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Abstract—The stability of X+Y +X−Y − Coulomb molecules consisting of X+Y − atoms and X−Y +

antiatoms to dissociation is studied. On the basis of multiparameter variational calculations, it is found
that such molecules are stable to dissociation into X+X− atoms and Y +Y − antiatoms if the mass ratio of
particlesX and Y lies in the range 0.4710 < mX/mY < 2.1231. The e+e+e−e−, π+µ+π−µ−, t+d+t−d−,
p+K+p−K−, and d+p+d−p− molecules satisfy this condition. c© 2003 MAIK “Nauka/Interperiodica”.
The stability of four-particle Coulomb systems
A+B+C−D− to dissociation into two-particle atoms
was considered in [1–3] versus the masses of par-
ticles A, B, C, and D. Among the variety of such
system, annihilating symmetric molecules belonging
to the X+Y +X−Y − type and representing a mental
combination of an X+Y − atom with an X−Y +

antiatom stand out for the following reason. While
X+X+Y −Y − symmetric molecules consisting of
two identical atoms X+Y − are stable to dissociation
at any masses mX and mY of particles X and Y ,
X+Y +X−Y − molecules are stable to dissociation
into X+X− and Y +Y − atoms only if the mass
difference between particlesX and Y is not very large.
Indeed, let us consider the case of mX � mY , in
which the compact atom X+X− undergoes virtually
no polarization in the field of the Y +Y − atom; there-
fore, the two atoms do not form a bound molecule.
It follows that there exists a critical mass ratio s0 =
mX/mY such that, for mX/mY ≥ s0, the atoms
in question do not form X+Y +X−Y − molecules
with the corresponding antiatoms. By virtue of the
symmetry of energy with respect to the permutation
of particles X and Y , the molecules cannot exist for
mY /mX ≥ s0 either—that is, formX/mY ≤ 1/s0.

Using the variational principle, Richard [1] showed
that the stability of the X+Y +X−Y − molecule to
dissociation (hereafter dissociation stability) guar-
antees the dissociation stability of all four-particle
molecules of the general form A+B+C−D− if the
masses of the particles involved satisfy the condition

(1/mA + 1/mC)/(1/mB + 1/mD) = mY /mX .
(1)

This condition makes it possible to explore the dis-
sociation stability of various four-particle systems
A+B+C−D−. In order to apply it, we must determine
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the mass-ratio (s = mX/mY ) interval in which there
exists a bound state of the X+Y +X−Y − molecule.
The corresponding Monte Carlo calculations were
performed in [2] with this aim in view. However, the
region of dissociation stability of the molecules be-
ing considered could not be determined reliably in
this way because the Monte Carlo method does not
provide bounds on energy and because two different
versions of the method yielded significantly different
results.

For this reason, we carried out precise variational
calculations ofX+Y +X−Y − molecules consisting of
atoms and antiatoms.

In atomic units (|e| = � = me = 1), the Hamilto-
nian of such molecules has the form

H(mX ,mY ; r1, r2, r3, r4) = −(1/2) (2)

× [∆1/mX + ∆2/mY + ∆3/mX + ∆4/mY ]
+ 1/r12 − 1/r13 − 1/r14 − 1/r23 − 1/r24 + 1/r34.

The lower boundary of the energy spectrum of
this operator, E(mX ,mY ), is the ground-state en-
ergy of the molecule whose center of mass is immo-
bile. Owing to the symmetry property E(mY ,mX) =
E(mX ,mY ), it is sufficient to perform calculations for
mX ≥ mY .

We used Gaussian basis functions, each depend-
ing on all six interparticle distances and involving six
nonlinear parameters aj , bj , cj , dj , ej , and fj :

φj(r12, r23, r34, r41, r13, r24) = exp(−ajr212 (3)

− bjr
2
23 − cjr

2
34 − djr

2
41 − ejr

2
13 − fjr

2
24).

Taking into account the symmetry of the Hamiltonian
in (2) under charge conjugation—that is, with respect
to a simultaneous interchange of particles 1 and 3
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Ground-state energy E, dissociation energy D, and expectation values of the kinetic energies of particle pairs for
X+Y +X−Y − molecules at various values of the particle-mass ratio s = mX/mY [all quantities are expressed in
mY e

4/�2 (modified atomic energy unit)]

s = mX/mY E D 〈−(∆1 + ∆3)/2mX〉 〈−(∆2 + ∆4)/2mY 〉
1 −0.5160032 0.0160032 0.2580016 0.2580016
1.3209327 −0.5935444 0.0133112 0.3046277 0.2889167
1.4976017 −0.6338979 0.0094975 0.3401936 0.2937043
1.9004800 −0.7269306 0.0018106 0.4511662 0.2757644
1.9990075 −0.7505212 0.0007693 0.4827830 0.2677382
2 −0.750779 0.000779 0.483214 0.267565
2.02 −0.755600 0.000600 0.489738 0.265862
2.04 −0.760369 0.000369 0.496098 0.264271
2.06 −0.765340 0.000340 0.502006 0.263334
2.08 −0.770221 0.000221 0.508133 0.262088
2.10 −0.775112 0.000112 0.514171 0.260941
2.12 −0.780015 0.000015 0.520120 0.259895
(X+ andX−) and of particles 2 and 4 (Y + and Y −)—
we constructed the trial variational wave function for
the X+Y +X−Y − molecule in the form

Ψ =
N∑

j=1

Cj [φj(r12, r23, r34, r41, r13, r24) (4)

 

0.02

0.01

0 1 2

 
D

s

a

b

c

d
e

Dissociation energy D [in mY e
4/�2 (modified atomic

unit)] of X+Y +X−Y − molecules with respect to de-
cay into X+X− and Y +Y − atoms versus the particle-
mass ratio s = mX/mY : (curve) results of the vari-
ational calculation performed in this study [open cir-
cles represent the dissociation energies calculated for
the (a) e+e+e−e−, (b) π+µ+π−µ−, (c) t+d+t−d−, (d)
p+K+p−K−, and (e) d+p+d−p− molecules] and (open
boxes and inverted triangles) results of the calculations
based on, respectively, the variational and the diffusion
version of the Monte Carlo method [2].
PH
+ φj(r34, r14, r12, r23, r13, r24)] .

We considered the e+e+e−e−, π+µ+π−µ−,
t+d+t−d−, p+K+p−K−, and d+p+d−p− molecules
(for which the particle-mass ratio s = mX/mY takes
the values of 1, 1.3209327, 1.4976017, 1.9004800, and
1.9990075, respectively) and hypothetic molecules for
the mass ratios of s = 2.00, 2.02, 2.04, 2.06, 2.08,
2.10, and 2.12.

The calculation employed a basis of N = 200
functions φj and involved the optimization of all 1200
nonlinear parameters by the method described in [4].

For the e+e+e−e−, π+µ+π−µ−, t+d+t−d−,
p+K+p−K−, and d+p+d−p− molecules, we then
extended the original basis to N = 3200 functions by
adding 3000 functions φj featuring random values of
nonlinear parameters.

The results of our calculations are quoted in the
table, which displays the ground-state energies E of
the molecules, their dissociation energies D, and the
expectation values of the kinetic energies of particle–
antiparticle pairs (X+ and X−, Y + and Y −). These
expectation values satisfy the virial theorem

〈−(∆1 + ∆3)/2mX 〉 (5)

+ 〈−(∆2 + ∆4)/2mY 〉 = −〈V 〉/2 = −E,

where 〈V 〉 is the expectation value of the potential
energy of the molecule.

In the figure, the dissociation energy D computed
in the present study for X+Y +X−Y − molecules is
contrasted against the results obtained by the Monte
Carlo method [2]. It can be seen that the variational
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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version of the Monte Carlo method significantly un-
derestimates the dissociation energy, while its diffu-
sion version somewhat overestimates this energy.

It is clear from the table that the dissociation en-
ergy D is positive within the mass-ratio interval 1 ≤
mX/mY ≤ 2.12 and that X+Y +X−Y − Coulomb
molecules formX ≥ mY are stable to dissociation.

The stability interval can be slightly extended by
means of an additional variational calculation.

We denote by Ψ(r12, r23, r34, r41, r13, r24) the
variational wave function found for theX+Y +X−Y −

molecule at mX = 2.12 and mY = 1. Symbols en-
closed by angular brackets represent the expectation
values calculated with this wave function for the cor-
responding physical quantities. We further consider
the function Ψ(αr12, αr23, αr34, αr41, αr13, αr24),
where α is a scale factor, and calculate the expecta-
tion value of the Hamiltonian in (2) with this function,
setting mX = M and mY = 1.

Taking into account the variational principle, we
obtain an upper bound on the ground-state energy of
the molecule formed by particles whose masses are
mX = M and mY = 1:

E(M, 1) (6)

≤ α2〈−(∆1 + ∆3)/2M − (∆2 + ∆4)/2〉 + α〈V 〉.
The optimum value of the scale factor α is determined
by minimizing the right-hand side of this inequality.
The result is

α = − 〈V 〉
〈−(∆1 + ∆3)/M − (∆2 + ∆4)〉

. (7)

Substituting this value into (6), we obtain

E(M, 1) ≤ − 〈V 〉2
2〈−(∆1 + ∆3)/M − (∆2 + ∆4)〉

.

(8)

Using the expectation values calculated for the
kinetic-energy operators of particle pairs at mX =
2.12 and mY = 1 (see table) and taking into account
the virial theorem (5), we obtain an upper bound on
the energy of the X+Y +X−Y − molecule formed by
particles whose masses are mX = M and mY = 1:

E(M, 1) ≤ −0.6084234
1.1026544/M + 0.259895

. (9)

A molecule is stable to dissociation if its energy is less
than the sum of the energies of theX+X− and Y +Y −
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
atoms. For the case being considered, this condition
reads

E(M, 1) < −(M + 1)/4. (10)

It follows from (9) that this is so up to M = 2.1231.

Since the dissociation energy is invariant under
the interchange of particles X and Y , this means
that the Coulomb interaction of atoms and antiatoms
leads to the formation of X+Y +X−Y − molecule,
which is stable to dissociation if the mass ratio of
particles X and Y lies within the range

0.4710 ≤ mX/mY ≤ 2.1231. (11)

Five molecules belonging to the X+Y +X−Y − type
and consisting of atoms and antiatoms satisfy the
condition in (11). These are e+e+e−e−, π+µ+π−µ−,
t+d+t−d−, p+K+p−K−, and d+p+d−p−. For other
combinations of atoms and antiatoms composed of
electrons, muons, pions, kaons, and protons and
of their antiparticles, the condition in (11) is badly
violated, so that the corresponding X+Y +X−Y −

molecules are not formed. For example, the particle-
mass ratios for the atom–antiatom pairs t+p− and
t−p+, K+π− and K−π+, d+K− and d−K+, and
p+π− and p−π+ are 2.99, 3.51, 3.80, and 6.72,
respectively. Since variational calculations yield an
upper bound on the energy of the systems under
study, an exact value s0 of the critical particle-mass
ratio may slightly exceed the value of 2.1231 obtained
here. However, this cannot affect the number of
X+Y +X−Y − molecules stable to dissociation. For
this reason, the p+e+p−e− molecule may be involved,
as an intermediate state, in the annihilation of a
hydrogen atom p+e− and an antihydrogen atom p−e+

only through its quasibound (resonance) states [5].
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Abstract—Based on the dinuclear system concept, the role of bending vibrations in creation of the
angular momentum of primary fission fragments is investigated. For 252Cf spontaneous fission, the angular
momenta of the fragments are calculated as a function of the neutron multiplicity and compared with
available experimental data. Different cluster compositions of the 252Cf fission modes at the scission point
are considered. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The phenomenon of nuclear molecular reso-
nances, which, for their description, require a consid-
eration of the relative motion of two nuclei, has been
known for a long time from the study of reactions with
certain light nuclei [1, 2]. For heavy nuclei, the ex-
perimental facts indicate the formation of a dinuclear
system (DNS) with a quite long lifetime (about a few
units of 10−21 s) which results from the investigation
of deep inelastic reactions with heavy ions at energies
lower than 15 MeV/nucleon [3, 4]. When the DNS
evolves in mass (charge) asymmetry, its decay in
relative distance R between the centers of the nuclei
determines the charge and mass distribution of the
reaction products [3]. The complete fusion process
is successfully described as an evolution of the DNS
to the compound nucleus by the transfer of nucleons
from the light nucleus to the heavy one [5, 6]. This also
supports the assumption on the formation of the DNS
at the entrance channel of the fusion reaction. The
fissioning system just before the scission, when the
neck radius is small, can also be treated as a system
of two aligned deformed nuclei separated by a con-
stant distance between their tips [7–15]. A thermal
equilibrium is usually assumed in the DNS. In order
to describe the dependence of the experimental data
on the total kinetic energy (TKE) of the fission
fragments, we consider the pole–pole configuration

∗This article was submitted by the authors in English.
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2)Joint Institute for Nuclear Research, Dubna, Moscow
oblast, 141980 Russia.

3)Institute of Nuclear Physics, Tashkent, Uzbekistan.
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of the DNS nuclei. The main observables, like the
distributions of mass, charge, and kinetic energy in
the fission of a wide range of nuclei from Po to Fm, are
reproduced well in scission point fission models [10].
The fragmentation theory [16] treats the fission as
a quantum-mechanical process in relative distance
and mass asymmetry coordinates and qualitatively
explains the general features of the fission mass
distributions.

The experimental data show that the difference in
the potential energy between the saddle and scission
configurations (about several tens of MeV) is not
completely transformed into the total kinetic energy
of the relative motion of the fission fragments, and
other collective or intrinsic degrees of freedom take
the rest of the energy. Different types of collective
angular oscillations, like wriggling, bending, tilting,
and twisting, are possible in the excited pre-scission
DNS [4, 8, 9, 17–22]. These collective modes do not
contribute to the kinetic energy of the fragments after
the decay of the DNS. The angular oscillations can
generate rotational energy and angular momenta of
the fission fragments. The recent experimental study
of spontaneous fission of 252Cf with the Gammas-
phere detector provides information about the average
angular momentum of the fission fragments [23–25].
The primary fission fragments have angular momenta
of about (2–8)�, whereas the fissioning nucleus ini-
tially has zero spin [23]. These data result from the
study of the γ transitions between the levels of the
ground-state rotational bands of the fragments [25].

The production of angular momentum in the fis-
sion fragments and the method of calculating the
DNS potential and excitation energies are described
2003 MAIK “Nauka/Interperiodica”



GENERATION OF ANGULAR MOMENTUM 207
in Sections 2 and 3, respectively. The angular mo-
menta of the fission fragments are calculated in Sec-
tion 4 as a function of the number of postscission
neutrons under the assumption of bending angular
oscillations at the scission point by which the frag-
ments gain angular momentum. For 252Cf sponta-
neous fission, the calculated results are compared
with the experimental data. The cluster aspects of
fission with small TKE are considered. A summary
is given in Section 5. The method of calculating the
DNS potential is presented in the Appendix.

2. GENERATION OF ANGULAR
MOMENTUM IN PRIMARY FISSION

FRAGMENTS

Bending Vibrations

At the scission point, a fissioning system can be
considered approximately as a DNS whose intrinsic
degrees of freedom are in thermal equilibrium. How-
ever, the shape of the DNS is not equilibrated. In
this paper, we assume that the angular momenta of
the fission fragments are generated by small bend-
ing (butterfly) oscillations of the DNS nuclei around
the pole–pole orientation. A similar assumption was
made earlier in [8, 9, 24]. In the bending mode, the
rolling of nuclear surfaces occurs. The slide of nuclear
surfaces in the wriggling mode is assumed to be sup-
pressed by friction and larger stiffness of the potential.
The Hamiltonian describing the collective modes

of a DNS (nuclear molecule) was analyzed in [19],
where suitable coordinates were introduced and an
expression for the kinetic energy operator was de-
rived. The procedure of quantization of the classical
Hamiltonian is described in [26]. Below, we consider
the case of axially deformed DNS nuclei and exclude
from consideration beta and gamma vibrations of the
clusters and oscillations of an intercluster distance
around the equilibrium value. The frequency of the os-
cillations inR is at least three times larger than those
for the angular oscillations. The equilibrium dis-
tance R = Rmin ≈ R1(1− β2

1/(4π) +
√
5/(4π)β1) +

R2(1− β2
2/(4π) +

√
5/(4π)β2) + 0.5 fm between the

centers of nuclei corresponds to the minimum of
the nucleus–nucleus potential, which is the sum of
nuclear and Coulomb potentials, UN and UC [27]:

U(R,βi,Ωi) = UC(R,βi,Ωi) + UN (R,βi,Ωi). (1)

Here, the angles Ωi = (θi, φi) (i = 1, 2) specify the
orientation of the intrinsic coordinate system of the
ith nucleus with respect to themolecular framewhose
Z axis goes through centers of the nuclei forming the
DNS, and βi are the deformation parameters.
The coordinates used to describe the motion of

clusters forming the DNS are shown in Fig. 1. The
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
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Fig. 1. Schematic picture and definitions of various coor-
dinates of the DNS configuration.

center of this coordinate frame lies at the DNS center
of mass. The angle θ is the angle of rotation of the
DNS as a whole. The angles θ1 and θ2 specify the
orientation of the cluster with respect to the axis con-
necting centers of mass of the clusters. The angles φ1

and φ2 specify their azimuthal orientation. The angles
θ1 and θ2 are related via the condition that clusters
touch each other at the poles [19]. If this condition is
not fulfilled, potential energy increases considerably.
Under this condition,

R̃2

R̃1

≈ sin |π − θ1|
sin |θ2|

, (2)

where R̃i = Ri(1− β2
i /(4π) +

√
5/(4π)βi) andRi =

r0A
1/3
i are the radii along the symmetry axis of clus-

ters having prolate deformation and their spherical
radii, respectively. If only small values of (π − θ1) and
θ2 are allowed, then

R̃1(π − θ1) = −R̃2θ2. (3)

Thus, the butterfly degree of freedom is given by

ε = π − θ1. (4)

Under the assumption formulated above, the model
Hamiltonian describing the rotation of the DNS as
a whole and small bending angular vibrations can be
written as [19]

H = Trot + Tε + Uε, (5)

where Trot describes rotation of the DNS as a whole,
and Tε is the kinetic energy of bending motion:

Tε = − �
2

2Jε
1
ε

d

dε

(
ε
d

dε

)
, (6)

Jε = J1 + (R̃1/R̃2)2J2. (7)

Here, J1,2 are moments of inertia of clusters form-
ing the DNS. Uε is the potential energy of bending
motion. Since the starting Hamiltonian is a two-
dimensional one and, therefore, the volume element is
dV = εdε, the kinetic energy term Tε is different from
that in the initially one-dimensional problem.
3
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Using the condition that the total angularmomen-
tum of the decaying system is zero and constraint (3),
one can express the angle θ as a function of ε:

θ =
J1R̃2 − J2R̃1

R̃2(µR2
min + J1 + J2)

ε. (8)

It is seen from Eq. (8) that, for a nearly symmetrical
DNS, θ ≈ 0 and the role of Trot in (5) is negligible.
The potential energy was considered in [19] only

schematically. The aim of the present paper is to apply
to calculations of fission-fragment angular momen-
ta the potential energy calculated by us in previous
publications [27] and applied to analysis of the exper-
imental data on fusion and deep inelastic collisions.
The potential energy is calculated in the Appendix
taking (3) into account. We neglect, as was men-
tioned above, the oscillations of the intercluster dis-
tance. Because of the axial symmetry of the cluster
deformation, the potential energy does not depend on
the azimuthal vibrations. Then, for small deviations
of the ratio of angles θ1 and θ2 from (3), the potential
energy of bending vibrations takes the form

Uε=
1
2
C11(π − θ1)2+ C12(π − θ1)θ2+

1
2
C22θ

2
2. (9)

The stiffness coefficients C11, C12, and C22 are given
in the Appendix.
Using condition (3) and notation (4), we get

from (9)

Uε =
1
2
Cεε

2, (10)

where

Cε = C11 − 2(R̃1/R̃2)C12 + (R̃1/R̃2)2C22. (11)

Thus, we get the following Schrödinger equation for
the bending vibrations:

− �
2

2Jε
1
ε

d

dε
ε
d

dε
ψn +

1
2
Cεε

2ψn = Enψn. (12)

Equation (12) describes the harmonic vibrational mo-
tion in ε.
The solution to Eq. (12) is

ψn = N0Ln(Jεωεε2/�) exp(−Jεωεε2/(2�)), (13)

En = �ωε(2n+ 1), n = 0, 1, 2 . . . ,

where ωε =
√
Cε/Jε, while N0 =

√
2Jεωε/� and

Ln(x) are the normalization coefficient and the La-
guerre polynomial [28], respectively.
In order to estimate the angular momentum of the

bending mode, we expand ψn =
√
2π
∑

L b
L
nYL0 ×

(θ, φ = 0) into spherical harmonics. With the expan-
sion coefficients bLn [8]

|bLn |2 = (2L+ 1)γ2
0 [Ln((L+ 0.5)

2γ2
0)]

2

PH
× exp(−(L+ 0.5)2γ2
0),

we determine the average value of angular momen-
tum 〈L〉n in the state ψn as follows:

〈L〉n =
∑

L

L|bLn |2. (14)

Here, γ2
0 = �ωε/Cε. If the DNS is in thermal equilib-

rium with an excitation energy E∗ (the corresponding
temperature is Θ =

√
E∗/a, a = A/12 MeV−1), the

average angular momentum 〈L〉 is calculated as

〈L〉 =
∑

n

〈L〉nPn/
∑

n

Pn, (15)

where Pn = exp [−En/Θ] is a Boltzmann-like occu-
pation probability of the nth bending state. The ap-
plicability of the Boltzmann factor was demonstrated
many times for the description of the mass, charge,
angular, and kinetic-energy distributions of the fis-
sion fragments in the scission-point models. The ex-
act population probability of a given bending state
is well approximated by the Boltzmann factor. Since
the potential for the bending oscillations has a finite
depth, besides smallness of Pn, the maximal value of
n in (15) should be restricted by the capacity of this
potential to hold a certain number of bound states
ψn. However, for the temperatures considered, this
restriction of n does not affect the results. Note that
themaximal value ofn is discussed only in connection
with the second fission mode of 252Cf.
As was shown in [8, 22], the change in angular

momentum due to Coulomb excitation after the DNS
decay is negligible. The Coulomb excitation after the
DNS decay only increases the width of the distribu-
tion of the angular momentum and practically does
not change the value of 〈L〉 for the channels with
neutron(s) evaporation.

3. EXCITATION ENERGY OF THE DNS
AND TKE OF FISSION FRAGMENTS

In order to calculate the average angular momen-
tum of the fission fragments by Eq. (15), we should
determine the excitation energy of the DNS before its
decay. The dependence of average angular momen-
tum of the primary fission fragments on the number
of evaporated neutrons is extracted from the exper-
iment [23, 24]. For the comparison with the theory,
we have to establish a relation between the DNS
excitation energy E∗ and the number of evaporated
neutrons after the DNS decay.
With the assumption that the prescission kinetic

energy of the fission fragments is very small [10], the
total energy Etot of the DNS is estimated as

Etot = E∗ + En + Uint +Bdef
1 +Bdef

2 −B12, (16)
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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where En, Uint = U(Rm, βi,Ωi) [see (1)], and Bdef
i

(i = 1, 2) are the energy of bending oscillations, the
energy of interaction of the DNS nuclei, and the
binding energies of the DNS deformed nuclei, respec-
tively. Note, that Bdef

i differs from the experimental
binding energy Bi of the separated nuclei in their
ground state [29]. Since the energies En of low-lying
bending states, which give the main contributions to
angular momentum, do not exceed a few MeV and
are comparable with the accuracy of calculation of
Uint, we can neglectEn in (16). Indeed, this additional
term in (16) does not visibly change the calculated
temperature. After the decay, the total energy Etot of
the system can be estimated as follows:

Etot = Eν + TKE+B1 +B2 −B12, (17)

where Eν is the energy taken by the ν evaporated
neutrons. Assuming that the interaction energy Uint
of the DNS nuclei is approximately equal to the TKE
and using the equality of the two previous expres-
sions, we define the excitation energy E∗ as

E∗ = Eν+∆B1+∆B2= Eν+ (B1−Bdef
1 ) (18)

+ (B2 −Bdef
2 ).

If the deformation energy ∆B1 +∆B2 required to
deform the DNS nuclei from their ground states is
small, we obtain

E∗ ≈ Eν =
ν∑

m=1

(Sm + 2Θm), (19)

where the average kinetic energy of the mth evapo-
rated neutron is equal to two times the temperature
Θm of the fragments. The separation energies Sm
of the mth neutron of the first or second fragment
are taken from [29]. Since the number of evaporated
neutrons from each primary fission fragment is avail-
able [23–25], the value of Eν is easily calculated. In
the DNS, we deal with two distinct nuclei. Therefore,
decay of the DNS is not the same as scission in the
traditional description of fission, and no comparison of
prescission excitation energy obtained in this descrip-
tion with E∗ can be made. In this paper, we assume
that the fissioning nucleus after the scission lives for
some time as the DNS.
If we consider the decay of 252Cf into the Mo–

Ba fragmentation, the value of (AMo/ABa)EBa
ν −EMo

ν
characterizes the distribution of the excitation energy
Eν = EBa

ν + EMo
ν between the primary fission frag-

ments. Using the experimental data [23], we can cal-
culate the dependence of (AMo/ABa)EBa

ν −EMo
ν on ν.

In Fig. 2, one can see that, up to ν = 5, the excitation
energy is distributed approximately proportionally to
the masses of the fragments. This indicates the valid-
ity of (19) because the excitation energy in the DNS
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
 

12

6

0

60

40

20

0 4 8

 

ν

 

(

 

A

 

M
o

 

/

 

A

 

B
a

 

)

 

E

 

B
a

 

ν

 

–

 

E

 

M
o

 

ν

 ,  

E

 

ν

 

, 

 

E

 

M
o

 

ν
, 

 

E

 

B
a

 

ν

 

,

M
eV

M
eV

–6

Fig. 2. The values of (AMo/ABa)E
Ba
ν −EMo

ν (upper part)
and EBa

ν , E
Mo
ν , and Eν (lower part; long-dashed, short-

dashed, and solid curves, respectively) as a function of
the number of evaporated neutrons ν from both nuclei are
presented for the primary fission fragments 104Mo+148Ba
of 252Cf. The excitation energies of the primary fission
fragments EBa

ν and EMo
ν (Eν = EBa

ν + EMo
ν ) are taken

from experimental data [23].

has an equal partition according to the nucleon num-
bers of the nuclei. For ν > 5, the difference between
E∗ and Eν becomes large and we should take the
value of∆B1 +∆B2 into consideration. From Fig. 2,
we can see that the deformation energy is larger in Ba
than in Mo.

4. RESULTS OF CALCULATIONS

A. Different Fission Modes

In order to get a correct value of the average
total kinetic energy 〈TKE〉 = 189 ± 1 MeV for the
first (standard) fission mode of 252Cf leading to the
Mo–Ba fragmentation, the quadrupole deformations
of 104Mo and 148Ba should be taken as β1 = 0.50
and β2 = 0.40, respectively. These deformations are
larger than the deformations of Mo and Ba in their
ground states. They correspond to the local minimum
of the potential energy of the DNS configuration cal-
culated with the two-center shell-model scheme [2,
30]. The quadrupole deformations of 104Mo and 148Ba
extracted from the reduced E2-transition probabili-
ties from the ground state to the first 2+ state are
β10 = 0.35 and β20 = 0.22, respectively [31]. The in-
duced deformations βi, which are necessary to de-
scribe the 〈TKE〉, are caused by the polarization of the
DNS nuclei [32]. The deformation energies ∆Bi of
each DNS nucleus can be estimated in the harmonic
oscillator approximation as

∆Bi = Dβiω
2
βi(βi − βi0)2, (20)
3
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where Dβi and ωβi are the mass parameter and the
frequency of the beta vibration in the ith nucleus,
respectively. Using the experimental data forDβi and
ωβi [31], one can show that the values of ∆Bi do not
exceed 1.0 MeV for the considered fragmentations
of 252Cf. These values are rather small and can be
neglected in (18). The fact that the deformation en-
ergy is small is supported by microscopic calculations
giving an energy difference of a few MeV between
the superdeformed and ground states even at zero
angular momentum [33, 34]. Since the deformation
of the DNS nuclei has sufficiently small energies, the
difference Q – TKE mainly corresponds to the exci-
tation energy of the internal degrees of freedom of the
DNS for ν < 5 for the case of Mo+Ba splitting. This
means that the DNS is heated before the scission
and we can use a statistical treatment to find the
average angular momentum of each fragment. In the
calculations, we consider bending oscillations in the
DNS withΘ < 1MeV that corresponds to excitation
energies less than 30 MeV. The coupling between the
internal degrees of freedom and the relative motion
determines the distribution of the TKE. In order to
explain the TKE for fission events with ν > 5, larger
deformations of the DNS nuclei should be taken into
account for which the values of ∆Bi are not negligi-
ble. Note that, for the other splitting, ∆Bi could be
sufficient starting with smaller ν.

The second fission mode in the fragmentation of
252Cf into Mo and Ba corresponds to unusually small
〈TKE〉 = 153± 3 MeV and a large number of emit-
ted neutrons. In this mode, the fragments are highly
excited and evaporate more than seven neutrons. A
low TKE means enormously elongated nuclei in the
decaying DNS. The most likely charge fragmenta-
tions are 106,107,108Mo + 146,145,144Ba in the second
mode. Since the ground state of Ba has a large oc-
tupole deformation [35, 36] that can be described by
an α-cluster type configuration of Ba [37], a clus-
ter consideration of the second mode looks reason-
able. Thus, we describe large octupole deformations
of fragments by cluster-type configurations [37] and
assume the formation of a linear chain of two alpha
particles between Zr and Xe. The breakup of the
system 102,103,104Zr + 4He + 4He + 142,141,140Xe
supplies 〈TKE〉 ≈ 161 MeV with the deformations
βi = 0.50 and 0.25 of Zr and Xe, respectively. In this
system, we have∆B1 +∆B2 = 15MeV and one can
expect the emission of more than seven neutrons after
the decay of the system (E∗ = Eν +∆B1 +∆B2).
After decay, the systems 102,103,104Zr + 4He and
142,141,140Xe + 4He remain bound and correspond to
the Mo and Ba fragments, respectively. The cluster
interpretation is suitable for the second fission mode
with ν > 7. In fission events with 5 < ν < 7, both
P

fission modes seem to contribute. In [12], the second
mode of fission of 252Cf was also described as con-
nected to the formation of the cluster configurations
in the Ba fragments.
The large deformations of the fragments in the

second fission mode can also be described by the fol-
lowing cluster states of the nuclei: 148Ba → 74Ni +
74Ni and 104Mo → 50Ca + 54Ti. The deformation
energies are equal to 20 and 15MeV (∆B = 35MeV)
for such cluster configurations and are close to
those for hyperdeformed nuclei [37]. The linear chain
(74Ni + 74Ni) + (50Ca + 54Ti) with the defor-
mations of the nuclei taken from [31] reproduces the
〈TKE〉 for the second fission mode. The excitation
energy E∗ of the system near scission is about
30 MeV. After the scission, the systems 74Ni + 74Ni
and 50Ca + 54Ti are transformed into 148Ba and
104Mo, respectively, with the transition of deformation
energies into intrinsic excitations.

B. Angular Momentum of the Fission Fragments
The potential energy of the DNS as a function

of the relative distance R for the fission 252Cf→
104Mo + 148Ba is shown in the upper part of Fig. 3. It
is seen that the DNS pole–pole configuration has the
minimal energy. Theminimum of the pocket is located
at the distance Rmin. This minimummoves to smaller
values of the relative distance with increasing angles
θ̃i (θ̃1 = π − θ1, θ̃2 = θ2). In the lower part of Fig. 3,
the dependence of the potential energy on the angles
θ̃i is shown in two limits: (i) the relative distance
corresponds to the minimum of the potential energy
at all values of angles (adiabatic limit); (ii) the rela-
tive distance does not change (R = Rmin(θ̃i = 0) =
const) with angles (diabatic limit). For |θ̃1| < 0.5, the
potentials in these two limits are very similar. It is
seen that the oscillator approximation is quite good
for describing the angular dependence of the potential
energy if the amplitude does not exceed 0.5 rad. In
Fig. 4, we present the dependence of the stiffness
parameter of the bending mode on the deformation
parameters for the 100Zr + 100Zr system. The value
of stiffness strongly increases with the deformation
parameters β1 = β2 from zero and reaches a nearly
constant value at 0.12 ≤ βi ≤ 0.25. For βi ≥ 0.25,
the stiffness decreases slowly. Thus, for βi ≥ 0.12,
the calculated results seem to be weakly sensitive to
the value of the deformation parameters because the
stiffness of the potential depends weakly on βi.
In order to estimate the mean angular momenta of

the fission fragments by Eq. (15), we calculated the
spectrum of the bending mode for various fragmenta-
tions of the 252Cf nucleus. The influence of the frag-
ment deformations βi and moments of inertia Ji on
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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Fig. 3. Upper part: Dependence of the DNS potential
energy on the relative distance R between the centers
of fragments for the fission of 252Cf→104 Mo+148Ba.
Calculations are done for different orientations of the
DNS nuclei with β1(

104Mo) = 0.35 and β2(
148Ba) =

0.22. Lower part: Calculated potential energy U of the
DNS as a function of the angles θ̃i in two limits: (i) R =

Rmin (adiabatic limit) and (ii) R = Rmin(θ̃i = 0) = const
(diabatic limit). The relation θ̃2 = (R̃1/R̃2)θ̃1 is used in
the calculations.

the excitation of the bending states is demonstrated in
the table. In this calculation, we use the experimental
moments of inertia Ji of the DNS nuclei that are
obtained from the measured values of the energies
E2+→0+ of the 2+ → 0+ rotational transitions: Ji =
3/E2+→0+ (�2/MeV) [31]. When both fragments are
well deformed, the energy E1 of the first excited state
(n = 1) of the bending mode [see (13)] is about 1.5–
2.0 MeV. If one of the fragments is almost spherical,
the value of E1 is about 3.0–6.0 MeV.
The calculated angular momenta of fission frag-

ments as a function of the total number of evaporated
neutrons ν are presented in Figs. 5 and 6 for the
fragmentations Mo+ Ba and Zr+ Ce of 252Cf [23–
25]. The value of E∗ is estimated by formula (19)
for the standard fission mode assuming ∆Bi to be
small. Since the potential for the bending oscillation
in this fission mode is deep enough and contains a
quite large number of states, the calculated values of
〈L〉 practically do not depend on the upper limit of the
sums in (15). The calculations of angular momentum
for the standard fissionmode were performed by using
the experimental and rigid-body moments of inertia of
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the nuclei. The experimental moment of inertia of the
nucleus is smaller than the rigid-body one. However,
for the system of two interacting nuclei in the field
of each other, realistic moments of inertia of nuclei
must take values between the two considered limits.
For example, the measured moments of inertia for the
superdeformed and hyperdeformed states are about
85% of the rigid-body value [33, 34, 37]. A possi-
bility of considering highly deformed states in heavy
nuclei as DNS configurations was demonstrated in
[37]. Indeed, the corresponding DNS have the same
quadrupole moments and moments of inertia as those
measured for the superdeformed states and for the
hyperdeformed states in actinides [37]. Taking these
facts into consideration, we suppose that the correct
theoretical values of average angular momenta must
lie between two curves presented in Figs. 5 and 6
for the standard fission mode. For the splitting Mo+
Ba, the calculated average angular momenta of frag-
ments carried by the bending mode are in satisfactory
agreement with the experimental data for ν < 5. The
experimental points are located between two theoret-
ical curves. The theoretical curves correctly describe
the functional dependence of data on ν up to ν = 5.
For Zr+ Ce fragmentation, the experimental points
are located below both theoretical curves, but the
deviations of the theoretical results from the exper-
imental data would not exceed 1.5� for ν < 5 if we
image the theoretical data between the two curves
presented in Fig. 6. Comparing the experimental data
3
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Calculated values of the frequency �ωε and the moment of inertia Jε of the bending mode for even–even fragmentations
of 252Cf.

Light fragment β1 Heavy fragment β2 �ωε, keV Jε, �2/MeV
100Sr 0.372 152Nd 0.274 569 58.1
102Zr 0.421 150Ce 0.274 754 46.1
104Zr 0.42 148Ce 0.246 799 39.7
104Mo 0.325 148Ba 0.22 792 34.39
106Mo 0.353 146Ba 0.218 768 33.13
108Mo 0.354 144Ba 0.193 779 32.49
112Ru 0.302 140Xe 0.11 1030 21.28
120Cd 0.2 132Sn 0.05 1770 6.81
with the results of the calculations, we should note
that the angular momenta of primary fragments were
not directly measured in the experiment. From the
intensities of the γ transitions between different levels
of the spontaneous fission fragment (secondary), the
experimentalists determine the level populations and
calculate the average angular momentum of the sec-
ondary fragment. To obtain the angular momentum of
the primary fragment, the mean number of evaporated
neutrons from the fragments and the spin reduction
due to the neutron evaporation are calculated with
some statistical model. This model correction of the
angular momenta leads to the uncertainties in the
experimental results. Taking into consideration these
facts and the discussion in [38] on the method of
extraction of the data from the set of γ transitions, the
agreement of theoretical calculations with the present
data is quite satisfactory.
For ν > 5, the calculated values of the angular

momenta of the fragments obtained by neglecting a
possible formation of an alpha-particle chain in the
neck deviate from the experimental ones. However,
the higher values of the neutron multiplicity are con-
nected to the second mode of fission, which could
have a different cluster composition more compli-
cated than the DNS. Since for ν > 5 the deformation
energy ∆B cannot be disregarded in Eq. (18), we
overestimate the value of E∗ with (19) and the values
of 〈L〉. In order to demonstrate the applicability of
our model also for ν > 5, we simulate large defor-
mations of fragments by cluster-type configurations
for which the value of ∆B is easily calculated. The
system 102Zr + 4He + 4He + 142Xe, which supplies
the experimental TKE, is used for the second fission
mode. The calculation of the angular momentum of
the fragments in Fig. 5 is done for ν ≥ 8 by assuming
a rigid coupling between the alpha particles and heavy
nuclei. This approximation can be applied because
the bending frequency of a system consisting of an
P

alpha particle and a heavy nucleus ismuch larger than
that for the whole system. The calculations for this
cluster configuration give a better agreement with the
experimental data for ν ≥ 8 than the calculations with
the DNS used for the standard fission mode. We have
found that the potential for the bending oscillations in
the system 102Zr + 4He + 4He + 142Xe is shallow
and contains no more than four states. Therefore,
the sum in (15) is taken up to n = 4. The analysis
of similar cluster configurations allows us to expect
the second fission mode with very low 〈TKE〉 for the
charge splittings Zr–Ce and Ru–Xe. Further experi-
ments will give the answer to whether our assumption
is correct.
A correlation between the maxima of the yields

of fission-fragment pairs and of the angular momen-
ta of the fragments is experimentally observed [25].
One can assume that the maximal yields of pairs
originating from fission events are associated with
the minima of the potential energy at the scission
point as a function of βi and of the N/Z ratios in the
fragments. The corresponding DNS has the maximal
internal excitation energy in the minimum of poten-
tial energy of the fissioning system in comparison
with the neighboring configurations. As follows from
formula (15), the maximal excitation energy leads
to a maximal mean angular momentum of the frag-
ments under the same conditions. The value of angu-
lar momentum increases with a decreasing moment
of inertia but not so strongly as with temperature.
For example, for the charge splittings (secondary)
104Mo + Ba and 102Zr + Ce of 252Cf, the maxima
of yields correspond to 4n and to (2–4)n evaporation
channels, respectively. Thus, for these reactions, the
angular distributions of the fragments as functions of
ν have maxima corresponding to the evaporation of
4n and (2–4)n neutrons. For the neutronless charge
splittings 104Mo + 148Ba and 102Zr + 150Ce, the
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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calculations for the first fission mode performed with ex-
perimental and rigid-body moments of inertia are shown
by solid and dashed curves, respectively. The calculations
for the second fission mode performed with experimental
moments of inertia are shown by short-dashed curves.

values of yields and of mean total angular momenta
are the smallest compared to the channels with an
evaporation of neutrons. In order to describe the yields
of fission-fragment pairs and of the angular momen-
ta of the fragments at the same time, one should
perform cumbersome calculations of the multidimen-
sional potential energy surface for the DNS. The last
point will allow us to define the DNS temperature in
a more correct way.

5. SUMMARY

The angular momenta of the fission fragments
are calculated under the assumption that the bend-
ing angular oscillations of the DNS are responsi-
ble for the generation of the angular momenta of
the fragments. The calculated results are in qualita-
tive agreement with the experimental data for 252Cf
spontaneous fission. No attempt is made to adjust
parameters to fit the experimental data. In contrast
to some phenomenological calculations, the angular
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momenta were not normalized to the experimental
value obtained for the definite fragments of sponta-
neous fission. We should stress that the temperature
of the system is not a free parameter in our model. It is
shown that, for ν < 5, the difference Q – TKE mainly
corresponds to the excitation energy of the internal
degrees of freedom of the DNS. This means that
the considered fissioning system is heated before the
scission in the case of postscission evaporation of less
than five neutrons. The small 〈TKE〉 of the second fis-
sion mode in the fragmentation of 252Cf into Mo and
Ba is interpreted as the formation of a chain of two al-
pha particles between Zr and Xe nuclei (102−104Zr +
4He + 4He + 142−140Xe) at the scission point. The
internal excitation energy of this system is sufficient
for the emission of more than seven neutrons after the
decay of such a cluster state. Taking into account the
deformation energy, we are able to describe the an-
gular momenta of the fission fragments in the second
fission mode.

APPENDIX
Potential Energy of the DNS and Stiffness of

Bending Mode
1. Nuclear part of nucleus–nucleus potential

By following the method proposed in [27], the
double-folding procedure is used to calculate the nu-
clear part of the nucleus–nucleus potential

UN (R,βi,Ωi) (A.1)
3
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=
∫

ρ1(r1)ρ2(r2)F (r1 − r2 +R)dr1dr2

= C0

[
Fin − Fex

ρ0

(∫
ρ2
1(r)ρ2(R+ r)dr

+
∫

ρ1(r)ρ2
2(R+ r)dr

)
+ Fex

∫
ρ1(r)ρ2(R+ r)dr

]

with the effective density-dependent nucleon–nucleon
interaction

F (r1− r2+R) = C0

(
Fin

ρ1(r1) + ρ2(r2)
ρ0

(A.2)

+ Fex

(
1− ρ1(r1) + ρ2(r2)

ρ0

))
δ(r1 − r2 +R),

Fin,ex = fin,ex + f ′
in,ex

N1 − Z1

A1

N2 − Z2

A2
,

which is known from the theory of finite Fermi
systems [39]. Here, A = A1 +A2 and Ni (Zi) are
neutron (proton) numbers of nuclei. The values of
C0 and the dimensionless parameters fin,ex and f ′

in,ex
are fitted to describe a large number of experimental
data [39]. The repulsive core in the double-folding
potential is obtained naturally when one uses density-
dependent nucleon–nucleon interactions. For the
density of deformed nuclei with A > 16, one can
use the two-parameter symmetrized Woods–Saxon
function within the intrinsic frame of the nucleus
(r = r, θ′, φ′)

ρi(r, ai) =
ρ0 sinh(Ri(θ′, φ′)/ai)

cosh(Ri(θ′, φ′)/ai) + cosh(r/ai)
, (A.3)

where ρ0 = 0.17 fm−3 is the density in the center
of nucleus and ai = 0.55 fm denotes the diffuseness
parameter of the ith nucleus. The shapes of the DNS
nuclei are described as

Ri(θ′, φ′) = Ri

(
1− β2

i

4π
+ βiY20(θ′, φ′)

)
. (A.4)

The angles with the prime sign are the angles of
r with respect to the intrinsic coordinate frames of
each nucleus. We are interested in the dependence of
the DNS potential energy on the orientation angles
θi with respect to the internuclear axis (molecular
frame). Because the functions in (A.1) depend on an-
gles measured in the intrinsic frame of each nucleus,
we rewrite them with respect to the molecular frame
usingD functions. TheD functions do not depend on
the variables of integration and can be carried outside
of the integrals [27].

For the analytical calculation of UN and the re-
duction of the number of terms in the expansion, we
introduce the following modified expansions in the
quadrupole deformation parameters βi for the nuclear
PH
density and for the square of the density in the intrin-
sic coordinate frames:

ρi(r, ai) = ρi(r, ai) + ξ

[
Ri

dρi(r, bi)
dRi

βiY20(θ′, φ′)

(A.5)

+
R2
i

2
d2ρi(r, bi)

dR2
i

β2
i Y

2
20(θ

′, φ′)
]
,

ρ2
i (r, ai) = ρ2

i (r, ai) + ξ′
[
Ri

dρ2
i (r, b

′
i)

dRi
βiY20(θ′, φ′)

+
R2
i

2
d2ρ2

i (r, b
′
i)

dR2
i

β2
i Y

2
20(θ

′, φ′)
]
.

The values of ξ, ξ′, bi, and b′i are fixed by fitting the
radial dependences of ρi(r, ai) and ρ2

i (r, ai) at θ
′ = αi

and φ′ = 0, where the angle αi corresponds to the
nuclear surface point nearest to the other nucleus.
Therefore, expression (A.5) can be used for any values
of βi and should be considered as an approximation to
the correct dependences of ρi(r, ai) and ρ2

i (r, ai) on
R at fixed θi. Note that the terms proportional to β2

i
in (A.5) were introduced to increase the accuracy of
the calculations. The assumption of a small overlap
of nuclei of the DNS allows us to neglect the depen-
dence of ξ, ξ′, bi, and b′i on θ

′ and φ′ in the calculations
of UN at fixed βi and θi.
Since we are interested in the potential energy

at condition (3), further calculations are performed
assuming a small deviation of the ratio between θ̃1

and θ̃2 from ratio (3). If the angles θ̃1 = π − θ1 and
θ̃2 = θ2 are small (small bending oscillations) at R ≈
Rmin = R̃1 + R̃2 + s, where R̃i = Ri(1− β2

i /(4π) +√
5/(4π)βi) are the major axes of the prolately de-

formed nuclei, we can use analytical expressions for
αi:

α1 = c11θ̃1 + c12θ̃2, α2 = c21θ̃1 + c22θ̃2. (A.6)

Here,

c11 = 1− (R̃2 + sg2
2)(g

2
1 − 1)

R̃1g2
2 + R̃2g2

1 + sg2
1g

2
2

,

c12 =
R̃2(1− g2

2)
R̃1g

2
2 + R̃2g

2
1 + sg2

1g
2
2

,

c21 =
R̃1(1− g2

1)
R̃1g2

2 + R̃2g2
1 + sg2

1g
2
2

,

c22 = 1− (R̃1 + sg2
1)(g

2
2 − 1)

R̃1g2
2 + R̃2g2

1 + sg2
1g

2
2

,

and

gi = (1− β2
i /(4π) +

√
5/(4π)βi)/(1 − β2

i /(4π)
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−
√
5/(16π)βi)

is the major-to-minor axis ratio of the ith nucleus.
Inserting in Eq. (A.1) the expression

ρ2
i (r, a) = −ρ0a sinh

(
Ri
a

)
d

dRi

ρi(r, a)

sinh
(
Ri
a

) (A.7)

= −ρ0

(
a

d

dRi
− coth

(
Ri
a

))
ρi(r, a)

=
ρ0

Fin − Fex
Λi(a)ρi(r, a),

using (A.2) and (A.5), and taking φ1 = φ2 = 0, the
nuclear part of the potential energy is written approx-
imately as

UN (R,βi, θi) ≈ U11 + U21Y20(θ2) (A.8)

+ U22Y20(θ1) + U31Y
2
20(α2) + U32Y20(α1)Y20(α2)

+ U33Y
2
20(α1) + U41Y20(α1)Y 2

20(α2)

+ U42Y
2
20(α1)Y20(α2) + U51Y

2
20(α1)Y 2

20(α2),

where the coefficients
U11 = C0[Λ1(a1) + Λ2(a2) + Fex]I0(a1, a2), (A.9)

U21 = C0β1R1
d

dR1
[ξ1Λ2(a2)I1(b1, a2)

+ ξ′1Λ1(b′1)I1(b
′
1, a2) + Fexξ1I1(b1, a2)],

U22 = C0β2R2
d

dR2
[ξ2Λ1(a1)I2(a1, b2)

+ ξ′2Λ2(b′2)I2(a1, b
′
2) + Fexξ2I2(a1, b2)],

U31 = C0β
2
2

R2
2

2
d2

dR2
2

[ξ2Λ1(a1)I0(a1, b2)

+ ξ′2Λ2(b′2)I0(a1, b
′
2) + Fexξ2I0(a1, b2)],

U33 = C0β
2
1

R2
1

2
d2

dR2
1

[ξ′1Λ1(b′1)I0(b
′
1, a2)

+ ξ1Λ2(a2)I0(b1, a2) + Fexξ1I0(b1, a2)],

U32 = C0β1β2R1R2
d2

dR1dR2
[ξ′1ξ2Λ1(b′1)I0(b

′
1, b2)

+ ξ1ξ
′
2Λ2(b2)I0(b1, b′2) + ξ1ξ2I0(b1, b2)],

U41 = C0β1β
2
2

R1R
2
2

2
d3

dR1dR
2
2

[ξ′1ξ2Λ1(b′1)I0(b
′
1, b2)

+ ξ1ξ
′
2Λ2(b2)I0(b1, b′2) + ξ1ξ2I0(b1, b2)],

U42 = C0β
2
1β2

R2
1R2

2
d3

dR2
1dR2

[ξ′1ξ2Λ1(b′1)I0(b
′
1, b2)

+ ξ1ξ
′
2Λ2(b2)I0(b1, b′2) + ξ1ξ2I0(b1, b2)],

U51 = C0β
2
1β

2
2

R2
1R

2
2

4
d4

dR2
1dR

2
2

[ξ′1ξ2Λ1(b′1)I0(b
′
1, b2)

+ ξ1ξ
′
2Λ2(b2)I0(b1, b′2) + ξ1ξ2I0(b1, b2)]
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depend only on the relative distanceR and quadrupole
deformation parameters βi. With the Fourier trans-
form of the function ρi(r, ai),

ρi(p, ai) =
√
2πaiRiρ0

p sinh (πaip)
(A.10)

×
(
πai
Ri

sin (pRi) coth (πaip)− cos (pRi)
)
,

the following integrals are calculated:

I0(a, b) =−4π
∞∫

0

ρ1(p, a)ρ2(p, b)j0(pR)p2dp, (A.11)

I1(a, b) = −(4π)2
∞∫

0

dpp2j2(pR)ρ2(p, b)

×
∞∫

0

drr2j2(pr)ρ1(r, a),

I2(a, b) = −(4π)2
∞∫

0

dpp2j2(pR)ρ1(p, a)

×
∞∫

0

drr2j2(pr)ρ2(r, b).

Here, j2(pR) and j0(pR) are spherical Bessel func-
tions. Due to the small overlap of the DNS nuclei, the
spherical functions in some integrands in (A.1) are
replaced by their values at θ′i = αi to obtain Eq. (A.8).
The direct calculations of the corresponding integrals
show that this approximation works well [27]. Thus,
using (A.6) and expanding the spherical harmonics in
the small angles θ̃i up to the second order, we obtain

UN = UN0 +
1
2
CN

11θ̃
2
1 + CN

12θ̃1θ̃2 +
1
2
CN

22θ̃
2
2, (A.12)

where

UN0 = U11 +

√
5
4π
(U21 + U22) +

5
4π

(A.13)

×
[
U31 + U32 + U33 +

√
5
4π
(U41 + U42) +

5
4π

U51

]
,

CN
11 = −3

(√
5
4π

U22 +
5
4π

c211

[
2U33 + U32

+

√
5
4π
(2U42 + U41) +

5
2π

U51

]
+

5
4π

c221

×
[
2U31 + U32 +

√
5
4π
(2U41 + U42) +

5
2π

U51

])
,

3
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CN
12 = − 15

4π

(
c12c11

[
2U33 + U32

+

√
5
4π
(2U42 + U41) +

5
2π

U51

]
+ c21c22

×
[
2U31 + U32 +

√
5
4π
(2U41 + U42) +

5
2π

U51

])
,

CN
22 = −3

(√
5
4π

U21 +
5
4π

c222

[
2U31 + U32

+

√
5
4π
(2U41 + U42) +

5
2π

U51

]
+

5
4π

c212

×
[
2U33 + U32 +

√
5
4π
(2U42 + U41) +

5
2π

U51

])
.

2. Coulomb part of nucleus–nucleus potential

For the Coulomb interaction, we use the for-
mula [40]

UC =
Z1Z2e

2

R
+
3
5
Z1Z2e

2

R3

2∑

i=1

R2
i βiY2(θi) (A.14)

+
12
35

Z1Z2e
2

R3

2∑

i=1

R2
i (βiY2(θi))2.

For a small overlap of the DNS nuclei, the effect of
density diffuseness is relatively small and is neglected
in this formula. The expansion of (A.14) in θ̃i (i =
1, 2) gives

UC = UC0
+
1
2
CC

11θ̃
2
1 +

1
2
CC

22θ̃
2
2, (A.15)

where

UC0
=

Z1Z2e
2

R
(A.16)

×
(
1 +

1
R2

2∑

i=1

R2
0i

[(
9
20π

)1/2

βi +
3
7π

β2
i

])
,

CC
ii = −3Z1Z2e

2

R3
R2

0i

[(
9
20π

)1/2

βi +
6
7π

β2
i

]
,

i = 1, 2.

Finally, using Eqs. (A.12) and (A.15), we obtain
the expression for the total potential energy U of the
DNS in the form of Eq. (1), where Cij = CN

ij + CC
ij .
P
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Abstract—The survivability of even–even and odd superheavy nuclei is analyzed on the basis of a statistical
model and various theoretical predictions for nuclear properties. In this analysis, use is made of various
methods for computing level densities. ForZ < 114 nuclei, calculations on the basis of all models predicting
nuclear properties lead to close values for the ratio of the width with respect to the neutron channel to the
width with respect to the fission channel. For Z ≥ 114 nuclei, different values are obtained for this ratio.
The dependence of the results on model parameters is discussed. The collective-enhancement factor in the
level density is taken into account in the calculations. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The synthesis of new superheavy elements is one
of the most interesting branches in contemporary nu-
clear physics. Since the stability of superheavy nuclei
depends predominantly on shell effects, searches for
such Z and N at which shell effects are the most
pronounced, thereby ensuring long lifetimes of syn-
thesized superheavy nuclei, are of great importance in
these investigations. Nuclei of charge number in the
range Z = 106–112 were obtained in cold-fusion re-
actions induced by collisions of heavy ions with 208Pb
and 209Bi targets. Hot-fusion reactions on 232Th,
238U, 242,244Pu, and 248Cm targets were also used to
synthesize Z = 110, 112, 114, and 116 elements.

Among all theoretical models, the dinuclear-
system model provides the most successful descrip-
tion of the formation of superheavy nuclei. It is
assumed within this model that a compound nucleus
is formed via the exchange of nucleons or small
clusters between the lighter and the heavier nucleus
appearing to be in immediate contact. The dynamics
of fusion is controlled by diffusion along the mass-
asymmetry coordinate η = (A1 −A2)/(A1 + A2),
where A1 and A2 are the mass numbers of nuclei
forming a dinuclear system.

At low angular momenta, the cross section for
evaporation-residue formation in the reactions under

1)Institut für Theoretische Physik, Justus-Liebig-Universität,
Ludwigstrasse 23, D-35390 Giessen, Germany.

2)Joint Institute for Nuclear Research, Dubna, Moscow
oblast, 141980 Russia.

3)Institute of Nuclear Physics, Uzbek Academy of Sciences,
pos. Ulughbek, Tashkent, 702132 Uzbekistan.
1063-7788/03/6602-0218$24.00 c©
consideration [1, 2] can be represented in the form
[3–7]

σER(Ec.m.) ≈ PCN(Ec.m., J = 0) (1)

×Wsur(Ec.m., J = 0)
Jmax∑

J=0

σc(Ec.m., J),

where σc is the partial capture cross section (it is
responsible for the process in which the incident
nucleus overcomes the Coulomb barrier), PCN is
the probability of compound-nucleus formation upon
capture, Wsur is the survivability of the compound
nucleus formed, and Jmax ≈ 10. At the first step
of the reaction, the target captures the projectile
nucleus, whereupon the resulting dinuclear system
evolves into a compound nucleus. The complete-
fusion probability PCN depends on the competition
between fusion and quasifission. Since the c.m.
projectile energy Ec.m. usually exceeds the energy
of compound-nucleus formation, the resulting nu-
cleus is formed in an excited state. At the sec-
ond step of the reaction, the compound nucleus is
deexcited predominantly via the emission of par-
ticles and γ rays. The compound-nucleus surviv-
ability Wsur, which is determined by the compe-
tition between this emission and the fission pro-
cesses, is therefore a factor of importance in de-
scribing the synthesis of heavy and superheavy nu-
clei.

The survivability of superheavy nuclei synthesized
in cold-fusion reactions is calculated in the present
study for Z = 102–120 even and odd nuclei by using
various theoretical predictions for nuclear properties
[8–12] and the level density as obtained on the basis
of the Fermi gas model and the model allowing for
2003 MAIK “Nauka/Interperiodica”
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collective enhancement; also examined here are var-
ious methods for taking into account the energy de-
pendence of shell effects. In addition, we consider hot-
fusion reactions involving the emission of a few neu-
trons during the formation of the evaporation residue
and analyze the survivability of superheavy nuclei in
the xn-evaporation channel (x ≥ 2) as a function of
the parameters of the models used.

Experiments aimed at implementing cold- and
hot-fusion reactions are complicated by a sharp de-
crease in the cross section for evaporation-residue
formation with increasing Z. By way of example, we
indicate that, as Z grows from 104 to 112, this cross
section decreases by four orders of magnitude in cold-
fusion reactions [1]. It is shown here that this is due
primarily to a decrease in the probability of complete
fusion rather than to a decrease in the survivability of
the compound nucleus.

2. SURVIVABILITY OF A COMPOUND
NUCLEUS

In the evaporation of a specific sequence s of x
particles, the survivability of a nucleus with respect
to fission can be approximately described by the ex-
pression

W s
sur(E

∗
CN, J) ≈ Ps(E∗

CN, J)
x∏

is=1

Гi(E∗
is
, Jis)

Гt(E∗
is
, Jis)

, (2)

where is is the index of an evaporation step; Ps is the
probability of the s channel at the initial excitation
energy E∗

CN; and E∗
is

and Jis are the mean values
of, respectively, the excitation energy and the angular
momentum at the step is. For a compound nucleus,
the total width Γt is defined as the sum of the par-
tial widths Γi with respect to all possible particle-
evaporation channels, the partial width with respect
to γ-ray emission, and the fission width Γf . At the
first step is = 1s, we have E∗

1s = E∗
CN and J1s = J .

It follows from (1) that, at low angular momenta,
the J dependence of the cross section σER can be
approximately taken into account in the effective cap-
ture cross section σc. Thus, we can calculate the
survivability only for the case of J = 0.

