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Abstract—Polymer composite layers irradiated by 30-keV Ag' ions with doses from 3.1 x 10 to 7.5 x
10'® cm™ and an ion current of 4 pA/cm? are investigated. The composites were examined using Rutherford
backscattering (RBS), transmission electron microscopy (TEM), and optical spectroscopy. As follows from
electron microscopy and electron microdiffraction data, ion implantation is a promising tool for synthesizing
silver nanoparticles in the surface region. The optical density spectra taken of these composites demonstrate
that the silver nanoparticles exhibit unusually weak plasma resonance. The formation of silver nanoparticlesin
layers carbonized by ion implantation is considered. Based on the Mie theory, optical extinction spectrafor sil-
ver particlesin the polymer and carbon matrices are simulated and optical spectrafor complex silver core—car-
bon sheath nanoparticles are calculated. The physics behind the experimental optical spectra of the composite

is discussed. © 2004 MAIK “ Nauka/Interperiodica” .

The problem of designing new polymer-based com-
posite materials containing meta nanoparticles
(MNPs) isof current interest particularly in the fabrica-
tion of magnetooptic datastorages[1], picosecond opti-
ca switches, directional connectors, Mach—Zehnder
interferometers, etc. [2]. The nonlinear optical proper-
ties of these composites stem from the dependence of
their refractive index on incident light intensity. This
effect is associated with MNPs, which exhibit a high
nonlinear susceptibility of thethird order when exposed
to ultrashort (picosecond or femtosecond) laser
pulses[3].

Light-induced electron excitation in MNPs (so-
called surface plasma resonance, SPR) [4], which
shows up most vividly in the range of linear absorption,
gives rise to nonlinear optical effectsin the same spec-
tral range. Therefore, in practice, the SPR effect may be
enhanced by raising the nanoparticle concentration in
the composite, i.e., by increasing the volume fraction of
the metal phase (fill factor) in the insulator. Systems
with a higher fill factor offer a higher nonlinear cubic
susceptibility, all other things being the same [5].

Metal nanoparticles may be embedded in a polymer
matrix in avariety of ways. These are chemical synthe-
sisin an organic solvent [4], vacuum deposition on vis-
cous-flow polymers [6], plasma polymerization com-
bined with metal evaporation [7], etc. However, they all
suffer from disadvantages, such as alow fill factor or a
great spread in size and shape of the particles synthe-
sized, which offsets the good optical properties of com-
posites. One more promising method is ion implanta:
tion [8], which provides controllable synthesis of
MNPs at various depths under the surface and unlimit-

edly high impurity doses. Work [9] seemsto be the pio-
neering work in thisarea. By implantation, one can pro-
duce almost any metal-insulator (specifically, metal—
polymer) composites, as follows from the table, which
gives a comprehensive list of references [9-40], MNP
shapes, and implantation conditions for various organic
matrices. Note that noble metals exhibit the most pro-
nounced SPR effect and, hence, the highest nonlinear-
ity of the MNP optical properties in insulators [4].
However (seg, e.g., [33, 34]), even silver nanoparticles,
which usually demonstrate intense linear SPR absorp-
tion [4], do not show typical SPR spectra in implanted
polymers [34, 37]. The aim of thiswork istherefore to
study the SPR-related linear optical properties of
MNPs introduced into a polymer matrix by implanta-
tion. We compare experimental optical spectra for sil-
ver nanoparticles implantation-synthesized in PMMA
with model spectra calculated based on the Mie classi-
cal electrodynamic theory [4, 41].

1. EXPERIMENTAL

Assubstrates, we used 1.2-mm-thick PMMA plates,
which are optically transparent in awide spectral range
(400-1000 nm) [42]. Ag* ion implantation (energy 30
keV, doses from 3.1 x 10'® to 7.5 x 10% cm, ion cur-
rent density 4 pA/cm?) was performed under a pressure
of 10~ Torr at room temperature on an |LU-3 accelera-
tor. In control experiments, PMMA substrates were
irradiated by xenon ions with the same process param-
eters. The samples obtained were examined with TEM
and electron microdiffraction (Tesa BM-500 electron
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Conditionsfor MNP synthesis by ion implantation into polyvinylidene fluoride (PVF,), polyimide (Pl), polymethyl methacry-
late (PMMA), polymethyl methacrylate with phosphorus-containing fragments (PMMA + PF), polyethylene (PE), poly (eth-
ylene terephthalate) (PET), silicone polymer (phenylmethyl-silane resin with tin diethyldicaprilate) (SP), epoxy resin (ER),
polycarbonate (PC), and polyetherimide (PEI)

: lon loniccurrent :
e l| Mol | ey, | toncomnr |y | WSS | Svpeot s | M| s
Ti PET 40 2.0 x 107 45 TEM [11]
XRD
Cr PET 40 1.0 x 10Y7 45 TEM [10]
XRD
Fe PVF, 25 0.1-1.0 x 107 - 300 FMR [9]
Fe Pl 100-150 | 0.1-1.0x 107 | 0.1-5 Spherical TEM [12]
Fe PI 40 |0.25-12x10Y | 4,812 300 Spherical particles TEM [13]
and their aggregates | R [14]
Fe PMMA 100-150 | 0.1-1.0x 107 | 0.1-5 Spherical TEM [12]
Fe PMMA 40 0.1-6.0 x 107 1-10 300 Spherical particles | TEM [15]
and their aggregates | EvR [16]
[17]
(18]
[19]
Fe PMMA + PF 40 1.0-3.0 x 106 1-6 300 Same TEM [17]
FMR
Fe PE 25 0.1-1.0 x 107 - 300 FMR [9]
Fe PET 100-150 | 0.1-1.0x 10Y | 0.1-5 Spherical TEM [12]
Fe PET 40 1.0-3.0 x 106 1-6 300 TEM [17]
FRM
Fe SP 40 0.3-1.8 x 10%/ 4 300 Spherical particles TEM [20]
and their aggregates [21]
[22]
[23]
Co Pl 100-150 | 0.1-1.0x 10 | 0.1-5 Spherical TEM [12]
Co |P 40 |0.25-1.2x10Y | 4,8 12 300 Spherical particles | TEM [14]
and their aggregates
Co SP 40 0.3-1.8 x 10%/ 4 300 Same TEM [22]
FMR [23]
Co ER 40 0.3-2.5 x 10% 2-8 300 Spherical, filamen- | TEM [24]
tary, tear-shaped, [25]
cubic, etc.
[26]
[27]
[28]
[29]
[30]
Cu Pl 150 0.5-1.0 x 10% 1-5 <360 Spherical TEM [31]
Cu PI 80 5.0 x 1016 0.1 <630 TEM [32]
100
Cu |PMMA 40 0.1-6.0 x 107 1-6 360 " TEM [17]
Cu PMMA + PF 40 1.0-3.0 x 106 1-6 360 " TEM [17]
Cu PET 40 0.5-2.0 x 107 4-5 360 " TEM [10]
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Table. (Contd.)
: lon loniccurrent ;
I;\)A;%g; Mgtgriaiof etlw(%r\g/y, lon dose, cm S%igé '\Seratartlﬁrflz Shape of particles Q(Aai?r?gti(gn Refs.
AFM [33]
XRD

Cu |PET 40 1.0-3.0 x 1016 1-6 360 TEM [17]
Zn | Pl 150 5.0 x 1017 1-5 <360 " TEM [31]
Pd Pl 100 0.1-1.0 x 10%/ 0.1 <630 " TEM [32]
Ag |Pl 130 0.1-5.0 x 1017 1-3 <630 TEM [32]
Ag |PMMA 30 1.0-7.5 x 1016 4 300 | Spherical TEM [34]
(O] [35]

[36]

[19]

Ag | PET 79 0.5-2.0 x 107 45 - " TEM [10]
[11]

[37]

Ag SP 30 0.6-1.8 x 10%/ 4 300 Spherical particles TEM [20]
and their aggregates | (g [21]

[38]

Ag ER 30 |0.22-7.5x10Y 4 300 Spherical TEM [39]
0S [2]

[30]

Pt PC 106 1.0 x 1077 - - Same TEM [40]
Pt PEI 106 1.0 x 10Y7 - - " TEM [40]

FMR, ferromagnetic resonance; TEM, transmission electron microscopy; AFM, atomic-force microscopy; OS, optical spectroscopy; and

XRD, X-ray diffraction.

microscope) and also with RBS (2-MeV “He*, back-
scattering angle 6 = 150°, van de Graaf accelerator).
Theresolution in energy was 21 keV or higher, and the
ion current density was nho more 10 nA. Optical density
spectra were recorded with a Hitachi 330 two-beam
spectrophotometer in the range 350-800 nm.

Optical spectraof spherical MNPs embedded in var-
ious dielectric media were simulated in terms of the
Mie electromagnetic theory [41], which allows one to
estimate the extinction cross section g, for a wave
incident on a particle. This value can be related to the
light intensity attenuation Al after light of initial inten-
sity 1, passes through a transparent particle-containing
dielectric medium. The light absorption and/or scatter-
ing by the particles depend on the absorption, 04,
and/or scattering, Oy, Cross sections with 0. = O +
O, According to the Bouguer—Lambert—Beer law
[43],

), (D)

wherel isthe optical layer thickness and # characterizes
the nanoparticle concentration in the sample. The

Al = Io(1—g "
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extinction cross section is proportional to the absorp-
tion factor y : y = #0q.

Experimental spectral dependences of optical den-
sity (OD) are given by

OD = —log(l/1p) = ylog(e); )

hence, for samples with electromagnetically uncoupled
particles, we may put OD ~ 0. Therefore, experimen-
tal OD spectra are compared with model spectral
dependencesthat are expressed through o, found from
the Mie theory.

2. ION SYNTHESIS OF METAL
NANOPARTICLES

lon implantation is an effective tool for introducing
singleimpuritiesinto the surface layer to adepth of sev-
eral micrometers [8]. The surface modification of the
material depends on its properties, as well as on ion
implantation parameters (ion type and energy, ion cur-
rent density, target temperature, etc.). A critical implan-
tation parameter is ion dose F,, which determines the
implant amount. Depending on the modification of an
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Fig. 1. Basic physical stages of nanoparticle synthesis by
ion implantation vs. ion dose.

Fig. 2. Micrograph of silver nanoparticles produced by Ag*
implantation into PMMA at adose of 5 x 10%® cm™.

insulating target (polymers, inorganic materials, ionic
crystals, mineras, etc.), ion implantation may be con-
ventionally divided into low-dose and high-dose
implantation (Fig. 1). In the former case (F, < 5 x
10* cm?), the stopped ions are disperse (isolated from
one another) in the insulating matrix. The energy of
ions implanted is transferred to the matrix through the
excitation of electronic shells (ionization) and nuclear
collisions. This causes radiation-induced defects,
which, in turn, may reversibly or irreversibly modify
the material structure [8]. Various types of polymer
structure damage have been observed [44]: breaking of
covalent bonds in macromolecules, generation of free
radicals, cross linkage, oxidation and carbonization of
layers irradiated, formation of new chemical bonds
between atoms of the insulator or between ions
implanted, etc. In addition, ion implantation may be
accompanied by the intense sputtering of the surface
exposed [37, 45] or, sometimes, by the swelling (ripen-
ing) of the polymer [15].

High-dose implantation may also be divided into
dose (or time) stages (Fig. 1). At F, between 10> and

10 cm?, the equilibrium solubility of metallic
implants in insulators (in particular, polymers) is usu-
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ally exceeded, causing the nucleation and growth of
MNPs. The dose threshol d val ue depends on the type of
the insulator and implant. For 25-keV silver ions
implanted into LiNbO;, the threshold dose was found
to be F, = 5.0 x 10% cm [46]; for 30-keV silver ions
implanted into epoxy resin, Fy = 10 cm [39].

At the next stage of high-dose implantation, starting
from Fy = 10 cm?, the existing MNPs coalesce to
form MNP aggregates or quasi-continuous films in the
surface layer (Fig. 1). For example, the irradiation of
epoxy resin by 40-keV cobalt ions at higher-than-
threshold doses favors the formation of thin labyrinth
structures[26]. The MNP distribution established in the
insulator after coalescence or Ostwald ripening may be
disturbed by postimplantation thermal or laser anneal-
ing.

In thiswork, we study composites where MNPs are
disperse and isolated from one another, i.e., synthesized
at ion doses of 10'°-10% cm. In our case of implanta-
tion by heavy but relatively low (30 keV) Ag* ions,
nuclear collisions prevail in ion-insulator interaction.
They displace atoms in the polymer matrix and break
some of the chemical bondsin it. Along with this, target
atoms effectively lose electrons and the implanted Ag*
ions deionize with the formation of neutral Ag atoms
(AgY). Basically, Ag atoms may combine with arising
organic radicals and polymer ions or take part in the
oxidation reaction. However, because of the great dif-
ference in Gibbs free energy between Ag atoms and
atoms of PMMA elements, Ag—Ag bonding is energet-
ically more favorable.

The formation of MNPs proceeds in several stages:
the accumulation of and subsequent supersaturation by
AgP atomsin alocal surface region of the polymer, the
formation of nuclei consisting of several atoms, and the
growth of silver particles from the nuclei. Assuming
that the nanoparticles nucleate and grow viathe succes-
sive attachment of silver atoms (which are neutralized
embedded Ag* ions), one may conclude that this pro-
cess is governed simultaneously by the diffusion coef-
ficient and local concentration of silver atoms, i.e.,
depends on the matrix temperature. In this work, ion
implantation was performed under identical conditions,
specifically, the polymer during irradiation was kept at
room temperature.

Asfollowsfrom el ectron microscopy data, silverion
implantation under the experimental conditions consid-
ered resultsin the formation of silver nanoparticles. For
example, the cross-sectional micrograph in Fig. 2 (a
dose of 5.0 x 10 cm2) shows dark spherical nanopar-
ticles against the bright field (polymer). Theirradiation
of PMMA by xenon ionsdid not result in such patterns.
Microdiffraction patterns demonstrate that the nanopar-
ticles have the fcc structure of metallic silver. The pat-
terns consist of thin rings (corresponding to polycrys-
taline nanoparticles) imposed on wide diffuse faint
rings from the amorphous polymer matrix. By compar-
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ing the experimental diffraction patterns with standard
ASTM data, we can conclude that implantation does
not form chemical compounds involving silver ions.

From RBS spectra (Fig. 3), it is seen that the silver
implantation depth (i.e., the depth where the nanoparti-
cles are located) is virtually independent of the ion
dose. Dependence on dose is observed only for the sil-
ver peak intensities with the widths and positions of the
lines remaining unchanged. It isknown that theimplan-
tation depth of an ion depends largely on its energy
(accelerating voltage) [8] provided that the chemical
constitution of the surface irradiated does not change
dramatically [47]. The similarity of the RBS spectra
shown in Fig. 3 implies that the arising MNPs do not
restrict the penetration depth of silver ions at the higher
dose. Thus, in PMMA, the implantation dose, being
responsible for the amount of the implant, directly
influences the MNP size but does not affect the implant
distribution profile. As was noted above, the particles
nucleate at a dose of ~10'® cm (low-dose implanta-
tion). For silver in PMMA, this dose provides MNPs
with a size of about 2 nm [47]. However, at a dose of
5.0 x 10 cm (Fig. 2), the particles grow to 10 nm.
For 30-keV silver ions implanted into PMMA-like
materials, numerical analysis using the TRIM [8] and
DY NA [47] statistical algorithms estimatesthe penetra-
tion depth of the ions (the depth of location of the par-
ticles) as=25 nm, which is comparable to the RBS data
in order of magnitude.

Experimental optical absorption spectrafor PMMA
irradiated by xenon and silver ions at various doses are
shown in Fig. 4. It is evident that the xenon irradiation
of PMMA does not produce nanoparticles, as also fol-
lows from the micrographs (Fig. 2). In Fig. 4a, as the
xenon ion dose increases, the absorptivity of the poly-
mer in the visible (especialy in the close-to-UV) range
also increases monaotonically. This indicates the pres-
ence of radiation-induced structure defects in the
PMMA. The absence of absorption bandsin these spec-
tral curvesis noteworthy. The implantation of silver not
only generates radiation-induced defects but aso
causes the nucleation and growth of nanoparticles.
Therefore, along with the absorption intensity variation
asin Fig. 4a, an absorption band associated with silver
nanoparticlesisobserved (Fig. 4b). For thelowest dose,
the peak of thisband is near 420 nm and shiftsto longer
waves (up to 600 nm) with dose, with the band broad-
ening significantly. The peak of this band is not high,
although it is related to the SPR effect in the silver
nanoparticles. Such a low intensity of SPR absorption
isuntypical of silver nanoparticlesin PMMA and can-
not be explained by the polymer environment of the
particles. When silver particles were synthesized in
PMMA by the convection technique [48], the SPR
intensity was very intense, unlike our experiment. Nor
can the weak SPR absorption be explained by any fea-
tures of the implantation process. For comparison,
Fig. 4b shows the optical density spectrum for inor-
No. 2
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Fig. 3. RBS spectrafrom PMMA irradiated by silver ions
for doses of (1) 7.7 x 10% and (2) 6.25 x 101> cm 2,
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Fig. 4. Optical density spectra from PMMA irradiated b

(a) xenon and (b) silver |ons for doses of él) 0.3 x 10%,

(2)06>< 1016, (3) 2.5 x 10'°, (4) 5.0 x 10" and(5)75x
1016 cm2. The spectrum taken from silica glass irradiated
by silver ions (5.0 x 106 cmr~ ) [48] is shown for compari-
son.

ganic silicaglass (SO,) irradiated by silver ions under
conditions similar to the ion synthesis conditions used
in this work (silica glass has refractive index n = 1.5,
closeto that of PMMA) [47]. It is seen that the absorp-
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tion of silver nanoparticles in the glass (Fig. 4b) is
much more intense (even in view of the background
absorption due to matrix structure imperfections) than
the absorption of the particlesin the polymer. Note that
the particle size distributions in the glass and PMMA
are nearly the same. Below, we simulate the optical
properties of the Ag-PMMA composite and discuss
various effects that may clarify the SPR absorption of
silver nanoparticles synthesized in PMMA by ion
implantation.

3. SSIMULATION OF THE OPTICAL PROPERTIES
OF COMPOSITES

3.1. Optical Extinction of Slver Nanoparticles
in Accordance with the Surrounding Matrix

The attenuation (extinction) of an optica wave
propagating in a medium with MNPs depends on the
amount of the SPR effect and the light scattering effi-
ciency. The wavelength of optical radiation, the particle
size, and the properties of the environment are govern-
ing factors in this process. Within the framework of
classical electrodynamics (the Maxwell equations), the
problem of interaction between a plane electromagnetic
wave and a single spherical particle was exactly solved
by Miein terms of optical constants of the interacting
objects [41, 49]. According to the Mie theory, the
extinction and scattering cross sections are expressed as
aninfinite sum of spherically symmetric partial electric
and magnetic wavesthat generate fields similar to those
generated by the particlewhenit isviewed asan excited
multipole. The extinction cross section is generally
given by

Ogt = | 2| z (2L + 1)Re(a, +b,), (3)
440 nm
L 1072
| —3
10 _ g
©
. (=Y
|PMMA 107 28
-6 M «
10 2
i 10—7 S
= 16
12 5
8 S
Q=
400 500 a4
600 700 200

WaVeIength’ nm

Fig. 5. Analytical optical extinction spectrafor silver nano-
particles embedded in PMMA vs. particle size.
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where k is the wavenumber and L is the order of spher-
ical multipole excitation in the particle.

The case L = 1 correspondsto adipole; L =2, toa
guadrupole; and so on. The Mie coefficients a, and b,
are expressed through the Riccati—Bessel cylindrical
functions W, and n_ of variables mx or x, where mx =
Ead/Erpvma iStheratio of the optical constants of the par-
ticles and polymer environment and x = |[KR is the
dimensional parameter (Ris the radius of the particle).
These coefficients are given by [49]

m¥, (MX) W (x) =YL (mX) W (X)

S e mon —wmong |

p, = PUMOWLO—mPL(mowi (9 o
bW (m)n —mW (mx)n(x)

In the general case, the Mie el ectromagnetic theory
imposes no limitations on the wavelength of optical
radiation. Therefore, the operation on the optical con-
stants of the particles and matrix results in extinction
spectra, so-called Mie resonance bands [4], which
agree well with experiment. However, the Mie theory,
which relies on the spectral dependence of the optical
constants, does not allow one to penetrate deep into the
physics of the Mie optical peaks exhibited by the parti-
cles. Yet independent investigations [4] into the behav-
ior of silver nanoparticles showed that Mie resonances
are dueto the SPR effect, so analytical Mie spectramay
be compared with experimental data.

Let us apply Egs. (3)«5) from the Mie theory to
simulate extinction spectra for silver nanoparticles
embedded in a polymer matrix and compare the result-
ing spectra with the experimental data shown in Fig. 4.
In theoretical calculations, we used the complex value
of the optical constant €, in the visible range [50] that
was obtained by measurements on a set of fine silver
particles. Such an approach [50] takesinto account lim-
itationsimposed on the el ectron free path in particles of
different size and electron scattering at the particle—
insulator [52-54] interface and thus yieldsamore exact
value of €,4 than the procedure of correcting optical
constants for bulk silver [51]. The complex values of
€pmma fOr the polymer matrix were found elsewhere
[55]. The extinction was calculated for particles
between 1 and 10 nm in size (according to the MNP
sizesin Fig. 2).

At the early stage of simulation, consider the simple
case where silver nanoparticles are incorporated into
the PMMA matrix. Associated extinction spectra for
different metal particle sizesare shown in Fig. 5. These
spectra feature a wide band, which covers the entire
spectral range. In the given range of particle sizes, the
position of the SPR absorption maximum (near
440 nm) is independent of the particle size. However,
the extinction band intensity growswhilethe band itself
somewhat narrows with increasing particle size. Com-
paring the analytical and experimental spectra, we see
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that, Fig. 5 corresponds to the situation where PMMA
is irradiated by silver ions with doses between 0.3 x
10% and 2.5 x 10'® cm (Fig. 4b, curves 1-3). This
dose range corresponds to the early stage of MNP
nucleation and growth in the OD spectral band with a
maximum between 420 and 440 nm. Thus, one may
concludethat ion implantation in this dose range results
in the formation of silver nanoparticles, as is also
revealed microscopically. It may be supposed that radi-
ation-induced defects in the PMMA have an insignifi-
cant effect on the MNP optical properties in this case.
However, at higher implantation doses, the recorded
OD gpectra and the analytical spectra shown in Fig. 5
diverge; hence, the structure of the composite must be
refined.

To explain the experimental dependences corre-
sponding to high-dose silver implantation into PMMA,
wewill first elucidate the difference between implanta-
tion into polymers and inorganic insulators (silicate
glasses, single crystals, minerals, etc.). The most
important distinction is that, as the absorbed dose
grows, so does the number of dangling chemical bonds
along the track of an ion. Because of this, gaseous
hydrogen, low-molecular hydrocarbons (e.g., acety-
lene), CO, and CO, evolve from the matrix [56]. In par-
ticular, ion-irradiated PMMA loses HCOOCH; meth-
oxy groups [57]. The evolution of several organic frac-
tions leads to the accumulation of carbon in the
polymer layer irradiated, and radiation-induced chemi-
cal processes may cause chain linking. Eventually, an
amorphous hydrogenated carbon layer is produced.
Polymer carbonization starts with the formation of
polycyclic compounds (in essence, primary carbonifer-
ous clusters) and, at higher doses, ends up with the for-
mation of the well-devel oped carbonized phase via car-
bon cluster linking.

In view of the specific phase structure of the poly-
mer irradiated, it is of interest to study the optical prop-
erties (extinction) of silver nanoparticles embedded in
the amorphous carbon matrix (a : C-matrix). For this
system, the extinction cross section spectravs. particle
size dependence (Fig. 6) was simulated in the same way
asfor the MNP-PMMA system, i.e., by using complex
optical constants €. for amorphous carbon, which were
taken from [58]. As before (Fig. 4b), throughout the
particle size interval, the extinction spectra exhibit a
single broad band, which covers the visible range, with
apeak at longer waves (510 nm). The calculated long-
wave shift of the peak, which is observed upon chang-
ing the matrix, may be assigned to a longer wave OD
band in the experimental spectrafor the PMMA, which
arises when the silver ion dose exceeds 2.5 x 106 cm
(Fig. 4b; curves 3, 4). It seems that this spectral shift
may be associated with the fact that the pure polymeric
environment of the silver nanoparticles turns into the

MY (MX)[WL(X) + T3, (] =P (M) P ([ (X) + T 8 (X)]
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Fig. 6. Analytical optical extinction spectrafor silver nano-
particles embedded in the a: C-matrix vs. particle size.

amorphous carbon as the implantation dose rises. The
broader extinction bands in the a : C-matrix (Fig. 6)
compared with the PMMA (Fig. 5) also count in favor
of this supposition, since the broadening of the extinc-
tion bands is observed in the experiments as well
(Fig. 4b). In a number of experiments [56], however,
the carbonization of the polymer surface layer
depended on the type of polymer and ion, aswell ason
the process parameters, and comesto an end at doses of
(0.5-5.0) x 10 cm, but the entire material was not
carbonized. The carbon clusters may reach several tens
of nanometers in size [59]. Thus, the assumption that
the polymer irradiated is completely carbonized, which
was used in the simulation (Fig. 6), does not meet the
real situation when the process lasts for a long time.
Below, the variation of the extinction spectra with the
amount of carbon in the PMMA layer is analyzed in
terms of amodel that considersthe optical properties of
silver MNPs covered by the amorphous carbon sheath.

3.2. Optical Extinction of the Nanoparticles
Represented as Sheathed Cores

Extinction spectrafor nanoparticlesrepresented asa
silver core covered by a carbon sheath in an insulating
matrix (PMMA) will be analyzed in terms of the Mie
relationships for sheathed cores [60]. Here, an addi-
tiona interface for which electrodynamic boundary
conditions must be set up arises. Plasmon—polariton
modes may be excited in both the core and the sheath.
These modes, interacting through the inner interface,
are responsible for the resulting extinction spectrum.
The Mie coefficients a, and b, for a homogeneous
sphere are replaced by associated expressions for asin-
gle-sheath spherical core [61, 62]:

a =
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L= : T ; ) 7
EL(MX)[WL(X) + SS9 (X)] —mE (MX)[W (X) + S 9 (X)] 0
where the functions T, and § are given by
T = MW (MX)[WL(X) +3(X)] =W L (MX)[W(X) + T (X)] )
S mIUMI[WL) + 9L0] =9 LM [ W () + 8 ()]
S = WLMX)[WL(X) + FL(] =P (MX)[WL(X) + 3 (X)] ©)

In expressions (6)—9), asin (4) and (5), L, m, and x
refer to the Riccati—-Bessel functions W, 9, and €, and
thedimensional parameter kR dependson R, whereRis
the radius of the sheathed core.

Optical extinction spectra for a silver nanoparticle
with afixed size of the core (4 nm) and avarying thick-
ness of the carbon sheath (from 0 to 5 nm) are shownin
Fig. 7. The maximum of the SPR bands of the particles
isseen to shift from 410 nm (uncovered particle, Fig. 5)
to approximately 500 nm. Simultaneously, the SPR
band intensity decreases, while the UV absorption
increases, so that the absorption intensity at 300 nm and
a sheath thickness of 5 nm exceeds the SPR absorption
of the particles. Both effects (namely, the shift of the
SPR band to longer waves and the increased absorption
in the near ultraviolet) agree qualitatively with the vari-
ation of the experimental optica density spectra
(Fig. 4b) when the implantation dose exceeds 2.5 x
10% cm™. Thus, our assumption that theincrease in the
carbonized phase fraction with implantation dose and
the variation of the optical density spectra (Fig. 4b) go
in parale is sustained by the simulation of the optical
extinction for complex particles (sheathed cores,
Fig. 7).

410 — 510 nm

1T [T 7]

’ ’ ‘ Hloé E
C Ag = o =
: 2§
23
| PMMA 06 & &
o
P
Q
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i 3¢

300 400 L ﬁ:

200 600 700 gog &

Wavelengih, nm

Fig. 7. Analytical optical extinction spectrafor 4-nm silver
nanoparticles with a carbon sheath that are placed in the
PMMA matrix vs. sheath thickness.

FUM[WLO) + B ()] =ML (MWL) + 9]

In spite of the fact that the model dependences on
the carbon sheath thickness and the experimental dose
dependences agree qualitatively, discrepancies till
exist, particularly, in the position of the long-wave
maximum in the optical density spectra and in the
breadths of the simulated and experimental spectra.
Possible reasons for such quantitative discrepancies are
discussed below.

3.3. Effects Arising at the Slver Core—-Carbon Sheath
Interface and Their Relation to Surface Plasma
Resonance Spectra

Interest in carbon-based composites with MNPs
goes back along way. Examples are the studies of mag-
netic properties of cobalt particles [63], electric and
optical properties of layers with copper [64—66] or sil-
ver [67, 68] nanoparticles, etc. It was found in optical
absorption experiments that copper and silver nanopar-
ticles [64, 68] dispersed in carbon matrices exhibit a
weak SPR effect asin our work (Figs. 4b, 6, 7).

When analyzing the optical properties of nanoparti-
cles embedded in a medium, one should take into
account effects arising at the particle-matrix interface,
such as the dsatic and dynamic redistributions
of charges between electronic states in the particles
and the environment in view of their chemical constitu-
tion [69].

Consider first the static charge redistribution. When
an atom is deposited (adsorbed) on the MNP surface,
the energy levels of this atom €, change their positions
compared with those in the free state [69, 70] (Fig. 8).
When the number of the adsorbed matrix atoms
becomes significant, their contact generatesawide dis-
tribution of density of states. Most frequently, the
adsorbed atoms are separated from surface atoms of the
metal by atunnel barrier. The gap between the energy
positions g, of the adsorbed atoms and the Fermi level
g of the particles depends on the type of adsorbate
(Fig. 8). In addition, the overlap between the energy
positions of the matrix atoms and the energy positions
of the silver surface atoms depends on the rate with
which the electrons tunnel through the barrier. Accord-
ingly, the conduction electron density in the particles
embedded will change compared with that in particles
placed in avacuum (without adsorbates): it decreasesif
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the electrons tunnel toward the adsorbed atoms or
increases when the electronstunnel inthereversedirec-
tion. Eventually, equilibrium between the particle and
the matrix sets in; i.e.,, a constant electrical charge
(Coulomb barrier) forms at the nanoparticle surface.

Such a static charge redistribution due to the depo-
sition of an adsorbate on the particle surface and the
respective change in the electron concentration in the
MNPs were also observed in the SPR absorption spec-
tra[4, 69]. In metals (silver, sodium, aluminum, etc.),
where free conduction electrons dominate, the SPR
spectral maximum hw,,,, depends on the concentra-
tions of electrons, N, and nanoparticles as

N = [N/ (Eomgr)] [ 28 + 1+ X1, (10)
where g, is the permittivity of the matrix, ;" speci-

fiesthe contribution of the real part of the susceptibility
of interband optical transitionsin ametal, and my; isthe
effective mass of an electron.

It was shown [71] that the incorporation of silver
nanoparticlesinto the carbon matrix of Cg, fullerene (or
the deposition of carbon on the nanoparticle surface)
reduces the concentration of 5sp electrons in the parti-
cle roughly by 20%, since they are trapped by matrix
molecules. According to (10), the decrease in N is
bound to shift the MNP extinction spectrum toward
longer waves, asis also demonstrated by comparing the
experimental spectra of the particles in free space
(without an adsorbate) with those of the particlesin the
Ceo matrix [71]. Samplesstudied in[71] were similar to
those obtained by ion implantation in our work (a car-
bonized layer near silver particles implanted into the
polymer). Thus, the shift of the SPR extinction band
into thelonger wave range with increasing implantation
dose in this experiment (Fig. 4) may be explained by
the formation of a carbon sheath around silver nanopar-
ticles. This sheath traps conduction electrons of the par-
ticles. The ssimulation (Fig. 7) also demonstrates the
shift of the SPR maximum. However, the effect of
dynamic charge redistribution is disregarded in the Mie
theory. Therefore, the long-wave shift of the SPR band
due to the static charge redistribution at the particle—
matrix interface is an additional reason why the exper-
imental spectra are observed at longer waves than the
model ones (Figs. 6, 7).

Along with the static charge redistribution at the
interface, the charge at the same interface may also
change dynamically, i.e., with ahigh rate [69]. After the
static state of the charge has been established and the
Fermi level at the interface has been stabilized, the
MNP electrons optically excited above the Fermi level
(hot electrons) may tunnel (by fluctuations) to the
matrix over or through the static barrier (Fig. 8). Levels
occupied by the electrons in the intermediate (between
the particle and the matrix) state depend on the chemi-
cal constitution of the materials. Within a residence
lifetime, the electrons may tunnel again from the accep-
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Free atom

Atom
at a metal
surface

Fig. 8. Electron energy levels in an atom adsorbed on a
metal surface[70]. A free atom (to theright) reachesthe sur-
face (to the left). 5 is the spread of energy levels,. Elec-
tron levelsin the conduction band of the metal are occupied
up to the Fermi level eg

tor levels of the matrix to the particle, and this process
may occur over and over again.

The dynamic variation of the charge in time at the
particle-matrix interface causes the el ectron concentra-
tion inthe particle to fluctuate. Thisfluctuation directly
influences the SPR relaxation. The lifetime of excited
conduction electrons in the particle defines the SPR
spectral width. Here, the contribution from electron
scattering by the interface (because of restrictions
imposed on the electron free path [4]) is added to the
dynamic variation of the charge at the interface. Thus,
the temporal capture of conduction electrons from the
particle broadens the SPR-related extinction spectra.
This was demonstrated with a set of silver nanoparti-
cles embedded in the Cgy matrix [71]. Silver nanoparti-
clesin the carbon matrix exhibit a much broader SPR
band than in free space. We may therefore suppose that,
asthe dose rises, the dynamic charge redistribution may
broaden the SPR spectra of silver nanoparticles synthe-
sized by ion implantation in PMMA. This is because
implantation carbonizes the irradiated layer with
increasing absorbed dose and raises the amount of
acceptor levels on the MNP surface, which change the
relaxation time of the electrons excited. Since the clas-
sical Mietheory disregards the dynamic charge redistri-
bution, the model spectra (Fig. 7) must be narrower
than the experimental spectra, which isthe case.

CONCLUSIONS

In thiswork, we study the formation of silver nano-
particles in PMMA by ion implantation and optical
density spectra associated with the SPR effect in the
particles. lon implantation into polymers carbonizes
the surface layer irradiated. Based on the classical Mie
electrodynamic theory, optical extinction spectra for
silver nanoparticlesin the polymeric or carbon environ-
ment, as well as for sheathed particles (silver core +
carbon sheath) placed in PMMA, as a function of the
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implantation dose are ssimulated. The analytical and
experimental spectra are in qualitative agreement. At
low doses, simple monoatomic silver particles are pro-
duced; at higher doses, sheathed particles appear. The
guantitative discrepancy between the experimenta
spectra and the analytical spectra obtained in terms of
the Mietheory isexplained by the fact that the Mie the-
ory disregards the static and dynamic charge redistribu-
tions at the particle-matrix interface. The influence of
the charge redistribution on the experimental optical
spectra taken from the silver—polymer composite at
high doses, which cause the carbonization of the poly-
mer irradiated, is discussed.

The table, which summarizes available data for ion
synthesis of MNPs in a polymeric matrix, and the ref-
erences cited there may be helpful in practice.
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Abstract—A new combined (thermal—collisional) mechanism of recombination is proposed. The associated
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to dominate over the Lax cascade mechanism are established. The calculations are performed for n-type
samples with different concentrations Ng of neutral impurity atoms and different degrees of compensation K.
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It iswell known that, under certain conditions, com-
bined mechanisms of charge carrier capture and impu-
rity ionization become dominant over direct processes.
An example of the former is the Lax cascade process
[1]: an electron is captured on a high-lying level of a
trapping center and then drops, passing through quasi-
continuously distributed lower lying levels and emit-
ting acoustical phonons. It is common knowledge that
the cross section of such acapture is larger than that of
Gummel—Lax direct single-phonon capture [2]. Exam-
ples of combined mechanisms of impurity atom ioniza-
tion are photothermal, thermal—field, and electrother-
mal processes. There are alarge number of theoretical
and experimental works where combined mechanisms
of capture and ionization are discussed (see, for exam-
ple, [3-9]).

In this paper, we propose a new combined mecha-
nism of recombination the cross section of which,
under certain conditions, may be larger than that of Lax
giant traps. Itsphysical ideaisthefollowing [10, 11]. In
the presence of neutral impurity atoms, a hot electron
undergoing inel astic scattering by the atomsloses a part
of its energy, exciting them (1s — 2p), and istrapped
by a positive center. Due to inelastic scattering, the
transfer of the electron to a high-lying level becomes
much easier and the subsequent transition to the ground
state occurs via the cascade mechanism.

Let an impurity semiconductor have a donor con-
centration N and an acceptor concentration N,. Then,
the concentration of positively charged centersis N, =
N, + n and the concentration of neutral impurities is
No = Np — N — n. Here, n is the concentration of free
electrons in the conduction band.

It is evident that only electrons whose energy € is
higher than Ae (where At is the excitation energy) may
be responsible for the 1s — 2p excitation of neutral
centers. In the momentum space of the simple model of

the spectrum, these are the electrons outside the sphere

of aradiusAp = ./2mA¢g . The electrons with amomen-
tum p that experienced inelastic scattering fall into the
small sphere of radius (p — Ap). These electrons may
(1) undergo quasi-€lastic scattering within atime t and
leave this sphere; (2) be accelerated in afield E over a
timeinterval 1¢ = Ap/eE and acquire the momentum Ap
again; and (3) be captured within a time 15 by an N,
attractive center. For certain values of the e ectric field,
concentrations of N, and N, centers, and lattice temper-
ature, the following inequalities may be fulfilled:

T;<T, Tg. (D)

If thisisthe case, as soon as the electrons enter into
the small sphere, they will be captured on N, centers
withinthetime 1, having no timeto be scattered quasi-
elagtically or accelerated in the field to the initial state.

Consequently, under conditions (1), the complex
inelastic scattering of hot electrons that was considered
above (energy loss accompanied by immediate capture)
may be considered as asingle (composite) process. The
lifetime of an electron in the combined process of cap-
ture can then be represented as the sum of the charac-
teristic time of the 1s —~ 2p excitation and character-
istic time of capture:

Tt.c = TO+T+1 (2)

where 1, isthe lifetime of an electron in the combined
capture process, which isbelow called the thermal—col-
lisonal capture mechanism, and 1, and 1, are the char-
acteristic times of elementary processesin the thermal—
collisional mechanism (excitation and capture, respec-
tively).

Based on Eqg. (2) and the relationship between the
characteristic times and associated probabilities, we

1063-7842/04/4902-0154$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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find an expression for the probability of the combined
thermal—collisional capture mechanism:

W,oW,
W, +W,’ 8)

where the subscripts have their initial meaning.

Asis seen from expression (3), condition (2) yields
the reduced probability of the combined process: it is
lower than the partial probabilities of the constituent
processes. Physically, thisis quite clear.

The probability that an electron will be inelastically
scattered by aneutral center per unit time (i.e., that the
electron will be transferred from the state with an
energy ¢ to the state with an energy € — A¢ and the neu-
tral impurity center, from the level 1sto thelevel 2p) is
given by

W =

Wy = Noao(€) Vv (€). (4)
Here, v(g) isthe velocity of the electron,

2 3125 »(a , )
_ o 2TRYT TR Y X B0 G
Oy = M2 = —=————P(U 5

0 = MRAED ~a,+1 0 O
istheinelastic scattering cross section by aneutral cen-
ter [12], Ry is the Rydberg unit, 8, (0o, Oy) is the
angular factor depending on the quantum numbers of

the angular momenta of the states a, and a,, I, is the
orbital quantum number,

oY oo Cp ©6)
(U + 1000 + ¢

and C and ¢ are the parameters givenin [12].

The probability of cascade capture of an electron
with an energy € — Ae on a positive center can also be
written in form (4):

W, = N,o.(e-Ag)v(e-Ag). @)
Here, according to [13],

®(U) =

_ 1 4%a o OEY 8
0.(§) = 3y3£(2/y+ 50)3%[ eXpD g L (8
where
_2e 2T
‘= ms> Y ms

Sis the speed of sound in the semiconductor, &, is the
minimal binding energy, o, is a factor that has the
dimension of the cross section, and m is the electron
effective mass.

Inview of (4) and (7), expression (3) takes the form
_ Nov(g)oy(e)N,v (e —-Ag)o, (e —Ag)
Wee = NoVv (£)o,(€) + N, v (e —Ag)o, (e —Ag) ©)

Now, using expression (9), we find the effective dif-
ferential cross section of thermal—collision capture.
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From (9), it is seen that W, is proportional to NgN,.

Then, starting from the general relationship between

the probability and corresponding differential cross

section and keeping the proportionality between W,_.

and NgN, in view of the dimension, one can write

NoN.

Wi = Ut-c(S)V(E)NOOTM- (10)

With (9) and (10), the effective differential cross

section of the combined thermal—collision capture
mechanismis given by

oy(e)o.(e—Ag) |1 _A?e

(1=K)a(e) + K /1-%5@(8 _Ae)

if Ny > n. Here, K = NA/Np is the degree of compensa
tion of the sample.

From (11), the differential cross section of the com-
bined process depends on the degree of compensation
and the ratio between the excitation energy and the
energy of afree electron. Consider particular cases.

() K < 1. In this case, the second term in the

denominator of Eq. (11) can be omitted irrespective of
the ratio between € and Ae. Then, we cometo

Oc(€) = (11)

o.(e—Ag) [1- Ag
Oule) = :
(1-K) (118)
Ag
=0g,(e—-A¢g) 1_—{'
(@) At e > Ag,
0..(¢) Do,(e—-Ag). (11b)

(b) At € = A, 0, isgiven by expression (11a).
QK< 1l
(@) Ate = Ag,

O.c(€) HOo(€). (11c)

(b) At € = Ag, 0,4(€) isgiven by (11c) again. Thisis
explained by the fact that, in the case considered, the
termsin the denominator of (11) contain the quantities

(1 —K) and /1—(Ag/e), which are of the same order
of smallness, but 0,(€ — Ag) has a sharp pesk at € = Ae
(see (8)).

Figure 1 shows the energy dependence of the ratio
0.(€)/o.(€) (see (11) and (8)) for different degrees of
compensation.

For low degrees of compensation (curves 1-3), the
cross section of the thermal—collision capture mecha-
nism is governed, as was expected, by the dependence
0.(e — Ag) and is adecreasing function of the energy of
a captured electron. As the degree of compensation
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0..(8)/0,(€)

1000

100

SRW A L

10}

1 2
g/\e

Fig. 1. oy.c(€)/o.(€) on e/Ae for a degree of compensation
K= (1) 0.1, (2) 0.3, (3) 0.5, (4) 0.7, (5) 0.8, and (6) 0.9.

increases, the range where ay(€) controls the run of the
dependence o,..(€) (the rising parts of the curves) wid-
ens (curves 4-6).

Now, we find the conditions under which inequali-
ties (1) are vaid. From the above reasoning, it follows
that the mechanism responsible for momentum dissipa-
tion isscattering by neutral and ionized impurity atoms,
while the energy is dissipated by acoustical phonons.
Under these conditions, the symmetric part of the dis-
tribution function takes the form [10]

0 0
0 0
o :
dx
fo(X) = eXPD-J' > 0, (12)
O 1+E 1 0
=
0 N
0 ﬁ‘*ﬁ;@
where
2,0,0
eyl
- Sva, (13)

E;  3(koT)?

1” and I3, are the electron-energy-independent parts of
the free paths when the momentum is dissipated by
impurity ions and neutral centers, respectively; and
|§ is the free path that takes into account only energy
dissipation by acoustical |attice vibrations.

For calculations, we write (in explicit form) expres-
sions for the times entering into the system of inequal-

KACHLISHVILI et al.
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108

1070

10—10

10—11

10—12

10—13 1 1 E2 1
1 10 10? 103
E, V/cm

Fig. 2. Relationship between thelifetimes (1) 13, (2) T, and
(3) T for the sample with Ng = 5 x 10*® cm and K = 0.5.

ities (1). The time 15 of capturing an electron by an N,
attractive center (after the electron has been scattered
by a neutral impurity atom) and, accordingly, has lost
energy Ae is given by

_ 1
© N, b, (e-Ag)v,(e—Ae)T

15 (19)

Averaging of the recombination rate @ vOis per-
formed with distribution function (12) in accordance
with the conditions of our problem:

[O(x—=AX)v(x—Ax)O
J’o(x—Ax) V(X = AX) /X o(x)dX

— Ax

(15)

J'J;(fo(x)dx
0

For the quantities Tz and T on the right of inequali-
ties (1), we have

J2Axm(k,T)
TE = eE i)
TP 172
1= X)L
ZﬁmyzEg(koT)ﬂz( )

The problem is solved graphically. The electric field
range AE = E, — E; where the system of inequalities (1)
holds is assumed to be bounded by the points of inter-
section of the curves 15 and T, since the inequality 15 <

(16)

TECHNICAL PHYSICS Vol. 49 No.2 2004
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10°°

1077

108

107°

10—10

10—11

10-12

10—13 1 1 |
1 10 10? 10°
E, V/ecm

Fig. 3. L|fet|m¢5 51) T and (2-4) 15 for the sample with
Np=5x 10 cmand degree of compensationK =(2) 0.1,
(3) 0.5, and (4) 0.9.

10°8
107°
1071
10711

10-12

1071

1 — 14 1 1 1
0 1 10 102 10°

E, V/cm

Fig. 4. Lifetimes (1) tg and (2-4) 153 for the sample with
No =5 x 10'® cm3. The degrees of compensation are the
sameasinFig. 3.
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Tisvaidinawider region of E than theinequality 15 <
1e (Fig. 2).

The values of E; and E, vary significantly with K
and N,. Figures 3 and 4 show the ranges AE in which
inequalities (1) are valid for N, = 5 x 10 and 5 x
10% cm3,

Asfollows from Figs. 3 and 4, the range where ine-
qualities (1) are vaid tends to higher fields with
increasing K and N,. This is not surprising, since the
more intense the scattering by impurity ions and neutral
centers, the stronger thefields providing adesired mean
energy of electrons, in particular, an energy Ac neces-
sary for inelastic scattering.

To conclude, for a certain low-temperature concen-
tration of neutral and ionized impurity atoms, there
invariably exists an applied electric field range where
the thermal—collision mechanism of hot electron cap-
ture is dominant.
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Abstract—The effect of the thermal nonlinearity caused by the temperature dependence of the specific heat
and thermal conductivity of asample, substrate, and air on the temperature field in a photoacoustic cell is stud-
ied theoretically. Exact solutions are obtained for a steady temperature field with allowance for thermal nonlin-
earity and for a nonsteady field without allowance for this nonlinearity. The nonsteady nonlinear problem was
solved numerically. It is shown that, due to thermal nonlinearity, the linear dependence of the temperature of
the irradiated surface on the heating beam intensity gradually transforms into a power-law dependence as the
beam intensity increases. © 2004 MAIK “ Nauka/| nterperiodica” .

INTRODUCTION

Photoacoustic (PA) spectroscopy and related diag-
nostics are widely used to study condensed media
[1-3]. Dueto their contactless character, these diagnos-
tics are successfully employed to determine optical,
thermophysical, acoustic, and chemical properties of
various media when the conventional methods turn out
to be inefficient [4-6]. Information provided by these
diagnostics makes it possible to examine various inho-
mogeneous, multicomponent, multilayer, porous, and
chemically active systems under real (sometimes
extreme) operating conditions[1, 3, 5, 7]. However, this
information isusually gained against the background of
an established temperaturefield (TF), and PA measure-
ments are usually performed after the system has
passed to this quasi-steady state. Thetime during which
asteady stateis established can be roughly estimated as
T~ L%, whereL isthe scalelength and ¥ isthe thermal
diffusivity of the medium. The higher the intensity of
incident radiation |, the higher the temperature of the
absorbing sample; as a result, at high heating intensi-
ties, the effect of the temperature dependence of the
thermophysical and optical parameters of the sample
material on the PA signal becomes more pronounced
and the estimation of T isno longer an easy matter.

The necessity of taking into account the effect of the
temperature dependence of the thermophysical and
optical parameters on the PA signal wasfirst addressed
in [8]. However, the specific features of TFsin case of
the gas-microphone detection of the PA signal were not
considered. Due to the temperature nonlinearity of the
thermal conductivity k(T), the second-harmonic PA
signal was detected and investigated using the mirage
effect [9] and infrared radiometry [10]. In [11], the
influence of temperature nonlinearity on the parameters
of therma waves was studied both theoretically and

experimentally and the possibility of determining the
nonlinear parameters of some metals was demon-
strated. The specific features of the generation of sec-
ond-harmonic thermal waveswere studied theoretically
in[12].

In classical studies [13-15] (in [13], the theory of
the PA effect was developed), expressions describing a
steady TF in a system with constant thermophysical
and optical parameters were obtained. However, non-
steady TFsin condensed mediain a PA cell were not
considered even in the linear approximation. Probably,
it is for this reason that, in [16], a honsteady TF in a
one-dimensional sample irradiated by a rectangular
laser pulse was calculated numerically.

This study isaimed at a detailed theoretical analysis
of the influence of thermal nonlinearities on a TF in
highly absorptive and low-conductivity media. We
assume that the sampleis placed into agas-microphone
cell to perform integral and spectral PA measurements.
Thermal nonlinearities are assumed to be related to the
temperature dependence of the thermophysical param-
eters of al three layerswithin the PA cell. A nonsteady
TF is determined in the linear approximation for the
same experimental layout.

1. MATHEMATICAL MODEL
AND THE PHOTOACOUSTIC CELL LAYOUT

Let us consider a one-dimensional PA cell [13] con-
sisting of three layers: agaslayer (g), asample(s), and
a substrate (b) (Fig. 1). The gas and the substrate are
assumed to be transparent for the incident beam with a
harmonically modulated intensity. The sample is a
highly absorptive medium with alow thermal conduc-
tivity and an absorption factor 3 satisfying the condi-
tion Bl > 1. In this case, the heat transferred to the

1063-7842/04/4902-0158$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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medium is localized within a thin (with a thickness of
=) surface layer in which the temperature may rise
substantially. In mediawith ahigh thermal conductivity
(e.g., in metals), heat is rapidly redistributed over the
sample and a local equilibrium TF is established. We
also assume that the reflection coefficient R and the
absorption factor (3 of the medium remain constant dur-
ing PA measurements.

We consider the temperature variation range that is
far from the phase transition points and the thermal
destruction of polymers. We assume that the heat
capacity per unit volume, C(T) = p(T)C(T) (wherep is
the mass density and C, isthe specific heat at aconstant
pressure), and the thermal conductivities k;(T) of the
layers are linear functions of the temperature:

C = cP1+5,T),

o _ D
Ki = Ki (1+62|T')! I = g! Si b1
where T' is the temperature increment and
1 0GC 1 0K;
6li - EG_T' 2i — Ki(o)a-l- (2)

are the temperature factors of the thermophysica
parameters. Here, the superscript (0) stands for the ini-
tial valuesat T, and variationsin the system parameters
are considered to be small compared to their initial val-
ues.

Thus, the set of nonlinear heat conduction equations
for a three-layer one-dimensional PA cell takes the
form

Ty _ 9 oT,
pg(Tg)Cpg(Tg)ﬁg = &%(Tg)&%’ 3

Osx<lyg,

oT. _ 9 0Tg
ps(Ts)Cps(Ts)ﬁ - a_XB(S(TS)&D (4)
+%B|0(1—R)exp([3x), —-1<x<0,

oT,
pb(Tb)Cpb(Tb)a_tb = E(b( b) XD’ (5)

—(l, +1) s x=<-.

Since the set of Egs. (3)«5) consists of three sec-
ond-order equations, it should be complemented with
six boundary conditions, namely, the continuity of the
temperature and heat flux at the cell boundaries, aswell
as at the gas—sample and sample-substrate interfaces.
These conditions are written as

To(lg 1) = To(-ls=1pt) = 0 ®)
Tgl.](ov t) = T;(Ov t)! Té(_IS! t) = Tllj(_IS! t)v
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-(+L) -1 0 +/

g X

Fig. 1. Geometry of the problem: (1) incident amplitude-
modulated laser beam, (2) buffer gas (air), (3) sample,
(4) substrate, and (5) partially reflected beam.

