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Abstract—Crystallization of a eutectic Sn–Pb melt was studied under strongly nonequilibrium and equilibrium
conditions with an ac electric field applied to the sample from a rectangular-pulse generator having a frequency
of above 150 kHz. Cooling curves and surface micrographs of various sections through the sample volume were
obtained. It was shown that the crystallization time decreases and the eutectic grain scale changes under a field.
© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In [1], the influence of inhomogeneous conditions
on the crystallization mechanisms of a eutectic Sn–Pb
melt was reported on. The possibility of consistently
describing detected features on the basis of recent the-
oretical advances [2] was also shown. However, crys-
tallization features under strongly nonequilibrium con-
ditions and in an electric field were not considered in
[1]. Meanwhile, the implementation of these conditions
is currently considered a promising technique for pro-
ducing materials with new properties. For this reason,
we studied the crystallization of a eutectic Sn–Pb melt
under strongly nonequilibrium conditions and in an
energetically weak (in terms of the determination of
basic thermodynamic parameters) ac unipolar electric
field.

2. EXPERIMENTAL

Crystallization of a eutectic Sn–Pb melt was studied
in vacuum at a pressure of ~10–3 Pa using the setup
shown schematically in Fig. 1. A eutectic was placed
into a quartz cell with platinum electrodes and heated in
a special cylindrical furnace to a homogeneous melt.
Then, the cell was removed from the furnace and the
cooling curve was measured. After that, the cell with
the eutectic was again placed into the furnace, a gener-
ator of positive rectangular pulses was turned on, and
then the cell was removed from the furnace and the
cooling curve was measured again. The generator ter-
minals were connected to the sample so that the electric
field was directed from the cold to the hot part of the
sample. The experiment was repeated several times to
monitor the reproducibility of the measurement result.
The current pulse amplitude was monitored using a
measuring resistance R and an oscilloscope. The main
results were obtained at a current amplitude of 5 A and
a pulse repetition rate of 170 kHz with a duty ratio of
1063-7834/05/4702- $26.00 ©0199
10. The electric field strength inside the sample did not
exceed a few tenths of a volt per centimeter.

Crystallization under strongly nonequilibrium con-
ditions was modeled by placing a eutectic melt into liq-
uid nitrogen.

Eutectic samples were shaped like cylinders 1.0 cm
in diameter and 5.0 cm long. Morphological studies
were carried on sections through the points designated
by letters in Fig. 1. Samples were prepared using the
technique described in [1]. Morphological studies were
performed using a JSM-35 scanning electron micro-
scope. All micrographs were made in z contrast.

3. RESULTS

We studied the morphology of sections of eutectics
synthesized during eutectic-melt crystallization under
conditions close to equilibrium and under strongly non-
equilibrium conditions. Eutectics obtained by crystalli-
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Fig. 1. Schematic representation of the setup for melt crys-
tallization: (1) quartz cell, (2) rectangular pulse generator,
(3) measuring resistance, (4) oscilloscope, and (5) thermo-
couple. Letters designate the regions corresponding to
micrographs in Fig. 2.
 2005 Pleiades Publishing, Inc.
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zation in a nonzero and zero electric field were studied.
In the case of melt crystallization under conditions
close to equilibrium, cooling curves were additionally
measured. Their shape was characteristic of eutectic-
melt crystallization [1]. The duration of melt crystalli-
zation (the region where the temperature ceases to
change) depended on whether the crystallization was
carried out in an external field or without a field. In the
former case, this region decreased in size by ~14%
(186 s in comparison with 216 s).

The main results of the study of the eutectics sec-
tion morphology are shown in Figs. 2–4. The section
morphology of samples synthesized under strongly
nonequilibrium conditions was characteristic of
anomalous eutectics, in which it was difficult to sepa-
rate regions enriched with lead or tin (Fig. 2; white
inclusions correspond to traces of paste used when
preparing the sample).

The morphology of all sections of all the samples
obtained by crystallization under equilibrium condi-
tions was close to that of normal eutectics. The eutec-
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–
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Fig. 2. Micrograph of a cross section of a eutectic produced
by melt crystallization under strongly nonequilibrium con-
ditions.
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–

JSM35

Fig. 3. Micrograph of a cross section of a eutectic produced
by melt crystallization under equilibrium conditions in a
zero external field.
P

tics produced by crystallization in a zero field were
characterized by uniform sizes of eutectic grains over
the sample volume (~2.5 µm). The typical morphology
of such a sample is shown in Fig. 3. The samples syn-
thesized in an electric field were characterized by non-
uniform sizes of eutectic grains in various eutectic
regions. Near the surface (regions a, b in Fig. 1), the
eutectic grain size decreased (Figs. 4a, 4b) by factors of
~2 and ~1.5 in the periphery (region a) and in the cen-
tral region, respectively, in comparison with the sample
synthesized in a zero field. In the sample volume

(a)
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–

25 kV ×540 0103 10.0 U JSM35
–

(b)

25 kV ×540 0709 10.0 U JSM35
–

(c)

Fig. 4. Micrographs of cross sections of eutectics produced
by melt crystallization under equilibrium conditions in an
external electric field; the eutectic section surface (a, b) in
regions a and b, respectively, and (c) in regions c and d in
Fig. 1.
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(regions c, d), the grain size remained almost
unchanged (Fig. 4c).

The above-described influence of the field on the
crystallization took place only under an ac external
field having a frequency of above 150 kHz and directed
from the cold part of the sample to the hot part. In the
case where the field was in the opposite direction, no
influence of the field on crystallization was detected.

However, we were unable to propose a fully argued,
consistent explanation of the entire set of observed phe-
nomena.

4. CONCLUSIONS

(i) An ac unipolar electric field directed from the
cold part of a sample to the hot part reduces the crystal-
lization time of a eutectic Sn–Pb melt and decreases the
eutectic grain size.

(ii) The efficiency of the influence of the electric
field on the crystallization depends on its frequency.
PHYSICS OF THE SOLID STATE      Vol. 47      No. 2      200
The effect of an electric field becomes appreciable at
frequencies of above 150 kHz.
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Abstract—The temperature dependence of the Nernst–Ettingshausen coefficient Q(T) in the normal phase of
doped HTSCs of the yttrium system was studied. The main features characterizing the behavior of this coefficient
were revealed, and the character and mechanism of the effect that various nonisovalent substituents exert on the
Q(T) dependence were analyzed. It is shown that the narrow-band model permits one not only to describe all the
specific features observed in the Q(T) curves but also to perform a simultaneous quantitative analysis of the tem-
perature dependences of four kinetic coefficients (the electrical resistivity and the Seebeck, Hall, and Nernst–
Ettingshausen coefficients) with the use of a common set of model parameters characterizing the band structure
and carrier system in the normal phase of an HTSC. This approach was employed to determine the carrier mobil-
ities and the asymmetry of the dispersion curve in the systems studied (YBa2Cu3Oy, y = 6.37–6.91;
YBa2Cu3 − xCoxOy, x = 0–0.3; Y1 – xCaxBa2Cu3Oy, x = 0–0.25; Y1 – xCaxBa2 – xLaxCu3Oy, x = 0–0.5) and to analyze
the effect of the substitutions involved on the variation of these parameters. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Systematic experimental studies of electronic trans-
port phenomena in HTSCs of various families are
widely used to probe various features of the band struc-
ture and properties of the carrier system in these mate-
rials. A wealth of information has been accumulated on
the temperature dependence of three major kinetic
coefficients (the electrical resistivity and the Seebeck
and Hall coefficients) in samples of various families.
The extent to which these dependences (and the value
of the critical temperature) are influenced by various
deviations in the sample composition from its optimum
level from the standpoint of its superconducting prop-
erties has been studied in detail (see, e.g., reviews [1–
3]). While a variety of models have been proposed for
the normal state (see, e.g., review [4]), none of them has
been universally accepted.

A substantially smaller number of studies have dealt
with the behavior exhibited in the normal phase by
another kinetic parameter, the Nernst–Ettingshausen
coefficient Q, which has not received as much research
attention. Unlike the thermopower and the Hall effect,
the Nernst–Ettingshausen thermomagnetic effect is
insensitive to the sign of the carriers and is determined,
according to the classical theory of kinetic phenomena,
by the band structure and the character of the energy
dependence of the carrier relaxation time [5]. As a
result, even qualitative analysis of the Q(T) behavior
would require detailed knowledge of the band structure
of the material under study. It is the lack of this infor-
mation for the HTSC materials that apparently
accounts for the extremely limited number of experi-
1063-7834/05/4702- $26.00 0202
mental studies of the Q(T) behavior in the normal phase
and of attempts to analyze them (experimental results
can be found in [6–9]; for a qualitative analysis of the
available data, see [7–10]).

In recent years, interest in the Nernst–Ettingshausen
coefficient (NEC) has substantially increased starting
with [11]. A study of the Q(T) dependences was
reported in [11]. That study was performed on a series
of La2 – xSrxCuO4 samples, in which the NEC was
observed to remain anomalously large at temperatures
50–100 K above Tc. It was concluded that there are
superconducting fluctuations in HTSCs at these tem-
peratures and that the NEC is influenced by vortex-type
interactions. The results reported in [11] stimulated
both experimental and theoretical investigations of the
NEC in HTSCs. The Q(T) dependences have been stud-
ied experimentally in various magnetic fields on sam-
ples of the systems La2 – xSrxCuO4 [12–14],
Bi2Sr2 − yLayCuO6  [12], and Pr2 − xCexCuO4 [15]. The
above studies attempted to separate the contributions
from free carriers and superconducting fluctuations to
the NEC measured at T > Tc. Those studies, in turn,
stirred interest in a theoretical investigation of the NEC
behavior in the region of existence of fluctuating super-
conducting pairs [16–18].

While the papers referred to are certainly of interest,
the methods they propose to analyze the Q(T) behavior
are not free of shortcomings. This relates primarily to
the NEC having been discussed with no connection at
all to the behavior of other kinetic coefficients of HTSC
materials. We believe that only an approach that pro-
vides a common explanation of the anomalous behavior
© 2005 Pleiades Publishing, Inc.
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for all four main kinetic coefficients (electrical resistiv-
ity and the Seebeck, Hall, and Nernst–Ettingshausen
coefficients) from the same standpoint could be consid-
ered meaningful. It is the development of such an
approach that is the subject of the present study. Our
analysis of the experimental Q(T) relations is based on
the narrow conduction band model [19]. As has been
shown by us more than once, this model can be used to
interpret and quantitatively analyze the temperature
dependence of resistivity and of the Hall and Seebeck
coefficients obtained for samples of different HTSC
systems with various deviations from the stoichiomet-
ric composition (for the most complete exposition of
the results, see review [4]). It turns out possible not only
to explain and describe the specific features of the
behavior of the three kinetic coefficients but also to
derive (by analyzing their temperature dependences)
valuable information on the parameters of the carrier
system in the normal phase. We also performed a com-
prehensive theoretical analysis of the behavior of the
Nernst–Ettingshausen effect in conductors with a nar-
row conduction band and demonstrated that it is possi-
ble to employ the proposed approach to describe the
Q(T) relations observed in HTSC materials [20]. The
present paper reports on a correlated analysis of the
temperature dependences of the kinetic coefficients in
the normal phase based on experimental data obtained
on samples of four doped HTSC systems of the
YBa2Cu3Oy family.

2. SAMPLES

We studied four series of ceramic samples of the fol-
lowing compositions: YBa2Cu3Oy (y = 6.37–6.91),
YBa2Cu3 − xCoxOy (x = 0–0.3), Y1 – xCaxBa2Cu3Oy  (x =
0–0.25), and Y1 − xCaxBa2 – xLaxCu3Oy (x = 0–0.5). All
samples were prepared by the standard solid-phase
method using the same procedure. The annealing was
done in air at a temperature T = 920–950°C, with two
or three intermediate grindings. Next, to saturate the
samples with oxygen to the maximum extent possible,
they were cooled slowly and annealed in an oxygen
flow at T = 450°C for 4 h with subsequent slow cooling
to room temperature.

All samples were highly homogeneous, which was
revealed by thermoprobe measurements of the Seebeck
coefficient at T = 300 K. X-ray analysis showed them to
be single phase to within 1–2%. Furthermore, in all
samples, the oxygen content was checked by iodomet-
ric titration (the accuracy of determination of the values
of y was ±0.01 per formula unit).

The YBa2Cu3Oy series with variable oxygen content
consisted of seven samples with a gradually decreasing
oxygen index y (6.91, 6.82, 6.72, 6.65, 6.61, 6.48,
6.37), which was achieved by annealing in an oxygen-
deficient atmosphere at different temperatures. The
YBa2Cu3 − xCoxOy series was made up of ten samples
with x = 0.01, 0.02, 0.03, 0.05, 0.07, 0.10, 0.15, 0.20,
0.25, and 0.30. In this case, the oxygen content
PHYSICS OF THE SOLID STATE      Vol. 47      No. 2      2005
increases with x successively from y = 6.89 for x = 0 to
y = 7.06 for x = 0.3.

The last two series of samples were chosen for
studying the effect of the Ca2+  Y3+ substitution,
which is known to give rise to a number of unusual
sample properties in both the normal and the supercon-
ducting state [4, 21]. We studied the effect of both sin-
gle doping with calcium (the Y1 – xCaxBa2Cu3Oy  sys-
tem) and codoping (the Y1 – xCaxBa2 – xLaxCu3Oy sys-
tem) with equal concentrations of the two dopant
impurities. The oxygen content in these series was orig-
inally reduced by joint annealing of the samples of each
series at T = 450°C in an oxygen-deficient atmosphere
for two hours to increase the kinetic coefficients,
thereby making quantitative analysis of their behavior
in terms of the narrow conduction band model more
reliable. A specific feature of the samples in these series
is that they are charge-compensated. In the case of
Y1 − xCaxBa2Cu3Oy, the smaller charge of calcium as
compared with that of yttrium is compensated for by
the successive decrease in the oxygen content (from y =
6.73 at x = 0 to y = 6.33 for x = 0.2). In the
Y1 − xCaxBa2 − xLaxCu3Oy system, the impurity cations
differing in the valence state from the elements they
substitute for (Ca2+  Y3+ and La3+  Ba2+) com-
pensate for each other in their effect on the total-charge
balance in the lattice. As a result, the oxygen content
varies only insignificantly with increasing doping level
(from y = 6.83 at x = 0 to y = 6.89 for x = 0.5). For a
detailed description of the properties of all our samples,
the reader may refer to our previous publications [4, 19,
22, 23]. Some of the data obtained are listed in the
table.

3. MEASUREMENT TECHNIQUES

We first measured the temperature dependences of
the resistivity ρ and of the Seebeck (S) and Hall (RH)
coefficients, which were subsequently used together
with the NEC data in an analysis within the narrow con-
duction band model. These relations demonstrate well-
known features, and their behavior is described and
analyzed in considerable detail in [4, 19, 22, 23].

The Q(T) dependences were studied in the cell
shown schematically in Fig. 1. It consists of two mas-
sive copper blocks sandwiching the sample. One of the
blocks can be displaced to clamp the sample. To pro-
duce a temperature gradient, an electrical heater is
mounted in one of the copper blocks. The temperature
difference is measured with a differential Cu–constan-
tan thermocouple, with its junctions fixed in the blocks.
The cell temperature is monitored with a diode, which
is also mounted in a copper block. The sample is insu-
lated by thin mica spacers to preclude electrical contact
between the sample and the copper blocks. The measur-
ing circuit contains a compensation loop (which
reduces the induction currents generated when the
magnetic field is turned on and off) and a special com-
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Compositions, critical temperatures, kinetic coefficients for T = 300 K, and band structure parameters as derived from the tem-
perature dependences of the Seebeck coefficient using the narrow-band model for the samples studied

x y Tc, K
S, µV/K

(T = 300 K)
RH × 103, cm3/C

(T = 300 K) F WD, meV C = Wσ/WD b

YBa2Cu3Oy

– 6.91 89.5 2.5 0.48 0.508 85 0.35 0

– 6.82 87.2 12.5 1.75 0.533 135 0.34 0

– 6.72 66.5 16.4 2.74 0.547 185 0.33 0

– 6.65 60.0 29.0 3.41 0.552 225 0.32 0

– 6.61 57.1 35.8 4.36 0.586 270 0.30 0

6.48 34.7 64.1 8.98 0.615 420 0.28 0

– 6.37 <4.2 176.0 13.96 0.625 530 0.24 0

YBa2Cu3 – xCoxOy

0.02 6.98 93.1 1.7 1.10 0.504 70 0.41 0

0.03 6.99 92.6 3.1 1.63 0.508 80 0.40 0

0.05 7.00 92.2 5.0 2.50 0.514 80 0.43 0

0.07 7.01 91.8 7.8 3.31 0.517 125 0.25 0

0.1 7.02 87.9 11.0 4.16 0.523 150 0.25 0

0.15 7.04 76.9 19.6 6.00 0.533 190 0.23 0

0.2 7.04 67.9 30.6 6.72 0.544 230 0.21 0

0.25 7.05 60.6 37.1 7.32 0.544 360 0.17 0

0.3 7.06 49.7 57.8 8.26 0.554 440 0.16 0

Y1 – xCaxBa2Cu3Oy

0 6.73 63.7 17.8 2.23 0.528 175 0.31 0

0.025 6.72 70.8 14.0 2.17 0.524 170 0.26 – 0.003

0.05 6.70 72.0 12.4 2.15 0.517 180 0.23 –0.005

0.075 6.68 75.1 13.3 2.13 0.511 200 0.21 –0.010

0.1 6.66 80.0 9.4 2.10 0.503 205 0.20 –0.012

0.15 6.58 80.6 9.3 2.09 0.494 220 0.19 –0.020

0.2 6.53 80.9 8.0 2.06 0.485 235 0.19 –0.027

Y1 – xCaxBa2 – xLaxCu3Oy

0 6.83 85.6 8.3 1.81 0.514 170 0.27 0

0.05 6.84 81.4 8.3 1.76 0.508 190 0.22 –0.005

0.1 6.85 76.9 9.1 1.89 0.502 200 0.19 –0.011

0.2 6.86 75.1 9.2 1.96 0.492 235 0.16 –0.021

0.3 6.85 67.9 10.0 2.02 0.480 265 0.15 –0.033

0.4 6.87 66.9 9.4 1.98 0.470 275 0.14 –0.042

0.5 6.89 65.3 11.8 2.16 0.461 295 0.14 –0.052
pensating circuit permitting suppression or a substan-
tial reduction of the originally present (for zero mag-
netic field) parasitic thermopower signal induced by the
longitudinal temperature drop and nonuniform thermal
contact of the sample with the heater. To isolate the
Nernst–Ettingshausen voltage from the background of
voltages produced by the even effects in a magnetic
field, the measurements are performed in two opposite
orientations of the magnetic field. The measurements
are conducted under heating of the cell after prelimi-
PH
nary cooling with liquid nitrogen. A measurement cycle
extending from T = 77 to 300 K lasts about two hours,
which provides a sufficiently slow sample temperature
variation. The magnetic fields used in the experiments
were typically 1.8 T, and the temperature gradient was
on the order of 100 K/cm.

The sides of a sample are ground, with particular
emphasis placed on adjusting its planes perpendicular
to the gradient ∇ T so as to make them parallel to each
YSICS OF THE SOLID STATE      Vol. 47      No. 2      2005
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other. On one of them, longitudinal grooves are cut and
filled by molten indium to prepare a contact pad, to
which thin copper wires are attached with a paste based
on finely dispersed silver; from these wires, the signal
of the Nernst–Ettingshausen effect is obtained. The
total contact resistance does not exceed 1 Ω , thus pro-
viding a substantially reduced noise level in the mea-
suring circuit. The sample dimensions are typically 3–
4 mm in the magnetic field direction, 1 mm along the
temperature gradient, and 8–10 mm in the signal base
direction.

The measurements are conducted at T = 80–350 K;
the error with which the NEC values are determined in
Q(T) measurements does not exceed 10%, and the min-
imum reliably determined NEC value in mobility units,
Q/(kB/e), is 5 × 10–3 cm2/V s at T = 300 K.

Check experiments showed that the signal voltage
depends linearly on the temperature gradient, magnetic
field, and the distance between the measuring probes. It
was also experimentally established that the real tem-
perature gradient across the sample is 10% smaller than
that calculated from readings of the thermocouple
inserted into the copper blocks, which should be
assigned to part of the gradient dropping across the
thermal resistance between these blocks and the sam-
ple. This figure is almost temperature-independent,
which allows one to introduce corrections for the true
value of the temperature gradient across the sample in
calculating Q.

4. EXPERIMENTAL Q(T) RELATIONS

The experimental temperature dependences of the
NEC are shown in Figs. 2–5 for all four sample series.
Note that the Q(T) relations for the samples of the first
three lightly doped series could be measured only for
T > 150 K and that no temperature measurements could
be performed for YBa2Cu3 − xCoxOy with x < 0.07. It can
be seen from Figs. 2–5 that, in the region T = 100–300 K,
the NEC exhibits the same temperature dependence for
all the types of off-stoichiometry studied. The values of
the NEC of the YBa2Cu3Oy HTSC system in the normal
phase are very small; indeed, for close-to-stoichiometric
compositions, Q(300 K)/(kB/e) ≤ 0.1 cm2/V s, which is
two to three orders of magnitude smaller than the values
of Q in the region of mixed states [24–26]. As the tem-
perature is raised from 100 K, the NEC grows to reach a
broad maximum at T = 200–270 K, depending on the
actual sample composition, and subsequently falls off
slightly up to T = 300 K. Note that, although the NEC at
T = 300 K is always positive, Y1 − xCaxBa2 – xLaxCu3Oy
samples exhibit a transition to values Q < 0 at low tem-
peratures (T < 130–160 K). However, the existence of a
temperature interval within which Q < 0 is apparently
not connected in any way with YBa2Cu3Oy being
codoped with calcium and lanthanum. This suggestion
is corroborated by the presence of this temperature
interval in the Q(T) graph measured on the original
(undoped) sample of the Y1 − xCaxBa2 – xLaxCu3Oy
PHYSICS OF THE SOLID STATE      Vol. 47      No. 2      2005
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Fig. 1. Cell employed in measurements of the Q(T) relations
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Fig. 2. Temperature dependence of the Nernst–Etting-
shausen coefficient in YBa2Cu3Oy samples. Symbols refer
to experimental data, and the curves are model calculations.
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data, and the curves are model calculations.
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series (Fig. 5). Note that for T > 150 K this relation is
almost identical to that obtained for YBa2Cu3O6.82
(Fig. 2). In the samples of the first three series, no
crossover to negative values of the NEC was observed
to occur, because in these cases there was successful
measurement of the Q(T) relation at low temperatures
only on samples with a sufficiently large deviation from
stoichiometry, for which the absolute values of Q are
relatively large. In Y1 − xCaxBa2 − xLaxCu3Oy samples,
the charge effects of the two impurities cancel each
other, so the critical temperature and the kinetic coeffi-
cients (electrical resistivity and the Hall and Seebeck
coefficients) in these samples vary only weakly with
increasing doping level [23]. Similarly, for all the val-
ues of x studied, the quantity Q(300 K) remains very
low, which makes it possible to reliably observe the
crossover to negative values of the NEC in the low-tem-
perature domain. Thus, we believe that the crossover to
negative values of NEC is a common feature in the
behavior of the NEC in YBa2Cu3Oy that becomes man-
ifest in cases where the NEC is very small in magni-
tude.
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Fig. 4. Temperature dependence of the NEC in
Y1 − xCaxBa2Cu3Oy  samples. Symbols refer to experimen-
tal data, and the curves are model calculations.
P

Figure 6 displays the concentration dependences of
the NEC for all four systems measured at T = 300 K.
Note that these values were obtained for all the samples
under study due to the higher sensitivity of the tech-
nique employed in measurements at a fixed tempera-
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ture. This allowed us to establish that the value of
Q/(kB/e) obtained at T = 300 K on samples as close to
stoichiometric composition as possible becomes
extremely small (down to 0.016 cm2/V s for the
YBa2Cu3 − xCoxOy sample with x = 0.01). Obviously
enough, the absolute values of Q obtained for two dif-
ferent kinds of deviation from stoichiometry vary in
ways that differ qualitatively. For YBa2Cu3O7 – x with
variable oxygen content, just as for YBa2Cu3 − xCoxOy,
the NEC at T = 300 K grows markedly with an increase
in the doping level following a close-to-linear law. As a
result, Q(T = 300 K) in a sample with the maximum
deviation from oxygen stoichiometry (YBa2Cu3O6.36)
reaches a value of 1 cm2/V s. In the Y1 − xCaxBa2Cu3Oy
and Y1 – xCaxBa2 – xLaxCu3Oy systems, the NEC varies
only slightly with increasing x (note that the absolute
values of the other kinetic coefficients, as well as the
critical temperature, vary in a qualitatively similar man-
ner in the series studied; see table). This difference in
the behavior of the NEC stems from the difference in
the charge balance variation in the lattice initiated by
the dopants studied. Indeed, in the first two series of
samples, the deviation from stoichiometry brings about
a strong change in the charge balance, whereas in the
third and fourth systems the charge state of the samples
remains almost unchanged due to compensation of the
charge introduced by calcium, by a decrease in oxygen
content (Y1 − xCaxBa2Cu3Oy), or by the charge of the
second dopant (Y1 – xCaxBa2 – xLaxCu3Oy) [4]. How-
ever, all the features present in the temperature depen-
dences of Q(T) remain unchanged in all four sample
series.

The data obtained permit identification of the fol-
lowing general features of the NEC behavior in the nor-
mal phase, which are characteristic of doped HTSCs of
the YBa2Cu3Oy system as a whole:

(1) At T = 300 K, the NEC is positive and extremely
small for compositions close to stoichiometry. At very
small absolute values of Q, a crossover to negative val-
ues is observed at T < 150 K.

(2) As the temperature decreases, the NEC increases
slightly and Q(T) reaches a broad maximum and then
falls off rapidly. Qualitatively, the pattern of the Q(T)
relation remains unchanged for different types of devi-
ation from stoichiometry.

(3) The effect of deviations from stoichiometry on
the magnitude of the NEC is governed by the change in
the charge balance in the lattice. Under the conditions
of oxygen deficiency or nonisovalent substitution of
cobalt for the chain copper, the Q(300 K) increase
strongly in magnitude, while in samples doped with
calcium (singly or with a codopant substitution Co 
Cu(1)), the variation in the NEC is insignificant.

(4) For all kinds of deviation from stoichiometry, the
NEC varies in magnitude in the same way as the other
kinetic coefficients and correlates with the variation in
the superconducting properties of YBa2Cu3Oy.
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5. DISCUSSION OF THE RESULTS

As mentioned in Section 1, no systematic analysis
of the NEC behavior in HTSC materials has been per-
formed thus far. Fairly rare attempts at such an analysis
have been limited in most cases to a discussion of the
Q(T) relation obtained for a specific sample and did not
consider the behavior of the NEC jointly with data
available on other kinetic coefficients. In what follows,
we perform a correlated analysis of the above experi-
mental data on the Q(T) relations combined with the
results obtained earlier on the same samples for the
temperature dependences of the Seebeck and Hall coef-
ficients [4, 19, 22, 23].

We chose as a basis of this integrated approach the
narrow-band model, which, as demonstrated more than
once in our earlier publications, allows quantitative
description of the temperature dependences of three
kinetic coefficients (the electrical resistivity and the
Seebeck and Hall coefficients) obtained for various
samples of different HTSC systems [4, 19, 21–23]. Our
earlier detailed theoretical analysis of the specific fea-
tures of the Nernst–Ettingshausen effect in semicon-
ductors with a narrow conduction band demonstrated
that this model can provide an interpretation of experi-
mental Q(T) data [20]. It was shown that, in the case
where the conduction band width is comparable to the
Fermi broadening, the energy dependence of the relax-
ation time τ(ε) does not exert, in contrast to the predic-
tions from the classical theory of electronic transport
phenomena, any substantial influence on the NEC
behavior. The calculations performed in [20] showed
that the sign, magnitude, and character of the NEC tem-
perature dependence are determined primarily by the
extent to which the dispersion relation ε(k) deviates
from the quadratic law, whereas other details of the
band structure turn out to be less significant and can be
disregarded in calculations in a first approximation.
This allowed us to propose and substantiate model
approximations of the density-of-states function D(ε),
the differential conductivity σ(ε), and the Hall conduc-
tivity σH(ε). These approximations take into account
the asymmetry in the ε(k) relation and make it possible
to obtain theoretical Q(T) curves that are in overall
qualitative agreement with the available experimental
data on doped YBa2Cu3Oy. These approximations,
retaining the rectangular shape accepted for the narrow-
band model, are shown in Fig. 7. Within these approxi-
mations, the Q(T) relation can be calculated as [20]
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is the Fermi–Dirac distribution function,

 

is the electrochemical potential, kB is the Boltzmann
constant, F = n/N is the filling of the conduction band
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Fig. 7. Model approximations of the density-of-states func-
tions, differential conductivity, and Hall conductivity
employed in analyzing the Q(T) relations.
P

persion curve, and u is the band-averaged electron
mobility.

Thus, in general, the Q(T) relation for a sample of a
given composition is described by six model parame-
ters, namely, F, WD, Wσ, b, k, and u. One should, how-
ever, stress the following point. When carrying out a
correlated analysis of experimental data on the temper-
ature dependence of the kinetic coefficients, the first
four parameters (F, WD, Wσ, b) can be unambiguously
derived from the temperature dependences of the See-
beck coefficient and should be subsequently used to
analyze the Q(T) relations obtained for the same sam-
ples. As a result, the behavior of the NEC will now be
determined by two additional parameters only, k and u.
The mobility is involved in Eq. (1) as a factor and,
hence, is significant only in calculations of the absolute
values of the NEC but does not affect its temperature
dependence. Thus, if the values of the parameters F,
WD, Wσ, and b are known, then the character of the Q(T)
dependence is fully determined by the value of the
parameter k and the absolute values of Q are dictated by
the parameter u. Therefore, these parameters can be
determined unambiguously by analyzing experimental
data on Q(T). Thus, a study of the Nernst–Etting-
shausen effect in narrow-band conductors (just as in the
classical case) can be used to find the carrier mobility.
Experimental investigation and analysis of the NEC is
in this case a very efficient and informative tool. First,
intercrystallite layers in polycrystalline samples have a
marked effect on the measured electrical resistivity,
which gives rise to errors in the determination of the
absolute values of σ. Second, in the narrow-band case,
the Hall concentration cannot be identified with the true
carrier concentration [4]. Both these factors turn out to
be very significant when analyzing experimental data
for HTSC materials in the sense that determination of
the carrier mobility from resistive and Hall measure-
ments as u = σRH is incorrect.

It seems worthwhile to note that the above modifica-
tion of the approximation of the σH(ε) relation does not
affect the calculated S(T) relations but is capable of
markedly changing the pattern of the theoretical RH(T)
curve. For this reason, the agreement between the RH(T)
curves calculated using the values of the model param-
eters derived from S(T) and Q(T) and the experimental
data should be considered an additional verification of
the validity of the proposed approach to analyzing elec-
tronic transport in HTSC materials. In particular, as
shown in [20], this implies the need to choose negative
values of the parameter k when analyzing the Q(T) rela-
tions. In this connection, we calculated the temperature
dependence of the Hall coefficient for each sample of
the series under study using values of the model param-
eters derived from an analysis of both the Seebeck coef-
ficient (F, WD, Wσ, and, in the case of an asymmetric
band, b) and the Nernst–Ettingshausen coefficient (k).
We achieved good qualitative agreement between the
experimental and calculated RH(T) relations in all cases.
For illustration, Fig. 8 presents the experimental and
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calculated (using our approach) temperature depen-
dences of the Hall coefficient for the YBa2Cu3Oy series
with variable oxygen content. We can see that the val-
ues of the model parameters extracted from an analysis
of the S(T) and Q(T) relations also permit a satisfactory
description of the RH(T) relation. Thus, by using the
narrow-band model with a common set of parameters
characterizing the band structure and properties of the
carrier system, we can describe the temperature depen-
dences of the Seebeck and Nernst–Ettingshausen coef-
ficients quantitatively and explain the temperature
dependences of the resistivity and the Hall coefficient
qualitatively. Note that an arbitrarily chosen set of
model parameters capable of describing the Q(T) rela-
tion cannot produce a pattern that represents RH(T)
qualitatively. Even a slight deviation of the model
parameters from their values derived from an analysis
of the Seebeck coefficient and NEC gives rise to a pro-
nounced change in the pattern of the calculated RH(T)
curve (for instance, to a growth in RH with an increase
in temperature and to a reversal of the sign of the Hall
coefficient or even to negative values of the Hall coeffi-
cient throughout the temperature range covered, which
is at odds with experiment). The fact that the set of
model parameters calculated theoretically from the
S(T) and Q(T) relations fits the RH(T) relation qualita-
tively also argues for the correctness of the parameter
determination and for the validity of our approach on
the whole.

This approach was employed to analyze the temper-
ature dependences of the kinetic coefficients obtained
for the four sample series studied. As already pointed
out, in the first stage, an analysis of the S(T) relations
yielded the values of the main band-structure parame-
ters (F, WD, Wσ, b). This analysis is treated in consider-
able detail in our previous publications [4, 19, 22, 23],
and the values thus obtained are listed in the table.
Next, these values were used in interpreting the experi-
mental NEC relations. The Q(T) relations calculated for
all the sample series are presented in Figs. 2–5, together
with the experimental data. We see that the theoretical
curves can be fitted well to the experimental data in all
cases. This enabled us to determine the mobility u and
the asymmetry of the dispersion curve k for all the sam-
ples studied (Figs. 9, 10).

In considering the data on the carrier mobility
(Fig. 9), one immediately notices its extremely low
values, which are characteristic of all the sample
series investigated. In our opinion, this should be
attributed to the large effective mass of carriers, a fea-
ture typical of narrow-band systems. We note in this
connection that, in the literature, the estimates of the
mass m* in YBa2Cu3Oy yield m* = (10–40)m0 [27, 28].
The dynamics of mobility variation is different in
sample series with different kinds of deviation from
stoichiometry; more specifically, in YBa2Cu3O7 – x
with variable oxygen content and YBa2Cu3 − xCoxOy,
one observes a close-to-linear growth in mobility with
an increase in x (the only exception is the last sample
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of the YBa2Cu3O7 – x system with the maximum
oxygen deficiency), while in Y1 – xCaxBa2Cu3Oy  and
Y1 − xCaxBa2 – xLaxCu3Oy samples the mobility
remains practically unchanged as the doping level is
varied. To understand this behavior of the mobility, the
following considerations should be taken into account.
On the one hand, as shown by the analysis of the S(T)
relations, an increase in the doping level in all the series
studied entails an intensification of disorder on the oxy-
gen subsystem (see the results of the analysis in [4, 19,
22, 23], as well as the values of the parameter C =
Wσ/WD characterizing the extent of disorder in the sys-
tem, which are listed in the table). This disordering
should give rise to an increase in the scattering proba-
bility and a decrease in the carrier relaxation time. As a
result, because u ∝ τ , the carrier mobility should
decrease. On the other hand, broadening of the narrow
band should bring about a decrease in the effective
mass, thus increasing the carrier mobility, because u ∝
(m*)–1. Both these processes set in with increasing dop-
ing level and affect the mobility in opposite ways.
Depending on which of them will dominate, the mobil-
ity will either grow or decrease. As seen from the table,
YBa2Cu3Oy and YBa2Cu3 − xCoxOy samples reveal a
considerably larger band broadening than do the cal-
cium-doped or codoped samples. Hence, in this case,
the stronger decrease in the effective mass dominates
over the decrease in the relaxation time, as a result of
which the mobility increases. In both calcium-contain-
ing series, as already mentioned, the dopants act in the
direction of charge compensation [4, 21]. Nevertheless,
an increase in the doping level in both series naturally
entails an enhancement of disorder and increases the
concentration of structural defects, although this pro-
cess is not so strongly manifest as in the YBa2Cu3Oy
and YBa2Cu3 − xCoxOy series. As a result, the observed
band broadening in the calcium-doped series is not as
pronounced (see table) and the effects of the two above-
mentioned processes of a decrease in effective mass
and relaxation time on the mobility cancel each other,
as a result of which the mobility remains practically the
same as the doping level is increased.

It is significant that the mobility analyzed by us is a
parameter of the narrow-band model. Although this
mobility is derived from NEC data, it is not a Nernst
mobility in the classical sense and is not equal (as in the
case of a wide band) to the ratio Q/(kB/e). As pointed
out earlier in a theoretical analysis of the NEC in nar-
row-band conductors [20], this should be assigned pri-
marily to carriers with a positive and a negative effec-
tive mass being simultaneously present in the transport
flow. Thus, our analysis deals with the carrier mobility
in the systems under study under the assumption that
they have a narrow-band electronic structure. There-
fore, it would make no sense to directly compare the
“Nernst” mobility obtained by us with the classical Hall
mobility uH defined by the product RHσ. One may, how-
ever, compare the value of the mobility derived by us
from the Q(T) relations with the mobility extracted
from an analysis of the Hall coefficient and electrical
resistivity within the narrow-band model. Using the
expressions for these two kinetic coefficients obtained
within the narrow-band model in [4, 19] and taking into
account the approximation of the σH(ε) function we
have accepted, we can derive the following relation for
the “Hall” mobility in terms of the narrow-band model:
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where RH and σ are experimentally measurable values
of the Hall coefficient and conductivity, respectively.

Reliable determination of the resistivity of polycrys-
talline samples is complicated by the presence of vari-
ous defects in them. Nevertheless, in view of the theo-
retical significance of comparing the “Hall” and
“Nernst” mobilities, we calculated them from our
experimental data on the resistivity and the Hall coeffi-
cient. For this purpose, we chose a sample of the
YBa2Cu3Oy series with y = 6.91, which revealed a very
low resistivity (ρ(T = 300 K) = 0.54 mΩ cm) close to
the figures obtained on single crystals. The mobility
calculated using Eq. (2) with due allowance for our
experimental data was found to be uH = 1.3 cm2/V s,
which is close to its value derived from the NEC (uH =
0.8 cm2/V s). This difference between the values of u
and uH may be due to a weak effect of defects, as well
as to our disregarding the anisotropy in transport prop-
P

erties in the theoretical calculations, which may have
resulted in overestimation of the mobility derived from
data on the resistivity and the Hall coefficient. Consid-
ered within our model, the agreement between u and uH
can be accepted as quite satisfactory.

Let us discuss now the dynamics of the variation in
the degree of asymmetry in the dispersion relation ε(k)
observed in the sample series under study. Recall that,
in the case of a simple rectangular approximation, the
parameter k characterizing this asymmetry is defined as
the displacement of the point of sign reversal of the Hall
conductivity function with respect to the center of the
narrow band (Fig. 7) [20]. This parameter should not be
directly related to the asymmetry parameter b derived
from the Seebeck coefficient, which is connected with
the asymmetry of the density-of-states function. In con-
trast to the parameter b, which is zero in the sample
series without calcium, the asymmetry of the Hall con-
HYSICS OF THE SOLID STATE      Vol. 47      No. 2      2005



THE NERNST–ETTINGSHAUSEN COEFFICIENT IN THE NORMAL PHASE 211
ductivity function σH(ε) is observed, as follows from
our calculations, in all the series studied. Moreover, as
shown in [20], only by taking this asymmetry into
account can one derive theoretical Q(T) relations that
are qualitatively consistent with experimental data. The
asymmetry in the density-of-states function for the
YBa2Cu3Oy system arises only when calcium is doped
into the lattice and originates, in our opinion, from cal-
cium creating additional states in the conduction band.
By contrast, the asymmetry in the dispersion relation
ε(k) is in no way connected with the specific influence
of any impurity but is rather a fundamental property of
the YBa2Cu3Oy system. Note that this conclusion is cor-
roborated in studies dealing with the existence of a Van
Hove singularity in HTSC materials. This singularity
brings about not only the appearance of a narrow peak
in the density of states near the Fermi level but also an
ε(k) relation that has different patterns in different
directions in k space (see, e.g., review [29]).

When analyzing the character of the dispersion rela-
tion, one may conveniently use the absolute values of
the energy displacement kWD of the Hall conductivity
function rather than the values of the parameter k. The
concentration dependences of kWD are displayed
graphically in Fig. 10 for all the sample series studied.
Just as in the case where the carrier mobility is varied,
two different trends are clearly seen in the variation of
the energy displacement with an increase in the doping
level both of samples containing calcium and of sam-
ples not containing any calcium. As the oxygen defi-
ciency in the YBa2Cu3O7 – x series and the cobalt con-
tent in the YBa2Cu3 − xCoxOy system increase, the
energy displacement of the point of sign reversal in the
σH(ε) relation increases insignificantly at low doping
levels and then falls off rapidly. By contrast, in the cal-
cium-doped series and in the series with codoping, the
energy displacement grows monotonically. In our opin-
ion, this difference in the dynamics of variation in the
asymmetry originates from the specific effect of the
substitutions studied on the modified conduction band.

Let us consider first the results obtained for the
YBa2Cu3Oy and YBa2Cu3 − xCoxOy systems. Oxygen
deficiency gives rise to a strong band broadening and
suppression of the superconducting properties (see
table). The Co  Cu substitution acts similarly on the
properties of YBa2Cu3Oy; this effect should also be
attributed to the properties of the oxygen subsystem
being influenced by nonisovalent doping [19]. Accord-
ing to [30], oxygen deficiency brings about a change in
both the number of carriers and the number of states in
the conduction band. Obviously enough, the number of
states also varies in the YBa2Cu3 − xCoxOy system, and
this variation is likewise connected with the oxygen
deficiency in cells that do not contain cobalt. It appears
logical to assume that the decrease in the number of
states in these series brings about the transformation of
the dispersion curve ε(k). As follows from our studies,
this transformation occurs in such a way that the asym-
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metry in the ε(k) relation decreases gradually and
apparently vanishes at a sufficiently heavy doping level.
The value of the parameter k falls off gradually with
increasing doping level from k = –0.28 for the
YBa2Cu3O6.91 sample to –0.03 and –0.02 in the stron-
gest doped samples of the YBa2Cu3Oy and
YBa2Cu3 − xCoxOy series, respectively. The slight
growth in the energy displacement kWD at light doping
levels should apparently be assigned to the fact that, in
this region, the doping-induced variation in the number
of states in the band is still very small, while the effec-
tive width of the conduction band has already increased
noticeably (see table). Thus, the increase in the oxygen
deficiency, as well as the increase in the cobalt content,
causes a weakening of the asymmetry of the dispersion
curve ε(k) through a decrease in the number of band
states.

The Y1 – xCaxBa2Cu3Oy  and Y1 − xCaxBa2 − xLaxCu3Oy
samples are remarkable in the specific effect the cal-
cium exerts on the conduction band structure. Introduc-
ing additional states into the band with calcium changes
the shape of the density-of-states function and causes it
to be asymmetric [21, 22]. In the rectangular approxi-
mation, this asymmetry manifests itself in the center of
the σ(ε) rectangle becoming displaced with respect to
the D(ε) rectangle toward lower energies [4, 19]. This
change in the energy dependence of the density of
states should also enhance the asymmetry of the disper-
sion relation ε(k). Interestingly, the asymmetry param-
eter k of the dispersion relation and the parameter b
characterizing the asymmetry of the function D(ε) have
the same (negative) sign. As a result, both the  σ(ε) and
σH(ε) rectangles shift downwards in terms of energy
relative to the band center. This result suggests that,
unlike the effect of a decrease in the number of states in
the YBa2Cu3Oy and YBa2Cu3 − xCoxOy series, the gener-
ation of additional states in the conduction band by cal-
cium that occurs in the Y1 – xCaxBa2Cu3Oy  and
Y1 − xCaxBa2 – xLaxCu3Oy systems gives rise to a growth
in asymmetry in the dispersion relation ε(k).

In this connection, it appears of interest to compare
the energy displacements for series with single calcium
doping and codoping. In the former case, the energy
displacement increases fairly weakly with a variation in
calcium content, while in the latter case the growth is
more pronounced (Fig. 10). This difference in the
dynamics of varying the asymmetry in the dispersion
relation is associated with the fact that the effect of cal-
cium on charge balance in Y1 – xCaxBa2Cu3Oy  and
Y1 − xCaxBa2 – xLaxCu3Oy samples is compensated for
differently. In the case of single doping with calcium,
an increase in its content causes a simultaneous
decrease in the oxygen content, which gives rise to
increased disorder on the oxygen subsystem and a
decreased number of band states. This should bring
about, in turn, a decrease in the asymmetry of the dis-
persion relation similar to that observed in the oxygen-
deficient series. Thus, we witness here two oppositely
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directed processes, namely, an increase in the calcium
doping level and a growth in oxygen deficiency, which
act in opposite ways on kWD. As a result of this com-
pensating action, the energy displacement in the
Y1 − xCaxBa2Cu3Oy  series increases only insignifi-
cantly. In the Y1 – xCaxBa2 – xLaxCu3Oy system, the
charge effect of calcium is counteracted by the simulta-
neous nonisovalent La3+  Ba2+ substitution, which
tends to maintain a constant oxygen index with increas-
ing doping level [23]. Hence, the oxygen subsystem
does not suffer any change, thus making it possible to
observe the effect of calcium, as it were, in pure form.
As a result, the introduction of calcium into the
codoped system is the only factor that influences the
magnitude of the energy displacement, and this is what
causes its substantially stronger growth than in the case
of the Y1 – xCaxBa2Cu3Oy  series.

Thus, a correlated analysis of the temperature
dependences of the kinetic coefficients makes it possi-
ble to consistently interpret the experimental concen-
tration dependences of the parameters u and kWD for
the sample series under study. This should be consid-
ered a convincing argument for the validity of our
approach to analyzing electronic transport phenomena
in doped HTSCs of the YBa2Cu3Oy system and, hence,
for the conclusion that their band spectrum has a nar-
row conduction band, which exerts a major effect on the
properties of these materials in both the normal and
superconducting states.

6. CONCLUSIONS

In summary, we have carried out a systematic exper-
imental investigation of the temperature dependences
of the NEC in doped HTSCs of the YBa2Cu3Oy system
in the normal phase and a coordinated analysis of the
data thus obtained, together with data on other kinetic
coefficients, in terms of the narrow-band model. The
main results and conclusions are as follows.

(1) The Nernst–Ettingshausen coefficient in HTSCs
of the YBa2Cu3Oy system in the normal phase is
extremely small. At T = 300 K, Q is always positive and
grows weakly with decreasing temperature until it
reaches a broad maximum, after which the value of Q
falls off rapidly. At small absolute values of the NEC in
the temperature region T < 150 K, a transition to nega-
tive values of Q occurs.

(2) An increase in oxygen deficiency and the
Co  Cu substitution give rise to a fast growth of Q
without any qualitative change in the pattern of Q(T),
whereas a single Ca  Y substitution, as well as
codoping, in the Y1 – xCaxBa2 – xLaxCu3Oy system
affects the value of the NEC and the character of its
temperature dependence only weakly. Note that, for all
kinds of deviations from stoichiometry, the NEC varies
in magnitude in the same way as the other kinetic coef-
ficients and correlates with the variation of the super-
conducting properties of YBa2Cu3Oy.
P

(3) It has been demonstrated that, using a common
set of parameters that characterize the band structure
and the properties of the carrier system in terms of the
narrow-band model, it is possible to simultaneously
describe the temperature dependences of the Seebeck
and Nernst–Ettingshausen coefficients qualitatively
and the temperature dependences of the resistivity and
of the Hall coefficient quantitatively in all the systems
studied.

(4) The carrier mobility has been determined in the
samples studied. In order of magnitude, the mobility is
a few centimeters squared per volt per second. In the
YBa2Cu3O7 – x and YBa2Cu3 − xCoxOy series, an increase
in x gives rise to an increase in carrier mobility, which
may be due to a decrease in the effective mass associ-
ated with the strong broadening of the conduction band.
In the Y1 – xCaxBa2Cu3Oy  and Y1 – xCaxBa2 – xLaxCu3Oy
series, the mobility remains almost the same as the dop-
ing level is varied, which should be assigned to the fact
that the effects of decreasing effective mass and of a
decrease in the relaxation time cancel each other.

(5) HTSCs in the YBa2Cu3Oy system are character-
ized by an asymmetric dispersion relation ε(k). This
property is a common feature of this system, which
manifests itself in both undoped samples and samples
with various kinds of substitution. Analysis of the
dynamics of the asymmetry in Y1 − xCaxBa2Cu3Oy  and
Y1 – xCaxBa2 – xLaxCu3Oy systems has provided sup-
portive evidence for our earlier conclusion that the cal-
cium introduces additional states into the conduction
band of YBa2Cu3Oy.
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Abstract—Layered single crystals of the TlGa0.5Fe0.5Se2 alloy in a dc electric field at temperatures ranging
from 128 to 178 K are found to possess variable-range-hopping conduction along natural crystal layers
through states localized in the vicinity of the Fermi level. The parameters characterizing the electrical con-
duction in the TlGa0.5Fe0.5Se2 crystals are estimated as follows: the density of states near the Fermi level NF =
2.8 × 1017 eV–1 cm–3, the spread in energy of these states ∆E = 0.13 eV, the average hopping length Rav = 233 Å,
and the concentration of deep-lying traps Nt = 3.6 × 1016 cm–3. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Layered compounds of the TlMe  type (Me = In,
Ga; X = S, Se) and alloys based on them are of scientific
and practical interest. With knowledge of the composi-
tion dependences of the electrical, photoelectrical, and

optical properties of TlMe  layered compounds, it is
possible to control these properties. Upon partial sub-
stitution of iron for gallium, the TlGaSe2 crystals
acquire magnetic properties. This can be useful in
designing materials with characteristics that can be
controlled by a magnetic field.

Earlier [1, 2], we investigated the transport proper-
ties of the TlGaSe2 single crystal and TlFeSe2 polycrys-
tals. Moreover, we revealed that these crystals possess
hopping conduction at low temperatures.

The purpose of this work was to investigate the con-
duction through localized states in a single crystal of
the TlGa0.5Fe0.5Se2 alloy in a dc electric field and to
compare the results obtained with available data for
TlGaSe2 and TlFeSe2.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

Polycrystals of composition TlGa0.5Fe0.5Se2 were
synthesized by alloying initial components (Tl, Ga, Fe,
Se) of high-purity grade (no less than 99.99) in silica
glass ampules evacuated to a residual pressure of 10–3 Pa.
Single crystals were grown using the Bridgman–Stock-
barger method.

The TlGa0.5Fe0.5Se2 samples used in electrical mea-
surements had a thickness d = 0.14 cm, and the distance
between the contacts was l = 0.4 cm. Ohmic contacts to
the samples were fabricated through electrolytic depo-
sition of copper. The electrical conductivity σ of the

X2
6

X2
6

1063-7834/05/4702- $26.000214
samples prepared was measured in the temperature
range 128–303 K. The strength of the dc electric field
applied along the natural layers of the crystal corre-
sponded to an ohmic portion of the current–voltage
characteristic.

3. RESULTS AND DISCUSSION

Figure 1 shows the temperature dependences of the
electrical conductivity for a single crystal of the
TlGa0.5Fe0.5Se2 alloy. The dependence of logσ on 103/T
is characterized by an exponential portion in the tem-
perature range 178–303 K. As the temperature
decreases below 178 K, the activation energy for elec-
trical conduction decreases in a gradual manner. The
temperature dependence of the electrical conductivity
with a monotonically decreasing activation energy is

43 5 6 7 8
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Fig. 1. Temperature dependences of the electrical conduc-
tivity in a single crystal of the TlGa0.5Fe0.5Se2 alloy.
 © 2005 Pleiades Publishing, Inc.



        

CONDUCTION THROUGH LOCALIZED STATES IN A SINGLE CRYSTAL 215

                                                             
Parameters of the TlGa1 – xFexSe2 crystals (x = 0, 0.5, 1.0)

Crystal Electrical resistivity
ρ, Ω cm at 298 K T0, K NF, eV–1 cm–3 Rav, Å ∆E, eV Nt, cm–3

TlGaSe2 104 5.4 × 105 1.3 × 1019 150 0.011 1.4 × 1017

TlGa0.5Fe0.5Se2 1.5 × 104 1.7 × 107 2.8 × 1017 233 0.13 3.6 × 1016

TlFeSe2 25 1.4 × 106 3.3 × 1018 104 0.13 4.3 × 1017
plotted in the T−1/4–logσ coordinates in the inset to Fig.
1. It can be seen that virtually all the experimental
points fall on a straight line in these coordinates. This
suggests that, in the aforementioned temperature range
(128–178 K), the charge transfer occurs along natural
layers of the TlGa0.5Fe0.5Se2 single crystal through the
mechanism of hopping conduction over the states lying
in a narrow energy band near the Fermi level [3]:

 (1)

The slope of the straight line logσ(T–1/4) was deter-
mined to be T0 = 1.7 × 107 K. The density of localized
states near the Fermi level in TlGa0.5Fe0.5Se2 crystals
(NF = 2.8 × 1017 eV–1 cm–3) was obtained according to
the formula [3]

 (2)

where k is the Boltzmann constant and a is the localiza-
tion length. In this case, the localization length was
taken to be a = 34 Å. This value was determined for a
GaSe single crystal in the experiments performed ear-
lier in [4].

The hopping length R of charge carriers at different
temperatures was estimated from the formula [3]

. (3)

As a result, we obtained the hopping length R = 243 Å
at a temperature T = 128 K and R = 224 Å at T = 178 K.
The average hopping length Rav in the temperature
range studied was equal to 233 Å, which exceeds the
average distance between the localization centers of
charge carriers by a factor of ~7. The energy positions

σ T0/T( )1/4
–[ ] .exp∼

NF
16

T0ka
3

--------------,=

R T( ) 3
8
---aT0

1/4
T

1/4–
=
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of the localization centers are separated by an energy
∆E, which can be estimated from the expression [3]

 (4)

According to expression (4), the spread in energy of
trapping states near the Fermi level was found to be
∆E = 0.13 eV. The concentration of deep-lying traps in
TlGa0.5Fe0.5Se2 was estimated at 3.6 × 1016 cm–3 from
the following formula:

 (5)

The results of investigations into the hopping conduc-
tion along layers in TlGaSe2 [1], TlGa0.5Fe0.5Se2, and
TlFeSe2 [2] are compared in the table. It can be seen
from the table that, unlike the TlGaSe2 single crystals,
crystals of compositions TlGa0.5Fe0.5Se2 and TlFeSe2

∆E
3

2πR
3
NF

--------------------.=

Nt NF∆E.=

1716 18
logNt [cm–3]

100

200

300

R
, Å

(x = 0.5)

(x = 0)

(x = 1.0)

Fig. 2. Dependence of the average hopping length in
TlGa1 – xFexSe2 crystals (x = 0, 0.5, 1.0) on the concentra-
tion of deep-lying traps.
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are characterized by a broad energy band (∆E) in the
vicinity of the Fermi level. This indicates that the latter
crystals are similar in energy band structure to amor-
phous semiconductors. The concentration of deep-
lying traps Nt is maximum in the TlFeSe2 polycrystals
and is one order of magnitude lower in the
TlGa0.5Fe0.5Se2 alloy. Therefore, it is quite reasonable
that the average hopping length Rav in TlGa0.5Fe0.5Se2
exceeds the average hopping length in the TlGaSe2 and
TlFeSe2 single crystals by a factor of ~ 1.5 and ~ 2,
respectively. Figure 2 shows the dependence of the
average hopping length in TlGa1 – xFexSe2 (x = 0, 0.5,
1.0) on the concentration of deep-lying traps. It can be
seen that the average hopping length Rav decreases lin-
early as  increases.Ntlog
P
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Abstract—Inelastic electron–phonon scattering in which the electron is captured or escapes from the Coulomb
field of an impurity is taken into account in the kinetic equation for conduction electrons. This scattering is
shown to become strong in a certain energy range. In this range, the distribution functions of free and bound
electrons are correlated in such a way that there is a balance between the trapping and ionization processes. The
existence of a region of strong scattering is the decisive factor in calculating the experimentally measurable
trapping and ionization coefficients, which enter into the electron balance equation. © 2005 Pleiades Publish-
ing, Inc.
1. STATEMENT OF THE PROBLEM

An electron in the conduction band of a semicon-
ductor is subjected to the Coulomb field of a charged
impurity. If the kinetic energy of the electron exceeds
the potential energy of interaction with the impurity, the
impurity cannot capture the electron and the electron is
in an extended state. If the potential energy exceeds the
kinetic energy, the electron is trapped by the impurity
and moves near it.

The densities of free electrons in the conduction
band and of electrons bound to impurities can vary due
to inelastic processes; an impurity state can be ionized
if the electron gains energy by absorbing phonons, and
a free electron can be trapped by an impurity if the elec-
tron loses energy by emitting phonons. Both processes
make a contribution to the balance equation that
describes the evolution of the nonequilibrium density
of free electrons ne in a semiconductor containing
impurities with a concentration nim. The electron bal-
ance equation is linear, because variations in the elec-
tron density are assumed to be small in comparison
with the average density, and has the form

 (1)

where G describes the generation of nonequilibrium
electrons (the generation is assumed to occur suddenly
and not to involve the impurities), and ki and kr are the
ionization and trapping coefficients, respectively,
which are assumed to be independent of the impurity
and electron concentrations. In the right-hand side of
Eq. (1), the first term is the increase in the free-electron
density due to ionization of impurities and the second
term is the increase in this density due to electron cap-
ture by impurities. Each of these terms is proportional
to the impurity concentration. At equilibrium, there is

dne

dt
-------- kinim krnimne– G,+=
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no generation of electrons; the electron density does not
vary with time; and, hence, the right-hand side of
Eq. (1) is zero, from which it follows that

 (2)

where ne0 is the equilibrium density of free electrons.
The coefficients kr and ki can be measured experimen-
tally. In order to calculate these coefficients, one must
derive Eq. (1) using microscopic theory. This derivation
has not been performed; the coefficients kr and ki have
been found microscopically by using a cascade method
[1]. In this method, Eq. (1) is not derived; therefore, it
has not been proved that the coefficients calculated
using this method are those that enter into Eq. (1) and
are measured experimentally.

The objective of this study is to derive microscopic
kinetic equations for the distribution functions of free
and trapped electrons. The motion of electrons is
described classically and then, in the last section, quan-
tum-mechanically. By integrating the kinetic equation
for free electrons over the microscopic variables, we
obtain Eq. (1) for the electron density. Therefore, the
coefficients kr and ki in this equation are the coefficients
that are measured experimentally.

If the motion of electrons is described in terms of
classical mechanics, the distribution function of elec-
trons depends on their coordinates r and momenta p.
However, in describing the trapping and ionization pro-
cesses, it suffices to consider the distribution functions
to be dependent on the total energy alone rather than on
the coordinates and momenta separately. For free elec-
trons, this energy is positive:

 (3)

ki krne0,=

E εp
e1

2

r
-----, εp–

p
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2

κ
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where m is the effective electronic mass, z is the impu-
rity charge, and κ is the static dielectric constant of the
crystal. For trapped electrons, the total energy is nega-
tive. In this case, it is convenient to assume that the dis-
tribution function depends on the modulus of the total
energy (which we will also denote by E). By averaging
the kinetic equations over a constant-energy surface in
phase space, we obtain kinetic equations for the distri-
bution functions of free and trapped electrons f (1, 2)(E):

 (4)

(5)

We assume that the time variation in the distribution
functions is dictated by the time variation in the elec-
tronic density. The term responsible for the instant elec-
tron generation is assumed to determine the nonequilib-
rium density of free electrons (this term is omitted from

the above equations). The collision integrals 
describe electron–electron collisions during which the
free electrons are not trapped and the trapped electrons

are not released, and the collision integrals 
describe collisions during which impurity states are
ionized or the free electrons are trapped by impurities.

Free electrons move through the entire sample.
Therefore, after averaging over phase space, the motion
of the electrons that remain free is determined by
regions comparable to the sample in size. For these
regions, we can neglect the interaction energy between
an electron and an impurity, so the distribution function
depends only on momenta. In other words, the term

 is averaged only over momentum space. In the

term , both free and trapped electrons are of impor-
tance. A trapped electron moves near an impurity. Let
us determine the changes in the number of free elec-
trons near each impurity and sum them over all impuri-
ties. The spacing between impurities is sufficiently
large, so the changes calculated for individual impuri-
ties can be summed independently. Since the impurities
are macroscopic in number, their contribution is finite
after averaging and is proportional to the impurity con-
centration:

 (6)
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2( )

E( ) f
1( )

E( ),( ).
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PH
Here, ρ1(E) = 2 (E – εp)/(2π")3 = m /π2"3 is

the density of states of free electrons; q and ωq = sq are
the wave vector and frequency of a phonon, respec-
tively; s is the velocity of sound; cq is the electron–

phonon coupling constant; nq = ( /T – 1)–1 is the
Planck distribution function for phonons; and T is the
temperature (in energy units). The functions Θ(x)
(equal to unity for x > 0 and zero for x < 0) in Eq. (6)
correspond to the conditions that an electron with
momentum p be free and its energy be positive or that
an electron with momentum p – "q be trapped and its
energy be negative. These conditions determine the
region of phase space involved in the trapping of a free
electron or the release of a trapped electron from an
impurity. The collision integral that accounts for the
change in the distribution function of trapped electrons
due to ionization and electron capture is analogous to
that in Eq. (5). This integral is related to an individual
impurity and is averaged over the region of motion of
the trapped electrons:

 (7)

Here, ρ2(E) = dpδ(  – εp – E)2/(2p")3 =

m /4"3E5/2 is the density of states of trapped
electrons.

We use a simple model of the interaction of elec-
trons with longitudinal phonons in which |cq |2 =
πΛ2"q/ρs, where Λ is the deformation-potential con-
stant and ρ is the density of the material. After integrat-

ing over all angular variables, the expressions for 

and  are simplified to
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(8)

(9)

where l = ρ"4/4Λ2m3 is the energy mean free path.
By integrating the distribution functions (with

allowance for the density of states) over all energies, we
obtain the electronic density. At equilibrium, we have
Boltzmann distribution functions

(10)

where µ = T ln[ne0"
3 /(mT)3/2] is the chemical

potential of electrons, which is conventionally related
to the density of free electrons. In the case of the equi-
librium distribution functions of free and trapped elec-
trons, the collision integrals (6) and (7) vanish. The
generation of electrons changes the distribution func-
tion of free electrons, and the relaxation processes rap-
idly transform it into a Boltzmann distribution with a
nonequilibrium total electronic density, f (1)(E) =

[ne"
3 /(mT)3/2]exp(–E/T).

The electron balance equation (1) is obtained by
multiplying Eq. (4) by the density of states and integrat-

ing over energy. The integral of  vanishes due to the
conservation of the total number of electrons in elec-
tron–electron collisions. The right-hand side of Eq. (1)
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is determined by the integral of . The coefficients ki

and kr are thus obtained to be

 (11)

Let us consider the expression for τr(E) at E ~ 2ms2. It
turns out that τr(E) ~ (E – 2ms2)4. Substituting this
expression into Eq. (11), we find that the integral for kr

diverges in a cubic power–law fashion. The expression
for ki exhibits the same divergence. This divergence has
been pointed out by Wannier [2]. Physically, this diver-
gence is due to the long-range character of Coulomb
forces. By calculating the phase volume that deter-
mines the probability of an electron being trapped, we
can find the relation between the distance at which an
electron becomes trapped by an impurity and the
energy of the electron. When the energy is 2ms2, the
phase volume covers all coordinate space; the cubic
divergence is due to the fact that space is three-dimen-
sional. The divergence originates from the assumption
that the distribution functions near the energy 2ms2 cor-
respond to a Boltzmann distribution and, hence, that the
trapping process influences these functions only
slightly. The basic idea behind the theory developed
below is that this assumption is wrong and that a region
of strong interaction exists for free electrons near the
energy 2ms2; in this region, the ionization and trapping
processes cannot be separated and both terms in the col-

lision integral  must be considered as a whole.
Expression (9) describes the same processes for the
trapped electrons; therefore, a region of strong interac-
tion also exists for these electrons. In this energy
region, the distribution functions correspond to Boltz-
mann distributions with an equal preexponential factor,
with the consequence that the collision integrals
responsible for the trapping and release of electrons
vanish. In integrating over energy, the divergences of
both terms cancel each other. This energy region also
does not contribute to the integral that determines the
electron balance, i.e., to the coefficients ki and kr. As the
electron energy deviates from this “dangerous” value,
the intraband relaxation will become dominant; hence,

the role of the operator  will become less signifi-
cant and the matching of the distribution functions will
be destroyed. At energies far from the value 2ms2, the
energy distributions for free and trapped electrons are
Boltzmann distributions corresponding to different
electron densities. The region where the relationship
between the energy distributions of free and trapped
electrons changes can be determined using kinetic the-
ory. In deriving Eq. (1), this region is important for
determining the numerical values of the coefficients ki

and kr.
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The divergence of integrals, which makes calcula-
tions of the trapping and ionization coefficients diffi-
cult, is likely the reason why these coefficients are cal-
culated using the cascade method [1, 3]. In this method,
the kinetic equation is used only for trapped electrons

at thermal energies and the collision integral  is not
included in this equation. In energy space, there is a dif-
fusion flux into the low-energy region. The diffusion
rate is assumed to be constant. The diffusion flux is
related to the ionization process, and a new definition of
the trapping coefficient is introduced; this coefficient is
calculated using the changed normalization of the dis-
tribution function of trapped electrons. Since the elec-
tron balance equation (1) has not been derived, it seems
questionable whether this coefficient can be identified
with the experimentally measured coefficient kr.

2. IONIZATION PROCESSES
AT LOW TEMPERATURES

Let us consider the range of very low temperatures
T ! 2ms2. Over this range, the region where the equi-
librium distribution functions change corresponds to
high energies. At thermal energies, we can simplify
Eq. (8) for the relaxation time τr(E) by neglecting the
low energy E in comparison with energies of the order
of ms2. In this case, under the assumption that the main
contribution to Eq. (11) comes from thermal energies,
we obtain the following expression for kr:

 (12)

This expression coincides with that from [1]. In the cas-
cade method, an electron is assumed to lose its energy
a little at a time. At low temperatures, however, elec-
trons are involved in essentially inelastic processes. For
this reason, in [1], the coefficient kr was calculated
directly, with the capture rate being described by an
expression identical to that obtained by us by modify-
ing Eq. (8).

Equation (12) is erroneous, even if attractive.
Indeed, let us consider the set of equations (4) and (5)
without approximations. In deriving Eq. (12), we
assumed that the distribution function of free electrons
rapidly reaches equilibrium due to collisions between
free electrons and then a slow trapping process occurs.

The collision integral  is given by

(13)
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Due to the conservation of energy and momentum, an
electron can emit a phonon only if the momentum of
the electron exceeds ms. Therefore, this process is for-
bidden for thermal electrons. Due to the same conser-
vation laws, a thermal electron can absorb a phonon
only if the latter has a momentum of the order of ms.
Since the absorption probability is proportional to the
number of phonons, this probability can be as small as
exp(–ms2/T). Therefore, at thermal energies, the inte-

gral  is exponentially small in comparison with

 and there is no reason to assume that the distribu-
tion function of free electrons corresponds to the Bolt-
zmann distribution, but with a nonequilibrium electron
density; quite the contrary. The distribution function
must be determined from kinetic equation (4) under the
assumption that ionization and trapping are the domi-
nant processes in the relaxation of free electrons. Colli-
sions with trapped electrons are not less probable than
the ionization and trapping processes. It follows from
Eq. (5) that the distribution of trapped electrons is
described by equilibrium distribution function (10).

For free electrons, Eq. (4) is solved iteratively, with
a zero approximation being chosen such that

( f (1)(E), f (2)(E)) = 0 for E ! ms2/2. In this approx-
imation, the solution is the Boltzmann distribution with
an equilibrium electron density, which is dictated by the
distribution function of trapped electrons. This simple

solution also makes the integral  equal to zero at
thermal energies. Therefore, this energy region makes
no contribution to electron balance equation (1) in both
the zero and first approximations with respect to the

operator . The contribution is nonzero only at ener-
gies of the order of ms2, where the operators acting on
f (1)(E) are of the same order of magnitude. In this
energy range, however, the distribution function of free
electrons is exponentially small. If we are interested in
quantities of this order of magnitude, then it should be
taken into account that the modification of the relax-
ation time τr(E) is inapplicable in this energy range.
Although the distribution function of free electrons will
accommodate itself to the distribution function of
trapped electrons in the region of E = 2ms2 and at ther-
mal energies and will reach complete equilibrium, the
high-energy region will make a nonzero contribution to
the coefficients ki and kr. The dominant contribution
will come from energies of the order of ms2/2, which
correspond to the lower limit of the high-energy region
where free-electron relaxation becomes important. We
estimate the trapping coefficient (to within a numerical
factor) by substituting this energy for the lower limit of
the integral in Eq. (11). The result is

 (14)
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The most essential feature of Eq. (14) is that it
depends exponentially on temperature, in contrast to
Eq. (12).

The theory considered above is valid if the processes
that involve different impurities can be treated indepen-
dently, which is the case if the average spacing between
impurities is sufficiently large:

 (15)

Here, the energy Ea is the characteristic energy of the
process under study. For Eq. (14), this energy is ms2/2
and for Eq. (13), a lower energy, T. Estimates of the
impurity concentration from condition (15) show that
our theory is valid only for low impurity concentra-
tions.

3. IONIZATION PROCESSES 
AT HIGH TEMPERATURES

At high temperatures T @ 2ms2, the region of strong
interactions is far below the average thermal electron
energy. We find the solutions to the set of equations (4)
and (5) that coincide asymptotically with the Boltzmann
distribution at high energies. This distribution reaches
complete equilibrium for trapped electrons and is char-
acterized by a nonequilibrium electron density for free
electrons. For energies in excess of 4ms2 in the case
where an electron emits or absorbs a phonon, the change
in the electron energy is small in comparison to the
energy of the electron. In this case, the collision opera-

tors  can be reduced to the differential form [1]

 (16)

Qualitatively, the behavior of the solutions to the set of
equations (4) and (5) is clear. At low energies, their
behavior is determined by the accommodation between
the distributions of free and trapped electrons in the
region of strong scattering. At thermal energies, the dis-
tribution functions correspond to the Boltzmann distri-
butions but are different. There is a region where these
two asymptotic behaviors are matched together. Let us
contract the transition region into a point corresponding
to an energy E0. In Eq. (11), the behavior of the inte-
grand depends on the energy region. At high thermal
energies, the integrand increases with a decrease in
energy; therefore, the main contribution comes from
the lower limit of this region. In the region of low ener-
gies (of the order of ms2), the distribution functions are
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accommodated at the lower limit of this region and,
therefore, are concurrently subtracted from the integral
in Eq. (11) and the integral that defines the coefficient
ki. Near the upper limit of the low-energy region, this
accommodation is destroyed and the contribution to the
integral is maximum. Thus, in both energy regions, the
main contribution to the integral in Eq. (11) comes from
the vicinity of the point E0. The contributions from high
and low energies to the integral differ only numerically.
Let us estimate the coefficients ki and kr qualitatively by
evaluating the integral in Eq. (11) for high energies and
setting the low limit equal to E0.

Using Eq. (16) and simplifying Eq. (8), we write the
set of equations (4) and (5) for energies in excess of ms2

in the form

 (17)

By considering Eqs. (17) at the energy E0, we can deter-
mine this energy using dimensional analysis. Indeed,
for trapped electrons, it follows from the second of

Eqs. (17) that  @  for E @ 4ms2. Therefore,
the trapped electrons are described by the equilibrium
distribution function. For free electrons, we find from

the first of Eqs. (17) that the ratio /  is equal

to nim 4ms2/ . We seek E0 in the form T1 – ν(4ms2)ν;
this energy lies between T and 4ms2 if ν is not equal to
zero or unity. The choice of the value of ν depends on
the impurity concentration. For low concentrations

(  @ /4ms2), we have  !  even at E0 =
4ms2 and put ν = 1. In this case, the trapping coefficient
is estimated to be

 (18)

In the case of a low impurity concentration, ioniza-
tion of impurities can be observed in a semiconductor
with a very high static dielectric constant, where the
Coulomb interaction between an electron and an impu-
rity is weak. For most semiconductors, however, it is
more natural to assume that
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Ĵ2 2, Ĵ2 1,
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A condition that involves temperature must be
imposed. However, there is another argument in favor
of condition (19), which has not been discussed in the
literature. The presence of trapped electrons increases
the number of possible electronic states that must be
included in the condition from which the chemical
potential is determined [1, 4]. Using the density of
states ρ2(E), we can calculate the partition function by
summing over all impurities independently. It turns out
that, in the presence of impurities, the density of free
electrons increases, with the fractional increase being

equal to . Only if condition (19) is satisfied
is this increase small and can the standard expression
for the chemical potential of electrons be applied [4].
Condition (19) also makes it possible to consider trap-
ping processes for different impurities to be indepen-
dent.

With the solution to the set of equations (17), we can
choose the energy E0 such that its value is as close to the
region of strong interaction as possible and such that
the intraband scattering becomes dominant at this
energy. These conditions are satisfied in the case of ν =
1/4. However, we must verify that condition (15) is sat-
isfied for Ea = E0 = T3/4(4ms2)1/4. If

 (20)

our consideration is self-consistent. In this case, the
coefficient kr is estimated to be

 (21)

Condition (20) is imposed on two small quantities and
is independent of condition (19). If the inequality oppo-
site to condition (20) is satisfied, then the parameter ν
must be zero; otherwise, the characteristic distance is
longer than the average spacing between impurities and
our equation (3) ceases to be true. Thus, we choose E0 =
T. In this case, the expression for kr coincides with that
derived by Lax [5]:

 (22)

Let us indicate the conditions under which the motion
of electrons can be described in terms of classical (non-
quantum) mechanics. We characterize an electron by a

coordinate  and a momentum ; therefore,
these quantities must satisfy the uncertainty relation,
which can be written in the form

 (23)
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Various values of E0 (E0 = 4ms2, T3/4(4ms2)1/4, T) in the
cases of low, medium, and high impurity concentra-
tions lead to different criteria for the applicability of
classical mechanics to ionization and electron capture
by an impurity.

The results from kinetic theory differ from those
obtained using the cascade method [1]. We indicated
above that there is a difference in the definition of the
trapping coefficient and that electron balance equation (1)
is not derived in the cascade method. Another differ-
ence is that our theory relates the energy of a trapped
electron to the distance at which the electron is trapped.
This relation determines all properties of the solutions
to the relevant equations. The cascade method does not
involve this relation and, hence, ignores the basic fea-
ture of the physics of ionization and electron capture by
an impurity.