In the nuclei considered here, γ-ray emission
competes with other processes only if the excitation
energy is less than (or approximately equal to) the
corresponding neutron binding energy; therefore,
the contribution of γ-ray emission can be disre-
garded in the majority of cases. A high Coulomb
barrier prevents charged-particle emission from an
excited heavy nucleus, so that the partial width
with respect to the proton-emission or the alpha-
particle-emission channel is much less than the
partial neutron-emission width Γn. To summarize
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
the foregoing, we can set Γt ≈ Γn + Γf . According
to [13–15], the survival probability in the evaporation
of x neutrons can therefore be represented as

Wsur(E∗
CN) ≈ Pxn(E∗

CN)
x∏

i=1

Гn(E∗
i )

Гn(E∗
i ) + Гf (E∗

i )
,

(3)

where Pxn is the probability for the xn channel at a
specific excitation energy E∗

CN.
The width with respect to decay through channel i

is determined by the probability RCNi of this process
[16–18],

Γi =
RCNi

2πρ(E∗
CN, J)

. (4)

There exist various methods for calculating the level
density ρ(E∗

CN, J) in a nucleus, and we will give a
detailed account of these in the next section.

We can compute the probability of the evaporation
of particle j (a neutron, a proton, or an alpha particle)
by the formula

RCNj =
∑

Jd

E∗
CN−Bj−δ∫

0

dε (5)

× ρd(E∗
CN −Bj − ε, Jd)

Jd+s∑

S=|Jd−s|
TjS(ε)

if we know the quantities appearing in it. These are
the energy required for separating the spin-s parti-
cle j, Bj ; the pair correction for nuclei of opposite
parities, δ; the level density in the daughter nucleus,
ρd(E∗

CN −Bj − ε, Jd); and the barrier-penetrability
factors, TjS(ε), which are calculated on the basis of
the optical model [16].

The fission probability is calculated in the ap-
proximation of a one-humped barrier having a height
Bf (E∗

CN) and a curvature �ω. The result can be rep-
resented as

RCNf =

E∗
CN−Bf−δ∫

0

ρf (E∗
CN −Bf − ε, J)dε

1 + exp[2π(ε + Bf − E∗
CN)/�ω]

,

(6)

where ρf (E∗
CN −Bf − ε, J) is the level density at

the saddle point. The choice of this approximation
is motivated by the fact that it is the one-humped
barrier that controls predominantly the stability of
excited superheavy nuclei with respect to fission.
For all nuclei considered here, we took the value of
�ω = 2 MeV, which is slightly above the range of
corresponding values for actinides (1.0–1.5 MeV)
3
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Fig. 1. Ratio Γn/Γf calculated with the level density
obtained on the basis of the Fermi gas model (7) ver-
sus the ratio af/an for the 294118, 284114, 258104, and
266108 nuclei at the excitation-energy values given be-
low in Fig. 4. The calculations were performed at a =

A/10 MeV−1 and J = 0 with the data borrowed from
[11].

since, as was shown in the calculations presented
in [9, 10], the barrier becomes thinner. The quantity
Bf is the sum of the liquid-drop component BLD

f

and the microscopic component BMi
f . The latter is

given by BMi
f = δWA

sd − δWA
g.s., where δWA

sd is the
shell correction for a nucleus of mass number А
at the saddle point and δWA

g.s is its ground-state
counterpart. For the 256No, 258Rf, and 262Rf nuclei,
we took the values of BLD

f = 1.1, 0.5, and 0.2 MeV,

respectively. For Z > 106, we set BLD
f = 0. Usually,

the shell correction at the saddle point is small,
δWA

sd ≈ 0. Thus, we have BMi
f = BMi

f (E∗
CN = 0) =

|δWA
g.s(E

∗
CN = 0)|. There exist various theoretical

predictions for the properties of superheavy nuclei.
We borrowed the fission barriers (shell corrections)
and the separation energies from [9–12].

3. CALCULATION OF THE LEVEL DENSITY
WITHIN THE FERMI GAS MODEL

The level density can be calculated most straight-
forwardly on the basis of the Fermi gas model, which
yields

ρ(E∗
CN, J) =

2J + 1
24
√

2σ3a1/4(E∗
CN − δ)5/4

(7)

× exp
[
2
√
a(E∗

CN − δ) − (J + 1/2)2

2σ2

]
,

where σ2 = 6m̄2
√
a(E∗

CN − δ)/π2. For the pair cor-
rections, we use the values of δ = 2.4 and 1.2 MeV
PH
for even–even and odd nuclei, respectively. The level-
density parameter a is proportional to the density
of single-particle states at the Fermi surface. The
mean projection of the angular momentum onto these
states was estimated as m̄2 ≈ 0.24A2/3. We assumed
that a = A/10 MeV−1 for all nuclei considered here.
In calculating the level density ρf at the fission bar-
rier, we set af = 1.1an [19], where an is the level-
density parameter of the daughter nucleus upon neu-
tron emission and af is the level-density parameter at
the saddle point.

In the calculations with the level density obtained
within the Fermi gas model, the ratio Γn/Γf de-
creases according to a virtually linear law with in-
creasing af/an for all nuclei (Fig. 1). In particular,
we can see from Fig. 1 that, as af/an varies from 1.1
to 1.05, the ratio Γn/Γf increases by a factor of 2. In
superheavy nuclei, the fission barriers are rather nar-
row [9] and the saddle point occurs near the ground
state, βsd

2 ≈ βg.s.
2 + 0.2, where βsd

2 is the quadrupole-
deformation parameter at the saddle point and βg.s.

2 is
that in the ground state. The shell correction changes
from δWg.s. in the ground state to zero at the saddle
point. A sharp change in the shell correction within a
narrow range of the quadrupole-deformation param-
eter can be taken into account by choosing the value
of af/an = 1.1 for the nuclei considered here. The
level density in the ground state (the case of neutron
emission) is lower than the single-particle level den-
sity, while the level density at the saddle point (fission
barrier) is higher than its single-particle counterpart
[19].

For modest excitation energies E∗
CN, the integral

in (5) will be unrealistically large if use is made only of
formula (7). For E∗

CN < Ux, we therefore represented
the level density in the different form

ρ(E∗
CN, J) =

1
T

exp
(
E∗

CN − U0

T

)
(8)

×
exp

[
−(J + 1/2)2/(2σ2)

]

2
√

2πσ3
,

which corresponds to the model assuming a constant
temperature T [20]. The parameters T and U0 can
be determined by requiring that the level density and
its derivative be continuous at the matching point
E∗

CN = Ux. We took the value of Ux = 2.2 MeV for
all nuclei considered here. In this case, the results of
the calculations do not depend on this parameter for
E∗

CN > 11 MeV.
One of the possible ways to include shell effects in

the level density is to introduce an energy dependence
in the fission barrier as
Bi
f (E∗

CN) = BLD
f + BMi

f (E∗
CN = 0) exp[−E∗

CN/ED]
(9)
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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from the value Bi
f = Bi

f (E∗
CN = 0) = BLD

f +
BMi
f (E∗

CN = 0) at zero excitation energy to the liquid-

drop value Bi
f (E∗

CN) = BLD
f at high excitation en-

ergies, ED being an effective factor that takes into
account the damping of shell effects. Calculations
that are based on the level density obtained within
the Fermi gas model and on relation (9) are described
in [21].

4. CALCULATION OF THE LEVEL DENSITY
WITH ALLOWANCE FOR COLLECTIVE

EFFECTS

If we take into account pair correlations and vi-
brational and rotational degrees of freedom, the level
density can be represented as

ρ(E∗
CN, J) = Kvib(E∗

CN)Krot(E∗
CN) (10)

× 2J + 1
24
√

2σ3
effa

1/4(E∗
CN − Ec)5/4

× exp
[
2
√
a(E∗

CN − Ec) −
(J + 1/2)2

2σ2
eff

]
,

where Ec is the condensation energy reducing the
ground-state energy of the Fermi gas by 1–3 MeV
owing to correlation pair interaction in the nuclei
under consideration and

σ2
eff =






I
2/3
⊥ I

1/3
||
√

(E∗
CN − Ec)/a

for axially deformed nuclei

I||
√

(E∗
CN − Ec)/a

for spherical nuclei.

(11)

The rotational-enhancement factor,

Krot =






I⊥
√

(E∗
CN − Ec)/a

for axially deformed nuclei

1

for spherical nuclei,

(12)

and the vibrational-enhancement factor,

Kvib = exp[0.0555A2/3(E∗
CN − Ec)4/3/a4/3], (13)

take into account the contribution to the level density
from collective vibrational and rotational degrees of
freedom, respectively. The contribution of collective
effects is especially significant for deformed nuclei.
The moments of inertia that are orthogonal to the
principal axis, I⊥, and parallel to it, I||, are defined
in [20, 22]. If the temperature of the nucleus is
higher than the critical phase-transition temperature,
we have I|| = 6m̄2

√
a(E∗ − Ec)(1 − (2/3)ε0)/π2
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and I⊥ = (2/5)m0r
2
0A

5/3(1 + (1/3)ε0), where ε0 =
1.5
√

5/4πβ2/(1 + 0.5
√

5/4πβ2). The ratio of the
level density in a nucleus for β2 �= 0 to that for β2 = 0
is about I||

√
(E∗

CN − Ec)/a ≈ 102.

In order to take into account shell effects, we can
use a level-density parameter a that depends on the
excitation energyE∗

CN and on the shell correction δW
as [20, 22]

a = ã(A)
[
1 +

1 − exp{−(E∗
CN − Ec)/E′

D}
E∗

CN − Ec
δW

]
.

(14)

Since shell effects are the most pronounced in the
ground state, they affect predominantly the level-
density parameter for the neutron channel. The func-
tion f(E∗

CN−Ec) = (1 − exp{−(E∗
CN −

Ec)/E′
D})/(E∗

CN − Ec) determines the energy de-
pendence of a. In [13–15, 20, 22, 23], it was assumed
that this energy dependence is universal for all nuclei
characterized by a constant value of the parameter
E′
D. The values of E′

D = 18.5 and 16.5 MeV were
chosen in [20] and [14], respectively. In [3, 24], E′

D
depends on А as

E′
D = α0A

4/3/ã, (15)

where α0 = 0.4. In performing calculations on the
basis of (14), one can disregard the energy depen-
dence of shell effects in the fission barrier and set
Bf = Bf (E∗

CN = 0)—that is, ED = 0 in (9). Thus,
we see that, while, in the Fermi gas model, use can
be made of relation (9), here, the energy dependence
of the shell correction δW is introduced in the level-
density parameter.

There are a few estimates of the asymptotic level-
density parameter ã, but they were obtained for lighter
nuclei, whose properties have been well studied ex-
perimentally; therefore, they cannot be extrapolated to
the region of superheavy nuclei without performing a
relevant analysis. The dependence ã(A) can be repre-
sented in the form

ã(A) = c1A + c2A
2/3s̃, (16)

where s̃ is the nuclear surface expressed in terms of a
sphere that is equivalent to it [23, 25, 26]. Since βsd

2 ≈
βg.s.
2 + 0.2 and βg.s.

2 ≤ 0.3 for all nuclei considered in
the present study, s̃ is close to unity [27] and ã = ãn ≈
ãf .

Theoretical calculations of c1 and c2 on the basis
of the shell model or the Thomas–Fermi method are
preferable [20] for Krot �= 1 and Kvib �= 1 in (10).
For levels of the Woods–Saxon potential, Ignatyuk
et al. [23] propose c1 = 0.073 and c2 = 0.095, which
leads to ã ≈ A/11.5 MeV−1. However, the use of the
expression with these values of c1 and c2 yields results
3



222 ZUBOV et al.

 
Γ
 

n

 
/

 
Γ

 

f

 

294

 

118

 

266

 

108

10

 

–1

 

10

 

–2

 

10

 

–3

 

8 10 12 14

 

A

 

/

 

a

 

~

 

, MeV

Fig. 2. Ratio Γn/Γf calculated at ED = 0 by using rela-
tions (10) and (14) for α0 = 0.4 in (15) and ã = ãn = ãf
versus the ratio A/ã for the 294118 and 266108 nuclei at
the excitation-energy values presented below in Fig. 4.
The calculations were performed at J = 0 with the aid of
the data borrowed from [11].

that are well corroborated only for A < 230 nuclei.
The calculations performed in [28] within the super-
fluid model on the basis of the single-particle spec-
trum in the Nilsson model result in ã ≈ A/9.5 MeV−1

for A ∼ 250. The values obtained for c1 and c2 with
the aid of the Thomas–Fermi method on the basis
of the Woods–Saxon nuclear-density profile lead to
ã ≈ A/8 MeV−1 for heavy nuclei (see the Appendix
in [25]). For ã < A/10 MeV−1, the survivability cal-
culated for some superheavy nuclei appears to be
unrealistically great.

Among all known parametrizations of the type in
(16), the expression

ã(A) = 0.114A + 0.162A2/3 , (17)

which was obtained from an analysis of neutron reso-
nances [20, 23] in light nuclei within the Fermi gas
model, is the most appropriate, in our opinion, for
describing the properties of superheavy nuclei with
the damping parameter (15) and the level density
(10). However, a rigorous corroboration of expression
(17) requires shell-model calculations, which are not
performed in the present study.

Along with (16), there is the parametrization

ã(A) = 0.134A − 1.21 × 10−4A2, (18)

which was proposed in [13–15]. Its parameters were
found from an analysis of experimental data for Z ≤
102 nuclei on the basis of (10) forKrot �= 1,Kvib �= 1,
and E′

D = 16.5 MeV. Expression (18) leads to ã ≈
A/9 MeV−1, which is rather close to ã (17), whence
one can conclude that the use of (17) in calculations
for superheavy nuclei is admissible. We note that
expressions similar to (18) were employed in [20, 29].
PH
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Fig. 3. Ratio Γn/Γf calculated at ED = 0 by using re-
lations (10) and (14) versus the parameter α0 in (15)
for the 294118, 284114, 266108, and 258104 nuclei at the
excitation-energy values given below in Fig. 4. The cal-
culations were performed at J = 0 with the aid of the data
borrowed from [11].

As ã(A) changes from A/8 MeV−1 to
A/12 MeV−1, the ratio Γn/Γf increases by a factor of
up to 3 for 294118 and by a factor of up to 8 for 266108
(Fig. 2). Here, the smaller Bf , the greater the relative
change in this ratio. The results of the calculations
performed at ED = 0 by using relations (10) and
(14) and the value of α0 = 0.4 in (15) are presented
in Fig. 2. The dependence of the ratio Γn/Γf on
ã = ãn = ãf enables us to estimate the uncertainty
in the results that is associated with the calculation of
the asymptotic level-density parameter.

The α0 dependence of the ratio Γn/Γf at ED =
0 according to the calculation employing relations
(10) and (14) is displayed in Fig. 3. This dependence
becomes stronger with increasing mass number of
the nucleus and, hence, with increasing ã.

The third possibility consists in taking into ac-
count the excitation-energy dependence of shell ef-
fects both in the expression for the fission barrier
and in the level-density parameter. Such calculations,
with the damping factor E′′

D = ED = E′
D, were per-

formed in [15], where use was made of Bf (E∗
CN) and

a(A,E∗
CN − Ec) in calculating the level density. In

general, the quantities E′
D and ED do not coincide.

5. RELATIONSHIP BETWEEN DIFFERENT
METHODS FOR TAKING INTO ACCOUNT
THE EXCITATION-ENERGY DEPENDENCE

OF SHELL EFFECTS
The partial widths with respect to the fission and

neutron channels are determined by the correspond-
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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ing level densities. For a rough estimate, we will
replace these level densities by their values at the
threshold energies for fission and neutron emission
and consider only rather high excitation energies.
With the aid of expressions (4)–(6) and (10), we then
find that, apart from the preexponential factor,

ln(Γf ) ∼
√

ã

E∗
CN + δWA

g.s.(1 − exp[−Ug.s./E′
D])
(19)

× [−(Bf + δWA
g.s.(1 − exp[−Ug.s./E

′
D])

− δWA
g.s.(1 − exp[−Uf/E′

D]))]

≈ −
√

ã

E∗
CN

Bf exp[−Ug.s./E
′
D]

and

ln(Γn/Γf ) ∼ 2
√
a(A− 1, Un)Un (20)

− 2
√
a(A,Uf )Uf ≈

√
ã

E∗
CN

[−Bn + Bf

− δWA
sd(1 − exp(−Uf/E′

D))

+ δWA−1
g.s. (1 − exp(−Un/E′

D))]

≈
√

ã

E∗
CN

[−Bn + Bf exp(−Un/E′
D)],

where Ug.s. = E∗
CN − Ec and Uf,n = E∗

CN −Bf,n −
Ec. In deriving the eventual expressions in formu-
las (19) and (20), we have used the approximations
δWA−1

g.s. ≈ δWA
g.s., δW

A
sd ≈ 0, and Bi

f = BMi
f (E∗

CN =
0) = |δWA

g.s.(E
∗
CN = 0)|, which are valid for all Z >

106 nuclei.

For the Fermi gas model, the result analogous to
that in (20) is obtained from formula (7) and is given
by

ln(Γn/Γf ) ∼ 2
√
a(A− 1, Un)Un (21)

− 2
√
a(A,Uf )Uf ≈ 2

√
anE∗

CN − 2
√
afE

∗
CN

−
√

an
E∗

CN

Bn +
√

af
E∗

CN

Bf exp(−E∗
CN/ED).

By using the identity ln(Γn/Γf )F − lnCF =
ln(Γn/Γf )− lnC, whereC (CF) is the preexponential
factor for Γn/Γf [(Γn/Γf )F] (hereafter, quantities
labeled with the subscript F correspond to calcula-
tions within the Fermi gas model) and q = C/CF ≈
Kcoll(Un)/Kcoll(Uf ) ≈ 0.4–0.5 for deformed nuclei
(Kcoll = KvibKrot), we can obtain a relation between
the damping parameters in the formulas for the
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
fission barrier and the level density (ED and E′
D,

respectively). This relation has the form

ED = −E∗
CN ln−1

[
E∗

CN

Bf
− 1
Bfaf

(ln q−1/2 (22)

+
√
an(E∗

CN −Bn) −
√
a(A− 1, Un)Un

+
√
ãUf )2

]
≈ −E∗

CN ln−1

[
2E∗

CN

Bf

(
1 −

√
an
af

)

+
√
an
af

Bn
Bf

+

√
ã

af

(
exp(−Un/E′

D) − Bn
Bf

)

+

√
E∗

CN ln q
√
afBf

]
.

If, for example, an = A/10 MeV−1, af = 1.1an,
E′
D = 18.5 MeV, and ã(A) = 0.114A + 0.162A2/3 ,

we obtain ED ≈ 2E′
D for the 284114 nucleus in the

case of the (1–2)n channel. AtED = α0A
4/3/an and

E′
D = α0A

4/3/ã, a relation between an and ã, which
are basic parameters in calculating the ratio Γn/Γf
within, respectively, the Fermi gas model and the
model taking into account collective effects, can be
derived from (22), provided that the ratio af/an is
fixed. If we set C = CF and af = an = ã in (22), we
have

ED = E′
D

E∗
CN

E∗
CN −Bn − Ec

. (23)

At an excitation energy ofE∗
CN ≈ 2(Bn + Ec), which

corresponds to the (1–2)n channel, we obtain ED ≈
2E′

D from (23).

In order that the different methods produce iden-
tical values for the ratio Γn/Γf , E′

D and E′′
D, the

latter being the damping factor for the case where the
E∗

CN dependence of shell effects is taken into account
both in the fission barrier and in the level-density
parameter [15], must be related as (q = 1, af = an)

E′
D = −Un ln−1

[
1 − Un

Bf
(24)

+
1

Bf ã

(√
ac(A− 1, Un)Un

−
√

ãc

[
Ug.s. −Bf exp

(
−Ug.s.

E′′
D

)]
+
√
ãUf

)2]
,

where the quantities ac and ãc are used in the cal-
culations allowing for the E∗

CN dependence of shell
effects both in the fission barrier and in the level-
density parameter. By way of example, we indicate
that, ifE′′

D = 16.5 MeV, ã(A) = 0.114A+ 0.162A2/3 ,
3
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Fig. 4.Excitation energies used in calculatingΓn/Γf and
Wsur in the 1n evaporation channel for nuclei obtained in
cold-fusion reactions on 208Pb and 209Bi targets.

and ãc(A) = 0.134A − 1.21 × 10−4A2, E′
D ≈ E′′

D/2
for the 284114 nucleus.

In order to obtain identical values of the ratio
Γn/Γf with the different asymptotic expressions for
the parameter ã in the level density (10), the cor-
responding damping factors E′

D must be related as
in (24), where exp(−Ug.s./E

′′
D) is replaced by unity.

For example, the calculations with ã in (17) and
E′
D = 18.5 MeV and the calculations with ã(A) =

0.073A + 0.095A2/3 and E′
D = 16.3 MeV lead to the

same value of the ratio Γn/Γf for the 284114 nucleus
at the excitation energy of E∗

CN = 13.5 MeV.

6. DISCUSSION OF THE RESULTS

In the GROGIF statistical code [16–18], which
was used here, the sequence of evaporated particles
is specified as input information. The initial distri-
bution of the compound nucleus with respect to the
excitation energy E∗

CN and the angular momentum
J is determined on the basis of the optical model
(see [21]). In this code, the probabilities for all types
of decays of the initial nucleus are calculated at each
point (E∗

CN, J). After that, the sum is taken over all
these points. The resulting distribution of the daugh-
ter nucleus with respect to the energy and the angular
PH
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Fig. 5. Theoretically predicted mass defects and their
experimental counterparts [1] for nuclei obtained in reac-
tions on a 208Pb target. The displayed experimental data
were borrowed from (line connecting circles) [9, 10], (line
connecting squares) [11], and (line connecting triangles)
[12].

momentum is taken to be new input information for
the next step of the evaporation cascade.

6.1. 1n Evaporation Channel

We have calculated the ratio Γn/Γf for 102 ≤ Z ≤
120 nuclei produced in cold-fusion reactions on 208Pb
and 209Bi targets. The calculations were performed
at the excitation energies shown in Fig. 4. We are
interested in precisely these energies since they corre-
spond to the maximal values of the cross sections for
evaporation-residue formation in the 1n channel [1,
7]. For Z < 108 nuclei, the energies E∗

CN fall between
the optimum energies for the 1n and 2n channels;
therefore, the quantity Wsur for these nuclei will be
less than the ratio Γn/Γf because of the effect of the
factor P1n [see (2)]. The excitation energies of Z >
108 nuclei nearly coincide with the optimum energies
for the 1n channel—for them,P1n is close to unity. We
assume that all nuclei are axisymmetric and mirror-
symmetric both in the ground state and at the saddle
point.

We have calculated the ratio Γn/Γf using nu-
clear properties as predicted by the theoretical models
from [9–12]. The energies of α-particle separation
and the ground-state nuclear masses are the only
experimental quantities with which one can compare
their theoretical predictions. In relation to what was
found in [11], a trend was revealed in [12] toward
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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4/3/ã; (lower panel) results obtained on the basis of the Fermi gas model with a = A/10 MeV−1,
af/an = 1.1, and ED = α0A

4/3/a.
a systematic increase in the distinction between the
masses predicted on the basis of a model obtained
by slightly modifying the finite-range-droplet-model
(FRDM) version involving microscopic corrections
that was used in [11] and the experimental values
deduced from an analysis of the α-decay energies
(Fig. 5). For 102 ≤ Z ≤ 106 nuclei, the data from [9,
10] should be preferred to the data from [11]. In our
opinion, the data from [9–11] are appropriate for Z >
106. For all Z > 102 elements, the results of the
calculations based on the macroscopic–microscopic
model [9, 10] differ from the experimental values of the
nuclear masses by 0.6–0.8 MeV.

Figure 6 displays the ratio Γn/Γf calculated for
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
the 1n channel by using the theoretical predictions
made in [11]. It is assumed that, with the excep-
tion of 300120, all nuclei are deformed in such a way
that βg.s.

2 > 0.04. The calculations were performed
with the level density obtained on the basis of the
Fermi gas model (7); the level density (10), where
the parameter a was determined from (14) and (17);
and the level density for which the parameter a was
determined from (14) and (18), with the damping of
the fission barrier being taken into account with the
aid of (9). Thus, we have taken into consideration all
methods for including the energy dependence of shell
effects in the level density. The damping factors ED
3
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Table 1.Ratio Γn/Γf calculated for a number of nuclei with (rows 1–9) the level density (10) by using various asymptotic
expressions for ã and various values for the factor allowing for the damping of shell effects and (row 10) the level density
obtained on the basis of the Fermi gas model {the energy dependence of shell effects in rows 1–9 was taken into account
by formula (14); the asymptotic expression ã = 0.073A+ 0.095A2/3 was obtained for the Woods–Saxon potential [23];
the data borrowed from [11] were used in the calculations; and the excitation-energy values are given in Fig. 4}

No. Method 258104 266108 284114 294118

1 ã = 0.114A+ 0.162A2/3, ED = 0,E′
D = 0.4A4/3/ã 2.9 × 10−3 2.6 × 10−3 4.2 × 10−1 1.8 × 10−1

2 ã = 0.073A+ 0.095A2/3, ED = 0,E′
D = 0.4A4/3/ã 3.1 × 10−2 2.9 × 10−2 8.2 × 10−1 8.7 × 10−1

3 ã = 0.073A+ 0.095A2/3, ED = 0,E′
D = 18.5 MeV 1.9 × 10−2 1.5 × 10−2 7.2 × 10−1 7.9 × 10−1

4 ã = 0.134A− 1.21 × 10−4A2, ED = 0,E′
D = 0.4A4/3/ã 1.5 × 10−2 1.4 × 10−2 7.4 × 10−1 8.3 × 10−1

5 ã = 0.134A− 1.21 × 10−4A2, ED = 0,E′
D = 18.5 MeV 5.5 × 10−3 9.0 × 10−3 6.9 × 10−1 7.8 × 10−1

6 ã = A/10,ED = 0,E′
D = 0.4A4/3/ã 1.8 × 10−2 1.5 × 10−2 7.4 × 10−1 8.2 × 10−1

7 ã = A/10,ED = 0,E′
D = 18.5 MeV 6.3 × 10−3 9.7 × 10−3 6.9 × 10−1 7.7 × 10−1

8 ãn = A/10, ãf = 1.1ãn, ED = 0,E′
D = 0.4A4/3/ãn 5.2 × 10−3 5.0 × 10−3 6.8 × 10−1 7.6 × 10−1

9 ãn = A/10, ãf = 1.1ãn, ED = 0,E′
D = 18.5 MeV 3.5 × 10−3 3.1 × 10−3 5.7 × 10−1 6.6 × 10−1

10 an = A/10, af = 1.1an, ED = 0.4A4/3/an, E′
D = 0 2.2 × 10−3 8.7 × 10−4 4.8 × 10−2 7.6 × 10−2
and E′
D (15) were used in the calculations with α0 =

0.4. For all nuclei considered here, these quantities
proved to be in the region around 18.5 MeV.

In the majority of the cases, the Γn/Γf values
computed with the level density obtained on the basis
of the Fermi gas model fall between the results that
the level density (10) gives in the case where use is
made of relations (14) and (17) at ED = 0 and in the
case where use is made of relations (14) and (18) at

Table 2. Factors of the collective enhancement of the
level density in the neutron and fission channels for the
displayed nuclei (the results correspond to the excitation-
energy values given in Fig. 4; the data from [11] and the
data from [12] for the 302120 nucleus, which is assumed to
be spherical in that article, were used in the calculations)

Nucleus Kn
vib Kn

rot Kf
vib Kf

rot

258104 2.3 107.0 3.7 158.2
266108 2.3 106.9 3.5 159.8
272110 2.0 91.2 3.1 150.9
284114 2.3 99.9 3.2 153.3
290116 2.4 108.1 3.2 158.1
294118 2.2 102.5 3.3 160.9
300120 2.3 1.0 2.5 134.3
302120 2.4 137.7 2.7 160.1
302120 [12] 2.4 1.0 2.7 134.5
PH
ED = E′
D. From Fig. 6, it can easily be seen that, for

deformed nuclei, the dependence of the results on the
method for calculating the level density is rather mod-
erate. The ratio Γn/Γf changes quite modestly as the
charge number Z increases from 104 to 112 (in just
the same way as in [30]); it increases approximately by
an order of magnitude as we go over from the 272110
nucleus, where the neutron shell is filled at N = 162,
to the Z = 114 nucleus and reaches a maximum in
the region Z = 114–118. This indicates that nuclei
with these values of Z are highly stable with respect
to fission. That the survivability takes large values for
the 284114, 290116, and 294118 nuclei is explained by
the proximity of the numbers of neutrons in them to
the theoretically predicted magic number of N = 178
[11, 12]. While, in the lower and the upper panel
of Fig. 6, the ratio Γn/Γf has a maximum for the
294118 nucleus, in the middle panel, the maximum
corresponds to 284114. This distinction is due to the
use of the different methods for taking into account
the energy dependence of shell effects.

It should be emphasized that the neutron-separa-
tion energy and the height of the fission barrier are of
greatest importance in determining the ratio Γn/Γf
for each specific compound nucleus. If the quantity
(Bn −Bf ) takes close values in neighboring nuclei,
the values of Γn/Γf for these nuclei will also be close.

Table 1 gives the values of the ratio Γn/Γf that
were calculated with the level density (10), where the
energy dependence of shell effects in a was taken into
account according to (14), and with different damping
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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Fig. 7. SurvivabilityWsur calculated with the Γn/Γf values given in the lower panel of Fig. 6. The solid curve represents the
Wsur values obtained in [5].
factors and different asymptotic expressions for the
level-density parameter. In the calculations with the
asymptotic form of ã for the Woods–Saxon potential,
the values of Γn/Γf are approximately one order of
magnitude greater than those obtained by using ex-
pression (17) for ã. In order to obtain close values of
Γn/Γf , smaller values of ED must be taken in the
case of the Woods–Saxon potential. By comparing
the tenth and the eighth row in Table 1, one can
arrive at the conclusion that the ratio Γn/Γf is more
sensitive to the damping of shell effects in the fission
barrier than to the damping of shell effects in the level
density.

The factors that take into account the collective
enhancement of the level density in the neutron and
fission channels are given in Table 2 for some nuclei
at energies making a dominant contribution to the
integrals in (5) and (6). In deformed nuclei, the
collective-enhancement contribution is characterized
by the factor Kn

coll/K
f
coll ≈ 0.4–0.5. At the saddle

point, collective enhancement is of importance for all
nuclei, while, in the ground state, it is of importance
only for spherical ones, Krot = 1; therefore, we have
Kn

coll/K
f
coll ≈ 0.006 in the latter case. For spher-

ical (magic) superheavy nuclei, this circumstance
severely reduces the cross section for evaporation-
residue formation [31], and stabilizing shell effects
in the ground state cannot compensate for this. As
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
can be seen from Fig. 6, the calculation within the
Fermi gas model (Kcoll = 1) leads to a much greater
value of Γn/Γf for the spherical nucleus 300120. The
production of spherical superheavy nuclei cannot
be reliably predicted without properly taking into
account the contribution of collective effects to the
level density. However, there arises the question of
whether an excited nucleus having a nonzero angular
momentum can be considered as a spherical one.

Since the distinction between the survivability
Wsur and the ratio Γn/Γf reduces exclusively to the
factor P1n, which is independent of the parametriza-
tion of the level density, we have calculated Wsur only
for the values of Γn/Γf that were obtained by using
the level density within the Fermi gas model (Fig. 7).
We have employed the P1n values identical to those in
[21]. In the 1n channel, the majority of odd nuclei have
a higher survivability than the neighboring even–even
nuclei. For 106 ≤ Z ≤ 112 nuclei, the values of Wsur
that were calculated here are close to the estimates
obtained in [5, 7], the latter faithfully reproducing
the experimental values of σER [5, 7]. For 256No, our
result for Γn/Γf is close to that which is given in the
first article cited in [1]. It should be emphasized that,
from our calculations, it follows that survivability is
not the reason for the experimentally observed sharp
decrease in the cross section σER with increasing
charge number Z of superheavy nuclei since Wsur
3
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Fig. 8. As in Fig. 6 according to the calculations employing the data borrowed from [12].
changes only within one order of magnitude, while
the cross section σER decreases by four orders of
magnitude as the charge number changes from Z =
104 to Z = 112 [1, 2].

If the level density is taken in the simplified form
ρ(E∗

CN) = const · exp[2
√
aE∗

CN], it can be found
from (4)–(6) that [19]

Γn(E∗
CN)

Γf (E∗
CN)

=
4A2/3(E∗

CN −Bn)
k(2[a(E∗

CN −Bf (E∗
CN))]1/2 − 1)

(25)

× exp[2a1/2((E∗
CN −Bn)1/2

− (E∗
CN −Bf (E∗

CN))1/2)],

where k = 9.8 MeV. In [7], the survivabilityWsur was
calculated by using this formula and the value of
a = A/12 MeV−1. The results obtained in this way
are close to our results displayed in Fig. 7. Since
P

we have dealt with modest values of J and E∗
CN,

ρ(E∗
CN, J) values calculated by different methods are

approximated in (25) by appropriately choosing the
parameter a.

Figure 8 shows Γn/Γf values computed in the
same way as those in Fig. 6 but with the aid of the
theoretical predictions from [12]. By comparing the
data in Fig. 6 and Fig. 8, one can easily see that the
predictions made in [11] and [12] lead to close results
for all deformed nuclei, with the exception of 300120
and 302120. Distinctions within a factor of two to three
that are observed for some nuclei are within the errors
in determining the parameters involved. For evenZ ≥
108 nuclei, the use of the predictions from [12] leads
to Γn/Γf values smaller than those obtained with the
predictions from [11], while, for Z ≤ 106 nuclei, the
values of Γn/Γf are somewhat larger in the former
than in the latter case. Since our consideration here
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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Fig. 9. As in Fig. 6 according to the calculations employing the data borrowed from [9, 10].
was more accurate for small E∗
CN, the results that we

obtained for the Z = 110 and 112 nuclei differ slightly
from those in [21]. In the calculation with the predic-
tions from [12], the distinction between the values of
Γn/Γf for 270110 and 272110 is greater than in the
calculation employing the data from [11]. The N =
162 neutron shell at Z = 110 stands out distinctly if
use is made of the data from [12] and the level density
(10). But if we employ the data from [11], the ratio
Γn/Γf becomes greater at Z = 111 than at Z = 110
in all versions of the calculation. Irrespective of the
computational method, the predictions in [12] lead to
a maximum in the ratio Γn/Γf at 290116 for all nuclei
considered here.

The calculations employing the theoretical predic-
tions from [9, 10] lead to greater values of the ratio
Γn/Γf for the Z = 102, 104, and 106 nuclei and a
close result for the Z = 108 nucleus, but they yield
OF ATOMIC NUCLEI Vol. 66 No. 2 200
much smaller values of Γn/Γf for the Z ≥ 110 nuclei
(see Fig. 9). The ratio Γn/Γf begins to grow from
Z = 116, but, at Z = 118, it is approximately two
orders of magnitude smaller than the values in Figs. 6
and 8. This result is independent of the method for
calculating the level density. For the Z = 112 and
Z = 114 nuclei, the values of Γn/Γf are considerably
smaller in Fig. 9 than in Figs. 6 and 8. The N = 162
neutron shell at Z = 110 does not stand out among
the nuclei being considered.

The analyses performed in [9–12] predict nearly
the same neutron binding energies but different fis-
sion barriers. The distinction between the results ob-
tained with the data from [9, 10] and with the data
from [11, 12] for Z ≥ 114 can be explained by the
distinction between the predictions for the behavior
of the fission barrier with increasing charge number
of the compound nucleus. In [9, 10], (Bn −Bf ) re-
3
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CN for the 258104,

266108, 272110, and 276112 nuclei obtained in the reac-
tions on a 208Pb target. The calculations employed the
data borrowed from [11] and relied either (solid curve) on
the Fermi gas model with a = A/10 MeV−1, af/an =

1.1, and ED = α0A
4/3/a or on the model including col-

lective enhancement in two versions, that with (dotted
curve) ã determined by (17),E′

D = α0A
4/3/ã, andED =

0 and that with (dashed curve) ã determined by (18) and
ED = E′

D = α0A
4/3/ã. In the calculations, the angular

momentum was everywhere set to J = 0.

mains rather large for Z ≥ 114, while, in [11, 12], it is
very small. Because of high excitation energies, shell
corrections allowing for damping become close for
Z ≤ 108 in all predictions. This explains a relatively
small distinction between the values of Γn/Γf that
were obtained by using the different predictions for
nuclear properties.

Figure 10 displays the ratio Γn/Γf as a function
of E∗

CN. This dependence was obtained with the data
from [11] by using various methods for computing the
level density and for taking into account the energy
dependence of shell effects. We can see that, for fixed
E∗

CN, the values of Γn/Γf vary within one order of
magnitude as one goes over from one method for
calculating the level density to another. By choosing
different values of ED, we can reduce or increase
P

this factor. The results obtained on the basis of the
Fermi gas model with an = A/10 MeV−1 and af =
1.1an fall between the results of the two calculations
employing the level density given by (10). The values
of Γn/Γf that were calculated with the aid of (10)
depend onE∗

CN more weakly than those computed on
the basis of the Fermi gas model, this trend becoming
more pronounced with increasing mass number of
nuclei.

6.2. xn Evaporation Channel, x ≥ 2

Despite a relatively small difference of the values
of Wsur that were obtained by the different meth-
ods for calculating the level density in the 1n chan-
nel, one can expect that, for the xn channel, x ≥
2, the corresponding difference of the values of Wsur

will be greater. In Table 3, we present the values of
Wsur that were calculated with the data from [11]
by using the level density according to the Fermi
gas model with an = A/10 MeV−1, af = 1.1an, and
ED = α0A

4/3/an and according to the model includ-
ing collective enhancement on the basis of (17) at
E′
D = α0A

4/3/ã andED = 0. The values ofWsur that
were obtained in [7] with the aid of (25) are the closest
to those corresponding to the use of the model in-
cluding the collective enhancement of the level den-
sity. For the 2n channel, the distinction between the
results calculated by the different methods is within
one order of magnitude. It grows with increasing x.
In the case of the 3n and 4n channels, this distinction
becomes as great as two orders of magnitude. It fol-
lows that, in the case of the xn channel (x ≥ 2), Wsur

becomes sensitive to the method for calculating the
level density and to the choice of parameter values.
For the sake of comparison, we also quote the results
obtained with the data from [12] at Z = 105. With
a smaller value of the parameter a in the Fermi gas
model, one can arrive at the values of Wsur that were
obtained by using the model taking into account the
collective enhancement of the level density. If we set
E′
D = 16.5 MeV for the 292114 nucleus in the 4n

channel, the survivabilityWsur calculated on the basis
of formulas (10) and (17) becomes two orders of mag-
nitude less than that atE′

D = α0A
4/3/ã, approaching

the Wsur value obtained in [7]. While the damping
factor in the form (15) with α0 = 0.4 was deduced
from an analysis of data at small E∗

CN, the damping
factor E′

D = 16.5 MeV [13, 15] was obtained from
an analysis of the (4–5)n channels in hot-fusion re-
actions on actinide targets. In these reactions, the
number of neutrons in a compound nucleus is usually
greater than in reactions involving 208Pb and 209Bi
nuclei.
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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Table 3. Survivabilities calculated for specific compound nuclei at the displayed values of the excitation energyE∗
CN {the

calculations were performed on the basis of the Fermi gas model by using the values of an = A/10 MeV−1, af/an = 1.1,
and ED = 0.4A4/3/an (W I

sur) and on the basis of the model taking into account the collective enhancement of the
level density with ã given by formula (17) at E′

D = 0.4A4/3/ã and ED = 0 (W II
sur) (in these calculations, we used the

predictions borrowed from [11]); the results obtained by using the predictions presented in [12] are specifically highlighted;
for 292114 (W II

sur), the calculation of the 4n channel at E′
D = 16.5 MeV was also performed; the results calculated in [7]

by formula (25) with the predictions given in [11] are denoted by W III
sur}

Reaction E∗
CN, MeV W I

sur W II
sur W III

sur

50Ti + 208Pb → 257104 + 1n 16.1 8.0 × 10−5 1.3 × 10−4 9 × 10−5

50Ti + 208Pb → 256104 + 2n 21.5 2.1×10−5 1.0 × 10−5 4 × 10−5

50Ti + 208Pb → 255104 + 3n 29.5 1.5×10−8 3.1 × 10−8 3 × 10−7

50Ti + 209Bi → 258105 + 1n 16.2 1.0 × 10−4 1.5 × 10−4 3 × 10−4

1.3 × 10−4 [12] 2.3 × 10−4 [12]
50Ti + 209Bi → 257105 + 2n 21.9 1.0 × 10−6 6.8 × 10−6 4 × 10−5

1.2 × 10−5 [12] 3.6 × 10−5 [12]
50Ti + 209Bi → 256105 + 3n 30.0 2.0 × 10−9 2.9 × 10−8 3 × 10−7

3.0 × 10−8 [12] 2.4 × 10−7 [12]
54Cr + 208Pb → 261106 + 1n 16.0 7.3 × 10−5 1.8 × 10−4 1 × 10−4

54Cr + 208Pb → 260106 + 2n 22.0 7.0 × 10−6 3.7 × 10−6 3 × 10−5

58Fe + 208Pb → 265108 + 1n 15.5 2.0 × 10−4 5.8 × 10−4 4 × 10−4

58Fe + 208Pb → 264108 + 2n 19.5 2.6 × 10−6 5.4 × 10−6 1 × 10−5

84Ge + 208Pb → 290114 + 2n 18.5 6.0 × 10−2 9.1 × 10−2 2 × 10−1

48Ca + 244Pu → 288114 + 4n 37.0 7.0 × 10−6 1.2 × 10−4 8.6 × 10−7

4.9 × 10−6 [E′
D = 16.5 MeV]
While, in cold-fusion reactions, the survivabilities
calculated within the different approaches are nearly
identical, in hot-fusion reactions (x ≥ 2), they greatly
depend on the computational method and on the pa-
rameters used. In all probability, theE∗

CN dependence
of the damping factor E′

D becomes more pronounced
with increasing number of neutrons. We can assume
that, for the 3n channel, the factor that takes into
account the damping of shell effects is less than that
in (15), approaching the value of 16.5 MeV quoted
in [13, 15].

7. CONCLUSION

The survivability of even–even and odd super-
heavy nuclei has been analyzed on the basis of various
methods for calculating the level density, the neutron-
and fission-channel parameters obtained within var-
ious theoretical models being used in this analysis.
The calculations for the 1n channel with the data
from [11, 12] have revealed that the ratio Γn/Γf de-
creases as Z increases up to Z = 112, whereupon it
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
strongly increases at Z = 114, which suggests the
existence of a nuclear-stability region. The calcu-
lations employing the data from [9–12] give close
results for Z < 114. For Z ≥ 114, the calculations
with the data from [9, 10] lead to considerably lower
values of Γn/Γf than the calculations with the data
from [11, 12] and, accordingly, smaller cross sections
for evaporation-residue formation. As the charge Z
changes fromZ = 102 toZ = 120,Wsur varies within
two orders of magnitude. For 104 < Z < 112 nu-
clei, the survivability takes nearly the same value.
Since the experimental values of the cross section
for evaporation-residue formation [1, 2] strongly de-
crease with increasing Z (approximately by four or-
ders of magnitude as the charge number grows from
Z = 104 toZ = 112), we can therefore conclude that,
in cold-fusion reactions, which are considered here,
a decrease in the complete-fusion probability with
increasing Z is the main reason for the occurrence of
this phenomenon.

Since the results for xn channels (x ≥ 2) are
highly sensitive to the choice of model used in the
3
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calculations, only those calculations of Γn/Γf are
of interest that employ a common set of parameters
and assumptions for a great number of reactions.
By comparing the results of such calculations with
experimental data, one can answer the question of
whether the choice of statistical-model parameters
was correct.
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Abstract—A semimicroscopic version of the self-consistent theory of finite Fermi systems is proposed.
In this approach, the standard theory of finite Fermi systems is supplemented with relations that involve
the external values of the invariant components of the Landau–Migdal amplitude and which follow from
microscopic theory. The Landau–Migdal amplitude at the nuclear surface is expressed in terms of the off-
shell T matrix for free nucleon–nucleon scattering at the energy E equal to the doubled chemical potential
of the nucleus being considered. The strong energy dependence of the free T matrix at low E changes
the properties of nuclei in the vicinity of the nucleon drip line. It is shown that, upon taking into account
the energy dependence of the effective interaction, the neutron drip line is shifted considerably toward
greater neutron-excess values. This effect is illustrated by considering the example of the tin-isotope chain.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Until the present time, analyses of the properties
of nuclei in the vicinity of the nucleon drip line, as well
the calculations of the position of the drip line itself,
have been performed on the basis of phenomenologi-
cal approaches exclusively. These approaches employ
parameters whose values are fitted to the properties
of stable nuclei. This is the weakest point in applying
phenomenological approaches to nuclei occurring far
off the beta-stability valley.

It is well known that nucleon pairing is of impor-
tance for nuclei in the vicinity of the nucleon drip
line, where the chemical potential µ of the neutron
or the proton subsystem vanishes. Nuclear pairing
ensures additional stability of even–even nuclei, with
the result that there arises a region where even nuclei
are stable, but where odd ones are unstable. In the
majority of studies aimed at calculating drip lines,
attention is therefore given primarily to exploring spe-
cial features of nucleon pairing at small values of
the chemical potential µ [1–3]. This involves con-
sidering problems such as those of correctly taking
into account continuum states, comparing exact Bo-
golyubov solutions with solutions found within the
Bardeen–Cooper–Schrieffer (BCS) approximation,
and contrasting surface against volume pairing. At
the same time, the possibility that the parameters

1)Istituto Nazionale di Fisica Nucleare, Sezione di Catania, 57
Corso Italia, I-95129 Catania, Italy.

2)Universita di Catania, Dipartimento di Fisica, 57 Corso
Italia, I-95129 Catania, Italy.
1063-7788/03/6602-0233$24.00 c©
of the effective pairing interaction themselves may
change in the vicinity of the nucleon drip line is
disregarded, to say nothing about the possibility of
changes in the interaction components responsible
for the mean nuclear field.

In the present study, we consider precisely the
last possibility and focus on exploring the features of
the neutron mean field in the vicinity of the neutron
drip line that are associated with this possibility.
We will analyze the scalar components of the ef-
fective nucleon–nucleon interaction that generate
the central mean field. Our consideration will be
based on the theory of finite Fermi systems [4, 5],
which is supplemented with relations that involve
external values of the amplitude for the interaction
of Landau–Migdal quasiparticles and which follow
from microscopic theory [6]. In order to distinguish
the present version from the standard theory of finite
Fermi systems, which employs a purely phenomeno-
logical Landau–Migdal amplitude, we refer to this
version as a semimicroscopic one.

As we will see below, the neutron–neutron com-
ponent of the interaction does indeed undergo consid-
erable changes in the surface region of nuclei at small
values of the chemical potential µn, with the result
that the mean neutron potential becomes deeper. This
in turn may lead to a noticeable shift of the nucleon
drip line. Qualitatively, this effect can be analyzed on
the basis of the self-consistent version of the theory
of finite Fermi systems, where it is required, as in
the theory of many-body systems, that the single-
particle mass operator be consistent with the effec-
tive interaction [7]. Such an analysis is performed in
2003 MAIK “Nauka/Interperiodica”
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Section 2 by using the self-consistency condition in
the simplified form where the self-consistent mean
nuclear field is expressed in terms of the Landau–
Migdal amplitude. For the scalar components of this
amplitude, which determine the central part (domi-
nant one) of the mean-field potential, an interpolation
formula that is controlled by two parameters (the
external and the internal value of this amplitude) is
used in the theory of finite Fermi systems [4]. It was
shown in [6] that, for stable nuclei, in which case one
can set µn = µp = µ, the external values of Landau–
Migdal amplitudes can be expressed in terms of the
off-shellT matrix for free nucleon–nucleon scattering
at the negative energy value of E = 2µ. For nuclei in
the vicinity of the nucleon drip line, where the neutron
chemical potential differs significantly from the pro-
ton chemical potential, different isotopic components
of the Landau–Migdal amplitude appear at different
values of energy. In particular, the neutron–neutron
component is taken at the energy of E = 2µn. The
neutron chemical potential µn tends to zero as one
approaches the neutron drip line. Since the free two-
neutron T matrix has a pole near the origin in the
complex plane of the variableE, the external constant
of interaction of two neutrons must change in this
region from one nucleus to another, increasing in
magnitude as we move toward the drip line. As a re-
sult, the neutron mean field for nuclei in the vicinity of
the drip line becomes deeper, which shifts the position
of the drip line itself toward greater neutron-excess
values.

For our specific calculations, we made use of a
somewhat modified quasiparticle Lagrangian method
[8, 9]. By this, we mean that version of the self-
consistent theory of finite Fermi systems in which
the effects of the energy dependence of quasiparticle
interaction are taken into account by means of a
quasiparticle Lagrangian rather than by means of the
Hartree–Fock method employing effective forces [10]
and relying on the Hamiltonian formalism. Themodi-
fication that must be introduced in the quasiparticle
Lagrangian method for nuclei in the vicinity of the
nucleon drip line consists, first, in that isotopic in-
variance is violated here, whence it follows that the
isotopic structure of the effective Lagrangian must
be more complicated than for stable nuclei, and, sec-
ond, in that it is necessary to take into account the
dependence on the chemical potentials µn and µp
in those Lagrangian parameters that are related to
the external values of the invariant Landau–Migdal
interaction amplitudes. An account of this modifica-
tion of the quasiparticle Lagrangian method is given
in Section 3. Specific calculations are performed for
the chains of tin isotopes. The results are presented
in Section 4. Section 5 contains a discussion of the
results and a brief summary.
P

2. CONDITION OF SELF-CONSISTENCY
OF THE THEORY OF FINITE FERMI

SYSTEMS FOR NUCLEI IN THE VICINITY
OF THE NUCLEON DRIP LINE

The exact form of the many-body consistency
condition [7] between the mass operator Σ(r, r′; ε),
which is nonlocal and which depends on the energy
ε; the effective interaction, and the single-particle
Green’s function G for a bounded finite Fermi system
can be represented as

∂Σ(r, r′; ε)
∂R

=
∫

dε′

2πi
dr1dr′1U(r, r′, r1, r′1; ε, ε

′) (1)

× ∂G(r1, r′1; ε
′)

∂R1
,

where we have introduced the center-of-mass coordi-
nates R = (r+r′)/2 and R1 = (r1+r′1)/2 and where
U is theNN-interaction block irreducible in the par-
ticle–hole channel. The obvious spin and isospin in-
dices are omitted in (1).

In Hartree–Fock theory involving effective forces
[10], one disregards the energy dependence of the
effective nucleon–nucleon interaction. In this case,
themass operatorΣ coincides with theHartree–Fock
mean field UHF (which is nonlocal, in general) and
integration with respect to energy in (1) is performed
explicitly, which leads to the Hartree–Fock relation

∂UHF(r, r′)
∂R

=
∫

dr1dr′1UHF(r, r′, r1, r′1)
∂ρ̂(r1, r′1)

∂R1
,

(2)

where ρ̂(r, r′) is the density matrix.
A renormalization of the consistency condition (1)

in accordance with ideas of Fermi liquid theory due
to Landau [11, 12]—that is, its formulation in terms
of quasiparticles, along with the substitution of the
Landau amplitude Γω for the interaction block U—
was performed in [9]. Here, we only present the idea
of this renormalization and its result. By using the
identity

∂G
∂R

= GG ∂Σ
∂R

, (3)

we recast the consistency condition (1) into the form

∂Σ
∂R

= UGG ∂Σ
∂R

, (4)

which is convenient for performing the Landau renor-
malization.

As usual, the symbolic multiplication in Eqs. (3)
and (4) implies integration with respect to intermedi-
ate coordinates and energies and summation over the
spin and isospin indices. Following further the same
line of reasoning as in Landau Fermi liquid theory,
we represent the Green’s function as the sum of a
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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quasiparticle (pole) and a regular component: G =
Gq + GR. The quasiparticle Green’s function obeys
the Dyson equation

(ε− ε0
p − Σq)Gq = 1, (5)

which involves the quasiparticle mass operator

Σq(r,k; ε) = Σ0(r) +
1

(k0
F)2

kΣ1(r)k +
ε

ε0
F

Σ2(r). (6)

Here, we have used the notation adopted in [9], where
the normalization parameters in (6) were expressed
in terms of the inverse density of states at the Fer-
mi surface, C0 = (dn/dεF)−1; that is, k0

F = π/(mC0)
and ε0

F = (k0
F)2/(2m). We will employ the value of

C0 = 300 MeV fm3, which was recommended in [5].

The first two terms in Σq are familiar in Hartree–
Fock theory involving velocity-dependent effective
forces (for example, Skyrme forces). The third term,
Σ2(r), reflects the energy dependence that is taken
into account in the theory of finite Fermi systems, but
which is disregarded in the Hartree–Fock approach.
It determines the coordinate-dependent Z factor

Z(r) =
(
1 − Σ2(r)/ε0

F

)−1
. (7)

Following the Landau recipe, we represent the
particle–hole propagator (the product of two Green’s
functions) in (4) as the sum

GG = A + B, (8)

where A is a singular part of the particle–hole prop-
agator (it corresponds to the product of two quasi-
particle Green’s functions), while B does not involve
singularities that are close to the Fermi surface. The
standard Landau renormalization of Eq. (4) reduces it
to a form that includes only quasiparticle characteris-
tics; that is,

∂Σq

∂R
= ΓωA

∂Σq

∂R
, (9)

where the quasiparticle-interaction amplitude Γω
satisfies the equation

Γω = U + UBΓω. (10)

In [9], Eq. (9) was recast into a form that is analo-
gous to the Hartree–Fock relation (2); that is,

∂Uq(r, r′; ε)
∂R

=
∫

dr1dr′1F (r, r′, r1, r′1; ε, µ) (11)

× ∂ρ̂q(r1, r′1)
∂R1

,

where

Uq(r, r′; ε) = Z1/2(r)Σq(r, r′; ε)Z1/2(r′) (12)
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is the energy-dependent quasiparticle mean field and
ρ̂q is the quasiparticle density matrix. The Landau–
Migdal interaction amplitude

F (r1, r2, r3, r4; ε, ε′) (13)

=
√
Z(r1)Z(r2)Z(r3)Z(r4)Γω(r1, r2, r3, r4; ε, ε′)

also depends on the energies of incoming and outgo-
ing particles.

As was shown in [9], the quasiparticle density
matrix is related to the particle density matrix via the
nonlocal quasiparticle form factor êq as

ρ̂q = êq ρ̂. (14)

In just the same way as above, symbolic multipli-
cation in Eq. (14) includes integration with respect
to intermediate coordinates. By virtue of the Lan-
dau–Luttinger theorem, which states that the num-
ber of particles is equal to the number of quasiparti-
cles, the integral of êq with respect to all coordinates
must be equal to unity. It should be noted that the
self-consistency condition (11) includes, in addition
to relation (2) of the Hartree–Fock type for the mean
field, the consistency condition for the Z factor, the
latter being obtained by differentiating relation (1)
with respect to energy [13].

With the aim of performing a qualitative analysis
of energy-dependence effects for nuclei in the vicinity
of the nucleon drip line, we will simplify the self-
consistency condition (11) to the maximum possible
degree, disregarding the nonlocality of the effective
interaction and replacing the quasiparticle form factor
by unity. Explicitly introducing isotopic indices and
energy variables, we represent the self-consistency
condition simplified in this way as follows:

∂Un(r;µn)
∂r

=
∫

Fnn(r, r′;µn, µn)
∂ρn
∂r′

dr′ (15)

+
∫

Fnp(r, r′;µn, µp)
∂ρp
∂r′

dr′,

∂Up(r;µp)
∂r

=
∫

Fpn(r, r′;µp, µn)
∂ρn
∂r′

dr′ (16)

+
∫

Fpp(r, r′;µp, µp)
∂ρp
∂r′

dr′.

For nuclei in the beta-stability valley, one can ap-
proximately set µn = µp = µ and make use of the iso-
topically invariant Landau–Migdal amplitude whose
central part has the form

F (r, r′) = C0[f0(r) + f ′
0(r)τ1 · τ2 (17)

+ (g0(r) + g′0(r)τ1 · τ2)σ1 · σ2]δ(r − r′),

where we have used the notation adopted in the the-
ory of finite Fermi systems and where σ and τ are,
respectively, the spin and isospin Pauli matrices.
3
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The central (main) components of the potentials
Un,p(r) are determined by the scalar components f
and f ′ of the Landau–Migdal amplitude (17) as

Fnn(r, r′) = Fpp(r, r′) = C0[f0(r) + f ′
0(r)]δ(r − r′),

(18)

Fnp(r, r′) = Fpn(r, r′) = C0[f0(r) − f ′
0(r)]δ(r − r′).

(19)

The scalar–isoscalar amplitude f0(r) plays a
dominant role in nuclei featuring a moderately small
neutron excess N − Z. Within the theory of finite
Fermi systems, it was found that this amplitude
greatly depends on the observation point r. In the
monograph of Migdal [4], it was proposed to describe
this dependence by the simple interpolation formula

f0(r) = f ex + (f in − f ex)
ρ+(r)
ρ0

, (20)

where ρ+(r) = ρn(r) + ρp(r) is the isoscalar density
and ρ0 = ρ+(r = 0). The subscript “0,” which la-
bels the zerоth Landau harmonic, is suppressed on
the right-hand side of Eq. (20) and in what follows
in order to avoid encumbering the presentation. It
should be emphasized that the density dependence
of phenomenological Skyrme forces [10] is consistent
with the ansatz in (20). There also exist alternative
versions of the interpolation formula for f0(r) where
the ratio ρ/ρ0 on the right-hand side of Eq. (20) is
replaced by the function (ρ/ρ0)α with α �= 1. The
value of α = 1/3 or α = 2/3 is considered most often
because it is the Fermi momentum kF ∝ ρ1/3 rather
than the density that is a characteristic parameter in
the theory of many-body systems. Use is also made
of more complicated forms of the density dependence
of the amplitude f0 [3, 9, 14, 15]; however, a feature
that is common to all of these versions of the density
dependence of the scalar–isoscalar amplitude is that
the dimensionless parameters f ex and f in differ dra-
matically: f ex 	 −3, whereas the internal constant
f in is close to zero. Such parameter values were first
found in [16] from a global analysis of the quadrupole
moments of nuclei and isotopic shifts of atomic levels
and levels of mesic atoms that was performed on the
basis of the theory of finite Fermi systems. These
values have a simple qualitative explanation: on one
hand, a strong attraction between low-energy nucle-
ons in a vacuum leads to a large negative value of the
external constant f ex; on the other hand, the condi-
tion f in > −0.5 must be satisfied within a nucleus for
the emergence of the Pomeranchuk instability to be
avoided [4].

It should be noted that, in [3, 15, 17, 18], the
density dependence of the scalar–isovector amplitude
f ′
0(r)was investigated in detail by using a new version
P

of the density-functional method. Although such a
dependence was taken there in a form that is more
complicated than that in (20), the amplitude f ′

0(r) can
be roughly approximated by the expression

f ′
0(r) = f ′ex + (f ′in − f ′ex)

ρ+(r)
ρ0

, (21)

which is similar to (20).
The analysis of binding energies and radii in long

isotopic chains that was performed in [3, 17, 18] led
to the conclusion that the distinction between the
parameters f ′in and f ′ex is also significant, but that
it is not as dramatic as in the isoscalar case.

In principle, relations of the type in (20) can also be
written for the spin-dependent terms in (17), but no
indications of a considerable distinction between the
external and internal values of these amplitudes have
been revealed so far. In view of this, it is assumed,
within the theory of finite Fermi systems, that gin =
gex = g and g′in = g′ex = g′.

