm−1). On the
other hand, argon has an advantage of a weaker neu-
tron capture: the ratio of thermal-neutron-capture
cross section to neutron scattering cross section is
approximately 1, 3, and 5 for argon, krypton, and
xenon, respectively.

2. MEASUREMENTS

The total neutron cross section of Ar was mea-
sured by the time-of-flight method at the Dubna
booster IBR-30. A neutron beam ∼30 mm in diame-
ter is alternately transmitted through a vacuum tube
and an identical tube with natural argon at ∼50 atm.
The argon-sample thickness is 995.9 mm or 0.1241 ±
0.0005 b−1.

The neutron detector is installed on the 242-m
flight path and is a battery of 3He counters divided
into 16 units providing 16 independent neutron spec-
tra. The instantaneous counting rate in each spec-
trum does not exceed 3× 103 s−1, which removes the
necessity of any dead-time correction.

One of the combinations of the filters B4C, Al, Ti,
MnO, Co, Ni, W, and Au was permanently in the
beam.

The measuring process is controlled by a PC and
consists of alternating 20-min exposures with and
without argon in the beam and the summing up of the
accumulated spectra and counts from beammonitors.
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. The calculated ratio R of scattering intensities at
angles 45◦ and 135◦ in 40Ar for the indicated ane values
in 10−3 fm.

3. OBTAINING THE TOTAL CROSS SECTION

Let N0
i and Ni be the counts of neutrons in the

time channel i going through the vacuum and argon
tubes, respectively, and being normalized tomonitors.
For the transmission of argon, we then have

Ti =
Ni −Bi

N0
i −B0

i

, (1)

where B0
i and Bi are the corresponding background

counts. To determine B0
i and Bi, curves of the form

Bi =
a

i− d
+ b + ci, B0

i =
a0

i− d0
+ b0 + c0i (2)

were drawn through deep resonance minima in both
spectra, Ni and N0

i . An example of the spectrum Ni

and the curveBi is shown in Fig. 2.
We have, however, found an alternative method for

taking into account the background in the T calcula-
tion. It follows from a different form of Eq. (1),

Ni = TiN
0
i + Bi − TiB

0
i , (3)

and it consists in application of the least-squares
method to the spectra Ni and N0

i by Eq. (3). Namely,
the left-hand sides of the equations are the experi-
mental points, and the right-hand sides are the func-
tion describing them.

For a sufficiently narrow energy interval of chan-
nels where Ti can be considered to be constant, the
difference Bi − TiB

0
i is even more likely to be con-

stant since the two backgrounds are described with
two close curves of the type of Eq. (2). Thus, instead
of (3), we have a problem with two constant parame-
ters:

Ni = TN0
i + C, (4)
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where the standard error
√

2Ni ≈
√

Ni + TN0
i

should be assigned to every experimental pointNi.

It is important to emphasize that the first method
works well for absolutely “black” resonances and it
cannot guarantee the correct background far from
such resonances. On the other hand, the second
method can only be applied if spectra in the given
interval have large steep rises or falls. Our spectra
only have five or six “black” resonances in 4096
channels, but they have a large number of sharp

Table 1

E, eV σt, mb

5.2 711(19)

10.6 707(10)

25 680(8)

46 689(7)

86 683(8)

186 669(9)

420 668(11)

790 678(19)

1500 557(13)

3200 565(13)

5900 521(23)

10000 427(18)

18600 354(30)

30100 281(21)
03
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intensity jumps. That is why the T values giving the
total cross section in barns as σt = −0.1241−1 lnT
are obtained in the present work using the second
method, which removes the necessity of fitting a pair
of background curves. As for the first method, it gives
T values that agree with those of the second method
for E < 7 keV (for the channel numbers >220), that
is, only if the backgrounds B0

i and Bi vary not too
quickly. For instance, C values for five parts of the
channel interval from 1001 to 3916 channels fluctuate
within the limits from –27 to –14 with the mean error
∼5, while theB0

i value varies approximately from 500
to 250 (see Fig. 2).

The results on σt for different average neutron
energies E are shown in Table 1 (the statistics are
collected for 195 h).
P

4. OTHER DATA AND ANALYSIS

To carry out an impartial analysis, we summarized
all known data on the neutron cross sections of argon
up to the energy∼40 keV. They are σt of 36Ar from [4]
and σt of Ar from [5–7] (the data [7] are reported in
[8] and are averaged over six intervals by us) together
with the scattering (σs [2, 9]) and capture (σγ [9, 10])
cross sections of 36Ar and Ar for thermal neutrons
(E = 0.0253 eV). The whole collection of σt for nat-
ural argon together with our results is illustrated in
Fig. 3.

A combined analysis of all data is done using
ordinary one-level expressions for the cross sections
of nuclei with a zero spin, including ne scattering:
σs =
4π
k2

{
sin2 δ0 + 3 sin2 δ1 +

∑ Γn [Γn/4 − (∆E cos δ0 + (Γ/2) sin δ0) sin δ0]
∆E2 + Γ2/4

}
+8πaaneZf(k), (5)

a =
1
2k

[
− sin 2δ0 +

∑ Γn (∆E cos 2δ0 + (Γ/2) sin 2δ0)
∆E2 + Γ2/4

]
, (6)
σγ =
π

k2

∑ ΓnΓγ
∆E2 + Γ2/4

, (7)

σt = σs + σγ , (8)

where k is the neutron wave number; δ0 = −kR′
0

and δ1 = −k3R2R′
1/3 are the phase shifts for s and

p wave determined by the corresponding scattering
radii R′

0 and R′
1; R = 1.35A1/3 fm; ∆E = E − E0

is the deviation from the resonance energy; Γn =
Γ0
n

√
E[eV], Γγ , and Γ = Γn + Γγ are the neutron,

radiative, and total widths of the resonance, respec-

tively; and f(k) = (q0/k)2
[√

1 + 12(k/q0)2 − 1
]
/6

is the electron form factor averaged over ϑ [11] (q0 =
4.45 × 10−5 fm−1 for argon).

The cross sections of 36Ar are described by for-
mulas (5)–(8), which contain the parameters of only
one known resonance at E0 = −10 keV [10] under
the sum sign. Every cross section of Ar nuclei is a
weighted sum of those of 36Ar and 40Ar with the
weight numbers 0.00337 and 0.99663, respectively.
The 38Ar isotope admixture of 0.063%, whose ther-
mal σs = (1.5 ± 1.5) b [2], is neglected. As for the
resonances of 40Ar, we try to include from zero to
eight resonances taken from [12] in the sums.

The main aim of the present analysis is to find
such parameters in (5)–(7) that would describe the
data best and make it possible to calculate any cross
section and scattering length a for both isotopes at
any energy.

5. RESULT OF ANALYSIS

We start the analysis with the following values of
parameters from [10, 12]:

for 36Ar, R′
0 = 3.4(3) fm, E0 = −10(1) keV, (9)

Γ0
n = 91.3(10.0) eV,Γγ = 1.32(30) eV;

for 40Ar, R′
0 = 2.7(2) fm, E0 = −1000 eV,

Γ0
n = 0.0573 eV,Γγ = 1 eV,

plus seven resonances at 70–600 keV with Γγ =
1 eV.

As for R′
1 = 8 fm (obtained by extrapolation from

[13]) and ane = −1.43 × 10−3 fm (being nearly the
center of the experimental values for bound atoms
[3]), they do not vary because their contributions to
σs [second and last terms in (5)] are small: 2.3 mb
at 30 keV and –6.5 mb at ∼0.025 eV, respectively.
This results in the dashed curve for σt of Ar in Fig. 3
and χ2 = 4240 for 72 experimental points of all data.
Three points from [5] that are marked by us with large
errors are in contradiction with the 1/v law and are
not included in the fitting.

In the process of fitting,
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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(1) it has come to light that one negative and
just one positive resonance of 40Ar are necessary and
sufficient for the description of the data;

(2) the negative resonance changes most and
moves much closer to a zero energy;

(3) the other values experience moderate changes
or remain unchanged.

We thus conclude that
for 36Ar, R′

0 = 2.84(10) fm, E0 = −10 keV, (10)

Γ0
n = 91.3 eV,Γγ = 1.32 eV;

for 40Ar, R′
0 = 2.405(7) fm, E0 = −100 eV,

Γ0
n = 1.08(2) meV,Γγ = 1.32 eV,

E0 = 76486 eV,Γ0
n = 20.509 eV,Γγ = 1.32 eV,

corresponding to the solid curve in Fig. 3 and χ2 =
178 (errors of fitted parameters are in brackets).

As is seen in Fig. 3, at 5–6 eV, there is a jump of
∼30 mb between our data and data from [5]. A very

Table 2

aN
coh, fm σN

s , b aN
coh/σ

N
s , fm−1

1.880(7) 0.656(4) 0.02867(9)

1.908(7) 0.669(4) 0.02854(9)

1.865(7) 0.649(4) 0.02873(9)

1.873(8) 0.653(3) 0.02868(17)
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likely reason for that is a mistaken thickness of the
sample in one of the papers or in both. Therefore, we
did two additional fittings: with σt from [5] multiplied
by 1.04 and with our σt divided by 1.04. This resulted
in a decrease of χ2 to 158 and 96, respectively, and in
just a ∼2% change of R′

0 for 40Ar.

6. CONCLUSIONS

1. The main result of the investigation is shown
in Table 2. It presents the coherent scattering length
aNcoh =

∑
ρa and the scattering cross section σNs =

4π
∑

ρa2 calculated at E = 0.0253 eV and averaged
over 36Ar and 40Ar, where ρ is the isotope abundance
and a is given by (6). The results calculated using the
parameters of our main fit are the first line; the second
and third lines are the results of additional fittings. It
is interesting to compare them with the results of [2],
obtained using σs of 36Ar and Ar measured in a ther-
mal neutron beam, which are the last line in Table 2.
An excellent agreement of the parameters aNcoh/σ

N
s

that are of most interest for us is obvious, which raises
the reliability of the future ane results. At the same
time, the present accuracy of ratio aNcoh/σ

N
s allows

one, in principle, to reduce the error of the ane value
by a factor of 3–4 compared to the best results.

2. Our next experiment will be an attempt to ob-
serve the interference phenomenon of the neutron
waves scattered by neighboring atoms of argon. Such
an effect is calculated in [13] and can be the next
hindrance to the ane extraction from theR(E) results,
especially if the gas pressure is not low. Thus, it is very
important to check calculations by an experiment.
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Abstract—Experiments aimed at detecting and investigating neutron resonances in the 178m2Hf isomer
are described, and the results obtained in these experiments are presented. The investigations in question
are of great interest since the structure of this isomer—it is interpreted as the (π7/2+, π9/2+, ν7/2+,
ν9/2+) configuration—and its high spin of J = 16 differ significantly from the structure and spin of nuclei
studied previously. The experiments performed at the Kurchatov Institute employed a neutron source based
on the FAKEL linear electron accelerator and a multisection detector from NaI(Tl) crystals that was able to
ensure a 4π coverage. This equipment made it possible to study gamma-ray cascades in radiative neutron
capture versus neutron energy. Despite an extremely small number of isomer nuclei, a low content of the
isomer in the target used, and its high radioactivity, resonances were discovered that arise upon neutron
capture by a high-spin 178m2Hf nucleus. The parameters of these resonanceswere found. The mean spacing
between the revealed resonances is about 1 eV, which is consistent with calculations based on the Fermi gas
model. This indicates that the Fermi gas model describes well the density of both low- and high-spin levels.
At the same time, the above agreement suggests that, upon the formation of a compound nucleus, the
structure of the isomeric state is destroyed completely. On the other hand, glaring discrepancies between
experimental data and the predictions of the statistical model were found: gamma transitions from high-
spin resonances (J = 31/2+, 33/2+) populate predominantly the low-spin ground state (J = 9/2+) rather
than the high-spin state of the 179m2Hf isomer (J = 25/2−); the radiative width is approximately one-
third as great as that which is predicted by the statistical model; and the properties of gamma cascades
are different for different resonances, this difference being beyond statistical fluctuations. The results of the
present investigation make it possible to reveal special features in the behavior of the quantum number K
at high excitation energies. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The discovery of man-made isomers was a com-
monly recognized achievement of I.V. Kurchatov [1].
In the present article, we describe experiments aimed
at searches for neutron resonances in the man-
made 178m2Hf isomer and their investigation and
present the results obtained in this way. The 178m2Hf
isomer is characterized simultaneously by a high
excitation energy (E∗ = 2.5 MeV) and by a long half-
life (T = 31 yr). In 1936, when Kurchatov definitively
discovered the phenomenon of man-made nuclear
isomerism, one could hardly imagine that long-lived

1)Centre de Spectrometrie Nucleaires et de Spectrometrie en
Mass (CSNSM), IN2P3–CSRS, F91405 Orsay Campus,
France.

2)Institut de Physique Nucleaire (IPN), F91406 Orsay,
France.

3)Joint Institute for Nuclear Research, Dubna, Moscow
oblast, 141980 Russia.
1063-7788/03/6601-0006$24.00 c©
isomers of such high energy would be obtained. And
still fainter were hopes for accumulating so large
a number of isomeric nuclei and for constructing
such neutron spectrometers that experiments seeking
neutron resonances in isomers and investigating
these resonances would become feasible. The first
experiments of this type were launched at the institute
organized by Kurchatov. As to 178m2Hf isomeric
nuclei themselves, they were obtained at the Flerov
laboratory of the Joint Institute for Nuclear Research,
whose foundation was initiated by Kurchatov and
implemented by his disciples. These investigations
proved to be possible owing to an international
collaboration with two French institutions [Centre
de Spectrometrie Nucleaires et de Spectrometrie en
Mass (CSNSM) and Institut de Physique Nucleaire
(IPN)], where the chemical purification and the mass
separation of the 178m2Hf isomer were performed.

Experimental investigation of neutron resonances
2003 MAIK “Nauka/Interperiodica”



SEARCH FOR NEUTRON RESONANCES 7
in isomers is of crucial importance for developing
the theory of highly excited nuclear states. It is well
known that individual properties of highly excited nu-
clear states can be explored by studying neutron res-
onances. Numerous investigations of this kind have
been performed up to the present time. Regularities
established in them admit an interpretation of com-
pound states on the basis of a statistical approach.
However, available data cover only a rather narrow
class of compound states, those that are character-
ized by rather low angular momenta; moreover, only
states whose spins differ insignificantly (by about
unity) could be explored in each individual nucleus.
In this connection, it is of great interest to detect
and investigate neutron resonances in the 178m2Hf
isomer, since its structure, which is interpreted as
the (π7/2+, π9/2+, ν7/2+, ν9/2+) configuration [2],
and its high spin of J = 16 differ sharply from the
structure and spin of nuclei studied previously. In
order to detect and explore neutron resonances in
178m2Hf, we investigated gamma-ray cascades aris-
ing upon neutron capture. The diagram of neutron
capture by a 178Hf nucleus in the ground and in the
isomeric state is displayed in Fig. 1, along with the
gamma-ray cascades being studied. On the basis of
the results of these experiments, one can test basic
concepts of a theory that describes the production
and decay of highly excited states. First, one can
compare the mean spacing D between resonances
for the same nucleus at two sharply different values
of the spin, 1/2 and 33/2 or 31/2. The mean spac-
ing for the ground state of 178Hf is well known. It
is D(1/2) = 62 eV [3], which agrees well with the
estimate within the Fermi gas model at the corre-
sponding excitation energy E∗ equal to the neutron-
binding energy Sn,E∗ = Sn = 6.099 MeV. The mean
spacing D(31/2, 33/2) between isomer resonances is
highly sensitive to deviations from statistical concepts
of compound states—in particular, to the degree of
decay of an isomeric state upon the formation of a
compound nucleus. By way of example, we indicate
that, if the structure of the 178m2Hf isomeric state is
completely destroyed upon neutron capture, the level
density can be described on the basis of the Fermi gas
model at the excitation energy of E∗ = Sn + Eis =
6.099 + 2.446 = 8.545 MeV, where Eis is the isomer
excitation energy. For D(31/2, 33/2), this yields the
value of 1.46 eV. But if the structure of the isomeric
state is not destroyed upon neutron capture, the Fer-
mi gas excitation energy is E∗ = Sn = 6.099 MeV,
with the result that D will take a value approximately
equal to that for the resonances of the target nucleus
178Hf in the ground state (that is, 62 eV) [3]. Thus, the
mean spacing between the resonances of an isomer
can furnish information about the degree to which
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
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Fig. 1. Diagram of neutron capture by a 178Hf nucleus in
the ground and in the isomeric state.

the structural features of an isomer excited state are
destroyed upon neutron capture.

From the results obtained by studying gamma-
ray cascades, one can deduce rather interesting in-
formation about the behavior of the quantum number
K. From Fig. 1, it can be seen that the gamma-ray
cascades in question can populate both the ground
state of the 179Hf nucleus (9/2+) and its 25/2− iso-
meric state characterized by the excitation energy of
1106 keV and half-life of T = 25 d. According to the
laws of statistics, gamma transitions from high-spin
resonances will populate predominantly the 25/2−

high-spin isomeric state because of a small difference
of spins between these states. If, however, some val-
ues of the quantum number K are favored in highly
excited states, the populations determined experi-
mentally for the 9/2+ and 25/2− states may deviate
significantly from expected values, since these states
differ strongly inK (K = 9/2 in the ground state, but
it is 25/2 in the isomeric state). The populations of
these states can be measured directly owing to the
difference in the energy release and in the multiplicity
of gamma rays in the corresponding cascades.

2. TARGET FROM THE 178m2Hf ISOMER

Macroscopic amounts of the 178m2Hf isomer were
obtained by irradiating a 176Yb target with a 100-
to 150-µA flux of alpha particles of energy about
36 MeV at the U-200 cyclotron installed at the Joint
Institute for Nuclear Research (JINR, Dubna). In
order to prevent, during the irradiation process, the
formation of the 172Hf and 175Hf isotopes, which are
radioactive, the target from 176Yb was enriched to
99.998% at the PARIS mass separator (CSNSM,
3
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ensuring a 4π coverage.
Orsay, France). In implementing this procedure, use
was made of ultrapure substrate materials and of
the chemically purified oxide 176Yb2О3. The product
isomeric material was stored for three months after
irradiation, whereupon it was subjected to a chemical
purification from admixtures by the chromatographic
method with an efficiency of 95%, the degree of pu-
rification being 107. After that, targets containing
n ∼ 2 × 1014 isomer nuclei were manufactured [4, 5].
In these targets, the numbers of nuclei of the stable
isotopes 178Hf and 177Hf were, respectively, 100 and
150 times greater than the number of isomer nuclei.
Experiments performed with these targets revealed
that low-energy resonances of 177Hf strongly com-
plicate observation of isomer resonances. In view of
this, a new target was prepared that was purified from
this isotope with an efficiency of 20 to 25% by using
the PARIS mass separator. This target contained
n = 1.2 × 1014 nuclei of the 178m2Hf isomer, 1.2 ×
1016 nuclei of 178Hf, and 1.2 × 1015 nuclei of 177Hf.
The diameter of the target was 3 mm. A 0.005-mm-
thick foil of ultrapure aluminum (99.999%) served
as a substrate and, simultaneously, as a means for
fastening the target to the sample holder. The total
thickness of aluminum in the detector along the neu-
tron beam was 0.015 mm.

3. EXPERIMENTAL FACILITY
AND MEASUREMENTS

Investigations of neutron resonances in 178m2Hf
with the aid of the relevant (n, γ) reaction were be-
gun at the FAKEL linear electron accelerator of the
Kurchatov Institute immediately after the fabrication
PH
of the target [4, 5]. The spectrometry of neutrons
was based on the time-of-flight technique. The main
difficulty in detecting and investigating neutron res-
onances of the 178m2Hf isomer was associated with
an extremely small amount of the isomer (n ∼ 1014,
30 ng) and with a heavy intrinsic radioactive back-
ground (∼106 photons per second). It is sufficient to
indicate that, in studying resonances of stable nuclei,
the effect-to-background ratio is about 1000 for the
case where the weight of the nuclei in the sample used
is about 1 g; accordingly, this ratio will be as low as
about 3 × 10−5 for 30 ng, and this is the reason why
experiments of the type being discussed are extremely
difficult. The procedure developed at the Kurchatov
Institute for the spectrometry of gamma-ray cascades
on the basis of a multisection detector of 4π coverage
from NaI(Tl) crystals was used to study (n, γ) reac-
tions [6]. This procedure makes it possible to mea-
sure the spectrum of gamma-ray cascades induced by
neutron capture versus the incident-neutron energy;
in addition, it has a high sensitivity and enables one
to suppress the background significantly by imposing
various conditions in selecting gamma-ray cascades.

The first experiments aimed at detecting neutron
resonances in 178m2Hf [7, 8] were performed for
the neutron-spectrometer flight base of L = 10.6 m,
which was the minimum possible at that time. Only
strong-low energy resonances of stable hafnium
isotopes, whose content in the target under study was
about 100 to 150 times greater than the content of the
isomer, were detected as the result of nearly 100-h
measurements. This was due to a small magnitude of
the effect and to a relatively heavy background, which
was commensurate with the effect for the detected
YSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003



SEARCH FOR NEUTRON RESONANCES 9

 

200 400 600
Channel number

4000

3000

2000

1000

0

 

4.16 eV

 

182

 

W

 

177

 

Hf
2.388 eV

 

177

 

Hf
1.098 eV

 

L

 

 = 5.2 m

 

k > 

 

1, 

 

E

 

 > 2 MeV

(

 

c

 

)

500

0

 

177

 

Hf
2.388 eV

 

177

 

Hf
1.098 eV

 

L

 

 = 10.6 m

 

k > 

 

1, 

 

E

 

 > 2 MeV

(

 

b

 

)

1000

1500

23000

22000

 

L

 

 = 10.6 m
Total spectrum

(

 

a

 

)

24000

25000
Number of counts

5000
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resonances. Obviously, it was next to impossible to
reveal isomer resonances under such conditions.