4. QUANTUM THEORY OF THE TRAPPING 
AND IONIZATION PROCESSES

In the case where the sense of inequality (23) is
reversed, the kinetic equations should be derived in
terms of the quantum-mechanical model of the motion
of an electron in the field of a Coulomb center (the
model of quantum states of the hydrogen atom [6]). The
spectrum of free-electron states is continuous, and the
momentum p is a quantum number characterizing a
Coulomb wave function and the energy εp = p2/2m in
the continuum. The states of trapped electrons belong
to a discrete spectrum of negative energies εn =

/2"2n2, where n is the principal quantum number.
In Eqs. (4) and (5), the collision operators must include
the probabilities of transitions between quantum-
mechanical states caused by the interaction between
electrons and phonons.

The quasi-classical description of the states of the
continuum in the Coulomb problem corresponds to
small momenta, as seen from criterion (23), whereas
the quantum conditions correspond to large momenta.
In the latter case, the Coulomb wave functions reduce
to plane waves and our description of free electrons
reduces to the approximation (used by us) in which free
electrons have only kinetic energy εp = p2/2m and have
no potential energy. The distribution function depends

on this energy, and the collision operator  takes the
form of Eq. (13) [or of Eq. (16) in the case of εp @

4ms2]. However, the operator  takes a form differ-
ent from that of Eq. (8),
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 (24)

Here, α denotes a complete set of quantum numbers
characterizing a state of the continuum and summation
is performed over all quantum numbers at the given
principal quantum number n on which the energy
depends.

Due to orthogonality of the eigenfunctions of the
Coulomb problem, we have Mp, α(q = 0) = 0. Since this
condition may be violated in approximate calculations
of the matrix element (which would lead to an errone-
ous result), we use the following exact equality that
allows for this property of the matrix element:

 (25)

The matrix element (q) can be calculated approx-
imately. At high energies, we replace the Coulomb
function by the exponent (r) ~ exp(–ipr/"), which
considerably simplifies the expression for the matrix
element. In order to calculate the sum in Eq. (24), one
should use the eigenfunctions of the Coulomb problem
in the coordinates in which the problem is solved [6]. In
[1], the sum was calculated using spherical coordinates,
but, for greater convenience, we used parabolic coordi-
nates to obtain

 (26)

Here, aB = "2/  is the Bohr radius for wave func-
tions in the field of the impurity. First, we integrate over
the angular variable and then, using the denseness of
the discrete spectrum, integrate over the variable n. As

a result, we obtain  in a form analogous to that of
Eq. (8). Designating E = εp for free electrons and E = εn

for trapped electrons, the result can be written as
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(27)

The term  can be transformed in the same way.

Thus, the probability of transitions between free and
bound states in the quantum and classical cases is dif-
ferent. However, the dominant features of the energy
dependence are the same. Therefore, the main feature
of the trapping process, namely, the existence of a region
of strong interaction, manifests itself in the same way in
the quantum and classical cases. Let us estimate the coef-
ficient kr at high temperatures for the case where the
impurity concentration satisfies condition (19). The
equation for f (1)(E) can be written in a form analogous
to that of Eq. (17):

 (28)

The modulus of the ratio of the right-hand to left-hand

side at the energy E0 is nim (ms2)5/2/ . By choos-
ing E0 = T1 – ν(4ms2)ν, we find that ν = 5/11. This energy
satisfies criterion (15) if the following equality analo-
gous to condition (20) is satisfied:

 (29)

The trapping coefficient under these conditions can
be found to be

 (30)

If the impurity concentration satisfies the inequality
opposite to inequality (29), then E0 = T and the trapping
coefficient is estimated to be
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 (31)

Note that Eq. (2) is always true. The temperature
dependence of the trapping coefficient in the classical
and quantum cases is different, which is no surprise,
because the relations between the semiconductor
parameters and temperature in these cases are different.
In the classical case, inequality (23) is satisfied,
whereas in the quantum case the opposite inequality
holds.

In closing, it should be noted that we considered the
simplest case of the kinetics of transitions between free
and bound states of electrons in a semiconductor. The
kinetic theory developed here can be generalized to
consider more complicated cases and the effect of
external fields on the ionization and trapping processes.
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Abstract—The behavior of the lattice parameter of single-crystal SmS with temperature was studied by x-ray
diffractometry in the range 100–700 K. The observed features are assigned to a temperature-induced variation
in the filling of the Sm2+ f-shell ground-state multiplet levels. The temperature dependence of the thermal
expansion coefficient of SmS was measured. It is shown that the lattice constant behavior in samples that exhibit
a pronounced emf generation effect under heating is influenced by the transition of defect samarium ions from
the divalent to trivalent state and that the effect itself derives from phase transitions in SmS. © 2005 Pleiades
Publishing, Inc.
Samarium monosulfide (SmS) is an n-type rare-
earth semiconductor compound that crystallizes in a
NaCl-type structure with a lattice constant a = 5.97 Å.
The most remarkable properties of SmS derive from the
capacity of the samarium ion to change its valence state
comparatively easily under varying external conditions.
When in a metal state or bound in a compound, most of
the rare-earth metals are trivalent (Ln3+). Certain of
them, however, can reside in an anomalous valence
state (Ln2+ or Ln4+). This property should be assigned to
the particular stability of completely filled, empty, or
half-filled atomic 4f shells. On account of this, the ele-
ments that exhibit anomalous valence under normal
conditions are located in the beginning (Ce), in the mid-
dle (Eu, Sm), or at the end (Tm, Yb) of the 4f period.
The divalent state is the most stable in Eu (in Eu2+ with
the 4f 7 configuration, the f shell is filled exactly to one-
half) and in Yb (Yb2+ has a completely filled f shell,
4 f 14). In Sm, the divalent state is much less stable than
in Eu or Yb, because Sm2+ has a 4f 6 configuration [1].
This instability manifests itself in SmS undergoing an
isostructural (NaCl–NaCl, a = 5.97 and 5.70 Å, respec-
tively) first-order semiconductor–metal phase transi-
tion at a hydrostatic pressure of ~6.5 kbar [2] and
exhibiting generation of an electromotive force (emf)
under heating at T ≥ 400 K in the absence of external
temperature gradients [3]. Both these phenomena orig-
inate from a change in the valence state, Sm2+ 
Sm3+. The Sm2+ and Sm3+ ions differ substantially in
size and have ionic radii of 1.14 and 0.96 Å, respec-
tively, which becomes manifest in the SmS unit cell
parameters. While the lattice-constant behavior at the
pressure-induced phase transition in SmS is fairly well
known [4], no such studies have thus far been per-
formed for the emf generation effect. Experimentally,
1063-7834/05/4702- $26.00 0225
the valence state is usually derived from the lattice
parameter by linear interpolation; therefore, investigat-
ing a(T) dependences that reflect the behavior of the
valence state of samarium ions with temperature may
contribute considerably to our understanding of the
physical mechanism responsible for the emf generation
in SmS. Furthermore, knowledge of the a(T) behavior
makes it possible to determine the thermal expansion
coefficient (α) of SmS and its temperature dependence.
The quantity α is an important parameter of technolog-
ical interest for the development of various SmS-based
structures. Earlier, α of SmS was measured only in the
range 80–300 K. Those observations revealed good
agreement between the x-ray diffraction data and gal-
vanomagnetic dilatometric measurements [5]. The
present communication reports on an extension of the
study of the a(T) and α(T) dependences to temperatures
up to T ~ 700 K.

Samarium monosulfide was synthesized from ele-
mental substances Sm and S and melted in an induction
furnace in airtight welded molybdenum crucibles. X-
ray phase analysis showed the SmS single crystals to be
single-phase and well formed.

In the temperature interval 100–300 K, x-ray pat-
terns needed for determination of the lattice constant
were obtained on an URNT-180 low-temperature
attachment to a DRON-2 x-ray diffractometer. In the
interval 300–700 K, diffractograms were recorded on
the same diffractometer equipped with an URVT-2000
high-temperature attachment. The measurement accu-
racy was ±0.0005 Å.

Figure 1 presents the SmS unit cell parameter mea-
sured on a single-crystal sample with a conduction
electron concentration n = 9 × 1018 cm–3 (experimental
points).
© 2005 Pleiades Publishing, Inc.
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The a(T) relation was analyzed in terms of a model
proposed in [5] to account for the behavior of the tem-
perature dependence of the coefficient of thermal
expansion of SmS. The model is based on the variation
in the filling of the Sm2+ f-shell ground-state multiplet
levels with temperature. The Sm2+ ion contains six f
electrons having a total orbital angular momentum L =
3 and a total spin S = 3. The total angular momentum of
the lowest multiplet level is J = 0 (singlet). The level
next in energy with J = 1 (triplet) is separated by 415 K
from the lowest one; the third level with J = 2 (quintet),
by 1115 K; and so on. The diagram of the lowest levels
is presented in Fig. 2 (the higher levels will not be taken
into account). At low temperatures, all Sm2+ ions have
J = 0. As the temperature increases, part of the ions are
excited to the J = 1 state and, subsequently, to the state
with J = 2. Excited ions have a larger radius than non-
excited ones and, therefore, increase the average lattice
constant. The curve in Fig. 1 was calculated using the
standard statistics relation

 (1)

where Wi = (2Ji + 1)exp(–Ei/T) is the probability of fill-
ing of states with energy Ei, Z = W0 + W1 + W2 is the par-
tition function, and ai are the SmS lattice constants cal-
culated under the assumption that all Sm2+ ions are in
the J = 0, 1, and 2 states, respectively. The calculated
curve was obtained by least squares fitting to experi-
mental data, with ai being used as a fitting parameter.
The best fit to the experimental points was attained for
a0 = 5.9500 Å, a1 = 5.9727 Å, and a2 = 6.0624 Å.
Assuming that these values are adequate, one can esti-

a a0W0 a1W1 a2W2+ +( )/Z ,=

200 400 600
T, K

5.95

5.96

5.97

5.98

5.99

6.00
a,

 Å

Fig. 1. Temperature dependence of the lattice constant of
single-crystal SmS. Points are experiment, and the solid line
is a plot of Eq. (1).
P

mate the ionic radii (r) of Sm2+ ions in the ground and
excited states: r = (a – 2rS)/2, where rS = 1.84 Å is the
sulfur ionic radius. The values r0 = 1.13 Å, r1 = 1.141 Å,
and r2 = 1.186 Å appear reasonable.

Figure 3 plots the α(T) relation derived from the
data in Fig. 1 using the expression

 (2)

Also presented are dilatometric data [5] (dashed line).
The discrepancies range from 0 to 15%, depending on

α 1
a
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Fig. 2. Energy level diagram of SmS near the conduction
band bottom (6s states). Ei are defect levels. The 4f levels
are represented by the ground state (J = 0) and the first two
excited states (J = 1, 2).
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Fig. 3. Linear thermal expansion coefficient of single-crys-
tal SmS plotted vs. temperature (solid curve). The dashed
line shows experimental data [5].
HYSICS OF THE SOLID STATE      Vol. 47      No. 2      2005



TEMPERATURE DEPENDENCE OF THE SmS LATTICE PARAMETER 227
the temperature, which should be assigned to differ-
ences in the parameters of the samples, in particular,
their defect concentration, rather than to the different
methods used and the errors in them.

It is of interest to consider the behavior of the lattice
constant of SmS samples that exhibit a clearly pro-
nounced effect of emf generation under heating in the
absence of external temperature gradients [3]. Because
the effect originates from the defect samarium ions that
occupy vacancies on the sulfur sublattice [6], experi-
ments should be conducted on nominally stoichiomet-
ric samples with a high concentration of such defects
and a large gradient of their distribution over the sam-
ple. The number of defect samarium ions was estimated
as was done in [6], from the conduction electron con-
centration n, which was extracted from Hall effect mea-
surements. As a result, we chose a single-crystal sample
2 × 2 × 0.5 mm in size, which was cleaved along the
[100] cleavage planes from a larger single crystal with
n = (1–2) × 1019 cm–3. The large scatter of n in the orig-
inal sample provided a gradient of n in the SmS single
crystal under study. Figure 4a presents the temperature
dependence of the emf generated in the sample under
heating. The temperature of the onset of generation,
450 to 500 K, is consistent with the calculated values
[6] of 440 to 640 K. Figure 4b plots the temperature
dependence of the lattice parameter measured on the
same sample. This graph exhibits a discontinuous
decrease in slope at the temperatures corresponding to
the onset of generation. Thus, the emf generation is
accompanied by a decrease in the lattice constant. This
can be interpreted in terms of the model of the genera-
tion effect proposed in [3], according to which the
defect samarium ions change their valence state during
generation, Sm2+  Sm3+ + e–. The Sm3+ ionic radius
is smaller than that of Sm2+ (0.96 and 1.14 Å, respec-
tively). In the course of generation, the number of Sm3+

ions grows gradually with increasing temperature as a
result of new crystal regions becoming involved in the
process as the local defect concentration decreases.
However, this effect does not give rise to a decrease in
the parameter a but rather decreases the rate of its
growth with temperature (due to Sm2+ ions being
excited to higher states), because the number of defect
ions in our sample is only ~1% of the total number of
samarium ions (calculation made according to [6]).
Thus, the behavior of the a(T) relation supports the
model of the emf generation effect in SmS.

Figure 4c plots the temperature dependence of α for
the SmS single crystal calculated from the a(T) depen-
dence shown in Fig. 4b. Because the change in crystal
volume, ∆V, is proportional to 3∆a, the graphs in Figs. 4b
and 4c suggest that the SmS single crystal undergoes,
on the whole, a second-order phase transition (a varies
continuously with increasing temperature), whereas
PHYSICS OF THE SOLID STATE      Vol. 47      No. 2      200
α =  changes abruptly; i.e., the derivative 

and the thermodynamic expansion coefficient change
in a jumplike manner. In the defect samarium ion sub-
system, however, the phase transition is first-order,
because the samarium ionic radii vary in a jumplike
manner in the subsystem (the phase transition energy is
46 J/cm3 [3]). This conclusion may be of significance
for practical applications of the generation effect. First,
thermal effects and the emf generation effect should
have a reversible (pulsed) character, because the basic
matrix of samarium ions in SmS remains stable at the
phase transition in the defect system. Second, the
inverse population of the conduction band may give
rise, as a result of the Mott transition in the defect sys-
tem, to the generation of radiation with an energy of
0.03–0.06 eV as electrons return to the defect levels
Ei = 0.045 ± 0.015 eV (Fig. 2).

1
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Fig. 4. Behavior of the SmS parameters under the condi-
tions of emf generation: (a) emf generated in the sample
under heating, (b) temperature dependence of the lattice
parameter, and (c) temperature dependence of the linear
thermal expansion coefficient of the same SmS sample.
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Abstract—The electrical resistivity of Sapele-based biomorphic SiC/Si materials was measured in a wide tem-
perature range from 10 K to room temperature. The samples were fabricated by the reactive infiltration of mol-
ten silicon into a carbonized Sapele (African Entandrophragma Cylindricum) wood preform. All the samples
studied contained residual Si (10–35 wt %). It was found that the resistivity-temperature (ρ(T)) dependences
have semimetallic behavior which becomes very close to linear metallic behavior at 100 < T < 300 K. The
obtained values of resistivity were quite low (ρ ≈ 0.002–0.02 Ω cm) and showed strong anisotropy: the resis-
tivity along the wood growth axis was several times lower than that in the perpendicular direction. The extent
of this anisotropy was in correlation with the amount of residual Si (and, hence, with the amount of residual
porosity) in a sample. The resistivity perpendicular to the wood growth axis drastically increased with the Si
content, whereas the resistivity parallel to it was practically independent of the Si content. It is suggested that
the presence of residual carbon in the samples and carrier scattering at SiC/Si interphases could determine the
observed character of ρ(T) dependences. © 2005 Pleiades Publishing, Inc.
1 Wood-based biomorphic SiC (bioSiC) materials
have been a subject of interest over the last decade [1–
7]. This biomorphic SiC is fabricated by the reactive
infiltration of molten silicon into a porous preform of
carbonized wood [1–3, 5, 7]. The final product has a
cellular structure of SiC with elongated silicon “chan-
nels.” Some residual carbon and empty pores are also
present in varying amounts [4, 6]. Moreover, the fine
structure of the obtained SiC phase is not uniform
throughout a sample: it could exist in micron sized
grains and also in colonies of nanosized grains nearby
the interfaces with carbon [8, 9]. A wide variety of
SiC/Si composites can be fabricated by melt Si-infiltra-
tion of wood depending on the type of wood and tech-
nological conditions.

The bioSiC fabrication technique has several impor-
tant advantages, such as low cost (not requiring high-
purity starting powders or very high processing temper-
atures) and fast fabrication (by using an open-cell
porous carbon template) [8].

BioSiC ceramics have already demonstrated out-
standing mechanical properties as compared to other
porous or siliconized SiC [10], which have found appli-
cation in different areas. For example, bioSiC ceramics
have been successfully developed as reinforcements for
refractory concrete [9]. They are also considered to be
promising materials for dental and orthopaedic

1 This article was submitted by the authors in English.
1063-7834/05/4702- $26.00 ©0229
implants [11]. However, the physical properties of
these materials have not been studied in detail.

At present, there are several different kinds of per-
formance SiC materials, such as chemically deposited
(CDV) SiC and Black SiC ceramics, which are spe-
cially important for their application at high tempera-
ture in corrosive environments [12]. Such materials are
available with various resistances, from conducting to
insulating. The conducting type is used as heating ele-
ments because of its excellent thermal characteristics.
The insulating type can be used as high-frequency
plasma components.

The bioSiC ceramics have a complex structure,
hence their electric properties can also differ from the
standard performance SiC. We studied the resistivity
temperature behavior of bioSiC ceramics fabricated
from Sapele precursors. The resistivities in the direc-
tions parallel and perpendicular to the wood axis are
compared.

1. EXPERIMENTAL

Biomorphic SiC was fabricated by the reactive infil-
tration of molten silicon into a porous preform of car-
bonized Sapele wood (African Entandrophragma
Cylindricum). The infiltration was performed in vac-
uum following the conventional procedure for reaction
formed SiC described in [4, 13, 14]. The fabricated SiC
ceramics had a cellular structure of SiC with elongated
silicon channels (residual Si remained in the pores) in
 2005 Pleiades Publishing, Inc.
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Table 1.  Microstructural characterization of bioSiC Sapele-based ceramics

Sample Si content, wt %
Si content,

vol % (from SE
image in SEM)

Si content, vol %
(from BSE image

in SEM)

Mean diameter
of Si-filled
pores, µm

Residual
porosity, vol %

A–Si/SiC
interface specific

area, µm–1

Bio-I 32 26–39 29 12 4.7–5.5 0.1

(>40% from XRD)

Bio-II 23 24 21 10.5 12–13.8 0.07–0.08

Bio-III 23.2 11 10 9 18–21 0.04
the axial direction of the original wood. Depending on
the weight ratio between the carbonized wood and infil-
trating Si piece, it is possible to obtain final SiC/Si sam-
ples with different amounts of residual Si. Three differ-
ent pieces of bioSiC/Si with different weight ratios
between the carbonized wood and infiltrating Si piece
were prepared. In a first approximation, the weight per-

500 µm
(a)

Bio-I

Bio-III

(b)
500 µm

Fig. 1. SEM (in back scattered electrons) micrographs of
the as-fabricated materials, (a) Bio-I and (b) Bio-III, per-
pendicular to the wood fibres (Si is given by round grey
phases, empty pores are black).
P

centage of the residual Si content in each of the pieces
was obtained based on the weights of the initial carbon
perform, initial infiltrating Si, and the obtained product
of Si + SiC. The obtained data are shown in Table 1,
where the studied compositions are denoted as Bio-I,
Bio-II, and Bio-III.

Samples were cut into parallelepipeds with the
approximate dimensions 1.5 × 2.5 × 15 mm. The elec-
trical resistance–temperature (R–T) dependences were
measured using the four-probe technique in a wide tem-
perature range from about 10 K to room temperature.
Electric resistivity ρ was calculated without regard for
sample residual porosity.

Microstructural observations were performed by
optical microscopy and by scanning electron micros-
copy (SEM) using a Philips XL-30 electron microscopy
operating at 30 kV. The volume fraction of the remain-
ing Si in a sample was calculated from topological mea-
surements of SEM images. Topological studies based
on the image contrast were completed by analyzing the
phases in the back scattering electron (BSE), allowing
a clear distinction between phases.

2. RESULTS AND DISCUSSION

In Table 1, the amount of residual silicon and poros-
ity are presented for all three studied SiC/Si composi-
tions. The weight percentage of Si content estimated
base on the weight of the carbon preform, initial infil-
trating Si, and the obtained product of Si + SiC is only
approximate because the product of such Si infiltration
also contains a residual amount of C. In addition, the
structure of the fabricated piece of ceramics is not
homogeneous due to the nature of wood and, addition-
ally, the nonhomogenous distribution of silicon inside
the carbon piece during the fabrication process. Surface
fraction analysis of SEM images in secondary electrons
(SE) and in back scattered electrons (BSE) allowed bet-
ter estimation of the residual silicon and porosity in
each sample. We identified the presence of a Si distri-
bution in SE and BSE images in SEM and estimated the
volume fraction of silicon and the mean diameter of the
silicon filled pores and volume portion of the unfilled
ones. These data are presented in Table 1. From compo-
sition Bio-I to composition Bio-III, the amount of
residual silicon decreases. This is even evident visually
from the SEM micrographs shown in Fig. 1, where the
HYSICS OF THE SOLID STATE      Vol. 47      No. 2      2005
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structure perpendicular to the wood axis is shown (SiC
is the round grey phase, residual pores are black).

Figure 2 shows the ρ−T behavior of the studied
compositions in a wide temperature range from about
10 to 300 K. The resistivity was measured in the direc-
tions parallel (ρ||) (Fig. 2a) and perpendicular (ρ⊥ )
(Fig. 2b) to the growth wood axis. As seen, there is pro-
nounced anisotropy of the resistivity for these two
directions. This anisotropy is the largest for composi-
tion Bio-I, which contains the largest amount of resid-
ual Si and, hence, the lowest content of unfilled pores.
Figure 3 presents the resistivity versus the Si content.
The resistivity in the direction parallel to the wood axis
does not depend on the Si content, whereas the resistiv-
ity in the perpendicular direction dramatically increases
with it.

The dependence of the resistivity on the temperature
for these ceramics shows a semimetallic behavior; the
dependences are not completely linear. The resistivity
at room temperature (Table 2) is quite low and about
one order of magnitude lower (in the case of the highest
ρ⊥  value for Bio-I) than the average data for β-SiC sin-
gle crystals in the literature [15]. However, some spe-
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Fig. 2. Resistivity vs. temperature dependence for the orien-
tation (a) parallel and (b) perpendicular to the growth wood
axis.
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cial SiC materials with comparable low electrical resis-
tivity are known in the literature. These are Black SiC
ceramics [12] and a siliconized SiC based on carbon
fibres in a textile preform [16].

The observed anisotropy in the electric conductivity
can be associated with the scattering of carriers on the
SiC/Si interfaces when the current passes through
them, i.e., in the direction perpendicular to the wood
axis. We estimated the summary interface area A
between Si and SiC per unit volume for the studied
sample. Then parameter A is calculated as follows:

 (1)

where k is the volume fraction (vol %) of pores occu-
pied by the residual Si and R is the mean radius of such
pores. The obtained values of the A parameter are pre-
sented in Table 1. The Bio-I composition has the high-
est value of A. There is an apparent correlation between
the extent of anisotropy and the value of the A-parame-

A 2
k
R
---,=
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Perpendicular, Troom

Perpendicular, T = 77 K
Parallel, Troom

Parallel, T = 77 K

Fig. 3. Dependence of resistivity on residual silicon content
at 77 K and room temperature for sample orientations par-
allel and perpendicular to the pore channels in the initial
wood.

Table 2.  Electrical resistivity of bioSiC Sapele-based
ceramics

Cera-
mics

ρ at Troom,
Ω cm

ρ⊥ /ρ|| 
at Troom

ρ at 10 K,
Ω cm

ρ⊥ /ρ|| 
at 10 K

Bio-I ρ⊥ , 0.02 5.7 ρ⊥ , 0.016 6.7

ρ||, 0.0035 ρ||, 0.0024

Bio-II ρ⊥ , 0.0083 2.5 ρ⊥ , 0.0059 2.6

ρ||, 0.0034 ρ||, 0.0023

Bio-III ρ⊥ , 0.00395 1.33 ρ⊥ , 0.0031 1.35

ρ||, 0.003 ρ||, 0.0023

Note: ρ⊥  is the resistivity in the direction perpendicular to the
growth wood axis, and ρ|| is the resistivity in the direction
parallel to it.
5
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ter: the higher the A-parameter value, the higher the
anisotropy.

In biomorphic SiC materials, there is always some
amount of residual carbon [6]. The amount of residual
carbon also seems to be in correlation with the residual
amount of Si and, hence, of empty pores after the infil-
tration. There will most probably be a lesser amount of
residual porosity in the samples with more a completed
reaction between Si and C during the infiltration. Car-
bon most likely participates in electric transport in bio-
SiC ceramics providing metallic behavior. However,
the question regarding which type of carriers is respon-
sible for the conductivity in these ceramics remains
open and requires additional investigation.

Thus, it was found that the electric transport proper-
ties of BioSiC/Si (Sapele-based) are anisotropic in a
wide temperature range from 10 K to room tempera-
ture. The value of this anisotropy depends on the Si
content in the sample and, hence, on the residual poros-
ity. The resistivity perpendicular to the wood axis dras-
tically increased with Si content (and with a decrease in
the residual porosity), whereas the resistivity parallel to
the wood axis did not show a strong dependence on the
unreacted Si content; it remained about the same for a
variation in Si content from 10 to 35 vol %. The ρ(T)
dependences showed a semimetallic behavior.
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Abstract—The temperature dependences of the Seebeck coefficient α and of the electrical conductivity σ of
p-Bi2 − xSbxTe3 − ySey  solid solutions were studied under atomic substitution on the cation (1 ≤ x ≤ 1.5) and
anion (0.04 ≤ y ≤ 0.09) bismuth and antimony telluride sublattices within the temperature interval 80–340 K.
The effect of variation in the solid-solution composition on the average effective density-of-states mass (m/m0)
and carrier mobility (µ0, calculated with due account of degeneracy) was studied under the assumption that car-

rier scattering is isotropic and that the relaxation time can be approximated by a power-law function τ = ,
where reff  is an effective scattering parameter. It is shown that variations in the pattern of the m/m0 and µ0 tem-
perature dependences produced in the temperature region under study by properly varying the number of sub-
stituted atoms in the solid solutions may favor an increase in thermoelectric efficiency. © 2005 Pleiades Pub-
lishing, Inc.

aE
reff
1. INTRODUCTION

p-Bi2 − xSbxTe3 − ySey  solid solutions with atomic
substitution on both sublattices, as well as
p-Bi2 − xSbxTe3 (x ≤ 1), have application potential in the
low-temperature region (T < 220 K) [1–4]. The transi-
tion to operating temperatures T < 220 K is motivated
by the use of these solid solutions in applications asso-
ciated with deep cooling and requires the development
of materials whose maximum thermoelectric efficiency
(Zm) is shifted to low temperatures. Such a shift of Zm
can be attained by reducing the carrier concentration
below the level which is optimum near room tempera-
ture, as well as by properly varying the solid solution
composition.

The materials under study have a complex band
structure described by a six-ellipsoid energy spectrum
model both for the main and the additional valence
band [5–7]. The additional valence band affects the
thermoelectric properties through a change in the
parameters of the ellipsoidal constant-energy surfaces
and interband scattering. Nevertheless, the properties
determining the thermoelectric efficiency are customar-
ily analyzed in terms of a model with a single parabolic
energy band in which the effective density-of-states
mass (m/m0) is isotropic.

The main mechanisms of scattering in Bi2Te3-based
solid solutions are known to be scattering from acoustic
phonons, the cores of ionized impurities, and atoms of
the second component in a solid solution [8]. If a model
with a single parabolic energy band is used in which
carrier scattering is isotropic, the concentration depen-
dence of the effective mass is neglected, and the relax-
1063-7834/05/4702- $26.00 0233
ation time is assumed to be a power-law function of
energy, τ = aEr (where a is a constant), then these
mechanisms are characterized by a scattering parame-
ter close to r = –0.5. However, combined studies of gal-
vanomagnetic effects in weak magnetic fields and of
the Seebeck coefficient have shown that the scattering
parameter r differs from –0.5 [9–11].

The changes in r in the materials under consider-
ation can be accounted for by introducing the effective
scattering parameter reff  calculated in [9]. Therefore, in
accordance with [9–11], we determine the effective
mass m/m0 and mobility of carriers µ0, with due allow-
ance for degeneracy, from experimental data on the
temperature dependences of the Seebeck coefficient α
and the electrical conductivity σ.

2. EFFECTIVE SCATTERING PARAMETER
Numerical calculations of reff  and of the reduced

Fermi level η [9] based on data on the degeneracy
parameter βd(r, η) and the Seebeck coefficient α(r, η)
revealed that reff  varies from –0.45 to –0.78 at T = 80 K
with increasing carrier concentration in
p-Bi2 − xSbxTe3 − ySey  solid solutions. Thus, the results
obtained in [9] permit determination of the dependence
of the reff  parameter on the Seebeck coefficient α,
which is shown graphically in Fig. 1.

A similar behavior of the parameter reff  with con-
centration and temperature was derived by us earlier for
n-Bi2 – xSbxTe3 – ySey solid solutions of various compo-
sition [10, 11] (Fig. 1). The temperature dependence of
reff  is consistent with the values of reff  quoted in [12]
for p-Bi2Te3 – ySey.
© 2005 Pleiades Publishing, Inc.
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The scattering parameter was also found to be tem-
perature-dependent in a study of the Nernst–Etting-
shausen effect in n-Bi2Te3 [13]. The parameter r
increased with temperature to reach a value |r | = 0.55
near room temperature. However, in calculating the
mobility µ (which is needed to determine r), Champ-
ness and Kipling [13] did not take into account the
anisotropy parameter when deriving the carrier concen-
tration from Hall effect measurements in weak mag-
netic fields, which led to an overestimated mobility.
Our estimates, made with due account of the anisotropy
parameter, showed that the scattering parameters calcu-
lated for the mobilities corrected in this way are close
to the values of reff  extracted from data on the degener-
acy parameter βd and the Seebeck coefficient α.

As follows from Fig. 1, reff  varies over the carrier
concentration region (4–8) × 1018 cm–3. It is known that,
at carrier concentrations of about (3–4) × 1018 cm–3, the
additional band in the valence band of Bi2Te3 and
related solid solutions starts to fill [5–7]. At higher car-
rier concentrations in p-Bi2 − xSbxTe3 − ySey  and with the
temperature increasing to room level, the parameter reff
stabilizes at a level of –(0.75–0.78). In other words, the
concentration dependence of reff  shows that it is in this
region of carrier concentrations, (4–8) × 1018 cm–3, that
the additional band in the p-Bi2 − xSbxTe3 − ySey  solid
solutions starts to fill.

3. SAMPLES FOR THE STUDY

The samples chosen for studies of the thermoelec-
tric properties (the Seebeck coefficient α, electrical
conductivity σ) of p-Bi2 − xSbxTe3 − ySey  solid solutions
(x ≤ 1.5, y ≤ 0.09) were grown by vertical zone leveling
with high-precision temperature control during crystal-
lization. The control was effected by means of a micro-

80 100 120 140
α, µV K–1

–0.8

–0.6

–0.4

r e
ff

1a
2a
1, 2
3
4
5
6
7

Fig. 1. Effective scattering parameter reff  plotted vs. the
Seebeck coefficient α at 80 K in solid solutions (1a)
p-Bi2 − xSbxTe3 − ySey  (1 ≤ x ≤ 1.2, 0.06 ≤ y ≤ 0.09) [9], (2a)
n-Bi2 – xSbxTe3 – ySey (x = 0.4, y = 0.6) [10, 11], and (1–7)
p-Bi2 − xSbxTe3 − ySey  (1 ≤ x ≤ 1.5, 0.06 ≤ y ≤ 0.09). The
samples are numbered 1 through 7 as in the table.
PH
processor-based TP 403 heat controller to within ±1°C,
which permitted growth of homogeneous ingots of
multicomponent solid solutions [14].

The samples were single-crystal blocks extended
along the growth axis, which was perpendicular to C3.
The carrier concentration could be reduced by Bi 
Sb and Te  Se substitutions and addition of Te in
excess of the stoichiometric composition of the solid
solution. Such changes in the composition bring about
a decrease in the number of antisites, which favors a
decrease in the concentration of native acceptor-type
charged point defects [15].

4. THE SEEBECK COEFFICIENT
AND ELECTRICAL CONDUCTIVITY

Figure 2 displays the temperature dependences of
the Seebeck coefficient α and of the electrical conduc-
tivity σ of p-Bi2 − xSbxTe3 − ySey  solid solutions. The
α(T) dependences typically exhibit a certain weakening
as the solid-solution composition is varied. Composi-
tional variations caused by a decrease in the Sb concen-
tration in the solid solution (x = 1.5–1) reduce the slope
s1 = dlnα/dlnT for samples with similar carrier concen-
trations by no more than 7–8% (see table). This weak-
ening of the temperature dependences of the Seebeck
coefficient α suggests that it is possible to increase the
thermoelectric efficiency Z in the low-temperature
domain by reducing the Sb concentration to x = 1–1.2.
p-Bi2 − xSbxTe3 − ySey  compositions with x = 1 and 1.1
and y = 0.06 (curves 1, 2 in Fig. 2) exhibit a shift of the
maximum in the α(T) dependence toward lower tem-
peratures, which, together with a weakening of this
dependence, also gives rise to an increase in Z.

Because the carrier concentration is only very
weakly temperature-dependent in the range 80–300 K
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Fig. 2. Temperature dependences of (1–7) the Seebeck coef-
ficient α and (8–14) electrical conductivity σ of the
p-Bi2 − xSbxTe3 − ySey  solid solutions. (1, 8) x = 1, y = 0.06;
(2, 9) x = 1.1, y = 0.06; (3, 10) x = 1.2, y = 0.06; (4, 11) x =
1.2, y = 0.09; (5, 12) x = 1.3, y = 0.09; (6, 13) x = 1.3, y =
0.07; and (7, 14) x = 1.5, y = 0.09.
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Slopes of the temperature dependences of the Seebeck coefficient α (s1), effective density-of-states mass m/m0 (s2, s3), and
mobility µ0 (s4, s5) in p-Bi2 – xSbxTe3 – ySey solid solutions

Sample no.
in the figures x y s1

(T < 150 K)
s2

(T < 150 K)
s3

(T > 150 K)
|s4|

(T < 150 K)
|s5|

(T > 150 K)
p × 10–19,

cm–3

1 1 0.06 0.80 0.25 0.35 1.45 2.15 0.4

2 1.1 0.06 0.76 0.05 0.65 1.85 2.2 0.5

3 1.2 0.06 0.76 0.15 0.5 1.85 2.2 0.4

4 1.2 0.09 0.74 0.1 0.5 1.7 2.15 0.7

1.2 0.09 0.76 0.05 0.5 1.7 2.1 0.8

1.2 0.09 0.79 0.15 0.45 1.15 2.3 2

5 1.3 0.09 0.72 0.15 0.8 1.6 2.15 0.3

1.3 0.06 0.81 0.1 0.75 1.7 2.4 0.5

1.3 0.07 0.78 0.05 0.8 1.8 2.45 0.7

6 1.3 0.07 0.80 0.1 0.65 1.7 2.3 0.9

1.3 0.09 0.81 0.05 0.5 1.7 2.4 1.8

7 1.5 0.09 0.81 0.2 0.8 1.6 1.7 0.5
[9], the temperature dependence of electrical resistivity
σ determines the variation in the mobility with temper-
ature. The dependences of α and σ on T can be used to
determine the product (m/m0)3/2µ0 [9] needed to calcu-
late the carrier effective mass m/m0 and mobility µ0
with due account of degeneracy.

5. EFFECTIVE DENSITY-OF-STATES MASS

The effective density-of-states mass m/m0 and
mobility µ0 of carriers, entering the expression for the
performance coefficient

 (1)ZT β∼ 2 2π( )3/2

h
3
e

--------------------k0
7/2 m

m0
------ 

  3/2

µ0T
5/2κ L

1–
,=

0 1 2 3 4
p, 1019 cm–3
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300

α,
 µ

V
 K

–
1
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2

Fig. 3. Concentration dependences of the Seebeck coeffi-
cient α in solid solutions (1) p-Bi2 − xSbxTe3 − ySey  (x ≤ 1.2,
y ≤ 0.09) [9] and (2) n-Bi2 – xSbxTe3 – ySey (x = 0.4, y = 0.6)
[10, 11] obtained at 300 K.
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were derived for the p-Bi2 − xSbxTe3 − ySey  solid solu-
tions from the temperature dependences of the Seebeck
coefficient α and electrical conductivity σ using the
technique described in [16], with due account of reff , in
accordance with the relations for the carrier concentra-
tion and mobility applicable to semiconductors in the
extrinsic-conductivity region.

The carrier concentration in the
p-Bi2 − xSbxTe3 − ySey  solid solutions was derived from
the α( p) relation, which, in turn, was extracted from
studies of galvanomagnetic effects in weak magnetic
fields [9] (Fig. 3).

Figure 4 gives the dependence of the effective mass
m/m0 on temperature and carrier concentration in the
form of a three-dimensional surface. We see that the
effective mass m/m0 increases with temperature and
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p, 10 19 cm –3

3

2

1

Fig. 4. Effective density-of-states mass m/m0 plotted vs.
temperature and carrier concentration in
p-Bi2 − xSbxTe3 − ySey  solid solutions for x = 1–1.5 and y =
0.06–0.09.
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carrier concentration for all compositions, thus demon-
strating the valence band nonparabolicity of the
p-Bi2 − xSbxTe3 − ySey solid solutions. As in
n-Bi2Te3 − ySey [16], the dependence of m/m0 on T in
p-Bi2 − xSbxTe3 − ySey  cannot be described by a power-
law function ms [8] within a broad temperature interval,
because the value of s varies with temperature (see
table).

Within the interval 80–150 K, the effective mass
m/m0 depends only weakly on temperature. After that,
the dependence of m/m0 on T becomes steeper up to the
temperatures at which intrinsic conduction sets in, as a
result of which the effective mass decreases. The tem-
perature at which m/m0 starts to decrease is 200–220 K
in samples with low carrier concentrations. This pattern
of the m/m0 dependence on T persists for all solid-solu-
tion compositions. As the carrier concentration in the
solid solution increases, the maximum in this depen-
dence shifts toward higher temperatures (Fig. 4).

Figure 5 displays temperature dependences of
m/m0 measured for carrier concentrations less than 1 ×
1019 cm–3 on p-Bi2 − xSbxTe3 − ySey  samples of different
composition. In the range 150–220 K, the slope s3 =
dln(m/m0)/dlnT increases with increasing Sb content in
the solid solution (see table). The growth of the coeffi-
cient s3 was the largest for the compositions with x = 1.3
and 1.5 (see table and Fig. 5).

Note that the increase in the effective mass m/m0
with the concentration increasing from 0.3 × 1019 to (4–
5) × 1019 cm–3 can be attributed to the onset of filling of
the additional valence band in the p-Bi2 − xSbxTe3 − ySey
solid solution (Figs. 4, 5). This growth of m/m0 with
carrier concentration is paralleled in Fig. 4 by a change
in the slope of the m/m0(T, p) surface to the (T, p) plane.

The dependences of m/m0 on temperature, composi-
tion, and carrier concentration in p-Bi2 − xSbxTe3 − ySey

1
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3
4
5
6
7

100 150 200 250 300 350
T, K

0.2

0.4

0.8

1.2

1.6
m

/m
0

Fig. 5. Temperature dependences of the effective density-
of-states mass m/m0 in p-Bi2 − xSbxTe3 − ySey  solid solu-
tions. (1) x = 1, y = 0.06; (2) x = 1.1, y = 0.06; (3) x = 1.2,
y = 0.06; (4) x = 1.2, y = 0.09; (5) x = 1.3, y = 0.09; (6) x =
1.3, y = 0.07; and (7) x = 1.5, y = 0.09.
P

can be explained as being due to changes in the shape
parameters (u, v, w) of the constant-energy surface,
which govern the ratios of the effective-mass tensor
components (mi/mj). The variations in m/m0 with T, p,
and solid-solution composition also depend on the
degeneracy parameter βd(reff , η), which determines
scattering processes in the model assuming isotropic
carrier scattering [17].

6. CARRIER MOBILITY

Figure 6 displays the behavior of the mobility µ0
with temperature and concentration for a composition
with x = 1.3 and y = 0.06–0.09. As the carrier concen-
tration increases, the mobility decreases as the number
of scattering centers increases. Analogous dependences
of µ0 on carrier concentration are observed for all the
solid-solution compositions studied.

As is the case with the temperature dependence of the
effective mass m/m0, the dependences of µ0 on T follow
a power law Ts(T) over various temperature intervals. The
values of the slope of the µ0 temperature dependence
over the range 80–150 K (|s4| = dlnµ0/dlnT) are less than
those over the range 150–220 K, |s5 |, due to impurity
scattering (see table).

A comparison of samples with different composi-
tions and similar carrier concentrations reveals a
decrease in the mobility and slope |s5 | = dlnµ0/dlnT of
the temperature dependence for T > 150 K with increas-
ing Sb content in the solid solution as x varies from 1 to
1.5 (curves 1, 3, 7 in Fig. 7).

Variation in the Se content in the solid solution in
the interval y = 0.06–0.09 does not affect the carrier
mobility in samples with similar carrier concentrations.
However, adding excess Se in amounts no greater than
0.5 wt % together with excess Te brings about a
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Fig. 6. Mobility µ0 plotted vs. temperature and carrier con-
centration in p-Bi2 − xSbxTe3 − ySey  solid solutions for x =
1.3 and y = 0.06–0.09.
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decrease in mobility µ0 due to the additional scattering
on Se atoms (see curve 5 in Fig. 7, table).

The coefficient |s5 | = dlnµ0/dlnT, as well as s3 =
dln(m/m0)/dlnT, increases with Sb content in the solid
solution in the range 150–220 K (see table). The growth
of the coefficient |s5 | was the largest in the x = 1.3 com-
position. Such changes in the slopes of the temperature
dependences of m/m0 and µ0 favor growth of the effec-
tive mass and mobility of carriers in the x = 1.3 compo-
sition as compared to those for x < 1.3.

Studies of the thermal conductivity of the solid solu-
tion compositions under consideration [4] showed that
the total thermal conductivity κ and, hence, the lattice
thermal conductivity κL decrease as compared with
those in p-Bi2 − xSbxTe3 (for x = 1.5), where there is no
substitution on the Te sublattice. Therefore, if we take
into account the weak changes in the lattice thermal
conductivity κL with solid solution composition, the
observed increase in the effective mass and mobility in
the x = 1.3 composition brings about an increase in ther-
moelectric efficiency Z in the temperature interval 150–
220 K.

At low temperatures (T < 150 K), one may expect an
increase in Z in solid solutions with a lower Sb content
(x = 1.2), because for this composition the effective
mass and mobility for T < 150 K are higher in samples
with low carrier concentrations, at which the additional
valence band starts to fill (curves 3 in Figs. 5, 7).

Thus, our studies have identified the specific fea-
tures of the temperature dependences of the effective
mass m/m0 and mobility µ0 that favor an increase in
thermoelectric efficiency in p-Bi2 − xSbxTe3 − ySey  solid
solutions under substitution on both sublattices of
Bi2Te3.
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Abstract—The mechanoelectric effect in solid electrolytes of the compositions ZrO2 + 8 mol % Sc2O3 and
ZrO2 + 8 mol % Y2O3 is investigated experimentally. The mechanical properties of polycrystalline specimens
are studied using four-point bending in air. It is shown that a negative charge is induced on the extended side of
the bent specimen and that the magnitude of this charge depends on the external mechanical load and the tem-
perature of measurement. The assumption is made that the observed phenomena are associated with the uphill
diffusion of vacancies in response to a nonuniform field of mechanical stresses. The theoretical model is com-
pared with the experimental results. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The prospects for wide use of solid electrolytes in
thermoelectric energy converters have given a powerful
impetus to investigations into the physical properties of
these materials over the two past decades [1–4]. There
have appeared a large number of works concerned with
the design of functional ceramic materials intended for
use in fuel cells characterized by a high electrical con-
ductivity and based on zirconia and ceria doped with
different oxides [5]. The particular emphasis placed on
the materials-science aspects of research into solid
electrolytes has left aside the problem regarding the
interrelation between the mechanical and electrical
properties of these materials. Among the earlier studies
devoted to the mechanoelectric effect in metal oxides,
special mention should be made of the work performed
by Obrosov and Koksharov [6], who noted, however,
that their own results obtained for these materials are
rather contradictory.

The effect of mechanical loading on the electrical
properties of nonoxide solid electrolytes, so-called
superionics (such as RbI, Na4RbI5, β-Al2O3, etc.), has
been investigated in a number of works [7–11]. In par-
ticular, it has been found that Na4RbI5 polycrystals sub-
jected to concentrated or distributed loading exhibit
direct and inverse baroelectric effects [7–11]. It should
be noted that the materials used in those experiments
differed in the mechanism of electrical conduction from
the zirconia-based polycrystals studied in the present
work; moreover, mechanical testing of these materials
was performed using nonstandard methods. Still ear-
lier, Hull [12] carried out bending tests of RbI speci-
mens and observed induced electric charges on the bent
surfaces of the specimens.

Apart from the aforementioned baroelectric effect,
the best known mechanoelectric phenomenon exhibited
1063-7834/05/4702- $26.00 0238
by solids is the piezoelectric effect. The piezoelectric
effect is associated with the appearance of a charge
anisotropy in unit cells under mechanical loading of the
specimen due to collective displacements of atoms in
the crystal lattice. The high electrical resistivity of
piezoelectric materials, which, as a rule, are dielectrics,
limits the range of their applications in electric current
generators.

In this work, we analyzed the possibility of inducing
an electric charge in solid electrolytes due to variations
in the diffusion motion of positively charged vacancies
under inhomogeneous mechanical stresses. The exper-
iments were based on a well-known physical phenom-
enon, namely, the uphill diffusion of point defects in a
nonuniform field of external stresses.

2. UPHILL DIFFUSION IN SOLIDS

The uphill diffusion or the Gorsky effect [13] was
predicted in 1935. In essence, this phenomenon is as
follows. In a nonuniform field of mechanical stresses,
for example, upon bending of a crystal that is a substi-
tutional solid solution, the impurity ions involved in the
crystal structure experience a force proportional to the
difference between the volume of an impurity atom and
the volume of a lattice atom. In this situation, atoms
with a larger ionic radius move into an extended region
of the crystal, whereas atoms with a smaller ionic
radius migrate into a compressed region of the crystal.
This effect is reversible; i.e., the concentrations of point
defects level off over the specimen after removal of the
external load. Subsequently, Kosevich [14] showed
that, in a nonuniform field of external stresses, intrinsic
defects (such as vacancies and interstitial atoms) of the
crystal can also come into effect and the forces acting
on these defects can be written in the form
© 2005 Pleiades Publishing, Inc.
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 (1)

Here, Ω0 is the volume of the point defect and ∇ P is the
pressure gradient.

For four-point bending, the pressure gradient in the
region of the specimen between the interior load appli-
cators is given by the formula ∇ P = 2σ/h (where σ is
the normal stress on the surface of the specimen and h
is the thickness of the specimen). Under an external
load, the increment of the vacancy concentration on a
compressed surface of the specimen with respect to the
equilibrium concentration cv can be represented in the
form

 (2)

Likewise, the decrement of the vacancy concentra-
tion on an extended surface of the specimen is
described by the same expression. The interstitial
atoms are characterized by an inverse effect as com-
pared to the vacancies.

It is reasonable to assume that, under conditions
where the aforementioned point defects are electrically
charged and there is no compensation for electric
charge (for example, by conduction electrons in metals)
in the system, electric charges can be induced on the
solid surfaces subjected to opposite deformations. In
this case, the electric charge induced in the system can
be represented in the form

 (3)

where z is the valence of point defects.
It follows from this relationship that the magnitude

of the effect is directly proportional to the mechanical
stress and the total vacancy concentration and is
inversely proportional to the temperature of the experi-
ments. Among the oxide ceramic materials known to
date, the solid electrolytes based on stabilized zirconia
satisfy the above conditions best of all. The specific fea-
tures of the electrical properties of these materials most
clearly manifest themselves in stabilized cubic zirconia
[15–17]. The cubic phase of zirconia, which is unstable
under normal conditions, can be stabilized by doping
with bivalent or trivalent metal impurities that substi-
tute for zirconium in the unit cell. Numerous investiga-
tions have established that stabilized zirconia in the
form of a single crystal or a ceramic material possesses
virtually ionic conduction (with respect to oxygen)
even at a temperature of 600°C and that, at 1000°C, the
electrical conductivity of stabilized zirconia becomes
comparable to the conductivity of semiconductors, η =
(0.1–0.01) Ω–1 m–1. It should be emphasized that, at
these temperatures, zirconia retains its high-strength
properties. This makes it possible to use zirconia as a

fv Ω0∇ P, f i Ω0∇ P.–= =

δcv

Ω0σ
kT

----------cv .=

δq ze
Ω0σ
kT

----------cv ,=
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constructional or functional ceramic material over a
wide range of practical applications (fuel cells, electro-
lyzers, analyzers, etc.).

The conducting properties of zirconia are deter-
mined by an anomalously high diffusion mobility of
oxygen ions. As an illustration, Fig. 1 shows the tem-
perature dependences of the diffusion coefficients of
oxygen ions in monoclinic and cubic CaO–ZrO2 solid
solutions. The temperature dependences of the self-dif-
fusion coefficients of calcium and zirconium cations,
which were constructed according to the data taken
from [17], are depicted in the inset to Fig. 1.

It can be seen from Fig. 1 that, in the temperature
range under investigation, the diffusion coefficient of
oxygen ions is more than ten orders of magnitude larger
than the diffusion coefficients of zirconium ions and
dopant cations. The same is also true for the ZrO2–Y2O3
and ZrO2–Sc2O3 systems.

3. OBJECTS OF INVESTIGATION 
AND EXPERIMENTAL TECHNIQUE

Polycrystals of zirconia ZrO2 doped with 8 mol %
Y2O3 (stabilized zirconia) or with 8 mol % Sc2O3 (par-
tially stabilized zirconia, which predominantly exists in
the cubic phase) were chosen as the objects of our
investigation. The choice of the ZrO2–Sc2O3 compound
was motivated by the fact that this partially stabilized
zirconia exhibits an extremely high conductivity as
compared to the other zirconia-based compounds.
Specimens 2 × 15 × 40 mm in size were prepared by
sintering a powder (grain size, 10–30 nm). The charac-
teristic size of grains in the specimen fell in the range
0.2–0.5 µm. The density of the material was no lower
than 5.7 × 103 kg/m3, and the flexural strength of the
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Fig. 1. Temperature dependences of the diffusion coeffi-
cients of oxygen, calcium, and zirconium ions in the CaO–
ZrO2 solid solution. The inset shows the temperature depen-
dences of the self-diffusion coefficients of calcium and zir-
conium cations according to the data taken from [17].
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Fig. 2. Schematic diagram of the setup for testing of the
mechanoelectric properties of specimens.
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Fig. 3. Polarization curve of an unloaded specimen. The
inset shows the electric response of the system to mechani-
cal loading (“load on”) and unloading (“load off”).
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Fig. 4. Variation in the polarization potential across the
specimen after mechanical loading (“load on”) and unload-
ing (“load off”) at a temperature of 400°C.
specimen was no less than 300 MPa. After mechanical
polishing, silver electrodes were fired into the largest
opposite faces. The electrolytic cell thus fabricated was
placed in a four-point bending apparatus positioned in
a compact electric furnace. In the high-temperature
zone of the furnace, a mechanical force was applied to
the specimen with the use of a special rod from which
a necessary weight was suspended. The temperature
was controlled by a thermocouple located in the imme-
diate vicinity of the specimen. The schematic diagram
of the setup used for loading specimens is shown in
Fig. 2. The potential across the specimen was written
with a recorder operating in a time-base sweep mode.

4. RESULTS

The characteristic polarization curve of an unloaded
specimen is depicted in Fig. 3. This curve shows the
change in the potential across the electrodes of the elec-
trolytic cell upon heating of the specimen at a rate of
approximately 10 K/min in the absence of flexural
stress. The application of flexural stress to the specimen
(see inset to Fig. 3) at different temperatures (corre-
sponding to different portions of the polarization curve)
leads to an increase in the rate of change in the charge
at the electrodes of the electrolytic cell. After removal
of the flexural stress, the kinetic parameters of the spec-
imen regain their initial values observed in the
unloaded state. At temperatures of approximately
600°C and above, the time of change in the potential
across the electrodes under mechanical loading is
smaller than the RC time constant, which results in a
considerable damping of the signal. This effect is most
likely associated with the high diffusion mobility of
oxygen ions and oxygen vacancies. Moreover, since the
experiments were performed in air, the high mobility of
oxygen ions “shunted” the mechanoelectric effect.

In addition to the qualitative experiments, which
demonstrated the electric response of the solid electro-
lyte to inhomogeneous mechanical stresses, we carried
out quantitative measurements at a constant tempera-
ture. The variation in the potential across the electrodes
of the electrolytic cell after loading of the specimen at
σ = 50 MPa and after its unloading at a temperature of
400°C is shown in Fig. 4. The change in the potential
∆U across the electrodes of the specimen lies in the
range 0.025–0.030 mV. The sign of the effect (i.e.,
“minus” on the extended surface of the specimen and
“plus” on the compressed surface) indicates that nega-
tive (oxygen) ions move toward the extended surface of
the specimen, whereas positively charged vacancies
move toward the compressed surface of the specimen.
Since plastic deformation can occur through different
diffusion mechanisms, it should be particularly empha-
sized that the observed effect is reversible and inconsis-
tent with the plastic deformation of the specimen. The
PHYSICS OF THE SOLID STATE      Vol. 47      No. 2      2005
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above circumstances give grounds to believe that this
effect is caused by the uphill diffusion of vacancies
toward the compressed surface of the specimen, which,
in turn, is accompanied by a reverse flow of oxygen
ions carrying a negative charge.

5. DISCUSSION

As was noted above, the high conductivity (with
respect to oxygen) observed in stabilized zirconia
ceramic materials in the temperature range 600–
1200°C (Fig. 1) is caused by the presence of oxygen
vacancies in the crystal lattice at a concentration that is
substantially higher than their equilibrium concentra-
tion in the undoped material (the equilibrium concen-
tration at a temperature of 1200°C and at atmospheric
pressure is equal to 10–8 [17]). The high concentration
of nonequilibrium vacancies is observed under the elec-
troneutrality condition upon doping of zirconia with
bivalent or trivalent cations. In the majority of cases,
charge transfer in stabilized zirconia has been simu-
lated in the framework of the cluster model proposed by
Solier et al. [18] and the model of a “vacancy–impurity
atom” complex put forward by Bogicevic et al. [19]. In
both models, the mechanism of electrical conduction is
described by a two-step process: the formation of an
active vacancy (decomposition of a complex) and its
subsequent migration over the crystal bulk in a gradient
field of mechanical stresses or voltages (in this case,
oxygen ions move in the opposite direction). According
to the results obtained by Zavodinsky [20], the activa-
tion energies for zirconia containing 12.5 mol % Y2O3
are estimated as Ea ~ 0.6 eV and Em ~ 0.7 eV.

One of the purposes of this work was to determine
the possible difference in the magnitudes of the mech-
anoelectric effect observed in polycrystals of the ZrO2–
Y2O3 (8 mol %) and ZrO2–Sc2O3 (8 mol %) solid solu-
tions. This assumption is based on the mechanism of
stabilization of the high-temperature cubic zirconia
phase, according to which the stabilization occurs
through the replacement of zirconium atoms by impu-
rity atoms with a larger ionic radius (  = 0.82 Å,

 = 0.97 Å,  = 0.83 Å [21]). This process can be

considered to be similar to that proceeding in the mate-
rial at high pressures or temperatures. Consequently,
the energy of the crystal lattice in the vicinity of impu-
rity ions should increase under induced local stresses.
The stabilization of the cubic phase requires a smaller
amount of doping impurities with a larger ionic radius
(Y3+), all other factors being equal. Another important
property of these materials is that the cubic zirconia sta-
bilized by doping impurities with a smaller ionic radius
(Sc3+) should exhibit a higher sensitivity to external
actions. This circumstance allowed us to assume that
the magnitude of the mechanoelectric effect in poly-

r
Zr

4+

r
Y

3+ r
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3+
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crystals of the ZrO2–Sc2O3 (8 mol %) compound
should be larger than that of the mechanoelectric effect
in polycrystals of the ZrO2–Y2O3 (8 mol %) compound.
However, the measured magnitudes of the mechano-
electric effect in both compounds turned out to be vir-
tually identical to within the experimental error of the
measurement. Most likely, this can be associated with
the fact that the observed mechanoelectric effect is very
small in magnitude.

The uphill diffusion effect can be quantitatively esti-
mated from relationship (1) under the assumption that
the elastic and electric forces acting on a vacancy at
equilibrium are equal to each other (2eU/h = 2Ω0σ/h).
The calculated elastic force is greater than the Coulomb
force by a factor of approximately 5. This discrepancy
can be caused by the “shunting” effect of oxygen ions
(penetrating into the specimen from the atmosphere)
and the passage of leakage currents in measuring cir-
cuits. It can be expected that the performance of similar
experiments under vacuum or in an oxygen-free atmo-
sphere will lead to better agreement between the theo-
retical and experimental data. In conclusion, we note
that the uphill diffusion effect can be used to investigate
the kinetic properties of ions in a gradient field of
mechanical stresses.
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Abstract—The kinetics of light-induced depletion of electronic states created by plastic deformation in γ-irra-
diated NaCl crystals was studied experimentally, which permitted reconstruction of the photoionization spec-
trum of these states in the range 1.2–2.2 eV. Additional arguments are presented in support of this spectrum
deriving from photoexcitation of electrons from the dislocation band. It is shown that, in this case, the spectrum
thus obtained is not admixed with the photoionization spectrum of dislocation-related point defects. © 2005
Pleiades Publishing, Inc.
1. It was found in [1, 2] that plastic deformation of
γ-irradiated NaCl crystals brings about the formation of
a broad band starting at a photon energy E = 0.64 eV
and extending up to at least 2.1 eV in the IR photoion-
ization spectrum stimulated by a preliminary F-light
pulse. We succeeded in isolating this band from a sum
of spectra by means of a special, fairly sophisticated
procedure [2] and measured the spectrum of this band
in the range 0.64–1.2 eV. Extending similar measure-
ments to higher energies was impossible at that time
because of the fast drop in equipment sensitivity in this
region. However, since the photoionization signal at
E = 0.74 eV belongs almost entirely to this band, we
attempted to establish its short-wavelength edge [2]. To
do this, following the standard procedure [1, 2]
intended to fill the electronic states producing this
broad spectrum and developed for T = 110–120 K, the
sample was subjected to additional monochromatic
treatment (AMT) with a light pulse of variable duration
and photon energy E (1.2 to 2.1 eV). The photoconduc-
tivity generated by 0.74-eV photons was then mea-
sured, and its intensity was used to judge the efficiency
of depletion of the states under study by the AMT. It
was found that the depletion was efficient irrespective
of the wavelength in this range. Thus, this band was
established to extend at least up to 2.1 eV. The depen-
dence of the photoconductivity signal (and, hence, of
the density of these states) on the AMT duration was an
exponential function, with its asymptotic value depend-
ing on the wavelength (larger asymptotic values usually
correspond to longer wavelengths). This feature can be
due to the two ways in which the AMT light acts. On
the one hand, being in the region of sensitivity of the
states of interest to us, it depletes them, while on the
other hand, by exciting the F and other color centers
donating electrons to the conduction band, it fills them
again, and this accounts for the establishment of a con-
stant level depending on the AMT wavelength. It imme-
1063-7834/05/4702- $26.00 0243
diately follows that, by studying the time dependence
of the characteristics measured at different AMT wave-
lengths, one can reconstruct the photoionization spec-
trum of these states, and this is what motivated the
present investigation.

2. The electronic density of states n can be written as

 (1)

where t is the time, f(E) is the photoionization spectrum
of these states, I(E) is the AMT light intensity, F(E) is
the spectrum of the color centers acting as electron
sources, and A and B are constants including all coeffi-
cients independent of E and n. In other words, we can
get by with only one variable, because the variation in
the F-center concentration over such short times (no
longer than 30 s) can be safely neglected. Equation (1)
can be solved to yield

 (2)

where C = n(t = 0) and D = n(t  ∞). Thus, we have

 (3)

and D(E)  F(E)/f(E). We see that, if f(E) is a fairly
smooth function in the region of interest, then D ~ F(E)
and will grow with E by reflecting the growth of F(E)
as one approaches the maximum in the F band, in full
agreement with experiment (see table, column 4).

The experiment was conducted at 113 K on NaCl
single crystals that were γ-irradiated to a dose of 107 rad
and subsequently compressed at a strain rate of 1.8 ×
10–5 s–1 to a strain of 12–13%. The experimental tech-
nique employed is described in detail in [2]. The AMT
light was produced by an SI-8 tungsten lamp equipped
with a set of color filters. The same lamp, but with dif-
ferent color filters, served to excite the F centers. Due
to frequent filter replacement, special measures were
required to preclude the scattering of light intensity.

dn/dt nAf E( )I E( )– BF E( )I E( ),+=

n C D–( ) t/τ–( )exp D,+=

f E( ) 1/τ E( )I E( )∼
© 2005 Pleiades Publishing, Inc.
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Figure 1 shows six of the eight measured photoconduc-
tivity signals initiated by 0.74-eV photons plotted ver-
sus AMT duration. By properly choosing the parame-
ters C, D, and τ in Eq. (2) so as to obtain the best fit to
experimental data (Fig. 1), τ(E) could be determined
and, using the measured I(E) dependence and Eq. (3),
the f(E) spectrum could be derived (see table). Figure 2
displays the photoionization spectrum of the states
under study in the range 0.6–2.2 eV representing the
data from [2] (0.6–1.2 eV) and the present results
(1.24–2.2 eV). We see that the photoionization spec-
trum exhibits a steep rise (threshold) at E ≈ 0.65 eV,
which transforms rapidly into a smooth course (if we
disregard oscillations related to the spectral structure)
up to 2.2 eV, i.e., up to the edge of the range covered.

Dependences of the following quantities on AMT photon
energy E: coefficient k related to AMT light intensity; ratio
∆ of the rms deviation of experimental points from the fitting
curve to the initial amplitude of this curve; D/C; τ(E); and the
reconstructed photoionization spectrum f(E)

E, eV k = 1/I(E),
arb. units ∆, % D/C τ(E), s f(E) ~ k/τ,

arb. units

2.206 0.57 0.43 0.23 7.8 731

2.067 1.00 0.31 0.28 14.1 709

1.870 0.76 0.64 0.19 12.0 633

1.761 0.72 0.58 0.16 11.5 626

1.636 0.83 0.47 0.18 12.7 654

1.550 0.96 1.08 0.17 13.4 716

1.375 0.44 1.01 0.11 7.6 572

1.240 0.42 1.30 0.13 6.8 621
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Fig. 1. Photoconductivity signal plotted vs. AMT duration
for different AMT photon energies: (1) 1.240, (2) 1.375,
(3) 1.550, (4) 1.761, (5) 2.067, and (6) 2.206 eV. Solid
curves are best-fit exponential functions in Eq. (2).
P

3. As follows from [1, 2], the states of interest to us
here form under plastic deformation of a sample. It is
known that deformation gives rise to the formation of
dislocations, as well as intrinsic defects and their com-
plexes. The intrinsic defects forming in NaCl crystals
are known to be primarily vacancies. Chlorine vacan-
cies and their complexes are capable of capturing elec-
trons from the conduction band to form various color
centers. The simplest of them, F, F', M, and R centers,
are well known and can be identified with fairly deep
states (2.7–1.2 eV below the conduction band bottom).
More intricate complexes are shallower. Thus, if the
states under study here derive from complexes of intrin-
sic defects, these complexes should be more intricate
(in our case, the depth is less than 0.65 eV). The Cou-
lomb interaction that binds a trapped electron to this
complex, as well as the large size of the complex and its
low energy depth (0.65 eV for a band gap of about
8 eV), should make the width of its photoionization
spectrum finite, and the position of its maximum should
not be more than two times the photoionization thresh-
old [3]). In our case, the photoionization threshold is
≈0.65 eV and no maximum is observed even at 2 eV.
This makes the formation of our states of complexes of
intrinsic defects very improbable and leaves disloca-
tions as a viable alternative (a dislocation electronic
band). In these conditions, long vacancy chains, which
may also form under plastic deformation, may be con-
sidered a specific case of dislocations (narrow disloca-
tion loops).

It is common knowledge that dislocations can also
produce defects capable of trapping electrons from
both the conduction and the dislocation band. Photo-
stoppers are an example of such defects [4]. In this case,
photoexcitation of electrons from these defects into the
conduction band will give rise to their capturing of
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Fig. 2. Photoionization spectrum of the electronic states
studied. (1) Data from [2] and (2) this study.
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electrons from the dislocation band, thus reducing the
dislocation electron concentration and the subsequent
decrease in the photoionization signal produced by
photons with E = 0.74 eV. A question naturally arises as
to whether the photoionization spectrum of these
defects may become admixed to the spectrum obtained
by us (curve 2 in Fig. 2).

We assume that the capture of a dislocation electron
by a depleted defect occurs instantaneously (in our
case, the characteristic times of the exponential relation
are of the order of 10 s, so any times from the pico- to
millisecond scale can be considered instantaneous).
Therefore, Eq. (1) should be complemented by the term
–z(E)I(E)G, where z(E) is the photoionization spectrum
of these defects and G is a constant. No new variables
are added, and Eq. (3) remains valid, because adding
this term will not change τ(E) but rather reduce the lim-
iting level D and, hence, increase the amplitude of the
exponential function. If electron capture by defects is a
slower process, the time dependences will be more
complex than the ones described by Eq. (3). Because
this relation is satisfied with a high accuracy in our case
(see table, column 3), this process either produces a
negligible contribution or is entirely absent. Hence, if
PHYSICS OF THE SOLID STATE      Vol. 47      No. 2      200
photoionization of electrons from the dislocation band
does occur, the spectrum obtained is not admixed with
the spectrum due to dislocation-related point defects.
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Abstract—The relation between the strength and ductility of structural materials is theoretically analyzed
using stress–strain curves for a number of fcc metals and alloys. The theoretical analysis is based on the crite-
rion of necking in a tensile specimen and on a stress–strain curve, which reflects the evolution of the dislocation
density in a material with increasing strain and the effect of structural factors on this evolution. Theoretical rela-
tionships are obtained for the uniform strain and the ultimate tensile strength. The effects of the stacking-fault
energy, the solid-solution hardening, and the grain size on these quantities are considered. © 2005 Pleiades
Publishing, Inc.
1. INTRODUCTION

An increase in the strength of structural materials is
known to be accompanied by a decrease in their ductil-
ity. This rule is very important for practice but has not
yet been explained with regard for all the factors
(including structural factors) that affect the relation
between the strength and ductility of a material. Usu-
ally, the strength and ductility characteristics of struc-
tural materials at low and moderate temperatures are
considered to be the yield strength σy, the stress σu, and
the strain εu  of the onset of necking (necking strain) in
a tensile specimen.

Numerous experiments show that, irrespective of
the method of increasing the yield strength (solid-solu-
tion hardening [1, 2], precipitation hardening [3], grain
refinement [4], or neutron irradiation [5]), the uniform
strain εu  decreases with increasing yield strength. Apart
from these factors, the necking strain depends on tem-
perature and (in fcc metals and alloys) on the stacking-
fault energy [6], which determines the splitting of dis-
locations and their cross slip ability. Depending on
these factors, the uniform strain can vary over wide lim-
its, namely, from 50–100% to virtually zero, i.e., to the
complete disappearance of material ductility or to its
embrittlement (more specifically, to its quasi-embrittle-
ment, since necking implies that fracture results from a
strong localization of plastic deformation).

Although the effect of plastic instability and strain
localization in the form of a neck has a macroscopic
character and is controlled by the well-known criterion
dσ/dε < σ (where σ is the stress and ε is the strain), the
fulfillment of this criterion and the character of the rela-
tion between the strength and ductility depend on
microscopic processes that determine the strain (dislo-
cation) hardening of a material and the increase in dis-
location density with strain. The rate of dislocation
1063-7834/05/4702- $26.000246
accumulation in a deformed material has been found to
depend substantially on its structure, dislocation prop-
erties, and dislocation interaction. These factors specify
the shape and character of stress–strain curves.

The effect of structural factors on stress–strain
curves has been studied both experimentally and theo-
retically, which allows one to analyze the effect of the
structure on the relation between the strength and duc-
tility of a material from physical microscopic positions.
In this work, we perform this analysis for fcc metals
and alloys.

In Section 2, we use the criterion dσ/dε < σ and the
dislocation-kinetics equations that include the effect of
the structure on the character of stress–strain curves to
obtain relationships for the uniform strain εu  and the
ultimate tensile strength σu. In the following sections,
these relationships are used to analyze the effects of the
stacking-fault energy (Section 3), solid-solution hard-
ening (Section 4), and the grain size (Section 5) on the
ultimate tensile strength and the necking strain for a
number of fcc metals and alloys whose properties are
available in the literature [1, 2, 4, 6]. The effect of radi-
ation hardening and precipitation hardening on these
parameters will be analyzed in a later paper.

2. STRESS–STRAIN CURVES 
AND THE PLASTIC-INSTABILITY CRITERION

As noted above, the criterion of the appearance of a
plastic instability in the form of necking in a specimen
subjected to uniaxial tension is

 (1)

This criterion has a simple physical meaning: deforma-
tion becomes unstable when, due to a decrease in the

dσ
dε
------ σ.≤
 © 2005 Pleiades Publishing, Inc.
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cross-sectional area of a tensile specimen, the strain
hardening ceases to compensate for an increase in the
stress. Since the stress σ and the strain-hardening coef-
ficient dσ/dε depend on strain, there is a critical value
of εu  at which condition (1) begins to be satisfied.
Stress–strain curves are often fitted by relations of the
type σ = σy + χεn, where σy  is the yield strength and χ is
a parameter. In certain cases, these σ(ε) dependences
with n = 0.5–1.0 indeed describe the initial stage of the
stress–strain curves of real materials; however, they
cannot describe the third stage of these curves, namely,
the stage of dynamic recovery. Since these dependences
are phenomenological in character, one cannot estimate
the effect of a certain structural factor on the critical
strain εu  and the ultimate tensile strength σu of a mate-
rial. To this end, it is necessary to know the effect of the
structural factor on the σ(ε) curve of this material.

The strain (dislocation) hardening of a material is
described by the well-known formula

 (2)

where α is the effective dislocation interaction con-
stant, which depends on the dislocation distribution;
µ is the shear modulus; b is the Burgers vector; and τc is
the critical shear stress in the case where dislocations
interact with structural defects. To find the τ(γ) and,
hence, σ(ε) dependences (where σ = mτ and ε = γ/m,
with m being the Taylor factor for a polycrystal), we
have to establish how the dislocation density ρ evolves
with the shear strain γ. In the case of fcc metals and
alloys at low and moderate temperatures, this evolution
obeys the equation

 (3)

as has been demonstrated experimentally and theoreti-
cally many times [7–13]. The first term in the right-
hand side of Eq. (3) is the rate of dislocation multipli-
cation and accumulation when dislocations interact
with obstacles of other than deformation origin (km =
1/bλm, where λm is the effective free path length of dis-
locations between these obstacles). The second term
describes dislocation multiplication by forest disloca-
tions (bkf ≈ 10–2 is the coefficient determining the mul-
tiplication of dislocations that interact with forest dislo-
cations). The third term is the annihilation rate of the
screw sections of dislocation loops (ha = bka is the
effective annihilation length for screw dislocations).
The annihilation of screw dislocations is related to the
appearance of the third stage (dynamic recovery) in the
stress–strain curves of fcc metals. The structure-sensi-
tive parameters in Eq. (3) that can affect the dislocation
density in a material are the free path length of disloca-
tions λm and the effective dislocation annihilation
length ha. Structural defects in a material (impurity
atoms, dispersed particles, grain boundaries, radiation
defects) decrease the free path length of dislocations
and, thus, increase the rate of their accumulation in the

τ γ( ) τc αµbρ γ( )1/2
,+=

dρ
dγ
------ km k f ρ

1/2
kaρ–+=
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material. In fcc metals, the effective length ha and the
annihilation coefficient ka of screw dislocations depend
on the stacking-fault energy [11].

Equation (3) can be integrated to find the ρ(γ)
dependence in an implicit form, which hinders analysis
of the τ(γ) and σ(ε) dependences for real materials in
terms of criterion (1). Therefore, we consider two lim-
iting cases, where the concentration of structural

defects is low [in Eq. (3), the coefficient km ! /4ka]
or high. In the first case, we integrate Eq. (3) at km = 0
and substitute the result into Eq. (2). As a result, we
have

 (4)

In the second case, dislocation multiplication by
obstacles of other than deformation origin dominates
over dislocation multiplication by forest dislocations.
Therefore, we obtain

 (5)

By substituting Eq. (4) into condition (1), we can find
the dependences of the necking strain and the ultimate
tensile strength on the yield strength σy  and on the coef-
ficients of Eq. (3):

 (6a)

 (6b)

Similarly, we can find the strain εu  and the stress σu by
substituting stress (5) into condition (1). For further
analysis, we will mainly use Eqs. (6); therefore, for the
sake of brevity, expressions for εu  and σu in the case of
stresses (5) are not given.