Ko(T, aaT = k(T 0T, ,
Xl|x=0 x=0 (7)
G ALAE e LA
x=- x=-

Theinitial conditions aretrivial:
Té(o, X) = T4(0, x) = T,(0,x) = 0. (8)

The set of Egs. (3)5), together with boundary and
initial conditions (6)—(8), presents a mathematical for-
mulation of the problem of determining a TF in a one-
dimensional PA cell. Inwhat follows, we will apply this
model to solve the problems formul ated above. We note
that the problem of thermal waves (i.e., the oscillating
part of temperature variations) is beyond the scope of
this study.

2. EFFECT OF THERMAL NONLINEARITY
ON A STEADY TEMPERATURE FIELD

In a steady state, all the derivatives are zero and the
temperature variations are time-independent. In this
case, we are dealing only with a spatial distribution of
the temperature, and the set of Egs. (3)—(5) reduces to

d
%([xﬂ)%} =0, Osxsl, ©)
dr 0T _ 1
KD | = 5Bl1-Rew®).
-1<x<0,

[ b(T)dTb} =0, —(I+l)<sxs-. (1)

Using the representation T,(X) = 6;1 gi(x), solutions
to Egs. (9)—(11) with boundary conditions (6) and (7)
can be written in the following analytical form:

0,00 = [1+ 0,82+ 05,3 -] -1, 12
g
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Fig. 2. Temperature of the irradiated surface vs. incident
beam intensity: (1) linear theory and (2) numerical solution
of Egs. (15) and (16).

6.(x) = [ 1+ 8P0o(2+ 8,09 +
(13)

12
S

1/2
05(X) = [ 1+ WoBap(2+ WeBp) HL+ XE0) ™1,
e

Al
~ W2 + 5, 5T+ e ¥~ exp(Bx) -

(14)

where W, is the temperature perturbation at the sam-
ple-substrate interface, E = exp(-f3l), and A=1-R.
Thevalues of ©, and W, are determined by numerically
solving the set of algebraic equations

Ogbyy + Ogly, — Wobyg —Woby + Fy = 0, (15)
W5C; + WoCrp — OCrs —OgCra—F, = 0. (16)
Here, the following notation is introduced:
1 |K(0)
by = 5(8s+@idy), by =1+a, a = —,
2 1,k
gls
1 a
bi3 = €3 =1, by = 5525 = Cuy Cpp = 1"‘5;
1 IK(O)
Cu = 2(525+3252g), a, = K (0)'
Al, Al,
= — +
Fi= gme(1-BI-E), F,= 552(1—(1+BE).

Substituting &,; = 8,5 = 8,3, = 0 into Egs. (15) and
(16), we obtain the results predicted by the linear

MADVALIEV et al.

theory [13]:

. (-BHB -1

l+a,+a,

+ Bl

L:

2k (17)

I
W, = 2°(2)(1 E)-a,0,.

It should be emphasized that, in the case under
study, it is important to know the temperature at the
sample—gas interface, since it is the temperature varia-
tions at this interface that produce the PA signa
detected by a highly sensitive microphone. The values
of ©, and W, were numerically calculated for ebonite
(I =0.001 m) in contact with air (I, = 0.005 m). A stain-
less-stedl plate (I, = 0.002 m) was used as a substrate.
This cell geometry istypical of PA cells used in study-
ing condensed media. The processing of the experi-
mental temperature dependences of the thermal con-
ductivities of air [17], ebonite [18], and stainless steel
[17] givesthe following parameter values: &,y = 2.39 x
102 K, 8,,=6.41 x 103 K=, and &,, = 0.24 x 103 KL,
Here, the thermal conductivities of these mediaat T =

300K aretakentobe k|’ =0.025668 W/(mK), K =

14.7796 W/(m K), and k¥ = 0.1266 W/(m K), respec-

tively. The values 3 = 10’ m™* and R = 0.2 are taken
from [19].

The dependence of ©,0n |, obtained by numerically
solving Egs. (15) and (16) is shown in Fig. 2 (curve 2).
For the sake of comparison, ©, versus|,isalso plotted
(curve 1). It can be seen that (i) the linear dependence
of ©y on |, holds for small values of 1, (which corre-
sponds to the absence of thermal nonlinearity and,
hence, complies with the results of [13]) and (ii) the
dependence of ©, on |, substantially deviates from lin-
ear at |, = 1 W/cm? and then passes to a power law
dependence with ©, being lower than ©, . Thelatter fact
is due to the increase in the thermal conductivity with
increasing temperature and a resulting increase in the
efficiency of heat transfer to the surrounding medium.

Calculations show that the inequality Wy/©, < 0.1
holds. Then, the termswith W, in Eq. (15) can be omit-
ted and the solution to the resulting quadratic equation

is
[A/4b11|F1| + b12 b12]

2by

Since by, = 1in this case, then, for 4by,|F,| > 1, we
obtain a square-root dependence of @, on I,

©o= b.. 0
11 2K by
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(here, we also take into account that Bl > 1), which is
confirmed by the shape of curve 2in Fig. 2.

3. NONSTEADY TEMPERATURE FIELD:
A LINEAR MODEL

When asamplein aPA cell isirradiated with alow-
power source (e.g., a helium—neon laser), the sampleis
heated insignificantly, so that the thermophysical
parameters of the medium remain unchanged. In this
case, nonlinear differential heat conduction equations
(3)—(5) transform into the following linear equations:

oT, _ T, _
¢ ~Xa 2 0, Osxsly, (18)
oT, _ 0T, _ ABl,
—_ = — < X<
at Xs aXZ 2pCpeXp(BX)’ I sSXs 0’ (19)
oT °T
_(ﬁ_b_xbs;(; =0, —(I+l))sx<s-l. (20)

Here, the superscript (0) and primes are omitted for
brevity.

The conditions of heat flux continuity at the bound-
aries also become linear:

dX x=0 dX x=0
(21)
k. dTs P
b—— - Ns—— :
dx x=-l dx x=-l

The set of Egs. (18)—(20) together with boundary
conditions (6) and (21) and the initial conditions

T4(0,x) = T4(0,x) = T,(0,x) =0 (22)

present a mathematical formulation of the time-depen-
dent problem of determiningaTF in aone-dimensional
PA cell in terms of alinear model. This problem can be
solved by applying integral Laplace transformation
with respect to time:

00

Ti(p, x) = [eP(=POT(t Xt (23)
0

Substituting Eg. (23) into Egs. (18)—(20) and taking
into account initial conditions (22), we have

22 ~
z_'rzg_qs-rg =0, 0sx<l, (24)
X
dzf 2= ABIO
__;Zg_qs-l-s_ _E—p—@eXp(Bx)’ -1<x<0, (25
23 ~
%I?b_qﬁ-rb =0, —(I+ly)sx<, (26)
X
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where of =plx;andi =g, s, b.

The solutions to Egs. (24) and (26) are given by the
expressions

] i

To(p.x) = Tu(p, 0y obile=) ]
g™g

sinh[g,(x+1+1p)]
sinh(qylp)

which satisfy boundary conditions (6). The solution to
Eqg. (25) can be found by the method of variation of
constants:

To(P, X) = V18XP(GeX) + Y, €XP(—0sX)
_ ABloexp(BX)
2k(B - ) p

Substituting y; and v, derived from Egs. (21) into
expression (28), we obtain

~ _ rAu(p)
TP = | 505

+exp(Bx) |

(27)

To(p, X) = Ts(p, )

(28)

Ay(p)
aA(p)
ABl,
2Kk.p(dz—B?)
Here, the following notation is introduced:
A(p) = (BgBy + 1)(exp(—ayl) —exp(asl))
—(Bg * Bo)(exp(asl) + exp(-adl));
Aq(p) = (asBq + BBy exp(asl) + (B + adByBy)(exp(asl)
—exp(—BI)) + (BB + asPs) exp(—hI);
B,(P) = (B—0sByBy) (exp(-BI) — exp(—ad))
+ (BBy — dsPp) exp(—Bl) — (asBy — BBy) exp(—asl);

= El X§' i =
Ci_KS/\/;’ i =gb.

To determine T(t, X), it is necessary to perform an
inverse Laplace transformation of Eq. (29), i.e, to cal-
culate the integral

exp(gsx) —

Bi = cicoth(liq);

_ ABly v exp(pt) 14,(p)
Tyt x) = : DB dp| =
2K32T['v_imp(qs—[3) [qu(p) (30)
D,(p)

x exp(geX) — exp(—qex) + exp(Bx)]

q:A(p)

To do this, we employ the convolution theorem, for
which we represent the first two terms in the integrand
in the form

y+ioo

% I f16)(P) f20,(P) exp(pt)dp,

y—iw

(31)
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where
— —(] —
fl(l)(p):exp(quIXI)’ 1) = expl (q xDad
A (p) Ay(p)exp(gdl)
Foap(P) = =B () = —Et1EL
o= o@—mr P ap@-e)p
The functions (see, e.g., [20])
fi(1) = %‘.[X—.E eXP Lll))((lrg,
(32
fip(T) = [e pg(l4)|(X|)E’
Fom () = =[exp(XB2)W(P) Wy (0)],
P (33)

fa(t) = B%[ eXp(XB°t)0(Py) - $:(0)]

are the result of integrating with respect to f;(p) and
fo0(p), where

_un _ (p)
P = X% W(p) = lim Al( )
_ Ay(p)exp(qsl)
¢(py) = lim === oy
A(p) Az(p)exp(qsl).

The functions Y(p,) and ¢(p,) are easy to calculate.
However, y,(0) and ¢,(0) should be calculated with
caution; namely, it is necessary to expand both the
numerators and denominatorsin powers of g, and keep
the first nonvanishing terms. As aresult, we obtain

BB, '301
B i)

= im A ¢ =lim

W(p,) = $,(0) =

0(p) = 0, §:(0) = -2 B°2

B = (1+ BogBob) sinh(—BI) — (Bog + Bob)COSh(BI)v

Boo = C4Col *+C IbJZ+cbleZS,
Xg

B,=(1+ BogBob) cosh(Bl) + (Bog + Bon) sinh(BI),(35)
= CqCy(1+ exp(-BI))

(34)

+eol 4B X—+c XSBIbexp( Bl),

Bo = Cng(l—eXp(—Bl))

(36)
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+B|ngJ§S+C Bly XZeXIO(—BU,
9

Bog = cgcothgﬂ%/;((:%,
- (37)
Bob = cbcothBBIb&%.

Taking into consideration Egs. (32) and (33), we
obtain the final expression for TF:

T = 552 ew(BR(eP(B) - 1)

B
+ (B, +

(39)
Bolo

2By
Here, the following notation is used:

_ Bozls}
2By

oo X0
0 4xsTD

f g

o]

~ X<t

dr, (39)

0 IX°o

t ex
| _ﬁ Pt 0 4x .
2 I ﬁ

(40)

Figures3and 4 show the results of numerical calcu-
lations for ebonite at two values of |, (curves 1 and 2).
The geometric parameters and the thermal conductivi-
tiesat T =300 K are specified in Section 2. The other
parameter values at this temperature are taken to be
Py = 1.29 kg/m?, p, = 7700 kg/m?, ps = 1200 kg/m?,
Cpy = 1008 J(kg K), C,, = 460 J(kg K), and Cys =
1319.2 J(kg K) [17]. As was expected, the TF is seen
to relax to an equilibrium state. However, these results
hold true only in the linear approximation, in which the
thermophysical parameters of the sample, gas, and sub-
strate materials are assumed to be constant.

4. NONSTEADY TEMPERATURE FIELD:
A NONLINEAR MODEL

Highly absorptive media placed into a PA cell and
irradiated by a moderate-intensity laser beam
(~1 W/cm?) gain a considerable amount of heat. In this
case, the temperature of the medium increases substan-
tially and the effect of the temperature dependence of
the thermophysical parameters of the media begins to
reveal itself in the PA signal. The nonsteady TF can be
determined from the set of nonlinear heat conduction
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T, 0), K

80| 2
70+
60
50+
40
30+
20 s U

10 I

10 20 30 40 t,s

T
N

Fig. 3. Evolution of the temperature at the ebonite—air
boundary (x =0) inaPA cell a 1= (1, 1) 0.5 and (2, 2)
2W/cm“intermsof (1, 2) linear and (1, 2') nonlinear mod-
els.

equations (3)—5) for al the layersin the PA cell. This
system should take into account the temperature depen-
dences of the densities, specific heats, and thermal con-
ductivities of the layers. These dependences are evi-
dently determined by the physical properties of agiven
system, and each particular case requires a separate
analysis.

Asbefore, we will consider athree-layer (air—ebon-
ite—stainless steel) system with the temperature depen-
dences of the thermal conductivities specified in Sec-
tion 2. Sincethe coefficient of thermal expansion of sol-
ids is as low as =10° K-, one may ignore the
temperature-induced decreasein the density of the sam-
ple and substrate; i.e., it can be assumed that pyT) =
P«(To) and pu(T) = pp(To). The gas density also remains
constant in view of the fixed volume of the gas-filled
part of the cell: p, = p(Ty). Thetemperature factor of the
air specific heat isd;; = 0.19 x 103 K at C,((300K) =
1008 J/(kg K) [17]. According to the dependences of W
on t calculated in the previous section for different val-
ues of |, (Fig. 4, curves 1, 2), the substrate is heated
insignificantly, so that the quantity Cy, can be consid-
ered constant. In ebonite, the dependence of C,; on T
was estimated from the curves k(T) and x(T) presented
in [18] and appeared to be well approximated by
C,s(300 K) = 1319 J/(kg K) and &, = 15.7 x 103 K=
within the 300- to 360-K temperature range. With
allowance for the above factors, substituting Eq. (1)
into Egs. (3) and (4) resultsin thefollowing set of equa-
tions:

(1+33,T) 5 = X5 aX[(l+e'>2ng) ax}’ -
Osx<lyg,
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Fig. 4. Evolution of the temperature at the substrate-sample
interface (x =) in a PA cell. The parameters are the same
asinFig. 3.

oTs _ 0 oTs
(1+38,T) == = Xs ax[(1+5sts) ax}
(42)
LABLeBx) | o
2p,C,
oT o°T
S - E’O)E(—Zb’ ~(I+1,) s x<, (43)

which can be solved numerically by the finite differ-
ence method. The time dependences of the temperature
of the irradiated ebonite surface © = T(0, t) and the
sample-substrate interface W = T, t) are shown in
Figs. 3 and 4, respectively, for two vaues of |, (curves 1'
and 2). It can be seen that the temperature dependence
of the thermophysical parameters results in a decrease
in the equilibrium temperature (which complies with
the conclusions drawn in Section 3) and somewhat
faster relaxation to asteady TF. A comparison between
the two curves shows that ©/W = 30-50 within the
entire time interval under study; i.e., the heating of the
substrate—sample interface is much lower than that of
the irradiated sample surface. This estimate is impor-
tant for the development of anonlinear theory of the PA
effect sinceit allows one to restrict oneself to the linear
approximation in Eq. (5).

CONCLUSIONS

Exact expressions for a nonsteady TF in a one-
dimensional three-layer PA in a linear approximation
are obtained. The corresponding nonlinear problem
implying that the thermophysical parameters of all the
layers in the cell are temperature-dependent is solved
numerically. An exact solution to the nonlinear tome-
independent problemisaobtained. It isfound that, dueto
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thermal nonlinearity, the initialy linear dependence of
the temperature of the irradiated sample surface on the
radiation intensity transforms into a power-law depen-
dence as the intensity increases. It is shown that the
heating of the substrate surface contacting a highly
absorptive low-conductivity sampleisat least one order
of magnitude lower than the heating of the irradiated
sample surface. This fact is of importance since it
allows oneto ignore the effect of a substrate in the non-
linear theory of the PA effect for highly absorptive
mediain the above geometry.
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Abstract—A new effective method for solving three-dimensional problems of electromagnetic wave diffrac-
tion by impedance bodies with irregular boundariesis proposed. The method offers a high rate of convergence.
Examples of solving the problems of wave scattering by bodies of revolution are given, and results illustrating
therate of convergence of acomputational agorithm for bodies of various shapes are presented. Theimpedance
approximation is shown to be valid for smulation of scattering characteristics of bodieswith aninsulating coat-
ing even when the boundary has irregularities and the refractive index of the coating is not too high. Various
ways of characterizing “black bodies’ and the results of studying their scattering characteristics are discussed.
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INTRODUCTION

The problem of simulating the scattering character-
istics of nonreflecting or “black” bodies is a classical
problem of electrodynamics and diffraction theory. A
fundamental difficulty of this problem is that a so-
called black body cannot be described in terms of the
rigorous boundary-val ue problem of the diffraction the-
ory [1]. Therefore, the scattering characteristics of such
bodies are described with various approximations
[1-3]. The associated methods of description (models)
can be conventionally divided into two classes. Thefirst
one covers so-caled structural models, where the pro-
duction of the absorbing coating is discussed; in the
second one (speculative models), the redlization of any
particular model is not the case in point. The Mac-
donald concept [2] belongsto the second class. Accord-
ing to this concept, the black body surface is an ideal
electrical conductor (g, = —ico and 1, = 1) and an ideal
magnetic (¢, = 1 and [, = ) conductor simulta
neously. Thefield scattered by such abody is calculated
asthe half-sum of the fields scattered by ideal electrical
and magnetic conductors of the same shape. The well-
known Sommerfeld model [1] may be classified as a
structural model. This model implies that the low-
reflection coating must have a relative permittivity €,
equal to the relative permesability p,. In addition, the
coating must absorb electromagnetic radiation; i.e., €
and p, must be complex and have largeimaginary parts.

Until recently, most of the results on wave scattering
by black bodies have been obtained with approximate
(asymptotic) approaches, such as the method of physi-
cal optics and its generalizations[3]. These are inappli-
cable when the dimensions of the body are comparable
to the wavelength. In this case, the rigorous approaches

(adopted for black body description) are needed. The
results of such investigations are few [2, 4].

In this paper, we develop an effective method for
solving the problem of electromagnetic wave diffrac-
tion by bodieswith an impedance boundary (the pattern
equation method, PEM). The method makes it possible
to study the characteristics of wave scattering by bodies
with a magnetodielectric coating. The results of this
research are reported.

PROBLEM DEFINITION AND FORMULATION
OF THE PATTERN EQUATION METHOD

Consider the 3D problem of scattering a primary
monochromatic electromagnetic field E°, H by afinite
target bounded by asurface S. L et the following bound-
ary condition be set on the surface S.

(nxE)|s = =Z[nx(nxH)]|s. (D)

Here, Z is the surface impedance [5]; n is the unit nor-
mal tothesurface S E=E%+ E*andH =H°+ H* spec-
ify the total field; and E* and H* specify the secondary
(diffraction) field that satisfies the homogeneous Max-
well equations

ik_1

~E-,

¢
everywhere outside S and also a condition at infinity,
e.g., of theform

e = offg BB

VxE" = —jktH', VxH'=

_ odO
= O[FD’

r=[r[— oo.

1063-7842/04/4902-0165$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Here, k = w./ept is the wavenumber and = JJp/e is
the impedance of the medium. According to the PEM
standard scheme [ 6, 7], wewill search for the scattering
pattern (wavefield diagram), i.e., afunction that relates
the diffraction field to the angles © and ¢ of the spheri-
cal coordinate system (r, 6, ¢) inthe far zone (kr > 1).
In this zone, the asymptotic relationships of the form

1 _ exp(—ikr) e 6 0lpg
B = SRR, )+ O
1 _ exp(—ikr) _n 0lnp
HY = SEER6.00 O o

where FE and F" are the patterns of the electrical and
magnetic fields, respectively, are satisfied.

Let us consider briefly the derivation of an integro-
operator equation of the PEM. For simplicity, only the
case Z = 0 will be discussed. The starting point in this
consideration is the Sommerfeld-Weyl representation
of awave field (e.g., magnetic field) in the form of the
generalized integral of plane waves|[8]:

21 /2 +i00
1_ 1 iy
H —Znijo'dB ‘!’ exp(—ikr cosa) @
x E"(0, ¢: a, B)sinada,
where
(6, ¢; a,B)
€)

.2
= Jo (W x H) x p)exp(ikp [1')ds
S

isthe scattering pattern in the coordinate system rotated
so that the 0Z axis is directed to the point of observa-
tion.

In (3), p = {sinacosPB, sinasinB, cosa} and p =
ATp, where

—sind cosd 0
—cos¢ cosB —sing cosd sinB
O cospsin® singsin® cosB

A =

[ |
oo™

isthe matrix of rotation of the coordinate system.

Integral (2) converges absolutely and uniformly in
R3/B, where B isthe convex hull of scattered field sin-
gularities[9]. Taking into account that H = H® + H?, we
find the integral operator equation desired by substitut-
ing (2) into (3):

F'(&.n) = Fo(§ r1)+—k2 qxnz—
’ 0% 4ni,[ 21
S

KYURKCHAN, DEMIN

2MU2 +i0

xJ‘ J exp(—ikpcoso)E"(6, 0; a,B)  (4)
0

0
x exp(ikqp(6, ¢))sinadadpds,
where

g = {sincosn, sinsinn, cos¢} ,

Fo(&.n) = ‘%J[(n x H®) x ] exp(ikq p')ds.

Expanding the pattern in some basis, substituting
the expansion into Eq. (4), and projecting the right- and
left-hand sides of the equation onto some (generaly,
another) basis on the unit sphere, we reduce the prob-
lem to an infinite algebraic system. This method is
mathematically justified if B is located inside a scat-
terer [6, 7, 10]. However, in the vector form with
impedance boundary conditions, such a computational
scheme is cumbersome. Therefore, we will consider
another method (which is mathematically simpler
while more difficult to substantiate) of deriving a PEM
algebraic set of equations for the coefficients of expan-
sion of the pattern in spherical harmonics[11, 12]. With
this approach, the integro-operator equation is unneces-
sary.

REDUCTION OF THE BOUNDARY-VALUE
PROBLEM TO A SET OF ALGEBRAIC
EQUATIONS

It isknown (see, e.g., [12]) that

FO.0) == S awi(i x®[(8, ¢))
n=1m=-n (5)

- z z bnminzq)nm(ev ¢)1

n=1m=-n

H _ - ! -nl m
F(6,9) = —Z z i Z<I>n(9, )
n=1m=-n (6)

=3 S bui"(i x @76, 9)),

where
®@.'(0,0) = r x VP, (cosB)exp(imd). (7)

Thus, our aim isto find an algebraic system for the
coefficients a,,, and b,
2004
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The wavefields E' and H* can be represented asthe
expansions

00 n

E'= zz{ Bl V X V X (ry)] ©

—ikZbn[V x (rwm1},

H'=3 % éifkanmwx(rw?)]
n=1m=-n

©
+ bV XV X (rg?)] O
[l

Wy = h{?(kr)Py(cos8) exp(imd), (10)

where hff) are the Hankel spherical functions of the

second kind and P}’ are the associated L egendre poly-
nomials.

The starting point for further analysis is the repre-
sentation of the coefficients a,,,, and b,,,, via the bound-
ary values of the vector field. The expressions for these
coefficients, by analogy with [11], can be found from
the relationships

E'= Igﬁk[v x V x (1°Gy)] = Z[V (I mGO)]gds',(ll)
S

1 az <V x (™ % (1€ g '
H _Eﬁ[v Vx(1"Go)] + [V x (I Go)]%dsl(ﬂ)

where

1°= (nxH)[s, I™=(nH,—H)|s,
exp(=iklr —r') (13)

GO = GO(r7 r') = 4-.’_[|r _rll

is the Green's function for free space (the fundamental

solution of the Helmholtz scalar equation).
Then, using (8)—(13), one finds

= KN (B M
anm - 4.mNnmJ.%_EI [V XVX(an)]
S
(14)
m =m O
—ZI'[V x (rXn)] s,
0
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_ K ——
Brn = N BTV % (1%
° (15)
# o IV XV (0] Eds,
where
K0(r) = jo(kr)PP(cos8) exp(~imd),

_ 2n+1(n—m)!
"™ n(n+ 1)(n+m)!’
jn are the spherical Bessel functions, and the bar means
complex conjugation.
Relationships (14) and (15) are the starting point for

finding the algebraic system desired. Let us introduce
the notation

. _ ik

Him = VXV X(rym), He ZVx(nu:‘). (16)

From (9) and (16), we have

© q
H=Ho+5 § (agH +bHe).  (17)
q=1p=-q
Then, in view of (14), (15), and (17), we find the
PEM system:

0 _ .0 B 11 12
Eanm - anm+ z z (Gnm,qpaqp+Gnm,qpbqp)
E q=1p=-q
0 4 (18)
(b, = bC + (Chm +G2 b
0 nm — ~nm z z ( nm,qpaqp nm, gp qp)
0 q=1p=—q
h=12..; |[m<n.
Here,
om = Ao+ Zahm o = bom + Zbis as)
Gumap = Gomap+ ZGim aps

where the second superscripts 0 and z denote the corre-
sponding values at Z = 0 and additional termsthat result
from the fact that the impedance is nonzero. The com-
ponents of (19) are given by

o = N[ (0 HO)efnc,
S

b2 = %TNnmI(n x HY)he_ds,
S (20)
aim = Z2Nonf[ % (0 X HOL s,
S
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o _ 1 N HO Td
m _m nmI[n X(n x )]Senm S.

S

The matrix elements of the PEM system at Z = 0
have the form [11]

011
G

nmagp Z NnmI(n x qu)enmdS

N
Gg?nz, ap ~ _4Z_.,.[Nnmj(n x qu)eﬁmds,

(21)
Gonp = 7eNam[(n X Hip)hids,
S
w2 _ —C hyre
Gnm, ap ~ Z]_—F[Nnmj(n X qu)hﬁmds'

The additional terms for the matrix elementsin the
case of a nonzero impedance are expressed in the form
of the following integrals:

nmaqp ~

a1 _ —C e e
G Z.,_.[Nnmjl[n X (n X qu)] |shnmds’
S

Glingp = ZoNan [0 (0 X Hyp)] [chncs

° (22)
-1
- 4T[ZNnmJ-

S

GzZl

nm, qp [nx(nxHg)] |seﬁmd5,

; -1 =
G2 o = mNnmJ’[n x (N % Hi) | .
S

In expressions (20)—22),

ik
DXrn enm_
7 (FXn),

e _
hnm_

0> % (rxn)-
In the spherical coordinate system,

n = £(i,psin~igp;sin—iyp;), ds = kpdedo,

K = J(p2+ (pp)?)sin0 + (p})%,

wherer = p(6, ¢) isthe equation of the surface Sin the
spherical coordinate system.

KYURKCHAN, DEMIN

If the scatterer isabody of revolution, i.e., p(6, ¢) =
p(6), system (18) takes the form

O

%anm = anm+ z (Gnm qmaqm+Gi$n gqm qm)

0 q= \m\

O o2 (23)
%bnm = bnm+ z (Gnm qmaqm nm gm qm)

0 q=[m

h=12..; Im<n,

where the quantities Gnm qm are expressed through sin-
gleintegrals.

In order to substantiate the algorithm developed,
one has to asymptotically estimate the matrix elements
and the right-hand sides of system (18) for large sub-
scripts n and g. This procedure isidentical to that used
in [7]. For instance, it can be shown [7] that, for n > q,

|Gnm qp| < const%,

where
0, = max Mexp(iseg) , (24)
93,4)0,5 2
and 8; and ¢, are determined by
_p'e(e, 9) = —is; s = %1,
P(6, ¢) [o=6; 0, (25)
Ps(6, 9) = 0; exp(is8S) = O.

P(B, §) lo=06;

Maximum (24) is looked for among those roots of
system (25) falling (after the substitution & = p(8,
¢)exp(iB)) into the contours C, that result from map-
ping the section obtained when the plane (¢, ¢ + 1) cuts
the surface S onto the complex plane z = rexp(ia).
These roots are the principal singularities of the exten-
sion of the diffraction field into the scatterer [9]. If the
function p(8, ¢) has nonanalytical points, they have to
be taken into account in calculating maximum (24).

Similarly, at g > n,

|Gnm qp| < constg—!q,
2

where

G, = max kp(6, o)

S > exp(isBy)|.
65 §g, S

(26)
Maximum (26) is searched for among those roots of
(25) corresponding (after the substitution & = p(8,
¢)exp(iB)) to points outside the above contours C, on
the plane z=rexp(ia).
TECHNICAL PHYSICS  Vol. 49
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In asimilar way, one can show that, for n> 1,
0] |0 a"
|anm|’ |bnm| = ConStﬁn_’ 0 = max(ay, Og),

where g, = kry/2 and r, is the distance to the farthest
(from the origin) point inside Sthat corresponds to the
singularity of the function (n x H)|(B, ¢) in its exten-
sion to theregion of complex angles®. If Histhe plane
wavefield, 0,=0;i.e,0=0;.

From the estimates found, it follows that one has to
substitute the unknown coefficientsin (18) as[6, 7]

n n

(e) b = o
Xnm: nm — Hynm'

Ay = H

Then, for example, system (23) takes the form

00

0 0 11 12
Kam = Xam T (gnm, quqm+gnm, qmqu)
. q=Tm
O 0 - 21 22 (27)
%’nm = Yam T z (gnm,quqm+gnm,qmqu)
0 q=|m
h=12..; Im<sn,
where
o _ n o o _ nlo
Xom = '—nanmv nm — —_nbnmi
jl — Il nl' gq-n
gnm,qm - Gnm,qm o

o

System (27), as well as the general system of equa-

tions found from (18), is solvable by the reduction
method subject to

o,>0. (28)

If the initial field is a plane wave, condition (28)

restricts only the shape of the scatterer. It must belong

to the class of weakly nonconvex bodies [7], which all
convex bodies are.

RESULTS OF NUMERICAL SIMULATIONS

Consider solutionsto particular scattering problems
obtained by the method devel oped. We considered scat-
tering by axisymmetric bodies, such as a prolate spher-
oid, afinite circular cylinder, acircular cylinder with an
analytic boundary, and a sphere. The Z axis was taken
to be the symmetry axis.

The pattern coefficients were calculated by solving
afinite system of form (27) in which the upper limit of
TECHNICAL PHYSICS  Vol. 49
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summation is equal to N:
0 N
%P(nm = Xgm + Z (gﬁn qqum + gﬁn qmqu)
0 q=|m
O 0 - 21 22 (29)
%B/nm = Yom + Z (gnm, qqum + gnm, qmqu)
0 q=Im
h=1,2..; Im<sn.

The solution of system (29) is reduced to the solu-
tion of 2N + 1 smaller dimension systems of linear alge-
braic equations for each m(—N < m< N). The minimal
and maximal matrix dimensionsare 2 x 2 and 2N x 2N,
respectively, whereas the matrix dimension in the gen-
eral case (when the symmetry of rotation is neglected)
would be equal to 2(N? + 2N) x 2(N? + 2N).

Let usfirst study the scattering patterns for perfect
electrical and magnetic conductors: a prolate spheroid
with ka = 10 and kc = 20 (a and b are the minor and
major semiaxes, respectively) and afinite circular cyl-
inder with ka = 10 and kh = 40 (a is the radius of the
base and h is the height) into which this spheroid is

IE§|
120+ ﬂ Ji
100
80
60
40
20

0o 60 120
0, deg

240 300 360

Fig. 1. Scattering patterns for perfect electrical conductors
when a plane wave isincident normally to the axis of revo-
lution: (1) spheroid and (2) cylinder.

[F&]
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100+
80
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20+

- -&“./q\/:"l-}f* :

0 60

2AA,\AI\A1‘
s e A “."‘”’““-'v-«m..._,,l

240 300 360

180
0, deg

120

Fig. 2. The same asin Fig. 1 for perfect magnetic conduc-
tors: (1) spheroid and (2) cylinder.



170

o/\2, dB

L L L L L L L L
40 60 80 100 120 140 160 18
0, deg

-15

|
0 20

Fig. 3. Two-position scattering cross section of a conduct-
ing spherewith aradius 3\, coating thicknesst = 0.05A, rel-
ative permittivity €, = 4 — i, and permeability g, = 1.
(1) PEM for N =25 and Z = -5.48 — 136.69i and (2) exact
solution (Mie series) [15].

inscribed. We consider the case when aunit planewaveis
incident on them at angles 8, = 90° and ¢, = 0° (normal
incidence). Here, theincident field is polarized asfollows:

E° = i,exp(—ikrsinBcoso),

HO = —%'iyexp(—i krsinBcosd).

Figures 1 and 2 show the values of |Fg | in the azi-

muthal plane ¢ = [0, 1. Curve 1 corresponds to the
spheroid (N = 40); curve 2, to the cylinder (N = 44). For
aperfect electrical conductor, theimpedance Z is equal
to zero (Fig. 1). In the case of a perfect magnetic con-
ductor (Fig. 2), one must put Z = oo; in applications,

o/A\2, dB
10F 8, =90° ¢,=0,¢,=3,f=3 GHz
or e o=s $ =90°

-10
-20
-30
_40L
_500 | |

30 60 90
0, deg

120 150 180

Fig. 4. Two-position cross section in the half-plane ¢ = 90°
for aconducting circular cylinder with the radiusa = 0.26A,
height h = A, coating thicknesst = 0.02A, €, = 3, and p, = 1.
The plane wave is incident normally to the axis of revolu-
tion. (1) PEM at N = 15 and Z = -48.651i and (2) integral-
equation and finite-element methods [16].

KYURKCHAN, DEMIN

however, the impedance may be set equal to 1000,
where {,, is the impedance of free space.

Now we pass on to scattering by coated bodies. An
insulating coating with athicknesst, permittivity €, and
permeability p is characterized by the impedance Z

[13, 14]:
Z= —i[%‘tan(klt),

where k; = kn and nisthe refractive index.

Figures 3-5 show the results of simulating the char-
acteristics of wave scattering by bodies with an insul at-
ing coating. On the vertical axis, the quantity o/A? is
plotted, where o = lim 4 m2|EY[/|E]? is the radar cross

r - oo

section.

Figure 3 shows the two-position cross section for a
sphere of radius a = 3\ coated by an insulator with a
thicknesst = 0.05A and material parameterse = (4—i)g,
and u = ,, where g, and |, are the permittivity and per-
meability of free space. The dashed linein Fig. 3isthe
exact solution in the form of Mie series[15], while the
solid line is obtained with our impedance approxima-
tion. As can be seen, the impedance approximation is
quite adeguate in the case of the sphere, although the
refractive index of the coating material is compara
tively low.

Figure 4 shows the results of calculation of /A2 in
the half-plane ¢ = 90° for afinite circular cylinder of
radius a = 0.26A and height h = A that is coated by an
insulating layer of thicknesst = 0.02\, € = 3¢, and 4 =
Ho. Here, aplane wave is aso incident normally to the
axis of the cylinder (8, = 90° and ¢, = 0). The dashed
line is taken from [16], where the method of current
integral equations and the finite-element method were

L
30 4 50 60 70
0, deg

| |
80 90

! !
0 10 20

Fig. 5. One-position scattering cross section in the plane x-z
for a conducting circular cylinder (radius a = 0.5\ and
height h = 2\) uncoated and coated by alayer of thickness
t=0.1I\, &, =2—i,and y, = 1.5—0.5i. (1) Uncoated cylinder
(method of moments) [16], (2) uncoated cylinder (PEM,
Z=0), (3) coated cylinder (finite-element method) [16], and
(4) coated cylinder (PEM, Z = -357.134 — 326.842i).
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IF§|
140+
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40
20
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240 300

). .|
180 360
0, deg

120

Fig. 6. Scattering patterns for black bodies when a plane
wave is incident normally to the axis of revolution:
(2) spheroid (N = 40) and (2) cylinder (N = 44).

used in calculations. The results of simulation by the
impedance approximation are in good agreement with
those found in terms of the strict model, although here
the problem is complicated by the presence of disconti-
nuities at the boundary of the scatterer (near the discon-
tinuities the impedance approximation is generally
incorrect) and also by the fact that the dimensions of the
scatterer are small compared to the wavelength.

Finally, Fig. 5 shows the one-position radar scatter-
ing cross section for a perfectly conducting finite cylin-
der of length kh = 4rtand radius ka = 1t (curves 1, 2), as
well as for a cylinder with an insulating coating with a
thicknesst = 0.1A, € = (2 —i)gg, and 1 = Hp(1.5-0.50)
(curves 3, 4). Curves 1 and 3 are taken from [15].

In calculating the two-position cross section for the
sphere shown in Fig. 3, the upper limit of summationin
finite system (29) isN = 25. Thetotal time taken to cal-
culate the curve by our method is smaller than 1 min.
The caculation of the corresponding curve by the
finite-element method [16] involved inversion of the
algebraic system with more than 187000 unknowns
and took 130000 sof CPU time. In calculating the one-
position scattering cross section for the circular cylin-
der (Fig. 5), N = 23. The total time taken to calculate
each of the curvesis less than 14 min. The results pre-
sented indicate the high efficiency of the approach pro-
posed in this paper.
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Fig. 7. Scattering patterns for impedance bodies at Z 0
when a plane wave is incident normally to the axis of revo-
lution: (1) spheroid (N = 40) and (2) cylinder (N = 44).

Now let us consider wave scattering by black bod-
ies. Figure 6 plots |F§ |in the plane ¢ =[O, 1 for the
case when the perfectly conducting spheroid and cylin-
der mentioned above are black bodies. The scattering

pattern in this case was cal culated with the Macdonald
approach [2].

According to the Sommerfeld concept [1], as was
mentioned above, a metallic body with an insulating
coating that has a thickness t much smaller than the
body dimension and permittivity and permeability in
the form

€ = —iag, M = —iay,
where a — oo, may be used as a model of a black
body.

In the Sommerfeld model, theimpedanceisZ 0—,.

Figure 7 shows | FS | for the same spheroid and cylinder
in the plane ¢ = [0, 1] with the impedance correspond-
ing to the Sommerfeld model. As can be seen, the scat-
tering pattern for the coated body, which hastheimped-
ance Z = -, issimilar to that found in the framework
of the Macdonald approach. It is worth noting that the
backscattering cross section in Fig. 7 is smaller than in

Fig. 6 for both bodies (for the cylinder, |FSs, . (270°, 0)| =

Table 1. Valuesof |Fg|(8, ¢) at 6 = 120° and ¢ = O for the impedances Z, = 0, Z; = 1000¢,i, and Z, =

N Spheroid N Cylinder
Z Z; Z, Zy Z Z,
37 4.4014138 3.7177547 22222917 40 6.5003586 | 19.9426107 | 11.8249504
39 4.4014206 3.7177477 2.2222888 41 6.6081976 | 19.7724602 | 11.8295639
40 4.4014094 3.7177432 2.2222959 43 6.5307894 | 19.5571172 | 11.7956310
41 4.4014020 3.7177449 2.2222993 44 6.5669652 | 19.6462934 | 11.7898536
TECHNICAL PHYSICS Vol. 49 No.2 2004
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Fig. 8. Scattering patterns for black bodies of equal size
when a plane wave isincident normally to the axis of revo-
lution: (1) cylinder with ka = 2 and kh = 8 and (2) analytical
cylinder.

2.6448 and | Fgm (270°, 0)] =7.7042; for the spheroid,

|Fosom (270°, 0)] = 0.0954 and |Fgya (270°, 0)| =
0.3495). This means that the Sommerfeld model is
more appropriate for scatterers with higher absorbing
properties.

The Ufimtsev theorem [3] states that the integral
scattering cross section of a black body is twice as
small as that of a perfectly conducting body with the
same shadow contour (the boundary between the illu-
minated and dark regions on the body surface). This
statement isvalid for convex bodiesfor which thelinear
sizes and the smallest radius of curvature are much
greater than the wavelength. In the case under consid-
eration, thisratio is equal to 2.13 for the spheroid and
2.04 for the cylinder, which has a longer shadow con-
tour.

Table 1 lists the rates of convergence of the compu-
tational algorithm for the cylinder and spheroid consid-
ered. In the case of the scatterer with the analytical sur-

Table2. Optica theorem for the impedances Z, = 0 and Z; =
10004 i

N Spheroid Cylinder

Zy Z; Z Z;
Ps 1.8322582 | 1.5556632 | 2.0700647 | 2.2404235
P, 1.8322582 | 1.5556631 | 2.0874581 | 2.2232507

Table 3. Integral scattering cross sections for a black spher-
oid and ablack cylinder

Spheroid Cylinder
Psmac 0.794916 1.035255
Pssom 0.940357 1.307298
Pss 0.833333 1.061039

KYURKCHAN, DEMIN

face (spheroid), four decimal places are reliably estab-
lished even at N = 40, i.e., a N = kd, whereas only two
decimal places are reliably established for N= 1.1kd in
the case of the body with the nonanalytic surface (cyl-
inder).

The optical theorem for perfectly conducting bodies
was verified. According to this theorem, the integral
scattering cross section is equa to the total cross sec-
tion in the direction of incident wave propagation.
Table 2 presents the results of checking the optical the-
orem for the perfect electrical and magnetic conductors
mentioned above: the spheroid and cylinder. In the case
of anormally incident plane wave, the optical theorem
has the form [17]

Ps= PSZE——Im{Fe(G 90°, ¢ = 0)} .

In terms of the Kirchhoff approximation [2], the
integral cross section for ablack body is estimated as

EY’s,
20,

where §, is the cross-sectiona area of the shadow
region.

Table 3 lists the integral scattering cross sections
(Pg) of ablack spheroid and a black cylinder that are
found based on the Macdonald concept (Pgya), Som-
merfeld concept (Pss,y), and Kirchhoff approximation

(Pso).

Finaly, Fig. 8 plots the values of |F§ | in the plane
¢ =[O0, m] for the following black bodies of equal size:
afinite circular cylinder with ka =2 and kh =8 and a
finite circular cylinder with an analytical boundary for
N = 19 in system (29). The canonical equation of an
analytical cylinder has the form

(X’ —a’) (- (h/2)*) =€°, e<0.1ka,

where € = 0.01 is the radius of curvature at the end of
the cylinder.

The scattering patterns for both bodies in Fig. 8
coincide within the graphical accuracy.

2nm

SEzzH": (6, ¢)’sin6dadp = Pgy= -2

CONCLUSIONS

From the analysis of scattering by impedance bodies
with irregular boundaries, one can conclude that the
pattern equation method can effectively solve problems
of such a kind. The PEM-based computational algo-
rithm is very fast and does not require elimination of
current singularities at joints of boundary segments
with different curvatures. The impedance approxima-
tion is applicable to simulating the characteristics of
scatterers with insulating coatings and weakly reflect-
ing scatterers, including those having surface irregular-
ities and low-optical-density coatings.

TECHNICAL PHYSICS  Vol. 49
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Abstract—A method for designing microstructured optical fibers that is based on exact integral equations for
the transverse components of the magnetic field of the mode is proposed. A solution to the vector waveguide
problem for fibers with afinite number of circular capillariesin the round cavity of the cladding can be refined
successively. Quartz fibers with hexagonal capillary rings are also studied. © 2004 MAIK “ Nauka/ | nter period-

ica”.

INTRODUCTION

Microstructured optical fibers, the guiding regions
of which are formed by microscopic (mostly air) chan-
nels in the insulating environment, have recently
become the object of intensive research, because they
offer a unigue combination of dispersion, polarization,
and nonlinear properties[1-8]. A number of theoretical
methods to analyze modes propagating in microstruc-
tured fibers has been suggested [9-15]. In [9-15], the
cross section of the fiber was simulated by a set of cir-
cular inclusions embedded in a homogeneous medium
that either occupies the entire cross section or is sur-
rounded by a cladding with different permittivity. The
recently elaborated more general and physically more
adequate model [14, 15] wasinvestigated by the numer-
ical multipole method. This method is also of interest
because it takes into account the vector character of the
waveguide problem and makes it possible to describe
the mode |eakage effect. The multipole method usesthe
expansion of the longitudinal components of the elec-
tromagnetic field in cylindrical harmonics whose
amplitudes are found from the continuity conditionsfor
the tangential components at the inclusion—cladding
interfaces. However, the associated computational
scheme is very tedious [14, 15]. In this work, we sug-
gest an aternative method for calculating the eigen-
modes and leaky modes of microstructured optical
fibers. It is based on exact integral equations for the
transverse components of the magnetic field and results
in relationships that are an analogue of the Ewald—
Oseen extinction theorem [16]. Unlike the multipole
method, our method is simpler in mathematical state-
ment (thereis no need to represent interinclusion fiel ds)
and allows one to study fibers made of a set of capillar-
ies (capillary fibers). Circular fibers considered previ-
ously is a specific case of such structures, which are of
practical interest [4, 5, 12]. Below, we justify the
method of integral equations, illustrate the convergence

of solutions, and compare the results obtained with this
method and with the multipole method for fibers with
circular inclusions. The dispersion characteristics and
mode fields of quartz capillary fibers are studied. Con-
ditions for the maximal contraction of the fundamental
mode field are determined. Capillary fibers are shown
to combine a high spatia confinement of the mode
energy, zero dispersion of the group velocity, and low
leakage losses.

MATHEMATICAL STATEMENT
OF THE METHOD

Consider a fiber consisting of n circular capillaries
distributed over the circular cladding (Fig. 1a). The
cladding has aradius A, and the inner and outer radii of
an Ith capillary are a, and b, respectively. We use the
global Cartesian system (X, y) where the origin (0, 0)
coincides with the center of the cladding and the point
(%, y,) isthe center of thelth capillary, aswell as global
polar coordinates (p;, ¢;) where pA, = 0 corresponds to
the center of the Ith capillary. It is assumed that the
domainsp > A, p, < a, and g < p, < b, are occupied by

media with respective permittivities €., €, and &\

and that the space between the capillariesin the domain
p < Ais occupied by a medium with a permittivity €.

The permittivities g, e,(l) , s,(z) , and g, may be complex
guantities. A specific case of such fibersis that shown
inFig. 1b. A homogeneousrod at the center will be con-

sidered as a capillary with the number | =1 (x, =y, = 0)
and €!” = ¢!?. This fiber will be discussed in greater
detail below.

L et the dependence of the optical field ontimet and
longitudinal coordinate z involve the factor exp[i(wt —

B2)], where B is the complex mode propagation con-
stant. Then, the transverse components of the magnetic

1063-7842/04/4902-0174$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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field H; (j = x, y) of the mode will satisfy Egs. (5) in
[17]. With the Hankel function represented in the form

1 dk
HZ (X" = =
TL! Xs =K
x exp[—-ik(x —x) —i./xs —Kly =],

we can write

Hixy) = 3 [ [HPOO T Y. @

Here, X = J/Koe.—PB° (Rexs > 0 if Re(kie,— B?) > 0,
ImX. < 0if Re(k3e,— B?) < 0), ky = Ay 2mti's the wave-

number of free space, 1 = (X —x)2+ (y —y)?, the
contour I isdefined in [17],

_ =0 2
fi(xy) = EEE—j_kOASHj’ (2

E = ¢ '(0,H,~0O,H,), ©)

& =Y, & = X, A = g(X, y) — &, and (X, y) is the per-
mittivity of the medium.

Since the functions fi(x, y) are other than zero only

in the capillaries and cladding, relationships (1) within

these domains are exact integral equations. Outside
these domains, they are formulas for direct calculation.

To agebraize Egs. (1), we should define bases to
represent the functions H;(x, y). Inside the capillaries,
these functions must befinite at p; — 0 and satisfy the
Helmholtz equations

[02+ 02+ (x")H, = o, (4)

wherek=1ap <a,k=2aa<p <b,and (x)?2=
K2 —p2.
Thus, we may write

00

Hi= S ZD(p)exp(ive)), &)

V = —0

wherek=1latp <a,k=2at g <p <b,
ZR(p) = AV ),
ZD(p) = Bl (e + BUHP (P o),
Jv(xfs) p,) arethe Bessdl functions, and Af\j,) and Bf\',‘ are
unknown coefficients.

In the domain p > A, the functions H;(x, y) must sat-
isfy the Helmholtz equation

(O2+05+X)H; = 0

TECHNICAL PHYSICS Vol. 49 No.2 2004
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(a)

Fig. 1. Cross sections of the fibers.

and, at p — oo, have the asymptatics

H; D®(6)(/p)” exp(—ixcp), (6)
where ®(¢) isacontinuous function of angular variable
and X, = A/kae.—B* (Imyx. < O for the eigenmodes and
Rex. > 0 for leaky modes) [17].

Hence, with p > A, we have

Hi= S ZR(p)exp(ive), W

where Z{7 (p) = CPH (xp) and C{ are unknown
coefficients.

Note that, by virtue of asymptotics (6) and
HE” (xd) ~ (/P ) exp(-ixsp) (p —= ), the rights of
Egs. (1) existif ;= €. 0r Im(Xs+ Xo) < 0. Thiscondition
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isusually met in the cases of interest. Recast Egs. (1) in
the form

Hixy) = Q% y) + 5 oP(xy), (9

=1

where theterms QEC) (x,y) and QE') (%, y) arethe contri-
butions to the rights of (1) from the cladding and Ith
capillary, respectively.

To define these terms in explicit form, we note that
differentiating the step function €(x, y) in (2) yields
Dirac deltafunctions. Integrating these functionsyields

(©
s
iA ¢ , 9
= 7 (8= [PIV[EHG (o) - 20" + I,
0

Ql(xy) = & I POL (e — e [EHP (XN o=

0
—ay (e - s.”)[EHé”(xcr)] o= O + 1, + 1. (9

Here,

.k2
le = IZ"(ss—sc) J’J’Héz)(xsr)Hj(x', y)dxdy,

pP>A
L2
= S [ [HEOOH, (X, y)dxay,

pi<a

I, (e ~¢?) [ jH‘”(xsr)H(x y)olxoly(1

a <pj<b

PV = sing;, P! = —cosp;, P = sng’,
() — [N
P, = —cos¢’;
X = pcosp, y = psing, X = p'cosd’,
y = p'sing’
in expression (9);
X = X +pcosd, Yy =y +psing,
X = X +pcosh;, y =y +psing

inexpression (10); and thefunction E(x, y) is calculated
from (3), (5), and (7). To simplify the integra 1,, we

introduce continuous functions hﬁ) (%, y) that satisfy
the Helmholtz equation

(D2+ D2+ x5Hh = (12)

SOTSKY, SOTSKAYA

in the domain p, > a and have the form

DH for p/<a

i =0 z Z3) (@) [HP (x.a)] ™ (13)

D (2) ;
X Hy " (xsp) exp(ive,) for p>a,.

Let us also take advantage of the equation [18]
(0% + 07+ XOH (X)) = —4i8(X =x)3(y ~),(14)
the right of which involves Dirac functions. Multiply-
ing Egs. (4), (12), and (14) by Hg” (x4), Hg” (xs"), and

h (x, y), respectively; integrating the products; and
applying Green's theorem [19] to the resultant expres-
sions, we arrive at

2T[

0
H(Z) . h(l)
[ (XSr)] pi = |ap|

1, =hP+ Y]
pi=g+0 (15)

0
Similar transformations applied to the integrals I,
and |, yield

= -0

|bI

= h(-z) H(Z) o a h(2) do!
2 il I[ (Xs] ;= b'6p| oo P,
on (16)
iy 2 0, (PiTa*o .,
-—[[H MN]o; hi] do;,
4‘!.[ 0 (XS )]D| a|ap| o=a -0 ¢|
= e [Pl 2, (17
c jc 4-! 0o (Xs p':Aap. i o= A0 ,
. _
0y ZPO)HP(xb) ™
5{;%
EXHS (xsp)exp(ive,) for p>b,
h§|2) = EHJ a a<p<b, (18)
|:| 00
(2)
% :z%z (@) 3, (xsa)] ™
J,(xsP)exp(ive) for p<a,
Dj for p>A,
0.,
=DY S ZVAL XA (19)
% 3, (xp)exp(ive) for p<A.
TECHNICAL PHYSICS Vol. 49 No. 2 2004
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In view of (3), (5), (7), (13), (18), and (19), as well
as of the identity [20]

00

HE(xar) = Y explive o]

H? (X0 f ' 9
 EH 6P (xp) for p<p

DJ J(XsP)HI(Xsp) for p>p),

which was written subject to (11), the integralsin (9),
(10), and (15)—17) can be taken analytically. As a
result, the rights of (8) are represented through seriesin
cylindrical functions defined in the local coordinates p
and ¢, (I =1, 2, ..., n) and in the global coordinates p
and ¢. Reducing the series to unique coordinate sys-
temsand applying Graf's addition theorem for cylindri-
cal functions [20], we transform Egs. (8) into the form

Hy+ (=1)PiH, = H,+ (-1)PiH, + 8H{ for

(21)
Jox=x)?+(y-w)’<a,
He+ (-1)PiH, = Ho+ (-1)PiH, + 8H{)  for 2
a <.J(x—x)"+(y-y)’<by,
H,+ (-1)"iH, = H,+ (-1)"iH, + &H, for
XY > A )
Here, p takesthevaluesOor 1,
Hiy' = z (U + VD)3, (xsp) exp(ivey), (24)
(2) — (2) (p)
Z [URTHS? (Xsp1) + VP 3, (X<P1)] 2)
x exp(ive,),
Y WPHP(xp)exp(ive),  (26)

V= —0

and the quantities U®, VP and W'” are linear func-

tions of the coefficients in series (5) and (7). The func-

tions U/®, VP and WP are easy to derivein explicit
form; however, the associated expressions are very
awkward. Therefore, we will give only the final results
of our analysis. According to (21)—26), we have

Us =0, UP=
Vi = o, Wé")=o,
=1,2,....,np=0,1;andv=0, 1, ... .