In this connection, the possibility of significantly
increasing the efficiency of investigations that are
performed by the time-of-flight method under the
conditions of a heavy background was analyzed in [9].
In the absence of background that is not associated
with the operation of a pulsed neutron source, the
efficiency (ε) is given by the obvious expression

ε0 = C0
Q

L2
,

where Q is the neutron-source intensity, L is the
flight base, and C0 is a constant. But under the con-
ditions where the background is much greater than
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
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the sought effect, the dependence of ε on Q and L is
radically different [9]; that is,

εF = CF
Q2

L5
,

where CF is a constant. Thus, the efficiency of in-
vestigations of the type being discussed is in inverse
proportion to the fifth power of the flight path and in
direct proportion to the square of the neutron-source
intensity. In view of this, a new neutron spectrom-
eter with a flight base of 5.2 m, which is one-half
as long the flight base of the previous spectrometer,
was constructed in order to improve considerably the
efficiency of such investigations [9]. In contrast to the
neutron target of the spectrometer used previously,
the neutron target of the new spectrometer was ar-
ranged in the direct electron beam, where the mean
current is higher by a factor of about 3 (see Fig. 2).
Even the first experiment with the 178m2Hf isomer
demonstrated that the efficiency of the new spec-
trometer is much higher than the efficiency of the
old spectrometer. The time-of-flight spectra obtained
with a sample containing n = 1.4 × 1014 isomer nu-
clei are displayed in Fig. 3 for measurements based
on (Figs. 3a, 3b) the old and (Figs. 3c) the new spec-
trometer and performed with the same 16-section
spectrometer (see Fig. 4a). The spectrum in Fig. 3a
involves all events recorded by the detector as a dis-
crete unit. The spectrum in Fig. 3b was obtained
by selecting events according to the multiplicity of
pulses from the detector sections and according to
the energies deposited in them. In the spectrum that
is shown in Fig. 3c and which was obtained under
the same event-selection conditions as the spectrum
in Fig. 3b, all resonances of admixed nuclei of stable
hafnium isotopes are clearly seen at neutron energies
below 20 eV (above 20 eV, the isomer resonances
could not be revealed because of a decrease in the
neutron flux and in the resonance cross section). We
note that the channel width for the spectrum in Fig. 3c
was chosen to be one-half as great as that for the
spectra in Figs. 3a and 3b. This was done in order
to ensure that the resonance positions were approx-
imately identical in the measurements with the two
spectrometers. A comparison of the results obtained
with the new and the old spectrometer showed that
the efficiency of detection of weak resonance peaks
with a new spectrometer is higher by a factor of about
470, which corresponds to a decrease in the flight
base and the increase in the intensity of the electron
flux [9].

A new target purified from stable hafnium isotopes
at the PARIS mass separator was manufactured with
the aim of obtaining a more pronounced effect. The
target contained n = 1.2 × 1014 nuclei of the 178m2Hf
isomer. Moreover, a new detector for the spectrometry
P

of multiplicities was constructed in order to improve
the efficiency of measurements still further. The de-
tector contained eight identical sections from NaI(Tl)
crystals, each section having dimensions of 124 ×
124 × 450 mm3 (see Fig. 4b). In order to shield the
scintillator from neutrons scattered on the target un-
der study, a 10В layer of thickness about 1 g/cm2 was
arranged between the target and the crystals. In re-
lation to the 16-section detector used in the previous
experiment (see Fig. 4a) with the new spectrometer,
the detector in question had a higher efficiency and
a lower background. The measurements were per-
formed at the electron-pulse duration of τ = 300 ns,
the pulse-repetition frequency of ν = 450 Hz, and the
electron-beam power of P = 2 kW. The duration of
the measurements was 120 h.

For each recorded event, the information-storage
system enabled one to save 17 words: the instant of
detection (with respect to the first detected photon
from a cascade), the energy deposition in each of the
eight sections of the detector, and the time of flight
of the neutron that induced a given event (the instant
of emergence of the first recorded photon from each
cascade of gamma transitions with respect to the
accelerator start).

4. RESULTS OF THE MEASUREMENTS

In order to reveal and investigate neutron reso-
nances, time-of-flight spectra corresponding to var-
ious values of the coincidence multiplicity k and the
total energy deposition E in the detector that were
determined within a 60-ns time interval were com-
posed from accumulated events. In doing this, only
those events in which the energy deposition exceeded
1 MeV in at least one section were selected and
only those sections in which the energy deposition
exceeded 0.22 MeV were considered. This selection
made it possible to suppress the radioactive back-
ground of the sample to a considerable extent. The
results are presented in Figs. 5 and 6 in the form of
the dependence of the time-of-flight spectra on k and
E, respectively.

From the set of peaks, five resonances—at 0.75,
1.80, 3.10, 3.72, and 4.52 eV—that admit an identifi-
cation with resonances in the 178m2Hf isomer can be
singled out with a more or less acceptable reliability.
Indeed, these resonances do not coincide in energy
position with strong resonances of any nuclei [3].
They are not weak resonances of admixed nuclei ei-
ther, since even strong resonances of such nuclei
manifest themselves only slightly—for example, this
is so for the strong resonance of the 182W nucleus
at 4.155 eV (see Figs. 5, 6). The parameters of the
detected resonances were determined from a fit of a
Breit–Wigner curve to the experimental data with
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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Fig. 5. Time-of-flight spectra in measurements with 178m2Hf for various values of the coincidence multiplicity k at a total
energy deposition in excess of 4.8 MeV.
allowance for the Doppler effect and spectrometer
resolution. Figure 7 shows such a fit for the resonance
at 0.75 eV. For this resonance, the radiative width
estimated on the basis of the maximum-likelihood
method is 25 ± 10 meV. For other resonances of the
isomer, the values of 2gΓn were determined under the
assumption of Γγ = 54 meV (mean value of Γγ for the
resonances in 178Hf) or at Γγ = 80 meV (the value of
Γγ according to the calculation on the basis of the
statistical model). In these calculations, the flux of
neutrons incident on the sample was calibrated by
using the resonances in 177Hf and 178Hf, the num-
bers of their nuclei being determined in independent
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
measurements: (1.16 ± 0.26) × 1015 for 177Hf and

(1.20 ± 0.08) × 1016 for 178Hf. In the calibration

procedure employed, a simulation of gamma-ray cas-

cades and of the recording of these cascades in the

detector was performed in order to take into account

the distinctions between their spectra for isomer res-

onances and for the resonances in 177Hf. The values
obtained for the resonance parameters are given in the

table.
3
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5. ANALYSIS OF THE RESULTS

5.1. Spacing between the Levels

On the basis of the data quoted in the table, the
mean spacing between the resonances of the 178m2Hf
isomer can be estimated at 0.94+0.6

−0.3 eV (the errors
were determined according to the procedure used
in [10]).

We note that, in calculating the mean spacing D
between levels on the basis of the Fermi gas model,
use is usually made of the traditional formula for
the level density. This formula was obtained in the
approximation of low angular momenta, in which
PH
case the energy of rotation is much less than the
excitation energy; however, the neutron resonances of
the hafnium isomer have high spins (J = 31/2, 33/2)
and, accordingly, a higher energy of rotation (about
2.2 MeV). Therefore, a more precise estimate can be
obtained without recourse to this approximation by
numerically computing ρ(U, J) as the difference of the
densities of states; that is,

ρ(U, J) = ω(U,M = J) − ω(U,M = J + 1), (1)

where U = Sn +Eis −∆ is the excitation energy with
allowance for pair correlations (∆) and М is the pro-
jection of the angular momentum onto a fixed axis. In
YSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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accordance with [11], we have

ω(U,M) =
1

12
√

2gm̄2 [U −M2/(2gm̄2)]3/2
(2)

× exp

[
2

√
a

(
U − M2

2gm̄2

)]
,

where m̄2 is the mean square of the single-particle
angular momentum and g is the density of single-
particle states at the Fermi energy. By using the value
of m̄2 from [12], we obtain the mean spacing of D =
1.46 eV, which, within the experimental errors, agrees
with the measured value of 0.94+0.6

−0.3 eV. It should be
noted that the measured value ofD also complies well
with the estimate D = 0.86 eV, which was obtained
of the basis of the microscopic approach developed by
Ignatyuk [13].

The agreement between the theoretical and exper-
imental results indicates that the Fermi gas model de-
scribes well the densities of both low- and high-spin
levels. At the same time, this agreement suggests
that, upon the formation of a compound nucleus, the
energy of the isomer is converted into the neutron
binding energy and the Fermi gas energy; that is, the
isomeric state is destroyed completely.

5.2. Radiative Transitions
The radiative width could be measured only for

the resonance at 0.75 eV. The most probable value of
this width is 25 meV. In order to perform a compar-
ison with the prediction of the statistical model, we
performed a calculation that relies on the procedure
and parameter values recommended in the Reference
Input Parameter Library [14].
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
The radiative width was calculated in terms of the
sum of the probabilities of all gamma transitions from
the resonance state i to all possible final states f
satisfying selection rules in spin and parity; that is,

Γstat
γ = k

∑
Jf

E∗∫
0

E2l+1
γ fE(M)l

ρ(Ef , Jf )
ρ(Ei, Ji)

dE, (3)

where Е∗ is the excitation energy of the nucleus,
Еγ is the transition energy, fE(M)l is the radiative
strength function, and k is a normalization factor. In
the calculation, we took into account only E1, M1,
and E2 transitions, since the contribution of higher
multipoles is negligible. In calculating the E1 radia-
tive strength function, use was made of a generalized
Lorentzian distribution that takes into account the
energy and temperature dependence of giant dipole
resonances [15]. A standard Lorentzian distribution
[16] was employed forE2 and M1 transitions. By us-
ing the measured value of Γ̄γ = 54 meV for the mean
radiative width of resonances in 178Hf and the values
of Γstat

γ that were calculated by formula (3), one can
obtain an estimate of Γγ for the isomer resonances
that is independent of the normalization factor k. For
the 31/2- and 33/2-spin resonances of 178m2Hf, this
yielded the values of 83 and 77 meV, respectively.

Figure 7 shows a fit of the Breit–Wigner curve
at Γγ = 25 meV and Γ̄stat

γ = 80 meV (the calculated
radiative width that is averaged for two spin states,
those characterized by the spin values of 31/2 and
33/2) to experimental data. It can be seen that the
value of 80 meV agrees poorly with experimental data.
The ratio of the likelihood functions for the above
values of Γγ is about 5.
3
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Parameters of neutron resonances in 178m2Hf

E0, eV 2gΓn, meV Γγ , meV Iγ , b σth
γ , b

(En = 0.025 eV)
2gΓ0

n, meV

0.754 1.9 ± 0.4 25 ± 10 6360 ± 1340 212 ± 96 2.5 ± 0.5

1.80 5.2 ± 1.5 (54) 2990 ± 860 132 ± 38 2.9 ± 0.8

5.0 ± 1.4 (80) 2990 ± 860 196 ± 56

3.10 4.4 ± 1.8 (54) 865 ± 354 28 ± 12 1.4 ± 0.6

4.3 ± 1.8 (80) 870 ± 356 43 ± 17

3.72 8.2 ± 2.5 (54) 1050 ± 320 33 ± 10 2.2 ± 0.7

7.8 ± 2.4 (80) 1050 ± 320 49 ± 15

4.52 9.5 ± 3.8 (54) 805 ± 322 24 ± 9 2.1 ± 0.8

8.9 ± 3.6 (80) 805 ± 322 34 ± 14

0.025 [8] – – 800 ± 130 51 ± 10

0.025 [17] – – – 46 ± 5
Thus, the statistical model yields an exaggerated
value of the radiative width.

5.3. Population of Low-Lying States

Let us consider the populations of low-lying states
in 179Hf. For thermal neutrons (En = 0.025 eV), the
table presents the contributions of the 178m2Hf reso-
nances to the resonance integral Iγ and to the cap-
ture cross section σth

γ according to calculations that
employ the resonance parameters. Given in the last
two rows of the table are the values (Iγ)∗ and (σth

γ )∗

corresponding to the population of the 179m2Hf iso-
mer (I = 25/2−) that were measured directly by the
activation method [8, 17]. The values of Iγ and σth

γ

that were obtained in the present study correspond to
the total effect of the population of the isomeric (I =
25/2−) and the ground state of 179Hf. It is therefore
natural that

∑
Iγ > (Iγ)∗ and

∑
σth
γ > (σth

γ )∗. It can
be seen that even the values of Iγ = 6360 ± 1340 b
and σth

γ = 212 ± 96 b, which were obtained for a sin-
gle resonance at 0.75 eV, are much greater than the
values of (Iγ)∗ = 800± 130 b and (σth

γ )∗ = 51± 10 b,
which were measured by the activation method. The
distinction between the values of the resonance inte-
gral is especially pronounced.

The values of Iγ and σth
γ can be matched with (Iγ)∗

and (σth
γ )∗ if one assumes that, in more than 90%

of events, the decay of this resonance states leads
to the population of the ground state of 179Hf and,
accordingly, that, in less than 10% of events, this
P

decay leads to the population of its 25/2− isomeric
state. However, this contradicts the results of the
calculation based on the statistical model. According
to this calculation, the population of the 25/2− state
is about 80%, which is an order of magnitude greater
than the value obtained from a comparison of the
results of our present measurements and the results
presented in [8, 17].

Similar contradictions, albeit less pronounced, are
observed for the resonance at 1.80 eV as well, for
which the Iγ and σth

γ values obtained in our study are
much greater than (Iγ)∗ and (σth

γ )∗.

Thus, there is a glaring contradiction between the
predictions of the statistical model and the measured
ratio of the cross sections for the population of the
ground state of 179Hf (9/2+) and its 25/2− isomeric
state.

5.4. Gamma-Ray Cascades

Because of low statistics, it is reasonable to char-
acterize the spectrum of gamma-ray cascades by a
small number of parameters. For such parameters,
one can take the multiplicity of coincidences and the
total energy deposition. Figures 5 and 6 display the
measured time-of-flight spectra at various values of
the coincidence multiplicity k and the total energy de-
positionE. As can be seen from these figures, the iso-
mer resonances differ considerably from one another.
The resonance at 0.75 eV is clearly seen in a spectrum
of high multiplicity (k > 3) at a relatively low total en-
ergy deposition (E > 4.8 MeV), no other resonance
being manifested here. The resonance at 1.8 eV has
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003



SEARCH FOR NEUTRON RESONANCES 15
an anomalously low multiplicity. In practice, it is seen
only at k = 2, but no other isomer resonance can
be observed at this multiplicity. The resonances at
3.10, 3.72, and 4.52 eV manifest themselves at large
values of the total energy deposition (E > 7.2 MeV;
see Figs. 5, 6) and the coincidence multiplicity (k >
3), in which case one cannot see other isomer reso-
nances. So sharp a distinction between gamma-ray
cascades associated with the resonances is at odds
with known systematics of neutron resonances and
their statistical description. Indeed, the expected fluc-
tuations of the intensity of various cascades are small
because of a wide set of intermediate transitions. They
are on the same order of magnitude as the fluctuations
of the total radiative width—that is, about 5 to 10%.
The observed distinctions between the intensities are
much greater.

6. DISCUSSION

From the analysis performed in this study, it
follows that the mean spacing between the neutron
resonances of the isomer considered here agrees
well with the prediction of the Fermi gas model.
The agreement between this theory and experimental
data indicates that the Fermi gas model describes
well the densities of both low- and high-spin levels.
At the same time, this implies that, upon the for-
mation of a compound nucleus, the isomer energy
is converted into the neutron binding energy and
the Fermi gas energy; that is, the isomeric state is
destroyed completely. Concurrently, the probabilities
of gamma transitions associated with the resonances
in question are not described by the predictions of the
statistical model. Specifically, the discrepancies here
are the following: (i) Although the resonances are
characterized by a high spin, gamma-ray cascades
starting from them populate predominantly the low-
spin ground state (J = 9/2) rather than the 179m2Hf
isomeric state of high spin (J = 25/2). (ii) The
measured radiative width is approximately one-third
as great as the value obtained within the statistical
model. (iii) Gamma-ray cascades induced by the
decay of the 178m2Hf isomer do not comply with
the statistical model—they are different for different
resonances.

An attempt at explaining the observed deviations
by the effect of the quantum number K seems the
most natural. It is well known that K is a good quan-
tum number at relatively low energies. According to
available data for 179Hf, this is so in the excitation-
energy regionE∗ < 3 MeV. At higher energies, avail-
able data on neutron resonances in various nuclei
indicate that gamma transitions to low-lying states
characterized by different values ofK are of a statisti-
cal character. However, the levels of the 179Hf nucleus
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
that are involved in the formation of a gamma cascade
have a very high spin; as a result, the distribution of
wave-function components characterized by different
values of K at fixed Jπ may deviate significantly from
a statistical distribution.

We will now address the question of how one could
qualitatively explain the observed contradictions on
the basis of additional assumptions on the quantum
number K at excitation energies in excess of 3 MeV.

In order to explain contradictions in the popula-
tions of the low-lying 9/2+ and 25/2− states (the
ground state and the isomeric state at 1106 keV,
respectively), it is sufficient to assume that, in the
energy regionE∗ > 3 MeV, the set of high-spin levels
through which a gamma-ray cascade proceeds is,
on average, dominated by low-K (K < 17/2) states.
During the emission of a gamma-ray cascade, the
nucleus occurring in a low-K state then undergoes
transitions within its band; from the specific diagram
of levels and transitions, it follows that, in the region
E∗ < 3 MeV, such transitions populate the ground
state, missing the 25/2− state. It is precisely for this
reason that the population of the ground state is en-
hanced in relation to that which is expected within the
statistical model.

The other two contradictions can be explained by
assuming that levels at E∗ ∼ 8.5 MeV (neutron res-
onances) may have, at some values of K, large wave-
function components that change from one resonance
to another. Because of selection rules inK, this would
result in different gamma-ray cascades for different
resonances and in a reduction of the effective number
of levels to which the first gamma transition may
proceed. The latter would lead to a decrease in the
radiative width.

We would like to emphasize that the above quali-
tative explanation does not exhaust all possibilities for
explaining the experimental results that we obtained.
In order to explore more reliably the problem of devia-
tions of the properties of high-spin resonances from
the predictions of the statistical model, it is neces-
sary to perform further, more precise, investigations
with the 178m2Hf isomer; it is also desirable to study
the special features of gamma-ray cascades involving
resonances of high-spin nuclei.
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Abstract—The simplest exact solutions to the Schrödinger and Faddeev equations for S-wave pair
interactions of the centrifugal type are constructed and investigated for the case of zero total orbital angular
momentum of three particles. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A comprehensive investigation of the problem of
three particles p1, p2, and p3 coupled by pair interac-
tions of the centrifugal type,

Vij(rij) = αij/r
2
ij , i �= j = 1, 2, 3, (1)

αij = const,

where rij is the distance between particles pi and pj ,
is of interest from the physical and theoretical points
of view and for applications.
Interactions of the type in (1), as well as all known

interactions, with the exception of Coulomb ones, are
model interactions, but, in the physically important
extreme cases of short (rij → 0) and long (rij → ∞)
distances, they describe leading terms of the asymp-
totic expressions for realistic interactions. By way
of example, it can be recalled that, for rij → 0, the
Bonn potential [1], which is one of the modern model
nucleon–nucleon interactions, has an O(r−2

ij ) sin-
gularity identical to that in (1). Another example is
provided by the interaction of the electric dipole [2]
formed by particles pi and pj in an excited bound
state with the third charged particle pk. For rij → ∞,
this interaction decreases in just the same way as the
interaction in (1) (in proportion to r−2

ij ).

Further, it is well known from [3] that, under the
Efimov conditions [4], the effective interaction in the
pair of heavy particles pi and pj loosely bound by a
light particle pk has the same asymptotic behavior
(r−2
ij for rij → ∞). Efimov proved that, in the limit of a

long scattering length of the binary subsystem, there
arises the spectrum of three-body bound states that
condenses logarithmically toward zero. The situation
in the system of three 4He atoms, which was recently

*e-mail: pupyshev@thsun1.jinr.ru
1063-7788/03/6601-0061$24.00 c©
the subject of intensive investigations [5, 6], is similar.
In this system, the pair interaction is described by
various modifications of the model potential proposed
by Aziz et al. [7], which, in just the same way as any
interaction of the van der Waals type [2], increases
fast at short distances and decreases slowly at long
distances. Interactions of the type in (1) for αij > 0
have a qualitatively similar behavior.
Thus, there exists a rather broad class of three-

body systems, whose total Hamiltonian in the lim-
its rij → 0,∞ coincides or is qualitatively close to
the total Hamiltonian of the three-particle problem
governed by the interactions in (1). In view of this,
the problem considered here is of interest from the
physical point of view; its exact solutions can be used
to simulate wave functions of actual three-body sys-
tems, at least in the asymptotic regions.
The criterion of existence of physically acceptable

solutions to the problem of N particles whose inter-
action potentials have O(r−2

ij ) asymptotic behavior
for rij → 0 or rij → ∞ (or in both limiting cases)
is known only for N = 2. Even for N = 3, the the-
orem of existence and uniqueness of such solutions
in scattering theory for few-body systems [8] has not
yet been proven. From the viewpoint of extending the
theory to the case of singular interactions, it would
therefore be of interest to find a criterion of existence
and to analyze exact solutions for N = 3.
Exact solutions to any model three-particle prob-

lem [in particular, that which is specified by interac-
tions of the type in (1)] are undoubtedly of use from
the viewpoint of applications as well—for example, in
testing algorithms for numerically solving the three-
body Faddeev and Schrödinger equations in coordi-
nate space.
In the pioneering mesh algorithm [9] for numeri-

cally solving Faddeev equations in coordinate space,
use was made of a finite-difference approximation of
2003 MAIK “Nauka/Interperiodica”
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the sought Faddeev components on a finite mesh
of nodes. Later, there appeared more efficient dis-
cretization methods based on the approximation of
these components by bicubic Hermitian splines [10];
C2-class splines [11]; and quintet basis splines, which
were first applied in [12] and then in [6].
We would now like to list the reasons for which,

despite advances made in practically studying Fad-
deev equations, a reliable and universal algorithm for
integrating these equations has yet to be constructed
definitively.
First, all known schemes for discretizing Faddeev

equations in coordinate space have been realized only
for problems of three-particle bound states or for
problems of the scattering of a particle by the pair of
the remaining particles rather than for the problem
of 3 → 3 scattering. So far, no such algorithm for
the last problem in question has been constructed
because of very complicated boundary conditions at
long distances.
Second, all known methods based on finite-

difference or spline approximations are mathemat-
ically incomplete, since within none of these could
one prove analytically that the calculated solution to
Faddeev equations converges point by point to an
exact solution as the maximum step h of some mesh
is reduced. It is difficult to prove this statement for
two-dimensional integro-differential Faddeev equa-
tions [8] because of the presence of integral oper-
ators in them and for three-dimensional differential
Faddeev equations [13] because of the presence of
unknown functions whose arguments, albeit being
known, are nonlinear functions of independent vari-
ables.
Since there were no asymptotic estimates of con-

vergence for h → 0, it was necessary to demonstrate
the reliability and accuracy of the proposed mesh
methods by testing the numerical stability of inte-
grated three-body characteristics, such as bound-
state energies, phase shifts, or scattering cross sec-
tions. For the same reason, the question of point-
by-point convergence, which, in contrast to integral
convergence, is precisely a criterion of accuracy and
reliability of a numerical method, remains open, as
a rule. A satisfactory answer to this question can be
obtained by using, as a reference solution, a known
exact solution to a model problem that is qualita-
tively the closest to the problem being investigated.
To get an idea of the point-by-point convergence of
the algorithm being tested, it is sufficient to compare
an exact solution to the model problem with its nu-
merical solution on an arbitrary sequence of points
that is quite large, on one hand, and which, on the
other hand, contains points occurring in physically
important asymptotic regions such as vicinities of the
PH
points of ternary and binary collisions and the region
of long distances.
Such a comparison is of particular importance

in the case of interactions featuring a strong repul-
sion at short distances and slowly decreasing at long
distances—for example, interactions of the van der
Waals type. The point is that, in this case, it is very
difficult to perform a stable numerical integration of
Faddeev equations; this can be done only by means
of special recently proposed numerical methods. For
such a method, a transformation of the hyperradius
and the tensor representation of matrices were used
in [10] for three-body calculations and the boundary-
condition model and potentials introduced by Aziz
et al. [7] were invoked in [5] to calculate bound and
scattering states in the system formed by three 4He
atoms; in [6], it was proposed to modify the discrete-
problemmatrix in such a way as to ensure the absence
of large eigenvalues in its spectrum and this con-
struction was realized for the problem of calculating
bound states of the same system (helium trimer).
Since interactions of the van der Waals type and

interactions of the type in (1) for αij > 0 behave sim-
ilarly at long and short distances, exact solutions to
the three-particle problem for interactions of the type
in (1) can be used as reference ones for testing both
known and new algorithms for numerically solving
the Schrödinger and Faddeev equations for systems
consisting of three atoms or three molecules.
Thus, the construction of exact solutions to the

three-body problem for interactions of the centrifugal
type and an analysis of their properties is not only of
interest but also of importance. For a first step, exact
solutions are investigated here for the case where
such interactions are included only in S waves, which
is typical of nuclear physics.