Figure 1 shows the stress–strain curves calculated
from Eq. (4) at mka = 10 and various values of the yield
strength (its relative magnitude σy/σ3) in the σ/σ3–ε
coordinates. The dropping segments of the curves con-
ventionally indicate the uniform strain εu  calculated
from Eq. (6a). It is seen that an increase in the yield
strength causes the ultimate tensile strength σu to
increase, according to Eq. (6b); however, the uniform
strain is strongly decreased in this case. The cause of
this behavior is clear: as the yield strength increases,

k f
2

σ ε( ) σy σ3 1
1
2
---mkaε– 

 exp– ,+=

σ3 mαµ
bk f
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  .=

σ ε( ) σy σm 1 mkaε–( )exp–[ ] 1/2,+=
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b

2
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the right-hand side of condition (1) increases, whereas
its left-hand side remains unchanged; therefore, as σy
increases, condition (1) is satisfied at lower strains.

3. EFFECT OF DISLOCATION SPLITTING

As is seen from Eqs. (6), the uniform strain depends
not only on the yield strength σy  but also on the dislo-
cation annihilation coefficient ka. In the case of σy ! σ3,
it follows from Eq. (6a) that the uniform strain is only
determined by the annihilation coefficient:

 (7)

It follows from Eq. (7) that, as ka increases, the strain εu

decreases and, at ka  0 (i.e., in the absence of
dynamic recovery), tends to the limiting value (unity),
according to the law of strain hardening σ ~ ε (4) with-
out dislocation annihilation.

According to [14], the annihilation coefficient for
screw dislocations is

 (8)

where ωs is the fraction of screw sections in growing
dislocation loops, p is the number of operating slip sys-
tems, and τa is the friction stress that determines the
critical distance of spontaneous annihilation of unlike
screw dislocations. In the case of fcc metals and alloys,
we have τa = τIII + τf, where τIII(T, γD) is the stress cor-
responding to the onset of the third stage in the stress–
strain curves of these materials, which depends on the

εu
2

mka

--------- 1
1
2
---mka+ 

  .ln=
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5/2

2π2
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  ,=
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Fig. 1. Stress–strain curves calculated using Eq. (4) at mka =
10 and various values of the yield strength σy/σ3:(1) 0, (2)
1, (3) 2, (4) 3, (5) 4, and (6) 5.
P

temperature T and the stacking-fault energy γD [15],
and τf(T, c) is the friction stress due to the interaction of
dislocations with impurity atoms in a solid solution
with concentration c. By substituting τIII and τf into Eq.
(8), we obtain the dependence of the annihilation coef-
ficient on the temperature, strain rate , dislocation
splitting, and impurity concentration c:

 (9)

Here, according to [15],

 (10)

where τIII(0) is the stress τIII at T = 0, k is the Boltzmann
constant, and  is a preexponential factor.

In Fig. 2, experimental points show the dependence
of the uniform tensile strain εu  on the stacking-fault
energy for alloys Cu–Zn (cZn = 0.03–0.25), Cu–Al
(cAl = 0.01–0.14), and Ni–Al (cAl = 0.02–0.08) at three
temperatures [6]; this energy varied from 3 to 180 mJ m−2

in these alloys [6, 16]. The experimental points below
γD/µb = 4 × 10–3 belong to the Cu–Zn and Cu–Al alloys,
and those above this value belong to the Ni–Al alloys.
As can be seen, an increase in γD is accompanied by a
decrease in the uniform strain. This result is consistent
with Eqs. (7)–(10). Indeed, as follows from Eqs. (9) and
(10), a decrease in the dislocation splitting causes an
increase in the dislocation annihilation coefficient,
which in turn decreases the strain εu  [according to
Eq. (7)].

γ̇

ka T γD c, ,( )
ωs

5/2

2π2
pα

---------------- µ
τ III T γD,( ) τ f T c,( )+
-------------------------------------------------- 

  .=

τ III τ III 0( ) 1 180
γD

µb
------+ 

  kT

0.35µb
3
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γ̇0

γ̇
----- 

 ln– ,exp=

γ̇0

1.00

0.75

0.50

0 2.5 5.0 7.5 10.0
(γD/µb) × 103

εu

3

2
1

0.25

Fig. 2. Dependence of the uniform strain εu  on the stacking-
fault energy γD in Cu–Zn, Cu–Al, and Ni–Al alloys at
(1) 77, (2) 150, and (3) 293 K [6]. Theoretical curves are
calculated using Eqs. (7)–(10).
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The straight lines in Fig. 2 are plotted using
Eqs. (7)–(10) with τf = 0, ωs = 0.5, α = 0.5, p = 12,
ln( ) = 35, m = 3, and the Ni parameters τIII(0)/µ =
10–3 [15] and µb3 = 10 eV. As is seen, the calculated
curves are in satisfactory agreement with the experi-
mental data for the Ni–Al alloys at all temperatures and
stacking-fault-energies. In the case of the Cu–Zn and
Cu–Al alloys at temperatures below 293 K, there is a
strong deviation from the calculated curves. Alloying in
these alloys results not only in a decrease in energy γD

but also in an increase in the yield strength (σy ~ τf ~ c1/2

[17]); therefore, the deviation from theory can be
caused by an additional decrease in the annihilation
coefficient due to dislocation hindering by impurity
atoms [see Eqs. (7), (9)]. The friction stress τf increases
strongly at temperatures below 293 K [17]. This cir-
cumstance can explain the fact that the deviation from
theory occurs specifically at these temperatures (Fig. 2,
curves 1, 2).

4. EFFECT OF ALLOYING

In the case where alloying does not affect the dislo-
cation splitting, solid-solution hardening leads to a
decrease in the uniform strain. This behavior is ana-
lyzed below using Al–Mg commercial alloys with a
magnesium concentration of 2–6% (AMg2–AMg6
alloys [1, 2]). Figures 3–5 show the results of process-
ing the experimental data obtained in [1, 2] for these
alloys in order to find the dependences of their ultimate
tensile strengths and uniform strains on the yield
strength at various temperatures.

γ̇/γ̇0

400

300

200

0 100 200
σy, MPa

3

2

1

100 4

500
σu, MPa

Fig. 3. Dependence of the ultimate tensile strength σu on the
yield strength σy  in Al–Mg alloys at (1) 77, (2) 195–373,
(3) 473, and (4) 573 K [1, 2].
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As is seen from Fig. 3, the dependences of σu on the
yield strength σy  at various temperatures in these alloys
can be fitted by the straight lines

 (11)

where A ≈ 1.25 and σ0(T) is the ultimate strength at σy =
0 (i.e., the ultimate strength of pure aluminum). The
left-hand extreme points in Fig. 2 show an ultimate
strength of 99.995% Al (our data). We substitute ka

from Eq. (9) into Eq. (6b) by making allowance for the
second relation in Eqs. (5) and for the fact that σy = mτy

σu σ0 T( ) Aσy,+=
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Fig. 4. Temperature dependence of the ultimate strengths of
aluminum–magnesium alloys [1, 2] reduced to the same
concentration of Mg atoms: (1) AMg2, (2) AMg3,
(3) AMg5, and (4) AMg6.
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Fig. 5. Dependence of the uniform strain εu  on yield
strength σy  in AMg2–AMg6 alloys at (1) 77 and (2) 293 K
[1, 2]. Theoretical curves are calculated using Eq. (13).
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(where τy ≈ 3.5τf [17]) and obtain the theoretical depen-
dence of the ultimate strength on the yield strength:

 (12a)

where

 (12b)

This dependence has the form of empirical relation (11).
When the parameter mka varies from 6 to 30 [10], the
expression outside the square brackets in Eq. (12a) var-
ies over narrow limits (from 0.75 to 1); therefore, as a
first approximation, it can be considered a constant. In
this case, for the coefficient A and the stress σ0(T) in
Eq. (11), we have the relations A = 1 + B/3.5 and
σ0(T) = BσIII(T). According to Eq. (12b), at ωs = 0.5,
α = 0.5, p = 5, and bkf = 10–2, we have B = 1.4; there-
fore, A = 1.4, which is close to the experimental value
of this coefficient, 1.25.

It should be noted that the experimental points in
Fig. 3 are concentrated near straight line 2 over a rather
wide temperature range (200–400 K). As is shown by
the data processed for the AMg2–AMg6 alloys (Fig. 4),
the temperature dependences of the ultimate strength in
this temperature range exhibit an athermal plateau. To
the left of this plateau, the temperature dependence of
σu is controlled by thermally activated dislocation
motion through a system of fixed point obstacles—Mg
atoms in a solid solution with an effective mean dis-
tance between solute atoms lMg ~ c–1/2. This circum-
stance explains the fact that the experimental points for
the Al–Mg alloys with different magnesium concentra-
tions fall on one curve in the σuc–1/2–T coordinates. In
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Fig. 6. Dependence of the uniform strain on the grain size
in austenitic steel at 293 K [4]. The theoretical curve is cal-
culated using Eq. (16).
P

the range of the plateau, dynamic strain aging (the
Portevin–Le Chatelier effect) takes place in the alumi-
num–magnesium alloys, which indicates a high mobil-
ity of magnesium atoms in the aluminum matrix in this
temperature range. This high mobility is stimulated by
deformation-induced nonequilibrium vacancies [18].
Above 400 K (which is 0.43Tm, where Tm is the melting
temperature), the concentration of equilibrium thermal
vacancies becomes sufficient for magnesium atoms to
exert progressively weaker resistance to dislocation
motion in the Al–Mg solid solution due to their high
diffusion mobility. As a result, the flow stress decreases
strongly with increasing temperature. In this case, Eq.
(12a) still holds true, as seen from Fig. 3 (curves 3, 4).

Figure 5 shows the dependence of the uniform strain
on the yield strength in the alloys at 77 and 293 K.
These curves are calculated from Eq. (6a) with σ3 given
by Eq. (4) and ka given by Eq. (9) with allowance made
for Eq. (10), the notation in Eq. (12b), and the corre-
sponding numerical parameters. As a result, for εu  we
have

 (13)

As is seen from Fig. 5, the uniform necking strain
increases with decreasing temperature and decreases
with increasing yield strength. The decrease in this
strain is not as strong and unambiguous as in the case
shown in Fig. 1, since magnesium atoms in the solid
solution hinder dislocation annihilation.

5. EFFECT OF GRAIN REFINEMENT

The authors of [4] found that, during tension of
polycrystalline specimens with a grain size of less than
10 µm, the uniform strain decreases with decreasing
grain size. Figure 6 shows the corresponding data for
austenitic Fe–30% Ni–0.045% C steel having an fcc
lattice [4]. For fine-grained specimens, the flow stress is
seen to be described well by a quadratic rather than a
linear [given by Eq. (2)] law of stress addition:

 (14)

where σy = Kyd–1/2 (according to the Hall–Petch rela-
tion), d is the grain size, and Ky is the Hall–Petch con-
stant. Using criterion (1) and hardening law (14), the
uniform strain can be expressed as

(15)
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By substituting σy = Kyd–1/2 into this expression, we
find the dependence of the uniform strain on the grain
size:

 (16)

where

 

In Fig. 6, the theoretical curve demonstrates the depen-
dence of εu  on d calculated from Eq. (16) at ka = 4 and
d3 = 0.056 µm. This value of the parameter d3 corre-
sponds to reasonable values of the relevant parameters,
namely, Ky = 0.3 m1/2 MPa, α = 0.5, µ = 83 GPa, bkf =
10–2, and m = 3.

Thus, the stress–strain curves obtained using physi-
cal microscopic equations that describe the evolution of
the dislocation density during deformation allow one to
quantitatively analyze the effect of various structural
factors on the relation between the strength and ductil-
ity of a material.
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Abstract—Transmission and scanning electron microscopy, x-ray phase analysis, x-ray photoelectron spec-
troscopy, and atomic-force microscopy were used to study the structure and surface topography of Ti–B–N, Ti–
Cr–B–(N), and Cr–B–(N) thin films. Physical, mechanical, and tribological characteristics of coatings were
comparatively analyzed, including determination of the hardness, elastic modulus, elastic recovery, critical
load, friction coefficient, and wear rate. It was shown that Ti–B–N and Ti–Cr–B–N coatings are superior to con-
ventional TiN- and Ti–C–N-based coatings in terms of their physicomechanical and tribological properties. Ti–
B–N and Ti–Cr–B–N coatings deposited under optimum conditions were characterized, accordingly, by a hard-
ness of 31–34 and 40–47 GPa, an average elastic modulus of 378 and 506 GPa, a friction coefficient of 0.49–
0.60 and 0.45–0.52, a dry-wear rate of (3.4–4.6) × 10–7 and (6.0–6.8) × 10–7 mm3 N–1 m–1, and a largest critical
load of 50 and 22 N. Features in the determination of the physicomechanical properties of films during nanoin-
dentation and their wear properties are discussed. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Nanostructured coatings based on the Ti–B–N sys-
tem attract considerable interest due to their high hard-
ness [1–3]; thermal stability [4–6]; oxidation resistance
at high temperatures [7]; wear [8–11], corrosion [12],
and impact [13] resistance; and high resistivity [14]. It
is known that chromium has a positive effect on the oxi-
dation resistance of titanium carbides, borides, and
nitrides [15] and improves their wear resistance, espe-
cially at elevated temperatures [16]. Chromium boride
coatings, in comparison with other borides of transition
metals, are characterized by a good resistance to high-
temperature oxidation and, hence, are promising heat-
resistive materials [17].

In this paper, we report on a comprehensive study of
the structural, physical, mechanical, and tribological
properties of coatings in Ti–B–N, Ti–Cr–B–(N), and
Cr–B–(N) systems. Coatings were deposited by mag-
netron sputtering of targets of TiB2 + 2TiN, TiB +
Ti9Cr4B + Cr2Ti, and CrB2 composition in an argon or
argon–nitrogen atmosphere. The targets were prepared
using self-propagating high-temperature synthesis
(SHS). SHS compaction was carried out using exother-
mic mixtures of titanium (brand name, PTS), chro-
mium (PKh-1S), boron nitride (99.0% pure, SVS-M),
1063-7834/05/4702- $26.000252
and amorphous brown boron powders. The influence of
the technological parameters of SHS compaction on the
composition, structure, and properties of functionally
gradient targets based on TiB2 and TiN was studied in
detail in [18]. The target porosity did not exceed 5%.

The diameter of planar targets was 125 mm, and the
substrate–target distance was 100 mm. Sputtering was
carried out at a pressure of 0.2 Pa in a vacuum chamber.
Single-crystal silicon (100) wafers, 65Kh13 stainless
chromium steel, and TT8K6 hard alloy were used as sub-
strates. The substrate surface was prepared by mechani-
cal polishing (stainless steel, hard alloy) and ultrasonic
cleaning in ethanol. Hard-alloy substrates were addition-
ally cleaned by Ar+ ions using a slit ion source (ion
energy, 1.5–2.0 keV; current density on the substrate, 2–
10 mA/cm2). Deposition of Ti–B–N and Ti–Cr–B–(N)
films onto hard alloy was preceded by the deposition of
thin Ti and TiN underlayers. For the first 1–2 min of dep-
osition, a high negative bias Ubias = –500 V was applied
to substrates. The coating deposition time was 15 to
90 min for various substrates. The bias applied to sub-
strates during deposition was –400 to 0 V, and the sub-
strate temperature was maintained constant in the range
100–400°C.
 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Dark-field images of the structure and corresponding electron-diffraction patterns of (a, b) Cr–B and (c, d) Cr–B–N coatings
measured at bias voltages Ubias equal to (a, c) 0 and (b, d) 250 V.
Foils for transmission electron microscopy (TEM)
were prepared using one-side electrolytic polishing fol-
lowed by finishing using an ionic gun. The coating
structure was studied using a JEM-200CX transmission
electron microscope at an accelerating voltage of
200 kV. The size distribution of crystallites was deter-
mined from dark-field images of the structure using the
VideoTest-4.Struktura software. X-ray phase analysis
(XPA) was carried out using a Geigerflex diffractome-
ter with monochromatized CoKα radiation. X-ray pho-
toelectron spectra were measured using a Perkin-Elmer
PHI 5500 ESCA spectrometer. High-resolution spectra
were measured before and after ion etching. The energy
scale was calibrated using the nitrogen binding energy
in titanium nitride. The film surface topography was
determined using a Seiko SPI3800N atomic-force
microscope. The hardness, elastic modulus, and elastic
recovery were determined with a Nano Hardness Tester
(CSM Instruments, Switzerland) using the Oliver and
Pharr method [19, 20] and a Berkovich indenter. The
friction coefficient and wear rate of coatings was mea-
sured with a ball-on-disk tribometer (CSM Instruments,
Switzerland) at loads of 2 and 5 N and a linear velocity
PHYSICS OF THE SOLID STATE      Vol. 47      No. 2      200
of 10 cm/s. As a counterpart material, a WC-6 wt % Co
ball 3 mm in diameter was used. The critical load at
which coatings are destroyed and flake off when
scratched by a diamond pyramid was determined using
a scratch tester (CSM Instruments, Switzerland). The
critical load Lc was determined using two methods:
visually, i.e., by observing cracks and cleavages in coat-
ings using an optical microscope with a magnification
of ×200, and by observing a change in the acoustic
emission current.

The deposition parameters, i.e., the substrate tem-
perature T, bias voltage Ubias, and partial nitrogen con-
tent [N2/(N2 + Ar)] in the gas mixture, are listed in the
table.

2. CrB2 COATINGS

Magnetron sputtering of a CrB2 target in an Ar
atmosphere results in the formation of one-phase coat-
ings based on the CrB2 phase [AlB2 (C32) structure]
with a crystallite size not exceeding 50 nm (Figs. 1a,
1b). In contrast to previous results indicating selective
magnetron sputtering of a CrB2 target [17], the lattice
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Main deposition parameters and coating characteristics

Coating
no. Target Coating

composition T, °C Ubias, V
N2/(N2 
+ Ar)

Lattice 
parame-
ter, nm

Si substrate TT8K6 substrate

H, GPa E, GPa We, % H, GPa E, GPa We, %

1

TiB2
+ 2TiN

– 100 0 0 – 25 219 60 – – –

2 – 250 0 0 0.435 20 196 55 – – –

3 – 400 0 0 0.435 17 182 50 – – –

4 – 250 –125 0 0.437 15 181 48 – – –

5 TiB0.8N0.4 250 –250 0 0.434 32 260 67 34 380 60

6 – 250 –400 0 – – – – 33 378 63

7 TiBN0.6 250 –250 0.14 0.434 24 221 61 31 376 59

8

TiB
+ 
Ti9Cr4B
+ Cr2Ti

– 200 0 0 – 21 216 49 – – –

9 TiB1.3Cr0.6 200 –125 0 – 25 226 57 – – –

10 – 200 –250 0 – 20 217 53 – – –

11 – 200 0 0.14 0.430 21 214 52 – – –

12 TiBN0.6Cr0.5 200 –125 0.14 – 29 257 61 40 496 62

13 – 200 –250 0.14 0.430 34 268 63 47 517 70

14

CrB2

– 250 0 0 * 27 300 58 – – –

15 – 250 –125 0 //–// 28 310 53 – – –

16 – 250 –250 0 //–// 27 300 54 36 475 57

17 – 250 0 0.14 //–// 18 190 52 – – –

18 – 250 –125 0.14 //–// 18 190 52 – – –

19 – 250 –250 0.14 //–// 21 230 52 19 245 50

* For coatings 14–19 with an AlB2-type structure, the lattice parameters were a = 0.306 nm and c = 0.297 nm.
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Fig. 2. Dark-field images of the structure and the corresponding electron-diffraction patterns of (a, b) Ti–B–N and (c, d) Ti–Cr–B–
N coatings deposited at Ubias = –250 V in (a, c) argon and (b, d) gas mixture N2/(N2 + Ar) = 0.14.
parameters a = 0.297 and c = 0.307 nm (according to
TEM data) did not differ from the known values for the
CrB2 phase (card no. 34-269, Joint Committee on Pow-
der Diffraction Standards (JCPDS), International Cen-
tre for Diffraction Data), which indicates a composition
that is close to stoichiometric. An axial texture is
observed in coatings in which the c axis coincides with
the direction of coating growth. The crystallite size and
coating texture are independent of the bias voltage.

3. Cr–B–N COATINGS

When a CrB2 target is sputtered in a N2/(N2 + Ar) =
0.14 gas mixture, the coating phase composition does
not change significantly, at least with respect to the
crystalline component. Although the position of the
ring diffraction maxima in the electron-diffraction pat-
terns remains unchanged to within experimental error,
the lines are significantly broadened, which is mainly
caused by the decrease in the crystallite size of the CrB2
phase. When the substrate bias voltage is zero, the con-
trast scale in dark-field images is only 1–5 nm; as Ubias
becomes equal to –250 V, the contrast scale reaches 2–
PHYSICS OF THE SOLID STATE      Vol. 47      No. 2      2005
10 nm (Figs. 1c, 1d). Texture is almost completely
absent in the coating. Taking into account the published
data indicating that nitrogen is insoluble in MeB2-type
structures (Me = Ti, Mo, V, Cr) and that the lattice
parameters of the CrB2 phase are unchanged, it can be
assumed that nitrogen is mainly arranged in intergrain
amorphous interlayers in the BN form [21]. These facts
are confirmed, in particular, by a significantly lower
hardness of Cr–B–N coatings in comparison with CrB2.
We note that Cr–B–N coatings were previously grown
by magnetron sputtering of CrB2 [17] and CrB [22] tar-
gets, as well as by Cr and B evaporation using an elec-
tron gun [23]; however, the CrB2 phase was not
observed in the films synthesized.

4. Ti–B–N COATINGS

These coatings consist of nanocrystalline particles
with the fcc structure (Figs. 2a, 2b). Electron-diffrac-
tion patterns of coatings show spread ring reflections
from the fcc lattice up to the (422) line. Texture was
absent in all the Ti–B–N coating samples except in
coating 1, which contained a weak (100)-type texture.
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Figure 3a shows the size distribution of particles as a
function of working-gas composition. According to
TEM data, the average size of crystallites was 2 nm for
coating deposition in an argon medium and 3–4 nm
with a nitrogen admixture.

Characteristic x-ray spectra of Ti–B–N coatings are
shown in Fig. 4. The x-ray patterns of coatings contain
two broad peaks near the (111) and (200) reflections
from the fcc structure with a lattice parameter of
0.433 nm, which is significantly larger than 0.424 nm
for TiN (JCPDS card no. 38-1420).

Additional information on the phase composition of
coating can be obtained by analyzing the corresponding
x-ray photoelectron (XPE) spectra. Peaks in the XPE
spectra are caused by the electron–nucleus binding
energy, which carries information on the nearest neigh-
bor atomic neighborhood. The XPE spectra of the nitro-
gen 1s level (N1s) for coatings 5 and 7 have a charac-
teristic peak at 396.9 eV, which is caused by the nitro-
gen–titanium bond in TiN. There is insignificant
broadening of the spectra to higher binding energies,
which indicates a superposition of lines corresponding
to various chemical states. In coating 5, the second-
peak fraction is negligible. Fitting of the spectrum of
coating 7 showed that the position of the next peak
(398.1 eV) is caused by the boron–nitrogen bond.

The XPE spectra of the boron 1s level (B1s) of coat-
ings 5 and 7 taken after their etching are shown in
Fig. 5. Coating 5 is characterized by a single peak at
187.5 eV, which corresponds to the boron–titanium
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Fig. 3. Size distribution of crystallites as a function of (a)
nitrogen and (b) chromium content.
P

bond in titanium diboride. The B1s spectrum of coating
7 contains two characteristic peaks at 187.5 and
190.5 eV caused by the boron bond to titanium and
nitrogen. Since the TiB2 and BN phases are not detected
by x-ray and electron diffraction, it can be assumed that
boron is in the nitrogen and titanium neighborhood in
the amorphous phase of these compositions. This con-
clusion is consistent with the previous assumption that
boron in Ti–B–N films can be in a TiB2-type [24] or
BN-type [25] quasi-amorphous phase.

Summarizing the XPA, TEM, and XPE spectros-
copy data, it is worth noting the following. The struc-
ture of Ti–B–N coatings deposited in argon consists of
nanocrystalline fcc particles of TiN and an amorphous
phase with a composition close to TiB2. In coatings
grown in an argon–nitrogen mixture, the structure is
mainly a TiN-type fcc phase. The high intensity of the
B1s peak at 190.5 eV indicates a preferential boron–
nitrogen bond in the amorphous phase; the TiB2 phase
amount here is much less than that in samples deposited

30 40 50 60

TiN TiN

1

2In
te

ns
ity

, a
rb

. u
ni

ts

2θ, deg

Fig. 4. X-ray spectra of Ti–B–N coatings (1) 5 and (2) 7.
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Fig. 5. X-ray photoelectron spectra of Ti–B–N coatings
(1) 7 and (2) 5. Vertical solid and dashed lines indicate the
binding energies corresponding to the TiB2 (187.5 eV) and
BN (190.5 eV) phases.
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in argon. We note that the compositions of coatings 5
and 7 lie in the two-phase TiNx–TiB2 and three-phase
TiN–TiB2–BN regions, respectively, in the equilibrium
phase diagram, which is qualitatively consistent with
the results of the phase analysis.

5. Ti–Cr–B–(N) COATINGS

According to the XPA and TEM data, Ti–Cr–B coat-
ings deposited in an argon medium had an amorphous
structure (Fig. 2c). In the case with a nitrogen admix-
ture to the working gas, the coatings consist mainly of
the fcc phase with a lattice parameter of 0.430 nm.
When the coatings were deposited with a zero bias volt-
age, the diffraction peaks were strongly broadened. In
this case, the contrast scale in dark-field images of the
structure was almost identical to that of coatings depos-
ited in an Ar medium and was 1–2 nm (Figs. 2c, 2d).
Figure 3d shows the size distribution of particles for Ti–
Cr–B–(N) coatings. We can see that the introduction of
chromium into the Ti–B–N coating composition results
in a significant decrease in the crystallite size and a nar-
rower size distribution of particles. The reason for this
is that chromium in the coating composition prevents
grain growth and stimulates the nucleation of new crys-
tallites.

According to the XPE spectroscopy data, coating 12
consists of a TiN1 – x + CrB2 phase mixture, as indicated
by the peaks in the Ti2p, Cr2p, B1s, and N1s spectra at
454.8 (TiN), 574.3 (CrB2), 188.0 (CrB2), and 397.3 eV,
respectively. The small shift of the N1s line to higher
binding energies with respect to that in TiN (396.9–
397.2 eV) indicates that there is a nitrogen deficiency in
comparison with the stoichiometric composition.

The fcc lattice parameter in all the coatings studied
exceeds that for TiN (0.424 nm) significantly, which
can be caused by macroscopic stresses. It should be
noted that the lattice parameters are independent of bias
voltage and do not differ for coating deposition on sili-
con and stainless steel, i.e., on materials with different
thermal expansion coefficients. This fact suggests that
there is no contribution from thermal macroscopic
stresses to the total compressive stresses. The smaller
lattice parameter of Ti–Cr–B–N coatings in comparison
with that of Ti–B–N can be caused by chromium
replacing titanium in the metal sublattice.

An electron microscopy study of Ti–B–N and Ti–
Cr–B–N coatings in cross cuts showed the absence of a
columnar structure (Fig. 6a). The film surface is very
smooth; the values of the root-mean-square roughness
(measured over an area of 0.5 × 0.5 µm) of the Ti–B–N
and Ti–Cr–B–N film surface on the silicon substrate are
0.08 and 0.19 nm, respectively (Figs. 6b, 6c).
PHYSICS OF THE SOLID STATE      Vol. 47      No. 2      200
6. PHYSICAL AND MECHANICAL PROPERTIES

The hardness (H), elastic modulus (E), and elastic
recovery (We) of films were determined using a nano-
hardness tester and a Berkovich indenter at loads of
1.5–7.5 mN. The coating nanoindentation technique at
weak loads and the insignificant influence of external
factors on the measured values are described in detail,
e.g., in [26]. In this method, the initial portion of the

Fig. 6. Structure and surface topography of (a, b) Ti–Cr–B–N
and (c) Ti–B–N films.
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unloading curve is fitted by the power function Pmax =
B(h – hf)m, where Pmax is the maximum load, h is the
indenter penetration depth, hf is the indenter penetration
depth after unloading, and B and m are empirical
parameters. The slope of the initial stage of the unload-
ing curve defines the material hardness:

 

The indenter penetration depth hc at which the indent
reproduces the diamond pyramid shape is also deter-
mined from the loading–unloading curve using the for-
mula hc = hmax – , where hmax is the maximum
indenter penetration depth and ε = 0.75 for the Berkov-
ich pyramid. The values of H and E are calculated using

the formulas H = Pmax/A, Eeff = , and  =

 + , where ν is the Poisson ratio of a coat-

ing, β = 1.034 for the Berkovich pyramid, and A is the
indent projection area determined from the maximum
indenter penetration depth hmax. For the diamond
indenter, the Poisson ratio νi and the elastic modulus Ei

are 0.07 and 1141 GPa, respectively. Before measure-
ments, the device was thoroughly calibrated to deter-
mine the point of the indenter contact with the sample
surface and the correction for imperfection of the
indenter tip shape. The value of the elastic recovery of
coatings was determined using the formula

 

The values of H and E for coatings deposited on silicon
were calculated using at least five points for each load.
When determining these values for coatings on hard
alloy, the number of measurements was increased to
15–20, since the TT8K6 alloy structure is inhomoge-
neous and consists of grains of the hard carbide phase
and soft Co binder. Measurements with identical load-
ing–unloading curves that correspond to the response
of the coating/carbide system (Ti, W, Ta)C were
selected for further analysis. The measured results are
listed in the table. The highest hardnesses of Ti–B–N
coatings, equal to 33–34 GPa, agree well with previous
results [11, 27]. The Young moduli of the coatings
deposited on hard-alloy substrates were 370–380 GPa.
The literature demonstrates a wide variance in the
Young modulus of Ti–B–N films, from 325 GPa [25] to
430–480 GPa [14]. These values are smaller than those
of bulk TiN (618 GPa) and TiB2 (550–580 GPa) com-
pounds [14]. It is known that insignificant porosity of a
material can cause a significant decrease in the elastic
modulus [28]. Therefore, lower values of E can result
from a large volume fraction of defects and incoherent
interfaces in nanostructured thin films, which decrease
the density of the material.
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The values of H, E, and We for Ti–Cr–B–(N) and
Cr–B–(N) coatings deposited on silicon and TT8K6
hard-alloy substrates are listed in the table. In the
Ti−Cr–B–N system, coatings with record high hardness
(47 GPa) were grown. These coatings also showed high
elastic recovery during unloading, reaching 70%. For
Cr–B–(N) coatings on hard-alloy substrates, two
groups of values of the hardness and elastic modulus
can be distinguished depending on the deposition
medium: H = 36 GPa, E = 475 GPa (Ar) and H = 19
GPa, E = 245 GPa (Ar + 14N2). Hence, the physicome-
chanical properties of Cr–B–(N) coatings are mainly
controlled by the coating composition and, to a lesser
extent, by the bias voltage. It is worth noting that the
hardness of CrB2 films grown in this study is much
higher than that of Cr–B films (17–21 GPa) obtained
previously [17, 22].

The fact that, as a rule, the hardness and elastic mod-
ulus of coatings deposited on hard alloy exceed those of
coatings deposited on silicon under the same conditions
is also worth noting. For the elastic modulus, this dif-
ference is larger than for the hardness. This difference
seems to be caused by the fact that long-range fields of
elastic stresses induced by the indenter penetration into
the coating depth extend over not only the coating
thickness but also reach the substrate material [29].
Indeed, the elastic moduli of hard alloy and silicon
(used in this study) are 450 and 172 GPa, respectively.
The thickness of films on silicon and hard alloy did not
exceed 0.7–0.8 and 1.5–2.0 nm, respectively, and the
largest depth of indenter penetration reached 100 and
120 nm. We also note that the elastic moduli of coatings
on Si are lower than those of bulk materials by a factor
of 2–2.5. This difference can be explained by assuming
that the elastic moduli measured during nanoindenta-
tion of hard coatings on rather soft substrates are close
to the shear moduli rather than to the Young moduli [30,
31]. For example, according to [32], the Young modulus
and shear modulus are 541 and 237 GPa for TiB2 and
440 and 170 GPa for TiN, respectively.

7. TRIBOLOGICAL PROPERTIES

To carry out tribological tests, Ti–B–N, Ti–Cr–B–
(N), and Cr–B–(N) coatings were deposited on TT8K6
hard-alloy substrates with preliminary deposition of Ti
and TiN underlayers to improve adhesion. Figure 7
shows the dependence of the friction coefficient µ on
the number of test cycles. The friction coefficient of Ti–
B–N coatings deposited in an Ar medium was 0.57–0.6,
which is comparable to that of TiN (0.55) [33] but is
significantly lower than that of Ti–B–N (0.85–0.95)
[11, 13, 34]. As the boron and nitrogen contents in coat-
ings were decreased and increased, respectively, the
friction coefficient lowered to 0.49. The smaller friction
coefficient in coating 7, in comparison with coatings 5
YSICS OF THE SOLID STATE      Vol. 47      No. 2      2005
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and 6, can also be associated with the BN phase. As
shown previously, the friction coefficient of Ti–B–N
coatings depends on air humidity, decreasing from 0.9
to 0.4 as the humidity increases from 15% to 85% [35].
In this study, the friction coefficient was measured to be
0.49 at an air humidity of 57%.

The dependence of the friction coefficient on the
number of test cycles remained unchanged as chro-
mium was introduced into the film composition. The
coatings exhibited a steady, low friction coefficient of
0.45 (coating 13) and 0.52 (coating 12) throughout the
tests. The general tendency inherent in Ti–B–N and
Ti−Cr–B–N coatings is a decrease in the friction coef-
ficient observed as the nitrogen content increases in
coatings, as nitrogen is introduced into the working gas
composition, or as a negative bias voltage is applied to
the substrate.

It should be noted that the wear dynamics of Ti–B–
N and Ti–Cr–B–N coatings are different. In the former
case, uniform abrasive wear of a friction pair is
observed, which is accompanied by an intense removal
of wear debris particles from a groove (Fig. 8). Analysis
of the profile of the vertical cross section of a wear
groove shows that wear debris bulks are formed along
the groove edges, whose height approximately corre-
sponds to the wear groove depth (Fig. 8c). The sharp-
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Fig. 7. Dependence of the friction coefficient of (a) Ti–B–N
and (b) Ti–Cr–B–N coatings on the number of test cycles;
curves 1–5 correspond to coatings 5–7, 12, and 13, respec-
tively.
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ened shape of the bulk tops indicates the absence of
adhesion contact with the ball surface. The ball wear
region is a characteristic circle with traces of wear
debris at opposite edges (Fig. 8a). In the case of Ti–Cr–
B–N coatings, a transition layer is formed from wear
debris particles, which changes the ball wear dynamics.
Figures 9b and 9c show that wear debris particles
adhere densely over groove boundaries and bulks (indi-
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Fig. 8. Micrographs of the wear region of (a) a rider (WC +
6 wt % Co ball 3 mm in diameter) and (b) Ti–B–N coating
5 after 10 000 test cycles at a load of 5 N and a sliding veloc-
ity of 10 cm/s; (c) a wear groove profilogram.
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Fig. 9. The same as in Fig. 8, but for Ti–Cr–B–N coating 12.
Arrows indicate wear debris bulks.
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cated by arrows) are formed during tests. The profilo-
gram of the vertical cross section of the wear groove
clearly shows flat tops of bulks, caused by the abrasive
interaction between wear debris particles and the coun-
terpart material. As a result, the region of the most
intense ball wear shifts gradually during tests to the
edges of the path where bulks are arranged. Accord-
ingly, the regions of the most intense ball wear are
arranged symmetrically and are shaped like segments
(Fig. 9a).

The friction coefficient of Cr–B and Cr–B–N coat-
ings tested at a load of 5 N had a characteristic peak in
the initial wear stage reaching 0.7–0.8 (Fig. 10). The
counterpart material wear rate was much higher than in
the case of Ti–B–N and Ti–Cr–B–(N) coatings. This
indicates strong adhesion interaction at the contact
point of the friction pair, as well as an intense formation
of wear debris particles, which causes a change in the
friction coefficient. In approximately 200 cycles, the
friction coefficient decreased to 0.4, remaining
unchanged during the first 120 cycles (curve 1 in
Fig. 10). The subsequent increase in the friction coeffi-
cient to 0.5 is caused by total failure of the coating. The
CrB2 coating without underlayers stood 10 000 test
cycles with a load of 2 N (curve 2 in Fig. 10).

Figure 11 shows the comparative diagrams of wear
rates of Ti–B–N and Ti–Cr–B–N coatings in compari-
son with TiN, Ti–C–N, and Ti–Si–N coatings [36]
deposited by magnetron sputtering of Ti, TiC0.5, and
Ti5Si3 + Ti targets. The wear rates for Ti–B–N and Ti–
Cr–B–N coatings are (3.4–4.6) × 10–7 and (6.0–6.8) ×
10–7 mm3 N–1 m–1, respectively. As can be seen in the dia-
gram, the wear rate of Ti–B–N and Ti–Cr–B–N coat-
ings is significantly lower than that of TiN, Ti–C–N,
and Ti–Si–N. The wear resistance of Ti–B–N and Ti–
Cr–B–N coatings also exceeds that of Ti–B–N coatings
grown previously, which are characterized by a wear

20000 4000
Number of cycles

0.3

0.4

0.5

0.6

0.7

0.8
Fr

ic
tio

n 
co

ef
fi

ci
en

t

1

2

Fig. 10. Dependences of the friction coefficients of Cr–B–
N coatings (1) 19 (at 5 N) and (2) 16 (at 2 N) on the number
of test cycles.
PH
rate of 10–4–10–6 mm3 N–1 m–1 [9] and (3.0–4.5) × 10–5

mm3 N–1 m–1 [13]. According to the classical wear the-
ory, the low abrasion is generally associated with a high
hardness. Materials with high fracture toughness
should be highly resistant to plastic deformation, which
is estimated using the parameter H3/E2 [37]. Therefore,
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Fig. 11. Comparison of the wear rates of various coatings: (1)
TiN, (2) Ti–C–N, (3) Ti–Si–N [36], (4) Ti–B–N (coating 5),
(5) Ti–B–N (coating 7), and (6) Ti–Cr–B–N (coating 12).

(a) 200 µm

(b) 200 µm

(c) 200 µm

Fig. 12. Coating failure structure during scratching by a dia-
mond pyramid with an increasing load: (a) Ti–Cr–B–N (coat-
ing 12), critical load for failure Lcr = 22 N; (b) Ti–B–N (coat-
ing 5), Lcr = 30 N; and (c) Ti–B–N (coating 7), Lcr = 50 N.
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materials with high values of H3/E2 should be charac-
terized by increased crack resistance. However, in this
study, we did not detect any dependence between the
hardness, H3/E2, and the wear resistance of coatings.
Instead, other factors, such as the composition and the
properties of wear debris particles, as well as the adhe-
sion of coatings, can control the behavior of coatings
during friction and wear.

To determine the adhesion strength of coatings,
sclerometry tests were carried out. The values of the
critical load Lcr, at which cracking or flaking of coating
regions takes place, are listed in the table. Micrographs
of the region of initiation of film destruction during
scratching by a diamond pyramid with increasing load
are shown in Fig. 12. We note that coatings 5 and 7 at
similar values of H, E, and We are characterized by dif-
ferent destruction features on reaching critical loads of
30 and 50 N, respectively. A decrease in the coating–
substrate cohesion strength with an increase in the
boron content in Ti–B–N coatings was indicated previ-
ously [38]. This circumstance can be associated with
microstresses increasing due to the increased fineness
of the structure and to an increase in the volume frac-
tion of defects and incoherent interfaces.

8. CONCLUSIONS

A combination of various methods has made it pos-
sible to determine the structure and the phase composi-
tion of Ti–B–N, Ti–Cr–B–(N), and Cr–B–(N) coatings.
From the viewpoint of their mechanical and tribologi-
cal properties, TiN + TiB2, TiN + TiB2 + BN, and
TiN1 − x + CrB2 nanostructured mixtures are optimum
(one or several structural components in them can be in
an amorphous state). Coatings deposited under opti-
mum conditions were characterized by a high hardness,
wear resistance, and adhesion with the substrate, as
well as by a low friction coefficient.
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MAGNETISM
AND FERROELECTRICITY
Structure of the Inhomogeneous Magnetic State 
of an FeBO3 : Mg Easy-Plane Weak Ferromagnet
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Abstract—The magnetic linear birefringence of an FeBO3 : Mg ferromagnetic crystal is investigated as a func-
tion of the magnetic field strength, the magnetic field orientation, and the coordinates. The structure of the inho-
mogeneous magnetic phase of this weak ferromagnet is determined by analyzing the experimental results
obtained. It is shown that, in an inhomogeneous magnetic state, the ferromagnetic moment does not deviate
from the basal plane of the crystal and the angle of its deviation from the direction of the applied magnetic field
is described by a one-dimensional harmonic function of the spatial coordinate along the axis of magnetization.
© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Previous investigations [1] have demonstrated that,
upon magnetization in the basal plane, iron borate doped
with diamagnetic ions of magnesium (FeBO3 : Mg)
undergoes a phase transition from the homogeneous
magnetic state to the inhomogeneous magnetic state.
The inhomogeneous magnetic state of this weak ferro-
magnet is observed at temperatures T < 130 K under the
condition where the external magnetic field H is
aligned parallel to the hard magnetization axes of the
in-plane hexagonal crystalline anisotropy (in a direc-
tion perpendicular to any of the three C2 axes). In our
previous work [1], we performed a magneto-optical
investigation of the inhomogeneous magnetic state in
FeBO3 : Mg ferromagnetic crystals with the use of a
light-polarizing microscope and visually observed the
appearance of magnetic inhomogeneities of the crystal
in the form of a quasi-periodic system of alternating
bright and dark fringes with diffuse boundaries directed
perpendicularly to the applied magnetic field.

When interpreting the results obtained in [1], it was
assumed that, in an inhomogeneous magnetic state, the
vector of the weak ferromagnetic moment m oscillates
about the direction of the magnetic field H aligned par-
allel to the axis of magnetization but remains in the
basal plane of the crystal. However, another situation
can also occur. In observations of the crystal in polar-
ized light (in the experiment, the light waves propagate
along the normal to the basal plane), the appearance of
a system of bright and dark fringes on the image of the
crystal surface can be caused by a spatial modulation of
the azimuth of the vector m when the magnetization
vector deviates from the basal plane. This leads to a
periodic variation in the magnitude of the Faraday
effect along the direction of the magnetic field H due to
the change in the projection of the ferromagnetic
1063-7834/05/4702- $26.00 0263
moment m onto the direction of the propagation of light
waves.

In this work, the structure of the inhomogeneous
magnetic state of an FeBO3 : Mg ferromagnetic crystal
was determined by analyzing the spatial distribution of
the vector m in this crystal as a function of the applied
magnetic field.

2. EXPERIMENTAL TECHNIQUE

It is known that the magnetic linear birefringence
substantially depends on the orientation of the magne-
tization in the crystal (see, for example, [2]). Therefore,
in order to determine the structure of the inhomoge-
neous magnetic state of an FeBO3 : Mg crystal, it is
expedient to investigate the dependence of this even
magneto-optical effect on the spatial coordinates in the
basal plane of the crystal. Let us elucidate how the orien-
tation of the ferromagnetic moment in an FeBO3 : Mg
crystal affects the magnetic linear birefringence of this
crystal. A similar problem was solved earlier by
Fedorov et al. [3], who considered the structure of the
photoinduced modulated magnetic state in FeBO3 : Ni
crystals.1 

According to Fedorov et al. [3], when a light wave
propagates in iron borate along the optic axis (i.e.,
along the C3 axis of the crystal), the magnetic linear

1 Since the crystal in our experiments was always exposed to light,
we specially investigated the influence of the illumination on the
magnetic state of the crystal. However, no noticeable variation in
the domain structure, parameters, or conditions of existence of
the inhomogeneous magnetic state in the FeBO3 : Mg crystal was
revealed with a change in the intensity or in the spectral composi-
tion of the radiation from the optical sources used.
© 2005 Pleiades Publishing, Inc.
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birefringence at a point on the basal plane with the
coordinates (x, y) can be represented in the form

 

 

 (1)

 

 

Here, ϕ is the angle between the direction of projection
of the vector m onto the basal plane and the X axis of
the laboratory system of coordinates (for definiteness, it
is assumed that X ⊥  C2); θ is the azimuthal angle
between the plane of polarization of the light incident
on the crystal and the X axis; n|| and n⊥ are the refractive
indices for the light linearly polarized parallel and per-
pendicular to the direction of the two-dimensional
component of the vector m, respectively; λ is the emis-
sion wavelength; and l is the thickness of the crystal
along the Z axis (Z || C3).

It follows from relationships (1) that, in the case when
the coordinates x and y are taken to be fixed, the depen-
dence Φ(θ) can be described by a harmonic function
with an initial phase ϕ and an amplitude A that specify
the direction and magnitude of the ferromagnetic
moment at a given point on the basal plane of the crystal,
respectively. Therefore, the spatial orientation of the vec-
tor m in the crystal can be judged from the results of ana-
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Fig. 1. Field dependences of the magnetic linear birefrin-
gence of the FeBO3 : Mg ferromagnetic crystal at tempera-
ture T = 80 K for two orientations of the magnetic field:
H ⊥  C2 (solid line) and H || C2 (dashed line). Arrows indi-
cate the direction of variation in the magnetic linear bire-
fringence during magnetization reversal of the crystal. The
scanning time of the magnetic field is approximately equal
to 1 min.
P

lyzing the coordinate dependence of the magnetic linear
birefringence in terms of relationships (1).

Our experiments were performed with the same fer-
romagnetic crystal of magnesium-doped iron borate
FeBO3 : Mg (~0.1 wt % Mg) that was studied earlier in
[1]. The sample had the form of a plane-parallel plate
~3-mm wide and ≈60 µm thick. The developed surface
of the plate coincided with the basal plane. The mag-
netic linear birefringence was measured using emission
from a He–Ne laser at a wavelength λ = 0.63 µm in a
constant magnetic field H ≤ 30 Oe at temperature T =
80 K. The vector H was oriented in the plane of the
sample, whereas the direction of light propagation was
perpendicular to the plane of the sample. The magnetic
linear birefringence was measured with the use of a
phase compensator (plates λ/4) according to the tradi-
tional technique with modulation of the azimuth of the
plane of light polarization [4]. The instrument sensitiv-
ity to variations in the angle Φ was ~0.001°, and the rel-
ative measurement error was ~5%.

In order to investigate the coordinate dependence of
the magnetic linear birefringence, laser radiation was
focused onto a spot ~15 µm in diameter on the surface
of the sample with the use of a microscope. Taking into
account that the spatial period of the magnetic inhomo-
geneity in the FeBO3 : Mg ferromagnetic crystal is
approximately equal to 100 µm [1] and assuming that,
within the light spot, ϕ(x, y) ≈ const, the surface under
examination can be considered a point. In our experi-
ments, the cryostat with a sample could be displaced
along two coordinates in the focal plane of the micro-
scope. This made it possible to measure the magnetic
linear birefringence at a specified point on the basal
plane of the crystal and to visually observe the mag-
netic state of the crystal under the microscope (with an
additional source of white light).

3. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 1 shows the integral field dependences (i.e.,
the dependences measured under illumination of the
whole surface of the sample) of the magnetic linear
birefringence observed under conditions where the vec-
tor H in the basal plane of the FeBO3 : Mg ferromag-
netic crystal was oriented parallel and perpendicular to
one of the C2 axes and the azimuthal angle of the polar-
izer was θ = 45°. (Since the effect has different signs for
these two directions of the magnetization, Fig. 1 pre-
sents the field dependences of the magnetic linear bire-
fringence in the form of |Φ|(H) for convenience of com-
parison.) It can be seen from Fig. 1 that, under condi-
tions of technical saturation of the magnetization, the
values of |Φ| along the above two directions coincide in
accordance with relationships (1) but the curves |Φ|(H)
differ significantly in the range of magnetic fields (3 ≤
H ≤ 17 Oe for H ⊥  C2 [1]) corresponding to the inho-
mogeneous magnetic state of the crystal. In particular,
the quantity |Φ| for the orientation H || C2 reaches its
maximum in a magnetic field H ≈ 3 Oe, whereas the
HYSICS OF THE SOLID STATE      Vol. 47      No. 2      2005
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dependence |Φ|(H) obtained for the orientation H ⊥  C2
attains saturation considerably slower. It seems likely
that this behavior is associated with the influence of
magnetic inhomogeneities arising in the FeBO3 : Mg
crystal on the process of magnetization along the hard
magnetic axis. It should be noted that, within the limits
of experimental error, the curve |Φ|(H) measured at
room temperature does not depend on the orientation of
the vector H in the basal plane of the crystal over the
entire range of magnetic fields studied.

Figure 2 presents the local orientation dependences
(the light is focused at different points on the crystal
surface) of the magnetic linear birefringence of the
FeBO3 : Mg ferromagnetic crystal for two values of the
magnetic field (H ⊥  C2): (i) in a magnetic field H1 = 6 Oe,
in which the inhomogeneous magnetic state is observed
in the crystal, and (ii) in a magnetic field H2 = 30 Oe, in
which the ferromagnetic moment is known to be homo-
geneous and lies in the basal plane aligned parallel to

Φ, deg

1

0

–1

60 120

1
2
3

θ, deg

1, 2 3

H

Fig. 2. Dependence of the magnetic linear birefringence of
the FeBO3 : Mg ferromagnetic crystal on the azimuthal
angle between the plane of light polarization and the direc-
tion of the applied magnetic field (H ⊥  C2). Magnetic field
H: (1) 30 and (2, 3) 6 Oe. The dashed line represents the
dependence Φ ∝  sin2θ, and the points are the experimental
data. The inset schematically shows the magnetic inhomo-
geneity of the FeBO3 : Mg crystal: the dashed lines repre-
sent the boundaries of the light and dark fringes, which are
visually observed on the image of the crystal in polarized
light; the arrows inside the circle indicate the orientation of
the local ferromagnetic moment at the center of the neigh-
boring fringes; the points denoted by numerals are the posi-
tions of the light spots on the surface of the crystal at which
the experimental dependences Φ(θ) designated by the cor-
responding numerals were measured; and the arrow outside
the circle indicates the direction of magnetization.
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the axis of magnetization (perpendicular to the C2 axis).
It can be seen from this figure that the experimental
dependences Φ(θ) are adequately described by har-
monic functions of the angle 2θ with an amplitude that
is virtually independent of the magnetic field strength.
This suggests that, in the inhomogeneous magnetic
state, the magnetization of the crystal is homogeneous
throughout the crystal thickness and the vector m does
not deviate from the basal plane. It follows from rela-
tionships (1) that, in this case [at ϕ(z) = const], the
dependences Φ(θ) are characterized by the extreme val-
ues Φ = ±A0 at the point (x, y) for θ = ϕ ± 45°. This con-
dition allows one to determine the angle ϕ directly from
the dependences Φ(θ) shown in Fig. 2, i.e., to deter-
mine the azimuth of the vector m at specified points of
the crystal surface. Recall that the points on the surface
of the crystal in the measurements of the magnetic lin-
ear birefringence were chosen at the center of neighbor-
ing fringes of different magneto-optical contrasts that
were observed visually with a microscope. Therefore, it
can be concluded that, in the inhomogeneous magnetic
state of the FeBO3 : Mg crystal, the angle of deviation of
the vector m from the direction of magnetization in the
magnetic field H = 6 Oe is approximately equal to 10°.

In order to reconstruct the spatial distribution of the
vector m in the inhomogeneous magnetic state of the
crystal, we analyze the coordinate dependence of the
magnetic linear birefringence (Fig. 3) obtained by scan-
ning the crystal surface with a focused laser beam along
the direction of the applied magnetic field H (H = 6 Oe,
H ⊥  C2, θ = 45°).2 It can be seen that the dependence
Φ(x) exhibits an oscillatory behavior. The mean period
of modulation of the magnetic linear birefringence is
two times less than the spatial period of the system of
light and dark fringes visually observed on the image of
the sample in polarized light (see [1]). Hence, it follows
from relationships (1) that the azimuth of the local fer-

2 The scanning of the crystal surface in the direction perpendicular
to the magnetic field H demonstrated that Φ(y) ≈ const.

1.0

0 0.5

Φ, deg

x, mm
1.0

0.9
~~

Fig. 3. Coordinate dependence of the magnetic linear bire-
fringence of the FeBO3 : Mg ferromagnetic crystal upon
scanning of the crystal surface by a focused laser beam
along the direction of the applied magnetic field (H = 6 Oe,
H ⊥  C2). The scanning velocity is approximately equal to
2 mm/min.
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romagnetic vector in the inhomogeneous magnetic
state of the FeBO3 : Mg crystal can be approximately
described by the relationship

 

where ϕ0 is the amplitude of the deviation of the vector
m from the axis of magnetization and D is the period of
the magnetic inhomogeneity.

4. CONCLUSIONS

Thus, the above investigation has confirmed the
assumption made in [1] that, in the inhomogeneous
magnetic state of the FeBO3 : Mg crystal, the local vec-
tor m does not deviate (as in the homogeneous mag-
netic phase) from the basal plane and the azimuth of
this vector is described by a periodic function of the

ϕ ϕ 0 2πx/D( ),cos=
P

spatial coordinate along the direction perpendicular to
one of the C2 axes.
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Abstract—Charge ordering in a layered manganite La1.2Sr1.8Mn2O7 crystal with structural domains was stud-
ied using neutron diffraction in the temperature range 175–700 K. The wave vector of the charge ordering in
the crystal is found to be q ≅  {0.2, 0, 0}2π/a. It is argued that the actual domain structure of the anisotropic
crystal affects its charge-ordering state. © 2005 Pleiades Publishing, Inc.
A significant part of the interest in studying manga-
nites of the type

 (1)

stems from the wide variety of charge-ordering states
that occur in these compounds [1]. The charge ordering
is typical of many strongly correlated systems where
the interaction energy between electrons exceeds their
kinetic energy. In the present paper, we concentrate on
the influence of the actual macroscopic structure
(domain structure) of compounds (1) on their charge-
ordering state.

Let us start from what we consider a very typical
example. Charge ordering in manganite crystals
La1 − xSrxMnO3 (corresponding to n  ∞ in (1); x =
0.1, 0.15) was studied in [2] by means of neutron dif-
fraction. The most remarkable observation in [2] was
that the charge ordering in the crystals under study
manifested itself in the diffraction patterns as a well-
developed superstructure. The superstructure was spec-
ified by the set of wave vectors

q1 = (0, 0, 1/2)       in the a*c* plane of the 
                              orthorhombic reciprocal lattice;

q2 = (1/4, 1/4, 0)    in the a*b* plane of the 
                               orthorhombic reciprocal lattice. (2)

The magnetic and atomic structure of a
La0.85Sr0.15MnO3 crystal were also studied in detail in
[3, 4], but no superstructure peaks of type (2) were
observed in those studies. Wide and weak maxima of
type (2) were found in [3] only in experiments with a
powerful x-ray synchrotron source. In [4], it was argued
that the charge ordering in La0.85Sr0.15MnO3 manganite
was specified by the wave vectors

q1 = (0, 0, 1)          in the a*c* plane;

q2 = (1/2, 1/2, 0)    in the a*b* plane. (3)

La Sr,( )n 1+ MnnO3n 1+
1063-7834/05/4702- $26.00 ©0267
In our opinion, the drastic difference in the results of
the experiments reported in [2] and [3, 4] is due to the
different domain structures of the crystals studied in
those papers.

For example, the diffraction measurements in [4]
were performed using a relatively perfect
La0.85Sr0.15MnO3 crystal, whereas the experiments in
[2] involved La–Sr crystals with a highly developed
domain structure. In other words, a chaotic mosaic of
structural twin domains randomly oriented with respect
to the cubic perovskite lattice axes was produced during
the growth of these crystals. Macroscopically, a domain
crystal can be considered to be pseudocubic. In such a
crystal, elastic strains must arise in the vicinity of
domain walls due to the mismatch between the lattice
parameters of neighboring regions, and it is these
strains that determine the metastable crystal structure
of an individual domain. It is natural to assume that the
increase in the elastic energy of a manganite crystal
caused by the domain structure can be partially com-
pensated for (due to the strong electron–lattice interac-
tion) by a suitable change in the charge ordering. We
suggest that this was the case in [2].

In the present work, we concentrate on the possible
relation between the domain structure and charge
(polaron) state of strongly anisotropic (layered) manga-
nite La1.2Sr1.8Mn2O7 [corresponding to n = 2 in (1)].
The atomic and magnetic structure of this manganite
has been studied reasonably well (see, e.g., [5, 6]). It
will be recalled that the crystal lattice of
La1.2Sr1.8Mn2O7 has a body-centered tetragonal unit
cell (space group I4/mmm) with lattice parameters a ≅
3.87 Å and c ≅  20.14 Å. The unit cell can be considered
to consist of several parallel layers: on the top and at the
bottom, the cell has MnO2 layers, and in the central part
there are two LaMnO3 layers separated by (La, Sr)2O2
layers from the layers of MnO2.
 2005 Pleiades Publishing, Inc.
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For our experiment, we chose an La1.2Sr1.8Mn2O7

crystal grown by zone smelting. Thermal-neutron dif-
fraction measurements were performed using a multi-
channel diffractometer specifically designed for study-
ing single crystals. The wavelength of the incident neu-
tron beam λ was 1.567 Å and was defined by a double-
crystal monochromator made of pyrolytic graphite and
strained germanium. The effective monochromatiza-
tion of the primary beam and a well-advised choice of
the wavelength of monochromatic neutrons enabled us
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Fig. 1. Temperature dependences of the resistivity of the
La1.2Sr1.8Mn2O7  crystal (a) along the c direction and (b) in
the ab plane.
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Fig. 2. Neutron diffraction pattern of the manganite
La1.2Sr1.8Mn2O7  crystal taken at 300 K along the c* direc-
tion.
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to eliminate multiple harmonics in the diffraction pat-
terns of the single crystal.

The temperature dependences of electrical resistiv-
ity in the ab plane and along the c axis are very charac-
teristic physical properties of layered manganites. The
data for our crystal are presented in Fig. 1. They agree
well with analogous data from [5]. It can be seen from
Fig. 1 that the resistivity is strongly anisotropic relative
to the specific [001] direction in the manganite lattice.
It is well known that, in terms of the electronic state, the
maxima of ρc(T) and ρab(T) correspond to the metal–
insulator transition and in terms of the magnetic state,
to the ferromagnetic Curie point TC of manganite
La1.2Sr1.8Mn2O7. The value of TC of our crystal is 125 K,
which agrees well with the data from [5] but is some-
what higher than the TC value of 112 K found for the
LaSr-manganite studied in [6]. In our opinion, this
means that the layered manganites studied in those
papers have almost the same chemical composition:

La2 – 2xSr1 + 2xMn2O7 (x ≅  0.4). (4)

The value of x in Eq. (4) means that about 40% of the
Mn sites of the manganite crystal lattice are occupied
by Mn4+ ions.

Before discussing the charge-ordering state, we will
analyze the domain structure of our crystal. We
obtained structural information from neutron diffrac-
tion data. Figure 2 presents the neutron diffraction pat-
tern for the manganite crystal recorded along the c*
direction at 300 K. It can be seen that, in addition to
Bragg reflections (0, 0, 2n) (n = 1, 2, 3, …) correspond-
ing to the longer period of the layered manganite (c =
20.14 Å), the pattern shows a structural (200) peak cor-
responding to the lattice constant a = 3.87 Å. The inten-
sity of the (200) reflection reaches a maximum at a
deviation of approximately 1° from the [001] direction
on the rocking curve of the crystal. The occurrence of
the (200) reflection (seen in Fig. 2) supports the pres-
ence of structural domains in the manganite crystal.
The orientation of the structural domains relative to the
bulk crystal lattice follows unambiguously from the
diffraction pattern presented in Fig. 3. The open circles
in Fig. 3 show a neutron diffraction pattern from the
layered manganite recorded near the (200) Bragg
reflection along the a* direction at 300 K. Alongside
the main structural (200) reflection, this pattern exhibits
a weak (0, 0, 10) reflection, the intensity of which
reaches a maximum at a deviation of approximately 1°
from the symmetry direction on the rocking curve of
the crystal (as in the case shown in Fig. 2). Hence, the
orientation relations of the structural domains (d) rela-
tive to the main part (m) of the anisotropic crystal can
be written as

 (5)

It follows from Eq. (5) that the structural domains
found in crystal (4) are not twinned. The volume frac-
tion (ν) of these domains in a sample can be estimated,
for example, from the relative intensity I{(200)d}/I{(0,

100[ ] d 001[ ] m, 001[ ] d 100[ ] m.|| ||
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0, 10)m} = νF2(200)/(1 – ν)F2(0, 0, 10), where F2(200)
and F2(0, 0, 10) are the respective structure factors. In
our case, ν is about 5%.

The presence of the relatively small fraction of
structural domains in the layered crystal has virtually
no effect on ρc(T) and ρab(T) in Fig. 1 in comparison
with the resistivity data cited in [5]. We believe that
structural domains (5) should exert a significant effect
on the mechanical properties of La1.2Sr1.8Mn2O7; more
specifically, they should reduce its strength. The physi-
cal reason for this reduction in strength is the presence
of boundaries between domains and the main lattice,
which have different lattice constants and atomic pack-
ing densities. Indeed, it is well known that, due to high
local strains, atomic bonds in such regions of the crystal
structure of solids can be broken the most easily, with
the result that the continuousness of a crystal is dis-
turbed. The growth and merging of the disturbances can
lead to macroscopic cracks. The sample for our studies
was chosen on this basis.

Let us consider now the physical factors that, in our
opinion, stabilize the crystal structure of a layered crys-
tal containing structural domains (5). We are concerned
now with the data describing the charge ordering in lay-
ered manganite. According to [6], the charge (polaron)
ordering in manganites (4) exists only in the paramag-
netic phase and its influence on diffraction patterns is
the strongest just above TC and then gradually decreases
as the temperature is increased. Charge (polaron) corre-
lations have an effect on neutron diffraction patterns of
the crystal because the Mn4+ ion does not distort the
oxygen octahedron around it (this ion has no orbital
angular momentum), whereas the Jahn–Teller ion Mn3+

strongly deforms the unit cell due to the interaction of
the ionic d(z2) orbital with the lattice.

The results from [6] that are of special interest to us
are the following: the charge ordering in the layered
manganite corresponds to the wave vector

q = (0.3, 0, 1) (6)

(in units of 2π/a and 2π/c), and the correlation length
for this ordering in the [100] direction is ξ ≅  26.4 Å.

In the present work, the charge ordering is also stud-
ied in the paramagnetic phase of multidomain crystal
(4). In Fig. 3, filled circles show neutron diffraction
data taken from layered manganite near the (200)
Bragg reflection along the a* direction at 175 K. It can
be seen that there are two diffraction maxima, (1.8, 0,
0) and (2.2, 0, 0), to the left and to the right of the struc-
tural (200) reflection. These maxima decrease slowly in
intensity with increasing temperature and vanish com-
pletely at about 550 K. For comparison, the open circles
in Fig. 3 show diffraction data taken at 300 K. The posi-
tions of the maxima in the reciprocal lattice are given
with a higher precision in Fig. 4, which presents dif-
fraction data for the multidomain crystal taken at 300 K
near the (1.8, 0, 0) and (2.2, 0, 0) points of the recipro-
cal lattice along the c* direction. It can be seen that the
wave vector of the superstructural reflections has a
PHYSICS OF THE SOLID STATE      Vol. 47      No. 2      200
small (≅ 0.2π/c) incommensurate component along the
[001] direction. The wave vector (without the incom-
mensurate correction) and the correlation length of the
superstructure measured along the [100] direction in
the multidomain crystal are

 (7)

We believe that superstructure (7) can be associated
only with charge ordering in the multidomain layered
manganite, because the antiferromagnetic short-range
order, which also exists in La1.2Sr1.8Mn2O7  above TC
[5], corresponds to the wave vector (0.5, 0, 0)2π/a.
According to (7), the charge-ordering period in the
[100] direction is five times the lattice constant a; i.e.,
it is equal to 19.4 Å. Taking into account the chemical
composition of the compound (x = 0.4), we can con-
clude that two out of the five manganese ions situated
along the long period of the superstructure unit cell are
tetravalent.

Thus, the main charge-ordering parameters in the
multidomain layered manganite given by Eq. (7) differ
significantly from those in Eq. (6). The reason for this
difference could be the charge density gradients
appearing at the boundaries between the main lattice
and structural domains. In this case, the type of equilib-
rium charge ordering in a particular multidomain crys-
tal is determined by the condition that the charge den-
sity gradient be minimum. If, for example, the parame-
ters of charge correlations in a La1.2Sr1.8Mn2O7  crystal
with domains of type (5) are given by Eq. (6), then the
periods of charge correlations in the [100]m direction
near the boundaries between the main lattice and
domains would be incommensurate and equal to
a/0.3 = 3.3a = 12.8 Å and c = 20.14 Å, respectively. It
is clear that strong charge density gradients would
appear in this case.

q 0.2 0 0, ,( )2π/a;≅
ξ 100 Å along the 100[ ]  direction.∼
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Fig. 3. Neutron diffraction patterns of multidomain crystal
La1.2Sr1.8Mn2O7  taken near the (200) Bragg reflection
along the a* direction at (1) 175 and (2) 300 K.
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In contrast to the case of Eq. (6), the periods of
charge correlations along [100]m and [001]m defined by
Eq. (7) are similar (a/0.2 = 19.4 Å ≅  c = 20.14 Å), so
there should not be any strong charge density gradients
in our crystal. Therefore, this type of charge ordering in
the multidomain crystal can be a factor that stabilizes
the crystal structure.

Experimental data (Fig. 5) give evidence that sup-
ports this conclusion. Figure 5 presents profiles of the
(200) and (006) structural reflections in neutron diffrac-
tion patterns of multidomain crystal La1.2Sr1.8Mn2O7
taken at three characteristic temperatures: 175, 300, and
700 K. It can be seen that the profile of the (006) reflec-
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Fig. 4. Neutron diffraction patterns of multidomain manga-
nite crystal La1.2Sr1.8Mn2O7  taken along the n* direction at
300 K near the (a) (1.8, 0, 0) and (b) (2.2, 0, 0) points of the
reciprocal lattice.
P

tion does not change in this temperature range, whereas
the (200) reflection is significantly altered. Even at
300 K, the half-width of the latter reflection shows an
increase of 10% as compared to that at 175 K. We note
that this effect is reversible in temperature; therefore,
the strains arising in the multidomain crystal at 300 K
are elastic. At 700 K, there are no charge correlations
and the periodicity of the crystal along the [100] direc-
tion is strongly disturbed. The (200) reflection trans-
forms into a wide diffuse maximum. This effect can
only be due to anisotropic fragmentation of the crystal
in the ab plane into large blocks, each of which is dis-
oriented relative to the incident neutron beam. Read-
justment of the sample and repeated heating to 700 K
leads to further deterioration of the sample quality.

To conclude, in the present work, a new question has
been raised regarding the relation between the macro-
scopic structure and charge ordering in solid solutions
of manganites of type (1).
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Abstract—Analytical expressions for the magnetization relaxation time τ of single-domain ferromagnetic par-
ticles with cubic or uniaxial anisotropy in a static transverse magnetic field are derived. The derivation is based
on calculating the escape rate of a Brownian particle from a potential well; this technique is applicable at any
damping and is generalized to the case of magnetic relaxation of superparamagnetic particles. The validity of
the expressions obtained for τ is checked against a numerical solution of the Landau–Lifshitz–Gilbert equation
over the whole range of damping (very low, intermediate, and high damping and the crossover region between
low and intermediate damping). © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In order to achieve maximum density of magnetic
recording, the size of magnetic particles (which carry
bits of information) has to be reduced as much as pos-
sible. However, as the particle size decreases to several
nanometers, thermal fluctuations start to affect the
magnetic properties of particles [1]. It is the thermal
fluctuations that determine the magnetization relax-
ation time of a nanoparticle and, consequently, influ-
ence the information storage reliability. Thermal insta-
bility of magnetization leads to the phenomenon of
superparamagnetism [1–3], since each particle behaves
like a paramagnetic atom possessing a magnetic
moment of the order of ~104–105 Bohr magnetons. The
dynamics of magnetization M of superparamagnetic
particles is similar to Brownian rotation of a macromol-
ecule in liquid and can be described (in terms of the
Brown diffusion model [3, 4]) by the Fokker–Planck
equation for the magnetization distribution function
W(M, t):

(1)

Here, LFP is the Fokker–Planck operator; ∆ and ∇  are
the Laplacian and gradient operators, respectively, on
the surface of a unit sphere; V is the free-energy density

∂
∂t
-----W LFPW=

=  
1

2τN

--------- β α 1– u ∇ V ∇ W×( )⋅ ∇ W∇ V( )⋅+[ ] ∆ W+{ } .
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of the particle; u is a unit vector parallel to the magne-
tization vector M; β = v /kT, v  is the volume of the par-
ticle; k is the Boltzmann constant; T is the temperature;

 (2)

is the characteristic (diffusion) time; MS is the magneti-
zation of the particle; α = γηMS is the dimensionless
damping factor characterizing the intensity of thermal
fluctuations; γ is the gyromagnetic ratio; and η is the
constant of friction. The Fokker–Planck equation (1)
can be derived either from the Landau–Lifshitz equa-
tion [5] or from the analogous Gilbert equation [6] with
a fluctuating field h(t), which takes into account ther-
mal fluctuations of the magnetization of a single parti-
cle (the Langevin equation):

 (3)

where the magnetic field H = –∂V/∂M includes the
external and magnetic anisotropy fields. In order of
magnitude, the amplitude of h(t) can be estimated to be
(βMS)–1, which is ≥100 Oe at room temperature (so the
random field is comparable to the anisotropy field) [7].
In deriving Eq. (1), it was assumed that the magnetiza-
tion M is always uniform and that only its direction,
and not its magnitude, changed; Furthermore, the inter-
particle interaction and memory effects were neglected.
A detailed discussion of the range of validity of the
Fokker–Planck (1) and Gilbert (3) equations can be
found, for example, in [4, 7–9].

τN βMS 1 α 2
+( )/ 2γα( )=

Ṁ t( ) γ M t( ) H t( ) h t( ) ηṀ t( )–+[ ]×{ } ,=
© 2005 Pleiades Publishing, Inc.
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To estimate the magnetization relaxation time,
Brown [3, 4] generalized the Kramers method [10] for
calculating the escape rate Γ of a Brownian particle
from a potential well with barrier height ∆U:

 (4)

where ωa is the cyclic frequency of oscillatory motion
of the Brownian particle at the bottom of the potential
well [11, 12] and the factor A characterizes the energy
exchange between the particle and environment. The
central part of the Kramers method is the calculation of
the factor A in Eq. (4) for various dissipation condi-
tions, namely, weak, strong, or moderate dissipation.
Kramers [10] derived expressions for the escape rate of
a Brownian particle from a potential well for interme-
diate-to-high and very low damping under the assump-
tion that, in both cases, the potential-barrier height ∆U
is much greater than the thermal energy. However, he
was not able to obtain an expression that was valid over
the whole range of variation of the damping parameter.
This problem was solved later by Mel’nikov and Mesh-
kov [13, 14], who derived a universal expression for Γ.
Their approach is to transform the Fokker–Planck
equation into the integral Wiener–Hopf equation by
passing over to new variables (energy and action). The
energy distribution function is taken at a given value of
action S, which in this case is considered a free param-
eter. Then, the Wiener–Hopf equation is solved explic-
itly. The solution found allows one to calculate the
escape rate Γ over the entire range of values of the dis-
sipation parameter [13, 14].

In his first paper [3], Brown used the Kramers
approach to calculate the relaxation time τ ~ Γ–1 of the
longitudinal magnetization MZ and limited himself to
the case of an axially symmetric potential of magnetoc-
rystalline anisotropy. In this case, the longitudinal and
transverse modes of M rotation can be considered inde-
pendently. The longitudinal modes are characterized
only by the polar angle ϑ  (the azimuthal angle ϕ
describes precession of M), and the probability density
function W depends only on ϑ . This is the only case
where the Kramers theory [10] (developed for a classi-
cal Brownian particle in the strong dissipation limit)
can be used to calculate τ for all values of the damping
factor α. It should be noted, however, that the Fokker–
Planck equation for the probability density function W
of the MZ distribution becomes one-dimensional due to
the axial symmetry of the free energy V and not because
of high damping, as in the case of a Brownian particle.
If the free energy density V(ϑ , ϕ) is not axially symmet-
ric, the calculation of the reorientation rate of the super-
paramagnetic-particle magnetization M differs in sev-
eral important points from the calculation of the escape
rate of a classical Brownian particle. First, the free
energy of the magnetic particle has two degrees of free-
dom, ϑ  and ϕ, and in general these variables cannot be
separated. Second, the magnetization of the particle has

Γ A
ωa

2π
------e

∆U /kT–
,=
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no inertia, and the magnetization dynamics equation
contains a gyromagnetic term. It is the gyromagnetic
term that mixes the longitudinal and transverse modes
in the case where the symmetry of the free energy is
nonaxial. Similar to the situation with a classical
Brownian particle, three distinct ranges of α can be
considered in this case [12]:

(i) α ≥ 1, intermediate-to-high damping (IHD). In
this case, the distribution function inside the potential
well almost coincides with the equilibrium Boltzmann
distribution. There are only small deviations at the bar-
rier energy due to the particle leak over the barrier.

(ii) α ! 1, very low damping (VLD). In this case,
the Fokker–Planck equation (1) can be transformed into
new variables, namely, action (slow variable) and angle
(fast variable), and then the distribution function can be
averaged over the fast variable along the precession tra-
jectory inside the potential well.

(iii) 0.01 < α ≤ 1, crossover region. In this case, the
expressions derived for low damping and intermediate-
to-high damping are inapplicable. In particular, unlike
the low-damping case, it is impossible here to average
over the fast variable.