It was mentioned in the Introduction that the
external values of the Landau–Migdal amplitudes
can be calculated in terms of the off-shell T matrix
for free nucleon–nucleon scattering at the negative
energy of E = 2µ [6]. Reasonable agreement with
known phenomenological results was obtained at
a chemical-potential value of µ 	 −8 MeV, which
is peculiar to stable nuclei. We note that the phe-
nomenological results in question depend some-
what on the type of interpolation formula for f0(r).
The best agreement was achieved for the parame-
ters of spin-independent amplitudes corresponding
to the energy functional in [3] and for the spin-
dependent amplitudes from [19]. The latter were
found from a detailed analysis of a vast body of
data on the magnetic properties of nuclei neigh-
boring 208Pb, pion and rho-meson exchange being
explicitly taken into account in this analysis. This
agreement with the aforementioned phenomenolog-
ical values revealed that the relation F → T (2µ),
which is asymptotically correct at long distances
from a nucleus for stable nuclei, can be applied
even in the immediate vicinity of the nuclear sur-
face.

The explicit expressions for the external values of
the scalar amplitudes being considered are

f ex
0 =

3
16

[t0(E = 2µ) + t1(E = 2µ)], (22)

f ′ex
0 =

1
16

[t0(E = 2µ) − 3t1(E = 2µ)], (23)

where t0 and t1 are dimensionless values of the off-
shell T matrix for the total spin of two nucleons that is
equal to S = 0 and S = 1, respectively, at zero value
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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Fig. 1. Sign-reversed external values f ex
nn(E), f ex

pp(E), and f ex
np(E) of the Landau–Migdal amplitude (the last one was divided

by 10). The solid segments of the curves represent these amplitudes in those energy intervals that are peculiar to tin isotopes.
of the momenta of all nucleons.3) For stable nuclei,
isospin symmetry holds to a fairly high precision, and
one can set

f ex
nn = f ex

pp = f ex
0 + f ′ex

0 =
1
4
t0(E = 2µ), (24)

f ex
np = f ex

0 − f ′ex
0 =

1
8
[t0(E = 2µ) + 3t1(E = 2µ)].

(25)

For nuclei in the vicinity of the nucleon drip line,
the neutron and proton chemical potentials differ sig-
nificantly: one of these approaches zero, while the
other, on the contrary, grows in magnitude. Since
both free amplitudes t0(E) and t1(E) depend sharply
on the energy E at low E, isospin symmetry is vi-
olated, with the result that there arises a situation
where f ex

nn �= f ex
pp. As before, either of these amplitudes

can be found from relation (24), but this is done
at E = 2µn for the interaction of two neutrons and
at E = 2µp for the interaction of two protons. The
neutron–proton amplitude f ex

np is found from (25) at
E = µn + µp. For the sake of definiteness, we will
consider the neutron drip line. It is then precisely the
neutron chemical potential that tends to zero, and,
of the three amplitudes being considered, only f ex

nn

3)A transition to these dimensionless values is accomplished
with the aid of the same constant C0 as in the case of the
amplitude F .
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undergoes sizable changes. This can be seen in Fig. 1,
which displays various isotopic components of the
external Landau–Migdal amplitude. The quantities
t0 and t1, which appear in Eqs. (24) and (25), were
found by solving the Lippmann–Schwinger equation
for the free T matrix with the Paris nucleon–nucleon
potential [20]. In order to obtain a convenient graphi-
cal representation, we took sign-reversed dimension-
less amplitudes and reduced the component f ex

np by
a factor of 10. The amplitudes f ex

nn and f ex
pp lie on

the same curve, but they correspond to its different
segments. The arrows indicate intervals within which
the energy E appearing in the definition of a given
component changes as we move along the isotopic
chain of tin. As can be seen, the amplitudes f ex

np and
f ex
pp change by not more than 5 to 10%, whereas the

amplitude f ex
nn undergoes changes as great as 30%.

The simplified self-consistency conditions (15)
and (16), taken together with the Landau–Migdal
amplitude F in the form specified by Eqs. (17),
(20), and (21), can easily be integrated in an explicit
form for a spherical nucleus. By way of example, we
indicate that the result for the neutron potential is

Un(r) = C0

[
f ex
nnρn(r) (26)

+ (f in
nn − f ex

nn)
ρn(r)
2ρ0

(ρ+(r) + ρp(r)) + f ex
npρp(r)
3
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+ (f in
np − f ex

np)
ρp(r)
2ρ0

(ρ+(r) + ρp(r))
]
.

The analogous expression for the proton potential
Up(r) can be obtained from (26) by interchanging the
subscripts “n” and “p.” Needless to say, the resulting
quantity must be supplemented with the Coulomb
potential.

In order to assess the scale of the energy (more
precisely, chemical-potential) dependence of the ex-
ternal interaction amplitude f ex

nn, we will find the neu-
tron potential at the center of the nucleus being con-
sidered, Un(0). For the sake of simplicity, we make
use of the approximate relations ρn(0) = (N/A)ρ0

and ρp(0) = (Z/A)ρ0. We then obtain

Un(0) =
1
2
C0ρ0

[
f ex
nn

N2

A2
+ f in

nn

(
1 − Z2

A2

)
(27)

+f ex
np

Z2

A2
+ f in

np

(
1 − N2

A2

)]
.

Let us evaluate the change in µn in response to the
addition of one or two neutrons to a heavy nucleus.
For the sake of simplicity, we will disregard, for the
time being, pairing effects and also assume that neu-
trons are added to an unfilled j level. The variation in
µn is then equal to the change in the energy of the last
level whose quantum numbers are λ0:

δµn = δελ0 . (28)

In a sufficiently heavy nucleus, one can approximately
set

δελ0 = δUn(0). (29)

Upon varying expression (27), we arrive at the sum of
terms,

δUn(0) = δU1 + δU2, (30)

which are of different origins. The first stems from a
variation of the quantities N and A, while the second
arises owing to the chemical-potential (µ) depen-
dence of the amplitude f ex

nn:

δU2 =
1
2
C0ρ0

N2

A2
δf ex
nn. (31)

If this µ dependence is disregarded, then the stan-
dard expression for the variation of the chemical po-
tential is restored:

δµ0
n = δU1. (32)

In can easily be verified that, in considering nuclei
in the vicinity of the nucleon drip line, the inclusion of
the second term in (30) leads to a considerable devia-
tion from a conventional result. Indeed, the amplitude
PHY
f ex
nn given by Eq. (24) at E = 2µn is singular at small
µn; that is,

f ex
nn =

a√
|E|

=
a√
2|µn|

, (33)

where a is a constant. In the denominator on the
right-hand side of (33), we have disregarded, against
µn, the energy of a virtual level that determines the
position of the T -matrix pole in the singlet channel.
By varying relation (33), we arrive at

δf ex
nn = −f ex

nn

δµn
2µn

. (34)

Substituting expressions (30), (31), (32), and (34)
into (29) and (28), we obtain

δµn =
δµ0

n

1 + V0/(2µn)
, (35)

where, for the first term in expression (27), we have
introduced the condensed notation

V0 =
1
2
C0ρ0

N2

A2
f ex
nn. (36)

In the case where the added neutrons fill a new j
level, relation (28) is inapplicable, but it can straight-
forwardly be generalized to this case. It can easily
be proven that this only leads to a modification of
the method for computing the quantity δµ0

n, but that
relation (35) remains valid.

We will see below that, for nuclei characterized
by a small value of µn, the denominator of the ex-
pression on the right-hand side of (35) is consider-
ably greater than unity. By way of example, we will
compute this quantity for two tin isotopes lying in
the vicinity of the “old” neutron drip line (Amax 	
176), which can approximately be considered to be
common to all of the calculations that we know. We
make use of the values of µn that are determined
below. The corresponding values of the amplitude
f ex
nn can be found on the basis of Eq. (24) and are

precisely those that are depicted in Fig. 1. We em-
ploy the standard normalization-parameter values of
C0 = 300 MeV fm3 and ρ0 = 0.16 fm−3. We begin by
considering the 150Sn nucleus. In this case, we have
µn = −3.4 MeV, f ex

nn = −1.4, and V0 = −15 MeV.
The substitution of these values into relation (35)
yields δµn = δµ0

n/3.2. A similar calculation for 200Sn
(µn = −2.0 MeV, f ex

nn = −1.66, V0 = −22.4 MeV)
leads to δµn = δµ0

n/6.5. It can be seen that devia-
tions from the traditional scheme are indeed large and
grow with decreasing |µn|. This explains qualitatively
why there exist nuclei in the present approach (for
example, 200Sn) that are strongly unbound in the
traditional approach.
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3. MODIFICATION OF THE QUASIPARTICLE
LAGRANGIAN METHOD FOR NUCLEI
IN THE VICINITY OF THE NUCLEON

DRIP LINE

In order to perform specific calculations, we make
use of the quasiparticle Lagrangian method some-
what modified with allowance for the energy depen-
dence of the external values of the amplitude of effec-
tive nucleon–nucleon interaction. The quasiparticle
Lagrangian method was developed in [8, 9] for magic
nuclei, in which there is no superfluidity, and was
extended in [21, 22] to the case featuring superfluidity.
All of the required modifications to the quasiparti-
cle Lagrangian method can be demonstrated more
straightforwardly for the simpler case where there is
no superfluidity. Here, we will give a very concise
account of the quasiparticle Lagrangian method, re-
ferring the interested reader to [9, 21, 22] for details. In
this approach, use is made of the Lagrangian formal-
ism, which is more convenient in the situation where
energy-dependence effects are taken into account
explicitly. The effective quasiparticle Lagrangian is
constructed in such a way that its variation would
lead to the Dyson Eq. (5) for the quasiparticle Green’s
function. A solution to this equation can be expressed
in terms of the eigenfunctions Ψλ for the correspond-
ing homogeneous equation; that is,

Gq(r1, r2; ε) =
∑

λ

Ψ∗
λ(r1)Ψλ(r2)

ε− ελ + iδsgn(ελ − µ)
, (37)

where δ is an infinitely small positive value. The
eigenfunctions in question are orthonormalized with
a weight:

∫
drΨ∗

λ(r)Z
−1(r)Ψλ′(r) = δλλ′ . (38)

The quasiparticle density ν0(r) associated with the
functions Ψλ has the form

ν0(r) =
∑

λ

nλ|Ψλ(r)|2, (39)

where nλ = (0, 1) are quasiparticle occupation num-
bers.

Along with the functions Ψλ, the functions

φλ(r) = Z−1/2(r)Ψλ(r), (40)

which obey the standard normalization condition,
were also introduced in [9]. The corresponding quasi-
particle density

ρ(r) =
∑

λ

nλ|φλ(r)|2 (41)

is normalized to the total number of particles and
is perfectly analogous to the density considered in
Hartree–Fock theory. Obviously, the two densities
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introduced in the quasiparticle Lagrangian method
differ by the Z factor:

ν0(r) = Z(r)ρ(r). (42)

Twomore quantities that have themeaning of den-
sities were introduced in [8, 9]. These are the single-
particle kinetic-energy density

ν1(r) =
1

(k0
F)2

∑

λ

nλ|∇Ψλ(r)|2 (43)

and the total-quasiparticle-energy density

ν2(r) =
1
ε0
F

∑

λ

nλελ|Ψλ(r)|2 (44)

The density ν1(r) is an analog of the density τ(r)
introduced in Hartree–Fock theory involving effec-
tive forces [10], whereas the density ν2(r) has no
Hartree–Fock analogs, its emergence being peculiar
precisely to the quasiparticle Lagrangian method.

The main objective pursued in [8, 9] was to reveal
effects of the linear energy dependence of the quasi-
particle mass operator (6). Therefore, the form chosen
there for the quasiparticle Lagrangian was maximally
close to that which corresponds to the Hamiltonian of
the Hartree–Fock method involving effective Skyrme
forces [10]. Retaining the notation adopted in [9], we
express the density L′

q of the quasiparticle interaction
Lagrangian in terms of the above densities νi(r) as

L′(r) = −C0

[
λ00

2
ν2
0+(r) +

λ′
00

2
ν2
0−(r) (45)

+
2γ
3ρ0

0

ν0+(r)ν0n(r)ν0p(r) + λ01ν0+(r)ν1+(r)

+ λ′
01ν0−(r)ν1−(r) + λ02ν0+(r)ν2+(r)

− λ00r
2
0

2
(∇ν0+(r))2

]
+ L1,

where
νi+,− = νin ± νip (46)

and λik and γ are dimensionless coupling constants.
The normalization density is ρ0

0=2(k0
F)3/(3π2), while

the term L1 includes the Coulomb energy and spin-
dependent terms (of these, the spin–orbit term is a
dominant one). We note that the isotopic structure of
that term in (45) which is proportional to the constant
γ and which involves the product of three densities
was taken in [9] to be similar to the isotopic structure
present in the Hamiltonian for Skyrme forces [10].

According to the recipe of Landau, the ampli-
tude F of effective quasiparticle interaction must be
determined as the second variational derivative of the
ground-state-energy functional with respect to the
density. In order to extract it from the Lagrangian
3
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L′
q, one must first find the corresponding Hamiltonian

Hq (the terms that contain the density ν2 drop out in
doing this [14]) and express it in terms of the densities
ρ(r) and τ(r) normalized in a conventional way. After
that, it is necessary to find the second variational
derivative of Hq with respect to the density ρ. This
leads to rather cumbersome expressions, which can
be found in [23]. However, the relations between the
constants λ00 and λ′

00, on one hand, and the external
Landau–Migdal amplitudes f ex and f ′ex appearing in
Eqs. (20) and (21), on the other hand, can be found
without resort to explicit formulas forF . Indeed, theZ
factor tends to unity in the asymptotic region beyond
the nuclear surface, with the result that the densities
ν0(r) and ρ(r) coincide there. Therefore, the variation
of L′

q with respect to ρ can be replaced by its variation
with respect to ν0. The amplitudes being considered
stem from the first three terms in (45). Obviously, the
variation of the term proportional to γ with respect to
the density dies out at large r, so that we arrive at the
identities

λ00 = f ex, λ′
00 = f ′ex. (47)

It goes without saying that they also follow from the
explicit expression presented in [23] for the Landau–
Migdal amplitude F .

The objective of this study is to single out ef-
fects associated with the energy dependence of ef-
fective quasiparticle interaction beyond the linear de-
pendence, which is taken into account within the
standard quasiparticle Lagrangian method. The de-
pendence beyond the linear one is due primarily to
the strong energy dependence of the external values of
the invariant Landau–Migdal amplitudes, which was
considered in Section 2. For the sake of convenience,
we write separately the first three terms in (45), which
are associated with these external values and which
correspond to zero-range forces, replacing there the
parameters λ00 and λ′

00 by f ex and f ′ex. Specifically,
we have

L0(r) = −C0

[
f ex

2
ν2
0+(r) +

f ′ex

2
ν2
0−(r) (48)

+
2γ
3ρ0

0

ν0+(r)ν0n(r)ν0p(r)
]
.

If the quantities f ex and f ′ex are treated as phe-
nomenological parameters, there is no difference
between this expression and the original one—only
the physical meaning of the constants λ00 and λ′

00
becomes clearer. The next step consists in replacing
these parameters by the values following from a
microscopic theory—that is, by expressions (22) and
(23). At the chemical-potential value of µ = −8 MeV,
which is characteristic of stable nuclei, they are
P

f ex = −2.62 and f ′ex = 1.56 [6], instead of the em-
pirical values of λ00 = −3.25 and λ′

00 = 2.4, which
were found in [9]. It should be noted that these values
of f ex and f ′ex are closer to the empirical constants
corresponding to the energy functional constructed
by Fayans et al. [3]. The semimicroscopic expres-
sion (48) now involves only one adjustable parameter
γ instead of three in the corresponding part of the
Lagrangian given by (45).

Proceeding now to consider nuclei characterized
by a large neutron excess and, accordingly, by a small
value of the neutron chemical potential, we run into
the situation where isotopic symmetry is violated (see
the preceding section), so that f ex

nn �= f ex
pp. The gener-

alization of expression (48) to this case obviously has
the form

L̃0(r) = −C0

[
1
2
f ex
nn(E = 2µn)ν2

0n(r) (49)

+
1
2
f ex
pp(E = 2µp)ν2

0p(r)

+ f ex
np(E = µn + µp)ν0n(r)ν0p(r)

+
2γ
3ρ0

0

ν0+(r)ν0n(r)ν0p(r)
]
,

where the external values f ex
nn, f

ex
pp, and f ex

np of the
Landau–Migdal amplitudes are dependent on the
neutron and proton chemical potentials and must
be calculated for a given nucleus according to the
formulas of the preceding section in just the same
way as this was done in deriving expression (26).
In considering the neutron drip line, only the en-
ergy dependence of the first of these amplitudes is
of importance. In the remaining components, this
dependence is retained for the sake of generality, in
order that expression (49) be appropriate, say, for
nuclei in the vicinity of the proton drip line, in which
case it is the amplitude f ex

pp that depends strongly on
energy.

For superfluid nuclei, we make use of that modifi-
cation to the quasiparticle Lagrangian method which
was developed for this case in [21, 22]. In principle,
this method is quite general and involves solving
the Bogolyubov equations for the functions ui and
vi forming a bispinor. However, a simplified BCS
scheme that assumes diagonal pairing and which
proved to be fairly accurate for stable nuclei was
employed in the systematic calculations performed in
those studies. We will now briefly describe the sim-
plified version of the quasiparticle Lagrangian method
for superfluid nuclei, referring the reader to [21, 22] for
details and for a more general formulation.

Instead of one Dyson Eq. (5) for the quasiparticle
Green’s function Gq, there arises the set of Gor’kov
equations for superfluid nuclei, which involves the
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anomalous Green’s function Fq, along with the nor-
mal one, Gq, and the order parameter ∆(r) (superfluid
gap),4) along with the mass operator Σq. The quasi-
particle Lagrangian must now be constructed in such
a way that its variation would lead to Gor’kov equa-
tions. Further, the set of Bogolyubov equations for the
functions ui and vi appears instead of the Schrödinger
equation for quasiparticle wave functions Ψλ. The
interaction Lagrangian (45) is taken in the same form,
but the densities ν0, ν1, and ν2 are now defined as

ν0(r) =
∑

i

|vi(r)|2, (50)

ν1(r) =
1

(k0
F)2

∑

i

|∇vi(r)|2, (51)

ν2(r) =
1
ε0
F

∑

i

(−Ei + µ)|vi(r)|2, (52)

where Ei stands for the eigenenergies of the set of
Bogolyubov equations; these energies are reckoned
from the chemical potential µ, which, for systems that
involve pairing, is equal to half the energy required
for the detachment of two nucleons from the sys-
tem. In just the same way as in [21, 22], we employ
here the so-called scheme of fully developed pairing,
where there is no distinction between the chemical
potentials µ− and µ+ that are associated with nucleon
detachment and attachment, respectively. As is well
known, this approximation entails violation of the
law of particle-number conservation; therefore, the
chemical potential µ = µ− = µ+ is determined from
the condition requiring that the number of nucleons
be conserved on average.

In superfluid nuclei, there appears, in addition to
the aforementioned three densities, the anomalous
density

χ0(r) =
∑

i

vi(r)ui(r). (53)

The superfluid component of the quasiparticle La-
grangian contains the anomalous density χ0 and ef-
fective pairing forces, which we choose here in the
simplest delta-function form, but with allowance for
the possible density dependence. The term that must
be added to Lagrangian (45) in the case of superfluid
pairing then has the form

Ls(r) =−C0

[
η

2
(χn0 (r)χ∗n

0 (r)+χp0(r)χ
∗p
0 (r)) (54)

+
θ

2
(νp0χ

n
0 (r)χ∗n

0 (r) + νn0 χ
p
0(r)χ

∗p
0 (r))

]
.

4)For the sake of simplicity,we consider the case where the gap
is local.
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The equation for the gap is found from expression
(54) by doubly varying it with respect to the anoma-
lous density and is given by

∆τ (r) = Vτ (r)χτ0(r), (55)

where τ = ±1/2, with the upper and the lower sign
corresponding to neutrons and protons, respectively.
The effective pairing interaction Vτ is expressed in
terms of the parameters of the superfluid part of the
Lagrangian as

Vτ (r) = η + θν−τ0 (r). (56)

Further, the quasiparticle mass operator in the
presence of the superfluid Lagrangian given by (54)
develops the additional term

δΣτ
q (r) = θ|χ−τ

0 (r)|2. (57)

The density dependence of the effective pairing in-
teraction in the form (56) admits the existence of both
purely volume pairing (θ = 0) and surface pairing [a
combination of η and θ such that Vτ (r) is close to
zero in the interior of the nucleus being considered].
An intermediate case is also possible. In [22], it was
shown that a version close to the surface limit is
preferable, but that, for practical purposes, one can
also make use of the volume-pairing model, intro-
ducing a weak dependence of the parameter η on the
mass number A.

Following [21, 22], we will employ the λ represen-
tation

vi(r) =
∑

λ

vλi φλ(r), (58)

ui(r) =
∑

λ

uλi φλ(r), (59)

where the functions φλ are assumed to obey the stan-
dard normalization conditions.

In the λ representation, the equation for the order
parameter ∆ has the form

∆τ
λ,λ′ =

∑

λ1,λ2,i

(Vτ )λ1,λ2

λ,λ′ vλ1
i uλ2

i , (60)

where

(Vτ )λ1,λ2

λ,λ′ =
∫

drφ∗
λ(r)φ

∗
λ′(r)Vτ (r)φλ1(r)φλ2(r).

(61)

It is worth noting that Eq. (60) is formally exact
if one implies a more general definition of the matrix
element of the effective pairing interaction than that
in (61). Further, the locality of the interaction, as
implied in Eq. (61), does not exhaust the approxima-
tions adopted in this study, which follows the same
line of reasoning as the analyses in [21, 22]. The
3
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Single-particle spectrum of the 124Sn nucleus

λ
ελ, MeV Eλ, MeV

[21] our study [21] our study experiment

2p1/2 −16.86 −17.94 −16.96 −18.05

1g9/2 −15.15 −15.93 −15.29 −16.11

2d5/2 −10.19 −10.82 −10.42 −11.05

3s1/2 −9.53 −8.82 −9.97 −9.18 −8.64

1g7/2 −8.34 −8.32 −8.81 −9.19 −9.63

2d3/2 −8.08 −8.05 −8.68 −8.66 −8.52

1h11/2 −7.19 −6.87 −5.83 −5.08 −5.73

2f7/2 −2.34 −2.29 −2.24 −2.14

3p3/2 −0.97 −0.96 −0.94 −0.91

3p1/2 −0.42 −0.26 −0.39 −0.23
main among these approximations are the applica-
tion of a truncated λ basis [εmin < ελ < εmax, where
εmin = −(20–25) MeV and εmax = 5 MeV], and a
discretization of the continuum. In addition, we rely
on the volume-pairing model [θ = 0 in (56)], with
the constant η being dependent on the dimension of
the model subspace in accordance with the recipe
formulated in [4]; that is,

η = Γξ =
C0

ln(Cp/ξ)
, (62)

where ξ =
√

(µ− εmin)(εmax − µ) and Cp is a phe-
nomenological parameter. Finally, we employ the di-
agonal approximation

vλi = vλδi,λ, (63)

uλi = uλδi,λ, (64)

whence it follows that

∆λλ′ = ∆λδλλ′ . (65)

Upon introducing these approximations, the orig-
inally general method for analysis of pairing actually
reduces to the BCS model. As applied to nuclei in
the vicinity of the nucleon drip line, this model pos-
sesses well-known drawbacks (see, for example, [2,
3]), but we preserved all the details of the computa-
tional scheme used in [21, 22] (including the value of
the parameter Cp, which is responsible for pairing) in
order to single out more clearly the discussed effect of
the energy dependence of the Landau–Migdal ampli-
tude through a comparison with the results of those
studies.
P

4. NEUTRON DRIP LINE FOR THE CHAIN
OF TIN ISOTOPES

The chain of tin isotopes is one of the most popular
objects of both experimental and theoretical inves-
tigations. A few calculations of the position of the
neutron drip line are known for this chain—in partic-
ular, a calculation within the standard quasiparticle
Lagrangian method [22]. This is the reason why we
have chosen precisely this chain for investigating the
effect being discussed. All of the parameters, with
the exception of those entering into the Lagrangian
component (49), which corresponds to zero-range
forces, were set to the values used in [22]. After
that, the amplitudes f ex

nn(E = 2µn), f ex
pp(E = 2µp),

and f ex
np(E = µn + µp) appearing in Eq. (49) were

calculated microscopically for each nucleus by using
formulas (24) and (25), whereupon γ remains the only
adjustable parameter in (49). It was determined on
the basis of a fit to the single-particle spectrum of
the 124Sn nucleus, which occurs in the middle of the
tin-isotope region studied experimentally. It should
be emphasized that it was precisely the properties of
this nucleus that were used in [21] to fix the value
of the pairing constant Cp. In the present study, we
do not pursue the aim of analyzing the total binding
energies and density distributions, focusing our at-
tention on calculating single-particle spectra, since
it is these spectra that determine the chemical po-
tentials of nuclei and, hence, the position of the drip
line. We decided on the value of γ = 1.6 (instead of
γ = 3.2 in [9, 21, 22]). So pronounced a change in the
parameter γ is due to the fact that the ab initio val-
ues of f ex and f ′ex are anyway sharply different from
the phenomenological constants [9, 21, 22] (see also
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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Section 2). The results of our calculations are quoted
in the table, which displays both the single-particle
energies ελ obtained without allowance for pairing,
which are the most direct characteristic of the mean
field, and the energies Eλ = µ±

√
(ελ − µ)2 + ∆2

λ,

which include pairing. As can be seen, the single-
particle spectrum is in fairly good agreement both
with that which was computed in [21] and with that
which was measured experimentally. We note that the
characteristic value of the order parameter is ∆ =
∆λ 	 1 MeV.

Further, we performed self-consistent calculations
of the properties of a long chain of even–even tin
isotopes from A = 100 to A = 208 with a step of
δA = 4. The chemical potentials found in this way are
depicted in Fig. 2, along with the results based on the
standard quasiparticle Lagrangian approach [22] and
the predictions presented by Dobaczewski et al. [2]
and by Fayans et al. [3]. As was indicated above, the
chemical potentials µn must be contrasted against
half the energy required for the detachment of two
neutrons (S2n). The last two calculations employed
phenomenological energy-independent forces. As is
known from [9, 14], the linear energy dependence,
which was taken into account in [22] by adding a
term involving the density ν2(r) to the Lagrangian
in (45), reduces predominantly to renormalizations
and also disregards the effect being discussed. There-
fore, it comes as no surprise that all of the three
calculations quoted here lead to close results, which,
in Fig. 2, are represented by symbols virtually lying
on the common “phenomenological” curve, this curve
being in good agreement with available experimen-
tal data. In particular, all three calculations predict
approximately the same neutron-drip-line position
corresponding to a value of Amax 	 176. The reason
for this is quite simple: the value of A = 176 is as-
sociated with the magic number of neutrons that is
equal to N = 126. In all three calculations, the neu-
tron chemical potential for the 172Sn nucleus, which
is close to the neutron drip line, is negative and is
comparatively small in magnitude: µn 	 −0.1 MeV
in [2, 22] and µn 	 −0.3 MeV in [3]. Further cal-
culations were terminated in [3] (obviously, because
the preceding even–even isotope 170Sn already had
a positive chemical potential in those calculations).
This nonmonotonic behavior of µn(A) in the cal-
culations reported in [3] is an indirect manifestation
of the fact that the number N = 126 is magic. The
calculations in [2] do not reveal the shell effect at A =
176—there, the value of Amax = 174 corresponds to
the position of the neutron drip line. Finally, we would
like to mention the results presented in [22]. There,
the 176Snnucleus is boundedmore strongly than all of
the preceding isotopes (µn 	 −1 MeV) owing to the
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magicity effect, but, since the magicity gap exceeds
2 MeV, the attached 127th neutron occurs in the
continuum. We note that Amax = 176 corresponds to
the asymmetry-parameter value of y = (N −Z)/A =
0.43, which exceeds considerably the critical value of
y0 = 0.37 predicted by the calculations for asymmet-
ric nuclear matter in [24].

The results of our semimicroscopic calculation at
comparatively small values of the asymmetry param-
eter y deviate from the phenomenological curve and,
hence, from experimental data, but these deviations
are insignificant. As we approach the neutron drip
line—that is, as |µn| becomes smaller—the distinc-
tions become more pronounced, the semiempirical
curve lying much higher than the phenomenological
one. As can be seen, the present calculation predicts
the existence of stable nuclei for isotopes lying beyond
the previous drip line inclusive (that is, A > 176),
the stability margin being rather wide. Indeed, the
176Sn isotope is strongly bound in our calculations
(µn 	 −3.5 MeV), so that the next magicity gap is
readily overcome—for example, the 180Sn isotope is
also bound quite strongly (µn 	 −2.4 MeV). As the
neutron excess increases further, |µn| decreases, but
this occurs very slowly. This is a qualitative manifes-
tation of the effect of relation (35), which indicates
that the system being considered hinders the emer-
gence of small values of |µn| via the deepening of the
neutron potential. We terminated our calculations at
A = 208, since it is clear that, with decreasing |µn|,
the errors of the present calculation become greater.
Among the factors responsible for these errors, there
is, first of all, an oversimplified description of pairing.
Moreover, the very application of the theory of finite
Fermi systems is questionable at small |µn|, in which
case the energy dependence of the Landau–Migdal
amplitude becomes rather sharp. In addition, there
arise pairing corrections to expression (24) at |µn| 	
∆ 	 1 MeV. Of course, this expression remains valid
at large distances from the surface, but, in the vicinity
of the surface, the free T matrix must be replaced
by the quantity T̃ calculated with the single-particle
spectrum of our superfluid system. This is expected
to result in a shift of the pole in (33) by a value of
about∆. It follows that, for |µn| ≤ 1MeV, the present
calculation would strongly exaggerate the effect of the
energy dependence of the Landau–Migdal amplitude.

Let us dwell at some length on the aforementioned
discrepancy between the results of the present cal-
culation and those reported in [2, 3, 22] for isotopes
featuring a small neutron excess, which were explored
experimentally. Since the results obtained in [2, 3,
22] reproduce experimental data quite satisfactorily,
our results are at odds with these data as well, the
discrepancy being sometimes as great as 1MeV. This
3
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Fig. 2. Half the energy required for the detachment of two neutrons, S2n/2, from even–even tin isotopes. The results of the
present semimicroscopic calculation (solid curve) are given along with the predictions made in (dashed curve) [22], (open
triangles) [2], and (open boxes) [3]. Open circles represent the experimental values of S2n/2.
glaring flaw is obviously due to the use of a specific
(Skyrme) isotopic structure taken for the triple forces
in the Lagrangian specified by Eqs. (45) and (49) for
historical reasons. Since, in the original expression for
that part of the Lagrangian in (49) which corresponds
to zero-range forces, there were three free parameters
in [9, 22], it could be chosen in such a way as to repro-
duce reasonably well the internal values f in and f ′in

of both scalar amplitudes simultaneously in relations
(20) and (21). As is well known from [4], the first of
these internal values is related by a simple equation to
the coefficientK0 of nuclear-matter compressibility,5)

K0 =
2
3
εF(1 + 2f in), (66)

while the second is related to the coefficient β in the
symmetry term of the Weizsäcker mass formula,

β =
1
3
εF(1 + 2f ′in). (67)

As is well known, both these quantities are of
paramount importance for correctly describing the
ground-state properties of nuclei. The semimicro-
scopic expression (49), which is employed in the
present study, involves only one free parameter γ, and
this gives no way to obtain the required values of K0

and β simultaneously. The value of γ = 1.6 chosen
here is compromising in this respect. While enabling
one to reproduce faithfully the chemical potentials for
the nearest neighbors of the reference chain of 124Sn,
it leads to an insufficiently accurate description of

5)The normalization of K0 in [4] differs from the standard one
adopted in nuclear physics [25] by a factor of 9.
PH
data in the vicinity of A = 110. Yet, the scale of this
inaccuracy is much less than the magnitude of the
effect under study in the regionA > 132.

By no means, however, is the Skyrme form of the
isotopic structure of triple forces mandatory for effec-
tive Lagrangians (and for effective Hamiltonians as
well). The simplest generalization of expression (48)
such that it involves two adjustable parameters has
the form

L0(r) = −C0

[
f ex

2
ν2
0+(r) +

f ′ex

2
ν2
0−(r) (68)

+
1

6ρ0
0

(γν3
0+(r) + γ′ν0+(r)ν2

0−(r))
]
.

At γ′ = −γ, this relation reduces to (48). Expres-
sion (49) can be generalized in a similar way. In all
probability, the use of this, more general, structure of
the quasiparticle Lagrangian would make it possible
to obtain a better description of available experimental
data. We postpone such calculations until the future,
deliberately restricting ourselves to a computational
scheme that is maximally close to that which was
employed in [22], the only modification being that the
parameters f ex and f ′ex were set to the values dictated
by themicroscopic theory. It is the energy dependence
of these parameters that leads to the effect being
discussed.

5. CONCLUSION

A semimicroscopic version of the self-consistent
theory of finite Fermi systems has been proposed in
this study. Within this version, the standard theory of
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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finite Fermi systems, which employs a phenomeno-
logical Landau–Migdal amplitude, is supplemented
with relations following from microscopic theory for
the external values f ex and f ′ex of the scalar–isoscalar
and scalar–isovector components of this amplitude.
As was shown in [6], these values are determined
by the off-shell T matrix for free nucleon–nucleon
scattering at the negative energy E that is equal to
the doubled chemical potential of the nucleus being
considered. Since the free T matrix depends greatly
onE at low energies, there arise pronounced changes
for nuclei in the vicinity of the nucleon drip line in re-
lation to purely phenomenological approaches, which
disregard the energy dependence of the effective inter-
action. In particular, a decrease in the absolute value
of the neutron chemical potential, |µn|, in considering
the neutron drip line leads to the growth of neutron
attraction at the surface, with the result that the mean
neutron potential becomes deeper. This in turn results
in a shift of the neutron drip line toward greater values
ofN − Z.

In order to demonstrate the effect of the energy
dependence of the Landau–Migdal amplitude, we
have chosen the chain of tin isotopes, for which a
few calculations were performed within phenomeno-
logical approaches in order to determine the position
of the neutron drip line. Two alternative methods for
taking this effect into account have been considered.
The first is based on using, within the theory of finite
Fermi systems, the condition of consistency between
the mass operator, effective interaction, and single-
particle Green’s function [7] in a simplified formwhere
the consistency condition involves the mean field, the
Landau–Migdal amplitude, and the density. The sec-
ond employs the quasiparticle Lagrangianmethod [9],
which is a version of the self-consistent theory of finite
Fermi systems. In the standard form, this version
was previously used to calculate the neutron drip line
for tin isotopes [22]. It should be emphasized that
these two methods for taking into account the energy
dependence of the interaction do not lead to fully
identical results. By way of example, we indicate that,
within the first method, the internal amplitudes f in

and f ′in feature absolutely no dependence on energy.
But within the second method, it is the parameter γ
that is independent of energy, whereas the internal
amplitudes f in and f ′in calculated in terms of this pa-
rameter and in terms of the external amplitude values
change somewhat with energy. Within a pure phe-
nomenology, it is difficult to decide on either of the two
ansätze. For our systematic calculations, we choose
the second version merely because of the fact that
a well-developed and tested computational scheme
exists for it.

In order to predict more reliably the properties
of nuclei in the vicinity of the nucleon drip line, it
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
is desirable to have a more consistent microscopic
approach at our disposal. Such an approach is being
presently developed [23, 26] on the basis of the
Brueckner method for finite nuclei, but the work is
far from completion. It should be noted that, in [23],
a semimicroscopic model for the scalar–isoscalar
Landau–Migdal amplitude f(r) was developed on
the basis of approximately computing the Brueckner
G matrix for a planar slab of nuclear matter [26].
This model leads to an insignificant dependence of
the parameter f in on energy. In all probability, the
truth is somewhere in between the aforementioned
two versions of the semimicroscopic theory of finite
Fermi systems. What is of importance, however,
is that both lead to qualitatively the same result—
namely, a decrease in |µn| as one approaches the
neutron drip line leads to an increase in the absolute
value of the external potential f ex

nn, whence it follows
that the neutron potential becomes deeper. This effect
hinders the emergence of small values of |µn|, giving
rise to nuclei featuring an enormous neutron excess.
Known calculations fix the position of the neutron drip
line for tin isotopes somewhere at Amax = 176, which
corresponds to the magic number of neutrons that is
equal toN = 126. The present calculation has shifted
considerably the drip line toward greater values ofN .
For example, we have obtained µn 	 −2 MeV for
196Sn. We have terminated the calculations at the
208Sn isotope, for which µn 	 −1.5 MeV, since the
errors of this calculation increase with decreasing
|µn|. In all probability, the most significant error
stems from the fact that, at |µn| 	 ∆ 	 1 MeV, it
is necessary to take into account pairing correc-
tions to formula (24), which expresses the external
value of the scalar Landau–Migdal amplitude in
terms of the free T matrix. Estimations revealed that
these corrections reduce the effect being considered.
Nonetheless, one can hope that, in the region of
isotopes where |µn| > ∆ (and the previous drip line
lies precisely in this region), the calculations are valid,
at least qualitatively. Moreover, we believe that, upon
all necessary refinements, the effect in question will
survive, at least at a qualitative level, since it has a
clear physical origin.
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Abstract—Themethod previously proposed by one of the present authors for studying three-body problems
is generalized with the aim of exploring more complicated nuclear processes. The idea underlying the
method consists in preserving the unitarity property for the scattering amplitude determined approximately.
A specific analysis is performed for elastic collisions of 3He nuclei and for quasielastic deuteron–triton
collisions. The theoretical results obtained by our method are compared with experimental data, and the
agreement is found to be quite satisfactory. c© 2003 MAIK “Nauka/Interperiodica”.
Investigation of collisions between extremely light
nuclei in the nonrelativistic-scattering region and
analysis of corresponding elastic and inelastic chan-
nels may provide important information about the
character of nuclear forces and special features of
multinucleon problems. However, interpretation of
experimental data requires specifying the mechanism
of the processes being studied, but this is a very
involved mathematical problem, which does not have
an unambiguous solution. Difficulties of fundamental
character that are inherent in many-body problems
appear even in three-body problems; therefore, the
formulation of the set of Faddeev integral equations
[1] has given impetus not only to a vigorous de-
velopment of three-body theory proper but also to
advances in constructing more consistent approaches
to complicated processes. However, an immediate
extension to the many-body case leads to formidable
technical problems. It seems more natural to begin
by developing physically reasonable approximate
methods for solving Faddeev equations and, then, to
perform an extension in question.

Previously, two apparently different approaches to
three-body processes—the cutoff three-body impulse
approximation (CTBIA) and the unitarized three-
body impulse approximation (UTBIA)—were pro-
posed in [2] and [3], respectively. Either approach
claims to provide a consistent description of the
single-collision mechanism, but the second seems
more consistent theoretically, involving the use of
the K-matrix formalism to solve Faddeev equations
approximately. The CTBIA approach is based on the
statement that, in solving Faddeev equations within
the T -matrix formalism, only in the case where the
projectile particle does not hit simultaneously both
particles of the bound state do the first-order terms
1063-7788/03/6602-0247$24.00 c©
in the resulting solution correspond to a true single
collision. This is achieved by cutting off the Fourier
transform of the bound-state wave function ϕ(r)—
that is, by making the substitution G(p) → G(p,R),
where

G(p,R) =
√

2/π

∞∫

R

r2drϕ(r)
sin(pr)
pr

. (1)

The cutoff radius R must be longer than the de
Broglie wavelength λ of the relative motion of col-
liding particles and is related to the corresponding
momentum ωωω as

R =
C

|ωωω| , (2)

where C is a constant that ensures fulfillment of the
condition λ < R.

Although the CTBIA approach has no reliable
theoretical grounds, it appeared to be rather efficient
in analyzing various three-body processes [4–7]. In
view of the simplicity of this approach, it is therefore
advisable to make an attempt at generalizing the
CTBIA in such a way as to render it applicable to
processes more complicated than three-particle ones.
In the present study, this is done for collisions of
extremely light nuclei. Specifically, we analyze elastic
3He3He scattering and quasielastic triton–deuteron
scattering in the reaction d(t, tp)n.

Let us first consider elastic 3He3He scattering in
the laboratory frame. We label projectile nucleons
with the indices α, β, and γ (αβγ = 123, 231, 312)
and target nucleons with the indices δ, µ, and ν
(δµν = 456, 564, 645). We will also use the following
notation: k is the projectile-nucleus momentum, kβγ
is the momentum of the relative motion of particles β
2003 MAIK “Nauka/Interperiodica”
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and γ, Kβγ is the momentum of the center of mass of
particles β and γ,pα is the momentum corresponding
to the motion of particle α with respect to the center
of mass of particles β and γ, εαδ is the energy of the
relative motion of particles α and δ, tαδ is the two-
nucleon-scattering operator, ψ(kβγpα) is the 3He
wave function, m is the nucleon mass, E is the total
energy of the system, and Â is the operator of an-
tisymmetrization with respect to identical nucleons.
The primed momenta correspond to the final state.
We use the system of units where � = c = 1.

If more than three particles are involved in a re-
action, there is no recipe for unambiguously defining
two-particle amplitudes in the iterationmultiparticle-
scattering series (Watson series). In view of this, the
mechanism of 3He3He scattering is represented here
as follows: the projectile nucleus (αβγ) as a discrete
unit collides with the target nucleus formed by two
fragments, δ + µν, with the matrix element being
written as the sum of all possible (αβγ)δ (that is,
3HeN ) amplitudes; further, the projectile nucleus is
represented as a two-fragment system, α+ βγ, with
PH
the (αβγ)δ amplitude being written as the sum of all
possible αδ (NN ) amplitudes. At either step, we will
therefore have a three-body problem, to which we will
apply the CTBIA approach. This will enable us to de-
termine unambiguously two-nucleon amplitudes and
to implement consistently the cutoff procedure.

Under the assumption that the aforesaid is correct,
the differential cross section for elastic 3He3He scat-
tering can be represented in the form

dσ

dΩ
= (2π)4

3m2k′2

2k

∑
spins

|M |2

k cos θ − 2k′
, (3)

where

M = Â
∑

αβγ = 123, 231, 312
δµν = 456, 564, 645

∫
ψ∗(k′

βγ ,p
′
α) (4)

× ψ∗(k′
µν ,p

′
δ)tαδ(k

′
αδ,kαδ ; εαδ)ψ(kβγ ,pα;Rα)

× ψ(kµν ,pδ;Rδ)dkβγdKβγdkµν , dKµν
pα =
2
3
k− Kβγ , p′

α =
2
3
k′ − Kβγ ,

pδ = −Kµν , p′
δ =

2
3
(k − k′) − Kµν ,

kαδ =
1
2
k− 1

2
(Kβγ + Kµν), k′

αδ =
1
2
(k′ − k) − 1

2
(Kβγ + Kµν),






(5)
εαδ =
1

2m

{
2mE − 1

2
k2 − 2k2

βγ −K2
βγ − 2k2

µν (6)

−K2
µν + k(Kβγ + Kµν) − Kβγ ·Kµν

}
.

Summation in (3) is performed over the spin pro-
jections of colliding nuclei prior to and after scatter-
ing. These spin projections, as well as the function
G(p,R), appear explicitly upon expanding ψ and tαδ
in partial waves.

If the cutoff procedure is not applied, the matrix
element (4) corresponds to the first-order terms in
the iteration Watson series involving, however, un-
ambiguously defined nucleon–nucleon amplitudes.

For specific calculations, the off-shell two-nucleon
T matrix was constructed for the nonlocal separable
Mongan potential [8]. For the wave function ψ, we
took the 3He variational function; in the coordinate
representation, it has the form (see [9])

ψ(r1, r2, r3) =
2∑

α=1

Bα exp



−1
2
aα

3∑

β=1

r2
β



 , (7)
where rβ is the radius vector of the motion of nucleon
β with respect to the center of mass of the 3He nu-
cleus, and Bα and aα are variational parameters.

The differential cross section for four scattering-
angle values of θ = 30.6◦, 54.8◦, 70.1◦, and 90◦ was
analyzed here as a function of the energy of relative
motion in the system of two 3He nuclei in the c.m.
frame. The results obtained under these conditions
(see Figs. 1–4) could be compared with experimental
data.

In each case, the solid curve corresponds to the
CTBIA calculation, while the dashed curve repre-
sents the results of the analogous cutoff-free cal-
culation (Rα = Rδ = 0). The displayed experimental
data were borrowed from [10]. It can be seen that the
application of the cutoff procedure leads to nearly an
order of magnitude change in the differential cross
section, also deforming its shape. As a result, fairly
good agreement between the theoretical and experi-
mental data is achieved in all four cases.

Let us now consider the reaction d(t, tp)n in the
laboratory frame. The projectile triton collides with
the deuteron at rest, splitting it into two nucleons.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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Fig. 1. Differential cross section for elastic 3He3He scat-
tering as a function of the energy of relative motion in
the system of colliding nuclei in the c.m. frame at scat-
tering a angle of θ = 30.6◦ : (solid curve) results of the
CTBIA calculation, (dashed curve) results of the anal-
ogous cutoff-free calculation, and (points) experimental
data from [10].

We label the triton nucleons with the indices α,
β, and γ (αβγ = 123, 231, 312) and the deuteron
nucleons with the indices δ and µ (δµ = 45, 54).
We also introduce the following notation: E and
k are, respectively, the energy and the momentum
of projectile triton; kt is the momentum of the
scattered triton; k4 (k5) is the momentum of the
scattered proton (neutron) originating from deuteron
breakup; θt and θ4 are, respectively, the triton and
the proton scattering angle; mt is the triton mass;
and ψt (ψd) is the triton (deuteron) wave function.
The rest of the notation (kβγ , Kβγ , pα, εαδ, tαδ) is
identical to that which was used in the preceding
problem.

Experimental studies of quasielastic-scattering
reactions of the d(t, tp)n type are usually performed
in coplanar geometry. The differential cross section is
measured as a function of the scattering angles of two
final particles (the triton and the proton in our case)
and of the energy of one of them (the proton in our
case).
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Fig. 2. As in Fig. 1, but for θ = 54.8◦ .

We represent the mechanism of the reaction
d(t, tp)n in just the same way as above: the triton
(αβγ) as a discrete unit collides with a deuteron
consisting of two nucleons, δ + µ, with the matrix
element being written as the sum of all possible
(αβγ)δ (that is, tN ) amplitudes; now, the projectile
nucleus is treated as a two-fragment system, α+ βγ,
with the (αβγ)δ amplitude being written as the sum
of all possible αδ (that is,NN ) amplitudes. As before,
we are to solve a three-body problem at each step and
can again apply the CTBIA approach.

Taking the aforesaid into account, we can rep-
resent the differential cross section for the reaction
d(t, tp)n within the CTBIA approach as

d3σ

dΩtdΩ4dE4
= (2π)4

2mtm
2ktk4

k
(8)

×

∑
spins

|M |2

|3k cos θt − 4kt − 3k4 cos(θt − θ4)|
,

where

M = Â
∑

αβγ = 123, 231, 312
δµ = 45, 54,

ψd(−kµ;Rµ) (9)

×
∫

ψ∗
t (k

′
βγ ,p

′
α)tαδ(k′

αδ,kαδ ; εαδ)
3
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Fig. 3. As in Fig. 1, but for θ = 70.1◦ .

× ψt(kβγ ,pα, Rα)dkβγdKβγ ,

pα =
2
3
k − Kβγ , p′

α =
2
3
kt −Kβγ ,

kαδ =
1
2
(k + kδ) −

1
2
Kβγ ,

k′
αδ =

1
2
(kt − kδ) −

1
2
Kβγ ,






(10)

εαδ =
1

2m

{
2mE − 1

2
k2 −K2

βγ − 2k2
βγ (11)

− 1
2
k2
δ + k(Kβγ − kδ) + Kβγ · kδ

}
.

Summation in (8) is carried out over the triton-
and deuteron-spin projections in the initial state and
over the triton- and nucleon-spin projections in the
final state. These spin projections, as well as the func-
tionG(p,R), appear explicitly upon expanding ψd, ψt,
and tαδ in partial waves.

For specific calculations, the off-shell two-nucleon
T matrix and the radial part of the deuteron wave
function were constructed for the Mongan poten-
tial. In order to describe the internal state of the
triton, we again use the variational function having
a correct asymptotic behavior [9]; in the coordinate
PH
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Fig. 4. As in Fig. 1, but for θ = 90◦.

representation, it has the same form as the function
in (7), but the variational parameters take different
values.

The differential cross section for the reaction
d(t, tp)n as a function of the final-proton energy in
the laboratory frame is studied here for two sets of
fixed kinematical parameters: E = 35.5 MeV, θt =
25◦, and θ4 = −20◦ (Fig. 5) and E = 35.5 MeV,
θt = 20◦, and θ4 = −50◦ (Fig. 6). As before, the
choice of parameter values was dictated by the
desire to perform a comparison with experimental
data. In the calculations, we took into account the
1S0, 1P1, 1D2, 3S1 +3 D1, 3P0, 3P1, 3P2 +3 F2, and
3D2 two-nucleon states. In contrast to the problem
considered first, where zero partial-wave amplitudes
make a dominant contribution to the final result, all
of the above amplitudes must be taken into account
here.

A comparison of the theoretical and experimen-
tal results shows that the cutoff procedure affects
substantially both the magnitude and the shape of
the cross section, improving the agreement with the
experimental data.

A few comments are in order here.
(i) A more consistent way would be to construct

the 3He and triton wave functions by using the Mon-
gan potential. However, this would complicate the
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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Fig. 5.Differential cross section for the reaction d(t, tp)n
as a function of the final-proton energy in the laboratory
frame atE = 35.5 MeV, θt = 25◦, and θ4 = −20◦: (solid
curve, left-hand scale) results of the CTBIA calculation,
(dashed curve, right-hand scale) results of the analogous
cutoff-free calculation, and (points, left-hand scale) ex-
perimental data from [11].

calculations considerably. Since the internal states
of the 3He nuclei and triton do not change in the
problems under study, our choice cannot have a pro-
nounced effect on the final results.

(ii) The dependence of the relative-motion energy
εαδ appearing in the element tαδ(k′

αδ ,kαδ; εαδ) of the
off-shell two-nucleon T matrix on all of the integra-
tion variables complicates substantially the calcula-
tion of the reaction amplitudes (4) and (9). How-
ever, our estimates showed that the replacement of
the matrix element tαδ(k′

αδ,kαδ ; εαδ) by the half-
off-shell matrix element tαδ(k′

αδ ,kαδ ; kαδ)
2/m or by

tαδ(k′
αδ ,kαδ ; k

′
αδ)

2/m is quite a reasonable approx-
imation. This means that the off-shell effects are
somehow smoothed out by integration over the entire
space. In all probability, the problem of taking such
effects into account in constructing the amplitude of
nucleon–nucleon scattering is less acute here than in
the case of αα scattering [12].

(iii) There was some degree of arbitrariness in
choosing the cutoff parameter (C > 1), and we used
this arbitrariness to fit the theoretical curve to the
experimental data. In all four cases considered here,
elastic 3He3He scattering is best described with a
value of C ≈ 1.5, which is within the range of values
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
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Fig. 6. As in Fig. 5, but forE = 35.5 MeV, θt = 20◦, and
θ4 = −50◦.

of the cutoff parameter that were found earlier for the
problems of nucleon–deuteron scattering [7]. How-
ever, this is not so for the reaction d(t, tp)n, where
we had to use values of C ≈ 2 and 3 (see Fig. 5 and
Fig. 6, respectively). Possibly, the situation here is
not exhausted by the mechanism of a direct single
collision, and it is necessary to take into account some
other mechanisms—for example that which involves
final-state interaction [11]. This especially concerns
Fig. 6.

Despite the above reservations, the results of
this study give reasons to state that a consistent
use of the single-collision mechanism may open
some hidden possibilities for describing complex
nuclear processes. If we consider that the cutoff
procedure can be qualitatively associated with the
unitarization of the approximate scattering amplitude
taking into account only single collisions [7], we
can say that the success of the CTBIA approach
highlights once again the importance of respecting
fundamental physical principles in specific theoretical
studies.

REFERENCES
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Abstract—A theory is developed for describing the diffractive dissociation of loosely bound two-cluster
nuclei in the nuclear and Coulomb fields of nuclei having a diffuse boundary. The energy spectra of charged
products of the breakup of 2H, 6He, and 19C nuclei are calculated on the basis of the proposed approach,
and the results are found to be rather sensitive to nuclear structure. For some angles of neutron and proton
emission from the reaction 12C(d, np)12C, the calculated cross sections are in satisfactory agreement with
the results of kinematically complete experiments performed recently to study the breakup of intermediate-
energy deuterons. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

To a considerable extent, the present theoretical
study devoted to the diffractive dissociation of loosely
bound two-cluster nuclei was motivated by the article
of Okamura et al. [1], who reported on unique
kinematically complete experiments that studied the
breakup of intermediate-energy deuterons in the
field of various nuclei ranging from those of carbon
(12C) to those of lead (208Pb). The experiments
in question measured the differential cross section
d3σ/dΩndΩpdEp for A(d, np)A reactions (where A
is the mass number of the target nucleus) versus
the product-proton energy Ep at small neutron and
proton emission angles denoted by θn and θp, re-
spectively. It follows that, under the conditions of the
experiments being discussed, their results can be de-
scribed on the basis of the diffraction approximation.

In our previous study [2], a general formalism was
developed within which the diffractive elastic scatter-
ing and the diffractive dissociation of loosely bound
two-cluster nuclei containing one charged cluster
were treated with allowance for Coulomb interaction
with target nuclei and for the diffuseness of their
boundary; also, the differential cross section was cal-
culated there for the process where an exotic nucleus
11Li assumed to consist of (2n) and 9Li clusters is
elastically scattered by a 28Si nucleus, a Gaussian
function being used for the internal wave function de-
scribing the relativemotion of the clusters. The calcu-
lated cross section proved to be in satisfactory agree-
ment with its experimental counterpart as a function
of 11Li scattering angle, this being due largely to
correctly eliminating the divergence in that part of the
1063-7788/03/6602-0253$24.00 c©
amplitude allowing for Coulomb interaction which is
associated with double scattering.

In the present study, we develop further the math-
ematical formalism proposed in [2], but we concen-
trate here exclusively on the amplitude and the cross
section for the diffractive dissociation of a two-cluster
nucleus featuring one charged cluster, taking no ac-
count of particle spins. In the amplitude for the disso-
ciation process, we include a term that is analogous to
the term discarded in [2] and which is small in the case
of elastic scattering (see below) and introduce a more
general profile function that takes simultaneously into
account absorption, Coulomb interaction, and the
diffuseness of the target-nucleus edge.

We begin by calculating the differential cross sec-
tion for the process 12C(d, np)12C and show that,
in order to describe relevant experimental data (see
[1]), it is necessary to take simultaneously into ac-
count the following factors: (i) Coulomb interaction,
for which use must be made of the method developed
in [2] for eliminating logarithmic divergences; (ii) the
diffuseness of the target-nucleus edge; and (iii) the
correct asymptotic behavior of the wave function for
the relative motion of the clusters both at short and
at long distances between them (here, we took the
Hulthén wave function for this purpose).

Our calculation of the cross section for the process
12C(d, np)12C was some kind of test for the theoreti-
cal approach developed here and, partly, in [2] within
the diffraction approximation, and this test yielded
results that are in fairly good agreement with exper-
imental data reported in [1]. This approach is further
used to compute the cross sections for the two-body
diffractive dissociation of unstable exotic nuclei, such
as 6He (into 2n and 4He clusters) and 19C (into
2003 MAIK “Nauka/Interperiodica”
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n and 18C clusters), that is induced by their colli-
sions with nuclei. That the energies required for the
separation of two peripheral neutrons from the 6He
nucleus and for the separations of the loosely bound
neutron from the 19C nucleus are rather small (ε2n =
0.975 ± 0.040 MeV [3] and εn = 0.530 ± 0.130 MeV
[4], respectively) suggests the two-cluster structure
of these exotic nuclei.

As we indicated in [5, 6], the use of relevant ex-
perimental data in exploring the diffractive interaction
of 6He with nuclei may aid in refining the separation
energy of two loosely bound neutrons in the 6He nu-
cleus and in deriving an independent estimate of the
probability of a dineutron configuration in this exotic
nucleus.

The 19C nucleus, which features a large neutron
excess and which is highly unstable, was discovered
quite recently [7, 8], and available information about
it [9–13] is still incomplete. In particular, experimen-
tal data suggest that the energy εn required for the
separation of the peripheral neutron from the 19C
nucleus is rather low, but the value of εn has so far
been found with a large uncertainty. As will be seen
below, the differential cross section for the diffractive
dissociation of a 19C nucleus into a neutron and a 18C
nucleus is rather sensitive to variations in εn, and this
circumstance may be of use in refining the value of εn
and in clarifying other details of the structure of 19C.

Since there are presently no experiments that
would study the interaction of 6He and 19C beams
with nuclei, our calculations of cross sections for
processes involving these exotic nuclei are of a
predictive character. We hope that the results of
these calculations will be of use in analyzing future
experiments.

2. DESCRIPTION OF THE FORMALISM

For the amplitude of the diffrative dissociation of a
two-cluster nucleus such that only its second cluster
is charged, it is convenient to use, as in [2], the general
expression

iGZu (q) = e2iη2(R2){iGu(q) + g
(1)
u (q) + g

(2)
u (q)},

(1)

where iGu(q) is the amplitude in which Coulomb
interaction is disregarded, but the diffuseness of the
target-nucleus edge is taken into account, while

g
(1)
u (q) and g(2)

u (q) are contributions to the amplitude
in (1) that are associated with the Coulomb interac-
tion of the second (charged) cluster with the target
nucleus, the former and the latter stemming from,
respectively, the single and the double scattering of
the clusters. Hereafter, the notation is identical to that
in [2].
P

The profile function for the second (charged) clus-
ter will be taken in the form

ω
(∆)Z
2 (ρ2) = 1 − e2iη2(ρ2) (2)

+ e2iη2(ρ2)

(
1 + exp

ρ2 −R2

∆

)−1

,

where ∆ is the parameter of diffuseness of the target-
nucleus edge and η2(ρ2) is the Coulomb phase shift.

The profile function ω
(∆)
1 (ρ1) for the first cluster,

which is not charged, is obtained from (2) upon
replacing the index 2 by 1 and going over to the limit
η1(ρ1) → 0.

By using the properties of Bessel functions and the
fact that the minimum momentum transfer q in the
disintegration of projectile nuclei does not vanish, one
can recast the contributions to the amplitude in (1)
that stem from the Coulomb interaction into the form

g
(1)
u (q) = ikΦu(−β2q)[e−2iη2(R2) − 1] (3)

×
∞∫

0

dρ1ρ1
J0(qρ1)

1 + exp
ρ1 −R1

∆

− 2kn2

q2
Φu(β1q)

×
[
J0(qR2) + 2in2

∞∫

R2

dρ2
J0(qρ2)
ρ2

× exp
(

2in2 ln
ρ2

R2

)]
+ ikΦu(β1q)

×
[ R2∫

0

dρ2ρ2J0(qρ2)
(

1 − exp
(

2in2 ln
ρ2

R2

))

−
∞∫

0

dρ2ρ2J0(qρ2)
1 − exp

(
2in2 ln

ρ2

R2

)

1 + exp
ρ2 −R2

∆

]
,

g
(2)
u (q) =

∫
d(2)gFu(g), (4)

Fu(g) =
k

2πi
Φu(g)

∞∫

0

dρ1ρ1
J0(|β1q − g|ρ1)

1 + exp
ρ1 −R1

∆

×
{

2in2

|β2q + g|2
[
J0(|β2q + g|R2)

+ 2in2

∞∫

R2

dρ2
J0(|β2q + g|ρ2)

ρ2
exp
(
2in2 ln

ρ2

R2

)]
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+

R2∫

0

dρ2ρ2J0(|β2q + g|ρ2)

×
(

1 − exp
(

2in2 ln
ρ2

R2

))

−
∞∫

0

dρ2ρ2J0(|β2q + g|ρ2)
1 − exp

(
2in2 ln

ρ2

R2

)

1 + exp
ρ2 −R2

∆

}
.