2. BASIC NOTATION AND FORMULATION
OF THE PROBLEM

Let us consider the Faddeev equations [8]

(H0 − E)Ψi = −ViΨ, Ψ =
3∑
k=1

Ψk, (2)

i = 1, 2, 3,

for the system of three particles p1, p2, and p3 having
arbitrary masses m1,m2, and m3, respectively, and
zero total orbital angular momentum. It is well known
from [14–16] that, for the S-wave interactions

Vi(xi) = ciI
0
i /x

2
i , I0

i ≡ |Y00(x̂i)〉〈Y00(x̂i)|, (3)
ci = const, i = 1, 2, 3,

these equations have the exact solutions

Ψi(ri; p2) = r−2Zp(z)Fi(Ωi; p2), ri = (r,Ωi), (4)
YSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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z ≡ r
√
E, i = 1, 2, 3,

at an arbitrary total energy E, but at specific values
of the constants c1, c2, c3, and p2. In these solutions,
p2 is the constant of separation of the hyperradius r ≡√
x2
i + y2

i and the hyperangles Ωi = (x̂i, ŷi, ϕi) [17],
while the function Zp obeys the Bessel equation

(z2∂2
z + z∂z + z2 − p2)Zp(z) = 0. (5)

It is well known [18] that, in the case of mi = m1

and ci = c1 < 0, i = 1, 2, 3, which was investigated
in [14], the functions F1, F2, and F3 cannot generally
be represented as finite linear combinations of the
basis hyperharmonics [17]

Y 00
Laa(Ωi) =NLa(1−v2

i )
a/2P

(a+1/2,a+1/2)
L/2−a (vi)Pa(ui),

(6)

NLa ≡
(−1)a

√
2a+ 1

2a+3/2πΓ(L/2 + 3/2)

× ((L+ 2)Γ(L/2 − a+ 1)Γ(L/2 + a+ 2))1/2,
L = 0, 2, . . . , a = 0, 1, . . . , L/2,
vi ≡ cos 2ϕi, ui ≡ xi · yi/(xiyi),

but it was shown in [6] that, at p2 = (t+ 2)2 and
under specific conditions on all coefficients ci andBi

L,
these functions can be written as

Fi(Ωi; p2) =
t∑

L=0

Bi
LY

00
L00(Ωi), (7)

i = 1, 2, 3, t < ∞,

at arbitrary masses of the particles involved.
The main objective of the present study is to ana-

lyze the properties of all exact (t < ∞) solutions and
to tabulate the simplest (t = 4) solutions (4)–(7) to
the Faddeev Eqs. (2) and (3) and the corresponding
solutionsΨ to the Schrödinger equation.
It is especially important to solve this problem be-

cause, in the literature, there are no straightforwardly
calculable reference Faddeev components whose
asymptotic expressions are qualitatively similar to
physical ones at an arbitrary energy E. We will now
clarify this statement.
In six-dimensional coordinate space R6, the Fad-

deev Eqs. (2) have spurious solutions [18]. The spuri-
ous solution (Ψ1, Ψ2, Ψ3) is exact, but, by definition,
it carries no information about the coordinate de-
pendence of pair interactions and corresponds to the
trivial solution Ψ ≡ 0 to the Schrödinger equation.
Therefore, the similarity of spurious solutions found
analytically and those calculated by integrating the
Faddeev equations is not a criterion of the accuracy
of the numerical algorithm being tested.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
Apart from spurious solutions and the exact so-
lution for the case that is specified by the interaction
in (3) and which is considered here, exact solutions
to the Faddeev and Schrödinger equations in R6 are
known only for oscillator interactions [18, 19]. In that
case, there exist only three-particle bound states at
E > 0. Therefore, the oscillator Faddeev components
can be used as reference ones only in testing algo-
rithms for numerically solving the problem of three-
particle bound states for E > 0. The class of these
problems is overly narrow, including only problems
specified by locking pair interactions: Vi(xi) → ∞,
xi → ∞, i = 1, 2, 3.
If, for the functionZp, we take the Hankel function

H
(1)
p (z) or the modified Bessel functionKp(|z|), then,

in the limit r → ∞, exact solutions (4)–(7) will have
asymptotic expressions that are qualitatively similar
to physical ones [8], which oscillate for E > 0 or de-
crease exponentially forE < 0. Therefore, these exact
solutions can be used both as model ones and as
reference ones in testing algorithms for numerically
solving the Faddeev and Schrödinger equations for
the scattering problem and the problem of three-
particle bound states.
Since the aforementioned exact solutions are uni-

versal and are of importance as reference ones, the
method proposed previously in [16] for constructing
them is extended in Section 3 to the case where one
coupling constant in (3) is infinitely large in abso-
lute value and to the case where this is so for two
coupling constants; also, the method is supplemented
with an alternative version that involves consider-
ing the generalized eigenvalue problem and studying
partitions [20] of exact Faddeev components Ψi into
physical terms (Ψu

i ) determining the solution Ψ to
the Schrödinger equation and spurious terms (Ψs

i )
making no contributions to this solution:

Ψi = Ψu
i +Ψs

i , Ψ =
3∑

k=1

Ψk =
3∑

k=1

Ψu
k �= 0,

3∑
k=1

Ψs
k ≡ 0, i = 1, 2, 3.

In order to render a practical application of exact solu-
tions comprehensible and straightforward, particular
attention is paid in Section 4 to deriving and ana-
lyzing all formulas (without exception) necessary for
constructing reference solutions and to representing
these formulas in a form that is the most convenient
for calculations; finally, tables and figures that pro-
vide clear illustrations of the process for constructing
these solutions are also given there. The main results
and their physical implications are discussed in Sec-
tion 5.
3
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3. EXACT SOLUTIONS

In order to reduce the Faddeev Eqs. (2) to a set of
two systems of linear equations determining allowed
values of the constants c1, c2, and c3 and of all coeffi-
cients Bi

L in the exact solutions (4)–(7), we will need
the following three hyperharmonics (6):(

L2 − L(L+ 4)
)
Y 00
L00(Ωi) = 0; (8)

4 cos2 ϕiY 00
L00(Ωi) =

L+2∑
L′=L−(L)

(1 + δLL′)Y 00
L′00(Ωi),

(9)

L−(L) ≡ max{0, L− 2};

K(γki)Y 00
L00(Ωi) =

L/2∑
a=0

〈aa|K(γki)|00〉L0Y
00
Laa(Ωi).

(10)

Here, L is the 15-component vector operator of
the grand-orbital momentum [17] and K(γ) is the
kinematical-transformation operator [18]. In the case
of γ = γki, where γki is the kinematical angle,

γki ≡ gki arctan
(

mj

mkmi
(m1 +m2 +m3)

)1/2

,

(11)

gki = −gik = 1,

the operator K(γki) coincides with the operator of
the cyclic permutation of the numbers i, j, and k of
particles pi, pj , and pk such that, under this permu-
tation, the indices i, j, and k go over to k, i, and
j, respectively. The expansion in (10) describes the
transformation of hyperharmonics under the above
permutation and involves the Reynal–Revai coeffi-
cients 〈aa|K(γki)|00〉L0. The dependence of these
coefficients on the kinematical angles (11) is given by
the well-known formulas [21]

〈aa|K(γki)|00〉L0 = (−1)a〈aa|K(γik)|00〉L0 (12)

=
NLa

2aNL0

(sin 2γki)aP
(a+1/2,a+1/2)
L/2−a (cos 2γki)

P
(1/2,1/2)
L/2 (−1)

.

Wewill describe in detail the case of three different
particles, whereupon we will consider the particular
cases of two and three identical bosons.
Using the ansatz in (4) and the fact that Zp is a

solution to Eq. (5), we reduce the original Faddeev
Eqs. (2) in R6 to equations of the Faddeev type on
the five-dimensional unit hypersphere S5. The result
is

cos2 ϕi(L2(Ωi) + 4− p2)Fi(Ωi; p2) (13)
PH
= −сiI0
i

3∑
k=1

Fk(Ωk; p2), i = 1, 2, 3.

We note that, upon making the substitution

Fi(Ωi; p2) =
4√
π
cosec2ϕi · Ui(ϕi; p2)Y00

00 (Ωi), (14)

i = 1, 2, 3,

and taking the projection onto the bispherical har-
monic Y00

00 = (4π)−1, these equations reduce to the
one-dimensional integro-differential equations

(cos2 ϕi(∂2
ϕi

+ p2)− ci)Ui(ϕi; p2) (15)

= ci
∑
k �=i

b∫
a

dϕkUk(ϕk; p2)/| sin 2γki|,

a ≡ |ϕi − |γki||, b ≡ min{ϕi + γki, π − ϕi − |γki|}.
Further, it can be verified that, if the series in (7)

satisfy Eq. (13), the series

Ui(ϕi; p2) =
t∑

L=0

Bi
L sin 2nϕi, (16)

i = 1, 2, 3, n = L/2 + 1,

will be solutions to Eqs. (15) by virtue of relations
(14).
Under the same assumption, the corresponding

exact solution Ψ to the Schrödinger equation can be
constructed on the basis of the formulas

Ψ(ri; p2) =
3∑
k=1

Ψk(rk; p2) = r−2Zp(z)F (Ωi; p2),
(17)

F (Ωi; p2)≡Fi(ϕi; p2)+
∑
k �=i

Fk(ϕk(ϕi, ui; γki); p2),
(18)

ϕk(ϕi, ui; γki) = arccos(cos2(γki − ϕi)

+ (ui − 1) sin γki cos γki sin 2ϕi)1/2.

With the aid of formulas (7) and (10), the functions
F (Ωi; p2) can also be represented as a double sum,

F (Ωi; p2) =
t∑

L=0

L/2∑
a=0

iBLaY
00
Laa(Ωi), (19)

iBLa ≡ δa0B
i
L +

∑
k �=i

〈aa|K(γki)|00〉L0B
k
L. (20)

By using the substitution in (7) at p2 = (t+ 2)2
in Eqs. (13), making the substitution

Bi
L =

Xi
n

n2 −m2
, n = L/2 + 1 = 1, 2, . . . ,m− 1,

(21)
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Xi
m = Bi

t,m = t/2 + 1,

and taking the projection onto the basis specified
by Eq. (6), we now derive, with the aid of formu-
las (8)–(12), a set of matrix equations of dimension
m− 1,

D1X1 + IX2 = 0, (22)

IXn−1 +DnXn + IXn+1 = 0, n = 2, 3, . . . ,m− 2,

IXm−2 +Dm−1Xm−1 = 0,

and the matrix equation

M tXm = −1
4
IXm−1. (23)

Here, all matrices and sought columns Xn are three-
dimensional; that is,

Xn ≡ (X1
n,X

2
n,X

3
n)
T , n = 1, 2, . . . ,m; (24)

Dn
ii = 2 +

ci
n2 −m2

, Dn
ik = (Dn

ii − 2)Kn(γki),

n = 1, 2, . . . ,m− 1;

Iii = 1, Iki = 0; M t
ii = ci,

M t
ik = ciKm(γki), k �= i = 1, 2, 3,

where Kn(γki) is the coefficient in (12) at a = 0 and
L = 2(n − 1).
Let us represent the set of Eqs. (22) as one matrix

equation

AtX = 0, X ≡ (X1,X2, . . . ,Xm−1)T , (25)

dimAt = 3(m− 1) = 3t/2.

Setting αk ≡ ck/c2, k = 1, 2, 3, and
Rt ≡ At at c1, c2, c3 = 0, we recast this equation into
the equivalent form

RtX = c2T
tX, (26)

where, by construction, Rt and T t are, respectively,
a block-tridiagonal and a block-diagonal matrix. The
blocks of the principal diagonals of these matrices are
the three-dimensional matrices Rn = 2I and T n,

T nii =
αi

m2 − n2
, T nik = T niiKn(γki), (27)

k �= i = 1, 2, 3, n = 1, . . . ,m− 1,

while each block of the upper and lower diagonals of
the matrix Rt is the matrix I.
From the theorem of existence and uniqueness

of solutions to finite homogeneous and nonhomoge-
neous systems of linear equations, which is known
in linear algebra [22], it follows that the set of the
conditions detM t �= 0 and detAt = 0 is a criterion
of a simultaneous and nontrivial consistency of the
systems of Eqs. (23) and (25).
With the aid of Eqs. (11), (12), and (24), it can

easily be shown that, at arbitrary particle masses and
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nonvanishing coupling constants, detM t = 0 at t =
0, 2 and detM t �= 0 at t ≥ 4. Therefore, we further
assume that t ≥ 4.
In order to analyze the condition detAt = 0,

we apply, to the set of Eqs. (22), the substitution
method [22], which is the most economical and con-
venient for operator accumulation: by consecutively
expressing all columns X2, . . . ,Xm−1 in terms of the
column X1, we reduce this set of equations to the
equation GtX1 = 0 involving the three-dimensional
matrix Gt and the condition detAt = 0 to the equiv-
alent condition detGt = 0.
Further, we note that the elements (24) of the

matrix At depend on the ratio of the particle masses
through the kinematical angles (11) and on the inter-
action parameters. It follows that detAt and detGt

are polynomials of degree N ≤ t/2 in the argument
q, which is one of the parameters c1, c2, and c3, the
coefficients Сn in this polynomial being dependent on
the remaining two parameters and on two ratios of the
particle masses. At q = c2 andm3 = 1, the analysis of
the condition detGt = 0 reduces to studying all real-
valued roots c2 = cν2(c1; c3,m1,m2) of the algebraic
equation

detGt =
N≤t/2∑
n=0

Cn(c1; c3,m1,m2)cn2 = 0 (28)

as functions of the argument c1 and the parameters
c3,m1, andm2.
It should be noted that, if a chosen value of t is

not large—at given finite values of c1, c3, m1, and
m2, all roots cν2 of Eq. (28) are bounded—these roots
can be found by solving the generalized eigenvalue
problem specified by Eqs. (26) and (27) on the basis
of known methods (see [22]) that make it possible
to calculate simultaneously all eigenvectors Xν and
eigenvalues cν2 , ν = 1, 2, . . ., but, now, as functions of
the parameters α3, m1, and m2 [cν2(α1;α3,m1,m2)
α1].
We now consider the case where, in the limit

c1 → ∞, some root cν2 has a finite limit cs2. In order
to calculate, to a high precision, the corresponding
bounded limiting solutions X and Xm to Eqs. (22)
and (23), it is necessary, first, to go over to the limit
c1 → ∞ in these equations and, then, to solve the
resulting limiting equations. In order to derive such
equations, each equation in the sets of Eqs. (22) and
(23) for the unknown quantities Xi

n that involves c1
must be divided by c1, whereupon it is necessary to
set c1 = ∞. As a result, we obtain sets of equations
for determining the limiting values of the coefficients
Xi
n. In the matrix form, these equations have the

same form as the original Eqs. (22) and (23), but they
3
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involve the matrices I, Dn, andM t, whose first rows
(i = 1; k = 1, 2, 3) can be calculated by the formulas

Dn
ik = [Kn(γki)]1−δki/(n2 −m2), (29)

Iik = 0, M t
ik = [Km(γki)]1−δki ;

their second and third rows are determined, as before,
by Eqs. (24).
Let us investigate the structure of the series in (19)

for the function F at c1 = ∞ and c2 = cs2. For this
purpose, the first equation (i = 1) of each matrix
equation of the limiting sets of equations as given
by (22), (23), and (29) is reduced, with the aid of
relations (21), to the equality

B1
L +Kn(γ21)B2

L +Kn(γ31)B3
L = 0. (30)

According to the definition in (20), the left-hand side
of (30) is equal to the coefficient 1BL0, whence it
follows that, in the limit under study, 1BL0 = 0 at all
values of L. In the representation Ωi, i = 1, the series
in (19) does not therefore involve the hyperharmonics
Y 00
Laa with a = 0; that is,

F (Ωi; p2) =
t∑

L=2

L/2∑
a=1

iBLaY
00
Laa(Ωi). (31)

Since K1(γki) = 1 at any value of γki, it follows from
Eqs. (20) and (30) at n = 1 that iB00 = 0, i = 1, 2, 3.
Hence, the limiting series (19) for the functions
F (Ωk; p2), k = 2, 3, as well as the series in (31), do
not contain the hyperharmonic Y 00

000, but, in general,
they involve all other hyperharmonics of L > 0:

F (Ωk; p2) =
t∑

L=2

L/2∑
a=0

kBLaY
00
Laa(Ωk). (32)

Thus, we see that, in the limit c1 = ∞ and at c2 =
cs2, the terms B

i
0Y

00
000 of the series in (7) for the com-

ponents Fi are spurious; that is, these terms cancel
in summing these components into the hyperangular
part [Eqs. (31), (32)] of the limiting solution Ψ to the
Schrödinger equation.
Other limiting solutions can be analyzed by fol-

lowing a line of reasoning similar to that adopted
above: if |cν2 | → ∞ at c1 → cs1 and if |cs1| < ∞, we
set i = 2 in formulas (29) and (31) and k = 1, 3 in
the series in (32); but if |cν2 | → ∞ for |c1| → ∞, it is
necessary to employ the values of i = 1, 2 and k = 3
in the same formulas.
It only remains to describe two particular cases of

physical significance.
Suppose that particles p2 and p3 are identical

bosons. We denote by P23 the interchange op-
erator and by I the identity operator. Therefore,
m2 = m3 and c2 = c3; according to (11), we also
PH
have γ12 = γ31. For the sought Faddeev compo-
nents (4)–(7) and the function in (17) correspond-
ing to these components to obey the permutation-
symmetry conditions [8]

Ψ1 = P23Ψ1, Ψ2 = P23Ψ3,

Ψ = P23Ψ = Ψ1 + (I + P23)Ψ2,

we set B2
L = B3

L for L = 0, 2, . . . , t and, according to
formulas (21), X2

n = X3
n at all values of n. Therefore,

all columns andmatrices of Eqs. (22) and (23) and the
blocks of the matrices of Eq. (26) appear to be two-
dimensional,

Xn ≡ (X1
n,X

2
n)
T , n = 1, 2, . . . ,m; (33)

I = diag{1, 1};

Dn
ii = 2 +

ci
n2 −m2

(1 + δi2Kn(γ23)),

Dn
ik =

ci
n2 −m2

(1 + δk2)Kn(γ12);

M t
ii = ci(1 + δi2Km(γ23)),

M t
ik = ci(1 + δk2)Km(γ12), k �= i = 1, 2,

Rn = 2I, T nii =
αi

m2 − n2
(1 + δi2Kn(γ23)),

T nki =
αi

m2 − n2
(1 + δk2)Kn(γ12),

and formulas (20) are simplified to become
1BLa = (1 + (−1)a)(δa0B1

L (34)

+ 2〈aa|K(γ21)|00〉L0B
2
L), a = 1, 2, . . . ;

iBLa = 〈aa|K(γ12)|00〉L0B
1
L

+ (δa0 + 〈aa|K(γ32)|00〉L0)B2
L, i = 2, 3.

Suppose that p1, p2, and p3 are identical bosons. In
this case, we havemk = m1, ck = c2, and |γki| = π/3
for all k �= i = 1, 2, 3. The complete-permutation-
symmetry conditions [8]

Ψi = PkiΨk, Ψ = PkiΨ = (I + P12 + P23)Ψi,

k �= i = 1, 2, 3,

are satisfied for all sought Faddeev components
(4)–(7) and the function in (17) corresponding to
them if one sets Bk

L = B1
L and X

k
n = X1

n at arbitrary
k,n, andL. It follows that, in Eqs. (22), (23), and (26),
all block matrices are one-dimensional,

Dn = 2 +
c2

n2 −m2
(1 + 2Kn(π/3)); (35)

M t = c2(1 + 2Km(π/3));

Xn = X1
n, I = 1, Rn = 2, T n = (Dn − 2)/c2,

n = 1, . . . ,m− 1,
YSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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and that, by virtue of Eqs. (12) and the identities
Bi
n = B1

n, i = 1, 2, 3, formulas (20) take the form
iBLa = [δa0 + (1 + (−1)a)〈aa|K(π/3)|00〉L0 ]B1

L,

a = 1, 2, . . . . (36)

In order to highlight one special feature, we will
consider the coefficients in (36) for even values of
the index a. If Bi

L �= 0, then iBLa = 0 only at L = 2
and a = 0, because in no other case, as follows from
Eqs. (12), do we have 〈aa|K(π/3)|00〉L0 = −1/2.
Therefore, the series in (19) for the function F does
not involve the hyperharmonic Y 00

200 even in the case
where this hyperharmonic appears in the series in (7)
for the components Fi of the function F . Therefore,
the term Bi

2Y
00
200 in the component Fi is spurious at

any c2 and t.

4. REFERENCE SOLUTIONS

For reference solutions to the Faddeev Eqs. (2),
it is reasonable to use the exact solutions (4) whose
hyperspherical expansions involve a minimum possi-
ble number of terms. As was shown above, there are
no nontrivial exact solutions at t = 0, 2. Therefore,
we consider the case of t = 4, where m = t/2 + 1 =
3 and p2 = 36 and where there are three unknown
columns X1, X2, and X3. In this case, the set of
Eqs. (22) consists of two equations

D1X1 +X2 = 0, X1 +D2X2 = 0,

which are equivalent to the equations

G4X1 = 0, G4 = D2D1 − I; X2 = −D1X1;

the column X3 is determined by Eq. (23); and the
matrices D1,D2, andM4 are given by formulas (24),
(33), and (35), which correspond to this case.

4.1. Case of Three Different Particles
At t = 4, Eq. (28) is the quadratic equation

detG4 = det(D2D1 − I) = Ac22 +Bc2 + C = 0.
(37)

At arbitrary real-valued c1, c3,m1, andm2, its coeffi-
cients

A ≡ 15 + 2(t21 − 1)c1 + 2(t23 − 1)c3, (38)

B ≡ 2(t21 − 1)c21 + 2(t23 − 1)c23 − 390

− 2(16t21 + 5t1 − 36)c1 − 2(16t23 + 5t3 − 36)c3

+
2
3
(4(t21 + t22 + t23) + t1 + t2 + t3 − 12)c1c3

− 2
3
(cos 2(γ12 − γ31) + cos 2(γ12 − γ23)

+ cos 2(γ31 − γ23))c1c3,
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Fig. 1. Roots c2 = c±2 (c1; c3, m1,m2) of Eq. (37) with
the coefficients given by (38) versus the argument c1 for
the case of c3 = −2,m1 = 2, andm2 = 4: (solid curves)
c+2 and (dashed curve) c−2 . The thin solid lines are the
horizontal and vertical asymptotes (41), and the inclined
straight line (42) was drawn through the points of their
intersection.