An analytical expression for the reorientation rate Γ
of the particle magnetization in the case of intermedi-
ate-to-high damping (α ≥ 1) has been derived by Smith
and de Rozario [15] and Brown [4]. An expression for
the case of very low damping (α ! 1) has been obtained
by Klik and Gunther [9]. (It should be noted that the
method for calculating Γ in the IHD range [4, 15] is a
special case of the Langer theory developed for calcu-
lating the temporal characteristics of the relaxation pro-
cesses in metastable states of a system with many
degrees of freedom [16]). In [12, 17], the Mel’nikov–
Meshkov method [13] was generalized for calculating
the reorientation rate Γ of the particle magnetization in
the crossover region 0.01 < α < 1. The method devel-
oped in [12, 17] allows one to calculate Γ over the
whole range of values of the damping factor α. In the
present paper, this method is applied to two particular
cases: cubic anisotropy and uniaxial anisotropy in the
presence of a transverse magnetic field [12, 17]. In
these cases, the free energy V describes equivalent
metastable states, which greatly simplifies calculations
(the case of nonequivalent states will be considered in a
future publication). The relaxation times for similar
systems in the IHD and VLD ranges were calculated,
for example, in [4, 9, 15, 18, 19]. However, according
to experimental and theoretical estimations, actual val-
ues of the damping factor α lie in the crossover region
0.01–0.1 (see, e.g., [8, 9, 20, 21]). In this region, as was
already mentioned, neither IHD nor VLD expressions
are applicable for obtaining quantitative results [22,
23]. In the present paper, we derive expressions for the
magnetization relaxation time that are valid throughout
the range of α. The accuracy of the formulas obtained
is demonstrated by comparing the results with a numer-
ical solution to the Fokker–Planck equation (1).
5
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2. BASIC RELATIONS

Let us suppose that the free energy density V(M) of
a single-domain ferromagnetic particle has minima in
the directions ni and nj, separated by a potential barrier
with a saddle point in the direction n0; the barrier is
assumed to be much higher than the thermal energy. We
introduce the directional cosines of the vector M

 

in a coordinate frame with its origin at the stationary
point k (k = 0, i, j) and with the z axis normal to the
V(M) surface. At the point nk, the function V(M) can be

expanded into a Taylor series in  and . Up to
second-order terms, the series is given [4, 24] by

 (5)

Substituting Eq. (5) into Eq. (1), we can solve the Fok-
ker–Planck equation in the vicinity of the saddle point
[4]. The solution allows us to calculate the escape rate

 from the i-th potential well in the case of interme-
diate-to-high damping [4, 12, 24]:

 (6)

where ωi = (γ/MS)  and ω0 = (γ/MS)
are the cyclic frequencies of librations of M at the bot-
tom of the well and at the saddle point, respectively, and

 

For the case of very low damping (α ! 1, or, more pre-
cisely, α < 0.001, according to the numerical calcula-
tions from [22, 23]), the escape rate from the i-th poten-

tial well  was calculated in [9] (see also review
[12]). The result is

 (7)
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where Si is the dimensionless action at the saddle point,
which is defined by

 (8)

If there is only one saddle point, the contour integral in
Eq. (8) is taken over a closed critical path ,

which passes through the saddle point and is defined by
the equation V(ϑ , ϕ) = V0. If there are several equivalent
saddle points, the critical path  connects two

adjacent saddle points. By staying in the critical path
V(ϑ , ϕ) = V0, the magnetization vector M can reach
another metastable state.

For the crossover region (0.01 < α < 1), the escape
rate Γij is given by [12 17]

 (9)

where Si is given by Eq. (8) and

 (10)

For Eq. (10), we have [13]

 (11)

Taking into consideration the limits in Eq. (11), we find
that Eq. (9) reduces to Eqs. (6) and (7) in the IHD and
VLD regions, respectively.

3. METHOD OF MATRIX 
CONTINUED FRACTIONS

Relation (9) can be used to estimate the longest

relaxation time τ ~ . In turn, τ can be used to esti-
mate the correlation time τ|| of the equilibrium correla-
tion function C(t) of the longitudinal magnetization
component, which is defined by

 (12)

where angle brackets denote the ensemble averaging.
The correlation time τ|| is given by [24]

 (13)

In other words, the correlation time is equal to the area
under the C(t) curve, which gives it another name, the
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integrated relaxation time. The time τ|| can also be
expressed in terms of the eigenvalues λk of the Fokker–
Planck operator LFP from Eq. (1), because C(t) can be
formally expressed as a series of relaxation modes,

 (14)

Combining Eqs. (13) and (14), we get

 (15)

where  = 1. According to Eq. (15), the correlation

time τ|| depends on all the eigenvalues. The lowest
eigenvalue, λ1, characterizes reorientation of the mag-
netization M over potential barriers, and the other
eigenvalues, λk (k ≠ 1), correspond to high-frequency
intrawell modes. In general, all λk and ck are required to
calculate C(t) and τ||. However, in the low-temperature
limit, we have λ1 ! λk and c1 ≈ 1 @ ck (k ≠ 1) (assuming
that the potential wells are equal or almost equal). In
this case, 1/λ1 is a good approximation to the correla-
tion time τ||.

To calculate the correlation time τ||, the method of
matrix continued fractions developed in [25–27] can
be employed. In this method, the Fokker–Planck

C t( ) cke
λkt–

.
k
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k
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ckk∑
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equation (1) [or the Gilbert equation (3)] is reduced to
an infinite set of differential recurrence equations for
the correlation functions cl, m(t) = 〈cosϑ(0)Yl, m[ϑ(t),
ϕ(t)]〉0 [24]:

 (16)

where dl ', m', l, m are matrix elements of the Fokker–
Planck operator and Yl, m(ϑ , ϕ) are spherical harmonics
[therefore, c1, 0(t)/c1, 0(0) = C(t)]. Equations (16) for the
free energy of an arbitrary form are derived in [28, 29]
(see also [24, Chapter 7]). Equations (16) can be trans-
formed into a matrix recurrence equation [24–27],

(17)

where Cn(t) [C0(t) = 0] is a vector consisting of ele-

ments cl, m(t), and , Qn, and  are matrices consist-
ing of elements dl ', m', l, m . The exact solution to Eq. (17)
for the Laplace transform of the vector C1(t) is [24]

 (18)
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Here, I is the identity matrix and the fraction bar

denotes matrix inversion. Given (s), we can find the
correlation time

 (19)

and the spectrum of the correlation function, (ω) =
(iω)/c1, 0(0). Furthermore, we can estimate the low-

est eigenvalue λ1 from the equation det(λ1I – S) = 0,
where the matrix S is defined as [23]

 (20)

In other words, λ1 is the lowest eigenvalue of the matrix
S. For the cases of cubic anisotropy and of uniaxial
anisotropy in the presence of a static magnetic field, the
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method of matrix continued fractions was developed in
[23–27]. Here, we use this method mainly to estimate
the accuracy of asymptotic expressions for the magne-
tization relaxation time.

4. UNIAXIAL PARTICLE IN A TRANSVERSE 
EXTERNAL FIELD

The free energy of a particle with uniaxial symmetry
in the presence of a static external transverse field H0 is
given by [12]

 (21)

where σ = βK is a dimensionless parameter character-
izing the barrier height, K is the anisotropy constant,
ξ = βMSH0 is a parameter characterizing the external
field, and h = ξ/2σ. For 0 < h < 1, the potential in
Eq. (21) has one saddle point at (π/2, 0) and two equiv-

βV σ u1
2

u2
2

+( ) ξu1–=

=  σ ϑsin
2

2h ϑ ϕcossin–( ),
5
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alent minima at (arcsinh, 0) and (π – arcsinh, 0). The
case of h = 0 corresponds to easy-axis anisotropy.

In order to estimate the lowest eigenvalue λ1 in the
IHD region (α ≥ 1) in the case of two or more metasta-
ble states, it is necessary to find all possible escape
routes by using the discrete-orientation model [4, 15].
Analysis shows that the average magnetization of a
crystal with uniaxial anisotropy in the presence of a
static transverse external field decays with the charac-

teristic time 1/  [12], where the escape rate 
is given by Eq. (6). Taking into account that

 

 

 

we get [12, 22]
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 (22)

The longest relaxation time τ = 1/λ1 in the case of two
equivalent potential wells i and j (with Vi = Vj, Si = Sj) is
given by [17]

 (23)

where the action Si is given by Eq. (8). To find Si, we
need to know the critical path . This path

can be found by solving the trigonometric equation

 

and, for the minimum at the point ϑ  = arcsinh, is
given by
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From Eqs. (8) and (24) we get
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With Eqs. (22), (23), and (25), we get a universal
expression for the time τ,

 (26)

where the dependence of the diffusion time τN on the
damping factor α is given by Eq. (2). For very low
damping (α < 0.001), Eq. (26) coincides with the VLD
asymptote:

 (27)
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The relaxation time τ, given by universal relation
Eq. (26), and the inverse lowest eigenvalue1/λ1, as cal-
culated using the method of matrix continued fractions,
are presented in Figs.1–4. It is seen from these figures
that Eq. (26) agrees well with the results of numerical
calculations over the whole range of α for the anisot-
ropy factor σ * 4. It should be stressed that Eq. (26) is
not applicable for calculating τ in low fields, 4σh & 1.
In this case (studied in detail in [12, 22]), the free
energy density V depends on the azimuthal angle only
weakly [i.e., potential (21) is almost axially symmetric]
and all escape paths from the potential wells are
roughly equivalent. To estimate τ for this case, we can
use the following relation obtained in [22] using pertur-
bation theory:

 (28)

where

 (29)

is the relaxation time for a uniaxial (axially symmetric)
potential [3, 4] (asymptotic expression (29) is presented

in Figs. 2, 3 for comparison) and γ(a, z) = 

is the incomplete gamma function. It can be shown [22]
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that the expression in square brackets in Eq. (28) is

about 1 for α @ 1 and about α–1  for α ! 1. The
range of validity of Eq. (28) is determined by inequali-
ties h2σ2 ! 1, α > 4h2σ3/2, and σ * 4.

5. CUBIC ANISOTROPY

The free energy of a crystal with cubic anisotropy is
given by [4, 15]

 (30)

where σ = βK/4 is a dimensionless parameter character-
izing the height of the potential barrier and K is the
anisotropy constant, which can be positive or negative.
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Fig. 1. Dependences of τ/τN on α for h = 0.1 and different
values of σ. Solid lines are exact solutions found using the
method of matrix continued fractions [26], dash lines are
plotted according to Eq. (27), dotted lines correspond to
Eq. (22), and circles correspond to universal relation (26).
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Fig. 3. Dependence of τ/τN on σ for α = 0.01 and different
values of h. Solid lines are exact solutions found using the
method of matrix continued fractions [26], symbols corre-
spond to universal relation (26), and the dash-dotted line
represents τ/τN for a uniaxial crystal, Eq. (29).
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If K > 0 (Fe-like crystals), then the free energy in
Eq. (30) has six minima (potential wells), eight max-
ima, and twelve saddle points. If K < 0 (Ni-like crys-
tals), the minima become maxima and vise versa.
According to the discrete-orientation model, the aver-
age magnetization of a crystal with cubic anisotropy

decays with characteristic times 1/  and 1/

for K > 0 and K < 0, respectively [4]. The escape rate

 is given by Eq. (6), where
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Fig. 2. Dependences of τ/τN on α for σ = 10 and different
values of h. The notation is the same as in Fig. 1. The dash-
dotted line represents τ/τN for a uniaxial crystal, Eq. (29).
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and

 

 

Thus, we get [4, 15]

(31)

and

(32)

A universal equation for τ can be written as

 (33)

To estimate Si from Eq. (8), we need to find the critical
path . For the minimum at ϑ  = 0 (K > 0) and

for the minimum at (arccos(1/ ), π/4) (K < 0), the
desired path goes through the two adjacent saddle

points (arccos(1/ ), 0) and (arccos(1/ ), π/2) and
satisfies the equation

 

The solution to this equation is

 (34)

β V0 Vi–( ) –σ/3, βc1
i( ) βc2

i( )
16 σ /3,= = =

βc1
0( )

8 σ , βc2
0( )

4 σ– for K 0.<= =

τ IHD
1

4Γ ij
IHD

--------------∼
τNπe

σ

2 2σ 9 8/α 2
+ 1+( )

----------------------------------------------------- K 0>( )=

τ IHD
1

2Γ ij
IHD

--------------∼  = 
3τNπe

σ /3–

2 2 σ 9 8/α 2
+ 1–( )

-------------------------------------------------------- K 0<( ).

τ
τ IHD

A αSi( )
-----------------.∼

ϑ ϕ( ) V V0=

3

2 2

ϑ 2ϕsin
2

sin
4

2ϑsin
2

+ 1.=

ϑ ϕ( ) V V0=
1 2ϕsin+
2 2ϕsin+
------------------------.arccos=

104

103

102

101

100

10–2 10–1 100 101 102

1
2
3

(K > 0)

1

2

3σ = 4
σ = 8
σ = 12

α

τ/
τ N

Fig. 5. Dependence of τ/τN on α for different values of σ (K >
0). Solid lines are exact solutions found using the method of
matrix continued fractions for the correlation time τ||, dashed
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Thus, from Eqs. (8) and (34), we get

 (35)

Combining Eqs. (33)–(35), we get

 (36)

and

 (37)

For α ! 1, Eqs. (36) and (37) coincide with the respec-
tive VLD asymptotic expressions

, (38)

 (39)

The correlation time τ|| (calculated using the method of
matrix continued fractions [26, 27]) and the relaxation
time τ, given by universal relations (36) and (37), are
presented in Figs. 5–8 as functions of α and σ. For com-
parison, the asymptotic expressions for the IHD and
VLD regions given by Eqs. (31), (32), (38), and (39) are
also presented in the figures. It can be seen that univer-
sal relations (36) and (37) agree well with the results of
numerical calculations over the whole range of the
parameter α, including the IHD, VLD, and crossover
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tions found using the method of matrix continued fractions
for the correlation time τ|| and symbols correspond to uni-
versal relation (36).
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regions. The agreement is satisfactory starting from
moderate values of the potential barrier (σ * 3 for K >
0 and |σ| * 10 for K < 0).

6. CONCLUSIONS

The method developed in [13] for calculating the
escape rate of a classical Brownian particle from a
potential well and generalized in [12, 17] to superpara-
magnetic particles enables one to find simple asymp-
totic expressions for the magnetization relaxation time
τ. The results of calculations with these expressions
agree well with the numerical solutions to the Landau–
Lifshitz–Gilbert equation found using the method of
matrix continued fractions over the whole range of val-
ues of the dissipation parameter (very low and interme-
diate-to-high damping and the crossover region between
low and intermediate damping). Equations (26), (36),
and (37), thus obtained for the magnetization relaxation
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time τ for the cases of cubic anisotropy and of uniaxial
anisotropy in the presence of a static transverse field,
allow one to easily estimate τ for any value of α with a
good accuracy. The accuracy is good for the following
reasons. The variation of the relaxation time τ with the
potential barrier height ∆U is well fitted for large ∆U by
the exponent τ ~ τ0eβ∆U due to the equilibrium proper-
ties of the system, namely, the Boltzmann distribution
at the bottom of the potential well. On the other hand,
the dependence of the relaxation time τ on the damping
factor α is conditioned by nonequilibrium (dynamic)
properties of the system and is contained in the preex-
ponential factor τ0, which is strongly dependent on sim-
plifications made during estimations. So, it will not suf-
fice to assume there is a Boltzmann distribution at the
bottom of the potential. It is also necessary to set the
distribution function at the saddle points of the free
energy. As noted by Kramers [10], the accuracy of the
expressions derived for the escape rate is not really
essential from the experimental viewpoint, because
experimental methods are usually aimed at measuring
the factor τ0 and do this with some degree of accuracy.
However, it is very important to find the analytical
dependence of the relaxation time on the damping fac-
tor α, because it makes it possible to judge the relax-
ation mechanisms in magnetic systems.
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Abstract—The magnetorefractive effect and optical reflectivity are studied in granular Co–Al–O, Co–Si–O,
and Co–Ti–O metal–insulator alloys exhibiting tunneling magnetoresistance for compositions close to the per-
colation threshold. The dependences of these effects on frequency, angle of incidence, and light polarization
were measured. The experimental data obtained suggest that the major MRE mechanism in these systems is
spin-dependent tunneling at optical frequencies. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The magnetorefractive effect (MRE) is a new mag-
neto-optical phenomenon consisting in a variation of
the optical properties of magnets with a large magne-
toresistance (MR) induced by their magnetization [1,
2]. It should be stressed that the MRE is a frequency
analog of the MR. Therefore, on the one hand, this
effect is even in magnetization and is not gyrotropic,
which distinguishes it from traditional magneto-optical
phenomena, while on the other hand, the correlation
with the MR (not necessarily linear) separates this
effect from other possible magnetically induced varia-
tions in the optical properties of magnetic and nonmag-
netic materials. In systems with tunneling MR, a
remarkable example of which is given by granular fer-
romagnetic-metal–insulator films with a metal content
close to the percolation threshold, the nature of the
MRE is conceivably related to spin-dependent tunnel-
ing at optical frequencies [1, 2].

The MRE in granular metal–insulator films (or
nanocomposites) was first reported in [3] and subse-
quently studied by a number of researchers [1, 2, 4–6];
the data obtained are largely consistent with the above
concept of the MRE and the relevant theory [1, 7]. The
MRE in nanocomposites exceeds the traditional mag-
neto-optical effects by about two orders of magnitude.
The room-temperature MRE in a (CoFe)–(MgF) sam-
ple with a volume concentration of the magnetic phase
of 48% can be as high as 1.5% [5]. As far as we know,
this is a record-high value. A number of issues remain,
however, either unclear or debatable. In particular, no
correlation between the field dependences of the MRE
and MR has been corroborated experimentally, the part
played by the dielectric matrix in the formation of the
effect has not been clarified (a noticeable MRE was
recently revealed at certain frequencies in the nonmag-
1063-7834/05/4702- $26.00 0281
netic crystalline dielectric Al2O3 [6]), and the depen-
dence of the MRE on the polarization and angle of inci-
dence of light have not been studied adequately.
Finally, no attempts have thus far been undertaken to
quantitatively test the theory of the MRE in nanocom-
posites. It is these issues that will be addressed in the
present communication.

2. SAMPLES, METHODS OF INVESTIGATION, 
AND DETAILS OF THE EXPERIMENT

Thin-film ferromagnetic-metal–insulator Co–Al–O,
Co–Si–O, and Co–Ti–O nanocomposites were pre-
pared by rf magnetron cosputtering in an argon atmo-
sphere (~8 mTorr) of insulator and Co metal targets
onto uncooled substrates of Corning Glass 7059. The
compositions of the samples studied, their thicknesses,
and the magnitudes of the MR and MRE in them
obtained in these studies in fields of 10 and 1.6 kOe,

Compositions of samples, their thicknesses, magnetoresis-
tance, and magnetorefractive effect

Sample
composition

Film 
thickness, 

µm

MR, %
(10 kOe)

MRE (1.6 kOe)

ξ(ν), % ν, cm–1

Co43Al22 2 8.5 0.8 1100

Co50.3Al20.4O29.3 2.62 9.2 –1.0 1200

Co51.5Al19.5O29 1.91 9.2 –0.9 1100

Co55.2Al19O25.8 2.62 4.8 –0.6 1000

Co52.3Si12.2O35.5 1.67 4.1 +0.7 1300

Co50.2Ti9.1O40.7 2.02 5.8 –0.7 1030
* at. %

O35*
© 2005 Pleiades Publishing, Inc.
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respectively, are listed in the table. A detailed descrip-
tion of the sample preparation procedure and the meth-
ods and results of measurements of their chemical com-
position and structural, electrical, and magnetic param-
eters can be found in [8, 9]. Both in the text and in the
table, the content of the components is given in units of
volume concentration.

The spectra of optical reflectivity R(ν) and of the
magnetorefractive effect in reflection, ξ(ν), were stud-
ied over a broad wavelength interval, from 2 to 20 µm
(5000–500 cm–1), with a FTIR PU9800 commercial
Fourier spectrometer having a spectral resolution Res ~
4 cm–1. The reflectivity spectra presented below are
normalized against those of a gold mirror. The MRE
was calculated as the ratio of the change in the reflected
intensity induced by sample magnetization to the
reflected intensity of the demagnetized sample:

 (1)

where R(ν, H = 0) and R(ν, H)) are the sample reflec-
tivities in the demagnetized state and in a field H,
respectively.

The magnetorefractive effect was measured on a
setup described in [1, 5], with the magneto-optical
attachment modified by replacing the aspherical mir-
rors by plane mirrors; this change made it possible to
measure the MRE not only at a close-to-normal angle
of incidence (φ ~ 8°) but also at 20° and 45°. The spe-
cific design of the electromagnet did not allow us to
increase the angle of incidence of light. The light was
polarized with a KRS-5 grid polarizer, which was intro-
duced into the incident beam (before the magnet) and
was also located in the magneto-optical module of the
setup.

ξ ν H,( ) ∆R
R
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Fig. 1. Field dependence of the magnetorefractive effect
and magnetoresistance of the Co43Al22O35 nanocomposite

for φ = 10° and ν = 1130 cm–1.
P

The resulting spectrum of the effect was obtained by
averaging over 600–1000 scans. The noise level was
1 × 10–4 in the interval 1000–3000 cm–1 and 3 × 10–4

elsewhere in the range covered.
All our measurements were performed at room tem-

perature.

3. EXPERIMENTAL RESULTS AND DISCUSSION

To determine the nature of the MRE in nanocom-
posites, it is essential to obtain experimental evidence
that the MRE in these systems originates from tunnel-
ing MR rather than being a consequence of any other
causes, for instance, of the even and odd magneto-opti-
cal Kerr effects or of the effect of a magnetic field on
the optical properties of the dielectric matrix. Direct
evidence could be furnished by checking the correla-
tion between the field dependences of the MRE and MR
measured on the same samples in a dc magnetic field
varied from 0 to 2.2 kOe [3]. Figure 1 exemplifies
experimental data on the Co43Al22O35 nanocomposite
and demonstrates good agreement between the MRE
and MR field dependences, which supports the validity
of the relations derived in [4, 10].

To make certain that the MRE is indeed not related
to odd magneto-optical effects, we determined the
MRE parameter as the arithmetic mean of a number of
measurements performed under two opposite orienta-
tions of a magnetic field. MRE measurements carried
out in polarized light with the external magnetic field H
oriented differently relative to the plane of polarization
of light, namely, H || M, E ⊥  M and H || M, E || M (M is
the magnetization vector, and E is the electric-field vec-
tor of the p-polarized light), likewise did not reveal any
differences between the MRE spectra obtained in the
equatorial and meridional geometries. This can be seen
from Fig. 2, which displays data on the magnetorefrac-
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Fig. 2. MRE dispersion in the Co50.3Al20.4O29.3 nanocom-
posite obtained for p-polarized light under equatorial
(dashed line) and meridional (solid line) sample magnetiza-
tion; φ = 45°.
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tive response of the Co50.3Al20.4O29.3 nanocomposite
obtained for an angle of incidence of light φ = 45°.

The pronounced magnetically induced variation in
the optical properties of Al2O3 observed in [6] within a
narrow wavelength interval near λ = 9 µm at an angle
of incidence of p-polarized light φ = 65° (which was
also termed the MRE) requires separate analysis. Note
that the above conditions of observation (λ = 9 µm, φ =
65°) correspond to fairly weak reflection, under which
it would possibly be more reasonable to measure the
difference ∆R than the MRE parameter. We performed
measurements of both ξ and ∆R in single-crystal Al2O3
throughout the spectral range covered in fields of up to
1.6 kOe and for angles of incidence of 8°–45° (the fre-
quency dependence of optical reflectivity R(ν) for sap-
phire is shown in Fig. 5); to within the error of measure-
ment, no differences in the spectral dependence of
reflectivity caused by sample magnetization were
found. Therefore, it can be said with confidence that,
under our conditions (φ = 45°, p and s components, H =
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Fig. 3. Dispersion of the MRE (solid line) and reflectivity R
(dashed line) for the Co51.5Al19.5O29 nanocomposite
obtained with s- and p-polarized light for H = 1600 Oe and
φ = 45°; (a) experiment, and (b) theoretical calculation.
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1.6 kOe), the Al2O3 insulating matrix does not contrib-
ute to the measured MRE signal. Furthermore, mag-
neto-optical studies of nanocomposites of cobalt
inserted into various matrices (see table) have also not
revealed any additional contributions of the dielectric
matrix to the MRE. One may conclude that the material
of the crystalline dielectric matrix (Al2O3, SiO2, TiO2)
influences the optical parameters of the nanocomposite
and the tunneling MR and indirectly changes the MRE,
an aspect which will be analyzed in detail below. One
may also expect the impurities dissolved in the matrix
or the localized states to give rise to an enhanced MR
and, hence, an enhanced MRE, although no such effects
have been revealed.

Figure 3a presents frequency spectra of the MRE
and optical reflectivity of the Co51.5Al19.5O29 nanocom-
posite obtained for s- and p-polarized light at an angle
of incidence φ = 45°. The effect is the largest near the
frequency ν ~ 1100 cm–1 and reaches ξp = 0.9% and ξs =
0.53% for the p and s polarization, respectively. Similar
results were obtained for a nanocomposite of almost the
same composition, Co50.3Al20.4O29.3, exhibiting the
same MR (cf. Fig. 4 and table). As seen from Fig. 5, the
absolute value of the MRE of this sample for the p
polarization measured at a frequency ν . 1200 cm–1

can be as high as 1%. Large values of the MRE for the
nanocomposites studied here in the p- and s-polarized
light fall in the frequency region 800–1800 cm–1, where
minima and maxima of the reflectivity R(ν) are
observed (Fig. 3a).

Our measurements of the angular dependence of the
MRE made on all the samples showed the absolute val-
ues of the effect in the p polarization to be slightly
larger than those in the s polarization. As one goes over
to large angles of incidence (up to 45° in our experi-
ments), the s-component MRE decreases, while ξp
remains almost the same. This is exemplified in Fig. 4
by the frequency spectra ξ(ν) of the Co50.3Al20.4O29.3
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Fig. 4. MRE dispersion of the Co50.3Al20.4O29.3 nanocom-
posite measured for p-polarized light at three angles of inci-
dence.
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nanocomposite obtained with p-polarized light at three
angles of incidence. Similar spectra were also obtained
for the other samples. Figure 3a also shows that, at φ =
45°, the values of ξs (for Co51.5Al19.5O29) are slightly
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Fig. 5. Dispersion of the MRE and of the reflectivity
R measured for p-polarized light for nanocompos-
ites (1) Co51.5Al19.5O29, (2) Co50.3Al20.4O29.3,
(3) Co55.2Al19O25.8, and (4) Al2O3; φ = 45°.
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Fig. 6. Dispersion of the MRE and R measured in p-polar-
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(2) Co50.2Ti9.1O40.7, and (3) Co55.2Al19O25.8; φ = 45°. The
inset shows the magnetic-field dependence of the equatorial
Kerr effect δ reduced to the maximum value of the effect δs
obtained in the field H = 2.25 kOe.
PH
smaller than those of ξp. Thus, the experimental data
obtained on the angular and polarization dependences
of the MRE are in good agreement with theoretical
analysis [7].

The frequency dependences of reflectivity and the
MRE obtained on a number of nanocomposites (Fig. 5)
exhibit oscillations. The oscillation periods are largely
the same, and no dependence of their length on the sam-
ple composition was revealed. A thinner Co51.5Al19.5O29
sample shows a longer oscillation period both in the
MRE and the reflectivity. The character of the R(ν) and
ξ(ν) spectra and the oscillation periods evaluated theo-
retically (Fig. 3b) with due account of the actual thick-
nesses and actual complex refractive indices of these
nanocomposites argue convincingly that the oscilla-
tions of R(ν) and particularly of ξ(ν) originate from
interference. This is also suggested by studies of the
spectra of samples containing ferromagnetic particles
dispersed in various dielectric matrices.

The frequency spectra of the MRE and optical
reflectivity of Co nanoclusters embedded in silicon,
titanium, and aluminum oxide matrices are displayed in
Fig. 6. The reflectivity spectra of all samples exhibit a
number of phonon modes of the dielectric matrix and
corresponding spikes in the magnetorefractive effect.
The maximum MRE values of the Co52.3Si12.2O35.5
nanocomposite obtained in the p-polarized light, which
reach as high as ξp = 0.7%, fall in the frequency range
1250–1320 cm–1, where the reflectivity is R . 0.5%.
For the s polarization, the MRE value of this nanocom-
posite measured in the same wavelength interval does
not exceed 0.3% but the reflectivity is higher, R . 3%.
Granular nanocomposites of ferromagnetic Co dis-
persed in TiO2 and Al2O3 matrices exhibit a similar
behavior of the MRE and reflectivity spectra. More pro-
nounced oscillations are seen in the magneto-optical
spectra, i.e., with a magnetic field acting upon the fer-
romagnetic nanocomposite, with the effects bearing a
distinct interference character. Note also that the MRE
effect of the Co52.3Si12.2O35.5 nanocomposite, unlike that
of the other samples, is always positive. This sample
reveals a large magnetoresistance (4.1%). However, as
follows from the data obtained for the equatorial Kerr
effect (see inset to Fig. 6) in the visible region, the mag-
netization curve of this sample suggests that the sample
has not yet reached the percolation threshold. A similar
reversal of the MRE sign in granular
(Co50Fe50)x(Al2O3)100 – x films in the prepercolation
region was reported to occur in [6].

The above results can be interpreted in terms of a
model [1, 5] that takes into account the attenuation and
interference effects in the nanocomposite and substrate
layers. When the optical parameters of the substrate
material are included, the agreement between theory
and experiment is the best.

Let us consider a four-layer system (Fig. 7) consist-
ing of a nanocomposite film (with thickness d2 and

complex refractive index η2 =  – ) deposited on an2
0

ik2
0
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substrate (with thickness d3 and refractive index η3 =
n3 – ik3); the system is in vacuum (n1, 4 = 1, k1, 4 = 0). It
is known [11] that the reflectivity r and transmission t
for s- and p-polarized waves incident on the interface
between the jth and kth media having complex refrac-
tive indices ηj and ηk, respectively, can be written as

 (2)

where

 

The reflectivity Rp(s) and transmission T p(s) of the four-
layer system can be cast using the recurrent relations

 (3)

where j, k, l, and m label the media; Fk is the phase fac-
tor of the kth layer responsible for the interference and
attenuation of light in the film and the substrate; and
ν = 1/λ is the wavenumber.

As follows from the theory of the MRE, the refrac-
tive index n2 and the extinction coefficient k2 of the
nanocomposite film in the case where the sample is
magnetized can be written as [1]

 (4)

where ∆ρ/ρ is the absolute value of the MR under a
magnetic field H. Equations (2) and (3), combined with
Eqs. (4) for the film optical parameters, fully determine
the MRE and optical reflectivity of the nanocomposite
for p- and s-polarized light.

In order to determine the optical parameters of the
Co51.5Al19.5O29 nanocomposite, we measured the trans-
mission T(ν) (φ = 0°) and reflectivity Rs(ν) (φ = 20°)
spectra for s-polarized light for a ferromagnetic sample
and a glass substrate (Fig. 8). By solving the inverse
problem, one can find the optical parameters ni and ki
of the sample and the substrate. In the range 3000–
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6000 cm–1, the substrate has a small extinction coeffi-
cient k3 ~ 10–4–10–5 for a refractive index n3 varying
from 1.5 to 1.3. At frequencies below 2000 cm–1, the
absorption of the substrate increases substantially, thus
precluding accurate determination of the optical con-
stants in this spectral region. The absorption band of the
Al2O3 matrix in the Co51.5Al19.5O29 nanocomposite is
centered at ν ~ 1025 cm–1. In pure Al2O3, this band is
shifted to lower frequencies down to 950 cm–1. Figure 9

φ0

n1 = 1, k1 = 0

n2, k2
Filmd2

d3

n4 = 1, k4 = 0

n3, k3

Corning glass

Fig. 7. Ray propagation in the air–film–substrate–air system
(schematic).
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plots the dispersion of the refractive index n2 and of the
extinction coefficient k2 of the nanocomposite under
study. The shaded region identifies the scatter of possi-
ble values of optical constants obtained in calculations
with inclusion of the errors in experimental reflectivity
and transmission data.

The experimental optical parameters and magne-
toresistance were used to calculate the MRE from
Eqs. (2)–(4). The calculated optical-reflectivity and
MRE spectra obtained at H = 1600 Oe and φ = 45° are
displayed in Fig. 3b. The calculated spectra correlate
well with the experimental data (Fig. 3a) both in their
structure and the magnitude of ξ(ν) and R(ν). Both the
R(ν) and ξ(ν) spectra exhibit oscillations due to inter-
ference with a periodicity of .700 cm–1. The sign of the
MRE undergoes a sharp reversal in the region of the
absorption band. These experimental findings find ade-
quate interpretation in the theory.

The experimental data accumulated for the field,
angular, polarization, and frequency dependences of
the MRE in granular Co–Al–O, Co–Si–O, and Co–Ti–
O metal–insulator alloys are fully consistent with
present concepts regarding the nature of MRE in sys-
tems with tunneling contacts that exhibit high-fre-
quency spin-dependent tunneling. A simple MRE
model in which the tunneling contact between grains of
a percolation cluster is described in terms of a parallel-
connected capacitance and tunneling resistance circuit
with inclusion of dispersion of the optical parameters of
the film and substrate, as well as of light interference
processes, makes it possible to interpret the experimen-
tally observed features on a quantitative level. This
agreement indicates that spin-dependent tunneling per-
sists up to optical frequencies. The magnitude of the

1000 2000 3000
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0

1
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3

4
n 2

, k
2
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Fig. 9. Dispersion of the refractive index n2 and of the
extinction coefficient k2 of a Co51.5Al19.5O29 film.
P

MRE in nanocomposites depends on many factors in a
complex manner, primarily on the MR and optical
parameters, and, therefore, varies over a fairly broad
range, from 0.1 to 1.5%. Because the potential of
increasing the magnetoresistance of nanocomposites in
weak fields has been practically exhausted, it appears
important, from the standpoint of both increasing the
magnetorefractive effect and testing the theory, to study
this effect in spin-gate tunneling contacts.
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Abstract—The structure, electrical resistivity, and magnetoresistance of (50-nm)La0.67Ca0.33MnO3 epitaxial
films grown on a [(80 nm)Ba0.25Sr0.75TiO3/La0.3Sr0.7Al0.65Ta0.35O3] substrate with a substantial positive lat-
tice misfit have been studied. The tensile biaxial strains are shown to account for the increase in the cell vol-
ume and in the relative concentration of Mn+3 ions in the manganite films as compared to those for the orig-
inal material (33%). The peak in the temperature dependence of the resistivity ρ of La0.67Ca0.33MnO3 films
was shifted by 30–35 K toward lower temperatures relative to its position in the ρ(T) graph for a manganite
film grown on (001)La0.3Sr0.7Al0.65Ta0.35O3. For T < 150 K, the temperature dependences of ρ of
La0.67Ca0.33MnO3/Ba0.25Sr0.75TiO3/La0.3Sr0.7 Al0.65Ta0.35O3 films could be well fitted by the relation ρ = ρ0 +
ρ1T 4.5, where ρ0 = 0.35 mΩ cm and the coefficient ρ1 decreases linearly with increasing magnetic field. In the
temperature interval 4.2–300 K, the magnetoresistance of manganite films was within the interval 15–95%
(µ0H = 5 T). © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Considerable interest has been expressed in
La1 − x(Ca,Sr)xMnO3 thin films in recent years due to
their potential application in hard-disk read heads [1],
magnetic memory cells [2], IR detectors [3], as coatings
capable of efficient absorption of microwaves [4], etc.

The electron transport and magnetic properties of
La1 − x(Ca,Sr)xMnO3 are governed by the degree of
charge and spin ordering in the 3d electronic shells of
the tri- and quadrivalent manganese ions. Investigation
of the mechanisms affecting the character and extent of
interrelation between the electrical and magnetic prop-
erties of perovskite-like manganites, which belong to
the group of materials with strongly correlated elec-
trons, is of considerable scientific interest.

In addition to the structure and chemical doping,
strains exert a marked influence on the parameters of
La1 − x(Ca,Sr)xMnO3 heteroepitaxial films. The differ-
ences between the lattice parameters and temperature
coefficients of linear expansion of the substrate and film
are the main reasons accounting for the generation of
biaxial strains in the latter. Until recently, the effect of
strains on electron spin ordering in manganite films had
not been studied sufficiently. This has complicated the
use of biaxial strains for optimizing the electrical and
magnetic parameters of thin manganite layers.

We report here on a study of La0.67Ca0.33MnO3
(LCMO) films grown on a La0.3Sr0.7Al0.65Ta0.35O3
(LSATO) substrate coated with a Ba0.25Sr0.75TiO3
(BSTO) buffer layer, whose lattice parameter exceeds
those of LCMO and LSATO. As shown by us earlier [5,
1063-7834/05/4701- $26.00 ©0287
6], the temperature dependences of the resistivity and
magnetoresistance of LCMO epitaxial films grown on
single-crystal substrates (LSATO, NdGaO3) with a
small lattice misfit and small difference between the
temperature coefficients of linear expansion agree well
with those for the corresponding stoichiometric bulk
samples.

2. EXPERIMENT

A thin BSTO buffer layer was employed to increase
the effective lattice misfit m between the manganite
film and the substrate [m = (aS – aL)/aS, where aS and aL
are the substrate and lattice parameters, respectively].
In the case of a BSTO film (cubic unit cell at 300 K,
a1 = 3.930 Å [7]) and an LSATO substrate (pseudocu-
bic at 300 K, a2 = 3.868 Å [7]), we have m ≈ –1.6%. The
unit cell constant of pseudocubic stoichiometric bulk
LCMO samples is 3.858 Å [8]. The LCMO, BSTO, and
LSATO have similar temperature coefficients of linear
expansion [7, 9].

The (80-nm)BSTO buffer and the (50-nm)LCMO
film were successively deposited on the (001)LSATO
surface by laser ablation (ComPex 205, KrF, λ = 248 nm,
τ = 30 ns). The substrate temperature during the BSTO
and LCMO growth was 760°C. The density of the laser
intensity on the target surface was 2 J/cm2, and the oxy-
gen pressure in the growth chamber was maintained at
a level p0 = 0.3 mbar. The effective growth rate v  of the
BSTO and LCMO films was 0.7 and 0.2 Å/pulse,
respectively. On termination of the manganite film dep-
osition, the heterostructure thus formed was cooled in
 2005 Pleiades Publishing, Inc.
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an oxygen environment (pO = 1 atm) to room tempera-
ture at a rate of 20°C/min.

The phase composition, orientation, and structure of
the grown layers were studied by x-ray diffraction
(Philips Eppert MRD, 2θ and φ scans, rocking curves).
The x-ray scans were visualized using high-precision
x-ray optics (a (220)Ge four-crystal monochromator
served to form the incident x-ray beam, and the angle
2θ was measured with a plane graphite monochroma-
tor). To determine the lattice cell parameters of the
grown layers in the substrate plane and along the nor-
mal to its surface, ω/2θ scans were performed in the
geometry where the plane confining the incident and
reflected x-ray beams was oriented orthogonal to (101)
or (001)LSATO. The thicknesses of the buffer layer and
of the manganite film in the LCMO/BSTO/LSATO het-
erostructure were derived from the Laue satellite peak
widths in the measured x-ray diffractograms.
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Fig. 1. X-ray diffractogram (Cu  radiation, ω/2θ scan)

of the (50-nm)LCMO/(80-nm)BSTO/(001)LSATO hetero-
structure obtained with the incident and reflected x-ray
beams confined in a plane perpendicular to (001)LSATO.
The asterisks identify x-ray peaks from the substrate. The
inset shows the fragment of this diffractogram that contains
(002) reflections from the manganite film, buffer layer, and
substrate. Arrows specify the Laue satellite peaks.

Kα1
P

The resistance R of LCMO films was measured in
the van der Pauw geometry in the temperature range
4.2–300 K, both with and without a magnetic field
applied (µ0H up to 5 T, with the magnetic field oriented
parallel to the substrate plane but perpendicular to the
current flow direction). Four silver contacts arranged at
the corners of a square were deposited on the LCMO
film surface. The resistivity ρ of the films was calcu-
lated from the relation ρ = πRd/ln2 [10], where d = 50
nm is the manganite layer thickness.

3. RESULTS AND DISCUSSION

We prepared and studied five
LCMO/BSTO/(001)LSATO heterostructures. The scat-
ter among the structural, electrical, and magnetic
parameters of the LCMO films in the bilayer systems
grown was very small. In particular, the relative shift of
the peak in the ρ(T, H = 0) curves of the manganite films
in our heterostructures did not exceed 5 K and the rock-
ing curve half-widths η for the (002) x-ray peak due to
the corresponding layers differ by less than 8%.

3.1. Structure of the BSTO and LCMO Layers

The x-ray data suggest that the LCMO film and the
BSTO buffer in the LCMO/BSTO/LSATO heterostruc-
ture were free of microinclusions of secondary phases
(Fig. 1). In x-ray φ scans of the (101) reflections, the
BSTO buffer layer and the LCMO film produced four
equidistant (90°-spaced) peaks each. The layers mak-
ing up the heterostructure were preferentially oriented
both relative to the substrate normal and azimuthally,
with the (001) planes and the [010] directions in LCMO
and BSTO being parallel to (001) and [010]LSATO,
respectively. The cell parameters of the BSTO layer
measured in the substrate plane, a||, and along the nor-
mal to this plane, a⊥ , differed only slightly (see table).
Relaxation of strains in the buffer layer occurred prima-
rily during its growth and oxygen saturation. The effec-

tive cell volume of the buffer layer, Veff = a⊥  ×  =
60.73 Å3, agrees well with the data available from the
literature for the corresponding bulk samples [11].

The lattice misfit between LCMO and LSATO is m ≈
+0.3%. In the case of an LCMO film and an LSATO
substrate coated with a (80-nm)BSTO buffer, the misfit
m increases sixfold to about +1.8%. The cell parameter
of the LCMO film grown on BSTO/LSATO was mea-
sured to be 3.812 ± 0.003 Å along the substrate normal,

a||
2

Parameters of BSTO and LCMO films in the LCMO/BSTO/(001)LSATO heterostructure

Film
material

Layer
thickness, 

nm
v, Å/pulse a⊥ , Å a||, Å Veff, Å

3 ∆a/a, 10–3 t, nm ∂φ, deg η, deg

BSTO 80 0.7 3.934 3.929 60.73 1.1 90 1 0.09

LCMO 50 0.2 3.812 3.883 57.48 1.6 70 1 0.17
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which is substantially smaller than that measured in the
substrate plane, 3.883 ± 0.003 Å. The (50-nm)LCMO
film grown on BSTO/LSATO was subjected to in-plane
tensile strains. A comparison of the a|| parameters for
the layers making up the LCMO/BSTO bilayer hetero-
structure grown on (001)LSATO (see table) suggests
that the strains in the manganite film have partially
relaxed. The noticeable width of the rocking curve
obtained for the (002)LCMO x-ray peak (see table)
indicates nonuniform relaxation of strains in the man-
ganite film. The effective cell volume (~57.48 Å3) of
the LCMO/BSTO/LSATO film was larger than that for
bulk stoichiometric LCMO samples (~57.39 Å3 [9]).

The larger value of Veff in the LCMO films grown on
BSTO/LSATO should be assigned to a high oxygen
vacancy concentration in their volume and/or calcium
depletion. The nuclei forming in the initial stage of
growth of a manganite film on the BSTO/LSATO sur-
face are either of a stoichiometric composition or
depleted or enriched in oxygen (calcium). Oxygen (cal-
cium)-deficient LCMO nuclei have a lower elastic
strain energy as compared with nuclei with a stoichio-
metric composition, because the lattice parameter of a
perovskite-like manganite increases when depleted in
oxygen (calcium). For this reason, the nuclei depleted
in oxygen (calcium) are the first to become stable. A
calcium-enriched phase can precipitate on the outer
boundaries of growing LCMO islands. Therefore,
intergrain layers in a LCMO/BSTO/LSATO film may
differ somewhat in composition from the bulk of a crys-
tallite. As a result of these features in the nucleation and
growth of perovskite-like manganites, the effective cell
volume of LCMO films grown on a substrate with a
noticeable positive lattice misfit turns out to be larger
than Veff for the corresponding single crystals. In full
agreement with the above model, the cell volume in
(40-nm)LCMO films [12] grown under biaxial com-
pressive stresses was smaller than Veff for stoichiomet-
ric bulk samples.

The effective crystal grain dimensions t and the
average relative lattice parameter distortion ∆a/a in the
layers making up the LCMO/BSTO/LSATO hetero-
structure were estimated from the dependence of the
FWHM of the (00n) peaks in an x-ray ω/2θ scan on θ,
which, according to [13], is given by

 (1)

where λ1 = 1.54056 Å is the x-ray wavelength. As fol-
lows from the data displayed in Fig. 2, the values of
0.9λ1/t for the BSTO layer and the LCMO film for θ =
0 are 1.6 × 10–3 and 1.9 × 10–3, respectively. It follows
that the effective size of crystal grains in the buffer
layer is 90 nm and in the manganite film, 70 nm. The
values of ∆a/a derived for the BSTO and LCMO layers
from the slope of the FWHM × cosθ vs. sinθ graphs in
Fig. 2 are listed in the table. The average lattice cell dis-
tortion in the (80-nm)BSTO layer (∆a/a ≈ 1.1 × 10–3)
is approximately twice that obtained for thick
(700-nm)BSTO epitaxial films grown on SrRuO3 [7].

FWHM θcos× 0.9λ1/t 2 ∆a/a( ) θ,sin+=
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The fairly large value ∆a/a ≈ 1.6 × 10–3 for the LCMO
film in the LCMO/BSTO/LSATO heterostructure indi-
cates that the strains acting in its volume are nonuni-
formly distributed.

The misfit between the BSTO and LSATO lattices
accounts for the noticeable azimuthal misorientation
∂φ ≈ 1° between the crystal grains forming in the buffer
layer and the manganite film grown on its surface. The
magnitude of ∂φ was estimated with due account of the
peak FWHM in the φ scans obtained for the
(101)BSTO and (101)LCMO x-ray reflections from the
LCMO/BSTO/LSATO heterostructure. The corre-
sponding x-ray peaks are shown in the inset to Fig. 2.
Also shown for comparison is a peak in an x-ray φ scan
measured for the (101) reflection from a single-crystal
LSATO substrate (∂φ ≈ 0.02°).

3.2. Dependence of the LCMO Film Electrical 
Resistivity on Temperature and Magnetic Field

For H = 0, the maximum in the temperature depen-
dence of the resistivity of LCMO films grown on
BSTO/LSATO was observed at TM = 225–230 K (Fig. 3).
This value is about 35 K lower than the temperature at
which the resistivity of bulk stoichiometric samples and
of LCMO epitaxial films grown on (001)LSATO passes
through a maximum [5]. (TM for bulk LCMO crystals
differs very little from the Curie temperature TC [14].)
The lower values of TM for the LCMO/BSTO/LSATO
films may be partially due to their deviation from sto-
ichiometry. The depletion of an LCMO film in oxygen
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(50-nm)LCMO/(80-nm)BSTO/(001)LSATO heterostruc-
ture. Inset shows peaks in x-ray φ scans for the (101) reflec-
tions from (1) the LSATO substrate, (2) LCMO film, and
(3) BSTO buffer.
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(calcium) is accompanied by an increase in the relative
concentration of Mn+3 ions in its volume, which,
according to the phase diagram obtained for
La1 − xCaxMnO3 ceramic samples [15], should bring
about a lowering of the ferromagnetic ordering temper-
ature of manganese ion spins. Nonuniform elastic
strains in a manganite film increase the scatter in the
effective manganese–oxygen bond length, which also
contributes to the decrease in TM [16].

The presence of a magnetic field is conducive to fer-
romagnetic spin ordering in a manganite film and an
increase in TM. As µ0H increased from 0 to 5 T, the max-
imum in the ρ(T, H) graphs for the
LCMO/BSTO/LSATO films shifted toward higher tem-
peratures (by 45 K at µ0H = 5 T) and the peak value of
resistivity decreased by a factor of 3–4 (Fig. 3).

For T < TC, the resistivity of 3d ferromagnetic metals
is contributed (in addition to electron–electron interac-
tion and electron scattering from phonons and struc-
tural defects) by spin disorder [17]. According to [18],
the spontaneous magnetization vector in an LCMO film
strained biaxially (tension) by the substrate becomes
oriented preferentially parallel to the plane of the latter.
The nonuniformity of the strains, as well as the azi-
muthal misorientation of crystal grains, intensifies dis-
order in the manganese-ion electron spin system. The
contribution of electron–magnon scattering to the resis-
tivity of a manganite film should become significant
when most of its volume is in the ferromagnetic state,
i.e., for T ! TC. In conditions where the relaxation of

60

40

20

0 100 200 300
T, K

0 T

ρ,
 1

0 
m

Ω
 c

m

–4 4
µ0H, T

0

7
ρ,

 m
Ω

 c
m ρ,

 1
0–

1  
m

Ω
 c

m

0

7

0

215 K

100 K

1 T

3 T

5 T

Fig. 3. Temperature dependences of the resistivity ρ of a
(50-nm)LCMO film in an LCMO/BSTO/(001)LSATO het-
erostructure measured at various magnetic fields. Inset
shows the magnetic field dependences of ρ obtained at 100
and 215 K.
PH
carriers is dominated by their interaction with spin
waves, the resistivity of a ferromagnet, according to
[19], should obey the relation ρ ~ ρ1T4.5, where ρ1 is a
coefficient that is dependent on magnetic field but inde-
pendent of temperature. The temperature dependences
of the resistivity of an LCMO/BSTO/LSATO film mea-
sured at µ0H of 0 and 5 T are presented graphically in
Fig. 4 (solid curves). For T < 200 K and µ0H = 0–5 T,
the experimental ρ(T, H) relations can be satisfactorily
fitted by

 (2)

where ρ0 = 3.5 mΩ cm is a constant independent of
temperature and magnetic field. The coefficient ρ1(H)
was determined at different magnetic fields from the
slope of experimental ρ ~ T4.5 relations within the range
4.2–50 K. It was found that ρ1 falls off approximately
linearly with increasing magnetic field (see inset to
Fig. 4). A similar dependence of the coefficient ρ1 on
magnetic field was reported in [14]. Figure 4 presents
the values of ρ for an LCMO/BSTO/LSATO film calcu-
lated from Eq. (2) for µ0H = 0 (squares) and µ0H = 5 T
(triangles). In [14], when fitting the ρ(T) curves for
LCMO films subjected to heat treatment in an oxygen
environment, a term proportional to T2 was added to the
right-hand side of Eq. (2) to account for the contribu-
tion from electron–electron interaction to carrier relax-
ation.

Within the temperature interval 200 K–TM, the resis-
tivity of the LCMO/BSTO/LSATO film increased with
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Fig. 4. Temperature dependences of the resistivity ρ of a
(50-nm)LCMO/(80-nm)BSTO/(001)LSATO film measured
in the range 4.2–200 K at µ0H = 0 and 5 T (solid curves).
The values of ρ calculated using Eq. (2) for µ0H = 0
(squares) and µ0H = 5 T (triangles) fit the experimental data
well. The inset shows the magnetic field dependence of the
coefficient ρ1 obtained for the same film.
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temperature faster than predicted by Eq. (2). This is
caused by an increasing concentration of a nonferro-
magnetic phase in its volume, which is accompanied by
a decrease in size and density of the highly conducting
(ferromagnetic) “percolation channels.” The coexist-
ence of inclusions of a ferromagnetic (high-conductiv-
ity) and a paramagnetic (low-conductivity) phase in the
bulk of a manganite film at the temperatures specified
above manifests itself clearly in the response of the
electrical resistivity of the film to a magnetic field. The
ρ(H) curves measured on an LCMO/BSTO/LSATO film
at T = 215 and 100 K are shown in the inset to Fig. 3.
As follows from the ρ(H, 215 K) graph, the absolute
value of the dρ/dH derivative for µ0H < 1.5 T greatly
exceeds those obtained for µ0H > 3.5 T. The fast drop in
the resistivity of the LCMO/BSTO/LSATO film
observed to occur with increasing magnetic field
(µ0H < 1.5 T) results from the increasing concentration
of the ferromagnetic phase (an increase in the percola-
tion channel density). For µ0H > 3.5 T, the greater part
of the LCMO/BSTO/LSATO film volume is in the fer-
romagnetic state and the observed relatively weak
(approximately linear) decrease in its resistivity with
increasing µ0H is caused by the electron–magnon cou-
pling weakening as a result of spatial ordering of manga-
nese electronic spins. At low temperatures (T ≤ 150 K),
inclusions of the paramagnetic phase make up an insig-
nificant volume fraction already at H = 0; therefore, the
resistivity of the film varies almost linearly with
increasing µ0H in the range 0–5 T (see inset to Fig. 3).
This correlates well with the corresponding data avail-
able for bulk samples of 3d ferromagnetic metals [17].

In the temperature interval TM–300 K, the resistivity
of the LCMO film obeyed the relation lnρ(H = 0) ~
EA/k BT, with EA = 0.14 eV (k B is the Boltzmann con-
stant). This pattern of the temperature dependence of
the paramagnetic phase in manganites (T > TC) may be
caused by the formation of small-radius polarons in
their bulk [20, 21], whose mobility grows exponentially
with temperature. Structural studies [22] provide sup-
portive evidence for the presence of substantial distor-
tions in the LCMO lattice for T > TC, which largely dis-
appear for T < TC.

Turning now to analysis of the data obtained on the
magnetoresistance of LCMO/BSTO/LSATO films, we
can note that the strength of electron–electron and elec-
tron–phonon coupling does not depend significantly on
magnetic field [14, 17]. Among the mechanisms condu-
cive to a decrease in the resistivity of
LCMO/BSTO/LSATO films with increasing H, the fol-
lowing three stand out: (i) for T < TC, the magnetic field
amplifies spin-wave damping, which favors an
increased carrier (hole) relaxation time; (ii) at tempera-
tures close to TC, the magnetic field increases the den-
sity of the ferromagnetic high-conductivity percolation
channels in the bulk of a manganite film; and (iii) the
magnetic field fosters a reduction in the relative misori-
entation of spins in grain spacers as compared to their
orientation in the bulk of the crystallites.
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Figure 5 displays the temperature dependences of
magnetoresistance MR = [ρ(µ0H) – ρ(0)]/ρ(0) mea-
sured on an LCMO/BSTO/LSATO film in magnetic
fields of 0.4 and 5 T. At µ0H = 0.4 T, the manganite
films exhibited the maximum magnitude of negative
magnetoresistance in the vicinity of 205 K. As H
increased, the peak in the MR(T, H) curve shifted
toward higher temperatures. The FWHM of the peak
in the MR(T, H) dependence obtained for
LCMO/BSTO/LSATO films exceeded by several times
the corresponding value for LCMO films grown on sub-
strates with a small m [5]. Furthermore, the values of
MR obtained for the LCMO/BSTO/LSATO films at
low temperatures (T < 10 K) greatly exceeded the mag-
netoresistance of the LCMO films grown on substrates
with a small m that were heat-treated in oxygen [6].
This finding can be partially assigned to the existence
of grain boundaries with off-stoichiometry in the
LCMO/BSTO/LSATO films [23].

The magnetic field dependences of the magnetore-
sistance of an LCMO/BSTO/LSATO film measured at
T = 215 and 100 K are displayed in the inset to Fig. 5.
At T = 100 K, negative MR of the
LCMO/BSTO/LSATO film increased almost linearly
with increasing µ0H, which fits with the dependence of
the coefficient ρ1 [defined in Eq. (2)] on magnetic field
(see inset to Fig. 4). Thus, in the range 0 < µ0H < 5 T,
the MR(H, 100 K) relation is determined to a consider-
able extent by carrier (hole) scattering from magnons.
At temperatures close to TM, the effect of scattering by
magnons on the character of the magnetic field depen-
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Fig. 5. Temperature dependences of the magnetoresistance
MR = [ρ(µ0H) – ρ(0)]/ρ(0) of a manganite film in a
(50-nm)LCMO/(80-nm)BSTO/(001)LSATO heterostruc-
ture measured at µ0H = 0.4 and 5 T. The inset shows the
magnetic field dependences of the magnetoresistance of the
same film obtained at 100 and 215 K.
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dence of resistivity of the LCMO/BSTO/LSATO film
becomes dominant only for µ0H > 3.5 T [see inset to
Fig. 5, MR(H, T = 215 K)]. The anomalously strong
growth of the negative magnetoresistance in magnitude
with increasing H for a relatively weak magnetic field
(µ0H < 1.5 T) is largely due to the increasing density of
ferromagnetic, highly conducting percolation channels
in the bulk of a manganite film.

4. CONCLUSIONS

Tensile strains acting in the course of nucleation and
growth of (50-nm)LCMO manganite films are condu-
cive to the onset of off-stoichiometric distortions in
the latter (depletion in oxygen and/or calcium), which
becomes manifest in an increase in the unit cell vol-
ume and brings about a decrease in the relative con-
centration of quadrivalent manganese ions. An
increase in the Mn3+ ion concentration in a manganite
film weakens the ferromagnetic interaction between
manganese ions, which involves double exchange of
electrons between Mn3+ and Mn4+ mediated by the
oxygen ion. This weakening may account, to a certain
extent, for the shift of the maximum in the tempera-
ture dependence of the resistivity of the
(50-nm)LCMO/(80-nm)BSTO/LSATO film toward
lower temperatures relative to its position on the
ρ(T, H = 0) curve for bulk stoichiometric LCMO sam-
ples. For T < TC, the nonuniform distribution of strains,
density fluctuations of oxygen vacancies and vacancies
on the cation sublattice, and azimuthal misorientation
of crystal grains in the LCMO/BSTO/LSATO film
enhance misorientation of the electronic spins of the
manganese ions, thus increasing the spin-wave contri-
bution to the carrier relaxation. At temperatures close to
the ferromagnetic phase transition, the magnetic field
increases the relative concentration of inclusions of the
ferromagnetic phase in the bulk of a manganite film.
The magnetic field also enhances spin-wave damping
and reduces spatial misorientation of the electron spins
of the manganese ions at grain boundaries and in the
bulk of the crystallites.
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Abstract—Temperature dependences of the Faraday effect (FE), which is linear in a magnetic field B; of the
nonreciprocal linear birefringence (NB) associated with magnetic field–induced spatial dispersion; and of the
Cotton–Mouton effect (CME), which is quadratic in a magnetic field B, have been studied in the transmission
region of the γ-Dy2S3 cubic magnetic semiconductor (Td  symmetry class) at wavelength λ = 633 nm in the tem-
perature range T = 25–294 K. As the temperature is lowered, the magnitudes of the FE and of the two main NB
components, α001 and α011, increase in proportion to the magnetic susceptibility χ. This behavior implies that
the magnitude of these effects is determined by the magnetic moment m of the Dy3+ ion induced by the mag-

netic field B. The CME component β001 (k || [ ], B || [001]) grows in proportion to the magnetic suscepti-

bility squared, χ2; i.e., β001 ~ m2. By contrast, the component β111 (k || [ ], B || [111])) exhibits a weaker
temperature dependence, which indicates the manifestation of microscopic mechanisms in the CME component
β111 that differ from those for β001. © 2005 Pleiades Publishing, Inc.
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1. INTRODUCTION

Investigation of semiconducting compounds with a
large bandgap Eg has been recently attracting consider-
able attention. Among these compounds are, in particu-
lar, the rare-earth sesquisulfides γ-Ln2S3, which are
magnetic semiconductors with a bandgap Eg ≈ 3 eV [1].
They crystallize in a noncentrosymmetric cubic struc-
ture (Td  crystal class) and exhibit properties stemming
from the absence of an inversion center. For instance,
crystals of the γ-Ln2S3 family were found to exhibit a
large electro-optical effect [2], photogalvanic effect [3],
piezoelectric effect [4], etc. The presence of the rare-
earth (RE) ions in the structure accounts for the mag-
netic properties and the relatively high intensity of the
magneto-optic effects. For instance, the Faraday effect
(FE) seen in the transmission window of some ses-
quisulfides is as high as ≈103 deg/cm T [5].

Rare-earth sesquisulfides have been recently
observed to exhibit magnetic linear birefringence
(MLB) [6]. Unlike crystals with a center of inversion,
MLB in γ-Ln2S3 is determined not only by the Cotton–
Mouton effect (CME), which is quadratic in a magnetic
field B, but also by nonreciprocal birefringence (NB),
which is linearly dependent on magnetic field B. The
nature of the latter is mediated by magnetically induced
spatial dispersion and is directly associated with the
crystal structure lacking inversion symmetry [7].

In contrast to the FE, the CME and NB are anisotro-
pic in a cubic crystal, so in order to describe these
effects, one has to determine the magnitude of the CME
and NB for at least two different orientations of mag-
1063-7834/05/4702- $26.00 ©0293
netic field B relative to the crystallographic axes. MLB
studies performed in the transmission window of
γ-Dy2S3 have shown that the fundamental CME compo-
nents, β001 (k || [110], B || [001]) and β111 (k || [110],
B || [111]), are opposite in sign and differ in dispersion
[8]. The energy of the effective oscillator determining
the dispersion of β001(E) is Eeff ≈ 3.4 eV, which is about
0.6 eV above the fundamental absorption edge. The
β111 component depends only weakly on photon energy
E and does not exhibit a resonant increase with increas-
ing E within the energy interval E = 1.5–2.5 eV. The main
NB components of γ-Dy2S3, namely, α001 (k || [ ],

B || [001]) and α011 (k || [ ], B || [011]), also reveal
differences in their spectral response. Indeed, while
α011, just as β001, grows resonantly with photon energy
E and derives from transitions with energy E ≈ 3.4 eV,
α001, similar to β111, is weakly dependent on E. The dif-
ference in the spectral response of the MLB compo-
nents indicates that they originate from electronic transi-
tions with different energies. The energy of the transi-
tions responsible for the components of CME β111 and
NB α001 should be substantially larger (E @ 3.4 eV) than
that for β001 and α011. The transitions governing the
magneto-optical properties in sesquisulfides have not
been assigned unambiguously to date. Nevertheless, it
can be assumed that the electron transitions responsible
for the magneto-optical effects in γ-Dy2S3 originate
from the Dy3+ ground state (6H15/2) and that their behav-
ior is largely governed by the magnetic field–induced
splitting of this state. Therefore, it appeared of interest

110

110
 2005 Pleiades Publishing, Inc.
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to find the relation between the magnitudes of the linear
and quadratic magneto-optical effects in γ-Dy2S3 and
the magnetic moment m of the rare-earth sublattice
induced by an external magnetic field. This moment is
known to be determined by the population of the
ground state levels of the RE ion in a magnetic field.
This relation can be derived by comparing the temper-
ature dependences of the magneto-optical effects and of
the magnetic susceptibility. As far as we know, investi-
gation into the magneto-optical properties in γ-Ln2S3
has thus far been limited to their spectral response at
fixed temperatures. The present communication reports
on a study of the temperature dependences of magneto-
optical effects in γ-Dy2S3 that are linear (FE, NB) or
quadratic (CME) in magnetic field and on their compar-
ison with the temperature dependence of the magnetic
susceptibility.

2. MEASUREMENT TECHNIQUES
AND SAMPLES

The FE and MLB were studied using the polarimet-
ric technique [9] at a light wavelength λ = 633 nm. We
measured the change in the angle of rotation of the
plane of polarization ξ of light (for FE) or in its elliptic-
ity ϕ (in the case of MLB) induced by the application
of an external magnetic field B to the crystal. The MLB
measurements were conducted in the k ⊥  B geometry.
The maximum magnetic field B that could be generated
by an electromagnet was ±0.5 T. The angular depen-
dences of CME and NB were measured at a tempera-
ture T = 294 K in the E || B and E45B geometries [8, 9],
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Fig. 1. Angular dependences of (1) the CME (β) and (2) NB
(α) measured in γ-Dy2S3 in the E45B geometry in the (110)
plane at λ = 633 nm. The solid line is a plot of the CME rela-
tion β(θ) = a1 + b1cos2θ + c1cos4θ. The dashed line is NB
calculated from the relation α(θ) = a2sinθ + b2sin3θ.
PH
with the sample azimuth θ (the angle between the mag-
netic field B and a [001]-type crystallographic axis)
being varied in the range 0–360° and measured to
within ~0.1°. To separate the CME from NB (which are
even and odd in the magnetic field, respectively) for a
given angle θ, we measured the angle ϕ at B = 0 (ϕ0)
and B = ±0.5T (ϕ±). The magnitudes of the CME (β)
and NB (α) were found from the relations

 (1)

 (2)

where d is the sample thickness. The quantity ϕ0 is due
to the existence of magnetic field–independent sponta-
neous birefringence in a crystal originating from inter-
nal stresses and defects.

Studies of the temperature dependence were carried
out in a closed-cycle optical cryostat within the temper-
ature interval T = 25–294 K, with the temperature sta-
ble within ~0.5 K. The crystal was placed on a cooled
holder in vacuum. The CME was measured at B || [001]
(θ = 0) and B || [111] (θ = 55°) in the E45B geometry,
and the NB was measured at B || [001] in the E || B
geometry (α001) and at B || [110] in the E45B geometry
(α110). The crystallographic axes were oriented relative
to the magnetic field with ∆θ no worse than 5°. To
exclude the FE, which may appear as a result of inaccu-
racies in the orientation of the magnetic field B perpen-
dicular to the direction of k, the magnet was adjusted
carefully before MLB measurements. To do this, the
quarter-wave plate was removed from the optical
arrangement and the magnet was turned such that the
application of a magnetic field did not cause any rotation
of the plane of polarization. The sensitivity of measuring
the rotation of the plane of polarization was ~10′′ .

The γ-Dy2S3 samples were polished, plane-parallel
plates cut in the (110) plane with dimensions ~3 × 3 ×
1 mm. The samples were oriented by means of x rays.
The orientation accuracy was ~3°. The spontaneous
crystal birefringence associated with internal strains
and with the existence of defects did not exceed ∆n =
10–6. The presence of such birefringence did not exert
noticeable effects on the magnitude of the MLB and FE
[6]. When measuring the temperature dependences of
the FE, a magnetic field B = ±0.01 T was applied along
the direction of light propagation, k. The magnet was
mounted inside the cryostat to preclude the FE originat-
ing from the cryostat windows. The Verde parameter
V[deg/cm T] characterizing the FE was determined
from the relation V = (ξ+ – ξ–)/dB.

3. EXPERIMENTAL RESULTS

Figure 1 plots typical angular dependences of the
CME (β) and NB (α) measured in γ-Dy2S3 in a
(110)-type plane in the E45B geometry. The angular

β
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dependence of the quadratic-in-magnetic-field CME
β(θ) in this plane is described by a combination of the
zeroth-, second-, and fourth-order harmonics, β(θ) = a1
+ b1cos2θ + c1cos4θ. The anisotropy of the odd-in-B
NB is approximated by harmonics of the first and third
orders, α(θ) = a2sinθ + b2sin3θ. In accordance with the
phenomenological description of quadratic magneto-
optical effects in a cubic crystal of the Td  crystal class,
the CME components measured in the E45B geometry,
namely, β001 (B || [001]) and β111 (B ||  [111]), are deter-
mined by a fourth-rank tensor ρijkl that is symmetric in
two pairs of indices [10]: β001 = –π(1/2)n3(ρ11 – ρ12)/λ
and β111 = –πn3ρ44/λ. The NB measured in the E45B
geometry is determined for B || [011] (α011) by the com-
ponents A and g of the tensor γijkl describing the relation
between the components of the permittivity tensor εij,
the wave vector k, and magnetic field B (δεij =
γijmlkmBl), α011 = π(3A + 2g)k/4nλ. When measured in
the E || B geometry with B || [001], the NB (α001) is
determined only by the component g: α001 = πgk/nλ [9].
The components β001, β111, α001, and α011 completely
determine the MLB of a cubic crystal, so we studied the
temperature dependences of only these components.

Figure 2 plots temperature dependences of the CME
components β001 and β111 in γ-Dy2S3. As the tempera-
ture decreases, both components grow monotonically
in magnitude. At T = 25 K, β001 reaches as high as
~70 deg/cm T2, which is 45 times the value of β001 at
T = 294 K. In contrast to β001, the component β111 grows
much more weakly with decreasing temperature. At T =
25 K, its value (β111 ≈ –15 deg/cm T2) is only 15 times
that at room temperature.
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Figure 3 displays the temperature dependence of the
NB components α001(T) and α011(T). Both NB compo-
nents increase with decreasing temperature in almost
identical fashion, and their values at T = 25 K are
approximately an order of magnitude larger than those
at T = 294 K.

Figure 4 shows the temperature dependence of the
FE in γ-Dy2S3. The V(T) relation is similar to the tem-
perature dependence of the NB components α001(T) and
α011(T). The FE grows monotonically in magnitude
with decreasing temperature to reach values of
~3000 deg/cm T at T = 25 K.

Thus, a decrease in temperature gives rise to
strongly increased linear and quadratic magneto-opti-
cal effects in γ-Dy2S3. The FE and NB, which are linear
in magnetic field, grow similarly with a decrease in
temperature, and their magnitude at T = 25 K is about
an order of magnitude larger than that at T = 294 K. The
CME components that are quadratic in magnetic field
(β001, β111) behave differently with decreasing tempera-
ture. The component β001 increases by nearly two
orders of magnitude, while β111 grows only by an order
of magnitude.

4. DISCUSSION OF THE RESULTS

The relatively large magnitude of the linear and qua-
dratic magneto-optical effects observed in rare-earth
sesquisulfides γ-Ln2S3, in particular, at T = 294 K, is
due to their structure including trivalent RE ions with
an unfilled 4f N shell, which is responsible for the para-
magnetism of these compounds, as well as to the spe-
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cific features of their electronic structure. In contrast to
paramagnetic dielectrics, which contain RE ions (for
instance, gallate and aluminate garnets, phosphate and
silicate glasses) whose energy of optical transitions
4f N  4 f N – 15d between the states of the RE ions
responsible for the magneto-optical effects lies in the
region E ~ 5–7 eV [11], the optical transition energy in
rare-earth semiconductors γ-Ln2S3 is substantially
smaller (E = 3.5–4.0 eV) and its magnitude correlates
with the bandgap width Eg [12]. Among crystals of the
sesquisulfide family, the paramagnetic properties are
particularly strongly manifest in γ-Dy2S3 due to the
large magnetic moment of the Dy3+ ion (10.6µB) in the
ground state (6H15/2). In this family, γ-Dy2S3 also stands
out as having the largest magneto-optical oscillator
strength Beff, which enters the expression for the FE dis-
persion in the single-oscillator model, V(E) =

BeffE2/(  – E2) [5].

The temperature dependence of the magneto-optical
effects in paramagnets observed in transmission
regions at frequencies far from resonances is deter-
mined by various mechanisms. The mixing and dia-
magnetic mechanisms account for the temperature-
independent part of the FE, while the paramagnetic
mechanism is responsible for the temperature-depen-
dent FE [13]. In weak magnetic fields, i.e., in the case
where the m(B) dependence is linear, the paramagnetic
mechanism provides a linear relation between the FE
and the magnetic moment m of the rare-earth sublattice
induced by a magnetic field B:

 (3)
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where χ(T) is the magnetic susceptibility and A is the
magneto-optical susceptibility.

In crystals containing RE ions with a nonzero
ground-state orbital angular momentum, the paramag-
netic contribution to the magnetic susceptibility of the
rare-earth sublattice usually substantially exceeds the
diamagnetic and the Van Vleck terms. The temperature
dependence of the FE in these crystals is dominated by
the paramagnetic mechanism, i.e., by the temperature
dependence of the magnetic susceptibility χ(T) [13].
The magneto-optical susceptibility A in Eq. (3) is deter-
mined by the energy of the optical transitions responsi-
ble for the FE, by matrix elements of the Im{dabdba}
type (where a and b label the ground and excited states
of an optical transition and dab is the dipole moment
operator), and by the refractive index n. In γ-Gd2S3, in
which the RE ion resides in the S state, and in the dia-
magnetic γ-La2S3, the values of NB and CME at T =
294 K are at least an order of magnitude smaller than
those in γ-Dy2S3 and γ-Pr2S3 [6]. Therefore, we may
expect the paramagnetic mechanism to also govern the
temperature dependence of the linear-in-magnetic-field
NB in γ-Dy2S3,

 (4)

and of the quadratic CME,

 (5)

where C and D are the magneto-optical susceptibilities.
It should be stressed that Eqs. (3)–(5) are valid only

in the region where the m(B) relation is linear, i.e.,
where the condition gµBB ! kT holds (g is the ground-
state spectroscopic splitting factor). Breakdown of this
condition may give rise to the appearance of the FE in
a cubic crystal in a transverse magnetic field B (due to
g-factor anisotropy) [14], a dependence of the magni-
tude of the FE on the direction of light propagation k, a
violation of the rule of even effects in CME, anisotropy
in the magnetic susceptibility [15], the appearance of a
linear dependence of the CME on magnetic field [16],
etc. In the present study, the gµBB ! kT condition was
met in the temperature and magnetic-field ranges cov-
ered.

A study of the temperature dependence of the mag-
netic susceptibility of γ-Dy2S3 carried out on crushed
single crystals revealed that this crystal persists in the
paramagnetic state down to liquid-helium temperature
(T = 4.2 K) and that the temperature dependence of the
inverse magnetic susceptibility χ–1 can be roughly fitted
by a linear function of temperature χ–1 = Cm(T – θm),
where θm ≅  5 K [17]. Figures 3 and 4 display the tem-
perature dependences of the reciprocal values of NB,

(T), and FE, V –1(T), for γ-Dy2S3. These relations
are well fitted by linear functions of temperature. This
implies that the main contribution to both the FE and
NB is determined by the paramagnetic mechanism.
Figure 2 plots the temperature dependence of the

α Cm T( )/B Cχ T( )= =

β Dm
2

T( )/B
2

Dχ2
T( ),= =

γ001
1–
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square root of the inverse CME, (T). The (T)
relation is linear in temperature; i.e., the CME compo-
nent β001, just as NB and FE, is dominated by the para-
magnetic mechanism. Note that the crossings of the

V −1(T), (T), and (T) graphs with the horizon-
tal axis (Figs. 3, 4) are shifted toward negative temper-
atures by about 10 K. Negative values of the Curie tem-
perature θm are known to be characteristic of antiferro-
magnets; therefore, although the temperature
dependence of magneto-optical effects can be affected
by the temperature dependence of the magneto-optical
susceptibilities A, C, and D and of the refractive index
n due to the temperature-induced shift of the bandgap
edge, Eg(T), one cannot disregard the possibility of a
γ-Dy2S3 transition to the antiferromagnetic state at tem-
peratures T < 4.2 K. Note that antiferromagnetic order-
ing at low temperatures (T ≈ 2.5 K) is observed to occur
in dielectric crystals Dy3Al5O12 and Dy3Ga5O12.