(27
(28)
wherel|
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One can show that Egs. (27) turninto identities if

j— k —

Bl = QuAY + QLA

(whereq=1-pand o = 2(p—q)),

(29)

B = Bl +(-1)fiBl, Al = AV +(-1)"iAY,
Qo = KPP ™) 3,2
x[H1(2) —HE.(27)]

HP (@) [P (™) 3, _1(Z") = 3,.4(#")}
Qv = KP[1—e(e") 19, 1(#dV)HP(?),
Qb = KP{3,@)[ePE™) 3, _1(Z") 3,4
X2 3,(ZN3, 1 (ZP) = 3,44 (@)1

Qi = -KP[1-eP(e)13,_1(Z")IP (),

Q1|<1 _ Q1|<1

1lv Olv

—05imv[1-£2(e™) 1 3,(Z°)HP (22,
Qi = Qo

+05im1-£2(e™) 1 3,(Z)3,(2?),

KO = 02512, 29 = xWa, 22 = xPa
Subject to (29), the lefts of Egs. (28) take the form

VP = RPAR + RZPAY,

+ z |:F(|) T(P)c(p)_'_':ﬂ)v o (2[;') GC(Q)

(30)
+3 (G SEAG + Gy oS Aﬁ‘ff)}
k#1
(p) (a)
WP = PP 4+ LD
(31)
+ z (-1 “Z(F‘” SEAY +FLSTGAR).
U =—0 |=1
Here,

_\(;p) - C(X) +( 1)p| C(Y)
p _ A111 112 211 ~212 121 122 221 222
Rlv - QvaQva + QvaQva + quv+onIv + quv +0Qplv1
p _ Al21 A112 221 ~212 111 122 211 222
sz - QvaQva + Qpvava + Qq|v+c;Qva + quv +0Qplva

T = [3,(z)] LYHP(2) + (2-K)HP(2)],
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S = [HPEH " 1Qm3,(2?)
+QAHP () + RS, (21,
Kol 3,(zo)[H 1(2z) — e H? 1 (20)]
+ XX HP(Z)[dy_1(2) =3y 4 1 (2]}
LY = K(1—ech)dy(z)HP 1(2.),

L(O)

LY = L9 _osimv(1l-eeg.")d,(z)HP (z),
Qo = KP{HPEZ) [ee®) "3y _1@P) = 3y . 1E )]
XX I, ENHP ,(Z) - HP (23
Qo = —KP[1—g,(e?)13,_1(2)HP (2,
Qe = KP{HP )

x [e(e?) THP (%) - HP. (2]
ZM},

-1
Qe = KP[1-e () THR (FHHP (Y,

2)\—1 2 (3 2 2
XX THPENHP (A -HE

QlIZ = Q2 + 0.5V 1 —£4(e1?) "] 3,(2Y)HP (2",
szz _ szz
1lv — Olv

+0.5imvV[1- es(sfz))_l] Hsz)(z.(s)) Hf,z)(ZfA)),

K® = 0.25im7”, K, = 0.25imz,,

2% = xPb, 72 = xb, = XA Z = XA
3,(xsp™)exp(ive ™),

G, = HO(Xpi) exp(ivey),

p") and ¢O are the global polar coordinates of the center
of an Ith capillary, and p,, and ¢,, are the polar coordi-
nates of the center of akth capillary in the local coordi-
nate system related to the Ith capillary.

Asfollows from (30) and (31), Egs. (28) produce a
homogeneous algebraic system that has the matrix rep-
resentation

F(l)

MX = 0, (32
where X is the columnar vector composed of the

unknown coefficients A" and CP .

Note that the fulfillment of Egs. (27) and (28) means
that waves satisfying the Helmholtz equation

(O2+ 05 +X)w = 0

SOTSKY, SOTSKAYA

(where W isany of thefunctions3H(3, 5H(Z , and 3H,)
cancel each other in the capillariesand cladding. There-
fore, the result obtained is an analogue of the Ewald—
Oseen extinction theorem [16]. Its physical validity
is supported by considering the situations where sys-
tem (32) admits analytical solutions. These situations
satisfy the conditions

e 2@ = e = g@ = g =
” = =
e? =g, BT Te (g
(K=1,...1=1,1+1,....n),
e =e? =g 2e, (1=12,..,n), (39
n=1 x =y, =0 ¢"2e? eze, (35

under which the fiber has circular symmetry. Under
conditions (33) and (34), which correspond to circular
rods surrounded by a homogeneous medium, system (32)
in view of identity [20]

3, (HP(2) - 3,_1(2)HP(2) = 2(iz)™"  (36)

is reduced to two homogeneous algebraic equations
(for AY and A\, subject to (33) or for C. and

C(l) subject to (34)). In the case of (35), we are deal-
ing with a four-layer fiber for which system (32) (in
view of (36) and the equality F{" =&, whered,,isthe
Kronecker delta) is reduced to four homogeneous age
braic equations for the unknowns AY, AY,, T,
and C(l) In al the cases mentioned above, the condi-
tion detM = O results in closed dispersion relations for
. One may show that these equations are consistent
with the well-known equations [18, 21], which were
obtained by using the standard procedure of equating
thetangential components of thefields at the interfaces.

In real microstructured fibers, conditions (33)—35)
fail and (32) represents an infinite set of algebraic equa-
tions. For engineering purposes, we leave only terms

with [v| < min series (5) and (7), assuming that A =

0and C! =0atv>m. Thisisequivalent to solving (1)
by the standard method of quadratures [22]. In this
case, the dimension of the matrix MisN x N, whereN =
2(n+ 1)(2m+ 1). The value of the complex propagation
constant 3 that satisfies the equation detM = 0 can be
found by contour integration [23]. Asfollows from cal-
culations, the rank M of the matrix equals N — 1 if
detM = 0. Therefore, we can express all the components
of the vector X through one of them and then find the
functions H,(x, y) and H,(x, y) inside the capillaries and
cladding from (5), (7), and (29). In the intercapillary
spacing,

Jox=x)2+(y-y)*>b, (1=1,2..,n),

TECHNICAL PHYSICS Vol. 49 No.2 2004
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Calculated values of the propagation constant vs. order of reduction m

m K;" ReB k' ImBx 105 | kg ImB, x 10 K;" ReB, K" ImB, x 108
3 1.438470933 ~1.439 ~1.501 1.438528862 -6.918
5 1.438363682 ~1.396 -1.381 1.438366726 ~1.374
7 1.438364928 ~1.417 -1.417 1.438364935 ~1.416
9 1.438364934 ~1.416 ~1.416 1.438364934 ~1.416
11 1.438364934 ~1.416 ~1.416 - -

X+ Y <A,
these functions can be calculated by formulas (8),

which (by virtue of (3), (5), (7), (9), (15—(20), and
(29)) are transformed into the form

H, + (-1)"iH,

00

=2

V = —0

(p) (a)

[(T“’) CP + TETH 6) 3, (Xsp) eXp(ive)
(37)

+ z(s“’Afv"’ + SYAD o) HY (Xsr) exp(ive) |.

After the functions H,(x, y) and Hy(X, y) have been
determined, the final calculation of the vector field of
the mode is performed by the formulas

H,=(iB) (OH,+O,H,), E=(iwe)™VxH,(39)

which follow from the Maxwell equations.

Note that the cross section of amicrostructured fiber
often contains orthogonal axes of symmetry. When
these axes are aligned with the Ox and Oy coordinate
axes, the field components of the mode satisfy the rela-
tionships [17]

Hx(_Xv y) = nyx(Xv y)v Hx(X! _y) = nyx(Xv y)v (39)
Hy(_Xi y) = _yyHy(Xl y)! Hy(Xl _y) = _yyHy(Xf y) 1(40)

where y2 = y; = 1.

Qwing to the properties of (39) and (40) are even,
the only independent unknowns in system (32) are the

coefficients C\” and A\, which refer to capillaries
placed in the first quadrant. In addition, according to
5), (7, (39), and (40), we have

AV=V AL a x=0, y20,
AY = (—1)Vyyﬂ|(1_)\, a x=0, y, =0,
¢ = y,c8 = (<1'y,cY,
cP=c’=0, AY=AD=0 a x=y=0
TECHNICAL PHYSICS Voal. 49
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where u = £1, £3, ...
yxyy =-1

The features described above alow the dimension
of the matrix M to be reduced to N, x N;. Here,

ifyyy=21orpu=0, %2 .. if

1 = (2n;+ny)(2m+ 1)
+(ng+ 1){m+0.5[(-1)"y,y, + 1]},

where n, isthe number of capillarieswithx >0andy, >
0; n, isthe number of capillarieswithx, =0, y, >0and
% >0, Yy, =0; and nzisthe number of capillarieswithx, =
y; = 0 (n; may take the value O or 1).

It is easy to check that NN;- 04. Thus, taking into

account the symmetry of a microstructured fiber makes
it possible to reduce significantly the body of computa:
tion, as demonstrated bel ow.

To verify the method elaborated in this work, we
evaluated a microstructured fiber with circular inclu-
sions, which was studied in detail [14, 15] by the mul-
tipole method. The fiber has six air channels in quartz
glass, which make up ahexagonal ring, and is a specific
case of acapillary fiber if

(l) — (2 _

= gl @ _

D= =P =g,

_82

o =0, p@=p® = =0 =

¢(2) =0, ¢(I+1)_¢(|) - g (| =23, ,6)

Thetableliststhe values of the propagation constant
of the fourth-order leaky mode (the fiber under consid-
eration supports only leaky modes [14, 15]) that were
obtained for A =14.25 um AN =6.75um, A\; = 1.45 um,
a+ 25um, e =1( = ., 7), & = 2.1025, and

=2.1025-i2.9x10°® [16]. Th&ee values of B arethe
zeros of the determinant of the matrix M corresponding
toy, = 1andy, = -1. As follows from the table, the
method of integral equations provides rapid conver-
gence for the propagation constant. Similar conver-

genceisobserved for themodefield, asindicated by the
values of ImpB., which are the imaginary part of the
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i
ol x

0 . 0.4

Fig. 2. Intensity isolines S;i]ax S,=(1) 0.8, (2) 0.6, (3) 0.4,
and (4) 0.2 for the (a) H, and (b) H, modes of the capillary
fiber. The dashed lines are the boundaries of the capillaries.

propagation constant calculated by the formula[17]

2n —121

A
ImB = ~C2A [dop [ST [(S),-a%h.
0 0 0

where S, and S, are the longitudina and radia compo-
nents of the Poynting vector S = 0.5Re(E x H*).

The values of 3, are the values of the propagation
constant that were obtained by the multipole method
[15]. They correspond to the order of reduction min the
expansionsfor thefield longitudinal componentsE, and
H, (expansions (5) for p, < &) [14]. When m is suffi-
ciently large, the propagation constants obtained by the
method of integral equations and the multipole method

SOTSKY, SOTSKAYA

nearly coincide. The adequacy of the results obtained
by the two independent approaches corroborates the
validity of both of them.

DESIGN OF CAPILLARY FIBERS

Microstructured optical fibers are usually produced
by drawing amacroscopic preform that has a set of cap-
illaries [24]. Fibers thus produced always have inter-
capillary spacings of near-triangular shape. The design
of the fiber depends gresatly on the drawing conditions
[24]. Two limiting designs (intercapillary spacings col-
lapse due to the surface tension force or keep their orig-
inal shape) are of greatest practical interest [24]. In the
former case, well-studied [1, 3, 5, 8-15] fiberswith cir-
cular inclusions arise. In the latter case, which readily
occurs when the preform has thin-walled capillaries
[4, 12, 24], capillary fibers are produced. Modesin cap-
illary fibers have not yet been studied. The method of
integral equations makes it possible to fill this gap. In
thiswork, we applied this method in an attempt to reach
a maximal contraction of the fundamental mode field
distribution. The corresponding structures are of inter-
est from the standpoint of observing nonlinear effects
and bending loss minimization [4, 5].

Various capillary configurations (capillaries with
different inner and outer radii embedded in glass tubes)
were suggested in [5]. We will restrict our analysis to
the hexagonal close packing of capillaries occupying
the circular cross section of the cladding (Fig. 1b). In
such fibers, the radii of the central rod and its nearest
neighbors (capillaries of the inner ring) are the same:

b, =b, = ... =b,. Theradii of the cladding and capillar-
ies of the outer ring are related as
A = 3Kb1, b8 = bg = ... = b13 = Kbl,

K = %(1+2J§+2A/1+[3).

Let us assume that (i) the central rod, capillaries,
and cladding are made of the same material, quartz

glass (el = e{? = e = ... = &l? =¢); (ii) intra- and
intercapillary holesarefilledwithair (e5” =¢{” = ... =

8(1? =g, = 1); and (iii) the inner-to-outer radius ratios

for the capillaries are the same (a,b," = asb;" = ... =
algbzé = w). Since the fields of the fiber modes pene-

trate into the air channels, the inequality k;” Ref? <
Reg., which means that these modes are leaky, is met
[8, 17]. Therefore, the outer capillary ring minimizes
the fundamental mode |leakage.

Figures 2 and 3 show results computed for the fields
of the fundamental H, and H, modes of the fibers (the
modes are designated by the basic component of the
magnetic field) at €, = 2.1025. The plots were con-
structed based on expressions (5), (7), (29), (37), and
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Fig. 3. (1) Rpjnand (2) by gpy vs. w.

(38) after solving system (32) withy, =y, = 1 for the H,
mode and y, = Y, = —1 for the H, mode.

Figure 2 demonstrates the quarters the mode inten-
sity symmetric distributions for the fiber with w = 0.8
and b, = 0.4147\, that were obtained for m = 12 and

correspond to k' B = 1.300520 —i4.44 x 102, The dis-
tributions are localized mainly within the inner capil-
lary ring, the ratios S;rlnax S (S max = Slp=0) becoming
negligible at the boundary of the cladding (S;iax Sh-=a<
4.3 % 107 for the H, mode and Sya Sy-a < 1.5 x 10°°

for the H, mode). Therefore, the transverse dimensions
can be estimated in terms of the rms radius [15]

E?TT[ A D—l 2T A ,
R= |Ofdd[pSdpd (do[p Sdp.
[t [

Note that, although the intensity distributions of the
H, and H, modes differ significantly (Fig. 2), the asso-
ciated values of R are identical within the calculation
accuracy. Specifically, the dependences for the H, and
H, modes shown in Fig. 3 are indistinguishable on the
scale of thefigure, while for the H, and H, modes of the
fiber to which Fig. 2 corresponds, we have R =
0.345477\,. In addition, the H, and H, modes of the
capillary fibers under study are degenerate [14, 15], as
follows from the theory of groups. This strict statement
is consistent with our calculations, according to which
the values of 3 for these modes coincided to 12 decimal
placesfor ms< 25. These properties allow usto describe
the integral characteristics of the fundamental modes
irrespective of their polarization.
No. 2
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Fig. 4. (1, 2) ImB, (3) D, and (4) Rvs. Ag for the (1, 3, 4)
fundamental and (2) first mode of the capillary fiber.

Figure 3 demonstrates the sol ution to the problem of
finding minima R for the fundamental mode. Here,
Rnin and by o, arethe minimum value of Rand the asso-
ciated value of the argument of the function R(b,). As
follows from Fig. 3, Ry, and b, are monotonically
decreasing functions of w, and the minimum of the
function R,;(w) in the limit w — 1 (capillaries with
infinitely thin walls) is physicaly unattainable. At afeasi-
blevauew = 0.8, the most contracted modefield distribu-
tion is observed in the fiber corresponding to Fig. 2.

The dispersion characteristics of the fiber with w =
0.8 and b, = 0.429 um (this value coincides with b, o
for Ag=1.0345 um) are shown in Fig. 4. They were cal-
culated with allowance for the dispersion of quartz
glass by using the Sellmeier trinomial formula[25]. In
the approximation used, Ime, = 0; therefore, curves 1
and 2 in Fig. 4 characterize the mode attenuation due to
leakage into the cladding.

Aswasnoted, all modesin thefibersunder study are
leaky and the number of modesisinfinitely large, since
detM() isatranscendental function of finitetype[26].
Hence, these fibers may be only quasi-single-mode
fibers provided that leakage losses for the fundamental
mode are much less than those for other modes. Of the
higher modes, the first mode, which is an analogue of
the TE,; mode of ahomogeneous circular fiber [27] (for
this mode, v, = -1 and y, = 1), is the lowest |oss mode.
Therefore, it will suffice to compare leakage losses for
the fundamental and first modes. As follows from
curves 1 and 2 in Fig. 4, the fiber may be considered
guasi-single-mode throughout the range of A,. Specifi-
caly, at Ay = 0.856 pm, the attenuation of the funda-
mental and first modesis, respectively, 3.517 x 10°and
403.7 dB m™,
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The dependence D(Ap) in Fig. 4 characterizes the
dispersion of the group velocity v, of the fundamental
mode. Here,

Ao d’Ref
2me g2’

-1
_ dv, _

D=3

where c isthe velocity of light in free space.

Asfollows from Fig. 4, the dispersion of the group
velocity is zero at Ay = 0.856 pm. From curve 4 in
Fig. 4, it follows that this A, corresponds to R =
0.308 um, which isclose to R, = 0.296 um.

Thus, quasi-single-made capillary fibers may com-
bine the zero dispersion of the group velocity with a
low attenuation and high spatial localization of the
mode energy. Such a combination favors the observa
tion of low-threshold nonlinear effects. Moreover, the
mode spot area estimated from the value of R found is
0.3 um?. Thisareais47 times smaller than the spot area
for fibers with circular inclusions, which were used to
generate awide-band continuum in [4].

CONCLUSIONS

Our method of designing microstructured fibers,
which is based on the analysis of integral equations,
makes it possible to successively refine asolution to the
vector waveguide problem with allowance for the |eak-
age effect. Thisapproach can be applied to optimize the
mode characteristics of quartz capillary fibers close-
packed in the circular cladding. Computation for a spe-
cific mode that is performed with a Pentium 1l
(400 MHz) PC takes less than 50 s, which proves the
efficiency of the method in designing microstructured
fibers with desired properties. In this work, we only
dealt with leaky modes, although normal eigenmodes
(if supported by a microstructured fiber) are also easy
to analyze. Associated results will be published later.
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Abstract—A new theory of diffusiophoresis of large volatile spherical aerosol drops that is an extension of
investigations[1-8] isdevel oped. Theinfluence of the radius of the drop, the surface tension coefficient varying
over the surface of the drop, the evaporation coefficient a of the liquid, and the flows inside the drop on the
diffusiophoresisrate are taken into account. Expressions obtained allow for direct determination of the velocity
of large individual aerosol dropsin abinary gas mixture nonuniform in component concentration. It is shown
that both the magnitude and the direction of the diffusiophoresis velocity depend on a and the size of the drop.
It is assumed that the size of the drop varies but remains considerably greater than the mean free path of gas

molecules. © 2004 MAIK “ Nauka/Interperiodica” .

Drops (particles) arecalled volatileif the constituent
material evaporates or condenseson their surface [5-7].
Otherwise (in the absence of the surface phase transi-
tion), drops are nonvolatile.

If the radius R of a spherical aerosol particle far

exceeds the mean free path A of environmental mole-
cules, the particleis called large. For such particles, the
Knudsen number

MR<1. (1)

For exampl e, water drops suspended in air at normal
conditions are large if their radiusR = 6 pum.

Diffusiophoresis of large nonvolatile and volatile
particles has been coveredin[2-4] and [1, 58], respec-
tively. In [1, 5-7], the direct influence of the evapora-
tion coefficient a of the liquid on the diffusiophoresis
rate was neglected. In [8], the effect of the evaporation
coefficient a was considered without regard for internal
flows. However, it was shown [4, 6] that internal flows
make a significant contribution to the diffusiophoresis
rateif the viscosity of theliquid inside the drop is com-
parable to that of the environment. Therefore, a need
has arisen for a theory of diffusiophoresis of large
spherical volatile aerosol particles that would directly
take into account the effect of the evaporation coeffi-
cient o when flows are present inside the drop and the
interface surface tension varies over its surface. The
effect of the size of alarge drop on the diffusiophoresis
rate at a constant evaporation coefficient isalso of inter-
est.

Let a spherical drop of radius R contain a one-com-
ponent liquid with athermal conductivity x; and molec-
ular mass m;. The drop is immersed in a binary gas

mixture nonuniform in component concentration. One
of the components is the vapor of the drop liquid. The
mixture has a thermal conductivity X,, Viscosity g,

and interdiffusion coefficient D(l‘;) (hereafter, the indi-
ces 0 and i refer to quantities outside and inside the
drop, respectively). Far away from the drop, the gradi-
ents of the gas component concentrations (CIC,,)., and
(OC,). are kept constant. Here, C,, and C,, aretherel-
ative numerical concentrations defined as

n n
Cpo = =2 and Cp = ==, @)

(o] (0]

where n,, and n,, are the numbers of molecules of the
gas mixture components per unit volume and n, = ny, +

Nyg.

Evidently, C,, + C,, = 1 and the condition
|:Jclo = - CZo (3)

ismet at any point of the gas mixture.

The radius of the drop is assumed to be large com-
pared to the mean free paths A; and A, of molecules of
either component so that the problem may be solved in
the hydrodynamic approximation [1-7]. It is aso
assumed that the moving drop retains its spherica
shape. According to [7], this holds true if its external
pressure force is small compared to the surface tension
force:

o/R < nOO%. (4)

1063-7842/04/4902-0183$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Y Vi

(OC1 )= r vy

Fig. 1.

Here, o is the surface tension coefficient at the drop—
gas interface, Ris the radius of the drop, and |U| is the
absolute velocity of the gas mixture relative to the drop.

Since we assume that the spherical shape of the drop
is preserved during the motion, it is convenient to solve
the problem in the spherical coordinate system (r, 6, ¢)
with the origin at the center of the drop.

Let the polar axis z=r cosB be aligned with the vec-
tor (OC,,)... Thedropisat rest, and the center of gravity
of the external gas mixture moves with respect to the
center of the drop with avelocity U at r — o (Fig. 1)
[7,8].

The distributions of velocities, pressures, tempera-
tures, and concentrations outside and inside the drop
satisfy the following system of differentia linearized
vector equations [7]:

Noo0V® = 0p@, (5)
divv® = 0, (6)
Noi D V(I) — Dp('), (7)
divv = 0, (8)
0°Cy, = O, )
O0°T, = 0, (10)
O°T, = 0. (11)

In Egs. (5)—(11), v and v() are the vel ocities of the
center of inertia of the mixture outside and inside the
drop, respectively; p© and p® are the respective pres-
Sures; Ny, and n, are the mean viscosities of the gas
mixture and the drop, respectively; C,, is the relative
concentration of the first component outside the drop;
and T, and T; arethe temperatures outside and inside the
drop, respectively.
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Far away from the drop (r — ), the boundary
conditions have the form [7, 8] (seealso Fig. 1)

v = |U|cosH, (12)
vy = ulsing, (13)
P = pg’, (14)
Cio = Coio+ [(OCyp).|r coSB, (15)
Ty = Too (16)
The boundary conditions on the surface of the drop
are
m, dC
%OZOVEO) (13) éopl a:% = 01 (17)
v© _ DO m; 0C, 47
0lo 12 Oopoo or 0 . (18)
= Npod V(C(H) Clo)|r=Ra
v _ 0 _ K(Toc) daT, KDCDlZ 0C,, (19)
o Vel -rTT Rap| .. R 904
T0|r:R = Ti|r:R’ (20)
D aTo aT|E|
_x p— x_
Hor - Mort g (21)
= A VLml(Cg;) - Clo)|r - R"

The temperature T, inside the drop and the concen-
tration C;, must be finite.

Boundary condition (17) reflects the fact that the
surface of the drop is impermeable to the second com-
ponent of the mixture, which does not experience a
phase transition. In (17), the first and the second terms
correspond to the radial convective and diffusion flows
of the second component, respectively. Equation (18)
means the continuity of the radial flow of the first (vol-
atile) component at the surface of the drop. Itsleft-hand
side represents the total radial flow of this component
outside the drop (the sum of the convective and diffu-
siveflows). Theright-hand side of (18) istheradial flow
that is removed from the surface through the Knudsen
layer and is proportional to the evaporation coefficient
a of the liquid in the drop. Previoudly, the latter flow
was disregarded in the theory of diffusiophoresis of
large volatile aerosol particles [5-7]. The expression
for thisterm,

(H)
nOoc“/(C C10)|r:R’
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is derived from simple statistical considerations [9].

Here,
kT00
21'[ml

is quarter the mean absolute thermal velocity of vapor
molecules, ny, is the mean number of mixture mole-

cules per unit volume, C{" istherelative concentration

of the volatile saturated vapor at the surface of the drop,
and k is the Boltzmann constant.

In Egs. (17) and (18), ng,, and ng,, are the mean
numbers of mixture component molecules per unit vol-
ume, m, and m, are the mol ecular masses of the compo-
nents, Pgo = No1oMy + N2olMs IS the mean mass density of
the mixture, and Ny, = N1 + Nggo.

Condition (19) describes the well-known phenom-
ena of thermal and diffusion creep of abinary gas mix-
ture over the surface of the drop. Therates of these phe-

nomena depend on the thermal, K(Toc) and diffusion,

K, creep coefficients [7, 8, 10-16].

The temperature at the drop—gas interface is contin-
uous and given by Eq. (20). The continuity condition
for the heat flux at the interface is given by relationship
(21). Theright of Eq. (21) takesinto account the heat of
phase transition, which is proportional to the heat of
evaporation (condensation) L of the first gas compo-
nent.

The boundary conditions mentioned above must be
complemented by the condition of zero radial compo-
nent of the convective flow of the liquid across the sur-
face of the drop,

vP=0 a r =R (22)
and the continuity conditions for the radial and tangen-
tial components of the viscous stress tensor on the sur-
face of thedrop [7]:

(0)
Hp' +2n006 —&’—26—0
or R 0 iHTi=Toi (23)
0 av(l)
x(Ti—Tm>|r:R=%) P2y
Mooy 69 ar r He-r TOT|1 -1, 08 -
gav? avd v @
Moot 38 " Tar rU g

In [24], oy is the mean value of the surface tension
coefficient at the drop—gas interface. Representing the
surface tension ¢ in Egs. (23) and (24) in terms of the
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small parameter |(ROC,,)..| and leaving only the linear
term, we obtain

0 =0p+ 90
(T =Ty

Note that the surface tension decreases with temper-
ature; i.e., 00/0T < 0 asfollows from experimental data
[17] and the simple theory concerned with this issue
[18, 19].

It should be emphasized that boundary conditions
(17)—<24) are linearized in the small parameter men-
tioned above and the quantities n,, Nyg, Nyo, No, Ny @Nd
T, are replaced by their mean values [7].

Note also that the saturated concentration C(l'g) isa
function of the temperature T, and can a so be expanded
in small parameter |(ROC,,)|- Leaving only the linear
termsyields

<“)(T)|, R = Con(To)r - r

aclt
+—1° (Ti=To)|, - r
aTi Ti:TOi ° |r_R

The problem of the gas mixture flowing about the
drop and internal flows have azimuthal symmetry, since
the polar axisisaligned with the vector (JC,,)... There-
fore, the variables vo, v, p©, p®, C,,, T,, and T, are

independent of the azimuth angle ¢ and vf,,o) and vg)

vanish [3-7].

In the spherical coordinates, a solution to set (5)—
(11) with boundary conditions (12)—(15) can be repre-
sented in the form [7]

(Ti—Ta)- (25)

(26)

v = EA" =2+ |U|Dcose+yo (27)
A
v = K —|U|Dsme (28)
Y
© _ (0 Bo
P = po +n00r—cose, (29)

(c)

u 7
Cio = Coto * [(OCyo)|.r COSB + =5-cosB + r (39
r?
(T) ¢(T)
Ty = Toot —cose + (31)
r?
v = (Q+Dir*)cosd + viy, (32
Vg) = Qi+ 2Dir2)5in61 (33)
p(|) — p8)+10n-D-rzsin6, (34)
T, = T + 1 rcose. (35)
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Next, substituting solutions (27)—(35) into boundary
conditions (17)—(24) yields a system of algebraic equa-
tions for the unknown constants A, B,, U], 1<, p{",

(T) Qu D|1 ¢(c) ¢T EIO) ' and COlo-

To proceed further, we need an analytical expression
for |U|, where U is the velocity of the incoming gas
mixture. Then, the diffusiophoresis velocity vector Uy
with respect to the center of gravity of the gas mixture
[7] can be written as

(36)

Using the expression for U (in vector form), we
obtain

Up

6N (0)

— 7 (0))
(BNoi + 2Noo)A pcD1z [2Xo * Xi + Moo VLM, RY)

1 1
: 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18
—1r (o

Fig. 2. Proportionality coefficient W vs. the coefficient of
evaporation a under normal conditions.

9+ 1
8_
7_
36k
g
35T
x 41 2
>
3_ /
2r 3
l_
O 1 1 1 1 1 1

|
06 0.7 08 09 1.0 1.1 12 13 14 15

R x10°, m

Fig. 3. Coefficient W vs. the radius R of the drop at normal
conditions.
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K(O)
" [ * 30 }Dﬁ?nooa vLmR E(Dcm)m (37)
T()o 3r]OI

+ 3(Noi + 2Noo) D(13)m1

2X, * Xil ngoa v Cio)es
(3N0i + 2N00) AP0 H2Xo+ X1 o R0 Cu)
where
A= [2Xo+Xi]
38
% D2 + avFg+2D(13)n000( vLmM, RS, (38)
(H)
5 = 9% . 5, =00 (39)
aT' Ti=To aT' T =Ty

Consider a number of limiting cases for Eq. (37).
When a —= 0, i.e., when the coefficient of evaporation
of theliquid in the drop tends to zero, we have

3Noi

(0)
—_— gocC
3Ngi + nOo 2 (BC10).

a-0

(40)

This formula gives the diffusiophoresis velocity for
alarge drop with regard for internal flows. If ng = g,
which is quite feasible, we derive from (40) at
Noo/Nai —> O

lim Up =

a-0
Noo/Noi —» 0

which is the classical expression for the diffusiophore-
sis velocity of alarge nonvolatile drop (particle).

If the thermal conductivity of the drop x; > X, i.€.,
inthelimit x/x; — 0, Eq. (37) yields

6No;
(3N0i + 2N00)A;

KS2DS2(OCs0).s (42)

lim Up =
Xo/Xi -0
(0) D(o) |:1 + N VLml R6i|
D Xi
(42)

D9n,.avLm,RO
6 } 12 Noo i 0Cy.)..
3n0i Xi %( 10)

K(O)
=
Too

(Noi + ZnOO)DDg.g)ml
3Noi + 2Noo U Pools

H
nOoa VR%(DCM)W

where

2D9n,.avLm, RS

A D(O) GV + 12 ''0o0 1 )
% 00 Fg Xi

The estimates made with the formulas derived
above indicate that an increase in the coefficient of
evaporation a of the liquid changes both the magnitude
and the direction of the diffusiophoresis velocity Up.
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Thisis clearly seen in Fig. 2, where the proportionality
factor W between Uy and (OC,)., (Up = W(OC,,).) is
plotted versus the coefficient of evaporation of a water
drop with aradius of 10 um suspended in air under nor-
mal conditions. If a isvery small (0 < a < 0.003), the
velocity Up decreases, retaining the initial direction
(Up < 0). Thisis because the effects of thermal and dif-
fusion creep (due to the nonuniform phase transition
over the drop surface) dominate in this case and the
drop moves towards lower concentrations C,;, when
Kpe > 0. When a = 0.003, the effect of purely reactive
evaporation and variable surface tension (06/0T, < 0)
starts prevailing and the drop moves towards higher
lo*

On the other hand, at constant a, large drops of var-
ious diameter have different velocities Up, as demon-
strated by curves 1-3 in Fig. 3. These curves show W
vs. the radius R of awater drop suspended in air under
normal conditions for a = 0.5 (curve 1), 0.1 (curve 2),
and 0.008 (curve 3). With very small values of o
(<0.01), dropswith acertain radius R may have the dif-
fusiophoresis velocity Up = 0. For example, curve 3
shows that the drops with aradius of 6 um are motion-
less.

Thus, knowing the radius of amotionlessdrop under

given external conditions (T, Pff’) ), one can determine

the coefficient of evaporation of the liquid in the drop,
which is of interest for experimental observation.
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Abstract—When processing experimental datafor the hydrodynamics of atwo-phase flow in aspray produced
by a mechanical nozzle, we revealed an anomaly in the behavior of the hydrodynamic drag of drops: the drag
coefficient turns out to be four to seven times lower than the previously known values. Several hypotheses are
put forward to explain the anomaly. It is found that, when the gas flows around drops under highly turbulent
conditions, an “early” (i.e., observed even at transition Reynolds numbers, Re > 50) crisis of drag resistance of
drops takes place. This new physical phenomenon allows us to account for a number of features of the two-
phase flow that are observed in the experiment. Among these featuresis, in particul ar, the fact that the momen-
tum transferred to the gasis roughly half the initial momentum of the liquid jet. © 2004 MAIK “ Nauka/Inter-

periodica” .

The effect of adrastic three- or fourfold decrease in
the hydrodynamic drag C, of a sphere, cylinder, or any
other high-drag body, which occurs at Re on the order
of 10° and is called the crisis of drag resistance, has
been known for a long time [1-3]. It arises when the
laminar boundary layer separates from the body sur-
face, becomes turbulent, and the line of separation
shifts downstream of the flow toward the “stern”
region. When thistakes place, the pressure profilein the
flow changes and the flow about the body approaches a
perfectly streamlined flow pattern[1, 2].

In the experimental study [4] of the hydrodynamics
of atwo-phaseflow in aspray produced by acentrifugal
jet nozzle (designed by the All-Russia I nstitute of Heat
Engineering) with an outlet diameter of 2 mm, thecrisis
of drag reduction was observed for transition Reynolds
numbers, Re = 40-130.

In our experiments, water was atomized in air by a
nozzle placed vertically downward. We measured the
dispersity of the spray (the drop size spectrum and
mean Sauter diameter dg,), the radial velocity profile,
the concentrations and specific flows of the liquid, the
velocities and pressures of the gas at different distances
(up to 1 m) from the nozzle and various overpressures
(p = 300, 500, and 900 kPa) before the nozzle, and the
variation of these parameters along the spray axis (the
measurement error was within 5%).

The dispersity of the spray was measured by the
method of small-angle light scattering [5]. At p =
500 kPa, the mean volume-to-surface ratio (the diame-
ter ds,) of the drops was found to be equal to about
140 um and varied in inverse proportion to the square

root of the pressure at the nozzle. Its decrease with the
height of the spray was insignificant (12%).

The velacities of the drops were measured using the
one-beam time-of-flight laser method [6] in its
improved version [4]; the pressure and velocity of the
gas were measured with the pneumatic-type metering
technique using modified Pitot—Prandtl tubes and a
high-sensitive capillary microgauge [4]. It turned out
that, at each of the measurement points, the velocities
of the drops are distributed in a wide range: their vari-
ance amounts to 25% of the mean value.

Figures 14 show, respectively, theradial profiles of
the axial component U,(r, 2) of the mean velocity of the
drops, the gas velocity field W(r, 2) at p = 500 kPa, and
the variation of these parameters with the height of the
spray (at r = 0) for p = 300, 500, and 900 kPa.

Figure 5 demonstrates the curves approximating the
experimental dependences U,(0, 2) and W(0, 2) at p =
500 kPa, as well as the curves for the relative velocity
W.4 = U —W of the phases and for the acceleration a, of
the drops at the spray axis. The acceleration is calcu-
lated by the formula

dU, _ dU,dz _

du, du, _ 1du;
dt = dzdt

"oz ~2dz.

a, =

Using the data in Fig. 5, knowing the diameter d =
d;, of the drop and the hydrodynamic drag force F =
ma,, and neglecting the force of gravity mg, one can
determine the drag coefficient C,4 from the well-known

1063-7842/04/4902-0188%$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Fig. 1. Radia profiles of the axial velocity of the drops for
the pressure p = 50 kPa at the nozzle. (1) Isthe spray bound-
ary.

formula
F = CySp(Wa)?/2, )

where p isthegas (air) density and S=1d%/4 isthe mid-
sectional area of the drops.

For the Rerange used in our experiment with aspray
from the nozzle (Re = 40-130), the drag coefficient of
a sphere may be approximated in different ways, e.g.,
by the widely used Klyachko formula[7-9] for solitary
spherical particles

C, = 24/Re + 4/Re™, ©)

Empirical formulas are also known for the volumet-
ric density of the total force Fs of drop—gas interfacial
interaction, such as the Ergun formula[10], which was
used in [11, 12]. For low-density disperse flows, the
modification of thisformula[13, 14] is more appropri-
ate:

dFs/dV = a(18p/(dsp)? + 0.36p/deyW g )W,e, (4)
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Fig. 2. Gasvelocity field for the pressure p = 500 kPa at the
nozzle. (1) The spray boundary and (2) velocity vector scale
W] =10 m/s.

where V isthe volume of theliquid, a isthe volumetric
fraction of the liquid, and  is the viscosity coefficient
of the gas. For the drag coefficient of an individual par-
ticle, the modified formula gives

C, = 24/Re + 0.48. (5)

Figures 6 and 7 plot the drag coefficient against the
height of the spray and Re number, respectively (based
on our experimental data for the spray from the nozzle
and formulas (1) and (2)), and also the curvesfollowing
from formulas (3) and (5). It is seen that the hydrody-
namic drag calculated from the experimental data is
much (four to seven times) lower than that obtained
from formulas (3) and (5), especially at distances z >
300 mm from the nozzle, where the experiment gives
Cy<0.2

In an attempt to explain such an anomaly in the
behavior of the drag coefficient, we put forward a num-
ber of hypotheses. These are (1) polydispersity of the
spray, which is responsible for the difference in the
motion of drops varying in size and for the features
appearing in the averaged (integral) motion of the dis-
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Fig. 3. Variation of the drop velocity with the height of the

spray. p = (O) 300, (A) 500, and (CJ) 900 kPa.
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Fig. 4. Variation of the gas velocity with the height of the
spray. The symbols mean the same asin Fig. 3.

perse phase; (2) deformation of the drops in the turbu-
lent flow, in particular, oscillation of their shape and,
accordingly, variation of their transverse (rel ative to the
flow) size; (3) macroscopic local inhomogeneity of the
drop flow structure, which shows up as the group
motion of the drops; (4) direct effect of velocity pulsa

SIMAKOV

tion in the gas flow about a drop; (5) extension of the
Stokes regime for the flow around a drop into the range
of transition Reynolds numbers (Re = 1-100) because
of the turbulence of the flow incoming to the drops; and
(6) the crisis of hydrodynamic drag (a phenomenon that
is well known for flow around arigid sphere at Re ~
10°), which is observed even at Re = 50 because of the
high turbulence of the gas flow.

After these six hypotheses had been quantitatively
evaluated based on our experimental data and data
available from the literature, the first two collapsed.
Indeed, if a polydisperse set of dropsis replaced by a
monodisperse one with a mean size dg, and the same
total mass and surface area of the drops, the mean drag
coefficient may change by several tens of percent rather
than by several times. Deformation, flattening of the
drops in the direction of the relative velocity of the
phases, may raise but not decrease the drag force and
coefficient [8].

Preference was initially given to the third hypothe-
sis, according to which particles of adispersed liquidin
a spray produced by a mechanica nozzle move not
individually but largely inthe form of clusters, agglom-
erates, bunches, and clouds [4]. These groups arise
when the separate filaments and films of the liquid that
form upon disintegration of the jet flowing out of the
nozzle decay [15]. It is noteworthy that the volumetric
concentration of the liquid inside and between the clus-
ters is, respectively, higher and lower than the mean
concentration over the volume, where the amount of the
clustersissufficiently large. Therein liesthe meaning of
the term “macroscopic local inhomogeneity” of the
flow structure of the drop, which takes into account the
fact that the clusters are noticeably larger than individ-
ual drops. In addition, the gasdynamic drag of a cluster
is less than the total drag of the drops moving sepa
rately. This explains the new phenomenon discovered,
which was initially called not the crisis of drag resis-
tance but merely the drag anomaly. This anomaly
showed up aslower experimental valuesof CyinFigs. 6
and 7 as compared with the known values obtained
from formulas (3) and (5). This hypothesis was indi-
rectly verified in [16], where groups of drops are dis-
tinctly seenin photostaken of the drop flow in the spray
from the nozzle.

However, the third hypothesis also failsif one takes
into consideration the fact that the anomaly (or crisis)
of the drag arises at a certain distance from the nozzle
(Fig. 6) where the concentration of the drops is appre-
ciably lower than that near the base of the spray cone,
where any anomaly isabsent. One may therefore expect
that the breaking of the group motion of drops due to
the turbulent pulsation of the gas flow will intensify
with distance from the nozzle.

Thefourth hypothesis, the direct effect of gas veloc-
ity pulsation, also turns out to be untenable: this effect
may increase, rather than decrease, C4 and only by a
few percent.

No. 2
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Thefifth hypothesisrelies on an analogy with liquid
flow through a tube: in going from the laminar to the
turbulent regime, the drag coefficient reaches a local
minimum [2]. Using the concept of the laminar viscous
surface layer that borders the turbulent boundary layer
from the outside (an ideasimilar to that used in the the-
ory of near-wall turbulence [1, 2]), we even succeeded
in constructing a model that accounts for the extension
of the Stokes regime of the flow about a drop into the
range of transition Reynolds numbers Re = 50-120
(Figs. 7, 8). However, the construction of the model
required that anumber of poorly substantiated assump-
tions be made. Yet this model cannot answer the ques-
tion why the pseudo-Stokes regime is absent near the
spray base, where Reynolds numbers are smaller, and
why the drag anomaly emerges only at distances z >
100 mm from the nozzle (Figs. 6, 7).

Thus, only the sixth hypothesis remains to be
checked. It states that an early (that is, arising even at
Re = 50 instead of ~10°) crisis of hydrodynamic drag
takes place in the spray because of the highly turbulent
flow about the drops. Here, the following circum-
stances are worth noting.

The Re dependence of the drag coefficient for a
solid sphere Cy(Re) in therange 102 < Re< 10° iswell
known. It was obtained by generalizing alarge body of
experimental data[1, 3, 8], and its plot (Fig. 8), taken
from [1], is sometimes called the Rayleigh curve [9].

This curve can be subdivided into several portions.
At Re < 1, the flow is laminar and is described by the
Stokes formula Cy =24/Re.

At Re = 20, the laminar boundary layer in the stern
region (a polar angle 6, < 180°) separates to form two
return-flow vortices of the continuous phase [8, 9].

For 20 < Re < 100, the line of separation shifts
upstream of the flow up to 6, = 120° and the vortices
behind the sphere grow to 1.2 times the sphere diame-
ter. The drag coefficient exceeds the Stokes value and
can be approximated (up to Re = 400-500) by Kly-
achko formula (3) or by theformula[8, 9, 17]

C, = 18.5/Re®. (6)

For 100 < Re < 500, the stern vortices start oscillat-
ing and the line of separation of the boundary layer
shiftsto 6, = 80° [8, 9].

At Re = 500, the vortices are separated by the flow
and drift downstream into the stern wake. At a certain
point T downstream from the line of separation in the
wake behind the sphere, the transition to turbulent flow
occurs [2].

At 500 < Re < 10°, the flow about the sphere is usu-
ally called turbulent. However, it would be more appro-
priate to cal it a mixed flow, since it is laminar
upstream from the line of boundary layer separation
(6, = 80°) and turbulent downstream from the point T.
As the Reynolds number grows, the point T moves
upstream toward the spherical surface. When this point

TECHNICAL PHYSICS  Vol. 49

No. 2 2004

191

U, W, W,,, m/s;—-0.1a,, m/s>
24

20
16

12

1
0 0.2 0.4 0.6 0.8 1.0
zm

Fig. 5. Approximation of the vel ocities of the phases and the
acceleration of the drops at the axis of the spray: (1) velocity
U, of the drops, (2) gas velocity W, (3) relative velocity of
the phases W, = U, — W, and (4) acceleration of the drops
taken with opposite sign (-0.1a,) at p = 500 kPa.
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Fig. 6. Variation of the drag coefficient with the height of
the spray: (1, 2) caculations by formulas (3) and (5),
respectively, and (3) experimental data for the spray at p =
500 kPaand d = d3, = 140 pm.

reaches the line of separation (6, = 80°), the flow
throughout the separated layer becomes turbulent and
the drag coefficient in this wide region of Re remains
almost unchanged (C,4 = const = 0.5).

At Re, = 2.5 x 10° we come up against the well-
known crisis of hydrodynamic drag for a sphere: the
drag coefficient C, decreases drastically down to 0.1—
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Fig. 7. Dependence C4(Re) obtained by calculation with
(2) formula (3) and (2) the Stokes formula. (3) Approxima-
tion Cyq = 2000/Re” of the experimental data (O) for the

spray.
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Fig. 8. Drag coefficient of the sphere as a function of the
Reynolds number: (1) Rayleigh curve [1], (2) the Stokes
theory (the circle outlines the region in the spray that is crit-
ical in Reynolds number), and (3) decrease in Cq in the
region marked (experiment [4]).

0.2 [1-3, 8]. The onset of the crisis is accompanied by
the separation of the laminar boundary layer, which
becomes turbulent. Simultaneously, the line of separa-
tion shifts downstream toward 6 = 120°-140°, that is,
downstream from the transition point T at 6, = 100°. As
this takes place, the flow about the sphere approaches
the idealized flow pattern and the pressure in the stern
region of the sphere increases markedly, reducing the
total hydrodynamic drag [2].

The description above refers to the case when the
flow about a sphereisinitialy laminar. It is known that

SIMAKOV

“the turbulence of the incoming flow affects the crisis
of drag resistance. The higher the turbulence, the
smaller the Re at which the boundary layer turbuliza-
tion occurs. As aresult, the decrease in the drag coeffi-
cient starts at smaller Reynolds numbers (and is
observed in awider interval of Re) [3]. It was reported

[2] that, as the degree of turbulence € = w,,,/W (where

]

w,, is the velocity pulsation amplitude and W is the

averaged gas velocity) increases from 0.5 to 2.5%, the
critical Reynolds number Re, decreases from 2.70 x

10°to 1.25 x 10° (i.e., by half and not by three orders of
magnitude!). In [2], it is aso noted that “the crisis of
drag resistance may occur at Reynolds numbersthat are
considerably smaller than the critical vaue if the
boundary layer isturbulized artificialy....”

It turned out that, when the turbulence of the flow is
high (¢ = 30% or higher, as in a spray produced by a
nozzle [4]), the crisis of drag resistance may occur at
transition Reynolds numbers as low as Re > 50, as fol-
lows from the experiment.

The early crisis of hydrodynamic drag for drops in
the spray explains a number of features of the two-
phase flow that were detected in the experiment. These
arethefollowing: (1) even at adistance of 1 m from the
nozzle, the relative velocity of the phases is consider-
able, reaching 12 m/s (Figs. 1, 2, 5); (2) the momentum
transferred from the liquid to the gas both in the free
spray and in the sprayer is roughly half the initia
momentum of theliquid jet; (3) thecrisisarises at acer-
tain distance from the nozzle rather than in the immedi-
ate vicinity of it. Therefore, two flow regions can be
distinguished in the spray: (i) the base region, wherethe
phases interact extensively, exchanging momentum,
and (i) the self-similar region at distances z= 300 mm,
where interaction between the phases is much weaker,
their momentum fluxes are aimost invariable, and the
radial profiles of all the hydrodynamic characteristics
are self-similar [4].

Numerical simulations of the two-phase flow in the
spray in the two-dimensional model based on formulas
(3) or (5) (i.e., without allowance for the early crisis)
invariably failed: the gas vel ocity turned out to be much
higher and the velocity of the liquid, much lower than
in experiments [4]. Conversely, when experimental val-
ues of C, including the early crisis were used in calcu-
lating the force of interfacial interaction, agreement
between calculated and experimental velocities of the
phases was greatly improved [18].

Thus, we conclude that highly turbulized flows like
those in sprays produced by nozzles may exhibit an
early crisis of hydrodynamic drag for disperse phase
particles even at transition Reynolds numbers aslow as
several tensand not only at ~10°, aswas considered ear-
lier.
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Abstract—The space-time pulsation field of hydrodynamic parameters for channel turbulent flow is derived
from the wave model of turbulence. Conditions for pulsation field randomization are analyzed. Cal culations of
the longitudinal and transverse pulsations are compared with the Reichardt’'s measurements. © 2004 MAIK

“ Nauka/Interperiodica” .

INTRODUCTION

The form of an action that disturbs a turbulent flow
and the mechanism behind turbulent pulsation were
discussed in[1, 2]. The formation of aturbulent bound-
ary layer and laminar sublayer was described in [3].
The pulsation of hydrodynamic parametersresultsfrom
a superposition of disturbances that arisein the field of
a high flow-velocity gradient at the channel wall and
propagate in the form of wave packets.

Thevelocity gradient isaresult of flow-on-wall rub-
bing. The thickness of the packet is comparable to the
amount of the primary disturbance, and the hydrody-
namic parameters within the packet vary (pulsate) with
aspatial period equal to its thickness. In the flow core,
near-spherical wave packets superpose. At the walls,
where the velocity gradient is high, the wave front of
the packets is broken. The region of front breaking is
considered as the boundary layer.

In this work, we (i) derive relationships for the
space-time pulsation of hydrodynamic parameters in
thefield of avelocity gradient; (ii) suggest amethod for
determining the thicknesses of the boundary layer, lam-
inar sublayer, and vortex formation region; (iii) con-
sider the transformation of regular disturbances of the
parameters into irregular ones; and (iv) analyze the
properties of the random pulsation field. Calculations
for the velocity field pulsation in a parallel-plate chan-
nel are compared with the Reichardt’s measurements.
An interpretation of the experimental dependences of
the longitudinal and transverse components of pulsa-
tion on the distance to the wall is given.

SPACE-TIME PULSATION FIELD

A primary disturbance can be represented [3] by a
region of overpressure Ap = p,f(r) that islocated at the
wall and is bounded by a semisphere of radiusa (r < a).
This disturbance propagates with the velocity of sound
c in the form of awave packet of thickness 2a. Within
the packet, hydrodynamic parameters pulsate. The pul-

sation of the velocity u, pressure p, density p, and other
parameters is defined through a function f(r), and the
pulsation amplitude isinversely proportional to thedis-
tance traveled by the wave (see, e.g. [4]):

do—ciql
u, p, p DfD—é—Da for |l,—ct|<a, )
up,p=0 for |lp—ct>a.