C ≡ 15(c21 + c23) + 2((t22 − 1)(c1 + c3)

− 16t22 − 5t2 + 36)c1c3 − 390(c1 + c3) + 1800,
t1 ≡ cos 2γ12, t2 ≡ cos 2γ31, t3 ≡ cos 2γ23,

are such that the discriminantD ≡ B2 − 4AC is pos-
itive. Therefore, there always exist two different real-
valued roots c+2 and c

−
2 :

c±2 (c1; c3,m1,m2) = − B

2A
(39)

×
(
1± sgn(cs1 − c1)

(
1− 4

AC

B2

)1/2
)
.

In the (c1, c2) coordinate plane (for example, see
Fig. 1), the graph of the function c−2 , which is
everywhere continuous, has the inclined asymptote

c2 = −c1 −
1
3

(
7 + 4

2m1 + 2m2 + 1
(m1 +m2)2

)
c3 (40)

+
1
2

(
37 + 5

m1 +m2 + 1
m1m2

)
,

while the graph of the function c+2 , which has a dis-
continuity at the zero cs1 of the coefficient A, has a
vertical and a horizontal asymptote:

c1 = cs1 ≡ 15 + 2(t23 − 1)c3
2(1 − t21)

, (41)

c2 = cs2 ≡ 15 + 2(t22 − 1)c3
2(1 − t21)

.

3
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Fig. 2. Components (16) at m1 = 10, m2 = 20,
c1 = −2, c2 = c+2 = 14.7647, and c3 = −40: (solid
curve) U+

1 (ϕ1; 36), (dashed curve) U+
2 (ϕ2; 36), and

(dash-dotted curve) U+
3 (ϕ3; 36).

The point (cs1, c
s
2) of their intersection lies on the

straight line

c2 =
1− t22
1− t23

c1 +
15
2

t22 − t23
(1− t21)(1− t23)

. (42)

At arbitrary fixed values of m1, m2, and c3, we have
the inequality c+2 < cs2 if c1 < cs1 and the inequality
c+2 > cs2 if c1 > cs1. If c3 increases or decreases, the
point (cs1, c

s
2) therefore moves along this straight line

downward or upward, respectively. The graphs of the
functions c±2 exhibit similar shifts in response to vari-
ations in c3.
In the case of m1 = 10, m2 = 20, c1 = −2, and

c3 = −40, the roots c±2 calculated by formulas (38)
and (39) to six decimal places are as follows: c+2 =
14.7647 and c−2 = 90.3522; the corresponding val-
ues of the coefficients Bi±

L in the series in (7) and
(16) are compiled in Table 1, while the components
U±
i (ϕi; 36) are displayed in Figs. 2 and 3 versus the
angle ϕi, i = 1, 2, 3. This table and these figures il-
lustrate the existence of two types of exact solutions
to Eqs. (15). We now describe these types.
At moderate values of c2 = c+2 � |c3|, there exist

solutions of the first type, (U+
1 , U

+
2 , U

+
3 ). The expan-

sions (16) of all their components U+
i are dominated

(Bi+
L � Bi+

t , i = 1, 2, 3;L = 0, 2) by the basis func-
tion sin 2nϕi characterized by the maximum possi-
ble value of n = 3 at the fixed value of t = 4 (see
columns 2–4 in Table 1 and Fig. 2). Solutions of the
second type (U−

1 , U
−
2 , U

−
3 ) exist at c2 = c−2 and c3

whose absolute values are much greater than |c1|.
In the expansions of the components U−

i of these
solutions, all functions sin 2nϕi, n = 1, 2, 3, appear
with commensurate coefficients (|Bi−

L | ∼ |Bi−
4 |, i =
PH
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Fig. 3. Components (16) at m1 = 10, m2 = 20,
c1 = −2, c2 = c−2 = 90.3522, and c3 = −40: (solid
curve) U−

1 (ϕ1; 36), (dashed curve) U−
2 (ϕ2; 36)/3, and

(dash-dotted curve) U−
3 (ϕ3; 36)/3.

1, 2, 3; L = 0, 2), but the component U−
1 is much less

(|U−
1 | � |U−

k |, k = 2, 3) than the others (see columns
5–7 in Table 1 and Fig. 3).

The solutions (U+
1 , U

+
2 , U

+
3 ) generate the solu-

tion Ψ+ that satisfies the Schrödinger equation and
which is close to the solution of the free equation
corresponding to it (ck = 0, k = 1, 2, 3). We will now
demonstrate this explicitly. Disregarding the coeffi-
cients Bi+

L , L = 0, 2, and using Eqs. (7), (17), (19),
and (20), we do indeed obtain

Ψ+(ri; 36) ≈ r−2Z6(z)
∑

a=0,1,2

iB+
4aY

00
4aa(Ωi).

The solution Ψ− obeying the Schrödinger equa-
tion and corresponding to the solution (U−

1 , U
−
2 , U

−
3 )

has a different physical property: the function |Ψ−|2
is expelled from that region of configuration space
R6 where the total interaction V is repulsive and
is localized in that region where this interaction is
attractive. This property is a corollary of the particular
angular dependence of the components U−

1 , U
−
2 , and

U−
3 , which is illustrated in Fig. 3. The component

U−
2 of the pair of strongly repulsed (c2 = c−2 ≈ 90)
particles p1 and p3 is localized in the regionϕ2 < π/4,
which is far off their collision point ϕ2 = π/2; on the
contrary, the component U−

3 of the pair of strongly
attracted (c3 = −40) particles p1 and p2 is localized
near the binary-collision point ϕ3 = π/2. Because of
a weak attraction (c1 = −2) in the pair of particles
p2 and p3, the remaining component U

−
1 has three

local extrema that are commensurate in magnitude
and which are uniformly distributed over the entire
interval 0 ≤ ϕ1 ≤ π/2.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003



EXACT SOLUTIONS TO THE THREE-BODY PROBLEM 69
Table 1. Coefficients Bi±
L corresponding to the roots c+2 = 14.7647 and c−2 = 90.3522 of Eq. (37) with coefficients (38)

atm1 = 10,m2 = 20, c1 = −2, and c3 = −40

L B1+
L B2+

L B3+
L B1−

L B2−
L B3−

L

0 1.000000 −12.96196 7.038856 1.000000 −24.02648 17.83859

2 −1.230759 26.94059 16.86049 −1.124846 −16.86264 −15.58043

4 338.9026 190.3271 −445.3111 −3.942418 −6.419471 10.03177

Table 2. Coefficients Bi
L at t = 4, m1 = 10, m2 = 20, and c3 = −40 for |c1| = ∞ and c2 = cs2 = 21.5152 or for |c1| =

cs1 = 35.7374 and |c2| = ∞

L
B1

L B2
L B3

L B1
L B2

L B3
L

|c1| = ∞, c2 = cs2 c1 = cs1, |c2| = ∞
0 1.000000 −0.594640 −0.405398 1.000000 −1.783493 0.783449

2 −0.136155 1.902848 1.297151 −3.200000 0.137848 −2.507177

4 14.02088 8.101168 −18.65622 −27.74264 −14.32074 35.71708
In the limiting case of |c1| = ∞ and c2 = c+2 = cs2,
we solve analytically Eqs. (22) and (23) with the block
matrices (29). By using relations (21), we then obtain
the formulas

f1 = 15 + c3(2t22 + t3 − cos 2(γ12 − γ31)− 1), (43)

B1
0 = 1, B2

0 =
1
f1

(2c3(1− t22)− 15),

B2
2 = −16

5
B2

0 ,

B3
0 = −1−B2

0 , B3
2 = −16

5
B3

0 ,

B1
2 = −(t1B2

2 + t2B
3
2);

g1 = 2 sin 2γ31+ sin 2(γ12 − γ23) + sin(4γ23 − 2γ31),

B2
4 =

12
f1(1− t23)

(2t22 − 2t3 − cos 2(γ12 − γ31) + 1),

B3
4 =

24
f1g1

(sin(4γ12 − 2γ31) + 2 sin 2(γ12 − γ31)

− 3 sin 2γ12 − sin 6γ12 − sin 3γ31),

B1
4 = −K3(γ12)B2

4 −K3(γ31)B3
4 ,

which are convenient for consecutively calculating
the limiting coefficients Bi

L. In this limit, the com-
ponents in (7) involve spurious terms Bi

0Y
00
000(Ωi),

i = 1, 2, 3, while, in the representation Ωi, i = 1, the
series in (19) can be written, according to (31), in the
simplest form

F (Ωi; 36) =
4∑

L=2

L/2∑
a=1

iBLaY
00
Laa(Ωi) �= 0. (44)
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
In the case of c1 = cs1 and c2 = c+2 = ±∞, we
similarly obtain

f2 = 15 + 2c3(t23 − 1), (45)

B1
0 = 1, B1

2 = −16
5
,

B3
0 =

c3
f2

(t2 − cos 2(γ12 − γ31)),

B2
0 = −1−B3

0 , B3
2 = −16

5
B3

0 ,

B2
2 =

16
5
(t1 + t2B

3
0);

g2 = sin 2(γ31− γ12)+ sin(2γ23− 4γ31)− 2 sin 2γ23,
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Fig. 4. Roots c2 = c±2 (c1;m1) of Eq. (37) with coef-
ficients (46) versus the argument c1 at m1 = 2: (solid
curve) c+2 and (dashed curve) c−2 . The thin solid lines are
the inclined asymptotes (49).
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Fig. 5. Components (16) at m1 = 2, c1 = −2, and c2 =

c+2 = 61.9400: (solid curve) U+
1 (ϕ1; 36) and (dashed

curve) U+
2 (ϕ1; 36).

B1
4 =

12
f2(t22 − 1)

(2t23 − 2t2 − cos 2(γ12 − γ23)),

B3
4 =

24
f2g2

(2 sin 2(γ12 − γ31) + sin(4γ12 − 2γ23)

− 3 sin 2γ12 − sin 6γ12 − sin 2γ23),

B2
4 = −K3(γ12)B1

4 −K3(γ23)B3
4 .

In this limit, the spurious terms are the same as before
(Bi

0Y
00
000), while the function F (Ω2; 36) can be found

by formula (44) at i = 2.

By way of example, the values of the coefficients
in (43) and (45) are given in Table 2 for m1 = 10,
m2 = 20, and c3 = −40. It can be seen that, in ei-
ther extreme case considered above, |Bi

L| � |Bi
4|,

i = 1, 2, 3; L = 0, 2. Therefore, both limiting solu-
tions (U1, U2, U3) are those of the first type—that is,
their expansions are dominated by the basis function
sin 2nϕi whose index takes the maximum possible
value of n = 3.
In the remaining limiting cases, where, according

to (40), c−2 → ∓∞ for c1 → ±∞, the situation is dif-
ferent: if B1±

0 = 1, then B2±
1 = −1 and Bi±

L = 0 for
all other values of i and L. Therefore, the limiting

Table 3. CoefficientsBi±
L corresponding to the roots c+2 =

61.9400 and c−2 = 6.93328of Eq. (37) with coefficients (46)
atm1 = 2 and c1 = −2

L B1+
L B2+

L B1−
L B2−

L

0 1.000000 −1.347928 1.000000 −4.221037

2 −2.521657 −16.69492 −0.223170 3.991469

4 6.256621 −0.128311 1.408249 2.295875
PH
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Fig. 6. Components (16) at m1 = 2, c1 = −2, and c2 =

c−2 = 6.93328: (solid curve) U−
1 (ϕ1; 36) and (dashed

curve) U−
2 (ϕ2; 36).

solutions to Eqs. (13) are identical,

F±
i = (−1)1+iY 00

000, i = 1, 2; F±
3 ≡ 0,

and are spurious, since their sum in (18) is a trivial
function: F ≡ 0.
Once we have found all coefficients Bi

L and have
constructed the components Fi in the form of the
series in (7), we can calculate the function F by
formulas (18) or (19).

4.2. Case of Two Identical Particles
Sincem2 = m3 = 1 and c2 = c3, Eq. (28) reduces

to the square Eq. (37) with the simpler coefficients

A≡ 12t21, B≡ 4((2t21− t1+ 2)c1− 24t21− 15),
(46)

C ≡ 3(c21 − 6)(c1 − 20), t1 ≡ −(1 +m1)−1,

whereas the sought roots с2 = c±2 (c1;m1) depend on
one argument c1 and one parameter m1. If m1 < ∞,
then A < 0 and D = B2 − 4AC > 0 at any value
of c1; therefore, there exist two different real-valued
roots

c±2 (c1;m1) =
1
6t21

((t1−2t21−2)c1+24t21+15) (47)

± 1
6t21

[4(t41 − t31 − t1 + 1)c21 + 6(8t31 − 16t41

+ 13t21 + 5t1 − 10)c1 + 9(64t41 − 40t21 + 25)]1/2,

which are continuous in the argument c1. For c1 →
±∞, these roots are unbounded:

с+
2 (c1;m1) = a±c1 + b± +O(c−1

1 ), (48)

c−2 (c1;m1) = a∓c1 + b∓ +O(c−1
1 ),

a± ≡ 1
6t21

(
t1 − 2t21 − 2± 2(1− t1)

√
t21 + t1 + 1

)
,
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b± ≡ 1
2t21

(
8t21 + 5± 16t31 + 8t21 − 5t1 − 10

2
√
t21 + t1 + 1

)
.

Therefore, their graphs (see, for example, Fig. 4) have
the inclined asymptotes

c2 = a+c1 + b+, c2 = a−c1 + b−. (49)

The straight line c2 = a+c1 + b+ is an asymptote
of the graph of c+2 (c1;m1) for c1 → −∞ and an
asymptote of the graph of c−2 (c1;m1) for c1 → ∞. The
straight line c2 = a−c1 + b− is an asymptote of the
graph of c+2 (c1;m1) for c1 → ∞ and an asymptote of
the graph of c−2 (c1;m1) for c1 → −∞.

Only atm1 = 3/5 is the discriminantD the perfect
square of the argument c1, in which case the functions
c±2 coincide with their asymptotic expressions:

c+2 (c1; 3/5) = 6(20 − c1)/25, (50)

c−2 (c1; 3/5) = 8(6− c1)/16.

The case of m1 = ∞ is a special one. Here, we
have A = 0; therefore, there exists only one root un-
dergoing a discontinuity at the point c1 = cs1 = 15/2:

c2(c1;∞) =
3
4
(c1 − 6)(c1 − 20)

15− 2c1
. (51)

The resulting family (47)–(51) of all roots of
Eq. (37) with coefficients (46) has two special fea-
tures: c+(20;m1) = c−(6;m1) = 0 at all values of
m1, but the values of c

±
2 at c1 = 0 depend onm1 as

c±2 (0;m1) =
5
2
m2

1 + 5m1 +
13
2

± 1
2

× (25m4
1 + 100m3

1 + 110m2
1 + 20m1 + 49)1/2.

It follows that, as m1 increases from 0 to ∞, the
ordinate of the point where the graph of the root c+2
(c−2 ) intersects the ordinate axis increases from 10 to
∞ (3 to 6), while the point of intersection with the
abscissa axis, (20, 0) [(6, 0)], remains immobile.

At B1±
0 = 1, the coefficients corresponding to the

roots in (47) are the following:

B2±
0 = − c±2

2f± (c1 − 10 + 2t1(t1c±2 − 2)), (52)

B1±
2 = − 4

5f± (10(6 − c±2 )+ t1(c1+ 2t1(c±2 − 8))c±2 ),

B2±
2 = − 2c±2

5f± (10− c1 − 2t1(c±2 − 8)),

B1±
4 =

15
8g±

((8t21(t
2
1 − 1) + 3)c±2 B

1±
2

+ (1− 4t21)с1B
2±
2 ),
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Fig. 7. Components (16) at t = 14 and the constant c2
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√
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B2±
4 =

15
16g±

((1− 4t21)c
±
2 B

1±
2 + 3c1B2±

2 );

f± ≡ (c1 − 10)(c±2 − 6) + 2t21c
±
2 (c

±
2 − 8),

g± ≡ (1− t21)
2c1c

±
2 .

In the particular case of m1 = 2 and c1 = −2, it fol-
lows from formulas (47) that

c±2 = (205 ±
√
27769)/6.

To six decimal places, we therefore have c+2 = 61.9400
and c−2 = 6.93328; the coefficients in (52) that corre-
spond to these values of c+2 and c−2 are compiled in
Table 3, while the components U±

i (ϕi; 36), i = 1, 2,
calculated as the sums in (16) are depicted in Figs. 5
and 6. According to the data in Table 3, the compo-
nent U+

2 can be approximated by the second term of
its series in (16).

If, in formulas (52), we replace the roots c±2 by their
asymptotic expressions (48) and go over to the limits
c1 → ±∞, we obtain the coefficients of the series
in (7) for two limiting exact solutions (F±

1 , F±
2 ) to

Eqs. (13):

B1±
0 = 1, B1±

2 = −1
2
, B1±

4 = B2±
4 = 0, (53)

B2±
0 = −8

5

× 4t31 − 3t21 + 3t1 − 4± sgn(c1)δ(4t21 − 5t1 + 4)
8t31 + 3t21 − 2± sgn(c1)δ(8t21 − 4t1 + 2)

,

B2±
2 = − 1

2t1
B2±

0 ; δ ≡
√
t21 + t1 + 1.

These solutions are spurious. Indeed, all coeffi-
cients (34) in the series in (19) that represent the
3
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Table 4. Eigenvalues cν2 of the problem specified by Eq. (26) and corresponding coefficientsB1ν
L at t = 8, 10, 12, 14

t cν2 B1ν
2 B1ν

4 B1ν
6 B1ν

8 B1ν
10 B1ν

12 B1ν
14

8 5.19375 −1.54375 2.55234 −4.0 −11.5523

12.0000 −0.57143 0.0 1.33333 1.66667

30.8062 2.11518 −7.05234 −4.0 −1.94766

10 5.83831 −1.64016 2.59149 −3.61627 3.91018 7.36706

16.9905 −0.59464 0.11323 0.74190 −1.25685 −0.81371

39.4006 1.50631 −4.86681 1.14251 13.9297 3.88895

59.1039 3.35349 −9.24531 −7.72494 −11.4764 −2.13590

12 6.06294 −1.72913 2.69056 −3.67033 4.21833 −5.07798 −8.46850

18.9525 −0.86983 0.75712 −0.21448 −0.92610 3.15382 1.68255

28.2394 −0.25070 −0.63591 1.33930 −0.25940 −2.78006 −0.99539

73.9381 2.79588 −7.49072 −2.43657 7.92538 3.96780 0.54260

106.807 4.98713 −12.4210 −16.8906 −45.6014 −13.5438 −1.28215

14 5.81556 −1.80922 2.80194 −3.82010 4.59742 −5.68542 7.06801 24.3072

17.0506 −1.24747 1.57629 −1.49307 0.47312 1.41442 −4.90285 −5.75092

31.8512 −0.50744 −0.03831 0.69668 −0.80740 0.50382 1.28813 0.80885

53.8113 0.59056 −2.43396 2.11098 2.60527 −7.87223 −5.62504 −2.09065

108.377 3.31888 −8.38664 −3.86512 5.23021 4.20258 1.07618 0.19859

170.427 6.42135 −15.1557 −27.1061 −89.5814 −31.1362 −4.60983 −0.54097
functions F± corresponding to these solutions are
equal to zero; therefore, F± ≡ 0.

4.3. Case of Three Identical Particles

We now havemk = 1 and ck = c2 at all k = 1, 2, 3.
Hence, Eq. (37) has the form c2 − 4 = 0. Its root
is c2 = 4; the corresponding coefficients are B1

0 =
1, B1

2 = −4/5, and B1
4 = −1, while the component

in (16) has the form

U1(ϕ; 36) = sin 2ϕ− 4
5
sin 4ϕ− sin 6ϕ, ϕ ≡ ϕ1.

The special features of the structure of the com-
ponents U1 and F1 for t > 4, as discussed below,
have been deduced from a numerical analysis of the
generalized eigenvalue problem specified by Eqs. (26)
and (27) with the block matrices (35).
P

In the case of t = 6, there exist two eigenval-
ues c±2 = 9±

√
11 and two corresponding compo-

nents (16):

U±
1 (ϕ; 64) = sin 2ϕ− sin 4ϕ

4(c±2 − 10)
+

5
21 − 2c±2

×
(
3 sin 6ϕ+

14
c±2

sin 8ϕ
)
.

All eigenvalues cν2 , ν = 1, 2, . . . , t/2− 1, of the
problem specified by Eq. (26) and the corresponding
values of the coefficients B1ν

L , L = 2, 4, 6, t for t =
8, 10, 12, 14 are compiled in Table 4. Here, the follow-
ing regularity can be observed: for the minimum root
c12, the amplitudes B

1ν
L of the hyperharmonics Y 00

L00 in
the series in (7) for the component F ν

1 (ϕ1; (t+ 2)2)
increase with increasing grand-orbital momentum L,
so that the hyperharmonic Y 00

t00 corresponding to the
maximum possible value of L = t is dominant; for the

maximum root ct/22 , the analogous series is dominated
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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by hyperharmonics characterized by medium values
of the grand-orbital momentum, L = t/4− 1/2. For
this reason, the components Uν

1 , which are specified
by the series in (16) and which are associated with
the three increasing roots cν2 for ν = 1, t/4− 1/2,
and t/2− 1, have drastically different angular depen-
dences. It can be seen from Fig. 7 that, as c2 = cν2
grows—that is, as repulsion becomes stronger in all
three boson pairs—the components Uν

1 normalized
by the same condition B1ν

0 = 1 are monotonically
expelled from the half-vicinity of the binary-collision
point (ϕ = π/2), the amplitudes of their oscillations
increasing concurrently.

5. DISCUSSION OF THE MAIN RESULTS

For the purpose of discussion, we will first consider
the isolated binary subsystem (p1, p3) of the three-
particle system (p1, p2, p3) under investigation.
Let e be the total energy of the (p1, p3) subsystem.

It is well known [2] that, for c2 < 0, all physically
allowed wave functions ψ(x1; e) for this system are
weakly singular at the origin x1 = 0: x1ψ → 0 for
x1 → 0; for c2 > −1/4, the number of bound states
is finite, while, for c2 < −1/4, the number of bound
states is infinite, the ground-state energy being
e = −∞. In this state, particles p1 and p3 occur in
an infinitely small vicinity of their center of mass
(x1 = 0); therefore, it is common practice to say
that there occurs a collapse of particles to the point
x1 = 0. Fulfillment of the inequality c2 < −1/4 is the
condition under which this phenomenon is realized.
In contrast to the case of two particles, sufficient

conditions for the existence of all physically allowed
solutions to the problem of three particles whose in-
teraction is of the centrifugal type are not known [8].
To some extent, this gap is filled by the existence
criterion proven in Section 3: for the case of zero
total angular momentum and S-wave interactions of
the centrifugal type in (3), the three-particle problem
specified by Eq. (2) has an exact solution that can be
represented in the form of the product (4) of a general
solution to the Bessel Eq. (5) and the finite linear
combination (7) of hyperharmonics (6) if—and only
if—t ≥ 4, p2 = (t+ 2)2, and there exists at least one
solution (c2,X) to the generalized eigenvalue prob-
lem (26) at fixed ratios α1 = c1/c2 and α3 = c3/c2.
The most significant result of Section 4 is the

following: in the limit of two coupling constants that
are indefinitely large in magnitude, the reference exact
solutions (t = 4) to Faddeev equations go over to
spurious solutions, while, in the limit of one coupling
constant large in magnitude—for example, in the
case where c2 = c−2 → −∞ and c1 = cs1—they reduce
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
to solutions of great physical interest. Indeed, such
solutions are regular everywhere on S5—in particular,
at the binary-collision point x1 = 0. This is not the
whole story, however: although the condition of col-
lapse (c2 < −1/4) of particles p1 and p3 to this point
is satisfied in the absence of particle p2, the collapse
does not occur in the three-particle system because of
the interactions V1 and V3 of particles p3 and p1 with
particle p2.