The temperature dependence of the CME compo-
nent β111(T) differs from that of β001(T). While the ratio
β001(T)/V(T)2 = 9.1 × 10–6 cm/deg remains constant to
within 10% over the temperature range T = 25–300 K,
the ratio β111(T)/V(T)2, as measured in the same temper-
ature range, varies by several times. The temperature

dependence of (T) is not linear and, hence, is not
governed by the paramagnetic mechanism alone. The
difference between the temperature dependences of
β111(T) and m2(T) may originate from the existence of a
small temperature-independent contribution due to the
diamagnetic or Van Vleck mechanism or from a mech-
anism associated with combined action of the quadratic
magneto-optical effect and the Pockels effect [8]. In the
latter case, the temperature dependence of β111(T)
should be determined by the product of the second-
order magnetoelectric susceptibility and the linear elec-
tro-optical coefficient and can differ from the β001(T)
dependence.

5. CONCLUSIONS

Thus, our study has shown that, over the tempera-
ture and magnetic-field ranges covered, the compo-
nents of the linear-in-magnetic-field NB effect (α001,
α011) in γ-Dy2S3 vary, just as the FE, in proportion to the
rare-earth sublattice magnetization; i.e., they are medi-
ated by the paramagnetic mechanism. The component
of the quadratic CME, β001, varies in proportion to the
magnetization squared, and the component β111 follows
a weaker temperature dependence. The difference
between the spectral and temperature dependences of
β001 and β111 suggests the manifestation of different
microscopic mechanisms for these CME components.

β001
0.5– β001

0.5–

α001
1– α011

1–

β111
0.5–
PHYSICS OF THE SOLID STATE      Vol. 47      No. 2      2005
ACKNOWLEDGMENTS

This study was supported by the Russian Founda-
tion for Basic Research in cooperation with Deutsche
Forschungsgemeinschaft (Germany), project no. 02-
02-04003.

REFERENCES
1. V. P. Zhuze and A. I. Shchelykh, Fiz. Tekh. Poluprovodn.

(Leningrad) 23 (3), 393 (1989) [Sov. Phys. Semicond.
23, 245 (1989)].

2. V. P. Zhuze, A. A. Kamarzin, V. V. Sokolov, T. I. Volkon-
skaya, I. A. Smirnov, and A. I. Shelykh, Pis’ma Zh. Tekh.
Fiz. 7, 1435 (1981) [Sov. Tech. Phys. Lett. 7, 613
(1981)].

3. T. M. Batirov, K. A. Verkhovskaya, A. A. Kamarzin,
Yu. N. Malovitskiœ, V. I. Lisovaœn, and V. M. Fridkin, Fiz.
Tverd. Tela (Leningrad) 24, 1313 (1982) [Sov. Phys.
Solid State 24, 746 (1982)].

4. T. I. Volkonskaya, A. I. Shelykh, A. V. Sotnikov,
V. V. Sokolov, and F. R. Akhmedzhanov, Fiz. Tverd. Tela
(Leningrad) 29 (2), 559 (1987) [Sov. Phys. Solid State
29, 318 (1987)].

5. R. Dagis, G. Barbonas, and G. Pukinskas, Litov. Fiz. Sb.
28 (5), 559 (1988).

6. B. B. Krichevtsov, Zh. Éksp. Teor. Fiz. 119, 954 (2001)
[JETP 92, 830 (2001)].

7. D. L. Portigal and E. Burstein, J. Phys. Chem. Solids 32,
1396 (1975).

8. B. B. Krichevtsov and H.-J. Weber, Fiz. Tverd. Tela (St.
Petersburg) 46, 488 (2004) [Phys. Solid State 46, 502
(2004)].

9. B. B. Krichevtsov, R. V. Pisarev, A. A. Rzhevskiœ, and
H.-J. Weber, Zh. Éksp. Teor. Fiz. 114 (3), 1018 (1998)
[JETP 87, 553 (1998)].

10. R. V. Pisarev, in Physics of Magnetic Dielectrics (Nauka,
Leningrad, 1974) [in Russian].

11. A. K. Zvezdin, V. M. Matveev, A. A. Mukhin, and
A. I. Popov, Rare-Earth Ions in Magnetic-Ordered Crys-
tals (Nauka, Moscow, 1985) [in Russian].

12. G. Babonas, R. Dagis, and G. Pukinskas, Phys. Status
Solidi B 153, 741 (1989).

13. A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics
and Magnetooptical Materials (Inst. of Physics, Bristol–
Philadelphia, 1997).

14. V. M. Zapasskiœ, Fiz. Tverd. Tela (Leningrad) 19, 964
(1977) [Sov. Phys. Solid State 19, 561 (1977)].

15. A. K. Zvezdin, A. I. Popov, and Kh. I. Turkmenov, Fiz.
Tverd. Tela (Leningrad) 28, 1760 (1986) [Sov. Phys.
Solid State 28, 974 (1986)].

16. N. F. Vedernikov, A. K. Zvezdin, S. V. Koptsik,
R. Z. Levitin, K. M. Mukimov, A. P. Petrov, A. I. Popov,
and Kh. I. Turkmenov, Pis’ma Zh. Éksp. Teor. Fiz. 43
(1), 38 (1986) [JETP Lett. 43, 48 (1986)].

17. H. L. Beeler and J. B. Gruber, Chem. Phys. 13, 359
(1976).

Translated by G. Skrebtsov



  

Physics of the Solid State, Vol. 47, No. 2, 2005, pp. 298–304. Translated from Fizika Tverdogo Tela, Vol. 47, No. 2, 2005, pp. 286–292.
Original Russian Text Copyright © 2005 by Gladki

 

œ

 

, Kirikov, Volk, Ivanova, Ivleva.

                              

MAGNETISM 
AND FERROELECTRICITY

             
Polarization Kinetics of a Photosensitive Relaxor Ferroelectric
V. V. Gladkiœ, V. A. Kirikov, T. R. Volk, E. S. Ivanova, and L. I. Ivleva

Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninskiœ pr. 59, Moscow, 119333 Russia
e-mail: glad@ns.crys.ras.ru

Received April 28, 2004

Abstract—Polarization switching in alternating quasi-static electric fields of frequency 10–4 Hz and polariza-
tion relaxation in dc fields were studied in a photosensitive La- and Ce-doped barium–strontium niobate relaxor
ferroelectric. Experimental data obtained in the thermal activation stage of the relaxation were used to recon-
struct the relaxation time distribution spectrum. The characteristics of the polarization kinetics of an illuminated
and a dark crystal are compared. It is shown that, in the crystal illuminated by light, the photoconductivity com-
pensates for random electric and depolarization fields, thereby giving rise to a growth in amplitude of the dielec-
tric hysteresis loops in the polarization versus field relation and to longer polarization relaxation times or
increased heights of the potential barriers separating stable states from metastable states. © 2005 Pleiades Pub-
lishing, Inc.
1. INTRODUCTION

Relaxor ferroelectrics (relaxors)—crystalline solid
solutions of lead magnesium niobate (PMN) [1] or bar-
ium–strontium niobate (SBN) [2]—are essentially dis-
ordered systems. Unlike the conventional uniform fer-
roelectrics, relaxors feature specific characteristics [3].
The phase transition to the polar state and the tempera-
ture-induced variations of all physical properties
undergo strong broadening at the phase transition
within a broad temperature range (the Curie region).
Quasi-static dielectric hysteresis loops exhibit clearly
pronounced anomalies in that their cycles are not
closed and do not reproduce one another, with repro-
ducible loop trajectories appearing only after a few
polarization switching cycles [4–7]. The coercive field
does not have a definite value and is distributed over the
crystal volume within a broad range of values [8]. The
relaxation time spectra measured under polarization
and depolarization are extremely broad and include
giant times [6–8]. The above specific dielectric proper-
ties of relaxors, which are a distinctive feature and a
measure of their structural disorder, may originate from
an internal electric field Ei distributed in a random man-
ner in direction and magnitude over a nonuniform crys-
tal [3]. These fields spread out the phase transition [1–
3], and the symmetric curve of the local free energy of
the crystal is distorted into an asymmetric double-mini-
mum curve [3] with parameters that are dependent on
the local values of Ei, which accounts for the observed
anomalies on the loops and polarization processes [6, 8].

The properties of a ferroelectric are known to
depend on depolarization field screening by free charge
carriers (equilibrium or not), i.e., on the electrical con-
ductivity [9]. In photosensitive relaxor ferroelectrics,
the screening of an internal field Ei distributed nonuni-
formly over the crystal volume should govern the spe-
1063-7834/05/4702- $26.00 0298
cific features of photoinduced effects. In the equilib-
rium state, Ei is naturally screened completely by the
equilibrium (dark) carriers. In a nonequilibrium state,
which may arise, for instance, under the action of an
external electric field or under photoexcitation, free
carriers produce an additional contribution, so the
kinetics of the polarization process should depend on
conductivity. Comparison of the polarization kinetics
of two SBN compositions with different dark conduc-
tivities [6] revealed that an increase in the conductivity
brings about a decrease in the polarization anomalies
and hysteresis loops typical of relaxors. There are indi-
cations that photoexcitation slows down depolarization
processes in the photosensitive SBN : Ce relaxor ferro-
electric [10]. Investigating the effect of photoconduc-
tivity on polarization kinetics in SBN crystals is of
interest not only from the standpoint of relaxor physics
but may also have application potential for hologram
recording, a process closely connected with the interac-
tion of polarization switching with the fields of space
charges generated in the course of hologram recording
[11–13].

This communication reports on a comprehensive
investigation of the effect of photoactive light on the
polarization kinetics of a Sr0.61Ba0.39Nb2O6 (SBN-0.61)
photosensitive relaxor ferroelectric codoped by La and
Ce ions.

2. CRYSTALS AND THE MEASUREMENT 
TECHNIQUE

An SBN crystal was grown by a modified Stepanov
method at the Institute of General Physics, Russian
Academy of Sciences [14]. The crystal was codoped by
1 wt % La2O3 and 0.1 wt % Ce2O3 in the melt, and the
impurity concentrations in the crystal, as measured by
© 2005 Pleiades Publishing, Inc.



        

POLARIZATION KINETICS OF A PHOTOSENSITIVE RELAXOR FERROELECTRIC 299

                                                                                                                                                            
a Comebax microprobe analyzer, were 0.44 at. % La
and 0.023 at. % Ce. The sample chosen for study was a
polished crystal plate measuring 3 × 2 × 0.9 mm. Silver
paste electrodes were fired onto the sample surface per-
pendicular to the polar direction along the shortest edge
(the Z axis). All measurements were carried out at room
temperature.

The crystal polarization P and its dependence on
time t and electric field E were derived from the magni-
tude of the charge Q measured with an electrometric
bridge by a high-precision compensation technique
described in considerable detail in [15]. The electric
charge Q that builds up on the crystal electrodes when
the bridge is balanced by a compensating voltage v (t)
can be written as

(1)

where Qc is the charge due to conductivity,

(2)

d is the sample thickness, S is the electrode area, σ is the
electrical conductivity, and C is a reference capaci-
tance. If the conductivity is low, then the second term in
Eq. (1), Qc, can be neglected, in which case all of the
measured charge will be associated with the change in
polarization P only. In the experiments reported on in
this communication, the conductivity exerts a signifi-
cant effect on the charge Q and, therefore, a correction
for the conductivity is necessary.

The charge Q was measured in three regimes,
namely, in an ac sawtooth quasi-static electric field
(dielectric hysteresis loops), under application of a dc
field (polarization relaxation), and with the dc field
removed (depolarization relaxation). The dielectric
hysteresis loops were measured by applying a sawtooth
voltage V varying within the range of +300 to –300 V
in steps multiple of 1 V at time intervals multiple of 1 s;
the maximum number of steps was 1200. Several polar-
ization switching cycles were measured. The relaxation
study was carried out by measuring the charge in inter-
vals of 0.25 to 1 min.

The electric charge Q building up on the electrodes
due to conductivity and the electrical conductivity of
the sample were estimated from the evolution of Q in
long-time measurements, i.e., under conditions where
the relaxation P practically stops and the time depen-
dence of Q, according to Eq. (2), is a straight line.

The effect of photoconductivity was studied with
white light generated by an OI-18 mercury lamp
equipped with an S3S14 filter (spectral interval 400–
700 nm) and having an output of 0.3–25 mW/cm2. To
preclude screening of the external field, the cross-sec-
tional area of the beam was chosen to be in considerable
excess of that of the crystal entrance plane. Figure 1 pre-
sents the absorption spectrum of the SBN-0.61 (La +
Ce) crystals studied; the broad absorption band stand-
ing out in the visible region of the spectrum derives

Q t( ) Cv t( ) P t( ) Qc,+= =

Qc
VStσ

d
-------------,=
PHYSICS OF THE SOLID STATE      Vol. 47      No. 2      200
from the photoactive Ce impurity. Estimates made from
measurements of the permittivity ε33 at 1 kHz under
illumination show that the increase in sample tempera-
ture caused by the absorption of light does not exceed
2°C; i.e., all the effects described below originate from
the contribution of photoconductivity rather than from
heating.

3. EXPERIMENTAL RESULTS

3.1. Quasi-Static Dielectric Hysteresis Loops

Figure 2 displays quasi-static dielectric hysteresis
loops measured under the application and removal of
illumination of different intensities. Switching on the
light strongly increases the crystal conductivity, which
provides a sizable contribution, given by Eq. (2), to the
measured charge density Qc. Because E varies in a saw-
tooth manner, i.e., grows linearly with t, E = E0t, up to
a maximum value Em = E0tm and subsequently falls off
also linearly with t, E = Em – E0t, the contributions Qc =
(Emtmσ/2)(E/Em)2 and Qc = (Emtmσ/2)(2 – E/Em)2 always
increase parabolically with increasing and decreasing
E, respectively. The total contribution accumulated in
one-half of the field period, 2tm = T/2, is Qc = Emtmσ,
and that for the next half-period is Qc = 0. For this rea-
son, the field dependence of the total charge Q(E)
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Fig. 1. Absorption spectrum of SBN-0.61 (La + Ce) crys-
tals.
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Fig. 2. Dielectric hysteresis loops of (a) charge Q and (b–d) polarization P in an SBN-0.61 (La + Ce) photosensitive relaxor ferro-
electric plotted vs. applied ac electric field E and measured under illumination and in the dark. Solid lines are trajectories obtained
in the dark. Dashed lines are obtained under illumination. Figures adjoining the curves identify the sequence of Q and P variation.
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within the intervals where the field E decreases is a bell-
shaped function. Knowing the sample conductivity σ,
one can calculate the dependence of the polarization
P(E) on field E. Estimates of σ from measurements of
Q in dc fields are presented below. The P(E) function,
as derived from data on Q (corrected for the conductiv-
ity), is shown graphically in Fig. 2b. The figures next to
the curves indicate the sequence of variation of Q and
P. The open circles identify the application of illumina-
PH
tion. Dashed lines plot the variation in Q and P of the
illuminated sample, and the solid lines, that of the dark
sample. The illumination power density is ~20 ±
5 mW/cm2, and the corresponding electrical conductiv-
ity of the sample is σ ~ 2 × 10–12 (Ω cm)–1. Figures 2c
and 2d display hysteresis loops measured with a differ-
ent sequence of switching the light on and off and at a
lower illumination power density of ~2 mW/cm2.
YSICS OF THE SOLID STATE      Vol. 47      No. 2      2005
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Polarization relaxation parameters

Process E,
kV/cm

I,
mW/cm2 a, min n

P0,
µC/cm2

Pe,
µC/cm2

σ,
Ω–1 cm–1 τm, min ∆τ,

min

Polariza-
tion

2 0 0.137 ± 0.006 0.083 ± 0.006 5.65 7.9 ± 0.1 2 × 10–14 0.127 ± 0.006 0.5

2 2 ± 1 6.2 ± 0.9 0.21 ± 0.08 7.22 19.7 ± 3.4 2 × 10–13 5.0 ± 1.1 16.5

2.8 0 0.2100 ± 0.0002 0.1040 ± 0.0002 6.85 0 0.1900 ± 0.0002 0.7

Depolar-
ization

2.8 2 ± 1 3.1 ± 0.1 0.350 ± 0.005 7.27 0 2.32 ± 0.08 7

5 2 ± 1 5.1 ± 0.3 0.46 ± 0.02 9.45 0 3.5 ± 0.2 10
All hysteresis loops follow a pattern characteristic
of relaxor ferroelectrics, which can be revealed using a
variety of methods [4–7, 16]. The trajectories of the
first several loop cycles represent unclosing and nonco-
incident curves with a decreasing amplitude; the hyster-
esis loops start to coincide and reproduce one another
only after a few polarization switching cycles. A com-
parison of the curves shown in Figs. 2a–2d shows con-
vincingly that, irrespective of the total time of cycling
in the dark and under illumination, the amplitude of the
hysteresis loop P(E) (polarization-switching ampli-
tude) increases under illumination and that this effect
becomes more enhanced as the intensity of illumination
increases (photoconductivity). The effect of photoac-
tive light on hysteresis loops in SBN : Ce was reported
in [10]to be qualitatively similar.

3.2. Polarization Relaxation in DC Electric Fields

Polarization relaxation of a relaxor ferroelectric in a
dc field occurs, as a rule, in two stages [6–8]; a fast
stage (a “jump”), which is primarily due to over-barrier
motion of domain walls in the crystal without a clearly
pronounced coercive field, and a slow (thermally acti-
vated) stage, with domain-wall motion through the bar-
riers separating the stable states from metastable states.

Analysis of the polarization relaxation in dc electric
fields and of depolarization following the removal of
the applied field can provide quantitative information
on the structure of the energy barriers between the
metastable and stable states in crystals. The height of
the barriers depends on several relaxation parameters.
The accuracy of determination of these parameters is
higher, the longer the time of relaxation measurement
[17]. As has been shown more than once for relaxor fer-
roelectrics [4–8], the kinetics of the slow polarization
P(t) following the thermal activation mechanism satis-
factorily follows a power law:

(3)

where P0 is the initial polarization; the equilibrium
polarization Pe and constants a and n are three indepen-
dent parameters. Equation (3) is an empirical power
law and apparently holds for various inhomogeneous

p t( )
Pe P t( )–
Pe P0–

----------------------
1

1 t/a+( )n
-----------------------,= =
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systems with nonexponential relaxation, because for
certain values of the parameters a and n this equation
coincides very closely with the analogous linear [18],
logarithmic [19], or power-law [18] relations observed
in earlier experiments. Unlike the well-known Kohl-
rausch law [18], the power-law relation (3), first, better
fits the relaxation observed over short times, where its
rate is the highest but finite, and, second, Eq. (3) corre-
sponds to a simple distribution function f(τ) for relax-
ation times τ, which is related to Eq. (3) through the
Laplace transform. Assuming the relaxation centers to
be independent, their contributions to the total polariza-
tion should be additive, with the dimensionless polar-
ization p(t) being a sum of exponentials,

If p(t) is a power-law function (3), then [20]

(4)

where Γ(n) is the gamma function. The function f(τ) is

normalized; i.e.,  = 1. More convenient for

use is a dimensionless normalized function g(τ) = τ f(τ),
which is the density of distribution of lnτ or of the bar-
rier energy U in the sample, because ln(τ/τ0) = U/kT,
where τ0 is a kinetic coefficient. The distributions of
these functions have maxima at τm = a/(1 + n) for f(τ)
and at τm = a/n for g(τ) [6].

Thus, the effects of illumination on the kinetics of
polarization and depolarization can be described in
terms of a variation in the barrier energy distribution
spectrum (or, which is exactly the same, in the relax-
ation time distribution spectrum). The free parameters
Pe, a, and n, as well as the conductivities and some
other characteristics, are listed in the table.

3.3. Analysis of the Polarization 
Relaxation Process

The polarization relaxation was measured in a dc
electric field E = 2 kV/cm in the dark and under illumi-
nation with a power density of ~2 mW/cm2. In the ini-
tial fast stage (jump in P), which lasted ~15 s, the polar-

p t( ) f τ( ) t/τ–( ) τ .dexp

0

∞

∫=

f τ( ) a
n
/Γ n( ){ } 1/τ( )n 1+

a/τ–( ),exp=

f τ( ) τd
0

∞∫
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ization relaxation was 5.65 and 7.23 µC/cm2 in the first
and second cases, respectively. Figure 3a illustrates the
effect of illumination on the slow polarization relax-
ation. Curves 1 and 4 plot the time variation of the mea-
sured charge Q under illumination and in the dark,
respectively. From the linear dependence of charge Q at
long times observed under illumination (curve 1), we
can estimate the photoconductivity σ using Eq. (2) and
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Fig. 3. (a) Relaxation of (1) measured charge Q, (2) the
charge generated by photoconductivity Qc, and (3, 4) polar-
ization P in a dc electric field E = 2.0 kV/cm and (b) relax-
ation time distribution spectra f(τ) of an SBN-0.61 (La +
Ce) relaxor ferroelectric measured with illumination
(4) removed and (1–3) turned on. (3', 4') Equilibrium values
of polarization Pe; t0 = 1 min. The inset shows spectra f(τ)
drawn on a time scale.
P

isolate the polarization variation P(t) from the experi-
mentally measured charge Q(t) by subtracting the
ohmic-current charge Qc (curve 2). Curve 3 in Fig. 3a is
a graphical representation of the P(t) relation obtained
in this way (by subtracting curve 2 from curve 1). The
experimental data amassed for the sample kept in the
dark were subjected to the same treatment. However,
due to the low dark conductivity σ, the P(t) graph
(curve 4) is almost identical to the experimental Q(t)
relation. Solid curves 3 and 4 in Fig. 3a are the fit of
Eq. (3) to the experimental data, and dashed horizontal
straight lines 3' and 4' plot the equilibrium values of
polarization Pe to which the P relaxation curves tend
asymptotically under illumination and in the dark,
respectively. Symbols I through IV refer to experimen-
tal data.

Figure 3b shows spectra f(τ) obtained for an illumi-
nated (curve 3) and an unilluminated (curve 4) sample;
the inset presents the same spectra redrawn on the time
scale. The half-width of the spectra is 16.5 and 0.5 min,
respectively.

3.4. Analysis of the Depolarization 
Relaxation Process

The depolarization was measured after application
of a field of 2.8 and 5 kV/cm to the crystal for 15 min.
Figure 4a plots the charge Q in the dark (curve 1) and
under illumination at I = 1 mW/cm2 (curve 2) measured
after polarization by a field of 2.8 kV/cm. Slow relax-
ation starts after a jump in P down to 6.85 and
7.97 µC/cm2 with the crystal in the dark and under illu-
mination, respectively. The accuracy of depolarization
measurements is high enough, because, in contrast to
the polarization kinetics in an external field, there is no
need to isolate the linear component of the ohmic-cur-
rent charge. The transient signal of a photovoltaic cur-
rent generated in a photosensitive medium under illu-
mination [9] has a very fast response time, which makes
its contribution to a measured charge negligible.

In Fig. 4a, symbols I and II refer to experimental
data and the solid lines are fits of the power-law time
dependence (3) to these data. The fit is extremely good.
The relaxation time distribution spectra f(τ) are dis-
played in Fig. 4b for the cases of the dark (curve 1) and
illuminated (curve 2) crystals; the inset shows the same
spectra presented on the time scale. Also given for com-
parison is a spectrum f(τ) derived from a depolarization
curve under illumination after application of a polariz-
ing field of 5 kV/cm (curve 3). The half-width ∆τ of the
distribution spectra drawn on the time scale is 0.7 min
for the unilluminated sample and 7 and 10 min for the
illuminated sample subjected to polarizing fields of 2.8
and 5 kV/cm, respectively. The shifts of the spectra
toward longer relaxation times for the two polarizing
fields are almost the same (curves 2, 3 in Fig. 4b). Note
that the depolarization process occurring under illumi-
nation is anomalous. Indeed, in most relaxor ferroelec-
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trics, the relaxation rate dP/dt of a dark crystal
decreases as the most probable relaxation time τm =
a/(1 + n) increases [6, 7]; in our case, the rate grows
with increasing τm, and this occurs, as can be readily
verified, primarily through an increase in the exponent
n in the power-law relation (3).

4. DISCUSSION

As follows from the table and Figs. 3 and 4, illumi-
nation increases the parameters Pe, a, and n in the
kinetic relation (3). The increase in the equilibrium
polarization Pe, which the P relaxation curve
approaches asymptotically under application of a given
dc field (curves 3,' 4' in Fig. 3a), implies that the crystal
volume involved in the polarization process grows
under illumination. This conclusion fits with the
increase in the switched charge under illumination, an
observation derived from the P(E) hysteresis loops
(Fig. 2). The spectra f(τ) broaden and shift toward
longer relaxation times τ; i.e., crystal regions with
longer times τ start to play a more active role in the
spectrum under illumination. As the light intensity
increases, the spectrum f(τ) grows in half-width. The
shift of the spectral maximum τm = a/(1 + n) toward
longer times should be assigned primarily to an
increase in a for a comparatively small increase in n.
Comparatively low light intensities (corresponding to a
change in conductivity by about an order of magnitude)
exert a pronounced effect on the relaxation time distri-
bution spectrum; indeed, the most probable relaxation
time τm for polarization and depolarization increases
from 10–20 s to a few minutes (see insets to Figs. 3b,
4b), the half-width of the spectrum likewise increases
by an order of magnitude, etc. The kinetics of depolar-
ization in SBN : Ce was reported in [10] to slow down
under illumination. Interestingly, despite the increase in
the time τ, illumination increases the polarization relax-
ation rate dP/dt, which can be traced to a considerable
increase in Pe in the case of polarization and an increase
in the exponent n in the case of depolarization.

The photoinduced effects observed to occur in
relaxor ferroelectrics can be qualitatively interpreted as
being due to screening of the nonuniformly distributed
internal field Ei by nonequilibrium carriers. Screening
gives rise to a slowing down of the polarization and
depolarization processes and to a “leveling off” of the
spatial variation in the redistributing field Ei, or, in other
words, to a weakening of asymmetry in the local free
energy. This weakens the “freezing” [4, 6] or “pinning”
[5] effects characteristic of relaxor ferroelectrics under
application of an external field, so the part of the crystal
volume involved in switching in the given field (i.e., the
equilibrium polarization Pe) increases. This increase is
accompanied by a shift of the spectrum f(τ) to longer
relaxation times and by a broadening of the spectrum.

One of the factors governing the effect of illumina-
tion is the dielectric relaxation (screening) time τs =
PHYSICS OF THE SOLID STATE      Vol. 47      No. 2      200
ε/4πσ. In particular, the relationship between the rate of
polarizing-field variation and 1/τs plays a certain role in
determining the shape of the P(E) loop. If the field vari-
ation rate is much slower than 1/τs, the screening comes
to an end and the internal-field distribution does indeed
level off. Accepting rough estimates of τs for the inten-
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Fig. 4. (a) Depolarization relaxation and (b) depolarization
spectra f(τ) of an SBN-0.61 (La + Ce) relaxor ferroelectric
measured with illumination (1) removed and (2, 3) turned
on. The preliminary polarization electric field E is equal to
(1, 2) 2.8 and (3) 5 kV/cm; t0 = 1 min. The inset shows spec-
tra f(τ) drawn on a time scale.
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sities employed (on the order of a few minutes and tens
of seconds for I = 2 and 20 mW/cm2, respectively), we
find that, for the higher intensity, complete screening of
Ei takes place and the illumination effect is very pro-
nounced. These qualitative considerations suggest that,
when measuring P(E) loops at higher frequencies, the
effect of nonequilibrium conductivity should be less
noticeable.

4. CONCLUSIONS
Experiments involving the effect of light on polar-

ization have indicated that photoconductivity plays an
essential part in these processes. The increase in the
polarization switching amplitude observed to occur
under illumination should be considered another argu-
ment for the existence in relaxor ferroelectrics of a ran-
domly distributed internal electric field, which
decreases when the nonuniform polarization is
screened. The increase in the polarization relaxation
time in dc electric fields under illumination provides
more proof that polarization screening favors a
decrease in the depolarizing electric fields, which are
one of the reasons for the rearrangement of the crystal
domain structure.
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Abstract—The electro-optical coefficients rij and half-wave voltage Vλ/2 of strontium–barium niobate crystals
poled in the ferroelectric phase are shown to vary along the polar axis. The rij(z) and Vλ/2(z) dependences indi-
cate the presence of a residual domain density D(z) and clearly depend on the sign of the polarizing field, with
rij being minimum (D being maximum) near the negative electrode. This character of the D(z) distribution and,
hence, the rij(z) and Vλ/2(z) coordinate dependences can be explained by predominant domain nucleation near
the negative electrode, which is revealed when the switching processes are studied using 90° (Rayleigh) light
scattering from domain walls. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Ferroelectric crystals of SrxBa1 – xNb2O6 (SBN-x)
solid solutions have high optical properties and, there-
fore, are promising for various optical applications [1].
For example, SBN-0.75 and SBN-0.61 : (Ce,La)
exhibit extremely high electro-optical coefficients: r33 =
1240 [1] and 1000 pm/V [2], respectively. In certain
compositions, the two-beam coupling gain factors are
high (Γ ≥ 20 cm–1 in SBN-0.61 : Ce [3] and SBN-0.61 : Cr
[4]), which makes these materials attractive for
dynamic photorefractive holography. The high values
of nonlinear optical coefficients [5] and comparatively
low coercive fields (~1 kV/cm) have motivated a search
for ways to create regular domain structures based on
these materials in order to convert optical frequencies
in the quasi-phase-matching mode [6] (true phase
matching cannot be realized in SBN due to the small
birefringence).

However, the irreproducibility of the parameters
mentioned above and the large scatter of their values
given in the literature complicate the practical applica-
tion of SBN crystals. These negative factors correlate
with the anomalies of the ferroelectric properties
detected in SBN crystals, in particular, with the degra-
dation of dielectric P(E) hysteresis loops (a decrease in
the loop amplitude during sequential field reversal) [7,
8] and with the coercive field that is widely distributed
in value over the volume of an SBN crystal [9]. These
anomalies are undoubtedly caused by the specific fea-
tures of the SBN structure (disordering due to the
unfilled one-sixth fraction of A-cation positions in the
tetragonal potassium–tungsten bronze structure [1]),
1063-7834/05/4702- $26.00 0305
which are responsible for the relaxor properties of this
SBN solid solution [10]. However, in spite of this major
cause of the negative qualities of SBN crystals, it is
worthwhile to search for methods for optimizing and
controlling their properties.

The goal of this work is to analyze the electro-opti-
cal (EO) properties of SBN crystals and their relation to
switching processes and to the dynamics of the domain
structure, studied using 90° (Rayleigh) scattering by
domain walls.

2. EXPERIMENTAL

2.1. Crystals

SBN crystals were grown using the modified
Stepanov method at the Institute of General Physics,
Russian Academy of Sciences [11]. We studied the
following compositions: SBN-0.75, SBN-0.61, SBN-
0.61 : 0.1 wt % Ce (SBN-Ce), SBN-0.61 : (0.1 wt % Ce,
1 wt % La) (SBN-Ce,La), and SBN-0.61 : 0.01 wt % Cr
(SBN-Cr). The last three compositions have applica-
tions as holographic materials [2–4]. The samples were
optically polished plates of different shape. We used a
silver paste for the electrodes. The EO coefficients were
measured in samples less than 2.5-mm thin (in the
beam propagation direction), since such measurements
in thicker crystals are difficult to perform because of the
high values of rij. Optical elements with linear dimen-
sions of about 10 mm were used to measure half-wave
voltages Vλ/2.
© 2005 Pleiades Publishing, Inc.
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2.2. Electro-Optical Methods

Linear EO coefficients rij are defined by linearizing
the quadratic EO coefficients [12] and can be expressed
as

(1)

, (2)

where Ps is the spontaneous polarization and gij are the
coefficients of a quadratic EO effect in the centrosym-
metric phase. It is obvious from Eqs. (1) and (2) that the
r(E) dependence looks as a hysteresis loop. In a multi-
domain crystal, the effective coefficient r is less than r0,
where r0 is the EO coefficient in a single-domain crys-
tal. In this work, we normalized the r(E) loop to ±1 by
dividing r into r0(E = 0); r0 was taken to be the maxi-
mum value of the EO coefficient in the given crystal
even if this value was reached only once. The half-wave
voltages are defined as 

(3)

(for d/l = 1, where d and l are the sample dimensions).
As follows from Eqs. (1)–(3), Vλ/2 has a hysteretic field
dependence.

A convenient parameter characterizing the depen-
dence on the domain structure of a crystal is the domain
density D. Let ν+ and ν– be the volumes of “plus” and
“minus” domains, respectively. Then, we have ν+ + ν– =
ν, where ν is the crystal volume. For example, a posi-
tive domain density in a negative matrix is D+ = ν+/ν
and an EO signal is related to the volume degree of
polarization as r/r0 = (ν– – ν+)/ν; that is, we have a lin-
ear relation

(4)

As D increases, r decreases and Vλ/2 increases. Thus,
any changes in r and Vλ/2 caused by the application of a
field to the crystal can be interpreted as a change in the
domain density D (under the assumption that r0 =
const). The r(z) and r(x, y) distributions obtained with a
beam scanned along the crystallographic directions
give one- and two-dimensional D+ or D– distributions,
respectively.

The EO coefficients and half-wave voltages were
measured with a He–Ne laser at λ = 633 nm. The EO
coefficients were measured using a dynamic method
with a high phase sensitivity (2π × 10–6). An EO signal
was excited by an ac measuring field with an effective
strength of 6 V/cm and a frequency of 1000 Hz (the
case of an unclamped crystal). A sawtooth field E with
a period of 27 min and an amplitude of ±5.6 kV/cm,
which is higher than |Ec | ≤ (2.0–2.5) kV/cm, was
applied to a crystal. As noted above, the r(E) depen-
dence normalized to ±1 has the form of a hysteresis
loop, whose shape in saturation differs slightly from
that of saturated loops of dielectric P(E) hysteresis due

r33 2g33Psε33ε0,=

r13 2g13Psε33ε0=

Vλ /2 λ /r0ne
3( )d/l=

r/r0 1 2D
+
.–=
P

to the contribution from the quadratic EO effect [which
results in a descending, almost linear r0(E) depen-
dence]. To determine the spatial distribution of the EO
coefficients, we scanned a sample using a thin (0.1 mm
in diameter), almost parallel beam. We used the trans-
verse geometry (E || z, k ⊥  z) to measure the linear EO
coefficient,

(5)

The corresponding values of Vλ/2 were measured using
a standard polarization-optical technique. Investiga-
tions were carried out using a dynamic method and a
sinusoidal 50-Hz field in the transverse geometry
(E || z, k ⊥  z); the polarization vector of light made an
angle of 45° with the directions of crossed polarizers.

2.3. Method of 90° Scattering
of Light by Domains

SBN crystals exhibit significant 90° scattering of a
laser beam propagating perpendicular to the polar axis
[13–15]. The scattering intensity decreases sharply
after poling the crystal or in the paraelectric phase [14];
the characteristics of scattering dynamics in pulsed
fields correlate with the kinetic characteristics of pulsed
switching [15]. Thus, 90° light scattering is related to
the presence of domains and can serve as a tool for
studying their dynamics. Scattering centers are domain
walls that are regions having nonuniform refractive
indices ni. A domain wall can be considered a local
sandwich-like nonuniformity of ni [16]. If the wave
vector ki of the incident light is normal to the polar axis,
then the wave vector of light partially reflected by a
domain wall is kr = ki + 2(kiqm)qm, where qm is the unit
normal vector to the domain wall [15]. If the refractive
index increases by dn and the wall area is dA, then the
amplitude of the reflected light is[15]

(6)

where H is the domain-wall thickness (for |ki |H ! 1).
By integrating dEr, we find that the 90° light-scattering
intensity depends on three factors, namely, the mean
domain-wall thickness, the variation δn in the wall
region, and the total area of the walls in the illuminated
volume. In a first approximation, we assume that the
wall thickness and δn depend only weakly on the
applied field; therefore, the light-scattering intensity is
considered to be proportional to the total domain-wall
area, i.e., the domain density and size.

The method of measuring 90° light scattering allows
us to probe a volume using a thin beam, which makes it
possible to study the spatial distribution of processes
related to the domain dynamics. In this work, we study
the spatial distribution of the domain density by apply-
ing pulsed switching fields to a crystal. The following
geometry was used: a focused He–Ne laser beam (λ =
633 nm) was propagated along a direction (x or y axis)

rc r33 n0/ne( )3
r13– .=

dEr Ei ki H
dn
2n
------dA,=
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normal to the polar axis, and the scattered light was
recorded in an orthogonal direction (y or x axis, respec-
tively) using a diaphragm located immediately behind
a sample. In other words, only a small fraction of the
scattered light was separated. The incident beam was
polarized parallel to the ||z axis, and the scattered beam
passed through an analyzer that was also parallel to the
||z axis [the so-called x(zz)y or y(zz)x configuration].
The incident light intensity did not exceed 0.05 W/cm2

in order to avoid photorefraction in an applied field.
Along the polar axis, field pulses with a pulse rise time
of 1 µs and a pulse duration of 4–20 µs were applied.

Figure 1 shows an example of the light-scattering
kinetics (curve 1) when a field pulse was applied
(curve 2). The light-scattering intensity was measured
in the case where a field pulse train with a constant
polarity, a constant pulse period-to-pulse duration ratio,
and an increasing amplitude were applied along the z
axis (see inset to Fig. 1). As can be seen from Fig. 1, the
application of a field pulse is accompanied by a change
in the light-scattering intensity by ∆I = Is – Ib, where Is

and Ib are the light intensities in a field and in the
absence of a field, respectively (at E = 0, there always
exists a certain background scattering intensity Ib ≠ 0,
which is mainly related to crystal inhomogeneity).
Hereafter, +∆I and –∆I are an increase and a decrease,
respectively, in the light intensity with respect to Ib. The
∆I(t) dependence is substantially delayed with respect
to the pulse front. If the variation in scattering were
partly caused by a change in the refractive indices in

antiparallel domains due to the EO effect,  = nO ±

(1/2) r13E3 (where nO and  are the ordinary refrac-
tive indices in the absence and in the presence of a field
E3, respectively), then there would be a scattering com-
ponent that is synchronous with the pulse rise. The
absence of this component indicates that the contribu-
tion from the EO effect is small and that the light-scat-
tering kinetics ∆I(t) associated with the application of a
field can only be related to the domain dynamics [15].
The ∆I(E) distributions in the bulk of a crystal were
used to make a qualitative in-situ estimation of the
domain-density distribution D(z) in an applied field.

3. EXPERIMENTAL RESULTS

3.1. Results of the Electro-Optical Measurements

The spatial distributions of the EO coefficient and
Vλ/2 were studied in the as-grown crystals poled by an
applied field E > Ec at room temperature. Figure 2
shows the distributions of the EO signal along the polar
(001) and nonpolar (110) directions in an SBN-0.61
crystal polarized in a field of 5.6 kV/cm. The upper and
lower curves in Figs. 2a and 2b were obtained after pol-
ing in fields opposite in sign. The points indicate exper-
imental results, and the solid lines are the results of
independent linear regression. For the (001) direction

nO
E

nO
3

nO
E

PHYSICS OF THE SOLID STATE      Vol. 47      No. 2      200
(Fig. 2a), scanning was performed approximately along
the central axis of the sample. For the (110) direction
(Fig. 2b), we conducted scanning at the three fixed z
values given in Fig. 2a. We could not reach complete
poling of the SBN crystals: in all cases, we have r/r0 <
1, which indicates that there is a residual domain den-
sity.

As follows from Fig. 2a, the EO coefficient depends
almost linearly on the z coordinate and the rc(z) depen-
dence is reversed (drc/dz changes sign with respect to
the coordinate system) when the sign of the polarizing
field changes. Thus, the gradient of the EO coefficient
along the z axis results from the application of the field
rather than from possible growth causes (e.g., from a
smooth change in the composition). This means that the
field causes a stable linear distribution of the residual
domain density along the polar axis. The domain den-
sity is always maximum (the EO coefficient is mini-
mum) near the negative electrode (Fig. 2a).

In the nonpolar direction, rc(x) tends to decrease
near the lateral faces of the crystal (Fig. 2b). Since the
linear dimensions of the sample in this direction are sig-
nificantly smaller than the diameter of the crystalline
boule grown, the decrease in rc (an increase in the
domain density) is again not related to growth causes
and is caused by the properties of the lateral surfaces
(apparently, by the character of their mechanical treat-
ment). The domain-density spikes observed in rc(x)
(Fig. 2b) and correlated in the z coordinate (Fig. 2a) and
their size and polarity can be compared to the well-
known stria-type macrodefects [1].

The spatial distributions of Vλ/2 are qualitatively
similar to those of the EO coefficients. Figure 3 shows
the Vλ/2 distributions in an SBN-0.61 : Cr crystal
obtained after a field E = 7 kV/cm was applied for 14 h
at room temperature. As is seen from Fig. 3, complete
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Fig. 1. Example of the scattering intensity kinetics (curve 1)
induced by a Π-shape pulse (curve 2). Solid line 1 is a fitting
of ∆I(t) by an exponential function. The inset shows the
shape of the field pulse train used.
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Fig. 2. Spatial distributions of the EO signal along (a) the
polar [001] and (b) nonpolar [110] directions in an SBN-
0.61 crystal poled in a field of 5.6 kV/cm at room tempera-
ture. (a) The upper and lower curves correspond to two
directions of the poling field; the “+” arrow points to the
electrode with a positive potential on the z axis. (b) Straight
lines 1–1', 2–2', and 3–3' show scanning lines along the non-
polar direction. Curves 1–3 and 1'–3' in panel (b) are con-
structed for the three fixed z coordinates that are shown in
panel (a) and correspond to the upper and lower branches,
respectively, of the EO hysteresis loop shown in Fig. 4.
poling is not achieved even under such severe condi-
tions, since there is a nonuniform Vλ/2 distribution along
the z axis, which indicates the presence of a residual
domain density. Similar Vλ/2(x, z) distributions were
obtained in SBN-Ce and SBN-Ce,La crystals. The
dependence of the Vλ/2 distribution on the field sign is
identical to that of the EO coefficient: Vλ/2 is always
maximum (the domain density is maximum) near the
negative electrode. The nature of this dependence will
be explained in terms of the domain dynamics, which
was studied by measuring the intensity of 90° light
scattering and is described in the next subsection.

EO hysteresis loops degrade (their amplitudes
decrease) during sequential cycling in a field. Figure 4
shows the variation of EO hysteresis loops in an as-
grown SBN-0.61 crystal in sequential half-cycles of
switching by a sawtooth voltage and with a change in
the sawtooth-voltage amplitude from ~Ec to ~2Ec. The
degradation of hysteresis loops (fatigue) in a strong
field, which was detected by other optical [17, 18] and
electrical [7, 8] methods in SBN crystals of various
compositions, is a fundamental property of relaxor fer-
roelectrics.

3.2. Results of 90° Light-Scattering Measurements

The field dependences of the light-scattering inten-
sity were measured in multidomain crystals after
annealing in the paraelectric phase followed by slow
cooling to the ferroelectric phase. Figure 5 shows the
field dependence of the light-scattering intensity ∆I in
an SBN-0.75 crystal. The right-hand and left-hand
branches of the curve were obtained for field pulse
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Fig. 3. Spatial distribution of the half-wave voltage Vλ/2 in
an SBN-Cr crystal after poling in a field E = 7 kV/cm for
14 h at room temperature. The symbols “+”and “–” indicate
the signs of the potentials applied to the electrodes.
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trains (Fig. 1, inset) of opposite polarities (the field
signs “+” and “–” are unambiguously set in the crystal
holder irrespective of the crystal). Before each applica-
tion of a field pulse train of a certain sign, the crystal
was annealed in the paraelectric phase; that is, the +E
and −E branches of the ∆I(E) curve were constructed
under identical conditions in the initially multidomain
crystal. Without focusing on analyzing the ∆I(E) curve
(which was made in [15]), we note that the main feature
of this dependence is the existence of threshold fields

 at which the scattering intensity increases sharply
and ∆I(E) passes through maxima. The +E and –E
branches are asymmetric; more specifically, the fields

 and  and the corresponding maximum values
of ∆I(E) are somewhat different. Since ∆I is assumed to

characterize the domain-wall area, the fields  have
the meaning of the coercive field Ec. Indeed, the aver-
age value of Emax (~2 kV/cm) in SBN-0.75 correlates
with Ec ~ 1.5–2.0 kV/cm estimated from a quasi-static
P(E) hysteresis loop for the same SBN-0.75 crystal [9,
15]. The same ∆I(E) dependences and similar values of
Emax and Ec have been observed in other SBN composi-
tions [15]. In terms of ferroelectricity, the shape of the
∆I(±E) curve means a weak response of the initial
domain structure to a field |E | < |Emax | and a sharp
increase in the domain-wall area followed by its
decrease at |E | ≥ |Emax |. The difference in the values of

 and  characterizes the unipolarity of a crys-

tal. We will refer to the quantity Eb = (|  – |)/2
as the bias field. For SBN-0.75, this field is Eb ≈
0.3 kV/cm, which agrees well with Eb measured by the
ordinary method from the P(E) loop for the same crys-
tal. Unipolarity in the multidomain state is characteris-
tic of SBN crystals [7, 9] and is caused by their relaxor
properties.

In essence, the ∆I(E) dependence is identical to the
field dependence of the switching current is(±E)). In
this connection, we should emphasize the radical dif-
ferences between the pulsed switching (polarization) of
SBN crystals and the model scenario [19]. In [20, 21],
switching currents were studied in SBN crystals and it
was found that the application of short pulses with
much higher amplitudes than Ec led to switching (polar-
ization) of only an insignificant portion of the crystal
volume; its complete repolarization (polarization)
requires pulses as long as tens of seconds. Therefore, in
our case (when the pulse durations fall in the millisec-
ond range), the ∆I(E) maxima correspond to polariza-
tion of a very small portion of the volume; i.e., the
switched charge is Qs ! Ps [20, 21].

The probing of the central zone of this crystal along
the nonpolar axis revealed virtually identical ∆I(E)

dependences with a small scatter of the  values
(Fig. 5). However, the character of the ∆I(E) depen-

Emax
±

Emax
+

Emax
–

Emax
±

Emax
+

Emax
–

Emax
+

Emax
–

Emax
±
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dence changes qualitatively as we approach the elec-
trodes. Figure 6 shows the ∆I(E) curves constructed at
a distance of about 0.5 mm from the top electrode
(curve 1) and from the bottom electrode (curve 2) for
the same SBN-0.75 sample [see inset (a) to Fig. 6]. The
∆I(±E) branches were again obtained under identical
conditions after annealing of the crystal in the paraelec-
tric phase before the application of a field pulse train of
the same polarity. As is seen from Fig. 6, the ∆I(±E)
dependences are sharply asymmetric in both near-elec-
trode spaces. When a positive potential is applied to an

–5 kV/cm 5 kV/cm

r/r01
35

7
9

Fig. 4. Degradation of EO hysteresis loops in an SBN-0.61
crystal upon switching by a sawtooth voltage. Numbering
corresponds to half-cycles, and some curves are omitted.

–6 –4 –2 0 2 4 6
E, kV/cm

–2

2

4

6

8

10

12
∆I, arb. units

Fig. 5. Dependence of the 90° light-scattering intensity in a
multidomain SBN-0.75 crystal on the filed pulse amplitude
(the shape of the pulse trains of two polarities applied to the
crystal is shown in the inset to Fig. 1). The dependence is
obtained in the central zone of the crystal.
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electrode, the ∆I(+E) dependence qualitatively resem-
bles the analogous curve in the central zone of the crys-

tal (Fig. 5) and  agrees with the average value of

. In contrast, when a negative potential is applied
to an electrode (the left-hand branches of the curves in
Fig. 6), ∆I passes through a weak maximum and contin-

ues to increase smoothly with increasing E > 
without exhibiting a tendency toward decreasing or lev-
eling off. It should be noted that the character of the
∆I(E) dependence near the electrodes is unambiguously
determined by the electrode polarity: a smooth increase
in ∆I(E) is always observed near the negative electrode.
The asymmetry of the ∆I(±E) curves in the near-elec-
trode spaces indicates that, when a field is applied, the
domain-wall area (the domain density D) near the neg-
ative electrode is always greater than that near the pos-
itive electrode. This means that domains nucleate
mainly near the negative electrode [this process is
shown schematically in inset (b) to Fig. 6]. Such asym-
metry of the domain nucleation is characteristic of cer-
tain ferroelectrics; for example, in LiNbO3, the appear-
ance of domains in lower fields was also detected near
the negative electrode [22]. The causes of this asym-
metric domain nucleation are obviously related to the
difference between the surface layers at the “+” and “−”
ferroelectric surfaces.

4. DISCUSSION OF THE RESULTS

It will be recalled that all the results presented above
were obtained for crystals polarized by a field E > Ec in

Emax
+

Emax
±

Emax
±
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(a) (b)
–

+
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Fig. 6. Dependence of the 90° light-scattering intensity in a
multidomain SBN-0.75 crystal on the field pulse amplitude
in near-electrode spaces. Curves 1 and 2 correspond to the
points shown in inset (a) (near the top and bottom elec-
trodes, respectively). Inset (b) schematically shows the pro-
cess that occurs during the application of field pulses; spe-
cifically, predominant domain nucleation occurs near the
negative electrode, which is the cause of the increase in
∆I(−E) observed in curves 1 and 2.

1 2
P

the ferroelectric phase (at room temperature). The mea-
surements show that this poling mode in the ferroelec-
tric phase (even under very severe conditions) results in
gradients of rc and Vλ/2 along the polar axis, i.e., in a
residual domain-density distribution. There is a clear
relationship between the rc(z) and Vλ/2(z) distributions
and the sign of the polarizing field: the minimum rc and
the maximum Vλ/2, i.e., the maximum residual domain
density D, are observed at the negative electrode. This
relationship is explained by the predominant domain
nucleation at the negative electrode, which was
revealed by studying the domain density D(z) using 90°
light scattering (Fig. 6). The smooth increase in ∆I(–E)
observed with increasing pulse amplitude (Fig. 6, left-
hand branches) can be explained qualitatively as fol-
lows. SBN crystals have needlelike domains, namely,
tetrahedral pyramids that have a cross-sectional dimen-
sion of several microns, a length of 0.2–0.5 mm, and an
apex angle of about 0.5° [23–25]. When a field is
applied, their frontal growth is predominant and the
stage of the lateral motion of domain walls and the coa-
lescence of domains is weakly pronounced [25]. Thus,
as the field amplitude increases, the nucleation and sub-
sequent frontal growth of needlelike domains into the
bulk occur near the negative electrode. Therefore, the
domain-wall area (and, hence, ∆I) increases. Near the
positive electrode, the domain density remains
unchanged under the action of fields of the same ampli-
tude (the right-hand branches of the ∆I(E) curves in
Fig. 6). This situation is shown schematically in inset
(b) to Fig. 6. The domain-density distribution with a
maximum near the negative electrode exists even after
very long field actions (Fig. 3); that is, D(z) does not
level off. The shape of the EO hysteresis loops (Fig. 4)
also indicates the presence of a “superslow” switching
(or polarization) component under fields E > Ec with a
lifetime of up to several hours. Even after such a long
field effect, we have r/r0 < 1.

Anomalously long polarization times of SBN crys-
tals are a fundamental property of relaxor ferroelectrics
[7]. In contrast to ordinary ferroelectrics [19], the polar-
ization kinetics of such crystals (reaching a quasi-equi-
librium state that corresponds to the applied field) is
described by the power law [7]

(7)

with characteristic times specified by the potential-bar-
rier distribution [the distribution of internal fields char-
acteristic of an inhomogeneous (relaxor) ferroelectric].
These times can reach giant values [7], which means
that a crystal cannot be completely poled within reason-
able real times with a polarizing field applied in the fer-
roelectric phase. Along with this major cause, such long
polarization times can be partly accounted for by the
difficult frontal growth of domains with tilt walls in
crystals with high values of piezoelectric coefficients.

Thus, the distributions of EO coefficients and Vλ/2 (z)
along the polar axis in SBN crystals, i.e., the presence

p t( ) 1/ 1 t/a+( )n
=
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of a residual domain density near the negative electrode
after a field has been applied in the ferroelectric phase,
are caused by a few factors: the appearance of domains
only near the negative electrode over a wide range of
fields E > Ec, specific domain dynamics (predominant
frontal growth in the field), and extremely long polar-
ization times. The coordinate dependence of the EO
coefficients in SBN crystals and the degradation of their
values when a field is repeatedly applied are likely to be
the main causes of their irreproducibility and the scatter
of their reported values.

5. CONCLUSIONS
When a field is applied to SBN crystals in the ferro-

electric phase, domains nucleate and grow predomi-
nantly near the negative electrode over a wide range of
fields E > Ec. A residual domain density D(z) is retained
after a very long effect of the field. Therefore, all SBN
crystals poled in the ferroelectric phase always exhibit
coordinate dependences of the electro-optical coeffi-
cients rij and the half-wave voltage Vλ/2 along the polar
axis. The rij(z) and Vλ/2(z) distributions follow the D(z)
distribution and are determined by the sign of the polar-
izing field; more specifically, rij is minimum (Vλ/2 is
maximum) near the negative electrode. Note that 90°
light scattering can be used effectively to track switch-
ing processes in local volumes of ferroelectrics, as was
demonstrated in this work.
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Abstract—The relaxation rates of thermal and high-frequency longitudinal phonons are calculated using an
anisotropic-continuum model. Three-phonon scattering mechanisms (L  L + L, L  T + L) for the
phonon relaxation are considered. Anisotropic anharmonic phonon scattering in cubic crystals is described in
terms of the second- and third-order elastic moduli. The parameters determining the longitudinal-phonon relax-
ation rates are found for germanium, silicon, and diamond crystals. The long-wavelength limit and the transition
to the isotropic-medium model are considered, and the dependences of the relaxation rates of thermal and high-
frequency phonons on temperature and phonon wave vector are analyzed for these crystals. © 2005 Pleiades
Publishing, Inc.

          
1. INTRODUCTION

Understanding the phonon relaxation mechanisms
operating in anharmonic scattering processes is of
importance in studying the lattice thermal conductivity
of crystals [1] and kinetic effects, such as the attenua-
tion of ultrasonic waves [2] and the electron–phonon
drag thermopower [3]. Experimental studies of the iso-
tope effects in the thermal conductivity of germanium,
silicon, and diamond [4–8] and theoretical analysis of
the results obtained [9, 10] have shown that normal pro-
cesses (N processes) of phonon–phonon scattering are
important in the lattice thermal conductivity of isotopi-
cally enriched and chemically pure crystals. These pro-
cesses (conserving the energy of colliding phonons)
and boundary phonon scattering are the main mecha-
nisms that limit the maximum values of the thermal
conductivity of isotopically highly enriched crystals
[9, 10].

In calculating the thermal conductivity using the
relaxation method [4–12], the phonon relaxation rates
in N processes are usually found within the long-wave-
length approximation, zqλ = "ωqλ /kBT ! 1, where "ωqλ
is the energy of a phonon with wave vector q and polar-
ization λ. The application of this approximation for cal-
culating the attenuation of long-wavelength ultrasonic
waves and the electron–phonon drag thermopower is
well founded, because the electrons in semiconductor
crystals can interact with long-wavelength phonons
only. However, the lattice thermal conductivity of Ge
and Si crystals with a natural isotopic composition is
mainly due to thermal phonons with zqλ ≈ 1, while that
of isotopically enriched crystals is dominated by ther-
mal phonons with zqλ ≈ 2–4. Therefore, the long-wave-
length approximation to phonon relaxation rates cannot
be used to calculate the thermal conductivity. In the
1063-7834/05/4702- $26.00 0312
relaxation method, the parameters that characterize the
intensity of anharmonic processes are theoretical
parameters and are determined by fitting the calcula-
tions to the experimental data [4–12]. To estimate the
probability of anharmonic scattering processes, the iso-
tropic-medium model is usually used. However, this
model is inadequate for germanium, silicon, and dia-
mond crystals, as well as for extensively studied cubic
crystals, such as InSb, GaAs, and CaF2, which exhibit
significant elastic anisotropy characterized by the sec-
ond- and third-order elastic moduli.

The objective of our study is to determine the
phonon relaxation rates due to anharmonic scattering
processes from the experimental data on the second-
and third-order elastic moduli. By determining the
dependences of the phonon relaxation rates on temper-
ature and phonon wave vector in Ge, Si, and diamond
crystals, we can, first, find the absorption coefficients
for both long-wavelength (zqλ ! 1) and high-frequency
(zqλ @ 1) ultrasonic waves and, second, specify the
dominant thermal-phonon relaxation mechanisms and
avoid the necessity of fitting the two parameters of the
theory when calculating the thermal conductivity of
these crystals.

In this paper, we consider the longitudinal-phonon
relaxation due to anharmonic scattering processes in
cubic crystals. In Section 2, the elastic energy of a cubic
crystal is expressed in terms of the second- and third-
order elastic moduli. This energy determines the prob-
abilities of various anharmonic three-phonon scattering
processes. In Section 3, we calculate the rates of relax-
ation of thermal and high-frequency longitudinal
phonons via the L  L + L and L  T + L processes
in cubic crystals. The formulas obtained make it possi-
ble to determine the rates of longitudinal-phonon relax-
© 2005 Pleiades Publishing, Inc.
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Table 1.  Thermodynamic elastic moduli of Ge, Si, and diamond (in units of 1012 dyn/cm2)

c11 c12 c44 c111 c112 c123 c144 c155 c456

Ge 1.289 0.483 0.671 –7.10 –3.89 –0.18 –0.23 –2.92 –0.53

Si 1.657 0.638 0.796 –8.25 –4.51 –0.64 0.12 –3.10 –0.64

Diamond 10.76 1.25 5.758 –62.6 –22.6 1.12 –6.74 –28.6 –8.23
ation due to anharmonic scattering processes from the
experimental data on the elastic moduli. The depen-
dences of the phonon relaxation rates on temperature
and phonon wave vector in germanium, silicon, and
diamond crystals are analyzed in Section 4. The long-
wavelength limit and the transition to the isotropic-
medium model are considered. The results obtained in
this work are compared with earlier results obtained
within the isotropic-medium model.

2. THE ELASTIC ENERGY 
OF THE CUBIC CRYSTAL

The expression for the elastic energy of a cubic crys-
tal was obtained in [13] (see also [14]) to terms of the
third order in the strain tensor ηij. We transform that
expression in much the same way as was done in [15],
within the isotropic-medium model. Since the experi-
mentally determined quantities in [16–19] were the
thermodynamic third-order elastic moduli cijk, we use
the normalization of the moduli cijk introduced by Brug-
ger [20]. In this case, the expression for the elastic
energy density derived in [13] can be written in the fol-
lowing form convenient for calculations:

(1)
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(2)
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The relationships between the thermodynamic moduli

cijk and the normalized moduli  used by Birch [13]
are

(3)

It should be noted that in [19] the coefficient indicated
in the relationship between the thermodynamic modu-
lus c456 and the corresponding modulus used by Birch
is erroneous, 1/8 (see also [20, 21]). The normalized
moduli used by Tucker and Rampton [15] are

(3a)

The second- (cik) and third-order (cijk) elastic moduli of
Ge, Si, and diamond crystals are listed in Table 1.

The strain tensor ηik can be expressed in terms of the
distortion tensor ξik [22] as

(4)

Substituting Eq. (4) into Eq. (1) gives
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The terms cubic in ξik in Eq. (5) account for interaction
between phonons. It follows from Eq. (5) that, due to
the nonlinear coupling between the strain tensor ηik and
the distortion tensor ξik, the phonon relaxation involves
not only the third-order elastic moduli but also the sec-
ond-order elastic moduli. Let us consider the transition
from the elastic energy of the cubic crystal to the elastic
energy of the isotropic medium Wiso, whose expression
was derived in [15, Eq. (4.6)]. From the condition
∆W = Wk – Wiso = 0, we find that

(6)

Let us write the displacement of a particle in the
standard form [15]:

(7)

where  and bqλ are the phonon creation and annihi-
lation operators, respectively; ρ is the density; V is the
normalization volume; e is the polarization vector; and
ωqλ is the frequency of a phonon with wave vector q
and polarization λ. It is seen from Eq. (7) that each ten-
sor component ξij is characterized by the coefficient
eiqj. Substituting Eq. (7) into Eq. (5) gives the follow-
ing expression for the anharmonic contribution to the
energy density of lattice vibrations:
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Table 2.  Elastic moduli ∆C, , , and  of Ge, Si,

and diamond (in units of 1012 dyn/cm2)

Ge Si Diamond

∆C –0.54 –0.57 –2.01

–1.63 –1.9 –5.4

–3.25 –4.1 –10.24

28.01 32.4 138.1

c̃111 c̃112 c̃155

c̃155

c̃112

c̃111
P

(8)

Under conditions (6), Eq. (8) gives the anharmonic con-
tribution to the energy density for the isotropic medium
[15, Eq. (4.22)]. The cubic crystal differs from the iso-
tropic medium in the terms containing the third-order
elastic moduli , , and . Let us consider con-
ditions (6) for Ge, Si, and diamond crystals using the
experimental data on the second- and third-order elastic
moduli given in Table 1. Analysis shows (Table 2) that,
for these crystals, conditions (6) are not satisfied for
both the second- and third-order elastic moduli; indeed,
|∆C | ~ c12 and  is approximately two times less than
the initial elastic modulus c155. The deviation from the
isotropic-medium model is the largest for the elastic
modulus ; this modulus is much larger than the
other third-order moduli for Ge, Si, and diamond and is
opposite in sign to the initial modulus c111. Therefore,
the largest deviation from the isotropic-medium model
will be observed for the relaxation rates involving the
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elastic modulus . Integrating over the normalization

volume, we obtain the matrix element , whose
modulus squared determines the probability of phonon
scattering due to anharmonic scattering processes. With
Eq. (8), we can study various three-phonon scattering
mechanisms and calculate the phonon relaxation rates
due to anharmonic scattering processes in cubic crys-
tals.

3. LONGITUDINAL-PHONON RELAXATION 
MECHANISMS IN CUBIC CRYSTALS

The main longitudinal-phonon relaxation mecha-
nisms operating in cubic crystals are associated with
the following processes [15, 23]:

(9)

The first row for each case represents the fusion (S pro-
cess) of a longitudinal phonon with a longitudinal
[case (i)] or transverse phonon [case (ii), (iii)] into a lon-
gitudinal [cases (i), (ii)] or transverse phonon [case (iii)].
The second row for each case represents the decay (R
process) of a longitudinal phonon into two longitudinal
phonons [case (i)], a transverse and a longitudinal
phonon [case (ii)], or two transverse phonons [case (iii)].

Below, we calculate the phonon relaxation rate in
cubic crystals for cases (i) and (ii) and determine their
values and dependences on temperature and phonon
wave vector using the data on the elastic moduli from
Tables 1 and 2. According to [12], the phonon relax-
ation rate is given by

(10)

In curly brackets, the first term is due to S processes and
the second to R processes.

c̃111

Vq1q2q3

λ1λ2λ3

1( ) L L L, ωq3

L
+ ωq1

L ωq2

L
,+=

L L L, ωq1

L
+ ωq2

L ωq3

L
,+=

2( ) L T L, ωq3

L
+ ωq1

L ωq2

T
,+=

L T L, ωq1

L
+ ωq2

T ωq3

L
,+=

3( ) L T T , ωq3

T
+ ωq1

L ωq2

T
,+=

L T T , ωq1

L
+ ωq2

T ωq3

T
.+=

v phN q1 λ1,( )

=  
π"

4

2ρkBT( )3
----------------------- 1

V
---

z1

2
---- 

  δq1 q2 q3 0,+ +sinh

z1z2z3

z2

2
---- 

  z3

2
---- 

 sinhsinh

--------------------------------------------------------
q2q3

λ2λ3

∑

× Vq1q2q3

λ1λ2λ3
2

2δ ωq1λ1
ωq2λ2

ωq3λ3
–+( ){

+ δ ωq1λ1
ωq2λ2

– ωq3λ3
–( ) } .
PHYSICS OF THE SOLID STATE      Vol. 47      No. 2      200
For the LLL relaxation mechanism [case (i)], we
have in Eq. (8)

(11)

Using Eqs. (11), we express matrix element (8) for the
R and S processes for the LLL mechanism in terms of the
magnitudes of the vectors q1 and q2, the angle θ between
them, and the azimuthal angle ϕ of the vector q2:

(12)

In Eq. (12), the first term and the terms containing the
coefficient Acub account for isotropic scattering of lon-
gitudinal phonons. The other terms are associated with
cubic anisotropy and vanish in the isotropic medium.
For the cubic crystal, we have

(13)

For the isotropic medium, using Eqs. (6), we find that
the expression for Acub becomes identical to that derived
in [15]:

(13a)

(the coefficients A1, A2, A3, A4 are defined in [15]).
From the conservation of energy, it follows that, in

the Debye approximation for the phonon spectrum,
only collinear phonons can interact via the LLL mecha-
nism [1, 23]. If the dispersion of phonons is taken into
account, the probability of phonon scattering via this
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mechanism vanishes. However, the phonon lifetime
remains finite due to anharmonic scattering processes
and scattering from defects, impurities, and boundaries.
The decay of phonon states can be taken into account
by substituting a Lorentzian for the δ functions that
ensure the energy conservation in the fusion and decay
of longitudinal phonons [1, 22]. In order to analyze the
effect of the decay of phonon states via the LLL mech-
anism, we find the total longitudinal-phonon relaxation
rate determined by all relaxation processes (9). If the
collision-induced broadening of phonon states γL(q1) is
much smaller than the phonon energies ( ),

( ), the Lorentzian is sharply peaked at cosθ ≈ 1.
We restrict our calculations to this approximation and
put cosθ ≈ 1. For the cubic crystal, the matrix element
for the LLL scattering mechanism thus obtained is

(14)

This expression is also valid for the isotropic medium,
which can be verified using Eqs. (6). Substituting
Eq. (13) into Eq. (10) gives the following expression
for the phonon relaxation rate due to the LLL mecha-
nism:

(15)

Using Eq. (15), we find the dependence of the phonon
relaxation rate on temperature and phonon wave vector
for a cubic crystal in which the LLL scattering mecha-
nism is operative and the decay of phonons is weak.

For the LTL phonon relaxation mechanism [case (ii)
in Eqs. (9)], we have

(16)

Using Eqs. (16), we express matrix element (8) for the
S and R processes of the LTL relaxation mechanism in
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P

terms of the longitudinal-phonon polarization vector e2
and the angular coordinates θ and ϕ of the vector q2:

(17)

(18)

In Eq. (18), the terms containing the coefficient Acub
[given by Eqs. (13), (13a)] account for isotropic phonon
scattering; the other terms are associated with cubic
anisotropy and vanish in the isotropic medium charac-
terized by Eqs. (6).

It is seen from Eq. (17) that the square of the modu-
lus of the matrix element that determines the probabil-
ity of three-phonon scattering of the LTL type depends
on the products of the components of the polarization
vector e2 times the components of the phonon wave

vector q2. In general, both the relaxation rate  and
the phonon eigenfrequencies depend on the direction of
longitudinal-phonon propagation relative to the crystal-
lographic axes. In what follows, we consider one of the
symmetry axes, such as [100], [001], and [111], and
take the z axis and the phonon wave vector q1 to be
along this axis. Using the relation e2q2 = 0, we express
the components of the longitudinal-phonon polariza-
tion vector e2 in terms of the angular coordinates θ and
ϕ of the vector q2:

(19)

The angle ϕe defines the direction of the polarization
vector e2 in the plane perpendicular to the vector q2. Let
us discuss the procedure for averaging the probability
of phonon scattering via the LTL mechanism over the
polarization vector of the transverse phonon. This pro-
cedure has not been described in the literature. Some-
times, in calculating the relaxation rate within the iso-
tropic-medium model, the direction of the transverse-
phonon polarization vector e2 relative to the vectors q1
and q2 is specified. For example, Tamura [24] assumed
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the vector e2 to lie in the plane of the vectors q1 and q2.
This assumption causes a factor of 1/2 to be missing for
the LTL relaxation mechanism in the isotropic medium
[24] and does not take into account important terms in
the probability of three-phonon scattering processes in
cubic crystals. We averaged the squared magnitude of
matrix element (17) over the polarization vector e2 and
the angle ϕ to obtain

(20)

When averaged over the angles ϕe and ϕ, the probabil-
ity of phonon scattering depends only on the magni-
tudes of the vectors q1 and q2 and the angle θ between
them. The integral over θ in Eq. (10) can easily be eval-
uated using the δ function that ensures energy conser-
vation in the fusion and decay of longitudinal phonons,
and we have
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(21)

where St and SL are the velocities of transverse and lon-
gitudinal phonons, respectively.

After substituting Eqs. (18)–(21) into Eq. (10), the
probability of phonon scattering via the LTL mecha-
nism will be a function of the ratio of the reduced wave
vectors z1 and z2. In order to simplify the final expres-

sion for the relaxation rate , we transform the
remaining integrals by using the substitutions

(22)
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The functions BS(y) and BR(y) are defined as
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The functions ϕnS and ϕnR originate from the angular
dependence of the matrix element [see Eqs. (17), (18)].
After substituting Eqs. (21), they become functions of
the ratio of reduced wave vectors (22). Some of these
functions have zeros within the range of integration.
For this reason, the contributions from the third-order
elastic moduli to the relaxation rate vary significantly
and the probability of longitudinal-phonon scattering is
a complicated nonmonotonic function of the ratio of the
reduced wave vectors. These functions have the form

(26)

Using Eqs. (23)–(26), we will investigate the depen-
dence of the relaxation rate due to the LTL mechanism
on temperature and phonon wave vector for cubic
crystals.

4. RESULTS OF NUMERICAL CALCULATIONS 
OF THE LONGITUDINAL-PHONON 

RELAXATION RATES FOR GERMANIUM, 
SILICON, AND DIAMOND CRYSTALS

Let us consider the dependence of the longitudinal-
phonon relaxation rates due to the LLL and LTL mech-
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anisms on temperature and phonon wave vector for
cubic crystals of germanium, silicon, and diamond.
For the LLL mechanism in the long-wavelength limit
z1 ! 1, Eq. (15) gives

(27)

In this case, the dominant contribution to the relaxation
rate of longitudinal phonons comes from the fusion of

phonons and the rate  is a linear function of the
phonon wave vector, as is the case for the isotropic

medium [2, 23]. The coefficient  given by Eq. (27)
is four times greater than that derived by Maris for the
isotropic medium (see [23, Eq. (239)]). This difference
is due to the fact that the factor of 1/4 that appears when
the square of the generalized Grüneisen parameter is
averaged over the angular variables (see [23,
Eqs. (238), (239)]) is absent from the averaged square
of the matrix element given by Eq. (14). It seems likely
that the procedure that is based on the generalized Grü-
neisen parameter [23] is not adequate for cubic crystals.

We are now in a position to discuss the dependence

of the relaxation rate  on the phonon wave vector
for thermal and high-frequency phonons (z1 > 1) in
cubic crystals. It can be seen from Eq. (15) that the
quantity
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depends only on the reduced phonon wave vector z1 for

all crystals in question. The functions (z1),

(z1), and (z1) are plotted in Fig. 1. The total

relaxation rate (z1) is seen to be a monotonically
increasing function of z1. For z1 < 2.5, the total rate is
dominated by the S processes and is approximately a
linear function (curve 2a in Fig. 1). In this range, the
contribution from the R processes is given by
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At z1 = 1, this contribution is 312 times less than that
from the S processes. However, as the phonon wave
vector increases, the contribution from the decay pro-
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the R processes (curve 3 in Fig. 1). The contribution
from these processes varies as the fifth power of the
phonon wave vector

(30)

In this limiting case, the contribution from the S pro-
cesses increases far more slowly, in proportion to the
square of the wave vector,

(30a)

As might be expected in the approximation used, the
calculated dependences of the longitudinal-phonon
relaxation rate due to the LLL mechanism in the cubic
crystals, Eqs. (27) and (30), are identical to those in the
isotropic medium [25]. The values of the coefficients

 and  for germanium, silicon, and diamond
crystals are listed in Table 3 for various crystallo-
graphic directions. It follows from Table 3 that, at T =

10 K and z1 = 1, the relaxation rate  for the [100]
direction is 1.72 × 105, 1.66 × 104, and 5.79 × 102 s–1 for
Ge, Si, and diamond, respectively. As we go from the

[100] to [111] direction, the relaxation rate 
decreases by a factor of approximately 3 for Ge and 2
for Si and diamond.

In calculating the thermal conductivity of the cubic
crystals, it should be taken into account that the energy
of phonons that are important in this case is restricted
by the inequality z1 < 4–5, because the contribution
from higher energy phonons is cut off by the Planck
distribution function. For this energy range, Eq. (15) for
the phonon relaxation rate due to the LLL mechanism
can be approximated by the simple expression

(31)

which is close to Eq. (15) in the range 0 < z1 < 6 (curve
1a in Fig 1).

Now, let us consider the longitudinal-phonon relax-
ation via the LTL scattering mechanism for Ge, Si, and
diamond crystals. In the long-wavelength limit, z1 ! 1,
we have from Eq. (23) for this mechanism
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For Ge, we have J0S ≈ 8 and J0R ≈ 4.7 × 10–3, and for Si
and diamond, we have J0R/J0S ≈ 10–3. Therefore, in this
limit, the dominant contribution to the longitudinal-
phonon relaxation comes from the fusion of phonons
and the contribution from the decay processes is negli-
gibly small. For this reason, the longitudinal-phonon
relaxation rate due to the LTL mechanism in the long-
wavelength limit varies in proportion to the fourth
power of the phonon wave vector in the cubic crystals,
as is the case in the isotropic medium [12, 23]. The con-
tribution from this scattering mechanism to the attenu-
ation of long-wavelength ultrasonic waves is signifi-
cantly less than that from the LLL mechanism consid-
ered above [see Eq. (27)].