Here, |, is the distance to the point of observation and
tis the time. In an unbounded quiescent medium, the
wave retains its shape. In a channel, however, the wave
front is distorted because of reflections from the walls
and a complex velocity profilein the channel cross sec-
tion. Let us track a sample point of the wave that prop-
agatesin the field of the flow velocity U. The propaga-
tion direction of the wave at this point (the propagation
direction of an acoustic beam in geometrical acoustics)
is given by a unit vector s.

In the field of the velocity U, the direction of the
vector s at the sample point is found from the equa-
tion [4]

ds _ 1
a CcurIU XS, 2

wheredl isan element of the path covered by the point.

If U = congt, the sample point moves along astraight
line and the wave remains spherically symmetric. If U
varies over the channel cross section, the vector s devi-
ates from the initial direction and the wave front
deformes.

Let the flow be directed along the x axis of a paral-
lel-plate channel of height z=d. Our aim isto estimate
the total angle of rotation of the vector sin the velocity
field U(2). Introducing the polar, 9, and azimuthal, ¢,
direction angles for the vector s, changing the velocity
U(2) to the Mach number M(2), and integrating (2), we

1063-7842/04/4902-0194$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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arriveat (M < 1)
sind cosp = sind,cosd,+ M(2); 3
sindsind = sind,sing,,
where 9, and ¢, are the initia values of the angles.

A solution to set (3) gives the direction angles {9,
¢} of the vector s as functions of itsinitial orientation
{94, g}, coordinate z, and given velocity distribution
M(2):

Snd = ./sin’9,+ 2M(2)sind,cosd, + M%(2),
sind,sind, (4)
JSn?84 + 2M(2) Sind ,cosd, + M2(2)

Knowing the orientation {8, ¢} of the vector s, one
can calculate the trajectory of the sample point in the
channel. First, we will find the coordinates of this point
{&, n, ¢} vs. the distance | traveled by the point in the
half-space, i.e, in the absence of the upper wall.
According to (4), the position of a point relative to the
center of the wave is defined by the set of parametric
differential equations

dé _

a - sind ,cosp, + M(2),

sing =

(%)

dZ = Jcos’8 - 2M(2) ind,cosh, — M2(2),

22+n2+z2>a2.

For the wave in the channel, it is taken into account
that a disturbance may occur at an arbitrary point
rp{xp, yp, Zp} of either wall with adelay tp relative to
t = 0. We move on to dimensional parameters using the
height d as a spatial scale and the ratio d/c as a time
scale. The number n of reflections of the wave from the
walls may be expressed through the ordinate { : n =
In(Q) [3]. Then, set (5) for the coordinates {x, y, Z} of
the sample point in the channel with alowance for
reflections takes the form

I—tp

X = Xp+ J' (sind,cosd, + M(2))dl,
0
y = yp+ sindosing,(l —tp),

I—tp

z=zp+ J' %/COSZSO—ZM(Z)SinﬁocOS(I)O—|\/|2(Z)
0

(6)
—2In[ﬂ£—1(—l)”+zp}%ﬂ,

n = In[(I —tp) ,/cos’S s — 2M(2) Sin9 4 cOsh, — M3(2)] ,
(x=xp)* + (x=xp)” + (x—xp)° >a".
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Equations (6) determine the position of the sample
point asafunction of the distancel traveled by thewave
and include the point, rp{xp, yp, zp}, and time, tp, of
occurrence of adisturbance with aradiusa. The param-
eter pulsation vector at the sample point is found by
jointly solving Egs. (6) and (1). Inthiscase, it should be
taken into account that the distance I, to the point of
observation changesto |,, because of reflections and the
amplitude of the wave decreases (1 —a)" times; that is,
a I, —ct| < a, we have

ct1

n—ct
u p,pO(1- a)f T2 ot

(1a)

The wave front configuration and the pul sation vec-
tor field are found by varying the direction angles
within theintervals ¢, 0 [0, 2] and 8, O [0, T72]. The
pulsation field evolution is found by varying | so that
the variables{x, y, Z} meet the channel profile.

If the parameters rp and tp are sequences, Egs. (6)
describe the evolution of the disturbance wave front
structure in achannel. Jointly solving Egs. (6) and (1a)
yields a space-time pulsation field for the hydrody-
namic parameters of achannel flow. Softwaretools cur-
rently available, such as Mathematica 4, allow the cal-
culation of thisfield.

WAVES IN THE FIELD
OF A HIGH FLOW-VELOCITY GRADIENT

Let the flow velocity profile in the channel be repre-
sented by the formula

M(z) = Mo[4z(1-2)]""™, @)

where m is a parameter that characterizes the flow
regime: m=1for alaminar flow, m> 1 (e.g., m=5) for
aturbulent flow, and m = oo for aflow with a cross-sec-
tion-invariable velocity.

Asfollows from (4), the trgjectory of the vector sin
the field M(2) departs from a straight line. The deflec-
tion depends on the distance | the vector stravelsinad-
thick layer with a high velocity gradient.

Differentiation of formula (7) yields an expression
for the flow velocity gradient:

d _ooma 1-27
d—ZM(Z) = Moﬁ—m__l- (8)

(z2(1-2)) "

In the laminar regime (m = 1), this gradient is weak
and the deflection of the trajectory is insignificant. In
the turbulent regime, the velocity gradient is almost
absent in the flow core but grows drastically in a thin
near-wall layer of thickness d. For example, in the tur-
bulent flow with m=5 and M= 0.15, the gradient at the
boundary z = 0.03 of this layer increases 30-fold com-
pared with the laminar case (m = 1, My = 0.005).
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To visualize the results, consider the evolution of
acoustic beamsin the sectiony = 0, where ¢ = 0 and the
bend of the beams is the most noticeable. Under these
conditions, relationships (4) are simplified and the ori-
entation of the vector sisfound from (4) and (7) as

9 = arcsin(sing o + Mg[4z(1—-2)]"™). 9)

For large 9, near the wall, the trgjectory length in
the layer & increases rapidly with angle: |, = 8/cosd,.
Since the trgjectory bends, its actual length is much
greater: | > |,. For angles close to 172, there exists an
angle 9, at which the trajectory moves away from the
wall by adistance not exceeding acertain value z;; Put-

ting 9 = 12, we find the dependence of zjon 9, and

flow parameters (the minus sign before the radical cor-
responds to the lower wall):

smﬁ*m”b

= 3B g

Aswas shown [3], in the laminar regime, the tragjec-
tories of the vector s appear as straight lines almost at
any 9,. Moreover, with m= 1 and m = o, they nearly
coincide. In the turbulent regime, the situation changes.
With 9, < 93 zis imaginary, the trajectories are
straight lines, and the wave front remains spherically
symmetric. However, at 9, = 9, zjbecomes real and

the shape of the trgjectories changes. We will discuss
this case in greater detail, sinceit is of practical impor-
tance.

If zyis real, the sample point moves along the
ascending branch, reaches a maximum at z = z[(9 =
172), and returns to the wall, thus describing an arc.
Sincethisarcis symmetric about theline z= zjand the
angle of incidence |-9 | equalsthe angle of reflection 3,

for this specific ray, the motion takes a cyclic character
and persists until the wave decays completely.

(10)

0.10 +

70° 73°
0.08 |-
0.06 -
0.04 | 75°
002k 76° 0.63 1.16
772
0 0.2 0.4 0.6 0.8 1.0 0.2

X

Fig. 1. Propagation of acoustic raysat thewall for 84 = 70°,
73°,75°, 76°, and 77°.
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Consider the trgjectories with 9, that are large yet
distant from 172. Let the wave propagate in the turbu-
lent flow with My = 0.05 and m = 5. For simplicity and
better clarity, we will describe the essence of the pro-
cess for the near-wall layer height within the interval
z0 [0, 0.1] and for the wave travel | = 1.2. The initial
directions of raysaredefined by §,=70°, 73°, 75°, 76°,
and 77° (see Fig. 1).

Asfollowsfrom Fig. 1, the trajectory with 9, = 70°
penetrates into the flow core and its direction remains
practically unchanged. Theoretically, the ray with 8, =
73° describes a cyclic trgjectory with | = 4.5 and z=

0.15. However, it is obvious that, at such |, the distur-
bance decays without reaching the end of even one
cycle. Thus, three trajectories with 3, = 75°, 76°, and
77° are |left. Their behavior merits detailed consider-
ation.

First, it should be noted that the trajectories execute
a cyclic motion with two to four cycles depending on
the angle 9, over the length | = 1.2. Therefore, they
intersect with each other. For example, in the section
x = 1.16, the rays appear in order of angles 75°-77°—
76° instead of the expected 77°—76°—75°. In the wave,
the angle 9, certainly varies continuously, so that the
rays mix up completely in a layer of height z{(75°) =
0.04at 9,=75°.

In the mixing area, as in the flow core, the wave
interaction forms its pulsation field. However, here the
field changes because of the decay of the wave packet
front (acoustic ray mixing).

Since the mechanism of waveinteractioninthisarea
is different from the rest of the space-time field, this
area should be considered separately and may be
treated as aboundary layer. Itsinner interface (with the
flow core) contains trgjectories along which the distur-
bance does not decay at least within acycle. In Fig. 1,
thisinterface is determined by z {9, = 75°) = 0.04.

According to Fig. 1 (m=5, My = 0.05), trgjectories
with 8, < 75° leave the boundary layer for the core
through the inner interface. However, in anarrow range
of 4, in going from the boundary layer to the core, the
path in the cycle is so long that the disturbance decays
without reaching the wall, athough formally (theoreti-
cally) the trgectories close the cycle (reach the wall).

Let a100-fold attenuation of the wave amplitude be
the test for decay. Then, a disturbance with an initia
size 2a = 0.1 decays over the length | = 5. Figure 2
shows solutions to set (5) for | =5and 9, U [72°, 73°]
with step A3 = 0.1° that depict vortical portions of the
trajectories.

However, Fig. 2 gives asimplified picture of vortex
formation, showing only the set of trajectories in the
plane ¢ = 0. Outside this plane, the longitudinal com-
ponent of the wave velocity depends on cos¢ and
drops, becoming a variable quantity. Simultaneously,
the curvature of the trajectories grows and high-curva-
No. 2
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ture paths appear. Note that despite the condition M, <<
1, the Mach number is the basic parameter governing
the shape of vortical trajectories.

At the outer interface (within a narrow layer in the
immediate vicinity of the wall), another feature of the
turbulent flow shows up. It is known that the velocity
pulsation can be rel ated to the specific energy flux cpu?.
When the wave packet reflects from the wall, the veloc-
ity pulsation at the wall vanishes and the pulsation
energy istransferred to pressure and density pulsations.
Because of the absence of the velocity pulsation, this
layer next to the wall can be considered as a laminar
sublayer of the turbulent boundary layer. The thickness
0, of this sublayer depends on the hydrodynamic
parameter distribution in the primary disturbance,
which is represented by the function f(r, t < a), and, as
is easy to check, varieswithin §, = (0.1-0.2)a, depend-
ing on the form of this function.

One more conseguence of ray interweaving in the
boundary layer is the coincidence of the point (zones)
of reflection for rays with different 9. One such point
in Fig. 1 is near the coordinate x = 0.63. When the
packet reflects, the incident and reflected waves inter-
act. In the interaction domain (z < a), the pulsation
amplitude doubles and simultaneously the pulsation
frequency ishalved. The sameistruefor density pulsa-
tion. However, the pul sations of the parametersin adja-
cent sectors of one wave are coherent. Therefore, the
coincidence of the zones of reflection causes nonlinear
effects and spatial angular modulation rather than mere
superposition.

Under such conditions, zones of height a where ele-
mentary waves coming at different angles 9, reflect
simultaneously serve as new sources of primary distur-
bances. Since the waves interact in the region where
rays mix up (this region is the basic sign of the bound-
ary layer), a primary disturbance may be assigned the
Sizea = z(9[).

Thus, analyzing physical processes under the condi-
tions of high flow-velocity gradients, we reveaded the
mechanisms of formation of singularity regions and
defined them in physical terms (boundary layer, lami-
nar sublayer, and vorticity area in the turbulent flow).
The numerical values of these parameters depend on
thetravel | of the wave. It, in turn, isrelated to the min-
imal number of pulsations that is necessary for a spe-
cific problem to be solved.

PULSATION FIELD RANDOMIZATION

A solution to the linear (1) wave equation yields the
wave front position and pulsation in space and time (the
space-time wave field). Evidently, thisfield is determi-
nate and regular if one wave propagates in space. In a
channel, this field includes disturbances generated by
reflections from the walls.
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Fig. 3. Wave front and velocity pulsation in the planey =0
for various| (a=0.03).

Figure 3 shows the variation of the velocity pulsa
tion vector field with wave front position for the wave
propagating over the planey = 0 of the flow corein a
plane-parallel channel. The channel is shown as a
bright (white) fringe; the outside of the channel is
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Fig. 4. Seven waves and their associated velocity pul sations
in the channel for | = 0.2 and 2.2.

shaded. The travel | of the wave is shown at the upper
right of the panels. The velocity vector magnitude
(Iength) corresponds to the pulsation amplitude. Asthe
wave propagates, the velocity pulsation vector changes
its direction according to (5) and the pulsation ampli-
tude decreases smoothly in accordance with (1a). How-
ever, the space-time field remains determinate and reg-
ular, asin free space.

When many waves propagate in the channel, to trace
the history of each wave is a challenge, athough their
origination and evolution follow particular rulesand, as
follows from the above, can be calculated. The random-
ization of the space-time velocity pulsation field is
demonstrated in Fig. 4 with seven disturbances propa-
gating in the section y = 0 of the channel. The pulsation
fieldisshownfor | =0.2 and 2.2. As before, the arrows
indicate the directions of the velocity pulsation vector
for a=0.03, and the magnitudes (Iengths) of the vectors
are the pulsation amplitudes at given points of the wave
front. The wave fronts are not shown.

Attheinitial state of propagation of the seven waves
(I = 0.2), the disturbance field remains fairly regular.
However, at | = 2.2, the pul sations appear chaotic. Note,
however, that the vector field is constructed for a spread
in disturbance origination timestp < 0.2; i.e., the waves
emerge almost simultaneoudly (thisis needed for better
visualization of the vectors). Therefore, randomization
is observed only for pulsation directions. Actually, the
range of tp is unlimited and, when disturbances arise in
sequence, the pulsations differ both in direction and
amplitude (cf. the upper and lower panelsin Fig. 3).

To gain a better insight into the process, let us ana-
lyze pulsationsin the flow corein aplane-parallel chan-
nel. Expression (1a) for the velocity in awave packet is
now replaced by

u= (1—0()”COSU—TI”—_tDI”_t

B al 1 (1b)

wherea=0.1and a = 0.1.

PYATNITSKY

The numerical factor in (1b) was set equal to unity,
since we areinterested primarily in velocity pul sations.

With many waves propagating in a channel, one
should sum disturbances arising at different places and
time instants. Here, the stage of pulsation evolution is
of great concern. We will concentrate on steady-state
conditions. If k disturbances with alifetime 1 are gen-
erated in the flow within atime of observation T, knt/T
reflected waves will be permanently present in the
channel on average. The inverse value of this parame-
ter, B, characterizes the extent to which the processis
resolved in time or space.

The problem of finding the setup time for the pul sa-
tion structureis akin to the problem of finding the liquid
elevationin avessel in the case of constant delivery and
elevation-dependent discharge. Wave generation—
decay balance will be described by an expression pro-
portional to exp(-t/1). The regime is considered steady
starting with t; = 3t, when the number of wavesin the
channel differs from the equilibrium value by no
greater than 5%.

To characterize the space-time pulsation field,
either pulsation isrecorded at afixed point in the chan-
nel or the disturbance distribution in agiven directionis
visualized with streak photography. Consider first
velocity pulsations at a given point. When they are in
dynamic equilibrium, the time of observation must
meet the condition t I [t,, t,], wheret; =3t andt, < T.
Also, the channel volume under study must be large
enough so as to provide dynamic equilibrium between
pulsations at the point of observation. The latter condi-
tion can be satisfied by taking into account only the dis-
turbances offset from the point of observation by adis-
tance that is equivalent to the wave lifetime 1. Then, for
T = 10, we find the boundaries of the volume {[X;, X,],
[ys, Val, (1, )} O {[0, 20], [0, 20], (O, 1)} centered at
the point x =y = 10. The pulsation at apoint {x, y, z} is
found from (6) and (1b) by summing the piecewise
smooth function u(xy, Xo, V1, Y2, Zi, Zo t1, 1o, XP, YP, 20,
tp, X, ¥, z, n, k, T, T) over al k disturbances and their
reflections from the walls.

Consider the case k = 100. The point of observation
is specified as{x, y, Z = {10, 10, 0.7}, the interval of
observation is [ty, t,] = [30, 50], and the process dura-
tion T=50. Witha=a = 0.1 and T = 10, the pulsation
amplitude diminishes roughly 300-fold within thislife-
time. Pulsations of lesser amplitudes may be neglected
inthe context of our consideration. When the pul sations
were numerically calculated (during observation of the
process), the process duration T was divided into N =
2000 subranges. It was aso necessary to choose the
form of the sequencesrp and tp. The only versions that
are meaningful are those where disturbances occur at
random or fixed points rp, while time instants tp may
vary randomly, periodically, or quasi-periodically. The
velocity pulsation and pulsation spectra for these three
sequencesrp and tp are shown in Fig. 5 (the upper and
lower panels depict, respectively, the time dependence
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Fig. 5. Velocity pulsations and spectra at the point x =y = 10, z= 0.7 within the interval t 0 [30, 50]: () random rp and tp, (b) five
given rp and random tp, and (c) five pointsrp with aperiod rp = T/20.

of the velocity u(t) and velocity pulsation spectrain the
form of afunction of frequency A(v)). Thetimeand fre-
guency are represented through the number of intervals
N asN =100t and N = 20v + 1. Fourier transformation
halves the number of resolvable spectral elements. Fig-
ure 5ais constructed for random sequences rp and tp,
Fig. 5b corresponds to the version where disturbances
arise at five regularly arranged points at random times,
and Fig. 5c differs from Fig. 5b in that the sequence tp
isalso regular and has a period of 0.05T.

Let usfind the spatial distribution of the velocity and
the spatial spectrum along the x axis in the volume { 0—
20, 020, 01} at thetimet =T =50, al other things
being the same. The dependence of the pulsation on the
coordinates r of the segment is obtained by summing
the piecewise smooth function u(x;, X,, V1, Yo, 21, Z, 1y,
t, Xp, VP, Zp, tp, X, ¥, Z, 1, N, K, T, T) over k wavesfor the
sequence within this segment. However, to keep a con-
stant disturbance concentration over the segment, it is
necessary to take into account the edge effect. To do
this, we extend the region of disturbance origination on
both sides by a distance corresponding to the wave life-
time and correct the number of disturbances. Fort=r =
10, this gives k = 200 and the working volume { x; — X,,
Vi —V¥a 21 — 2} 0{0-40, 0-20, 0-1}. The pulsation
structureis shown in Fig. 6.

Here, the velocity pulsation is plotted against the
length of the segment for the interval x [J [10, 30] with
astepox=0.01laty=10,z=0.7,and T = 50. The veloc-
ity distributions u(x) are shown in the upper panels; the
corresponding spectra, in the lower panels. The length
and spatial frequency are represented by the number N
of resolvable elements as N = 100x and N = 20v + 1.
The resolution 3 corresponds to the spectral range N =
1000 (the frequency bandwidth v = 50); however, only
the most informative part (v = 15) of the spectra are
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shown. The properties of the sequences rp and tp in
Figs. 6a—6c and 5a-5c¢, respectively, areidentical.

From Figs. 5 and 6, it follows that the behavior of
the pulsations in space and time are similar. The max-
imaof the envelopesare at v = 1/2a. Individual spectral
lines can be distinguished. The first line is at a fre-
guency v = 2, which coincides with the mean rate of
disturbance origination. However, there are differences.
Oneisthat, inthe low-frequency (long-wave) range, the
density of the spatial spectrafar exceeds the density of
the time spectra. This differenceis easy to explain.

At a given point, the characteristic frequency is
related to the thickness 2a of the wave packet. At other
frequencies, the density of the spectrum depends on the
coherence length of atrain of pulsations superposed on
one another. At the point of observation, the possibility
that the train length will exceed 2a decreases and,
accordingly, the spectrum becomes sparser at low fre-
guencies (Fig. 5). When the wave crosses the segment
where the spatial spectrum is studied, the coherence
length increases with wave packet radius automatically.

From Figs. 5 and 6, another feature of the pul sations
is seen: in both figures, panels (a)—(c) differ in spectral
line contrast, i.e., in pulsation regularity. In general, the
irregularity of a wave field may be caused by wave
equation nonlinearity, the shape of the channel bound-
ary, or the boundary values of the field. That is, the
wave field irregularity is a function of disturbance
sources. Since we solve the linear wave equation, the
irregularity may be associated with the disturbance
sequencesrp and tp or with the channel boundariesthat
have the form of Sinay billiards, where the wave front
curvature plays the role of curved boundaries.

An irregular wave field may be stochastic or ran-
dom. The redlizations of stochastic and random pro-
cesses (in our case field waveforms) are identical. Both
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have a continuous Fourier spectrum and descending
autocorrelation function. However, the former is gener-
ated by asystem with afinite number of degreesof free-
dom.

The sequencesrp and tp affect the pulsation proper-
ties, as noted above. If disturbances in both sequences
are distributed randomly (Figs. 5a, 6a), the pulsation
exhibits a continuous spectrum with sharp peaks. For
regular rp and random tp sequences (Figs. 5b, 6b), the
half-height width of spectral lines shrinks and the spac-
ing between the peaks increases noticeably. When both
sequences are regular, individual peaks dominatein the
spectrum (the spectrum in Fig. 5c¢ is virtualy a line
spectrum).

In Fig. 5¢c, the spectrum consists of 23 lines with an
average frequency separation of 0.4. The separation
depends on therate of origination of disturbance groups
(each consisting of five disturbances), which make up a
periodic sequence rp. This spectrum describes the
velocity periodic variation, which may be considered
regular at the point of observation. It is of interest that
the continuous part of the associated spatial spectrum
(Fig. 6¢) is more pronounced and the pulsation along
the x axisis more likely to be stochastic than regular.

Thus, the pulsation regularity depends on the
sequences rp and tp. Two ultimate states of pulsation
exist. With primary disturbances originating randomly,
the pulsation at the point of observation is also random.
When disturbances are generated in a regular manner,
the velocity pulsation at the point of observation in a
given volume becomes regular. However, the fast vari-
ation of the pulsation field, which is due to the high
acoustic wave velocity and the variety of disturbance
configurations, gives the impression that the pulsation
is random even if it is actually regular. Note that the
space-time pulsation field can be constructed from a

given set of process parameters. On the other hand, the
strong dependence of the spectra on initial conditions
allows for the solution of the inverse problem: to find
these conditions from the spectra available.

PULSATION COMPONENT
REDISTRIBUTION

As the wave packet propagates in the field of the
flow velocity gradient, one more intriguing property of
the pulsation, i.e., the variation of the ratio of its com-
ponents, becomes apparent. In the flow core, where the
velocity gradient is negligible and the trajectories may
therefore be considered rectilinear, set (6) transforms
into aset of algebraic equations. Thelinearity of thetra-
jectories means that randomly arranged incident and
reflected waves superpose at any point of the channel.
The only criterion for estimating the contribution of a
wave to the disturbance is the attenuation of the wave,
which depends on the distance | to the point of observa-
tion along the corresponding ray.

The complex velocity profile in the boundary layer
greatly affects the wave motion. In this case, too, waves
superpose to form the space-time pul sation field. How-
ever, here waves with curved tragjectories interact with
each other, so that their contribution to the disturbance
depends on a number of factorsin a complicated man-
ner. In particular, one must know whether the point of
disturbance origination is up- or downstream from the
point of observation, what the distance between these
two pointsis, and what the distance is between the point
of observation and the wall.

Consider the section y = 0 in a plane-parallel chan-
nel. Through the point z = zj there passes an infinite

number of trgjectories with different initial values of
xp. For each zry there exists a limiting value of xp
TECHNICAL PHYSICS Vol. 49
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beyond which ascending trgectories do not pass
through this point z; The limiting trajectory hasalim-
iting initial slope 93 which depends on M, and m.
However, the point zis also crossed by waves follow-

ing descending (not only ascending) trajectories. These
waves also take part in the interaction and formation of
the space—time pulsation field. Their path along these
trajectories increases, and their role in disturbing
hydrodynamic parameters becomes dependent on the
position of the point of observation relative to the wall.
It is essential that a change in the ray slope 8 modifies
the relationship between the contributions of the distur-
bances to the pul sation components.

Let us demonstrate this with a flow for which My =
0.05 and m =5 by contrasting the superposition of dis-
turbances at the points{x, zZ} ={0, 0.5} and (x, 2) ={0,
0.1}. The trajectories of rays are constructed in Fig. 7.
For simplicity, only waves originating at the lower wall
are shown. Taking into account reflected walls does not
change the chain of argument.

Asfollowsfrom Fig. 7, theinclusion of the velocity
profile M(2) breaks the symmetry of trajectories about
the point of observation x = 0. Disturbances down-
stream of this point on the right of the line x = 0 have
initial coordinates xp > 0. Let us designate them as xp*.
Disturbances upstream of the point of observation are
designated as xp™. It is seen that disturbances from the
domain xp* enhance the component u, of the pulsation
compared with the case of symmetric trgectories,
while disturbances from the domain xp~ increase the
component u,.

Wave elements (rays) with the initial orientation
covering the entire interval 3, O [0, —90°] come to the
point of observation from the domain xp*. For rays
coming to this point from the domain xp-, theinitial ori-
entation is bounded from above by avalue closeto 9

9o O [0, =d[]. However, the extent of the domain xp~is

much greater than that of the domain xp*. Accordingly,
when disturbances rp are uniformly distributed over
the wall and the flow velocity profile is taken into
account, the pulsation vector u isoriented largely in the
direction of the flow velocity U.

This tendency was discovered by Reichardt [5] in
channel experiments and Klebanoff [6] in experiments
with a plane-parallel plate [7, Chapter 18, 84]. Rei-
chardt measured pulsation in theair flowing in arectan-
gular (1 x 0.244 m) channel. The Mach number was M,
= 0.003 (U, = 100 cm/s), and the Reynolds number
exceeded 10% The Reichardt’s distributions of the rms

longitudinal, A/U_2 and transverse, A/\Tv_2 pulsations
normalized to the maximal longitudinal pulsation

(«/U_Z)max areshownin Fig. 8a

The pulsation transverse component depends on z
only weakly, while the longitudinal component peaks
TECHNICAL PHYSICS  Vol. 49
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Fig. 7. Trajectories of rays approaching the points of obser-
vation{x, z ={0,0.5} and{x, Z ={0,0.1}.

H;: 0.8 .

Fig. 8. Variation of the longitudinal, A/ETZ , and transverse,

J\Tv72 , velocity pulsations in the channel. (a) Reichardt’'s
experiment and (b) simplified computational scheme.
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sharply at adistance & =0.03 from the wall. This find-
ing, which has not yet been given an adequate explana
tion, can be readily treated in terms of the wave mech-
anism of turbulence. Moreover, this mechanism makes
it possible to describe pulsation components on aquan-
titative basis.

Using relationship (1b), we write the vel ocity pulsa-
tion components as

umfdn Esm(f))/l
(11)
wad” Dcos(ﬁ)/l

Here, | isthe distancetraveled by the wave, |, isthe dis-
tance to the point of observation, 3 is the slope of the
ray at this point, and a = o is the characteristic size of
the primary disturbance. These parameters can be eval-
uated by solving Egs. (6) and (1b). However, we will
derive relationships for the components using asimpli-
fied computational scheme to demonstrate more picto-
rially how our method works. First, let us eliminate
reflected waves from consideration and approximate
the arc connecting the points {xp — x, z= 0} and {xp —
X, Z} by astraight line. The choice of the coordinate x
of the point of observation is arbitrary, and the ordinate
z varies within the half-height of the channel.

It is assumed that the distribution of xp along the x
axis is uniform and the position of the primary distur-
bance iswithin the interval xp 0 [-10, 10]. Outside this
interval, the velocity pulsation decreases by more than
(xp/d) = 330 times; so, it may be disregarded. Then, the
Z dependence of the rms pulsations can be recast by
expressing the quantities entering into (11) through xp
and z

(1 +E)Xp 7

0 (A=e)xp 74
N/I% (zray VP

(12)

Here, the coefficient € compensates for changes in the
contributions to the pulsation when the trajectories are
bent by the flow velocity gradient. The parameter ain
the denominator takesinto account the fact that expres-
sion (1) isvalid outside the boundary layer, so that one
must put z > a when integrating Egs. (6). In construct-
ing the graphs, we took into consideration that, within
the primary disturbance, the field velocity drops from
itsmaximum at z=ato zero at z=1 = 0. Such a pulsa

PYATNITSKY

tion distribution persists when disturbances making up
the boundary layer superpose.

The pulsation components found by formulas (12)
areshownin Fig. 8b (¢ wastaken to be 0.2). Comparing
Figs. 8a and 8b, we conclude that the model and mea-
sured dependences arein good agreement. Notethat € =
0.2 is the result of arather crude approximation. This
value can be refined by using the experimentally found
ratio of variously oriented pulsations. However, since €
depends on xp and z, the use of (12), instead of solving
Egs. (1) and (6), to obtain more exact values of the pul-
sation components is inappropriate.

CONCLUSIONS

To validate the mechanism discussed in this paper,
let us estimate the parameters of an acoustic wave that
can generate appropriate turbulent pulsations. In the
Reichardt’s measurements, the air flow had a velocity
U =100 cm/s and the velocity pulsation u=5 cm/s. In
an acoustic wave, the velocity and pressure pulsations
are related through the relationship u/c = p/p, [4];
hence, p/p, ~ 10 Then, for air under atmospheric
pressure (p, ~ 10° Pa), we find p = 10 Paor 0.1 mm Hg.
Thevaluesu =5 cm/sand p = 10 Pafound experimen-
tally are by no means exotic. The human voice contains
pulsations of such an amplitude.

Our concept of turbulent pulsation is based on
acoustic wave superposition. As there are no specia
limitations involved, it may be applied to study pulsa-
tionsin various media, for example, in low-temperature
plasmas, where ion—sound waves are present.
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Abstract—The distribution function for the density of vibrational states and the velocity distribution function
inthecrystalline, liquid, and amorphous states of Ni, Cu, and Fe are studied by the molecular dynamics method.
In the crystalline and amorphous states, the dynamic properties are qualitatively the same, while in the liquid
state, additional low-energy excitations appear. These excitations may be treated as low-frequency resonant
modes that arise because of the significant contribution of nonlinearity to the interaction potentials. In al the
three states, the velocity distribution functions are found to be Maxwellian; that is, the systems are ergodic,
although nonlinearity-related contributions to the interaction potentials are high and the liquid and amorphous
states are disordered. © 2004 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Elucidation of amorphization mechanisms on the
atomic level isatopical problem today. Amorphization
is known to be associated with the formation and evo-
lution of defects (vacancies, dendrites, or clusters) even
in the liquid state, i.e., with the liquid state dynamics.
Therefore, studying the liquid state of a system that is
amorphousin the solid stateis of crucial importancefor
understanding the process of amorphization. Dynamic
properties of condensed mediadefinetheir fundamental
characteristics, such as diffusion, heat capacity, heat
conduction, entropy, defect formation kinetics, scatter-
ing of quasi-particles by each other and by defects, etc.
In the thermodynamic limit, these characteristics are
completely described by the distribution function for
the density of atomic vibrational states (DAV'S) and the
atomic velocity (or energy) distribution function
(AVDF). In our opinion, it is appropriate to study the
problem of amorphization in terms of nonlinear system
dynamics, since the above processes are related to
phase transitions, which are nonlinear effects. The lig-
uid state is possible only when the elastic constant is
equal to zero in the presence of nonlinearity: d?F/dV? =
dp/dV = 0 (where F isthe free energy, V is the volume,
and p is the pressure). This means (with no regard for
the entropy contribution) that the interaction potential
of an atom with all other atomsin the medium (on-side
potential) hasaflat or two-well bottom; that is, the atom
does not have a fixed position. Media with harmonic
interaction cannot be in the liquid state, because
d’F/dV? = k (elastic constant). In this case, atoms subli-
mate from the free surface [1].

T Deceased.

It has been shown [2, 3] that excitations of two types
may arise in nonlinear systems, high-frequency local
excitations (at a frequency above the cutoff frequency
of a crystal) and low-frequency resonant excitations,
depending on the type of nonlinearity (hard or soft).
The former excitations are today called discrete breath-
ers, which have been the subject of extensive research.
They can be visualized as storages of the kinetic energy
of a system’s particles or “hot” areas with an elevated
concentration of the kinetic energy. It isanticipated that
such “defects’ appear in amorphous materials and are
responsible for long-term relaxation properties [4]. By
using the molecular dynamics method, it was shown
[5, 6] that such excitations may be present in high-tem-
perature superconductors. As for low-frequency reso-
nant modes, it was suggested [7] that they may diffuse,
giving rise to the linear term in the expression for heat
capacity at |low temperaturesin glasses. In other words,
itisassumed that nonlinear excitationsin nonlinear dis-
ordered systems may cover different frequency ranges
and be responsible for the fundamental properties of
these systems.

EXPERIMENTAL

Simulation was performed with a program package
[8] inwhich emphasisis on the optimization of thetime
characteristics of the algorithm. A grain (crystallite)
contains from 1000 to 2000 atoms, and cyclic boundary
conditions are imposed. The system is brought to equi-
librium at T = 0 K. The temperature is set by assigning
velocitiesequal in magnitude but randomin direction to
theatoms. Then, the system isbrought to equilibriumin
areal time of ~107'* s. Within thistime, the equilibrium
DAVS and AVDF set in. The DAVS was calculated
through the autocorrelation function [9]

1063-7842/04/4902-0203$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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G(w) = J'V(T) exp(-iwT)dr, D
0

where
V(D = 5 (v, (0Tvi(0)

isthe autocorrelation function, v;(t) isthe velocity vec-
tor magnitude of anith atom at atimet, and .. Cimeans
averaging over different time intervals.

Now the system is heated stepwise to the liquid
state, further heated to a desired temperature, and then
cooled stepwise to T = 300 K at arate of ~101? K/s,
thus becoming amorphous.

The pair potential technique makes it possible to
calculate the static and dynamic properties. At present,
the molecular dynamics method employs model pair
potentials adjusted to particular experimenta data. We
used pair potentials obtained in terms of the Heine—
Aborenkov-Animalu pseudopotential approach [10].
In our opinion, they describe the entire set of structural
and kinetic properties most adequately. As adjustable
parameters, X-ray terms, electron density, and Show
screening function were applied. In this case, the calcu-
lated basic characteristics of s, p, and d metals (lattice
constants, elastic constants, phonon spectra, phase tran-
sition temperatures, energies of formation and migra-
tion of defects, etc.) differ from those found experimen-
tally by 10-20%.

RESULTS AND DISCUSSION

Figure 1 shows the calculated DAV Sfor the crystal-
line, amorphous, and liquid states of Ni, Cu, and Fe.
The drastic difference between the three DAV'S curves
is noteworthy. In the liquid state, the diffusion coeffi-
cient for Cu and Ni equals 5 x 10° cm?/s; for Fe,
105 cm?/s. The melting points calculated are T,, =
1250 K for Ni and 1500 K for Cu. The temperature at
which the bee phase of Fe becomes unstableis 1050 K.
At the melting point, the low-energy part of the DAVS
curve starts increasing with temperature; that is, addi-
tional low-frequency states appear in the system. Such
apattern istypical of all the metals. The occurrence of
low-frequency states as low-freguency resonant modes
was predicted within the framework of the anharmonic
approach (see above). Their identification in our caseis
a challenge. It appears that, as the temperature grows,
the conditions of high nonlinearity are established in
the system and, once a critical point (the melting point)
is reached, nonlinear excitations, i.e., nonlinear reso-
nant modes, arise. In a homogeneous medium, these
modes are not localized and dynamically appear at any

Fig. 1. Density of atomic vibrational states: (1) T = Ty,
(2T=T, +100K, and (3) T =300 K (crystalline state);
(4) T=300K (quenched state). (a) Ni, (b) Cu, and (c) Fe.
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lattice site. According to [2, 7], the energy accumulated
in them is large enough for the atomic oscillation
amplitude to be as high as the interatomic spacing. In
this case, the atoms inevitably jump the potential bar-
rier and the diffusion rate rises dramatically. Thus, one
may say that the liquid state of asystemischaracterized
by the excitation of nonlinear resonant modes. In linear
systems, such an effect is obviously impossible. Non-
linear resonant modes appear if there existsalocal crit-
ical volume (thisexplainstheincreasein thetotal liquid
volume). Upon amorphization, the temperature condi-
tions for nonlinear resonant mode excitation do not
hold. Yet since the total volume of amorphous systems
exceeds that of crystals, the former have voids, which
provide local critical volumes for nonlinear resonant
mode excitation. However, the number of these critical
volumesis not large and they are uniformly distributed
only in rarefied areas of, rather than throughout, the
system. That is why the diffusion coefficients in amor-
phous systems are much lower than in liquids but
higher than in crystals. High-frequency excitations in
amorphous systems were not detected.

Figure 2 demonstrates the AVDFs for the crystal-
ling, liquid, and amorphous state of Ni. They, aswell as
the AVDFs for Fe and Cu, are Maxwellian, which is
surprising and leads one to nontrivial inferences. The
fact is that amorphous materials are considered non-
equilibrium (nonergodic). Whether a system is ergodic
or not isimportant for theoretical analysis. Specifically,
Gibbs classical statistical mechanics applies only to
ergodic systems, for which the coefficient of correlation
equals zero [11]. In general, a system is considered
ergodic if the autocorrelation function is other than
zero. Such systems can be defined as systems with
memory. This concept is of special importance as
applied to amorphous systems, because it is theorized
that they inherit the properties of the liquid.

The Maxwell distribution isrigorously derived only
under the assumption that systems or particles for
which the coefficient of correlation equals zero are sta-
tistically independent to the maximum possible extent
[12, 13]. Therefore, this distribution is also valid for
ergodic systems. For such systems, bringing to equilib-
rium is described by the Boltzmann kinetic equation,
the equilibrium solution to which isthe Maxwell distri-
bution. However, the applicability of the Boltzmann
equation islimited by the short-range character of inter-
action forces (~A/r", wheren > 4, for repulsion of atoms
or for atomic interaction by the hard-sphere law [14])
and by introducing physically infinitesimal time and
spatial domains in order to loose correlations [15].
Boltzmann completely ignored the correlations (the
hypothesis for the number of collisions). In condensed
media, the problem isreduced to considering quasi-par-
ticle gas. However, quasi-particle gas meets the above
conditions only in a harmonic or quasi-harmonic
approximation. In nonlinear systems, ergodicity is, in
general, not obvious, since the assumptions underlying
Gibbs statistical mechanics haveto bejustified for each
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Fig. 2. Atomic velocity distribution function: (1) T= 300K,
Maxwellian; (2) T = 300 K, crystd; (3) T = 300 K, amor-
phous state; (4) T = 2000 K, Maxwellian; and (5) T =
2000 K, liquid.

specific problem. Although the Gibbs canonical distri-
bution ismerely postulated in practice, it turns out to be
valid in most cases [16]. It was noted [17] that anhar-
monicities due to the violation of statistical indepen-
dence may give rise to a non-Maxwellian particle
velocity distribution and disturb the Gibbs canonical
distribution. In solids, the distribution is, as a rule,
Maxwellian; however, in nonlinear systems, it may not
be so, as exemplified by LaSrCuO and Y BaCuO high-
temperature superconductors [17, 18].

Our results suggest that the systems investigated are
ergodic. Thisisavery important conclusion, since clas-
sical thermodynamics, which is valid for ergodic sys-
tems, may be applied to these media in a dynamic
approximation.

CONCLUSIONS

(1) Dynamically, theliquid state of acondensed sys-
tem is characterized by the excitation of nonlinear |ow-
frequency resonant modes. They cause the atoms to
jump and, accordingly, accelerate diffusionin theliquid
state.

(2) High-frequency excitations cannot be consid-
ered as a fundamental property of amorphous systems
and liquids.

(3) Theliquid and amorphous states are ergodicin a
dynamic approximation, so that their behavior may be
treated in terms of the classica thermodynamic
approach.
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Abstract—In terms of the standard thermodynamic approach (the Debye-Griineisen model of solid and the
Landau theory of second-order phase transitions), approximate conditions providing the constancy of the vol-
umetric thermal expansion coefficient (the Invar effect) and of the bulk modulus (the Ellinvar effect) of aferro-
magnet are established. Conditions under which aferromagnet may exhibit Invar and Ellinvar properties simul-
taneously are found. Interaction between the magnetic, phonon, and electron subsystems of a ferromagnet is
shown to be acrucial factor in the occurrence of the Invar and Ellinvar effects. © 2004 MAIK “ Nauka/ I nter pe-

riodica” .

INTRODUCTION

The Invar and Ellinvar effectsin ferromagnets have
drawn the attention of researchers for many years
because of their scientific and applied significance (see,
e.g., [1-8] and references therein). Although these
effects are widely used in practice and are treated in
terms of various models, the conditions under which
they take place still remain unclear. As far as we know,
even a consistent thermodynamic consideration of
these effectsislacking. Asaresult, thermodynamic rea-
sons for the occurrence of these effects and the role of
ferromagnetic ordering remain a mystery. Unfortu-
nately, no consideration is given to the Invar and Ellin-
var problemsin the classical course of theoretical phys-
ics(neither inthefirst [9] nor inthe latest [10] editions).

The aim of this work is to show that the Invar and
Ellinvar effects are a natural consequence of ferromag-
netic ordering and occur given a specific relationship
between thermodynamic parameters. In doing so, we
do not make any specific assumptions regarding the
“structure” of aferromagnet and do not go beyond the
scope of the standard thermodynamic concepts (the
Debye-Griineisen model of solid and the Landau the-
ory of second-order phase transitions.

1. THEORY

In this section, we will obtain (in terms of simple
concepts of solid ferromagnetic metal) thermodynami-
cally correct expressions for the first and second deriv-
atives of the thermodynamic potential (free energy) of
aferromagnetic metal. It will be formally assumed that
the Debye temperature 6 depends on the temperature
and volume (pressure) but not on the magnetization M
and also that the M dependence of 6 can be reduced to
a relevant temperature dependence through the equa-

tion of magnetic state (EMS). In addition, the tempera-
ture dependences 6 = 6(T) are assumed to be different
in the ferromagnetic (FM) and paramagnetic (PM)
ranges of a magnet. The genera dependence of the
characteristic temperature 6 on the temperature and
volume of a paramagnet was discussed in detail else-
where [11-17] and is not considered in thiswork. In a
number of cases, the temperature dependence of the
Debye temperature may be disregarded within alimited
temperature interval for both the magnetically ordered
and paramagnetic ranges of a ferromagnet.

(i) First thermodynamic derivatives of the free
ener gy and thermodynamic potential of aferromag-
net. We proceed from the conventional differential rep-
resentation of the free molar energy F (as a function of
temperature, molar volume, and magnetic field) and the
thermodynamic potential ® (as a function of tempera-
ture, pressure, and magnetic field) [9, 10]:

dF(T,V, B) = —SdT — PdV — MdH, 1)
dd(T, P, B) = —SdT + VdP — MdH, 2

where Sis the molar entropy, M is the molar magneti-
zation, and H is the magnetic field normalized appro-
priately.

The conventional integral additive representation of
the free energy and thermodynamic potential per mole
are given by

F = Fpara+ Fm; (3)
D = Dpppt Py (@]

Here, Fpa = Fo + F + Feand ®p,, = @y + @) + O, are
the “paramagnetic cores’ of the free energy and ther-
modynamic potential, respectively; F, = Fg(V) and
Oy = Py(P) arethe” constant” (temperature and magne-
tization independent) contributions to the free energy

1063-7842/04/4902-0207$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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and thermodynamic potential, respectively; F,(T, 6) and
d,(T, 8) arethelattice (phonon) parts of the free energy
and thermodynamic potential, respectively; and F.(T)
and ®(T) are the electron contributions. All the contri-
butions were repeatedly discussed previously (see, e.g.,
[16]).

With allowance for the Zeeman contributions in
terms of the Landau theory of second-order phase tran-
sitions [16], we can write for the magnetic components
of the free molar energy and thermodynamic potential

F = %G(T, V)M2+%B(T,V)M4—MH, )

o = %G(T, P)M2+j—'1[3(T, PM*_MH.  (6)

In these expressions, a and 3 are thermodynamic
coefficients that generally depend on the temperature
and volume (for free energy) or (pressure (for thermo-
dynamic potentia). In the Landau approximation it is
assumedthat a =a(T—-T¢), a>0, and 3 > 0 and that the
Curie temperature T, as well as the thermodynamic
coefficients, depends on the volume (pressure). Note
that the idea of the constancy of the thermodynamic
coefficients a and [ is contrary to fact, as was noted in
[2]; therefore, their temperature dependence should be
taken into account. Below, we assume that this depen-
denceisarbitrary (other than that suggested by Landau)
and obtain results that are consistent with the Landau
approximation.

The equilibrium magnetization value, which is the
order parameter in the case of aferromagnet, is found
by minimizing thermodynamic potential (6) when the
temperature, pressure, and magnetic field are constant:

AN
Q)MDTPH

Equation (7) is called the equation of magnetic state
or the Belov—Arrott equation. Solving it analytically or
numerically, one finds the molar magnetization as a
function of temperature and magnetic field.

In the absence of the magnetic field (H = Q) in the
magnetically ordered range (T < T), the spontaneous
magnetization is conventionally given by

=0=aM+BM’—H. 7

M = -5 ®
above T, the spontaneous magnetization Mg = 0. In the

Landau approximation, the spontaneous magnetization
takes the form

a
Miz—[—g

wheret = T — T isthe deviation from the Curie temper-
ature.

t, )

BODRYAKOV, POVZNER

From the above expressions for free energy and
thermodynamic potential, we can find thermodynami-
cally correct (in terms of the Landau theory) expres-
sions for their first thermodynamic derivatives, nhame-
ly, for the molar entropy S, molar volume V, and pres-
sure P:

S = _B)_cqj — _U)q)pard] _U)CDWD
EBTDPH D aT DPH DaT DPH (10)
= Sat S
V = Ea_cq] = @_q)par@ + @&D
CopLl, 0ok Ly, OorOy, (11)
= Vpara+Vm;
p=_@PF0 _ _fFe _9F
OV Oov Oy Doviy, (12
= I:’para'i- P

Here, Siaa Vpara aNd Py, are the paramagnetic compo-
nents of the molar entropy, molar volume, and pressure,
respectively, which involve, as well as the free energy
and thermodynamic potential, the constant phonon and
electron contributions.

These expressions were repeatedly analyzed previ-
ously (see, e.g., [16]). As an illustration, we give here
the expression for the molar volume of the paramag-
netic phase

_ 3.D@ o0 _ 1o 12
Voua = V0+3R[é+ T}Q?—PDT_ZQ)PDTT . (13)

where z=0/T and C is the molar electronic heat.

In view of (7), the thermodynamically exact (in
terms of the Landau theory) expressions for the mag-
netic components of the first thermodynamic deriva-
tives of the free energy and thermodynamic potentials
(Sy» Vi and P,,) have the form

Sm = _l'l:a&[' MZ_}Eﬁ_BD

4
o, M Tapm, M 9
_ 190 2, 100B0 (e
Vi = SR M *age M- (19
- _l@og 2 10oBo e
P = v M Tava, M (19

In the Landau approximation, these expressions
become

I
Sy = —éaM , a7

TECHNICAL PHYSICS Vol. 49 No.2 2004



THERMODYNAMIC GROUNDS FOR THE INVAR AND ELLINVAR EFFECTS

N ALY
,ipan 1@B0
*30r, M e, M
1.09Tq
Pn = 53ty 1, M
+1i0 19B 4
an _ 0
+ 5, Mt 2o, M

An important and as yet uncovered (in the authors
opinion) issue is that, in the Landau theory, the mag-
netic component of the molar volume (aswell as of the
pressure) can be represented as a double seriesin even
powers of the order parameter and deviation from the
Curie temperature:

1 1 1

V,, = Evml\/|2+ évnMZt + vaM“,

where, as follows from (20), the coefficients of the
seriesare

(20)

V.. = _a0Td] _ P
10 = AR, ~ P,
Vo = OB

TP,

In the Landau approximation, the thermodynamic
coefficient V;;, which could be named the coefficients of
magnetovolume interaction, are independent of tem-
perature and magnetization.

In view of relationship (9), the terms of the series
with the coefficients V;; and V,, in the absence of the
field have a single (second) order of smallness; there-
fore, the expression for the magnetic component of the
molar volume allowsfor two equival ent representations
in the Landau approximation: either in even powers of
the spontaneous magnetization,

1 1
Vs = 3VaoMZ+ 30— Bv. O, (1)

or in powers of deviation from the Curie temperature,

_la la
5pV ot + 48%\/2‘) 2V, 3t
From the above expressions, one can draw definite

conclusions. Specifically, if the coefficient at t? in

expression (22)

a _ 1080 2
SVp—2Vy, =
B2 H a[BEBF’DTH o aloPd .

equals zero or, in other words, if the pressure depen-
dence of the thermodynamic coefficients a and 3 is

Vi = (22)
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such that the ratio B/a? is pressure independent in afirst
approximation, the spontaneous magnetostriction w; =
V.V will be a near-linear function of temperature in
the ferromagnetic range. This property may be used, for
example, in situations where it is necessary to provide
aprecision linear displacement of an abject that is pro-
portional to the temperature. If the condition V;5 > 0 or
(0T/0P)1 < 0 (whichisthe same) isalso met, the mag-
netic part of the volumetric thermal expansion coeffi-
cient will be negative (see below). Such behavior istyp-
ical of Invar-like ferromagnets. These thermodynamic
conditions may be set up by appropriately choosing the
chemical composition of aferromagnetic alloy.

(i) Second ther modynamic derivativesof thefree
ener gy and thermodynamic potential of aferromag-
net. From the results obtained above and in view of (7),
we will find the thermodynamically exact (in terms of
the Landau theory) expressions for the second deriva-
tives of the free energy and thermodynamic potential,
namely, for the molar heat capacity

C=T(0S0T)pn,
volumetric thermal expansion coefficient (VTEC)
o= 10VO
VOhT,,’
and the bulk modulus
= g\;’gm

The thermodynamic quantities C, o, and K admit the
additive representation

2
c=-t2 =—TB;% —TB—"H 23
LT Sor2 o, oot ™
= Cpara"'cm!
2
o2 10¥00 | 10 P , 100"
VOoPaT, ~ VOaPaTLy  VIDPOTLy (24)
= Opera* O,
9°F [p°F [°F
K=VE—H =vi—=& .
v, oevi O, 0ovd, (29
= Kpa* K

In (23)+25), Cpaar Oparar AN Ky @€ the paramag-
netic components of the molar heat capacity, VTEC,
and bulk modulus, respectively, which involve the con-
stant, phonon, and electronic contributions. Detailed
analysis of the associated expressions was made else-
where (see, e.g., [16]) and is omitted here. Here, we
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need the expressions for Oy, and Ky

18 FE@D
20570, |8 COFLL ,

3,008 @
+3R[8+ z }OPOT ChRl

Opmra = 3RCVR(Z)[1
(26)

_ 01067
, , (27)
3 ipeg U 1,070 +2
—|2z+D z}— P g-zvESl T2
|:8 () el%Vz]THD 2 |%Vz]'rH

In this approximation and in view of Eqg. (7) of mag-
netic state, we have for the magnetic components of the
molar heat capacity, VTEC, and bulk modulus

_ (1% e, 1B g4
C, = -T|zE 3 M2+ 2B
[2 B, ¥ Alytdl, }
ETrag |, 080 w2l
3BT, * o™

_ 1rigo’ap e
Om = V[ZDBPOTDHM *

¢ [Mog | @B \2[Pog | @B

zp;—v[cﬁmpH o, M I ¥
_lid’eg 2., 109°B0 g

i = V|30 M 30, M

(28)

Calculated dependences of the thermodynamic parameter &
on the reduced temperature T = T/T for amagnetic field H =
(1) O, (2) 300, (3) 2500, (4) 10000, and (5) 40000 arb. units.
The parameters a = 10 arb. unitsand 3 = 1 arb. unit.