In (3), we have retained the first term involving
the inelastic form factor Φu(−β2q), while, in [2], we
disregarded the analogous term involving the elastic
form factor Φ0(−β2q) since its contribution to the
cross section for elastic scattering was quite small.
The integrals in (3) and (4) with respect to ρ1 and
ρ2 are transformed in such a way that they already
converge quite fast both at the lower and at the upper
limits of integration. We have kept the cluster indices
on the variables ρ1 and ρ2 in order to indicate explic-
itly which contributions refer to each of the clusters.
Logarithmic divergences associated with Coulomb
interaction that arise in the integration in (4) with
respect to the variable g at g = −β2qwere eliminated
by the method proposed in [2]. This method is based
on a procedure within which, upon the inclusion of
Coulomb interaction, the momentum-conservation
law is taken into account more correctly than in the
earlier version of the diffraction nuclear model [14, 15].

For the wave functions describing the relative mo-
tion of the two clusters in a bound state, ϕ0(r) (where
r is the radius vector connecting the two clusters),
and in a continuum state, ϕu(r) (where u is the
relative momentum of the clusters that fly apart), we
took the Hulthén wave function and a function that is
orthogonal to it; that is,

ϕ0(r) =

√
αβ(α+ β)
2π(β − α)2

e−αr − e−βr

r
, (5)

α =

√
2m1m2ε

�2(m1 +m2)
,

ϕu(r) = eiu·r + f(u)
e−iur − e−βr

r
, (6)

f(u) = −
[
β − β2 + u2

2β
− (β2 + u2)2

2(α + β)2β
− iu

]−1

,

where m1 and m2 are the cluster masses and ε is the
binding energy of the projectile nucleus with respect
to its breakup into the two clusters.

The differential cross section for the diffractive dis-
sociation of the projectile nucleus into two clusters
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Fig. 1. Cross section for the process 12C(d, np)12C
versus the product-proton energy at (a) the
incident-deuteron energy of Ed = 56 MeV and the
nucleon-emission angles of θn = θp = 15◦ and (b)
Ed = 270 MeV and θn = θp = 4◦. The notation for the
curves is explained in the main body of the text. The
displayed experimental values were borrowed from [1].

in the nonrelativistic approximation is related to the
amplitude in (1) by the equation [16]

d3σ

dΩ1dΩ2dE2
(7)

=
m1m2E1E2

22/3π3k2

(
m1 +m2

E

)1/2 ∣∣GZu (q)
∣∣2 ,

where k and E are the projectile momentum and
energy, respectively;E1 andE2 are the energies of the
emitted clusters (the first and the second, charged,
one, respectively); and dΩ1 and dΩ2 are the solid-
angle elements in which their momenta occur.
03
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3. NUMERICAL CALCULATIONS
AND DESCRIPTION

OF EXPERIMENTAL DATA

Results obtained by calculating the cross sections
by formula (7) with the aid of expressions (1)–(6) are
displayed in Figs. 1–3. In all of the figures, the solid
curves correspond to taking into account both the
nuclear and the Coulomb interaction of incident par-
ticles with target nuclei, whereas the dashed curves
represent the results obtained with allowance for only
the nuclear interaction. The diffuseness parameter of
the target was set to ∆ = 0.75 fm, while the param-
eter β appearing in the wave functions in (5) and (6)
was assumed to be equal to 7α.

The calculated cross section d3σ/dΩndΩpdEp for
diffractive deuteron dissociation in the field of a 12C
nucleus versus the product-proton energy Ep are
shown in Fig. 1 for the projectile-deuteron ener-
gies of Ed = 56 MeV (Fig. 1a) and Ed = 270 MeV
(Fig. 1b), along with experimental data (points with
error bars) from [1]. The ranges R1(=Rn) and R2(=
Rp) of nucleon-cluster interaction with a target nu-
cleus of mass number A were taken to be equal to
R = r0A

1/3, the dependences in Figs. 1а and 1b be-
ing computed for r0 = 1.3 and 1.1 fm, respectively.
This distinction between the values of r0 for different
projectile-deuteron energies Ed is associated with
the well-known general regularity of a decrease in
the ranges of interaction of colliding strongly inter-
acting particles (nuclei) with increasing energy [17]
PH
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neutron and a 18C nucleus versus the energy of the prod-
uct nucleus 18C for the neutron and 18C emission angles
of θn = 3◦ and θ18C = −3◦, respectively, the neutron
separation energy being set to εn = 0.53 MeV (curves 1)
or εn = 0.24 MeV (curves 2). The solid curves corre-
spond to taking into account both the nuclear and the
Coulomb interaction, while the dashed curves represent
the results obtained with allowance for only the nuclear
interaction.

(this was also confirmed by the optical-model cal-
culations performed in [18]). The use of somewhat
different values of r0 for different projectile-deuteron
energies per nucleon, (1/2)Ed ≥ 130 MeV and Ed ≤
30 MeV, leads to better agreement with experimental
data from [1] than the use of the averaged value of
r0 = 1.2 fm. The deuteron-binding energy was set to
εd = 2.225 MeV.

The calculations, as well as the kinematically
complete experiments reported in [1], were performed
for the case where the momentum of the product
neutron was parallel to the momentum of the product
proton—that is, the nucleon emission angles θn and
θp (with respect to the deuteron-momentum vector)
were equal to each other. These angles were 15◦ in
the case corresponding to Fig. 1a and 4◦ in the case
corresponding to Fig. 1b.

From Fig. 1, it can be seen that, if the Coulomb
interaction of the second, charged, cluster (proton)
with the target nucleus 12C is taken into account
along with nuclear interaction, the dissociation cross
section at maxima grows, while the distribution itself
in the region of these maxima becomes narrower. As
a result, the agreement with the experimental data
being considered is significantly improved, especially
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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at the deuteron energy of Ed = 56 MeV in Fig. 1a,
where the uncertainties in the cross-section values
are much less than in Fig. 1b at Ed = 270 MeV. The
cross sections calculated here for the angles of θn =
θp = 7◦ and 10◦ and Ed = 270 MeV are also in fairly
good agreement with their experimental counterparts
from [1].

Figure 1a also displays the cross sections com-
puted with allowance for both the nuclear and the
Coulomb interaction at ∆ = 0 and β = 7α (dash-
and-dot curve) and at∆ = 0.75 fm and β = ∞ (dash-
and-double-dot curve). It can be seen that, as the
region of target-nucleus-edge diffuseness is widened,
the cross-section value at the maximum decreases
and that, upon including (increasing) the range of
nuclear forces between the clusters (that is, upon
reducing the parameter β), the cross section at the
maximum becomes larger; therefore, the agreement
with experimental data is improved in either case. As
soon as the uncertainties in preliminary data reported
by Okamura et al. [1] (especially in those given in
Fig. 1b) are reduced, the pattern of the dependence
of the observed dissociation cross sections on the
properties of projectile nuclei (deuterons) and target
nuclei will become clearer. Even at present, however,
one can deduce from the data in Fig. 1 that the
deuteron-breakup cross section is rather sensitive to
these properties; moreover, these data indicate that
a comparison of the theoretical and experimental re-
sults may provide the possibility of determining the
parameters of the structure of nuclei. Our analysis of
the cross section for the process 12C(d, np)12C and
good agreement with available experimental data give
every reason to state that the cross sections presented
below that were calculated on the basis of our ap-
proach in the diffraction approximation for the disso-
ciation of nuclei more complex than the deuteron—
namely, those of 6He and 19C—may be optimistically
viewed as reliable predictions.

The calculated differential cross section
d3σ/(dΩ(2n) × dΩαdEα) for the diffractive dissocia-
tion of 150-MeV projectile exotic nuclei 6He in the
field of a 12C nucleus into a two-neutron cluster
(2n) and a 4He cluster is presented in Fig. 2 versus
the product-alpha-particle energy Eα for the case
where the two-neutron system (2n) as a discrete
unit (presumed dineutron) and the alpha particle are
both emitted at an angle of θ(2n) = θα = 7◦ with
respect to the momentum of the projectile nucleus
6He. The ranges of the interaction of the two clusters
(presumed dineutron and alpha particle) with the
target nucleus of mass number A were determined
here (and for the data in Fig. 3 as well) by the

formula Ri = r0(A1/3 +A
1/3
i ), i = 1, 2, where Ai are

the mass numbers of the clusters (A1 = A(2n) = 2
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and A2 = Aα = 4 for the data in Fig. 2), at r0 =
1.2 fm. We note that the results reported in [19–22]
suggest the presence of a dineutron configuration in
the 6He nucleus, the values obtained in [22] for the
linear dimensions of the dineutron in the 6He nucleus
corresponding to the parameter value of r0 = 1.2 fm.

The notation for the curves in Fig. 2 is identical to
that in Fig. 1: the dash-and-dot curve in Fig. 2 cor-
responds to ∆ = 0 and β = 7α, while the dash-and-
double-dot curve represents the relevant cross sec-
tion for ∆ = 0.75 fm and β = ∞ [the energy required
for separating the (2n) system from the 6He nucleus
was set to ε(2n) = 0.975 MeV]. As can be seen, the
sensitivity to the range of the forces between the (2n)
system and the alpha particle is comparatively low
here; however, allowance for the diffuseness of the
target-nucleus edge may reduce the cross section by
nearly a factor of 2 (as this occurs upon the transition
from ∆ = 0 to ∆ = 0.75 fm), while the inclusion of
Coulomb interaction increases the cross-section val-
ues in the region of the maximum by about one order
of magnitude.

A comparatively high sensitivity of the theoretical
cross section for the process 12C(6He, (2n)α)12C to a
number of various factors may aid, upon performing
relevant experiments, in refining the energy ε2n of
two-neutron separation from the 6He nucleus and
clarify, without recourse to other investigations, such
as those reported in [19–22], the question of whether
a dineutron exists in the 6He nucleus.

The calculated cross section for the diffractive dis-
sociation of an exotic nucleus 19C (as was mentioned
above, this nuclear species was discovered in [7, 8]) in
the field of a 12C nucleus into a loosely bound neutron
(the separation energy is εn = 0.53 MeV) and a 18C
nucleus is displayed in Fig. 3 versus the energy of
the second cluster (18C nucleus) at the projectile
energy of 67MeV per nucleon—that is,E = 67(A1 +
A2) MeV (A1 = An = 1 and A2 = A18C = 18 for the
data in Fig. 3). The emission angles were set to θn =
3◦ and θ18C = −3◦ for the neutron and the 18C nu-
cleus, respectively. This means that the calculations
were performed for coplanar geometry—that is, for
the case where the the neutron momentum lies in the
plane spanned by the momenta of the 18C and 19C
nuclei and where, in contrast to the cases considered
above, the product particles travel on different sides of
the projectile-momentum direction.

Curves 1 in Fig. 3 were computed for the opti-
mum (most probable) value of the neutron-separation
energy in the 19C nucleus (εn = 0.53 MeV), while
curves 2 correspond to εn = 0.24 MeV. It can be
seen from Fig. 3 that, if the Coulomb interaction is
switched off, the cross-section maximum is reduced
3
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by nearly a factor of 3. At the same time, the cross-
section maximum becomes almost threefold higher
upon the transition from the larger value of εn to the
smaller one. So high a sensitivity of the cross section
to variations in εn can be used to shrink the region of
experimental uncertainties in the energy εn of neutron
separation from the 19C nucleus.

The calculations reveal that, upon going over from
light to extremely heavy target nuclei, the cross sec-
tion for the diffractive dissociation of a projectile nu-
cleus 19C into a neutron and a 18C nucleus may
increase by a few orders of magnitude, which is due
primarily to a strong effect of Coulomb interaction.
Therefore, it is advisable to perform relevant experi-
ments, first of all, with heavy nuclear targets.

4. CONCLUSIONS

(i) Within the diffraction approximation, a the-
ory has been developed for describing the diffrac-
tive dissociation of loosely bound two-cluster nu-
clei, Coulomb interaction and the diffuseness of the
target-nucleus edge being taken into account in this
theory; as a result, the amplitude of the process has
been represented as the sum of a few integrals char-
acterized by a low multiplicity and a fast convergence
at both limits.

(ii) The efficiency of the proposed approach in cal-
culating the differential cross section for the diffrac-
tive dissociation of deuterons has been demonstrated,
the results of these calculations, where the use of
projectile wave functions having a correct asymptotic
behavior both at short and at long distances between
the clusters involved is of importance, being in fairly
good agreement with data of kinematically complete
experiments.

(iii) It has been shown that the cross sections
computed within the proposed approach for the
diffractive dissociation of exotic nuclei 6He and 19C
are highly sensitive to some of their features, which
have so far been determined with a large uncertainty;
the results obtained here for the dissociation of
6He and 19C nuclei can justifiably be considered as
predictive ones—they can be of use in planning and
performing relevant experiments.
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Abstract—Within the Glauber diffraction theory of multiple scattering, the differential cross sections for
the elastic and inelastic scattering of π± mesons are calculated for energies in the range between 130 and
260 MeV. This is the region where the broad ∆33 resonance in the π±N system occurs, the maximum
corresponding to this resonance being at approximately 165 MeV. The wave function for the 9Ве nucleus
was chosen on the basis of the 2αN multicluster model. The sensitivity of the resulting differential cross
sections to the target-nucleus wave functions computed with various intercluster-interaction potentials,
to the contributions of wave-function components, and to various scattering multiplicities in the Glauber
operator Ω is analyzed. A comparison with experimental data and with the results of other calculations is
performed, and conclusions concerning the quality of the wave functions used and advantages of the present
approach are drawn. c© 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Information of importance for obtaining deeper
insights into pion-induced nuclear reactions and for
assessing the potential of investigations into nuclear
structure with the aid of such reactions is deduced
predominantly from data on the elastic and inelastic
scattering of π± mesons on nuclei. The properties of
the π mesons—specifically, their low mass, zero spin,
and three charge states—make it possible to study
charge-exchange reactions and render them a link
between the short- and the long-range region of nu-
clear forces. At π±-meson energies below 250 MeV,
the ∆33 (Jπ = 3/2−, T = 3/2) resonance plays a
dominant role in π±N interaction, and its presence
affects pion–nucleus interaction.

Although pion scattering on nuclei has received
quite an adequate study in recent decades [this
became possible upon commissioning the meson
factories at the Los Alamos National Laboratory
(LAMPF) and at the Paul Scherrer Institute in
Switzerland], measurements and theoretical calcu-
lations have been most often performed for spinless
nuclei, like 4Не, 12С, and 16О. However, the advent
of new technologies for manufacturing polarized
targets made it possible to perform experiments with
polarized target nuclei, and this quickened interest
in pion scattering on nuclei of nonzero spin [1–3].
For spin-1/2 nuclei, there arises asymmetry because
of the interference between ordinary and spin-flip

*e-mail: ibr@inp.kz
1063-7788/03/6602-0259$24.00 c©
π±N amplitudes. Such effects are especially pro-
nounced for deformed nuclei—in particular, spin-
flip quadrupole scattering must have a strong effect
not only on differential cross sections but also on
polarization observables, as was demonstrated in pion
scattering on 6Li [1] and 7Li nuclei [2, 3].
An experiment that studied π±-meson scattering

on 9Ве, 28Si, 58Ni, and 208Pb at an energy of 162MeV
was performed at LAMPF [4]. For all even–even nu-
clei, the angular distributions possess a pronounced
diffraction structure characteristic of strong pion ab-
sorption. Only for 9Ве is the angular distribution dif-
ferent from the others, changing muchmore smoothly
and exhibiting but small inflections in the cross sec-
tion at scattering angles in the regions around θ ∼
60◦ and 100◦. An optical-model calculation fails to
describe experimental data for 9Ве, but it ensures
good agreement with data for the other nuclei stud-
ied in that experiment. As was hypothesized in [4],
the discrepancy may be due to a nonzero spin or an
unusual structure of the loosely bound nucleus 9Ве.
The simple Woods–Saxon potential, which is usually
used in the optical model, does not take into account
these features. In their next study [5], the same group
of authors explained the unusual behavior of the dif-
ferential cross section by the additional contribution
of quadrupole scattering: if the target spin is nonzero
(it is Jπ = 3/2− for 9Ве), all multipoles of order 2J
must be taken into account in elastic scattering.
As a continuation of the investigation devoted to

hadron scattering on a 9Ве nucleus and begun in
[6, 7], the differential cross sections for elastic and
2003 MAIK “Nauka/Interperiodica”



260 IBRAEVA
inelastic scattering of π±mesons were computed here
and compared with experimental data from [4] and
with the theoretical differential cross sections ob-
tained in [4, 5]. The present calculation was based on
theGlauber diffraction theory of multiple scattering. If
the target-nucleus wave function and the elementary
π±N amplitude are known, this theory enables one
to calculate the scattering matrix element, which is
related to the observed differential cross section by a
simple equation. One of the first detailed calculations
with π± mesons that was performed within Glauber
theory was that of Oset and Strottman [8], who con-
sidered the case of elastic scattering on 12C, 16O, and
24Mg nuclei and the case of inelastic scattering on
7Li, 12C, 15N, etc., nuclei. Those authors arrived at
the important conclusion that, for angles in the region
θ < 50◦, the description of pion scattering on the
basis of Glauber theory is not inferior to that within
the distorted-wave impulse approximation (DWIA).
It was shown that the model is appropriate for an-
alyzing elastic and inelastic scattering in the ∆33-
resonance region with a renormalized πN± ampli-
tude; however, the wave functions were chosen there
in the form of simple shell-model functions (which
may include particle–hole components), and this was
a weak point of those calculations.
In order to make a further step, one can take

full advantage of Glauber theory, where it is possi-
ble to perform calculations with complicated wave
functions and to allow for multiple-scattering effects.
This is done in the present study by employing three-
body wave functions for the 9Ве nucleus that were
computed in [9] and by taking into account, in the cal-
culation of differential cross sections, all multiplicities
of scattering on the clusters and the nucleon in the
Glauber operator Ω.
Previously, these wave functions were used in cal-

culating the differential cross sections for elastic and
inelastic proton scattering [6, 7], and the results of
these calculations were in agreement with experi-
mental data.

DESCRIPTION OF THE FORMALISM

The 9Ве nucleus possesses a nonzero spin, a large
quadrupole moment (Q = 53 mb), and an anoma-
lously low binding energy in the (α + α + N ) channel
(Ebind = 1.57 MeV). The 2αN model is the most
natural for this nucleus, and it is precisely the model
within which its wave functions were calculated in [9]
for realistic intercluster-interaction potentials. For
the 9Ве nucleus of total angular momentum J and its
projectionMJ , the wave function can be represented
in the form

ΨJMJ
i,f = ϕJα = Tα = 0(1, 2, 3, 4) (1)
PH
× ϕJα = Tα = 0(5, 6, 7, 8)ΨJMJ (r,R),

where ϕJα=Tα=0 is the alpha-particle wave function
depending on the internal coordinates of the four-
nucleon system. For the ground state of 9Ве, three
components make commensurate contributions; that
is,

ΨJMJ (r,R) = Ψλ=0,l=1,L=1(r,R) (2)

+ Ψλ=2,l=1,L=1(r,R) + Ψλ=2,l=1,L=2(r,R),

where r is the coordinate of the relative motion of two
alpha particles in the 9Ве nucleus;R is the coordinate
of the relative motion of the neutron and the center
of mass of two alpha particles there; λ and l are the
orbital angular momenta conjugate to them; and L is
the total orbital angular momentum of the nucleus,
λ + l = L. The individual components of the wave
function (2) are given by

Ψ011(r,R) =
1√
4π

∑

MLMS

〈
1ML

1
2
MS

∣∣∣∣
3
2
MJ

〉

(3)

× δmML
RY1m(R)χ 1

2
MS

∑

ij

C01
ij exp(−αir

2 − βjR
2),

Ψ211(r,R) =
∑

MLMS ,µ,m

〈
1ML

1
2
MS

∣∣∣∣
3
2
MJ

〉
(4)

× 〈2µ1m |1ML〉r2Y2µ(r)RY1m(R)χ 1
2
MS

×
∑

kp

C21
kp exp(−αkr

2 − βpR
2),

Ψ212(r,R) =
∑

MLMS ,µ,m

〈
2ML

1
2
MS

∣∣∣∣
3
2
MJ

〉
(5)

× 〈2µ1m |2ML 2ML〉 r2Y2µ(r)RY1m(R)χ 1
2
MS

×
∑

qt

C21
qt exp(−αqr

2 − βtR
2),

where C01
ij , C21

kp, C21
qt , αi, βj , αk, βp, αq, and βt

are coefficients that are determined by means of a
special procedure of expanding the wave functions
(which are obtained in a numerical form by solving the
Schrödinger equation) in multidimensional Gaussian
functions and which are tabulated in [9]; µ andm are
the projections of the orbital angular momenta λ = 2
and l = 1, respectively; and the rest of the notation
is standard. The relative weights of the configurations
and some static features of the 9Ве nucleus are quoted
in the table.
The λ = 2, l = 1, L = 2 component saturates

97% of the wave function for the Jπ = 5/2− excited
state and has the same form as the component (5)
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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Included configurations, their relative weights in the ground-state wave function for 9Ве, root-mean-square charge
radius rch, quadrupole momentQ, and magnetic moment µ for the 9Ве nucleus from [9]

Configuration Model 1 Model 2 Model 3
λ l L

0 1 1 0.4078 0.4295 0.3876

2 1 1 0.3471 0.3554 0.3496

2 1 2 0.2131 0.1957 0.2590

rch, fm

r
exp
ch = 2.519(12) fm 2.526 2.352 2.401

Q, mb

Qexp = 53 ± 3mb 49.5 37.5 41.55

µ, µ0

µexp = −1.1778(9)µ0 –0.8662 –0.9325 –0.9912

Note: Experimental data were taken from [10].
of the ground-state wave function; here, it is used in
calculating the cross section for inelastic scattering.
The following intercluster-interaction potentials

were used in [9] to calculate the ground-state wave
function: Vαα, the Ali–Bodmer potential featuring
repulsion at short distances; Vαn, a potential involving
an even–odd splitting of phase shifts (model 1); Vαα,
a deep potential involving forbidden states that is
taken in the Buck form; Vαn, a potential that is anal-
ogous to that in model 1 (model 2); Vαα, a potential
that is identical to that in model 2; Vαn, the Sach–
Biedenharn–Breit potential (model 3).
For the excited state, the wave function was cal-

culated only within model 1.
Assuming that the scattering of incident protons

occurs on the neutron and two alpha particles form-
ing the 9Ве nucleus, one can represent the multiple-
scattering operator within Glauber theory in the form

Ω =
3∑

ν=1

ων −
3∑

ν<µ

ωνωµ + ωα1ωα2ωn, (6)

where ν = 1, 2, 3; here, ν = 1 and 2 correspond to α1

and α2, while ν = 3 corresponds to n. The individual
profile functions ων are expressed in terms of the
elementary π±N and π±α amplitudes fπν(q) as

ων(ρ − ρν) (7)

=
1

2πik

∫
d2q exp(−iq · (ρ − ρν))fπν(q).

where ρ is the impact parameter; ρν stands for the
coordinates of the nucleon (or alpha particles); and

fπN (q) =
kσπN
4π

(i + επN ) exp
(
−βπNq2

2

)
, (8)
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fπα(q) =
kσπα
4π

(i + επα) (9)

×
(

1 − q2

t1

)(
1 − q2

t2

)
exp

(
−βπαq

2

2

)
,

The notation for the quantities involved is identical to
that in [6, 7]. The parameters of the amplitudes are
given in [11].

In the above form, the elementary π±α amplitude
fπα(q) was proposed in [12]. This parametrization
makes it possible to describe correctly the diffraction
pattern (involving three maxima and two minima in
the differential cross section) of π±α scattering over
a broad region of momentum transfers that extends
up to q2 = 0.8 (GeV/c)2. This is achieved by intro-
ducing the complex-valued constants t, whose real
parts determine the position of the minima of the
function in (9), while the imaginary parts control
their depth. That use is made not only of the π±N
but also of the π±α amplitude enables us to take
phenomenologically into account effects associated
with nucleon correlations, the Fermi motion of in-
tranuclear nucleons, and the Pauli exclusion princi-
ple, as well as spin effects, but it is of course hardly
possible to include these effects in the independent-
nucleonmodel. Moreover, the introduction of the π±α
amplitude makes it possible to calculate analytically,
without restricting oneself to the approximation of
single scattering on target nucleons, scattering pro-
cesses of all multiplicities, whereby the accuracy of
the calculation is improved. This approach was first
applied to the alpha-particle nuclei 12С and 16О [13]
and then extended to other nuclei containing an alpha
particle, such as 6Li and 7Li [6, 7, 14].
3
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Fig. 1. Differential cross sections for elastic π±-meson scattering on a 9Be nucleus at Eπ = 162 MeV for various model 9Be
wave functions. Curves 1, 2, and 3 represent the results of our calculations with the wave functions obtained on the basis of
models 1, 2, and 3. Closed and open circles correspond to the scattering of π+ and π− mesons, respectively. The experimental
data displayed in this figure and in those that follow were borrowed from [4].
Within diffraction theory, the scattering matrix el-
ement is represented in the form

Mif (q) =
∑

MJM ′
J

ik

2π

∫
d2ρ (10)

×
3∏

ν=1

drν exp(iq · ρ)δ(R9)〈ΨJMJ
i |Ω|ΨJM ′

j

f 〉,

where rν stands for the single-particle coordinates of
the nucleon and two alpha particles in the target nu-
cleus and q is the momentum transfer in the reaction
being considered. By definition, we have q = k− k′,
where k and k′ are the momenta of, respectively, the
incident and the scattered π± meson. In the case of
elastic scattering, k = k′ and |q| = 2k sin(θ/2), with
θ being the scattering angle.

Substituting the wave function in the form (2) into
(10), we find that nonzero matrix elements are the
following:

Mif (q) =
∑

MJM
′
J

ik

2π

∫
d2ρdRdrdR9 (11)

× exp(iq · ρ)δ(R9)[〈Ψ011|Ω|Ψ011〉 + 〈Ψ211|Ω|Ψ211〉
+ 〈Ψ212|Ω|Ψ212〉 + 〈Ψ212|Ω|Ψ211〉 + 〈Ψ211|Ω|Ψ212〉].

But if one substitutes the operator Ω in (6) into (10),
PH
the matrix element will assume the form

Mif (q) =
∑

MJM
′
J

ik

2π

∫
d2ρ

3∏

ν=1

drν exp(iq · ρ) (12)

× δ(R9)

{〈
ΨJMJ
i

∣∣∣
∑

ν

ων

∣∣∣ΨJM ′
J

f

〉

−
〈
ΨJMJ
i

∣∣∣
∑

ν<µ

ωνωµ

∣∣∣ΨJM ′
J

f

〉

+
〈
ΨJMJ
i

∣∣∣ωα1ωα2ωn

∣∣∣ΨJM ′
J

f

〉}
.

Thus, it is necessary to calculate 15 matrix elements
for different scattering multiplicities with different
wave-function components. A detailed description of
the technique for calculatingGlauber amplitudeswith
multicluster-model wave functions is given in [6, 7].

The differential scattering cross section measured
experimentally is proportional to the squared modulus
of the matrix element:

dσ

dΩ
=

1
2J + 1

|Mif (q)|2. (13)

DISCUSSION OF THE RESULTS

Here, the differential cross sections computed
within diffraction theory are contrasted against ex-
perimental data obtained at LAMPF [4].
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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Fig. 2.Differential cross sections computedwithin diffraction theory alongwith those obtained on the basis of the opticalmodel:
(curve 1) results identical to those represented by curve 1 in Fig. 1, (curve 2) results of the first-order optical-model calculation
allowing for only monopole scattering [4], and (curve 3) results of the optical-model calculation allowing for quadrupole
scattering [5].
The objective of this study was to assess the de-
gree to which diffraction theory is able to describe π±-
meson scattering on a 9Ве nucleus and the degree
to which this scattering process is sensitive to the
structure of this nucleus, which is represented here by
the three-body 2αn-model wave function computed
with various intercluster-interaction potentials, and
to the dynamics of pion–nucleus interaction—that is,
to the contribution of various scattering multiplicities
in the Glauber operator [expression (6)] and to the
dependence of the differential cross sections on the
energy of scattered π± mesons.

Let us consider the question of how the differential
cross sections depend on the form of model wave
functions. The results of a calculation that is aimed
at clarifying this question for the elastic scattering of
162-MeV π± mesons are displayed in Fig. 1, where
curves 1, 2, and 3 represent our results obtained
with the wave functions constructed on the basis of
models 1, 2, and 3. The results for all of the wave
functions used faithfully reproduce the behavior of
the cross section, but, in the region of the cross-
section minimum, curve 1, which was computed with
the αα potential proposed by Ali and Bodmer, lies
closer to experimental data than curves 2 and 3.
The last two are close to each other, since the wave
functions in models 2 and 3 differ only by the form
of the αn potential (a potential featuring an even–
odd splitting of phase shifts in model 2 versus the
Sach–Biedenharn–Breit potential in model 3), but
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
this potential does not have a significant effect on the
wave functions and, hence, on the cross sections.
Comparing the cross sections calculated with the

wave functions for the 9Be nucleus that were obtained
for the different αα-interaction potentials, one can
conclude that that the cross section is best described
with the wave function for the Ali–Bodmer potential
(curve 1). The distinctions between the wave func-
tions computed for the different potentials are the
following. The wave function for the relative motion of
the two alpha particles in the Ali–Bodmer potential is
more superficial because of the repulsive-core effect at
short distances; it reaches a maximum value at 3 fm.
The wave function in the Buck potential involving
forbidden states extends deeper into the interior of
the nucleus, having a node and two maxima there.
Therefore, the former is expected to describe better
peripheral processes (for example, elastic and inelas-
tic scattering in the ∆33-resonance region), while
the latter is more appropriate for analyzing processes
occurring over the entire volume of the nucleus. Here,
it is worthwhile to compare the results in the table
for the quadrupole moment that were obtained with
the different model wave functions. The quadrupole
moment is the largest in model 1, and this result is
the closest to the experimental value.
In all the ensuing calculations, use will be made of

the wave function based on model 1.
In Fig. 2, the results of our calculations for the

differential cross sections with the wave function cor-
responding tomodel 1 (curve 1was taken fromFig. 1)
3
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Fig. 3.Differential cross sections for the elastic scattering
ofπ±mesons on (curve 1) 6Li, (curve 2) 7Li, and (curve 3)
9Be nuclei at Eπ = 180, 164, and 162MeV, respectively.

are contrasted against the results of optical-model
calculations (curve 2 from [4] and curve 3 from [5]).
In addition to measuring the differential cross sec-
tions over a wide range of angles from 10◦ to 100◦,
Zeidman et al. [4] calculated this quantity for the
9Ве, 28Si, 58Ni, and 208Pb nuclei. While, for all even–
even nuclei, the optical model, which is based on
the convolution of the pion–nucleon t matrix with
the nuclear density as determined from an analysis
of electron scattering, yields a fairly good descrip-
tion of experimental data, for the 9Ве nucleus, the
first-order optical-model calculation allowing only for
monopole scattering leads to a large discrepancy with
experimental data in the region 50◦ < θ < 60◦, where
curve 2 has a deep minimum, but there is no such
minimum in experimental data. The next study of
the same group of authors (see [5]) was devoted to
taking into account the quadrupole-scattering con-
tribution. The results of their calculation (curve 3)
are in excellent agreement with experimental data.
Comparing curve 3 with our curve 1, one can see that
the optical model is more universal—in contrast to
diffraction theory, which, in view of limitations inher-
ent in it, is applicable only in the region of forward
scattering angles, it faithfully reproduces the differ-
ential cross sections over the entire range of angles.
That the strong absorption of π± mesons in the∆33-
resonance region somewhat extends the applicability
region of diffraction theory does not provide a perfect
explanation of a close proximity of the theoretical and
experimental results in the region θ > 60◦—this may
be a fact of mere coincidence rather than an indication
of the correctness of the method. On the other hand,
the conceptual value of the optical model is plagued
P

by the presence of a large number of adjustable pa-
rameters whose physical meaning can hardly be rec-
ognized. But in diffraction theory, there are no free
parameters—all input parameters (of the elementary
amplitudes and of the αα and αn potentials) were
extracted from data of independent experiments and
cannot be arbitrarily varied. From Fig. 2, it can be
seen that the description of experimental data in the
region of forward scattering angles is of the same
quality in the optical model and in diffraction theory.
The distinction between curves 2 and 3 and the large
quadrupole moment of the 9Ве nucleus clearly indi-
cate that this nucleus is deformed.
Yet another example that demonstrates how the

deformation of the target nucleus affects the differen-
tial cross sections in question is presented in Fig. 3,
which displays angular distributions that are com-
puted within diffraction theory for target nuclei 6Li
(Q ∼ 0) [7], 7Li (Q = 42 mb) [7], and 9Ве (Q =
53 mb). For the nuclei having a large quadrupole
deformation, the diffraction minimum is smoothed, in
contrast to what we have for the 6Li nucleus, whose
quadrupole deformation is negligible.Only theoretical
curves are given here, but they are quite close to
experimental data (for a comparison with those, the
interested reader is referred to [7]).
Let us now consider in greater detail the result

presented in Fig. 1. Figure 4 shows the contribution
to the cross section from each of the wave-function
components [see expression (2)]. Curves 1, 2, and
3 represent the differential cross sections computed
with the components Ψ011, Ψ211, and Ψ212, respec-
tively, while the solid curve corresponds to their total
contribution. From Fig. 4, it can be seen that, none
of these partial cross sections dominates the total
differential cross section, so that it is necessary to
take into account all three components in order to
describe relevant experimental data. In contrast to
what we have for the case of the 6Li nucleus, where
the S wave dominates the wave function and where
a modest contribution of the D wave partly fills the
diffractionminimum in the cross section [7], all cross-
section curves for 9Ве are similar to one another, the
absolute values of the cross sections being propor-
tional to the wave-function weights given in the table.
Similar results were obtained in [6] for the case of
proton scattering.
We now proceed to consider the case of inelastic

scattering. The differential cross section for inelastic
scattering accompanied by the transition of the target
nucleus 9Ве to the E∗ = 2.43 MeV, Jπ = 5/2− state
of a rotational series is shown in Fig. 5 according to
the present calculations within Glauber theory (solid
curve) and according to optical-model calculations
(dashed curve, which was borrowed from [5]). At
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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small scattering angles, the two methods in question
reproduce experimental data equally well; however,
the minimum and the second maximum as given by
the diffraction method are shifted by 5◦ to 10◦ toward
larger angles with respect to their experimental posi-
tions. As has already been indicated, Glauber theory
is inapplicable in this angular region, and the optical
model, which is free from the limitations of diffraction
theory, provides a better description here. Because
of strong absorption in the ∆33-resonance region,
inelastic scattering is localized in the surface region
of the nucleus involved, so that the application of the
wave function in model 1 featuring the Ali–Bodmer
potential for αα interaction is most justified here.

The contributions to the differential cross sec-
tion from various multiplicities of scattering in the
Glauber operator Ω were calculated here in order to
find out how the dynamics of the process affects the
form of the cross section; the results are shown in
Fig. 6. Curve 1 was computed upon the substitution
of the first term in expression (12) into (13). This is
so-called single scattering. It is worth noting here
that, in the present approach, the alpha particle is
assumed to be structureless, so that the incident π±

meson interacts with it as with a discrete unit (rather
than with four nucleons forming this alpha particle).
The use of this approximation is compensated by tak-
ing the π±α amplitude in a form [see expression (9)]
that describes elastic π±α scattering over a broad
range of momentum transfers. From Fig. 6, it can
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
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Fig. 5. Differential cross section for the inelastic scat-
tering of 162-MeV π± mesons that is accompanied by
the transition of the 9Ве to the Jπ = 5/2− state at
E∗ = 2.43MeV: (solid curve) results of the calculation in
Glauber theory and (dashed curve) results of the optical-
model calculation from [5].

be seen that single scattering is dominant in the re-
gion of small angles (θ < 50◦). Curve 2 results from
substituting the second term in expression (12) into
(13). These is so-called double rescattering—that
is, collisions of two alpha particles with each other
and of each alpha particle with a valence nucleon.
In the region of small angles, the contribution of
such collisions is an order of magnitude less than the
contribution of single collisions, but, with increasing
scattering angle, higher multiplicities decrease more
slowly than the contribution of single scattering; as
a result, double scattering makes a dominant contri-
bution to the total differential cross section (curve 4,
which was computed with allowance for all scattering
multiplicities) for θ > 60◦. This is because, with in-
creasing θ, the momentum transfer q also increases—
that is, a particle can penetrate deeper into the in-
terior of the nucleus, where the density of nucleons
is higher, which increases the probability of multiple
collisions. For example, the momentum-transfer val-
ues at θ = 10◦ and 70◦ for Eπ = 162 MeV are q =
44 and 291 MeV/c, respectively. The region where
the values represented by the curves in question are
commensurate is the region of inflection in the to-
tal differential cross section, as is demonstrated by
curve 4, which corresponds to taking into account
all terms of (12) in (13). A deep minimum does not
arise there, since, in 9Be, strong quadrupole scat-
tering smooths the minimum that is associated with
3
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Fig. 7. Differential cross section for various energies of scattered π± mesons in the resonance region (the energy values are
indicated on the curves).
the interference between the amplitudes for single and
double scattering.

Curve 3, which represents triple rescattering, is
obtained upon substituting the third term of (12)
into (13). Its contribution at θ = 0◦ is three orders of
magnitude less that the contribution of single colli-
sions, and it has virtually no effect on the behavior of
P

the differential cross sections over the entire angular
range.
At a few values of the energy of scattered π±

mesons, Fig. 7 illustrates the behavior of differential
cross sections in the resonance region. In order to
avoid the overlap of the curves in Fig. 7, the values
corresponding to the dashed (Eπ = 260 MeV) and
dotted (Eπ = 130 MeV) curves were multiplied by
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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10 and 10−1, respectively. From this figure, it can be
seen, that the minimum occurs at θ ≈ 60◦, not un-
dergoing a shift toward smaller angles with increas-
ing energy, in contrast to what was found for proton
scattering [7]. But in the case of π±-meson scattering
in the ∆33-resonance region, the minimum is stably
localized at 85◦ for 3Не [15], 75◦ for 4He [16], and
60◦ for 6Li [14]. This is because the ∆33 resonance
is dominant here, other effects being insignificant in
this region.

CONCLUSIONS

It has been shown that Glauber diffraction mul-
tiple-scattering theory, used together with the wave
function in the 2αN three-body model, describes ad-
equately the behavior of the differential cross sections
for elastic and inelastic scattering in the region of
forward scattering angles. The use of both the π±N
and the π±α elementary amplitude makes its pos-
sible to calculate analytically the scattering-matrix
element, whereby one avoids spoiling the accuracy,
which is what occurs in truncating the multiple-
scattering series and in numerically calculating the
multidimentional integrals involved. From the results
of calculations performed by other authors, it fol-
lows that the description of experimental data within
Glauber theory is not inferior to the description on the
basis of the optical model.
The present investigation of nuclear-structure and

dynamical effects has led to the following conclusions:
(i) The differential cross section computed with the

wave function in the Ali–Bodmer potential for αα in-
teraction describes correctly the angular distribution
over a wider angular range than that obtained with
the wave function in the Buck potential. Since π±-
meson scattering occurs predominantly in the surface
region of the target nucleus, it is better described by
a wave function that is localized in the surface region
and which has a more extended asymptotic tail.
(ii) The calculation of the contributions to the

differential cross section from various wave-function
components has revealed that, if the weights of these
components are commensurate, none of these can be
disregarded. All of them contribute to the differential
cross section, and only their sum faithfully reproduces
the absolute cross-section value.
(iii) In order to describe satisfactorily differential

cross sections over a wide range of angles, it is nec-
essary to take into account all multiplicities of scat-
tering on target nucleons or to employ a realistic π±α
amplitude if the cluster being considered is assumed
to be structureless, as is done here for alpha-particle
clusters.
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(iv) As the energy of π± mesons scattered in the
∆33-resonance region is increased, the minimum in
the differential cross section is not shifted toward the
region of smaller scattering angles, in contrast to
what occurs in the case of proton scattering; instead,
it is localized at θ ≈ 60◦, which is explained by the
presence of a broad resonance and by the absence
of other open channels below the threshold for π±-
meson production.

REFERENCES
1. R. Meier et al., Phys. Rev. C 42, 2222 (1990); S. Ritt,
E.T. Boschitz, R. Meier, et al., Phys. Rev. C 43, 745
(1991); P. B. Siegel andW. R. Gibbs, Phys. Rev. C 48,
1939 (1993).

2. R. Tacik et al., Phys. Rev. Lett. 63, 1784 (1989);
R. Meier, E.T. Boschitz, B. Brinkmoller, et al., Phys.
Rev. C 49, 320 (1994).

3. Naoko Nose, Kenji Kume, and Shinichiro Yamaguchi,
Phys. Rev. C 50, 321 (1994).

4. B. Zeidman, C. Olmer, D. F. Geesaman, et al., Phys.
Rev. Lett. 40, 1539 (1978).

5. D. F. Geesaman, C. Olmer, B. Zeidman, et al., Phys.
Rev. C 18, 2223 (1978).

6. M. A. Zhusupov and E. T. Ibraeva, Izv. Akad. Nauk,
Ser. Fiz. 61, 2182 (1997); Yad. Fiz. 61, 51 (1998)
[Phys. At. Nucl. 61, 46 (1998)].

7. M. A. Zhusupov and E. T. Ibraeva, Fiz. Élem.
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Abstract—The effect of external γ radiation on the process of counting 71Ge decays in the proportional
counters of the SAGE experiment measuring the solar-neutrino flux is considered. The systematic uncer-
tainty in the SAGE result due to radon decays inside the air volume surrounding the counters is estimated.
The background counting rate in the proportional counters that is caused by γ radiation from the enclosing
shield is also determined. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Proportional counters are among the basic el-
ements of radiochemical detectors used in solar-
neutrino experiments [Davis chloride detector, SAGE
and GNO (GALLEX) gallium detectors]. These
counters make it possible to determine the number
of atoms produced owing to neutrino interaction with
target matter [1]. The number of background pulses
in the counters affects the statistical and systematic
uncertainties in the results of such measurements.
The decays of radon (222Rn) and of its daughter ele-
ments in the counting gas [2] and in the ambient-air
volume, as well as decays of elements belonging to the
natural radioactive sequences in counter materials [3]
and in the enclosing passive (and active) shields from
external radiation, make the main contribution to the
background in proportional counters. In this article,
we describe the response of the proportional counters
used in the SAGE experiment to γ radiation produced
in shield materials and in the air volume surrounding
the counters.

Since 1990, the Russian–American SAGE ex-
periment has been measuring the solar-neutrino-
capture rate in a target containing about 60 tons of
metallic gallium. Neutrino interaction with the 71Ga
isotope induces the reaction 71Ga (νe, e−)71Ge. At
the end of each exposure run (1–1.5 months), the
product 71Ge atoms are extracted from the target by
means of a special chemical procedure; are converted
into the gaseous state of GeH4 (germane); and are
placed into a proportional counter, where the decays
of these atoms are observed for 5 to 6 months. A
detailed account of the experiment, including the
description of the chemical procedures for extracting
germanium from the gallium target, the process of
1063-7788/03/6602-0268$24.00 c©
counting 71Ge decays, and data analysis, is given
in [4].
Prior to determining the effect of external γ ra-

diation on the process of counting 71Ge decays in
the proportional counters, we will briefly consider the
design of the counters and of the system for counting
71Ge decays.

2. PROPORTIONAL COUNTERS
AND SYSTEM FOR COUNTING 71Ge

DECAYS

To record 71Ge decays, the SAGE experiment em-
ploys cylindrical proportional counters from quartz.
The counter cathode is fabricated from iron. It has
an inner diameter of 0.4 cm, a length of 5 cm, and a
wall thickness of 0.1 cm. The anode is a tungsten wire
10–12 µm in diameter. The counting gas is a mixture
of xenon and germane (GeH4) at a pressure of about
1 atm. Germane makes up to 30% of the gas volume
and operates as a quenching admixture. The decay
of 71Ge (T1/2 = 11.4 d) proceeds via electron capture
followed by the emission of 10.4-, 1.2-, and 0.1-keV
Auger electrons (K, L, and M modes, respectively).
Short tracks of these electrons in the counting gas
generate pulses of short rise time at the proportional-
counter output (so-called pointlike events differing
from extended ones—that is, those that are charac-
terized by long tracks).
The system counting 71Ge decays indicates the

time of pulse arrival; a digital oscilloscope records
the shape of each pulse, and this information is then
used to assess the energy and the pulse rise time. An
active shield based on a NaI crystal selects pulses
accompanied by γ radiation. The dynamical range of
energy measurements between 0.3 and 16 keV allows
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. Spectrum of pulses in the NaI detector that coincide with events in the proportional counter where 68Ge decays in the
counting gas.
one to record theK andLmodes of 71Ge decay. Thus,
events appearing as candidates for 71Ge decay are
selected in accordance with three signatures: (i) the
pulse height falls within the intervals (windows) of
the K or the L peak; (ii) the pulse rise time is short
(pointlike event); and (iii) there is no accompanying γ
radiation.
A time analysis of events selected in this way is

performed upon the completion of counting 71Ge de-
cays in the proportional counter. In this analysis, the
sequence of pulses is represented as a superposition
of the number of 71Ge decays, which decreases expo-
nentially with time, and an invariable background [5].
A NaI detector records photons of energy up

to 3 MeV. The spectra of NaI pulses that do not
coincide with pulses of the proportional counter
are recorded every 30 min (1024 analog-to-digital-
converter channels). The NaI crystal is taken in the
form of a cylinder 22.9 cm in diameter and 22.9
cm in height. It has a well of diameter 8.9 cm and
height 14.5 cm, where the proportional counters
(eight channels) are arranged in a vertical position
symmetrically along a circle of radius about 2.5 cm.
The upper edge of the counter cathodes is at a
distance of 2 to 3 cm from the upper edge of the well.

3. MEASUREMENTS

In order to determine the effect of the external γ
background on the process of counting 71Ge decays,
we measured the efficiency with which photons of
different energies were detected in the proportional
counter. In the measurements, which were performed
under conditions identical to those of counting the
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
decays of 71Ge produced in the course of solar ex-
posures, use was made of 68Ge and 40K monochro-
matic γ sources (Eγ = 511 keV and 1460 keV, re-
spectively).
The radiation sources were placed within the

shield near the counters. As one of the radiation
sources, we took a proportional counter filled with a
gaseous mixture containing the 68Ge isotope (GeH4)
used for calibration in the recording system [6]. The
second (40K) radiation source in the form of the
KCl salt (m = 1.00 ± 0.01 g) was uniformly dis-
tributed in a flask reproducing the dimensions of the
proportional-counter cathode. This flask was placed
at the site of one of the counters within the shield.
Thus, geometric efficiencies for the two sources were
identical.

3.1. Intensity of the Sources

In the measurements reported here, it was impor-
tant to know the absolute values of the intensity of the
γ-radiation sources used. The intensity of the Eγ =
1460 keV source was obtained from reference data
on the average content of the 40K isotope in natural
potassium, pγ(1460 keV) = 1.71 s−1, and was then
confirmed by measurements with the NaI detector.
For 68Ge γ radiation (511 keV), the counting rate
measured by the NaI detector appeared to be p1 =
0.29 ± 0.01 s−1. The decay of 68Ge via electron cap-
ture results in the formation of 68Ga (T1/2 = 271 d),
which in turn is converted into stable 68Zn (T1/2 =
68.3 min) via electron capture (10% of cases) and
via β+ decay (90% of cases). In the sequence of
3
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Fig. 2. Spectrum of pulses in the NaI detector accord-
ing to solar-run measurements (actually, the spectrum is
recorded into a separate file every 30min, but we displayed
the result obtained by averaging the measured spectra
over a few days of the measurements).

68Ge decay, photons are emitted almost exclusively in
the β+ decay of 68Ga (pairs of annihilation quanta),
but about 3.3% of them are due to nuclear radia-
tion of different energies. The efficiency with which
the NaI detector detects 511-keV photons emitted
from the region of the proportional counter located
at a distance of 2.0–2.8 cm from the central axis of
the NaI crystal is ε1 = 0.81. This value, obtained by
the Monte Carlo method, is confirmed by the inten-
sity ratio in the observed spectra of NaI both in the
spectra of coincidences with pulses from the counter
containing 68Ge (during the calibration tests) and in
the NaI spectrum recorded upon switching off this
counter. If the probabilities of recording annihilation
photons (one of the pair, ε12, and both of them, ε2)
are expressed in terms of the efficiency of recording
single 511-keV photons (ε1) as ε12 = 2ε1(1− ε1) and
ε2 = ε21, the ratio of the intensities at the 511- and
1022-keV peaks (Fig. 1) will be

A ≡ I1022
I511

=
ε2
ε12

=
ε1

2(1 − ε1)
,

ε1 = 2A/(1 + 2A).

A value in the range A = 2.10–2.46 was obtained
in the measurements, and this corresponds to ε1 =
81–83%. When a photon pair is emitted, the NaI
efficiency increases up to ε2γ = 96.4%.
The measurements with 68Ge took about three

months. The source intensity changed by 20% over
this period. Thus, the γ activity of the source in the
middle of themeasurement periodwas pγ(511 keV) =

p1
1.10
ε2γ

= 0.33 ± 0.01 s−1 (p1 was determined at the
P

end of the measurements). The number of photons
coming from the source to the counter region (geo-
metric efficiency εg) varied between 1.8 × 10−3 and
8.6 × 10−3 for different channels, depending on the
relative positions of the counter and the source.

3.2. Results

The rate at which the counting of pulses from
the γ source of intensity pγ occurs in a proportional
counter is p = pγεgε0, where εg is the geometric effi-
ciency and ε0 is the sought probability of recording a
photon that reached the proportional-counter region.
In the measurements, use was made of five to seven
counters, some of these being periodically switched
off for technical reasons. For different counters, the
values of p were determined by the difference of the
counting rates in the presence of the source and in the
ordinary (background) mode. Each time after closing
the shield (see Subsection 4.1), a period of 2.6 h was
eliminated from our analysis; the first 35 days after
installing the counters (a period within which 71Ge
extracted from the gallium target after the solar expo-
sure decays) was also eliminated. For each counter,
the time of backgroundmeasurements was more than
60 days.

As a result, the probability of photon detection by
the counter appeared to be ε0(1460) = (3.3 ± 0.4)%
for the E = 1460 keV source. The probability that a
photon is recorded as that which is associated with
the L or theK peak, with the pulse being selected for
a 71Ge-decay analysis, is εL(1460) = (5.4 ± 5.2) ×
10−4 or εK(1460) = (4.1 ± 3.7) × 10−4, respectively.

The value of ε0(511) = (1.2± 0.3)%was obtained
for the E = 511 keV source. However, εL and εK
could not be calculated directly in this case, since pair
photons emitted by the source prevented a determi-
nation of the selection efficiency by using the coin-
cidence with NaI pulses. In view of this, the proba-
bilities were estimated under the assumption that the
selection by NaI for Eγ = 511 keV is identical to that
for Eγ = 1460 keV. Without allowance for the selec-
tion by NaI, the efficiencies of detection at the L and
K peaks for Eγ = 511 keV are εL1(511) = (13.1 ±
8.5) × 10−4 and εK1(511) = (5.4 ± 4.6) × 10−4, re-
spectively. It follows that, if the selection by NaI for
E = 511 keV is identical to that for 1460 keV, the
probabilities that a photon is recorded, with the pulse
passing all selections for the L and K peaks, are
εL(511) = (2.6 ± 1.7) × 10−4 and εK(511) = (2.1 ±
1.8) × 10−4.
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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Results of a Monte Carlo calculation for the probability that photons emitted in NaI come into the counter
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4. SOURCES OF γ RADIATION

In the course of solar runs, the materials of the
shield (the NaI crystal first of all) and radon com-
ing into the volume within the shield from ambient
air are sources of γ radiation inside the shield. Let
us estimate the contribution of these sources to the
proportional-counter counting rate.

4.1. External Radon

In the course of counting, evaporating liquid ni-
trogen is blown through the internal cavity of the
shield, where the counters are installed, and radon
is displaced from the cavity by nitrogen. But during
periodic calibrations (which are usually performed
every two weeks), radon penetrates into the cavity
volume, and its decay products precipitate onto the
inner surface of the shield. After the shield is closed,
the NaI counting rate in the region of the 214Pb and
214Bi γ peaks decreases, following approximately an
exponential law (with T1/2 = 43.7 min for 214Bi, this
half-life period being in good agreement with its cal-
culated value). According to the procedure adopted
in the SAGE experiment for selecting events treated
as candidates for 71Ge decay, all events that come
within a period of 2.6 h after closing the shield are
rejected. Over this period, the radiation intensity de-
creases to 8.4% of the initial level and the num-
ber of 214Bi decays, which cause additional count-
ing in the counter, does not exceed 100. Assuming
that, within the photon-energy range observed in NaI
(up to 3 MeV), there is no abrupt variations in the
probability of photon detection in the counter, we
will use for further estimates, the value of ε0 = 1.2%
for Eγ < 1000 keV and the value of ε0 = 3.3% for
Eγ > 1000 keV, which were obtained for Eγ = 511
and 1460 keV, respectively. It follows that, every time
after closing the shield, the additional counting rate
in the counter from 214Pb and 214Bi decays1) isNg ∼
100εs

∑
i (ε0(Ei)εγi) = 0.018 pulses, where εγi is the

yield of the γ line at energy Ei in the 214Pb and 214Bi
spectra and εs = 0.59% is the geometric efficiency
with which a photon emitted from the inner surface

1)The amount of 214Pb is less than the amount of 214Bi, but we
added the former in order to obtain a more reliable estimate
of the upper limit on the sought uncertainty.
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of the shield finds its way into the counter (its value
was obtained by the Monte Carlo method). The total
number of additional counts at theL andK peaks will
be about 6.6 × 10−4 pulses.
An analysis performed with the 71Ge decay con-

stant over the times of closing the shield revealed
that, in each solar run, pulses selected after closing
the shield 3.2 ± 0.9 times are associated with 71Ge
decays. Considering that the mean number of pulses
at the L and K peaks of 71Ge is about 5 and that
the measured rate of neutrino capture in the gallium
target is 77 SNU2) [7], we can therefore estimate
the systematic uncertainty due to the external-radon
effect in the SAGE measurements at 6.6 × 10−4 ×
3.2 = 2× 10−3 pulses per run of solar-neutrino mea-
surements or (2 × 10−3/5) × 77 SNU = 0.03 SNU.

4.2. Radiation of Shield Materials

The activity of shield materials—first of all, of the
NaI crystal—is yet another source of the γ back-
ground within the shield. If the radiation of the copper
shield around NaI is neglected, upper limits on the
content of radioactive elements in the NaI crystal
can be determined by measuring the intensity of the
peaks in the spectrum of NaI pulses. With allowance
for the probability that photons produced uniformly
over the NaI volume will be absorbed in the crystal,
upper limits on the content of decaying elements
in the NaI material can be estimated by using the
spectrum of events in the NaI detector. The results
are 6.8 × 10−11 g40K/g for 40K (or 5.8 × 10−7 gK/g),
2.2× 10−9 gTh/g for 232Th, and 9.6× 10−11 gU/g for
238U (or 3.9 × 10−17 gRa/g for 226Ra).
The geometric dimensions of the crystal and the

arrangement of the counters determine the probability
that photons produced within NaI enter the counter
(see table).
Thus, we find that the counting rate in the pro-

portional counter due to NaI γ radiation is p1 =∑
i piε0(Ei)εgi, where summation is performed over

all channels of the NaI spectrum (pi is the counting
rate in the ith channel—see Fig. 2). Here, we disre-
gard the distinction between the spectrum recorded

2)SNU corresponds to one neutrino capture per 1036 target
atoms per second.
3
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Fig. 3. Spectrum of pulses in the NaI detector that coincide with events in the proportional counters during solar-run
measurements.
by the NaI detector and the photon spectrum near
the counters. We take the efficiencies εg from the
table and, in just the same way as for external radon
(see Subsection 4.1), use the ε0 values of 1.2% for
Eγ < 1000 keV and 3.3% for Eγ > 1000 keV. The
resulting counting rate in the proportional counter
from NaI γ radiation is p1 = 1.3 ± 0.5 d−1, which is
more than half of the mean background counting rate
(about 2.3 ± 0.5 d−1).

The spectrum of NaI pulses coinciding with
counter pulses that was obtained in the conventional
operation mode of the recording system (without
additional γ sources; see Fig. 3) exhibits the only
peak at 2614 keV, which is due to nonscattered
photons from the decay of 208Tl belonging to the
232Th sequence in counter materials [3]. The energy of
these photons is higher than the energies of all other
photons occurring in natural radioactive sequences.
Other peaks, which are associated with nonscattered
photons from the β decays of elements in source
materials, are masked by a heavy background of the
Compton scattering of photons produced outside the
counters. This confirms qualitatively a large value
obtained for the pulse counting rate in the counter
due to γ radiation external to the counters.

The frequency at which events associated withNaI
γ radiation that are selected according to the 71Ge
criteria appear is 0.02 ± 0.01 d−1 at the L and K
peaks—that is, 2 to 3 events at each peak per run
(within the actual observation time of 120–130 days).
This affects the statistical uncertainty in the mea-
surements of the number of 71Ge decays, not causing,
however, a systematic bias of the result.
P

Thus, we see that, although the majority of back-
ground events in the counter are due to external γ
radiation, the criteria used to select 71Ge pulses dis-
criminate these events fairly well. At a mean counting
rate of about 0.07 d−1 for background events at the
L and K peaks in solar runs, the bulk of the back-
ground seems to be determined by the α radiation of
elements that decay in counter materials [3]. There-
fore, the background conditions can be somewhat
improved upon replacing the NaI detector by a purer
and more secure copper shield, but this will inevitably
lead to losing important information about the nature
of background processes.

5. CONCLUSION
The present study, performed to clarify the γ-

radiation effect on the counting of 71Ge decays in the
proportional counters of the SAGE experiment, has
made it possible to assess the systematic uncertainty
in the measurement of the solar-neutrino flux due to
radon decay in the air volume around the counters.
The result is 0.03 SNU (0.04%).
In addition, we have determined the contribution

to the constant background counting rate from pho-
tons produced in the decay of elements belonging to
natural radioactive sequences in shieldmaterials (NaI
crystal). Although photons generate the majority of
background pulses, the event-selection procedure
adopted in the SAGE experiment reduces consider-
ably the corresponding background counting rate.
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Abstract—Relativistic covariance requires that an analysis of the reaction γd → pn within a field-
theoretical model of the nucleon–nucleon interaction involve negative-energy states. Relativistic effects
and the contributions of negative-energy states in the Bethe–Salpeter amplitude to the differential cross
section, the asymmetry of linearly polarized photons, and tensor asymmetries of the target deuteron are
estimated on the basis of the Bethe–Salpeter formalism as applied to describing the interaction of an
electromagnetic field with a two-nucleon system. It is found that the contribution of such states becomes
sizable with increasing photon energy, but that it does not change the general qualitative behavior of
observables as functions of angles. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, investigation of deuteron-photodisin-
tegration observables that are associated with beam
or target polarization is of interest in two respects. At
photon energies in the region around the threshold
for the production of a pion or a ∆(1232) resonance,
investigation of the reaction in question makes it pos-
sible to explore the role of the short-range component
of the tensor force of the nucleon–nucleon (NN )
interaction. For example, the effect that the tensor
force as calculated on the basis of various models
exerts on the asymmetry Σl of linearly polarized
photons was considered in [1]. Here, an important
aspect is that of taking into account N∆ interaction,
since the interference between meson-exchange and
delta-isobar currents affects the angular and energy
distributions of the beam asymmetry [2, 3]. On the
other hand, experiments at the Yerevan Physics
Institute [4] and at TJNAL [5] (see also [6]) were
devoted to measuring the differential cross section
and beam asymmetry in the region of energies that
are commensurate with the nucleon rest energy. In
that case, phenomena were sought that are due to the
quark structure of the nucleus—these may include
the scaling property of the cross section and the law of
hadron-helicity conservation. Approaches underlying
inquiries into the question of the possible origin of
the scaling property and its violation were presented
in [7–9]. A key problem in these investigations is that
of whether the scaling property is a phenomenon pe-
culiar precisely to perturbative QCD or whether alter-

*e-mail: kazakovk@ifit.phys.dvgu.ru
**e-mail: denis@ifit.phys.dvgu.ru
1063-7788/03/6602-0274$24.00 c©
native mechanisms are possible—for example, those
that arise within a nonperturbative approach based
on the model of quark–gluon strings [7, 8] or within
a Lorentz- and gauge-invariant approach allowing
for the internal structure of the deuteron in a theory
involving nucleons and mesons [9]. As to observables
measured in experiments with a target that has a ten-
sor polarization, they have received the least extensive
study among all polarization observables of deuteron
photodisintegration. There are no precision experi-
mental data on the asymmetry T20 at present, and the
relevant theoretical analysis was performed within an
approach that is essentially nonrelativistic [10].