The values of the coefficients  for the Ge, Si,
and diamond crystals are listed in Table 4 for various
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Table 4.  Parameters determining the relaxation rate of longitudinal phonons via the LTL processes in Ge, Si, and diamond

, s–1 K–5

[100]
, s–1 K–5

[110]
, s–1 K–5

[111]
, s–1 K–5

[100]
, s–1 K–5

[110]
, s–1 K–5

[111]

Ge 1.02 0.26 0.092 4.16 × 10–4 3.72 × 10–4 2.43 × 10–4

Si 0.09 0.02 0.018 3.82 × 10–5 4.09 × 10–5 2.77 × 10–5

Diamond 0.0032 0.0012 0.0011 1.99 × 10–6 1.54 × 10–6 1.33 × 10–6

BLTL
0 BLTL

0 BLTL
0 BLTL

R
BLTL

R BLTL
R

Table 3.  Parameters determining the relaxation rate of longitudinal phonons via the LLL processes in Ge, Si, and diamond

, s–1 K–5

[100]

, s–1 K–5

[110]

, s–1 K–5

[111]

, s–1 K–5

[100]

, s–1 K–5

[110]

, s–1 K–5

[111]

Ge 1.72 0.73 0.57 1.11 × 10–3 4.72 × 10–4 3.69 × 10–4

Si 0.166 0.081 0.065 1.07 × 10–4 5.2 × 10–5 4.2 × 10–5

Diamond 5.79 × 10–3 3.87 × 10–3 3.35 × 10–3 3.72 × 10–6 2.49 × 10–6 2.15 × 10–6

BLLL
0 BLLL

0 BLLL
0 BLLL

R BLLL
R BLLL

R

crystallographic directions. It follows from Table 4 that,

at T = 10 K and z1 = 1, the rate  for the [100] direc-
tion is 1.02 × 105, 0.9 × 104, and 0.32 × 103 s–1 for Ge,
Si, and diamond, respectively. It is also seen from Table 4
that, in the long-wavelength limit, the effect of the

cubic anisotropy on  is greater than that on .
As we go from the [100] to [111] direction, the coeffi-

cient  decreases by a factor of more than 10 for
Ge, 5 for Si, and nearly 3 for diamond.

Now, we consider the dependence of the relaxation

rate  on temperature and phonon wave vector for
thermal and high-frequency phonons (z1 > 1). It follows
from Eq. (23) that the quantity

(33)

depends only on the reduced phonon wave vector z1.

The functions (z1), (z1), and (z1) for
the Ge, Si, and diamond crystals are plotted in Fig. 2. It
can be seen that the contribution from the S processes

(z1) for these crystals is a nonmonotonic function

of z1. The quantity (z1) first increases sharply, in

proportion to ; then passes through a maximum at
z1 ≈ 4 and decreases, reaching a minimum at z1 ≈ 20, 14,
and 9 for Ge, Si, and diamond, respectively; and then
increases monotonically at larger values of z1. For the
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monotonically with z1, in proportion to  at z1 ! 1 [see

Eq. (23)] and in proportion to  at z1 > 10, as in the
isotropic medium [26, 27]. In the latter case, the rate

 does not depend on temperature and varies in

proportion to :

(34)

where the function BR(y) is defined by Eqs. (23)–(25).

The values of the coefficient  for the Ge, Si, and
diamond crystals are listed in Table 4, from which it
follows that the cubic anisotropy of the relaxation rate

 for high-frequency phonons is significantly less
than that for long-wavelength phonons. As we go from

the [100] to [111] direction, the coefficient 
decreases by a factor of 1.7 for Ge and approximately
1.4 for Si and diamond. We note that the decay pro-
cesses are insignificant in the long-wavelength limit, as
well as for thermal phonons with z1 ≈ 1–2. The contri-
butions from the R and S processes become equal at z1 ≈
5.4 for Ge and z1 ≈ 5.8 for Si and diamond; at higher
values of the wave vector z1, the dominant contribution

to the relaxation rate  comes from the R processes.
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Equations (23)–(26) for the rate  are too cum-
bersome to be used to analyze the heat conductivity of
the cubic crystals. Since the lattice thermal conductiv-
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Fig. 2. Dependences of the phonon relaxation rate due to
LTL processes on the reduced phonon wave vector for
(a) Ge, (b) Si, and (c) diamond for the [100] direction.

(1) Function (z1), (2) the contribution from S pro-
cesses to the relaxation rate, and (3) the contribution from R
processes. Dashed lines 1a plot Eq. (35) for thermal
phonons.
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ity is determined by phonons with z1 < 4–5, we use an
approximate expression for the phonon relaxation rate

 in this range:

(35)

where the parameters Di, αi, and ci for Ge, Si, and dia-
mond are Di = 1.61, 1.4, and 2.09, αi = 1.09, 1.06, and
0.9, and ci = 1.12, 0.98, and 0, respectively. It can be
seen from Fig. 2 (curves 1a) that approximation (35)
agrees well with the calculations based on Eqs. (23)–
(26) in the range 0 < z1 < 6. We note that the relaxation
rates due to the LTL and LLL scattering mechanisms are
of the same order of magnitude for thermal phonons
and, hence, must be taken into account in calculating
the thermal conductivity of the Ge, Si, and diamond
crystals.

Now, we compare the calculated relaxation rates
due to the LTL mechanism in the Ge, Si, and diamond
crystals with those obtained for the isotropic medium.
For this purpose, we substitute Eqs. (6) into Eqs. (23)
and (24). It can be seen that, in the functions BS(y) and
BR(y), only the terms containing the coefficient Acub
[given by Eq. (13a)] remain in the isotropic approxima-

tion. Figure 3 compares the (z1), (z1), and

(z1) dependences calculated for the cubic Si crys-
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tal and for Si in the isotropic approximation. It can be

seen that the calculated (z1) for the cubic crystal
differs significantly from that for the isotropic medium
(Fig. 3, curves 1, 1a). For the decay processes, the

(z1) dependences are similar (curves 3, 3a),

although at z1 @ 1 the values of (z1) calculated in
the isotropic approximation are 8.8 times greater than
those for the cubic crystal. The results for the fusion
processes differ more significantly (Fig. 3, curves 2,
2a). First, in the long-wavelength limit, the coefficient

 for Si calculated in the isotropic approximation is
1.9 times greater than that for the cubic crystal. Second,

the relaxation rate (z1) calculated in the isotropic
approximation increases monotonically with z1 (curve 2a
in Fig. 3), whereas for all cubic crystals this rate exhib-
its a nonmonotonic behavior (curves 2 in Fig. 2). An
analysis shows that these features of the longitudinal-

phonon relaxation rate (z1) are due to the angular
dependence of the probability of anharmonic scattering
[Eqs. (17), (18); (23), (25)] and to the anisotropy in the
elastic properties of the Ge, Si, and diamond crystals.
Obviously, the isotropic-medium approximation can-
not be used to calculate the longitudinal-phonon relax-
ation rate due to the LTL mechanism.

5. CONCLUSIONS

We have considered the longitudinal-phonon relax-
ation via the L  L + L and L  T + L processes in
cubic crystals. The elastic energy associated with the
anharmonicity of lattice vibrations in cubic crystals has
been expressed in terms of the second- and third-order
elastic moduli. Using the experimental values of the
second- and third-order elastic moduli, we have found
the parameters that determine the relaxation rate of lon-
gitudinal phonons in the Ge, Si, and diamond crystals.
The dependences of the phonon relaxation rate on tem-
perature and phonon wave vector were found for ger-
manium, silicon, and diamond. It has been shown that,
under the assumption of weak phonon damping and the
absence of dispersion, the phonon relaxation rates due
to the L  L + L processes in the cubic crystals coin-
cide with those calculated for the respective isotropic
media. In contrast, the dependences of the relaxation
rates due to the L  T + L processes on the phonon
wave vector calculated for the cubic crystals differ sig-
nificantly from those for the isotropic media. The relax-
ation rate due to the fusion of phonons calculated in the
isotropic approximation increases monotonically with
the phonon wave vector, whereas the analogous relax-
ation rate for the [100] direction in the cubic crystals
varies nonmonotonically. The specific features of the
relaxation rate of longitudinal phonons via the L 
T + L processes have been established to be due to the

νLTL
*

νLTL
* R( )

νLTL
* R( )

BLTL
0

νLTL
* S( )

νLTL
* S( )
PH
angular dependence of the probability of anharmonic
scattering and to the anisotropy in the elastic properties
of the crystals under study.
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Abstract—The formation of a new commensurate phase with a dimensionless wave number q = 1/3 in an
[N(CH3)4]2CuCl4 crystal under the action of an external electric field is analyzed theoretically. The phase dia-
gram is constructed on a plane specified by two coefficients of the thermodynamic potential in the presence and
in the absence of an external electric field. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In [1, 2], we constructed the theoretical pressure–
temperature (P–T) phase diagrams for an
[N(CH3)4]2CuCl4 (TMA–CuCl) crystal, where TMA is
tetramethylammonium. These diagrams are in good
agreement with the experimental P–T diagrams mea-
sured in [3–5]. The phases revealed in the P–T dia-
grams are as follows: the initial C phase (Pmcn symme-
try), the incommensurate IC phase, and the commensu-
rate Cm/l phase, where m/l stands for the dimensionless
wave number qm/l characterizing the phase. For each of
the Cm/l phases (except for the C0/l phase with dimen-
sionless wave number q0/l = 0), there are two different
solutions and, accordingly, there can exist two different
phases with different symmetries (see table in [1, 2]; the
feasible but improbable third solution will not concern
us in this study). The specific solution (or phase) is
determined by the sign of the coefficient of the aniso-
tropic invariant in the thermodynamic potential (see
below).

Under an external action (electric field, mechanical
stress), another phase with the same dimensionless
wave number qm/l can be induced in the crystal. Conse-
quently, a new Cm/l commensurate phase will be
observed in the P–T phase diagram. The purpose of this
work is to analyze theoretically the formation of a new
C1/3 commensurate phase under the action of an exter-
nal electric field.

2. THERMODYNAMIC POTENTIALS

A theoretical approach to the construction of P–T
phase diagrams for the family of TMA crystals was
described in [2] (see also [1, 6, 7]). Let us write the ther-
modynamic potentials for the C1/3 and IC phases of the
1063-7834/05/4702- $26.00 0324
TMA–CuCl crystal in the presence of an electric field Ex

(where Px is the polarization oriented along the x axis):

(1)

Here, β > 0, γ > 0, and s > 0 are coefficients. Formulas (1)
for parameters Ex = 0 and Px = 0 coincide with relation-
ships (1) and (2) given in [1].

The dependence of the coefficient of elasticity α(q)
for the soft branch of the normal oscillation spectrum of
the crystal on the dimensionless wave number q = kz/c*
can be described by the expression

(2)

This expression can be rewritten in the form

(3)

where a and b are the coordinates of the minimum in
the soft branch [described by relationship (2)] at an
arbitrary point of the Brillouin zone.

It is convenient to change over to the dimensionless
variables φ, R, P, and E and the parameters Aγ, A3, g, G,
B, D, QL, A, and D3 (Q is a number): 
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(4)

The thermodynamic potentials defined by formulas (1)
take the following form (it is assumed that  < 0; see
below):

(5)

3. EQUILIBRIUM VALUES
OF THE PARAMETERS

By varying the dimensionless parameters ϕ and P in
expression (5) for the thermodynamic potential φ1/3, we
obtain the following two solutions corresponding to the
c1 and c2 phases:

(6)

The sign of the coefficient  is chosen so (  < 0)
that, in the absence of an external electric field (E = 0),
there exists a solution corresponding to the c1 phase
(P121c1 symmetry; see table in [1] or [2]). The first
term in the expression for the parameter P2 is the spon-
taneous polarization. In this case, the c2 phase is the
improper ferroelectric phase with P21cn symmetry.

Substituting relationship (6) into expression (5)
gives

(7)

By varying the dimensionless parameter P in expres-
sion (5) for the thermodynamic potential φIC and substi-
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tuting the obtained value of P into formula (5), we
derive the following expressions:

(8)

Here, we added the thermodynamic potential φC for the
initial phase. Note that the term E2/4s is identical for all
the phases under consideration (hence, in what follows,
this term will be discarded).

By varying the dimensionless parameter R in formu-
las (7) and (8) for the thermodynamic potentials and
substituting the expressions obtained for the parameter
R into the relationship for φ, we find

(9)

In expressions (9), we carried out expansions into
series with respect to small terms. It is assumed that
AγA ! 1 and E2/4s ! 1. It should be noted that expres-
sion (9) for the thermodynamic potential φ2 is satisfied
only under the condition A – D3 > 0.

4. BOUNDARIES BETWEEN THE PHASES 
AND THE PHASE DIAGRAM

By equating the thermodynamic potentials
described by relationships (9) and again using the
expansions with respect to small terms, we obtain the
following expressions for the boundaries between the
phases.

For the C–IC boundary, A = 0.

For the c1–IC boundary, D3 = A3A2 + 2GE2/4s(A3 – G)A.

For the C–c2 boundary, 

.
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.
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For the c2–IC boundary, . (10)

The last expression for the c2–IC phase boundary is
obtained in the vicinity of the point K (see figure). The
coordinates of the points K, N, and O can be determined
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from expressions (10) for the C–c2 and c1–c2 phase
boundaries under the assumption that D3 = 0 (for the
points N and O) and A = 0 (for the point K). The coor-
dinates of the points M are as follows (see figure):

(11)

Note that the c1–c2 phase transition is a second-order
transition.

Formulas (10) can be used to construct the phase
diagram on the D–A plane. For this purpose, we choose
the following values of the parameters (identical to
those used in [1]):

(12)

Let us assume that E 2/4s = 10–5. For this value, the
region of existence of the c2 phase proves to be rather

A GE
2
/4s A3 G–( )2[ ]

1/3
,=

D3 3A3 2G–( ) GE
2
/4s A3 G–( )2[ ]

2/3
.=

QL
2

0.2, Aγ A3 2G 0.36, Q = 0.5.= = = =

0

0.1

A

0.1 0.2 D
C

K

M
N

O

c1

c2
IC ICM

K

Phase diagram on a plane specified by two dimensionless
coefficients (D and A) of the thermodynamic potential. The
inclined straight lines emanating from the point O represent
the IC–C1/3 phase boundary in the absence of an external
electric field (E = 0). The dotted line indicates the C–c2
phase boundary, which is enlarged along the A axis by a fac-
tor of 103.
P

large in size (see figure). As follows from relation-
ships (3), (4), and (11), the coordinates of the points M
on the D axis correspond to dimensionless wave num-
bers q = 0.317 and 0.35 (the coordinate of the point O
corresponds to q = 0.333). For E2/4s = 10–6, the param-
eter A decreases at the point N by a factor of 101/3,
between the points M by a factor of 102/3, etc. [see
expression (11)]. I hope that, in further experiments, it
may become possible to achieve electric fields in which
the size of the induced c2 phase will be large enough to
be observed on the experimental P–T phase diagram.

In this paper, the theoretical P–T phase diagram,
which can be constructed on the basis of the phase dia-
gram on the D–A plane (see figure), has not been pre-
sented, because these diagrams are very similar in
shape (see [1, 2]).
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Abstract—The fundamental and diffuse x-ray reflections from Brillouin zone–edge X points of the paraelastic
phase of Hg2Cl2 crystals (whose integrated intensity is related to the order parameter and its fluctuations) were
studied. Information was obtained on the temperature dependence of the order parameter and of diffuse scat-
tering, and the critical exponents were determined. The conclusion is drawn that the ferroelastic phase transition
in these crystals is close to the tricritical point. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Crystals of the mercurous halides Hg2Hal2 (Hal =
Cl, Br, I) are isomorphic at room temperature and form

a -symmetry body-centered tetragonal lattice with
two molecules in the unit cell [1]. They have a specific
crystal structure made up of parallel chains of linear
molecules Hal–Hg–Hg–Hal weakly bound to one
another. The chain structure of these crystals accounts
for the very strong anisotropy of their physical proper-
ties. For instance, Hg2Cl2 crystals feature a transverse

acoustic (TA) wave velocity  = 347 m/s, which is
record-low among solids; a record-high birefringence
∆n = +0.66; and a very strong acousto-optical interac-
tion (M2 = 640 × 10–18 CGS units for a TA wave) [2].
These crystals are employed in technology as basic ele-
ments in acoustic delay lines, polarizers, acousto-opti-
cal filters, etc.

When cooled, at Tc = 186 K Hg2Cl2 crystals undergo
improper ferroelastic phase transitions from the tetrag-

onal to orthorhombic phase (   ) driven by
condensation of the slowest soft TA branch at the X
points of the Brillouin zone (BZ) boundary of the tet-
ragonal paraelastic phase. These transitions are accom-
panied (at T ≤ Tc) by unit cell doubling, X  Γ zone
folding, the onset of spontaneous strain, and the forma-
tion of ferroelastic domains [3]. Having a very simple
crystal structure and featuring strongly pronounced
phase transition effects, the mercurous halides serve as
model objects in studies of general problems of struc-
tural phase transitions.

The present communication reports on a high-preci-
sion x-ray investigation of the temperature dependence
of the order parameter and determination of the critical

D4h
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1063-7834/05/4702- $26.00 0327
exponents carried out over a broad temperature range
including Tc = 186 K. The attention was focused on
studying the zone edge X points. X-ray reflections from

these points in the high-temperature tetragonal ( )
paraelastic phase are forbidden by selection rules, and
they should appear only in the low-temperature orthor-

hombic ( ) phase as a result of a phase transition,
cell doubling, and X  Γ zone folding, due to which
the diffuse reflections at the X points of the paraelastic-
phase BZ (T > Tc) transform into fundamental Bragg
reflections at the zone center (Γ point) of the ferroelas-
tic phase (T < Tc). Investigating the temperature depen-
dence of integrated intensity of these fundamental
reflections (T < Tc) permits one to find the temperature
dependence of the phase transition order parameter and
determine the critical exponent value. We may recall
that the order parameter for Hg2Cl2 crystals corre-
sponds to opposite displacements (along the [110]
direction) of the centers of gravity of the nearest neigh-
bor Hg2Cl2 molecules residing in adjacent {110} planes
[3].

X-ray diffraction patterns of the high-temperature
phase (T > Tc) exhibit, however, weak diffuse zone-
edge reflections (in our case, at the X points) related to
dynamic and static spatial–temporal order parameter
fluctuations, which induce nucleation of clusters of the
low-temperature orthorhombic phase in the high-tem-
perature tetragonal matrix [4]. Quantitative investiga-
tion of the temperature dependence of the order param-
eter and determination of the critical exponent values is
an intriguing major problem requiring specific, high-
precision measurements, which form the core of the
present work.

D4h
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2. EXPERIMENT

X-ray diffraction measurements were performed on
a two-circle diffractometer with copper-anode CuKα
radiation. Low-temperature studies were carried out in
a closed-cycle helium cryostat (Cryogenics) providing
good temperature stabilization (≈0.1 K). The samples
under study were high-quality mercurous chloride sin-
gle crystals measuring 3 × 3 × 3 mm. The crystals were
cleaved along the {110} cleavage planes, cut along the
(001) plane, and subsequently etched for a short time in
a 1HNO3 + 3HCl mixture. All measurements were con-
ducted on the {110} planes.

3. EXPERIMENTAL RESULTS

We studied the behavior of x-ray (diffuse and
Bragg) scattering at various points of BZ (reciprocal
lattice) with half-integer indices h and k and l = 0 [pri-
marily the points (3.5, 2.5, 0), (2.5, 3.5, 0), (2.5, 1.5, 0),
(1.5, 2.5, 0)].1 Figure 1 displays the results obtained in
a typical extended scan made at T = 190 K in the Γ–X–
Γ direction (2.5 + δ, 1.5 – δ, 0) in the reciprocal lattice
(or in the BZ) of Hg2Cl2 crystals with the (2, 2, 0) and
(3, 1, 0) Bragg reflections and a diffuse reflection at the
(2.5, 1.5, 0) X point. This scanning coincides in direc-
tion with soft TA wave propagation. We can see that this
extended Γ–X–Γ scan permits simultaneous observa-
tion of the weak diffuse (2.5, 1.5, 0) maximum and
intense fundamental (Bragg) even (h + k + l = 2n)
reflections (2, 2, 0) and (3, 1, 0), which are allowed for

this body-centered tetragonal ( ) lattice of Hg2Cl2

crystals. While the odd Bragg reflections (h + k + l =
2n + 1) are forbidden by selection rules for this struc-
ture, an extended ZE–X–EZ scan orthogonal to the pre-
vious one and performed at temperatures close to Tc

revealed broad weak (2, 1, 0) and (3, 2, 0) maxima,
whose manifestation could be induced by the phase

1 The reciprocal lattice indices and BZ high-symmetry points are
given in the tetragonal phase notation.
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Fig. 1. Fundamental Bragg reflections (2, 2, 0) and (3, 1, 0)
and a diffuse peak at the X point (2.5, 1.5, 0) of the BZ
obtained in an extended Γ–X–Γ scan performed at T =
190 K.
P

transition, as well as by structural imperfections (we do
not show these weak odd reflections here).

When studying the temperature dependence of the
integrated intensity of the newly appearing reflections
(in our case, from the X points of the BZ) with the pur-
pose of gaining information on the temperature depen-
dence of the order parameter, one should use broad dif-
fractometer slits and ω scan, which is performed by
rotating the crystal alone, with the x-ray emitter and
detector fixed in position. Note that the direction of this
scanning in reciprocal space differs slightly from that
of the Γ–X–Γ scan. Figure 2 displays typical diffuse
(T > Tc) and fundamental (T ≤ Tc) (3.5, 2.5, 0) reflec-
tions obtained at different temperatures. Under cooling,
the integrated intensity and amplitude of these reflec-
tions increase and their half-width decreases. The pro-
file of these reflections can be fitted satisfactorily by a
Lorentzian (Fig. 2),

(1)

where A is the reflection intensity (amplitude), ∆ is the
reflection half-width (FWHM), and ω and ωx are the
angles.

From these data, one can extract with a high accu-
racy the main parameters (integrated intensity, ampli-
tude, half-width, etc.) of these reflections. The large
half-width of these diffuse reflections at the X points
observed under scanning is primarily due to coupling to
the soft TA branch. In the vicinity of the BZ X point,
this branch has a small dispersion (λ1 = 8 meV2 × Å2)
in the Γ–X–Γ direction (which is close to ω scan) as
compared to the dispersion of the TA branch in the
orthogonal direction ZE–X–EZ (λ2 = 255 meV2 × Å2)
[5].

The profiles of these maxima recorded at different
temperatures, down to liquid-helium temperature, were
simulated to yield the temperature dependence of the
reflection intensity. Figure 3a shows the temperature
dependences of the integrated intensity for reflections
from the X points of the BZ, (3.5, 2.5, 0) and (2.5, 3.5,
0). Recall that the reflections are diffuse at T > Tc and
that at T ≤ Tc the phase transition, cell doubling, and
X  Γ zone folding transform them into fundamental
Bragg reflections that are allowed in x-ray scattering,
whose integrated intensity may serve as a characteristic
of the behavior of the order parameter. As seen from
Fig. 3a, the intensity does not undergo a jump at the
transition point (T = Tc). Hence, this phase transition,
rather than being first-order, is continuous and (in a first
approximation) close to second-order.

The value of the order parameter is known to be pro-
portional to the square root of the integrated intensity of
the transition-induced reflections. Figure 3b displays
the typical dependences of the order parameter η on
temperature for two X points of the BZ. These graphs
are smooth curves tending to saturation under deep
cooling; i.e., the order parameter grows monotonically

I ω( ) A∆2
/ ∆2

4 ω ωx–( )2
+{ } ,=
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with cooling toward a final fixed value. To determine
accurate values of the critical exponent β, however,
these dependences (η ~ τβ) were redrawn as functions
of reduced temperature τ = (Tc – T)/Tc on a log–log
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Fig. 2. Diffuse (at T > Tc = 186 K) and fundamental (T ≤ Tc)
(3.5, 2.5, 0) reflections obtained at different temperatures in
ω scan (points are experiment, solid lines are Lorentzians).
PHYSICS OF THE SOLID STATE      Vol. 47      No. 2      200
scale. Linear relations were obtained (Fig. 4), and their
slopes were used to calculate the critical exponent β; its
values were found to be 0.28 ± 0.02 and 0.29 ± 0.02 for
the (3.5, 2.5, 0) and (2.5, 3.5, 0) X points, respectively.
It seems worthwhile to explain that the deviation of sev-
eral points of the graph from a straight line within a few
degrees near Tc (T < Tc) is due to the contribution to the
integrated intensity from the diffuse scattering induced
by order parameter fluctuations, but now in the fer-
roelastic phase.

It is known that the diffuse scattering intensities in
both the paraelastic and ferroelastic phases are propor-
tional to order parameter fluctuations. In the paraelastic
phase (T > Tc), only diffuse reflections are observed,
which are induced by these fluctuations. For T ≤ Tc, i.e.,
at the phase transition and the X  Γ zone folding in
the BZ, the reflections from the X point of the BZ trans-
form into fundamental (Bragg) reflections at the BZ
center (the Γ point), which is active in x-ray diffraction.
For T ≤ Tc, there also exists a temperature region over
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Fig. 3. (a) Temperature dependences of the integrated inten-
sities of the diffuse (at T > Tc) and fundamental (T < Tc)
reflections from the X points of the BZ boundary and
(b) temperature dependence of the order parameter; (1) the
(2.5, 3.5, 0) and (2) (3.5, 2.5, 0) reflections.
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which order parameter fluctuations manifest them-
selves in diffuse scattering. In the case of first-order
phase transitions, the situation can be explained in a
straightforward manner. When a sample is cooled, a
narrow fundamental (Bragg) reflection appears
abruptly on the broad diffuse peak at the transition
point (T = Tc), and its intensity grows with a further
decrease in temperature while the intensity of the dif-
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Fig. 4. Order parameter plotted vs. reduced temperature τ =
(Tc – T)/Tc on a log–log scale. The top and bottom curves
correspond to the (2.5, 3.5, 0) X point and the (3.5, 2.5, 0)
point, respectively; symbols are experiment and the dashed
line is a linear fit.
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Fig. 5. Temperature dependence of the integrated intensity
of diffuse scattering at the (3.5, 2.5, 0) X point in the
paraelastic phase (T > Tc; triangles) and in the ferroelastic
phase (T < Tc; squares); open circles relate to the behavior
of the integrated intensity of this reflection for T < Tc.
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fuse reflection falls off. By simulating the profiles of
these reflections, one can easily separate them and
derive the temperature dependence of their main
parameters. In the case of continuous (for example, sec-
ond-order) phase transitions, one usually fails in rigor-
ously extracting the contribution of diffuse scattering to
the total intensity of the transition-induced reflection at
T ≤ Tc. It is possible, however, to evaluate the contribu-
tion of diffuse scattering and its temperature depen-
dence at T ≤ Tc with a sufficiently high accuracy by ana-
lyzing the temperature dependence of the order param-
eter (and, hence, of the integrated intensity) drawn on a
log–log scale. This contribution is directly related to the
deviation of these graphs from a straight line near Tc at
T < Tc (Fig. 4).

Figure 5 plots the temperature dependences of the
integrated intensity of diffuse scattering in the paraelas-
tic phase (T > Tc) and in the ferroelastic phase (T ≤ Tc).
This plot reveals that the temperature range of diffuse
scattering in the low-temperature phase is significantly
narrower than that in the high-temperature phase. In
view of the close relation between order parameter fluc-
tuations and the diffuse scattering intensity, one may
conclude that the temperature region of order parameter
fluctuations for T < Tc is substantially smaller (by a fac-
tor of more than 2) than that for T > Tc, which does not
conflict with theoretical predictions.

4. DISCUSSION OF THE RESULTS

Let us consider the temperature dependence of the
order parameter in terms of the phenomenological the-
ory of Landau for various types of phase transitions.
For pure improper ferroelastics, the thermodynamic
potential of Landau in the vicinity of a phase transition
can be written as an expansion in a small order param-
eter η [6]:

(2)

where Φ0 is the thermodynamic potential of the high-
temperature phase; B, D, and K are constants; ε is the
lattice strain; and C is the elastic modulus. The coeffi-
cient of η2 can be assumed to obey the simplest linear
dependence on temperature, A = λ(T – Tc). Upon renor-
malization and minimization in ε, thermodynamic
potential (2) transforms to

(3)

(4)

The temperature dependence of the order parameter is
given by

(5)

Φ = Φ0 Aη2
/2 Bη4

/4 Dη6
/6+ + +

+ Kη2ε Cε2
/2,+
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For second-order phase transitions that are far from the
tricritical point (B'2 @ 4AD), the temperature depen-
dence of the order parameter follows the relation

(6)

If, however, B'2 ! 4AD [which may result from a
sufficiently strong coupling of the order parameter with
strain; cf. Eqs. (3)–(5)], the phase transition in a crystal
is close to the tricritical point [6]. In this case, the order
parameter will depend on temperature with another
critical exponent β

(7)

Thus, in the case of second-order phase transitions
and transitions in the vicinity of the tricritical point, the
theoretical values of the critical exponents β are 0.5 and
0.25, respectively. Analysis of the experimental results
obtained reveals that critical-exponent values of 0.28
and 0.29 are inconsistent with the description of sec-
ond-order phase transitions far from the tricritical
point. The experimental values of β are close to 0.25,
and they argue convincingly for the model of phase
transitions in Hg2Cl2 crystals as occurring near the tric-
ritical point. It is conceivable that the phase transition
in these crystals occurs not directly at the tricritical
point but in its immediate proximity. However, our
experiments do not offer an unambiguous conclusion as
to which side the phase transition is displaced from the
tricritical point, namely, toward weak first-order or sec-
ond-order phase transitions. We may recall that, in an
earlier comprehensive and high-precision study of the
temperature dependence of soft modes, heat capacity,
spontaneous deformation, etc., of these crystals, we
calculated the thermodynamic-potential parameters
and determined the corresponding critical exponents,
whose values suggested that the phase transition in
these crystals are close to the tricritical point [7]. The
proposed model of the phase transition provided an
explanation for all the experimental results obtained in
studies of the Hg2Cl2 crystals.

5. CONCLUSIONS
Our studies carried out on Hg2Cl2 single crystals

have shown that the TA soft mode condenses at the X
points of the BZ boundary and that the phase transition
is accompanied by cell doubling and X  Γ zone
folding in the BZ. The monotonic growth of the inte-

η λ Tc T–( )/B '[ ] β
, where β 0.5.= =

η λ Tc T–( )/D[ ] β
, where β 0.25.= =
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grated intensity of the diffuse reflections and the
absence of any jumps at T = Tc do not contradict the
model of a continuous ferroelastic phase transition in
the vicinity of the tricritical point [7]. The observed dif-
fuse scattering induced by spatial–temporal order-
parameter fluctuations is associated, at high tempera-
tures (T @ Tc), primarily with the nucleation of static
clusters of the low-temperature orthorhombic phase in
the high-temperature tetragonal matrix. As the crystal is
cooled and approaches Tc, the dynamic effects increase
of intensity, which should become manifest in an
increase of the contribution of dynamic clusters to dif-
fuse scattering. It is the latter effect that obviously takes
place here, but we failed to separate the static from
dynamic contributions. The direct relation between
order parameter fluctuations and the diffuse scattering
intensity provides a straightforward explanation for the
narrowing (by a factor of more than 2) of the tempera-
ture region of order parameter fluctuations in the fer-
roelastic phase (T < Tc) as compared to that in the
paraelastic phase (T > Tc).
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Abstract—Crystals of the KPb2Br5 compound are investigated using polarized light microscopy and calorim-
etry. The birefringence and the angle of rotation of the optical indicatrix are measured in the temperature range
270–620 K. It is found that the KPb2Br5 crystal undergoes a first-order ferroelastic phase transition at temper-
atures T0↑ = 519.5 K and T0↓ = 518.5 K with a change in the enthalpy ∆H = 1300 ± 200 J/mol. This transition
is accompanied by both twinning and the symmetry change mmm  P21/c. It is revealed that the angle of
rotation of the optical indicatrix exhibits an unusual behavior under variations in the temperature due to a strong
temperature dependence of the birefringence. © 2005 Pleiades Publishing, Inc.

     
1. INTRODUCTION

The search for new active media for solid-state
lasers operating in the middle-infrared range [1] has
given impetus to investigations of the crystal family of
compounds with the general formula APb2X5 (A = Cs,
Rb, K, NH4; X = Cl, Br). It is known [2] that, depending
on the ratios between the ionic radii A/X and Pb/X, all
these compounds can form two structural modifica-
tions, namely, the monoclinic modification NH4Pb2Cl5
and the tetragonal modification NH4Pb2Br5. According
to the phase diagram, the region of existence of
KPb2Br5 crystals lies along the boundary between the
regions corresponding to these two structures and,
hence, the KPb2Br5 compound can exist in both modi-
fications. The KPb2Br5 monoclinic crystals (P21/c) are
formed upon high-temperature crystallization, whereas
the tetragonal crystals (I4/mcm) grow from aqueous
solutions [2, 3]. X-ray diffraction investigations of
KPb2Br5 crystals at room temperature have established
that the monoclinic unit cell is similar to a rectangular
unit cell with parameters a = 9.264 Å, b = 8.380 Å, c =
13.063 Å, and Z = 4. The monoclinic angle is relatively
small: β = 90.06(12)° [2]. Furthermore, Cola et al. [3]
assigned these crystals to the orthorhombic system.
Nothing definite is known about phase transitions from
the monoclinic structural modification to the tetragonal
modification. However, according to the differential
thermal analysis performed in [3], KPb2Br5 crystals in
the monoclinic modification undergo a phase transition
at a temperature T0 = 515 K with a weak thermal effect
(≈400 J/mol). On the other hand, the x-ray diffraction
patterns at higher temperatures (T = 593 K) did not
exhibit any noticeable changes, except for insignificant
1063-7834/05/4702- $26.00 ©0332
shifts of the peaks and small variations in their intensi-
ties. All the aforementioned facts indicate that KPb2Br5
monoclinic crystals can undergo a structural phase tran-
sition at high temperatures.

The purpose of this work was to reveal the hypothet-
ical structural phase transition, to determine its type,
and to elucidate the nature and symmetry of the initial
high-temperature phase. In order to solve these prob-
lems, the KPb2Br5 crystal was studied using polarized
light microscopy and measurements of the heat capac-
ity and birefringence over a wide range of tempera-
tures.

2. SAMPLE PREPARATION
AND EXPERIMENTAL TECHNIQUE

Crystals of the KPb2Br5 compound were grown by
the Bridgman method from a batch of stoichiometric
composition at a temperature T = 655 K. The initial
potassium and lead bromides (special-purity grade)
were dried under dynamic vacuum and then repeatedly
purified through directional crystallization. A vertical
one-zone furnace with a temperature gradient of no less
than 5 K/mm served as the growth apparatus. Single
crystals up to 15 mm in diameter and 40 mm in length
were grown in evacuated silica tubes at a mean rate of
2–4 mm/day.

The thermodynamic properties were investigated on
a DSM-2M differential scanning microcalorimeter. The
DSM signals were recorded and processed using a
computer. The measurements with powder samples
were carried out in the temperature range 340–600 K.

The birefringence of the KPb2Br5 crystal was mea-
sured on the (001), (010), and (100) sections. The mea-
 2005 Pleiades Publishing, Inc.
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surements were performed on a Berec compensator
with an accuracy of ≅ 10–5 and a Senarmont compensa-
tor with a sensitivity of no less than ≅ 10–7 at a wave-
length of 6328 Å. The former compensator was used to
determine the birefringence magnitude, and the latter
compensator made it possible to examine the tempera-
ture dependence of the birefringence. Observations in
polarized light and measurements of the rotation angle
of the optical indicatrix were carried out using an Axi-
olab polarizing microscope with an accuracy of ±0.5°.
All the experiments were performed at temperatures
ranging from 273 to 620 K.

3. EXPERIMENTAL RESULTS

Observations of the crystal plates in polarized light
at room temperature revealed a streaky twin structure in
the (010) section (Fig. 1). The structural components
differ in the extinction positions by an angle 2ϕ. The
twin boundaries are aligned parallel to the [100] and
[001] directions. The width of twins is approximately
equal to 10 µm. During heating, the twin pattern is

(a)

(b)

(c)

Fig. 1. Twinning of the KPb2Br5 crystal in the (010) section
at temperatures T = (a) 518.5, (b) 519.5, and (c) 521.0 K.
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observed up to a temperature of 519 K and then disap-
pears. At temperatures above 

 

T

 

 = 520 K, the crystal is
characterized by a uniform “straight” extinction and
twins are absent. During cooling, twins again appear,
but the pattern changes radically: there arise large-sized
regions that occupy half the sample and differ in the
extinction positions by an angle 2

 

ϕ

 

. The formation of
these large-sized regions made it possible to measure
the birefringence from the (010) section of the sample
in a single-domain state. The original twin pattern is
regained with time.

Figure 2 presents the angle of rotation of the optical
indicatrix with respect to the [010] direction in a single
twin as a function of temperature. The dependence 

 

ϕ

 

(

 

T

 

)
exhibits an unusual behavior. At room temperature, the
angle of rotation of the optical indicatrix is small and
approximately equal to 4

 

°

 

. During heating, the angle of
rotation initially remains constant, increases to 7

 

°

 

 only
in the vicinity of the phase transition, and then sharply
decreases to zero. With a further increase in the temper-
ature, the extinction of the sample remains unchanged.
In the range 525–545 K, an unusual coloration of the
crystal is observed in polarized light: the crystal
becomes colored and changes its color (beginning with
red) at each temperature. At temperatures above 550 K,
the coloration disappears.

The temperature dependences of the birefringences
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 are depicted in Fig. 3. At room tem-
perature, the birefringences are approximately identical
and relatively large (

 

≈

 

0.06) for the (100) and (010) sec-
tions and close to zero for the (001) section. As the tem-
perature increases, the difference in the refractive indi-
ces initially changes linearly and insignificantly. At
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T) of the shear
spontaneous strain in the KPb2Br5 crystal.
5



 

334

        

MEL’NIKOVA 

 

et al

 

.

   
temperatures above T ≈ 390 K, the dependences ∆n(T)
exhibit an anomalous behavior for all the sections. It is
worth noting that, at this temperature (T ≈ 390 K), the
dependences ∆n(T) for all three sections are character-
ized by a specific point (Fig. 4).

At temperatures T0↑ = 519.5 K and T0↓ = 518.5 K,
the birefringence undergoes a jump with an insignifi-
cant temperature hysteresis (∆T ≈ 1 K) (Fig. 3). As the
temperature increases above 570 K, the temperature
dependence of the birefringence exhibits a linear
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Fig. 3. Temperature dependences of the birefringence of the
KPb2Br5 crystal: (1) ∆nc, (2) ∆na, and (3) ∆nb.
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Fig. 4. Temperature dependences of the birefringence of the
KPb2Br5 crystal at temperatures close to 400 K: (1) ∆nc,
(2) ∆na, and (3) ∆nb.
PH
behavior. The dashed lines in Fig. 3 correspond to the
extrapolation of the initial linear dependences of the
birefringence. It can be seen from this figure that the
KPb2Br5 crystal is characterized by pronounced pre-
transitional phenomena over a wide temperature range
(≈60 K) above the phase transition point.

Slightly above the transition temperature, there is an
“isotropic point” at which the birefringence ∆nb for the
(010) section decreases to zero and then changes sign.
It is in this temperature range that the continuous
change in color of the crystal is observed in polarized
light with a variation in the temperature. The birefrin-
gence of the crystal is characterized by a large disper-
sion (close to that of lithium niobate). This dispersion
in the visible spectral range is approximately equal to
0.01. Hence, for each wavelength in the temperature
range 525–545 K there is one zero point. Apart from the
zero point for the (010) section, the zero point of the
birefringence is observed for the (001) section below
room temperature (Fig. 3).

Figure 5 shows the temperature dependence of the
excess heat capacity associated with the phase transi-
tion according to the microcalorimetric data. The
change in the enthalpy upon the phase transition was
determined by integrating the function ∆Cp(T), where
∆Cp is the excess heat capacity. The obtained change in
the enthalpy ∆H = 1300 ± 200 J/mol is nearly three
times larger than that determined by the differential
thermal analysis in [3] (∆H ≈ 400 J/mol). This substan-
tial difference in the values of ∆H can be caused by dif-
ferent accuracies of the methods used.

4. DISCUSSION

The investigations performed demonstrate that the
KPb2Br5 crystal undergoes a phase transition at a tem-
perature T0 ≈ 519 K. This transition is accompanied not
only by a jump in the birefringence but also by a tem-
perature hysteresis that is characteristic of first-order
phase transitions. The twinning geometry and the angle
of rotation of the optical indicatrix indicate that, at
room temperature, the phase is monoclinic with the
twofold axis parallel to the [010] direction. This is con-
sistent with the symmetry group P21/c [2]. Judging
from the observations in polarized light, the high-tem-
perature phase has orthorhombic symmetry. A consid-
erable increase in the twin size upon repeated runs
through the phase transition temperature T0 suggests
that the twin boundaries are sensitive to inhomoge-
neous internal stresses that arise upon the first-order
phase transition and are responsible for the formation
of a single-domain structure of the sample. Inhomoge-
neous strains relax with time, and the twins regain their
original structure. Such a situation can be observed
when the phase transition is ferroelectric in nature.
These findings give grounds to assume that, at a tem-
perature T0 ≈ 519 K, the crystal undergoes a first-order
ferroelastic phase transition with the symmetry change
YSICS OF THE SOLID STATE      Vol. 47      No. 2      2005
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mmm  P21/c. This change in symmetry leads to the
appearance of the component x5 of the shear spontane-
ous strain and, hence, to the rotation of the optical indi-
catrix about the [010] axis.

It should be noted that no changes in the x-ray dif-
fraction patterns above the phase transition temperature
as compared to those at room temperature were
revealed in [3]. This fact is not clear from the standpoint
of the assumed symmetry change. The extinction laws
are different for orthorhombic and monoclinic symme-
tries. Taking into account these circumstances, we
repeated the experiment performed in [3]. For this pur-
pose, we recorded the x-ray powder diffraction patterns
at a temperature of 560 K and at room temperature and
then compared them. According to our experimental
data, a number of lines that do not satisfy the condition
(h + k + l) = 2n disappear at temperatures above the
phase transition point. This suggests that the high-tem-
perature phase of the KPb2Br5 crystal is orthorhombic
and has the same unit cell but the cell is body-centered.
The phase transition is not accompanied by a multiple
change in the unit cell volume. This is typical of proper
phase transitions. Most likely, the set of reflections
observed in the x-ray diffraction pattern corresponds to
a space group of the orthorhombic crystal system with
a center of symmetry and a body-centered unit cell, i.e.,
to the space group Immm or Imma.

It is universally accepted that, upon proper ferro-
electric phase transitions, the temperature dependence
of the rotation angle of the optical indicatrix reflects the
behavior of the shear spontaneous strain arising below
the phase transition: ϕ ~ xs. However, this is not always
the case. As was shown by Aleksandrov et al. [4], this
simplification holds true for small angles of rotation
and for insignificant changes in the birefringence. In
actual fact, upon transformation of the polarization ten-
sor from one coordinate system to another coordinate
system, we obtain  = n3p55x5/∆nb, where p55 is
the photoelasticity coefficient, n is the averaged refrac-
tive index, and x5 is the shear strain component. The
angle of rotation of the optical indicatrix is small and,
hence,  ≈ ϕ. However, it can be seen from Fig. 3
that the birefringence for the (010) section in the phase
transition range varies from a maximum value to zero
and even reverses sign. Therefore, in order to determine
the temperature dependence of the shear strain x5(T) for
the KPb2Br5 crystal from optical experiments, we
should take into account the two dependences ∆nb(T)
and ϕ(T). Figure 2 depicts the dependence
(∆nb )(T), which reflects the behavior of the shear
strain x5(T) for the KPb2Br5 crystal under the assump-
tion that the phase transition is purely ferroelastic in
nature.

The temperature dependences of the anomalous
component of the birefringence in the range below the
phase transition point T0 are plotted in Fig. 6. These
dependences were obtained by subtracting the extrapo-

2ϕtan

ϕtan

2ϕtan
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lated linear portions of the temperature dependences of
the birefringence for the initial phase from the curves
∆n(T) depicted in Fig. 3. As can be seen from Fig. 6, the
KPb2Br5 crystal is characterized by pronounced pre-
transitional effects over a wide temperature range
(≈60 K) above the phase transition point. The phase
transition is accompanied by a jump in the birefrin-
gence, and then the birefringence increases gradually.
However, at temperatures below T ≈ 400 K, the value of
δ(∆n)(T) begins to decrease. It is known that, below the
phase transition temperature, the anomalous compo-
nent of the birefringence measured in the orthorhombic
setting is proportional to the transition parameter
squared; i.e., δ(∆n)(T) ~ η2. Figure 7 shows these
dependences for all three sections of the KPb2Br5 crys-
tal. The transition parameter is taken as the strain com-
ponent x5 calculated according to the above procedure
(Fig. 2). It can be seen from Fig. 7 that all the experi-
mental points fall on a linear dependence passing
through the origin of the coordinates. This implies that
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Fig. 6. Temperature dependences of the anomalous compo-
nent of the birefringence for the KPb2Br5 crystal: (1)
δ(∆nc), (2) δ(∆na), and (3) δ(∆n
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the anomalous birefringence is governed by the shear
strain. However, at temperatures below 400 K, the
anomalous birefringence considerably deviates from
linear behavior.

5. CONCLUSIONS

Thus, the above investigations confirmed the
assumption that the KPb2Br5 crystals undergoes a phase
transition in the temperature range close to 515 K in
which a weak thermal anomaly was revealed in [3].
This transition is not related to radical structural trans-
formations that can occur upon the transition between
two structural modifications of the crystal, namely,
P21/c and I4/mcm. The observed transition is accompa-
nied by weak structural distortions and twinning typical
of the change in crystal symmetry mmm  P21/c.
The structural distortion is very small, and the mono-
clinic angle is determined within the limits of experi-
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Fig. 7. Correlation between the anomalous component of
the birefringence and the transition parameter squared at the
corresponding temperatures. The point designations are the
same as in Figs. 3, 4, and 6.
P

                                  mental error: β = 90.06(12)° [2]. According to our
experimental data, we can assume that the high-temper-
ature phase is adequately described by the space group
Immm or Imma.

The factors responsible for the inflection in the tem-
perature dependences of the birefringence at a specific
point in the vicinity of 390 K (Fig. 4) remain unclear.
There are two possible variants. First, there can occur
another phase transition. However, closer examination
performed by differential scanning calorimetry did not
reveal additional anomalies (Fig. 5). Second, the phase
transition is pseudoproper in nature; i.e., there are two
transition parameters that are linearly related but are
characterized by different temperature dependences (as
is the case with the CsLiCrO4 compound [5]).
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Abstract—Polarized Raman spectra of CdTiO3 single crystals are recorded for the first time over the frequency
range 5 < ν < 1000 cm–1 at temperatures of 10 to 1200 K. The emphasis was on the low-frequency range, where
an anomalous temperature dependence of a few phonon modes was observed. At high temperatures, four
phonon modes exhibiting a behavior typical of soft modes were found to exist. These phonon modes are
assumed to restore the cubic symmetry of the lattice. Their extrapolated temperature dependences suggest that
there exists a sequence of three hypothetical high-temperature phase transitions analogous to those observed in
the genuine perovskite CaTiO3. At temperatures below 78 K, the Raman spectrum exhibits new lines associated
with polar distortions of the unit cell. At low frequencies, three lines are observed whose parameters exhibit an
anomalous behavior typical of soft modes in a ferroelectric phase. Several different polar states are assumed to
exist at low temperatures. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

There is continuing interest in perovskite and per-
ovskite-structure crystals, which undergo various phase
transitions (ferroelectric, antiferroelectric, with orbital
or magnetic ordering, etc.). This interest is due to the
fact that the fundamental nature of the phenomena
observed in them is not yet well understood and also to
the various applications of these compounds in engi-
neering [1].

Cadmium titanate (CdTiO3) has been very poorly
studied in comparison with related compounds. The
ferroelectric properties of CdTiO3 below 50 K were dis-
covered by Smolenskiœ [2–4] and confirmed later by
Hegenbarth [5, 6]. Recently, interest in experimental
studies on CdTiO3 has been rekindled. Both ceramic
and single-crystal samples have been found to exhibit a
peak in permittivity at temperatures of ~77 K [7–11].
Furthermore, dielectric hysteresis loops have been
observed below these temperatures [7, 9–11]. The satu-
rated spontaneous polarization was Ps = 9 × 10–7 C/cm2,
which is an order of magnitude less than Ps in barium
titanate. This ferroelectric phase transition was
assumed in [10] to occur near the tricritical point with
a critical index β = 0.25. Studies on the birefringence
(∆ni) of single crystals over a wide temperature range
have confirmed the occurrence of a phase transition at
83 K, where the monotonic temperature dependence of
∆ni(T) changes sharply [12] and exhibits a hysteresis of
approximately 3 K. In [12], this phase transition was
assumed to be first-order. Note that the dielectric hys-
teresis is less than 1 K [10]. The birefringence ∆ni(T)
above Tc decreases monotonically as the temperature
increases up to 1200 K [12], though a small discontinu-
1063-7834/05/4702- $26.00 0337
ity in slope was observed in [13] in the temperature
range 473–523 K, where a sharp increase in permittiv-
ity was also observed; however, this behavior was
assigned in [13] to the effect of structural defects.

X-ray diffraction studies on single-crystal CdTiO3
have shown [14, 15] that this perovskite is centrosym-
metric and belongs to the Pnma space group (GdFeO3-
type structure), which differs from the results from [13,
16]. The unit cell contains four CdTiO3 formula units
(Z = 4). The orthorhombic distortion is similar to that in
the genuine perovskite CaTiO3 [17] caused by several
high-temperature phase transitions. We note, however,
that high-temperature phase transitions in CdTiO3 have
not yet been detected reliably; the results reported in
[18, 19] are not reliable, because the samples exhibited
a high conductivity at high temperatures and were
prone to reconstructive transformations into the
ilmenite structure [20]. A specific feature of these high-
temperature transitions is that the distortions caused by
them can be adequately described by pure rotations of
rigid octahedra TiO6 around different crystallographic
axes [21, 22].

There is little information available in the literature
on the dynamic properties of the crystal lattice. We are
aware of only fragmentary data on phonon spectra from
[7, 23]. The vibrational spectra of the ilmenite modifi-
cation of CdTiO3 were studied in [24, 25].

In this paper, we report on the results of Raman scat-
tering studies on single- and multidomain CdTiO3 crys-
tals over the temperature range 10–1200 K at frequen-
cies of 5 to 1000 cm–1. Particular emphasis was placed
on the low-frequency spectral region. The temperature
© 2005 Pleiades Publishing, Inc.



 

338

        

TORGASHEV 

 

et al

 

.

                                               
(a)

(b)

(c)

a

b

c c

b

a

a

b

c

a

b

c

a

b

c

a

b

c

78°41′

Fig. 1. Schematic microscopic images and the corresponding twins (the axes of the orthorhombic unit cell are indicated with respect
to the CdTiO3 crystal faces). (a) Type-I, (b) type-II, and (c) type-III twins. Crosses indicate the directions of extinction of light prop-
agating perpendicular to the large face of the crystal platelet.

45°
dependence of the phonon spectrum is described quan-
titatively in terms of an additive-oscillator model.

2. EXPERIMENT

Crystals were grown using a technique (described in
[26, 27]) for crystallizing platelet-shaped perovskite-
structure CdTiO3 crystals. The KF–KVO3 system was
used as a solvent. Its eutectic melting temperature is
approximately 770 K at 27 mol % KF, which made it
possible to reduce the temperature at which crystalliza-
tion begins to 1270 to 1300 K and thereby stabilize the
melt.

Experiments were carried out in a platinum crucible
50 cm3 in volume. The best crystals were obtained
using the starting composition (in grams) 1.4 CdTiO3 :
6.9 KF : 2.5 KVO3. A melt became homogeneous in 1.5
to 2 h at temperatures of 1290 to 1310 K under regular
mixing and was cooled to 1140–1170 K at a rate of 6 to
8 K/h. After the mother melt was poured off, the
crystals were cooled slowly and then washed with
dilute HCl.
PH
The crystals obtained were high optical–quality
amber-colored transparent CdTiO3 platelets up to 7 ×
10 mm2 in area and 10- to 200-µm thick. The composi-
tion of single crystals was determined with a combina-
tion scanning electron microscope–microprobe Came-
bax-Micro using a standard correcting technique
(ZAF). The content of impurities was less than 0.1–
0.15 mol %. X-ray diffraction studies did not reveal
reflections from ilmenite-structure CdTiO3. The param-
eters of the pseudomonoclinic perovskite-like unit cell
were determined to be a = c = 3.791 Å, b = 3.809 Å, and
β = 91°11.6′, which is close to the results from [14, 15].

Most very thin (up to 20 µm) CdTiO3 single-crystal
platelets, studied in polarized light at room tempera-
ture, were single domain. Thicker samples exhibited a
domain structure. Facets of samples showed symmetri-
cal extinction of light; however, there were also plate-
lets for which parallel extinction was observed. Three
types of twins were detected [26]. Type-I twins were
observed to exist in crystals showing symmetric extinc-
tion. Polarized light was propagated along the [010]
axis of the orthorhombic unit cell in both parts of a
twin. The twinning plane was parallel to the (100) plane
YSICS OF THE SOLID STATE      Vol. 47      No. 2      2005
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of the pseudocubic unit cell. Type-II and III twins were
detected in crystals that showed mixed extinction (with
one part of a twin showing parallel extinction and the
other part symmetric extinction). In a type-II twin, the
twinning plane makes an angle of 45° with the devel-
oped face of the crystal and is parallel to the (110) plane
of the pseudocubic unit cell. The twinning plane in
type-III twins coincides with the (151) plane and makes
an angle of 78°41′ with the developed face of the crys-
tal [26]. The structure of twins is shown schematically
in Fig. 1. The microscope-based Raman scattering tech-
nique made it possible to take spectra from individual
“thick” twins.

Raman spectra were excited by polarized light from
a Coherent-Innova 90 Ar+ ion laser (λ = 514.5 nm) and
analyzed with a Jobin Yvon T64000 spectrometer
equipped with a CCD camera. Polarized spectra were
taken from carefully oriented samples, with the axes of
the laboratory coordinate system being parallel to those
of the cubic-perovskite unit cell: X || [100], Y || [010],
and Z || [001]. Raman spectra were measured in back-
scattering geometry using a microscope to focus the
light incident on the sample, which made it possible to
collect scattered light from a spot approximately 2 µm
in diameter. At high temperatures, a Linkam cell was
utilized. Low-temperature measurements were per-
formed using a closed-cycle gas flow cryostat with a
temperature-stabilizing system (Oxford). Samples
were naturally grown platelets approximately 3 ×
4 mm2 in area and 40-µm thick that were not subjected
any mechanical treatment.

To obtain quantitative information on the parame-
ters of Raman spectrum lines, we utilized a damped
harmonic–oscillator model. Raman spectra were fitted
(using the method of least squares) by the expression
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Here, Ib is a constant background; C is a constant; [n(ν,
T) + 1] is the Bose–Einstein factor, characterizing the
occupancy of phonon energy levels; and νi, γi, and
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Fig. 2. (a) Unit cell and (b) Brillouin zone of the orthorhom-
bic polymorphic modification of CdTiO3 (solid lines) and
their relation to the perfect cubic unit cell (dashed lines). In
panel (b), the letters indicate the points of the cubic BZ that
are transferred to the center of the orthorhombic BZ as a
result of rotational structural distortions.

ac*

bc*
Composition of the representations for the atomic positions in the perovskite structure (space group Pm3m)

Position
(wave vector)

Representation
type

Zone-point representation composition

k10 (X point) k11 (M point) k13 (R point) k12 (Γ point)

(a): Displacement τ4 + τ10 τ4 + τ10 τ10 τ10

(000)

(b): Displacement τ1 + τ9 τ6 + τ10 τ7 τ10

(1/2 1/2 1/2) Rotation τ2 + τ10 τ5 + τ9 τ8 τ9

(c): Displacement τ1 + τ4 + τ6 τ1 + τ3 + τ5 + τ6 τ4 + τ6 + τ8 τ8 + 2τ10

(1/2 1/2 0) + 2τ9 + τ10 + τ7 + τ9 + τ10 + τ10

Total: Displacement 2τ1 + 2τ4 + τ6 τ1 + τ3 + τ4 + τ5 + 2τ6 τ4 + τ6 + τ7 τ8 + 4τ10

(a), (b), (c) + 3τ9 + 2τ10 + τ7 + τ9 + 3τ10 + τ8 + 2τ10

Note: The labeling of representations and wave vectors is the same as that introduced in [29].
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Ferroelectric phase C2v
2
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Little group C2v

Paraelectric phase D2h
16

Γ point (k19 = 0)
Little group D2h

Ferroelectric phase C2v
9

Γ point (k19 = 0)
Little group C2v

17 A1[αxx, αyy, αzz; z]
13 A2[αxy]
13 B1[αxz; x]
17 B2[αyz; y]

7 Ag[αxx, αyy, αzz]
5 B1g[αxy]
7 B2g[αxz]
5 B3g[αyz]
8 Au[silent]
10 B1u[z]
8 B2u[y]
10 B3u[x]

15 A1[αxx, αyy, αzz; z]

15 A2[αxy]
15 B1[αxz; x]
15 B2[αyz; y]

Fig. 3. Correlation between the representations corresponding to the Γ, X, M, T, and R points of the BZ of the “perfect” perovskite

(  symmetry) transferred to the BZ center of orthorhombic CdTiO3 belonging to space group Pnma ( ). The numeral written
in front of a representation symbol is the number of times this representation appears in the displacement representation. The
numeral in parentheses after a representation symbol is the degeneracy of the mode. The origin of coordinates is at the Cd atom site.

Oh
1

D2h
16
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 are the natural frequency, damping constant, and
oscillator strength of the ith mode, respectively.

3. THE CRYSTAL STRUCTURE OF CdTiO3 
AND FACTOR-GROUP ANALYSIS

OF PHONON MODES
CdTiO3 crystallizes in an orthorhombically dis-

torted perovskite structure and belongs to the Pnma
group [15]; its unit cell is shown schematically in
Fig. 2.

The vibrational representation of perovskites has
been analyzed in many papers (see, e.g., [28]) and is
given in the table. We use the labeling of wave vectors
and representations introduced by Kovalev [29]; this
labeling is unambiguous and is preferable to that used
in [21, 22, 28, 30], because the representations are often
erroneously identified in the literature. We also added a
rotation representation at the b position in order to sep-
arate the corresponding mechanism for rigid TiO6 octa-
hedra. Rotational distortions of the structure, which
occur in CdTiO3 at high temperatures, cause a folding
of the Brillouin zone (BZ) and thereby transfer phonon
modes from the R, M, and X points of the cubic-lattice
BZ to the center of the orthorhombic BZ (Fig. 2b). The
corresponding correlations are shown in Fig. 3.

4. EXPERIMENTAL RESULTS 
AND DISCUSSION

From the correlation diagram in Fig. 3, it follows
that the phonon modes at the R, M, and X points in the
Brillouin zone become active in first-order Raman scat-
tering after the corresponding phase transitions occur,
causing a multiplication of the unit cell volume. As a
result, one might expect that the Raman spectrum at
room temperature will contain 24 lines (7Ag + 5B1g +
7B2g + 5B3g) and that 25 polar phonon modes (9B1u +
7B2u + 9B3u) will be infrared-active due to the crystal
being centrosymmetric. It should be stressed that all
Raman-active phonons in CdTiO3 originate from the
phonon modes at the BZ boundary of the cubic phase.

4.1. The General Structure of the Raman Spectra 
and Symmetry Classification of Spectral Lines

Polarized Raman spectra from a CdTiO3 single crys-
tal were taken in a 180° scattering geometry for all pos-
sible orientations of the vectors E of the incident and
scattering monochromatic laser light relative to the
crystallographic axes of the crystal. As exemplified in
Fig. 1, polarized spectra can be obtained from individ-
ual domains. Experimentally, it is convenient to inves-
tigate domains in which the b axis of the orthorhombic
unit cell is normal to the large natural (010) face of a
sample and the a and c axes make an angle of 45° with
the other two natural faces. In this case, in order to ana-
lyze experimental Raman spectra, the common Raman

∆εiν i
2
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Fig. 4. Raman spectra of orthorhombic single-crystal
CdTiO3 taken in various scattering geometries at T = 296 K.
The main Raman tensor components are indicated. Here
and in Figs. 5 and 7, asterisks indicate the laser plasma line.
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Fig. 5. Polarized Raman spectra of orthorhombic single-
crystal CdTiO3 taken at 80 K. Only Ag modes can be
observed in the yy spectrum. The Ag and B2g modes can
appear simultaneously in the zz spectrum, and the B1g and
B3g modes, in the yz spectrum. The second-order Raman
bands are indicated by arrows.
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tensors for the D2h group should be subjected to the
transformation corresponding to rotation through 45°
about the b axis. This procedure gives the following
Raman tensors attributed to the coordinate system asso-
ciated with the natural facets of the crystal:
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Fig. 6. Polarized Raman spectra of crystal CdTiO3 taken at
1200 K. Asterisks indicate the laser plasma line. The sec-
ond- and higher order Raman scattering is seen to dominate.
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Fig. 7. Temperature dependence of the low-frequency
Raman spectra of CdTiO3 over the range 100–1100K.
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Thus, the Ag modes can be observed in the yy and xz
spectra, whereas both the Ag and B2g modes can be seen
simultaneously in the xx and zz spectra (in what fol-
lows, we use the small letters x, y, and z to denote the
spectra described by the components of the trans-
formed Raman tensors). Similarly, the B1g and B3g

modes cannot be distinguished in experimental Raman
spectra. Furthermore, since type-I twins are rotated
about axis Y || b through 45° in opposite (clockwise and
counterclockwise) directions, it is almost impossible to
identify the modes in a multidomain sample in terms of
symmetry. In our experiments, this problem is circum-
vented by carrying out microscope-based Raman mea-
surements on individual domains.

Figure 4 shows polarized spectra taken in various
scattering geometries at room temperature. It is seen
that the spectra are very broad, highly structured bands
typical of second-order spectra, with sharp first-order
resonance peaks being seen against this background.
We note that the Raman spectra of the CdTiO3 single
crystal are very similar to those of CaTiO3 reported in
[30], if it is considered that the latter were unpolarized.

As the sample is cooled, the intensity of the second-
order bands decreases monotonically and the first-order
lines narrow. Figure 5 shows a yy spectrum taken at
80 K, where seven narrow lines are seen against the still
strong background of higher order Raman scattering.
These narrow resonance lines can be identified with the
predicted 7Ag phonon modes at the BZ center of the
centrosymmetric orthorhombic unit cell of CdTiO3 and
are positioned at 99, 125, 194, 299, 390, 465, and
496 cm–1. By comparing the zz and yy spectra in Fig. 5,
the peaks at 115, 141, 303, 392, and 504 cm–1 can be
assigned unambiguously to B2g phonon modes. The
other predicted B2g peaks in the zz spectrum are close in
frequency to the Ag lines in the yy spectrum and, there-
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fore, cannot be identified unambiguously due to possi-
ble small polarization distortions during measurements.

The xy and yz spectra are very similar but differ sig-
nificantly in structure from the spectra corresponding to
the other components of the Raman tensor (Fig. 4).
According to factor-group analysis, the former spectra
must contain five first-order lines of each symmetry
type (5B1g, 5B3g). However, reliable identification is
hampered even at 80 K, because at this temperature
there are six distinguishable resonances in both spectra
(at 114, 144, 307, 346, 394, 478 cm–1; Fig. 5). It should
be noted that the weak peak at 114 cm–1 may be a leak
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Fig. 8. Temperature dependences of (a) the frequencies and
(b) the squares of the frequencies of the lowest frequency
Raman lines from crystal CdTiO3. By extrapolating the lin-

ear portions of the ν2(T) curves, the temperatures of hypo-
thetic second-order phase transitions are found to be T1 ≈
4350 K and T2 ≈ 3680 K. For the 194-cm–1 mode, the ν4(T)
curve was extrapolated to obtain T3 ≈ 2000 K (panel b). The

ν(T) = A(T3 – T)1/4 dependence is typical of phase transi-
tions close to the tricritical point.
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from the very strong B2g line. Certain of the B1g and B3g

modes are very likely to be very close in frequency and
cannot be resolved even at low temperatures because
their profiles overlap. This conclusion was supported
by recent ab initio calculations of the lattice dynamics
of a related compound, CaTiO3, in which lattice modes
differing in symmetry were found to have very similar
frequencies [30, 31]. Furthermore, it can be seen even
visually that, e.g., the line peaked at 478 cm–1 has a
complex structure, i.e., that it actually consists of sev-
eral lines. The spectrum of the yz component of the
Raman tensor was analyzed using Eq. (1), i.e., was fit-
ted by a sum of damped harmonic oscillators. As a
result, three independent lines were separated (at 459.3,
479.1, 509.4 cm–1), whose combination fitted the exper-
imental profile very closely. Attempts to resolve the
other lines of these spectra within experimental error
were not successful, and we identified them as singlets.
Thus, eight out of the ten predicted B1g and B3g phonon
modes were detected in the xy and yz spectra.
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Fig. 9. Variations in the low-frequency Raman spectra with
temperature decreasing from 80 to 20 K. New lines are seen
to arise against the background of high-order Raman scat-
tering.
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From the results presented above it follows that,
despite the slight disagreement with the predictions
from the factor-group analysis, the experimental polar-
ized Raman spectra of CdTiO3 are consistent with the
Pnma symmetry of its crystal lattice.

4.2. The Temperature Dependence 
of the Raman Spectra

Figure 6 shows Raman spectra of CdTiO3 taken at
1200 K. These spectra are also well polarized, as at
lower temperatures, but now the second-order bands
are dominant. Nevertheless, even at this temperature,
the lowest frequency first-order lines remain relatively
narrow in comparison with the high-frequency lines,
which are almost obscured by the many-particle excita-
tion continuum. Above 1200 K, the crystal surface
begins to degrade, which makes observation of Raman
spectra impossible; therefore, other methods should be
applied to study the expected high-temperature phase
transitions.

The temperature dependence of low-temperature
Raman spectra taken at 100 to 1100 K is shown in
Fig. 7. The lowest frequency first-order Raman lines
are seen to shift noticeably to lower frequencies. The
low-frequency Ag lines in the yy spectra are signifi-

zz
yy
yz

10 20 30 40 50 60 70 80
T, K

0

0.2

0.4

0.6

0.8

1.0

10

0

20

30

40

50

60

70

80

W
av

en
um

be
r,

 c
m

–
1

N
or

m
al

iz
ed

 in
te

ns
ity

, a
rb

. u
ni

ts

Fig. 10. Temperature dependences of the frequencies and
integrated intensities (normalized to their values at T =
20 K) of the Raman lines shown in Fig. 9.
P

cantly broadened with sample heating, and the lowest
two resonances become almost invisible in the spectra
above 1000 K. It is significant that the temperature
dependences of their frequencies are different (Fig. 8a).
The lowest frequency peak shifts from 99 cm–1 at 100 K
down to 85 cm–1 at 1100 K, whereas the frequency posi-
tion of the maximum of the 125-cm–1 line remains prac-
tically unchanged over the same temperature range.
The frequency shift is maximum for the 194-cm–1 line,
which shifts down to 160 cm–1 at 1200 K. This behavior
of the low-frequency modes certainly indicates that
they are formed differently from phonon modes at the
BZ boundary of the initial cubic structure, as shown in
Fig. 3. The ν2(T) dependences for these soft modes are
plotted in Fig. 8b. The almost linear dependence of the

square of the natural phonon frequency ( ) on T – Tj

typically indicates the occurrence of a second-order
phase transition. Here, Tj is the temperature at which
the phase transition occurs. Extrapolating the ν2(T)
dependences to high temperatures shows that there are
three such temperatures (hypothetical high-temperature
phase transitions). These temperatures are very high;
they exceed the melting point of crystal CdTiO3, so the
corresponding phase transitions cannot be observed
experimentally under conventional conditions.

In the centrosymmetric CdTiO3 crystal with Pnma
symmetry, the involvement of phonon modes in infra-
red absorption and Raman scattering is determined by
the mutual exclusion selection rule. Therefore, the
phonon modes differing in parity with respect to space
inversion (g, u) cannot manifest themselves simulta-
neously in the experiments discussed above. The selec-
tion rules are broken if the crystal ceases to be cen-
trosymmetric as a result of a phase transition to a lower
symmetry phase belonging to a polar crystal class. In
such ferroelectric phases, all modes are both infrared-
and Raman-active. Therefore, we may expect that addi-
tional lines will appear in the first-order Raman spectra
as a result of a ferroelectric phase transition. In the bot-
tom panel in Fig. 3, two types of correlation between
the irreducible representations for the D2h and C2v crys-
tal classes are shown. The choice of the two space
groups for the C2v crystal class is based on the results
of analyzing the available dielectric measurements [8,
10]. This issue will be discussed in greater detail in a
later paper.

In recent infrared spectroscopic studies on calcium
titanate CaTiO3 [30], it was determined that the lowest
frequency spectral lines correspond to three phonon
modes (B1u, B2u, B3u) that originate from the polar,
threefold degenerate F1u phonon mode at the BZ center
of the cubic phase. The threefold degeneracy of this
mode is lifted due to orthorhombic lattice distortions
caused by a sequence of high-temperature phase transi-
tions. Since CaTiO3 and CdTiO3 are similar in struc-

ν i
2
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ture, it is natural to assume that the situation for CdTiO3
is the same.

If cadmium titanate undergoes phase transitions to a
polar state, then infrared-active B1u, B2u, and B3u

phonon modes must become Raman-active. This situa-
tion does indeed take place and is demonstrated in
Fig. 9, where the lowest frequency range of the Raman
spectrum is shown. In this range, no fist-order Raman
lines were observed above 80 K. At lower temperatures,
three new lines appeared and their frequencies reached
fixed values of 50, 30, and 70 cm–1 at 20 K in the yy, yz,
and zz spectra, respectively. The temperature depen-
dences of the parameters of these lines are shown in
Fig. 10. It is seen that, as the temperature decreases, the
line intensities gradually increase almost from zero and
their frequencies also increase, but from nonzero val-
ues. This behavior is typical of soft modes in the ferro-
electric phase after a first-order phase transition. It is
worth noting that the extrapolated temperature depen-
dences of the integrated intensities intersect the temper-
ature axis at different points corresponding to approxi-
mately 71 and 62 K. This fact indicates that at least two
ferroelectric phase transitions in which the spontaneous
polarization changes its direction occur over this nar-
row range (this issue is discussed in detail in [32]).

5. CONCLUSIONS

The polarized phonon Raman spectra of crystal
CdTiO3 have been taken and studied for the first time
over the temperature range 10–1200 K. Full informa-
tion on the Raman tensor components αij has been
given, and symmetry identification of Raman lines has
been performed.

The experimental Raman spectra have been shown
to correlate well with the predictions from factor-group
analysis, which allows us to conclude that CdTiO3 does

indeed belong to the Pnma ( ) space group over the
temperature range 78–1200 K.

Studies of the Raman spectra at high temperatures
have revealed the presence of fully symmetric modes
(associated with a rotation of octahedra) whose behav-
ior is typical of soft modes. The high-temperature
extrapolation of their frequencies suggests that there is
a sequence of three hypothetical phase transitions. The
temperatures of these hypothetical phase transitions
were found to exceed the melting temperature of cad-
mium titanate. Therefore, CdTiO3 with GdFeO3-type
structure is stable up to the melting temperature. This
conclusion agrees well with the ab initio calculations
performed in [33].

Studies of the low-temperature Raman spectra have
revealed new lines that appear below ~78 K. It was con-
cluded that the symmetry of the crystal lattice reduces
to the C2v symmetry. Analysis of the Raman spectra and
their comparison with infrared reflection spectra and
dielectric measurements [32] have revealed multistage

D2h
16
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structural transformation of CdTiO3 into different polar
states.
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Abstract—The intrinsic structure of spherical SiO2 particles synthesized by hydrolysis of tetraethyl orthosili-
cate in an alcohol–water–ammonia medium was studied using transmission electron microscopy. It was estab-
lished that the relatively large spherical silica particles were “tertiary” structures made up of smaller spherical
particles (“secondary” particles), which in turn consisted of even smaller primary spherical particles 5–10 nm
in diameter. It was shown that, under the experimental conditions, the large SiO2 particles can contain a central
core comprising primary particles surrounded by several layers of secondary particles smaller than the core
diameter. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

In recent years, studies of nanostructures obtained
by filling the regular arrays of voids in synthetic opals
with a material have attracted more and more interest
due to the prospects for using such materials in opto-
electronics [1 – 3]. Monodisperse spherical particles of
amorphous silica (SiO2), from which the ordered pack-
ing in opal is formed, are themselves objects with a
complicated fractal intrinsic structure [4–6]. Two meth-
ods of producing suspensions of silica nanoparticles are
currently widely used, namely, growth from a water
solution of sodium silicate (similar to the natural mech-
anism of opal particle growth [7]) and hydrolysis of tet-
raethyl orthosilicate (TEOS) in an alcohol–water–
ammonia medium [8]. The latter method is more often
applied in laboratories, because it enables one to obtain
a more homogeneous size distribution of SiO2 particles.
The sizes and polydispersity of silica particles depend
on the synthesis conditions, which include the concen-
trations of the components (TEOS, C2H5OH, H2O,
NH4OH) and the order in which they are mixed, as well
as the solution pH, the temperature at which the reac-
tion proceeds, etc. The synthesis reaction itself includes
the following stages: hydrolysis of TEOS, polymeriza-
tion of molecular silicon dioxide, condensation of poly-
mer clusters, and aggregation of primary SiO2 nanopar-
ticles into monodisperse colloidal particles of amor-
phous silica [9–16]. Because the number of parameters
determining the conditions of synthesis of colloidal
particles is large, the results obtained are widely scat-
tered.

The majority of published results relate to the syn-
thesis of SiO2 colloidal particles at low (1- to 2-M)
water concentrations. High water concentration in a
solution causes primary seed particles to decrease in
size, which results in narrow size distributions of parti-
cles provided they grow stepwise [9]. The water con-
1063-7834/05/4702- $26.00 0347
centration not only influences the kinetics of the parti-
cle growth [17] but can also cause changes in the intrin-
sic structure of these particles. Several publications
concerned with the structure of natural opal specimens
[4, 18] have shown that spherical SiO2 particles about
250 nm in diameter consist of smaller structures 10 to
20 nm in size. In a number of studies [5, 19–21], both
the intrinsic structure of particles and the processes that
take place during their production through the chemical
reaction of TEOS hydrolysis are modeled. In [22, 23],
the sizes of the structural units comprising a spherical
opal particle are calculated and substantiated following
from thermodynamic considerations. However, almost
no experimental results of transmission electron micro-
scopic observations of the intrinsic structure of opal
particles have been presented to confirm those calcula-
tions. As regards particles greater than 300 nm in size,
there are no experimental results relating to their struc-
ture in the literature.