Since all hyperharmonics in (6) are regular on S5,
all singular solutions satisfying Faddeev equations
and describing the collapse of particles into binary-
collision points must involve infinite hyperspherical
series.
In conclusion, we would like to emphasize the par-

ticular numerical significance and adaptability of the
exact solutions in question as reference ones. These
solutions provide a unique possibility of estimating
the point-by-point convergence of the tested numer-
ical algorithm in the following extreme situations: in
the limit of a small binding energy Eb = −E, where
the Faddeev components Ψi decrease slowly for r →
0; in the cases where these components increase
sharply in magnitude for r → 0 and (or) oscillate
quickly for ϕi → 0; and, finally, in the case of one or
two coupling constants large in magnitude.
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Abstract—Simple analytic expressions for estimation of product yields from reactions between light nuclei
in the ultralow collision energy range are given. It is shown that, even in the case of total absorption targets
and large spread of incident beam energies, these expressions can be factorized and naturally define the
effective target thickness and the range of particle collision energies in the entrance channel that in turn
defines the yield of reaction products. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Importance of studying reactions between light
nuclei in the ultralow energy range is shown in many
papers [1–7]. This study allows not only verifica-
tion of fundamental symmetries in strong interac-
tions [1–4] but also solution to some astrophysical
problems [5–7]. However, it is very difficult to study
the processes in great depth because cross sections
for nuclear reactions at ultralow energy and inten-
sities of charged particle beams produced by clas-
sical accelerators are too small [8, 9]. In this con-
nection, it was proposed [7, 10–12] to study the
nuclear reactions by the method based on genera-
tion of radially converging ion fluxes in the course
of liner plasma implosion. This method made it pos-
sible to obtain new experimental results for the dd
reaction in the c.m. deuteron collision energy range
0.05–2.3 keV [12–17], on the one hand, and can
be a basis for nuclear-physics diagnostics of plasma
processes, on the other hand.

A procedure for finding the average astrophysical
S factor and effective d(d, n)3He reaction cross sec-
tions for the deuteron-collision energies in question
is described in [16, 17]. Note that the experiments
with a liner plasma (Z pinch) differ from the ex-
periments at classical accelerators by an apprecia-
bly larger spread of incident energies and by stop-
ping mechanisms in the target. In the liner plasma
experiments, the target is completely polarized and
the liner ion energy loss is due to elastic collisions
with particles of the dense target plasma. In the ac-
celerator experiments, the target is a condensed or

∗This article was submitted by the authors in English.
**e-mail: bystvm@nusun.jinr.ru
***e-mail: penkov@thsun1.jinr.ru
1063-7788/03/6601-0075$24.00 c©
gaseous medium, where energy loss at low energy is
due to inelastic collisions of incident particles with
atoms of the medium. Therefore, the procedure for
extraction of dd-reaction parameters from the ob-
served neutron yield included both numerical calcula-
tion of the effective target thickness providing a 90%
neutron yield (for assessment of target transparency
conditions) and calculation of the energy distribution
of colliding deuterons contributing to the observed
reaction-product yield. The energy distribution of ac-
celerated liner deuterons, phenomenological depen-
dence of the nuclear-reaction cross section on the
deuteron-collision energy, and the model of Coulomb
slowing-down of liner plasma ions during plasma–
target interaction had to be taken into consideration.
The above calculation scheme is cumbersome and
admits some arbitrary interpretation of such experi-
mentally significant parameters as effective reaction
cross sections and effective target thicknesses, which
hinders correct comparison of the experimental re-
sults obtained by different authors.

In this connection, the purpose of the present pa-
per was to work out an approach to analysis of ex-
perimental data that could allow basic characteristics
of nuclear reactions to be unambiguously found from
reaction-yield measurements irrespective of the ex-
perimental procedure. In other words, it is necessary
to find an expression for the nuclear-reaction yield in
a general form that involves the same quantities of the
same physical meaning, whatever the experimental
procedure. These quantities are the reaction cross
section at a particular collision energy of interacting
particles, the effective target thickness corresponding
to this energy, and the fraction of particles (from the
total spectrum of particles incident on the target)
participating in the interaction.
2003 MAIK “Nauka/Interperiodica”



76 BYSTRITSKY, PEN’KOV
2. BASIC FORMULAS

Let us simplify calculations of the nuclear-reac-
tion-product yield at low energy, where the reaction
cross section σ admits parametrization

σ = (S/Ecol) exp(−β/
√
Ecol), (1)

where S is the so-called astrophysical factor and
β/

√
Ecol is the Sommerfeld parameter in suitable

form (β = 2πZ1Z2

√
µ/2, where µ is the reduced

mass of colliding particles and Z1 and Z2 are their
charges). By way of example, below we consider the
dd reaction for which β is 31.29 at the c.m. collision
energy Ecol in keV. The astrophysical factor S is
usually only slightly dependent on energy when the
latter is well below nuclear energies (∼MeV).

Let the target be hit by a particle beam with a
Gaussian energy distribution with the average energy
Ē and spread

√
σ0:

f(E) =
1√

2πσ0
exp

(E − E)2

2σ0
. (2)

The yield of reaction products from the complete-
stopping target can be written as

N = Ndntεn

∞∫
0

f(E)dE

xmax∫
0

σ(E′(E, x))dx, (3)

where the maximum range xmax is defined by the
complete stopping at the initial energy E, i.e., by the
condition E′(E, xmax) = 0, and the constants Nd, nt,
and εn correspond to the amount of incident parti-
cles, target density, and reaction-product-recording
efficiency, respectively. It is convenient to pass to
integration over E′ varying from E to 0,

N = Ndntεn

∞∫
0

f(E)dE

E∫
0

σ(E′)
(
−dE

′

dx

)−1

dE′,

(4)

and to change the order of integration,

N = Ndntεn

∞∫
0

σ(E)
(
−dE
dx

)−1

dE

∞∫
E

dE′f(E′).

(5)

The specific-loss function dE/dx is defined by the
conditions for stopping of incident particles in the
target.

Using parametrization of cross section (1), we
write (5) in the form

N = Ndntεn

∞∫
0

S(E) exp(−β/
√
E)D(E)dE (6)
PH
×
∞∫
E

dE′f(E′),

whereD(E) = −(1/E)(dx/dE) is introduced for ab-
breviation. At low energy (β/

√
Ecol � 1), the func-

tion exp(−β/
√
E)D(E)

∫∞
E dE′f(E′) has a sharp

maximum, which makes it reasonable to introduce
a new distribution function P (E) defining the density
of the reaction-product yield at the collision energy
E:

P (E) =
exp(−β/

√
E)D(E)

∞∫
E

dE′f(E′)

∞∫
0

exp(−β/
√
E)D(E)dE

∞∫
E

dE′f(E′)
. (7)

Then, the reaction product yield is expressed in terms
of the average value

S̄ =

∞∫
0

S(E)P (E)dE (8)

of the smooth function S(E):

N =NdntεnS̄

∞∫
0

exp(−β/
√
E)D(E)dE

∞∫
E

dE′f(E′).

(9)

If the function S(E) is smoother than P (E), we can
make an obviously accurate replacement

S̄ → S(〈E〉),
where

〈E〉 =

∞∫
0

EP (E)dE, (10)

obtaining

S̄ = S(〈E〉) +
(

1
2
d2S

dE2
(0)(〈E2〉 − 〈E〉2)

)
+ . . .

This expression shows that deviation of S̄ from
S(〈E〉) is defined by the condition of small variation in
the first derivative at the dispersion scale of the P (E)
distribution (factor 〈E2〉 − 〈E〉2).

Considering the latter remarks, we write the ex-
pression for the reaction product yield as

N = NdntεnS(Ecol)

∞∫
0

exp(−β/
√
E)D(E)dE

(11)

×
∞∫
E

dE′f(E′),
YSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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where the average energy 〈E〉 is designated as Ecol.
Below, when estimating analytically expression (11),
we will obtain an explicit expression for dispersion of
the distribution P (E).

3. ANALYTIC ESTIMATION
To simplify analysis of experimental data, it is

necessary to have an analytic form of the integral
appearing in (11):

I =

∞∫
0

exp(−β/
√
E)D(E)dE

∞∫
E

dE′f(E′). (12)

Note that the integrand has a pronounced maximum
due to its exponential decrease at low energy (factor
exp(−β/

√
E)) and, as a rule, even faster decrease in

the function
∫∞
E dE′f(E′) at high energy. Therefore,

a natural form of approximation for integral (12) is
based on the Laplace method (see, for example, [18]),
which requires the following operations to take the
integral

Ĩ =

b∫
a

F (x)dx

of the sharp function F (x) with a single peak in the
integration interval. The function F (x) is replaced by
the expression exp(ϕ̃(x)) (ϕ̃(x) = ln(F (x))). A point
xm where the function ϕ̃(x) reaches its maximum,
i.e., the equation dϕ̃(x)/dx = 0 is solved for x, is
sought. If a < xm < b, the integral Ĩ can be written
in an approximate form

Ĩ ≈
b∫
a

exp
(
ϕ̃(xm) +

1
2
ϕ̃(2)(xm)(x− xm)2

)
dx.

If −ϕ̃(2)(xm)x2
m � 1, integration can be extended to

the interval (−∞,∞) and the integral can be calcu-
lated explicitly. Considering the terms of expansion in
ϕ̃(2)(xm) (see [18]) that define the relative error δ of
the method, the approximate integral can be written
as

Ĩ ≈ F (xm)

√
2π

−ϕ̃(2)(xm)
(1 + δ), (13)

δ =
1
8
ϕ̃(4)(xm)

(ϕ̃(2)(xm))2
.

Following the method described, we represent the
integral I as

I =

∞∫
0

eϕ(E)dE,
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ϕ(E) = −β/
√
E + ln


 ∞∫
E

dE′f(E′)


+ ln(D(E)).

Then, the equation for the maximum of the function
ϕ(E) is

β

2E3/2
m

− f(Em)
∞∫
Em

dE′f(E′)
+
D(1)(Em)
D(Em)

= 0, (14)

and, according to (13), the approximate expression
for the integral I is factorized on condition that the
correction δ is small:

I ≈
√

2π
−ϕ(2)(xm)

exp(−β/
√
Em)D(Em) (15)

×
∞∫

Em

dE′f(E′)(1 + δ), δ =
1
8
ϕ(4)(Em)

(ϕ(2)(Em))2
.

Note the obvious condition of expression (15) being
stable against small perturbations of Em. Since the
first derivative of ϕ(E) is zero, the errors ∆ in de-
termination of the extreme energy yield a correction
to I quadratic in ∆, either because of approximate
calculation of the root or because of neglect of some
small terms in (14),

eϕ(Em+∆) = exp
(
ϕ(Em)+

1
2
ϕ(2)(Em)∆2 + . . .

)

≈ eϕ(Em)

(
1 +

1
2
ϕ(2)(Em)∆2

)
.

4. EXTRA SIMPLIFICATION

Smoothness of the function D(E) as compared
with other components of the integrand in (12) pro-
vides an extra possibility of considerably simplify-
ing (14) and (15). For example, the energy loss from
stopping of incident deuterons by plasma deuterons is
described by the expression [19]

dx

dE
= − 2E

πnte4Ld
, (16)

where e is the elementary charge and Ld is the
Coulomb logarithm equal to 12.8 (see [19]) for ex-
perimental conditions [17]. In this case, the function
D(E) is simply constant inE and does not contribute
to the position of Em. In the case of stopping by
electrons with temperature Te when (md/me)Te �
E � Te, the stopping obeys the law [19]

dx

dE
= − 3

8ntLe

√
2T 3

emd

πEme
, (17)
3
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where md and me are the deuteron and electron
masses, respectively, and Le is the Coulomb log-
arithm for deuteron–electron collisions. Thus, the
function D(1)(E)/D(E) = −3/(2E) for stopping of
ions by plasma electrons at a collision energy well
below β2/9 is small compared to the first term in (14).
For example, β2/9 � 109 keV for deuteron–electron
stopping. Therefore, when collision energies are low
and β is large, Em is mainly governed by the first
two terms in (14); i.e., the stopping law only slightly
affects the position of the maximum. Let us find out
when the functionD(1)(Em)/D(Em) can be ignored.
To this end, we assume it to be a small quantity
shifting the position of Em by ∆ on condition that

β

2E3/2
m

− f(Em)
∞∫
Em

dE′f(E′)
= 0.

Then,

∆ = −D
(1)(Em)
D(Em)

1

ϕ
(2)
0 (Em)

, (18)

where ϕ0 = ϕ− ln(D(E)). Thus, smallness of the
contribution from stopping processes to the energy
Em is dictated by smallness of the ratio between the
logarithmic derivative of D(E) and the dispersions
of the energy distribution of the integrand in the
Gaussian approximation. As was mentioned above,
the correction ∆ does not make a linear contribution
to the integral because of the stationarity condition.
Therefore, the effect produced by the stopping force
on the energy shift causes a relative change in the
integral I by a value

δD =
1

2ϕ(2)
0 (Em)

(
D(1)(Em)
D(Em)

)2

.

The correction δD was found for deuteron stopping,
but its form is valid for stopping of any ions in plasma
because only energy dependence of the function D
matters.

Considering what was said above, the integral I
can be written as

I ≈
√

2π

−ϕ(2)
0 (Em)

exp(−β/
√
Em)D(Em) (19)

×
∞∫

Em

dE′f(E′)(1 + δ + δD), δ =
1
8
ϕ

(4)
0 (Em)

(ϕ(2)
0 (Em))2

,

δD =
1

2ϕ(2)
0 (Em)

(
D(1)(Em)
D(Em)

)2

,

P

where

ϕ0(E) = −β/
√
E + ln


 ∞∫
E

dE′f(E′)


 (20)

and Em is defined by the equation for the extreme
point

β

2E3/2
m

− f(Em)
∞∫
Em

dE′f(E′)
= 0. (21)

In view of (21) and (2), the second derivative of the
function ϕ0(E) at the point Em appearing in (19) is

ϕ
(2)
0 (Em) = − 3β

4E5/2
m

+
Em − Ē
σ0

β

2E3/2
m

− β2

4E3
m

.

(22)

To estimate the accuracy of taking the integral I, it
is also necessary to calculate the fourth derivative

ϕ
(4)
0 (Em). In view of (21) and (2), it has a simple

though cumbersome form

ϕ
(4)
0 (Em) = − 105β

16E9/2
m

− 3β4

8E6
m

(23)

+
(

(Em − Ē)3

σ3
0

− 3
Em − Ē
σ2

0

)
β

2E3/2
m

−
(

(Em − Ē)2

σ2
0

− 1
σ0

)
β2

E3
m

+
Em − Ē
σ0

3β3

2E9/2
m

−
(
Em − Ē
σ0

)2 3β2

4E3
m

.

Now the expression for the nuclear-reaction yield
can be written in a simple analytic form

Nanal = Ndntεnσ(Em)leff(Em)K(Em), (24)

where wemade use of the fact thatS(Ecol) =S(Em)+
O(S(2)/|ϕ(2)

0 |) and denoted the fraction of the initial
beam contributing to the reaction by the coefficient
K(Em),

K(Em) =

∞∫
Em

dEf(E) =
2E3/2

m

β
f(Em), (25)

and the quantity with the meaning of the effective
thickness by leff,

leff =

√
2π

−ϕ(2)
0 (Em)

dx

dE
(Em). (26)

The relative error of formula (24) is determined by the
quantities δ and δD from (19). Note that the quantity

−1/ϕ(2)(Em) or its approximate value −1/ϕ(2)
0 (Em)

plays the role of dispersion of the distribution function
P (E) in the Gaussian approximation.
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Comparison of numerically (11) and analytically (24) calculated neutron yield in the d(d, n)3He reaction under the
experimental conditions [17] (all quantities with dimensions of energy are given in keV and with dimensions of length
in cm)

Ē/W Em σ(Em) × 1033 ntleff(Em) K(Em) Nanal δ N

1.05/0.8 1.766 1.68 2.99 × 1018 0.0224 1.17 −0.01 1.17

1.2/0.65 1.786 1.90 2.93 × 1018 0.0383 2.22 −0.008 2.22

1.4/0.65 2.041 7.52 3.94 × 1018 0.0487 14.94 −0.008 14.93

1.7/0.55 2.250 19.4 4.67 × 1018 0.0831 77.73 −0.005 77.44
5. COMPARISON OF ANALYTIC ESTIMATES
AND NUMERICAL CALCULATIONS

To find out how close analytic expression (24) is
to (11), we compare them under real experimental
conditions [17] of measuring the S factor for the
dd→3 He + n reaction at implosion of the liner
plasma. A supersonic hollow cylindrical deuterium
jet with a current of ∼ 1 MA through it was used as
a liner. The liner plasma was accelerated toward the
axis under the effect of its own magnetic field. The
target was a CD2 layer deposited on the surface of
the metallic Cu cylinder placed along the liner axis.
In the course of liner implosion, the target was heated
to the state of completely ionized plasma. Under the
experimental conditions [17], the temperature of the
target was 20–30 eV, the deuteron-collision energy
range was 1.05–1.7 keV, and the relative spread
of liner deuteron energies W was 0.80–0.55. The
quantityW was defined as the relative width at a half-
maximum (W = 2.3548

√
σ0/Ē).

These experimental conditions impose severe
requirements to the accuracy of calculation in data
processing by formula (11) because of the Coulomb
factors (exp(−β/

√
1 keV) � 2.6 × 10−14). On the

other hand, neutron yields calculated by (11) and
(24) virtually coincide. Below, we give expressions for
quantities appearing in (24) that are convenient for
fast analysis of the experimental results. According
to [20–22], only dd stopping was taken into account
for the effective target thickness

ntleff = 12.13E2
m

(
β√
Em

(
3.0 +

β√
Em

(27)

− 11.09
(Em − Ē)Em
W 2Ē2

))−1/2

× 1018,

K(Em) = 1.879
E

3/2
m

βWĒ
exp

(
−2.7726

(Em − Ē)2

W 2Ē2

)
.

(28)

In addition, using two-dimensional fitting of the solu-
tion for (21), we give a simple dependence of the roots
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of this equation for the dd reaction (β = 31.29):

Em � 0.0038 + 0.2770W + 0.8496Ē (29)

+ 0.7312ĒW + 0.1282W 2Ē − 0.0641WĒ2.

Under the experimental conditions [17], the error in
determination of Em does not exceed 8 eV. Note that
the maximum deviation is 43 eV at Ē = 3.0 keV and
W = 0.2 in the entire ranges of fitting in terms of
Em = 0.8–3.0 keV and in terms ofW = 0.2–1.

The table compares neutron yields numerically
calculated by (11) and analytically found by (24).
The experimental conditions [17] set the parameter
values Nd = 2.07 × 1018 and εn = 0.005, while the
astrophysical factor S was taken to be 50 b keV. It
is evident from the table that the largest difference
between the numerically and analytically estimated
neutron yields is 0.38% with an error estimate of
0.5%. In [17] there are plots of the distribution func-
tions f(E) and P (E)whose maxima are considerably
shifted. Their numerical values Ē and Em are given
in the upper rows of the table. It is the large shift
of these quantities (1.4–2 standard deviations) that
is responsible for only small fractions of the incident
deuteron flux contributing to the yield of final products
of nuclear reactions (function K(Em)): 2–8%. Note
that the numerical estimate of the neutron yield frac-
tion at the target thickness leff corresponds to about a
95% neutron yield.

6. CONCLUSION

Analytic estimates of product yields in nuclear
reactions at ultralow collision energies show that a
large spread of particle energies in the entrance chan-
nel and large target thicknesses do not prevent intro-
ducing the notions of the effective target thickness,
cross section, and interaction energy with dispersion
defined by the value of ϕ(2)(Em). These quantities
naturally appear in the factorized form of expres-
sion (24). In this case, there arises a factor with a
simple meaning of a fraction of the initial flux of parti-
cles participating in the reactions. Note that it would
3
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be much easier to compare experimental results if
authors of publications gave experimental conditions
for their investigation of nuclear reactions at ultralow
energies in terms of expression (24).
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Abstract—The S-wave phase shift δ(E) for the spin-doublet nd scattering at low energy E is cal-
culated in the framework of the two-body approach. The effective-range-theory formula k cot δ = (1 +
k2/κ2

0)−1(−1/a + C2k
2 + C4k

4) is used to obtain approximate analytical results with different potentials.
The corresponding coefficients C2 and C4 are obtained from our previous calculations of the asymptotic
normalization parameter function C2

t (aκ), where κ is the triton wave number and a is the doublet nd
scattering length. The model reasonably describes δ(E), the results being quite sensitive to the choice
of the effective nd potential. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The spin-doublet neutron–deuteron system is a
classic example of application of the three-body Fad-
deev equation. It has been demonstrated in various
studies that the nd system’s physical characteristics
(especially the doublet scattering length a2) depend
strongly on an NN-interaction model. A correlation
has been found between a2 and the triton binding
energy εt (the Phillips line [1]) and the analogous one
for the virtual-triton (t∗) “binding energy” εt∗ as well
as for the asymptotic normalization parameter of the
triton C2

t (the Girard–Fuda lines [2]). An effective-
range theory expression for kcotδ with a pole taken
into account (see, for example, [3]) also represents a
correlation among the observables mentioned above.
It does not include three-particle properties in an
explicit way. The existence of correlations means that
the doublet nd system at low energy is controlled by
a few independent physical parameters, mainly by the
scattering length a2.

One could expect that three-body features of the
nd system would be decisive even when its energy
E is below the deuteron-breakup threshold because
the deuteron binding energy εd is small in compari-
son with εt. But it has been shown by N/D-method
calculations [4, 5] that the low-energy observables of
the doublet nd system may be described reasonably
well without taking into account the three-particle S-
matrix cut in the complex energy plane.

It follows that the two-body potential model can
also be applied in the low-energy region. An ad-
vantage of this model in comparison with the N/D
method and the effective-range theory is that it is
possible to calculate the form factors for the vertices

∗This article was submitted by the authors in English.
1063-7788/03/6601-0081$24.00 c©
t → n + d and t∗ → n + d which can be applied in
the nuclear reaction theory based on the Feynman
diagram method. It is important in this application to
have the right (experimental) values of εt (8.48 МeV)
and a2 (0.65 fm), which is ensured in the two-body
potential model by fitting its parameters. But even
modern Faddeev calculations with a realistic NN po-
tential taking into account the charge-independence
breaking still underestimate the binding energy εt.
One needs to add three-nucleon (3N ) interaction to
get the proper values of εt and a2 (see, for example,
[6]).