In the recent studies reported in [11, 12], the
contributions of relativistic effects to the differential
cross section for deuteron photodisintegration in the
photon-energy region Eγ < 1 GeV were investi-
gated on the basis of the Bethe–Salpeter formalism.
These effects stem from taking into account Lorentz
boosts for 3S++

1 –3D++
1 positive-energy states in the

deuteron Bethe–Salpeter amplitude. However, rela-
tivistic covariance requires that the partial-wave ex-
pansion of the amplitude be performed with allowance
for negative-energy spinor states satisfying the Dirac
equation. Although the integrated contribution from
such states of L = 0 and 2, as well as of L = 1 (P
waves), to the absolute normalization exceeds 0.1%
only slightly, their interference with positive-energy
S- and D-wave components leads to a noticeable
effect. For example, negative-energy states must
be taken into consideration even in analyzing the
deuteron quadrupole and magnetic moments [13].
By numerically calculating the deuteron magnetic
moment, it was shown in [14] that the interference
2003 MAIK “Nauka/Interperiodica”
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between the S- and P-wave components contributes
up to 50% to the total relativistic effect. By applying
the procedure of a relativistic reduction of the matrix
elements of the electromagnetic-current operator
in the deuteron-photodisintegration reaction at the
threshold, it was additionally found that, within the
Bethe–Salpeter approach, terms corresponding to
the so-called pair current are formed by the contri-
butions of the P-wave components of the deuteron
Bethe–Salpeter amplitude [15].

The objective of the present study is to analyze
the role that relativistic effects and negative-energy
spinor states in the Bethe–Salpeter amplitude play
in deuteron photodisintegration at photon energies
in the region Eγ < 1 GeV. We consider polarization
observables, which are highly sensitive, as a rule, to
various ingredients of the theory used. A relativistic
description of the deuteron bound state is imple-
mented on the basis of the Bethe–Salpeter equation
for a two-nucleon system with a realistic one-boson-
exchange kernel, this equation generating negative-
energy components of the deuteron Bethe–Salpeter
amplitude. In view of limitations of a purely compu-
tational character, our analysis is performed without
taking into account final-state interaction and two-
body electromagnetic-current operators. In a future
publication, we will consider these important effects
within a Lorentz-invariant Bethe–Salpeter approach.

2. BRIEF SURVEY OF THE THEORY

In the c.m. frame of the proton–neutron (pn) pair,
the kinematical variables of the deuteron-photodisin-
tegration process

γ(q) + D(K) → P (kp) + N(kn) (1)

are defined as follows: q = (ω,ω) is the 4-momentum

of the real photon; K = (
√

M2
d + ω2,−ω) is the 4-

momentum of the deuteron; and kp and kn are the 4-
momenta of the proton and the neutron, respectively,
their masses being taken to be identical (k2

p,n = m2).
It is convenient to introduce the total 4-momentum
P = kp + kn = (

√
s,000) of the proton–neutron pair

and the relative 4-momentum p =
1
2
(kp − kn) in it if

these 4-momenta satisfy the condition P · p = 0.
Here, we are interested primarily in the reaction

amplitude, which, in the c.m. frame, can be repre-
sented in the form [16]

TSmsλmd(Φp, θp) = ei(λ+md)ΦptSmsλmd(θp), (2)

where the indices stand for the photon helicity (λ =
±1) and the projection of the total angular momen-
tum of the deuteron (md = 0,±1) onto the quantiza-
tion axis z. It is convenient to align the quantization
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
axis with the photon 3-momentum vector ω. The
x axis coincides with the direction of the maximum
linear polarization of the photon. The final state of the
pn pair in the c.m. frame is determined by the energy√
s, the 3-momentum p of relative motion (it should

be noted here that p = kp), the total spin S = 0, 1,
and its projection ms onto the quantization axis. In
the coordinate frame chosen here, the direction of the
pair momentum kp is specified by the polar angles Φp

and θp.

According to formulas presented in the Appendix,
the observables in which we are interested are ex-
pressed in terms of the products of the relevant
reduced amplitudes tSmsλmd . The definitions of the
beam and target asymmetries correspond to the
formulas obtained in [16]. Accordingly, the reaction
amplitude in the Bethe–Salpeter formalism is ex-
pressed in terms of the matrix element of the irre-
ducible electromagnetic-current 4-operator J for the
two-nucleon system (Mandelstam vertex) between
the initial and the final state (deuteron and pn pair,
respectively). Specifically, we have

TSmsλmd(Φp, θp) =
1

4π3
(3)

×
∫

d4kd4k′χ√
skpSms(k

′)ελ ·J(k′, k;P,K)χKmd(k),

where χ√
skpSms and χKmd are the Bethe–Salpeter

amplitudes for, respectively, the proton–neutron pair
and the deuteron, these amplitudes being solutions
to a homogeneous and a nonhomogeneous Bethe–
Salpeter equation involving the same kernel, and
where ελ is the photon polarization 4-vector (q · ε =
0). In expression (3), the Bethe–Salpeter ampli-
tudes and the electromagnetic-current operator can
be represented as 4 × 4 matrices formed by Dirac
spinors. Since electromagnetic interaction with an
NN system does not conserve its total isospin, the
amplitudes given by (3) that correspond to ∆I = 1
isovector transitions interfere with the amplitudes of
∆I = 0 isoscalar transitions. A detailed account of
the approach used here can be found in [11, 12].

The law of electromagnetic-current conservation
requires that the Mandelstam vertex involve both
the single- and the two-particle contribution. In cal-
culating the amplitudes given by (3), we, however,
had to use the plane-wave and the single-particle
approximation—that is, in the electromagnetic-cur-
rent operator, we disregarded the two-particle contri-
bution (J [2] = 0), which ensures the necessary con-
dition of gauge invariance for transition amplitudes.
The inclusion of final-state interaction and of the two-
particle contribution in the Mandelstam vertex would
require a dedicated investigation. In view of this, the
3
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radiation field was fixed by choosing the Coulomb
gauge, ε0 = 0 and ε · ω = 0.

For the deuteron Bethe–Salpeter amplitude, we
have used a solution to the homogeneous Bethe–
Salpeter equation whose NN-interaction kernel
involves a superposition of the exchanges of pions
(their coupling being assumed to be of an axial-
vector character) and of sigma, omega, rho, and other
mesons [17]. The static parameters of the deuteron
that were obtained with this function are the follow-
ing: the asymptotic D/S ratio is ρD/S = 0.02497, the
quadrupole moment is Qd = 0.2678 fm2, the mag-
netic moment is µd = 0.856140 (e/2m), the tensor
component is PD = 5.1%, and the pseudoprobability
of negative-energy states is P− = −0.12% [14].
For states characterized by the deuteron quantum
numbers, the number α of partial-wave channels in
the Bethe–Salpeter equation is equal to eight:

χKmd =
8∑

α=1

gαχKmd(α).

This number is determined by the set of quantum
numbers 2S+1Lρ1ρ2J , where S is the total spin; L
is the orbital angular momentum; ρi is the energy
spin, which singles out nucleon and antinucleon
states in a given positive-parity two-particle state
antisymmetric under particle permutations; and J =
1. All these channels must be taken into account
because the bound-state vertex function depends
on the relative energy k0 of the nucleons, and the
property of covariance requires that the expansion of
the amplitude involve both positive- and negative-
energy states of the Dirac equation. It follows that,
in addition to the components χKmd(α1,2), featuring
only the positive-energy states α1 = 3S++

1 and α2 =
3D++

1 and having nonrelativistic analogs, one has
to deal with six additional components χKmd(α3−8),
which are denoted by

3S−−
1 , 3D−−

1 , 3P+−
1 , 3P−+

1 , 1P+−
1 , 1P−+

1 . (4)

For the P-wave components represented in this
form, the radial functions do not possess symmetry
under the substitution k0 → −k0. For the ensuing
analysis, it is convenient to go over from the P-wave
components (α = 5–8) to the linear combinations

3P o
1 ,

1P e
1 ,

3P e
1 ,

1P o
1 , (5)

where 3P
o/e
1 =

1√
2
(3P+−

1 ∓ 3P−+
1 ) and 1P

e/o
1 =

1√
2
(1P+−

1 ± 1P−+
1 ). The superscripts e and o in (5)

indicate that the corresponding partial-wave states
are symmetric (even) and antisymmetric (odd) under
P

the interchange of the energy spins between the
two nucleons. From the Pauli exclusion principle,
it then follows that the radial functions gα for these
partial-wave channels are even (α = 5, 6, their pseu-
doprobability being −0.092%) or odd (α = 7, 8, their
pseudoprobability being −0.023%) functions of the
relative energy k0. In the case of k0 = 0, the radial
functions for the last two channels vanish identically.

3. DISCUSSION OF THE RESULTS

One of the methods for taking into account
relativistic effects is based on the quasipotential
approximation of the Bethe–Salpeter equation and
on the corresponding reduction of relevant matrix
elements [18]. In [19], O(1/m) corrections to the
current-density operator that arise in this case and
the effect of these corrections on observables were
studied within the potential approach. There are
two classes of relativistic corrections to the current-
density operator. The first includes terms that are
obtained upon the reduction of the small components
of Dirac spinors (spin–orbit contribution), while the
second comprises terms that are generated by the
Lorentz boost of the initial-state amplitude from the
rest frame to the c.m. frame, where the deuteron
moves at the velocity ω/Md; that is,

χKmd(k) = Λ(L)χK(0)md(L
−1k), (6)

where Λ(L) is the matrix of the Lorentz boost of
spinors and L is the matrix of the corresponding
transformation of the total deuteron 4-momentum
K(0) = (Md,0). In the low-energy region, first-class
corrections are dominant. With increasing photon
energy, however, effects like changes in nucleon-spin
projections, Λ(L) �= 1 (spin precession), and changes
in the relative nucleon 4-momentum, L �= 1 (Lorentz
contraction), become important. Within the Bethe–
Salpeter formalism, all these effects are calculable
exactly.

In addition, it is necessary to take into account
dynamical relativistic effects associated with the non-
static character of NN interaction. In the approach
used here, this is manifested in the dependence of
the Bethe–Salpeter amplitude on the relative nucleon
energy and in the emergence of six partial waves
of negative energy. Only if the relevant solution to
the Bethe–Salpeter equation is available can one
obtain quantitative estimates of these effects. For the
amplitude in question, we will take a parametriza-
tion of a numerical solution to the Bethe–Salpeter
equation in terms of the one-boson-exchange kernel,
which was repeatedly employed to describe the static
properties of the nucleon [14] and reactions involving
a deuteron [20].

The procedure for calculating the matrix ele-
ments (3) for various values of particle polarizations
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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Differential cross section dσ/dΩ, asymmetry Σl of linearly polarized photons, and three tensor asymmetries T2M (M = 0, 1, 2)
for the deuteron versus the proton emission angle θp in the c.m. frame for various values of the photon energy Eγ . Our
calculation was performed within the Bethe–Salpeter formalism, where the deuteron Bethe–Salpeter amplitude was obtained
as a solution to the Bethe–Salpeter equation for a one-boson-exchange kernel (exchange of pions and of omega, rho,
and sigma mesons). In calculating all the displayed curves, the following approximations were made: (i) the two-particle
electromagnetic-current operators and final-state interactions were disregarded, and (ii) the radial functions for the partial
waves of the Bethe–Salpeter amplitude were taken at the relative nucleon energy of k0 = 0. The solid curves correspond to
the calculation that is exact within these approximations (the 3S++

1 – 3D++
1 , 3S−−

1 –3D−−
1 , 3P o1 , and 1P e1 partial waves are

included); the dashed curves represent the results of the calculation disregarding the Lorentz boost of the Bethe–Salpeter
amplitude; the dotted curves were calculated with allowance for only the positive-energy components of the Bethe–Salpeter
amplitude; and the dash-dotted curves correspond to the contribution of the 3P−+

1 partial wave to the observables in question.
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(in all, there are 12 independent amplitudes) was
somewhat changed in relation to that in [11, 12].
The REDUCE system for analytic calculations was
used here to find the relevant transition amplitudes
for given values of the polarizations of the particles
involved in the reaction. By using Eqs. (A.1)–(A.3)
from the Appendix, we then perform numerically
their multiplication and summation over particle
polarizations. The code is composed in such a way
that, within the approximations used, it is possible
to compute all polarization observables, which are
expressed in terms of the real part of the transition
amplitudes tSmsλmd .

For the differential cross section dσ/dΩ; the
asymmetry Σl of linearly polarized photons; and three
tensor asymmetries T20, T21, and T22 for the deuteron,
the figure shows the angular dependences in the
c.m. frame. All the calculations were performed for
the following three values of the laboratory photon
energy: Eγ = 60, 200, and 500 MeV. The solid curves
correspond to the calculation within the single-
particle plane-wave approximation with allowance
for all relativistic effects mentioned above. In the
calculations, we disregarded the dependence of the
Bethe–Salpeter wave function on the relative nucleon
energy (so-called zero approximation for the vertex
function). The analysis performed in [11] revealed
that this retardation effect is not very important. We
had to use this approximation because the problem of
constructing an analytic continuation of the solution
to the homogeneous Bethe–Salpeter equation to the
physical axis of relative energy (such a solution can
be found only at imaginary energies ik4) has not yet
been solved. Setting k0 = 0, we eliminate the states
χKmd(

3P e
1 ) and χKmd(

1P o
1 ), which are odd in relative

energy. In computing the angular distributions that
are shown in the figure by the dashed curves, we
excluded completely the contribution of effects that
are associated with the Lorentz transformation of the
deuteron Bethe–Salpeter amplitude. The behavior
of observables that is determined by the positive-
energy components of the deuteron Bethe–Salpeter
amplitude is represented by the dotted curves. The
dash-dotted curves illustrate the behavior of the
triplet component χKmd(

3P−+
1 ).

From the results displayed in the figure, we can
draw the following conclusion: the inclusion of partial
waves in the deuteron Bethe–Salpeter amplitude
that are generated by negative-energy states leads
to a general increase in the differential cross section
for deuteron photodisintegration. At the maximum,
(compare the solid and the dotted curve), this effect
amounts to 10% at Eγ = 200 MeV and is as large
as 30% at Eγ = 500 MeV. However, the general
character of the angular dependences remains by and
P

large unchanged. At the same time, the inclusion of
relativistic effects associated with the Lorentz boost
also changes the angular dependence, sizably in-
creasing the differential cross section in the region of
small angles. The asymmetry Σl of a linearly polarized
photon beam is less affected by these phenomena. As
to the tensor asymmetries of the target, their behavior
changes substantially with increasing photon energy.
The general trend is such that, for the proton emission
angles around θp = 90◦, the tensor asymmetries T20

and T21 are weakly sensitive to the contribution of
relativistic effects. However, the role of these effects
is decisive for small and large values of θp, their
contribution to the asymmetry T22 being significant
even at the photon energy of Eγ = 60 MeV.

4. CONCLUSION

Within the relativistic-covariant Bethe–Salpeter
formalism, we have calculated the differential cross
section for deuteron photodisintegration and polar-
ization observables of this reaction. In these calcu-
lations, we have considered only those observables
that are related to beam and target polarizations
and which are expressed in terms of the real part of
the reaction amplitude (3). In employing the Bethe–
Salpeter formalism to describe the deuteron, we have
taken into account the fact that, in this approach, the
spinor component of the amplitude for the bound state
involves symmetrically positive- and negative-energy
single-particle Dirac states.

At present, the set of solutions to the Bethe–
Salpeter equation whose NN-interaction kernel is
such that it ensures the coupling of positive- and
negative-energy states, on one hand, and enables
one to describe satisfactorily elastic NN scattering
at moderate energies, along with static properties of
the deuteron, on the other hand, is rather limited.
A solution to the equation with the one-boson-
exchange kernel, whose parameters (meson masses,
interaction parameters, and form factors) are tightly
fixed on the basis of a fit to phase shifts for elastic NN
scattering at energies in the region Tlab ≤ 350 MeV
and to the static features of the deuteron, is an
extensively explored solution of this type. For this
solution, the relative contribution of negative-energy
partial waves is approximately one-thousandth of the
contribution of the positive-energy components of the
Bethe–Salpeter amplitude.

Both kinematical and dynamical relativistic effects
are considered in studying relevant observables. An
analysis of dynamical effects reveals that, in the
zero approximation for the vertex function (k0 = 0),
the even P-wave components 3P o

1 and 1P e
1 of the

deuteron vertex function play a dominant role. This
is because they are even in the relative energy of
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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the nucleons and have the highest probability among
negative-energy states. The contribution of the even
partial waves 3S−−

1 –3D−−
1 is insignificant since their

pseudoprobability is low, −0.005%. Therefore, one
may hope that, because of the smallness of the con-
tribution to the absolute normalization from the 3P e

1

and 1P o
1 states, which are odd in the relative energy

of the nucleons and which were disregarded here,
the contribution of these states to the polarization
observables of deuteron photodisintegration would
also be insignificant. We have had to invoke here the
zero approximation for the vertex function since it is
impossible at present to establish the dependence of
the Bethe–Salpeter amplitude on the relative energy
k0 of the nucleons in the physical region. The problem
is that this requires performing an inverse analytic
continuation of the solution to the Bethe–Salpeter
equation from Euclidean space to the physical axis,
but this is a mathematically ill-posed problem, which
requires much additional work.

The emerging pattern shows that, if kinemati-
cal relativistic effects are taken into consideration,
negative-energy spinor states have a pronounced ef-
fect on the differential cross section, but they do not
cause qualitative changes in its behavior. These states
must be taken into account in further developing a
full theory of deuteron photodisintegration within the
Lorentz-invariant approach with allowance for the
internal structure of the deuteron. The respective con-
tributions to the polarization observables T20 and T21

are significant at large and small values of the proton
emission angle. The observable T22 is the least sensi-
tive to relativistic effects, since the Clebsch–Gordan
coefficient in Eq. (A.3) leaves only one product of
the amplitudes, tSmsλmd=−1tSmsλmd=+1. In the case
of T20 and T21, the products of the amplitudes for,
respectively, three and two projections md contribute,
which leads to a greater effect in the case of forward
and backward proton emission.

It is of paramount importance to perform a gauge-
invariant calculation of transition amplitudes and
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
to choose the electromagnetic-current operator in
a form that is consistent with Siegert’s long-wave
limit [21], but these problems, which are closely
related, have yet to be solved. A possible way to do
this is to introduce the two-particle electromagnetic-
current operator in the nucleon sector [22]. We deem
it important to resolve these issues since this would
make it possible to perform a comparison with ex-
perimental data. In this respect, our calculations are
still of a methodological value. However, the effects
of negative-energy spinor states in the deuteron
amplitude must be taken into account in developing a
full theory of deuteron photodisintegration within the
relativistic Bethe–Salpeter approach.
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APPENDIX

The polarization observables Σl and T2M and the
differential cross section dσ/dΩ can be expressed in
terms of the invariant amplitude tSmsλmd(θp) as

dσ

dΩp
=

α

16πs
|kp|
ω

f(θp), (A.1)

f(θp) =
1
3

∑

SmSmd

|tSms1md(θp)|2,

−Σl =
1
3

∑

SmSmd

t∗Sms1mdtSms−1md

/
f(θp), (A.2)
T2M = (2 − δM0)
√

5
3

∑

SmSmd

C1M+md
1md2M

Re{t∗Sms1mdtSms1M+md}/f(θp), M ≥ 0, (A.3)

where α = e2/(4π). The observables in question are functions of the photon energy Eγ in the laboratory frame
and the proton emission angle θp; we also have

s = Md(Md + 2Eγ), |kp| =
√

s

4
−m2, ω =

Md√
s
Eγ . (A.4)
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12. K. Yu. Kazakov and S. É. Sus’kov, Yad. Fiz. 64, 935
(2001) [Phys. At. Nucl. 64, 870 (2001)].

13. N. Honzawa and S. Ishida, Phys. Rev. C 45, 47
(1992).
P

14. L. P. Kaptari, A. Yu. Umnikov, S. G. Bondarenko,
et al., Phys. Rev. C 54, 986 (1996).

15. S. G. Bondarenko, V. V. Burov, M. Beyer, and
S. M. Dorkin, Phys. Rev. C 58, 3143 (1998).
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Abstract—The effect of Higgs bosons on the anomalous magnetic moment of the muon is considered
within the model that is based on the SU(2)L × SU(2)R × U(1)B−L gauge group and which involves a
bidoublet and two triplets of Higgs fields (left–right model). For the Yukawa coupling constants and the
masses of Higgs bosons, the regions are found where the model leads to agreement with experimental
results obtained at the Brookhaven National Laboratory (BNL) for the anomalous magnetic moment of the
muon. In order to explore corollaries from the constraints obtained for the parameters of the Higgs sector,
the processes e+e− → µ+µ−, τ+τ− and µ+µ− → µ+µ−, τ+τ− are considered both within the left–right
model and within the model involving two Higgs doublets (two-Higgs-doublet model). It is shown that, if
the mass of the lightest neutral Higgs boson does indeed lie in the range 3.1–10 GeV, as is inferred from the
condition requiring the consistency of the two-Higgs-doublet model with the data of the BNL experiment,
this Higgs boson may be observed as a resonance peak at currently operating e+e− colliders (VEPP-4M,
CESR, KEKB, PEP-II, and SLC). In order to implement this program, however, it is necessary to reduce
considerably the scatter of energy in the e+ and e− beams used, since the decay width of the lightest neutral
Higgs boson is extremely small at such mass values. It is demonstrated that, in the case of the left–right
model, for which the mass of the lightest neutral Higgs boson is not less than 115 GeV, the resonance peak
associated with it may be detected at a muon collider. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Experiments that measured the magnetic mo-
ments of particles have played time and again a
crucial role in microscopic physics. For example, the
detection of anomalous values of the nucleon mag-
netic moments was a compelling argument in favor
of the π-meson theory of nuclear forces that was pro-
posed by Yukawa. Agreement of the theoretical and
experimental values of the electron magnetic moment
to within 10−12 leads one to recognize that QED
is one of the most precise physical theories. It was
natural to expect that the E821 experiment, which
was aimed at measuring the anomalous magnetic
moment of the muon and which has been performed
at the BrookhavenNational Laboratory (BNL), would
be a good test for the Standard Model of electroweak
interactions. As early as the end of 1999, the precision
achieved in the E821 experiment was more than
five times higher than the precision of the preceding
experiment devoted to this subject and performed at
CERN [1]. By averaging theCERN data [1] and those
obtained at BNL over a period spanning 1998 and
1999 [2], one obtains

a
expt
µ

µ0
= 116592023(151) × 10−11, (1)

*e-mail: boyarkin@bspu.unibel.by
1063-7788/03/6602-0281$24.00 c©
where µ0 = e�/mµc is the muon magnetic moment
predicted by Dirac theory. The final objective of the
E821 experiment is to achieve a precision of ±40×
10−11.

An anomalous value of the magnetic moment of a
particle can be considered either as an indication of its
complicated structure or as the result of taking into
account radiative corrections. Since all experiments
performed so far give every reason to believe that lep-
tons, in just the same way as quarks, are structureless
objects, the inclusion of muon interaction with the
physical vacuum, whose structure is controlled by the
theory, is expected to provide a natural explanation
of the result in (1). Within the Standard Model, the
theoretical value of the muon anomalous magnetic
moment can be represented as the sum

aSMµ = aQED
µ + ahadµ + aewµ . (2)

The main contribution to (2) comes from the QED
corrections, µQED, which were determined in [3] to
the fifth order of perturbation theory. The result was

aQED
µ

µ0
= 116584705.7(2.9) × 10−11. (3)

Effects of vacuum polarization by hadrons contribute
a much smaller value to the anomalous magnetic
moment of the muon, and this contribution, ahadµ , was
2003 MAIK “Nauka/Interperiodica”
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determined with a poorer precision [4],

ahadµ

µ0
= 6739(67) × 10−11. (4)

The electroweak corrections (aewµ ) are the smallest,
but their precision is high [5],

aewµ
µ0

= 152(4) × 10−11. (5)

The substitution of the estimates in (3)–(5) into ex-
pression (2) and a comparison with the result in (1)
yields

δaµ
µ0

=
a
expt
µ − aSMµ

µ0
= 426(165) × 10−11; (6)

that is, the disagreement of the theoretical and exper-
imental values is at the level of 2.6σ. The existence of
so great a discrepancy, along with such phenomena
as oscillations of cosmic and laboratory neutrinos,
suggests that the Standard Model must be extended.
We note, however, that, for the estimate in (6) to be
treated with confidence as a signal of new physics, it is
necessary, first of all, to reduce the uncertainty in the
calculation of ahadµ down to the level of experimental
errors. It follows from (6) that, at a 90% C.L., the
quantity δaµ/µ0 must lie in the range

215 × 10−11 ≤ δaµ
µ0

≤ 637 × 10−11. (7)

The model that is based on the same gauge group
as the Standard Model and which involves two dou-
blets of Higgs fields (two-Higgs-doublet model or
THDM),

Φj

(
1
2
, 1
)

=



Φ+
j

Φ0
j



 , j = 1, 2,

provides one of the most economical extensions of the
Standard Model. Within this framework, the fermion
flavor can be either violated or conserved at the tree
level, and extensions of the type in question can be
classified in accordance with these two options. In
the THDM1 and THDM2, the Yukawa Lagrangian
and the Higgs potential possess additional discrete
symmetry that ensures fermion-flavor conservation.
In the former case (THDM1), fermions correspond-
ing to up and down components of the weak-isospin
doublet develop masses owing to the vacuum expec-
tation values of one of the doublets of Higgs fields. In
the latter case (THDM2), the generation of masses
of up and down fermions is associated with the vac-
uum expectation values of Φ1 and Φ2, respectively.
A model that does not possess a discrete symmetry
is referred to as the THDM3 or the general THDM.

Within the THDM1 and THDM2, the observed value
of the muon anomalous magnetic moment can be
explained, at the one-loop level, by the contribution of
the neutral CP-even Higgs boson h, an analog of the
Higgs boson in the Standard Model. For the THDM1
and THDM2, the use of existing constraints on tan β
(tan β = v1/v2, with v1 and v2 being the vacuum ex-
pectation values of the neutral components of Higgs
fields) and onmh from searches for the decay [6]

J/Ψ → hγ (8)

and for the reaction [7]

e+e− → hff̄ , f = b, τ, (9)

means that, for the constraints in (7) to be valid, these
parameters must satisfy the conditions [8]

mJ/Ψ ≤ mh ≤ 2mB , sin(β − α) ≈ 0, (10)

30 ≤ tan β ≤ 35,

where mB is the mass of the lightest B meson
(5.279 GeV) and α is the mixing angle in the sector
of the CP-even Higgs bosons h and H . Since tan β
specifies the coupling of the h boson to the down
terms of the fermion doublets both in the THDM1
and in the THDM2,

gf̄ fh =
mfda√
v2
1 + v2

2

[sin(β − α)

− tan β cos(β − α)] ,

where mfda
is the mass of the down fermion of flavor

a, the constraints in (10) would inevitably entail the
presence of a resonance peak associated with the
Higgs boson h in the reaction

µ−µ+ → µ−µ+.

This reaction can be studied in detail at a muon
collider, which is known to be an perfect means for
exploring particles manifesting themselves in s chan-
nels as resonances. Muon colliders possess the fol-
lowing advantages that are necessary for this. They
are characterized by a lowmomentum spread, and the
root-mean-square deviation from a Gaussian energy
distribution for them in the beam, R, takes values
in the range 0.04–0.08%. By cooling a muon beam,
R can be reduced down to 0.01%, which is much
lower than the corresponding value in e−e+ colliders.
Muon colliders are also advantageous in that they can
quickly be readjusted to operate either in the µ−µ−

or in the µ+µ+ mode. The design of muon colliders
admits the existence of a special storage ring that
makes it possible to optimize the luminosity in the
vicinity of a resonance. Here, the quantity σ√s (

√
s

is the c.m. energy) determining the energy spread in
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a beam is a characteristic of fundamental importance.
For a muon collider, this quantity is given by

σ√s = (7MeV)
(

R

0.01%

)( √
s

100 GeV

)
. (11)

We emphasize that the detection and investigation of
a Higgs boson via a resonance peak will be successful
only if the quantity σ√s is on the same order of mag-
nitude as the total decay width of the Higgs boson.
Presently, two projects of muon colliders are being
intensively studied [9]: the First MuonCollider, which
would operate at

√
s ∼ 0.5 TeV and a luminosity of

L ∼ 1033 cm−2 s−1, and the Next Muon Collider,
which would operate at

√
s = 4 TeV and a luminosity

of L ∼ 1035 cm−2 s−1.
The results of the E821 experiment can also be

explained within supersymmetric theories (SUSY),
where the anomalous magnetic moment of the muon
receives contributions from smuon–neutralino and
sneutrino–chargino loops. For a wide class of SUSY
models, agreement between theoretical and experi-
mental results is ensured if themodel parameters obey
the conditions [10]

4 ≤ tan β ≤ 40, mSUSY 
 100–450 GeV, (12)

where mSUSY is a typical mass of SUSY particles.
The conditions in (12) have two very far reaching
consequences. First, SUSY particles can be observed
at the 2-TeV FERMILAB pp̄ collider. Second, it ap-
pears that partial-fermion-flavor-violation processes
associated with higher order diagrams of perturbation
theory,

µ± → e±γ, τ± → e±γ, µ± → e±e∓e±, (13)

τ± → e±e∓e±, µ+e− → µ−e+, µ−N1 → e−N2,

etc.,

are characterized by cross-section values that make it
possible to detect them even with currently available
experimental equipment.

One could expect that, in models based on an
extended gauge group, such as SU(2)L × U(1) ×
U(1)′, SU(2)L × SU(2)R × U(1)B−L, or SU(3)L ×
U(1)N , the quantity δaµ will be induced by loops
involving extra gauge bosons (those that are not
contained in the Standard Model). For the condi-
tion in (7) to be satisfied, however, the masses of
these bosons must be about 100 GeV (see, for ex-
ample, [11]), which is much less than their experi-
mental lower limits. Within nonsupersymmetric ex-
tensions of the Standard Model, Higgs bosons may
also appear to be candidates for particles generating
significant contributions to the anomalous magnetic
moment of the muon. The objective of the present
study is to analyze, from precisely this point of view,
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
the model that is based on the SU(2)L × SU(2)R ×
U(1)B−L gauge group and which involves two triplets
and one bidoublet in the Higgs sector—that is, the
left–right model (LRM). This choice of model is mo-
tivated by the fact that it includes Higgs bosons that
also appear in other popular extensions of the Stan-
dard Model—for example, in the THDM and in the
model based on the SU(3)L × U(1)N gauge group.

The ensuing exposition is organized as follows.
In Section 2, we calculate corrections to the muon
magnetic moment in the one-loop approximation that
are induced by Higgs bosons. The parameters of the
Higgs sector that ensure agreement with the data of
the E821 experiment are used in Section 3, where
prospects for observing, at e+e−- and µ+µ− colliders,
a resonance peak that is associated with the lightest
neutral Higgs boson are analyzed for the THDM and
LRM. In the Conclusion, we discuss our results.

2. CONTRIBUTIONS TO (g − 2)µ/2
FROM THE HIGGS SECTOR

The LRM belongs to the class of models where
the choice of Yukawa potential affects the form of La-
grangian describing the interactions of Higgs bosons
both with fermions and with gauge bosons. The most
general form of the Yukawa potential Lg

Y was pro-
posed in [12]. Although Lg

Y has a rather complicated
form, it is not difficult to diagonalize the mass matrix
of charged Higgs bosons. For the mass matrix of
neutral Higgs bosons, Mn, this procedure can be
implemented, however, only upon introducing some
simplifications inLg

Y [13]. For example, thematrixMn

can be diagonalized if the parameters of the Yukawa
potential satisfy the conditions (we retain the notation
introduced in [12])

α1 =
2α2k2

k1
, α3 =

2α2k
2
−

k1k2
, (14)

β1 =
2β3k2

k1
,

where k1 and k2 are the vacuum expectation values
of the neutral components of the bidoublet of Higgs
fields and k± =

√
k2
1 ± k2

2. Assuming fulfillment of
the conditions in (14), we present the Lagrangians
that are necessary for the ensuing calculations.

For doubly charged Higgs bosons ∆(±±)
1,2 , they

have the form

Lγ∆∆ = 2ie[(∂µ∆
(−−)∗
1 (x))∆(−−)

1 (x) (15)

−∆(−−)∗
1 (x)(∂µ∆

(−−)
1 (x))] + (1 → 2),

Ldc
l = −

∑

a,b

fab
2

[l̄ca(x)(1 + γ5)lb(x)cθd (16)
3
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− l̄ca(x)(1 − γ5)lb(x)sθd ]∆
(−−)∗
1 (x)

+ (1 → 2, θd → θd − π/2) + conj.,

where the superscript c denotes the charge-conjuga-
tion operation; cθd ≡ cos θd and sθd ≡ sin θd,1) θd be-
ing the mixing angle in the sector of doubly charged
Higgs bosons [tan θd ∼ k2

+/v
2
R; here, vR is the vac-

uum expectation value of the neutral component of
the right-handed triplet, vR  max(k1, k2)]; and fab
is the triplet Yukawa coupling constant.

For the singly charged Higgs bosons h(±) and
δ̃(±), the corresponding Lagrangians are given by

LW1γh = gReg
−1
L mW1 cos 2β(α − ρ3/2 + ρ1 + 1)

(17)

× sξh
(−)∗(x)W1µ(x)Aµ(x),

LW2γh = LW1γh(sξ → cξ), (18)

LW1γδ̃
= gReg

−1
L β1mW1sξ δ̃

(−)∗(x)W1µ(x)Aµ(x),
(19)

LW2γδ̃
= LW1γδ̃

(sξ → cξ), (20)

Lsc
l =

∑

a,b

{[
h′abk2 − habk1

2k+
ν̄a(x)(1 − γ5)lb(x)

(21)

−habk2 − h′abk1

2k+
N̄a(x)(1 + γ5)lb(x)

]
h(−)∗(x)

+
fab√
2
[l̄ca(x)(1 + γ5)νb(x)

×
(

β0k
2
0

(α+ ρ1 − ρ3/2)v2
R

h(−)∗(x)− δ̃(−)∗(x)
)

P

+ l̄ca(x)(1 − γ5)Nb(x)
(
k0

vR
h(−)∗(x)

+
β0k0

(α+ ρ1 − ρ3/2)vR
δ̃(−)∗(x)

)]
+ conj.

}
,

where

α =
α3k

2
+

2k2
−

, β0 =
β1k

2
+

k2
−

, k0 =
k2
−√
2k+

;

ρ1, ρ3, α3, and β1 are the parameters of the Yukawa
potential (see [12]); gR is the gauge constant of the
SU(2)R group (in the following, we assume that gL =
gR); Aµ(x) describes an electromagnetic field; Na(x)
is the field function for the heavy neutrino of flavor a;
tan β = k1/k2; and the angle ξ controls mixing in the
sector of charged gauge bosons.

The Lagrangian describing the interaction of neu-
tral Higgs bosons with charged leptons has the form

Ln
l = − 1√

2k+

{∑

a,b

l̄a(x)lb(x) (22)

×
[
(habk1 + h′abk2)(S1(x)sθ0 + S2(x)cθ0)

+ (h′abk1 − habk2)(S1(x)cθ0 − S2(x)sθ0)
]

+ il̄a(x)γ5lb(x)(habk1 − h′abk2)P1(x)
}
,

where S1,2 and P1 are, respectively, the scalar and
pseudoscalar Higgs bosons (S1 is an analog of the
Higgs boson in the Standard Model) and the angle θ0

is defined in terms of the parameters of the Yukawa
potential and the vacuum expectation values of the
neutral components of Higgs fields through the re-
lation
tan 2θ0 =
4k1k2k

2
−[−2(2λ2 + λ3)k1k2 + λ4k

2
+]

k1k2[(4λ2 + 2λ3)(k4
− − 4k2

1k
2
2)− k2

+(2λ1k2
+ − 8λ4k1k2)] + α2v2

Rk
4
+

. (23)
The Lagrangian in (22) provides a very clear ex-
ample of the effect that the choice of Yukawa potential
may have in the LRM. If we make the substitution
k2 → −k2 in (14), the following expression will ap-
pear instead of (22):

Ln
l = − 1√

2k+

{∑

a

mal̄a(x)la(x)(S1(x)cθ0 (24)

− S2(x)sθ0) +
∑

a,b

[
l̄a(x)lb(x)(habk1 − h′abk2)

1)A similar notation is introducedbelow for other trigonometric
functions.
H

× (S1(x)sθ0 + S2(x)cθ0) + il̄a(x)γ5lb(x)

× (habk1 + h′abk2)P1(x)
]}

.

The Yukawa constants hab can be expressed in terms
of the lepton mass, the mixing angles in the neutrino
sector, and tan β [13]. By using the regions allowed
for the neutrino-oscillation parameters and varying
tan β, we can draw conclusions on the values of the
cross sections for processes involving neutral Higgs
bosons. If, for example, we use the Lagrangian in (24)
to obtain the cross section for the electron–muon
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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Fig. 1. Contributions to the anomalous magnetic mo-
ment of the muon from doubly charged Higgs bosons
∆

(−−)
1,2 .

charge-exchange reaction

e−µ+ → e+µ−, (25)

a resonance peak that is associated with the S1 bo-
son will not appear at any values of the neutrino-
oscillation parameters and tan β; at the same time,
the existence of such a peak is quite possible if use
is made of the Lagrangian in (22).

The diagrams in Fig. 1 involve doubly charged
Higgs bosons. In the anomalous magnetic moment
of the muon, they induce the contribution

δa∆
µ

µ0
=

1
8π2

(26)

×
(
4f2

µe

2∑

i=1

I∆i
e + f2

µµ

2∑

i=1

I∆i
µ + 4f2

µτ

2∑

i=1

I∆i
τ

)
,

where

I∆i
la

=

1∫

0

(
2m2

µ(z
2 − z3)

m2
µ(z2 − z) +m2

∆i
z +m2

la
(1− z)

+
m2

µ(z
2 − z3)

m2
µ(z2 − z) +m2

∆i
(1− z) +m2

la
z

)
dz.

Singly charged Higgs bosons also affect the
anomalous magnetic moment of the muon. The
corresponding diagrams are shown in Fig. 2. For
the diagrams containing W±

1 and h(±) bosons in the
loops, we have the relation

MW1Nµh

MW1νµh
= sξ,

where MW1νµh (MW1Nµh) are the matrix elements
corresponding to diagrams featuring the exchange of
light (heavy) neutrinos. Since the mixing angle in
the sector of charged gauge bosons is small (|ξ| ≈
10−2–10−5 [1]), we can disregard the corrections
from diagrams involving a virtual heavy neutrino.
Taking into account the analogous relations

MW2νµh

MW2Nµh
= sξ,

MW1Nµδ̃

MW1νµδ̃

= sξ, (27)
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Fig. 2. Contributions to the anomalous magnetic mo-
ment of the muon from the singly charged Higgs bosons
h(−) and δ̃(−).

MW2νµδ̃

MW2Nµδ̃

= sξ,

we find that the dominant contributions to the muon
anomalous magnetic moment from the diagrams in
Fig. 2 are

δa
(hh)
µ

µ0
=

1
8π2

∑

a=e,µ,τ

(
α2
µ̄NahI

hh
Na + α2

µ̄νahI
hh
νa

)
, (28)

δa
(δ̃δ̃)
µ

µ0
=

1
8π2

∑

a=e,µ,τ

(
α2
µ̄Naδ̃

I δ̃δ̃Na + α2
µ̄νaδ̃

I δ̃δ̃νa

)
, (29)

δa
(W1h)
µ

µ0
=

(α−ρ3/2+ρ1+1)c2βsξmW1

16
√
2π2

αµ̄νµhI
W1h,

(30)

δa
(W2h)
µ

µ0
(31)

=
(α− ρ3/2 +ρ1 + 1)c2βcξmW1

16
√
2π2

αµ̄NµhI
W2h,

δa
(W1δ̃)
µ

µ0
=

β1c2βsξmW1αµ̄νµδ̃

16
√
2π2

IW1δ̃, (32)

δa
(W2δ̃)
µ

µ0
=

β1c2βcξmW1αµ̄Nµδ̃

16
√
2π2

IW2δ̃, (33)

where

αl̄aνbh =
h′abk2 − habk1

2k+
, αl̄aNbh =

h′abk1 − habk2

2k+
,

αl̄aνbδ̃ =
fab√
2
,

3
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Fig. 3. Contribution to the anomalous magnetic moment
of the muon from the neutral Higgs boson S1.

αl̄aNbδ̃ =
fab√
2

β0k0

(α+ ρ1 − ρ3/2)vR
,

Ihhi =

1∫

0

m2
µ(z

3 − z2)dz
m2

µz
2 + (m2

h −m2
i −m2

µ)z +m2
i

,

I δ̃δ̃i = Ihhi (mh → mδ̃), i = νa, Na,

IW1h =
mµ

m2
W1

−m2
h

{
ln

(
m2

W1

m2
h

)

−
[ 1∫

0

z2[m2
µ(2z − 1) +m2

W1
−m2

νµ ]dz

m2
µz

2 + (m2
W1

−m2
νµ −m2

µ)z +m2
νµ

− (mW1 → mh)

]}
,

IW2h = IW1h(mW1 → mW2 ,mνµ → mNµ),

IWk δ̃ = IWkh(mh → mδ̃).

The contribution of the neutral Higgs boson S1

to the anomalous magnetic moment of the muon is
caused by the diagram in Fig. 3 and is given by

δaS1
µ

µ0
=

1
8π2

∑

la=e,µ,τ

α2
µ̄laS1

IS1
la
, (34)

where

αl̄albS1
= − 1√

2k+

[
(habk1 + h′abk2)sθ0

+ (h′abk1 − habk2)cθ0
]
,

IS1
la

=

1∫

0

[m2
µ(z

2 − z3) +m2
la
z2]dz

m2
µ(z2 − z) +m2

S1
(1− z) +m2

la
z
.

The total correction to the muon anomalous mag-
netic moment from Higgs bosons, δaµ/µ0, is de-
termined by the sum of expressions (26) and (28)–
(34). In order to analyze the resulting expression, it
PH
is necessary to know the leptonic coupling constants
of Higgs bosons, αL̄aLbHi (La = la, νa, Na), and the
Higgs boson masses mHi . Up to the present time,
information about these quantities has been deduced
from the results of searches for deviations from Stan-
dard Model predictions and can be represented as
upper bounds on the ratio αL̄aLbHi/mHi or, what is
done much more often, on the quantity

∑

i

Ciε
aba′b′
i =

∑

i

Ci

(αL̄aLbHiαL̄a′Lb′Hi)
2

m4
Hi

,

where Ci are constant coefficients. As a rule, the
problem of determining upper bounds on only one
quantity αL̄aLbHi/mHi is rather complicated. By way
of example, we consider the decay process

µ− → e−γ. (35)

The corresponding diagrams in the third order of
perturbation theory are obtained from the diagrams
in Figs. 1–3 upon replacing the final-state muon by
an electron. The decay width corresponding to (35)
includes a set of the quantities εaba

′b′
i . Moreover, the

presence of diagrams involving singly charged Higgs
bosons leads to a destructive interference between the
amplitudes for reaction (35), and this complicates still
further the problem of extracting information about
each of the quantities εaba

′b′
i individually.

We can try to express the leptonic coupling con-
stants αL̄aLbHi of Higgs bosons in terms of the pa-
rameters determining the structure of the lepton sec-
tor. This problem can be solved analytically only in
the two-flavor approximation. By way of example, we
indicate that, in the basis

Ψ =





νaL

NaR

νbL

NbR,




,

the neutrino mass matrix has the form

M =





faavL ma
D fabvL MD

ma
D faavR M ′

D fabvR

fabvL M ′
D fbbvL mb

D

MD fabvR mb
D fbbvR




, (36)

where ma
D = haak1 + h′aak2, MD = habk1 + h′abk2,

M ′
D = hbak1 + h′bak2, and vL are the vacuum expec-

tation values of the neutral component of the left-
handed triplet of Higgs fields. Taking into account the
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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definition of ma
D and formulas for the charged-lepton

masses,

mla = haak2 + h′aak1, (37)

and for theW1 boson mass, we can easily obtain

αl̄aνah =
h′aak2 − haak1

2k+
=

gL

2
√
2mW1c2β

(38)

× (mlas2β +ma
D).

We cannot be optimistic about the form of expression
(38), since the constants αL̄aLbHi involve quantities
about which there are virtually no data (for example,
ma

D).
The coupling constants and masses of Higgs

bosons will be conclusively determined either from
data on the processes of their direct production or
from their manifestation in the form of resonance
enhancements in cross sections for specific reactions.
For example, the quantities αēNah, αµ̄Nah, and mh
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
can be measured by detecting the processes

e−γ → h(−)Na, µ−γ → h(−)Na (39)

in the e−γ and µ−γ modes of future e−e+ and µ−µ+

colliders. The muonic coupling constant of ∆(−−)

bosons, fµµ, and the mass m∆ will be determined by
studying a∆(−−)-resonance peak in the reaction

µ−µ− → µ−µ−. (40)

However, investigation of such reactions is a problem
for future experiments. At the same time, currently
available information about the quantities εaba

′b′
i is not

sufficient (for details, see [14]) for making unambigu-
ous predictions for the quantity δaµ/µ0. In this situa-
tion, we can only assume that the coupling constants
and masses of Higgs bosons obey some hierarchy
that is not in conflict with existing experimental data.
Specifically, our assumption is the following:
feµ = 0.01fµµ, fµτ = 0.1fµµ, αµ̄Neh = 0.1fµµ,
αµ̄Nµh = 0.9fµµ, αµ̄Nτh = 0.2fµµ, αµ̄Neδ̃ = 0.01fµµ,

αµ̄Nµδ̃ = 0.1fµµ, αµ̄Nτ δ̃ = 0.01fµµ, αµ̄eS1 = 0.01fµµ,

αµ̄µS1 = 0.9fµµ, αµ̄τS1 = 0.1fµµ,





(41)
m∆1 = 1.8mS1 , m∆2 = 2mS1 ,

mh = 1.5mS1 , mδ̃ = 0.6mS1 .

}
(42)

In order to simplify the analysis, we also assume that
the negative contributions from the diagrams involv-
ing the h(−)h(−)νa- and δ̃(−)δ̃(−)νa loops are equal
in magnitude to the positive contributions from the
diagrams involvingW1-boson exchange and that the
following relations hold:

(α− ρ3/2 + ρ1 + 1)c2βcξ ∼ 1, (43)

β1cξ ∼ 1.

Before proceeding to perform our numerical analysis,
we must assess a lower limit on the mass of the
lightest neutral Higgs boson in the LRM. In other
words, we must discuss the question of how and to
what extent the lower limit obtained at LEP II for the
mass of the Higgs boson in the Standard Model [15]
by investigating the reaction

e+e− → Z∗ → Zh (44)

can be used to evaluate the mass of the lightest neu-
tral Higgs boson in the extensions of the Standard
Model. The quantity

σe+e−→ZhΓZΓh (45)
for four Zh-decay channels

Zh → qq̄q′q̄′, qq̄νν̄, qq̄la l̄a (la = e, µ), τ+τ−qq̄,
(46)

where the h → qq̄ final state involves both a quark–
antiquark and a gluon–gluon pair, was analyzed in
that case.

For the THDM, there are considerable deviations
from the Standard Model both in the cross section
σe+e−→Zh and in the decay widths Γh. Since, in these
models, the coupling constant specifying the interac-
tion of the neutral CP-even Higgs boson h with Z
bosons has the form

gZZh =
gLmZ sin(β − α)

cθW
, (47)

where sin(β − α) ∼ 0 and θW is the Weinberg angle,
the cross section (σe+e−→Zh)THDM in the THDM
proves to be considerably smaller than the corre-
sponding cross section in the Standard Model. At the
same time, the widths of the h boson with respect
to decay into quarks and leptons are greater in the
THDM than in the Standard Model, since the follow-
ing relation holds:

(gf̄ fh)THDM

(gf̄ fh)SM
≈ tan β, f = b, τ. (48)
3
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Obviously, an analysis of the quantity in (45) would
lead to different values for the mass of the Higgs
boson in the Standard Model and the mass of the
h boson in the THDM. Indeed, the LEP data at
| sin(β − α)| ≤ 0.06 yields a value ofmh ∼ 10GeV at
a 98% C.L. [8].

Within the LRM, the reason for the deviation of
the cross section σe+e−→ZS1

from the corresponding
cross section in the Standard Model may be only the
constant of S1-boson coupling to Z1 bosons (the Z1

boson is an analog of the Z boson in the Standard
Model),

gZ1Z1S1 =
gLs2θWmZ1 [cθ0(1− tan2 β)− 2sθ0 tan β]

2cθW(tan
2 β + 1)

(49)

× (2gRg′−1cϕsϕs−1
θW

− c2
ϕs

−2
θW

− g2
Rg

′−2s2ϕ),

whereϕ is the angle of mixing of theZ1 andZ2 bosons
(ϕ ≈ 10−2–10−3) and g′ is the gauge constant of the
subgroup U(1)B−L. At

ϕ = k2 = 0,

gZ1Z1S1 reduces to the constant of the Higgs boson
coupling to theZ boson in the Standard Model. Since
the symmetric LRM reproduces the Standard Model
for gR and g′ taking the values

gL = gR = es−1
θW

, g′ = e
√
c2
θW

− s2θW , (50)

the quantity gRg′−1 may only slightly differ from unity.
Therefore, the factor

∆g =
cθ0(1− tan2 β)− 2sθ0 tan β

tan2 β + 1
(51)

is the main source of the deviation of the quantity
gZ1Z1S1 from the value in the Standard Model. As
follows from (23), the angle θ0 is determined primarily
by the parameter α2, which appears in the Yukawa
potential. At α2 ∼ 10−2, the angle θ0 can take values
of about π/4. Concurrently, the S1 boson can remain
light, as before, since its mass is determined by the
expression

m2
S1

= 2λ1k
2
+ + 8k2

1k
2
2(2λ2 + λ3)/k2

+ (52)

− 8λ4k1k2 +
4k1k2k

4
−[2(2λ2 + λ3)k1k2/k

2
+ − λ4]2

α2v2
Rk

2
+

,

but the S2 boson ceases to be superheavy,

m2
S2

=
α2v

2
Rk

2
+

k1k2
(53)

− 4k1k2k
4
−[2(2λ2 + λ3)k1k2/k

2
+ − λ4]2

α2v2
Rk

2
+

.

PH
We recall that the requirement

mS2 ≥ 10 TeV (54)

is dictated by the need for suppressing fermion-
flavor-violating neutral currents in the Lagrangian

Ln
q = − 1√

2k+

∑

a,b

ūa (55)

×
{[

mua

(
cθ0 +

2k1k2

k2
−

sθ0

)
S1

−mua

(
sθ0 −

2k1k2

k2
−

cθ0

)
S2 − imdaγ5P1

]
δab

+
k2
+

k2
−
(KMdK∗)ab(S1sθ0 + S2cθ0)

}
ub

+ (ua → da,mua ↔ mda , γ5 → −γ5),

where ua (da) is the field function for the up (down)
quark of flavor a, Md = diag(md,ms,mb), and K is
the Cabibbo–Kobayashi–Maskawa matrix. This in
turn makes it possible to describe correctly K̄0 ↔
K0 transitions. However, it was shown in [13] that
a consistent scheme for constructing the LRM re-
quires redefining the traditional Yukawa Lagrangian
for quarks, with the result that, instead of (55), there
arises the expression

Ln
q = − 1√

2k+

∑

a

ūa

{
mua

[(
cθ0 −

k1

k2
sθ0

)
S1

(56)

−
(
sθ0 +

k1

k2
cθ0

)
S2

]
+

imuak1

k2
γ5P1

}
ua

+ (ua → da, θ0 → −θ0).

Since the Lagrangian in (56) does not induce any
fermion-flavor-violating currents, the inequality in
(54) ceases to be valid. It follows from (56) that, with
increasing angle θ0, the deviations of ∆g from unity
can become fairly large.

By using the Lagrangian in (56), it can be deduced
that the S1-boson widths with respect to decays into
quarks and gluons can differ considerably from their
counrterparts in the Standard Model. The quantity
ΓS1→τ+τ− may also differ from the corresponding
value in the Standard Model since the constant of
S1-boson coupling to τ leptons has the form

gτ̄ τS1 =
h′aak1 − haak2√

2k+

(57)

=
gL√

2mZcθW

(
mτ

D tan 2β − mτ

c2β

)
.
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Fig. 4. Curves bounding the region allowed for the pa-
rameters fµµ and mS1 . The solid (dotted) curve corre-
sponds to the value of δaµ/µ0 = 215× 10−11 (δaµ/µ0 =

637 × 10−11.) For both curves, we choose the values
of mNe = 0.9 TeV, mNµ = 1 TeV, mNτ = 1.1 TeV, and
mW2 = 0.8 TeV.

It is therefore obvious that lower limits on the mass of
the lightest neutral Higgs boson in the LRMmust not
be identical to those in the Standard Model. Since,
however, no studies analyzing reaction (44) from the
point of view of the LRM have thus far been per-
formed, we will also use the value of 115 GeV for the
lower limit on the S1-boson mass.

In Fig. 4, the solid and dotted curves corre-
sponding to δaµ/µ0 values equal to 215 × 10−11 and
637 × 10−11, respectively, are plotted in the plane
spanned by the variables fµµ andmS1 . For the heavy-
neutrino and W2-boson masses, we took here the
values (in TeV)

mNe = 0.9, mNµ = 1, mNτ = 1.1, (58)

mW2 = 0.8.

We recall that the masses of the heavy electron
neutrino and of theW2 boson satisfy the inequality

mNe > 63 GeV ·
(
1.6 TeV
mW2

)4

,

which was obtained from searches of neutrinoless
double-β− decay.

The region ofmS1 and fµµ values allowed from the
point of view of the BNL experiment is bounded by
the two curves in Fig. 4. As the masses of theNl neu-
trino decreases, the Higgs boson coupling constants
occurring in the allowed region also decrease. At the
masses (in GeV)

mNe = 110, mNµ = 140, mNτ = 180, (59)

mW2 = 1400

and at the same values of the remaining parameters
as in Fig. 4, Fig. 5 displays two curves bounding
the allowed region of mS1 and fµµ (the solid and
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Fig. 5. As in Fig. 4, but for mNe = 110 GeV, mNµ =
140 GeV,mNτ = 180 GeV, andmW2 = 1400 GeV.

the dotted curve correspond to the δaµ/µ0 values of
215 × 10−11 and 637× 10−11, respectively).

We must now verify whether the values of the
coupling constants and masses of Higgs bosons ly-
ing within the allowed regions in Figs. 4 and 5 are
consistent with the available upper bounds on the
parameters εaba

′b′
i . Results obtained by studying the

direct and inverse muon decays

µ− → e−ν̄eνµ, (60)

νµe
− → µ−νe (61)

lead to the inequality [14]

f2
eµ

m2
δ̃

< 0.109 × 10−5 GeV−2, (62)

which is compatible with our conclusions. An inves-
tigation of the decay process

µ− → e−e+e− (63)

yielded the constraint [14]

feefeµ

√
1

m4
∆1

+
1

m4
∆2

< 2.33 × 10−11 GeV−2.

(64)

Under the assumption that fee ∼ feµ, the inequality
in (64) does not contradict the results presented in
Figs. 4 and 5, provided that relations (41) and (42)
hold. So far, no constraints have been obtained either
for the constant fµτ or for the quantity αl̄albh. Since
there exists, however, the relation

αN̄ll′h ≈
αl̄l′S1√

2
,

required information could be deduced from the re-
sults of searches for the Higgs boson in the Standard
Model or for its analog if the relevant experiment is
analyzed from the point of view of some extension
of the Standard Model. At present, the LEP experi-
ments investigating the processes in (9) and (44) can
3
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Fig. 6. Feynman diagrams for la l̄a → lb l̄b process (la =
e−, µ−, lb = µ−, τ−).

serve as a source of information about the param-
eters of the S1 boson. An analysis of the processes
in (9) can yield constraints only on the constants of
S1-boson coupling to the τ lepton (ατ̄ τS1) and to the
b quark (αb̄bS1

), but, within the LRM, there is no
relation between them and αµ̄µS1 . It is also obvious
that no reliable constraints on αµ̄µS1 can be obtained
from an analysis of reaction (44). Analogously, the
results of the CUSB collaboration on searches for the
decay process (8) [6] would lead to constraints only
on αb̄bS1

.

3. ROLE OF lal̄a → lbl̄b PROCESSES
IN DETERMINING THE PARAMETERS

OF THE HIGGS SECTOR
There exists yet another possibility of deriving in-

formation about the coupling constants of an analog
of the Higgs boson in the Standard Model in analyz-
ing experiments at lepton colliders.