BODRYAKOV, POVZNER

In (28)~(30),

2BM?
o + 3pM?
is the dimensionless thermodynamic parameter
depending on the temperature and magnetization. The
value of & is close to unity in the ferromagnetic range
and to zero in the paramagnetic range (see figure). In
the absence of the magnetic field, the exact values, as
readily follows from (8) and (31), are{ = 1at T < T,
E=23aT=T;and&=0at T> T, Suchastep vari-
ation of & alows one to use it as the order parameter
characterizing a ferromagnet.
In the Landau approximation, these complex
expressions in the ferromagnetic range take the form

2
C. = ¢a T;
2p

(31)

(32)

o = £ 0Tq +1[
m = 2pv0aprL,,, 2V

garpp ] 2_ %a pag
5 :

ToPC,, ]~ 2pVISFL,
1

Ky = Koo+ %KmMZ + Kot + ZK10M4

1 1
+ éKllet + éKoth.
The expansion of K,,,in M2 and t isthe most tedious.

Its coefficients are

[Pag
W)

TH

(33)

(34)

Koo = —EzaBiV(z:Vé (35

Ko = aVTC(—Zvavc * 2¥pYe—Ye), (36)
Ko = E‘E%:vavc, (37)

Koo = S(vE - 28v3), (39

Ku = G(=2YaY +V2), (39)

K = %%zyj. (40)

To make expressions (35)—40) more compact, we
designated the first and second dimensionless isother-
mal derivatives of the thermodynamic coefficients with
respect to volume as

_Voin « _ Voo
Vi= T, A9V v
TECHNICAL PHYSICS Vol.49 No.2 2004
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wherei = a, 3, T. For example,

- ViTq
Ye = T 0oV,

Frequently, it is sufficient to consider the quantities
y, and y; as temperature- and magnetization-indepen-
dent parameters of a ferromagnet. It should be noted
that, in the case of a solid, the thermodynamic deriva-
tives with respect to pressure (e.g., expression (33))
may be easily transformed into the derivatives with
respect to volume and vice versa (see, e.g., [16]). For
example, the first derivatives of an arbitrary thermody-
namic function f are related to each other as

ofp - _f

VAR

DR, - KY

For our study, the molar heat capacity is of no sig-
nificance, so we will analyze only the VTEC and bulk
modulus of a ferromagnet. In the absence of the field
(H = 0) (the case of most practical interest), the sponta
neous magnetic part of the VTEC can be written (in
view of the above results) either as

a fTq
2gvIaPL,

29a _1[2_[35 }
oL, BLo

Oms
(41)

"l

or as

fa’ T
2pvCaP,,,

_1mBn }
BQ)PDTH

Oms
(42)

__612_[2[9@5
2vBLalorL,
Thus, the VTEC of a ferromagnet experiences a

jump at the Curie temperature (the sign of the jump
coincides with the sign of the derivative with respect to

AT o .
pressure == P, and then varies in direct proportion
to the spontaneous magnetization squared or, which is
equivalent in the Landau approximation, to the devia-
tion from the Curie temperaturet = T — T) as the tem-
perature decreasesin the ferromagnetic range. The con-
stancy condition for the magnetic part of the VTEC in
the ferromagnetic range is evident: it was given in the
analysisof the expression for the spontaneous magnetic
part of the molar volume.

Asfollows from expressions (9) and (34), the spon-
taneous contribution to the bulk modulusin the magnet-
icaly ordered range of a ferromagnet in the Landau
approximation can be represented, like o, in two

TECHNICAL PHYSICS Vol. 49 No.2 2004
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equivalent forms:
22
_ aTec o
Kn = =S¥y SRR ~VeYs + 2veM:
10 . (43)
iP _ 2 * 4 *[Inp2
—SuYa=Ye) *+Va —5¥igM
or
22
_ _aTc o
K = = SaVe ™ | %vavc Vevs + 3vik
(44)

1 .02
ZBVE{va Ve)* +Va — Vit

It is easy to check that, in the absence of the field,
the magnetic part of the bulk modulus of aferromagnet
steps down at the Curie point in going to the magneti-
cally ordered range. The further behavior of the modu-
lus depends on the sign of the thermodynamic parame-
ters and the relationship between them: the modulus
may rise, as in gadolinium [18-22], or decling, as in
nickel [1, 2]. In addition, the bulk modulus may remain
amost constant within a certain temperature interval,
asis usually observed in Ellinvar-like alloys [1, 2]. In
the ferromagnetic range, the magnetic component of
the bulk modulus will be roughly constant if the two
thermodynamic conditions

1
2vavc—vcvg+§v’é =0,

* 1 *
(Ya=Vp) +Va—3V§ = 0

are met simultaneously.

Itisof interest that not only the magnetic part of the
bulk modulus but also that of the VTEC may remain
constant. In terms of the y parameters, the latter condi-
tion has the form y; — 2y, = 0. For such aferromagnet,

the equalities y5 =0and y> +y* — §VB =0 must also
hold.

2. THERMODYNAMIC CONDITIONS
FOR THE OCCURRENCE OF THE INVAR
AND ELLINVAR EFFECTS
IN A HIGH-TEMPERATURE FERROMAGNET

To reliably determine the conditions for the Invar
and Ellinvar effects in ferromagnets, one should take
into account not only the variation of the VTEC and
bulk modulus due to magnetic ordering but also their
temperature variation associated with the phonon and
electron subsystems of a ferromagnet. In the general
case, the resultant expressions are very awkward.
Therefore, by way of example, we will consider only
the case that seems to be of greatest practical interest
(seetable), that is, the case of a“high-temperature” fer-
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Debye, 6, and Curie, T, temperatures for typical metallic
ferromagnets [22]

Ferromagnet 0, K T, K
Gd 182 2934
Fe 477 1044
Co 460 1388
Ni 477 627.4

romagnet (for which 8 < T¢). Analysis will be carried
out for elevated temperatures. 0 < T < T... Certainly, the
above thermodynamic results are also valid in other
temperature ranges (within the applicability domain of
the Landau theory), for which numerical calculation,
rather than analytical consideration, is more appropri-
ate.

Thus, for a high-temperature ferromagnet kept at
elevated temperatures (6 < T < T), the paramagnetic
components of the VTEC and bulk modulus are
approximated as

3R
Opara: VKVe VZKVZTv (45)
3RT 1(
Kra= Ko 220 (i —yi) - 3072 g

Here, the subscript i introduced for the y; parameters
(see above) runs through 6 and . Eventually, the gen-
eral expression for the VTEC of a ferromagnet under
the conditions mentioned above appears as

_ 3R aTC
= VK[6BR( va—vg+vc)—ve}

\Z/stz( va—vg)+vz}-

In the context of this work, the temperature depen-
dence of the bulk modulusis easier to analyze by taking
its derivative to eliminate a high constant contribution
K to the total value of K:

PKo - 3R
EBTDPH [

(47)

Vit 3Rg %vavc Ye¥e

* 1 * 1 *
+(Ya=¥p) + V2 —5V3 + ¥ E] (48)

[ZE{Va Vp)® va—szDWZ}

Thus, the thermodynamic conditions under which
the Invar and Ellinvar effects arise in ferromagnets can
be written by equating the bracketed dimensionless cri-
teriain (47) and (48) to zero. A ferromagnet will have a

BODRYAKOV, POVZNER

roughly constant VTEC if

2
a
o1 = ===(2y,—Vp) +Vy; = 0. 49
Wor = 557(2Ya=Ye) * ¥z (49)
TheVTEC of aferromagnet will be close to zero if,
additionaly,

a’T
Woo = 6|3|§(2ya Yg+Yc)—Ye = O. (50)

From expressions (49) and (50), it is seen that the
criteria Y,y and Y,; may vanish simultaneously if the
parameter y, (which coincides up to sign with the Gri-
neisen parameter Iy [y =—Yp) isrelated to the magnetic
and (to alesser extent) electronic properties of aferro-
magnet as

o = Qy T a'Tc
®” 3R 6BR’

Thisrelationship indicates that correctly taking into
account interaction between the magnetic, phonon, and
electron subsystems of a magnet is of crucial impor-
tance in analyzing the conditions for the Invar effect.

Similarly, the derivative of the bulk modulus of a
ferromagnetic will be roughly equal to zero if

(51)

a’T
x 2
Weo = Yo ~ Yo+ g PVa¥e—YeVs
(52)

*D_

+(Ya=Vp) +Va 2yl =

1 «
_éy[3

2
_a 2 * —
Wi = g7rdva=ve) YE ViRV = 0. (59
From (52) and (53), it follows that the criteria W,

and Yy, vanish simultaneoudy only if

2

aTc y; T
aRp (AVaVe—2¥cYs ¥ VE) — 73 yz =

Yo—Ye = (54)
Like the Invar effect, the Ellinvar effect takes place

only if the magnetic, phonon, and electron subsystems
of aferromagnet meet certain relationships.

Note also that both effects can be observed in ferro-
magnets if thermodynamic conditions (49), (50), (52),
and (53) are satisfied simultaneously.

Thus, asfollows from our results, new ferromagnets
with the Invar or Ellinvar properties can be produced by
varying the chemica composition of the materials. For
example, iron—nickel aloys, such as conventional Invar
(36 wt % Ni in the iron matrix), may be alloyed with
certainimpuritiesin order to find component ratios pro-
viding the thermodynamic conditions for these effects.
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CONCLUSIONS

Thus, using the consistent thermodynamic
approach, we found thermodynamic criteria for the
Invar (the temperature independence of the thermal
expansion coefficient) and Ellinvar (the temperature
independence of the bulk modulus) effects. The condi-
tions under which both effects may occur simulta-
neously are established. Analytical resultsindicate that
interaction between the magnetic, phonon, and electron
subsystems of a ferromagnet is responsible for these
effects in ferromagnets. This interaction must be taken
into account upon elaborating microscopic models of
the effects.

REFERENCES

1. K.P Beov, Elastic, Thermal, and Electrical Phenomena
in Ferromagnetic Metals (GITTL, Moscow, 1951).

2. K. P. Belov, Magnetic Transitions (Fizmatgiz, M oscow,
1959; Consultants Bureau, New York, 1961).

3. S. |. Novikova, Thermal Expansion of Solids: A Hand-
book (Nauka, Moscow, 1974).

4. A.l. Zakharov, Physics of Precision Alloys with Special
Thermal Properties (Metallurgiya, Moscow, 1986).

5. V. L. Sedov, Antiferromagnetism of Gamma Iron: The
Invar Problem (Nauka, M oscow, 1987).

6. E. Z. Vdiev, Usp. Fiz. Nauk 161 (8), 87 (1991) [Sov.
Phys. Usp. 34, 685 (1991)].

7. A.Yu. Romanov and V. P. Silin, Zh. Eksp. Teor. Fiz. 113,
213 (1998) [JETP 86, 120 (1998)].

8. Precision Alloys. A Handbook, Ed. by B. V. Moalatilov
(Metallurgiya, Moscow, 1983).

TECHNICAL PHYSICS Vol. 49 No.2 2004

213

9. L. D. Landau and E. M. Lifshitz, Satistical Physics
(Nauka, Moscow, 1976; Pergamon, Oxford, 1980),
Part 1.

10. L. D. Landau and E. M. Lifshitz, Satistical Physics, 4th
ed. (Nauka, Moscow, 1995), Part 1.

11. V. Yu. Bodryakov, A. A. Povzner, and O. G. Zelyukova,
Fiz. Tverd. Tela (St. Petersburg) 40, 1581 (1998) [Phys.
Solid State 40, 1433 (1998)].

12. V. Yu. Bodryakov, A. A. Povzner, and O. G. Zelyukova,
Metally, No. 2, 79 (2000).

13. V. Yu. Bodryakov, V. V. Petrushkin, and A. A. Povzner,
Fiz. Met. Metalloved. 89 (4), 5 (2000).

14. V. Yu. Bodryakov and A. A. Povzner, Fiz. Met. Metall-
oved. 89 (6), 21 (2000).

15. V. Yu. Bodryakov, V. V. Petrushkin, and A. A. Povzner,
Fiz. Met. Metalloved. 89 (4), 5 (2000).

16. V. Yu. Bodryakov and A. A. Povzner, Salf-Consistent
Thermodynamic Model of Crystal Lattice (GOU VPO
UGTU-UPI, Yekaterinburg, 2002), Chap. 1.

17. V. Yu. Bodryakov and A. A. Povzner, Zh. Tekh. Fiz. 73
(7), 136 (2003) [Tech. Phys. 48, 931 (2003)].

18. M. Rosen, Phys. Rev. 174, 504 (1968).

19. V.Yu. Bodryakov, A. A. Povzner, and S. A. Nikitin, Eur.
Phys. J. B 4, 441 (1998).

20. V.Yu. Bodryakov, A. A. Povzner, and O. G. Zelyukova,
Fiz. Met. Metalloved. 87 (4), 13 (1999).

21. V. Yu. Bodryakov and A. A. Povzner, Fiz. Met. Metall-
oved. 89 (5), 15 (2000).

22. Handbook of Physical Quantities, Ed. by I. S. Grigoriev
and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991;
CRC, Boca Raton, 1997).

Trandated by V. saakyan



Technical Physics, Vol. 49, No. 2, 2004, pp. 214-217. Trandlated from Zhurnal Tekhnicheskor Fiziki, Vol. 74, No. 2, 2004, pp. 73-76.

Original Russian Text Copyright © 2004 by Malinin, Polyak, Blonskiy, Zubrilin.

OPTICS,
QUANTUM ELECTRONICS

Excimer Source of Radiation for Photobiology

A.N. Malinin*, A. V. Polyak*, I. V. Blonskiy**, and N. G. Zubrilin**
* Uzhgorod National University, Podgornaya ul. 46, Uzhgorod, 88000 Ukraine
e-mail: mal @univ.uzhgorod.ua
** |ngtitute of Physics, National Academy of Sciences of Ukraine, pr. Nauki 144, Kiev, 03028 Ukraine
e-mail: zubrilin@iop.kiev.ua
Received June 19, 2003

Abstract—A gas-discharge excimer source of visible radiation employing a mixture of mercury diiodide
vapor, mercury dibromide vapor, and helium is studied. The emission spectrum of the source covers the range
from 370 to 510 nm. About 90% of the radiation power is concentrated in the blue—green spectral region.

© 2004 MAIK “ Nauka/lInterperiodica” .

INTRODUCTION

At present, artificial lighting needed for plant
growth is provided by high-pressure sodium-vapor
lamps. Only one-third of the radiation power from such
sources is concentrated in the spectral range of photo-
synthetic activity. New-generation radiation sources
with selective characteristics in the spectral ranges of
400-510 and 610-720 nm are required for more effi-
cient optical control over photosynthesis and growth of
plants and algae.

EXPERIMENTAL

The design of an excimer lamp suggested in this
paper is shown in Fig. 1. The diameter and length of
guartz tube 2 of the lamp are 34 and 200 mm, respec-
tively. Inner cylindrical tungsten electrode 4 with a
diameter of 4 mm is placed along the axis of the tube.
The transmission coefficient of second (perforated)
electrode 3 is 72%. The power supply is connected to
the inner electrode via metal—quartz bushing 6. Inlet
connection 1 made of quartz glass is located on the
opposite end face. It is used to evacuate the tube or to
fill it with the mixture components.

The working mixture of the excimer lamp is excited
in the barrier discharge plasma. The discharge is initi-
ated by ananosecond pulser. A TGI 2-130/10 thyratron
isused asthe switch of the pulser. The storage capacitor
of the pulser is made up of a set of KVI-3 low-induc-
tance capacitors and is charged through the primary
winding of astep-up transformer with atransformation
ratio of 1: 3. In experiments, voltage and current pulses
(of duration =150 ns) applied to the lamp electrodes
were 22-30 kV and 265 A, respectively. The pulse rep-
etition rate was 2-5 kHz, and the capacitance of the
storage capacitor was 1.36 nF. The electric parameters
of the lamp (voltage and current) were measured with a
calibrated voltage divider and Rogowski loop, respec-
tively.

The spectral and integral characteristics of the exci-
mer lamp were studied in the following way. The radi-
ation directed along the norma to the lamp surface
passed through a diaphragm of area 1 cm?, was pro-
jected by alens onto the entrance slit of aZMR-3 prism
monochromator, and detected by an FEU-79 PMT
equipped with a KSP-4 x-y recorder (the detection
scheme is similar to that used in [1]). At a wavelength
of 434 nm, the inverse linear dispersion of the mono-
chromator is 44 A/mm. During spectral measurements,
the dlit width was kept at 0.1 mm. In taking the integral
characteristics (the dependence of the spectral line
intensity on the mixture composition and the partial
pressures of the components), the dlit width was
1.5 mm. The detecting system was calibrated with an
Sl 8-200 standard tungsten lamp at filament tempera-
ture T = 2173 K.

The pulsed and mean powers of the radiation were
measured by means of an FEK-22 SPU photoelectric
cell and a Kvarts-01 device, respectively. They were
used in the detecting system instead of the ZMR-3
monochromator.

The radiation power from the entire surface of the
excimer source was determined from an expression for
irradiance due to an emitting line of equal brightness
provided that the length of the lineis much lessthan the

Fig. 1. Design of the excimer lamp: (1) inlet connection for
evacuation and filling with gas, (2) quartz tube, (3) perfo-
rated electrode, (4) electrode, (5) discharge space, and
(6) high-voltage bushing.
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photodetector—source distance [2]:

P, = Q,P,/Q,.
Here, P, is the power measured by the photodetector,
Q, isthe equivaent solid angle, Q, = S/IS is the solid
angle of the photodetector, S, is the surface area of the

photodetector window, and |, is the photodetector—
source distance.

When calculating the pulsed and mean powers, we
took into account the emission area. For the cylindrical
surface, the equivalent solid angle equals T2 [2].

The working mixtures were prepared directly in the
radiation source. First, we place equal amounts (60 mg)
of mercury diiodide (Hgl,) and mercury dibromide
(HgBr,) into the tube and degassed it by heating at
50°C and subsequently evacuating for 2 h. Then, we
filled the tube with an inert gas (helium). The partial
pressures of the Hgl, and HgBr, vapors were set by
heating the working mixture via dissipation of the
pul sed—periodic discharge energy. The partial pressures
were measured from the temperature of the coolest
point in the source, which was found by linearly inter-
polating reference data from [3].

OPTICAL AND ENERGY CHARACTERISTICS

Figure 2 shows the panoramic spectrum of the exci-
mer source containing the vapors of mercury dihalides
(mercury diiodide and mercury dibromide) and helium
(Hal, : HgBr, : He=14.6 Pa: 49.2 Pa: 162 kPa). The
pump pulse repetition rate is 4 kHz; the voltage ampli-
tude, 25.5 kV; and the current, 265 A. The spectra
exhibit overlapping emission bands peaked at A = 444
and 502 nm (by calibration, the intensity radiation ratio
between Hgl* and HgBr* molecules equals 2.5), a
sharp increase in the intensity in the long-wave part of
the spectrum, and a smooth decrease in the short-wave
range. With regard to the tails of the spectral bands, the
emission covers the range from 370 to 510 nm. As the
repetition rate of pump pulses varies from 2 to 5 kHz,
the intensities of the spectral bands and the intensity
ratio at their edges change, whereas the shape and range
of the spectral bands, as well the positions of the max-
ima, remain unchanged.

When the partial pressure of helium rises from 140
to 200 kPa, we observe anonmonotonic variation of the
mean radiation power P;: it first grows in the interval
140-180 kPa, reaches a maximum at 182 kPa, and then
drops (Fig. 3). Figures 4 and 5 show that P; increases
linearly with the voltage and the pulse repetition rate.
For avoltage of 30 kV, P; =11 W for apulse repetition
rate of 2 kHz and =22.5W at a pulse rate of 5 kHz.

When the partial pressures of the mercury dihalides
increase, P; reaches a maximum at a Hgl, pressure of
0.25 kPa and a HgBr, pressure of 0.5 kPa. The depen-
dence of P; on the partial pressures of Hgl, and HgBTr,

TECHNICAL PHYSICS Vol. 49 No.2 2004
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Fig. 2. Radiation spectrum of the excimer source with the
Hgl, : HgBr, : He = 14.6 Pa: 49.2 Pa: 162 kPa working
mixture at a pump pulse repetition rate of 4 kHz, a voltage
of 25.5kV, and acurrent of 265A.
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Fig. 3. Radiation mean power vs. the partia pressure of
helium for a pulse repetition rate of 2 kHz and a voltage
amplitude of 22.5 kV.
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Fig. 4. U dependence of the radiation mean power. Thetotal
pressure of the mixture is 162 kPa, and the pulse repetition
rateis 2 kHz.
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Fig. 5. Radiation mean power vs. the pulse repetition rate.
Thetotal pressure of the mixtureis 162 kPa, and the voltage
amplitudeis 22.5 kV.
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Fig. 6. Oscillograms of (a) the discharge current and
(b) rediation power. The total pressure of the mixture is
162 kPa, the pulse repetition rate is 2 kHz, and the voltage
amplitude across the lamp is 22.5 kV.

was taken by heating the working mixture with an
external electric heater.

Figure 6 demonstrates typical waveforms of the dis-
charge current and radiation power for a total pressure
of the mixture of 162 kPa, a voltage of 22.5 kV, and a
pulse repetition rate of 2 kHz. The accuracy and repro-
ducibility of the waveforms are 10 and 90%, respec-
tively. The amplitude and duration of the bipolar cur-
rent pulses applied were 265 A and 150 ns, respectively.

MALININ et al.

It isseen that P4(t) isadouble-humped function and
the peak values of the current and power coincide in
time. The amplitude of the second radiation pulse is
greater than that of thefirst one, although the amplitude
of the second current pulse is lower than the amplitude
of thefirst one. In addition, the overall duration and the
trailing edge time of the second radiation pulse are
longer than the corresponding parameters of the first
pulse.

The emission bands shown in Fig. 2 correspond to
the electronic—vibrational transitions BZZL2 —

XZZL2 in Hgl* and HgBr* molecules [4]. A changein
the pulse repetition rate changes the temperature of the
lamp wall. Therefore, the associated changesin the par-
tial pressures (in the concentrations of the mercury
diiodide and dibromide vapors) will be different [3];
hence, the concentrations of Hgl* and HgBr* mole-

culesin the excited state B%;, will also differ [5]. This

is embodied in the different intensities of the emission
bands.

The optimum pressure of the buffer gas (helium)
(Fig. 4) isrelated to the discharge energy spent on heat-
ing the mixture of the two mercury dihalides and
helium. This energy depends on the parameter E/p (the
ratio of the field strength in the plasma to the pressure
of the mixture). For binary mixtures (the vapor of one
of the mercury dihalides plus helium), it was demon-
strated [6] that there exists an optimum range of wall
temperatures where the radiation intensity is maxi-
mum. It is known [7] that, when the wall temperature
exceeds a certain value, the quenching of the state

BZZL2 of these molecules starts playing a significant
role.

The variation of P; with partial pressures of the mer-
cury dihalides is explained both by the increase in the

molecular concentration in the state BZZL2 with partial

pressures and by the quenching of these states. The
optimum partial pressures of the mercury dihalides are
established when these two processes are in dynamic
equilibrium.

The time dependence of the current is a result of
charge exchange in the insulator—plasma circuit. The
presence of two humps with ahigher second hump was
reported earlier [1, 8] when we studied the time varia-
tion of the radiation intensity from HgBr* and Hgl*
excimer molecules in mercury diiodide-helium and
mercury dibromide-helium binary mixtures[1, 8]. The
broadening of the second pulse and the extension of its
trailing edge in the three-component mixture in com-
parison with the two-component mixtures may be
related to a decrease in the rate of association of mer-
cury monohalide diatomic molecules in the reactions

HGX(X*Z15) + X, —= HYX, + X, (1)

TECHNICAL PHYSICS Vol. 49 No.2 2004
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HgX(X%s),) + X+ R —= HgX, + R, )

where X =Beor | and Risabuffer gas. Accordingly, the
number of mercury monchalide molecules in the
ground state grows. Eventually, the waveform of the
second pulse changes, since the excitation of the state

XZZL2 increases the electron population of the state

B®%;, of mercury monohalides[6].

CONCLUSIONS

Thus, we studied an excimer source of visible radi-
ation that contains mercury diiodide vapor, mercury
dibromide vapor, and helium as a working mixture and
isexcited by apulsed—periodic barrier discharge. It was
demonstrated that the spectrum of the source consists
of overlapping spectral bands in the wavelength range
370-510 nm, which correspond to emission dueto mer-
cury monoiodide and mercury monobromide mole-
cules. The mean power of radiation from the active area
of the source (230 cm?) is about 25 W, and the peak
power equals 93 kW. The discharge-to-radiation power
conversion efficiency is 30%. About 90% of the radia-
tion power is concentrated in the blue-green spectral
range. Thisvalue is significantly higher than the corre-
sponding parameter of high-pressure sodium-vapor
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lamps for comparable energy deposits in the working
medium [9].

The results obtained suggest that optimization of the
excitation scheme and the design of the lamp may
improve the energy parameters of the excimer lamps.
This source may provide a more effective control of
photosynthesis and growth of plants and algae.

REFERENCES
1. A.N.Mdlinin, A. V. Polyak, N. G. Zubrilin, et al., Kvan-
tovaya Elektron. (Moscow) 32, 155 (2002).

2. R. A. Sapozhnikov, Theoretical Photometry (Energiya,
Moscow, 1977).

3. A. I. Efimov, L. P. Belorukova, I. V. Vasil’kova, and

V. P. Chechev, Properties of Inorganic Compounds

(Khimiya, Leningrad, 1983).

R. W. Pears and A. G. Gaydon, The Identification of

Molecular Spectra (Chopman Hall, London, 1963).

A. N. Malinin, Laser Phys. 8, 395 (1998).

A. N. Mdlinin, Laser Phys. 7, 1032 (1997).

A. N. Mdlinin, Laser Phys. 7, 1177 (1997).

A. N. Mdinin, A. K. Shuaibov, and V. S. Shevera, Zh.

Prikl. Spektrosk. 32, 735 (1980).

9. F. G. Baksht and V. F. Lapshin, Zh. Tekh. Fiz. 67 (9), 22
(1997) [Tech. Phys. 42, 1004 (1997)].

e

O N O

Translated by A. Chikishev



Technical Physics, Vol. 49, No. 2, 2004, pp. 218-223. Trandlated from Zhurnal Tekhnicheskor Fiziki, Vol. 74, No. 2, 2004, pp. 77-82.

Original Russian Text Copyright © 2004 by Skripov, Trofimov.

OPTICS,
QUANTUM ELECTRONICS

Hysteresis of the Spectral Components
of a Femtosecond Pulse Propagating
in a Nonlinear Medium

D. K. Skripovand V. A. Trofimov
Moscow State University, Vorob' evy Gory, Moscow, 119992 Russia
e-mail: vatro@cs.msu.su
Received July 8, 2003

Abstract—Numerical simulation based on the one-dimensional nonlinear Maxwell equations is used to study
the frequency that provides the maximum spectral intensity in a selected time interval versus the amplitude of
an incident femtosecond pulse. The hysteretic variation of this frequency with amplitude is shown to be a pos-
sibility. Analysis is performed in the approximation of an optically thick layer for a medium with a saturating

restoring force. © 2004 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Femtosecond opticsisfinding ever increasing appli-
cation in various fields of science and engineering.
The short length of these pulses allows researchers to
study various ultrafast processes. At the sametime, this
feature causes hitherto unknown specific interactions
between an optical pulse and amedium. An exampleis
the variation of the electromagnetic wave spectrum
with the absolute phase of a femtosecond pulse at the
input to a nonlinear medium. In particular, this effect
was found in the direct solution of the nonlinear Max-
well equations [1]. The effect of the absolute phase on
the dynamics of interaction between a femtosecond
pulse and the medium was experimentally demon-
strated in [2].

Another intriguing effect important for applications
isthe hysteretic dependence of the frequency providing
the maximum spectral intensity on the signal ampli-
tude. For an optically thin medium, this effect is
described in [3, 4]. In this paper, we study the possibil-
ity for such behavior in thick media.

BASIC EQUATIONS

Consider the propagation of a femtosecond pulse
along the z axis in terms of the nonlinear one-dimen-
sional Maxwell equations for the electric, E(z, t), and
magnetic, H(z, t), fields with a saturating restoring
force in the case when the polarization P(z t) of the
medium is analyzed:

OH _ 9D 9E _ oH
0z ot’ o0z ot’

D = E+4nP, -L,<z<l, O<tsl, (D
2
a—P+6a—P+L=aE(z,t), z=0.
ot ot P

Ch{]

We assume that the nonlinear medium is to the left
of the section z= 0. Therefore, P=0for z< 0.

InEgs. (1), zisthe spatial coordinate; L; isthelength
of the region in contact with the nonlinear medium; L,
isthe longitudinal dimension of the nonlinear medium;
and t and L, are the dimensionless time and its maxi-
mum value, respectively. The coefficient o character-
izes the attenuation of the polarization of the medium,
and a is afactor proportional to the dipole moment of
an atom or molecule. The variables are normalized so
that the linear oscillator frequency eguals unity. The
parameter P, makes computer simulation more conve-
nient. The parameter n is set equa to n = 4, which
means field—dipole interaction [5]. It should be empha
sized that the potential in the form of a saturating func-
tion is widely met in the literature. For example, the

r

dipole moment in the form re " was used in [6] to
describe interaction between laser radiation and amol-
ecule. It is also important to note that we consider such
intensities of light that do not ionize an atom.

Theinitial and boundary conditions for Egs. (1) are
specified in the form

El,-. = Hl,-, = Pli-o = Pl -
Ithi=o 2

Eli=o = Eo(2), Hlizo = Ho(2),
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wheretheinitial electric field distribution in the optical
wave is defined outside the nonlinear medium (i.e., in
the linear medium) within the segment [-L;, O] in the
form of atriangular pulse

E(0,2) = Eo(2)
[Ey(z)cos(w(z+ 0.5L,)),
= [Eo(2) = Eg(1—[1+22IL)),
b, o0sz<L,

~L,£2z<0, (3)

Ho(2) = Eo(2).

The initia distribution of the magnetic field H is
chosen to be the same asthat of the electricfield. Inthis
situation, the electromagnetic field propagates in a
homogeneous medium aong the positive zdirection. In
formula (3), w is the filling (carrier) frequency of the
incident pulse and E; is the pulse amplitude. We con-
sider apulsethat totally occupiesthelinear medium z <
0; then, L; is the characteristic length of this medium.
The choice of the incident pulse shape stems from the
goal of our work: the triangular waveform illuminates
the behavior associated with optical bistability. Such
waveforms are commonly used in related analysis.

To find the spectral response of the medium to the
instantaneous amplitude of the incident triangular
pulse, we will use the following algorithm. Let us
divide the pulse duration [0, L;] into M equal intervals
of length T (t, = KT, k=0-M, L,=MT) and apply Fourier
transformation to the electric induction on each of the
intervals [ty, t.. 41

t+T
Dy(w, 2) = % J’ D(t+z z)e_'w(t_tk)dt,
ty

k=01,.. M-1

(4)

The function D(t, 2) is integrated over the interval
tO[z+t, z+ 1t +T], since part of the leading edge of
the pul se propagates with avelocity equal to unity (lin-
ear precursor) because of the fact that the medium
responds with atime delay. Then, the pulse arrives at a
section zat thetimeinstant t = z. Therefore, adistortion
of the pulse at the entrance to the medium at the timet
arrives at the section z at thetime instant t + z

Accordingly, the inverse Fourier transform has the
form

io(t—t,)

D(t+z2 = J’Dk(w, 2)e dw, tO[t,t..].(5)

In our numerical experiments, we use the fast dis-
crete Fourier transform instead of formulas (4) and (5)
TECHNICAL PHYSICS  Vol. 49
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and define the spectral mode intensity as the magnitude
of the corresponding harmonic squared:

l(w, 2) = |Dy(w, 2)%. (6)

Informula (4), apart of the spatial interval that cor-
respondstok=M —1 (namely, [L,, L; + Z]) isoutside the
timeinterval of interest. Therefore, thefunction D(t + z,
2) isintegrated over theinterval L, - T<t+z<L;i.e,
the interval of the Fourier transform is shifted by z
towards zero until it fallsinto the time domain of inter-
est. This affects the results of simulation only slightly
for severa reasons. First, after the pulse has passed,
polarization oscillations small in amplitude and almost
constant in frequency and amplitude are observed at the
edge of the time domain. Second, the time shift by zis
small compared with the length of each of the kth inter-
vals. Third, in our numerical experiments, the maxi-
mum frequency is kept constant in the last several inter-
vals. Also note that the scenario described in this paper
is observed near the center of the incident pul se.

It should be emphasized that such analysis of the
instantaneous spectral content of awaveform iswidely
used in the theory of signal processing [7]. To thisend,
a“window” of constant length travels along the wave-
form and the spectrum within the window is analyzed.
In our case, the windows follow each other in time
without overlap (except for the next to last and last
intervals, in view of the above comment).

The appropriate difference schemes and numerical
methods are reported in [8].

RESULTS OF COMPUTER SIMULATION

Itisclear that the nonlinearity of the medium gener-
ates new spectral lines of variousintensities. Therefore,
in each time interval and in a particular section, several
spectral lines with center frequencies wy, , may be

Fig. 1. Correspondence between the electric field induction
in a medium and electric field intensity at the input to the
medium in the calculation of the frequency providing the
maximum spectral intensity as a function of the incident
radiation amplitude.
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Fig. 2. Hysteretic dependence of the frequency of the highest intensity harmonic on the averaged amplitude of the triangular pulse
propagating through the (a, ¢) nonlinear and (b, d) linear mediain the sectionsz= (a, b) 0, 1, 2 and (c, d) 4, 6 witha = 0.01, w =
1.1,6=10"° Py=0.15 Eg=1,L; =L,=L; =800, and T = 100. The power reflection coefficient is 4.7% for nonlinear propagation

and 5.1% for linear propagation.

present (the subscript k stands for the time interval con-
sidered, and the subscript m indicates a local spectral
maximum in thistimeinterval). In going from onetime
interval to another and as the pulse propagates through
the medium, these maxima may move, disappear, and
change amplitude. As a result, the frequency corre-
sponding to the maximum spectral intensity in a partic-
ular time interval and in a particular section may
change. Therefore, in our numerical experiments, we
choose the frequency that provides the maximum inten-
sity in asection zfor the mgjority of thetime intervals;
in other words, the global maximum of the spectrum is
chosen. In those intervals where the maximal spectral
intensity is reached at a much different frequency, this
frequency is taken to be the frequency of the global
maximum.

Below, the results of our calculations are presented
graphically as dependences of the frequency w,

w, = maxl, (w,2), k=0-(M-1),

(7)

on the external perturbation amplitude averaged over a
given interval:

Aot = (Eol,= ., * Eol,-)/2 ®

Figure 1 schematically shows the correspondence
between the electric induction and initial electric field
distribution. Since the response is nonstationary and
nonlinear, its velocity in the coordinates adopted is
characterized by the slope of the line along which the
wave propagates.

For convenience, the direction of time variation is
shownin Figs. 2—4 by arrows. Anincrease in A, refers
to the leading edge of the pulse; adecreasein Ay, tO its
trailing edge. Since the nonstationarity of the response
may significantly affect the hysteretic behavior,
Figs. 2—4 also show the results for a linear nonstation-
ary medium.

Figures 24 refer to different excitations of the
medium. In particular, in Fig. 2, the medium is excited
weakly and its contribution to the electric induction is
insignificant. Here, the nonlinear medium reflects about
5% of theincident power and the rest of the power pen-
gtratesintoit. Inthis case, the variation of the frequency
that provides the maximal spectral intensity with inci-
dent optical pulse amplitude within the thickness of the
medium (z = 4 and 6 in Fig. 2¢) becomes uncertain
(hysteretic). For the linear nonstationary response
(Fig. 2d), such behavior is not observed. It is also
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Fig. 3. Hysteretic dependence of the frequency of the highest intensity harmonic on the averaged amplitude of the triangular pulse
propagating through the (a, ¢, €) nonlinear and (b, d, f) linear mediain the sectionsz= (a, b) O, (c, d) 1, and (e, f) 2 witha = 0.2,
w=1158=1073, Po=0.1,E;=0.1,L;=L,=L;=800, and T = 100. The power reflection coefficient is 99.7%.

important that the above variation remains unique up to
z=4.

When the excitation of the mediumisstrong (Figs. 3
and 4), most of the energy reflects from the nonlinear
medium and the w, versusinput amplitude dependence
becomes more complex. For applications, it isimpor-
tant that, all other parameters remaining constant,
the duration of the incident pulse is of considerable
significance, as illustrated in Figs. 3 and 4. They
clearly show that doubling of the pulse duration
changes qualitatively the dependence of the fre-
guency providing the maximal intensity on the pulse
amplitude. In the case of the longer pulse, the effect
of nonstationarity on the frequency w, dominates
over that of nonlinearity. Indeed, while Fig. 3c dem-
onstrates aclear hysteretic behavior, asimilar depen-
dence that differs from the linear nonstationary
response is not observed in Fig. 4.
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Several features are worth noting. First, the hyster-
etic curves considered above depend significantly on
the incident pulse waveform. In particular, closed hys-
teresis loops were not observed for a Gaussian pulse,
because this pulse generates intense high-frequency
components at its leading edge and low-frequency
components prevailing at its trailing edge. A decrease
in the Gaussian pul se length enhances the generation of
high-frequency components. Second, with an increase
in the frequency mismatch between the incident pulse
and the linear resonance of the system, the hysteresis
loops disappear (all other parameters remaining
unchanged). The response of the medium either
becomes essentially nonlinear (i.e., bears no resem-
blance to that of alinear system) or coincides with the
linear response that is found when the evolution of the
maximum intensity harmonic is studied by moving the
window in the time domain of simulation.
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Fig. 4. Hysteretic dependence of the frequency of the highest intensity harmonic on the averaged amplitude of the triangular pulse
propagating through the (a, ¢, e, g, i) nonlinear and (b, d, f, h, j) linear mediain the sectionsz=(a b) 0, (c, d) 1, (e, f) 2, (g, h) 4,
and(i,j) 6witha =0.2, w=11,8= 10‘3, P9=0.1,Ey=0.1,L;=L,=L;=1600, and T = 100. The power reflection coefficient is 99.7%.

CONCLUSIONS

Thus, when a femtosecond pulse propagates
through a nonlinear medium, the variation of the fre-

guency that provides the maximal intensity with the
amplitude of the incident pulse may be hysteretic
within the thickness of the medium. However, unlike
the case of an optically thin layer, this hysteresis is

TECHNICAL PHYSICS Vol. 49 No.2 2004
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much more difficult to observe when the medium is
thick (i.e., in our case). The appearance of the hystere-
sis depends significantly on the excitation level, the
nonstationarity of the process, and the mismatch
between the carrier frequency and the linear resonance
frequency. The behavior described above could be
observed in physical experiments[2] where the chemi-
cal reaction yield or the number of photoelectrons of
various energy at the leading and trailing edges of the
pulse is different. Nonlinear properties of a medium
also alow us to form its response at frequencies that
provide different spectral intensities. In other words,
we can produce atrain of spikes of different repetition
rate (at the leading and trailing edges of the applied
pulse) directly in achemically active medium and con-
trol the chemical reaction by the technique proposed in

[6].
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Abstract—Two qualitatively different types of resonant destabilization of phonon stimulated emission (SE) are
discovered in experiments where a 9-GHz multimode ruby laser is periodically modulated (the electromagnetic
pump frequency is 23 GHz). In the case of deep pump modulation at low modulation frequencies (w,, = 70—
200 Hz, where wy, is the modulation frequency), a fast random alternation of microwave phonon SE modesis
observed. This destabilization range corresponds to relaxation resonance in optical lasers. Outside the relax-
ation resonance range (at wy,, = 10 Hz), the other type of resonant destabilization of stationary phonon SE is
observed. This destabilization shows up as very slow regular self-detunings of the microwave SE spectra. The
period of such self-organized motions depends significantly on wy,, and changes by several orders of magnitude
when wy,, varies within several percent. The second type of SE resonant destabilization is explained in terms of
antiphase energy exchange between modesin a modulated phaser. © 2004 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

The feasibility of phonon SE in activated crystals
was considered asearly asinthe 1960s[1, 2]. Yet, spec-
ulation about mechanisms behind stimulated emission
of phonons persists even today (see, e.g., [3]). In exper-
iments, phonon SE wasfirst observed and studied [4-8]
in dielectric crystals doped by paramagnetic iron-like
ions. The SE effect showed up as the quantum paramag-
netic amplification of a coherent microwave phonon flux
(hypersound) when spin levelsthat may take part in spin—
phonon interaction were inversaly populated. This effect
may be viewed as an acougtic andogue [9] of maser
amplification of electromagnetic waves (if a number of
features of nonlinear processes in the signal and pump
channels are taken into account [10-13]).

At the same time, the mechanism of phasing (gener-
ation of microwave acoustic radiation), which was dis-
covered experimentally in [14, 15], long remained
unclear. The reason was an attempt to draw an analogy
[16] between acoustic quantum oscillators (phasers)
and electromagnetic quantum microwave oscillators
(masers), which does exist between the corresponding
amplifiers.

In experimental studies [11, 17, 18] of microwave
acoustic SE in Al,O; : Ni?* and Al,O; : Cr?* crystals, it
was shown that phasing is physically much closer to
lasing than to masing. In fact, the hypersonic wave-
length in a Fabry—Perot acoustic resonator (FPAR) is
roughly 1-3 um (i.e., fallsinto the near-IR range). The
quality factor Q. of an FPAR, aswell asthe quality fac-

tor of electromagnetic cavities in many lasers, is high:
Qc = 10°-10° [11, 17, 18] (certainly, this value is
reached at liquid helium temperatures, when the non-
resonant decay of hypersound is low). Therefore,
experimental SE spectra of phasers operating in the
autonomous regime [11, 15, 17] sometimes are similar
to those observed for class-B multimode solid-state
lasers (with T, > 1¢ > 1,, Where 1, and 1, are the relax-
ation times for longitudinal and transverse relaxations
of active centers and 1 is the lifetime of field excita-
tionsin the cavity).

However, phasers differ radically from lasers in
regard to the intrinsi c quantum noise (spontaneous radi-
ation) intensity Jq,on. Since the velocity of hypersound
v, isfive orders of magnitude lower than the velocity of
light, the SE frequency Q in a phaser with a hypersonic
wavelength of 1-3 ym lies in the range Q = 3-10 GHz
[12, 18, 19], i.e., isfive orders of magnitude lower than
in alaser. Accordingly, the spontaneous radiation inten-
sity in a phaser is =15 orders of magnitude lower than
in alaser (because Jgoy grows as Q3). In essence, a
phaser may be considered as a deterministic dynamic
system throughout the SE intensity range available.
This is of crucial importance for studying motion in
systems with a complex stratified phase space. It is
known that multiplicative noise (including spontaneous
radiation in a nonlinear active medium) affects the
behavior of dynamic systemsin avery intriguing man-
ner [19], causing coarsening of the phase space topol-
ogy [20], etc.
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Earlier [21], we discovered a severe dynamic con-
traction of the SE spectrain a nonlinear FPAR, which
was attributed to the resonant destabilization of mode
energy exchange. This noise-unrelated effect also
changes qualitatively the phase space topology. Further
investigation of this microwave deterministic system as
apart of a nonautonomous phaser allowed us to reveal
adtill more unexpected property: slow large-scale lam-
inar self-detunings of the SE spectra akin to autowave
motion [18, 22]. Below, we report these experimental
findings and treat them theoretically.

1. EXPERIMENTAL

1.1. Fabry—Perot Microwave Acoustic Resonator,
Active Centers, and Hypersonic Converter

Experimentswere carried out by using aruby phaser
[11, 21, 23] with the pump power P periodically mod-
ulated at low and ultralow frequencies: w,/2rt= 1 Hz—
3 kHz (hereafter, the factor 1/2m will be omitted). A
solid-state FPAR, which was made of Al,O; : Cr¥* sin-
gle-crystalline pink ruby, had the form of a cylinder
with the diameter d- = 2.6 mm and length L. = 17.6 mm.
The end faces of the cylinder are parallel to each other
and optically smooth: they serve as acoustic mirrorsfor
hypersonic waves. The triad axis O of the ruby coin-
cides with the geometrical axis O of the FPAR. The
concentration of Cr3 ions is C, = 1.3 x 10%° cm™
(=0.03%). All measurements were made in the interval
T=1842K.

For a hypersonic frequency near Q = 9.1 GHz and
the L value mentioned above, the separation between

longitudinal acoustic modes of the FPAR is AQ;, =

Qﬁ)) - Qﬁ”_l =310kHz. Here, Qﬁ)) isthe frequency of
an Nth mode of the FPAR in the “cold” regime, i.e., at
P = 0. The frequencies of the hypersound emitted, i.e.,

the frequencies of phonon SE modes (Qy = Q%) inthe
“hot” regime (P > P, where Py, is the pump power at
which phasing starts), lie near 9.12 GHz according to
the frequency Qg = Qg, = A7 E5(H) — Ex(H)] of the
inverted spin transition between active centers E; —
E, inastatic magnetic field H = Hy. Thus, the frequency
Qg corresponds to the vertex of the acoustic paramag-
netic resonance (APR) line coincident (along the mag-
netic field) with two electron spin resonance (ESR)
lines for the pump. The value of H, depends on the fre-
guency Qp of the pump microwave field, which satu-
rates the spin transitions E; = E; and E, = E, with
Qp = Qg1 = Qg > Qg where Qg = fi7'[Eg(Ho) — E4(Ho)]
and Q,, = A7 E,(Ho) — Ex(Ho)] (Fig. 1). The symbols
|y Odenote wave functions that belong to the energy
levels E; of the ground spin quadruplet (spin S = 3/2,
orbital quantum number L = 0) of aCr¥ ioninthecrys-
tal field of ruby. Sincethisfield isof trigonal symmetry,
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Fig. 1. Energy levels of Cr3* active centersina ruby phaser.

al E; and |} [(depend only on H = [H| and the azimuthal
angle 9 between H and 05 [24].

One of the mirrors was covered by athin (approxi-
mately 0.5 um thick) textured ZnO piezoelectric film
with a 0.1-um-thick Al sublayer (both layers were
applied by vacuum evaporation). The texture axis runs
normally to the FPAR mirror. The ZnO filmisthe basic
component of a bidirectional hypersonic converter
designed for converting a microwave phonon field to an
electromagnetic field and vice versa. The phonon SE aris-
ing inthe FPAR excites el ectromagnetic oscillationsin the
ZnO film, and the el ectromagnetic signal may be detected
by standard microwave techniques. On the other hand,
exciting the ZnO film from the outside by electromag-
netic waves with a frequency Qg we inject hypersonic
waves with the same frequency into the FPAR, with

ALY =33 x 1042\ (where ALY = 1 pmis the wave-
length of longitudinal hypersound in our system and
)\(es) = 3 cmisthewavelength of an electromagnetic wave
of the same frequency as the hypersound).

1.2. Inverse Sates of Active Centers
and Phasing Self-Excitation Conditions

Aswas noted, inverse spin states of Cr3* active cen-
ters are formed by the pump microwave electromag-
netic field. The frequency Qp of the pump may be tuned

within 22-25 GHz; that is, the pump wavelength A"
isnear 1.25 cm. The pump power reaches a maximum,
P =Pm) = 12 mW, at Qp = 23 GHz. Through adiffrac-
tion coupler, the pump field is excited in a cylindrical
electromagnetic pump cavity of typeHg;;, which hasan
eigenfrequency QE?F), = 23.0 GHz, a quadlity factor
Qcp =8 x 103, and ageometrical length coincident with
the length L of the FPAR.
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The ruby FPAR is placed in the pump cavity along
itsaxis. If P = 0 and the magnitude and direction of H
are beyond the APR range, the absorption of the hyper-
sound injected into the FPAR depends on (i) the nonres-
onant volume attenuation ., (including losses on the
lateral surfaces of the FPAR) and (ii) losses on the
FPAR mirrors N

If P = 0 and the magnitude and direction of H fall
into the APR range (i.e.,, H = Hy), a third absorption
mechanism comesinto play: the resonant paramagnetic
absorption of the hypersound, which depends consider-
ably on the frequency of the signal injected and on the
offset of the magnetic field from the APR line vertex
[25].

Finally, H = H, and the pump power is applied.
Then, the resonant paramagnetic absorption of the
hypersound decreases. If, as P rises, one succeeds in
passing into the range where the paramagnetic absorp-
tion becomes negative (i.e., the inversion ratio K(P, H)
becomes positive), nonparamagnetic losses of the
hypersound in the FPAR are compensated partially or
completely. The complete compensation of the losses
(i.e., the onset of phasing) takes placefirst at that mode
(letitsfrequency be Q,) closest to the center of theAPR
inverted line, for which the condition

1,1, 1
(1) (1) (1)
vol mirr magn

<0 (@D}

is met prior to other modes. In (1), Qﬁﬁ? = ki/MNyol»

QW = ke/Mmirn ko = Qo/ Vi, and Qi isthe negative (at
K > 0) magnetic “quality factor” of this mode (for
which phasing startsfirst).

This quality factor is given by
Q. = —ky/ay(P, H, Q;) =k, [K(P, H)o(H, @] ()

where a, is the positive (at K(P) > 0) quantum amplifi-
cation coefficient of hypersound for the mode under
consideration of hypersound and ¢ is the paramagnetic
absorption at P = 0.

The expression for o hasthe form [25, p. 283]
_ 210CV°g(v)[Op[*
(2S+1)p'VikeT

wherev = Q/211,9g(v) isthe form factor of theAPR line,
p' is the crystal density, kg is the Boltzmann constant,
and @, is the factor that couples an E,, == E, spin
transition with a hypersonic wave of given propagation
direction and polarization.

The form factor of the APR line is normalized to
unity,

©)

00

J'g(v)dv =1, 4
0
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and the matrix element ®,,,, for an arbitrary hypersonic
wave traveling along the axis O (the axis O is aligned
with the z coordinate axis) of the ruby is given by

d

5 Wnltlu

CDmn =

)
- %33(3 W/ S w0 S(S+ 1) | w0,

where €, is the component of the elastic strain tensor,

% is the Hamiltonian of spin—phonon interaction
[6, 9], Gs; is the component of the Voigt spin—phonon

interaction tensor [6], and S, is the projection of the
vector spin operator on the z axis.

To estimate ®,,,,, we use the value Gg; = 5.8 cmrt =
1.16 x 107% erg, found experimentally, and the wave
functions for the E; == E, transition in a Cr3 ion
exposed to the trigonal crystal field of ruby that were
calculated in [24] from ESR data. With H = 3.92 kOe
and H directed at anangle 9 = 94, tothezaxis, where
9 gmm = arccos(1/4/3) = 54°44', we find from (5) that
®p, ~ 107 erg. The choice 9 = 94y, refersto the so-
called symmetric (or push—pull) pumping conditions
[24]. Such conditions are set up owing to the equality
E,—E,=E;—E, (Fig. 1), whichtakesplaceat 8 = 9gmm
and provides the most efficient inversion at the transi-
tion E; == E, in the spin system. Eventually, withvg =
9.1 GHz, g(vg = 10®%s, C, =13 x 10 cm3, p' =
4g/cmd, v, = 1.1 x 106 cm/s, and T = 1.8 K, we find
from (3) that 0 =0.04 cm™.

The loaded acoustic quality factor Qg” of the ruby
FPAR (with the piezoel ectric film) was measured by the
pulsed echo method at frequencies Q = 9.0-9.2 GHz.
With H = 0 and P = 0, Q' was found to be (5.2 +
0.4) x 10° for al longitudinal acoustic modes falling
into this frequency interval. Hence, N = Nyg + Nimire =

Q¥ v, = 0.1 e,

The parameters g, n, and o = o, (Where ag, is the
value of a at which phasing starts) are obviously related
as

aph =n= Kpho-l (6)

where K, is the critica value of the inversion ratio K
for thetransition E; = E,.