The one-nucleon exchange Feynman diagram
plays an important role in nd scattering because its
pole is situated close to the physical region of the
transfer momentum simply due to the smallness of
εd. This is another theoretical argument in favor of
the two-body model, because it is possible to imitate
such singularity by using a Yukawa-type potential.

A two-body potential model was proposed for the
doublet Nd system in [7, 8]. The Hulthén potential

V (r) = −V0/[exp(µr) − 1] (1)

was used by Petrov in [7]. It was shown that the
model describes reasonably well a trend of the vertex
nuclear constant G2

t in the Faddeev calculations that
differ by the values of a2 and εt. In addition, in [9,
10], the virtual pole position [the virtual-triton (t∗)
binding energy εt∗ ], the vertex nuclear constant G2

t∗ ,
and the k cot δ pole (or the partial scattering ampli-
tude f (k) zero) position (−E0) [10] were reasonably
well reproduced for the same model without additional
parameter fitting. Let us bear in mind that the vertex
nuclear constant G2

t can be written in terms of the
asymptotic normalization parameter C2

t for the triton
bound state radial wave function.
2003 MAIK “Nauka/Interperiodica”
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All the characteristics mentioned above were cal-
culated in [10] for the Yukawa potential

V (r) = −V0(µr)−1exp(−µr) (2)

to determine their sensitivity to the concrete form
of an effective nd potential. A reasonable agreement
with the experimental data and with the results of
calculations for the Hulthén potential was obtained.

One of the two potentials proposed by Tomio et al.
[8] has the following form:

V (r) = −V0(R/r)2[sin(r/R)]2exp(−µr). (3)

Three parameters V0, R, and µ were fitted to the
experimental values: a2, εt, and the binding energy
of 3He. In [8], a theoretical estimation of the nu-
clear doublet pd scattering length was the main goal.
The other characteristics of the doublet nd system
discussed above were not considered. Whereas the
oscillating factor in (3) was introduced to make the
potential regular at zero range, the long-range factor
(1/r2) was used following the conclusions reached by
Efimov in [11]. In [12], we calculated all the above-
mentioned low-energy observables for potential (3)
and refitted the potential parameters. We compared
the results of the calculations for potentials (1), (2),
and (3) in a large region of the potential strength pa-
rameter g = K2

0/µ2, where K2
0 = [(4/3)m/�

2]V0 and
m is the nucleon mass, in order to reveal their sensi-
tivity to the potential asymptotic behavior. In [13], we
proposed another potential with the proper (Faddeev)
asymptotic form but without oscillations. We found
that long-range effects are distinctly revealed in the
calculation results of the asymptotic normalization
parameter C2

t , or the nuclear vertex constant G2
t ,

for the virtual decay t → n + d. The value of C2
t de-

creases, while n(= 0, 1, 2) increases in the potential
factor (1/rn). The effects are slightly weaker in the
results for the position (−E0) of the k cot δ pole (f (k)
zero).

The potential scaling allows us to reduce the prob-
lem from a two- to a one-parametric task and makes
it easier to compare directly the results of physical
values from different models. In [13], we compared the
dependence of C2

t on a2κt (here, κt = [(4/3)m(εt −
εd)]1/2) for all the considered potentials in a large area
of parameter g = K2

0/µ2, which includes the lightest
nuclear-bound systems: deuteron d, hypertriton 3

λH,
and triton 3H (t). We compared the function C2

t (a2κt)
given by different approaches, including the effective-
range theory [3] and the N/D method [2, 14]. We
found that the results [2, 14] differ from all others in
that there was a sharp rise C2

t (a2κt). We explained
this anomalous behavior. In addition, the form factor
gt(q2) for the vertex t → n + d was calculated with
PH
different nd potentials. The results for gt(q2) turned
out to be in reasonable agreement with the result of
the Faddeev calculations [15, 16] obtained with the
Malfliet–Tjon NN potential, especially in the case of
potential (3).

Because of the considerable uncertainty of the
value C2

t , which results from analyses of experimen-
tal nuclear reaction data, one cannot select the best
potential, in spite of quite large differences among the
calculated results with the potentials used. However,
it may be possible to do this by using the S-wave
doublet phase shift δ(E) for nd scattering, which is
known to a greater precision.

Thus, in this paper, the function δ(E) is calculated
at low energy E in the framework of the two-body
approach.

To obtain approximate analytic results for the
phase shift δ(E), a generalized effective-range theory
is used in the present article, clearly taking into ac-
count the k cot δ pole. Such an approach is supported
by the facts that the nd-separation energy is relatively
small and the same approximation using Faddeev
calculation results with some separable NN potential
gives a successful description [3] of the whole set of
observables for the doublet nd system.

Obviously, one can calculate phase shifts with a
given two-body potential by numerical calculation
of the Schrödinger equation. Instead, we prefer to
use approximate formulas of the generalized effective-
range theory to obtain results with a concrete poten-
tial in an analytical form. To estimate the uncertainty
of such an approximation, we calculate the difference
∆δ(E) between the approximate and the exact results
obtained with the Hulthén potential, when the S-
wave solution is known in an analytical form. An
application of this approximate method to the δ(E)
calculation is justified, in particular, because of the
roughness of the two-body model used for the typical
three-body task.

The main aims of this paper are the following:

(i) to investigate the validity of the two-body model
for a δ(E) description at low energy with the poten-
tials considered earlier;

(ii) to select, if possible, the best effective nd po-
tential by comparing the results of the δ(E) calcula-
tion with experimental data and with Faddeev calcu-
lation results;

(iii) to estimate the uncertainty of the adopted
method of the phase shift calculation as a function of
energy in the considered region.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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Coefficients C2 and C4 in the effective-range approximation in form (1), the k cot δ pole position (−κ2
0), and the

asymptotic normalization constant C2
t for the triton wave function

The calculation object −C2, fm C4, fm3 κ2
0 × 103, fm−2 C2

t

The phase shift δ(E) by using the
function C2

t (κ) (E ≤ 0) with the
following nd potentials:

Hulthén (1) 39.48 101.5 7.76 3.50

Yukawa (2) 32.63 160.3 6.32 2.74

Tomio et al. (3) 127.3 435.4 2.05 3.48

C2
t by using the phase shift δ(E)

(E ≥0) in the case of the Hulthén
potential

48.07 72.23 7.76 2.18

C2
T and δ(E) by Simenog et al. [3] 68.03 159.5 4.74 3.50
2. METHOD FOR CALCULATING
THE PHASE SHIFT

All the potentials considered have a scaling prop-
erty, so one can calculate the function C2

t (aκ). Here, a
is the variable doublet nd scattering length (the index
in a2 is omitted for considerations of brevity), and
κ is the wave number for the triton binding energy,
treated below as an argument. At the experimental
triton binding energy, κ = κt. Let us remember that
C2
t and aκ are invariants of a scaling transformation

for coordinates (r) and momenta (p): r → γr, p →
γ−1p, where γ is an arbitrary constant (see [10]).

At low energy, one can use the following formula
for the generalized effective-range theory (see, for
example, [3, 13]):

k cot δ = (1 + k2/κ2
0)

−1(−1/a + C2k
2 + C4k

4). (4)

Here, the pole at the neutron–deuteron relative
energy E = −E0, κ2

0 = (4/3)mE0, is explicitly in-
cluded. The corresponding asymptotic normalization
constant is given as (see [10] and references therein)

[C2
t ]eff.range = (2/3) (5)

× (1 − κ2/κ2
0)/[1 − 3κ2/κ2

0 − 2κ(C2 − 2C4κ
2)].

Expressions (4) and (5) are used for an analytic con-
tinuation from negative to positive energy. The co-
efficients C2 and C4 are found with concrete poten-
tials at the experimental values κ = κt and a = a2 as
well as at the fixed value κ0, which is different for
each potential, with the use of the function C2

t (aκ),
calculated in our earlier papers [10, 12]. At the fixed
value a = a2 = 0.65 fm, the function C2

t (aκ) has one
variable κ and we denote it as C2

t (κ). We use the
following procedure to find the values of C2 and C4.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
Let us determine a new function ϕ(κ2) in accor-
dance with Eq. (5) by the expression

C2
t (κ) = (2/3) (6)

× (1 − κ2/κ2
0)/[1 − 3κ2/κ2

0 − 2κ(ϕ(κ2))].

At small t = κ2, one has

ϕ(t) ∼= F (t), F (t) = C2 − 2C4t. (7)

The coefficients C2 and C4 are calculated with the
potential given by setting functions ϕ(t) and F (t)
and their derivatives dϕ(t)/dt and dF (t)/dt equal to
each other at the energy E = −(εt− εd), i.e., from the
following system of equations:

ϕ(κ2
t ) = C2 − 2C4κ

2
t , (8)

{d/dt[ϕ(t)]}t=κ2
t

= −2C4.

The exact function δ(E) with the Hulthén potential
(1) is calculated by the formula (N → ∞)

δ(E) =
N∑
n=1

ln

∣∣∣∣∣(− |x(E)|2 + n2 − g) + g|x(E)|/n
(− |x(E)|2 + n2 − g) − g|x(E)|/n

∣∣∣∣∣,
(9)

where x(E) = 2kR, g = (4/3)mV0R
2 (the values of

the parameters V0 and R are given in [7]). The sum-
mation in (9) can be cut at N ≥ 300 to obtain reason-
able precision.

3. NUMERICAL RESULTS

The values of C2 and C4 found with each potential
are given in the table, together with κ2

0 and C2
t . The

corresponding values from [3], as well as C2+ and C4+

found at positive energy (see text below), are given for
comparison. One can see great differences between
the different sets of these parameters. The set for the
3
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Fig. 1. The nd-scattering phase shift δ(E) in the S-
wave spin-doublet state. Results obtained in the two-
body model with the Hulthén potential (Hu) are shown
by a thick solid curve for the exact calculation, by a
dotted curve for the effective-range theory in form (4) in
the positive energy region (E ≥ 0), and by a curve with
closed squares (Hueff.range) for the effective-range theory
in form (4) with the use of Eq. (5) (see text) in the
negative energy region (E ≤0). A dashed curve (Sim)
shows results obtained in the effective-range theory in
form (4) with parameters from [3]. Big closed and open
circles show the results of calculations borrowed from
[17], based on the Faddeev equations with NN potential
AV18 [18] and with the same potential plus three-body
force added (AV18 + 3N), respectively.

oscillating potential (3) from Tomio et al. especially
stands out. We note a large spread of the κ2

0 values
as well. This parameter is very sensitive to the model
and to the value of the product aκ. This is because the
function κ2

0(aκ) has an infinite derivative at aκ = 0.
Due to this fact, it is not easy to calculate the position
of the k cot δ pole with high precision, and it may be
quite a problem to observe this pole in experiments for
other physical systems.

The results of our δ(E) calculations with different
potentials are shown in Figs. 1 and 2. They can be
compared with each other and with the results of
modern Faddeev calculations [17] with the realis-
tic NN interactions AV18 (Argonne potential [18])
and AV18 + 3N . The variant AV18 denotes NN
forces with charge-dependence breaking taken into
account, and AV18 + 3N means that three-nucleon
forces (Urbana model) are included as well (see refer-
ence in [17]). The curve δ(E) calculated by formula
(4) with the parameters taken from [3], which is in
agreement with the results of a phase-shift analysis,
is also displayed in the same figures.

The exact and approximate results calculated with
the Hulthén potential are given in Fig. 1. The corre-
sponding two curves have nearly the same shape, so
the correction leads to an anticlockwise rotation of the
approximate curve toward the exact one around the
P
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Fig. 2. Results of the nd-scattering phase-shift calcula-
tion in the form δ(E) = δ(E)eff.range + ∆δ(E) for the S-
wave spin-doublet state. The values of δ(E)eff.range. are
obtained in the two-body model with the Yukawa poten-
tial (curve with closed triangles) and with the potential by
Tomio et al. [8] (thin solid curve) by using the effective-
range theory, Eqs. (4) and (5), with a correction ∆δ(E),
found for the Hulthén potential, taken into account. For
comparison, some curves and points from Fig. 1 are
given as well. (They include the thick solid curve for the
Hulthén potential exact results and the dashed curve for
the effective-range theory [3], the open and the closed
circles for the Faddeev equations results with and without
3N forces, respectively.) In addition, the results borrowed
from [14] are shown based on the N/D method with (+)
and without (×) absorption effects taken into account; the
three-body calculation results at energies of 4 MeV [19]
and 10 MeV [20] are shown by open squares.

center of the coordinates. This correction, ∆δ(E) =
δ(E)− δ(E)eff.range, increases monotonically with en-
ergy. At energy below the deuteron-breakup thresh-
old, the value ∆δ(E) is less than the three-body force
effect (which is about 5◦) found in the modern Fad-
deev calculations [17].

In Fig. 2, we show the calculation results δ(E) =
δ(E)eff.range + ∆δ(E) with different effective nd po-
tentials when the correction is included. The function
δ(E)eff.range is calculated by formula (4) with each
potential with the coefficients C2 and C4 taken from
the table. But the correction ∆δ(E) is obtained with
the Hulthén potential. Taking this correction into ac-
count leads to a narrowing of the bunch of curves
δ(E) with different potentials and, correspondingly, to
an improvement in their agreement with the experi-
mental data and with the Faddeev calculation results.
In Fig. 2, the N/D-method results borrowed from
[14] are shown, calculated with and without absorp-
tion effects taken into account. One can see that
the two-body model with the Hulthén and Yukawa
potentials describes the experimental data at low en-
ergy reasonably well. The agreement is worse in the
case of an oscillating potential from [8]. The Faddeev
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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calculation results [19, 20] for Reδ(E) are also shown
in Fig. 2.

We carried out an additional test of the effective-
range theory in form (4) in the whole energy range
considered (≈8.5 MeV) from the bound-state pole
of triton at negative energy to the deuteron-breakup
threshold at positive energy where triton decay into
three nucleons is possible. With this in mind, we
found the coefficients C2 and C4 for the Hulthén
potential for positive energy E as well. The corre-
sponding coefficients C2+ and C4+ (see the table)
are found by fitting δ(E) from Eq. (4) to the exact
phase shift (9) just near zero energy (E ≈ 0). This ap-
proximation (see Fig. 1) gives much better agreement
with the exact result in comparison with the calcu-
lation results using the formula (5) and information
about the function C2

t (κ). However, the calculation of
the asymptotic normalization constant C2

t by using
Eq. (5) with the coefficients C2+ and C4+ leads to
the value C2

t = 2.18, which can be compared with the
exact value C2

t = 3.5 for the Hulthén potential. Quite
a large difference between these figures means that
the distance from the triton pole to the nd-scattering
threshold (6.26 MeV) is too great for the effective-
range approximation (4) to be valid with high preci-
sion for the two-body model with a given potential
in the whole energy range considered. To improve
this approximation, one can include in Eq. (4) the
next term of the effective-range expansion (C6k

6), but
this procedure results in two more fitting parameters.
In addition to the term C6k

6, the other pole of the
function k cot δ should be taken into account as well
to preserve the right asymptotic behavior of the partial
scattering amplitude f (k), in accordance with the
relation

f(k) = (k cot δ − ik)−1. (10)

The existence of a countable set of k cot δ poles (f (k)
zeros) was established in [21] on the theorem level
with the Yukawa-type potential. For a system having
a bound and a virtual level, this is connected with the
symmetry theorem proved in [22].

In all figures, we accept the definition δ(E) = 0
at E = 0 as in some papers (see, for example, [17]).
Actually, one should take δ(0) = π, as follows from
the Levinson theorem, because the nd system has
one bound level (triton) in the spin-doublet S-wave
state. This fact is taken into account in some other
publications, for example, in [14].

4. CONCLUSION

It is shown that it is possible to describe rea-
sonably well the low-energy behavior of the S-wave
phase shift δ(E) for the spin-doublet nd scattering
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
by using a simple two-body potential model with only
the two fitting parameters mentioned above. It is well
known that the nd interaction in the spin-quartet
state for the S wave has a repulsive character, so the
two-body approach considered is an obviously good
approximation for this state as well. As a result, one
can successfully use the two-body potential model
in calculating the cross section for low-energy nd
scattering.

The differences between curves δ(E) with different
potentials turn out to be large enough to enable mak-
ing a choice among the potentials used. The Hulthén
potential appears to be the best one. The exact results
of the δ(E) calculation for this potential slightly over-
estimate the experimental phase shift behavior, but
the existence of the solution in analytical form is an
additional argument in favor of its selection.

The phase shift δ(E) is obtained in this paper us-
ing a simple analytical approximation with the other
potentials. Comparison of these results with the ex-
perimental data and with the Faddeev calculation
results reveals reasonable agreement among them,
which justifies a rigorous calculation in the framework
of the two-body model with any effective nd potential.

It is shown that the effective-range theory in the
form (4) does not permit a very precise description of
the whole set of observables discussed above with a
concrete potential. This result does not contradict the
successful description of the experimental data by the
same formula with parameters from [3]. In the case of
the Hulthén potential, the uncertainty, ∆δ(E), of this
approximation is less than 5◦ at Elab ≤ 3 MeV, i.e.,
below the deuteron-breakup threshold (Elab denotes
neutron energy in the laboratory system). This uncer-
tainty is less than the three-body-force effect found in
the modern Faddeev calculations [17].
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Note added. Recently, we have obtained a much
better approximation of the scattering function k cot δ
with the coefficients C2 and C4 whose values were
found by fitting the triton binding energy to the ex-
perimental value and the virtual-pole position to the
value that we obtained earlier for specific potentials.
The new set of C2 and C4 values does not change the
main conclusions of this study. The new results will
be published elsewhere.
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Abstract—It is shown that the simplest strong-interaction models (those that employ the Breit boundary
condition and a delta-function potential) involving only three free parameters describe adequately the
properties of the dt and d3He systems in the vicinity of the 5He∗(3/2+) and 5Li∗(3/2+) resonances—that
is, at energies in the regions E � 3EC and E � 2EC, where EC is the corresponding Coulomb energy. For
these systems, the complex values of the scattering length, of the effective range, and of the shape parameter
are extracted from experimental data on the reaction cross section and proton polarization in pα scattering
(in the case of the d3He system). The astrophysical function is extrapolated to the low-energy region
(0 ≤ E < 0.1EC), which is of importance for thermonuclear investigations, but which is hardly accessible
to direct measurements. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of resonance Coulomb systems (pp,
dt, d3He, pα, αα, etc.) is of great interest for astro-
physics, the physics of thermonuclear fusion, and so
on. Since the study of Landau and Smorodinsky [1],
an effective-range expansion is used to describe low-
energy scattering in a model-independent way. In the
case of s-wave scattering, this expansion has the
form [2]

KCS(k2) ≡ (K̄CS(k2) + 2h(η))/aB (1)

= −1/aCS + (1/2)rCSk
2 − PCS(rCS)3k4

+QCS(rCS)5k6 + ...,

where

K̄CS(k2) = 2πDC(η) cot(δCS),

DC(η) = (exp(2πη)− 1)−1, (2)

h(η) = [ψ(iη) + ψ(−iη) − ln η2]/2,

withψ(z) being the logarithmic derivative of the Euler
gamma function. Here, aB = �

2/(Z1Z2e
2µ) is the

Bohr radius of the system (see Table 1); η = 1/(kaB)
is the Sommerfeld parameter; �k = (2µE)1/2, with
E and µ being, respectively, the c.m. energy and the
reduced mass; and δCS(k), aCS, rCS, and PCS and
QCS are, respectively, the nuclear–Coulomb phase
shift for s-wave scattering, the scattering length, the
effective range, and the shape parameters.

For the pp system, the scattering length and the
effective range are known to a high precision, but the
1063-7788/03/6601-0087$24.00 c©
relative errors in the shape parameters are quite large
[10, 11]:

aCS = −7.8098 ± 0.0023 fm, (3)

rCS = 2.764 ± 0.010 fm,

PCS = 0.051 ± 0.014,
QCS = 0.028 ± 0.013.

Even in the case of the αα system, however, where
there is a narrow Breit–Wigner resonance 8Be(0+) of
energy ER = Er − iΓ/2 [9],

Er = 92.12 ± 0.05 keV, Γ = 6.8± 1.7 eV, (4)

it is impossible [12] to extract reliably, in a model-
independent way, the low-energy parameters from
experimental data [13–15] for E < 11 MeV (such an
attempt was first made in [16]). Later, the quantities
aCS, rCS, and PCS were found in [17] on the basis of
scattering data for E < 1 MeV and the experimental
value of Er; in addition, the value of Γ = 3.6 eV was
obtained there for the width of the level, this value be-
ing different from its experimental counterpart by two
standard deviations. In the case being discussed, it is
difficult to determine the parameters of the expansion
in (1) since, at low energies (kr0 � 1), there is a large
experimental error because of a smаll penetrability
of the Coulomb barrier and since the inclusion of
more precise data for kr0 > 1 (E > 1 MeV) requires
retaining higher terms in expansion (1), whereupon
the result becomes more uncertain.

In [8, 18], the problem of reliably extracting the
low-energy parameters of the αα system was solved
by using, along with the expansion in (1), extremely
simple models of nuclear interaction. Resorting to
2003 MAIK “Nauka/Interperiodica”
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Table 1. Parameters of extremely light Coulomb systems

System aB, fm r0, fm EC, keV Er, keV Γ, keV krr0

pp 57.62 1.62 24.99 −143 936 0.09

dt 24.04 3.63 59.89 48.1 72.2 0.20

pα 18.03 2.48 79.85 209 270 0.28

d3He 12.02 3.97 239.5 209 270 0.38

αα 3.627 3.34 1588 92.1 0.0058 0.31

Note:Here,EC = Z1Z2e
2/aB is the Coulomb energy and r0 is the sumof the charge radii of the particles involved [3–5]. The resonance

energiesER = Er − iΓ/2 are determined from Eq. (A.14) (compare with the corresponding values from [6–9]); �kr = (2µEr)
1/2.
models makes it possible to include experimental data
at higher energies in the processing procedure and to
take into account a greater number of terms in the
expansion in (1) without increasing the number of
independent parameters.