Let us consider the reactions
la l̄a → lbl̄b, la = e, µ, lb = µ, τ. (65)

The diagrams in the second order of perturbation
theory for the Feynman process (65) in the LRM
are shown in Fig. 6. Owing to the presence of the
s-channel diagram involving S1-boson exchange,
this reaction provides a useful means for obtaining
upper bounds on αµ̄µS1 . We will assume that, in
the initial and final state, the particles involved are
unpolarized. The differential cross section for the
process in (65) is then given by

dσ =
dΩ

16(2π)2s

∑

ρ,κ

Mρκ, (66)

where ρ, κ = Z1, Z2, γ,∆1,∆2, S1, S2, P1;

Mkr =
1
8
{[(G2

kr − P 2
kr)t

2 + (G2
kr + P 2

kr)u
2]
PH
×Dk(s)D∗
r (s) + δlalb [(G

2
kr − P 2

kr)s
2

+ (G2
kr + P 2

kr)u
2]Dk(t)D∗

r (t)},
k, r = Z1, Z2, γ;

Gkr = gV kgV r + gAkgAr, Pkr = gV kgAr + gV rgAk,

gAγ = 0, gV γ = 2e,

gV Z1 =
ecϕ

cθWsθW

(
2s2θW − 1

2

)

+
esϕ

cθW
√
c2
θW
g2
Re

−2 − 1

(
3
2
−

c2
θW
g2
R

2e2

)
,

gAZ1 =
esϕ
√
c2
θW
g2
Re

−2 − 1

2cθW
− ecϕ

2sθWcθW
,

gV Z2 = gV Z1(ϕ → ϕ+ π/2),

gAZ2 = gAZ1(ϕ → ϕ+ π/2),

Dρ(q2) = [q2 −m2
ρ + iΓρmρ]−1, q2 = s, u, t;

2∑

i=1

M∆i∆i = 16f4
lalb

u2(2− δab)2|D∆1(u)|2

+(1 → 2),
∑

jn

Mjn = 4t2(2− δab)2[|α2
l̄albS1

DS1(t)

+ α2
l̄albS2

DS2(t)|2 + α4
l̄albP1

|DP1(t)|2] + 4s2

× [|αl̄alaS1
αl̄blbS1

DS1(s) + αl̄alaS2
αl̄blbS2

DS2(s)|2

+ α2
l̄alaP1

α2
l̄blbP1

|DP1(s)|2] + 2st(2− δlalb)
∑

j,n

Ijn,

j, n = S1, S2, P1;
∑

j

Mkj = 2(g2
Ak − g2

V k)t
2(2− δlalb)

× {α2
l̄albS1

[(t−m2
S1
)(s−m2

k) + ΓS1ΓkmS1mk]

×|DS1(t)Dk(s)|2+ (αl̄albS1
→ αl̄albS2

,mS1 →mS2)

+ (αl̄albS1
→ αl̄albP1

,mS1 → mP1)}
+ 2δlalb(g

2
Ak − g2

V k)s
2{α2

l̄alaS1
[(s−m2

S1
)(t−m2

k)

+ ΓS1ΓkmS1mk]|DS1(s)Dk(t)|2

+ (αl̄alaS1
→ αl̄alaS2

,mS1 → mS2)

+ (αl̄alaS1
→ αl̄alaP1

,mS1 → mP1)},

2∑

i=1

Mk∆i
= −2f2

lalb
(gV k − gAk)2u2
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Fig. 7. ∆R as a function of mh for the process e+e− →
τ+τ−: (solid curve) results obtained within the THDM1
and (dotted curve) results obtained within the THDM2.

×
2∑

i=1

{(2 − δab)[(u−m2
∆i
)(s −m2

k)

+ Γ∆iΓkm∆imk]|D∆i(u)Dk(s)|2

+ δlalb [(t−m2
k)(u−m2

∆i
) + ΓkΓ∆imkm∆i ]

× |Dk(t)D∆i(u)|2},

Ijn = ajn[(t−m2
j )(s−m2

n) +mjΓjmnΓn]

× |Dj(t)Dn(s)|2,

aSiSj = αl̄alaSiαl̄blbSiα
2
l̄albSj

,

αSiP1 = −αl̄alaSiαl̄blbSiα
2
l̄albP1

,

αP1Si = −αl̄alaP1
αl̄blbP1

α2
l̄albSi

;

s, u, and t are the Mandelstam variables; and the
expressions for the decay widths of Higgs bosons can
be found in [13].

Let us investigate physical colloraries of the con-
straints obtained for the parameters of the Higgs
sector for reactions (65). By way of example, we will
consider not only the LRM, but also the THDM1 and
THDM2. The LRM is advantageous in that cross
sections within a number of nonsupersymmetric ex-
tensions of the Standard Model can be derived under
specific assumptions from the LRM cross section.
For example, the THDM1 and THDM2 expressions
for the differential cross section for reaction (65) are
obtained from (66) upon the substitutions

gV Z2 = gAZ2 = ϕ = flalb = 0,
αl̄albS1

= αl̄albS2
= αl̄albP1

= 0, a �= b,

αl̄alaS1
= αl̄alaP1

= mla tan β/v, αl̄alaS2
≈ 0,





(67)

where the S1, S2, and P1 bosons are, respectively, the
THDM h, H , and A bosons and v = 246 GeV. We
recall that the Higgs boson couplings to the down
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Fig. 8. ∆R as a function of mS1 for the processes (solid
curve) µ+µ− → µ+µ− and (dotted curve) µ+µ− →
τ+τ− within the LRM at fµµ = 2 × 10−2.

members of the fermion doublets are identical in the
THDM1 and in the THDM2, but that, for the up
members of the fermion doublets, they are given, re-
spectively, by mfua tan β/v and by mfua cot β/v (mfua
is the mass of the up fermion of flavor a). It follows
that, in these two models, the only difference between
the cross sections for reactions (65) stems from the
fact that the decay widths of Higgs bosons are dif-
ferent there. If the mass of the Higgs boson h does
indeed lie in the range from 3.1 to 10 GeV, resonance
peaks associated with the h boson will be present in
the cross sections for the processes

e+e− → µ+µ−, (68)

e+e− → τ+τ−. (69)

In order to characterize the height of this peak with
respect to the cross section within the Standard
Model, we introduce the quantity (the contribution
of the Higgs boson to the cross section within the
Standard Model is not included!)

∆R =
(
dσ

dΩ

)THDM

√
s=mh

−
(
dσ

dΩ

)SM

√
s=mh

.

In the THDM1 term at
√
s = mh, tan β appearing in

all fermion modes of h decay is canceled by tan β,
which specifies the strength of h-boson coupling to
leptons, so that∆R proves to be independent of tan β.
This in turn means that, if the contribution of the
Higgs boson is taken into account in the Standard
Model, the height of the corresponding resonance
peak will be identical to that in the THDM1. Only the
decay widths will then be different:

ΓTHDM1
h→f̄ifi

= tanβ · ΓSM
h→f̄ifi

.

The height of the h-resonance peak is weakly de-
pendent on the scattering angle θ and is determined
primarily by the Higgs boson massmh. For example,
3
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∆R reaches a value of 4 pb at mh = 3.1 GeV for re-
action (68). So great a height of the peak is due to an
extreme smallness of the decay width (Γh ≈ 8 keV).
With increasing h-boson mass, Γh grows, which is
accompanied by a decrease in the peak height; at
mh = 10 GeV, ∆R becomes as small as 1.5 fb. For
the THDM1, the conditions for detecting the Higgs
boson appear to be more favorable in the case of
reaction (69).

For the THDM2, some of the partial decay widths
of the h boson into fermions are not proportional to
tan β. By virtue of this circumstance,∆R depends on
the values chosen for tan β. By way of example, we
indicate that, at tan β = 30 and mh = 3.1 GeV, the
height of the h peak in reaction (68),∆Rµµ, is as great
as 2.3 × 104 pb, while, in reaction (69), ∆Rττ is only
81.5 pb. With increasing mass, however, ∆Rµµ de-
creases much faster than ∆Rττ : atmh ≈ 3.865 GeV,
∆Rµµ ≈ ∆Rττ , while, at mh = 5 GeV, ∆Rττ is ap-
proximately 20 times as great as ∆Rµµ. Figure 7
shows ∆R as a function of mh for reaction (69) at
tan β = 30. The solid and dotted curves were calcu-
lated within the THDM1 and the THDM2, respec-
tively.

In the process

µ+µ− → µ+µ−, (70)

the probability of observing a Higgs boson of mass
predicted by the THDM is even higher. By way of ex-
ample, we indicate that, in the THDM1, ∆R reaches
the value of 66 pb at mh = 10 GeV, while, in the
THDM2,∆R is equal to 153 pb at tan β = 30.

Let us now proceed to discuss reactions (65) with-
in the LRM. As before, we assume that the coupling
P

constants and masses of the Higgs bosons obey re-
lations (41) and (42), respectively. Since there is no
information about the constants of Higgs boson cou-
pling to τ leptons, we have to make some assumption
on their magnitude. Specifically, we set:

fττ = 2fµµ, ατ̄ τS1 = 2αµ̄µS1 . (71)

For reaction (68), the relative height of the S1-reso-
nance peak,

∆R =
(
dσ

dΩ

)LRM

√
s=mS1

−
(
dσ

dΩ

)SM

√
s=mS1

,

appears to be small. For example, the ∆R value at
mS1 = 115 GeV is as small as a few femtobarns.
However, prospects for observing the lightest neutral
Higgs boson of the LRM in reactions (65) are quite
good at a muon collider. In Fig. 8, we present ∆R as
a function of mS1 for reaction (70) (solid curve) and
for the reaction

µ+µ− → τ+τ− (72)

(dotted curve) at fµµ = 2× 10−2. The quantity ∆R
is independent of tan β = k1/k2 and exhibits an ex-
tremely weak dependence on the scattering angle θ.
The differential cross section for reaction (70) within
(dotted curve) the LRM and (solid curve) the Stan-
dard Model are shown in Fig. 9 at θ = π/2, mS1 =
120 GeV, and fµµ = 2× 10−2. The two curves nearly
coincide, and only in the energy range betweenmS1 −
ΓS1/2 andmS1 + ΓS1/2 do they become distinguish-
able.

4. CONCLUSION

We have investigated the effect of the Higgs sector
on the the anomalous magnetic moment of the muon
within the LRM. In doing this, we have taken into
account the contributions from the interactions of
the doubly charged (∆(−−)

1,2 ), singly charged (h(−),

δ̃(−)), and neutral (S1) Higgs bosons with leptons and
gauge bosons. The resulting anomalous magnetic
moment of the muon is a function of the parameters
of the Higgs sector. Available experimental data are
insufficient for making unambiguous predictions for
the structure of the Higgs sector in the LRM. For
this reason, we have assumed a specific hierarchy
both for the Yukawa constants and for the Higgs
boson masses. For independent parameters, we have
chosen the triplet diagonal Yukawa constant fµµ and
the mass of the neutral Higgs boson S1. Our anal-
ysis has revealed that, if fµµ lies in the interval from
0.025 to 0.09, the expression obtained here for the
muon anomalous magnetic moment falls within the
interval of E821 results at a 90%C.L. formS1 ranging
between 115 and 210 GeV.
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003



ANOMALOUS MAGNETIC MOMENT OF THE MUON 293
The values of the Yukawa constants determine
the strength of the interaction of physical Higgs
bosons with fermions. It is therefore reasonable to use
their estimates obtained in calculating the anomalous
magnetic moment of the muon in studying other
processes. For this purpose, we have considered
the production of lepton pairs at e+e− and µ+µ−

colliders. We have obtained analytic expressions for
differential cross sections with allowance for Higgs
boson contributions. Since the LRM includes the
THDM, we have first performed our analysis of cross
sections within the THDM. It has appeared that, if
the mass of the lightest neutral Higgs boson does
indeed fall within the range 3.1–10 GeV, as is inferred
from the condition requiring that the THDM1 and
THDM2 be consistent with the data of the E821 ex-
periment [8], the resonance peak associated with this
Higgs boson may be detected at currently operating
e+e− colliders (VEPP-4M, CESR, KEKB, PEP-
II, SLC). However, this will call for a considerable
amount of effort aimed at reducing the energy spread
in e+ and e− beams since the decay width of the h
boson is extremely small.

In performing the analogous analysis within the
LRM, we have assumed that the mass of the light-
est neutral Higgs boson (S1 boson) is greater than
115 GeV. For the reaction e+e− → µ+µ−, the height
of the corresponding resonance peak is a few femto-
barns at mS1 = 115 GeV. It has been shown that the
detection of the lightest neutral Higgs boson of the
LRM can be implemented at a muon collider.
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Abstract—The three-vertex loop amplitude in a strong magnetic field are analyzed in a general form
by using the asymptotic behavior of the electron propagator in an external field. The process γγ → νν̄
is studied in terms of the scalar–vector–vector (SV V ), pseudoscalar–vector–vector (PV V ), vector–
vector–vector (V V V ), and axial-vector–vector–vector (AV V ) combinations of couplings. It is shown that
only in the case of the SV V combination does the amplitude grow linearly with increasing magnetic-
field strength, the amplitudes evaluated with the other combinations of couplings (PV V , V V V , and
AV V ) featuring no linearly increasing terms. The process γγ → νν̄ is also studied within the left–right
model, which is an extension of the Standard Model of electroweak interactions and which may involve
an effective scalar ννee coupling. Possible astrophysical manifestations of this process are discussed.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

There are interesting quantum processes that are
kinematically forbidden or strongly suppressed in a
vacuum, but which are possible in a sufficiently strong
magnetic field. Magnetic fields of required strength
can be generated in astrophysical cataclysms such
as a supernova explosion or the merger of neutron
stars. A natural scale of the strength of a magnetic
field is determined by the critical (or Schwinger) value
of Be = m2

e/e � 4.41× 1013 G.1) There are reasons
to believe that such fields may exist in astrophysical
objects. For example, so-called magnetars, which are
neutron stars featuring a magnetic field of strength
about 4× 1014 G, were observed [1, 2]. Models of
astrophysical processes and objects where magnetic
fields may be as strong as 1017 to 1018 G were dis-
cussed in the literature [3–6]. Thus, the physics of
quantum processes in strong external fields forms an
interesting and important realm of research.

Of particular interest are loop quantum processes
involving only electrically neutral particles (such as
the photon or the neutrino) in the initial and final
states. The effect of an external field on such pro-
cesses is associated with two factors. First, charged
virtual fermions are sensitive to a magnetic field, a
major part being played here by the electron, since
this particle has the maximum specific charge e/me.

*e-mail: avkuzn@uniyar.ac.ru
**e-mail: mikheev@uniyar.ac.ru

***e-mail: rda@uniyar.ac.ru
1)Here, we use the system of units where c = � = 1. Through-

out the article, e > 0 is an elementary charge.
1063-7788/03/6602-0294$24.00 c©
Second, a strong magnetic field has a pronounced
effect on the dispersion properties of photons and,
hence, on their kinematics.

Two-vertex loop processes of the γ → γ type (pho-
ton polarization operator in an external field) or the
decays γ → νν̄, ν → νγ, etc., have been studied for a
long time. Without going into details, we only men-
tion that the most general expression for the two-
vertex loop amplitude for j → f f̄ → j′ transitions in
a uniform external magnetic field and in a crossed field
was obtained in [7], where the analysis was performed
by using various combinations of the scalar, pseu-
doscalar, vector, and pseudovector couplings of the
generalized currents j and j′ to fermions.

In this study, we consider the general case of a
three-vertex loop process in a strong magnetic field
(see the corresponding Feynman diagram in Fig. 1).

The transformation of a photon pair into a neutri-
no–antineutrino pair, γγ → νν̄—this reaction is
strongly suppressed in a vacuum—is among pro-
cesses of the above type that are being discussed
most extensively. In the diagram for this reaction,
two vertices may be only of the vector type (Γ1 =
Γ2 = V ). Within the Standard Model (SM), the third
vertex may be either of the vector or of the axial-
vector type (Γ3 = V,A), while, beyond the SM, it
may also involve a scalar or a pseudoscalar coupling
(Γ3 = S,P ).

The splitting of a photon into two photons into
a magnetic field, γ → γγ (this reaction is kinemat-
ically forbidden in a vacuum), is yet another three-
vertex loop process that has attracted the attention
of theorists for many years. A review devoted to this
2003 MAIK “Nauka/Interperiodica”
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 Γ  3

 Γ  2

 Γ  1

Fig. 1. Feynman diagram for a three-vertex process in a
strong magnetic field. Double lines represent the electron
propagators obtained on the basis of exact solutions to
the Dirac equation in an external field.

process is given in [8], where the interested reader
can also find references to earlier studies devoted to
the subject; among more recent articles, mention can
be made of [9–14]. All three vertices in this process
involve only a vector coupling, Γ1 = Γ2 = Γ3 = V .

In what follows, we therefore consider the case
where two vertices—for example, Γ1 and Γ2—are of
a vector type and are associated with coupling to
a photon and where the third vertex Γ3 is arbitrary
and is assumed to involve coupling to the respective
current. The ensuing exposition is organized as fol-
lows. A survey of the literature devoted to studying
the amplitude for the electroweak process of photon-
pair transformation into a neutrino–antineutrino pair,
γγ → νν̄, in a vacuum and in a weak field is given
in Section 2. A general analysis of a three-vertex
process in a strong magnetic field is performed in
Section 3. In Section 4, the amplitude and the cross
section for the process γγ → νν̄ in a strong magnetic
field are calculated within the model where left–right
symmetry is broken. Possible astrophysical manifes-
tations of the process in question are discussed in
Section 5, where its contribution to the rate of the
energy loss of a star per unit volume is estimated nu-
merically for various mechanisms of the process. We
also estimate the neutrino emissivity of a magnetized
star.

2. PROCESS γγ → νν̄
IN A VACUUM AND IN A WEAK FIELD

2.1. Standard Electroweak Interaction

In all probability, it was Pontecorvo who initiated
investigations into the transition of two photons into a
neutrino–antineutrino pair and who indicated, for the
first time, that neutrino processes may have important
implications for astrophysics [15]. This transition is
described by two Feynman diagrams of the type in
Fig. 2, where a virtual fermion propagates along the
loop and where one implies the interchange of the
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
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Fig. 2. Feynman diagram for the process γγ → νν̄.

photons involved, the large circle denoting the effec-
tive weak fermion–neutrino interaction.

With allowance for the gauge invariance of elec-
tromagnetic interaction, the general expression for
the reaction amplitude can be represented in the form

M =
α

π

GF√
2
[ν̄i(p1)Tαβµννi(−p2)]fαβ1 fµν2 , (1)

where the subscript i specifies the neutrino flavor
(i = e, µ, τ )2) and fαβ = kαεβ − kβεα is the photon-
electromagnetic-field tensor in the momentum rep-
resentation. The tensor Tαβµν is a Dirac matrix and
must be constructed from available covariant quanti-
ties, its dimension being that of inverse mass.

It was found in [16] that, in the case of mass-
less neutrinos and real photons, this amplitude is
strictly equal to zero in the local limit of standard
weak interaction (Gell-Mann theorem). A qualitative
explanation of this statement is as follows: in the c.m.
frame, the angular momentum taken away by the left-
handed neutrino and the right-handed antineutrino is
equal to unity; however, a two-photon system cannot
have the angular momentum of unity, as was first
indicated by Landau [17] (Yang theorem [18]). In
terms of tensor calculus, this means that there are
no covariant quantities for constructing the tensor
Tαβµν such that it would adequately describe the chi-
ral properties of massless neutrinos and satisfy Bose
symmetry.

If at least one of the conditions of the Gell-Mann
theorem is violated, the amplitude in (1) does not
vanish. In the case of massive neutrinos, the reaction
under consideration is allowed [19, 20] because the
chiral properties of massive neutrinos differ from those
in the massless case, the amplitude being propor-
tional to the neutrino mass. The Lorentz structure of
the amplitude can be illustrated by the expression for
the tensor Tαβµν at low photon energies (ω � me),
in which case the electron loop makes a dominant
contribution to the amplitude:

Tαβµν = − i

24
(2δie − 1)

mνi

m2
e

γ5εαβµν . (2)

2)Expression (1) is readily extended to the case of lepton mix-
ing.
3
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If weak interaction is described in terms of W -
boson exchange, the nonlocality of the interaction re-
sults in that the amplitude depends on the momenta of
the neutrino and the antineutrino individually rather
than on their sum. By virtue of this, the expression for
the amplitude develops the structure [21–23]

Tαβµν =
8i
3

(
ln
m2
W

m2
e

+
3
4

)
1
m2
W

(3)

× [γαgβµ(p1 − p2)ν + γµgνα(p1 − p2)β ](1 + γ5).
It can be seen that the amplitude is strongly sup-
pressed in both cases, either by a small neutrino mass
in the numerator or by a large W -boson mass in the
denominator.

Yet another case of a nonzero amplitude is realized
if one photon [24] or both of them [25–27] are off
the mass shell. This being so, kµfµν 	= 0, so that the
photon momenta can be used to construct the tensor
Tαβµν . In the case of ω � me, we arrive at

Tαβµν = − i

24
(2δie − 1)

1
m2
e

γρ(1 + γ5) (4)

× (εραµνk1β + ερµαβk2ν),

where k1,2 are the photon momenta. Note that, since
the neutrino mass is zero, one can make the substitu-
tion k1 ↔ −k2 in (4).

2.2. Extension of the Standard Model with Broken
Left–Right Symmetry

If the effective Lagrangian of neutrino–lepton in-
teraction does not conserve neutrino helicity, the con-
ditions of the Gell-Mann theorem are violated, with
the result that the transition γγ → νν̄ becomes pos-
sible. This situation is realized in the presence of
coupling between scalar and pseudoscalar neutral
currents in the effective Lagrangian written in terms
of neutral currents. As was shown in [28], this is so
in the model where left–right symmetry is broken and
where vector bosons interacting with left- and right-
handed weak currents are mixed [29]. Recall that, in
this model, the Lagrangian of νeW interaction has
the form

L =
g

2
√
2

{
[ēγα(1 + γ5)νe](Wα

1 cos ζ +Wα
2 sin ζ)

(5)

+ [ēγα(1− γ5)νe](−Wα
1 sin ζ +Wα

2 cos ζ) + h.c.
}
,

where W1,2 are the mass-matrix eigenstates and ζ
is the mixing angle. The existing constraints on the
parameters of this model come from low-energy ac-
celerator experiments and have the form [30]

MW2 > 715 GeV, ζ < 0.013. (6)
PH
Owing to the smallness of the mixing angle, the W2

state differs only slightly from the right-handed boson
WR.

The constraint on the parameters of the model
from astrophysical data—specifically, from an analy-
sis of neutrino events from the supernova SN1987A—
is more stringent. Combining it with the accelerator
data, one obtains [31]

MWR
> 23 TeV, ζ < 10−5. (7)

The terms in the effective Lagrangian of ννee inter-
action that are responsible for the reaction γγ → νν̄
are those owing to which the product neutrino or an-
tineutrino has a “nonstandard” helicity. Such terms
are due to boson mixing, which is associated with
the product of the left- and right-handed currents in
the effective Lagrangian (5). Taking into account the
smallness of the mixing angle and of the mass ratio
MW1/MW2 , we can recast the Lagrangian of ννee
interaction into the form

Leff � −4ζ
GF√
2
[(ēe) (ν̄eνe)− (ēγ5e) (ν̄eγ5νe)] . (8)

Here, there are two channels through which two
photons are transformed into a neutrino–antineutrino
pair and which are forbidden in the SM. These are

γγ → (νe)L(ν̄e)L, γγ → (νe)R(ν̄e)R, (9)

where (νe)R and (ν̄e)L are sterile neutrinos (that is,
neutrinos that are not involved in standard weak in-
teractions). In the c.m. frame, the total spin of the
neutrino–antineutrino pairs in (9) is zero, whence it
follows that the transition γγ → νν̄ becomes allowed.

For the tensor Tαβµν , a straightforward calcula-
tion of the relevant amplitude with the effective La-
grangian (8) leads to the expression

Tαβµν =
4ζme

k1k2

{[
1 +

1
2
(1− 4τ)I(τ)

]
gανgβµ

(10)

− i
4
I(τ)γ5εαβµν

}
,

where

τ =
m2
e

2(k1k2)
, (11)

I(τ) =

1∫

0

dx

1−x∫

0

dy
1

τ − xy − i0 .

It should be noted that the general structure of the
tensor in (10) is identical to that of the tensor that
can be extracted from the results presented in [28];
however, the numerical coefficients are different in the
two expressions under comparison.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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In the model being considered, the amplitude of
the process γγ → νν̄ is suppressed by the mixing
angle ζ , which is a small parameter.

2.3. Effect of an External Field

As was mentioned above, an external magnetic
field can enhance the rate of the reaction under study.
In this case, the presence of the electromagnetic-
field tensor Fµν associated with an external field offers
a new possibility for constructing the tensor Tαβµν ,
which enters into expression (1) for the amplitude. As
a matter of fact, the field appears in the amplitude in
the form of the dimensionless tensor Fµν = eFµν/m2

e ,
and this can lead to an additional enhancement if the
strength of the field is greater than the Schwinger
valueBe = m2

e/e.
In [32], the reaction γγ → νν̄ was studied on the

basis of the SM in the leading order of the expan-
sion in a relatively weak magnetic field (B � Be, the
expansion parameter being B/Be) and at low photon
energies (ω � me). It is precisely in this approxima-
tion that the use of the effective Lagrangian obtained
in [33] from an analysis of the amplitude for the re-
action γγ → γνν̄ is appropriate. It should be noted
that the expression obtained in [32] for the amplitude
[formulas (4) and (5) in that article] is rather cumber-
some. Recasting this amplitude into the form (1), we
find that the tensor Tαβµν can be represented as

Tαβµν =
gV

90m2
e

γρ(1 + γ5) (12)

× {3gανgβµFρσ(k1 + k2)σ − 3Fαβgµρk1ν
− 3Fµνgαρk2β − 14gαρkσ1 (gβµFνσ + Fβµgνσ)

− 14gµρkσ2 (gναFβσ + Fναgβσ)},

where gV = ±1/2 + 2 sin2 θW, the upper (lower) sign
corresponding to the electron neutrino (muon and
tau neutrinos). It can be seen that the amplitude
of the process grows linearly with increasing field.
Below, we will show that, within the standard theory
of weak interactions, this is so only in the weak-field
limit (B � Be), the amplitude in the strong-field limit
(B � Be) approaching a constant value.

In [34–36], the process γγ → νν̄ and the respec-
tive processes in the crossing channels were stud-
ied in the weak-field approximation, but the photon
energy was allowed there to vary over the region
ω < mW. In the limit of ω � me, the amplitude ob-
tained in [35] is consistent with that from [32]. Un-
fortunately, the expression for the amplitude in [35] is
so cumbersome that even the simplest test for gauge
invariance presents a problem.

In the earlier study reported in [37], the process
γγ → νν̄ was analyzed in the strong-field limit (B �
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
Be) at low photon energies (ω � me) without taking
into account the Z-boson contribution.

However, an analysis of the three-vertex loop pro-
cess γγ → νν̄ in a strong magnetic field under ar-
bitrary kinematical conditions has not yet been per-
formed.

3. GENERAL ANALYSIS
OF A THREE-VERTEX LOOP PROCESS

IN A STRONG MAGNETIC FIELD

The electron propagator in a magnetic field can be
represented in the form

S(x, y) = eiΦ(x, y)Ŝ(x− y), (13)

Φ(x, y) = −e
y∫

x

dξµ

[
Aµ(ξ) +

1
2
Fµν(ξ − y)ν

]
, (14)

where Aµ is the 4-potential of a constant uniform
external magnetic field. In this propagator, the factor
that is invariant under translations, Ŝ(x− y), admits
different representations. For our purposes, it is con-
venient to write it as a partial decomposition in the
Fourier integral; that is,

Ŝ(X) = − i

4π

∞∫

0

dτ

tanhτ

∫
d2p

(2π)2
(15)

×
{
[(pγ)|| +me]Π−(1 + tanhτ)

+ [(pγ)|| +me]Π+(1− tanhτ)

− (Xγ)⊥
ieB

2tanhτ
(1− tanh2τ)

}

× exp

(
− eBX

2
⊥

4tanhτ
−
τ(m2

e − p2||)
eB

− i(pX)||

)
,

d2p = dp0dp3, Π± =
1
2
(1± iγ1γ2),

Π2
± = Π±, [Π±, (aγ)||] = 0,

where γα are the Dirac matrices in the standard rep-
resentation and 4-vectors labeled with the ⊥ and
|| symbols in the subscripts are defined in the {1,
2} Euclidean subspace and in the {0, 3} Minkowski
subspace, respectively, the field B being directed here
along the third axis. For arbitrary vectors aµ and bµ,
we have

a⊥ = (0, a1, a2, 0), a|| = (a0, 0, 0, a3), (16)

(ab)⊥ = (aΛb) = a1b1 + a2b2,

(ab)|| = (aΛ̃b) = a0b0 − a3b3,
3
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where we have introduced the matrices Λαβ =
(ϕϕ)αβ and Λ̃αβ = (ϕ̃ϕ̃)αβ involving the dimen-
sionless external-electromagnetic-field tensor ϕαβ =

Fαβ/B and its dual counterpart ϕ̃αβ =
1
2
εαβµνϕµν

and satisfying the equation Λ̃αβ − Λαβ = gαβ =
diag(1,−1,−1,−1), the 4-vector and tensor indices
being contracted consecutively in the parenthetical
expressions according to the rule specified, by way of
example, as (aΛb) = aαΛαβbβ .

Although the propagator in (13) involves the phase
Φ(x, y), which is not invariant either under transla-
tions or under gauge transformations, the resulting
phase that is associated with all three propagators in
the loop is invariant:

Φ(x, y) + Φ(y, z) + Φ(z, x) = −e
2
(z − x)µ

× Fµν(x− y)ν .

The invariant amplitude of the process described
by the diagram in Fig. 1 has the form

M = e2g3
∫
d4Xd4Y tr{(j3Γ3)Ŝ(Y )(ε2γ) (17)

× Ŝ(−X − Y )(ε1γ)Ŝ(X)}e−ie(XFY )/2

× ei(k1X−k2Y ) + (γ1 ↔ γ2),

where X = z − x; Y = x− y; Γ3 is the matrix asso-
ciated with the S, the P , the V , or the A vertex; g3
is a coupling constant; j3 is the neutrino current or
the photon polarization vector in momentum space;
ε1 and ε2 are the polarization vectors of the photons in
the initial state; and k1 and k2 are their 4-momenta.

In general, the use of the propagators given
by (13)–(15) in three-vertex loop diagrams leads
to very cumbersome expressions. Relatively simple
results were obtained only for photon splitting in
two cases: in the weak-field limit [38] and in the
approximation of collinear kinematics for a strong
field [10, 11].

In order to analyze the reaction amplitude (17) in
a strong field, it is reasonable to replace the electron
propagator by its asymptotic expression that is readily
obtained by approximately calculating the relevant
integral with respect to τ in the limit eB/|m2

e − p2||| �
1. The translation-invariant factor in the propagator
then takes the simple form

Ŝ(X) � ieB

2π
exp

(
−eBX

2
⊥

4

)∫
d2p

(2π)2
(18)

×
(pγ)|| +me

p2|| −m2
e

Π−e
−i(pX)|| .

This expression was first obtained in [39, 40].
PH
The amplitude can be divided in two parts such
that each part is obtained from the other by inter-
changing the photons. Substituting the propagator
given by (13), (14), and (18) into the amplitude, we
find that each of the two parts of this amplitude that
differ from each other by the interchange of photons is
proportional to the field strength B; that is,

M � − iαg3eB
(4π)2

exp
{
−k

2
1⊥ + k2

2⊥ + (k1k2)⊥
2eB

}

(19)

× exp
{
−i(k1ϕk2)

2eB

}

×
∫
d2ptr{(j3Γ3)S||(p + k2)(ε2γ)S||(p)(ε1γ)

× S||(p− k1)}+ (γ1 ↔ γ2),

where S||(p) = 2Π−((pγ)|| +me)/(p2|| −m2
e). Note

that, in the amplitude in (19), the projection operator
Π− singles out photons of one specific polarization
(⊥) of the two possible ones (we use the Adler
notation [38]):

ε(||)α =
Fαβkβ√
(kFFk)

, ε(⊥)
α =

F̃αβkβ√
(kF̃ F̃ k)

. (20)

Using a conventional procedure, we can recast the
trace in the second term of expression (19) (that
featuring interchanged photons) into the form of the
trace in the first term, whereupon the sign of this
term is reversed for Γ3 = P, V,A and is conserved
for Γ3 = S, the total amplitude acquiring the fac-
tor sin[(k1ϕk2)/2eB] in the former and the factor
cos[(k1ϕk2)/2eB] in the latter case.

It follows that, if the field strength is the greatest
physical parameter in the theory, eB � k2

⊥, k
2
||, only

the amplitude associated with the scalar vertex grows
linearly with increasing field.

4. AMPLITUDE AND CROSS SECTION
FOR THE PROCESS γγ → νν̄

IN THE MODEL WITH BROKEN
LEFT–RIGHT SYMMETRY

Upon making, according to (8), the substitutions
Γ3 = 1, g3 = −4ζGF/

√
2, and j3 = [ν̄e(p1)νe(−p2)]

in the amplitude given by (19) and performing inte-
gration there with respect to the virtual momentum in
the strong-field limit, we arrive at

M =
8α
π

GF√
2
ζ

me

B

Be
[ν̄e(p1)νe(−p2)]ε(⊥)

1α ε
(⊥)
2β (21)

×
1∫

0

dx

1−x∫

0

dy

a2

{
[k2

1||x(1− 2x) + k2
2||y(1− 2y)
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− (k1k2)||(1− 4xy)]Λ̃αβ − (1− 2x)

× (1− 2y)kα1||k
β
2|| + (1− 4xy)kα2||k

β
1||

− 2x(1− 2x)kα1||k
β
1|| − 2y(1− 2y)kα2||k

β
2||

}
,

a = 1−
q2||
m2
e

xy − (1− x− y)
(
k2
1||
m2
e

x+
k2
2||
m2
e

y

)
,

(22)

where q|| = k1|| + k2||. We now recast the amplitude
in (21) into the gauge-invariant form (1):

M =
α

π

GF√
2
[ν̄e(p1)Tαβµννe(−p2)] f (⊥)αβ

1 f
(⊥)µν
2 .

(23)

This formula involves the tensors of the field gener-
ated by photons of only one polarization,

f
(⊥)
αβ = kα||ε

(⊥)
β − kβ||ε(⊥)

α .

In this case, the expression for the tensor Tαβµν takes
the form

Tαβµν =
4ζ
me

B

Be

1∫

0

dx

1−x∫

0

dy

a2
(24)

×
{
(1− 4xy)Λ̃ανΛ̃βµ + 4(1 − x− y)

× (1− 2x− 2y)
1
q2||
k1||αΛ̃βµk2||ν

}
.

In order to reduce the amplitude to the form (23), we
have used the nontrivial integral identities

1∫

0

dx

1−x∫

0

dy
Sx(1− 2x)− Ty(1− 2y)

AN
≡ 0, (25)

1∫

0

dx

1−x∫

0

dy (26)

× Zy(1− 2y) + S(1− x− y)(1− 2x− 2y)
AN

≡ 0,

A = 1− Zxy − (1− x− y)(Sx+ Ty), (27)

where Z, S, and T are arbitrary parameters and N is
an arbitrary integer (in the case under study,N = 2).

The expression for the amplitude is simplified in
two limiting cases [expressions (20) for the polariza-

tion vectors ε(⊥)
1,2 have already been substituted into

the formulas that are given immediately below]:
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(i) At low photon energies (ω � me), we have

M � 8α
3π
GF√
2
ζ

me

B

Be
[ν̄e(p1)νe(−p2)]

√
k2
1||k

2
2||. (28)

(ii) At high photon energies (ω � me), the result
obtained in the leading-logarithm approximation is

M � 16α
π

GF√
2
ζ
B

Be
m3
e[ν̄e(p1)νe(−p2)] (29)

× 1√
k2
1||k

2
2||

ln

√
k2
1||k

2
2||

m2
e

.

Computing the cross sections for the processes
γγ → (νe)L(ν̄e)L and γγ → (νe)R(ν̄e)R by a conven-
tional method, we find that they are equal, σLL =
σRR ≡ σ. In the above two limiting cases, the expres-
sions for the cross sections are

σ(ω � me) �
2α2G2

Fζ
2

9π3

(
B

Be

)2 k2
1||k

2
2||

m2
e

, (30)

σ(ω � me) �
2α2G2

Fζ
2

π3

(
B

Be

)2 m6
e

k2
1||k

2
2||

ln2
k2
1||k

2
2||

m4
e

.

(31)

5. ASTROPHYSICAL MANIFESTATIONS
OF THE PROCESS γγ → νν̄

The energy loss of a star per unit volume per unit
time by neutrino emission (neutrino emissivity) is an
important observable in astrophysics. For the process
γγ → νν̄, its general form is

Q =
1
2

∫
d3k1
(2π)3

2
eω1/T − 1

∫
d3k2
(2π)3

2
eω2/T − 1

(32)

× (ω1 + ω2)
(k1k2)
ω1ω2

σ(γγ → νν̄),

where T is the photon-gas temperature. In the case
under consideration, expression (32) must be mul-
tiplied by a factor of 1/4 since photons of only one
polarization are involved in the process. Considering
that only a sterile (anti)neutrino in the pair [see for-
mula (9)] can leave freely hot and dense star matter
(a neutrino involved in standard interactions is easily
absorbed, the respective range being rather short),
we take the expression (σLL + σRR)/2 = σ for the
relevant cross section.

(a) Low-temperature limit, T � meT � meT � me. In this
case, we substitute (30) into (32) and obtain

Q(B) � 2.5 × 1013 erg
cm3 s

(
ζ

0.013

)2

(33)

×
(
B

Be

)2( T
me

)11

.

3
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This result must be compared with the contributions
to the neutrino emissivity from the other mechanisms
of the transition γγ → νν̄ that were mentioned in
Section 2. In [20], it was found that

Q(mν) � 0.4× 105 erg
cm3 s

( mν

1 eV

)2
(
T

me

)11

. (34)

On the other hand, the cross section derived with
allowance for the nonlocal character of four-fermion
weak interaction [23] can also be substituted into (32).
This yields

Q(NL) � 10
erg

cm3 s

(
T

me

)13

. (35)

It can be seen that, for B � Be, the field-induced
mechanism makes a dominant contribution to the
transition γγ → νν̄ even if the mixing angle is as
small as ζ ∼ 10−5.

(b) High-temperature limit, T � meT � meT � me. In this
case, the substitution of (31) into (32) leads to

Q(B) � 0.4× 1012 erg
cm3s

(
ζ

0.013

)2( B
Be

)2

(36)

×
(
T

me

)3

ln5 T

me
.

For standard weak interaction, the contribution of
the process γγ → νν̄ toQ was calculated in [34] for a
relatively weak magnetic field and high temperatures.

For a numerical estimate, we consider the case
where the explosion of a supernova of volume V ∼
1019 cm3 and temperature T ∼ 35 MeV [41], which
is typical of the supernova core, is accompanied by
the generation of a very strong magnetic field (B ∼
103Be) [3–6]. For the contribution to the neutrino lu-
minosity of such a star from the field-induced process
γγ → νν̄, we then obtain

L ∼ 1045 erg
s

(
ζ

0.013

)2

. (37)

This value is much smaller than a typical neutrino
luminosity of a supernova (1052 erg/s).

As was mentioned above, the amplitude in (19) for
the case of a vector or an axial-vector vertex, Γ3 =
V,A, features no contribution that grows linearly with
increasing field in the strong-field limit eB � k2

⊥, k
2
||.

This means that the amplitude for the process γγ →
νν̄ governed by the standard ννee interaction and the
amplitude for the photon-splitting process γ → γγ
are both independent of the field in this limit. This case
was considered in [13, 14, 42].
P

6. CONCLUSION

We have performed a general analysis of a three-
vertex loop diagram in a strong external field and
have analyzed the reaction γγ → νν̄. We have shown
that different types of effective electron–neutrino in-
teraction lead to different field-strength dependences
of the reaction amplitude. In particular, an external
magnetic field enhances the amplitude of the process
γγ → νν̄ if effective ννee interaction involves a scalar
coupling, which emerges in the SM extension where
left–right symmetry is broken. A general expression
for the amplitude has been derived [Eqs. (23), (24)];
it is valid at all photon energies and has been repre-
sented in a gauge-invariant form. The cross section
for the process under study has been calculated both
at low (ω � me) and at high (ω � me) photon en-
ergies. A quantitative analysis has revealed that the
contribution of this process to changes in the super-
nova energy is rather small. ForB � Be, however, the
contribution to the neutrino emissivity of a magne-
tized star from the transition γγ → νν̄ proceeding via
the mechanism in question may exceed considerably
the contribution of other mechanisms discussed in
the literature.
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Abstract—The possibility of obtaining new information about the spin properties of the nucleon from
observables of the deep-inelastic scattering of neutrinos and antineutrinos on polarized nucleons that is
caused by a weak neutral current is discussed. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The deep-inelastic scattering of neutrinos and an-
tineutrinos on polarized nucleons may serve as a
source of new information about the spin structure of
the nucleon. This is due to the ability of neutrinos to
distinguish, in deep-inelastic-scattering processes,
between quark flavors and between quarks and anti-
quarks, as well as to a greater number of polarization
structure functions involved in such processes than in
deep-inelastic electron–nucleon and muon–nucleon
scattering [1–3].
The procedure that is based on a QCD analysis

of polarization data and which is of paramount im-
portance for solving the nucleon-spin problem was
vigorously brought into use in recent years [4–6]. At
present, a set of data on the polarization structure
function g1 measured for a proton, a neutron, and a
deuteron in experiments with beams of polarized elec-
trons and muons (see [5, 7–10] and references there-
in) is employed in such an analysis. However, the fact
that there are no results of neutrino experiments with
polarized targets imposes limitations on conclusions
that could be drawn from a QCD analysis. Indeed, a
QCD analysis of deep-inelastic lepton scattering on
unpolarized nucleons yields a decomposition of the
structure function into the contributions of valence
quarks, sea quarks of each flavor, and gluons. For this,
use is made of experimental data on the scattering of
charged leptons, neutrinos, and antineutrinos by vari-
ous targets over a wide region of the kinematical vari-
ables x and Q2. Therefore, the presence of neutrino
data is highly desirable for performing a full QCD
analysis of deep-inelastic scattering with allowance
for the polarizations of the particles involved.
In the case where polarizations are involved, the

luminosity of existing neutrino beams requires targets
whose dimensions are about a few meters; there-
fore, they cannot be polarized. As a new method
for achieving high energies and luminosities, muon
colliders were proposed in [11, 12] a few years ago.
1063-7788/03/6602-0302$24.00 c©
The possibility of obtaining highly focused beams of
neutrinos originating frommuon decays is associated
precisely with such colliders. In order to accumulate
required statistics with such neutrino beams, one
needs polarized targets, and it becomes feasible to
manufacture them by means of modern technologies
[13]. It was indicated in [14] that muon colliders have
a high potential for neutrino physics. In particular,
this concerns high-precision measurements of unpo-
larized and polarized structure functions. Such re-
sults would make it possible to obtain an adequate
decomposition of structure functions, including spin-
dependent ones, into the contributions of individual
quark flavors and gluons, and this is precisely a final
result of a QCD data analysis.
In view of future neutrino experiments with po-

larized targets, it is highly desirable even at present
to study theoretically deep-inelastic (anti)neutrino–
nucleon scattering for the case of polarized particles
and, above all, to reveal the potential of such pro-
cesses for obtaining new data on the spin structure of
the nucleon. In recent years, the deep-inelastic scat-
tering of neutrinos in the polarized case was studied
on the basis of the parton model [15–17] or on the
basis of QCD [1, 3, 18, 19].
A few schemes were proposed in [16] for deter-

mining the quark contributions to the nucleon spin
with the aid of observables (asymmetries and cross
sections) of deep-inelastic (anti)neutrino scattering
on polarized targets. For deep-inelastic-scattering
processes induced by a charged weak current, a dif-
ferent method was employed in [17] to derive such
contributions. This method was based on the use of
polarization boson–nucleon asymmetries and, even-
tually, of a different set of observables.
In the present study, this approach is generalized

to deep-inelastic (anti)neutrino scattering on polar-
ized nucleons that is caused by a weak neutral cur-
rent; that is,

ν(ν̄) + N
Z−→ ν(ν̄) + X. (1)
2003 MAIK “Nauka/Interperiodica”
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The ensuing exposition is organized as follows. In
Section 2, the virtual boson–nucleon asymmetries
A1,6 and the polarized structure functions g1,6 are
determined from observables of processes belonging
to the type in (1). For the case of (anti)neutrino–
deuteron scattering, expressions for the contributions
of quark flavors and valence quarks to the nucleon
spin are obtained in Section 3. Section 4 is devoted
to discussing the results of numerical calculations of
the asymmetries A1,6 and of the structure functions
g1,6 and to formulating conclusions.

2. POLARIZATION ASYMMETRIES
AND STRUCTURE FUNCTIONS

The total cross section for the absorption of a
virtual Z boson by a polarized nucleon is given by

σ = kε∗µ(q)εν(q)Wµν , (2)

where k =
√

2πGm2
Z/
√

v2 − q2. The following nota-
tion is also used here: εµ(q) is the polarization vector
of a virtual Z boson with a momentum q = k − k′;
ν = Pq/M ; k (k′) and P are the momenta of, re-
spectively, the initial (final) neutrino and the nucleon
involved;mZ is the Z-boson mass;M is the nucleon
mass; and G is the Fermi constant. The hadronic
tensor Wµv has the same structure as that for re-
actions induced by a charged current (see [17]), the
only difference being that, now, the nucleon structure
function for neutrino scattering is identical to that
for antineutrino scattering because of identity of the
initial and the final lepton in reactions (1).

In the scaling limit (q2, v → ∞, with x =
−q2/2Mν being fixed), in which case the total angu-
lar momenta of the boson–nucleon system are ±1/2
and ±3/2, the cross sections given by (2) become

σ
1/2

3/2

=
k

M

(
F2(x)

2x
− F3(x)

2
± g1(x) ∓ g6(x)

)
, (3)

σ
−1/2

−3/2

=
k

M

(
F2(x)

2x
+

F3(x)
2

± g1(x) ± g6(x)
)

,

where F2,3(x) and g1,6(x) are, respectively, the spin-
averaged structure functions and the polarized nu-
cleon structure functions for processes (1). The vir-
tual polarization asymmetries defined as

A1,6(x) =
(σ1/2 ± σ−1/2) − (σ3/2 ± σ−3/2)
(σ1/2 ± σ−1/2) + (σ3/2 ± σ−3/2)

then assume the form

A1(x) =
2xg1(x)
F2(x)

, (4)
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A6(x) =
2xg6(x)
xF3(x)

. (5)

Asymmetries directly measured in polarization ex-
periments represent various combinations of differen-
tial cross sections for specific orientations of beam-
particle and target-particle spins. For deep-inelastic
ν(ν̄)N scattering, we consider the asymmetries [16]

Aν,ν̄(x, y) =
σ↓↑,↑↑
ν,ν̄ − σ↓↓,↑↓

ν,ν̄

σ↓↑,↑↑
ν,ν̄ + σ↓↓,↑↓

ν,ν̄

,

where σ ≡ d2σ/dxdy stands for the differential cross
sections for processes (1), y = ν/E is a scaling vari-
able, and E is the energy of the primary neutrino or
the primary antineutrino.

These asymmetries can be measured by using, for
example, the method applied in the SMC experiment
at CERN in the case of a longitudinal asymmetry [20].
There, the target consisted of two oppositely polarized
blocks arranged in such a way that one could distin-
guish between events occurring within either block.
In order to implement a single measurement of asym-
metry, two successive measurements are performed
prior to and after a change in polarization in both
blocks. The measured asymmetry is then expressed
in terms of the number of events in each block prior
to and after a change in polarization in them. For
neutrino experiments employing processes of the type
in (1), events that will be recorded in either target
block are naturally associated with the final hadron
system.

In just the same way as for a charged current [17],
the observed polarization asymmetries Aν,ν̄(x, y) for
processes (1) can be expressed in terms ofA1,6(x) as

Aν,ν̄(x, y) =
xy+A6(x)F3(x) ± y−A1(x)F2(x)

y+F2(x) ± y−xF3(x)
,

(6)

where y± = 1 ± y2
1, y1 = 1 − y.

If the structure functions F2,3(x) are assumed to
be known, the quantities A1(x) and A6(x) can be
expressed, with the aid of Eq. (6), in terms of the
measurable asymmetries Aν and Aν̄ in deep-inelastic
ν(ν̄)N scattering that involves Z-boson exchange;
that is,

A1(x) =
1
2

[
xF3

F2(x)
(Aν + Aν̄) +

y+

y−
(Aν −Aν̄)

]
,

(7)

A6(x) =
1
2

[
F2(x)
xF3(x)

(Aν + Aν̄) +
y−
y+

(Aν −Aν̄)
]
.
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With the aid of Eqs. (4) and (5), we can further
obtain polarized nucleon structure functions

g1(x) =
F2(x)A1(x)

2x
, (8)

g6(x) =
xF3(x)A6(x)

2x
.

It should be emphasized that data of neutrino
experiments employing reactions of the type in (1)
alone are sufficient for extracting polarized nucleon
structure functions from observables. Moreover, the
proposed scheme can be implemented for arbitrary
nucleon-containing targets. Owing to these two fea-
tures, processes of the type in (1) compare favorably
with reactions induced by a charged current [17]. For
the latter, g1 and g6 can be determined only for the
deuteron and only in the presence of data on the
asymmetry Ad

1, which is measured in experiments
with beams of polarized electrons and muons.

3. DETERMINATION OF QUARK
CONTRIBUTIONS TO THE NUCLEON SPIN

For observables characterizing processes of the
type in (1) and carrying information about the spin
properties of the nucleon, we will take here the first
moments of the structure functions g1(x) and g6(x);
that is,

Γ1,6 =

1∫

0

g1,6(x)dx. (9)

The expressions obtained for the structure functions
g1,6(x) on the basis of the quark-parton model are

g1(x) =
1
2

∑

q

(g2
V + g2

A)q[∆q(x) + ∆q̄(x)], (10)

g6(x) =
∑

q

(gV gA)q[∆q(x) − ∆q̄(x)],

where (∆q̄(x))∆q(x) is the distribution of polarized
(anti)quarks q = u, d, s; (gV )u = 1/2− (4/3) sin2 θW;
(gA)u = 1/2; (gV )d,s = −1/2 + (2/3) sin2 θW; and
(gA)d,s = −1/2.
Further, we consider deep-inelastic neutrino scat-

tering on polarized deuterons. Such processes are
of particular interest because neutrino experiments
with unpolarized targets are performed for the case
of isoscalar targets—that is, targets containing equal
numbers of protons and neutrons. Data on the struc-
ture functions F2,3(x) measured in experiments em-
ploying unpolarized deuteron targets are required for
determining the virtual asymmetries A1,6(x) and, ac-
cordingly, the polarized structure functions g1,6(x)
[see Eqs. (7), (8)].
P

The polarized deuteron structure functions can be
represented as [5]

gd1,6(x) =
gp1,6(x) + gn1,6(x)

2

(
1 − 3

2
ωD

)
, (11)

where ωD ∼= 0.05 is the probability of the D-wave
state in the deuteron wave function. With the aid of
Eqs. (9)–(11), the deuteron moments Γ1,6 can then
be represented in the form

Γd1 =
1
4
[(g2

V + g2
A)u(∆u + ∆ū + ∆d + ∆d̄) (12)

+ (g2
V + g2

A)d(∆u + ∆ū + ∆d

+ ∆d̄ + 2(∆s + ∆s̄))]
(

1 − 3
2
ωD

)
,

Γd6 =
b

2
(∆uV + ∆dV )

(
1 − 3

2
ωD

)
. (13)

In expressions (12) and (13),

∆q(∆q̄) =

1∫

0

∆q(x)(∆q̄(x))dx

is the contribution of the quark (antiquark) q (q̄) to
the nucleon spin, b =

∑
q=u,d (gV gA)q , and ∆qV =

∆q − ∆q̄ is the contribution of valence quarks to the
nucleon spin.
In order to isolate, in (12), the contribution of

each quark flavor, we must have at least two more
measurable quantities at our disposal. For these, it
is convenient to take the quantities a3 and a8 [2],
which are defined in terms of the hyperon-beta-decay
constants F andD as

a3 = F + D = (∆u + ∆ū) − (∆d + ∆d̄),

a8 =
1√
3
(3F −D) (14)

=
1√
3
[∆u + ∆ū + ∆d + ∆d̄− 2(∆s + ∆s̄)],

F = 0.477 ± 0.012, D = 0.756 ± 0.011.

By simultaneously solving Eqs. (12) and (14), we
obtain the contributions of individual quark flavors to
the nucleon spin in the form

∆u + ∆ū(∆d + ∆d̄) (15)

=
1
2




√

3a8 ± a3 +
1
a




4Γd1

1 − 3
2
ωD

−
√

3a8c







 ,

∆s + ∆s̄ =
1
a




2Γd1

1 − 3
2
ωD

−
√

3
2

a8c



 ,
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Fig. 1.AsymmetriesA1(x) andA6(x) versus the variable
x (Q2

0 = 4 GeV2; the parton distributions were borrowed
from [21]).

where the plus (minus) sign in the parenthetical ex-
pression refers to u (d),

a = c + (g2
V + g2

A)d, c =
∑

q=u,d

(g2
V + g2

A)q.

From relation (13), we immediately obtain the total
valence-quark contribution∆qV ≡ ∆uV + ∆dV ,

∆qV = 2Γd6/b
(

1 − 3
2
ωD

)
. (16)

It follows that, knowing the moments Γd1 and Γd6
measured in neutrino processes of the type in (1), one
can determine the quark contributions (15) and (16)
to the nucleon spin.

4. NUMERICAL CALCULATIONS
OF POLARIZATION OBSERVABLES
AND STRUCTURE FUNCTIONS;

CONCLUSIONS

In order to get an idea of the scale of the asym-
metries A1,6(x) and the polarized structure func-
tions g1,6(x) and of their behavior, these quanti-
ties were calculated numerically for deep-inelastic
(anti)neutrino scattering on a deuteron target.
From Figs. 1 and 2, it can be seen that the asym-

metries A1(x) and A6(x), as well as the polarized
structure functions g1(x) and g6(x), show substan-
tially different types of behavior in the region x ≤ 0.1.
A considerable polarization of the quark sea in the
low-x region may be a reason behind these distinc-
tions, since g6 and, hence, A6 depend only on the
distributions of valence quarks. The contribution of
quark-sea polarization cancels almost completely the
polarization of valence quarks in A1(x) (Fig. 1) for
x ≤ 0.01; therefore, this asymmetry is close to zero.
It follows that measurement of the asymmetries A1,6

and the structure functions g1,6 in experiments em-
ploying deep-inelastic scattering on polarized nucle-
ons in processes of the type in (1), which are induced
by a weak neutral current, may also be of use in
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
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Fig. 2. Polarization structure functions g1(x) and g6(x)
versus the variable x (Q2

0 = 4 GeV2; the parton distribu-
tions were borrowed from [21]).

solving the fundamental problem of strange-quark
polarization.
Thus, a method has been proposed in the present

study for extracting, with the aid of the virtual asym-
metries A1,6(x), the polarization structure functions
g1(x) and g6(x) from experimental data on processes
of the type in (1) on arbitrary polarized targets. For
the example of deep-inelastic neutrino scattering on
a deuteron, a scheme has been developed for de-
termining, with the aid of the first moments Γ1,6 of
the polarized structure functions, the contributions of
individual quark flavors and valence quarks to the nu-
cleon spin. Numerical estimates have been obtained
forA1,6(x) and g1,6(x). An analysis of these estimates
has revealed that the polarization of the quark sea
has a pronounced effect on the behavior of A1(x) and
g1(x) in the region x ≤ 0.1.
Thus, an experimental investigation of the asym-

metries A1,6 and of the polarized structure functions
g1,6 in reactions belonging to the type in (1) may
furnish new information about the polarization of
strange quarks and of the quark sea, and this is of
importance for establishing the nature of the nucleon
spin.
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ELEMENTARY PARTICLES AND FIELDS
Theory
Leading-Particle Effects in the Spectra of Λccc and Λ̄ccc Produced
in Σ−−−−−−−−−ppp, pppppp, and π−−−−−−−−−ppp Interactions*
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Abstract—The spectra of leading and nonleading charmed baryons (Λc and Λ̄c) and the asymmetries
between these spectra measured in Σ−A, π−A, and pA collisions at pL = 600 GeV/c in the E781 ex-
periment are simultaneously described within the framework of the Quark–Gluon String Model (QGSM).
It is shown that the charmed baryon spectra can be fitted by QGSM curves calculated with the parameter
of diquark fragmentation, aΛc

f = 0.006. It was found in this experiment that the asymmetry between the
spectra ofΛc and Λ̄c in π−A collisions is of nonzero value. It might be described in our model only assuming
that the string junction is transferred from target proton into the kinematical region of pion projectile
fragmentation. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The data of the E781 experiment [1] (FNAL) on
the spectra of charmed baryons and the asymmetries
between Λc and Λ̄c in Σ−A, π−A, and pA interac-
tions at pL = 600 GeV/c have recently amplified the
results of the WA89 experiment [2] (CERN) at pL =
340 GeV/c and the E791 experiment [3] (FNAL)
at pL = 500 GeV/c. The data of these experiments
on charmed meson spectra and asymmetries have
been already considered in the recent paper [4] from
the point of view of the Quark–Gluon String Model
(QGSM) in order to understand the influence of the
quark composition of beam particles on the shape of
the production spectra of heavy flavored particles.

The difference in x spectra (x = xF = 2p‖/
√
s) of

leading and nonleading particles has been explained
successfully by several theoretical models as an effect
of interplay between the quark content of the projec-
tile and of the produced hadron.

Most advanced QCD models [5, 6] have to take
into account the so-called intrinsic charm (IC) in or-
der to describe the high value of asymmetry between
the x spectra of charmed particles and antiparticles in
the fragmentation region, x→ 1. In QGSM [7] and
othermodels [8] with elaborated concepts of fragmen-
tation functions (FFs), there is no need to make such
an assumption, because the specifically written FFs
give the asymmetries rising with x. Some amount of

∗This article was submitted by the author in English.
**e-mail: piskoun@sci.lebedev.ru
1063-7788/03/6602-0307$24.00 c©
IC can only suppress the asymmetry, as was shown in
previous calculations [4, 9].
It should be noted that there is a large difference

between leading effects in charmed meson spectra
and those effects in charmed baryon spectra. Leading
Λc baryons in pp interaction might be produced by the
leading fragmentation of proton ud diquarks bringing
a large fraction of proton momentum that gives an
important enhancement ofΛc spectra over the spectra
of Λ̄c. We suggest here considering the spectra in the
full x region, −1 < x < 1, so that the left side of plots
always corresponds to target proton fragmentation.
For example, in the case of hyperon–proton interac-
tions, the Λc spectra will have two different wings: the
left one at negative x shows the high asymmetry to-
wards Λ̄c spectra due to the leading fragmentation of
target protons, and the other one in the positive-x re-
gion should have a slightly lower asymmetry because
the fragmentation of hyperon diquarks is supposed to
have a less strongly leading character [10] than proton
ud-diquark fragmentation.

The asymmetry between Λc and Λ̄c spectra in
pion–proton interaction should be equal to zero in the
region of pion fragmentation because pions can have
the valent quark (antiquark) in common with Λc as
well as with Λ̄c, so both spectra will provide a leading
character and be equal.

2. VALENCE QUARK DISTRIBUTIONS
IN QGSM

The inclusive production cross section of hadrons
of typeH is written as a sum over n-Pomeron cylinder
2003 MAIK “Nauka/Interperiodica”
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diagrams:

f1 = x
dσH

dx
(s, x) =

∫
E
d3σH

d3p
d2p⊥ (1)

=
∞∑

n=0

σn(s)ϕHn (s, x).

Here, the function ϕHn (s, x) is a particle distribu-
tion in the configuration of n-cut cylinders and σn is
the probability of this process. The cross sections σn
depend on the parameter of the supercritical Pomeron
∆P , which is equal to 0.12 in our model [7].
The distribution functions of Λc in case of π−p

collisions are given by

ϕΛc
n (s, x) (2)

= aΛ̄c
0 [F (n)

q (x+)F (n)
qq (x−) + F (n)

qq (x+)F (n)
q (x−)

+ 2(n− 1)F (n)
qsea (x+)F (n)

q̄sea (x−)] + aΛc
f F

(n)
1qq (x−),

where aΛ̄c
0 is the central (vacuum) density param-

eter of charmed baryon production and aΛc
f is the

fragmentation parameter of proton target diquark. In
the case of Λc production in proton fragmentation,
the diquark fragmentation plays an important role;
this diquark part of the distribution should be written
separately. Thus, the distribution for pp collisions will
include two diquark parts, for positive x as well as for
negative x:

ϕΛc
n (s, x) = aΛc

f F
(n)
1qq (x+) + aΛc

f F
(n)
1qq (x−) (3)

+ aΛ̄c
0 [F (n)

q (x+)F (n)
0qq (x−) + F

(n)
0qq (x+)F (n)

q (x−)

+ 2(n − 1)F (n)
qsea (x+)F (n)

q̄sea (x−)],

where F (n)
1qq (x+) is the distribution at the leading frag-

mentation of diquarks, while F (n)
0qq (x+) is the ordinary

part of fragmentation written with the central density
parameter aΛ̄c

0 .