The objective of the present work is to study, by
means of transmission electron microscopy (TEM), the
intrinsic structure of opal particles synthesized at high
water concentrations (16–24 M).

EXPERIMENTAL

SiO2 particles were synthesized by TEOS hydroly-
sis in water solutions of ethyl alcohol (the concentra-
tion of water was 16–24 M, the concentration of ammo-
nia was 1–5 M, and the concentration of TEOS was
0.14 M) at 22°C.

The structure of the particles obtained was studied
with a JEM-100CX transmission electron microscope.
A suspension of silica particles was spread on a copper
grid and then, after drying at room temperature, was
introduced into the microscope column. In order to
observe the intrinsic structure of large SiO2 particles
(about 1000 nm in diameter), specimens were prepared
© 2005 Pleiades Publishing, Inc.
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by etching opal nanospheres in a 1% hydrofluoric acid
solution for 20–30 s, followed by neutralization of the
solution by 3% caustic potash and repeated washing off
of the deposit in distilled water.

RESULTS AND DISCUSSION

Figure 1 shows images of SiO2 particles spread from
suspension on a copper grid and then introduced into
the column of a transmission electron microscope with-
out additional treatment. Images of a separate spherical
particle 225 nm in diameter (Fig. 1a) and of a druse of
particles 20–40 nm in diameter (Fig. 1b) show an
intrinsic substructure of these particles with a period of
7–10 nm, which agrees well with the model of an
aggregated (secondary) particle composed of smaller,
primary SiO2 particles suggested by researchers in
studies on natural opals [4, 18]. Similar results were
also obtained on specimens of synthetic opal [5]. The
size of the primary particles depends on the synthesis
conditions and changes in the range 5–20 nm [4, 21,
24].

Fig. 1. TEM images of (a) an individual spherical SiO2 par-
ticle 225 nm in diameter and (b) a druse of particles 20–
40 nm in size.

50 nm

(a)

20 nm

(b)
P

From the thermodynamic point of view, as men-
tioned in [23], primary particles of silicon dioxide can-
not have a diameter of larger than 20 nm; therefore,
spherical silica particles larger than 20 nm in diameter
are aggregated and consist of particles 5 to 20 nm in
diameter, depending on the synthesis conditions. The
same authors pointed out in [25] that secondary parti-
cles composed of primary particles also have an upper
size limit (their maximum diameter was about 350 nm).
This result suggests that the spherical particles of sili-
con dioxide of a larger diameter obtained by us (from
500 to 1500 nm) are “tertiary” and comprise smaller
secondary particles whose diameter is less than
350 nm, and these structures, in turn, consists of even
smaller, primary particles less than 20 nm in diameter.

TEM microphotographs of larger particles about
1000 nm in diameter show quite distinctly that the sur-
face of these particles is composed of spherical parti-
cles ten times smaller in diameter than the particle they
make up. The form of the large particles vaguely resem-
bles a raspberry. Similar results were published in [5,
20, 26]. In those papers, however, only secondary par-
ticles consisting of primary particles were seen in the
electron microphotographs. We managed to observe
“tertiary” particles consisting of secondary particles,
each of which looked like a raspberry, as it was com-
posed of primary particles (Fig. 2), with the sizes of the
primary and secondary particles falling in the range of
sizes based on the thermodynamic considerations from
[22, 23].

It should be noted that the intrinsic structure of
spherical silica particles is not always revealed during
electron microscopic examination. Sometimes, the sur-
face of a large particle looks almost smooth and uni-
form (Fig. 3). Apparently, this could be possible for two
reasons. First, when large particles are synthesized, in
the solution there may be free ends of polymer siloxane
chains whose aggregation generates a gel-like mass,
which we often observed by electron microscopy along
with SiO2 spherical particles. This mass, as deposited
on the surface of a growing large spherical particle,
lutes all roughnesses of the surface, thus disguising the
real structure of the large particle. This mechanism of
particle formation with a smooth surface was suggested
in [27]. Next, one can assume that, under certain syn-
thesis conditions, large particles do not have a compli-
cated intrinsic structure and are monolithic, gigantic
primary particles. However, such a state of things does
not seem very likely. It is more likely that large spheri-
cal silica particles have a smooth surface due to the
silicic acid gel stuck to them.

In order to check this assumption, spherical particles
1000 nm in diameter prepared for TEM studies were
briefly treated in dilute hydrofluoric acid in order to
remove the upper layer of silica hydrogel stuck to them.
Owing to this treatment, the actual surface structure of
a large particle was disclosed, as can be seen from the
electron microphotograph of a spherical particle of sil-
HYSICS OF THE SOLID STATE      Vol. 47      No. 2      2005
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icon dioxide primarily etched in hydrofluoric acid
given in Fig. 2. Therefore, particles 1000 nm in diame-
ter, at least as regards the conditions of synthesis used
in our study, had a smooth surface due to the silicic acid
gel sticking to them rather than to their monolithic char-
acter.

The question arises as to whether a large tertiary
particle that is about 1000 nm in diameter is composed
of secondary spheres about 100 nm in diameter
throughout its entire volume or if it contains a core of
primary particles about 350 nm in diameter with which
secondary spheres about 100 nm in diameter have
aggregated. The possibility of silica particles having the
latter structure also follows from an analysis of the
electron microscopy images shown in [4], though the
authors of that work did not pay attention to this fact.
Sometimes, when large spherical particles of silicon
dioxide etched in dilute hydrofluoric acid were studied
by electron microscopy, the following picture was
observed: under a thin spherical shell made of second-
ary particles about 100 nm in diameter, there was a hol-
low about 500 nm in diameter that was partly filled with
a gel-like mass (Fig. 4). It should be noted that particles
larger than 200 nm in diameter that are not treated in a
hydrofluoric acid solution are not transparent to elec-
trons accelerated by a voltage of 100 kV. However,
when treated in hydrofluoric acid, even large particles
1100 nm in diameter become transparent to some
extent (Fig. 4). We observed this effect many times.

It can be suggested that particles about 1000 nm in
diameter (or at least some of them) have a core consist-
ing of primary particles and that the core diameter is
equal to that of the observed spherical hollow (about
500 nm). As a result of the treatment of tertiary particles
in a hydrofluoric acid solution, the etchant penetrated
into narrow pores of the core between the primary par-
ticles. After etching for 30 s, the etchant was neutral-
ized and the spheres were repeatedly rinsed in distilled
water. However, it is rather difficult to wash the etchant
away from the narrow channels between the primary
particles of a large core. Therefore, the etching process
continues, with the result that the core turns into a gel-
like mass, which partly fills the formed hollow. At the
same time, in wide channels between secondary parti-
cles, which form the exterior spherical shell of the hol-
low, the etchant rapidly neutralizes. This is the reason
why the structure is not etched as dramatically here.

It should be noted that not all tertiary particles had
spherical hollows. The reason for this can be spatial
inhomogeneity of the etching, as well as differences in
the particle structures resulting from the synthesis con-
ditions. One can assume that the presence or the
absence of a core in large tertiary particles is dictated by
the probability of secondary particles aggregating with
each other and thus forming a tertiary particle. If this
probability is high, there is almost no chance that sec-
ondary particles 100–150 nm in diameter will grow into
large cores 500–600 nm in diameter with subsequent
PHYSICS OF THE SOLID STATE      Vol. 47      No. 2      2005
agglomeration of ordinary secondary particles on them
as on the nucleus of growth. In the opposite case, the
percentage of particles with a large core inside would

Fig. 2. (a) TEM image of a large SiO2 particle about
1000 nm in diameter etched in a HF solution, and (b) a sec-
tion of the same particle under a higher magnification,
where the intrinsic structure of both tertiary and secondary
particles is seen. The sizes of primary particles are 7–10 nm,
and secondary particles are about 100 nm in size.

Fig. 3. Spherical opal particle with a smooth surface; its
intrinsic structure is disguised by an amorphous mass of sil-
ica hydrogel.

(a)

(b)

100 nm

200 nm

200 nm

10002998
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increase among tertiary particles. The probability of
this agglomeration probably depends on the conditions
of synthesis of the particles.

In summary, the experimental results suggest that
large spherical SiO2 particles contain a central core that
is composed of primary particles and surrounded by
several layers of secondary particles smaller than the
core in size. The schematic structure of such a particle
is shown in Fig. 5.

The existence of secondary particles 1000 nm in
diameter seems unlikely. The existence of monolithic
primary particles of such diameter seems even less
probable, though, perhaps, one should not rule out this

500 nm

Fig. 4. TEM image of the inner hollow of a SiO2 particle
treated in a hydrofluoric acid solution.

Fig. 5. Schematic structure of a large particle with a core. In
the center, there is a large core composed of primary parti-
cles; the core is covered with several layers of secondary
particles smaller than the core.
P

possibility. We have never observed such particles in
our experiments.

4. CONCLUSIONS

By means of transmission electron microscopy, it
has been shown for the first time that relatively large
spherical silica particles (about 1000 nm in diameter)
are composed of smaller spherical particles about
100 nm in diameter (secondary particles), which, in
turn, are composed of even smaller, primary spherical
particles 5–10 nm in diameter.

It has also been established that large SiO2 particles
can contain a central core that is composed of primary
particles and surrounded by several layers of secondary
particles smaller than the core in size.

It seems unlikely that secondary or primary particles
about 1000 nm in diameter can exist, though the gener-
ation of such particles cannot be regarded as absolutely
impossible if synthesis conditions different from those
studied in this work are used.
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Abstract—It is shown that at least eight types of copper crystals having one or six fivefold symmetry axes can
form during electrodeposition. Their structures and the possible mechanisms of their formation and growth are
considered. Different-type pentagonal crystals that form during electrodeposition are assumed to have the same
disclination nature. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Particles with pentagonal symmetry, which is for-
bidden by classic crystallography, have been exten-
sively studied over the past several decades. The results
of studies into the structure and properties of small par-
ticles with pentagonal symmetry that have been per-
formed in the past fifty years are most completely pre-
sented and generalized in [1, 2]. Numerous investiga-
tions referred to in those reviews clearly indicate that
there is great interest in these unique physical objects.
Microcrystals with pentagonal symmetry forming in
copper were detected in 1957 [3]. Pentagonal symme-
try has been currently detected in almost all fcc metals
during different-type crystallization. However, such
crystals have maximum sizes upon electrolytic deposi-
tion [4, 5]. For example, we have succeeded in growing
pentagonal crystals as large as 200–300 µm [5].

There are two substantially different approaches to
explaining the formation of pentagonal crystals in elec-
trodeposited fcc metals: in one approach, crystal
growth is assumed to begin from two-dimensional
nucleation centers, and in the other, from three-dimen-
sional nucleation centers [6, 7]. There are also models
proposed for pentagonal crystals that are produced by
sputtering and consist of irregular decahedrons [8]. All
these models conflict one another and cannot explain a
number of new experimental findings [4, 5], in particu-
lar, the presence of rather large crystals with fivefold
symmetry. These models were created without regard
for the concepts of disclination. In [2, 9, 10], the discli-
nation approach was used to analyze nonuniform elas-
tic strains in small pentagonal particles and to describe
their structure-sensitive properties. Disclinations were
shown to be an intrinsic feature of pentagonal symme-
try in small particles. However, as follows from energy
considerations (i.e., irrespective of the formation mech-
anism), pentagonal small particles (PSPs) are stable
only if their dimensions are less than a certain critical
value (~100 nm) [9, 10]. In larger pentagonal crystals,
1063-7834/05/4702- $26.00 0352
which form upon electrolytic deposition and are some-
times three orders of magnitude larger than this critical
size, the presence of disclinations is debatable.

In this work, we study the origin and the internal
structure of relatively large pentagonal crystals that
form during copper electrocrystallization and have dif-
ferent shapes with the aim of substantiating or refuting
the disclination nature of such objects.

2. EXPERIMENTAL
To produce pentagonal crystals, as well as copper

coatings and copper films from them, we used a stan-
dard addition-free sulfuric acid electrolyte for copper
plating; the electrolyte was produced from twice-dis-
tilled products made of chemically pure components
and contained 250 g/l CuSO4 · 5H2O and 90 g/l H2SO4.
Copper was deposited at an electrolyte temperature of
20 to 50°C in the galvanostatic mode at ic = 0.01–
10 A/m2 and in the current-reversal mode (the current
density in the cathode pulses was ic = 1–3 A/m2, and
that in the anode pulses was ia = 0.4–1.0 A/m2). As a
substrate, we used polished stainless steel with a prede-
posited 10-µm-thick coating made from polycrystalline
copper with 〈110〉  axial texture or from titanium nitride
deposited by ion-plasma deposition. We assumed that
the layer-by-layer mechanism of growth from two-
dimensional nuclei would be realized on a substrate of
the first type. Indifferent substrates of the second type
should favor the formation of three-dimensional clus-
ters. To this end, we also electrodeposited copper onto
the (110) face of a copper single crystal and onto a plat-
inum substrate.

To examine the structure and the surface morphol-
ogy of the crystals and coatings produced, we applied
transmission electron microscopy (PRÉM-200, UMV
100K), scanning electron microscopy (JSM-6500FE,
Hitachi S-3500H), electron diffraction (ÉR-100), and
metallography (MIM-7 and Axiotech optical micro-
© 2005 Pleiades Publishing, Inc.
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(a) (b) 10 µm (c)10 µm

(d) 5 µm (e) (f)3 µm 3 µm

(g) 3.5 µm 2.5 µm(h) (i) 5 µm

Fig. 1. Various shapes of copper crystals with pentagonal symmetry formed during electrodeposition.

5 µm
scopes). Polished sections of coatings were made in the
transverse direction from the electrolyte side and from
the substrate side.

3. RESULTS AND DISCUSSION

By varying the conditions of electrodeposition and
the substrate type, we grew pentagonal copper crystals
having cross-sectional dimensions from 1 to 300 µm
and different habit planes. At least eight types of crys-
tals were grown differing in shape, size, and internal
structure, with each type forming on a certain substrate
in a rather narrow current-density range. Most of the
relatively large pentagonal crystals were produced by
electrodeposition for the first time.

In terms of their growth shape and size, the pentag-
onal crystals can be characterized as follows (d and l are
the dimensions in the tangential and normal directions
relative to the substrate, respectively):
SICS OF THE SOLID STATE      Vol. 47      No. 2      200
(1) conelike crystals (l/d ≈ 2–5) grown from two-
dimensional nuclei formed on the (110) copper atomic
planes (Fig. 1a);

(2) disklike crystals (l/d ≈ 0.2–0.5) grown on an
indifferent substrate presumably from three-dimen-
sional decahedron clusters having one fivefold symme-
try axis (Fig. 1b);

(3) crystals formed from two-dimensional icosahe-
dral cluster nuclei (l/d ≈ 1) that have six fivefold sym-
metry axes and are shaped like a buckyball (Fig. 1c) or
a starlike polyhedron (Fig. 1d);

(4) filament crystals in the form of pentahedral
prisms or whiskers (l/d ≈ 20–100), which often form at
substrate defects (Fig. 1e);

(5) crystals in the form of pentagonal tubes (l/d ≈
20–100) (Fig. 1f) or pentagonal hollow screw-nuts
(l/d ≈ 1);

(6) five-leafed configurations (l/d ≈ 1) (Fig. 1g),
which are formed around a pentagonal prism and are
likely to form from decahedron particles;
5
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(a) (b)

ω = 70°32′

〈110〉(111)

〈112〉

〈112〉

ω = 7°20′

[110] [110]
–ω1

ω2
⊥⊥⊥

(c) (d) (e) (f)0.5 µm 1 µm 4 µm 5 µm

Fig. 2. (a) Schematic diagram and (c–e) the disclination mechanism of formation of pentagonal crystals from two-dimensional
nucleation centers. (b) Schematic diagram and (f) a micrograph in which a node with five twin boundaries converging to it is seen
to split into two nodes and emit dislocations.

–

(7) “hedgehog” crystals (l/d ≈ 1), which are likely to
form from icosahedral cluster nuclei (multileafed con-
figurations) (Fig. 1h); and

(8) dendrites with pentagonal symmetry (l/d ≈ 0.2–
0.5), which are formed at a relatively high current den-
sity (high growth rate) (Fig. 1i).

We assume that all the crystals formed from one
nucleation center and have one or six fivefold symme-
try axes. The crystals are characterized by twin sub-
boundaries and the tendency toward self-organization
during growth. Let us consider the structure and possi-
ble mechanisms of formation of the first five types of
pentagonal crystals.

Conelike fivefold crystals (Fig. 1a) grow from two-
dimensional crystalline nuclei formed on the {110}
atomic planes of a copper single crystal or on a poly-
crystalline copper coating with 〈110〉  texture. These
crystals are extended along the 〈110〉  direction. Elec-
tron diffraction patterns indicate that sector boundaries
in the crystals are twinned; four of them are normal to
the (110) plane, and one is tilted at an angle of 35°16′
to this plane [4, 11]. The model of formation of such
crystals is described in detail in [4]. According to this
model, a microcrystal is formed on the {110} atomic
plane of a copper crystal from two-dimensional nuclei.
The crystal contains a broken <110>(111) twin bound-
ary tilted with respect to the substrate, which has a
growth origin and is equivalent to a partial disclination
of strength ω = 70°32′ with regard to its elastic stress
field (Fig. 2a). The growth of the crystal with a partial
disclination creates energy and kinetic prerequisites [4,
11] for twinning on two {111} planes normal to the
(110) plane; during twinning, part of the elastic energy
relaxes. Twinning results in reorientation of the
unhatched part of the crystal in Fig. 2a and creates con-
ditions for further twinning along two more {111}
P

planes. The crystal becomes divided into five sectors
separated by twin boundaries that converge to a 7° par-
tial disclination. One of the boundaries originated from
growth and is tilted to the substrate plane. The other
four boundaries form due to deformation during the
subsequent crystal growth (they are normal to the sub-
strate). Under these conditions, the energetically favor-
able transformation of a 70° partial disclination into a
7° disclination with five outgoing twin boundaries
(E70  E7 + 5γ111) occurs [12]. This mechanism is
confirmed by micrographs (Figs. 2c–2e) taken from
different crystals and demonstrating the transformation
stages.

Convincing experimental evidence supporting the
disclination origin of the pentagonal crystal during its
growth in the course of electrocrystallization is the
observation that the node where the five twin bound-
aries converge splits into two nodes (Fig. 2f). The dis-
clination energy in the crystal depends on its size R and
the Frank vector ω (E ~ ω2R2); therefore, it is energeti-
cally favorable for the 7° partial disclination (ω =

7°20′) to split into two disclinations (ω2 >  + )
and emit dislocations along one of the {111}〈110〉
interfaces (Fig. 2b). When the initial disclination splits,
the products of splitting become closer to the free crys-
tal surface. The displacement of the partial-disclination
axis requires the emission of a dislocation, which
decreases the twin-boundary length and, eventually, the
elastic energy of the system. The appearance of a pen-
tagonal etching pit at the periphery of a broken twin
boundary and the stage character of twinning in the
microcrystal also indicate the presence of a high-energy
defect—7° partial disclination (Figs. 2c, 2d).

All other types of pentagonal crystals (Figs. 1b–1i)
were produced on structureless, indifferent substrates

ω1
2 ω2

2
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by varying the cathode overvoltage η, which character-
izes the deviation of the cathode potential ϕ from its
equilibrium value ϕ0 (η = ϕ – ϕ0) during electrocrystal-
lization. Electron-microscopic studies (Fig. 3) show
that crystal growth on such substrates always starts
from spherical or semispherical noncrystalline islands,
which are clearly visible in micrographs when the
islands are larger than 100 nm (Fig. 3b) [5]. When the
islands reach a certain critical size (0.5–1.5 µm), they
acquire facets and transform into microcrystals that dif-
fer in shape (habitus) (Fig. 3c). During growth to 3–
5 µm, only microcrystals that have an icosahedral,
decahedral, or star-polyhedron shape and contain twin
boundaries inside develop predominantly (Fig. 3d). As
a result, the spherical islands grow into microcrystals
with different shapes and, then, into two-type pentago-
nal crystals with one or six fivefold symmetry axes
(Figs. 1b–1d).

Let us consider a possible mechanism of formation
of pentagonal crystals with one fivefold symmetry axis
(Fig. 1b). We assume that, at low overvoltages (η =
10−3 V), three-dimensional clusters with a decahedral
atomic arrangement first form on the indifferent sub-

(a) 0.15 µm(b)

(c) (d)10 µm 10 µm

10 µm

Fig. 3. Kinetics of growth of pentagonal crystals from non-
crystalline islands on an indifferent substrate.
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strate (Fig. 4a). It has been proved that small decahedral
or icosahedral particles are more stable than ordinary
crystalline nucleation centers and that the spherical
shape is energetically favorable for small particles [2].
In our case, spherical growing islands that have non-
crystalline atomic arrangements form from three-
dimensional decahedral clusters (Figs. 4a, 4b). In the
next growth stage, atoms in the islands are regrouped
from a noncrystalline decahedral structure into a crys-
talline structure with a defect in the form of a π/3 dis-
clination (Fig. 4c). This transformation is facilitated by
a relatively low disclination energy in crystals that are
smaller than 0.1 µm, by a high internal pressure due to
surface tension and a small island radius, and by a
decrease in the surface energy caused by island face-
ting.

When the microcrystal size increases to 1–3 µm, the
elastic energy related to the defect relaxes via step-by-
step twinning. The disclination with a strength ω = π/3
transforms into a 7°20′ partial disclination and five sim-
ilar twin boundaries converging to this disclination (this
is energetically favorable, since E60 > E7 + 5γ111)
(Fig. 4d). Figures 4a–4d show the scheme of formation
and growth of a perfect pentagonal crystal with one
fivefold symmetry axis (Fig. 1b) from a decahedral
cluster at low overvoltages. The presence of dihedral
grooves at the twin boundaries (Fig. 1b) favors more
intense growth of the pentagonal crystals than any other
crystals and the formation of regular decahedral disks
from them.

If the cathode overvoltage increases to 5 × 10–3 V,
the decahedral shape of the growing copper crystals is
distorted. Under these conditions, the crystals grow
predominantly along twin boundaries and fivefold axes.
Thus, a 1-µm dodecahedral microcrystal grows into a
five-leafed 10–15 µm configuration (Fig. 4e). Each leaf
contains a twin boundary, and all the leaves are
arranged around one common crystallization center in
the form of a pentagonal prism (Fig. 1g). As the over-
voltage is increased still further (η ≈ 10–2 V), dendrites
with pentagonal symmetry can also form (Fig. 1i).

We sometimes detected individual pentagonal fila-
ment crystals in the form of pentahedral whiskers or
prisms extended along the 〈110〉  direction. As a rule,
they are faceted from above by five octahedral planes
converging to the symmetry axis (Fig. 1e). The crystal
length can be as long as several tens of microns at a
cross-sectional dimension of 1–10 µm, and the crystals
(a) (b) (c) (d) (e)

ω = 60° ω = 7°20′

Fig. 4. Schematic diagram of the transformation of a noncrystalline island into a pentagonal crystal having one fivefold symmetry
axis.
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grow via discrete sequential attachment to a crystal of
pentagonal layers (“terraces”) growing parallel to the
substrate. This process is most pronounced for prisms
(Fig. 1e). The coordinated terrace growth and the
retained growth direction indicate that the layer attach-
ment is coordinated and that there is a structural rela-
tion between the attached layers and the genetic origin
of this growth. The origin is likely also the partial dis-
clination of strength ω = 7°20′ and five twin boundaries
converging to it.

Apart from the whiskers and prisms, we also
detected copper pentagonal tubes (l/d ≈ 20–100),
formed during copper deposition (Fig. 1f), and their
modifications, namely, pentagonal hollow screw-nuts
(l/d ≈ 1). The appearance of a cavity inside a filament
crystal was predicted earlier in [13] from disclination
concepts regarding its structure.

Therefore, the transformation shown schematically in
Fig. 4 can be used to explain the fact that pentagonal crys-
tals of types 2, 4, 5, 6, and 8 with one fivefold axis form
during copper electrocrystallization (Figs. 1b, 1e–1g, 1i).

Energetically, an even more favorable event is the
formation of three-dimensional nucleation centers in
the form of icosahedral clusters on an indifferent sub-
strate during electrocrystallization [2, 9]. They are
likely to serve as centers for the formation of pentago-
nal crystals with six fivefold symmetry axes shaped like
buckyballs (Fig. 1c), starlike polyhedrons (Fig. 1d), or
(at higher overvoltages) hedgehogs (Fig. 1h). A pol-
ished cross section of a buckyball or a starlike polyhe-
dron contains ten twin boundaries converging to one node
(Figs. 1c, 1d). When a polished section is etched, a pen-
tagonal pit appears at the center of such crystals, which
indicates the presence of a possible disclination [5].

According to [9], growing icosahedral buckyballs or
starlike polyhedrons (Figs. 1c, 1d) should contain six
partial disclinations or the so-called Marx–Ioffe discli-
nation with strength k = 0.12 in order to conserve the
integrity of the material and to remove the angular def-
icit [14]. Due to the six fivefold symmetry axes, there
are twelve disclination exits on the surface of a pentag-
onal crystal (Figs. 1c, 1d) that are active growing zones.
Since the crystal is on a substrate, not all of the growth
directions are realized in practice, especially at high
overvoltages; for this reason, hedgehogs are observed
that consist of seven to ten radial fragments arranged
around one growth center (Fig. 1h). Each fragment con-
tains a twin boundary and is extended along the <112>
twinning direction, which is the direction of predomi-
nant growth in fcc metals.

Thus, the disclination origin of all eight types of
pentagonal crystals is beyond question and the models
of their growth from two-dimensional nucleation cen-
ters and decahedral clusters are reasonable. However,
the growth mechanism of crystals with six fivefold
symmetry axes during electrocrystallization is still
unclear.
P

Further investigation of crystals with fivefold sym-
metry axes will allow one to solve some problems in the
theory of strength and plasticity, such as the effect of
single disclinations on the properties of solids; to check
theoretical models of the relaxation of the elastic
energy related to disclinations; to reveal the mecha-
nisms of formation and growth of such crystals; to
design processes of their growth; and to produce coat-
ings made from these crystals.

Fivefold symmetry crystals have unique properties,
since they have no long-range order. They contain dis-
clinations and twin boundaries. In such crystals, trans-
lational dislocation glide is prohibited and the crystals
exhibit a texture and, hence, highly anisotropic proper-
ties. It is natural to assume that coatings, films, and foils
made up of such crystals should also have unique prop-
erties due to the specific features of their structure.
Therefore, studying exotic pentagonal crystals and qua-
sicrystalline structures is of current importance and is
of interest from both the scientific and practical stand-
point, since it opens up fresh opportunities for the cre-
ation of new materials with unique properties. In partic-
ular, pentagonal crystals in the form of tubes, hedge-
hogs, or dendrites (Figs. 1f, 1h, 1i) have a developed
free surface and, hence, can be applied for the produc-
tion of blood purification filters, vessels for liquefied
gases, catalysts, etc.
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Abstract—The magnetic-field dependence of the magnetoresistive effect in carbon fibers that contain cobalt
nanoclusters and exhibit effects of weak localization at low temperatures (T < 45 K) is investigated on the metal
side of the dielectric–metal transition. The carbon fibers are prepared by heat treatment of carboxylated cellu-
lose after the substitution of cobalt cations for protons of COOH groups. It is found that, under conditions of
two-dimensional weak localization at temperatures below 10 K, the carbon fibers possess an alternating mag-
netoresistance due to spin–orbit scattering of electrons by cobalt nanoclusters. The time of phase breaking of
the wave function and the time of spin–orbit scattering are determined from a comparison of the experimental
and theoretical magnetic-field dependences of the electrical resistance. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Over the two past decades, the mechanisms of con-
duction in low-dimensional electronic systems have
been extensively studied by experimental and theoreti-
cal methods. Two aspects of this problem are especially
important for the case of electron transfer in weakly dis-
ordered systems: (i) inclusion of the processes of weak
localization that depend on the dimensionality of the
system and are caused by the quantum interference of
electron waves [1, 2] and (ii) inclusion of the electron–
electron interactions occurring in the system [3, 4].
These effects have been investigated in sufficient detail
for two-dimensional systems, such as thin metallic films
[5], inversion layers, and heterostructures based on
semiconductors [6, 7]. One of the decisive factors
responsible for the processes of weak localization in
these systems is associated with strong spin–orbit inter-
actions upon scattering of free charge carriers [5–7].

In our opinion, the quasi-two-dimensional nature of
electron conduction can also manifest itself in carbon
compounds with a turbostratum graphite-like structure.
As a rule, these materials have been prepared by heat
treatment at temperatures above 2000°C. It is worth
noting that, in carbon materials with a turbostratum
graphite-like structure, the electrical conductivities
measured parallel and perpendicular to graphite layers
can differ significantly (by a factor of 104 or greater)
[8]. This anisotropic conduction is favorable for the for-
mation of planar self-intersecting trajectories of con-
duction electrons, which, in turn, gives rise to interfer-
ence phenomena.

In our previous work [9], we established that the
cobalt nanoclusters formed through heat treatment of
1063-7834/05/4702- $26.00 ©0357
carboxylated cellulose fibers under vacuum after the
substitution of cobalt cations for protons of COOH
groups have a catalytic effect on the structuring of the
carbon matrix with the formation of graphite planes. In
this case, the cobalt salt of carboxylated cellulose is
subjected to final heat treatment at a temperature TF

ranging from 700 to 900°C, which is considerably
lower than the graphitization temperature of cellulose
fibers [10]. By varying the cobalt concentration in ini-
tial fibers and performing heat treatment under specific
conditions with preliminary annealing in air at a tem-
perature TP lying in the range from 250 to 300°C, it is
possible to prepare carbon fibers that contain inclusions
of cobalt nanoclusters, correspond to both sides of the
dielectric–metal transition [11], and are characterized
by low-dimensional effects of electron transfer.

The main objective of the present work was to inves-
tigate the spin–orbit interaction in cobalt-containing
carbon fibers that form a disordered electronic system
on the metal side of the dielectric–metal transition with
an anomalous temperature dependence of the electrical
resistance in the low-temperature range. Moreover, we
determined the most important characteristic times of
quantum interference of electron waves, namely, the
time of phase breaking of the wave function upon
inelastic scattering and the time of spin flip due to elas-
tic spin–orbit scattering, which are responsible for the
weak localization effects.

2. EXPERIMENTAL TECHNIQUE

The temperature dependences of the electrical resis-
tance were measured in the temperature range T = 2–
 2005 Pleiades Publishing, Inc.
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300 K. The magnetoresistive effect was investigated in
the range corresponding to a linear portion of the cur-
rent–voltage characteristic in the magnetic field of a
superconducting solenoid with an induction of up to
1.2 T under conditions of an increase and decrease in
the magnetic field strength. The synthesis of cobalt-
containing carbon fibers; the sample preparation; the
experimental technique; and the structural, transport,
and magnetic characteristics of samples on the dielec-
tric and metal sides of the dielectric–metal transition
were described earlier in [9, 11].

3. RESULTS AND DISCUSSION

Figure 1 shows the temperature dependence of the
electrical resistance of CoxC1 – x (x = 0.19) carbon fibers
prepared upon preliminary annealing in air at TP =
300°C for 1 h with subsequent annealing under vacuum
at TF = 900°C. It can be seen from Fig. 1 that the elec-
trical resistance of these fibers corresponds to the metal
side of the dielectric–metal transition, because their
temperature coefficient of resistance remains positive
down to temperatures at which the temperature depen-
dence of the electrical resistance exhibits a minimum
(Tm ≅  45 K). At lower temperatures, the temperature
coefficient of resistance reverses sign. The minimum in
the temperature dependences of the electrical resistance
appears after preliminary annealing in air for a time t =
0.5–1.0 h. The temperature corresponding to the mini-
mum resistance only slightly depends on the time of
annealing in air and lies in the range Tm = 45–50 K. It
should be noted that, upon annealing in air for a time
longer than 1 h, the minimum in the temperature depen-

10 100

0.80

0.85

0.90

0.95

1.00

R
/R

25
5

T, K

Tm

Fig. 1. Temperature dependence of the electrical resistance
normalized to the resistance at T = 255 K for the CoxC1 – x
(x = 0.19) carbon fiber annealed at T = 900°C.
P

dence of the electrical resistance disappears and the
resistance reaches saturation at low temperatures. As
the temperature of annealing under vacuum decreases,
the temperature coefficient of resistance becomes posi-
tive in sign over the entire temperature range under
investigation. This corresponds to the dielectric side of
the dielectric–metal transition.

According to modern concepts, the change in the
sign of the temperature coefficient of resistance on the
metal side of the dielectric–metal transition at low tem-
peratures is caused by the processes of weak localiza-
tion and (or) electron–electron interactions. It should be
noted that the type of temperature dependence of the
electrical resistance is governed by the dimensionality
of the system. As can be seen from Fig. 1, the tempera-
ture dependence of the electrical resistance in the low-
temperature range (T < Tm) is virtually linear on a log-
arithmic scale. This indicates that the charge transfer
has a two-dimensional character (with respect to the
aforementioned processes) [1–5]. By choosing the type
of temperature dependence of the electrical conductiv-
ity from the known theoretical dependences for quan-
tum corrections to the conductivity [1–4] and fitting
them to the experimental data, we obtained an equation
that adequately describes the experimental temperature
dependence of the conductivity at T < Tm:

(1)

Here, σD is the classical Drude conductivity and A0, A1,
and T0 are constants (A0 = 0.018, A1 = 0.049). It can be
seen that the logarithmic term is dominant in relation-
ship (1). Such a temperature dependence of the quan-
tum corrections to the classical conductivity suggests
that the localized processes with the participation of
electron–electron interactions have a three-dimensional
character [the second term in relationship (1)], whereas
the processes of weak localization for noninteracting
electrons show a two-dimensional character [the third
term in relationship (1)]. It can also be seen from Fig. 1
that the temperature dependence of the electrical resis-
tance at the lowest temperatures deviates from the log-
arithmic law (toward lower resistances). In our opinion,
this behavior is associated with the manifestation of
spin–orbit scattering, which results in the suppression
of interference effects, i.e., in the phenomenon of
antilocalization [5].

It should be noted that the two-dimensional pro-
cesses of weak localization are not typical of large-sized
carbon samples (three-dimensional systems), including
our fibers that were approximately 0.5 mm in diameter
and 5–6 mm in length. However, Carl et al. [12] and
Peng et al. [13] observed similar temperature depen-
dences of the electrical resistance for other heteroge-
neous carbon systems containing metal nanoclusters.

According to our earlier results [9] obtained with the
use of transmission electron microscopy, the size of
cobalt clusters at the heat treatment temperatures used
in the experiments varies from ~30 to 200 nm or

σ T( ) σD A0T
1/2

A1 T /T0( ).ln+ +=
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greater. It was established that the cobalt nanoclusters
are separated by carbon interlayers and that the most
pronounced structuring of the carbon matrix in the form
of graphite planes with an interplanar distance d =
0.37 nm is observed in the immediate vicinity of the
nanocluster. However, the interplanar distances that are
somewhat larger than the interplanar distance of pyro-
lytic carbon are characteristic of strongly disordered
carbon fibers. Since the cobalt nanoclusters are sepa-
rated by carbon interlayers, the two-dimensional nature
of conduction in these fibers under conditions of weak
localization can be associated with a carbon component
in the form of a layer composed of turbostratum graph-
ite planes between the cobalt nanoclusters. The conduc-
tivity of this layer is only slightly dependent on the tem-
perature. For lower cobalt contents in the initial fibers
and for fibers containing no cobalt nanoclusters, the
electrical resistance increases by several orders of mag-
nitude upon cooling from room temperature to liquid-
helium temperature and is described by an exponential
dependence characteristic of the tunneling and hopping
mechanisms of charge transfer.

The magnetic-field dependences of the transverse
magnetoresistance at different temperatures for oppo-
site directions of the magnetic field are plotted in Fig. 2.
Despite the presence of magnetic nanoclusters in the
cobalt-containing carbon fiber, the magnetic-field
dependences of the transverse magnetoresistance do
not exhibit hysteresis phenomena typical of giant mag-
netoresistive effects. This also indicates that conduction
over the graphite-like matrix is dominant. As the mag-
netic field increases, the resistance of the cobalt-con-
taining carbon fiber at the lowest temperature (Fig. 2,
curve 1) initially increases and reaches a maximum at a
magnetic-field induction B ≈ 0.08 T. With a further
increase in the magnetic field, the positive magnetore-
sistance component decreases and becomes negative at
B > 0.3 T. As can be seen from Fig. 2, the positive mag-
netoresistance component decreases with an increase in
the temperature and the magnetoresistive effect
becomes negative at temperatures T > 4–5 K. Further-
more, the magnitude of this effect decreases rapidly
with an increase in the temperature at T > 10 K (Fig. 2,
curves 2–4). It should be noted that, at these tempera-
tures, the carbon fibers with a substantially higher
cobalt content, for which the temperature dependence
of the electrical resistance does not have a minimum
(i.e., no processes of weak localization occur), and the
samples with a resistance corresponding to the dielec-
tric side of the dielectric–metal transition exhibit hys-
teresis phenomena in the magnetoresistance with coer-
cive forces Bc ≅  0.08 and Bc ≅  0.125 T, respectively.
According to the magnetic measurements performed
earlier in [9], the carbon fibers annealed at TF = 900°C
are characterized by a coercive force Bc ≅  0.043 T at
room temperature.

This alternating magnetoresistive effect, which is
observed under conditions of weak localization at low
PHYSICS OF THE SOLID STATE      Vol. 47      No. 2      200
temperatures, can be caused by strong spin–orbit inter-
actions [5, 14]. Actually, spin–orbit scattering results in
a decrease in the quantum localization correction to the
conductivity (i.e., it leads to the phenomenon of antilo-
calization), whereas the external magnetic field sup-
pressing spin–orbit scattering brings about the removal
of antilocalization (i.e., an increase in the resistance or
a positive magnetoresistive effect). A further increase in
the magnetic field is accompanied by the suppression of
quantum interference and gives rise to a negative mag-
netoresistive effect. As can be seen from the tempera-
ture and magnetic-field dependences of the resistance,
the spin–orbit interaction manifests itself only at the
lowest temperatures (T = 2–4 K).

For the two-dimensional mechanism of charge
transfer, the change in the localization correction to the
conductivity in a magnetic field can be determined
from the relationship [14]

(2)

where Ψ(x) is the digamma function, B is the induction
of the magnetic field, Rs is the sheet resistance, e is the
elementary charge, and " is the Planck constant. The
inductions of characteristic magnetic fields Bi (i = 0, 1,
2, 3) and the characteristic relaxation times τi of elec-
trons are related by the expression

(3)

where D is the diffusion coefficient of electrons.
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Fig. 2. Magnetic-field dependences of the magnetoresis-
tance measured at temperatures T = (1) 2, (2) 10, (3) 50, and
(4) 100 K for the CoxC1 – x (x = 0.19) carbon fiber annealed
at T = 900°C.
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In turn, the quantities Bi (or τi) are related to the
characteristic magnetic fields Bo, Bso, Bs, and Bin by the
following expressions:

(4)

(5)

(6)

The quantities Bo, Bso, Bs, and Bin are related through
expression (3) to the elastic scattering time τo, the spin–
orbit scattering time τso (the time of spin flip due to elas-
tic spin–orbit scattering), the time of scattering by mag-
netic impurities τs (the time of spin flip due to the
exchange interaction between magnetic impurities and
electrons), and the time τin of inelastic scattering (due to
electron–phonon and electron–electron interactions
under conditions of weak localization).

The characteristic time τ3 involved in expression (6)
through relationship (3) is the phase-breaking time τϕ of
the wave function (the time during which the coherence
of interfering electron waves is retained). This time can
be expressed in terms of the inelastic scattering time τin

and the magnetic impurity scattering time τs:

(7)

Since the elastic scattering time τo of electrons is
considerably shorter than the times τin, τso, and τs, we
can assume that B1 ≈ B0. Considering this circumstance,
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Fig. 3. Comparison of the magnetoresistance measured at
T = 2 K (triangles) and the magnetoresistance calculated
from expression (2) (dot-dashed line) for characteristic
times τϕ = 3.7 × 10–10 s and τso = 1.15 × 10–10 s.
PH
it is difficult to determine uniquely the characteristic
times τin, τso, and τs and to separate the contributions
from particular mechanisms to the inelastic scattering
time τin on the basis of expressions (2)–(6) without
introducing simplifying assumptions. Note that,
according to relationship (7), the high content of mag-
netic cobalt impurities in carbon fibers should result in
a dominant contribution of the magnetic impurity scat-
tering time τs to the phase-breaking time τϕ of the wave
function and, hence, in a weak temperature dependence
of the magnetoresistive effect, because, to a first
approximation, the times τs and τso are independent of
temperature. Therefore, the observed temperature
dependence of the magnetoresistance (Fig. 2) allows us
to make the inference that the inelastic scattering time
τin, which is dependent on the temperature, predomi-
nantly contributes to the phase-breaking time τϕ. Fur-
thermore, the fact that the magnetic impurity scattering
dominates over the other processes should lead only to
a decrease in the resistance in an external magnetic field
[15]. However, we experimentally observed the alter-
nating magnetoresistive effect. Hence, in order to deter-
mine the times τϕ and τso from the nonmonotonic mag-
netic-field dependence of the magnetoresistance for
cobalt-containing carbon fibers, we disregard magnetic
impurity scattering; in other words, we assume that
τs @ τϕ.

The maximum diffusion coefficient of electrons in
carbon materials with the electrical conductivity under
consideration is determined to be D = 0.5 cm2/s [16].
Figure 3 depicts the experimental magnetic-field
dependence of the magnetoresistance (shown by trian-
gles) and the dependence calculated from relationship
(2) (dot-dashed line) for the above diffusion coefficient.
The best agreement between the experimental and cal-
culated data is observed at characteristic times τϕ =
3.5 × 10–10 s and τso = 1.19 × 10–10 s.

The dependences depicted in Figs. 1 and 2 are
observed for cobalt-containing carbon fibers prepared
through heat treatment in air for different times and
characterized by different resistances at room tempera-
ture (in samples of identical size, these resistances vary
from one to several tens of ohms). Despite the differ-
ence in the electrical resistances, the magnetic-field
dependences of the magnetoresistive effect are ade-
quately described by relationship (2) and the character-
istic times τϕ and τso differ from the above values by no
more than 10%. According to the theoretical predic-
tions made by Hikami et al. [14], the inequality τϕ > τso
which is a necessary condition for observation of an
alternating magnetoresistance, is satisfied in all cases.

Since the atomic number of carbon is small, it is
unlikely that the spin–orbit interaction can be strong in
turbostratum carbon layers. It should be noted that, in
thin films based on a considerably heavier element
(manganese), the alternating magnetoresistive effect
was observed only after the films were covered with a
gold layer [5], which provided the necessary spin–orbit
YSICS OF THE SOLID STATE      Vol. 47      No. 2      2005
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interaction in the system. In our opinion, sufficiently
strong spin–orbit scattering in the samples studied is
associated with the presence of both nanoclusters and
individual atoms of heavier cobalt in a graphite-like
carbon matrix. According to Abrikosov and Gor’kov
[17], the ratio between the characteristic times τ0 and
τso is defined by the expression τ0/τso = (αZ)4, where α
is the fine structure constant and Z is the atomic number
of impurity ions. For cobalt (Z = 27), this ratio is equal
to 1.5 × 10–3, which is close to the ratio of 3 × 10–3

determined for the best agreement between the experi-
mental and theoretical magnetic-field dependences of
the magnetoresistance for the cobalt-containing carbon
fibers (Fig. 3).

Knowing the phase-breaking time of the wave func-
tion, it is easy to calculate the characteristic length
along which the electron wave phase is retained: lϕ =
(Dτϕ)1/2 ≅  130 nm. The sheet resistance Rs = 2724 ±
122 Ω/h, which was determined by fitting the mag-
netic-field dependence of the magnetoresistance, per-
mits us to estimate the thickness of conducting layers
for the known electrical resistance, length, and cross
sectional area of the sample. This thickness for the sam-
ples studied varies from 15 to 70 nm and, as should be
expected, appears to be smaller than the phase-breaking
length lϕ of the wave function.

It is of interest to compare the calculated character-
istic times τϕ and τso for cobalt-containing carbon fibers
with the corresponding times for metal and semicon-
ductor systems at the same temperatures. In particular,
Bergman [5] obtained the characteristic times τϕ =
2.5 × 10–11 s and τso = 4.5 × 10–12 s for films based on a
heavier metal (copper). These times turned out to be
slightly longer for indium phosphate inversion layers
and heterojunctions based on them: τϕ = 6 × 10–11 s,
τso = 8 × 10–12 s [6] and τϕ = 3 × 10–10 s, τso = 2 × 10–10 s
[7], respectively. It can be seen that the characteristic
times for CoxC1 – x fibers appeared to be closer to those
of the two-dimensional electron gas of the heterojunc-
tion, even though the atomic numbers of cobalt and
copper are close to each other. This can be associated
with the fact that the processes of weak localization are
governed, to a large extent, not only by the degree of
disordering of the electronic system but also by the
presence or the absence of quantization of the electron
energy spectrum in the system.

4. CONCLUSIONS

Thus, it has been established that the two-dimen-
sional processes of weak electron localization and
spin–orbit scattering occur in carbon fibers with inclu-
sions of cobalt nanoclusters on the metal side of the
dielectric–metal transition at low temperatures. The
inference was made that the two-dimensional nature of
electron conduction is associated with the turbostratum
graphite-like structure formed upon incorporation of
cobalt nanoclusters. It was found that, in these fibers,
PHYSICS OF THE SOLID STATE      Vol. 47      No. 2      2005
the positive magnetoresistive effect in weak magnetic
fields is caused by the spin–orbit scattering, whereas
the negative magnetoresistive effect in stronger mag-
netic fields is associated with the suppression of the
processes of weak localization by the magnetic field.
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Abstract—The vibrational, electronic, and superconducting properties of a Cu90Nb10 nanocrystalline compos-
ite undergoing a transition from a coarse-grained state to a nanocrystalline state are investigated using neutron
scattering and low-temperature heat capacity measurements. It is found that, compared to a coarse-grained sam-
ple, the nanocomposite is characterized by a higher density of low-frequency excitations and a decrease both
in the density of states and in the superconducting transition temperature due to the size effect. © 2005 Pleiades
Publishing, Inc.
1. INTRODUCTION

The particular interest expressed by researchers in
nanocrystalline systems is associated with their unique
physical properties. Investigation into the influence of
size effects on the vibrational and thermodynamic
properties of nanocrystals is an important problem.
Undeniably, deeper insight into the structural features
of nanomaterials and the mechanisms of the influence
of surface atoms and grain boundaries on their vibra-
tional and thermodynamic properties could lead to con-
siderable progress in the field of applications of nano-
structured systems.

Compact nanosystems as objects of investigation
have some advantages over powdered nanosystems for
a number of reasons. For example, compact nanosys-
tems are characterized by a higher degree of dispersion
(of the order of 10 nm) in combination with a narrower
size distribution of particles and are devoid of porosity.
This excludes specific contacts between grains and cor-
responding interactions.

Similar systems have been prepared and studied in a
number of works [1–3]. In particular, Cline et al. [1]
prepared a composite consisting of niobium thin wires
embedded in a copper matrix by using wire drawing.
The diameter of the wires thus fabricated was smaller
than 100 nm. Oleksienko et al. [2] prepared Cu–Nb
composites by two methods: (i) crystallization with
subsequent deformation of copper–niobium alloys and
(ii) mechanical assembly with drawing of a copper–
niobium bimetallic wire. The transverse size of wires
varied from 2.5 to 20 nm. Tsai et al. [3] synthesized a
nanocrystalline system containing 20 wt % Pb dis-
persed in a matrix of the Al75Cu15V10 metallic glass
through rapid quenching of a liquid melt on a cold sur-
face. The size of the particles varied from 5 to 100 nm.
However, all the aforementioned works dealt only with
the influence of size effects on the superconducting
1063-7834/05/4702- $26.00 0362
properties (superconducting transition temperature,
critical current, critical magnetic field). It has been
revealed that a decrease in the particle size leads to a
decrease in all the superconducting parameters under
investigation. The problem concerning the influence of
size effects on the electronic and phononic properties of
both the composites themselves and a system of nano-
particles has not been adequately investigated. This
information can be obtained only from combined inves-
tigations performed by different methods.

In this work, the vibrational, electronic, and super-
conducting properties of a Cu90Nb10 composite under-
going a transition from a coarse-grained state to a
nanocrystalline state were investigated using neutron
scattering and low-temperature heat capacity measure-
ments. Moreover, the superconducting transition tem-
perature was measured by the inductive method. Such
experiments provide valuable information on the
energy spectrum of a vibrational system and on the
changes in the density of states at the Fermi surface.
These data are essential to the understanding of the
nature of the changes observed upon transition from a
coarse-grained state to a nanocrystalline state.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

A Cu90Nb10 nanocrystalline sample was prepared by
quenching of a melt on the outer surface of a spinning
copper wheel in a purified argon atmosphere. The ini-
tial elements were placed in a boron nitride cell. The
cell was heated by the inductive method with a VChG6-
60/0.44 high-frequency generator. The melt was
expelled under positive pressure of argon through a
hole 1 mm in diameter on the wheel surface. The linear
velocity of the wheel was equal to 40 m/s. The quench-
ing rate was estimated at ~106 K/s.
© 2005 Pleiades Publishing, Inc.
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The sample prepared was annealed in a helium gas
stream through a quartz tube placed in a muffle furnace.
The first and second annealing stages were performed
at a temperature of 477°C for 3 h and at 770°C for 4 h,
respectively.

The structure of the sample thus prepared and the
influence of annealing on its properties were investi-
gated on a DRON-2 diffractometer (CoKα radiation).
The x-ray diffraction patterns are shown in Fig. 1. It can
be seen from this figure that the x-ray diffraction pat-
terns contain reflections attributed to copper and nio-
bium. The narrow lines associated with copper indicate
that copper is in a coarse-grained state. The lines
assigned to niobium are considerably broadened. The
mean size of niobium crystallites was determined by
the Selyakov–Scherrer method [4]. In the quenched
sample, the mean size of niobium crystallites was
approximately equal to 20 nm. After annealing at a tem-
perature of 477°C for 3 h, the width of the line attrib-
uted to copper remained virtually unchanged, whereas
the lines of niobium were substantially narrowed.
According to the observed linewidth, the mean size of
niobium crystallites is approximately equal to 30 nm.
Further annealing at a temperature of 770°C for 4 h
under the same conditions did not result in a noticeable
change in the width of the lines attributed to niobium.
Therefore, it can be assumed that the annealing temper-
ature will have a profound effect on the growth of nio-
bium nanocrystals in the temperature range corre-
sponding to premelting of the copper matrix.

3. RESULTS AND DISCUSSION

Inelastic neutron scattering in the nanocrystalline
and coarse-grained samples of the Cu90Nb10 compound
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Fig. 1. X-ray diffraction patterns of the Cu90Nb10 compos-
ite after (1) quenching and (2) subsequent annealing at tem-
perature T = 477°C for 3 h.
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was studied on a KDSOG-M spectrometer [5] installed
on an IBR-2 reactor (Dubna, Moscow oblast). The mea-
surements were performed at room temperature for
scattering angles of 80°, 100°, 120°, and 140°. The
results were processed within the incoherent approxi-
mation. The generalized densities of vibrational states
[6] obtained for the initial and quenched Cu90Nb10 sam-
ples are presented in Fig. 2. Figure 3 shows the relative
change in these densities of vibrational states. It can be
seen that the density of low-energy vibrational states
for the nanocrystalline sample is higher than the density
of low-energy vibrational states for the coarse-grained
sample.
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Fig. 2. Generalized densities of vibrational states G(E) for
the Cu90Nb10 composite in (1) nanocrystalline and
(2) coarse-grained states.
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The heat capacity of the samples was measured
using an adiabatic calorimeter with pulsed heating [7]
in the temperature range 1.5–35.0 K. The experimental
error in determining the heat capacity was equal to
2.0% in the temperature range 1.5–4.0 K, 1.0% in the
range 4–10 K, and 0.2–0.5% in the range 10–35 K. The
superconducting transition temperature was deter-
mined from the jumps in the heat capacity, the induc-
tance, and the electrical resistance.

Figure 4 shows the temperature dependences of the
heat capacity for the studied samples in the T2–C/T
coordinates in the temperature range 1.5–12.0 K. It can
be seen that the Cu90Nb10 nanocomposite undergoes a
smeared superconducting transition in the temperature
range from 3 to 7 K. After annealing at T = 477°C for
3 h, the superconducting transition is shifted toward the
high-temperature range with a transition temperature
Tc ~ 7.0 K. For the coarse-grained sample, the super-
conducting transition temperature was estimated as Tc ~
8.8 K.

The difference between the temperature depen-
dences of the heat capacity for the Cu90Nb10 nanocrys-
talline composite and metallic copper [8] is shown in
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Fig. 4. Temperature dependences of the low-temperature
heat capacity for the Cu90Nb10 nanocrystalline sample
(1) before and (2) after annealing and for (3) the coarse-
grained sample in the range 1.5–12 K.
P

Fig. 5. Since the interaction of copper and niobium
atoms in the Cu90Nb10 composite is relatively weak, this
difference is predominantly determined by the contri-
bution from niobium nanoparticles. The temperature
dependence of the heat capacity obtained for niobium
nanoparticles allowed us to determine the Debye tem-
perature Θ(0) and the coefficient of the electronic heat
capacity γ(0), which are the vibrational and electronic
parameters of niobium nanoparticles in the Cu90Nb10
composite, and to compare these quantities with those
of the massive niobium sample [9]. The experimental
results are presented in the table. It can be seen from
these data that the coefficient of the electronic heat
capacity γ(0), the Debye temperature Θ(0), and the
superconducting transition temperature Tc for the
nanocrystalline niobium sample are less than those for
the massive niobium sample.

The observed changes in the superconducting tran-
sition temperature Tc, the Debye temperature, and the
density of electronic states upon heat treatment indicate
that these characteristics of the nanocrystalline com-
posite depend on the nanocrystal size. A decrease in the
nanocrystal size leads to a decrease in the aforemen-
tioned characteristics. It is obvious that the appearance
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Fig. 5. Temperature dependence of the heat capacity of
nanocrystalline niobium (determined from the heat capacity
of the Cu90Nb10 nanocomposite) in the range 1.5–12 K.
Vibrational and electronic parameters of the Cu90Nb10 coarse-grained sample, Cu90Nb10 nanocrystalline composite before and
after annealing, nanocrystalline niobium, and niobium and copper massive samples

Sample Tc, K γ(0), mJ/(mol K2) Θ(0), K

Cu90Nb10 (coarse-grained sample) 8.8 1.4 319

Cu90Nb10 (nanocomposite before annealing) 3–7 1.2 328

Cu90Nb10 (nanocomposite after annealing) 7.0 1.68 348

Cu – 0.73 334

Nb (massive sample) 9.2 8.5 252

Nb (nanocrystalline sample) 3–7 3.0 240
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of additional low-energy modes of the nanocrystalline
composite is associated both with the strong effect of
surface atoms and grain boundaries and with the mutual
orientation of adjacent crystals.

The experimental data on the superconducting tran-
sition temperatures measured by the inductive method
for the samples under investigation are presented in
Fig. 6. These results confirm the inference made from
the heat capacity data that the nanocomposite under-
goes a smeared superconducting transition at Tc = 3–
7 K. The annealing of the sample at T = 447°C results
in a considerable narrowing of the temperature range of
the superconducting transition observed at ~7 K. As the
annealing temperature increases to 770°C, the temper-
ature and the range of the superconducting transition
remain unchanged. These findings are in agreement
with the x-ray diffraction data, according to which the
width of the x-ray diffraction lines does not decrease
upon subsequent annealing. For comparison, the exper-
imental data on the superconducting transition temper-
ature for the coarse-grained composite are also pre-
sented in Fig. 6.

4. CONCLUSIONS

Thus, the results of the above investigation have
demonstrated that the size of nanoparticles has an effect
both on the vibrational and electronic spectra and on the
superconducting properties of niobium nanocrystals in
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Fig. 6. Temperature dependences of the ac magnetic suscep-
tibility for the Cu90Nb10 nanocrystalline sample (1) before
and (2) after annealing at T = 477°C, (3) after subsequent
annealing at T = 770°C, and for (4) the coarse-grained
sample.
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a Cu90Nb10 composite. The comparison of the data
obtained for the nanocrystalline and massive niobium
samples showed that the superconducting transition
temperature, the Debye temperature, and the density of
states at the Fermi level for the former sample are lower
than those for the latter sample. The decrease in the
Debye temperature agrees with the neutron scattering
data, which indicate an increase in the density of low-
energy states. The above changes in the characteristics
under investigation allowed us to make the inference
that the observed size effects are the decisive factors
responsible for the weakening of interatomic interac-
tions, primarily, at grain boundaries [10].
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Abstract—Dichroism in the transmission of light (the dependence of the transmittance on the direction of
polarization of light) is revealed in corrugated GaAs/AlAs superlattices grown on a nanofaceted A(311) surface.
It is assumed that the observed effect is associated with the structural anisotropy, i.e., with the formation of an
array of GaAs quantum wires. This inference is confirmed by high-resolution electron microscopy. The
GaAs/AlAs superlattices containing quantum wires also exhibit polarization anisotropy of the photolumines-
cence observed in the yellow–red spectral range. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Research on GaAs/AlAs superlattices grown on
periodically nanofaceted surfaces is of interest for the
design of lateral superlattices containing arrays of
quantum wires with unique optical and transport prop-
erties [1–3]. These structures offer promise for use in
fabricating both lasers (including cascade lasers) with a
vertical cavity and intersubband infrared photodetec-
tors for recording light incident at angles close to 90°
[1, 3–5]. The possibility of forming an array of quan-
tum wires in GaAs/AlAs superlattices grown on a
nanofaceted A(311) surface was first demonstrated by
Nötzel et al. [6]. It was shown that the heteroepitaxial
growth of GaAs/AlAs superlattices on a nanofaceted
A(311) surface occurs with the formation of a vertically
correlated array of quantum wires that are separated by
a distance equal to the period of facets (3.2 nm) along

the [ ] direction. The quantum wires are aligned

along the [ ] direction, and the modulation of their
thickness is determined by the height of the facets
(1 nm).

2. SAMPLE PREPARATION
AND EXPERIMENTAL TECHNIQUE

Samples were prepared by molecular-beam epitaxy
at a growth temperature of 550°C. The growth condi-

011
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tions were described in detail in [7]. The GaAs/AlAs
superlattices were grown on A(311) substrates with a
0.1-µm-thick GaAs buffer layer and a 0.2-µm-thick
AlAs layer (the misorientation angle between the sub-
strate surface and the [311] direction was less than 15′).
Nanofaceting of the surface, i.e., the development of an
(8 × 1) surface reconstruction, was confirmed by in situ
high-energy electron diffraction measurements. The
effective thickness of AlAs layers was equal to 1.7 nm
(10 monolayers along the [311] direction). The effec-
tive thickness of GaAs layers was equal to 1 nm (sam-
ple 1) or 1.7 nm (sample 2). The number of periods in
samples 1 and 2 was 150 and 100, respectively. The
transmission spectra were measured with the use of
membranes prepared by selective etching of the sub-
strate to a transparent AlAs buffer layer. A solution of
ammonia and hydrogen peroxide in a 1 : 10 ratio was
used as a selective etching agent. The transmission
spectra in polarized light were recorded on an SF-30
double-beam spectrometer with polarizers in the chan-
nel with the sample and in the reference channel. Pho-
toluminescence was excited by light from an Ar+ laser
(λ = 448 nm). The photoluminescence spectra were
recorded on an SDL-1 spectrometer (polarization reso-
lution, Glan prism as a polarizer) with a FÉU-79 photo-
multiplier as a detector. Moreover, the samples were
examined using high-resolution electron microscopy
 2005 Pleiades Publishing, Inc.
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(HREM) on a Philips CM200 FEG/ST instrument
according to the technique described in detail in [8].

3. RESULTS AND DISCUSSION

Figure 1 shows the transmission spectra of the
GaAs6/AlAs10 A(311) superlattice (sample 1) measured
in light polarized parallel and perpendicular to the
direction of the quantum-well wires (QWWs). The
transmission spectra were recorded at room tempera-
ture. It can be seen from this figure that there is a con-
siderable difference in the transmission (and, corre-
spondingly, in the absorption) of light with different
polarizations, i.e., dichroism. The difference is most
pronounced in the range of fundamental absorption of
light in the superlattice. The data on the polarization
dependence of the absorption correlate well with the
data on the polarization anisotropy of the photolumi-
nescence (Fig. 2). The minimum observed in the trans-
mittance for the light polarized along the growth direc-

tion of quantum wires (along the [ ] direction) coin-
cides in wavelength with the maximum in the intensity
of the photoluminescence signal (Figs. 1, 2). The inten-
sity of the photoluminescence signal in this polariza-
tion is approximately 2.5 times higher than that of the

photoluminescence signal polarized along the [ ]
direction, i.e., in the direction perpendicular to the
quantum wires. The dichroism revealed in the transmis-
sion of light and the observed polarization of the photo-
luminescence signal can be associated with the fact that
the probability of fundamental optical transitions
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occurring depends on the polarization of the electro-
magnetic wave. It should be noted that the photolumi-
nescence spectra were recorded at room temperature,
the exciting light from the argon laser was polarized

along the [ ] direction, and the pumping power was
approximately equal to 100 W/cm2. Under these condi-
tions, an intense photoluminescence signal (visible to
the eye) is observed in the yellow–red spectral range.
The maximum photoluminescence intensity corre-
sponds to orange radiation.

In each growth experiment, reference samples with
the (100) and B(311) orientations were grown side-by-
side (i.e., under the same conditions) in addition to the
superlattices with the A(311) orientation. In polar semi-
conductors, the A(311) and B(311) orientations are not
equivalent; hence, the orientation of the substrate (side
A or B) was determined by the anisotropy of chemical
etching. For the reference samples, either no photolu-
minescence signal was observed altogether or its inten-
sity was two orders of magnitude lower, with the max-
imum shifted to the long-wavelength range of the spec-
trum [9].

It is known that GaAs/AlAs superlattices with
approximately equal thicknesses of the GaAs and AlAs
layers and a GaAs layer thickness of less than 3.5 nm
are type-II superlattices [10]. However, in our case, the
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period of the superlattice and the layer thickness are
very small; consequently, the tunneling barriers for
both electrons and holes are relatively narrow and they
are not strictly localized in layers of GaAs or AlAs.
Therefore, it can be assumed that the quantum wires are
not isolated and form a tunnel-coupled array. In this
case, an additional lateral symmetry that leads to fold-
ing of the Brillouin zone appears not only along the
[311] direction of the growth but also along the direc-
tion perpendicular to the nanofacets, i.e., along the

[ ] direction. The lateral period (the period of fac-
ets) along this direction is equal to 3.2 nm. The high
periodicity of facets with a period of 3.2 nm was repeat-
edly confirmed by different methods, for example, by
scanning electron microscopy [11]. It seems likely that
the folding of the Brillouin zone in two directions
brings about a mixing of electronic states from the Γ, X,
and L valleys, which, in turn, leads to a more enhanced
radiative recombination in this structure as compared to
the superlattices grown along the [100] direction with a
higher symmetry. It can also be assumed that the less
intense photoluminescence (or the complete absence of
a photoluminescence signal) from the GaAs/AlAs
superlattice grown on the B(311) surface is associated
with the less pronounced corrugation (nanofaceting) of
this surface as compared to the A(311) surface. On the
other hand, the background impurities, which are incor-
porated into the layers from the residual atmosphere of
the growth chamber, can interact with surfaces in dif-
ferent ways. However, the superlattices with thicker
AlAs and GaAs layers (~10 nm), which are grown on
the A(311), B(311), and (100) surfaces, are character-
ized by photoluminescence intensities that are compa-
rable in magnitude.

Belousov et al. [12] revealed that the reflectance
depends on the polarization of light in a GaAs/AlAs
A(311) superlattice with a relatively large period
(6.5 nm or greater). The existence of a pronounced

011

(a) (b)

3.2 nm

Fig. 3. (a) Cross-sectional HRTEM image ( along the [ ]
direction) of the GaAs10/AlAs10 A(311) superlattice grown
under conditions of nanofaceting of the surface and (b) the
model HRTEM image in the case of formation of a strictly
periodic array of quantum wires. Dark regions are enriched
with gallium.
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structural anisotropy in GaAs/AlAs A(311) short-
period superlattices was confirmed by Raman scatter-
ing in these structures [13, 14]. The results obtained
from direct HRTEM measurements also indicate the
presence of quantum wires in the superlattices grown
under the conditions of nanofaceting of the A(311) sur-
face (Fig. 3). These data were obtained for sample 2
grown under the same conditions as those used for sam-
ple 1. This superlattice with quantum wires is also char-
acterized by polarization anisotropy of the photolumi-
nescence signal [9]. According to high-resolution plan-
view transmission electron microscopy, the GaAs–
AlAs quantum wires in multilayer structures are

aligned parallel to the [ ] direction of facets [8].
Moreover, the good lateral periodicity of 3.2 nm sug-
gests a strict vertical correlation of AlAs and GaAs
quantum wires.

4. CONCLUSIONS

Thus, it can be assumed that the anisotropy of the
optical properties (dichroism in the transmission of
light and polarized photoluminescence signals) of the
GaAs/AlAs short-period superlattices grown on a
nanofaceted A(311) surface is associated with their
structural anisotropy, i.e., with the formation of an
array of quantum wires in the superlattices.
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Abstract—The thermal conductivity, specific heat, and sound velocity of crystalline chrysotile asbestos made up
of hollow tubular fibrils of composition Mg3Si2O5(OH)4 have been measured at temperatures of 5–300, 3−65,
and 77 K, respectively. An analysis is made of the experimental data obtained. © 2005 Pleiades Publishing, Inc.
The present communication reports on a continua-
tion of earlier investigations into the thermal properties
of chrysotile asbestos [1], which is used as a nanochan-
nel dielectric matrix in studies of the physical proper-
ties of clusters and ultrathin quantum wires of metals
and semiconductors embedded in nanochannels of this
matrix [2, 3].

Chrysotile asbestos, hydrous magnesium silicate
Mg3Si2O5(OH)4, is a fibrillar material of the serpentine
group. Its chemical composition may vary (in the ratio
of SiO2 to MgO and bound water H2O) from one
deposit to another. It may contain Al, Fe, Ca, Ni, Mn,
K, and Na as impurities [4].

Chrysotile asbestos has an unusual crystalline struc-
ture made up of structural layers, which are bounded on
the inner side by a silicon–oxygen framework and on
the outside by a framework corresponding to magne-
sium hydroxide [2–5]. Because the inner framework is
smaller in size than the outer one, the layers of chryso-
tile asbestos tend to roll up into cylinders (tubes) with
the silicon–oxygen layer on the inner side. Such tubes
have an outer diameter d1 ~ 300–500 Å and an inner
diameter d2 ~ 20–150 Å (Fig. 1b). The space between
the tubes is usually filled with an amorphous mass of
the tube material.

The fibrils of chrysotile asbestos are alternating
chains of Si tetrahedra, Mg octahedra (extended along
the fibril axis), and hydroxyl groups.

On the whole, the crystalline lattice of the asbestos
layers belongs to the monoclinic system, and the lattice
parameters are a = 5.30 Å, b = 9.1 Å, c = 7.32 Å, and
β = 93° [8]. The a axis is directed along the tube chan-
nels. The tubes are packed in a close to hexagonal
arrangement. The porosity of chrysotile asbestos (per-
centage of channel voids in the total sample volume) is
~5–6%.
1063-7834/05/4702- $26.00 0370
A large number of studies of the physical properties
of thin filaments (quantum wires) of metals and semi-
conductors confined in channels of a chrysotile asbes-
tos matrix have been carried out in recent years [3].
Unfortunately, the available literature lacks data on the
acoustic and thermal properties of such a nanochannel
matrix (except for our thermal conductivity measure-
ments [1]). This information, however, frequently turns
out to be indispensable for thermophysical calcula-
tions, as well as sometimes for extracting data on mate-
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Fig. 1. (a) Temperature dependence of the thermal conduc-
tivity of crystalline chrysotile asbestos samples from (1) the
first and (2) second lots and (3) of the forsterite mineral with
zero porosity [6, 7]; (b) close-packed array of tubular
chrysotile asbestos fibrils.
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rials of fibrils in the nanocomposite asbestos matrix +
channel filling.

We report here on our measurements of the thermal
conductivity (κ), specific heat (C), and sound velocity
(v ) performed on a number of chrysotile asbestos sam-
ples.

In the experiments, we used samples of natural
“brittle” chrysotile asbestos obtained from two depos-
its. The samples differed in coloring; namely, those of
lot 1 were yellowish and those of lot 2, greenish. The
tube diameters of the samples studied were d1 ~ 300 Å
and d2 ~ 50 Å (Fig. 1b).

The thermal conductivity of the sample from lot 1
was studied in the range 5–300 K on a setup similar to
that employed in [9]. The procedure of κ measurement
did not differ from the one described in [1].

To remove water from the tube channels, the sample
was preliminarily annealed in air at ~150°C. This pro-
cedure did not entail any loss of bound water from the
sample [10]. After the annealing, a thin layer of varnish
was applied to the sample end faces to prevent atmo-
spheric moisture from penetrating into the asbestos
tube channels while the sample was being fixed in the
setup. The thermal conductivity κ was measured in vac-
uum. The heat flux was directed along the asbestos
fibrils. The sample dimensions were 3 × 4 × 12 mm.
Since chrysotile asbestos is an insulator, the experimen-
tally measured κ is actually the thermal conductivity of
the crystal lattice, κph.

Figure 1a presents experimental data on κph(T) for
chrysotile asbestos. The data obtained in this work
(symbols 1) are complemented by κph(T) measurements
from [1] made by us on a sample from lot 2 (symbols 2).
Also shown for comparison are the results reported on
κph(T) for forsterite (symbols 3) [6, 7]. Forsterite
2MgO · SiO2, a mineral of the olivine group, is close in
chemical composition to chrysotile asbestos.

As follows from Fig. 1, the thermal conductivities of
samples of chrysotile asbestos taken from two different
deposits are fairly similar. There is only a slight devia-
tion for T > 50 K, which can probably be assigned to the
presence of different kinds (or concentrations) of resid-
ual impurities in them. For T < 50 K, their thermal con-
ductivities turned out to be practically identical (for the
temperature region 5–50 K, κph ~ T1.4).

Ultrasonic measurements were conducted in a com-
pensation arrangement operating in a pulsed regime,
thus permitting reliable isolation of different sonic
modes [11]. The measurements were done on two sam-
ples of chrysotile asbestos from lots 1 and 2.

The samples were cut along the fibrils. To prevent
foliation from occurring in the mechanically weak sam-
ples, they were clamped rigidly and the end faces were
ground with micron-grit abrasive paper without the use
of any wetting fluid. The plane-parallel adjustment of
the operating faces was monitored with an optimeter to
within ~1 µm. To improve sonic mode separation, ger-
PHYSICS OF THE SOLID STATE      Vol. 47      No. 2      2005
manium delay lines were used, which sandwiched the
sample. GKZh-94 silicone oil was used to provide
acoustic contact between the sample, the delay lines,
and lithium-niobate piezoelectric transducers. The
absolute values of the sound velocities were measured
at 77 K. The technique employed ensured a sufficiently
high measurement accuracy (~1%) in strongly scatter-
ing samples. We measured the phase–frequency charac-
teristic (PFC) of the acoustic train, which consisted of
two delay lines within a fixed frequency interval. Next,
the PFC of the sample sandwiched between these same
delay lines was determined at the same temperature.
The difference between the two PFCs, i.e., the PFC of
the sample, was given in the form of a straight line; its
slope yielded the phase velocity of sound, v  = 360L /S,
where v  is the sound velocity (cm/s), L is the sample
thickness (cm), and S is the slope of the sample PFC
(deg/Hz).

We obtained the following values for the sound
velocities: v l ≈ 8.4 × 105 cm/s and v t ≈ 2.6 × 105 cm/s
(longitudinal and transverse velocities, respectively)
for the asbestos sample from lot 1 with an acoustic path
length L = 4.13 mm and v l ≈ 8.3 × 105 cm/s and v t ≈
2.7 × 105 cm/s for the asbestos sample from lot 2 with
an acoustic path length L = 7.24 mm.

We calculated the elastic moduli to be c33 ≈ 19.1 ×
1011 dyn/cm2 and c44 ≈ 1.83 × 1011 dyn/cm2 for the sam-
ple from lot 1 and c33 ≈ 18.6 × 1011 dyn/cm2 and c44 ≈
1.96 × 1011 dyn/cm2 for the sample from lot 2.

The density of chrysotile asbestos used in the calcu-
lations (2.7 g/cm3) was determined from x-ray diffrac-
tion data. As was the case with thermal conductivity,
the acoustic characteristics of the samples of chrysotile
asbestos taken from different deposits turned out to be
almost identical.

Figure 2a displays experimental data on the specific
heat Cp of the sample of chrysotile asbestos from lot 2.
The heat capacity was measured in the temperature
interval 3–65 K by the pulsed quasi-adiabatic method
[12]. Below 6 K, Cp(T) can be written as the sum of two
terms:

(1)

For T > 6 K, the specific heat scales as Cp ~ T2.4.
Figure 2b presents data on the specific heat C for the

forsterite mineral [6]. It was found that its specific heat
is close to the specific heat we measured for chrysotile
asbestos.