Substituting o = 0.04 cmt and n = 0.1 cmt into (6)
yields K, = 2.5. This value is readily attained in the
case of push—pull pumping, which provides K., = 3.3
under the conditions of our experiments.
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1.3. Free Phasing Regime

Since the frequency width I 5, of the APR line at the
spin transition E; == E, is =100 MHz and the mode
separation is as small as 300 kHz, single-mode SE
changes to multimode emission even if the pump

threshold is exceeded dlightly. For Qp = Q) =
23.0 GHz and H = H, = 3.92 kOe, free multimode phas-
ingisobserved evenat P = 50 uW. If Ay =H —Hy#0,
for the condition K > K, to be fulfilled, the pump inten-
sity (the pump source power) must be much higher (by
oneto two orders of magnitude).

With pumping switched on stepwise, the free phas-
ing conditions are set in the oscillatory regime. For our
system, the frequency wy of these damped oscillations
(the so-called relaxation frequency [26]) liesin thelow-
frequency range, wg = 130 Hz at H = H, [27-29].

In a free-running multimode phaser, the number of
modes does not exceed thirty even if P = P(M) > p
That is, the maximal width of the phasing spectrum
(30 x 310 kHz = 10 MH2) is one order of magnitude
smaller than T 5,, which is explained by the well-known
Tang-Statz—deMars mechanism (exhaustion of power
supplies for competing modes) [26]. If magnetic field
offsets are absent, free phasing proceeds under near-
steady-state conditions (theintegral intensity Js of mul-
timode SE, which is measured by the hypersonic con-
verter on one of the FPAR mirrors, is virtually time-
independent).

If the offset issmall, |Ay| < 3 Oe, the value of Js also
remains time-independent. With |A,| increasing to
=30 Oe, the integra intensity Js of phonon SE oscil-
lates weakly because few SE modes retune or decay
[18]. At |Ay| = 30 Oe, some of the free phasing modes
in phonon microwave spectra (PMS) split.

The splits are usually equal to several kilohertz
(much more rarely several tens of kilohertz), which is
much less than AQy = 300 kHz; the number of split
modes is one or two (three at most) even if |Ay| =
100 Oe; and the intensity of such modesis much lower
than that of the unsplit ones. This fine structure of SE
modes under the free phasing conditions is of oscillat-
ing character, with not only the spectral component
amplitudes but also their frequency positions varying
smoothly (the latter within 10 kHz). The only excep-
tions are narrow gaps in sets of control parameters
{P, A, etc.}, where the spontaneous cascade decay of
split SE modestakes place, causing small-scale phonon
turbulence[18]. In most cases, however, free phasingin
a ruby phaser proceeds under steady-state conditions
even if the offset |A,| = 100 Oe.

1.4. Resonant Destabilization of Phonon Simulated
Emission under Low-Freguency Resonance

The situation changes when the pump modulation
frequency lies near w,, = wg = 100 Hz, where pro-
TECHNICAL PHYSICS  Vol. 49
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nounced nonlinear low-frequency resonance is
observed [27-29]. If the depth of periodic modulation
is small, the phonon SE integral intensity Js(t) oscil-
lates synchronously with the external force period:
Js(t) = Js(t + 1), where 1,,, = 210 w,,,. As the pump mod-
ulation depth k., increases, the period of Js(t) doubles
according to the Feigenbaum scenario Js(t) = Js(t +
2'1,), where f = f(k,,) successively takes the values f =
1, 2,3, ..., which condense (f — ) in the vicinity of

acritical point k,, = kfﬁr) . A further increasein the depth

of modulation (k,, > kﬁﬁr)) switches the phaser into the

state of deterministic chaos[27, 29]. In the case of hard
excitation (for example, by a pulse of hypersound
injected into the FPAR from the outside), a phaser with
periodically modulated pumping exhibits SE multista-
bility (branching of periodic and/or chaotic phasing
regimes, which causes hysteresis) [28]. Finally, the col-
lision of a strange attractor with an unstable manifold
that separates the upper periodic branch generates so-
called crises (step changes in the domain of attraction,
which are accompanied by attractor reconfiguration)
[28, 29].

However, al the above phenomenawere detected in
[27-29] by measuring Js(t). More detailed information
about phaser destabilization by a periodic force can be
extracted from the microwave spectral characteristics
of phonon SE. It has been found that, when the depth of
modulation increases, SE modes aternatein a stepwise
manner over the entire phasing spectrum (Fig. 2), as
opposed to the insignificant smooth oscillation of the
amplitude and frequency of the SE spectral components
in the free phasing regime. In a number of cases, the
intensity of the most powerful components of nonauto-
nomous phasing exceeds the intensity of the most pow-
erful (central) SE component of an autonomous phaser

Fig. 2. Evolution of the phonon SE spectranear the low-fre-
quency resonance at wy, = 137 Hz. The interval between
sequential stages of evolution Ey isroughly equal to 1 s.
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by two orders of magnitude. The evolution of the SE
spectrum shown in Fig. 2 (in discrete time) illuminates
the actual (complicated) pattern of motionsin the spin—
phonon system of an acoustic quantum oscillator,
which is shaded by the integral characteristic Js(t). A
similar evolution of the PMS was also obtained upon
magnetic field modulation.

The mean lifetime of microwave phonon modes
under the conditions shown in Fig. 2 is several tenths of
a second. The modes rearrange in an irregular manner,
and their distribution is not repeated. Such a chaotic
evolution of the SE spectra took place over the entire
frequency range wy,,, = 70200 Hz, where resonant low-
frequency destabilization of phasing and, accordingly,
chaotic oscillations of Js(t) were previously observed
[27-29].

1.5. Resonant Destabilization of Phonon Stimulated
Emission in the Case of Ultralow-Frequency
Resonance

Under the ultralow-frequency (w,, = 10 Hz) modu-
lation of pump or magnetic field, the stabilization of
phonon stimulated emission assumes another, laminar,
character. Unlike the case of low-frequency resonance,
resonance at ultralow frequenciesis characterized by an
extremely high correlation of spectral motions. If the
modulation frequency w;, is precisely tuned to the ver-
tex w, of ultralow-frequency (ULF) resonance and the
depth of modulation is high (close to 100%), the
phonon microwave spectra narrow roughly fourfold
and contain no more than six or seven modes of phonon
SE.

With a small mismatch in terms of pump modula-
tion frequency, A, = W), — Wy, these narrow SE spectra
exhibit regular reconfigurations with intriguing fea-

\
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L
s

Fig. 3. Thesameasin Fig. 2, but near the ULF resonance at
W = 9.56 Hz. The step between Ex is2.5s.
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tures. It was found experimentally that the period Tff)

of reconfiguration varies by several orders of magni-
tude when A, varies by no more than 1 Hz. In addition,

the period rf,” turned out to be incommensurate with
the external force period 1, = 21w, (that is, the fre-

guency wff) = Zmrff) generally is not a harmonic or
subharmonic of the driving force frequency wy,). In
experiments, this shows up as the instability of states

that have rationa ratios 1’ /1, The essence of the
PM S self-reconfiguration is the periodic unidirectional

displacement (with the period T$") of the range of

microwave modes (this range typically comprises from
three to seven modes) along the frequency axisif w, = w,.

It is noteworthy that the frequency position of each
of the modes remains nearly unchanged (if higher order
dynamic effects due to the nonstationary fine structure
of the SE spectra[23] are disregarded): only the posi-
tion of the spectral part with phasing modes changes.
Thus, the ignition of new FPAR modes at one edge of
the PMS is accompanied by the extinguishing of the
same number of modes at the opposite end of the PMS.
Such amotion lasts until SE ceases completely in some
range of microwave frequencies. After arelatively short
period of complete absence of stimulated emission
(aperiod of refractoriness), the process of spectrum
globa self-reconfiguration is repeated, starting from
the same position on the frequency axis. The period

Tff’ of these unidirectional spectral motions remains

the same if the set of control parameters does not
change. On the screen of a spectrum analyzer, this evo-
lution of the SE spectrum appears as the periodic
motion of a mode cluster. Typical sequences of SE
spectraunder ULF resonance conditions (wy, =9.79 Hz)
at A\ = -0.23 Hz and in the absence of static magnetic
field mismatch are shown in Fig. 3.

An instantaneous set of SE modesforms acluster of
a certain width, and this width varies insignificantly
during the motion. At the same time, the set of SE
modes that form acluster constantly varies (Fig. 3). As
follows from Fig. 3, the self-reconfiguration of the
PMS is imposed on irregular oscillations of the SE
mode intensity. When the sweep range of the spectrum
analyzer is decreased by two or three orders of magni-
tude, weak irregular motions of SE modes aong the
frequency axis and sometimes a split of one of these
modes are observed (Fig. 4). The modes split when
their intensity is very low, i.e, immediately before
extinguishment (because of this, theinstrument noiseis
noticeable in Fig. 4). Obviously, such fine effects can-
not be seen on the panoramic spectrain Fig. 3 (the fine
structure of the PMS in a ruby phaser was studied in
[18, 23]). In general, it can be said that large-scale
ordered (laminar) motions of SE spectra in a phaser
with ULF pump modulation are imposed on small-
scaleirregular processes.
TECHNICAL PHYSICS  Vol. 49
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Similar large-scale laminar self-reconfigurations of
phonon microwave spectra in a nonautonomous ruby
phaser were observed in experiments at A, = +0.23 Hz;
however, the cluster moved in the opposite direction.
Further investigations showed that the sign of the deriv-
ative dQ,/dt (here, Q, isthe center frequency of amode
cluster) strictly correlateswith the sign of the frequency
offset of the external force from reso-
nance: sgn[ dQ,/dt] = —sgn4,, . Approaching the exact
ULF resonance discovered (|&,| —= 0), the self-recon-

figuration period T\ takes giant values. Direct mea-

surements (,oﬁ,” = ZTVTE,)\) gave inf(wé”) <10*“Hz (one

self-reconfiguration period is=3 h). All the experiments
were performed with superfluid helium (T = 1.8 K) in
order to remove problems associated with boiling a
cryogenic liquid.

Such a character of the PMS self-reconfiguration
persists over a wide range of A,. Moreover, at |Ay] <
10 Oe, even the value of w, remains constant (close to
9.8 Hz). Only when the magnetic field mismatch
increases further does the resonance frequency w,
decrease tangibly (about twofold for |Ay| = 60 Oe). Itis
significant that the above dependence of the direction
of motion of a mode cluster on the modulation fre-
guency detuning, sgn[dQ,/dt] = —sgnd,, remains
valid.

1.6. Harmonics of Ultralow-Fregquency
Resonance

Along with intermittent phasing conditions (includ-
ing the periods of refractoriness), we observed condi-
tions under which at least one phasing mode appearsin
the starting range before phasing in the final range dis-
appears. In other words, this means that two narrow
mode clusters whose virtual tops V,; and V, movein the
same direction and with the same velocity, dQ,,,/dt =
dQ,,/dt, are present on the frequency axis simulta-
neously. The same effect was observed for thefirst three
harmonics of ULF resonance: at wy, = Wy = 250,
wheres [0 {1, 2, 3} (thelowest 2sA resonances). Asfor
the fundamental A resonance (w,, = w,), the corre-

sponding periods of PMS reconfiguration, T , in the

case of our phaser are incommensurate with the exter-
nal force period 1, = 21w, and increase to 100 s or

moreif the detuning absolute value |A% | =|ay, — Wy

issmall (less than 0.05-0.10 Hz). In this case, too, the
sign of dQ,/dt (or dQ,,,/dt and dQ,,/dt) is opposite to

the sign of A%,

With 4 < s< 11, thedriving force frequency wy, falls
into the range of very wide relaxation resonance men-
tioned above (which prevails at frequencies between 70
and 200 Hz). However, for s> 11, i.e., when the driving
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Fig. 4. Fine structure of the phonon SE spectrum. The
sweep along the abscissa axisis 10 kHz.

force leaves this range of resonant destabilization, our
experiments again distinctly revealed narrow-band res-
onant responses of the phasing system to the external
effect not only at frequencies w, but also at odd har-
MONICS Wps+ 1) = (25 + 1)w,. These responses some-
what differ from those in the case of the fundamental A
resonance and itsfirst even harmonics. For example, at
s> 11, the deviation of Q, is, asarule, no greater than
one or two mode separations (i.e., no greater than 0.3—
0.6 MH2z) and phasing modes experience deep periodic
modulation (of depth 50% or more).

At s> 11 and adetuning of =1 Hz, this self-modula-
tion is fast (its period is about a second). As w,
approaches the top of each of the 2sA or (2s + 1)A reso-
nances (at the same s > 11), the self-modul ation period

Tgn, as Well as the period 1§ of mode alternation for

the fundamental frequency and lower even harmonics
(s < 4), increases monotonically. The highest values of
Tgn Which were reliably observed at 11 < s < 20,
reached several minutes. Note that the same intermit-
tent conditions of phonon stimulated emission (but with
smaller self-modul ation depths) were also found for the
first two odd harmonics (w,, = 3w, and w, = 5w,),
where “intense” self-reconfigurations are absent.

2. RESULTS AND DISCUSSION

Our experimental datafor ULF modulation suggest
self-organization in the spin—phonon system of aphaser
in terms of energy exchange between modes. It should
be emphasi zed that highly organized collective motions
in the spin—phonon system are observed not only for
each of the microwave acoustic modes (asin the case of
steady-state multimode phasing) but also at the global
level, where all SE modes obey the same rhythm, the
frequency of which is not a harmonic (subharmonic) of
an external perturbation. In other words, if upon normal
steady-state multimode phasing in an autonomous
phaser there exist N virtually independent microwave
oscillators (each corresponding to a specific SE mode),
upon aresonant UL F perturbation of the pump or mag-
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netic field, these oscillators behave consistently (coop-
eratively).

The features of collective motions in a phaser sug-
gest that this effect is similar to antiphase dynamics
processes [30—-32], which were discovered previously
in multimode lasers. In the simple case of double-mode
lasing [30], antiphase dynamics appears as consistent
oscillations of modes strictly in antiphase (hence, the
name of the effect). In N-mode systems, antiphase
motions may be much more complicated (see, e.g., [31,
32]); however, the general nontrivial tendency, namely,
coherent unidirectional SE mode oscillations with a

time delay 14" /N between nearest neighbors, still per-
sists.

As was found in this work, energy exchange
between modesin aphaser resultsin an additional char-
acteristic frequency w,, which is much lower than the
relaxation frequency wy. Collective motions are excited
when the parameters of the phasing system are modu-
lated at frequencies close to w,. The same is true for
lasers exhibiting antiphase dynamics [30-32]. Accord-
ingly, phonon spectral self-reconfigurations may be
treated as the occurrence of antiphase states of stimu-
lated emission in the FPAR when the spatial distribu-
tion of stationary modes is destabilized by an external
force at w,, = w,. Moreover, the value of w, estimated
by formulas given in [30] is one order of magnitude
higher than wg, which is aso in agreement with our
experimental datafor nonautonomous phasing.

It should be noted, however, that the laser model of
the nonlinear dynamics of phonon microwave stimu-
lated emission cannot describe adequately al features
of self-organization in a phaser near ULF resonance,
although it gives a satisfactory estimate of w, and pre-
dicts more or less accurately the character of mode
motions. For a better understanding of self-organiza-
tion in a ruby laser, one should consider the unusual
hierarchy of spin reservoirs[33], which are responsible
for the specific saturation of quantum transitionsin the
microwave range. Essentially, all nonlinearities appear-
ing in microwave resonant interactions of the signal
acoustic field and the electromagnetic pump field with

the electron Zeeman reservoir Zg [33] of Cr3* ionsin
ruby “sense’ to one extent or another the presence of
slowly relaxing Al?” nuclel, as revealed in earlier experi-
ments on hypersound quantum amplification [10, 11, 17].

The reason for this sensitivity is direct thermal con-
tact [33] between the nuclear Zeeman reservoir Zy and
the dipole—dipole interaction reservoir Dg, owing to

which the energy exchange Ze = Dg = Zy takes
place. Itis |mportant that the heat capacities of the res-
ervoirs Zy and Ze are comparable to each other,
athough the frequency of nuclear magnetic resonance
(=10 MH2) for Al? is three orders of magnitude lower
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than the ESR and APR frequencies for Cr¥* ionsat H =
4 kOe. This is because the concentration of impurity
paramagnetic Cr3* ionsin pink ruby isaslow as severa
hundredths of a percent; that is, for one electron spin,
there are several thousands of nuclear spins. Asaresult,
the inertial nuclear system, while unseenin direct ESR
and APR measurements, participates in all population
redistributions over electron spin levels (in more exact
terms, over a quasi-continuous set of sublevels due to
dipole—dipole interactions [33]).

Turning back to ULF resonance, we may assume
that the decrease in its frequency at large mismatches
A, is observed when nuclear degrees of freedom are
involved in energy exchange between modes, which

goes through Ze and De and causes salf- -organization
in the phasing medium. In fact, the most important fea-
ture of interaction between the electron and nuclear
subsystems of ruby isthe strong dependence of the spin
temperatures (in al the three reservoirs) on detuning in
the phaser [10, 11, 17]. It is aso noteworthy that the

combined effect of the low-energy reservoirs Deg and

Zn on phonon SE in aphaser differsradically from the
effect of similar reservoirs in optical lasers (see, e.g.,
[34]). The point isthat, in our system, the heat capacity
and inertia of the low-energy reservoirs differ from
those of the high-energy reservoir Ze much more than
in CO, lasers [34]. First, in our system, as was noted
above, for one active center Cr3* there are several thou-
sands of magnetic nuclei Al?’, which make a low-
energy reservoir “heavier,” whilein CO, lasersthe low-
and high-energy reservoirs are formed by the same
molecules (in CO, lasers, the high-energy reservoir is
formed by rotational—vibrational degrees of freedom of
CO, molecules). To put it otherwise, a laser has ana-

logues to the reservoirs Ze and De but does not have

an analogue to the reservoir Zy. Second (and most
important), the relaxation time of the low-energy reser-
voirsismuch longer (because of the nuclei) than that of
the high-energy one, while for CO, lasers [34] the
reverse is true. Therefore, in a ruby phaser, the com-

bined inertial reservoir De + Zy can be involved in
governing self-organization processes, which the slow-
est processes aways are.

CONCLUSIONS

We experimentally studied theinfluence of an exter-
nal periodic force on the dynamics of phonon micro-
wave stimulated emission in a pink ruby phaser. It is
shown that the periodic modulation of pump at a fre-
guency wy,, = 70—200 Hz randomizes energy exchange
between modes in the spin—phonon system because of
resonant destabilization of the phaser near itsrelaxation
resonance frequency wg. In this range of destabiliza-
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tion, the width of the phonon microwave spectrum does
not change. For ULF pump modulation (w, = w, =
10 Hz), aqualitatively new type of phonon SE destabi-
lization isdiscovered. First, the PM S narrows consider-
ably (almost four times). Fast chaotic switchings of
phasing modes at w,,, = wg near the ULF resonance give
way to self-organization in intermode interaction
(unlike conventional “intramode’ self-organization,
whichistypical of multimode lasers). Self-organization
appears as consistent regular oscillations of each of the

SE modes with atime delay rff) IN. This appears asthe

motion of amode cluster in the spectral space. Thetotal
self-reconfiguration cycle depends considerably on
Wy, — Wy, and changes by severa orders of magnitude
when |w,, — w,| changes by several percent. The same
processes were observed for the first three even har-
monics of the ULF resonance. For higher even harmon-
ics, aswell as for all odd harmonics, intermittent peri-
odic modulation is found. Its period may exceed the
period of the driving force by several orders of magni-
tude. The results obtained are treated in terms of the
antiphase dynamics of phonon SE. The effect of the
Al?" magnetic nuclear subsystem in the ruby crystalline
matrix on the reconfiguration of the phasing spectrum
in anonautonomous phaser (in particular, on the depen-
dence of w, on the magnetic field) is discussed.
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Abstract—M agnetoplasma waves and inhomogeneous (complex) waves in an i nfinite semiconductor superlat-
ticein amagnetic field are studied, and dispersion curves are obtained. It is shown analytically and numerically
that, in periodic structures, among inhomogeneous waves, there are many complex waves for which the imag-
inary part of the wave vector isgreater than thereal part. The effect of dissipation in amedium on the dispersion
curves of magnetoplasmawaves is examined. The dependence of the minimum phase vel ocity on the collision
frequency and the magnetic field strength is studied. © 2004 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

For many years, periodic layered media have
attracted great interest from researchers. These struc-
tures belong to a new type of artificial materials whose
physical characteristics cannot be achieved in natural
semiconductors, because their properties depend on
both the physical parameters of the materials of which
they are fabricated and on the layer dimensions and
structure period. The specific features of periodic lay-
ered structures are attributed to their translation sym-
metry. Such structures are widely used in modern mil-
limeter- and submillimeter-wave devices, antennas,
optics and optoel ectronics, and X-ray technique.

We consider waves in a periodic semiconductor
superlattice in a magnetic field. Magnetoplasma waves
in superlattices have been studied in many works. For
arbitrary orientations of the lattice, applied magnetic
field, and propagation direction, the problem till
remains unresolved. Electromagnetic properties of
superlattices with conductive layersin amagnetic field
were studied in [1, 2]. In those papers, the magnetic
field directions coincided with the direction of the
structure periodicity and the wave propagation direc-
tion. For this geometry, analytical expressions can only
be obtained for waves whose wave vector is paralel or
perpendicular to the layers. It was shown in [3] that,
when the magnetic field is perpendicular to the period-
icity direction and awave propagatesin aplane perpen-
dicular to the magnetic field, a specific band structure
of the spectrum is observed. Two regions of bulk mag-
netic polaritons were aso described. These results
coincide with those for bulk polaritons described in
later papers [4, 5]; however, the frequency positions of
the passbands were not analyzed. The properties of
such structures with a magnetic field vector parallel to
the layers are studied in [6]. The coefficient of reflec-

tion from a semi-infinite semiconductor structure con-
sisting of semiconductor and dielectric layers in an
external magnetic field perpendicular to the direction of
structure periodicity was studied in [7]. However, all
the works mentioned above ignore dissipation, which
affects the wave dispersion. At the same time, it was
shown [8-10] that dissipation limits the maximum
value of the wavenumber, i.e.,, the minimum phase
velocity vy, = wik,.

In the next section, we will study inhomogeneous
(complex) magnetoplasmonsin asemiconductor super-
lattice. Let us recall what inhomogeneous plane waves
are. In study of the propagation of plane electromag-
netic waves in infinite media, the dependence of the
field on coordinates is given by the factor ek [ -iet)
where Kk isthe complex wave vector,

k = k'+ik",
and k' and k" are the real vectors[11].

From Maxwell’s equations, we have

2
2 _ W
k™ = Es. Q)

For real permittivities, this expression is meaningful
if k' (k" = 0. Waves for which planes of constant phase
(i.e., the planes perpendicular to the vector k') and
planes of constant amplitude (i.e., the planes perpendic-
ular to the vector k") are orthogonal are referred to as
inhomogeneous waves. In the literature, these waves
are called complex waves [12].

Inhomogeneous plane waves were addressed in
[12, 13]. The properties of inhomogeneous plane waves
in a periodic structure consisting of dielectric layers
and semiconductor layers whose permittivity is fre-
guency-dependent and may become negative were first
considered in [14]. The permittivity is negative at fre-
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guencies below the plasma frequency. It can be seen
fromEg. (1) thatk" > k'at € <0; i.e, theimaginary part
of the wave vector is greater than itsreal part. Thiscir-
cumstance imparts a number of interesting features to
the propagation of complex waves.

This paper differs from those mentioned above in
that it considers an infinite periodic semiconductor
structurein amagnetic field. It isassumed that the mag-
netic field is parallel to the layers. We calcul ate the dis-
persion characteristics of complex magnetoplasma
waves. The effect of attenuation on the dispersion prop-
erties of inhomogeneous magnetoplasmonsis studied.

DISPERSION RELATION

We will consider an infinite periodic structure
whose periodic cell consists of a semiconductor layer
of thickness d; and a dielectric layer of thickness d,.
Let the structure be exposed to an external magnetic
field parallel tothey axis. Thezaxisis perpendicular to
the layer boundaries. The magnetoplasma waves prop-
agate in the xz plane [15]. Propagation of electromag-
netic waves in such a structure is described by Max-
well’s equations written for each layer and the condi-
tion that tangential components of the electric and
magnetic fields be continuous on all the boundaries of
the structure. We will seek a solution to this system of
equations in the form exp(ikx + iky ,z — iwt). We
assume that the structure is uniform in the y direction;
hence, d/dy = 0. Then, Maxwell’s equations split into
independent equations for two modes with different
polarizations. We consider the mode with the compo-
nentsE,, E,, and H,. The permittivity tensor of the semi-
conductor layer can be written as [16]

wh(w+iv)

€ = €5 = € = €| 1— :
R w[(0+iv)? - wi]

2
W, Wy

€, = —€, = € = —ig, : ,
S W[ (w+iv)?— wl]

where g, is the part of the permittivity attributed to the
lattice, w, isthe plasma frequency, wy, is the cyclotron
frequency, and v is the collision frequency.

The permittivity €, of the second layer is constant.
To satisfy the boundary conditions, we use the transfer
matrix method (this matrix relates fields at the begin-
ning and end of the period) and Floquet’'s theorem,
which allows for the periodicity. The dispersion rela-
tion for an infinite medium in a magnetic field has the
form [15]

£11€2 [[sz , Ot

2k ko T T Ce,0

coskd = cosk,,d, cosk,,d, —
€ 2 (2)
_e0ia 0 }sinkz d,sink,,d,,

insle 103 20U
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where index 1 refers to the semiconductor layers and
index 2, to the dielectric layers;

172 172

2 2

k. = W ey, 12 K. = Wwe, 2

z1 — | T 2 T P ) 22 T | T o T Px )
C C

Ey1=¢gp + séllem is the Voigt permittivity; k,; and k,
are the transverse wave numbers of the first and second
layer, respectively; d = d; + d, is the structure period,;
and k is the wavenumber averaged over the period.

The analysis of expression (2) reveals the character-
istic frequencies [3]

2
_ Wy, Wy 2
Qoo = 35777 T O 3

Joh + @y + VP

which arethelimiting frequenciesfor oscillationsinthe
superlattice (they determine the asymptotes w = wyy,,
W= W,, and w = wy, of the dispersion curves). Here,
Whs = Wy(Ear/(Ey + €2)) M2 is the frequency of the surface
plasmon on the semiconductor—dielectric boundary.
The behavior of the dispersion curvesis determined by
the magnetic field strength. For wy, < Wy, we have wy, <
W, and, for wy > w,, we have wy, > w,. The critica
frequency

W, =

_ € 52D_1/2
W, = (A)pg_
01

is determined from the condition wy, = W,

Figure 1 shows dispersion curves for magneto-
plasmawaves with allowance for the delay and without
allowance for attenuation in the medium. The calcula-
tionswere performed for the following parameters. The
first layer was an InSb semiconductor with gy, = 17.8,

€ol

1

1 x 1012

Fig. 1. Dispersion curves for magnetoplasma waves.
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Wy, = 102 s, and d; = 0.015 cm. The second layer was
adielectricwith e, = 2 and d, = 0.005 cm. The magnetic
field was H, = 1000 Oe (wy, > wy,). It was also assumed
that kd = 0. At frequencies w < wy,, the fields of the
propagating waves decrease exponentially with the dis-
tance from the layer boundaries. These waves are col-
lective surface magnetoplasmons, whose dispersion
curves tend to the asymptote w = wy; (curve 1). In the
frequency band wy < W < Wy, two characteristic
regions can be distinguished [7]. These regions are
divided by the line k,, = 0, corresponding to a wave
propagating with the speed of light (the oblique dashed
linein Fig. 1). In the first region, the waves propagate
in the semiconductor and dielectric layers as in a

waveguide ( ka , > 0) and allowed and forbidden zones
are formed due to the geometric resonance conditions,
under which the layer thickness is a multiple of half-
waves. In the second region, k2, > 0, while k%, <0, and
the fields of the surface polaritons tunnel through the
dielectric layer. The frequency of magnetoplasma
waves is seen to approach the hybrid frequency .,
(curves 2-5) askd increases. This property of the mag-
netoplasmon spectrum is described in [17].

ALLOWANCE FOR DISSIPATION

Allowance for dissipation in a medium changes the
behavior of the dispersion curves. Figure 2 shows the
dispersion curves with allowance for the collision fre-

quency (v = 10 s1). It is assumed that k, = k|, + ik
(k; isrelated to dissipation). The solid lines show the

SHRAMKOVA

real part of the wavenumber, k; d, as afunction of fre-
quency; the dashed lines refer to the imaginary part of
the wavenumber, k; d. It follows from Fig. 2 that, at
k, d < 1, theimaginary part can be greater than the real
part k. As the frequency and k; increase, ki, almost
vanishes. In particular, at the point E, the relative atten-
uationis ki /k;, =0.02. Asthefrequency approachesthe
hybrid frequency, the attenuation increases (at the point
F, ki /k, =0.32), while k;; differslittle from k. Thus,
the relative wave attenuation k; /k;, is small and is
almost equal to unity at low and high frequencies.
These plots differ from those for a nondissipative
medium in that they have a turning point at high ki d,

where k; takes a maximum value. To estimate (K.)max,

we assume that w = ), and k;, > (w./C) /€y ». Then,
we obtain

Ka = Ko =ik =i(K, +iky) (4)
and dispersion relation (2) takes the form
coskd = coshkxdlcoshkxd2+g\’é82

()

1,1 €01 7] :
x [T +S+ Et il % }smhkxdlslnhkxdz.
€1 €& cInfvi

At high k,, we have coshk,d;, , = sinhk,d; , =
exp(k; dy »)/2. Then,

1 nzem(zwi — 0)V

k=3 A :
W, 2 £ 2 2 ’ 2 2 £ 2 2 ?
A = J£%1+82)mm——%(mm—wp)g +4v %1+82)wm+——;—1(wm—wp)5, (6)
2 5%1 2 2
= L2 (7T
*d W, 2V 2

Here, |coskd| = 1. From formulas (6), we obtain that, as
v, —= 0, k,d — o and ki, d — 102.

The analysis of formulas (6) allows us to determine
the physical meaning of the turning point on the disper-

sion curves. The fact is that ki now determines the
phase of the field along the z axis: exp(k, — ik} )z
Therefore, when v # 0, the phase increment across the

€
(1+¢&)ws + 701(001 —05)

semiconductor layer is=112. This means that the wave
that passes through the semiconductor layer and
reflects from its boundary isin antiphase with the wave
incident on the layer; i.e., the waves cancel each other.

Thiseffect creates aforbidden band for ki, > k., ad
aturning point appears on the dispersion curves.

The behavior of the dispersion curvesis determined
by the magnetic field strength H,. Therefore, the phase
TECHNICAL PHYSICS  Vol. 49
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kd, kd

Fig. 2. Dispersion curves for magnetoplasmons with allow-
ance for spatial attenuation: w(k; ) (solid lines) and w(kS, )
(dashed lines).

velocity depends on the cyclotron frequency. Figure 3a
shows v/, min Versus the cyclotron frequency wy at v =
(2) 10t and (2) 2 x 10'* s. It can be seen that, when
Wy < Wy, Vph min decreases monotonically with increas-
ing applied magnetic field. The phase velocity reaches
itsminimum value at wy, = wy. Further, the phase veloc-
ity increases with the magnetic field. To calculate the

minimum phase velocity v g, i , We use the expression
for k; (thefirst of formulas (6)):

2841 (205, — 0O5)V
A L

Viohmin = —wd/In

where w, = /o) + W + V7.

Figure 3b shows the minimum phase vel ocity versus
v/wy,; at Hy = 1000 Oe. The minimum phase velocity
Vphmin 1S SEEN tO increase (i.e., K, mq to decrease) with
the collision frequency.

INHOMOGENEOUS MAGNETOPLASMA
WAVES

Let us show that dispersion relation (2) has a solution
on the complex plane k, = k; + ik . We assume that

2
(V)
ki > ::Elsfl, 82|
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Vph mins cm/s

8 x 10°

6 x 10°

2 x 102 3x 1012

Wy, 571

(b)

1012

Vph min/ ¢

0.20

0.15

0.1 0.2 0.3 0.4
v/,

Fig. 3. Minimum phase velocity of magnetoplasmons vs.
frequency and magnetic field.

In this case, dispersion relation (2) can be repre-
sented as

coskd = a +ip, (7)
where

_ 1 2, .2 " '
a = m[((g”l +&,)" + £p) cosk,d coshk,d

—((gn—€&2)" + £2) cosk;(d; — dy) coshk(d; —d,)],

;52[((8“1 +£,)%+£2)sink!dsinhk.d

(8

B= 4¢
—((g)u—&,)" + €b) sink;;(d; —d,) sinhK,(d; — d,)].

Asfollowsfrom Eq. (7), coskd isreal (which corre-
sponds to the transmission band) if 3 = 0. The solution
to this equation simultaneously satisfies two equalities:

™ TiL
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Fig. 4. Dispersion curves for inhomogeneous (complex)
magnetoplasma waves.

where M, L =0, 1, £2, ... and M/L = d; + d/|d; — d,|
isarational number.

The equation for ki, can be shown to have asolution

when M and L are both even or both odd. As follows
from Eq. (9), the physical meaning of the existence
condition for the existence of the complex modesisthat
the geometrical resonance be present in both layers
simultaneoudly; i.e., the thickness of each layer must be
a multiple of the half-wavelength [14]. Thus, the dis-
persion relation for magnetoplasmawavesin an infinite
semiconductor superlattice has many solutions on the
complex plane k,, which are determined by the num-
bers M and L. Figure 4 shows numerical solutions to
dispersion relation (7) on the complex plane without
allowancefor collisions. The parameters of the periodic
structure are the same asthose in Fig. 1. Curves 1 refer
toM =2; curves 2, toM = 4; curves 3,to M = 6; and so
on. It can be seen that agreat number of complex modes
occur in a periodic structure in a magnetic field. The

W, s!
Mo
7

1 x 1012}

Fig. 5. Dispersion curves for complex magnetoplasma
waves with allowance for dissipation.

real parts of the wavenumbers (XK, ) curvesin Fig. 4q)

of different modes differ little from each other (for
example, curves 2 and 4 and curves 1, 3, and 5 almost

coincide). The w(k;) dependence (Fig. 4b) has the
form of afamily of curves symmetric about k; =0;i.e.,

k; takestwo values k; = |k, |for each mode. Thisis
a distinctive feature of complex waves [12]. As the
curves approach the asymptote w = w,, k;, — o and

K 0.

Figure 5 shows dispersion curves for the complex
magnetoplasma mode correspondingto M = +2 at v =
10 s, Let us compare this figure to Fig. 4. It can be
seen that, when collisions are taken into account,
dependences of the frequency on the real part of the
wavenumber k. d (Fig. 5a) for modes with positive
(curve 1) and negative (curve 2) M do not coincide. The

w(k; ) curves (Fig. 5b) are symmetric about ki, =0 only

TECHNICAL PHYSICS Vol. 49 No.2 2004
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at frequencies below w = w,,. At frequencies above w=
Wy K becomes positive for both modes. Interestingly,

the dispersion curve for positive M values turnsinto the
curve for anormal magnetoplasmawave. These disper-
sion curves have a turning point at w = w,,, Similar to
those for usual magnetoplasmons.

CONCLUSIONS

The attenuation of electromagnetic wavesin an infi-
nite structure consisting of periodically alternating
semiconductor and dielectric layersin a magnetic field
has been studied theoretically. Dispersion characteris-
tics are calculated with allowance for collisions and the
finiteness of the speed of light in the semiconductor |ay-
ers. Dissipation is shown to limit the phase velocity to
a certain minimum value, which depends on the colli-
sion freguency.

The propagation of inhomogeneous (complex)
waves and the effect of dissipation on their properties
have also been studied. Itisshown that, at high frequen-
cies, the complex waves turn into normal waves.

The practical importance of this study is associated
with the promise shown by structures with translation
symmetry for devel oping passive and active microwave
devices. In lattices with a period of afew micrometers
to a few millimeters, the effects under study can be
observed in the optical to centimeter wavelength range.
In particular, the analysis of the dispersion properties of
norma magnetoplasma waves propagating in such
media shows that these waves can be applied in micro-
wave filters and converters. These results can also be
used in designing solid lasers.

ACKNOWLEDGMENTS

| am grateful to A.A. Bulgakov for his continuing
interest in thiswork.

TECHNICAL PHYSICS Vol. 49 No.2 2004

10.

11

12.

13.

14.

15.

16.

17.

237

REFERENCES
A. C. Baynham and A. D. Boardman, Solid State Com-
mun. 26, 654 (1968).
A. C. Baynham and A. D. Boardman, J. Phys. C 2, 619
(1969).
A.A. Bulgakov and Yu. E. Filippov, l1zv. Vyssh. Uchebn.
Zaved. Radiofiz. 28, 1185 (1985).
R. F. Wallis, R. Szenics, J. J. Quinn, and G. F. Guiliani,
Phys. Rev. B 36, 1218 (1987).
R. F Wallis and J. J. Quinn, Phys. Rev. B 38, 4205
(1988).
M. S. Kushwaha, J. Phys. Chem. Solids 47, 485 (1986).
A. A. Bulgakov and O. V. Shramkova, Fiz. Tekh. Polu-
provodn. (St. Petersburg) 34, 712 (2000) [ Semiconduc-
tors 34, 686 (2000)].
K. R. Alfano, J. Opt. Soc. Am. 60, 66 (1970).
G. R. Kovner, K. W. Alexander, K. J. Bell, et al., Phys.
Rev. B 14, 1458 (1976).
A.A. Bulgakov and Z. E. Eremenko, Opt. Spektrosk. 66,
1094 (1989) [Opt. Spectrosc. 66, 640 (1989)].
L. D. Landau and E. M. Lifshitz, Course of Theoretical
Physics, Vol. 8: Electrodynamics of Continuous Media
(Nauka, Moscow, 1982; Pergamon, New York, 1984).
T. Tamir and A. Oliner, Proc. Inst. Electr. Eng. 110, 311
(1963).
T. Tamir and A. Oliner, Proc. Inst. Electr. Eng. 110, 325
(1963).
A. A. Bulgakov, S. A. Bulgakov, and M. Nieto-Vesperi-
nas, Phys. Rev. B 58, 4438 (1998).
F. G. Bass,A. A. Bulgakov, and A. P. Tetervov, High-Fre-
guency Properties of Semiconductors with Superlattices
(Nauka, Moscow, 1989).
A. . Akhiezer, I. A. Akhiezer, and R. V. Polovin, Plasma
Electrodynamics (Nauka, Moscow, 1974; Pergamon,
Oxford, 1975).
A.A. Bulgakov and O. V. Shramkova, Radiotekh. Elek-
tron. (Moscow) 46, 236 (2001).

Translated by A. Khzmalyan



Technical Physics, Vol. 49, No. 2, 2004, pp. 238-244. Translated from Zhurnal Tekhnicheskor Fiziki, Vol. 74, No. 2, 2004, pp. 98-104.

Original Russian Text Copyright © 2004 by Annenkov, Gerus, Kovalev.

RADIOPHYSICS

Bulk and Surface-Bulk M agnetostatic Waves
in Waveguides Produced
by a Step Bias Field

A.Yu. Annenkov, S. V. Gerus, and S. |. Kovalev

Institute of Radio Engineering and Electronics (Fryazino Branch), Russian Academy of Sciences,
pl. Vwedenskogo 1, Fryazino, Moscow Oblast, 141190 Russia
e-mail: svg318@ms.ire.rssi.ru
Received July 14, 2003

Abstract—The propagation of magnetostatic waves in a ferromagnetic waveguide created by a step bias field
is studied by numerical methods. Bias field configurations and frequencies are taken such that the width of the
magnetic waveguide accommodates either only bulk waves or surface and bulk waves in combination. This
work is an extension of earlier works, in which the propagation of surface waveguide modes was considered.

© 2004 MAIK “ Nauka/lInterperiodica” .

INTRODUCTION

Earlier investigation into magnetostatic waves
(MSWSs) propagating in magnetic waveguides (see,
e.g. [1, 2]) did not reveal significant differences from
wave propagation in a uniformly magnetized slab (the
case considered by Damon and Eshbach [3]) asregards
the dispersion curves. This paper and the previous one
[4] consider bias field distributions that change notice-
ably the shape of MSW dispersion curves.

The bias field vector is aligned with the z axis and
has a step discontinuity along this axis (Fig. 1). This
field creates an in-plane magnetization of the ferromag-
netic film 1, which liesin the yOz plane. Thefield isuni-
forminthedirection of they axis, so that we aredealing
with a magnetic waveguide C in this direction. This
waveguide consists of two rectangular channels A and
B with parameters h,, Hp and hg, Hg. MSW modes of
the waveguide C can be considered as a hybridization
of partial modes propagating in the rectangular chan-
nels A and B. Since their apertures are finite, the
waveguides A and B are multimode.

Surface and bulk modes in each of the channels A
and B are described by a family of dispersion curves.
The frequency bands covered by these curves depend
onthefieldsH, and Hg inthe channels, while the slopes
of these curves are related to the channel widths h, and
hg. These parameters were chosen so that the dispersion
curvesfor bulk modesin channel A intersect with those
for surface modesin channel B.

The bias field is assumed to be uniform along the x
axis, which is an approximation. However, if a ferro-
magnetic film has a thickness d much smaller than the
characteristic sizes h, and hg of the field nonuniformity

across the width of the waveguide (z axis), the nonuni-
formity along the thickness (x axis) can be neglected.

Our study of the properties of MSW modes in the
waveguide is based on the solution of the Walker equa-
tion, which describes the distribution of the magneto-
static potential W in terms of the dynamic permeability
tensor (X, 2):

div[pu(x, z)grad¥] = 0. D

The nonuniformity of the field and that of the ferro-
magnetic film boundaries are included into the perme-
ability tensor. We seek for a solution to the equation by
the finite-difference method. A domain of interest is
covered by a rectangular mesh. Then, Eq. (1) repre-
sented on this mesh in integral form is reduced to an
equation written in terms of the quadratic matrix oper-
ator. The number of mesh cells is self-consistently
obtained from the solution and its derivative. This
method is described in more detail elsewhere [5, 6].

C
f-—k—\
hy hg
|H_ HZA H 2
A’, 3—| s
° = z 1
xA L
ol ke
L z
ky o
y s -d

Fig. 1. Geometry of the problem: (1) ferromagnetic film and
(A, B, C) magnetic waveguides.
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BULK AND SURFACE-BULK MAGNETOSTATIC WAVES

The calculations result in dispersion curves for
M SW modes propagating in the waveguide (Fig. 2) and
distributions of the scalar potential W(x, 2).

BULK MODES OF ONE CHANNEL

First, let us consider bulk MSWs in the rectangular
channel A. The properties of bulk waves in an infinite
in-plane magnetized ferromagnetic slab were discussed
in[3]. It was shown that the distribution of the magnetic
potential across the thickness (along the x axis) has the
form of a standing wave that is described mathemati-
cally by a sine function whose argument (phase) varies
from one plane to another. The distribution across the
thicknessis symmetric only when the M SW propagates
paralel to the bias field (to the z axis); otherwise, it is
asymmetric. With increasing wavenumber, the phase
difference between the two surfaces for the first-order
mode grows from O to 1. Higher order modes differ
from the first-order one by amultiple of half-wavesfit-
ted in the dab thickness. In the dispersion space
w(k,, k,), these modes form an infinite nest of trough-
shaped surfaces. The lowermost surface refers to the
first-order mode with the smallest phase difference
across the film thickness, and the top-most surface
tends to the plane w, = yH,, where y is the gyromag-
netic ratio.

The behavior of bulk MSWs propagating in differ-
ent directions relative to the bias field was studied in
[7]. It was shown that there exists a direction in which
the phase difference changes rapidly. The smaller the
wavenumber, the faster this change: the phase changes
roughly by malmost stepwise. Interestingly, this direc-

tion is defined by the angle o, = arctan,/4TtMy/H ,,

which coincides with the cutoff angle of surface MSWs
[3]. Here, M, is the saturation magnetization.

The existence of the magnetic channel along the y
axis causes the wave to propagate only in the y direc-
tion. In addition, astanding wave forms acrossitswidth
(in the z-axis direction). First, let us perform a simpli-
fied yet illustrative analysis of wave propagation in a
channel with rigid magnetic walls, i.e., when the poten-
tial W vanishes at the channel boundary. Such a channel
guides a wave composed of two waves that are solu-
tions to Eq. (1) for an infinite dab but have a fixed
wavenumber k,. These two waves produce an integer
number of standing half-waves across the width of the
channel. Dispersion curves for these modes are
obtained by cutting the “troughs’ described above by
planes k, = kon, where n is an integer and ky, corre-
sponds to a single half-wave across the width of the
channel. Modes with a different number of half-waves
across both the channel width and the film thickness are
produced. Although the initial dispersion troughs do
not intersect, the dispersion curves obtained from dif-
ferent sections overlap, producing numerous intersec-
tions. As the number of half-waves accommodated on
the channel width grows, the dispersion curves deform
2004
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Fig. 2. Theoretical dispersion curves for the composite
waveguide C and for its constituent channels A and B: solid
lines, modes of the waveguide C; dashed lines, bulk modes
Am, n and hybrid bulk modes Agm, n_p, ¢ Of channel A; and
dashed-and-dotted lines, surface modes By, o of channel B
(m, n, p, and q are integers). Parameters of the magnetic
waveguide: hy = 0.1 mm, hg = 0.3 mm, Hy =570 Oge, Hg =
445 Oe, 41tMg = 1857.7 G, and d = 0.0183 mm.

dlightly, shifting towards greater wavenumbers, and the
frequency band broadens. In contrast, an increasein the
number of half-waves across the film thickness shifts
the dispersion curves in the opposite direction.

Let us mark bulk waves by two subscripts: one for
the number of half-waves across the channel width and
the other for the number of half-waves across the film
thickness (for example, A; , meansthat this mode prop-
agatesin channel A and has three half-waves across the
channel width and two half-waves acrossthe film thick-
ness).

When the wavenumber k; is varied from zero to
infinity, the direction of the total wavenumber Kk, + Kk,
which refers to an MSW in an infinite slab and is ini-
tidly oriented transversely to the channel, becomes
paralel to the channel. As follows from [7], the phase
difference is bound to increase with thickness slowly
except for the k, range where the wave goes through the
critical angle a.. Inthisrange, the phase difference rap-
idly grows from a minimum to a maximum value. The
smaller |k, + k| near the critical angle, the faster the
variation of the phase difference with thickness.
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Now, let us consider the behavior of bulk wavesin a
nonideally rigid channel. To this end, we seek for a
numerical solution to Eqg. (1) in aregion whose bound-
aries are far away from the boundaries of the
waveguide, so that the potential W at the boundaries of
the region vanishes. As a result, the potential at the
boundaries of channels A and B remainsfinite. Because
of this, the wave field outside the channel decreases and
the wave distribution across the width of the channel
becomesnonsinusoidal. Theinitial modes are no longer
orthogonal and may interact at the point where the dis-
persion curves intersect. Because of this, the marking
of the modes by the number of half-waves accommo-
dated on the channel width and on the film thickness,
which was used in the case of rigid walls, becomes
incorrect. A particular mode may contain a different
number of half-waves over both the channel width and
the film thickness, depending on the frequency.

Our calculations show that various modes behave
variously at the points of intersection: some of them
repel each other, and others do not. The absence of
repulsion means that the modes do not interact. The
modes do not interact if the integral of the product of
the distributions of their magnetostatic potentials (here-
after ssimply potentials) equals zero. Let us denote the
potentials of two modes as W,(x, 2) and W,(X, 2). Then,
their interaction integral can be written as

IILPl(x, )W, (X, z)dxdz.

Theintegral vanishesif theintegrand isantisymmet-
ric about at least one coordinate. Since the thickness
distribution of the potentia is, in general, asymmetric,
we will consider the distribution across the width
(alongthezaxis). It issymmetric (antisymmetric) if the
number of half-waves is odd (even). The product of a
purely antisymmetric mode by a symmetric mode
yields an antisymmetric integrand. Thus, at points
where even and odd modes intersect, mode interaction
and, hence, the repulsion of the dispersion curves are
not expected.

Figure 2 shows the dispersion curvesfor bulk waves
in channel A (dashed lines). The dispersion curves for
the modes A, ; and A; 3 (omitted in the figure) repel
each other at the point of interaction (circle 1) and pro-
duce two hybrid modes, Ag; 133 and Agz 34 1. Note
that here the subscripts indicate how many and which
of the original modes from the rigid-wall channels pro-
duce hybrid wavesin the soft-wall channel. At the same
time, the dispersion curve for the mode A, , intersects
the dispersion curve for the mode Ag; 1 3 3 Without
repulsion. This corroborates our conclusion that inter-
action does not occur between modes that contain even
and odd numbers of half-waves over the channel width.

ANNENKOV et al.

In the region of repulsion of the dispersion curves,
the distribution of the potential gradually changes. Fig-
ure 3 demonstrates the transformation of the magneto-
static potential in the region where the modes A, ; and
As 3 repel each other. For surface waves[4], the number
of half-waves accommodated across the width of chan-
nel C for a particular mode is constant and equals its
index, while, for the bulk hybrid modes Ag; ; 3 3 and
Agz 31,1, the number of half-waves varies along their
dispersion curves. On different portions of the curves,
either one half-wave or three half-waves are accommo-
dated both across the width of the channel and across
the film thickness.

Consider the behavior of the phase difference on the
example of the mode B, ,. Figure 4a shows the phase
difference across the channel width and film thickness
versus the wavenumber k. To cal culate the phase differ-
ence, the actual potential distribution was approxi-
mated by a sine function. The phase difference across
thefilm thickness (curve 1) is seen to grow rapidly from
a minimum to a maximum in the interval k, = 200—

350 cm™.

Thedistribution of the potential across the thickness
isasymmetric [7]. On the lower surface, the phase var-
ies slowly with the wavenumber and is close to zero,
which implies weak fields at the boundary and a weak
leakage of the wave from the film through this surface.
On the upper surface, the phase is roughly equal to the
phase difference and changes sharply near the critical
angle a.. Both before and after the critical angle, the
phase is close to a multiple of T Asin the case of the
lower surface, this meansthat the fields at the boundary
and outside the dlab are low. However, when the angle
takesthecritical value, thefield at the boundary reaches
a maximum at a phase of nrt + 2. At this point, the
leakage of the field from the slab is the highest
(curve by in Fig. 4b). It is of interest that the phase dif-
ference versus the integer number of half-waves across
the channel width is the smallest at this point (Fig. 4a,
curve 2). The potential at the channel boundaries, as
well as the field, reaches a maximum at this point,
which means a maximal leakage of the field from the
channel into the slab (curve b, in Fig. 4c). Thus, thedis-
persion curve for the bulk wave has a point where the
field leakage out of the channdl is the highest in both
coordinates and which corresponds to the cutoff angle
of the total wave vector k, =k, + k.

MODES OF THE COMPOSITE WAVEGUIDE

Now consider modes that propagate in the compos-
ite waveguide C. They result from interaction between
bulk modes in the narrow channel A and surface modes
in the wide channel B. In Fig. 2, the modes of the com-
posite channel are indicated by the solid lines; bulk
modes of the narrow channel, by the dashed lines; and

TECHNICAL PHYSICS  Vol. 49

No. 2 2004



BULK AND SURFACE-BULK MAGNETOSTATIC WAVES 241

3210 | | | | | | | | | |
40 50 60 70 80 90 100 110 120 130 140 150

Fig. 3. Distribution of the potential W in the region of repulsion of the bulk waves A 1 and A3 3 (the region isindicated by circle 1
inFig. 2).
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Fig. 4. (a) Phase difference across (1) the film thickness and
(2) the channel width vs. wavenumber for the bulk mode
A,  and the distribution of the magnetic potential W across

(b) the thickness and (c) the width for the pointsag (o < o),
by (a =ay), and ¢y (0 > ay).

surface modes of the wide channel, by the dashed-and-
dotted lines.

For the composite waveguide, the regions of repul-
sion of the dispersion curves can be subdivided into two
types. Thefirst type embraces regions where the di sper-
sion curves for modes in different channels intersect.
This case is similar to the one discussed in [4], where
the tails of the wave functions |eave the channels A and
B and interact, causing the modes of both channels to
join together at the common boundary. The second type
covers regions of repulsion, where the dispersion
curvesfor bulk modes of the narrow channel A intersect
(see the previous section). In this case, interaction

ANNENKOV et al.

between different modes of the narrow channel results
in the redistribution of the magnetostatic potential in
the channdl.