The Λc distribution functions for Σ−p collisions
also include additional diquark parts:

ϕΛc
n (s, x) = aΛc

f F
(n)
1qq (x+) + aΛc

f F
(n)
1qq (x−) (4)

+ aΛ̄c
0 [F (n)

q (x+)F (n)
qq (x−) + F (n)

qq (x+)F (n)
q (x−)

+ 2(n − 1)F (n)
qsea (x+)F (n)

q̄sea (x−)],

where aΛ̄c
0 and aΛc

f are the same density parameters
as in Eqs. (2) and (3).
The particle distribution on each side of the

chain can be built on account of the quark content

of beam particles (x+ = (x+
√
x2 + x2

⊥)/2, x⊥ =
P

2
√
m2

Λc
+ p2

⊥/
√
s) and of target particles (x− = (x−

√
x2 + x2

⊥)/2). In the case ofΣ−p collisions, they are

F (n)
q (x+) =

1
3
F (n)
s (x+) +

2
3
F

(n)
d (x+), (5)

F (n)
qq (x+) =

1
3
F

(n)
dd (x+) +

2
3
F

(n)
ds (x+),

F (n)
q (x−) =

1
3
F

(n)
d (x−) +

2
3
F (n)
u (x−),

F (n)
qq (x−) =

1
3
F (n)
uu (x−) +

2
3
F

(n)
ud (x−).

Each Fi(x±) (i = s, u, d, ud, dd, ds, . . . ) is con-
structed as the convolution

Fi(x±) =

1∫

x±

f iΣ−(x1)
x±
x1

DH
i

(
x±
x1

)
dx1, (6)

where f i(x1) is a structure function of the ith quark
(diquark or antiquark) which has a fraction of energy
x1 in the interacting hadron and DH

i (z) is a FF of
this quark into the considered type of produced had-
ronsH .
The structure functions of quarks in interacting

proton, hyperon, or pion beams have already been
described in previous papers [11–13]. In the case of
a hyperon beam, they depend on the parameter of the
Regge trajectory of ϕ mesons (ss̄) because of an s
quark contained in Σ− (αϕ(0) = 0).

3. DIQUARK FRAGMENTATION FUNCTION
AND STRING JUNCTION TRANSFER

The FFs of diquark and quark chains into charmed
baryons or antibaryons are based on the rules formu-
lated in [14].
The ud- and dd-diquark FF includes the con-

stant aΛc
f , which could be interpreted as a "leading"

parameter, but the value of aΛc
f is fixed due to the

baryon number sum rule and should be approximately
equal to the value taken for Λc spectra in our previous
calculations [11]:

DΛc
dd (z) =

aΛc
f

aΛ̄c
0 z

z2αR(0)−2αN (0) (7)

× (1 − z)−αψ(0)+λ+2(1−αR(0)),

where the term z2αR(0)−2αN (0) means the probability
for an initial diquark to have z close to 0, and the
intercepts of Regge trajectories, αR(0), αN (0), and
αψ(0), are taken to be the same values as in [11],
0.5, −0.5, and −2.0, respectively. The λ parameter is
a remnant of the transverse momentum dependence;
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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it is equal to 0.5 here (for more information, see the
early publications [7, 11]).
It is important here to keep in mind the possi-

bility of creating the Λc baryon only on the basis of
the string junction taken from the interacting pro-
ton or Σ−. The string junction brings the positive
baryon number in baryons and the negative one in
antibaryons. In the proton and hyperon reactions, we
have diquarks, so only the positive baryon number
should be transferred. The FF of the string junction
that can be transferred to region z > 0 has a similar
form as the diquark FF written above [Eq. (7)]:

DΛc
SJ(z) =

aΛc
f

aΛ̄c
0 z

z1−αSJ(0) (8)

×(1 − z)−αψ(0)+λ+2(1−αR(0)),

where αSJ(0) is the intercept of the string-junction
Regge trajectory. We do not discuss here the two pos-
sible values of the string junction intercept, 0.5 [15]
and 1.0 [16], just taking it equal to 0.5. This choice of
the intercept is a reason for the target proton string
junction going with a higher probability into the re-
gion of opposite z than the diquark, as is seen from
the comparison of the z → 0 asymptotic behavior in
the last formulas. It will become significant when we
study the baryon spectra in pion interactions. The full
list of the FFs of diquarks and of the string junction
into charmed baryons is presented in the Appendix.
The main difference between the concepts of

asymmetry for D-meson production [4] and for Λc
production is the difference between the forms of
leading FFs. The parameter a1, which was taken
for the leading fragmentation of valence quark into
D mesons (see [4]), is the ratio of the leading-D-
meson density in the fragmentation region, z → 1,
to the density in the central region, z → 0. The
aΛc
f parameter is an absolute fraction of the diquark
energy that is brought by the produced Λc. But both
parameters actually reflect the same idea of the high
density of leading hadrons near the fragmentation
region (z → 1) of those quarks (diquarks) of beam
particles which can contribute to this leading hadron.
This phenomenon was also named a “beam-drag”
effect in some publications.

4. SEA-QUARK FRAGMENTATION
FUNCTIONS

The main feature of the QGSM is the multiple-
Pomeron exchanges [7] that are taken into account
in the calculations of the spectra of multiparticle pro-
duction [Eq. (1)]. In this case, the 2(n − 1) quark–
antiquark chains are connected to paired sea quark–
antiquarks of the beam and target particles.
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Fig. 1. (a) Asymmetry between Λc and Λ̄c spectra ob-
tained for πA (x > 0) and for pA (x < 0) collisions in
the E781 experiment (black circles) [1] and in the E791
experiment (empty circles) [3]; the QGSM calculation
with the string junction transfer (solid curve); (b) The
distributions of Λc (empty triangles and solid curve) and
Λ̄c (black triangles and dashed curve) in E781 for these
reactions and QGSM calculations.

The structure functions of sea-quark pairs can be
written in the same way as the valence quark distri-
butions. The structure function of d quark in hyperon,
for example, is the following:

fdΣ−(x1) = C
(n)

d,d̄
x
−αR(0)
1 (9)

× (1−x1)αR(0)−2αN (0)+(αR(0)−αϕ(0))+n−1+2(1−αR(0)).

Here, sea quarks and antiquarks have an addi-
tional power term 2(1 − αR(0)) corresponding to the
quark distribution of the two-Pomeron diagram that
includes one sea quark pair.
The FFs of light u, d sea quark fragmentation

into Λc as well as ū, d̄ quark into Λ̄c are easily built
from valence quark FFs. They are also written in the
Appendix.

5. SPECTRA AND ASYMMETRY OF Λc/Λ̄c
IN π−p COLLISIONS

The asymmetry between the spectra of Λc and
Λ̄c measured in π−A and pA collisions at pL =
600 GeV/c [1] is shown in Fig. 1a. The nonzero
asymmetry in the region of pion fragmentation is
3
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Fig. 2. (a) Asymmetry between Λc and Λ̄c spectra ob-
tained for Σ−A (x > 0) and for pA (x < 0) collisions in
the E781 experiment (black circles) [1] and in the WA89
experiment (empty circles) [2]; the QGSM calculations
(solid curve); (b) The spectra of Λc (empty triangles and
solid curve) and Λ̄c (black triangles and dashed curve)
in E781 for these interactions and corresponding QGSM
calculations.

described on the basis of baryon string junction
transfer from the proton fragmentation region (see
Section 3).

The asymmetry is defined as

A(x) =
dNΛc/dx− dN Λ̄c/dx

dNΛc/dx+ dN Λ̄c/dx
. (10)

Here, dNΛc/dx and dN Λ̄c/dx are the event distribu-
tions measured in the experiment [1].

The invariant distributions xdN/dx of charmed
baryons and antibaryons obtained in pion interactions
in the E781 experiment are shown in Fig. 1b with
the QGSM curves calculated for pion fragmentation
(the side of positive x) and for proton fragmentation
(the side of negative x). The ratio of the values of
xdN/dx(p → Λc, Λ̄c) and xdN/dx(π− → Λc, Λ̄c) de-
pends on the ratio of the cross sections of these two
reactions. The absolute values of the cross sections
are not measured in the present experiment, so the left
side of the experimental plot in Fig. 1b can be shifted
toward the right side by an arbitrary factor, and we did
it here in order to make a better description.
P

6. THE SPECTRA AND ASYMMETRY
OF Λc/Λ̄c IN Σ−p COLLISIONS

The asymmetry between the spectra of Λc and
Λ̄c measured in Σ−A and pA collisions at pL =
600 GeV/c is shown in Fig. 2a. Asymmetry is high
on both sides of the graph because diquark fragmen-
tation takes place for the beam and target particles.

The invariant distributions xdN/dx of charmed
baryons and antibaryons obtained in hyperon inter-
actions in the E781 experiment are shown in Fig. 2b
with the QGSM curves calculated as hyperon frag-
mentation (the side of positive x) as well as for pro-
ton fragmentation (the side of negative x). The ra-
tio between the values of xdN/dx(p → Λc, Λ̄c) and
xdN/dx(Σ− → Λc, Λ̄c) depends on the ratio of the
cross sections of these two reactions. The left side of
the experimental plot is shifted toward the right side
by an arbitrary factor to produce a better description,
as we did in the case of pion reaction.

The complete calculations carried out with the
FFs written for Λc and Λ̄c production give a good
description of data with the value of parameter aΛc

f =
0.006.

7. CONCLUSIONS

In this paper, we have examined the data on
charmed baryon production in proton, pion, and
hyperon beam interactions with a fixed target at pL =
600 GeV/c in the E781 experiment. The following
new ideas about Λc and Λ̄c spectra and asymmetries
should be mentioned here as the outcome of the
QGSM study:

(i) The features of baryon charge transfer by the
string junction of the target proton are disclosed in
the nonzero baryon/antibaryon asymmetry in the pion
beam fragmentation region, although we did not in-
tend here to distinguish between two values ofαSJ(0).

(ii) Λc and Λ̄c spectra in the proton and hyperon
beam interactions can be described with the same
leading fragmentation parameter, aΛc

f = 0.006.

(iii) The asymmetry is not a proper quantity to
study the behavior of baryon spectra in the region of
x close to 1; although the baryon/antibaryon asym-
metry for the πp reaction shows good agreement with
QGSM curves, the spectra of charmed baryons re-
quire a more detailed description in the pion fragmen-
tation region.

(iv) There is no need to involve the intrinsic charm
in the calculations of charmed baryon spectra at the
up-to-date level of experimental data.
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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APPENDIX

The concept of quark chain FFs is described in
[7, 14]. The production of Λc as well as Λ̄c (DΛ̄c

0ud(z),
etc.) takes place in the central region (z = 0) of the
quark–antiquark chain with constant density param-
eter aΛ̄c

0 = 4.0 × 10−4. The FFs of projectile diquarks
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
into Λc (DΛc
1ud(z) and the similar) require the spe-

cific parameter aΛc
f = 0.006. In departure from these

statements, the full set of FFs that is necessary for
calculating the spectra of Λc and Λ̄c is written as
follows:

DΛc
u (z) = DΛc

d (z) (A.1)

=
aΛ̄c

0

z
(1 − z)αR(0)−2αN (0)+λ+αR(0)−αψ(0),

DΛc
ū (z) = DΛ̄c

u (z)

=
aΛ̄c

0

z
(1 − z)αR(0)−2αN (0)+λ+αR(0)−αψ(0)+2(1−αR(0)),
DΛc
s (z) =

aΛ̄c
0

z
(1 − z)αR(0)−2αN (0)+λ+αR(0)−αψ(0)+2(1−αR(0))+αR(0)−αφ(0),
DΛc
1ud(z) =

aΛc
f

aΛ̄c
0 z

z1+αR(0)−2αN (0)

× (1 − z)−αψ(0)+λ,

DΛc
1dd(z) =

aΛc
f

aΛ̄c
0 z

z2αR(0)−2αN (0)

× (1 − z)−αψ(0)+λ+2(1−αR(0)),

DΛc
1ds(z) =

aΛc
f

2aΛ̄c
0 z

z−2αN (0)+3αR(0)−αφ(0)

× (1 − z)−αψ(0)+λ+2(1−αR(0))+αR(0)−αφ(0),

DΛc
SJ(z) =

aΛc
f

aΛ̄c
0 z

z1−αSJ(0)

× (1 − z)−αψ(0)+λ+2(1−αR(0)),
3

DΛc
0uu(z) = DΛc

0dd(z)

=
aΛ̄c

0

z
(1 − z)−αψ(0)+λ+4(1−αN (0)),

DΛc
0ds(z) =

aΛ̄c
0

z

× (1 − z)−αψ(0)+λ+4(1−αN (0))+αR(0)−αφ(0);

DΛ̄c
d (z) = DΛ̄c

u (z) =
aΛ̄c

0

z
(A.2)

× (1 − z)αR(0)−2αN (0)+αR(0)−αψ(0)+λ+2(1−αN (0)),

DΛ̄c
ū (z) = DΛc

u (z),

DΛ̄c
s (z) = DΛc

s (z),
DΛ̄c
0ud(z) = DΛ̄c

0dd(z) =
aΛ̄c

0

z
(1 − z)αR(0)−2αN (0)+λ+2(1−αN (0))+αR(0)−αψ(0),

DΛ̄c
0ds(z) =

aΛ̄c
0

z
(1 − z)αR(0)−2αN (0)+λ+2(1−αN (0))+αR(0)−αψ(0)+αR(0)−αφ(0).
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Abstract—The emergence of B + π virtual subsystems, which manifest themselves in quasielastic-
knockout processes of the N(e, e′π)B type, where B is the final-state baryon in various excited states,
is considered within the microscopic quark model of a 3P0 localized scalar fluctuation of the QCD vacuum.
The relevant technique for taking into account the rearrangement of quark degrees of freedom is demon-
strated. The model provides a good description of knownmomentum distributions forB = N channels. The
momentum distributions are predicted forN → π+B channels, whereB = ∆,N∗(1535), orN∗∗(1440). It
would be of interest to study these channels in exclusive coincidence experiments at accelerators producing
electron beams of energy ranging between 5 and 10 GeV. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Presently, questions concerning hadronic degrees
of freedom in nucleons are being vigorously discussed
in the literature (in this connection, attention is given
primarily to the properties of various nucleon-decay
channels of the typeN → B +м, whereB is a baryon
and м is a meson). These degrees of freedom play an
important role in the formation of the nucleon size [1]
and the nucleon magnetic moment [2]; in addition,
they take an active part in deep-inelastic lepton
scattering on nucleons [3], pion-photoproduction
reactions [4], and processes involving quasielastic
pion knockout from a nucleon [5–7]. According to the
theoretical estimates presented in [8], which are based
on experimental data of the types indicated above, the
contribution of nonnucleon components in the nu-
cleonmay be as great as 40%. Naturally, much atten-
tion is given to a microscopic quark description of the
hadronic degrees of freedom being discussed [8–10].

In the present study, the model of a localized 3P0

scalar quark–antiquark fluctuation [9] is used to de-
scribe the meson cloud arising around the nucleon
owing to the polarization of the QCD vacuum by
color quark charges. In principle, this model can form
a basis for a unified description of a wide variety of
meson–baryon components in the nucleon. The pro-
cess of quasielastic meson knockout provides a highly
efficient means for studying the microscopic quark
structure of the nucleon and of its meson cloud [5–7].
By quasielastic meson knockout, we imply exclusive
reactions of the type p+ e → B + π + e′ that proceed
via a binary collision of the electron e with the meson
1063-7788/03/6602-0313$24.00 c©
м in the virtual-proton-decay channel p → B + м,
the meson м being rearranged into a pion upon an
electron impact accompanied by a high momentum
transfer to this meson. This process, recorded with
the aid of a coincidence scheme, manifests itself un-
der kinematical conditions close to those of the free-
scattering process м + e → π + e′ in the case where
themomentum of the spectator baryonB ismuch less
than the momenta of the fast final particles π and e
and where, in addition, the final-pion energy is much
greater than the binding energy of the meson м in
the channel p → B + м. Such kinematical conditions
are realized if the square of the virtual-photon mass,
Q2, satisfies the conditionQ2 ≥ 2 (GeV/c)2 [5–7], in
which case a description in the laboratory frame is
essentially dominated by two simple pole diagrams
in Figs. 1a and 1b. This simple mechanism makes
it possible to single out the cross section for free
electron scattering on a meson as an individual factor
and to extract, from experimental data in the most

direct way, the momentum distributions
∣∣ΨBм

p (k2)
∣∣2

of mesons м in the channel p → B + м, including the
corresponding spectroscopic factor (probability) SBм

p

as a normalization of the momentum distributions
[6]. It should be noted, however, that the square of
the virtual-photon mass, Q2, cannot be overly large
in our theory: for Q2 > 5–10 (GeV/c)2, the knock-
out process must be considered on the basis of per-
turbative QCD and the relevant diagram technique
without recourse to concepts of intermediate-energy
physics, such as quasielastic meson knockout and the
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. Pole diagrams representing pion production on a
nucleon.

momentum distribution of mesons in various chan-
nels [11].

Owing to the fact that, under specific kinematical
conditions, the cross section for longitudinal (trans-
verse) polarization receives a dominant contribution
from virtual-photon absorption by a virtual pion (vir-
tual rho meson), γ∗L + π → π (γ∗T + ρ → π), the mo-
mentum distributions of a pion and a rho meson in
the nucleon could be reconstructed on the basis of
the experimental cross sections for, respectively, lon-
gitudinal and transverse polarization [for rho mesons,
this was done only for soft momenta (k2 < m2

ρ)] [5,
6]. Unfortunately, there are only a few relevant exper-
iments that studied pion electroproduction [12] and
which produced data under the kinematical condi-
tions of quasielastic knockout. However, such inves-
tigations can be developed further, for example, at
the Thomas Jefferson Laboratory. Namely, the afore-
mentioned problem of thoroughly testing theoretical
models of QCD-vacuum polarization, which is re-
sponsible for the emergence of the meson cloud of
the nucleon, can be solved by combining experimental
results on quasielastic meson knockout at electron-
beam energies in the range 5–10 GeV for a few
different channels of the B + м type (processes like
p+ e → Λ +K + e′ and Σ +K + e′ being included).

In the present article, devoted to developing, at the
microscopic quark level, the investigations presented
in [6, 7], we consider the question of what predictions
for the momentum distributions of pions in the chan-
nels p → N + π, p → ∆ + π, p → N∗(3/2−, 1/2−) +
π, and p → N∗∗(1/2+,Roper) + π one can make on
the basis of themodel of a 3P0 scalar quark–antiquark
fluctuation [9]. In a similar way, one can calculate
the family of momentum distributions in rho-meson
knockout with the nondiagonal γ∗T + ρ → π ampli-
tude, the momentum distributions of kaons in chan-
nels involving final Λ and Σ, and other similar quan-
tities.
P
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Fig. 2.Quark pattern of pion production.

2. DESCRIPTION OF THE FORMALISM
In the theory of the nucleus, methods for study-

ing few-particle subsystems in multiparticle systems
have been well developed for cases where, for exam-
ple, in discussing the problem of quasielastic alpha-
particle knockout from a nucleus [13], one has to deal
with virtual-decay channels of the type Ai → (A−
4)f + αn, where αn is an internally excited alpha-
particle cluster (the impact of a fast projectile induces
the αn → α0 transition). Apart from a constant fac-
tor, the wave function describing the relative motion
of the alpha-particle cluster αn and the final nucleus
(A− 4)f can be defined as [13]

Ψfαn
i (R) = c 〈(A− 4)fαn|Ai〉 (1)

(where the numbers of nucleons in the alpha particles
are fixed, integration is performed with respect to the
intrinsic variables of the subsystems involved, and R
is the relative coordinate) and can be calculated on the
basis of the shell model by combining the technique
of multiparticle shell fractional-parentage coeffi-
cients with the technique that employs coefficients
corresponding to the Talmi–Moshinsky–Smirnov
transformation from single-particle to cluster Jacobi
coordinates for oscillator wave functions [14]. The
observed momentum distribution of knock-on alpha
particles (of high energy) in the real channel Ai →
(A− 4)f + α0 is the square of the sum of the Fourier

transforms Ψfαn
i (q) of the wave functions taken

with the corresponding weights for different n [13].
These momentum distributions are sharply different
for different final states f .

By and large, the physical content of the problem
being considered corresponds to the same scheme:
the (1 2 3 4 4̄) quark system fragments into the (1 2 4)
and the (3 4̄) subsystem (Fig. 2), which can be formed
in various final states, this information being of great
value. Of course, the formalism used here is differ-
ent from that in the theory of the nucleus, although
there are some common ingredients—these include
the shell structure of 3q nucleonwave functions (non-
relativistic model), fractional-parentage coefficients,
and the transformation from one set of Jacobi coor-
dinates to another. The redistribution of quarks be-
tween the (1 2 3) and the (4 4̄) subsystem is necessary
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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for the spin-1 scalar 3P0 quark–antiquark fluctuation
(which is considered below) of the QCD vacuum to
be compatible with the formation of a spinless pion in
the field of a baryon B.

In the momentum representation, the above fluc-
tuation is described by the creation operator T [9],
which has the obvious form

T = −v
∑

α,β̄

dpqdpq̄δ(pq + pq̄)

× Cαβ̄Fαβ̄Z(pq,pq̄)
∑

m

(1m1 −m|00)Xm
αβ̄ (2)

× Y −m
1 (pq − pq̄)b+α (pq)d+

β̄
(pq),

where α = {sα, fα, cα}, (β̄ = {sβ̄, fβ̄, cβ̄}) are the
projections of the quark spin, flavor, and color; Cαβ̄
and Fαβ̄ are the singlet wave functions for color and
flavor, respectively; Xm

αβ̄
is the spin function for the

triplet state; Y −m
1 (pq − pq̄) is a spherical harmonic;

and b+α and d+
β̄

are, respectively, the quark and the
antiquark creation operator. The phenomenological
constant v specifies the degree of polarizability of
the QCD vacuum, its value being fixed according
to the well-known pion–nucleon coupling constant
gπNN . The function Z(pq,pq̄), which characterizes
the dimension and shape of the fluctuation being
considered, is usually set to unity since it is assumed
that the phenomenological nucleon-radius parameter
b (see below) also effectively takes into account the
degree of localization of the fluctuation. Here, we
do not go beyond this simplification either, but we
hope that the appearance of experimental data on
quasielastic meson knockout in various channels
of the N → B + м type would make it possible to
determine this function in the future.

By analogy with expression (1), the amplitude for
the transitionN → B + πλ (λ = 0,±1) is defined as

J(N → B + πλ) = 〈Bπλ|T |N〉, (3)
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
where the quantities T |N〉, B, and πλ characterize,
respectively, the (1 2 3 4 4̄) quark system, the (1 2 4̄)
subsystem, and the (3 4̄) subsystem (see Fig. 2).

In the Appendix, it is shown that expression (3)
can be represented as

J(N → B + πλ) = 〈B|3Hλ|N〉, (4)

where the factor of 3 reflects the identity of quarks and
the operatorHλ has the form

Hλ(ρ′
2,ρ2) = vei

2
3
k·ρ′

2τ
(3)
−λ Ô(ρ′

2,ρ2)σ(3) (5)

×
[
επ

2mq

(
2
i
∇ρ2 +

2
3
k
)

+
(

1 +
επ

6mq

)
k
]
,

the nonlocal kernel Ô(ρ′
2,ρ2) of this operator be-

ing proportional to the wave function for the pion
as a quark–antiquark state. For the pion wave
function chosen in the Gaussian form Ψπ(ρ2) ∼
exp(−ρ2/4b2π), the kernel is given by

Ô(ρ′
2,ρ2) = exp

(
i
1
2
k · (ρ′

2 − ρ2)
)

(6)

× 1
(4πb2π)3/2

exp
(
− 1

4b2π
(ρ′

2 − ρ2)2
)
,

where ρ2 = (r1 + r2)/2 − r3; ρ′
2 = (r1 + r2)/2 − r4;

ri are the coordinates of the ith quark; k is the mo-
mentum of a virtual meson; επ =

√
k2 +m2

π is its
relativistic energy; σ(3) and τ (3) are, respectively,
the spin and the isospin Pauli matrix for the third
quark; λ = 0,±1 are the spherical components of the
vector τ (3) that correspond to the production of the
pion πλ; mq = 313 MeV is the constituent quark
mass; and bπ is the pion radius.

In the ket and bra vectors, there appear the baryon
wave functions, which have the form [15]
|N〉 =
∣∣s3[3]xL = 0

〉
TISM

∣∣[13]C([21]S ◦ [21]T )[3]ST : [13]CST
〉
, (7)

|N∗(1535)〉 =
∣∣s2p[21]xL = 1

〉
TISM

∣∣[13]C([21]S ◦ [21]T )[21]ST : [21]CST
〉J=1

[13]xCST
,

|N∗∗(1440)〉 =
∣∣sp2[3]xL = 0

〉
TISM

∣∣[13]C([21]S ◦ [21]T )[3]ST : [13]CST
〉
,

|∆〉 =
∣∣s3[3]xL = 0

〉
TISM

∣∣[13]C([3]S ◦ [3]T )[3]ST : [13]CST
〉
,

where Young diagrams in corresponding subspaces
are used everywhere; the subscript TISM means the
translation-invariant shell model; the values of S and
T are not indicated since they are in a bijective re-
lation with [f ]S and [f ]T , respectively; and the obvi-
ous relationship S+ L = J is omitted for the sake of
brevity.

The calculation is performed on the basis of the
fractional-parentage expansion of the three-quark
states (7) in a sum of the products of a two- and a
3
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one-quark cluster, 3q → 2q × q, summation being
performed over all possible states of the third quark
and the “12” two-quark cluster.
PH
Basis vectors that correspond to a specific permu-
tation symmetry in the clusters are expressed in terms
of harmonic-oscillator wave functions as
∣∣s3[3]xL = 0
〉
TISM = |0s (ρ1/2α1)〉 |0s (ρ2/2α2)〉 , (8)

∣∣s2p[21]xL = 1
〉
TISM = |0s (ρ1/2α1)〉 |1p (ρ2/2α2) ,m〉 , |1p (ρ1/2α1) ,m〉 |0s (ρ2/2α2)〉 ,

∣∣sp2[3]xL = 0
〉
TISM = (|2s (ρ1/2α1)〉 |0s (ρ2/2α2)〉 + |0s (ρ1/2α1)〉 |2s (ρ2/2α2)〉) /

√
2,

where α1 = b/
√

2, α2 =
√

3/8b, b ≈ 0.5–0.6 fm is the nucleon radius, and ρ1 = r1 − r2.
In theCST sector, use is made of basis vectors that possess a similar permutation symmetry in the clusters.

The baryon wave functions are represented in the form of fractional-parentage expansions that correspond to
the separation of the third quark; that is,

|N〉 =
∣∣s3[3]x ([2]x × [1]x)L = 0

〉
TISM

∣∣[13]C([21]S ◦ [21]T )[3]ST : [13]CST
(
[12]CST × [1]CST

)〉
, (9)

|N∗(1535)〉

=
1√
2

{∣∣s2p[21]x ([2]x × [1]x)L = 1
〉
TISM

∣∣[13]C([21]S ◦ [21]T )[21]ST : [21]CST
(
[12]CST × [1]CST

)〉
J=1

− 1√
2

∣∣s2p[21]x
(
[12]x × [1]x

)
L = 1

〉
TISM

∣∣[13]C([21]S ◦ [21]T )[21]ST : [21]CST ([2]CST × [1]CST )
〉
J=1

}
,

|N∗∗(1440)〉 =
∣∣sp2[3]x ([2]x × [1]x)L = 0

〉
TISM

∣∣[13]C([21]S ◦ [21]T )[3]ST : [13]CST
(
[12]CST × [1]CST

)〉
,

|∆〉 =
∣∣s3[3]x ([2]x × [1]x)L = 0

〉
TISM

∣∣[13]C([3]S ◦ [3]T )[3]ST : [13]CST
(
[12]CST × [1]CST

)〉
.

All the aforesaid refers to the microscopic pattern that
is displayed in Fig. 2 and which is associated with the
diagram for quasielastic knockout proper (Fig. 1a).
For the diagram in Fig. 1b, the physical situation
is generally different (here, one is dealing with the
virtual-capture process N + π → B rather than with
the virtual-decay processN → B + π). However, the
corresponding matrix element, which is similar to the
amplitude in (4) with the interchanged left- and right-
hand sides and with the necessary replacement of the
coordinates ρ2 and ρ′

2 in the operator given by (5),
will coincide with (4), since there occurs the same
orbital transition of a valence quark fromN toB, only
the substitution 3 → 4 being made for the number
of this quark. Of course, the pole denominators are
different for the diagram in Fig. 1a and the diagram in
Fig. 1b, and this is taken into account in going over
to momentum distributions (see below).

It is interesting to note that the 3P0 scalar fluc-
tuation as it is can be knocked out without quark
exchange with the nucleon involved, provided that
one records the quasielastic knockout of, say, the f0

meson of mass 980 MeV, which is the lowest scalar
meson and which has quantum numbers (L = 1, S =
1, J = 0, T = 0) that are identical to those of the
fluctuation in question. It seems that the process
p(π, πf0)p at a pion-beam energy of a few GeV and
the detection of triple coincidences, since the knock-
on f0 meson decays, would be appropriate here. In the
momentum distribution extracted from such exper-
imental data, the existence of the fluctuation would
correspond to a peak at zero momentum against the
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background of the component that is associated with
the 3 → 4 change in the number of the valence quark
involved and which is discussed here.

Upon averaging over the projections of the initial-
state spin and summation over the projections of the
final-state spin, the square of the amplitude for the
N → B + π transition within the quark model as-
sumes the form

|Jqm(p → nπ)|2 = g2
πNN · 2k2F 2

πNN (k2), (10)

|Jqm(p → ∆π)|2 = g2
π∆N · 2k2F 2

π∆N (k2), (11)

|Jqm(p → N∗π)|2 = g2
πNN∗ · 2ε2πF 2

πNN∗(k2), (12)

|Jqm(p → N∗∗π)|2 = g2
πNN∗∗ · 2k2F 2

πNN∗∗(k2),
(13)

where

gπNN ≡ 2M
mπ

fπNN =
2M
mπ

5
3

1
N

(
1 +

mπ

6mq

)
fπqq,

(14)

gπ∆N =
2
√
MM∆

m2
π

4
√

2
5

fπNN , (15)
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gπNN∗ =
2
√
MMN∗

m2
π

2
√

2
5
√

3
1 − 2a/3

mqb

(
1 +

mπ

6mq

)fπNN ,

(16)

gπNN∗∗ =
2
√
MMN∗∗

mπ

1
3
√

3
(17)

×



3a+
mπ

mq

1

1 +
mπ

6mq

(
1 − 1

3
a+

5
9
a2

)


 fπNN .

Here, a = x2(1 + 2x2/3)−1, x = bπ/b, N = (1 +
2x2/3)3/2, f2

πNN/4π = 0.088, and M is the nucleon
mass. The form factors appearing in Eqs. (11)–(13)
are given by

FπNN (k2) = Fπ∆N (k2) = exp
{
−1

6
k2b2

(
1 +

a

6

)}
,

(18)

FπNN∗(k
2) (19)

=
[
1 − k2b2

6
(3 + a)
(3 − 2a)

(
1 +

επ
6mq

− 4a
9

)]
FπNN (k2),
FπNN∗∗(k2) =




mπ

mq

1

1 +
mπ

6mq

(
1 − a

3
+

5a2

9

)
+ 3a





−1
1 +

επ
6mq

1 +
mπ

mq

(20)

×




επ
mq

1

1 +
επ

6mq

{
1 − a

3
+

5a2

9
− k2b2

18
a
(
1 +

a

3

)2
}

+ 3a− k2b2

2

(
1 +

a

3

)2



FπNN (k2).
Upon going over to momentum distributions, the
wave function corresponding to the diagram for the
quasielastic-knockout process proper (Fig. 1а) [7]
can be represented as

ΨBπ
p (k) =

J (p → Bπ)
k0 − επ(k)

, (21)

where k0 = M −MB − k2/2MB . The total contribu-
tion of the diagrams in Figs. 1a and 1b is given by

J (p → Bπ)
k0 − επ(k)

− J (p → Bπ)
k0 + επ(k)

(22)

= J (p → Bπ)
2επ(k)

k2
0 − ε2π(k)

= ΨBπ
p (k)

2επ(k)
k0 + επ(k)

.

With allowance for (22), the cross section for quasi-
elastic pion knockout from nucleons by high-energy
electrons has the form
d5σ

dEe′dΩe′dΩπ
= |pπ|Eπ

∣∣ΨBπ
p (k)

∣∣2 (23)

×
(

επ(k)
k0 + επ(k)

)2(
1 − |pπ|

Eπ
cos θπ

)(
d2σel
dΩπ

)

free

,

where pπ and Eπ are, respectively, the 3-momentum
and the energy of the knock-on pion;Ee′ is the energy
of the scattered electron; dΩe′ is an element of the
solid angle in which it is scattered; dΩπ is an element
of the solid angle in which the knock-on pion is
emitted; θπ is the angle between the electron and the
pion 3-momentum; and

(
d2σel/dΩπ

)
free

is the cross
section for elastic eπ scattering.

3. RESULTS AND DISCUSSION
A. N →→→ π +++ N channel. The momentum distri-

bution of pions in this channel and the form factor
3
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FπNN (k2) associated with this distribution and com-
puted according to the above scheme are represented
by the dotted curves in Figs. 3 and 4, respectively.
These results (they were obtained at the value of
b = 0.6 fm, which is typical for the quark model)
agree fairly well with the momentum distributions (at
various values of Q2) that were extracted in [6] from
experimental data of Brauel et al. [12] by using the
form factor parametrized in the standard form

FπNN
(
k2
)

= Fπ∆N

(
k2
)

=
Λ2
π −m2

π

Λ2
π − k2

(24)

(the solid curves in Figs. 3 and 4 correspond to the
value of Λπ = 0.7 GeV/c, which was determined pre-
viously in [6] on the basis of data from [12]; k2 is the
square of the pion 4-momentum, k2 ≈ −k2).

Of course, this is an argument in favor of the
microscopic model being considered, the more so as
it does not involve, at a fixed value of b, free param-
eters, apart from the parameter x = bπ/b, to which
the observables of the π +N channel are insensitive.
(Only in the π +N∗ and π +N∗∗ channels is there
a noticeable sensitivity to x, whose optimum value
obtained for that case previously in [10] from a fit
to baryon-resonance widths with respect to pionic
decays is x = 0.5.)

In Fig. 4, the form factor FπNN (k2) is displayed
over a momentum interval that is wider than that
which is required for explaining currently available
data on quasielastic pion knockout. We can see that,
in the region |k2| > 0.5 (GeV/c)2, the microscopic
model yields a form factor that decreases much faster
PH
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Fig. 5.Momentum distributions in the (solid curve)N →
N∗∗(1440) + π and (dotted curve) N → N∗(1535) + π
channels according to the calculations on the basis of the
present microscopic model.

than expression (24), which corresponds to a 1/|k2|
behavior at large |k2|. However, it is necessary to
consider that the nonrelativistic constituent-quark
model, which was used here to describe data for
|k2| < 0.25 (GeV/c)2, must be modified at relativistic
momenta in the region |k2| > 0.5 (GeV/c)2, where it
is mandatory not only to include relativistic effects
in it but also to take effectively into account hard
processes predicted by QCD.

B. N →→→ π +++ В channels. Going over to N →
π +B channels, we note that, for the N → π + ∆
channel, the form factor FπN∆(k2) is predicted to be
identical to that in the preceding case; however, the
momentum distribution will be different (see Fig. 3),
since the pole factor on the right-hand side of for-
mula (21) for B = ∆, N∗, N∗∗ is smaller in abso-
lute value and, in the k2 region being considered, is
close to a constant. Of particular interest, however,
are the predictions for the momentum distributions
(Fig. 5) and for the form factors (Fig. 4) in the N →
π +N∗ and N → π +N∗∗ channels. A comparison
with the N → π +N channel (Figs. 3, 5) reveals
that they are totally different. Indeed, the πNN form
factor decreases monotonically with increasing |k2|,
remaining positive, while the πNN∗ and πNN∗∗ form
factors (that is, FπNN∗(k2), etc.) vanish at |k2| ∼=
0.4 (GeV/c)2, changing sign. The square of either of
the last two—and it is the square of a form factor that
enters into the relevant cross section—unexpectedly
appears to be a U-shaped quantity, in contrast to the
monotonically decreasing πNN form factor. We also
note a peculiar behavior of the πNN∗∗ form factor in
the region of small |k2|: it first increases, attains a
maximum, and then decreases. This specific type of
behavior is due to the interplay of the gradient and the
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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nongradient component of the transition operator and
is eventually associated with the structure of the N∗

and N∗∗ resonances (s2p and sp2, respectively). The
localization of the above anomaly in the region of low
momenta naturally suggests that more fundamental
chiral properties of hadrons have some bearing on this
phenomenon. In this context, we are going to address
this issue in our subsequent studies.

Concluding our discussion, we emphasize that the
structure (2) of the fluctuation being considered can
be tested (and such experiments are highly desirable)
at a totally new level, that of quasielastic knockout.
Conceptually analogous results for the quasielastic
knockout of vector mesons (with a subsequent rear-
rangement into a real pion via the process γ + ρ →
π) and for processes involving kaon knockout and
leading to the production of spectator strange baryons
like Λ and Σ must also be taken into account is such
tests. We plan to consider all these processes in the
future, relying on a modern relativistic model of the
scalar fluctuation (at present, such a model is only
being developed [16]).

Further, it is advisable to refine the simplest quark
shell wave functions for baryons on the basis of the
Glozman three-body model [17] involving a pseu-
doscalar exchange between quarks, with the quark–
antiquark fluctuation considered here being retained.
Finally, it would be necessary to go over from the
plane-wave approximation used here for the final me-
son to the distorted-wave approximation.

The present study, which is based on a naive non-
relativistic model of the 3P0 scalar fluctuation, has
been aimed at preliminarily outlining a new hori-
zon in experimental and theoretical investigations of
nonperturbative QCD at intermediate energies (with
electron beams of energy in the range 5–10 GeV)
and of its potential in providing a unified basis for
explaining in detail and for predicting the properties
of various meson–baryon degrees of freedom.
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APPENDIX

Within the 3P0 model of pair production [9, 18], it
is assumed that the pair-creation operatorP+ has the
simplest form that is compatible with vacuum quan-
tum numbers (JP IG = 0+0+, zero total momentum,
color, flavor). For the numbering of quarks that was
chosen here (see Fig. 2), the production of a 4̄ 4 q̄q
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
pair is described by the following combination of the
quark and antiquark creation operators [ba+µ (p4) and
da+µ (p4̄) (µ, µ′ = ±1/2; a, a′ = u, d, s), respectively]:

P+
44̄

= v

∫
d3p4

∫
d3p4̄δ(p4 + p4̄) (A.1)

×
∑

m

(−1)m{p4 − p4̄}m

×
∑

µµ′

σµµ
′

m√
2

∑

aa′

δaa′d
a+
µ (p4̄)b

a′+
µ′ (p4).

Here, v is a phenomenological constant that deter-
mines the probability amplitude for the process in
question (eventually, v is normalized to the known
value of the πNN coupling constant, fπNN ≈ 1),
while m = ±1, 0 are the spherical indices of three-
dimensional vectors.

In expression (A.1), the form
∑
µµ′

σµµ
′

m√
2

×

d+
µ (p4̄)b

+
µ′(p4) corresponds to the q̄q state of total

spin S = 1 and spin projectionm (here, the elements
of the Pauli matrices σµµ

′
m play the role of Clebsch–

Gordan coefficients in the spin space of the q̄q
system). Similarly, the form

∑
aa′ δaa′d

+
a (p4̄)b

+
a′(p4),

where a = t = ±1/2 (a′ = t′ = ±1/2) are the pro-
jections of the quark (antiquark) isospin, generates a
state of total isospin T = 0. Thus, the production of a
q̄q pair in the 3P0 state is described by the operator

δ(p4 + p4̄) (A.2)

×
∑

m

(−1)m{p4 − p4̄}mσµµ
′

m da+µ (p4̄)b
a′+
µ′ (p4),

the delta function in expression (A.1) and the delta
function in expression (A.2) fixing at zero the total
momentum of the q̄q pair in the primary-baryon rest
frame. [In accordance with the Zweig rule [19], it
is postulated that pair production is a purely vac-
uum process not involving momentum transfer (or
the transfer of some virtual quantum—for example, a
gluon) from the initial (bare) quark state to a virtual q̄q
pair. We note that this mechanism of pion emission
leads to a momentum distribution of pions that is
essentially the momentum distribution of quarks in
the relevant baryon.]

The process depicted in Fig. 2 can be considered
as a manifestation of effective quark–pion coupling.
The corresponding matrix element for the q(3) →
q(4) + πλ transition,

T λπqq =
〈
q(4),p′

4;π
λ,k|P+

44̄
|q(3),p3

〉
, (A.3)

can be calculated by using the operator in (A.1), along
with the pion wave function πλ(k) and the quark wave
3
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functions |q(3)(p3)〉 and |q(4)(p′4)〉 expressed in terms
of the corresponding creation operators acting on a
vacuum; that is,

|πλ,k〉 =
∫

d3p′
3 (A.4)

×
∫

d3p′
4̄δ(k − p′

3 − p′
4̄)Φπ(p′

3 − p′
4̄)

×
∑

ν′3ν
′
4̄

∑

t′3t
′
4̄

τ
t′3t

′
4̄

−λ δν′3ν′4̄
d
t′
4̄

ν′
4̄

+(p′
4̄)b

t′3
ν′3

+(p′
3) |0〉 ,

∣∣∣q(i),pi
〉

=
∑

νi

∑

ti

χ(i)
νi ϕ

(i)
ti
btiνi+(pi) |0〉 , i = 3, 4,

(A.5)

where χ
(i)
νi (ϕ

(i)
ti

) are the Pauli spinors (isospinors)
describing the spin (isospin) state of the ith quark in
the primary or the secondary baryon and Φπ(p) is the
quark–antiquark wave function for the pion.

The matrix element (A.3) is calculated on the
basis of a standard technique that employs relations
between the operators d and b. These include the
following:

{dν(p), d+
ν′(p

′)} (A.6)

= {bν(p), b+ν′(p
′)} = δνν′δ(p − p′),

〈0|
∫

d3p′d+
ν (p′)dν′(p′) |0〉 = δνν′ . (A.7)

As a result, the amplitude for effective πqq coupling
can be represented in the form

T λπqq = v
∑

ν′4ν3

∑

t′4t3

∫
d3p′

5 (A.8)

× δ(k − p3 − p′
5)δ(p

′
4 + p′

5)Φπ

(
p3 − p′

5

2

)

×
∑

m

(−1)m{p′
4 − p′

5}m1

×
(
χ

(4)+
ν′4

ϕ
(4)+
t′4

τ
t′4t3
−λ σ

ν′4ν3
m χ(3)

ν3 ϕ
(3)
t3

)
.

The parenthetical expression in the last line of (A.8)
can be considered as the matrix element of the isospin
and spin Pauli matrices between the initial and the
final state of the third quark. This makes it possible
to recast expression (A.8) into the form of a matrix el-
ement of the nonlocal single-particle operator acting
on the variables of the third quark; that is,

T (3)λ
πqq (p3,p′

4) = v

∫
d3p′

5δ(k − p3 − p′
5) (A.9)

× δ(p′
4 + p′

5)Φ
∗
π

(
p3 − p′

5

2

)
τ

(3)
−λσ(3)
PH
· (k− (p3 + p′
4)).

In deriving expression (A.8), we have taken into ac-
count the identity

δ(k− p3 − p′5)δ(p
′
4 + p′5)(p

′
4 − p′5) (A.10)

= δ(k− p3 − p′5)δ(p4 + p′5)(p
′
4 + p3 − k).

We note that the matrix elements of the operator

σ(3) · (k− (p3 + p′4)) (A.11)

between physical baryons (that is, those on the mass
shell) will disturb the Galilean invariance of physical
amplitudes. Recall that the simplest scalar expres-
sion (A.2), which was proposed above for the pair
creation operator, is invariant only under translations
and rotations, but it is not invariant under transitions
to a moving coordinate frame. In order to restore
Galilean invariance, it is necessary to modify the delta
function in expression (A.2) in such a way that oper-
ator (A.11) in the final expression (A.9) for the single-
particle amplitude would transform into the Galilean-
invariant expression

σ(3) ·
(
k− επ(k)

2mq
(p3 + p′

4)
)
. (A.12)

It goes without saying that, for an individual quark,
which is always off the mass shell (since it is un-
observable in a free state), the concept of Galilean
invariance is meaningless; for physical baryons (on-
shell ones), however, the matrix element of the op-
erator in (A.12) leads to an amplitude that is in-
variant under Galilean transformations, the quan-

tity
(
−επ(k)

2mq
(p3 + p′

4)
)

in this operator generat-

ing a term that takes into account baryon recoil in
pion emission (see, for example, the discussion of
this problem in [10]). By way of example, we in-
dicate that, even in the first study devoted to the
pair-production model [20], it was noticed that the
operator σ(3) · k poorly describes threshold decays—
N(1535) → η(540) +N(940), for instance; to rem-
edy the situation, it was proposed there to include a
correction that takes into account baryon recoil and
which leads to expression (A.12). Even in the vicinity
of the threshold (k → 0), the matrix element does not
then vanish, and we arrive at a gradient coupling
(see below), which is of importance for threshold pro-
cesses.

Prior to going over to the coordinate representa-
tion of the operator in (A.9) [with allowance for the
modification in (A.12)], we express it in terms of the
relative momenta π(3) and π(3)′ of the third quark in,
respectively, the primary (В) and the secondary (B′)
baryon; that is,

π(3) = (p1 + p2)/3 − (2/3)p3 = PB/3 − p3,
(A.13)
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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PB = p1 + p2 + p3.

π(3)′ = (p1 + p2)/3 − (2/3)p′
4 = PB′/3 − p′4,

PB′ = p1 + p2 + p′4.

As a result, the modified operator (A.9) assumes the
form

T̃ (3)λ
πqq (p3,p′

4) = −vτ (3)
−λσ

(3) (A.14)

×
[
k +

επ
2mq

(
π(3) + π(3)′

)
− επ

6mq
(PB + PB′)

]

× δ

(
2
3
k + π(3) − π(3)′

)
Φ∗
π

(
1
3
PB − π(3) − 1

2
k
)
.

In view of the Galilean invariance of final results for
baryons, expression (A.14) can further be used in a
fixed reference frame. The simplest choice of it is that
of the primary-baryon rest frame:

PB = 0, PB′ = −k. (A.15)

Upon the Fourier transformation to the relative coor-
dinates of the quarks,

ρ1 = r1 − r2, ρ2 = (r1 + r2)/2 − r3, (A.16)

ρ′
2 = (r1 + r2)/2 − r′4,

we obtain the nonlocal operator

T̃ (3)λ
πqq (ρ2,ρ

′
2;k) (A.17)

= −v e
i 2
3
k·ρ′

2

(2π)3/2
τ

(3)
−λÔ

(3)
π (ρ2 − ρ′

2)σ
(3)

×
[
επ

2mq

(
2
i
∇ρ2 +

2
3
k
)

+
(

1 +
επ

6mq

)
k
]
,

which acts on the variables ρ2 and ρ′
2. In (A.17), the

nonlocal part is the Fourier transform of the pion wave
function

Ô(3)
π (ρ2 − ρ′

2) = exp
(
i
1
2
k · (ρ2 − ρ′

2)
)

Φ∗
π(ρ2 − ρ′

2).

(A.18)

Thus, the interaction term that takes into account
baryon recoil generates a gradient coupling [the first
term of the bracketed expression in (A.17)].

In the pointlike-pion limit—that is, for Φ∗
π(ρ2 −

ρ′
2) → δ(ρ2 − ρ′

2)—the effective quark–gluon cou-
pling becomes local; that is,

T̃ (3)λ
πqq (ρ′

2,ρ2;k)
∣∣∣
Φπ(ρ′

2−ρ2)→δ(ρ′
2−ρ2)

(A.19)

= T (3)λ
πqq (ρ2;k) = −v e

i 2
3
k·ρ2

(2π)3/2
τ

(3)
−λσ(3)

×
[
επ

2mq

(
2
i
∇ρ2 +

2
3
k
)

+
(

1 +
επ

6mq

)
k
]
.
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It is coincident in form with the operator representing
pseudovector πqq coupling in the first order in v/c.
Therefore, the phenomenological constant v, which
specifies the amplitude for the production of a vacuum
q̄q pair, can be normalized to the well-known value of
the pseudovector πNN coupling constant,

v = −i fπqq

mπ (2επ)
1/2

, fπqq = (3/5)fπNN , (A.20)

and can further be used in calculating the amplitudes
for transitions into each of the B = N , ∆ , N∗, N∗∗

baryon channels.

REFERENCES
1. T. E. O. Ericson and W. Weise, Pions and Nuclei

(Clarendon, Oxford, 1988); W. Weise, Quarks and
Nuclei, Ed. by W. Weise (World Sci., Singapore,
1984), p. 59.

2. N. N. Nicolaev, A. Szczurek, J. Speth, and V. Zoller,
Z. Phys. A 349, 59 (1994).

3. W. Y. P. Hwang, J. Speth, and G. E. Brown, Z. Phys.
A 339, 383 (1991); A. Szczurek and J. Speth, Nucl.
Phys. A 555, 249 (1993); A. Szczurek, J. Speth, and
G. T. Garvey, Nucl. Phys. A 570, 765 (1994); A. Mair
and M. Traini, Nucl. Phys. A 628, 296 (1998).

4. M. Guidal, J.-M. Laget, and M. Vanderhaeghen,
Nucl. Phys. A 627, 645 (1998).
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ELEMENTARY PARTICLES AND FIELDS
Theory
Contribution of the Hadronic Component of a Virtual Photon
to the Structure Function for Charm Leptoproduction at High xxx and Q2Q2Q2
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Abstract—The contribution of the hadronic component of a virtual photon to the structure function
for charm leptoproduction is calculated. This contribution comes from the scattering of c quarks of a
virtual photon on proton quarks and gluons. A comparison of the results of our calculations for this
structure function with relevant data obtained by the European Muon Collaboration (EMC) for µ+p
scattering gives reasons to believe that the contribution of the resolved photon may be responsible for the
excess in these EMC data over the predictions of the model of photon–gluon fusion at high momentum
transfers. Therefore, it may become possible to describe the EMC data without resort to the hypothesis
of a nonperturbative charmed-quark admixture in the proton wave function (intrinsic-charm hypothesis).
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of heavy-flavor formation at high
energies is still a very important tool for qualitatively
and quantitatively testing QCD and for studying the
internal structure of hadrons. Although impressive
results, both theoretical and experimental, have been
obtained over the past decade, owing predominantly
to experiments at the HERA electron–proton col-
lider, there still remain uncertainties in interpreting
available data on charmed-particle production in
hadron–hadron and lepton–hadron collisions. These
uncertainties concern the details of the quark struc-
ture of hadrons—first of all, the structure of the
proton. One of the problems is that of the intrinsic
charm of the proton [1]—that is, the question of
whether the proton wave function features a sizable
(about 1%) nonperturbative admixture of charmed
quarks having a hard “valence” distribution with
respect to the longitudinal momentum. At the HERA
collider, charm-production processes were explored
at low values of the Bjorken variable x, in which case
a dominant contribution comes from the mechanism
of photon–gluon fusion. However, the low-x region
corresponds to spatial distances much greater than
the proton dimension; therefore, investigation of this
kinematical region furnishes information about the
structure of QCD vacuum rather than about the
internal structure of the proton. In order to obtain
deeper insight into the proton structure proper, it is

1)Deutsches Elektronen-Synchrotron (DESY), Notkestrasse
85, D-22603 Hamburg, Germany.
*e-mail: golubkov@npi.msu.su
1063-7788/03/6602-0323$24.00 c©
necessary to study the charmed structure function
for the proton at high values of the variable x.
Unfortunately, the geometry of the ZEUS and H1
experiments gives no way to explore efficiently charm
production in the forward direction at comparatively
low momentum transfers, where the cross section
for ep scattering is maximal. Possibly, the planned
severalfold increase in the HERA luminosity will
allow accumulation of sufficient statistics at moderate
momentum transfers for experimentally investigating
charm production in the high-x region. At present,
however, the problem in question has not yet received
adequate study.

A theoretical consideration of the intrinsic-charm
problem is based on the following simple arguments.
The proton wave function can be expanded in color-
singlet eigenstates of the free Hamiltonian, such as
|uud〉, |uudg〉, and |uudqq̄〉. Within a comparatively
short time, the proton may feature Fock states of ar-
bitrarily intricate character, including charmed-quark
pairs. In the proton rest frame, the lifetime of such
fluctuations, τ , is on the order of the nuclear time
of about Rh, where Rh is the hadron dimension.
Charmed quarks are heavy objects, and the lifetime
of a fluctuation involving heavy quarks is much less
than that of a fluctuation consisting of light par-
tons exclusively. Therefore, the admixture of heavy-
quark pairs in the proton wave function must be
small—specifically, their fraction is expected to be
about (mq/mQ)2 ∼ 10−2 with respect to the level of
light partons. Since the c-quark mass is large, their
momentum distribution proves to be much harder
than that of light sea partons [1, 2]. The presence
2003 MAIK “Nauka/Interperiodica”
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of fluctuations involving heavy quarks is a natural
consequence of field theory. However, one makes here
the important assumption that quantum fluctuations
of the hadron wave function that involve charmed
quarks are controlled by the self-interaction of the
color field, and this implies that the structure of the
Fock states of a hadron can be analyzed without
considering hard interactions.
In assessing the level of the charmed-quark ad-

mixture in the proton, it is usually assumed that data
on µp and hadron–hadron collisions in [3] and [4,
5], respectively, where the observed yields of charmed
particles deviate from the predictions of the models
of photon–gluon and parton–parton fusion, suggest
the presence of intrinsic charm. However, the actual
experimental situation is quite uncertain. The pio-
neering theoretical studies on the subject [1] were
motivated by data obtained at ISR [4] by studying
the yield of charmed particles—in those experiments,
the charm yield was very high, an order of magnitude
higher than that which is expected in the model of
parton–parton fusion. A critical comparison of exper-
imental data obtained at ISRwith data of experiments
that employed a fixed target can be found in the re-
view article of Tavernier [6]. More recent experiments,
which were, however, performed at lower energies,
were not in so dramatic a contradiction with theoret-
ical expectations (see, for example, [7]). An attempt
at reconciling the ISR data with the predictions of
the model of parton–parton fusion was made in [8] on
the basis of the charm-excitation model, where it is
assumed that a proton features a 0.5% admixture of
charmed quarks, with the result that there arises hard
charmed-quark scattering. It was shown in [8] that,
owing to a large value of the hard-scattering cross
section (which is, strictly speaking, divergent) and its
strong dependence on the reaction energy, the ISR
data can be described within the charm-excitation
model. At the same time, this model does not make
a sizable contribution to the charm yield at lower
energies.
By merely varying the parameters of the string

hadronization model within reasonable limits [9, 10],
more recent experimental data on the longitudinal
distributions of charmed quarks and on the asymme-
try of their production can be reproduced to a fairly
high precision without resort to the intrinsic-charm
contribution.
The interpretation of data on the production of J/ψ

particles is also contradictory. The NA3 experiment
[5], which studied pion–nucleus collisions at an en-
ergy of 280 GeV, produced quite compelling pieces
of evidence that there is an additional mechanism
of the production of hard J/ψ particles. This addi-
tional contribution at a level of 20% of the total cross
section for J/ψ production is faithfully reproduced
PH
within the modified intrinsic-charm model [2], but the
assumption that there exists so large a contribution
does not seem realistic. In [11, 12], it was found that
intrinsic charm may explain an excess of the yield of
fast correlated J/ψ pairs over theoretical expectations
and their anomalous polarization that seems to have
been observed by the NA3 experiment in inclusive
J/ψ production. At the same time, the predictions of
the intrinsic-charm model are in a glaring contradic-
tion with data on the production of J/ψ particles in
proton–nucleus collisions at an energy of 800 GeV
[13] (see [14]).

It should be emphasized that the presence of a 1%
charmed-quark admixture in the proton leads to the
total cross section for charm production in nucleon–
nucleon collisions at a level of a few hundred micro-
barns, but this is at odds with the bulk of experimental
data on open-charm production in hadron–hadron
collisions.
In theoretically analyzing hadronic data, it should

be borne in mind that the main contribution to charm
production in hadron–hadron collisions comes from
the gluon–gluon fusion gg → cc̄. At the same time,
direct experimental measurements of the gluon distri-
bution in the proton are impossible. In order to extract
gluon distributions from data, use is made either of
charm-production calculations based on the afore-
mentioned mechanisms of gluon–gluon or photon–
gluon fusion, which contribute predominantly to the
region of low values of the Feynman variable xF, or
of rather sophisticated methods relying on the as-
sumption that gluons make a dominant contribution
to the evolution of quark distributions. In view of this,
the extraction of an additional mechanism of charm
production in hadron–hadron collisions at a level of
0.5–1% cannot be highly reliable.
As a matter of fact, only the data obtained by

European Muon Collaboration (EMC) by studying
the charmed structure function for the proton in µ+p
collisions at a muon energy of 280 GeV provide a firm
basis for correctly verifying the presence of intrinsic
charm in the proton. Early studies devoted to ana-
lyzing the EMC results employed old parametriza-
tions of the gluon distribution in the proton, which
are harder. In particular, the first EMC analysis was
based on the scaling gluon distribution G(x) ∼ (1 −
x)5. For the intrinsic-charm admixture in the proton,
this yielded a value of about 0.3%, but the uncertainty
was quite large. Currently used parametrizations of
gluon distributions are softer, as a rule, and they
naturally result in a greater intrinsic-charm contri-
bution to the EMC data [2, 15, 16]. Specifically,
the intrinsic-charm contribution as extracted from
a thorough analysis of the EMC data varies from
0.3% [3, 17] to about 0.9% [2, 16]. At the same time,
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003



CONTRIBUTION OF THE HADRONIC COMPONENT 325
the analysis of Harris et al. [16], who performed the
most comprehensive calculation of the contribution
from photon–gluon fusion, revealed that, at moder-
ate energy transfers, the intrinsic-charm contribution
vanishes within the experimental errors.
Since the photon features a hadronic struc-

ture [18–20], it is natural to expect that the total
cross section for charm production in leptoproduction
processes includes the contribution from the interac-
tion of partons belonging to the hadronic component
of a virtual photon with the partons of the proton.
By taking into account the contribution of the hard
scattering of the c quarks from a virtual J/ψ me-
son within the vector-dominance model, Berezhnoy
and Likhoded [21] were able to describe, to a high
precision, ZEUS data on D∗ production at high
transverse momenta. Although such processes are of
the second order in the strong-interaction coupling
constant αs, they can contribute sizably owing to
the divergence of the cross section for parton–parton
scattering at small angles. Therefore, it is natural to
expect that the hadronic component of the photon
makes a sizable contribution to the charmed structure
function measured by the EMC in the region Q2 ≥
40GeV2, where there are indications of a discrepancy
between experimental data and predictions of the
model of boson–gluon fusion.
In the present study, we have calculated the con-

tribution of the hadronic component of the photon
and the contribution of the standard mechanism of
photon–gluon fusion to the charmed structure func-
tion measured by the EMC. On the basis of our
calculations, we conclude that the hypothesis of the
intrinsic-charm admixture in the proton is not needed
in interpreting the EMC results.