A simple realistic model of αα interaction,

VM(r) = {∞, r < rc;
− U, rc ≤ r ≤ rN ; 4e2/r, r > rN},

was proposed by Margenau [19]. The limit of a narrow
and deep well (rc → rN , U → ∞) corresponds to the
Breit model (B) [20, 21] with the coupling constant g
equal to the aforementioned limit of the expression

ǧ = rN (2µU/�2)1/2[(rN − rc)(2µU/�2)1/2 − π/2];
(5)

that is, it corresponds to the statement that, at r =
rN , the radial wave function R(r) = χ(r)/r satisfies
the boundary condition

rNχ
′(rN )/χ(rN ) = −g, χ(r) ≡ 0 for r < rN . (6)

Another limiting case, that where Coulomb repulsion
is dominant and where the wave function is local-
ized in the vicinity of r ∼ rN (see Table 5 in the
second article quoted in [22]), leads to the delta-
function model (D) of strong interaction: VS(r) =
−[g�2/(2µr2N )]δ(r − rN ), where g is a dimensionless
constant. This model is equivalent to the boundary
condition
rN [(χ′(rN + 0)− χ′(rN − 0))/χ(rN )] = −g. (7)

The results obtained by processing scattering da-
ta [13] for E < 1.5 MeV (krN ≤ 1) at the fixed value
of Er = 92.1 keV are illustrated in Fig. 1. The curves
B and D correspond to solutions to the Schrödinger
equation that satisfy conditions (6) and (7), respec-
tively, with the parameters obtained in [8]. By varying
the parameters of the potential VM, one can displace
the curve M over the entire region between the curves
B and D. For the curve М shown in Fig. 1, we have
U = 6.676 MeV, rN = 4.0 fm, rc = 1.6 fm, (8)
PH
which corresponds to the value of ḡ = 1.216 for the
sign-reversed logarithmic derivative of thewave func-
tion at r = rN . An estimation on the basis of Eq. (5)
yields ǧ = 1.11. These values are close to that of g =
1.022, which was obtained within the Breit model [8].
The dashed curve corresponds to retaining the first
four terms of the expansion in (1) at [8, 18]

aCS = −(2.03 ± 0.10) × 103 fm, (9)

rCS = 1.107 ± 0.006 fm,

PCS = −0.226 ± 0.007,
QCS = 0.19 ± 0.02.

A comparison with (3) shows that the use of the
above strong-interaction models leads to a higher rel-
ative precision in determining the shape factors PCS
and QCS from experimental data. For the width of the
8Be(0+) resonance, one obtains [8, 18] the value of
Γ = 5.81 ± 0.31 eV, which is in good agreement with
the experimental value in (4). Since, in the vicinity
of the 5He∗(3/2+) and 5Li∗(3/2+) low-energy reso-
nances, the l = 0, JP = 3/2+ resonance wave plays
a dominant role both in elastic dt and d3He scattering
and in the fusion reactions dt→ nα and d3He→ pα,
all the aforesaid gives sufficient grounds to use, in
simulating the low-energy properties of not only the
αα system but also the dt and d3He systems, the
phenomenological potentials that correspond to the
boundary conditions (6) and (7).

The resonance nuclear reactions dt→ nα+
17.59 MeV and d3He→ pα+ 18.35 MeV, which are
accompanied by a large energy release, play an im-
portant role in the problems of thermonuclear fusion,
of the muon catalysis of nuclear reactions [23–25],
and of primary nucleosynthesis [26]. To the best of
our knowledge, the effective-range approximation for
describing the reactions dt→ nα and d3He→ pα in
a model-independent way was first employed in [27],
where it was found, in particular, that there is a sig-
nificant ambiguity in determining aCS and rCS on the
YSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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Fig. 1. Phase shifts for αα scattering. The function K̄CS was defined in (2). The solid curves B, М, and D correspond to exact
solutions within, respectively, the Breit model, the Margenau model, and the model employing the δ-function potential, the
relevant parameters being set to the values indicated in (8) and the values from [8]. The dashed curve corresponds to retaining
the first four terms of the expansion in (1). Points represent experimental data from (circles) [13] and (triangles) [15].
basis of experimental data known at that time for the
reaction cross section σr. The possibility of extracting
low-energy parameters from data on the reaction
cross section [28] arises owing to the interference
between nuclear and Coulomb interactions; however,
a self-consistent variation of the parameters admit
their changes over rather wide intervals (see Table 1 in
[29]). Therefore, some additional criteria (apart from
the χ2 criterion) for selecting values of the low-energy
parameters are required. In particular, a constraint on
the Coulomb renormalization of the effective range
was taken into account in [22].

In the present study, this problem is solved through
recourse to extremely simple models of nuclear inter-
action. Since difficulties arising in processing exper-
imental data are similar to those that were indicated
above for the αα system, it is natural to use, as before,
the strong-interaction-potential models specified by
Eqs. (6) and (7). Because of absorption, there arises
here an additional free parameter, since the coupling
constant becomes complex-valued, g = g1 + ig2,
g2 > 0, which corresponds to an optical potential.
Such an approach is implemented in Section 2 for
dt scattering and in Section 3 for the d3He system,
precision polarization data for pα scattering also
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
being used in the latter case. The results of our study
are discussed in Section 4, and some technical details
are explained in the Appendices.

2. dt SCATTERING IN THE VICINITY
OF THE 5He∗(3/2+) RESONANCE

In the case of the dt system, only data [30–32]
on the reaction cross section, which have a relative
error less than 3% for energies in the range 0 < E <
3EC, are included in processing. The results obtained
by fitting the parameters of the Breit model and the
model employing a delta-function potential are given
in Table 2 at the smallest value of χ2, while the cor-
responding values of the expansion parameters (A.1)
for dt scattering are presented in Table 3. The low-
energy parameters appearing in (1) that are rescaled
on this basis are

aCS = −(82.5 ± 4.5) − i(31.0 ± 0.9) fm, (10)

rCS = (5.11 ± 0.37) − i(0.14 ± 0.02) fm,

PCS × 102 = −(9.4± 0.6) − i(0.2 ± 0.03),

QCS × 102 = (2.3 ± 0.3) + i(0.1 ± 0.03).
3
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The accuracy of the experimental data used proved
to be sufficient for determining, through resorting to
extremely simple strong-interaction-potential mod-
els in order to stabilize results, not only the scattering
length and the effective range but also the shape pa-
rameters PCS and QCS to a precision commensurate
with that of the results in (3), which were obtained
in a model-independent way from data on elastic pp
scattering.

The quality of the approximation of the astrophys-
ical function [see also Eqs. (A.5) and (A.6)]

s(E) =
3
8
µE

�2π2

σr(E)
DC(η)

,

where σr is the reaction cross section and DC(η) is
the Coulomb barrier penetrability, which was defined
in (2), is illustrated in Fig. 2a. It can be seen that
the result in the effective-range approximation, which
corresponds to retaining the first two terms of the
expansion in (1), differs (within two standard devi-
ations) from the exact result only in a close vicinity
of the 5He∗(3/2+) resonance. The first three terms
of the expansion in (1) reproduce the exact result
over the entire energy region E � 3EC considered
here. Using the parameter values quoted in Table 3,
one can calculate the astrophysical function s(E) for
E < 0.2EC; this region of extremely low energies is of
interest, in particular, for calculating fusion reactions
in mesic molecules [33], but it is hardly accessible to
direct measurements (see Fig. 2b). With the aid of
Eq. (A.6), it can be shown that, at such energies, the
astrophysical function is given by

s(E) = (1.295 ± 0.04) + (1.13 ± 0.03)E/EC (11)

+ (1.23 ± 0.03)(E/EC)2.

For E < 0.2EC, the expansion in (11) is precise to
within one percent. The value s(0) of the astrophysical
function at the origin is consistent with the results
previously obtained in [29, 30, 33].

At the parameter values quoted in Table 2, the
strong-interaction models specified by Eqs. (6) and
(7) make it possible to describe the low-energy prop-
erties of the dt system over an energy range that is
broader than that which was used in data processing.
In particular, the low-energy parameters extracted
from data on the fusion reaction dt→ nα alone make
it possible to calculate the elastic-scattering cross
section as well. Figure 3 displays the ratio R(E) [see
Eq. (A.4)] of the differential cross section for elastic
dt scattering at an angle of 90◦ in the c.m. frame
to the cross section for Rutherford scattering at the
same angle. It can be seen that the results of the
calculations based on the Breit model and the model
employing a delta-function potential are close to each
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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Fig. 2. Astrophysical function for the fusion reaction dt→ nα. In Fig. 2a, the solid curve corresponds to the Breit model and
the model employing a delta-function potential (the results based on these models are indistinguishable on the scale of the
figure); the dashed curve represents the results in the effective-range approximation; and points stand for experimental data
from (open boxes) [30], (open diamonds) [31], and (open circles) [32]. In Fig. 2b, the solid curves B and D correspond to the
Breit model and the model of a delta-function potential, respectively, the parameters being indicated in Table 2; the dashed
curves refer to models characterized by limiting values of χ2 ; and points (open squares) represent data from [30].
other and that they are consistent (within one stan-
dard deviation) with available experimental data [34]
at energies up to 5EC.

The sets of low-energy parameters of the dt sys-
tem in Table 3 are close to the model-independent
set with α0 = 0.26 in Table 1 of [29], but they do not
of course coincide. In these sets, the values of the
imaginary part of the effective range show the greatest
distinctions (by more than a factor of 2), but, as such,
this imaginary part is small. Such a distinction is
quite natural, because there are three free parameters
in each of the models specified by Eqs. (6) and (7),
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
while four parameters were varied in [29] (the shape
parameter was not used in [29]). In view of this, it was
necessary to invoke additional selection criteria. The
analysis in [35] took into account constraints on the
Coulomb renormalization of the effective range, on
one hand, and the results of the partial-wave analysis
of nα scattering [36] in the vicinity of the 5He∗(3/2+)
resonance, on the other hand. Unfortunately, these
data, as well as experimental data from [37] on the
total cross section for nα scattering in the resonance
region, are insufficiently precise for a reliable deter-
mination of the phase shift for potential nα scattering
3
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Fig. 3. RatioR(E) (A.4) of the differential cross section to the Rutherford cross section. The solid curves B and D correspond
to the Breit model and the model of a delta-function potential, respectively, the parameter values being given in Table 3. Points
(open circles) represent data from [34].
(an additional free parameter is present here). The sit-
uation is totally different for the d3He system, which
will be considered in the next section.

3. d3He AND pα SCATTERING
IN THE VICINITY OF THE 5Li∗(3/2+)

RESONANCE

The errors in experimental data [38] on the fusion
reaction d3He→ pα at low energies (E < 0.75EC)
are 15–30% (see Fig. 4)—that is, they are quite
large. At the same time, modern experiments (see
[39]) have a precision of about 4% at higher energies.
Apart from these data on the reaction cross section,
we have used precision (the error is 2 to 3%) polar-
ization data [40] for pα scattering in the vicinity of
the 5Li∗(3/2+) resonance—more specifically, at the
laboratory proton energies

Ep = 22.46, 22.71, 22.96, 23.16, (12)
23.29, 23.48, 23.56 MeV.

In rescaling these values to the c.m. frame, it is neces-
sary here to take into account a relativistic correction;
that is,

k2 = 2mα(Ep − Ethr)/(mp +mα),
Ethr = ∆(1 +mp/mα)

+ ∆2/(2mαc
2) = 23.014 MeV

(∆ = 18.350 MeV is the energy release in the fusion
reaction d3He→ pα). The results obtained by pro-
cessing the experimental data in question (in all, we
have taken into account 191 points) are quoted in Ta-
ble 2. The phase shifts for potential pα scattering that
P

are obtained within the Breit model and the model
employing a delta-function potential are, respectively,

ϕpα = 2.9◦ ± 0.8◦ and 2.6◦ ± 0.9◦. (13)

The expansion parameters (A.1) are given in Table 3;
the low-energy parameters of the expansion in (1)
that are rescaled from these values are

aCS = −(54.1 ± 4.9) − i(8.6 ± 1.4) fm, (14)

rCS = (3.17 ± 0.29) − i(0.05 ± 0.02) fm,

PCS × 102 = −(11.8 ± 1.4) − i(0.1 ± 0.05),

QCS × 102 = (3.9 ± 1.2) + i(0.1 ± 0.07).

Since the accuracy of experimental data for the d3He
system is rather poor, the criterion χ̄2 = χ2

0.3 + χ2
min,

where χ2
0.3 = 1.15 is the maximum value of χ for a

given data set and χ2
min is its minimum value, was

used, as in [39], to select model-parameter values.
The energy dependence of the astrophysical function
is displayed in Fig. 4. In this case, the effective-range
approximation leads to an overestimation of s(E) for
E > 0.5EC; at the same time, the first three terms
of the expansion in (1) yield a result that is indistin-
guishable (on the scale of the figure) from exact solu-
tions for E � 2EC. Thus, it is necessary to take into
account the shape parameter for the d3He system. For
E < 0.2EC, the result for the astrophysical function is
(see also Fig. 4b)

s(E) = (0.72 ± 0.1) + (0.535 ± 0.01)E/EC (15)

+ (0.64 ± 0.02)(E/EC)2.

Just as for dt scattering, the accuracy of this ex-
pansion is not poorer than 1% for E < 0.2EC. We
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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text); and points (open circles) represent experimental data from [38].
note that the value that we obtained here for s(0) is
consistent with the value of S(0) = 6.70 MeV b [see
Eq. (A.7) in the Appendix below] presented in [39]
for the dimensional astrophysical function [it corre-
sponds to s(0) = 0.735].

The set of low-energy parameters of the d3He
system that is the closest to the sets in Table 3 is
that which corresponds to α0 = 0.22 in Table 1 of the
second article quoted in [22] (the value of β2 = 0.0065
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
chosen for this set is more than one order of magni-
tude greater than that given in Table 3). These param-
eters could be refined owing predominantly to taking
into account polarization data in the vicinity of the
5Li∗(3/2+) resonance. The results obtained by cal-
culating proton polarization according to Eqs. (A.8)
and (A.9) with the parameter values from Table 3
are shown in Fig. 5 for the extreme values of the
energy Ep in (12) for the data set used, in which case
3
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Table 3. Expansion parameters (A.1) for the d3H and d3He systems

System Model α0 × 10 β0 × 102 α1 × 10 β1 × 102 α2 × 103 β2 × 104 α3 × 105 β3 × 106

d3H B 2.53 9.4 1.072 0.32 0.96 0.72 1.2 1.3

D 2.57 9.8 1.052 0.25 0.84 0.39 0.85 0.47

d3He B 2.14 3.3 1.323 0.24 2.3 1.1 5.7 4.1

D 2.19 3.5 1.311 0.19 2.1 0.63 4.3 1.6

Note: The results quoted here correspond to the central values of the radii rN and of the coupling constants g from Table 2.
|k|r0 ≈ 0.75. Since nuclear–Coulomb phase shifts
decrease fast with increasing orbital angular mo-
mentum, δl ∝ (kr0)2l+1, nonresonance phase shifts,
which are known [41] to within 2–4%, were used in
our calculations (in the resonance region, the error in
the 2D3/2 phase shift is about 10%). The agreement
with experimental data is quite impressive.
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Fig. 5. Proton polarization in pα scattering at the labo-
ratory proton energies of (a) Ep = 22.46 MeV (that is,
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1.82EC). The solid curves were calculated on the basis
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Table 3 and the phase shifts for potential scattering that
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4. CONCLUDING REMARKS

(i) The use of the Breit model and of the model
based on a delta-function potential, which are the
simplest strong-interaction models and which involve
only three independent parameters, make it possible
to determine reliably the complex values of the scat-
tering length, the effective range, and the shape pa-
rameter PCS for the d3H and d3He systems and to ex-
trapolate the astrophysical function to the low-energy
region E < 0.1EC, which is hardly accessible to di-
rect measurements, but which is of paramount im-
portance for thermonuclear investigations. The point
is that treatment on the basis of specific nuclear-
interaction models reduces uncertainties that arise in
extracting low-energy parameters from experimental
data and, at the same time, yields results that, as can
be seen from Figs. 2–5, are virtually independent of
the form of strong-interaction potential at E � EC—
that is, the corresponding description is nearly model-
independent at low energies.

(ii) The existence of distinct (Re(aCS/rCS) ∼ 10)
Coulomb resonances 5He∗(3/2+) and 5Li∗(3/2+) is
possible only if channels of reactions that involve the
production of the above compound nuclei are weakly
coupled. This is consistent with the smallness of the
ratio βi/αi (βi/αi ∼ 0.1) at i = 0, 1, 2 for the d3H and
d3He systems (see Table 3).

(iii) A comparison of the signs of the real parts

of aS and aCS, as well of E(S)
r and Er , for the dt

and d3He systems shows that Coulomb interaction
pushes out the bound state into a continuum (if ab-
sorption in the system is disregarded).

(iv) Since the nuclear–Coulomb effective range
satisfies the condition rCS < (1/3)aB (see [22]) in the
resonance case and since the ratio rN/aB is rN/aB ≈
1/4 for the mirror systems being considered—that is,
it is close to a limiting value—Coulomb renormal-
ization in these systems is of importance not only
for the scattering length but also for the effective
range. It should be emphasized that by no means
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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can one consider a significant distinction between the
effective ranges rCS for dt and d3He scattering—to
say nothing of the corresponding values of the scat-
tering length aCS [see the values in (10) and (14)]—
as evidence of violation of the isotopic invariance of
nuclear forces, since the structure of both the dt and
the d3He system is controlled to a considerable extent
by Coulomb interaction.
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APPENDIX A

Resonance Approximation in the Two-Channel
Problem

The 5Li∗(3/2+) resonance plays a dominant role
not only in the s wave of low-energy d3He scat-
tering (first channel) but also in the d wave of pα
scattering (second channel) near the threshold Ethr
for the reaction pα→ d3He. For such a two-channel
system, the scattering-matrix elements for the 3/2+

state can be expressed in terms of the low-energy pa-
rameters of the d3He system by using the analyticity
and unitarity conditions and by taking into account
invariance under time reversal. If there is absorption
in the system—that is, if open inelastic channels are
taken into account—the effective-range function and
the low-energy parameters are complex-valued:

aBKCS(k2) = α(k2)− iβ(k2), (A.1)

α(k2) = α0 + α1(kaB)2

+ α2(kaB)4 + α3(kaB)6 + . . . ,

β(k2) = β0 + β1(kaB)2

+ β2(kaB)4 + β3(kaB)6 + . . . .

The scattering length, the effective range, and the
shape parameters are expressed in terms of the real-
valued coefficients αi and βi as

aB/aCS = −α0 + iβ0,

rCS/aB = 2(α1 − iβ1),

PCS = −(1/8)(α2 − iβ2)(α1 − iβ1)−3,

QCS = (1/32)(α3 − iβ3)(α1 − iβ1)−5.

For the scattering-matrix elements Sik, we have

S11 = exp(2iσ0)[a(k) − ib−(k)]/[a(k) − ib+(k)],
(A.2)
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
S12 = S21 = 2iexp(i(σ0 + σ2 + ϕ))

× (2πβDC)1/2/[a(k) − ib+(k)],
S22 = exp(2i(σ2 + ϕ))

× [a(k) + ib−(k)]/[a(k) − ib+(k)], Ep > Ethr,

S22 = exp(2i(σ2 + ϕ))

× [A(k) + iβ(k2)]/[A(k) − iβ(k2)], Ep < Ethr,

where σl(k) = arg Γ(l+1+ iη) is theCoulomb phase
shift in the state characterized by the orbital angular
momentum l;ϕ is the phase shift for potential scatter-
ing through the second channel—in the energy region
being considered, it can be assumed to be constant;

a(k) = α(k2)− 2h(η), (A.3)

b±(k) = β(k2)± 2πDC(η),

A(k) = α(−λ2)− 2g(λ),
g(λ) = ψ(1/λ) + λ/2 + lnλ,

with λ being λ = −ikaB; and the functionsDC(η) and
h(η) were defined in (2). For the ratio of the differential
cross section for elastic scattering through the first
channel at an angle of π/2 to the Rutherford cross
section, one can find from the above relations that [28]

R(E, θ = π/2) = 1 (A.4)

− (4/3)kaBDC(η)(a2(k) + b2+(k))−1

× [a(k) cos[ln 2/(kaB)] + b+(k) sin[ln 2/(kaB)]
− (kaB)DC(η)/2].

For the reaction cross section, we accordingly have

σr = (2π/3)k−2(1− |S11|2) (A.5)

= (16π2/3)k−2DC(η)s(E).

Here, s(E) is the so-called astrophysical function
defined as

s(E) = β(k2)/(a2(k) + b2+(k)) (A.6)

= s0 + s1(E/EC) + s2(E/EC)2 + . . .

with

s0 = β0/(α2
0 + β2

0),
s1 = (2s0/β0)[β1 − 2s0(ᾱ1α0 + β1β0)],

s2 = (4s0/β0)

×
[
β2 − 2s0

(
ᾱ2α0 + β2β0 +

1
2
ᾱ2

1 +
1
2
β2

1

)

− β1

2
s1
s0

+
β0

4
s21
s20

]
,

where ᾱ1 = α1 − 1/6 and ᾱ2 = α2 − 1/60.
Often use is made of the dimensional astrophysical

function S(E), which is related to the dimensionless
3
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astrophysical function s(E) defined in (A.5) by the
equation

S(E) = (8π2/3)ECa
2
Bs(E)/[1 − exp(−2πη)].

(A.7)

For the polarization of scattered protons, we have

P = 2Re(gf ∗)/[|g|2 + |f |2], (A.8)

where the amplitudes g(θ,k) and f (θ,k) for, respec-
tively, non-spin-flip and spin-flip elastic pα scattering
at an angle θ can be represented in the form [42]

exp(−2iσ0)g(θ, k) (A.9)

= η2exp[−2iη ln(sin(θ/2))]/[2 sin2(θ/2)]

+ (η/2i)
∞∑
l=0

[(l + 1)(τ+
l exp(2iδ+l )− 1)

+ l(τ−l exp(2iδ−l )− 1)]exp(2iΦl)Pl(cos(θ)),

exp(−2iσ0)f(θ, k)

= (η/2)
∞∑
l=1

[τ+
l exp(2iδ+l )− τ−l exp(2iδ−l )]

× exp(2iΦl)P 1
l (cos(θ)).

Here, Pml (cos(θ)) are associated Legendre polyno-

mials, Φl = σl − σ0 =
∑l

m=1 arctan(η/m) is the dif-
ference of the nonrelativistic Coulomb phase shifts
in the l (l ≥ 1) and s waves, τ±l are the inelasticity
parameters in states characterized by specific values
of the orbital angular momentum l and the total angu-
lar momentum J = l ± 1/2, and δ±l are the nuclear–
Coulomb phase shifts in these states. In particular,
the result obtained for the amplitude D3/2 according
to (A.2) is

τ−2 exp(2iδ−2 ) = exp(2i(σ2 + ϕ)) (A.10)

× [a(k) + ib−(k)]/[a(k) − ib+(k)], Ep > Ethr,

τ−2 exp(2iδ−2 ) = exp(2i(σ2 + ϕ))

× [A(k) + iβ(k2)]/[A(k) − iβ(k2)], Ep < Ethr,

where the inelasticity parameter is τ−2 = |S11| =
|S22| = exp(−2Imδ−2 ). In addition to three parame-
ters of the strong-interaction-potential models, there
then arises, in the threshold region, yet another free
parameter, the phase shift ϕ for potential scattering.
Finally, we note that Eqs. (A.2)–(A.10) are valid
for the dt system as well, in which case there is
no Coulomb interaction in the second channel. One
must then set σ2(η) ≡ 0.
P

APPENDIX B

Effective-Range Expansion for Exactly Solvable
Models

In the Breit model, which is specified by Eq. (6),
the effective-range-expansion function has the form

rNKCS(k2) = −v0(rN , k2)/u0(rN , k2) (A.11)

+ {u0(rN , k2)[(1 + g)u0(rN , k2)

+ rNdu0(rN , k2)/drN ]}−1

(compare with [22]). Here, the functions u0(r, k2) and
v0(r, k2) defined as

u0 = (krC0(η))−1F0(kr, η), (A.12)

v0 = C0(η)G0(kr, η) − 2ηh(η)C−1
0 (η)F0(kr, η),

where C2
0 (η) = 2πηDC(η), are analytic functions of

k2 (see, for example, [43]), in contrast to the Coulomb
functions F0 and G0, which are, respectively, regular
and irregular at the origin. Expansion (A.11) in pow-
ers of k2 yields

aCS/aB = [2gI1(ρ) + ρI0(ρ)]/4[2gK1(ρ)− ρK0(ρ)],
rCS/aB = 1/3 (A.13)

− ρ2[4(g + 1)2 − ρ2]/[12(2gI1(ρ) + ρI0(ρ))
2]

with

ρ = (8rN/aB)1/2

{see the second article quoted in [22]; here, we take
the opportunity of correcting a misprint there: in
Eq. (A.20) of that article, the coefficient of the product
I0I1 of Macdonald functions is equal to 2 (not 4), and
that formula is completely in accord with (A.13)}.
The next terms of the expansion in question are
cumbersome, and we do not present them explicitly
for this reason. The energyER = Er − iΓ/2 of Breit–
Wigner resonances is determined from the equation

(1/aB)(2πiDC(η) + 2h(η)) (A.14)

= −1/aCS

+
1
2
rCSk

2 − PCS(rCS)3k4 +QCS(rCS)5k6.