As follows from the plots, interaction between the
channels displaces significantly the dispersion curves
of the composite waveguide relative to the curves for
each of the constituent channels. The ranges of modes
of the narrow channel shift toward smaller wavenum-
bers (higher frequencies), whereas the ranges that refer
to surface modes of the wide channel move toward
higher wavenumbers.

I nteraction between modes of the narrow channel A
was considered above. The presence of the second
channel changes the overal pattern insignificantly.
Therefore, we will focus on the interaction between
modes in different channels.

Figure 5a shows the dispersion curves that appear
when the bulk mode A, , of the narrow channel and the
surface mode B, of the wide channel repel each other,
and Fig. 5d demonstrates the three-dimensional distri-
butions of the magnetostatic potential for six points of
these curves. For modes of the composite waveguide,
the magnetostatic potential amplitude is greater in the
channel near whose dispersion curvethe dispersion plot
of the composite waveguide passes at a given point. At
the point of repulsion, the wave amplitude is gradually
transferred from one channel to the other, which is
clearly seenin Fig. 5d. The potential distribution for the
pointsa,, b, and ¢, which belong to the left-hand dis-
persion curve, shows that the amplitude of the bulk
mode A, , of the narrow waveguide decreases and the
amplitude of the mode B, , of the wide channel
increases. For the dispersion curve on the right (the
points a,, b,, and c,), the reverse is true: the amplitude
of the bulk mode A, , of the narrow waveguide
increases, while the amplitude of the mode B, , of the
wide channel decreases.

It was noted [ 7] that surface modesin both channels
may join together at the boundary in two ways, each
corresponding to one of the curves produced at the
point of repulsion. One way is in-phase matching,
where haf-waves at the boundary are of the same
polarity and join together without intersecting the zero
axis. The other is referred to as antiphase matching,
where half-waves of different polarity join together. In
the latter case, we have one more intersection with the
zero axisthan in the case of in-phase matching. For sur-
face modes, the mode index remains unchanged
throughout the dispersion curve. This approach failsin
joining surface and bulk modes, since the phase of a
bulk wave at the channel boundary depends on the
thickness coordinate; accordingly, for the same mode,
joining may be either in-phase or antiphase, depending
on X (see Figs. 5b, 5c). Nevertheless, if joining is
No. 2
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Fig. 5. Distribution of the potential W in the region where the bulk mode A, , of the narrow channel and the surface mode B; ( of
the wide channel repel each other (theregion isindicated by circle2 in Fig. 2).
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in-phase for the left-hand dispersion curve, it is
antiphase for the right-hand curve (and vice versa) if we
consider the same section across the width.

CONCLUSIONS

It is shown that the dispersion curves of bulk modes
in arectangular channel intersect. Some of these modes
interact, creating regions of repulsion; others do not
interact and intersect each other without repulsion.

At the sites of repulsion of bulk waves, the number
of magnetostatic potential half-waves varies along the
dispersion curve.

The dispersion curve for a bulk mode has a point at
which the field leakage through the channel boundary
and film surface is maximum. This point correspondsto
the characteristic cutoff angle of the total wave vector,
which coincides with the cutoff angle of the surface
MSWs.

Regions where modes of the composite waveguide
repel each other are those where dispersion curves of
either modesin different channels or bulk modesin one
channel intersect.
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Abstract—Thermal destruction of two-dimensional graphitefilmson Ni(111), Re(10-10), Ir(111), and Pt(111)
substratesis studied. It is shown that the detachment of an edge carbon atom from anisland isalimiting process
stage for all the cases. The activation energy of this processvariesfrom 2.5 eV for nickel to 4.5 eV for iridium.
The variation of the activation energy is associated with the ability of the metal surface to form strong chemi-
sorptive bonds with valence-active edges of graphite islands, which loosen C—-C bonds in graphite. © 2004

MAIK “ Nauka/Interperiodica” .

Two-dimensional graphite films (TGFs) on solids,
which can be referred to two-dimensional crystals, are
an interesting scientific object. These films form on
many metals (Ir, Pt, Rh, Ni, Re, Mo, and Ru) without
crystallographic match between the graphite layer and
the metal surface, excluding the (111)Ni face [1, 2].
The graphite network is clearly observable when a
graphite monolayer on (111)Ir or (10-10)Re is exam-
ined by scanning tunnel microscopy and atomic force
microscopy [3, 4]. Similar results were obtained by
low-energy electron diffraction (LEED) [5, 6], SEX-
AFS[7], and inelastic electron scattering [8, 9]. Having
saturated valence, a two-dimensional graphite layer is
bonded to ametal surface by weak van der Waalsforces
[1]. Because of this, TGFsretain all physical and chem-
ical properties inherent to the basal plane of a graphite
single crystal, such as the work function, chemical and
catalytic passivity, adsorptivity, etc. [2].

Earlier [2], we studied in detail the formation,
growth, and physicochemical properties of graphite
films on various refractory metals. In this paper, we
consider other issues responsible for the physicochem-
ical properties of TGFs, namely, the mechanisms,
kinetics, and energy of thermal destruction of two-
dimensional graphite islands on (111)Pt, (10-10)Re,
(111)Ni, and (112)Ir surfaces.

EXPERIMENTAL

The mass spectrometric technique applied in this
work was described elsewhere [10]. We aso used an
ultra-high-vacuum high-resolution prism Auger elec-
tron spectrometer [11], which allows oneto identify the
chemical state of surface carbon (adsorbed carbon
“gas,” surface carbide, graphite, diamond, or fullerite)
by the form and energy position of the Cy\, Auger
spectrum [12]. The Auger spectrafrom graphiteislands

and the basal plane of agraphite single crystal are sim-
ilar. Samples used were thin textured metal strips mea-
suring 40 x 1 x 0.02 mm. The strips were heated
directly by passage of aternating current and decon-
taminated by high-temperature heating in oxygen com-
bined with ultra-high-vacuum annealing by the tech-
nigque described in [2]. The texture was observed on the
(112) face for Ni, Ir, and Pt strips and on the (10-10)
face for Re strips. The surfaces of the strips were uni-
form in work function value. The strip temperature was
measured by a micropyrometer or by linearly extrapo-
lating the dependence of the sample temperature on the
filament current (in the range where the pyrometer
fails). The spread of sample temperatures measured
pyrometrically was within AT =5 K.

Graphite film can be applied on metals by several
methods. One is flux deposition of carbon atoms on a
heated metal surface using a specia absolutely cali-
brated source [13]. Another method is cracking of
hydrocarbon molecules (usually benzene C¢Hg) on a
heated metal. In this case, the molecule dissociates into
atoms, hydrogen is desorbed, and carbon alone remains
on the surface. Both methods lead to the growth of
graphite islands on the surface and require knowledge
of the temperature range AT of island formation [2].
Merging together, the graphite isands form a solid
graphite film.

These idands are two-dimensional (see reviews
[1, 2]). Note that the use of benzene provides auniform
graphite monolayer automatically, since benzene mole-
cules do not dissociate on the passive graphite surface
and only amonolayer film can beformed [1]. The TGF
growth, continuity of thefilms, and their thicknesswere
studied with high-resolution Auger spectroscopy [11].

In this paper, the relative area AS'S of graphite
islands was determined by a simple and till reliable
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method, namely, by probing the surface by alow-den-
sity flux of CsCl molecules (for details, see [1]). This
method relies on the fact that CsCl dissociates on
valence-passive graphiteislands only insignificantly. At
thesametime, at T > 800 K, the dissociation CsCl —
Cs+ CI proceeds with a probability of 100% on the
parts of the surface that are free of graphite islands
(pure metal, areas with chemisorbed carbon gas, or
metal carbide). For T = 800 K, cesium, one of the reac-
tion products, is desorbed from the surface in the form
of Cs* ions produced by surface ionization [14]. For all
the metals and film systems used in this work, the ion-
ization potential of cesium (Vo = 3.89 eV) was invari-
ably lower than the work function of graphite-uncov-
ered areas of the surface; the cesium is completely des-
orbed in the form of Cs' ions [14]. Therefore,
measuring the cesium ion current 1¥ = ev(Sy — S), we
found the fraction of the surface that is free of graphite
islands (here, v is the flux density of CsCl molecules
reaching the surface, Sis the surface area occupied by
theidands, and S,; isthetotal areaof the sample). If the
cesium ion current from the initially pure surface is

measured to be I, (15 = evS,,), we have

I+ Stot_s S |+
—=——=1-— o S§;=1--.
5 TS, Sa S = 1o

In other words, to find the occupied fraction of the
surface, one must merely measure two currents of

cesiumions: |y and I* = f(S). Obviously, the current I*

measured at any time will bear information on therela-
tive surface area occupied by graphiteislands. In exper-
iments, we used low-density fluxes of CsCl molecules,
Ve = 1 x 101° ecm s, and could quickly cut off the
flux toward the sample surface. Thus, the dependence
I* = f(t) reflects the kinetics of growth or destruction of
the graphite islands.

RESULTS

Theformation of graphiteislands on ametal surface
at atemperature T impliesthat thereis a higher temper-
ature T, > T at which the islands start to be destroyed.
The experiments showed that, for al the four metals,
studied the temperature T, at which graphiteislands are
destroyed is much lower than the temperature of
mechanical destruction of the substrate and the temper-
ature Ty a which noticeable desorption of carbon
atomsfrom arefractory metal surfaceis observed (usu-
ally Ty = 2000 K). The destruction of graphite islands
on platinum, nickel, and rhenium decreases the total
amount of carbon on the surface. This is apparently
because carbon atoms detached from the island edge
dissolve in the metal. The only exception is iridium,
where carbon hardly dissolves at T < 2000 K and
remains on the surface as chemisorbed carbon gas[10]
after the destruction of the islands.

GALL’ et al.

We assume that the elementary act of destruction is
the detachment of a carbon atom from the island edge
and its transition into the chemisorbed state on the
metal surface. Suppose, for simplicity, that graphite
islands are disks of equal surface area S;. Then, asthe
temperature increasesto T > T, the number n,; of car-
bon atomsin a singleisland decreases with time by the
law

_dny(t) _
d

Here, ny(t) isthe number of carbon atomsin the bound-
ary layer of theisland at atimet, Wisthe probability of
two-dimensional sublimation, C is the preexponential,
and Eg, is the activation energy of two-dimensional
sublimation (in other words, the energy of separation of
an edge carbon atom from the island).

For simplicity, we also suppose that carbon atom
packing in theidandsisidentical to that in the graphite
basal plane and is independent of the idand size; then,
S, = an;, where aiisthe surface area occupied by a car-
bon atom. Assuming that n, = 2rr/d (where r is the

radius of a carbon island (disk) and d = J/4a/Tt isthe
effective diameter of a carbon atom in the graphite net-
work) and taking into account that

c- A [N
Tt mm

(where N is the total number of carbon atoms in al
islands per 1 cm? and mistheisland density), we obtain

()W = ny(t)Cexp[~Ex,/KT]. (1)

N = —J% N(t).
From Eq. (1), we then find
N - mCexp[—E,/KT] dt. 2
JN

Under the initial condition N =N, at t = 0, the solu-
tion to EqQ. (2) for arbitrary t has the form
Esep
T mCexp[ T l[

1- [ﬁ -
No 2./N,
The ratio N(t)/Ny = St)/S), where S, is the area
occupied by theislands at t = 0, is determined experi-

mentally by the method of CsCl molecule dissociation
mentioned above. Having a set of curves (1 —

JS(1)/Sy) = 1(t) at hand, we can find the energy of car-

bon atom detachment from the graphiteisland using the
dependence Int = f(1/KT) for every S= const. Knowing

Esyp, ONe can also determine the value of J/mC from
Eq. (3).
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As an example, let us consider the destruction of
graphite islands on the (10-10) face of rhenium. A pure
rhenium sample was kept for a short time (t = 10-30 s)
in benzene vapors (P . ~1x 107 Torr) at T= 1050 K.

Inthis case, the surface wasrapidly covered by graphite
islands, while the interior of the metal remained almost
intact. It turned out that carbon at this temperature is
present on the surface only in the form of graphite
islands, because individual carbon atoms dissolve rap-
idly in the metal [15]. Nevertheless, for the experiment
to be valid, we anneal ed the sample for several minutes
a T = 1050 K after benzene had been evacuated. The
graphite islands were not destroyed in this case, and a
small (if any) amount of carbon accumulated in the
near-surface layer was distributed over the meta vol-
ume. Proceeding in this way, we decreased the proba
bility of the reverse (from the volume to the surface)
carbon flux. Next, the rhenium temperature was
increased to Ty = 1200 K and the kinetics of idand
destruction was recorded; i.e., the dependence 9, =
f(t) was constructed. In this case, theislands were com-
pletely destroyed (Fig. 1). Note that the destruction
curves were reproduced well from test to test though
the sample volume was not decontaminated from the
carbon accumulated. This suggests that, at these tem-
peratures, the carbon concentration in the bulk of rhe-
nium is far from the limiting solubility, so that the car-
bon diffuses rapidly over the metal lattice and the
reverse carbon flux can be neglected.

The data obtained were processed as follows. Using
the curves in Fig. 1, we plotted the dependences Int =
f(U/KT) for different S= const to determine the energy
of carbon atom separation from an island E,, = (3.0 +
0.2) eV. In the experiments, §S,; was varied in the
range 0.2-0.6, while §'S,; = 1 corresponded to agraph-
ite monolayer with N, = 3.86 x 10> cm™. Then, we
constructed the dependence

S(1)/S, = (1-Bt)%,

where

T/ MC eXp[—E,/KT]
2./N, |

The value of B was chosen such that the calculated
dependences S5, = f(t) agreed with the experimental
ones (Fig. 1, dashed lines). Knowing B and using
Eqg. (4), one can determine the product of the preexpo-
nential by the square root of the number of the islands,

JmC =3x10® cmt s, In our previous studies of the
graphite monolayer topography on (10-10)Re by scan-
ning tunneling microscopy, we estimated the density of
graphite isands in near-monolayer coatings. It was
found to be m~ 10*? cm[3, 4]. Knowing m, one finds
that C ~ 102 s,

B = 4)
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Fig. 1. Decrease in the relative area occupied by graphite
islands on (10-10)Re upon isothermal annealing at a tem-
perature of (1) 1280, (2) 1240, and (3) 1215 K. The initial
ratio is §S; = 0.3 for &l the cases.

Destruction of graphite islands on (111)Ni and
(111)Pt was studied in a similar way. The difference
was solely in thetemperatures of island destruction (see

table). The values of ./mC were of the same order of
magnitude as in the case of rhenium.

On iridium, graphite islands start to be destroyed at
T4 = 1600 K. This means that the binding energy of an
edge carbon atom with an island is much higher than on
the substrates considered above. Since carbon atoms
detached from the island do not dissolve in the iridium
and are not desorbed, the total carbon concentration on
the surface remains constant and the concentration of
carbon atoms in the chemisorbed carbon gas increases
when the surface area of the graphite islands decreases
upon their thermal destruction. This, in turn, enhances
the flux of carbon atoms from the chemisorbed gas to
the graphite islands. Therefore, the final result of
destruction for a given temperature T, = const is
dynamic equilibrium between the flux of two-dimen-
siona sublimation and the carbon flux to the islands
from the chemisorbed gas. In this case, the island sur-
face area stabilizes at some temperature-dependent
level (Fig. 2). If the temperature dropsto T < 1600 K,
the island area takes the previous value S= §;; i.e,, al
the carbon gas passes again into the graphiteislands. To

Energies of activation of edge carbon atom detachment from
the graphite island, Eg,, and temperature ranges ATy of
graphite isand destruction on different substrates

Me Y, ATy, K
(L11)Ni 25 950-1050
(10-10)Re 3.0 1200-1300
(111)Pt 3.2 1300-1400
(111)Ir 45 1650-1850
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Fig. 2. Decrease in the relative area occupied by graphite
islands on (111)Ir upon isothermal annealing at a tempera-
ture of (1) 1940, (2) 1840, and (3) 1715 K. Theinitid ratio
is §/Sqt = 0.5 for all the cases.
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Ir

Fig. 3. Schematic of thermal destruction of two-dimen-
sional graphiteislands. (a) Iridium surface; E'Sep isthe acti-
vation energy of detachment of an edge carbon atom con-
tacting with the metal. (b) Multilayer graphitefilm or graph-
itesinglecrystal; = isthe activation energy of edge atom
detachment from the graphite layer. (1) Graphite island,
(2) edge carbon atom in the graphite network, and (3) irid-
ium substrate.

exclude the effect of the reverse carbon flux from the
chemisorbed gas, only the earliest portions of the
dependences 95, = f(t) were processed. The experi-
mental results are also presented in the table.

DISCUSSION

It is seen from the table that, in the case of graphite
isands adsorbed on metal surfaces, the separation

GALL’ et al.

energy of an edge carbon atom in the layer may be
much lower than that for bulk graphite (~6 eV at T, >
2300 K) [1]. It is reasonable to assume that valence-
active edges of graphite islands produce strong chemi-
sorbed bonds with atoms of the metallic substrate. This
loosens C—C bonds between an edge carbon atom and
its neighbors and, accordingly, decreases markedly the
temperature of graphite island destruction on the metal
(table; Fig. 3d). Asfollowsfrom the experiment, graph-
ite idands on a nickel are the easiest to destroy. This
correlates well with the fact that nickel isthe only car-
bide-forming metal of al the metals studied. The
islands on iridium offer the highest thermal stability.
Iridium does not form carbides, dissolves carbon in
negligible amounts, and is hardly capable of forming
C-Me chemical bonds. Interestingly, if a graphite film
with a thickness of several atomic layersis formed on
(111)Ir by deposition in an atomic flux at T = 1700 K
[2] (Fig. 3b), the temperature of graphite layer destruc-
tion (and, accordingly, of carbon removal from the sur-
face) rises to Ty > 2300 K. This temperature corre-
spondsto Eg, =6 €V, i.e., tothevaluetypical of thermal
destruction of bulk graphite. In fact, in this case, there
is no contact between an edge atom of the top graphite
layer and the metal; hence, there are no reasons to
expect that the activation energy of edge atom detach-
ment from a graphite island will decrease because of
chemisorbed C—Me bonds.

CONCLUSIONS

In this paper, a destruction mechanism for graphite
islands on ametal is suggested and the binding energy
of edge carbon atoms with a graphite island is deter-
mined. This energy is responsible for the thermal
destruction of islands on Ni(111), Re(10-10), Ir(111),
and Pt(111) substrates. Graphite islands on iridium,
which does not form carbides, offer the highest temper-
ature stability: the binding energy of an edge carbon
atom with an island reaches 4.5 eV (T, > 1600 K).
Unique potentialities of an original method for analyz-
ing asurface containing graphite islands, the method of
CsCl molecule dissociation, are demonstrated. Unlike
many other traditional methods of surface diagnostics,
this simple method is sensitive only to the graphite
phase of surface carbon and allows one to keep track of
the dynamics of growth and destruction of graphite
islands at any temperatures above 850 K. It seems that
this method may a so be used to study other films with
saturated valence.
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Abstract—BY using the method of pulsed field electron emission, it is shown that, as the current density
approaches the ultimate value, there appears a bright ring around a normal field-emission image. This effect is
frequently observed in the case of planar field-emission cathodes. It is suggested that secondary electrons emit-
ted from the anode return to the anode under the action of the electric field, producing the rings. Field-emission
applications based on this effect are discussed. © 2004 MAIK “ Nauka/lInterperiodica” .

INTRODUCTION

When studying the field emissivity of planar cath-
odes, particularly those made of graphite powders and
by chemical vapor deposition, we repeatedly observed
bright luminous rings on the screen. The rings are dif-
fusely illuminated phosphor areas surrounding the
image. Their diameter frequently exceeds the size of
theimage, and their brightnessincreases with the emis-
sion current.

Studies of the pulsed field emission process in an
electron projector [1-5] revealed unambiguously that a
bright ring around the image appears asthe current den-
sity approaches the ultimate value. This effect wasfirst
described by Dyke et al. [1]. The rings were observed
when the density of the emission current from a tung-
sten tip approached the ultimate value. The appearance
of the rings is accompanied by a jump in the emission
current. Dyke et al. explained this effect by thermal—
field emission. The cathode is heated by the field emis-
sion current, and the heating makes an additional con-
tribution to the current. In [2-5], predischarge phenom-
eng, i.e., an anomalous increase in the emission current
and the ring effect, were investigated with tips made of
various materials. Several concentric rings were
observed under certain conditions. Since the predis-
charge phenomena were sluggish and their duration
depended on the time of passage of the field emission
current, they were assumed to be of thermal nature.
However, the nature of the rings was not conclusively
established in the works cited because of the lack of
experimental data. It was hypothesized that the rings
are due to thermal—field emission from the circumfer-
ence of the tip or asperities on the emitter surface and
also that they are caused by electron diffraction. The
first of the three hypotheses has received the most sup-
port in experiments and is considered the basic hypoth-
esis today. Its primary disadvantage is that it fails to
explain why the current in the ring increases by two or

three orders of magnitude during the pulse while atem-
perature addition to the field-emission current (within
the applicability of the Fowler—Nordheim equation) is
only several tens of percent. Simulation performed in
[6] showed that the rings may appear as aresult of ther-
mal—field emission from the circumference of the tip.
However, this model cannot explain the appearance of
several rings on the emission image.

MODEL OF RING FORMATION IN THE CASE
OF PLANAR ANODE-CATHODE GEOMETRY

In [1-5], the rings were detected at the prebreak-
down stage. Their occurrence was accompanied by a
spontaneous growth of the current, causing the cathode
breakdown and degradation. In our experiments, unlike
[1-5], the rings persisted for a long time and their
appearance did not cause the degradation of emitting
centers. Figure 1la shows the time instant of ring origi-
nation. A further fourfold increase in the current adds
substantially to the intensity of the rings, but the cath-
ode remains operable (Fig. 1b).

Thus, the rings observed by us cannot be assigned to
the prebreakdown stage, contrary to [1-5]. In the case
of a planar field-emission cathode, the most plausible
mechanism of ring formation appears to be the follow-
ing. Primary electrons striking the anode knock out sec-
ondary electrons, which move to the cathode under the
action of the electric field, forming aring.

Consider a model of a planar diode with an elec-
trode spacing L (Fig. 2). If the voltage applied to the
anode is U, the field in the electrode gap is E = U/L.
When considering the motion of secondary electrons
near the anode, weignore the existence of emitting cen-
ters on the cathode. They enhance the field near the
cathode without affecting significantly the behavior of
the electrons near the anode. Let a secondary electron
with an initial energy €5 leave the anode surface at an
anglea.

1063-7842/04/4902-0250$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Fig. 1. Field-emission images of the rings. The anode—cathode voltage and current are (a) 2.84 kV and 10 pA and (b) 4.07 kV and

40 pA.

Straightforward analysis of the electron trajectory in
aconstant electric field allows us to find the distance of
the electron to the secondary emission site in the anode
plane:

€, .
= 2—=Lsin2a. 1
r ~y sin2a Q)

The maximum distance to the anode is

— & (ann)2
H= eUL(S|n0() . 2
Thus, the outer radius of the ring formed by second-
ary electrons with an initial energy €5 is given by

_ oL Es

FMax = 2LeU. 3

Assuming that elastically reflected electrons play a

major role (specifically, they produce aring of maximal

radius), one may set egeU = 1. Hence, the maximal
diameter of thering is D, = 4L.

Thus, the ring diameter depends only on the anode—
cathode spacing and does not depend on the cathode
current and anode—cathode voltage. Since elastically
reflected el ectrons constitute only afraction of the sec-
ondary electrons knocked out from the anode and since
the secondary electrons escape the surface at different
angles, the entire area between the outer boundary of
the ring and the image will be “illuminated.”

EXPERIMENTAL DATA

To verify our model, wetried to observe theringsin
planar diode structures with variable electrode spac-
ings. The spacing was adjusted with glass spacers of
thickness 200, 400, and 600 um. A glass plate with a
transparent conducting coating and a phosphor layer
served as a anode.

TECHNICAL PHYSICS  Vol. 49
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Figure 3 showstheimage on the phosphor screen for
an electrode spacing of 200 um. Severa bright rings,
each formed around a single emitting center, are dis-
tinctly seen. All the rings are of the same diameter,
athough their contributions to the total emission cur-
rent (i.e., their intensities) differ. Thus, the emission
current does not influence the ring diameter.

Thering diameter versus electrode spacing is shown

in Fig. 4. This dependence is given by formula (3). If
the electrode spacing is kept constant, the ring diameter

Cathode

Y EsA 2~
// Ih \\\
L»X a ‘a

Anode r

Fig. 2. Model of ring formation in a planar diode.

Fig. 3. Field-emission image of several rings with different
brightness (voltage 1.8 kV, total cathode current 80 pA).
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Fig. 4. Field-emission images of the rings for an electrode
separation of (&) 200, (b) 400, and (c) 600 pm.

isindependent of the operating voltage. Thus, it may be
concluded that elastic reflection of electrons from the
anode surface is the governing mechanism of ring for-
mation.

To determine the critical current density at which
the rings occur, we fabricated a planar diode with a
cathode diameter of =150 um. This value is a fortiori
smaller than the ring size when the electrode spacing is
600 um. For such acathode, it is easy to find the critical

NIKOLSKI et al.

Emission center Ring

Overlap area

Fig. 5. Position of two nearby emitting centers.

Fig. 6. Uniform-illumination lamp.

Fig. 7. Static glowing sign.

current density (at which the rings appear) by measur-
ing thetotal current. For the planar geometry to be pre-
served, the cathode was placed at the center of ametal-
lic plate whose plane was paralel to the plane of the
anode.

It was established that the ring nucleates at a current
density in the primary spot on the order of 103 A/cm?.
The diameter of the ring observed did not depend on
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either the cathode current or the anode—cathode voltage
and was defined by formula (3).

In [1-5], the ring effect was detected in the case of
spherical geometry. The anode was made in the form of
a spherical flask covered by a conducting film and a
phosphor layer, and a tip at the center of the sphere
served as an emitter. Calculations carried out in those
papers gave expressions similar to (1)—3), and it turned
out that the radius of aring to be formed would approx-
imately equal the diameter of the flask. This means that
the effect that took place at low current densities con-
ceptually cannot be observed under the experimental
conditions used in [1-5].

APPLICATIONS

Thering formation described in this paper may have
both a detrimental and a beneficial effect. For example,
the ring may deteriorate the resolution of a flat-screen
display but be useful in designing light sources with
field-emission cathodes where uniform illumination of
the phosphor must be provided.

Below, we describe a prototype light source utiliz-
ing the rings. The source consists of two parallel glass
plates, which are substrates for the anode and the cath-
ode. The anode substrate is covered by a conducting
film and a phosphor layer. The electrode separation is
fixed with glass spacers and equals 0.8 mm. The cath-
ode is made of graphite foil adhered to the substrate.
Emitting centers 2.5 mm distant from each other are
arranged in aregular manner on the surface. The size of
each of the centersis 1 mm. In thisdesign, the diameter
of theringswill be 3.2 mm and the ring around one cen-
ter will not overlap a nearby center (Fig. 5).

In this situation, emitting centers will not be bom-
barded by residua gas ions being released from adja
cent centers. At the same time, the rings will overlap
each other, providing uniform illumination of the
anode. The prototype structure was placed in a flask
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under a residual pressure of less than 107 torr, and
field-emission tests were conducted. A photo of the
operating deviceis shown in Fig. 6.

Ring illumination may aso be helpful in producing
static glowing signs, as exemplified in Fig. 7.

CONCLUSIONS

We constructed amodel to account for the formation
of rings on field-emission images that differs from that
described in [1-6]. It considers processes taking place
at the anode and is therefore applicable to devices with
thermionic cathodes. It isfound that (i) the diameter of
the rings depends only on the electrode separation and
(i) the intensity of the rings varies with the primary
current density and the coefficient of reflection of elec-
trons from the anode coating.

The rings observed may be used in applications
where anode uniform illumination is necessary. Exam-
ples are light sources with field-emission cathodes and
static glowing signs.
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Abstract—The structure of and oxygen diffusion in UO, are studied by the molecular dynamics method in the
range of transition to the superionic state (melting of the oxygen sublattice) and near the melting point of UO,.
The temperature dependence of the diffusion coefficient of a doubly charged oxygenionin UO, is constructed.
In the crystalline state at temperatures between 1800 and 2600 K, this dependence is described by an exponen-
tial dependence with a diffusion activation energy of 2.6 + 0.2 eV. In the superionic state (2600-3100 K), the
activation energy of diffusion of an oxygen anion decreasesto 1.88 + 0.13 eV. In melt (3100-3600 K), the expo-
nential dependence of the diffusion coefficient of O~ persists but the activation energy of diffusion decreases
still further, to 0.8 £ 0.2 eV. Our experimental results agree (within the limits of experimental error) with data
on oxygen diffusion in the crystalline phase obtained by other researchers. © 2004 MAIK “ Nauka/ I nter period-

ica” .

INTRODUCTION

To predict the properties of uranium dioxide—based
nuclear fuel under operating conditions and upon pos-
tradiation annealing, it is necessary to know the mass
transfer coefficients for UO, constituent atoms in a
wide temperature range. Diffusion of oxygen is of spe-
cial interest because of its high mobility, which is asso-
ciated with anti-Frenkel ordering inthe UO, crystal lat-
tice, and the superionic transition (melting of the anion
sublattice) at temperatures of =0.8T,,, (where T, is the
melting point) [1]. Due to experimental difficulties, the
datafor oxygen diffusion[2] were obtained at rel atively
low temperatures. Therefore, they cannot be applied in
the temperature range of the superionic phase and,
especially, above the melting point.

Kurosaki et al. [3] showed that the properties of
oxygen in UO, can be characterized by the molecular
dynamics (MD) method. However, these researchers
did not simulate the mobility and diffusion coefficient
of oxygen. In [4], the diffusion coefficient was calcu-
lated for two temperatures in the superionic phase.
However, the number of particlesin the simulation was
small, which makes it impossible to evaluate the poten-
tialities of the MD method and the model proposed in
[4], as well as the reliability of the experimental evi-
dence. The issue of whether or not the ionic-crysta
approach can be applied to describe mass transfer in
UQ, isalso of fundamental importance.

In this work, we simulate oxygen diffusion by the
MD method in a wide temperature range (covering the
crystalline state, the superionic phase, and melt) and

derive the temperature dependences of the oxygen dif-
fusion coefficient.

SIMULATION PROCEDURE

The crystal to be simulated consists of a basic crys-
talliteincorporating N quadruply charged uraniumions
and 2N doubly charged oxygen ions (a total of 3N par-
ticles), which constitute the UO, crystal lattice. In the
calculation, we used periodic boundary conditions that
are realized by trandating the basic crystallite along
three axes.

The interaction energy between the ions is repre-
sented as the sum of the non-Coulomb and Coulomb
components:

U(t) = U+ U.. )

The non-Coulomb component is found by merely
summing the interaction energies over the number of
particles (3N) of the basic crystallite:

3N 3N
1
U =55 S o(ri®-r,). @
i=1j#i
wherer; ; are the radius vectors of crystallite particles,
Fij ch
dap(ry) = A(,BexpE—B—a’BE—r—;‘, 3)

Ay and By are the repulsion constants, and Cyg isthe
dispersion interaction constant in the potential of inter-
action between particles of sortsa and 3.
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Table 1. Parameters of the interaction potentials for ions in uranium dioxide [4]
A, eV A, eV A, eV B.., A B, A B_A |C,,evVAS|C, evAS|C__evAS
- 1297.44 22764.3 - 0.3747 0.149 - - 20.37
- 873.32735| 50259.3 - 0.40369 0.15285 - - 72.653

To simplify the calculation of the Coulomb interac-
tion energy for particles with charges g, and g, we
applied the Ewald method [1] and reduced the expres-

sionfor U to
_1
Ue = ZZZQiQJ
(A

x Z A(Km)cos(Km(ri—rj))+Z% Z A(Ky) (4

Kn20 i Ky20
erfc(elr;—r; +h|)

1 (3
+§Zzzqiqj =1, + 0] _zq|2—/\/¥[

i 7 i

Here, summation over i and j is performed for all parti-
cles of the system; summation over h is performed for
all cells being trandated (h = (k, I, m) with n, <k, [,
m< n,, where n is the number of neighboring cells
being translated that are taken into account) except for
the case where h = (0, 0, 0) and, at the sametime, i =§;
€ isthe parameter controlling convergencein the Ewald
method;

21
—L—(k, [,n)

isthe reciprocal lattice vector (k, |, n [0 [—o, oo]); and

Km = (KmX’ Kmyv sz) =

am_exp(-K/4€’)
(al)®  Ki
where (a,L)?® isthe volume of asimulation cell, a;isthe
lattice parameter of UO,, and L is the number of unit
cells per edge of acubic cell.

In deciding on a particular form of interaction
potential, we considered potentials of two types given
in[4] (Table 1). Thefirst potential isderived in terms of
the rigid-ion model, and the second is the modification
of the first potential with regard for the results of simu-
lation in terms of the shell model (ion polarization).

The potentials were tested by calculating the melt-
ing point inthe course of simulating the basic crystallite
(zero boundary conditions). With thefirst potential, the
melting point of the crystallite was found to be T, =
3100 £ 60 K, which is close to the experimental value
within the limits of experimental error. With the second
potential, T,, was 300 K higher. Therefore, we used
only thefirst potential in the simulation.

The equations of motion were simulated by the
finite-difference method with a half-step. The compo-

A(Kp) =
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nents of the coordinates, x;, and velocities, v} (i =1,
2,3),of ajthparticle(j =1, 2, ..., N) varied withtime as

Xj(t+At) = x(t) + Atv|(t +At/2),
Vi(t+At/2) = vi(t—At/2) + AtmF(t).

Here, Fij (t) isthe external force acting on the jth parti-
cle

A = 3 200n0-rDx. @

K KZj

In experiments, the number of particlesin the basic
crystallite was 3N = 1500 and the time step, At =5 x
10 s. The lattice parameter of the crystallite was
taken from experimental datain [5].

With these parameters, the system being simulated
comes to equilibrium in 100-200 steps.

RESULTS AND DISCUSSION

To analyze changes in the UO, structure upon heat-
ing, consider the pair radia distribution functions of
ionsin the crystal:

Opp(r) = “;—‘2‘_‘ (7)

Here, N isthe number of particles 3 inavolumeV and
Ng(r, Ar) is the number of particlesin a spherical layer
of thickness Ar located at a distance r from the central
particle. The radial functions for oxygen, goo, and ura-
nium, g, for several temperatures are given in Fig. 1.
At low temperatures up to T, = 2600 K, the behavior of
the radial functions corresponds to the crystalline state
of the uranium and oxygen subl attices and the positions
of the peaks correlate with certain coordination
spheres. At 2600-3100 K, the behavior of the radial
function of oxygen isvirtually identical to its behavior
in the melt at T > 3100 K. Although the lines of the
radial function of uranium are broadened due to the
intense motion of uranium cations, the positions of the
peaks remain virtually unchanged, which corresponds
to the crystaline state of the uranium sublattice. At
temperatures above 3100 K, theradial functions of ura-
nium and oxygen correspond to the melt.

Thus, the results of structural study indicate that the
ionic model predicts adequately the superionic transi-
tion (i.e., melting of the oxygen sublattice) at T, =
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Fig. 1. Radia distribution functions for (a) uranium ions
and (b) oxygen ions in UO, at (1) 300, (2) 2900, and
(3) 3200 K.

2600 K and the melting point of the crystal (T, =
3100 = 60 K). The latter value coincides with experi-
mental findings [2] within the experimental accuracy.

To determine the diffusion coefficients of oxygen
anions at various temperatures, we calculate the mean
guadratic displacements (MQDs) of the anions by the
relationship

D= £ 3 [N -10)). (®)
i=1

Typical MQD curves for the oxygen and uranium
ions are shown in Fig. 2.

Asfollows from the calculation and Fig. 2, [Ar?[for
oxygen exhibits well-defined linear variation with time
throughout the temperature range. For uranium ions, a

Table 2. Parameters of the diffusion coefficients for oxygen
ionsin UO,

Temperature| D, cm?/s E9, eV Phase state
1800-2600 |  (0.8;3%) 26:02 |Crysal

+1.9 Superionic
2600-3100 | (2.6°1%) x 102| 1.88+0.13 | 3P
3100-3600 | (6.6'5) x 10| 08+0.2 |Melt
1100-1500 144 274 | Crystd [2]
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Fig. 2. Time dependence of the MQDs of (1) oxygen ions
and (2) uraniumionsfor () T= 2900 and (b) 3400 K.

distinct slope is observed only at high temperatures
above the melting point of the crystal.

From the time dependence of the MQDs, which is
fitted by the formula

lim Ar’0 = const + 6Dt,

t 5>

9)

we determine the diffusion coefficients of oxygenin a
wide temperature range (1000-3600 K). The calcula-
tion results are given in Fig. 3. By processing the tem-
perature dependences in Fig. 3, one can distinguish
three ranges, corresponding to the (I) crystaline, (1)
superionic, and (I11) molten states. In each of the
ranges, the diffusion coefficient of oxygen in uranium
dioxide depends on temperature as

D = Dyexp{-E"/KT} . (10)

The preexponentials D, and the activation energies

of diffusion E° for the three ranges are listed in Table 2,
which aso contains the experimental data obtained in
[2]. Thetemperature dependences of the diffusion coef-
ficient and the results of simulation by the MD method
[4] are shownin Fig. 3.

Asfollowsfrom Table 2 and Fig. 3, on the transition
from the crystalline to the superionic state, the activa-
tion energy of diffusion of oxygen ions decreases by a
factor of 1.4 and the preexponential drops roughly
30-fold, with the diffusion coefficient experiencing no
jump (within the limits of experimental error).

TECHNICAL PHYSICS  Vol. 49

No. 2 2004



OXYGEN DIFFUSION IN URANIUM DIOXIDE

T, K
35003000 2500 2000 1500
oo ' L
5h 5 2 1100
- -3 &
Q o 4 £
2 6r 11.0 <
' =
S
7F : : 101 9
m o I N
L 1 | 1 1 1 N
25 30 35 40 45 50 55 60

10000/T, 1/K

Fig. 3. Temperature dependence of the diffusion coeffi-
cients of oxygen ions near the phase transitions in uranium
dioxide: (1) calculated diffusion coefficients of oxygen,
(2) approximation, (3) extrapolation of the experimental
datafor the diffusion coefficients of oxygen[2], and (4) data
from [4].

Once the crystallite has melted completely, the dif-
fusion coefficient increases stepwise by a factor of
amost 1.5 at the melting point, obviously because of a
sharp decline (by =9.6%) in the uranium dioxide den-
sity upon melting. The activation energy of diffusion of
theionsin the melt islower than in the superionic state
by afactor of 2.4. Therelatively high activation energy
of oxygen anion diffusion in the melt (0.8 eV) islikely
dueto the high charges of the oxygen and uranium ions.

The results obtained for the crystalline state agree
with the vacancy mechanism of oxygenion diffusionin
uranium dioxide, which shows anti-Frenkel disorder of
the oxygen sublattice. In this case, the activation energy
of diffusion E9, the energy of formation of anion vacan-
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cies Ef, and the activation energy of diffusion of vacan-
ciesE' arerelated as

E = %Ef +EY. (11)

If wetakethevalues E' =53¢V and E' =0.3eV,
averaged for different potential types with allowance
for ion polarization [4], then the activation energy of
diffusion EY = 2.35 eV obtained from (11) coincides
with our experimental data, EY = 2.6 + 0.2 eV, within
the limits of experimental error (Table 2).

Asfollowsfrom Table 2 and Fig. 3, our results coin-
cide with the experimental datafor the crystalline state
within the limits of experimental error. This fact sup-
ports both the validity of the method and the efficiency
of the ionic model applied. The discrepancy between
the results of ssmulation in [4] and in thiswork (Fig. 3)
islikely to be associated with the small humber of par-
ticles (96 ions) used in [4] and a short time of computa-
tion (unfortunately, this value in [4] is omitted).
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Abstract—The effect of laser radiation on the structure and phase composition of thin fullerenefilmsis studied.
Raman measurements show that fullerene films applied with a supersonic molecular beam remain structurally
stable even if the laser power density is many hundreds of times higher than that at which thermally deposited
films degrade. A plausible reason for ahigh laser radiation hardness of the filmsis fast polymerization with the
formation of linear and multidimensional configurations. © 2004 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

The discovery of fullerenes has given impetus to
studying the interaction between laser radiation and
fullerenefilms applied on different coatings. According
to a number of parameters, fullerene is one of the best
photoconducting organic materials[1]. Itisalso viewed
as a candidate material for frequency doubling and tri-
pling optical converters [2]. Moreover, fullerene was
tested asamaterial for optical switches[3]. Thus, study
of laser radiation—fullerene film interaction and the
search for new technologies for radiation-resistant
fullerene coatings are of current interest.

In [4], we suggested a method of applying thin films
with a pulsed supersonic molecular beam (SMB)
seeded by a material to be deposited and compared the
potentialities of the new method with those of conven-
tional thermal deposition. Based on unique properties
of SMB fullerenefilms, it was concluded that the mate-
rial is promising for many applications. It was aso
noted that SMB fullerene films retain their molecular
constitution when exposed to very high laser radiation
loads (i.e., offer ahigh laser radiation hardness), which
makes them still more promising coating materials. In
this work, we study the properties of fullerene films
obtained by various methods to reveal reasons for the
high radiation hardness of SMB films.

The properties of fullerenes are usually examined
with Raman spectroscopy. Here, the effect of the envi-
ronment on the molecules under study is studied in the
most sensitive range of the Raman spectrum (the peak
at 1460-1470 cm?), which corresponds to the tangen-
tial Ag(2) mode of fullerene pentagon vibration (pen-
tagonal pinch mode) [5, 6]. For an unpolymerized (pris-
tine) Cq, film applied by conventional thermal deposi-
tion, the position of this peak is 1469 cm™. UV
irradiation of this film causes the photopolymerization

(dimerization) of fullerene and shifts the peak to
1459 cm [7]. Similar behavior of the Raman spectrum
is observed when the laser irradiation dose increasesin
the visible range (488 nm) [8]. It was speculated [8-10]
that the reaction of photopolymerization breaks double
bonds in pentagonal segments and forms a bridge
between two Cgz, molecules. A high sensitivity of the
Raman spectroscopy method in this spectral range
makes it possible to study other high-pressure high-
temperature polymer phases of fullerene (HPHT poly-
mers), such as orthorhombic (O), tetragonal (T), and
rhombohedral (R) polymers [11, 12]. In this work, we
study the general properties of fullerene and molecular
bonding in it using high-sensitivity Raman spectros-
copy.

EXPERIMENT AND DATA PROCESSING

Raman spectra from fullerene films were taken at
room temperature with a 488-nm argon laser. The laser
radiation was used to take Raman spectra and aso to
modify the phase composition of thefilm. Theradiation
power density was varied between 15 mW/mm? and
400 W/mm?; the exposure time, from 2 minto 1 h. With
these parameters varying in the above ranges, we were
able to trace the fine structure of the Ag(2) line in a
wide range of radiation doses. The spurious signal due
to luminescence from the substrate was suppressed by
applying the fullerene films on single-crystal magne-
sium oxide, making no contribution to the spectrum.
The films were deposited using high-purity (99.92%)
Ce as a source. The SMB deposition method (for
details, see[4]) consistsin irradiating the substrate sur-
face by a supersonic beam of helium molecules that is
seeded by fullerene molecules. In this method, the
transport velocity v, of fullerene moleculesis 371 m/s;
their thermal velocity, v, = 112 m/s; their temperature,
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T =560 K; and the Mach number, 4 [13]. Accordingly,
the kinetic energy of fullerene molecules equas
0.526 eV, which is one order of magnitude higher than
upon thermal deposition.

To estimate the radiation-induced modification of
the film's phase composition, the resulting Raman
spectrawere resolved into components with a specially
designed program that takes into account the position
and shape of Raman spectra taken from different poly-
mers. The percentage of the phases polymerized was
calculated from the areas under respective components.
When designing the program, we used spectroscopic
datain [12]. The shape of the Raman spectrum for each
polymer was approximated by a set of six to seven sim-
ple Lorentzian functions. The shape of the Ag(2) peak
for pristine Cg, Was represented by the mixed Gauss-
ian—Lorentzian function [14] with the Hg(7) satellite at
1423 cm.

It should be noted that recent publications [15, 16]
report Raman spectra for various polymeric forms that
differ from those described in [7, 12]. Without going
into the discussion among the authors of the works
cited, we compare our data with the classical results
obtained in [12].

RESULTS

Figure 1 shows the Raman spectrum near the Ag(2)
mode vs. the dose of irradiation by the SMB. The radi-
ation is seen to modify the initial spectrum and lead to
additional features. These features indicate that the
phase composition becomes more complex than theini-
tial one. To identify the new composition, the spectra
obtained were resolved into components corresponding
to unpolymerized fullerene and its polymerized frac-
tions, as described above. As an example, Fig. 2 dem-
onstrates the resolved spectrum taken at a dose of
40 Jmm?. At low laser intensities, only two fullerene
phases, pristine Cq, and O polymer (fundamental vibra-
tion frequency 1463 cm™ [12]), are present. Initially,
the film contains about 60% pristine Cq; then, its
amount drops to 10% as the irradiation dose grows. A
close amount of pristine Cg, is found when the Hg(8)
lineisresolved (Fig. 3). Its peak shifts from 1575 cm
for the unpolymerized phase to 1565 cm, which is
typical of fullerenefractions polymerized by irradiation
[12]. One should bear in mind that even the low doses
introduced into the target to take Raman spectra may
cause partial polymerization of the fullerene in the as-
deposited SMB films. To estimate this effect, we, based
on the resolution of the Ag(2) peak, constructed the
dependence of the phase composition of the SMB film
on theirradiation dose (Fig. 4). Asfollows from Fig. 4,
the radiation-induced linear polymerization of the
fullerene is described well by an exponentia whose
value at the zero dose indicates that the as-deposited
SMB film amost entirely consists of pristine Cg,.
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Fig. 2. Resolution of the Raman spectra taken at a dose of
40.0 Jmm?. (1) Pristine polymer, (2) O polymer, and
(3) photopolymer.

Thus, at radiation doses of no more than 40 Jmm?Z,
the film consists largely of the O polymer phase and
pristine Cg, their percentage ratio varying with the
dose. At higher doses, the resolution of the Ag(2) mode
shows other polymer fractions. Figure 5 demonstrates
the Raman spectrum obtained at a total dose of
82 kIJmm? (the power density equals 86 W/mm? in this
case). Here, the percentage ratio of the polymer frac-
tions differs substantially from that at low doses:. pris-
tine Cgp, =3%; photopolymers (dimers), =45%; O poly-
mers, =36%; and R polymers, =16%. T polymers are
absent.

Our composition versus dose dependences for SMB
fullerene films are distinct from those obtained for ther-
mally deposited films. As follows from publications,
the latter contain only the photopolymer phase at low
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doses. A rise in the dose |eads to the complete degrada-
tion of the molecular constitution of fullerene. As fol-
lows from Fig. 6, the molecular constitution of ther-
mally deposited films degrades even at a laser power
density of 4W/mm?, as evidenced by the disappearance
of the Ag(2) mode and the appearance of broad peaks
typical of graphite structures and disordered carbonif-
erousinclusions[17] (curve4). Figure 6 al'so showsthe
Raman spectrum taken of the SMB film, which indi-
cates that the molecular structure of the fullerene per-
sists at much higher doses (80 W/mm?, curve 2). More-
over, even at a power density of 400 W/mm?, when the
SMB film starts evaporating, the Raman spectrum does
not exhibit changes characteristic of degraded fullerene
molecules (curve 3). Such a high stability of fullerene
films against laser radiation is observed for the first
time. Earlier, radiation-resistant fullerene crystals syn-
thesized by a special technology retained their molecu-
lar constitution up to 20 W/mm? (2000 W/cm?) [18].

DISCUSSION

As was noted, the formation of O, R, and T poly-
mers takes place at high temperature and/or pressure.
Accordingto[12], O polymersare synthesized at ahigh
pressure (4.8 GPa) and relatively low (for the HPHT
technology) temperature (250°C). R polymers are
formed at the same pressure and much higher tempera-
tures (up to 700°C). Pure T polymer is difficult to pro-
duce. A mixed phase of O (50%) and T (50%) polymers
was obtained at 1.1 GPa and 600°C in [12]. The least
center-to-center spacing of fullerene moleculesis 9.26,
9.2, and 9.09 A for O, R, and T polymers, respectively
[12]. Bulk polymers, which are produced at very high
pressure (8.5 GPa) and temperature (750°C), have also
been mentioned [19]. However, they are practically
unfeasible; anyway, we are unfamiliar with publica-
tions concerning Raman spectra for this material. In
photopolymers, which are, in essence, Cq, dimers, the
center-to-center distance of the molecules is 9.76 A
[12]. Photopolymers are produced by exposing thermal
Ceo filmsto UV or laser radiation.

As follows from the above, the irradiation of SMB
films produces O polymers rather than photopolymers.
To explain this fact, it is necessary to consider the for-
mation of SMB filmsin greater detail.

When constructing a model of interaction between
fast Cg, molecules from an SMB and the surface, we
can rely upon two works [20, 21] where the energy of
Ce—surface and Cg—Cq, bonds as a function of sur-
face—molecule or molecule-molecule spacing is esti-
mated.

Interaction of an adsorbed Cg, molecule with asolid
surface is governed by orientation, induction, and dis-
persion forces. The relationship between these forces,
which controlsthe position (adsorption site) of the mol-
ecule, its orientation relative to the surface, and the
adsorption energy, depends considerably on the sub-
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strate type. The effect of the surface potential relief on
the position of the molecule adsorbed depends on both
the initial surface condition and the amount of the
adsorbate. After the deposition of several monolayers,
the effect of the substrate weakens and the structure of
subsequent layers becomesindependent of the structure
of theinterface.

It may be assumed that, as the kinetic energy of a
molecule whose momentum is directed normally to the
surface grows, the forces mentioned above and, hence,
the potential field of the surface will affect the trajec-
tory of the molecule near the surface to a lesser extent.
The higher the kinetic energy of a Cg, molecule, the
weaker the dependence of its adsorption site, orienta-
tion, and bond energy with the surface on the surface
properties. In this case, thefill of the interface and sub-
sequent layers with adsorbed molecules will increase
with their kinetic energy, with the packing becoming
progressively closer. A high density of SMB films
changes the trelectron collective oscillations, which
are a result of interaction between electron shells of
nearby Cg, molecules [22]. This reduces the possibility
of exciting Ttplasmons, as demonstrated by the charac-
teristic energy loss spectra [22].

Thus, the SMB technology makesit possibleto sim-
ulate the formation of fullerene structures under high
pressure. However, Cy, molecules in an SMB have a
low temperature (=550 K), so that double bonds do not
break when the molecules are deposited on the surface
and the polymersdo not form. This process can be stim-
ulated by any extra external action that raises the num-
ber of degrees of freedom of C—C bonds and favors
their breaking with the formation of 2 + 2 double bonds
with the nearest fullerene molecule. That is why even
low-intensity laser irradiation of SMB films causes
intense polymerization of Cg, molecules and the forma-
tion of O polymer chains. The peak intensity of unpo-
lymerized fullerene (1 460) Versustheirradiation dose D
can be represented in the form

l1469(D) = loeXp(-D/kK),

where 1, is the initia fraction of unpolymerized
fullerene and k = 46.3 is the parameter characterizing
the activation energy of polymerization.

A similar dependence was obtained in [7] for the
photoconversion of thermal fullerene films, with a shift
of the peak from 1469 to 1459 cm, which istypical of
photopolymers (Fig. 4). The intensities of the peaks
varied with the dose by the same exponentia law, but k
exceeded the value for SMB films 13 times. This means
that the activation energy is low and, hence, polymer-
ization will proceed rapidly upon weak external
actions. This property of SMB films may find applica-
tion in data-writing devices where highly localized
low-intensity optical radiation is used, such as near-
field optical microscopes[23, 24], which offer aresolu-
tion of about several hundred angstroms.
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Radiation-induced polymerization in SMB films
may be responsible for their high radiation hardness.
The radiation energy absorbed by a Cgz, molecule is
transferred to the entire molecular ensemble of the
polymer via bridges, so that the entire polymer accu-
mulates the energy. This energy causes breaking of
weaker bonds, which are polymer bonds rather than
C-C bondsin a Cg molecule. In addition, the polymer
structure imparts a part of the energy to the substrate.