As already mentioned [1], the behavior of κph(T) of
chrysotile asbestos is distinguished by the presence of
a maximum at a fairly high temperature (~150–170 K).
The actual behavior of κph(T) in the vicinity of the max-
imum and at the maximum itself depends on many fac-
tors [13–15]. One could put forward at least two possi-
ble explanations for the observed effect.
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(1) Samples of the chrysotile asbestos contain large
amounts of impurities and, possibly, of defects, and this
is what accounts for the shift in Tmax of the thermal con-
ductivity toward higher temperatures. It is assumed that
Tmax for a more perfect sample of chrysotile asbestos
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Fig. 2. Specific heats (a) of crystalline chrysotile asbestos
and (b) of (1) chrysotile asbestos and (2) the forsterite min-
eral [6].
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Fig. 3. Chrysotile asbestos lattice (schematic). The dimen-
sions of the tubes (d1), channels (d2), and (1) gaps between
tubes are drawn in the same scale corresponding to d1 =
50 Å and d2 = 300 Å; (2) filled channels.
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lies at low temperatures. This effect has been reported
in the literature for a number of materials with defects
and impurities. However, the values of Tmax for them
may or may not exhibit a shift toward higher tempera-
tures as compared to the pure material, depending on
the nature of the material and the actual types of impu-
rities and defects. For instance, the Tmax of thermal con-
ductivity is displaced toward higher temperatures in
KCl and LiF with KNO2 and Mg impurities, respec-
tively; in KCl, LiF, and CaF2 under deformation; and in
InSb with an increased carrier concentration or under
electron irradiation. No shift has been observed in KCl
having an iodine impurity or in samples of crystalline
quartz irradiated by fast neutrons, although a substan-
tial decrease in κph was detected in this case [13].

Regrettably, there is no way to check this assump-
tion experimentally for chrysotile asbestos, because
this material is not a synthetic crystal, whose purity can
be varied at will and monitored, but rather a natural
mineral, with impurities and defects and their concen-
trations set by nature.

Our κph(T) measurements conducted on samples
from two different deposits (samples 1 and 2, Fig. 1a)
argue against the above explanation of the effect
observed in chrysotile asbestos. Tmax of κph for them lies
in the range 150–170 K, although they should, most
likely, contain impurities in different amounts (and,
possibly, of different types).

(2) κph(T) may pass through a maximum when the
phonon mean free path length l in the classical case
becomes comparable to the dimensions of the sample
(or of part of it if the sample has a complex geometric
configuration). Such “critical” dimensions in the
chrysotile asbestos samples studied in this work could
be cross-sectional dimensions: 3 × 4 mm for sample 1,
5.5 × 6.5 mm for sample 2 [1] (Fig. 1a), (d1 – d2)/2 =
125 Å for tube walls, or ~40–50 Å for the space
between tubes filled with an amorphous (or fine-
grained) mass of the tube material [3] (void 1 in Fig. 3)
and extended along the asbestos fibrils.

Using the experimental values of κph and  = (2v t +
v l)/3 and the data on Cp from Fig. 2b, we can estimate
the value of l corresponding to the maximum in κph at
T ≈ 150–170 K from the formula

(2)

For T = 170 K, l was found to be ~40 Å, which cor-
responds to the dimensions of filled channels between
the tubular fibrils (channel 2 in Fig. 3). The results
obtained require comprehensive theoretical analysis.

In the table, we list the averaged values of Cp(T) and
κph(T) relating to samples from lots 2 and 1 (points in
Fig. 1a), respectively, which may prove useful in ther-
mophysical calculations for systems based on chryso-
tile asbestos.

v

l 3κph/Cv( ).=
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Abstract—The influence of inhomogeneous boundary conditions (director orientation) on the specific features
of the formation and evolution of structural defects in 90·-twisted nematic liquid crystals (twisted structures) is
investigated in the regime of electrohydrodynamic instability. It is found that, unlike the domain structure of
nematic liquid crystals with a planar orientation, in which defects with topological indices of ±1 are formed
under conditions of electrohydrodynamic instability, the domain structure of twisted nematic liquid crystals
contains both the above defects and defects with a topological index of 0. It is shown that structural defects with
a topological index of 0 are stable and that the existence of these defects is associated with the axial velocity ua
of nematic liquid-crystal flow in the domains. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In recent years, considerable advances have been
made in the study of nonlinear phenomena in nonequi-
librium media, specifically in liquid crystals; however,
the mechanisms of the formation and evolution of spa-
tially modulated structures in these systems are poorly
understood [1]. Nematic liquid crystals undergo non-
equilibrium structural phase transformations, such as
transitions to a dynamic disorder under conditions of
electrohydrodynamic instability, the formation of sta-
ble domain structures with different symmetries, and
the nucleation and evolution of structural defects.

It is well known that the crossover to a spatiotempo-
ral turbulence or a “weak” turbulence [2, 3], as a rule,
is accompanied by the nucleation of defects of different
types. This is characteristic of both isotropic liquids
(Rayleigh–Benard convection) and anisotropic liquids
(electrohydrodynamic instability in a nematic liquid
crystal) [2–4]. Eventually, the interaction of these
defects determines the specific properties of one or
another state of the system. In particular, the nucleation
and annihilation of defects in different structures are
the most general mechanisms responsible for the selec-
tion of wave vectors of the domain lattice. Therefore, in
order to understand the complex dynamics of structural
phase transitions or a weakly turbulent state of the sys-
tem, it is necessary first of all to investigate the proper-
ties and behavior of defects in the domain structures.
From this point of view, liquid crystals are excellent
1063-7834/05/4702- $26.00 0374
model objects for use in analyzing the mechanisms of
the nucleation and evolution of structural defects [4, 5].

The mechanisms of the nucleation and evolution of
structural defects have been most thoroughly investi-
gated under conditions of electrohydrodynamic insta-
bility in a nematic liquid crystal with a planar orienta-
tion of the field of the director n. The sequence of struc-
tural transitions up to the dynamic scattering mode, the
statistical properties of defects, and their dynamic
behavior were described in sufficient detail in [4, 6].
However, there are only a few works concerned with
the properties of defects and the structural transforma-
tions occurring in nematic liquid crystals with inhomo-
geneous (twisted and homeoplanar) orientations of the
director. In particular, Delev et al. [7] analyzed the lin-
ear threshold characteristics of the electrohydrody-
namic instability in twisted nematic liquid crystals and
the evolution of domain structures for different angles
of twist. In regard to determining the role played by
defects in structural transitions in twisted nematic liq-
uid crystals above the instability threshold, there are
only fragmentary data in the literature [8].

In this respect, the purpose of the present work was
to study and classify defects inherent in the domain
structure in a 90°-twisted nematic liquid crystal in the
conducting regime of electrohydrodynamic instability
and their behavior in an ac electric field.
© 2005 Pleiades Publishing, Inc.
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2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

A nematic liquid crystal, namely, 4-n-methoxyben-
zylidene-n-butylaniline, was chosen as the object of our
investigation. The liquid crystal was sandwiched
between two glass substrates with SnO2 conducting
coatings. The substrates were separated by mica spac-
ers of thickness d = 20 µm. In order to provide appro-
priate orientation by the substrates, the conducting
coatings were rubbed in one direction and were then
rotated through 90° with respect to each other. Since the
adhesion of nematic liquid-crystal molecules at the
boundary was sufficiently strong, the voltage used in
the experiment had no effect on the orientation of the
nematic liquid crystal at the boundary. An alternating
voltage U at a frequency of 20 Hz was applied across
the nematic liquid-crystal layer.

3. RESULTS AND DISCUSSION

In an electric field with a voltage U = Ucr ≈ 6 V (i.e.,

at ε = 0, where ε =  is the supercriticality

parameter) across the nematic layer, there arises a peri-
odic structure of stripe domains (rolls) arranged per-
pendicularly to the nematic liquid-crystal orientation at
the center of an undisturbed layer [9]. The elementary
defect formed in this structure is an additional pair of
broken rolls (dislocation). Unlike the domain structure
of nematic liquid crystals with a planar orientation, the
domain structure of twisted nematic liquid crystals con-
tains both dislocations with topological indices of ±1
(Fig. 1a) and new defects with a topological index of 0
(Fig. 1b). The existence of the latter defects is associ-
ated with the axial velocity ua of nematic liquid-crystal
flow in domains. The direction of the axial velocity is
shown by arrows in Fig. 1. The schemes illustrating the
nematic liquid-crystal flows in domains with defects of
two types are depicted in Figs. 1c and 1d. It should be
noted that defects of the first type are singular. This
becomes evident from the following reasoning. Let us
consider a homogeneous periodic structure of the
domains oriented along the Y axis. This structure is
characterized by the wave vector q0 = gradΦ(q0/X),
where Φ = q0x + ϕ is the spatial phase of the change, for
example, in the vertical component of the convective
velocity uc of the rolls, and ϕ is a phase constant (in the
general case, it is a function of x and y). For ϕ = const,
the integral taken along the line of the defect (Fig. 1a)

(1)

is equal to 2π for defects of the first type. This is con-
sistent with the assumption that such a defect with topo-
logical indices of ±1 is an additional pair of domains in

U
2

Ucr
2

------- 1–

grad Φ sd

C

∫° 0≠
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the structure; i.e., this determines the singularity of
defects of the first type. By contrast, defects of the sec-
ond type (Fig. 1b) should be nonsingular, because the
contour integral (1) is found to be equal to zero. How-
ever, in the latter case, there exist specific features that
require explanation. In actual fact, when the contour
integral (1) in the general case is less than 2π, spatial
distortions of the nonsingular domain structure can be
associated with the local dependence ϕ(x, y). Such
defects (which, in essence, are large-scale spatial fluc-
tuations of the field of velocities and the director) are
usually referred to as localized phase modulations [10].
In general, these defects are homotopic to a point. This
property is responsible for their instability and, conse-
quently, for their relaxation with time to an equilibrium
homogeneous state of the one-dimensional domain lat-
tice. Such a situation is typical of the planar case. In our
case, the defect has a stable configuration due to the
specific features of hydrodynamic flows in the domain
structure of the twisted nematic liquid crystal. As was
noted above, apart from the conventional convective
component of the velocity uc, which is characteristic of
spatially modulated structures with a planar homoge-
neous orientation of liquid-crystal molecules, the
velocity of flows in domains of twisted structures has
an axial component ua. The continuity of this compo-
nent ensures the existence of a local potential wall
(Fig. 1b) that prevents annihilation of the defects.

In the core of dislocations with topological indices
of ±1, there exists a region in which the domain struc-
ture is distorted significantly (see inset to Fig. 2). This
region is located perpendicularly to the domain axes.
Beginning from the instant of nucleation of a defect, the
effective size Leff of this core initially increases with an
increase in the voltage (a similar effect was observed by

(a) (b)

(c) (d)O

Y

X

Fig. 1. Micrographs of defects with topological indices of
(a) ±1 and (b) 0 in a twisted nematic liquid crystal and (c, d)
the schemes of hydrodynamic flows in these defects.
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Fig. 2. Dependence of the size of the dissociated core of a
dislocation with topological indices of ±1 on the parameter
ε. The inset shows the micrograph of a dislocation with
L > 2d.

Fig. 3. Schematic diagram illustrating the periodic redistri-
bution of convective flows in the course of oscillations of a
defect with topological indices of ±0 at ac voltages higher
than 7.4 eV (ε = 0.52).
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Fig. 4. Dependence of the oscillation frequency of a defect
on the applied voltage U.
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Joets and Ribotta [10] for liquid-crystal layers with a
homogeneous planar orientation) but only in the vicin-
ity of ε ≥ 0. A further increase in the voltage leads to a
decrease in the core size to the size of the core of an ele-
mentary defect with L = 2λ at ε = 1.3 (where λ is the
size of a single domain) (Fig. 2). In our opinion, this
behavior is specific to twisted structures.

Now, we consider a defect of size L in a one-dimen-
sional homogeneous lattice at a voltage U applied
across the layer (see inset to Fig. 2). According to
Friedel [11], the dissociated cores of these defects are
arranged in a line and the entire structure is isomorphic
to two partial dislocations separated by a distance L.
The distance L depends on the effective force and
energy parameters of the domain lattice and on the
dynamics of nematic liquid-crystal flows. In this case, a
partial dislocation is associated with either the presence
or the absence of one stripe domain that cannot exist
individually by virtue of the symmetry of the twisted
structure. The partial dislocations are separated by a
fault defect, i.e., a line separating regions displaced
with respect to each other by one domain. This line
indicates a discontinuity in the monotonic distribution
of the axial velocity ua of nematic liquid-crystal flows
along the domains. Therefore, the equilibrium state of
this system of dislocations can be described by the fol-
lowing equation [11, 12]:

(2)

Here, b is the Burgers vector of the partial dislocation
(which is equal to the spacing of the one-dimensional
lattice λ ~ d), G is the effective modulus of elasticity
(rigidity) of the one-dimensional lattice of the rolls (this
modulus depends on the character of convective flows
of the nematic liquid crystal and, to a first approxima-
tion, is proportional to the square of the velocity of con-
vection |uc |2, which itself is quadratic in the field E or in
the voltage U) [13], and r is the dislocation spacing. To
a first approximation, the quantities γ0 and γa are the
constants related to the linear energy density of the fault
defect. In this case, γ0 and γa are determined by the con-
vective and axial components of the nematic liquid-
crystal flows in the twisted structures, respectively. As
a result, the effective modulus of elasticity G for small
supercriticality parameters ε can be written in the form

(3)

where α and β are coefficients of proportionality.
According to relationship (3), the mean distance

between the partial dislocations (the mean size of the
defect) at voltages that are slightly above the threshold
Ucr increases quadratically with an increase in the
supercriticality parameter ε: Leff . bβε2/(γ0 + γa). This
is confirmed by the results obtained by Joets and
Ribotta [10]. As was noted above, with a further
increase in the supercriticality parameter ε, the effec-

b
2
G

r
--------- γ0 γa.+=

G α uc
2 βU

4 βε2
,∼ ∼ ∼
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tive size Leff tends to a minimum value equal to twice
the spacing of the domain lattice. The deformation field
(or the core of the defect with a topological index of 0)
is characterized by the size L = 2λ, which does not
change with increasing voltage.

At voltages below U = 7.4 V (ε = 0.52), the convec-
tive flow in the cores of defects of both types becomes
steady. As the alternating voltage applied across the cell
increases, the velocity of the flow in the defect core
begins to vary periodically with time. In essence, this
behavior corresponds to domain oscillations. The redis-
tribution of convective flows in the defect with a topo-
logical index of 0 is schematically depicted in Fig. 3.
The oscillation of this defect is associated with the peri-
odic nucleation and annihilation of a pair of topological
defects with indices of ±1. It is found that the oscilla-
tion frequency is directly proportional to the applied
voltage (Fig. 4). This finding correlates with the linear
dependence of the axial velocity of nematic liquid-crys-
tal flow in the domain on the applied voltage [9].

4. CONCLUSIONS

Thus, in the present work, we studied defects of the
domain structure in a 90°-twisted nematic liquid crystal
under conditions of electrical convection. A new type of
defects with a topological index of 0 was revealed in the
nematic liquid crystals under investigation. The stabil-
ity of these defects is provided by a specific feature of
hydrodynamic flows, namely, the axial c velocity ua of
the hydrodynamic flow along the domain axis. The
dependences of the effective size of the deformation
field and the frequency of oscillations of these defects
on the applied voltage were determined. It was shown
that an increase in the voltage leads to a decrease in the
size of the deformation field to the size of an elemen-
tary defect (2λ = 40 µm).
PHYSICS OF THE SOLID STATE      Vol. 47      No. 2      200
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Abstract—The problem regarding the mass dimension D of mesogenic molecules as atomic clusters is formu-
lated and solved using computer simulation and analytical calculations. For a large number of compounds
belonging to different chemical classes, it is shown that the cores of discotic lacunar (rodlike, lathlike) mole-
cules forming nematic or columnar discotic (calamitic) phases have a fractional dimension 1 < Dc < 2 (Dc ≈ 1).
The dependences of the dimension Dc on the symmetry, the conformation, and the structural–chemical features
of the molecular core are determined. It is demonstrated that, in the region of side flexible chains in molecules
of both types, the dimension Dch can be either smaller or larger than unity, depending on the chain conforma-
tion. An analytical expression accounting for the results of numerical experiments is obtained for the dimension
Dch. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In recent years, considerable attention has been
focused on the physical and chemical properties of
nanoparticles and their clusters with a fractional mass
dimension D < 3 [1, 2]. In this respect, investigation
into the dimension of the molecules treated as atomic
clusters is an important problem. This problem is of
special interest for mesogenic molecules that consist of
tens or hundreds of atoms and are characterized by a
wide variety of chemical structures and shapes [3–9].
These factors are primarily responsible for the charac-
ter of molecular packing in the condensed state, the
anisotropy of the local coordination environment of
molecules, and the type of liquid crystals (calamitic,
discotic) and their mesophases (nematic, smectic,
columnar).

The shape of the molecules reflects the distribution
of force centers throughout the molecular volume and
affects the anisotropy of intermolecular interactions,
the intermolecular correlations, the degree of orienta-
tional ordering of the molecules in a liquid crystal, the
interrelation between the orientational and conforma-
tional degrees of freedom of the molecules, and the
character of phase transitions. For example, discotic
molecules, as a rule, have a planar central aromatic core
with radial, relatively long, flexible aliphatic chains [5,
10]. The loose (lacunar [1]) structure of discotic mole-
cules with the statistical symmetry axis Ck (k ≥ 2) is
characterized by large-sized lacunas (holes, cavities)
between the core fragments or side chains and a large
free volume per chain. It should be noted that the free
volume increases with an increase in the chain length.
This structure enhances the high conformational mobil-
ity of the chains. In turn, the high conformational
mobility manifests itself both in the temperature depen-
1063-7834/05/4702- $26.00 0378
dence of the orientational order parameter of molecules
S(T) for discotic nematic liquid crystals ND [11, 12] and
in a decrease in the orientational order parameter S in
the phases ND and NDre with an increase in the chain
length [13, 14].

The difference between the mass dimensions D of
discotic lacunar molecules in the regions of the molec-
ular core and side chains can account for the large dif-
ferences between the orientational order parameters S,
which are observed experimentally [11–14] and pre-
dicted by modern variants of the molecular-statistical
theory and computer simulation for discotic nematic
liquid crystals ND (see [14] and references therein). In a
recent paper [14], I analyzed these data, formulated a
problem regarding the dimension of real discotic mole-
cules, and made the assumption that the mass dimen-
sion D of these molecules is less than 2.

The purpose of this paper is to investigate both
numerically and analytically the mass dimension for a
representative set of known lathlike and lacunar
mesogenic molecules of different chemical classes and
to elucidate how the dimension of these molecules Dc

(in the core region) and Dch (in the region of side
chains) depends on the symmetry, the size, the struc-
tural–chemical features, the conformation of molecular
core fragments, and the length and conformation of the
chains. The specific features of the objects under inves-
tigation and the technique of their computer simulation
are considered in Section 2. The results of numerical
treatment of the dimension Dc are presented and ana-
lyzed in Section 3. The results of numerical and analyt-
ical investigations of the dimension Dch are discussed in
Section 4. The main results obtained in this work and
the conclusions drawn are briefly summarized in Sec-
tion 5.
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Objects of investigation.
2. OBJECTS OF INVESTIGATION
AND THEIR MODELS

The structural formulas of the studied compounds
are presented in Fig. 1. These are the symmetrical
molecules NPh [4, 7], nNPh [4, 15], and nONPh; mol-
ecules 1 and 7 [15] with rodlike or lathlike cores, which
are abundant among calamitic liquid crystals; discotic
molecules 2 [3, 16] and 3 [3, 4, 6]; model molecule 4
(for comparison with molecules 1–3); and well-known
molecules 5, 6, 8, 9a–9d, and 10a–10c [3–7, 10], which
form nematic and (or) columnar liquid-crystal phases.
The orientational ordering of the usual, reentrant, or
inverse nematic liquid-crystal phases was investigated
for a number of homologs of compounds 8 [11, 12], 9c
[14], and 10b [12, 13]. The chosen set include com-
pounds with discotic molecules that have twofold (3,
5), threefold (2, 9, 10), and sixfold (4, 6, 8) statistical
PHYSICS OF THE SOLID STATE      Vol. 47      No. 2      200
symmetry axes Ck. It should be noted that, in each of the
three core fragments related by the symmetry axis C3 in
molecules 10a–10c, two Φ fragments occupy symmet-
rically nonequivalent positions. The discotic molecules
under consideration differ both in the structure, size,
and lacunarity of the central core fragment and in the
structure of the Φ1–Φ5 fragments whose attachment
differently increases the transverse size of the core and
the degree of its lacunarity.

In order to avoid details that are immaterial for the
qualitative and quantitative results of the analysis, each
molecule is simulated by a cluster consisting of identi-
cal spherical atoms of radius r whose centers coincide
with the centers of carbon and oxygen atoms in the core
and alkyl (alkyloxy) chains of the molecule without
regard for the differences between the van der Waals
radii of the carbon and oxygen atoms and the CH, CH2,
5
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Fig. 2. Conformers of the side molecular fragments in the studied compounds.
and CH3 groups. The lengths of all the bonds C–C,
C≡C, C–O, and C=O are assumed to be l = 2r. All bond
angles in the molecular cores and in the Φk fragments
are taken to be equal to 120° (except for molecules
10a–10c with regular pentagons and hexagons in the
core), and the C–C–C bond angles in the alkyl chains
are assumed to be equal to a tetrahedral angle of
109.47°. Hereafter, all the linear sizes will be given in
conventional units that correspond to r = 3.5.

The main conformations of the Φk fragments with
six (five) carbon atoms in the alkyl (alkyloxy) chains
are shown in Fig. 2. The other conformations obtained
from the main conformations by varying either the
angle ϕ1 between the planes of the C(O)O group and
the O-phenyl ring of the core or the angle ϕ2 between
the plane of the carbon backbone of the side alkyl (alky-
loxy) chain in the trans conformation and the plane of
the phenyl ring or the C(O)O group bonded to this
chain are listed in Table 1. For all the conformers con-
taining the Φ4 fragment, the plane of the C(O)O group
P

coincides with the plane of the C-phenyl ring bound to
this group. In what follows, we will use designations of
the type 9b(1/3). This designation means that, in each
of the three core fragments in molecule 9b, one Φ3 frag-
ment has conformation 9b(1) and another Φ3 fragment
has conformation 9b(3); in this case, identical conform-
ers in each core fragment are related by the molecular
symmetry axis C3. It should be noted that the results
given below do not depend on the angle ϕ1(ϕ2) for mol-
ecules 1–6 [nNPh, nOPh, 7, 8, conformers 9b(1), 9b(2),
9c(1), 9c(2)] or on the dihedral angles between the phe-
nyl rings for molecules NPh, nNPh, and nOPh.

The number N(R) of spherical atoms inside the
sphere of radius R whose center coincides with the cen-
ter of the molecular core is counted in the numerical
experiment. Since the atoms have identical mass, the
mass M(R) of the part of the molecule within the sphere
varies as M(R) ~ N(R). For the Φ3 (Φ4, Φ5) fragments,
it is assumed that the C(O)O group (phenyl ring) enters
into the composition of the molecular core. The core
HYSICS OF THE SOLID STATE      Vol. 47      No. 2      2005
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radii Rc and the numbers of atoms in the cores Nc =
N(Rc) for the conformers of the compounds under con-
sideration are presented in Table 2.

3. DIMENSION OF MOLECULES
IN THE CORE REGION

The dependences of logN(R) on logR are character-
ized by the derivative

(1)

For all the compounds and their conformers under
investigation, the dependences of logN(R) on logR

D R( ) d N R( )ln
d Rln

----------------------.=
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Fig. 3. Dependence N(R) for NPh molecules. The inset
shows the dependences of the parameters ρc and Dc on the
number N of phenyl rings in the same molecules.
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exhibit two linear portions with different derivatives
D(R) ≈ const in the core region (R ≤ Rc) and the region
of side chains (R > Rc). In the core region, these depen-
dences in all the cases are described well by the rela-
tionship

(2)

with constant coefficients ac and Dc. The observed devi-
ations of a number of points from this dependence are
primarily caused by the inclusion of the values of R for
which the quantity N(R) changes by an integral number
of atoms. The use of a continuous function M(R) leads
to a smoothing of these deviations. In the range R ≤ Rc,
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Fig. 4. Dependences N(R) for compounds 1–8. The inset
shows the dependences of the parameter Dc on the number
q of radial core fragments for molecules 1–8.
Table 1.  Dihedral angles of the conformers under investigation

Conformer 2(1) 2(2) 6(1) 6(2) 9a 9b(1) 9b(2)

ϕ1 0–2π 0–2π – 0

ϕ2 0 ±π 0 ±π 0 0 ±π
Conformer 9b(3) 9b(4) 9c(1) 9c(2) 9c(3) 9c(4) 9d(1)

ϕ1 ±π 0 ±π –

ϕ2 0 ±π 0 ±π 0 ±π 0

Conformer 9d(2) 10a(1) 10a(2) 10a(3) 10a(4) 10b(1) 10b(2)

ϕ1 – – 0

ϕ2 ±π 0 ±π 0 ±π 0 ±π
Conformer 10b(3) 10b(4) 10b(5) 10b(6) 10b(7) 10b(8) 10c(1)

ϕ1 ±π 0 ±π 0

ϕ2 ±π 0 0 ±π ±π 0 0

Conformer 10c(2) 10c(3) 10c(4) 10c(5) 10c(6) 10c(7) 10c(8)

ϕ1 0 ±π 0 ±π
ϕ2 ±π ±π 0 0 ±π ±π 0
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the dependence N(R) can be approximated by the
expression

(3)

with the fractional dimension D = Dc. The prefactor ρc

characterizes the density of infill of the molecular core
with atoms and depends on the shape and chemical
structure of the core. The coefficients of relationship (2)
were determined using the option of the Statistics (Lin-
ear Regression) of the Sigma Plot 8.0 software pack-
age. The parameters ρc and Dc for the compounds under
investigation are given in Table 2. The parameters Dc

for molecules NPh, nNPh, and nONPh with N ≥ 3 are
obtained by ignoring the data at R = 7 and N = 2.

It can be seen from Fig. 3 and the data presented in
Table 2 that the values of Dc for molecules NPh, nNPh,
nONPh (N ≥ 3), and 1 are close to unity. This is consis-
tent with the linear shape of these molecules. A
decrease in the width of molecule 7 (the appearance of
lacunas) between the central and terminal phenyl rings
of the core results in a decrease in the parameter Dc to
0.885, whereas the presence of two adjacent planar
phenyl rings in the cores of molecules 2Ph, n2Ph, and
nO2Ph leads to a considerable increase in the parame-
ter Dc. As a result, the cores of these molecules become
similar to the cores of discotic molecules. The even–
odd alternation of the parameters ρc(N) and Dc(N) for
molecules NPh with a variation in the number N of phe-
nyl rings (see inset to Fig. 3) indicates a difference
between the properties of the first compounds with even
and odd values of N in this series and also a high sensi-
tivity of the parameters ρc and Dc to similar structural
features of the core.

Judging from the parameters 1 < Dc < 2 obtained for
the discotic compounds, the disklike shape acceptable
in the literature for their molecules does not correspond
to the actual shape, because the disklike (disk-shaped)
molecules should be described by expression (3) at
Dc = 2. It seems likely that the loose structure of dis-
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Fig. 5. Correlation between the parameters ρc and Dc in
expression (3) for the studied compounds.
P

cotic molecules can be more precisely defined as a lacu-
nar structure.

Let us consider the dependence of the parameter Dc

on the number q of radial core fragments and the
parameters Rc and Nc. At Rc = const, an increase in the
parameter Nc and the number q of Φ4 fragments in the
series of compounds 1–2–3–4 leads to an almost linear
increase in the parameter Dc(q) and an irregular change
in the index k of the symmetry axis Ck of the molecule.
A similar increase in the parameter Dc is observed with
an increase in the number of Φ5 (Φ3) fragments from
two (four) to six upon transition 7  8 (5  6).
Note that the slopes of the curves Dc(q) in the above
three cases are close to each other (see inset to Fig. 4).
Owing to the denser infill of the circle of radius R with
core fragments due to an increase in their number q, the
parameter Dc tends to 2.

For q = const, an increase in the parameter Rc in the
series 6–4–8 (5–3) is accompanied by an increase in the
size of lacunas between the core fragments and a
decrease in the parameter Dc. A similar situation is
observed in the series 9b(1, 2)–9c(1, 2)–9d(1, 2). An
increase in the lacuna size and the corresponding
decrease in the parameter Dc also occur upon transition
9a  10a (9b  10b, 9c  10c) for molecules
containing identical substituting fragments Φ due to the
larger parameters Rc and the greater looseness of the
unsubstituted core of molecule 10 as compared to the
core of unsubstituted molecule 9. However, the transi-
tion from conformer 10b to conformer 10c or 9c leads
to an increase in the parameter Dc, because the relative
increase in Nc is larger than that in Rc.

For Nc = const and q = const, the parameters Rc and
Dc can depend on the conformation of the substituting
side fragments Φ. The transitions 9b(1, 2)  9b(3, 4),
9c(1, 2)  9c(1/3, 2/3, 1/4, 2/4), 10b(1/5, 2/6) 
10b(1/8, 2/7), and 10c(1/5, 2/6)  10c(1/8, 2/7) are
accompanied by an increase in the parameter Rc and a
decrease in the quantity Dc. On the other hand, the tran-
sitions 9b(3, 4)  9b(1/3, 2/3, 1/4, 2/4) and 10b(1/8,
2/7)  10b(3/6, 4/5) result in an increase in the
parameter Dc for the former transitions and in a
decrease in this parameter for the latter transitions at the
same values of Rc. In these cases, when the parameter
Rc varies insignificantly, the quantity Dc is predomi-
nantly determined by the density of infill of the core
area with atoms of the substituting fragments Φ.

The correlation between the parameters ρc and Dc in
expression (3) for all the studied compounds and their
conformers is illustrated in Fig. 5. Without regard for
the molecules NPh (N = 2, 4, 6), the dependence shown
in Fig. 5 can be approximated by the relationship

(4)

with parameters b = 3.186 and f = 1.378 and a correla-
tion coefficient of 0.985. At Dc = 1, the density ρc =

ρc b f Dc–=
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DIMENSION OF MESOGENIC MOLECULES AS ATOMIC CLUSTERS 383
1.808 exceeds ρc = 1 for a linear chain of spheres and
reflects the specific features of the chemical structure of
the cores in lathlike mesogenic molecules of types 1
and 7 with planar bridging fragments and (or) phenyl
rings, which are responsible for the increase in the
parameter ρc. At Dc = 2, the atomic packing density in
the cores of the model molecules under consideration
ρc = 0.430 is half as high as the density ρc = π/(12)1/2 ≈
0.907 for a close hexagonal packing of spheres in the
plane at R @ r [2]. For molecules NPh (N = 2, 4, 6), the
dependence shown in Fig. 5 can be approximated by
relationship (4) with parameters b = 3.349 and f = 1.657
and a correlation coefficient of 0.999. According to this
dependence, the density ρc(Dc = 1) = 1.692 appears to
be close to that for the other compounds.

4. DIMENSION OF MOLECULES
IN THE REGION OF SIDE CHAINS

It can be seen from Figs. 4 and 6 that, for all the
studied compounds and their conformers, the depen-
dence of logN(R) on logR in the range R > Rc exhibits
an almost linear behavior and, to a first approximation,
can be represented in the form

(5)

with constant parameters ach and Dch. The effective
mass dimensions Dch of molecules in the chain region
were obtained by averaging over the length of the chain
containing 16 atoms (Table 2). As can be seen from
Table 2, the dimensions Dch < 1 and Dch > 1 are
observed for different compounds.

At Rc = const, an increase in the parameter Nc and
the number q of chains per molecule in the series of
compounds 1–2–3–4 leads to a monotonic increase in
the dimension Dch < 1. A similar increase in the param-
eter Dch is observed with an increase in the number of
chains from two (four) to six upon transition 7  8
(5  6). Therefore, owing to the denser infill of the
spherical layer between the spheres of radii Rc and R
with chains due to an increase in their number, the
dimension Dch tends to 1.

For molecules nNPh, an increase in the parameters N,
Nc, and Rc results in a monotonic decrease in the dimen-
sion Dch < 1. A similar regularity is observed upon tran-
sitions 6  4 (5  3) and 9b(1, 2)  9c(1, 2).
Upon transitions 9b(1/3, 2/3)  9c(1/3, 2/3),
9b(1/4, 2/4)  9c(1/4, 2/4), and 10b(3/6, 4/5) 
10c(3/6, 4/5), the inequality Dch > 1 is reversed. This
indicates that the dimension Dch depends strongly on
the parameters Nc and Rc. For effective dimensions
Dch < 1 (Dch > 1), the derivative D(R) [relationship (1)]
increases (decreases) insignificantly with an increase in
R and tends to unity.

N R( )log ach Dch Rlog+=
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In the range R > Rc, we introduce the derivative

(6)

The dependences of log[N(R) – Nc] on log(R – Rc) for a
number of compounds are plotted in Fig. 6. These
dependences for the homologs with n > 2 exhibit a
nearly linear behavior and are approximated well by the
expression

(7)

with constant parameters Cch and bch. The effective val-
ues of bch are presented in Table 2. For the majority of
compounds, the inequality bch ≤ 1 is satisfied and the
differences between the values of bch > 1 and unity are
within the error in determining bch. It is seen that the
studied compounds satisfy both inequalities Dch < bch

and Dch > bch and the equality Dch = bch [for molecules
9b(1), 9b(2)]. Using compounds n2Ph–n4Ph as an
example, it can be shown that the sensitivity of the
quantity bch to variations in the parameters Nc and Rc is
less than the sensitivity of the quantity Dch. At Rc =
const, an increase in the parameter Nc and in the num-
ber q of chains per molecule in the series of compounds
1–2–3–4 has no effect on the quantity bch, as is the case
with the transition 7  8 (5  6). For all the com-
pounds and their conformers, the dependence of the
quantity bch on the conformation of the side core frag-
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ments and chains is substantially more pronounced
than the corresponding dependence of the quantity Dch.

Now, we turn to the explanation of the features
revealed in the dependences of D(R), Dch, bch(R), and
bch. Let us consider a lacunar (lathlike) molecule with a
statistical symmetry axis Ck (k ≥ 2) that passes through
the center of the molecular core perpendicularly to the
core plane (i.e., normally to the longitudinal axis of the
core). We assume that each of q core fragments related
by the symmetry axis Ck has m side chains and each
chain adopts a specific conformation. Then, within the
cluster model for the molecule whose chains are
located in the region R > Rc, we can write the relation-
ship

(8)

The function σ(r) is defined by the expression

(9)

where the index i numbers the chains in a particular
core fragment and p is the parity index of the C atoms

in the chain. The function (R), whose properties
will be considered below, depends on the chain confor-
mation and the angle between the axis of the chain in a

trans conformation and the radius vector  that con-
nects the center of the core to the center of the C0 atom
to which the chain is bonded. From expression (8), we
obtain the relationship

(10)

which can be conveniently used for determining the
function σ(R) from the results of the computer simula-
tion.

From formula (6) with due regard for expression (8),
we find

(11)

As will be shown below, for chains that adopt a trans
conformation and do not make very large angles with

the radius vector , the decreasing function σ(R) is
weakly pronounced and tends to a limiting value with
an increase in the parameter R. Therefore, we have the
inequality bch(R) ≤ 1 and find that the quantity bch(R)
tends to unity with an increase in R. For the homologs
with n in the range 2 ≤ n ≤ 16, the increase in the differ-
ence (R – Rc) with an increase in n in formula (11) com-
pensates for the decrease in the quantity σ(R). This
explains the approximate equality bch(R) ≈ bch and the
observed dependence described by relationship (7).
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Table 2.  Parameters Nc, Rc, ρc, Dc, Dch, and bch determined from computer simulation of molecules of the compounds under
consideration for different conformations of side fragments

Compound n2Ph n3Ph n4Ph 1(1) 1(2) 2(1) 2(2) 3(1)

Nc(Rc) 12(21) 18(31.5) 24(42) 24(42.8) 33(42.8) 42(42.8)

ρc 0.679 1.793 1.463 1.833 1.452 1.233

Dc 1.612 1.025 1.128 0.998 1.224 1.391

Dch 0.814 0.786 0.769 0.770 0.780 0.813 0.821 0.837

bch 0.973 0.973 0.977 0.993 0.959 0.993 0.959 0.993

Compound 3(2) 4(1) 4(2) 5(1) 5(2) 6(1) 6(2) 8

Nc(Rc) 42(42.8) 60(42.8) 20(22) 24(22) 54(45.5)

ρc 1.233 0.989 1.026 0.799 1.090

Dc 1.391 1.634 1.582 1.788 1.489

Dch 0.844 0.862 0.868 0.904 0.879 0.995 0.959 0.933

bch 0.959 0.993 0.959 1.011 0.923 1.011 0.923 0.967

Compound 9a
9b(1)
9b(2)

9b(3) 9b(4)
9b(1/3)
9b(2/3)

9b(1/4)
9b(2/4)

9c(1)
9c(2)

9c(1/3)
9c(2/3)

Nc(Rc) 18(22) 36(31.5) 36(34.3) 36(34.3) 72(53.2) 72(54.5)

ρc 1.186 0.944 1.166 1.122 1.050 1.116

Dc 1.464 1.630 1.472 1.503 1.561 1.503

Dch 1.109 0.973 1.005 1.018 1.009 1.017 0.890 0.899

bch 1.011 0.973 0.983 0.914 0.999 0.971 0.970 1.010

Compound
9c(1/4)
9c(2/4)

9d(1) 9d(2) 10a(1/4, 2/3, 
2/4) 10b(1/5) 10b(2/6) 10b(2/7) 10b(1/8)

Nc(Rc) 72.(54.5) 66(56.7) 27(31.5) 45(41.6) 45(43.1)

ρc 1.116 1.334 1.389 1.133 1.188

Dc 1.503 1.367 1.339 1.466 1.438

Dch 0.922 0.966 0.984 1 < Dch ≤ Dc 0.988 0.984 0.973 1.009

bch 0.975 0.983 0.949 0.993* 0.930 0.874 0.892 0.931

Compound 10b(3/6) 10b(4/5) 10c(1/5) 10c(2/6) 10c(2/7) 10c(1/8) 10c(3/6) 10c(4/5)

Nc(Rc) 45(43.1) 81(62.8) 81(63.7) 81(62.8)

ρc 1.299 1.052 1.077 1.098

Dc 1.377 1.506 1.491 1.466

Dch 1.016 1 < Dch ≤ Dc 0.891 0.895 0.881 0.906 0.901 0.931

bch 0.995 0.913 0.955 0.853 0.908 0.932 1.011 0.956

* For molecules 10a(2/3) and 10a(2/4), bch = 0.914.
Substituting expression (8) into formula (1) gives
the relationship

(12)

At R @ Rc and N(R) @ Nc, we have D0(R) ≈ 1 and
D(R) ≈ bch(R). By disregarding the dependence σ(R),
from formula (10), we obtain the relationship [N(R) –
Nc] ~ (R – Rc) and the equality D(R) = D0(R). Setting

D R( )
R N R( ) Nc–[ ]
N R( ) R Rc–( )
----------------------------------bch R( ) D0 R( )bch R( ).≡=
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[N(R) – Nc]/(R – Rc) ≡  and N(R)/R ≡ , we
can write the expression for D0(R) in the form

(13)

At α < θ(R), the inequality D0(R) < 1 is satisfied for the
majority of the studied compounds. At α > θ(R), we
have the inequality D0(R) > 1 for molecules 9a, 9b(3, 4,
1/3, 2/4), 10a(1/4, 2/3, 2/4), and 10b(1/8, 3/6, 4/5). At
α < θ(R) [α > θ(R)], an increase in R leads to a slow
decrease (increase) in the angle θ(R) tending to the

αtan θ R( )tan

D0 R( ) α / θ R( ).tantan=
5
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angle α and an increase (decrease) in the quantity D0(R)
tending to unity. The dependence D0(R) can be well
pronounced for molecules with small values of Nc and
Rc. This is actually observed for compounds n2Ph, 5(1,
2), 9a, and 10a(1/4, 2/3, 2/4).

At D0(R) < 1, the insignificant decrease in the func-
tion lnσ(R) with an increase in R in relationships (11)
and (12) partially compensates for the increase in D0(R)
with an increase in the chain length and is responsible
for the observed approximate equality D(R) ≈ Dch < 1.
By contrast, at D0(R) > 1, the decrease in the function
lnσ(R) with an increase in R in relationships (11) and
(12) enhances the decrease in D(R) with an increase in
the chain length. This is characteristic of molecules 9a
and 10b(4/5) and can be seen in Fig. 6c for molecules
10a(1/4, 2/3, 2/4).

The same limiting value Dch(n  ∞) = 1 obtained
for lathlike and lacunar nematic molecules with long
side chains suggests that, in the limit, these molecules
are isomorphic with respect to the quantity Dch. This
explains the close limiting temperatures Tl = Tc(n 
∞) of the ND–I phase transition with an increase in the
length of only one chain in molecule 8 or all chains in
molecule 9c [17].
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Let us analyze the basic properties of the function

(R) for even and odd homologs with the chains in
the trans conformation. For simplicity, we assume that

the carbon backbone of the chain, the vector , and

the vector  ( ) connecting the core center to
the center of the even (odd) atom in the chain lie in the
same plane. The arrangement of these vectors is sche-
matically depicted in Fig. 7. For the even atoms in the
chain, we have the exact expression

(14)

where r2n = 2nlcosβ is the distance between the centers
of the C0 and C2n atoms. The signs “+” and “–” ahead
of γ corresponds to the schemes shown in Figs. 7a and
7b, which differ from each other by the rotation of the
chain around the C0–C1 bond through an angle of 180°.

With due regard for the inequality  +
r2n]2 ≤ 1/2 at γ = 0, we have cosβ = (2/3)1/2 and (1 –
cosβ) ≈ 0.184. Then, expression (14) can be reduced to
the approximate relationship

(15)

which is better satisfied at large differences between r2n

and  and also at [1 – cos(β – γ)] ! 1. Making allow-

ance for the expressions R2n = r + , Rc = r + ,
and 2r = l and formula (15), from the relationship

(16)

we obtain 

(17)

From relationship (17) for cosβ = (2/3)1/2, we find that
the inequalities κ2n ≥ (3/2)1/2 ≈ 1.225 and κ2n < 3/2 at
γ = 0 are satisfied, κ2n monotonically decreases and
tends to (3/2)1/2 with an increase in n or a decrease
in the difference (β – γ) at fixed n, and κ2n increases

with an increase in the sum (β + γ) or the ratio /l.
At β – γ = 0, all the even atoms in the chain lie in the

extension of the vector  and κ2n = (3/2)1/2. There-
fore, at 0 ≤ (β – γ) ≤ β, the function κ2n(R) is a decreas-
ing function and the values of κ2n(R) fall in a narrow
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range; hence, the dependence κ2n(R) in expression (9)
can be ignored.

For odd atoms in the chain, we first consider the
case where γ = 0. In the same approximation as for for-
mula (15), we can write the relationship

(18)

which differs from formula (15) at γ = 0 in the substitu-

tion of  + l =  for . With allowance made

for the equality R2n + 1 = r +  and expression (18),
from relationship

(19)

we obtain

(20)

For n = 0, we have κ1 = 1. This explains the deviation
of  – Nc] from the linear dependence
[described by formula (7)] in Figs. 6a–6c for the first
homologs of compounds having conformers with γ = 0.
In relationship (20), the fractional expression in brack-
ets varies in the range from 1 to (3/2)1/2 and, at n @ 1,
relationship (20) is reduced to the following formula:

(21)

For 2n(2/3)1/2 @ [1 + /l], the function κ2n + 1 tends
to (3/2)1/2. In the case of the reverse inequality [1 +

/l] @ 2n, according to relationship (20), the func-
tion κ2n + 1 = 3(2n + 1)/(4n + 3) monotonically increases
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+
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Rc
0( )

Rc
0( )
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with an increase in n. In particular, we have κ3 = 9/7 ≈
1.286 > (3/2)1/2. This indicates that the function κ2n + 1
[relationship (20)] varies nonmonotonically with an
increase in n (i.e., it has a maximum).

For γ ≠ 0, it can be seen from the scheme shown in
Fig. 7c that α2n + 1 = π – (β ± γ) + β2n + 1. As a result, at
[1 – cos(β ± γ – β2n + 1)] ! 1, we obtain

(22)

Substituting this expression into formula (19) gives the
relationship

(23)

For n = γ = 0, we have r1 = l, β1 = β, and κ1 = 1. At n =

β – γ = 0 and  @ l, we obtain κ1 = (3/2)1/2. In the
case of n > 1, the following relationships are satisfied to
a high accuracy:

(24)

With allowance made for relationships (24) at
4(2n + 1)2 @ 1 (this inequality is valid even at n = 1),
formula (23) takes the form
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+[ ]
1–

≈

× β γ±( )cos
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(25)κ2n 1+

2n 1+( )l βcos Rc
0( )

+

β 2n 1+( )l βcos Rc
0( ) β γ±( )cos β γ±( )/ 2 2n 1+( )sin+[ ]+{ }cos

-------------------------------------------------------------------------------------------------------------------------------------------------------------------.=
For larger values of n satisfying the inequality (2n +
1)  @ 1, formula (25) differs from formula (17) in the
substitution of (2n + 1) for 2n and all the results
obtained for formula (17) are valid for formula (25). In
particular, for these values of n and cosβ = (2/3)1/2, the
inequality κ2n + 1 ≥ (3/2)1/2 is satisfied, while at (β – γ) =
0, we have κ2n + 1 = (3/2)1/2. By ignoring the term
~sin(β ± γ) in the denominator of formula (25), i.e., by
using the overestimated value of κ2n + 1 and comparing
it with formula (17), it can be shown that κ2n + 1 < κ2n.
The branch of the κ2n + 1 values lies below the branch of
the κ2n values at all n. Therefore, at n ≥ 1 and 0 ≤ (β –
γ) ≤ β, the nonmonotonic function κ2n + 1(R) varies in a
narrow range and the dependence κ2n + 1(R) in expres-
sion (9) can be ignored with a high accuracy.

Figure 8 depicts the exact dependences κp(R) calcu-
lated from relationships (16) and (19) for a number of
molecules and their conformers at different values of
5
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(β ± γ). It can be seen from Fig. 8 that all the aforemen-
tioned qualitative and quantitative results obtained
from expressions (17), (20), (21), (23), and (25) are
valid for molecules n2Ph, n4Ph, and 10c(6) with γ = 0

and the parameters λ = /l = 2.5, 5.5, and 8.5,
respectively; conformers 10a(1) and 10b(3) with β –
γ ≈ 0 and λ = 3.7 and 5.5, respectively; and conformer
10c(3) with β – γ > 0 and λ = 8.2. Note that we have i =
1 and κp(R) = σ(R) in formula (9) for molecules nNPh.

In the above case where 0 ≤ (β – γ) ≤ β, the depen-
dence σ(R) described by relationship (9) is also weak
and can be disregarded. This explains the good agree-
ment between the effective parameters Dch obtained
from relationship (5) and the values of 〈D0(R)〉  calcu-
lated from expression (12) and averaged over all
homologs of the studied molecules and conformers sat-
isfying the condition 0 ≤ (β – γ) ≤ β.

The quantitative results of the analytical treatment
performed are not applicable to conformers 10a(2) and
10b(4) with β + γ ≈ 2β. It can be seen from Fig. 8b that,
for these conformers, the values of κp(R) considerably
increase for the first homologs and the values of κ2n(R)
[κ2n + 1(R)] decrease monotonically [nonmonotonically,
with passing through a maximum] more rapidly than
those in Fig. 8a with an increase in n and R. The pres-
ence of such conformers in molecules favors a leading
increase in the values of N(R) represented by expres-
sion (8) for the first homologs and results in an
increase in the parameters D0(R) and D(R) described
by formula (12). This explains the results of the numer-
ical experiment for molecules 10a(2/3, 2/4) (Fig. 6c)
and 10b(4/5) involving these conformers, for which the
dependence of logN(R) on logR is hump-shaped with
D(R) ≈ Dc for the first chain homologs and exhibits a
rapid decrease in the parameters D(R) with an increase
in the chain length. For molecule 10c(4/5) including
conformer 10c(4) with smaller values of γ and (β + γ) <
2β, the dependence of logN(R) on logR is also hump-
shaped, but it is less pronounced.

The ignored thermal conformational mobility of
chains should lead to an increase in the values of σ(R),
bch(R), and D(R) due to the smearing of the region of
location of chain atoms in the directions perpendicular

to the vectors  and the leading increase in N(R) as
compared to R in formula (10). This situation is quali-
tatively similar to the above situation associated with
the increase in the sum (β + γ) for the chain in the trans
conformation. For molecules of type 1 and 7, the pres-
ence of the chains in the ortho positions of the terminal
phenyl rings [with respect to the –C(O)O– and –C≡C–
bridging fragments] should assist the filing of lacunas
of the core and the increase in the dimension Dc. This is
important from the standpoint of the design of biaxial
molecules capable of forming a biaxial thermotropic
nematic phase Nb.

Rc
0( )

Rp
0( )
P

Now, we consider the mean density of atoms (R) =
N(R)/V(R) in the volume of a sphere V(R) = 4πR3/3 and
the differential (local) density of atoms ρ(R) =
dN(R)/dV(R) in the volume of a spherical layer dV(R) =
4πR2dR. These densities are related by the expression

(26)

and coincide with each other at D(R) = const = 3. In the
region of molecular cores, when relationship (3) is sat-
isfied and at 1 < Dc < 2, the densities ρ(R) ~ (R) ~

 decrease with an increase in R (R ≤ Rc). In the
region of side chains, with due regard for formula (8),
we have

. (27)

According to expression (27), the densities (R) and
ρ(R) decrease even more rapidly with an increase in R
due the weak dependence σ(R). Therefore, the mass
density of an isolated lacunar molecule ρM ~
M(RM)/V(RM) ~ (RM) rapidly decreases with an
increase in the radius RM of the sphere containing the
molecule. However, the density ρ = m/v  (m is the
molecular weight, v  is the molar volume) of discotic
nematic phases ND is identical to the density of calam-
itic nematic liquid crystals with a relatively close pack-
ing of lathlike molecules. This implies that, in the ND

phase, molecules should mutually penetrate into each
other and lacunas of a particular molecule should be
filled with side chains of neighboring molecules (simi-
lar to engaged gears). As a consequence, discotic nem-
atic liquid crystals should possess a high viscosity
which is actually one or two orders of magnitude higher
than the viscosity of calamitic nematic liquid crystals
[18, 19].

5. CONCLUSIONS

Thus, the results obtained in this work have demon-
strated that, for a large number of lathlike and lacunar
mesogenic molecules (and their conformers) with dif-
ferent chemical structures, the dependence of logN(R)
on logR exhibits two linear portions that correspond to
the core region (R ≤ Rc) and the region of side chains
(Rc < R ≤ RM). Moreover, these portions correspond to
the mass dimensions 1 < Dc < 2 and Dch ≤ 1 or Dch ≥ 1,
depending on the chain conformation. The difference
between the dimensions Dc and Dch accounts for the
fact that, at R ≤ RM, the molecules under consideration
are not self-similar objects and the topological dimen-
sion DT = 3 for these molecules as physical bodies
(rather than molecular graphs, i.e., systems of valence
bonds connecting the points of atomic positions) is
larger than the dimensions Dc and Dch. Therefore, the
molecules studied are not fractals for which D > DT by

ρ

ρ R( ) D R( )ρ R( )/3=

ρ

R
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ρ R( ) 3
4π
------ qσ R( )

2rR
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definition [1] but belong to a particular class of lacunar
objects with a nonuniform (on their size scale) frac-
tional mass dimension D < DT. On the other hand, it can
be expected that mesogenic molecules of the monoden-
dron and dendrimer types [6, 7] (not discussed in this
work), as well as amphiphilic starlike and dendritic
molecules [8, 9] with a branching structure of side frag-
ments, which are characterized by a rather close pack-
ing in the three-dimensional space, should have by
dimensions D ≤ 3.

It was established how the main molecular charac-
teristics (molecular symmetry, the number and size of
core fragments, their structural–chemical features and
conformation, the length and conformation of side
chains) affect the values of Dc and ρc and the depen-
dence bch(R). The proposed analytical approach to the
analysis of the dependences D(R) and bch(R) made it
possible to explain all the main results of the numerical
simulation of the compounds under investigation. The
high sensitivity of the parameters Dc and ρc to varia-
tions in the fine features of the molecular structure indi-
cates that the use of these parameters as descriptors for
identifying and predicting the mesogenic properties of
molecules in addition to the descriptors already serving
for these purposes [16] holds considerable promise.
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Abstract—The stability of a C20@C80 nanoparticle and the rotation of its inner shell are studied theoretically
within the tight-binding approximation. It is found that the C20 skeleton in the free state is described by space
group D3d; in the case where C20 is placed into the C80 (Ih) fullerene field, the space group of C20 is raised to Ih
due to isomerization. The total energy surface of the C20@C80 compound is scanned over two rotation angles.
Based on an analysis of the surface relief and energy isoline map, orientational melting of the nanoparticle is
predicted. A nanoparticle gyroscope—C20 rotating in the field of C80 at a certain relative orientation and energy
supply—is also predicted to exist. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Multilayer carbon nanoparticles consisting of
closed curved graphite surfaces inserted into each other
have been attracting increased attention [1–3]. These
particles are distinguished by a variety of shapes and
are referred to as Russian matreshkas, onionlike
fullerenes, multilayer fullerenes, etc. Depending on
their envelope, these particles can be classified as
spherical particles, elongated or tubular fullerenes, or
conical fullerenes. Strongly elongated tubular
fullerenes with a radius of the cylindrical part from sev-
eral angstroms to tens of nanometers [2] are usually
referred to as carbon nanotubes. Spherical particles [4–
7] several nanometers in size with a diamond or hollow
core are formed during diamond annealing in vacuum
in certain synthesis technologies [4, 5]. Multilayer car-
bon nanoparticles became a subject of study due to their
predicted unique nanomechanical, thermodynamic,
and optical properties. They are of nanomechanical
interest due to possible relative and directed rotation of
the nanoparticle shells [8]. From the thermodynamic
viewpoint, clusters could prove to be a new material
whose melting would be accompanied by a variety of
phase transitions with changes in the relative orienta-
tion of the shells [8, 9]. Nanoparticles with a diamond
or hollow core are also of astrophysical interest. Being
presumably incorporated into cosmic dust, they are
characterized by absorptivity at 217.5 nm in the ultravi-
olet region. Therefore, the optical properties of nano-
particles have become an object of study [10, 11].

The spherical particles known to date, which have
been synthesized by various methods, can be conven-
tionally classified into three groups according to their
shell shape: spherical, spheroidal, and icosahedral.
Icosahedral particles are in a separate group, since it is
difficult to attribute them to the first two groups in terms
of their appearance. Icosahedral fullerenes, whose
topology is controlled only by penta- and hexagons
1063-7834/05/4702- $26.00 0390
with more than two hundred atoms, appear in the form
of spherical and polyhedral fullerenes along the two-
fold and fivefold axes, respectively [12]. The surface
shape of these particles differs strongly from spherical.
Fullerene C60, which is the smallest of these particles,
can be considered spherical or icosahedral [13]. Spher-
ical shells are isomers of the icosahedral fullerene, and
their topology is enriched by seven- and eight-mem-
bered cycles, which makes their surface very close to
spherical [9, 12–15]. Such spherical shells are charac-
terized by space groups D2h and Oh; groups C1 and D2h

are inherent to nanoparticles [15]. Thus, high-symme-
try multilayer fullerenes, whose shape is very close to a
sphere, are considered spherical particles. Low-sym-
metry fullerenes, whose surface substantially differs
from spherical, can be attributed to spheroidal
fullerenes.

Multilayer tubular fullerenes and conical nanoparti-
cles (similar to an ice-cream cone) are the least studied
[16]. There are experimental findings which show that
they are metastable and transform into spherical
fullerenes as a result of annealing [6]. Among these par-
ticles, conical ones are least stable [16].

Spherical and icosahedral nanoparticles have been
studied theoretically using various models. Among the-
ses models are models of spherical nanoparticles, cor-
responding to a global or local minimum of the bond
length of an isomer of the outer icosahedral shell [9,
15]; models of nanoparticles whose shells were sub-
jected to preliminary Stone–Wales isomerization [15];
and models of nanoparticles simulated using parallel
alignment of their fivefold axes to magnetic field lines
[17]. The first two models are most commonly used.
Within these models, multilayer fullerenes are consid-
ered whose outer shells are described by groups Ih, D2h,
and Oh [9, 12–15]. Fullerenes with groups D2h and Oh

whose skeletons contain not only pentagons and hexa-
gons but also hepta- and octagons can be produced
© 2005 Pleiades Publishing, Inc.
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from icosahedral fullerenes by Stone–Wales isomeriza-
tion. As a rule, the energy of a nanoparticle formed by
such fullerenes corresponds to a global maximum or to
one of the local maxima of the potential energy surface
of the particle [15]. It should be noted that the authors
of all the papers cited above did not study the potential
surface itself and the nanoparticle conformations and
did not consider the metric parameters and many
energy parameters (e.g., the formation enthalpy and
electronic structure). Those authors mainly studied the
stability of nanoparticles belonging to various symme-
try groups. A few papers devoted to studying the orien-
tational order of nanoparticle shells demonstrate the
possibility of changing the relative orientations and
even of rotating the shells through energy transfer to a
particle. However, changes in the symmetry of the sys-
tem and transformations in the molecule skeleton were
not traced [8].

We study the C20@C80 nanoparticle and the config-
uration and electronic structure of fullerene C20 in the
ground state in the absence and in the presence of the
attracting potential of fullerene C80(Ih). The total energy
surface of C20@C80, nanoparticle conformers, and rela-
tive rotation of C20 in the C80 field are analyzed. The
electronic structure; the conformer topology; the C20
position, for which gyroscope-like rotation is possible;
and the rotation frequency are determined. The study is
carried out using the tight-binding approximation with
original parametrization of the Hamiltonian matrix ele-
ments.

2. CALCULATION OF THE ELECTRONIC 
STRUCTURE OF CARBON NANOCLUSTERS

The tight-binding approximation has been effi-
ciently used to calculate electron and phonon spectra of
micro- and macroscopic carbon systems [18], including
clusters (fullerenes, nanotubes, nanotori, etc.) [19–21].
This method does not require high computing power
and yields results that agree well with experimental
data. The scheme first proposed in [18] for calculating
the diamond and graphite band structure makes it pos-
sible to construct the Hamiltonian in real space, in
terms of s and p orbitals of the outer electron shells of
carbon atoms. This makes it possible to calculate geo-
metrical parameters and electronic levels under various
local changes in the structure of carbon compounds. An
approximation is used in which the wave functions of
the valence electrons of various atoms are considered
nonoverlapping.

According to the scheme mentioned above, the total
energy

(1)

(where Ebond is the energy of occupied electronic levels
and Erep is the phenomenological energy) is minimized
with respect to characteristic linear parameters of the
cluster skeleton to calculate the configuration and

E Ebond Erep+=
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energy characteristics corresponding to the ground
state.

The phenomenological energy accounting for the
electron–electron and internuclear interactions is writ-
ten as a sum of pair repulsive potentials:

(2)

where i and j are indices of interacting atoms and ri and
rj are Cartesian coordinates. The function Vrep is given
by [18]

(3)

where  = 10.92 eV.

The energy of the occupied levels is

(4)

where εn is the energy of the occupied state with index
n (the Hamiltonian eigenvalue) and the factor of 2
accounts for the electron spin.

The interatomic matrix elements of the Hamiltonian
are written as [18]

(5)

where r is the interatomic distance, i and j are the
orbital quantum numbers of wave functions, and α is
the index indicating the bond type (σ or π).

To calculate the electronic structure of carbon nano-
clusters, original parametrization of the atomic terms εs

and εp and equilibrium overlap integrals , ,

, and  was carried out [21]. This parametriza-
tion proved effective in calculating the bond lengths
and energy spectra of fullerenes and single-layer nano-
tubes [21]. It is largely advantageous to analogous
schemes [18–20] because of the possibility of calculat-
ing the ionization potential, whereas the initial parame-
trization version [18] allowed determination of only the
energy gap (this quantity is applied to solids; here, it
implies the gap spacing between the highest occupied
and lowest vacant levels, rather than the energy interval
between bands). In this case, the highest occupied level
was coincident with the ground level, which made it
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impossible to apply Koopmans’ theorem to calculate
the ionization potential by using the electronic spec-
trum. The ionization potential calculated for fullerene
C20@C80 agrees well with that determined experimen-
tally, as well as with other characteristics (the bond
length and energy gap).

3. SYMMETRY AND ELECTRONIC PROPERTIES 
OF FREE FULLERENE C20

Fullerene C20 is the smallest synthesized stable car-
bon cluster with a three-dimensional structure. The
study of its chemical and physical properties, as well as
those of nanoparticles with C20, is complicated by the
fact that there is no common opinion about the symme-
try of the C20 cage. Many papers [22–28] are devoted to
the study of the geometric and electronic structure of
this smallest fullerene. It is commonly accepted that the

symmetry of both neutral C20 and ionized  is not
icosahedral due to the Jahn–Teller effect. However, cal-
culations of the geometric and electronic structure of
the fullerene using various quantum-chemical methods
yield different point groups for its skeleton: C2 or Ci

[24], Cs [25], D3d [26, 28], and C2h [27]. Even studies
that use the same method (the density-functional
method, but with various modifications) yield different
point groups [24, 26].

The disagreements in the optimized configurations
and in the space group found for the skeleton formed by
σ electrons of C20 can be explained by the specific fea-
tures of the quantum-chemical methods used to calcu-
late the electron density distribution. The latter, in turn,
depends on the correct inclusion of rehybridization, due
to which the hybridization in σ bonds becomes sp2 + ∆

instead of sp2 [27].
The optimum geometric and electronic structure of

C20 was calculated by minimizing the total energy of
the cluster over 54 coordinates (six coordinates speci-
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Fig. 1. Electronic spectrum of fullerene C20 with space
group D3d.
P

fied the position of the molecule in space). The tight-
binding approximation does not allow determination of
the ground state multiplicity; however, rehybridization
is included automatically in calculating the interaction
energy between electron clouds.

The initial atomic coordinates correspond to a
dodecahedral lattice. By optimizing over the coordi-
nates, the total energy is found to have a minimum for
space group D3d, which agrees with the results of [26,
28]. Figure 1 shows the electron spectrum and C20 (D3d)
fullerene, whose threefold and twofold symmetry axes;
valence angles α, β, γ, δ, η, and τ; angles θ1σπ, θ2σπ, and
θ3σπ between the π and σ electron lobe axes; and short-
est bond length (double line) are indicated. Independent
atomic bases A, B, and C of the molecule are also indi-
cated. Symmetry operations applied to the coordinates
of a single atom can reconstruct the coordinates of the
other atoms relative to the basis under consideration.
The energy and metric characteristics of C20 (D3d) are
listed in Table 1. It contains ionization potential I,
energy gap Eg, molecule energy E1, atomization energy
Ea (per atom), enthalpy ∆Hf, electron populations in
atomic bases A, B, C (taking into account only valence
electrons), bond lengths r (rA–B, rB–C, rC–C are distances
between atoms of various bases), distances d between
atoms that are opposite with respect to the inversion
center (indices A, B, C characterize various bases),
valence angles, and pyramidalization angles θ1p, θ2p,
and θ3p (θp = θσπ – 90°). The angle designations corre-
spond to Fig. 1. The data from Table 1 show that rehy-
bridization takes place in C20 and that atoms are in the
sp2 + ∆ rather than the sp2 state [27], which makes it
promising for polymerization [23]. The degree of rehy-
bridization for atoms of various bases varies depending
on the pyramidalization and valence angles. As the
pyramidalization angle decreases (positions A and B in
Fig. 1), the electron populations in atoms decrease due
to weaker hybridization of s and pπ clouds and to an
increase in the energy of hybrid orbitals. An increase in
the electron density allows us to expect a higher chem-
ical activity of basis C atoms, as well as directionality
in the bond formation.

4. STRUCTURE AND ENERGY 
CHARACTERISTICS OF THE C20@C80 

COMPOUND

To study C20@C80, we consider the icosahedral iso-
mer C80, which has a larger binding energy than the
other isomers [29]. The bond lengths are calculated by
minimizing the total energy of the molecule and are
found to be 1.425 and 1.458 Å, respectively. These val-
ues are in good agreement with ab initio calculations
performed in [29], where the interval 1.43–1.47 Å is
given for the bond lengths of the Ih isomer. The icosa-
hedral C80 shape is closest to spherical (atoms are
spaced from the center at 4.11–4.15 Å), which con-
HYSICS OF THE SOLID STATE      Vol. 47      No. 2      2005
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forms to the geoid shape of C20. The C80 (Ih) enthalpy is
13.66 kcal/mol atom–1.

The C80 cage sizes exceed those of C20 only slightly;
therefore, it can be expected that no more than one sta-
ble position will be observed for C20 in the outer-shell
field and that the fullerene centers will coincide. How-
ever, relative rotation of the shells and C20 isomeriza-
tion are possible in the outer-shell field. The goal of this
study is to detect the C20 structure in the outer-shell
field, to calculate the energy characteristics of the
ground state of the C100 nanoparticle, and to study pos-
sible C20 reorientation and rotation when a certain
energy is transferred to the compound.

In the zeroth approximation, the C20 and outer-shell
centers are set at the same point taken as the coordinate
origin of the system. The C80 and C20 symmetries are
defined by groups Ih and D3d, respectively. The fivefold
axis of the outer fullerene and the threefold axis coin-
cide with the Z axis. The C20@C80 symmetry and
ground-state parameters are determined by minimizing
the total energy, which takes into account the band-
structure energy, internuclear and electron–electron
interactions inside each shell [21], and the interaction
energy between atoms from different shells, calculated
using the Lennard–Jones formula [30]

(6)

Expression (6) allows calculation of the interaction
potential of a pair of atoms from different shells. Here,
ri is the distance between the atoms of the ith pair, σ =
1.42 Å is the C–C bond length, and y0 = 2.7 and A =
24.3 × 10–79 J m6 are empirically fitted parameters. The
shell interaction energy is determined by summing the
pair interaction potentials Ui between each atom of one
shell and all atoms of the other shell over all atoms of
the first shell.

Energy minimization over the coordinates of all
atoms is used to determine the C100 nanoparticle ground
state. This state is described by space group C5 (Ih@Ih).
The C100 enthalpy is 29.04 kcal/mol atom–1. In this case,
the C20 fullerene restored high symmetry from D3d to Ih

in the attracting potential as a result of isomerization
with a change in the orientation with respect to the
outer shell (the fivefold axes of C20 and outer shell now
coincide). Figure 2a shows the C20 orientation inside
C80 and the nanoparticle electron spectrum and demon-
strates the overlap of the spectra of shells with the for-
mation of an energy gap Eg in the nanoparticle spec-
trum, which is smaller than Eg for fullerenes in the free
state. Table 2 lists metric and energy characteristics of
the compound, including the shell sphere radii R and
the enthalpy ∆H of the reaction C20 (D3d) + C80 (Ih) 
C100. Other designations are the same as in Table 1.

Ui
A

σ6
----- 1

2
---y0

6 1

ri/σ( )12
------------------ 1

ri/σ( )6
----------------– 

  .=
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The surface of the total energy Etot of the nanoparti-
cle is calculated for rotations of C20(Ih) inside C80 (Ih).
The initial configuration of the nanoparticle corre-
sponds to the ground state (global energy minimum).
Rotation of C20 is carried out by sequential rotations of
the C20 fivefold axis through the angle ϕz about the Z
axis and through ϕy about the Y axis (Fig. 2a). The Etot

surface is calculated by minimizing the nanoparticle
energy with respect to three parameters: the bond
length of icosahedral C20 and two bond lengths of the
outer fullerene. During C20 rotations and shell optimi-
zation in the two-layer cluster, the space group changes
from C5 (C100) to D5d, T, C2, C2h, and Cl. In this case, the
energy exhibits many local minima (Fig. 3a). In [31],
where C20@C60 stability was studied, C20 was rotated
with retention of the D5d space group in the system.

Table 1.  Metric and energy characteristics of C20 isomers

Bond lengths, Å C20, D3d
C20, Ih

(C20@C80)

rA–B 1.461 1.425

rB–C 1.469 –

rC–C 1.514 –

rC–C (double line in Fig. 1) 1.436 –

Internuclear distances, Å

dA–A 4.047 3.997

dB–B 4.085 –

dC–C 4.147 –

Valence angles, deg

α 108.60 108.00

β 108.80 –

γ 107.00 –

δ 108.00 –

η 109.50 –

τ 108.50 –

Pyramidalization angles, deg

θ1p 20.36 20.89

θ2p 20.43 –

θ3p 21.23 –

Energy parameters

E1, eV/atom –42.36 –42.23

Ea, eV/atom 6.15 6.03

∆Hf , kcal/mol atom–1 29.42 32.32

I, eV 6.69 6.39

Eg, eV 2.88 3.52

Atomic electron density

Basis A 3.912 4.00

B 3.904

C 4.062
5
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An analysis of the multiwell surface and the energy
isoline map (Fig. 3b) shows periodicity of the energy
variations along the Z and Y axes in steps of 72° and
180°, respectively. Table 2 lists the nanoparticle ener-
gies Etot and the geometrical and energy characteristics
of conformations corresponding to the local minima
(with high symmetry), the global maximum, and an
intermediate energy (the distinguishing feature of this
conformation is explained below). The coordinates (ϕy ,
ϕz) of the surface points corresponding to conforma-
tions are shown taking into account the periodicity
along the axes.

An analysis of the results obtained shows that all the
nanoparticle conformations are stable. The distance
between the shells is 2.344–2.4 Å (C100), which is 1 Å
smaller than the graphite interlayer distance. There are
no chemical bonds between shell atoms.

Several features in the nanoparticle energy parame-
ters were found.
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Fig. 2. Electron spectrum of the C20@C80 nanoparticle with
(a) space group C5 corresponding to the ground state and
(b) space group C2 controlling the nanogyroscope.
P

The ionization potential is identical for all the C100
conformations, since the highest occupied level in the
spectra of two-layer clusters is controlled by the corre-
sponding fourfold degenerate level of C20, whose value
remains unchanged. The energy gap of all the nanopar-
ticle conformations is narrower than those of the
fullerenes comprising them. This effect is explained by
the overlapping spectra of the inner and outer shells,
which is shown in Fig. 2.

5. C20 NANOGYROSCOPE 
IN COMPOUND C20@C80

Scanning of the total energy surface of the nanopar-
ticle showed that the surface is characterized by “spe-
cific” isolines arranged between a ridge of local max-
ima and minima, which can be reached by rotating C20
about the Z axis at a fixed ϕy angle. The Z axis coincides
with the twofold axis of C20.
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Fig. 3. Total-energy surface of the C20@C80 nanoparticle at
sequential rotations about the Z and Y axes: (a) general view
and (b) the map of isolines of the total energy surface (top
view).
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Table 2.  Characteristics of C20@C80 conformations of the potential energy surface Etot

Parameters Etot minima Etot maximum Gyroscope conformation

Total energy values
global

–4237.262 eV
local

–4235.696 eV
global

–4233.943 eV –4234.592 eV

Space groups and angular
coordinates

C5(ϕy; ϕz)
(0°; 0°), (0°; 26°)

(116°; 34°)

D5d

(63.5°; 49°)
(53.5°; 13°)

T
(90°; 49°)

(26.5°; 13°)

C2
(37.38°; 0°)
(79.19°; 0°)

r1(C80), Å 1.551 1.528 1.533 1.533

r2(C80), Å 1.500 1.532 1.532 1.531

r(C20), Å 1.426 1.425 1.424 1.424

R80, Å 4.342 4.391 4.395 4.393

R20, Å 1.998 1.997 1.995 1.996

I(C80), eV 6.627 6.629 6.623 6.625

I(C20), eV 6.392 6.392 6.392 6.392

I(C20@C80), eV 6.392 6.392 6.392 6.392

Eg(C80) 1.839 1.839 1.828 1.832

Eg(C20) 3.536 3.537 3.545 3.542

Eg(C20@C80) 1.604 1.603 1.587 1.599

E1, eV/atom –42.373 –42.357 –42.339 –42.346

Ea, eV/atom 6.167 6.152 6.134 6.143

∆H, kcal/mol atom–1

C80 + C20(D3d)  C100

29.049 29.394 29.808 29.647
The isoline energies and positions are shown in
Fig. 3b. The configuration and energy parameters of
this conformation are shown in Table 2. The enthalpy of
the C100 (C5)  C100 (C2) transition is 59.8 kcal/mol.
If an energy exceeding 59.8 kcal/mol is transferred to
the system, it is possible that relative rotational vibra-
tion of the shells, initiated in the global minimum, will
not be completed by the transition to the C100(C2) state
and will continue by rotating C20 about the Z axis (its
twofold symmetry axis, Fig. 2b); i.e., we have a gyro-
scope. In this case, energy transfer to the particle is pos-
sible through various processes, including orientational
melting [9], quasi-elastic collisions, and inelastic colli-
sions of fullerenes accompanied by a 1.5–21.5-eV
energy transfer to the fullerenes with an increase in
their temperature and potential energy by 5–10 eV [32].
Given the rotation energy, the nanogyroscope fre-
quency can be calculated as

(7)

where k is the Boltzmann constant, J is the moment of
inertia, T is the temperature, and ω is the angular rota-
tion rate. For C20, we have J = 8.332 × 10–38 g cm2. For
example, if an excess enthalpy corresponds to a temper-
ature increase of only 0.01 K (during a quasi-elastic
central collision of fullerenes [32]), then ω = 4.07 ×
109 rad/s (6.48 × 108 s–1). The molecular weight of the

kT
2

------
Jω2

2
---------,=
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nanogyroscope is 240. For comparison, the frequency
ω at T = 300 K is 3.8 × 108 rad/s for a desoxyribonucleic
acid molecule with a molecular weight of 1.2 × 108 con-
taining 1.2 × 104 turns with a turn radius of 6.7 Å [33].

6. CONCLUSIONS

By optimizing the neutral C20 configuration, it has
been found that the ground state has D3d symmetry. At
the same time, if the symmetry of the C20 icosahedral
fullerene in the free state reduces, isometrization takes
place in the (C80) field, which restores the pentagonal
dodecahedron cage.

The study of the C20@C80 model makes it possible
(i) to conclude that the nanoparticle retains stability at
all points of the total energy surface, (ii) to assume that
orientational melting of the particle takes place with the
transition to nearby global and local minima as a result
of relative rotational vibration of the shells [9], and to
predict the existence of the C20 nanoparticle gyroscope
inside C80 when a certain energy is transferred. It can
also be assumed that a similar rotation of the inner shell
will also take place for a variety of nanoparticles. If this
phenomenon is confirmed experimentally, a new direc-
tion will arise in the nanomechanics of carbon clusters.
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