If the Coulomb potential is switched off,
u0(r, k2) → sin(kr)/kr, v0(r, k2) → cos(kr), and it
follows from (A.11) that

rNKS(k2) = −z cot(z) + z2/[sin2(z)(g + z cot(z))],
(A.15)

z = krN ,
aS/rN = (g + 1)/g,

rS/rN = (2/3)(g2 + 3g + 3)(g + 1)−3,

PS = (−3/40)(g + 1)3
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003



dt, d3He, AND pα SCATTERING 97
× (g3 + 6g2 + 15g + 15)(g2 + 3g + 3)−3,

QS = (9/1120)(g + 1)6

× (2g4 + 18g3 + 72g2 + 147g + 126)

× (g2 + 3g + 3)−5.

For a delta-function potential at a sphere of radius
r = rN [see Eq. (7)], one has [43]

rNKCS(k2) (A.16)

= −v0(rN , k2)/u0(rN , k2) + 1/[gu2
0(rN , k

2)],

aCS/aB = gI1(ρ)
2(4gK1(ρ)I1(ρ)− 2)−1,

rCS/aB = 1/3 − ρ2[gI1(ρ)− ρI2(ρ)]/(12gI1(ρ)
3).

For aB → ∞, we find from (A.16) that

rNKS(k2) = −z cot(z) + z2/[g sin2(z)], (A.17)

aS/rN = g/(g − 1), rS/rN = (2/3)(g + 1)/g,

PS = (−3/40)g2(g + 3)/(g + 1)3,

QS = (9/560)g4(g + 5)/(g + 1)5.

The equations for determining the resonance energy

E
(S)
R = E(S)

r − iΓ(S)/2 within the Breit model and
the model employing a delta-function potential are,
respectively,

z/[sin2(z)(g + z cot(z))] − cot(z) = i (A.18)

and

z/[g sin2(z)]− cot(z) = i.

By solving Eqs. (A.18) with the parameter values
quoted in Table 2, we obtain the positions of the
resonances and their widths. The results are also
presented in this table.

REFERENCES

1. L. D. Landau and Ya. A. Smorodinskiı̆, Zh. Éksp.
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V. S. Popov, Pis’ma Zh. Éksp. Teor. Fiz. 51, 352
(1990) [JETP Lett. 51, 399 (1990)]; Yad. Fiz. 52, 1540
(1990) [Sov. J. Nucl. Phys. 52, 973 (1990)].

29. V. S. Popov, B. M. Karnakov, and V. D. Mur, Zh.
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Abstract—A two-particle system is described by integral equations whose kernels are dependent on
the total energy of the system. Such equations can be reduced to an eigenvalue problem featuring an
eigenvalue-dependent operator. This nonlinear eigenvalue problem is solved by means of an iterative
procedure developed by the present authors. The energy spectra of a two-fermion system formed by
particles of identical masses are obtained for two cases, that where the total spin of the system is equal
to zero and that where the total spin of the system is equal to unity. The splitting of the ground-
state levels of positronium and dimuonium, the frequency of the transition from the ground state of
orthopositronium to its first excited state, and the probabilities of parapositronium and paradimuonium
decays are computed. The results obtained in this way are found to be in good agreement with experimental
data. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A description of the energy spectrum of two-
particle bound states is an important physical prob-
lem. In order to solve this problem, use is extensively
made of three-dimensional relativistic quasipotential
equations whose kernels are constructed from the
Feynman matrix elements of the interaction ampli-
tude by equating the times of two particles. Upon go-
ing over to the single-time formalism, the interaction
operator (kernel of an integral equation) appears to be
dependent on the total energy of the system. Thus, the
problem of finding the energy spectrum of the system
becomes nonlinear. An iterative procedure for solving
these nonlinear integral equations was proposed and
justified in [1]. The results obtained by numerically
calculating the energy spectrum of a system of two
scalar particles were also presented there for the case
of scalar-photon exchange. The objective of this study
is to perform similar calculations for the spin case.

2. TWO-FERMION SYSTEM

Relativistic integral equations describing the in-
teraction of two fermions within the single-time
formalism were obtained in [2]. In the present study,
we restrict ourselves to the case of zero orbital
angular momentum (l = 0) and consider a two-
particle system characterized by the total-spin values
of zero (S = 0) and unity (S = 1).We assume that the

*e-mail: skachkov@cv.jinr.ru
**e-mail: tanyusha@cv.jinr.ru
1063-7788/03/6601-0099$24.00 c©
masses of the fermions are identical, m1 = m2 = m,
and that the mass of the particle mediating the inter-
action is zero. In the c.m. frame (|p1| = |p2| = p), the
relativistic integral equation for the wave function can
then be written in the form [3]

2
√
m2 + p2(M − 2

√
m2 + p2)ψ(p) (1)

=
α

π

∞∫
0

m2dk√
m2 + k2

V S
l (p, k,M)ψ(k).

Here, we use the relativistic units of measurement
where � = c = 1. In this equation, p and k are the ab-
solute values of the fermionmomenta in the initial and
final states, respectively; ψ(p) is the wave function
for the two-fermion system;M is the sought mass of
this system, M = 2m+ E; E is the sought binding
energy; V S

l is the quasipotential constructed from the
matrix elements of the interaction amplitude that was
calculated within QED; and α = 1/137.0359895 is
the fine-structure constant [4].

Within the one-photon-exchange approximation,
the corresponding formula for the kernel V 0

0 (p, k,M)
(S = 0) has the form {see [2, formula (2.36)]}

V 0
0 (p, k,M) = 2(m2 − 2

√
m2 + p2

√
m2 + k2) (2)

× ln

∣∣∣∣∣ p+ k +
√
m2 + p2 +

√
m2 + k2 −M

|p− k| +
√
m2 + p2 +

√
m2 + k2 −M

∣∣∣∣∣,
while the kernel V 1

0 (p, k,M) (S = 1) is {see [2, for-
mula (3.25)]}
2003 MAIK “Nauka/Interperiodica”
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V 1
0 (p, k,M) =

{
4R1 ln

∣∣∣∣∣ p+ k +
√
m2 + p2 +

√
m2 + k2 −M

|p − k| +
√
m2 + p2 +

√
m2 + k2 −M

∣∣∣∣∣+R2 +R3 +R4

}
pk/2, (3)

where

R1 =
γ2 − 1
γ − γ

′

(
m(2

√
m2 + p2 +

√
m2 + k2)

pk
+ γ

(
m√

m2 + p2 +m
+ 2

))
+ γ

(
2γ +

m2

pk

)
,

R2 = 2
γ′2 − 1
γ′ − γ

(
m(2

√
m2 + p2 +

√
m2 + k2)

pk
+ γ

′

(
m√

m2 + p2 +m
+ 2

))

× ln

∣∣∣∣∣m
2 +

√
m2 + p2

√
m2 + k2 + pk

m2 +
√
m2 + p2

√
m2 + k2 − pk

∣∣∣∣∣ ,
R3 = 4

γ
′2 − 1
γ′ − γ

(
m(2

√
m2 + p2 +

√
m2 + k2)

pk
+ γ

′

(
m√

m2 + p2 +m
+ 2

))

×
√
m2 + p2 +

√
m2 + k2−M

(2
√
m2 + p2

√
m2 + k2 + 2m2− p2− k2)1/2

[
arctg

(2
√
m2 + p2

√
m2 + k2 + 2m2− p2− k2)1/2

p+ k

− arctg
(2
√
m2 + p2

√
m2 + k2 + 2m2 − p2 − k2)1/2

|p− k|

]
,

R4 =
|p − k|3− (p+k)3

3p2k2

m(
√
m2 +p2 +

√
m2 +k2−M)√

m2 +p2 +m
+

(p+k− |p− k|)(
√
m2 +p2 +

√
m2 +k2−M)

2pk

×
[
−4m2

pk
− 8

(
γ +

p2 + k2

2pk

)
+ 4m

2
√
m2 + p2 +

√
m2 + k2

pk
+ 4

(
m√

m2 + p2 +m
+ 2

)

×
(
γ +

(
√
m2 + p2 +

√
m2 + k2)2

2pk

)]
+

4m2

pk
+ 8γ − 4m

2
√
m2 + p2 +

√
m2 + k2

pk

− 4

(
m√

m2 + p2 +m
+ 2

)
(γ + γ

′
),
γ = (p2 + k2−
(
√
m2 + p2 +

√
m2 + k2 −M)2)/(2pk),

γ
′
= (
√
m2 + p2

√
m2 + k2 +m2)/(pk).

3. ITERATIVE PROCEDURE FOR SOLVING
AN INTEGRAL EQUATION INVOLVING

A NONLINEAR DEPENDENCE
ON THE EIGENVALUE

Integral equations involving a nonlinear depen-
dence on the total energy of the system reduce to a
nonlinear spectral problem. In [1], an iterative pro-
cedure for solving such spectral problems involving
an eigenvalue-dependent operator was described in
detail and a mathematically rigorous validation of this
P

procedure was given. The distinction between this it-
erative procedure and the known methods for solving
nonlinear integral equations lies in the fact that the
quantity iterated in [1] is an eigenvalue rather than an
eigenfunction.

Briefly, the idea of the method is as follows. At
each iteration step, the eigenvalue labeled with a fixed
number k and chosen from the set of eigenvalues cal-
culated at the preceding step of the iterative procedure
is substituted into the kernel of the integral operator.
At the first iteration step, an input approximation of
the sought eigenvalue is substituted into the kernel.
If there is no information about the distribution of
eigenvalues, the input-approximation value is chosen
arbitrarily. On the basis of the physical formulation
of the problem being considered, this can be done,
however, in such a way as to improve the convergence
of the iterative process. Unknown wave functions are
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003



RESULTS OF NUMERICALLY SOLVING AN INTEGRAL EQUATION 101
Table 1. Spectrum of binding energies of a two-fermion system

S = 0 S = 1

E1/m −0.125837237(1)× 10−4 −0.125820738(1)× 10−4

E2/m −0.025983124(2)× 10−4 −0.025981041(2)× 10−4

E3/m −0.011648115(2)× 10−4 −0.011647192(2)× 10−4

E4/m −0.006613318(3)× 10−4 −0.006613126(3)× 10−4

Table 2. Frequencies of transitions between positronium levels (in MHz)

Experiment Results of perturbation-theory calculations [8] This study

13S1 − 11S0 203389.10(0.74) 203392.12(0.50) 203861(25)

23S1 − 13S1 1233607216.4(3.2) 1233607222.6(0.8) 1233609106(37)

Table 3. Frequencies of transitions between dimuonium levels (in MHz)

Results of perturbation-theory calculations [10] This study

13S1 − 11S0 42333.5(2.7)× 103 42151.8(5.1)× 103

23S1 − 21S0 5290.07(0.34)× 103 5321.7(10.2)× 103
calculated as the ordinary eigenfunctions of the linear
spectral problem. For this, we use, in our calculations,
the F02AGF code belonging to the NAGLIB library
and realizing the QR algorithm [5]. Attainment of a
small value of the difference ε between two eigen-
values calculated at two consecutive iteration steps
is a criterion of closeness of our approximations to
the sought eigenvalue. As this difference becomes
smaller than the preassigned value characterizing the
accuracy to which the problem must be solved, the
iterative process is taken to be completed. The eigen-
value and the corresponding eigenfunction that were
obtained at the final iteration step are assumed to be
the sought solution to the problem.

4. RESULTS OF THE CALCULATIONS

The above method was used to obtain the energy
spectra for a system of two bound fermions. These
spectra are presented in Table 1. By multiplying the
data in this table by the mass of a specific particle,
we can obtain the spectrum of binding energies of
the corresponding two-particle system ( e+e−,µ+µ−,
and so on).

Among all two-fermion systems, the positronium
atom—a bound state of an electron and a positron—
has received the most adequate study. The difference
of the energies of the ortho- and parapositronium
ground states and the difference of the energies of the
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
orthopositronium ground and first excited states were
measured experimentally in [6, 7]. Our results1) for
the differences of the energy levels under investigation
are presented in Table 2 (in MHz), along with the
experimental data and theoretical results of other au-
thors [8]. One can see from this table that the agree-
ment between the results of the numerical calculation
within the one-photon-exchange approximation and
the experimental data is fairly good. The discrepancy
with the results of [8] can be attributed to both the fact
that the forms of the potentials applied in the one-
photon approximation are different and the fact that
higher order corrections of perturbation theory in the
constant α were used in [8].

We now proceed to consider the µ+µ− bound
state. As in the case of positronium, we will refer to
the singlet state of dimuonium as paradimuonium and
to its triplet state as orthodimuonium. Experiments
studying dimuonium are still under way. By solving
the Bethe–Salpeter equations for bound states with-
in perturbation theory, the authors of some studies
(see [9, 10]) calculated, however, the differences of
the energies of the ground and first excited states
for ortho- and paradimuonium. In Table 3, the data

1)By using the Planck constant � = 6.6260755 × 10−34 J s
and the relation 1 eV = 1.60217733 × 10−19 J [4], we
obtain 1 eV = 241798834 MHz. The electron mass is
510999.07 eV [4].
3
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calculated in the present study (the muon-mass value
of 105658389 eV [4] has been employed here) with the
aid of the iterative procedure are displayed along with
the data calculated in [10]. Our results are seen to be
rather close to the results from [10].

5. PARAPOSITRONIUM
AND PARAMUONIUM WIDTHS
WITH RESPECT TO DECAYS

INTO TWO PHOTONS

The probability of parapositronium decay into two
photons can be determined with the aid of the expres-
P

sion [11]

Γ(e+e− → 2γ) =
8
π
α2me

∣∣∣∣∣∣
∞∫
0

dχχψ(χ)

∣∣∣∣∣∣
2

, (4)

where χ = ln [(p+
√
p2 +m2

e)/me] is the rapidity
conjugate to the relative particle momentum and me

is the electron mass.

In the case of an energy-dependent potential, the
normalization condition for the wave function ψ(p) is
written in the form [12]
1
(2π)6

∫
ψ(p)

{
∂

∂M
[G−1

0 (p,M) − V S
l (p, k,M)]

}
ψ(k)dpdk = 2M,
where G0(p,M) is the free Green’s function for
Eq. (1):

G−1
0 (p,M) = 2

√
m2 + p2(M − 2

√
m2 + p2).

For the parapasitronium width with respect to de-
cay into two photons, integration in (4) of the first
eigenfunction (parapositronium ground state), which
was derived by numerically solving Eq. (1) with the
potential (2), yields

Γ(e+e− → 2γ) = 7.9843(72) × 109 s−1, (5)

which is in good agreement with the experimental
value measured in [13],

Γexpt(e+e− → 2γ) = 7.9909(17) × 109 s−1. (6)

Previously, we solved the relativistic quasipoten-
tial equation for two scalar particles by using the
iterative procedure. The energy spectrum that was
obtained in solving this equation is presented in [14].
We note that, in the scalar case, the quasipotential
V0(p, k,M) has the form

V0(p, k,M) (7)

= 2 ln

∣∣∣∣∣ |p− k| +
√
m2 + p2 +

√
m2 + k2 −M

p+ k +
√
m2 + p2 +

√
m2 + k2 −M

∣∣∣∣∣ .
By using the first eigenfunction obtained by solving
Eq. (1) with the potential (7), we can calculate the
probability of the decay of the positronium ground
state in the scalar approximation. In this case, the
numerical integration in formula (4) gives the value

Γ(e+e− → 2γ) = 7.9782(72) × 109 s−1. (8)

If, in the calculation by formula (4), we use the first
eigenfunction obtained by numerically solving the
Schrödinger equation [15] with the Coulomb poten-
tial, the decay width in the nonrelativistic approxima-
tion is

Γ(e+e− → 2γ) = 7.9635(72) × 109 s−1. (9)

By using the model relativistic wave function, the au-
thors of [11] calculated the width with respect to para-
positronium decay into two photons by formula (4).
As a result, they obtained the value of 7.97 × 109 s−1,
which is close to the decay-width value that we calcu-
lated in the scalar approximation. By comparing the
values in (5), (6), (8), and (9), one can see that the
agreement between the numerically calculated and
experimentally measured values of the decay width
is improved if spin and relativistic corrections are
taken into account in constructing the quasipotential.
The parapositronium decay width was also calculated
in [16–18]. Upon taking into account the contribu-
tions of diagrams corresponding to higher orders of
perturbation theory, the result appears to be 7.9895 ×
109 s−1 [18].

It was also noted in [11] that, if the µ+µ− pair is
assumed to form a loosely bound system—that is, in
the limit where the binding energy tends to zero—
the expression for the probability of paradimuonium
decay into two photons will differ from that in (4) by
the substitutionme → mµ (mµ is the muon mass):

Γ(µ+µ− → 2γ) = Γ(e+e− → 2γ)(mµ/me). (10)

By using formulas (4) and (10), we can find that the
decay probability for the ground state of the µ+µ−

bound system for the spinor equation with the poten-
tial (2) is

Γ(µ+µ− → 2γ) = 1650.9(1.5) × 109 s−1
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003
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and that the analogous probability for the relativistic
scalar equation with the potential (7) is

Γ(µ+µ− → 2γ) = 1649.6(1.5) × 109 s−1.

Let us compare the values obtained for the decay
probability by solving the nonlinear integral equa-
tions with the potentials (2) and (7) by the iterative
procedure and the results of other authors. In [11],
the width with respect to paradimuonium decay into
two photons was calculated by formula (10) with a
model relativistic wave function. The result obtained
there, 1648 × 109 s−1, is close to our result for the
scalar case. Performing calculations by the formula
Γ(0)(n1S0) = α5mµ/2n3, which determines the de-
cay width in the leading order of perturbation the-
ory [19], we obtain the value of 1660.8 × 109 s−1 for
the ground state. The decay width of 1680.3(0.5) ×
109 s−1 was derived from the paradimuonium lifetime
of τ(11S0) = 0.59512(18) × 10−12 s, which was cal-
culated in [10] with allowance for higher order cor-
rections in the constant α. Thus, our results are in
good agreement with the results obtained by different
methods.

In Table 4, we give the decay probabilities calcu-
lated in the present study for the first three excited
states of parapositronium and paradimuonium. Here,
n is the principal quantum number. In the calcula-
tions, we used the eigenfunctions of numbers 2, 3, and
4 as obtained in solving Eq. (1) with the potential (2)
within the iterative procedure. Further experiments
to study positronium and dimuonium will make it
possible to test our results.

6. CONCLUSION

On the basis of the method developed in our previ-
ous studies, integral equations for the wave function
describing the system of two fermions of identical
masses have been solved for the case of electromag-
netic interaction (one-photon-exchange quasipoten-
tial). The fact that our results agree with available
experimental data and with results obtained by other
methods demonstrates a high efficiency of our iter-
ative procedure for solving integral equations whose
operator is dependent on the relevant eigenvalue—
in the case being considered, on the total energy
(or mass) of a composite system. The QED case
chosen in the present study can be considered as a
test problem that enables us to perform a comparison
both with the results of other authors and with exper-
imental data. In the future, our iterative method for
solving nonlinear spectral problems can be employed
to solve integral equations describing bound states in
the system of two particles, first, in the case of differ-
ent masses and, second, in the case where the mass
of the particle mediating the interaction is nonzero.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 200
Table 4. Decay widths of excited states (numerical calcu-
lations)

n Parapositronium, s−1 Paradimuonium, s−1

2 0.94651(55)× 109 195.71(11)× 109

3 0.27763(47)× 109 57.405(97)× 109

4 0.10467(39)× 109 21.642(81)× 109

The application of the proposed procedure, upon an
appropriate modification, to solving sets of integral
equations whose kernels are eigenvalue-dependent
seems promising. Such sets of equations arise, for ex-
ample, in considering bound states in a two-particle
systemwhose orbital angular momentum satisfies the
condition l ≥ 1.

APPENDIX

Errors in Calculating the Energy Levels and Decay
Widths of Positronium and Dimuonium

The code based on the method that was developed
for solving a nonlinear spectral problem and which is
described in Section 3 involves an iterative procedure
applied to discrete equations. Upon going over from
an equation in a continuous variable to equations in
a discrete variable in finite-dimensional space, the
original problem reduces to a matrix eigenvalue prob-
lem whose solution can be constructed, in the linear
case, by elaborate practical methods. The Bubnov–
Galerkin projection method [20] provides one of the
possible ways for implementing this transition. In the
case under consideration, the error in calculating the
eigenvalues and eigenfunctions of the nonlinear spec-
tral problem therefore receives contributions from the
error associated with an approximation of the contin-
uous Eq. (1) by a set of discrete equations and the
error introduced by the iterative method for solving
the resulting nonlinear discrete spectral problem.

A set of numerical experiments has been per-
formed in order to estimate the accuracy of discrete
eigenvalues and eigenfunctions obtained here. We
have considered Eq. (1) with the potentials (2), (3),
and (7) and the Schrödinger equation involving the
Coulomb potential [15] and having an exact solution
that can be represented in an analytic form. The nu-
merical calculations presented in [21] revealed that
the errors in the eigenvalues and eigenfunctions due
to the approximations used are close for all of the
equations considered in the present study (one to two
significant digits are coincident).

It was also shown in [21] that the error in calculat-
ing the eigenvalues and eigenfunctions of the nonlin-
ear spectral problem by the above iterative method is
3
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one to two orders of magnitude smaller than the error
of the approximation. In calculating the decay widths
by the method proposed in [11], an additional error
stems from a numerical integration. It was proven
in [21], however, that the error from a numerical inte-
gration is much less than the approximation error. In
calculating the errors in the frequencies of the transi-
tions between the energy levels and the errors in the
positronium and dimuonium decay widths, we have
therefore taken into account only the errors in the
eigenvalues and eigenfunctions due to the approxi-
mation according to the Bubnov–Galerkin method.
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