In comparison with similar processestaking placein
thermal films, the characteristic time of energy accu-
mulation per Cg molecule in a SMB film changes
appreciably and the rate of energy transfer through the
more perfect interface increases.
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A further rise in the laser radiation intensity appar-
ently causes not only the rupture of linear polymerized
chains with the formation of photopolymers (dimers)
but also the production of HPHT polymers (R poly-
mers), which are synthesized at temperatures much
higher than the synthesis temperature of O polymers
(700°C) [12].

We stress once more that the Raman spectra for the
different polymer fractions have not been fully under-
stood yet and are the subject of extensive discussion
today. For example, Senyavin et al. [15] reported
Raman spectra for O, R, and T polymers that differ
greatly from the corresponding spectra in [12] and
argued that their HPHT polymers are of much higher
quality than those studied in [12]. A peak at 1463 cm
was assigned in [12] to the O polymer phase with dou-
ble2 + 2 bonds. Thisphaseisbelieved to berather pure,
unlikethe T phase. The synthesis of the latter is consid-
ered to be difficult; therefore, the authors of [12] stud-
iedaT + R polymer mixture. In [15], the vibrational
mode at 1463 cm isrelated to polymerization with the
formation of single C—C bonds between fullerene mol-
ecules (such bonds are present, e.g., in T polymers).
Our ideais that fast polymerization of SMB films may
provide a high resistance to laser radiation. The poly-
mer fraction in this case may be arbitrary, including that
suggested in [12].

CONCLUSIONS

Our results indicate that fullerene films synthesized
with a pulse supersonic molecular beam contain the
denser unpolymerized (pristine) fullerene fraction,
which, when exposed to low-intensity laser radiation,
passes into the polymer fraction typical of HPHT
fullerenes. Polymer chains make it possible to distrib-
ute the absorbed energy over the entire ensemble
(including the substrate). As a result, the molecular
congtitution of the fullerene framework persists at
power densities far exceeding the critical power density
for conventional fullerene coatings.
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Abstract—The effect of profile asymmetry, Reynolds number, and angles of deflection of high-lift deviceson
the hysteresis loop shape in the dependences of the static aerodynamic forces and moments on angles of attack
is studied. These dependences are measured in wind tunnels during testing of rectangular wings of equal thick-
ness but different curvature. The wings have deflectable flaps spanning the wing trailing edge. © 2004 MAIK

“ Nauka/Interperiodica” .

INTRODUCTION

It was noted [1-14] that the dependences of aerody-
namic forces and moments on the angle of attack for
rectangular wingswith aspect ratiosA = 1 and 5, aswell
as for aircraft with high-aspect-ratio straight wings,
exhibit hysteresis at Re < 4 x 10°. The shape of the hys-
teresis|oop boundaries was shown to depend on the Re
[3], profile thickness [4], aspect ratio [5], wing surface
roughness [13], and slip angles[5]. Based on visualiza-
tion data, the flow structures under the test conditions
corresponding to the outer and inner boundaries of mul-
tiple hysteresiswere analyzed [1, 5].

Inthiswork, emphasisis on the effect of the rectan-
gular wing profile curvature on the hysteresis loop
boundaries.

TEST CONDITIONS AND MODEL

Aerodynamic forces and moments were measured
with six-component mechanical balances during test-
ing of two models of rectangular wings in a low-sub-
sonic wind tunnel. The geometries of the wingswere as
follows. Model 1. aspect ratio A = 2.25; NACA 23010
asymmetric profile; and flap chord by = 0.28b, where
bis the wing chord. Model 2: aspect ratio A = 2.0,
NACA 0010 symmetric profile, and flap chord b; =
0.4b. The measurements were made in the moving
coordinate system. The arrangement of the dynamic
unit and model wings in the working part of the wind
tunnel were described elsewhere [13].

TEST RESULTS

Typical dependences of the coefficients ¢ (a) and
m,(a) for wings 1 and 2 with the undeflected flap (o =
0) at Re = 2.02 x 10° when the angle of attack
increases (0 > 0) and decreases (a < 0) are shown in
Fig. 1. Itisseen that the curves exhibit hysteresisat a =

1.25
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a, deg

10 20 30 40

—01 T T T
\\\\
“~
A\
-0.2+ \
N
N AN
% T
WY

—-0.3F \.,-\. ‘___‘,""""‘—\
—04r

Fig. 1. Normal-force and longitudinal -moment coefficients
vs. the angle of attack (3 = 0) at Re = 2.02 x 106 for (1) an
asymmetric- and (2) asymmetric-profile wing (wings 1 and
2, respectively).
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Fig. 2. Coefficient ¢, for wing 1 at Re = (1) 1.64 x 10°,
(2) 2.02 x 105, and (3) 2.5 x 105.

17.5°-34° (wing 1) and 14°-20° (wing 2). The loop
area for wing 1 is roughly twice that for wing 2. The
difference between the maximal values of ¢, iISAC, s =
0.15. Thecritical angle of attack at which the transition
from the upper to the lower branch of the curve ¢ (a)
takes place increases from o = 18.5° for wing 2 to
O = 22° for wing 1.

Figure 2 plots the functions c(a) and m,(a) for
asymmetric-profile wing 1 at Re = 1.64 x 106, 2.02 x
105, and 2.5 x 10° when the angle of attack both
increases and decreases. For these Reynolds numbers,
the curves exhibit hysteresis: as Re grows, so do C ma
and the critical angle of attack a, (from 21° at Re =
1.64 x 106t0 24° at Re= 2.5 x 10°), whilethe hysteresis
loop area decreases. Similar behavior was observed
previously for symmetric-profile wings [3-5].

For wing 1, the effect of Re on the polar ¢, = f(Cy,,
a) and on the dependences m,(c,) and X = f(a) isdem-
onstrated in Figs. 3 and 4, respectively. As before, the

dependences are hysteretic. The loop area in the curve
my(c,) decreases with increasing Re. The aerodynamic

center position vs. angle-of-attack dependence X. =
f(a) exhibits hysteresis in the range a =18°-25°. The
relative position of the wing aerodynamic center (Xc =
0.26) remains virtually unchanged up to a = 23°
(a >0), increases to X. = 0.35 at a = 22°-25°, and
then (a > 25°) shifts back along the wing to x. = 0.5.
Astheangle of attack decreasesto a = 20°, the aerody-
namic center returnsto X = 0.35 and again reachesthe

position X; = 0.26 in the range a = 18°-20°.

g
-0.25F
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S
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a, deg

Fig. 3. Polar of wing 1 for various c,, and Re numbers (for
1-3, seeFig. 2).
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Fig. 4. Curves my(c,) and X = f(a) for wing 1 with
deflected and undeflected flaps (for 1-3, see Fig. 2).
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Fig. 5. Normal-force and longitudinal -moment coefficients
vs. angle of attack for the asymmetric-profile wing with
deflected flaps (6 = 20°) at Re = 2.02 x 10°.

Figure 5 shows the curves ¢,(a) and m,(a) obtained
upon testing wing 1 with the flap deflected by & = 20°
(Re = 2.02 x 10°). The deflection of the flap increases
noticeably (roughly twofold) the hysteresis loop area
compared withtheareaat & = 0 (Fig. 1). Because of the
asymmetry of the profile, the flap deflection & = 20°
shifts the angle-of-attack range where hysteresis is
observed to a = 17°-27° (cf. a = 15°-23° for the sym-
metric-profile wing, Fig. 6).

CONCLUSIONS

From our experimental dependences of the aerody-
namic force coefficients and moment coefficients on
the angle of attack for asymmetric- and symmetric-pro-
file rectangular wings, one can draw the following con-
clusions. The profile curvature has a considerabl e effect
on the size and shape of hysteresis loops in the curves
of the static aerodynamic forces and moments. For the
asymmietric-profile wing, the deflection of the flaps by
0 = 20° increases the area of the loops in the curves
cy(a) and my(a) compared with these curves taken at
0=0.
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Fig. 6. Normal-force and longitudinal-moment coefficients
vs. angle of attack for the (1) asymmetric- and (2) symmet-
ric-profile wings with deflected flaps (0 = 20°) at Re =
2.02 x 106,
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Abstract—A method of determining the avalanche breakdown voltage of vertical switching n—p—n transistors
in 1L logic elementsis verified experimentally. © 2004 MAIK “ Nauka/Inter periodica’ .

At the beginning of 1%L logic circuits, punch-
through breakdown (when the space charge region of
the collector junction merges with the emitter through
the base) was considered to be the basic breakdown
mechanism in vertical switching-type n—p—n transis-
tors. Accordingly, the punch-through voltage was taken
to be equa to the collector—emitter breakdown voltage
U [1]. Asthe I°L technology matured and the area of

1L application expanded, designers arrived at the con-
clusion that not only the punch-through voltage but also
the avalanche breakdown voltage should be deter-
mined. Asis known [2], the breakdown voltage in drift
and diffusion common-emitter bipolar transistors is
given by

U
Up = —2 (1)

/By+1

where U, is the avalanche breakdown voltage of the
collector-base (p—) junction, By isthe gain, and n is
the exponent (n = 3 for p—n—p transistors and n = 4 for
n—p—n transistors).

Our goal was to check the applicability of expres-
sion (1) for finding the aval anche breakdown voltage of
vertical switching n—p—n transistors in I°L elements.
For this purpose, we measured the breakdown voltage
on 76(6KEF0.4/380EKESD.01) single-layer epitaxial
phosphine-doped silicon structures of different topo-
logy.

On each of the wafers, we fabricated single-collec-
tor n—p—n transistors with different rated currents and
ratios S/S, (where S, and S, are the surface areas of the
collector and emitter, respectively) of 0.88, 0.75, and
0.63; double-collector n—p—n transistors with S/S, =
0.24 + 0.24 and 0.40 + 0.06; and three- and four-collec-
tor n—p—n transistors with different and equal collector
dimensions.

Four lots of four wafers each were fabricated and
tested. The base region was formed by implantation of
boron ions with various doses, followed by drive-in at

1150°C for different timest. The process conditions are
given in the table. The collectors were formed by one-
stage phosphorus diffusion at 1040°C. In reference
areas of thewafers, the coll ector—base and emitter—base
junction depths (X4, and Xy, respectively) were mea-
sured by the ring lap technique.

Subsequent to the opening of contact windows, vac-
uum evaporation of aluminum, and patterning of the
auminum layer by means of photolithography, the
wafers were annealed in argon at 510°C for 25 min. In
all the collectors of each of the elements at five siteson
each of the wafers, we measured the gain B at a volt-
age of 0.5V, the breakdown voltage Uy, of the collec-
tor—base junction, and the breakdown voltage U, with
an L2-56 meter of semiconductor device parameters.
Also, we determined the extrapol ation voltage U, (Erli
voltage) from the slope of the output |-V characteris-
tics. The average values of these parameters are listed
in the table.

It is seen that the extrapolation voltages U, for 1°L
elements of different topology that were fabricated on
one wafer are the same. Thisis of no surprise, since the
diffusion regions of the bases and collectors are formed
simultaneously. Some of the n—p—n transistors in 1%L
elements have U close to Ug,,.

Since the punch-through voltage and the extrapola-
tion voltage are given by the same expressions [3, 4],
the voltage U, al so equal s the punch-through voltage if
Ug = Uy Then, lower values of U, are specified by
avalanche breakdown. From (1), we find that

n = log(By+ 1)/log(U/U). 2

The values of n for the structures where U, is gov-
erned by avalanche breakdown are listed in the table. It
is seen that n depends on the surface area ratio but is
nearly independent of the process conditions.

From the dependence n = f(S/S,) obtained, one can
derive an expression for n when expression (1) is used
to caculate the avalanche breakdown voltage of 2L

1063-7842/04/4902-0267$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Table
Lot 1o, Process parameters S/s, Measured electrical parameters n calculated
Qp, uC/em? | t, min By, U Uge V Ug, V Ug V by (3)
1 4 150 0.88 83 194 4.6 4.6
0.75 68 194 4.6 4.6
0.63 55 194 4.7 4.6
0.4 31 194 4.6 4.6
0.24 15 19.4 4.7 4.6
0.11 55 194 4.7 4.7
2 12 105 0.88 42 12.2 53 8.7 451
0.75 34 12.2 6.3 8.7 5.38
0.63 27 12.2 7.2 8.7 6.32
0.4 15 12.2 8.7 8.7
0.24 8 12.2 8.8 8.8
0.11 2.5 12.2 8.8 8.8
3 40 60 0.88 40 8.3 3.6 7.8 4.45
0.75 33 8.3 4.3 7.8 5.36
0.63 27 8.3 4.9 7.8 6.32
0.4 15 8.3 6.3 7.8 10.0
0.24 7.5 8.3 7.3 7.9 16.6
0.11 2.5 8.3 7.9 7.9
4 100 40 0.88 35 6.9 31 7.2 4.48
0.75 28 6.9 3.6 7.2 5.17
0.63 225 6.9 4.2 7.2 6.38
0.4 13 6.9 53 7.2 10.0
0.24 6.5 6.9 6.1 7.3 16.6
0.11 2.0 6.9 6.7 7.3 36.3
structures: nent nisaconstant, for 1°L structures, it depends on the
surface arearatio (see (3)).
n = 4S/S.. (©)]
REFERENCES
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(i) The avalanche breakdown voltage of n—p-—n tran-
sistors in 12L elements depends not only on the ava-
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Abstract—A method of determining the base thickness of n—p—n transistorsin 1L elements from the punch-
through voltage is verified on test 12 structures. © 2004 MAIK “ Nauka/Interperiodica” .

In designing I%L circuits, as well as in quality con-
trol of the circuits during fabrication, there appears the
need to determine the transistor base thickness. Specif-
icaly, the base thickness may be estimated from the
punch-through voltage U, which is the voltage at
which the space charge region (SCR) of the collector—
base junction merges with the emitter.

The breakdown voltage U,, of common-emitter n—
p— transistors, as well as of any bipolar transistors
incorporated into 12L circuits, equals the lower of two
voltages values: the avalanche breakdown voltage U,,
and the punch-through voltage U, .. The former is gen-
eraly given by [1]

U = —22 )

/By+1

where U, is the avalanche breakdown voltage of the
collector-bhase p—njunction, By isthe gain, and nisthe
structure-dependent exponent.

The punch-through voltage U, ,, at which the SCR
thickness becomes equal to the base thickness W, (as
determined by the metallurgical boundaries of the emit-
ter and collector junctions) is found from the expres-
sion[2]

_ WeeN,

U., = —2=b
Pth T e,

b, )

where e is the electron charge, Ny is the impurity con-
centration in the base, € is the permittivity of the semi-
conductor, €, isthe permittivity of free space, and ¢ is
the contact potential difference at the collector junc-
tion.

If the base is doped uniformly, the determination of
the punch-through voltage is not a matter of concern.
The base thickness (or, more exactly, the minimal base
thickness W, ;i tailored for a desired breakdown volt-

age U,,) isalso easy to find:

_ [2ego(Up + ¢c)
Wb, min e—l\?b (3)

However, in the standard 12L technology and in the
combined bipolar—12L technology, the base regions of
n—p—n transistors are formed by ion doping or dopant
predeposition with subsequent drive-in. In thiscase, the
impurity distribution in the base takes an exponential
form. As aresult, use of expressions (2) and (3) poses
certain difficulties, since it becomes necessary to know

the average impurity concentration Nj in the base,

which lies between the concentrations at the emitter—
base and collector—base p—n junctions [3].

The standard 1L technology is based on drift bipo-
lar n—p—n transistors. This technology is mature and
quite compatible with the combined bipolar—I2L pro-
cess. Inthelatter case, an n—p—n transistor of an 1%L ele-
ment may be viewed as an inversely operated n—p—n
transistor, where its emitter acts as a collector and vice
versa. Therefore, for an 1°L element, the impurity con-
centration Ng, a the emitter—base p—n junction can be
designated as N; (the impurity concentration at the
collector-base p— junction upon inversion) and the
concentration N, as N

The well-known technique of determining the
punch-through voltage [4] for an inverted bipolar tran-
sistor implies the solution of the transcendental equa-
tion

A A, (9c—Upi)
L+ ThePHn = L o @
UOeXpD'[;D

where L, isthe characteristic diffusion length of accep-

1063-7842/04/4902-0269%$26.00 © 2004 MAIK “Nauka/ Interperiodica’



270

Table 1. Experimental dimensions of diffusion regions, con-
centrations at the p—n junctions, and electrical parameters of
n—p—n transistors incorporated into 1%L elements

Wafer M easurements
no. Bni | Ui V | Ugi V | Xeir UM | Xy kM | W, pm
1 234 1.3 1.2 151 1.84 0.33
2 155 2.4 2.4 1.45 1.86 0.41
3 98 4.3 4.1 1.37 1.85 0.48
4 65 5.6 6.6 1.29 1.85 0.56
5 53 58 9.1 1.24 1.84 0.6
6 95 2.9 2.7 151 2.12 0.61
7 54 5.7 6.2 1.37 2.1 0.73
8 35 6.2 | 12.8 1.24 2.1 0.86
Table 2. Cdculated results
Wafer| Calculated values N} calculated Vlvgtgg‘lg;’
M0 1 Ny, e | Ny, e | by (7), cm™ | (3), um
1 6 x 1016 | 1.3 x 1016 2.21 x 106 0.334
2 | 75x10%[13x10%| 244x10% | 0.406
3 1x10Y|1.3x 10| 2.766 x 106 0.475
4 |135x10Y7|1.3x10%| 345x10% | 0548
5 1.6x 10| 1.3x 101 3.78 x 1016 0.607
6 6x10%|4.7%x10%| 1.32x10%| 0579
7 1x10Y|4.7%x 10| 1.768 x 1016 0712
8 | 1.6x10Y |4.7x10'®| 2.356x10% | 0.863
torsin the base, A, isthe SCR width, and
ENg, L2
U, = Z_chia (5)
€€,
isthe design voltage [4].

The solution of the transcendental equation is much
more complicated than direct calculation. Moreover,
the solution of thisequation requiresthat the base thick-
ness, through which L, is calculated, to be known a pri-
ori. Therefore, use of expression (4), which makes it
possible to estimate the base thickness through the
punch-through voltage, becomes a challenge. Theoret-
ical considerations also show that the applicability of
this expression is limited, especially when the impurity
concentrations at the p—n junctions differ by no more
than two to three times.

Expressions (2) and (3) are the most appropriate for
forward and inverse calculations of the base thickness
and punch-through voltage, since here only the concen-

tration Ny must be known. For drift bipolar transistors,

SHUTOV et al.

this concentration is given by

N (6)
= exp{ IN(Ny,Ng,)/[2—=IN(Ng/Ny,)/2INNg]} .

Since the punch-through voltage of a noninverted
transistor is higher than that of an inverted device, the
minus sign in the brackets should be changed to a plus.
This change decreases the average concentration in the
base and the associated punch-through voltage and
gives a good fit to experimental data when the base is
thin, i.e., when the impurity concentrations at the emit-
ter and collector p—n junctions differ insignificantly
(which is the case for I°L structures). However, as the
base thickness and, accordingly, the concentration dif-
ference grow, the predicted val ues of the punch-through
voltage and average concentration in the base tend to
decrease, in conflict with the experimental evidence.
Estimates for the SCR thickness [4] show that the asso-
ciated expression must involve an additional factor
when the SCR propagates from the high- to the low-
concentration area (inverse operation) (compared with
the case of opposite propagation). This factor will
change the expression for the average concentration in
the base for the inversely operated device (change of

sign and the introduction of additional factors).

;In order to determine the average concentration in
the base of an n—p—n transistor in an 12L element (i.e.,
of an inversely operated bipolar transistor), we studied
the punch-through voltage versus design parameters of
1L n—p—n transistors. 1%L structures were made on
76(6K EF0.4/380EKES0.01) phosphine-doped single-
layer silicon epitaxial structures (wafers 1-5) and on
76(7.5KEF1.2/380EKES0.01) phosphine-doped sin-
gle-layer silicon epitaxia structures (wafers 6-8) fabri-
cated by the technique suggested in [5].

The base regions of all the wafers were formed by
ion doping at a dose of 15 uC/cm?, followed by high-
temperature drive-in at 1150°C for 75 min. The collec-
tors were formed by one-step diffusion of phosphorus
at 1040°C. Such process conditions minimize the effect
of collector diffusion on the impurity distribution in the
base and affect the depth X, of the emitter—base p—n
junction insignificantly. The collector thickness X,
was varied by varying the phosphorus diffusion param-
eters. Phosphorus diffusion into wafers 6 and 1, 7 and
3, and 8 and 5 was accomplished simultaneously.
Therefore, the impurity concentrations at the coll ector—
base p—n junctions and the collector thicknessesin each
of the pairs of wafers were the same. At reference sites
of the wafers, we measured the depths X; and Xy, of
the collector—base and emitter—base p—n junctions by
the ring lap method and then cal cul ated the base thick-
ness W, as the difference between X; and X;.

Once the base and collector regions had been
formed and contact windows had been opened by pho-
tolithography, we measured the current gain By; and the
breakdown voltage U,, of the n—p—n transistors of an

TECHNICAL PHYSICS  Vol. 49
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I’L element, aswell as determined the extrapolation (or
Erli) voltage Vg from the projections of the output 1-V
characteristics onto the voltage axis. The measurements
averaged over each of the wafers are listed in Table 1.
From the process parameters known and the junction
thicknesses determined, the impurity concentrations at
the emitter—base and collector—base p—n junctions (Ng,
and N, respectively) were measured (see Table 1).

It followsfrom Table 1 that the values of U,; and Ug
are close to each other on high-gain wafers, while on
waferswherethegainislow Uy, islower than Ug. This
is because the punch-through effect in the inverted
device is observed in thin bases and a decrease in the
gain implies that the base has thickened to the point
where avalanche multiplication of carriers, rather than
punch-through, becomes the basic mechanism of
breakdown. Upon avalanche breakdown, direct mea-
surement of the punch-through voltage is impossible.
However, according to [6], the punch-through voltage
and the Erli voltage are given by the same expression
for both inverted and noninverted bipolar transistors.
Therefore, the Erli voltage found experimentally may
be used to estimate the base thickness. The processing
of experimental data yields the following estimator for
the average impurity concentration in the base of an
inverted drift transistor:

Ei = exXp{ IN(Ng;iNgy)
X [INNgy/INNg] /[(2+ 45In(Ngy/Ng)) — (7)

X, /INNg,i/INNgi/INNg,; 13 .

With this expression, one can find the base thickness
of an inverted transistor from the punch-through (or
Erli) voltage or vice versa. For diffusion transistors,
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where Ng; = Ny, = N,, expression (7) yields N, = N,.
The calculated values of Np; and the values of W,

found by (3) with N}; estimated from (7) are listed in
Table 2.

The values of W, given in Tables 1 and 2 diverge by
no more than several percent. This discrepancy is
within the accuracy of the ring lap method, which was
used to measure the diffusion depth. Thus, using
expression (7) and the Erli voltage Ug;, one may find the
base thickness of both drift and diffusion inverted tran-
sistors from (3) irrespective of the breakdown mecha-
nism. Since n—p—n transistors in 1°L elements are, in
essence, inverted bipolar transistors, this computational
scheme may also be applied to 1L circuits.
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Abstract—The spectra and dynamics of the line emission of alead erosion laser plasma at adistance of 1 mm
from the target are investigated. The plasmaisignited in avacuum (P = 3-12 Pa) with a pulse-periodic neody-
mium laser (T =20 ns, f = 12 Hz, W = (1-2) x 10° W/cm?, and A = 1.06 pm). The data obtained are used to
analyze the emission dynamics and the mechanism of formation of the laser plume. © 2004 MAIK

“ Nauka/Interperiodica” .

INTRODUCTION

The wide application of photoelectric converters
based on lead compounds stimulates their investigation
[1]. One of the methods for optimizing film photocells
produced by laser sputtering is the spectroscopic diag-
nostics of the formation and expansion of laser plasma
[2]. The physics of this phenomenon is even more
important; although the hydrodynamics of the forma-
tion and expansion of a plume is still poorly under-
stood, it plays an important role in a number of laser-
assisted production processes|[3]. To obtain moreinfor-
mation on the parameters of an expanding erosion
plasma, we performed a spectroscopic study of the
emission from a laser-induced lead plume at a distance
of 1 mm from the target surface in avacuum of P = 3—
12 Pa.

The laser plasma was produced by a pulse-periodic
neodymium laser (1 = 20 ns, f = 12 Hz, W = (1-2) x
10° W/cm?, and A = 1.06 pm). The emission from the
laser plume in the spectral range of 200600 nm was
studied by two methods: recording of time-average
spectra and investigation of the dynamics of the emis-
sion lines of the target material. The radiation intensity
was measured accurate to 5%, and the time measure-
ment error was 1-2 ns. The equipment and experimen-
tal technique are described in detail in [4, 5].

The table gives the relative intensities of the most
important spectral transitions and their percentages in
the plasma line spectrum. The radiation intensity is
given with allowance for the recording system sensitiv-
ity (I’ky). The emission intensity was maximum in the
Pbll 220.4-nm, Pbl 261.4-nm, Pbl 280.2-nm, and Pbl
405.7-nm lines, emitted from levelsthat are close to the
bottleneck of the recombination flux of the atomic
plasmacomponent (E = 6.5 eV) and from the lower lev-
els of lead atoms and ions. Their contribution to the
spectrum is 41% of the total intensity. The close
arrangement of the energy levels favors nonradiative
cascade transitions of atoms downward upon three-

Intensity distributions and percentages in the spectrum of a
lead erosion laser plasma

Aom | AN erm e ev | M A, 9
2204 | Pbll | 75°Sy, | 14.79 2.93 9.3
2247 | Phl p7d®D, | 6.48 0.55 1.7
239.4 | Pol p7TdF; | 6.5 0.47 15
244.4 | Pol p8s’P, | 6.04 0.36 1.2
2446 | Phl p8sP, | 6.036 | 0.44 1.4
247.6 | Phl p7s’P, | 5.97 0.48 15
257.7 | Pol p7stP; | 6.13 0.95 3.0
261.4 | Pol p6d®D, | 5.71 3.07 9.7
266.3 | Phl p7s’P, | 5.97 1.49 4.7
280.2 | Phl p6dF; | 5.74 3.92 12.4
283.3 | Phl p7sP, | 4.37 2.06 6.5
287.3 | Pol p6d®F, | 5.63 157 5.0
326.1 | Pbll |10s’S, | 21.29 0.50 1.6
357.3 | Phl p7sP, | 6.13 1.32 4.2
364 Phl p7s’P, | 4.37 151 4.8
368.3 | Pol p7sP, | 4.34 1.62 5.1
374 Pol p7s’P, | 5.97 1.18 3.7
4019 | Pbl p6dF; | 5.74 0.31 1.0
405.7 | Phl p7s’P, | 4.37 3.03 9.6
4275 | Poll -~ 18.89 0.68 2.2
438.7 | Poll - 18.89 0.50 1.6
478.8 | Phll - - 0.07 0.2
500.5 | Pbl p7sP, | 6.13 0.11 0.3
520.1 | Pl p8s’P; | 6.04 0.25 0.8
530.7 | Poll - 21.55 0.16 0.5
536.7 | Phll - 18.88 0.27 0.9
560.9 | Phll - 17 0.95 3.0
5714 | Phll - 21.39 0.18 0.6
576.8 | Poll - 21.34 0.29 0.9
298.7 | Poll - 20.79 0.39 1.2

1063-7842/04/4902-0272$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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body recombination to the level E = 5.74 eV (p6d®F5).
Radiative transitions from this level produce the maxi-
mum contribution to the spectrum intensity, namely,
12.4% in the Pbl 280.2-nm line.

For detailed analysis, Fig. 1 shows typical wave-
forms of the emission intensity of the lead atoms and
ions from the laser plasma. The vertical line shows the
instant corresponding to the end of the laser pulse.

The basic feature of the waveforms is a sharp
increase and decrease in the intensity of ionic radiation
(a t = 70 ns, the intensity is ~10% of the maximum
level) and a slow increase and decrease in the intensity
of atomic radiation. Most waveforms exhibit two pro-
nounced maxima, which is also characteristic of other
materials [6], athough the intensities of some spectral
atomic transitions slowly increase and reach their max-
imum at atime corresponding to the minimum intensity
for most of the waveforms.

Such behavior of the intensity is difficult to explain.
Taking into account that the zonein which the radiation
is analyzed is close to the surface and that the melting
temperature of the lead is rather low, this behavior can
only be explained if we assume that the emission
dynamics is mainly determined by the density of the
evaporated material. This fact can explain the appear-
ance of two maximain most waveforms. Thefirst emis-
sion maximum correlates with the time of laser action,
and the second can be caused by the evaporation of
heated inner layers of the material under the action of
plasma radiation. Different positions of the maximain
different spectral lines can be related to the plasma
expansion dynamics and the distributions of electron
density and temperature, which affect the characteris-
tics of spectral transitions whose spectroscopic life-
times are greater than the resolution of our apparatus.
Since the second maximum appears synchronously
with the decrease in the transition wavelength, the con-
tribution of nonradiative transitions is significant, but
their role weakens with time.

If we consider this fact along with the emission
dynamics of the Pbl 357.3-nmline (E,, = 6.13 €V) with
one broad maximum, then it should shift toward the
maximum ionic emission intensity due to the recombi-
nation mechanism for population of the upper short-liv-
ing level. The peak in the Pbl 280.2-nm line emission,
on the contrary, is clearly pronounced. It begins before
the end of the laser pulse and corresponds to a combi-
nation of terms with a forbidden total orbital quantum
number L: 6p? 3P,—p6d°F;. This transition can result
from an externa action, and its probability increases
with increasing plasma density. Thus, we can conclude
that electron—atom collisions are dominant in the
plasmabeforethe laser power decreases. The efficiency
of thisinteraction can betraced by the intercombination
emission of the Pbl 520.1-nm line. The forbiddenness
for the intercombination transition is less rigorous, and
it isfavored by free electrons. Thefirst maximum of the
radiation intensity closely resembles the shape of the
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Fig. 1. Waveforms of the line emission intensity from alead
erosion laser plasma: (1) Pbl 261.4 nm, (2) Pbl 520.1 nm,
(3) Pbll 438.7 nm, (4) Pbl 364.0 nm, (5) Pbl 405.7 nm,
(6) Pbl 280.2 nm, (7) Pbll 424.5 nm, (8) Pbl 357.3 nm, and
(9) Pbl 368.3 nm.

laser pulse, and the second one appears on the leading
edge of the second peak of allowed spectral transitions.
This mechanism correlates with the datain [7].

Thus, the emission intensity increases with the prob-
ability of a spectral transition under given conditions
and the probability of formation of particlesin acertain
energy state. Comparing the emission dynamics for
transitions from the same upper level (Fig. 1, curves 4,
5), we can also conclude that heating is only due to
radiation transfer. The transfer efficiency is substan-
tially affected by nonradiative transitions. Since the
lower states for both transitions are metastable, with
E 0. (405.7 nm) > E,,,(364.0 nm), the self-reversal for
the Pbl 405.7-nm transition can be more pronounced
when atoms at the lower energy levels rise to a higher
level, athough the emission dynamics indicates that
both transitions are forbidden in L.
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Fig. 2. Time dependence of the logarithm of the line emis-
sion intensity normalized to its maximum value (the curves
are approximated by straight segments): (1) Pbl 261.4 nm,
(2) Pbl 520.1 nm, (3) Pbll 438.7 nm, (4) Pbl 364.0 nm,
(5) Pbl 405.7 nm, (6) Pbl 280.2 nm, (7) Pbll 424.5 nm,
(8) Pbl 357.3 nm, and (9) Pbl 368.3 nm.

To analyze processesin the | ate stages of expansion,
we plot the time dependence of the logarithm of the
intensity normalized to its maximum value (the curves
are approximated by straight segments). The recombi-
nation times estimated from these curves are 52-57 ns
for the Pb* ions and 12-15 ns for the Pb?* ions in the
timeinterval 50-100 ns. Until the 50th nanosecond, the
dynamics of spectral transitionsis strongly affected by
the radiation transfer to the target surface. After t =
100 ns, the intensity variation again slows, which is
clearly seen for the upper excited states of lead atoms.
After t = 200 ns, the population of highly excited parti-
cles sharply decreases and the lower excited statesform
in a more steady manner. Probably, this is due to the
associ ation—dissociation excitation processesin arela-
tively cold and dense laser plasma.

Thus, in laser sputtering of lead-based films, ion-
assisted processes and the specific features of energy
redistribution in alaser plume are of great importance.
These features are related to the multielectron valence

SHUAIBOV et al.

atomic shell of lead and the related shape of the emis-
sion spectrum, aswell as the evaporation dynamics and
radiation transfer.

The emission dynamics is significantly affected by
both the plasma expansion dynamics and the parame-
ters of the expanding plasma. Their time dependences
can beinferred from the waveforms of the spectra line
intensities. According to this approach, the electron
density conforms well to the shape of the laser pulse
and increases again at the leading edge of the second
evaporation peak. The hydrodynamic pressure is maxi-
mum at the end of the laser pulse and then gradually
decreases. The recombination time of doubly charged
lead ionsis 12—15 ns, and that of singly charged ionsis
52-57 ns.

Theresults obtained can be of interest for the optical
spectroscopy of emission from a laser plasma of lead-
based compounds and for the optimization of laser
sputtering of such compounds.
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Abstract—A broad band in the visible emission spectrum of a continuous Ar/Kr/SFg plasma jet is detected at
adistance| > 75 mm from the plasmatron nozzle. Experimental dependences of the maximum emission inten-
sity on the parameters of the plasma source are presented. © 2004 MAIK “ Nauka/Interperiodica” .

Earlier [1-3], we studied the optimum conditions
for the formation of KrF*, XeF*, and ArF* excimer
molecules in a continuous plasma jet ignited in a mix-
ture of noble gaseswith SF; molecules and found broad
visible emission bands, whose nature was not under-
stood. This radiation was detected rather far (I >
75 mm) from the plasmatron nozzle.

In thiswork, we present the emission spectrum of an
Ar/Kr/SFg mixture and basic experimental depen-
dences of the maximum emission intensity of the band
at A\ = 630 nm on the parameters of the plasma
source.

Experimentswere performed with aplasmadynamic
device in which the source of the plasma jet was a dc
plasmatron with vortex stabilization of the electric arc
and a sonic graphite nozzle with a critical diameter of
~5 mm operating at an arc current of 50-150 A and a
discharge voltage of 15-35V. Noble gas (He, Ar, Kr, or
Xe) plasmawas ignited in the plasmatron arc chamber,
and SF; halide molecules were added to the noble gas
plasma in both the prenozzle chamber and the formed
plasma jet after the nozzle unit at various distances
fromit. The noble gas pressure in the arc and prenozzle
chambers was varied from several dozens of pascalsto
20 kPa. Theradiation after the nozzle unit was recorded
with an FEU-106 photomultiplier and an MDR-2
monochromator. The equipment and experimental
technique are described in detail in [1-4].

The emission spectra of the Ar/Kr/SFg jet was
recorded in a broad wavelength range (200-800 nm).
To avoid distortions of the spectrain the visible region
due to the contribution of secondary radiation from the
UV spectral region, in which KrF* and ArF* excimer
molecules and OH radicals emit intensely, the spectral
region with awavelength A < 350 nm was cut off with
alight filter.

A typical emission spectrum of the Ar/Kr/SFg mix-

ture consists of a broad emission band with an intensity
maximum at A = 630 nm and a half-width of =90 nmin

the wavelength range 550-800 nm (Fig. 1). Severd
intense Krl lines exist against the background of the
continuous spectrum. We studied the dependence of the
maximum emission intensity of the band on the param-
eters of the plasma source. Figure 2 shows the depen-
dence of the emission intensity of the band at A =
630 nm on the flow rates of Kr and SF. In the absence
of krypton or SF; molecules in the mixture, the emis-
sionintensity of the band is seen to be aimost zero. The
experimental dependences obtained indicate that the
broadband emission exists only when krypton atoms
and SF; gas molecules are simultaneously present in
the mixture.

Figure 3 shows the dependence of the maximum
emission intensity of the band in the Ar/Kr/SFg mixture
on the distance aong the axis of the plasma jet. The
intensity is shown to be maximum at | = 80 mm from
the plasmatron nozzle. As the plasmatron power
increases, the radiation intensity of the band increases.

It should be noted that we also detected a broad
emission band in the wavelength range 370-670 nm in
a He/Xe/SF; mixture; however, experimental condi-

760.2 nm Kirl
769.5 nm Krl
785.5 nm Kirl
M&O nm Krl
1 1 1 1 1 1
550 600 650 700 750 800
A, nm

Fig. 1. Emission spectrum of the Ar/Kr/SFg plasma jet at
P=8kPa, W=18kW, and | = 81.5 mm.
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Fig. 2. Emission intensity of the band at A = 630 nm as a
function of the partial flow rates of (a) krypton at G(SFg) =
0.24 g/sand (b) SFg at G(Kr) = 0.07 g/s.
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Fig. 3. Variation in the maximum intensity of the band at
A = 630 nm with distance from the nozzle at G(SFg) =
0.1g/s, G(Kr) =0.24 g/s, P = 8 kPa, and W= 1.8 kW.

tions were not optimized for this mixture, and the
results require further examination and comprehensive
analysis.

Based on the experimental data obtained and the
analysis given above, we assume that an excited com-
plex that consists of atoms or ions of the heavy noble
gas and SF; molecules or their fragments and is more
complex than the known di- and triatomic molecules
efficiently formsin the Ar/Kr/Skg plasma jet rather far
fromthe nozzle. It isnot inconceivabl e that atoms of the
plasma-forming gas (argon) are also involved inthefor-
mation of the complex. It should be noted that, under
the conditions of high supercooling of the plasma
beyond the nozzle (where the electron temperature is
~0.1 eV), the processes of electron attachment can
occur in the plasma jet of the mixture of noble gases
and strongly electronegative SF; molecules. They can

produce negative SF;, SF;, F, and other fragments of
the decomposition of the SF; molecule, which can
serve as the formation sites of composite excited com-
plexes (e.g., clusters).

Asfor other possible sources of broadband emission
from the Ar/Kr/SFg mixture, we mention the triatomic
excimer molecules ArKrF* and Kr,F*, which are well-
known in laser physics and have broad emission spec-
tra. However, ArKrF* molecules emit in the UV spec-
tral region, which was filtered out in the experiments,
and theradiation of Kr,F* moleculesis mainly concen-
trated at A, =415 nm. Therefore, these triatomic mol-
ecules are unlikely to be the main sources of the broad-
band emission from the Ar/Kr/SFg mixture.
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Abstract—The one-dimensional boundary-value problem of determining the stationary temperature field of
the thermoel ectric branch is solved in the case of the maximal temperature difference. The temperature of the
branch hot end is varied between 100 and 300 K. The calculation takes into account the Thomson effect, the
distributed Peltier effect, and the temperature dependence of the charge carrier concentration. Optimization in
terms of current and carrier concentration is performed. © 2004 MAIK “ Nauka/Interperiodica” .

Recent expansion of the production of thermoelec-
tric coolers has emphasized the problem of increasing
the thermoelectric figure of merit of semiconducting
materials. This parameter isstill far from the theoretical
limit [1]. Use of thermoelectric branches of unequal
length is one way of improving the thermoelectric fig-
ure of merit [2]. It was shown [3] that the figure of merit
rises if the electrical conductivity increases and the
thermal emf decreases from the hot to the cold end.
Ivanova and Rivkin [4] used a more consistent
approach based on the solution of the boundary-value
problem of stationary heat conduction. Assuming that
the thermopower, thermal conductivity, and electrical
conductivity depend on temperature only dightly and
the Thomson effect is negligible, they argued that a
solution to this problem defines the optimal impurity
distribution along the branch. The aim of thiswork isto
solve the boundary-value problem [4] over awide tem-
perature range in the case of the linear carrier concen-
tration distribution with allowance for the Thomson
effect, the distributed Peltier effect, and the temperature
dependence of the kinetic coefficients. The temperature
dependence of the electrical conductivity is included
through the temperature dependence of the mobility in
the form const T-#2. A numerical solution to the prob-
lem is obtained in the case of maximal temperature dif-
ference.

Under the steady-state temperature difference with
allowance for the Thomson effect, the temperaturefield
of aone-dimensional adiabatically isolated thermoel ec-
tric branch with a nonuniform concentration distribu-
tion is given by the stationary heat conduction equation

dndi, Yy
dxPdxd o
1)
_i_( Tl:g'd_n_id_TD =0
e’ L[hdx 2TdxU

with the boundary conditions

xdT

X|x=0

= ayTlx:O’ T|X:1 = Tl' (2)
Unlike [4], we introduce here, for convenience, the
quantity [5] y = JI/Sas an optimization parameter.

For nondegenerate carrier statistics, the kinetic coef-
ficients have the form

2 2
o=enu u=constT? X = x,+2%g To,

32
q = If%_i_ In2(2TrmI§T) E
e nh

The lattice thermal conductivity ¥, the proportion-
ality factor const in the temperature dependence of the
mobility, and the effective mass mwere selected so that
the thermoelectric figure of merit corresponded to
semiconductors with Z=3.0 x 102 K at T, = 300 K.
The carrier concentration along the branch varied, asin
[4], by the linear law

n = no(1-9x). (3

The parameter y = JI/S may be called the reduced
current [5].

Upon solving the boundary-value problem, the tem-
perature difference was numerically optimized interms
of the reduced current and concentration n, at the cold
end of the branch for agiven g. The value of g was var-
ied over wide limits: 0 < g < 0.999, which corresponds
to the variation of the ratio k = ny/n; between the
concentrations at the cold and hot endsin therange 1 <
k<103

The numerical solution to the problem stated by (1)
and (2) is represented graphically. Figure 1 shows the
maximal temperature difference versus hot end temper-
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Fig. 1. Maximal temperature difference vs. hot end temper-
ature: (1) solution to the problem stated by (1) and (2),
(2) formula (4), and (3) solution to the boundary-value
problem for bismuth telluride—based solid solutions.

ature under the conditions of maximal temperature dif-
ference. Curve 1 refers to the branch with the uniform
concentration distribution (g = 0) and is obtained by

AT, K
100 5

60
3

40+
2
20+ i

1 1 1 1

1 1
0 0.5 1.0 1.5 20 25 3.0
log(ny/n;)

Fig. 2. Maximal temperature difference vs. the logarithm of
the cold-to-hot end concentration ratio for ahot end temper-
ature T; = (1) 100, (2) 150, (3) 200, (4) 250, and (5) 300 K.

MARKOV

solving boundary-value problem (1), (2). Curve 2
reflects the temperature difference in the same branch
that is calculated by the formula

AT = T1+%— /%%Tﬁ%. @)

The discrepancy between these two curvesis due to
the Thomson effect and the temperature dependences
of the kinetic coefficients. Curve 3 describes the tem-
perature dependence of the maximal temperature dif-
ference for a bismuth telluride branch that has a ther-
moelectric figure of merit of 3 x 102 KL, In this case,
the difference was calculated by solving the boundary-
value problem [5] with the temperature dependences of
the kinetic coefficients approximated by power polyno-
mials. It is seen that the discrepancy between this curve
and curves 1 and 2 grows as the hot end temperature
drops, probably because of carrier degeneracy.

For branches with a concentration gradient, the
maximal temperature difference increases. The maxi-
mal temperature difference between the cold and hot
ends versus the logarithm of the concentration ratiok is
shown in Fig. 2 for various temperatures of the hot end
of the branch. From Fig. 2, it follows that it is hardly
reasonable that the concentration ratio exceed eight to
ten in the case of linear variation, since the temperature
difference increases insignificantly when the concen-
tration ratio is very high. For example, when the con-
centration ratio equals 10 (1000), the temperature dif-

y, Am!
7000

6000
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5

4000

|

3000

2000 1 1 1 1 1 1
0 05 10 15 20 25 30

log(ng/ny)

Fig. 3. Reduced current vs. the logarithm of the cold-to-hot
end concentration ratio for various hot end temperatures.
(1-5) Sameasin Fig. 2.
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ference increases by 16.8% (21.3%) for the hot end
kept at 300 K. When the hot end temperature is 100 K,
the temperature differences become 20.6 and 26.4%,
respectively.

In the branch with the concentration gradient, the
optimal current value also grows. Figure 3 shows the
optimal value of the reduced current versus the loga-
rithm of the ratio between the concentrations at the hot
and cold ends. When the concentration ratio is 10
(1000), the current grows by 25.5% (36.7%).

The carrier concentration gradient decreases the
cold end temperature because the Joul e heat is compen-
sated for (partially or completely) by the Thomson heat.
Concentration optimization shifts the cold-end concen-
tration n, toward higher values. Accordingly, the ther-
mal emf at the cold end decreases, which causes the
temperature difference to decline.

To conclude, classical statistics describes ade-
quately the temperature dependence of the maximal

TECHNICAL PHYSICS Vol. 49 No.2 2004
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temperature difference. Calculations show that graded-
concentration thermoelectric branches may provide a
much higher maximal temperature difference and
improve the refrigerating capacity of thermoelectric
coolers.
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Abstract—The feasibility of fabricating InSb uncooled temperature-sensitive elements operating in the IR
spectral range is considered. InSh electric parameters that are optimal for constructing bolometers with the
highest possible sensitivity are evaluated. The results of computation are compared with the parameter values
used in InSb temperature element prototypes. © 2004 MAIK “ Nauka/Interperiodica” .

In designing optoel ectronic devices, the choice of a
temperature-sensitive material that would provide a
high device performance is one of the basic problems.
At present, materials with high values of the tempera-
ture coefficient of resistance (TCR) and resistivity are
the subject of extensive research, since they are viewed
as candidates for uncooled high-sensitivity inexpensive
bolometric photodetectors operating in the IR spectral
range and compact precision guick-response tempera-
ture sensors. A variety of semiconductor materialswith
different values of the energy gap makes it possible to
fabricate temperature detectors operating in interval
150-1000 K.

In the range of intrinsic conductivity, the TCR 3 of
semiconductors,

_ 1R o _ 1do
B=—Rrar @ B~ gar &)

is known to be negative, with its absolute value one
order of magnitude higher than 3 of metals[1] (Risthe
resistance of the element and o is the conductivity).

In this study, we demonstrate the feasibility of fab-
ricating uncooled temperature detectors for optoelec-
tronics with InSb single crystals. The basic electric
parameters of InSh are calculated as functions of tem-
perature and charge carrier concentration at near-room
temperatures. Theaimisto find the material parameters
that are the most appropriate for the production of tem-
perature (bolometric) elementswith maximum possible
sensitivity.

Inthe ranges of intrinsic and mixed conductivity, the
electron and hole components of the conductivity
add up,

o = e(Nu,+ pHy), 2

and the Hall constant is given by
2 2
1 Ny, —pu
IRd| = e - = (3)
(K, + PH)
wheren, W, and p, |, are the concentrations and mobil-
ities of electrons and holes, respectively.
L et usintroduce anew parameter p = an;, wheren; is
theintrinsic charge carrier concentration at afixed tem-
perature and a is a factor characterizing the electron—

holeratio inthe material. Then, Egs. (2) and (3) take the
form

0 = eny(b/a+a), (@]

1 p-a
eni(b+a2)21

IRyl = ()

where b = p/u,.
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Fig. 1. (1) Electrica conductivity and (2) TCR absolute
value vs. the parameter a = p/n; for InSb at 300 K.
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a=p/n;

Fig. 2. (1) Sensitivity Sof the bolometer, (2) Hall constant
|Ry| of single-crystal InSb, and (3) resistivity p vs. the
parameter a = p/n; at 300 K.

A basic parameter of a temperature element is the
voltage sensitivity S. For bolometers, S ~ BRal [2],
where a is the absorption coefficient of the sensitive
element material and | is the current passing through
the bolometer. For semiconductors in the range of
intrinsic absorption, o = 10°-10* cm*. The voltage sen-
sitivity of a bolometer may be approximated by the
expression

1do

The intrinsic carrier concentration in InSh was cal-
culated by the formula[3]

n = 2.9x10"(2400-T)*"°(1+ 2.7 x 107*T) T*®

@
x exp[(—0.129 + 1.5 x 107*T)/KT] (cm™).

Electric parameters of InSb samples intended for uncooled
temperature-sensitive elements (300 K)

Sarr%[.)le crlr@*é‘l olemt B, K™ Se
1 903 333 | —280x102 | 1.00
2 725 340 | -254x102 | 0.90
3 680 296 | —233x102 | 094
4 332 256 | -1.30x102 | 061
5 140 240 | -090x107 | 045

* TCR was measured in the temperature range 307-315 K.
** Sg arenormalized to S5 Of sample 1.
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The carrier mobilities were found by the formulas

[4]
H, = 77000(T/300) % [em?/(V 9)], (8)

Ko = 255x 10T [em?/(V 9)]. )

Figure 1 shows the analytical dependences of the
conductivity and TCR on the parameter a = p/n; for
InSb at 300 K. The minima value of o, 0., is
observed at a =9.59 and liesin the range of mixed con-
ductivity where p > n. The room-temperature intrinsic
concentration in InSh, which was cal cul ated by formula
(7),isn; = 1.95 x 10 cm3. It follows that the material
with p = 1.87 x 10'” cm3 has the minimal electrical
conductivity at 300 K.

Figure 2 shows S, |R,|, and the resistivity p = /o at
300K as functions of the parameter a. Each of the
guantities is normalized to its maximum value. The
maximal sensitivity S, of the bolometer is observed at

a = 5.17 (pspok = 1.01 x 10" cm®). The maximum
value of |R,| corresponds to a = 5.51 (pPygpx = 1.07 x
10Y cmr3).

Thus, the maximal sensitivity of uncooled tempera-
ture elements made of InSb may be expected in accep-
tor-type samples. At 300 K, these samples must have
the following parameters: p = 1.01 x 107 cm3, ¢ =
60.1Q1 ecm?, p = 1.7 x 102 Q cm, and |Ry| =
989 cm? C2. In such samples, B =-2.77 x 102 K.

Similarly, we calculated the parameter a corre-
sponding to the maximum of S S, a afixed temper-
ature in the range 290-320 K. The position of S,
shifts insignificantly with temperature: from a = 5.170
(at T=290K) to 5.179 (at T = 320 K). The hole con-
centration rises from 8 x 10'® to 1.6 x 10 cm™. The
values of S, and |Ry|.. decrease by afactor of 2, and

the TCR declines from |B|=2.95 x 102 to 2.45 x 102

InSb single crystals were used to fabricate compact
guick-response precision temperature elements (detec-
tors) operating in the range 307-315 K (the range of a
clinical thermometer). The temperature elements were
made in the form of a 50-um-thick meander and had an
area of 1.5 x 1.5 mm?. The resistance of the element
was equal to 2.0-2.5 kQ. The electrical parameters of
the InSb samples from which the temperature sensors
were fabricated are listed in the table. As is seen, the
experimental values of the conductivity are lower than
the cal culated val ues, possibly because the mechanisms
responsible for charge carrier scattering were not all
taken into account in the calculations.

As follows from the tabulated data, bolometers
made of InSb crystalswith parameters close to the pre-
scribed values had a sensitivity and TCR that are aso
closeto the predicted values (samples 1-3). The param-
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eters of samples 4 and 5 differ from the calculated
results. Therefore, the elements made of these crystals
had low values of S,,,, and TCR.

Thus, we calculated the optimal electrical parame-
ters of InSb samples for fabricating uncooled tempera-
ture elements (bolometers and temperature detectors)
for optoelectronics. It is shown that the maximum sen-
sitivity of the elements can be obtained on acceptor-
type crystals with pgpox ~ 107 cm3. Similar calcula-
tions may be performed for semiconductors with other
values of the energy gap in which intrinsic conductivity
falls into another temperature range. In this case, tem-

NESMELOVA et al.

perature elements can be designed for another spectral
range.
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