2. FUNDAMENTALS OF THE MODEL USED

2.1. Charm in the Hadronic Component of the
Photon

The hadron structure function F2(x,Q2) is a mea-
surable physical quantity in studying deep-inelastic
processes that involve hadrons. The charmed struc-
ture function F c

2 (x,Q2) is related to the cross section
for charm production in leptoproduction processes,
dσ(lp → c), by the equation

dσ(lp → c) =
2πα2

xQ4

[
1 + (1 − y)2

]
F c

2 (x,Q2)dxdQ2.

(1)

In the approximation of equivalent photons [22],
the charm-leptoproduction cross section can be ex-
pressed in terms of the cross section for γp interac-
tion, σ(γp → c), and the flux of equivalent photons,
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
nγ(x,Q2), as

dσ(lp → c) = dnγ(x,Q2)σ(γp → c)

dnγ(x,Q2) =
α

2π
[1 +

(
1 − y)2

] dx
x

dQ2

Q2
;

(2)

that is, the charmed structure function is related
to the charm-photoproduction cross section by the
equation

F c
2 (x,Q2) =

Q2

4π2α
σ(γp → c). (3)

The hadronic structure of the photon can also be
described in terms of the photon structure function
F γ

2 (x,Q2), which depends on the Bjorken variable
x and on the momentum transfer squared Q2 [18].
Usually, the structure function F γ

2 (x,Q2) is broken
down into two components, a perturbative pointlike
one (so-called anomalous structure function) and a
nonperturbative one (hadron structure function). This
decomposition of F γ

2 (x,Q2) into a perturbative and
a nonperturbative component is valid not only within
the naive quark-parton model but also in the leading
and next-to-leading orders of perturbative QCD [18,
19]. The perturbative component is due to the direct
γ → qq̄ interaction and can be definitively calculated
within perturbation theory. Within the quark-parton
model, the contribution of this component is propor-
tional to lnQ2 and is dominant for Q2 → ∞. The
nonperturbative component F γ

2 (x,Q2) is completely
analogous to the conventional hadron structure func-
tion. Within the naive quark-parton model, this com-
ponent is independent of Q2. The QCD evolution of
F γ

2 differs from the evolution of the hadron struc-
ture function only in the presence of the perturbative
component in the case of F γ

2 , with the evolution be-
ing described by the nonhomogeneous Dokshitzer–
Gribov–Lipatov–Altarelli–Parisi equations. In order
to calculate theQCD evolution of the nonperturbative
component, it is necessary, in just the same way as
in the case of hadrons, to specify initial conditions at
some value of the momentum transfer squaredQ2

0. As
a rule, it is assumed, in specifying the initial parton
distributions in the photon at a momentum-transfer-
squared value of Q2

0 ≈ 1 GeV2, that the hadronic
component F γ

2 (x,Q2
0) can be obtained on the basis

of the vector-meson-dominance model, which pos-
tulates the γ → ρ0 transition in order to describe
photon–hadron interaction. In this case, the parton
distributions in the ρ0 meson are taken to be identical
to those that are known from experiments for pions.
In order to describe experimental data better, the sim-
ple vector-meson-dominance model was extended in
a natural way by including in it the light isoscalar
3
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vector mesons ω and φ. Usually, the heavier mesons
of the J/ψ family are not included because of their
large mass, and the charm content in the photon is
described on the basis of light-parton evolution and
the presence of the γ → cc̄ perturbative term [20, 23].
As was shown in [20], however, charm must not
be considered as a conventional light quark in the
region Q2 ≤ 50 GeV2, so that the evolution equa-
tions must be solved there only for three light quarks.
This is because, in the threshold region Q2 ∼ 4m2

c ,
charm production must be described by the Bethe–
Heitler process γγ → cc̄ and, in the case of lepton–
hadron scattering, by the photon–gluon fusion γg →
cc̄, which is the analog of the Bethe–Heitler process.
On the other hand, it was deduced in [24] from a com-
parison of the predictions of the QCD evolution of F γ

2
with experimental data that, even for light-quark evo-
lution, the perturbative region in the case of a photon
begins at Q2

0 ≈ 5 GeV2 rather than at Q2
0 ≈ 1 GeV2,

as is usually assumed. In the present study, we there-
fore rely on the generalized vector-meson-dominance
model that also takes into account nonperturbative
transitions of a photon into J/ψ mesons (these tran-
sitions become possible above the threshold for J/ψ
production).
Within the generalized vector-meson-dominance

model, it is convenient to represent the wave function
for the hadronic component of the photon as

|γhad〉 =
∑

V

√
4πα
f2
V

|V 〉 + |γcpert〉 +
∑

q

|γpert〉, (4)

where the terms |γpert〉 and |γcpert〉 take into account
the perturbative contributions of the processes γ →
qq̄ and γ → cc̄, respectively, while the vector mesons
V = ρ, ω, φ, J/ψ are responsible for the nonperturba-
tive contribution to the hadronic component of the
photon. The constants that characterize the vector-
meson contributions are [23]

f2
ρ/4π ≈ 2.20, f2

ω/4π ≈ 23.6, (5)

f2
φ/4π ≈ 18.4, f2

ψ/4π ≈ 11.5.

In the presence of a partonic structure in the pho-
ton, the interactions of its hadronic component with
hadrons can be described as the interaction of partons
from the photon with the projectile particle, as is
done in dealing with the interactions of conventional
hadrons. Within the parton model, the cross section
for any process is the sum of the weighted cross sec-
tions for elementary processes, the relevant weights
being determined by the distributions of partons in-
volved in these elementary processes. In the presence
of charmed quarks in the proton and at moderate
momentum transfers, lepton scattering on a charmed
P

quark of the proton, lc → lc, is the leading process
in the strong-interaction coupling constant. The pro-
cess of photon–gluon fusion, γg → cc̄, is of the next
order in αs, but its contribution is dominant since
gluons carry nearly half the proton momentum. Thus,
three processes contribute to charm photoproduction.
These are the absorption of a pointlike photon by
a c quark of the proton, photon–gluon fusion, and
the scattering of the c quarks of a virtual photon on
the light partons of the proton and the scattering
of the light partons of the photon on the c quarks
of the proton. In principle, the states of the vector
mesons in (4) can interfere with one another. But such
an interference has not yet been observed for virtual
photons; as will be seen in what follows, the possible
presence of this effect is immaterial in the present
study.
The total charm-production cross section can

then be represented in the form

σ(γp) = σIC + σPGF + σψ + σc + σq, (6)

where the cross section σIC is determined by the
absorption of a pointlike virtual photon by a c quark of
the proton (the cross section for this process is pro-
portional to the level of the intrinsic-charm admixture
in the proton, NIC ≤ 10−2), while the cross section
σPGF is that for the photon–gluon fusion γg → cc̄ and
is calculable quite reliably.
The second pair of terms in (6) is caused by the

scattering of the c quarks of the photon on the par-
tons of the proton, while σq is determined by the
scattering of the light partons of the photon on a c
quark or on a c̄ antiquark of the proton. The light
partons of the photon can be associated both with
the nonperturbative component (light vector mesons
ρ, ω, φ) and with the perturbative component (|γpert〉).
Within perturbative QCD, the cross sections σψ, σc,
and σq diverge in proportion to 1/p4

T as the trans-
verse momentum tends to zero. Therefore, their con-
tribution can be significant. These terms depend on
the minimum momentum transfer, t̂min, that must be
introduced in order to obtain a finite total cross sec-
tion. The cutoffmomentum t̂min cannot be calculated
within perturbative QCD and is a parameter of the
problem in our case. Below, we will discuss this point
in greater detail.
The term σc is determined by the contribution

from the scattering of a perturbative c quark from
the photon on the partons of the proton. By per-
turbative c quarks, we mean those c quarks of the
photon that either stem from the anomalous part of
the hadronic component of the photon or emerge in
the process of the QCD evolution of original light
partons. Therefore, the distribution of these c quarks
is obtained within perturbation theory [20, 25]; as
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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was indicated above, this contribution is contained
within the region Q2 ≥ 50 GeV2. By parametrizing
the distribution of perturbative c quarks as in [26],2)

where it was constructed on the basis of data reported
in [20], we have verified that the contribution of the
perturbative term σc is negligible in the kinematical
regionQ2 ≤ 80 GeV2.

The term σq is proportional to the level of the
intrinsic-charm admixture in the proton (NIC). In
general, this term must be retained since it is on
the same order of magnitude as the term σIC, which
describes the absorption of a pointlike photon by a
charmed quark of the proton. However, we actually
try to set here an upper bound on the level of the
intrinsic-charm admixture in the proton. If one adds
the additional term σq, the sought value of the param-
eter NIC will naturally become smaller, provided that
all of the remaining contributions remain unchanged.
The contribution of photon–gluon fusion, σPGF,
is fixed upon choosing the distribution of gluons.
Therefore, there only remains the question of whether
the J/ψ-meson contribution σψ may change, but
this contribution is approximately two orders of
magnitude less than the contribution of light vector
mesons, which is proportional to the small parameter
NIC (intrinsic-charm level). Therefore, the cutoffmo-
mentum t̂min will undergo virtually no change upon
discarding the term σq , whence it follows that the
J/ψ-meson contribution will also remain unchanged.

On the other hand, the structure functions for
light vector mesons are required for calculating their
contribution. However, there are no experimental data
on the structure functions for light vector resonances;
theoretical models that rely on any sound basis and
which could produce them are not yet available either.
In the existing parametrizations, it is merely pos-
tulated that the structure functions for vector reso-
nances are identical to those for the pions, but this is
rather strong an assumption sincemeson lifetimes are
short on nuclear scales. Therefore, the parametriza-
tions of their structure functions are not very reliable.
Therefore, the inclusion of the light-vector-meson
contribution increases the uncertainty of the calcu-
lations. In view of this, we will not take into account
the term σq, thereby overestimating the level NIC of
the intrinsic-charm admixture in the proton. As will
be seen, this overestimation does not change themain
conclusion of the present study.

Charm production also receives a contribution
from the parton–parton fusion processes gg → cc̄ and
qq̄ → cc̄, which are analogous to the corresponding

2)Technically, we employed the relevant subroutine from the
PYTHIA 6.1 package [27].
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Fig. 1. Processes contributing to the structure function
for charm leptoproduction: (a) lepton scattering on a
c quark (radiative corrections to the diagram are not
shown), (b) photon–gluon fusion, and (c, d, e) scattering
of a c quark from the photon on a gluon and on a quark
from the proton.

charm-production processes in hadron–hadron colli-
sions. However, these processes have finite total cross
sections, and their contribution to the charm yield is
negligible against the contribution of photon–gluon
fusion. Therefore, they can also be disregarded.

As a result, there remain only the terms σIC, σPGF,
and σψ in expression (6), and it is the contribution
of these terms to the charmed structure function that
will be the subject of the ensuing calculations. Dia-
grams for the processes that are taken into account in
the present study are shown in Fig. 1.

2.2. Distributions of cQuarks
in a Virtual J/ψMeson

In order to find the nonperturbative distributions
of c quarks and c̄ antiquarks in a virtual J/ψ meson,
one can apply the approach developed in [2]. This
approach, which is based on the statistical model
proposed in [28] and on the studies reported in [1],
permits using noncovariant perturbation theory to
take into account the heavy-quark masses for de-
termining the probability of the formation of a Fock
state featuring charmed quarks. The fact that we
can make use of noncovariant perturbation theory
for deriving the required distributions is of crucial
importance for our purposes. A Feynman diagram
is the sum of all relevant time-ordered diagrams of
noncovariant perturbation theory. The contribution
of diagrams of noncovariant perturbation theory that
are not ordered in time is in proportion to inverse
powers of the hadron momentum Ph. Within the
3
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parton model, an analysis is therefore performed in
the so-called infinite-momentum frame, where the
hadron momentum is much greater than all of the
relevant mass parameters. At high energies of col-
liding particles, the hadron momentum is sufficiently
high for ensuring the applicability of noncovariant
perturbation theory. Only in this case can a virtual
configuration of those Fock states where the hadron
involved fluctuates be frozen over the interaction time.
If we consider processes caused by the transition of
a photon into a hadron (vector meson), the lifetime
of a virtual hadron configuration (given Fock state)
is ∆t ∼ 1/∆E ≈ 2Ph/(M2 −m2) (where Ph is the
momentum of the hadron, m is its mass, and M is
the mass of the fluctuation being considered) and can
be long at high energies even at large values of the
fluctuation massM . It should be emphasized that we
use the parton approach down to rather low momen-
tum transfers (Q2 ≈ 1.5 GeV2). There is no rigorous
theoretical validation of the parton pattern of interac-
tions at such low momentum transfers. However, the
entire body of available experimental data, especially
data from theHERA collider, unambiguously indicate
that this approach is justified.
As matter of fact, expression (6) implies that the

different terms in (4) do not interfere. This in turn
admits a probabilistic interpretation of the expansion
in (4); that is, one can assume that, throughout the
interaction time, the photon occurs in one of the
states that enter into the expansion in (4). In this case,
the partons of the photon carry the entire momentum
of the photon (more precisely, of its hadronic fluctua-
tion). Owing to a sharp cutoff in the transverse mo-
menta of the partons, it is sufficient to consider only
the longitudinal phase space. We consider a hadron
(the hadronic component of the photon in our case) as
a statistical system consisting of m partons carrying
together the quantum numbers of the original hadron
and its momentum. Following the ideas of the parton
model, we assume the independent formation of each
parton of relative momentum ξ and its production in
accordance with the probability density ρ(ξ). Within
noncovariant perturbation theory, the probability of
finding an n-parton final state can then be repre-
sented in the form [2]

dW (n) ∼ 1
(Efin − Eh)2

δ(3)(Pfin − Ph)
n∏

i=1

ρi(ξi)
dξi
ξi

,

(7)

where n is the total number of partons in the fluc-
tuation being considered; Ph and Eh are the hadron
momentum and energy, respectively; and Pfin andEfin
are the total momentum and the total energy of the
parton fluctuation. The delta function in (7) ensures
conservation of the total 3-momentum. The function
PH
ρi(ξi) describes the probability of the formation of the
ith parton without taking into account the conserva-
tion of the total 3-momentum of the system and of its
quantum numbers. For the argument of the function
that represents the parton distribution in a virtual J/ψ
meson, we use the light-cone variable ξi ≡ ξ+

i = (ε+
pL)/(E + P ), where ε and pL are, respectively, the
energy and the longitudinal momentum of the parton
and E and P are the energy and the longitudinal
momentum of the J/ψ meson.
Since the lifetime of a fluctuation featuring a pair

of charmed quarks is much shorter than the lifetime
of a fluctuation consisting of only light quarks, the
total quark–gluon cascade does not have time to de-
velop fully. As a result, the fluctuation formed involves
virtually no light partons, so that the charmed-quark
pair carries nearly the entire momentum of the origi-
nal virtual J/ψ meson. It follows that the probability
of observing a Fock state that contains a cc̄ pair can
be represented in the form [2]

dW cc̄ =
ξ2
c ξ

2
c̄ρc(ξc)ρc̄(ξc̄)
(ξc + ξc̄)

2 δ (1 − ξc − ξc̄)
dξc
ξc

dξc̄
ξc̄

. (8)

In the J/ψ meson, the charmed quarks are va-
lence ones. On the basis of Regge phenomenology,
one can therefore expect that, at low values of the
relative momentum, their probability densities ρ(ξ)
are parametrized as

ρc(ξ) = ρc̄(ξ) = ξα, (9)

where α ≈ 0.5, as in conventional hadrons. The in-
clusive momentum distribution of a charmed quark in
the photon then has the form

cγ(ξ) = ξβ(1 − ξ)β/B(β + 1, β + 1), (10)

where β = α + 1 and B(u, v) is the Euler beta func-
tion; the distributions of charmed quarks are normal-
ized to unity—that is,

∫ 1
0 dξcγ(ξ) = 1. If, for α, one

chooses the above value of α = 0.5, then β = 1.5.
This is the value that is used in the ensuing calcula-
tions. The value obtained for β is somewhat less than
that whichwas used, for example, in [21] in describing
the charmed-meson spectra measured in the ZEUS
experiment. In our case, however, the shape of the
c-quark distribution in the photon does not play a
significant role, since the main contribution from par-
ton scattering to the structure function is determined
by the total scattering cross section, which involves
the parton distribution in the integrand [see expres-
sion (15) below]. Further, the momentum-transfer
region of the EMC experiment (and this is the region
of our prime interest), Q2 ≤ 80 GeV2, lies almost
completely in the domain where a perturbative treat-
ment of charmed-quark formation and evolution is
illegitimate [20]. Instead of considering the evolution
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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of the c-quark distributions in the virtual J/ψ meson,
we will therefore employ the scaling expressions (10)
for these distributions.

2.3. Charmed Structure Function
in Leptoproduction

Apart from a common factor, the structure func-
tion is merely the sum of the cross sections for the
relevant processes. Therefore, it can also be repre-
sented as the sum of the contributions of the above
three processes [see Eq. (6)]; that is,

F c
2 (x,Q2) = F IC

2 (x,Q2) + FPGF
2 (x,Q2) (11)

+ Fψ
2 (x,Q2).

Within the parton model, the intrinsic-charm
structure function F IC

2 is expressed in terms of the
charmed-quark distribution in the proton, cp(x,Q2),
as

F IC
2 (x,Q2) = 2NICe

2
cxc

p(x,Q2), (12)

where xcp(x,Q2) is normalized to unity; ec =
2
3
is the

electric charge of a c quark; and NIC is, as before, the
level of the charmed-quark admixture in the proton.

The structure function FPGF
2 for the process of

photon–gluon fusion has the form [29]

FPGF
2 (x,Q2) =

1∫

√
1+4λx

dξ

ξ
G(ξ,Q2)f2

(
x

ξ
,Q2

)
,

(13)

where λ = m2
c/Q

2 and

f2(z,Q2) =
αs(ŝ)
π

e2
cπz (14)

×
{
Vc

[
−1

2
+ 2z(1 − z)(2 − λ)

]
+ [1 − 2z(1 − z)

+ 4λz(1 − 3z) − 8λ2z2] ln
1 + Vc
1 − Vc

}
.

Here, ŝ = Q2(1 − z)/z and Vc(ŝ) =
√

1 − 4m2
c/ŝ

is the c-quark velocity in the (γg) c.m. frame.
The contribution of a virtual J/ψ meson to the

charmed structure function, Fψ
2 , is determined by

expression (3), while the cross section for the process
J/ψp → c within the parton model is given by

σψ = 2
4πα
f2
ψ

∑

i

∫
dξidξcq

p(ξi)cψ(ξc)σ̂i(ŝ). (15)

The factor of 2 takes into account the scattering of
both c quarks and c̄ antiquarks. The index i is used
to label all of the proton partons on which a c quark
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
of the photon may be scattered. The functions qp(ξi)
and cψ(ξc) describe the momentum distributions of,
respectively, the ith light parton (a quark or a gluon)
in the proton and a c quark in the virtual J/ψ meson.
The cross section for c-quark scattering on a proton
parton depends on ŝ, σ̂i(ŝ), where ŝ is the square of
the parton energy in the reference frame comoving
with the center of mass of the scattered partons. As
is well known, the parton model is not covariant in
the presence of nonperturbative effects—for example,
those that are associated with the quark masses. In
performing integration in (15), it is therefore neces-
sary to choose a specific reference frame. In our case,
the photon–proton c.m. frame is the most conve-
nient reference frame. If use is made of the line-cone
variables, the quantity ŝ is expressed in terms of the
invariant variables x and Q2 as ŝ = m2

c + ξcξiQ
2/x.

The formulas that describe the cross sections σ̂i
for the c-quark-scattering processes cg → cg and
cq → cq in the lowest order in αs can be found in [8,
30]. For the sake of completeness, the expressions for
heavy-quark-scattering cross sections are given in
the Appendix, along with the expressions describing
the cross sections for cc̄-pair production in s-channel
processes. For the minimum momentum transfer,
a purely kinematical consideration yields t̂min = 0.
Since the cross sections for scattering processes
diverge at the lower limit of integration with respect
to the momentum transfer squared t̂, the problem
of the cutoff momentum transfer t̂min is the first
problem to be solved. At low momentum transfers,
perturbative QCD ceases to be valid because of
the growth of the coupling constant αs; therefore,
the cutoff momentum transfer cannot be determined
theoretically either. Different |t̂min| options, varying,
as a rule, between m2

c/4 and m2
cT , where mcT is the

transverse mass of the c quark, can be found in the
literature for processes involving charmed quarks.
We will consider the quantity t̂min as an unknown
parameter that is determined from experimental data.
We will employ the same cutoff-momentum-transfer
value |t̂min| in the argument of the strong-interaction
coupling constant [αs(|t̂min|)] as well, since the main
contribution to the total cross section comes from the
region around t̂ ∼ t̂min.

Since we consider the case where the process
γp → cc̄ + X is accompanied by a high momentum
transfer, the fusion of one of the c quarks with the
proton residue is improbable. Owing to quantum-
number conservation, the reaction final state must
therefore involve at least three particles, a proton and
two D mesons. It follows that, for the scattering of
3
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Fig. 2. Our results (curves) along with EMC experimental data [3] (points): (solid curve) sum of all contributions, (dashed
curve) contribution of a c quark from the photon, (dotted curve) contribution of photon–gluon fusion, and (dash-dotted curve)
contribution of pointlike-photon scattering on a c quark from the proton (intrinsic charm). The MRS(G) parametrization
was used to describe the distribution of gluons in the proton. The curves are presented for the free-parameter values of
t̂min = −3.01 GeV2 andNIC = 0.20% and for the c-quark mass ofmc = 1.51 GeV.
photon partons on proton partons, the general kine-
matical constraint assumes the form

(1 − x)
x

Q2 + m2
p ≥ (2mD + mp)2, (16)

wheremD andmp are, respectively, theD-meson and
the proton mass.

Additional kinematical constraints on the thresh-
old energies

√
ŝthr for elementary scattering processes

in the presence of a cutoff t̂min in the momentum
transfer squared are quoted in [8, 30]. We also present
these constraints in the Appendix.

The required limits of integration in (15) can easily
be obtained by analyzing the kinematics of parton
scattering. Considering that t̂min differs from zero, we
find that the limits on the relative momentum of a
parton in the proton and a c quark in the J/ψ meson
PH
are the following:

x[1 +
(
√
ŝthr + mc)2

Q2
] ≤ ξi ≤ 1, (17)

x(ŝthr −m2
c)

ξiQ2
≤ ξc ≤ 1.

3. RESULTS AND DISCUSSION

In our fitting procedure, we employed the dimuon
data obtained by the EMC for charm-production
cross sections σ(γp) and rescaled into charmed
structure functions by the method described in [2].
In comparing the results of the calculations with
the experimental data, we have taken into account
corrections to the intrinsic-charm structure function
F IC

2 both from higher orders of perturbative QCD and
from the nonzero values of the c-quark and the proton
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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mass (see [2, 17, 31]). In calculating the contribution
of photon–gluon fusion, the MRS(G) parametriza-
tion from the PDFLIB package [32] was used to
describe the distribution of gluons in the proton. This
parametrization was obtained by using the expression
for αs in the second order of perturbation theory and
the value of ΛQCD = 0.174 GeV.
By fitting the EMC data, we have obtained the fol-

lowing parameter values (at χ2/NDF = 0.74, which
demonstrates that the quality of our fit is quite high):

NIC = (0.2 ± 0.2)%, (18)

mc = 1.51 ± 0.03 GeV,

t̂min = −3.0 ± 0.3 GeV2.

The result quoted immediately above for theminimum
momentum transfer squared in c-quark scattering on
proton partons is approximately equal to the square
of the transverse mass of the c quark, as might have
been expected on the basis of general considerations.
The above value of mc = 1.51 ± 0.03 GeV is in
agreement with the value of mc = 1.50 GeV, which
was used in deriving the MRS(G) parametrization,
thereby demonstrating the self-consistency of our ap-
proach. The resulting fit is given in Fig. 2 along with
the data from [3]. It should be recalled that the esti-
mate obtained here for the level NIC of the intrinsic-
charm admixture in the proton is exaggerated, since
we have disregarded the contribution from the scat-
tering of light partons of the virtual photon on the c
quarks of the proton. In this connection, we note that
the statistical uncertainty in NIC is equal to the value
of the parameter itself, whence it follows that the dis-
regard of the term σq in expression (6) was justified.
It is worth mentioning that Odorico [8] performed

calculations for the charm-excitation mechanism in
hadron–hadron collisions; that is, he considered par-
ton scattering on the charmed quarks of the pro-
ton (on intrinsic charm). The contribution to charm
leptoproduction from the hadronic component of the
photon is analogous to charm excitation in hadron
interactions, which was considered in [8], where the
level of the intrinsic-charm admixture in the proton
was chosen to be 0.5% and where it was concluded
that the charm-excitation mechanism ensures the
required charm yield at ISR energies owing to a faster
growth of the cross section with energy (this makes
it possible to match ISR data with data from exper-
iments with fixed targets at lower energies). In [8],
the cutoff momentum transfer t̂min was taken to be
t̂min = m2

c/4 ≈ 0.6 GeV2, which is much less than
the value obtained here.
The results of the present study yield a much

smaller intrinsic-charm admixture in the proton and
a greater value of the cutoff momentum transfer t̂min.
Therefore, the contribution of parton scattering on
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the intrinsic charm to the charmed-particle yield in
hadron–hadron collisions must be at least one order
of magnitude lower than that which was obtained
in [8] and is unable to explain the large charmed-
particle yield obtained in experiments at the ISR.
Thus, the discrepancy between the ISR data and
data from experiments at lower energies has not been
removed.
From the results obtained in the present study, it

follows that, even if use is made of a soft gluon distri-
bution, the EMC data can be described without resort
to the hypothesis that the proton features a sizable
intrinsic-charm admixture. The distinction between
the data of the EMC experiment and the predictions
based on the mechanism of photon–gluon fusion can
be completely explained by the contribution of the
hadronic component of the photon. In any case, the
mechanism being considered reduces substantially
the discrepancy between the predictions of the model
of photon–gluon fusion and the data of the EMC ex-
periment on the production of charmed particles and,
accordingly, the required admixture of Fock states in
the proton that involve charmed quarks.
On the other hand, we had to introduce a non-

perturbative charmed component in the photon wave
function. The reason that the photon does involve,
in contrast to the proton, a sizable nonperturbative
admixture of c quarks may be the following: as was
indicated in [24], the nonperturbative regime in the
photon begins at Q2 ≈ 5.5 GeV2, but, for the proton,
the DGLAP equations describe well the evolution of
the structure function from Q2 ≈ 1–2 GeV2. In view
of this, there is no need for a sizable nonperturbative
admixture of charmed states in the proton.
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APPENDIX

In the lowest order in αs, the total cross sections
for c-quark scattering [30] are given by (they are
presented in the same form as in [8])

dσ(qq̄ → cc̄)
dt̂

=
4π
9ŝ2

α2
s(4m

2
c)

× (m2
c − t̂)2 + (m2

c − û)2 + 2m2
c ŝ

ŝ2
;

σ(qq̄ → cc̄) =
8π
27ŝ

α2
s(4m

2
c)(ŝ + 2m2

c)

√
1 − 4m2

c

ŝ
;

ŝthr = 4m2
c ;

dσ(gg → cc̄)
dt̂

=
π

16ŝ2
α2
s(4m

2
c)
3
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×
[
12
ŝ2

(m2
c − t̂)(m2

c − û)

+
8
3

(m2
c − t̂)(m2

c − û) − 2m2
c(m2

c + t̂)
(m2

c − t̂)2

+
8
3

(m2
c − t̂)(m2

c − û) − 2m2
c(m

2
c + û)

(m2
c − û)2

− 2m2
c(ŝ− 4m2

c)
3(m2

c − t̂)(m2
c − û)

− 6
(m2

c − t̂)(m2
c − û) + m2

c(û− t̂)
ŝ(m2

c − t̂)

− 6
(m2

c − t̂)(m2
c − û) + m2

c(t̂− û)
ŝ(m2

c − û)

]
;

σ(gg → cc̄) =
π

3ŝ
α2
s(4m

2
c)
[
−1

4

(
7 +

31m2
c

ŝ

)
x

+
(

1 +
4m2

c

ŝ
+

m4
c

ŝ2

)
, ln

1 + x

1 − x

]
,

where

x =

√
1 − 4m2

c

ŝ
; ŝthr = 4m2

c ;

dσ(qc → qc)
dt̂

=
4π

9(ŝ −m2
c)2

α2
s(−t̂min)

× (m2
c − û)2 + (ŝ−m2

c)2 + 2m2
c t̂

t̂2
;

σ(qc → qc) =
4π

9(ŝ−m2
c)2

α2
s(−t̂min)

×
[(

1 − 2ŝ
t̂min

)(
(ŝ−m2

c)2

ŝ
+ t̂min

)

−2ŝ ln
(ŝ−m2

c)2

−t̂minŝ

]
,

where

t̂min = 0, t̂max = −(ŝ−m2
c)

2/ŝ,

ŝthr = m2
c −

1
2
t̂min +

(
−m2

c t̂min +
1
4
t̂2min

)1/2

;

dσ(gc → gc)
dt̂

=
π

16(ŝ −m2
c)2

α2
s(−t̂min)

×
[
32(ŝ −m2

c)(m
2
c − û)

t̂2

+
64
9

(ŝ−m2
c)(m2

c − û) + 2m2
c(ŝ + m2

c)
(ŝ−m2

c)2

+
64
9

(ŝ −m2
c)(m

2
c − û) + 2m2

c(û + m2
c)

(m2
c − û)2

+
16
9

m2
c(4m

2
c − t̂)

(ŝ−m2
c)(m2

c − û)

+ 16
(ŝ −m2

c)(m2
c − û) + m2

c(ŝ− û)
t̂(ŝ−m2

c)

−16
(ŝ −m2

c)(m2
c − û) −m2

c(ŝ− û)
t̂(m2

c − û)

]
;

σ(gc → gc) =
π

(ŝ−m2
c)2

α2
s(−t̂min)

×
[(

1 +
4
9

(
ŝ + m2

c

ŝ−m2
c

)2
)
(
t̂min − t̂max

)

+
2
9
t̂2min − t̂2max
ŝ−m2

c

+ 2(ŝ + m2
c) ln

t̂min

t̂max

+
4
9
ŝ2 − 6m2

c ŝ + 6m4
c

ŝ−m2
c

ln
ŝ−m2

c + t̂min

ŝ−m2
c + t̂max

+ 2(ŝ −m2
c)

2

(
1

t̂max
− 1

t̂min

)

+
16
9
m4
c

(
1

ŝ−m2
c + t̂max

− 1
ŝ−m2

c + t̂min

)]
;

where

t̂max = −max
(
ŝ−m2

c + t̂min, (ŝ −m2
c)/ŝ

)

(in order to ensure fulfillment of the inequality

û−m2
c < t̂min),
ŝthr =






m2
c −

1
2
t̂min +

(
−m2

c t̂min +
1
4
t̂2min

)1/2

, −t̂min <
1
2
m2
c ,

m2
c − 2t̂min, −t̂min >

1
2
m2
c .
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Abstract—The amplitudes of hadron–hadron forward elastic scattering at high energies are investigated
on the basis of analyticity and crossing symmetry. A universal uniformizing variable for them is proposed,
and the formulas for crossing-even and crossing-odd amplitudes are derived. The same parameters in these
formulas determine the real and imaginary (total cross sections) parts of the amplitudes. The analysis of the
parameters determined from experimental data clearly points to the quark–gluon structure of hadron total
cross sections. The total cross sections for hyperon–proton scattering are predicted. They are consistent
with experimental data and, in particular, with the new SELEX-collaboration measurement σtot(Σ−p).
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The modern theory of strong interactions (QCD)
involves a number of unsolved problems, for instance,
the problem of whether glueballs exist or not. Among
them, there is the problem of analytic properties of
physical amplitudes. In [1], Ohme showed that, for
gauge theories quantized on the basis of BRST alge-
bra [2], the confinement conditions can be formulated
so that physical amplitudes do possess the analytic
properties and conditions of crossing symmetry es-
tablished earlier [3]. In particular, the forward πp-
scattering amplitude has two nucleon poles and two
cuts corresponding to direct and cross processes. The
problem of whether double dispersion relations are
valid or not still remains open in gauge theories.

Below, Ohme’s result is used to construct a model
of the amplitude of scattering of a hadron A on a pro-
ton. This model allows one to determine the quark–
gluon structure of hadron total cross sections on an
experimental basis, avoiding controversial questions
on the Pomeron multicomponent structure [4–6].

2. UNIVERSAL RIEMANN SURFACE
OF THE FORWARD SCATTERING

AMPLITUDE

The notion of a universal Riemann surface of the
forward scattering amplitude for hadron–hadron pro-
cesses at high energies arises when one introduces
the well-known variable

ν =
s− u

4Mµ
,

∗This article was submitted by the authors in English.
1)University of Lodz, Poland.
1063-7788/03/6602-0334$24.00 c©
where s, u are usual Mandelstam variables andM,µ
are the masses of colliding particles. Thresholds of
any elastic hadron–hadron process corresponding to
the direct and cross reactions in the s plane trans-
form into the points ν = ±1. The thresholds of all
inelastic processes (direct and crossed) lie on the
cuts (−∞,−1], [+1,+∞). They make the Riemann
surface of a scattering amplitude as a function of
ν infinitely sheeted. This property of the Riemann
surface can be modeled by a particular choice of the
uniformizing variable, the same for all hadron–hadron
processes,

w(ν) = (1/π) arcsin(ν). (1)

The Riemann surface of function w(ν) is just what
we call the universal Riemann surface. It has three
branch points: two of the square-root type at the
points ν = ±1 and one of the logarithmic type at in-
finity. The functionw(ν) is suitable for taking account
of the crossing symmetry of amplitudes of hadron–
hadron scattering FA± . We choose the latter so that
the equality

ImFA± = σĀptot ± σAptot (2)

will be valid on the upper edge of the right-hand cut of
the ν plane; then, the condition of crossing symmetry
is

F±(ν) = ±F±(−ν). (3)

In addition, the amplitudes obey the condition of real-
ity

F ∗
±(ν) = −F±(ν∗). (4)

In the w plane, a physical sheet of the ν plane is
mapped into the strip |Rew| ≤ 1/2,whose boundaries
2003 MAIK “Nauka/Interperiodica”
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are images of cuts of the ν plane. We call it the phys-
ical strip in the w plane. Nonphysical sheets of the
ν plane transform into strips |Re (w±n)| ≤ 1/2 (n =
1, 2, . . . ). This clearly demonstrates that the universal
Riemann surface is infinitely sheeted.

Let w = x+ iy. Then, owing to Eqs. (3) and (4),
on the boundary of the physical strip, we find

F ∗
±(1/2 + iy) = ∓F±(−1/2 + iy). (5)

Let us expand the amplitudes F±(w) into Taylor se-
ries with the center at the point w0 = iy0. Their con-
vergence radius is determined by the distance from
the point w0 to the nearest pole corresponding to the
resonance on an unphysical sheet. The parameters
of those expansions determine both the real and the
imaginary parts of amplitudes F±(w). Below, we will
use only the imaginary parts of amplitudes (the total
cross sections) that can be represented by the follow-
ing converging power series:

ImF+(1/2 + iy) =
∑

n≥1

(
1
2

)2n−2

σ
(n)
+ (y), (6)

σ
(n)
+ (y) =

(−1)n+1

(2n − 2)!
d2n−2σ

(1)
+ (y)

dy2n−2
,

σ
(1)
+ (y) =

∑

m≥1

am(y − y0)m−1,

ImF−(1/2 + iy) =
∑

n≥1

(
1
2

)2n−1

σ
(n)
− (y),

σ
(n)
− (y) =

(−1)n+1

(2n − 2)!
d2n−2σ

(1)
− (y)

dy2n−2
,

σ
(1)
− (y) =

∑

m≥1

bm(y − y0)m−1.

Expansions (6) satisfy Eq. (5). It is instructive
to compare the argument of expansions (6) with
commonly used expressions, for instance, (s/s0)α,
s0 = 1 GeV2 in [4, 6, 7] and (p/20)α in [8] (here-
after, p is the momentum in the laboratory sys-
tem). However, when one attempts to compare two
different parametrizations of total cross sections in
the region of ∼100 GeV/c, the function ln(p/p0)
arises naturally. Let us derive it from formula (6).
From (1), it follows that y = ln(ν +

√
ν2 − 1). For

s
M2, we have y ∼ ln(2p/µ). In this case, the
function (y − y0) ∼ (1/π) ln(p/p0) is the argument
of expansions (6). Here, the quantity p0 has a clear
mathematical meaning—it is the center of the ex-
pansion into the Taylor series, and at the same time,
physically, it makes p dimensionless. We stress once
more that formulas (6) are valid in the vicinity of point
y0, and they cannot be used to estimate the behavior
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
of cross sections when s→ ∞; discussions on the
Pomeron structure refer to the region where they are
not applicable.

3. QUARK–GLUON STRUCTURE
OF HADRON TOTAL CROSS SECTIONS

Formulas (6) were employed to analyze the exper-
imental data on pp, p̄p, K±p, and π±p total cross
sections [9]. The results are collected in the table.
Twenty-four coefficients am, bm are determined by
300 experimental points and describe the behavior
of cross sections in the interval p ∈ (10, 103) GeV/c.
Values of y0 correspond to p = 100 GeV/c, at which
the correlations between parameters am, bm are min-
imal. In the vicinity of y0, these total cross sections
have minima, and the real parts of amplitudes cross
zero. Twelve coefficients bm display the simple depen-
dence

(bm)pp : (bm)πp : (bm)Kp : (bm)np = 5 : 1 : 2 : 4.
(7)

The mean ratios are calculated from the table to be as
follows:
(
bpp
bπp

)
= 5.37 ± 0.22,

(
bKp
bπp

)
= 2.16 ± 0.12,

(
bnp
bπp

)
= 4.79 ± 0.23.

They are in good agreement with ratios (7), except
for the last one. It differs from (7) by three statistical
errors as a result of large χ2/n.d.f. for np scattering.
Therefore, it is expedient to use it below only for
qualitative estimations. Relations (7) are not new and
are written in order to demonstrate that the analysis
of coefficients am, bm is important for determining
quark and other degrees of freedom of hadrons. It
is known [8] that relationships (7) are obtained from
the consideration of annihilation components of am-
plitudes and are proportional to the number of dual
diagrams of scattering of a hadron on a proton,

nd(Ap) = 2NA
ū +NA

d̄ , (8)

whereNA
ū andNA

d̄
are the numbers of antiquarks ū, d̄

in hadron A.
It is of great interest but difficult to analyze the

crossing-even part of the scattering amplitude. The
additive quark model (AQM) [10] predicts the follow-
ing ratios:

σpp : σπp : σKp : σnp = 3 : 2 : 2 : 3.

However, from our table, it is seen that only the co-
efficients a1 and a3 approximately follow that depen-
dence. The difference (a1)pp − (a1)np = 1.02 ± 0.40
can be considered compatible with zero, since it does
3
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The values of the parameters am, bm (all in mb), and y0 in Eq. (6)

pp πp Kp np

a1 84.51 ± 0.18 49.77± 0.09 41.03± 0.12 83.49 ± 0.36

a2 −4.85 ± 0.36 1.92 ± 0.19 5.16 ± 0.25 −3.48 ± 0.62

a3 15.97± 0.7 10.37± 0.34 7.37 ± 0.48 8.72 ± 1.48

b1 8.52 ± 0.17 1.62 ± 0.07 3.51 ± 0.12 7.85 ± 0.26

b2 −13.82 ± 0.79 −2.8 ± 0.17 −5.65± 0.51 −12.74± 1.24

b3 15.33 ± 1.7 2.7 ± 1.8 5.04 ± 0.97 12.36 ± 2.97

y0 1.71 2.31 1.91 1.71

χ2/n.d.f. 112/109 82/73 48/38 96/50
not exceed three standard deviations, and the de-
scription of process np is not quite satisfactory. We
will neglect the distinction between processes pp and
np, though, for the coefficient a3, this assumption is
valid only due to χ2/n.d.f. being large in magnitude.
At the same time, the difference (a1)πp − (a1)Kp =
8.74 ± 0.15 is significant and, together with other
coefficients, determines 30% accuracy of the AQM.
The values of coefficients a2 from the table do not
comport with the AQM predictions, and therefore,
they are very important for choosing new models.
Some attempts at refining the AQM are known [11,
12]. All of them suggest that the amplitude should be
supplemented with terms bilinear in quark numbers of
hadronA. In this case, the amplitude can be described
satisfactorily under different assumptions on the form
of bilinear terms. However, the clear physical justifi-
cation of bilinear terms is rather difficult.

Below, we construct a new model by using the
known idea of quarks being confined in a hadron by
gluons. Then, it is natural to assume that the total
cross section of scattering of hadron A on a proton
contains a part that describes gluon–gluon interac-
tion. With this in mind, we set

am = αm + βm ·NA
q + γm ·NA

q ·NA
ns, (9)

where NA
q is the total number of quarks, NA

ns is the
total number of nonstrange quarks in hadron A, and
the numbers αm do not depend on the quark content
of hadron A [8]. The numbers αm determine the frac-
tion of the total cross section corresponding to the
gluon–gluon interaction. It is just the gluon degree
of freedom of hadrons A and p that is responsible for
them. The assumption on am [Eq. (9)] corresponds to
the hypothesis of Gershtein and Logunov [13]. They
argue that the constant of the Froissart limit does
not depend on the guark content of hadron A, but
that it does depend on glueballs and is the same for
all processes. The hypothesis has been verified by
P

Prokoshkin [14] on the basis of similar experimental
data as we use. In our model, one should attribute
the Froissart behavior not to the variable y but to y0.
That justifies Eq. (9). The numbers (am)pp, (am)πp,
(am)Kp from the table determine αm, βm, γm. Then,
the predictive power of hypothesis (9) can be verified
for the values of total cross sections of hyperon–
proton interactions. In [15], results on the measure-
ment of total cross sections of Σ−p and Ξ−p in the
range of momenta (74.5, 136.9) GeV/c are presented.
In this range, the total cross sections vary slightly,
and to compare the predictions of the model given
by formulas (1), (6), and (8), we take the momentum
p = 101 GeV/c. In this case, the theoretical and ex-
perimental results are as follows:

σΞ−p =
(29.25 ± 0.5mb)th

(29.12 ± 0.22mb)exp
,

σΣ−p =
(34.8 ± 0.2mb)th

(33.3 ± 0.3mb)exp
.

Similar data [16] for Λp and Σ−p scattering at
20 GeV/c are

σΛp =
(33.3 ± 0.5mb)th

(34.7 ± 3mb)exp
,

σΣ−p =
(34.2 ± 0.5mb)th

(34 ± 1mb)exp
.

Recently, the SELEX collaboration has published the
data on Σ−p at p = 609 GeV/c [17]. The comparison
with predictions of the model is

σΣ−p =
(35 ± 7.5mb)th

(37 ± 0.7mb)exp
.

HYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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Although the obtained value of the total cross section
is not as accurate as in [18], it should be considered
satisfactory. In [4–6, 11, 18], devoted to the analysis
of total cross sections, the errors of predicted values
were not calculated, but they increase rapidly in the
region of extrapolation.

4. CONCLUSION

A uniformizing variable for hadron–hadron for-
ward scattering at high energies was proposed on the
basis of analyzing the analytic properties of physi-
cal scattering amplitudes [1]. If one represents the
scattering amplitudes as Taylor series in that variable
and takes crossing symmetry into account, one can
once more be convinced on an experimental basis
that hadrons possess the quark–gluon structure. The
total cross sections predicted for scattering of strange
hadrons on a proton are in agreement with experiment
in a wide energy range. The gluon–gluon part of
the total cross sections at momenta p = 100 GeV/c
amounts to about 10%.
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Abstract—The field-correlatormethod is used to calculate nonperturbative dynamics of quarks in a baryon.
The general expression for the 3q Green’s function is obtained using the Fock–Feynman–Schwinger
(world-line) path-integral formalism, where all dynamics is contained in the 3q Wilson loop with spin-
field insertions. Using the lowest cumulant contribution for the Wilson loop, one obtains a Y -shaped
string potential vanishing at the string-junction position. Using the einbein formalism for the quark
kinetic terms, one automatically obtains constituent quark masses, calculable through the string tension.
The resulting effective action for 3q plus Y -shaped strings is quantized in the path-integral formalism
to produce two versions of Hamiltonian: one is in the c.m. and the other is in the light-cone system.
The hyperspherical formalism is used to calculate masses and wave functions. Simple estimates in the
lowest approximation yield baryon masses in good agreement with experiment without fitting parameters.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Baryons have been an object of an intensive the-

oretical study for a long time [1–11]. Both the per-
turbative dynamics and confinement interaction were
considered decades ago [1–5] and a series of papers
by Isgur and collaborators [7, 8] has clarified the
structure of the baryon spectrum in good general
agreement with experiment. In those works, dynam-
ics was considered as QCD motivated and relativis-
tic effects in kinematics have been accounted for.
Recently, a more phenomenological approach based
on the large-Nc expansion for baryons [12–15] was
applied to baryon spectra [16, 17] and clearly demon-
strated the most important operators forming the
spectrum of 70-plet.

Summing up the information from the quark-
based model, one has a picture of baryon spectra
with a basically oscillator-type spectrum, modified
by the presence of spin-dependent forces and other
corrections. For example, the orbital excitation with
∆L = 1 “costs” around 0.5 GeV, while the radial
excitation (actually two types) amounts to around
0.8 GeV. Moreover, hyperfine splitting, which in
experiment is large (for ∆–N system it is 0.3 GeV),
is underestimated using perturbative forces with
αs ≈ 0.4, and spin–orbit splitting, typically small
in experiment, needs some special cancellations in
theory [18].

Moreover, some states cannot be well explained
in the standard quark models. A good example is

∗This article was submitted by the author in English.
1063-7788/03/6602-0338$24.00 c©
N∗(1440), which is too low to be simply a radial
excitation, and moreover its experimental electropro-
duction amplitudes [19] are in evident conflict with
theory [20].

This example is probably not unique, and one can
notice an interesting pattern in “radial” excitations of
N , ∆, Λ, and Σ: in all cases, the three lowest states
M1, M2, and M3 have intervals ∆1 ≡M2 −M1 ∼
400–500MeV,∆2 ≡M3 −M1 ∼ 600–700MeV.

Namely, in

N(939) ∆(1232) Λ(1116) Σ(1193)

N(1440) ∆(1600) Λ(1600) Σ(1660)

N(1710) ∆(1920) Λ(1810) Σ(1770)

Σ(1880)

∆1 = 500 ∆1 = 370 ∆1 = 480 ∆1 = 470

∆2 = 770 ∆2 = 690 ∆2 = 700 ∆2 = 600

one can see that ∆2 corresponds to usual radial ex-
citation, while the energy interval ∆1 cannot be ex-
plained in a simple way in standard quark models.

One can say more about difficulties with the inter-
pretation of the Λ(1405) state, quantitative descrip-
tions of∆N transitions, etc. [19, 20].

In this situation, it sounds reasonable to apply new
dynamical approaches that are directly connected to
2003 MAIK “Nauka/Interperiodica”



NONPERTURBATIVE QUARK DYNAMICS 339
the basic QCD Lagrangian and where all approxima-
tions can be checked both theoretically and numeri-
cally on the lattice.

The field correlator method (FCM) started in [21,
22] belongs here (for a review, see [23] and for more
dynamical applications [24]). It is aimed at express-
ing all observables in terms of gauge-invariant field
correlators. Its use is largely facilitated by recent
observation on the lattice [25, 26] that the lowest
bilocal correlator gives the dominant contribution to
the quark–antiquark forces, while higher correlators
contribute around 1%. The use of FCM for meson
spectra [27, 28] has shown that gross features of
spectra can be calculated through only string tension,
while fine and hyperfine structure requires knowl-
edge of other characteristics of bilocal correlator—the
gluon correlation length [29], which is known from
lattice data [30] and analytic calculations [31, 32].

In dynamical applications of the FCM to baryon
spectra, two different schemes are currently used:
the relativistic Hamiltonian method (RHM) and the
method of Dirac orbitals. The first was suggested
in [33, 34] and used for baryon Regge trajectories
in [35, 36] and for magnetic moments in [37]. The
second method was suggested in [38] and exploited
to calculate baryon magnetic moments in [39].

Recently an important element was added to the
RHM for baryons; namely, all spin-dependent forces
between quarks have been calculated in the same
Gaussian approximations [40]. To finalize the RHM
for baryons, one still needs to construct the full bary-
onic Hamiltonian taking into account the energy of
string motion, nonperturbative self-energy correc-
tions [41], etc. The present paper is aimed at fulfilling
this task. It contains the detailed derivation of the full
baryonic Hamiltonian both in the c.m.s. and in the
light-cone system of coordinates, simple estimates of
spectra for spin-averaged masses, and a preparatory
discussion of future explicit detailed calculations.

The paper is organized as follows. In Section 2,
the 3q Green’s function is written using the Fock–
Feynman–Schwinger (FFS) representation [42]. In
Section 3, the c.m. and relative coordinates are intro-
duced and the einbein field µ(t) is introduced which
will give rise to the quark constituent mass. In Sec-
tion 4, the resulting effective action is quantized and
the full c.m. Hamiltonian is explicitly written.

Section 5 is devoted to the derivation of the light-
cone Hamiltonian, its physical interpretation, and
correspondence to the partonic model.

In Section 6, the construction of the baryon wave
function is discussed, as well as expansion of its co-
ordinate part into a sum of hyperspherical harmonics
and analytic estimates of spin-averaged spectra are
given.
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Spin-dependent forces are discussed in Section 7,
and Section 8 is devoted to conclusions.

2. BARYON GREEN’S FUNCTION

One can define initial and final states of a baryon
as a superposition of 3q states

Ψin,out(x(1), x(2), x(3)) (1)

= Γin,outea1a2a3

∏
ψai
γi (x

(i), x(0)),

where ai are color indices, while γi contain both flavor
and Dirac indices, and a sum over appropriate com-
binations of these last indices is assumed with Γ as
coefficients. Moreover, x(i) and x(0) are coordinates
of quarks and of the string junction, respectively.

The 3q Green’s function can be written as

G3q(x(i)|y(k)) =

〈
trY Γout

3∏

i=1

S
(i)
aibi
(x(i), y(i))Γin

〉
,

(2)

where we have neglected the quark determinant and
defined

trY =
1
6

∑

ai,bi

ea1a2a3eb1b2b3 (3)

and S(i)(x(i), y(i)) is the quark Green’s function in
the external gluonic fields (vacuum and perturbative
gluon exchanges). For the latter, one can use the
exact FFS form [22, 24, 42]

S(x, y) = (m− D̂)

∞∫

0

ds(Dz)xye−KWz(x, y) (4)

× exp



g
s∫

0

σµνFµν(z(τ))dτ



 ,

where Wz is the phase factor along the contour
Cz(x, y) starting at y and finishing at x, which goes
along a trajectory which is integrated in (Dz)xy ,
K = m2s+ (1/4)

∫ s
0 ż

2dτ ,

Wz(x, y) = P exp



ig
x∫

y

Aµdzµ



, (5)

and P is the ordering operator, while

σµνFµν =



σ ·B σ · E
σ ·E σ · B



 . (6)

Here, E and B are color-electric and color-
magnetic fields, respectively. The average over gluon
3



340 SIMONOV
fields, implied in (2) by angular brackets, is con-
venient to perform after the non-Abelian Stokes
theorem is applied to the product ofWz .

Consider to this end, the gauge-invariant quantity

W3(x, y) ≡ trY
3∏

i=1

Wzi(x, y). (7)

We can now write the non-Abelian Stokes theo-
rem expressing Aµ inWzi (e.g., using a general con-
tour gauge) through Fµν(u, x(0)) =
φ(x(0), u)Fµν(u)φ(u, x(0)), where φ(x, y) is a parallel
transporter, and it is convenient to choose x(0) at the
common point x = x(1) = x(2) = x(3).

Making final points also coincident, y = y(1) =
y(2) = y(3), one can use the identity

trY φa1b1(x, y)φa2b2(x, y)φa3b3(x, y) = 1 (8)

and rewriteW3 as (the simplest way to derive (9) and
subsequent equations is to choose in the gauge in-
variant expressions (7), (9) the contour gauge, where
φab = δab)

〈〈W3(x, y)〉〉 = trY exp
∞∑

n=0

(ig)n

n!
(9)

×
∫

∑
Si

〈〈F (1) . . . F (n)〉〉ds(1) . . . ds(n),

where, in F (i) and the surface elements ds(i), the
Lorentz indices and coordinates are omitted, and
double angular brackets imply cumulants, as de-
fined in [23]. Note that integration in (9) is over all
three lobes Si, made of contours Czi(x, y) and the
string-junction trajectory z(Y )(s), with z(Y )(0) = y,
z(Y )(1) = x. The actual form of z(Y )(s) is defined by
the minimal action principle and does not necessarily
coincide with the trajectory of the center of mass of
the 3q system.

For this case of a three-lobe loop as well as for
several separate loops, one can use the following
gauge-invariant averaging formula, where both field
correlators are transported to one point x and a, b, and
c are fundamental color indices:

〈F (u, x)abF (v, x)cd〉 (10)

=
〈tr(F (u, x)F (v, x))〉

N2
c − 1

(
δadδbc −

1
Nc

δabδcd

)
.

Now, whenever F (u, x) and F (v, x) are on the same
lobe, then indices b and c coincide and one obtains

trY 〈F (u, x)abF (v, x)bd〉 =
〈tr(F (u, x)F (v, x))〉

Nc
,

(11)
PH
where (8) was used. For u and v on different lobes,
one instead has

trY 〈F (u, x)abF (v, x)cd〉 = −〈tr(F (u, x)F (v, x))〉
Nc(Nc − 1)

.

(12)

As the last step in this chapter, one can include the
quark spin operator σµνFµν in the cluster expansion
(9), with the help of the relation
〈
Fµν(u, x) exp



ig
∫

S

Fλσ(v, x)dsλσ(v)




〉

(13)

=
1
ig

δ

δsµν(v)

〈
exp



ig
∫

S

Fλσ(v, x)dsλσ(v)




〉
.

Exponentiating the operatorFµν , one arrives at the

shift operator exp
[
1
i

(
sµν

δ

δsµν(u)

)]
and finally gets

[cf. Eq. (4)]
〈
W3 exp



g
3∑

i=1

σ(i)
µν

Si∫

0

Fµν(z(i)(τ (i)))dτ (i)




〉

(14)

≡ 〈W3 exp(gσF )〉 = trY exp

[ ∞∑

n=0

(ig)n

n!

×
∫

∑
Si

〈〈F (1) . . . F (n)〉〉dρ(1) . . . dρ(n)
]
,

where we have defined dρ(n) =
∑3

i=1 dρ
(i)(n),

dρ(i)(n) = ds(i)µnνn(u
(n)) +

1
i
σ(i)
µnνndτ

(i)(n). (15)

Here, index i = 1, 2, 3 refers to three lobes Si of the
total surface, and it is understood that, whenever F (i)
under the cumulant sign 〈〈. . . 〉〉 is multiplied by dτ (i),

it is taken at the point z(i)(τ (i)
n ), lying on the quark

trajectory z(i)(τ) which forms the boundary of the
lobe (i).

Inserting (4) and (14) into (2), one obtains

G3q(x, y) = trL

[
Γout

3∏

i=1

(mi − D̂(i))R (16)

×
∞∫

0

dsi(Dz(i))xye−Ki〈W3 exp(gσF )〉Γin

]
.

Here, trL is the trace over Lorentz indices, and
(mi − D̂(i))R is the value of operator (mi − D̂(i))
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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when acting on the path integral, which was found in
[43] to be

(mi − D̂(i))R = mi − ip̂(i). (17)

Here, p(i) is the operator of momentum of the quark i.
Equations (16) and (14) give an exact and most gen-
eral expression for the 3q Green’s function, which is,
however, intractable if all field correlators are retained
there.

To simplify, we shall use the observation from lat-
tice calculations [25, 26] that the lowest (Gaussian)
correlator gives the dominant contribution (more than
95%) to the staticQQ̄ quark potential. Assuming that
the situation is similar for the 3Q case and also for
light baryons, we now retain in (14) and (9) only the
lowest cumulant 〈〈FF 〉〉 and express it in terms of
scalar functionsD andD1 as in [21]:

g2

Nc
〈tr(Fµν(u, x)Fρλ(v, x))〉 (18)

= (δµρδνλ − δµλδνρ)D(u− v)

+
1
2

[
∂

∂uµ
(u− v)ρδνλ + perm.

]
D1(u− v).

Here, we have replaced parallel transporters
φ(u, x)φ(x, v) by the straight-line transporter φ(u, v),
since, for the generic situation with |u− v| ∼ Tg ,
|u− x| ∼ |v − x| ∼ R, R � Tg, the former and the
latter are equal up to the terms O((Tg/R)2). Now,
in view of (12) and (13), one can write in Gaussian
approximation

〈W3 exp(gσF )〉 = exp
[
− g2

2Nc
(19)

×
3∑

i=1

∫
〈tr(F (u)F (v))〉dρ(i)(u)dρ(i)(v)
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+
g2

Nc(Nc− 1)
∑

i<j

∫
〈tr(F (u)F (v))〉dρ(i)(u)dρ(j)(v)

]
,

where dρ(i) is defined in (15). Here, 〈trFF 〉 can be
expressed in terms ofD andD1, and one has a closed
expression for the term 〈W3 exp(gσF )〉, which acts as
a dynamical kernel in the path integral (16).

Now, for large sizes of Wilson loopW3, such that
R(i) � Tg, one can discard D1 and retain D in (18),
since only the latter ensures an area law (and, more-
over, lattice data [30] show that D1 � D). Then, the
diagonal terms in the sum of the exponent in (19) can
be written as (neglecting the spin-dependent part for
the moment)

〈W3〉diag = exp(−σ(S1 + S2 + S3)), (20)
where Si is the area of the minimal surface between
trajectory of quark (i) and trajectory of string junction
(Y trajectory), and we have used the relation [21, 22]

σ =
1
2

∫
d2xD(x). (21)

Let us turn now to nondiagonal terms in (19).
Since D(x) and D1(x) die exponentially fast for
x > Tg [30–32], only a region of width Tg around
the Y trajectory contributes to these terms, which
one can write as

VnondiagT =
∑

i<j

V
(ij)
nondiag = − g2

Nc(Nc − 1)
(22)

×
∑

i�=j

∫
〈tr(Fµν(u)Fρλ(v))〉ds(i)µν(u)ds

(j)
ρλ (v).

Separating out time components, u = (u4,u) and
v = (v4,v), one can write for theD contribution
V
(D)
nondiag =

1
Nc − 1

∑

i<j

∫
D(u(i) − v(j))d(u(i)

‖ − v
(j)
‖ )d

(
u

(i)
⊥ + v

(j)
⊥

2

)
d(u(i)

4 − v
(j)
4 ), (23)
where we have introduced for u and v parallel and
transverse components on the lobe Si with respect to
the lobe Sj .

Since |u(i) − v(j)| = [(u(i)
4 − v

(j)
4 )2 + (u(i)

‖ −
v
(j)
‖ )2 + (u(i)

⊥ − v
(j)
⊥ )2]1/2 grows fast with |u⊥ − v⊥|,

one can estimate (20), (23) as

V
(D)
nondiag ∼ σTg, V

(D)
diag = σ(r(1) + r(2) + r(3)), (24)

where r(i) = z(i) − z(Y ), i.e., the difference of quark
and string-junction coordinates at a given moment
of time. Being always smaller than V
(D)
diag for large

r(i), nevertheless, V (D)
nondiag brings about an interesting

effect for small r(i). Estimating integrals in (23) for
small r(i), r(i) � Tg, and using forD(x) the Gaussian
form,D(x) = D(0) exp(−x2/(4T 2

g )), one has

Vconf = Vdiag + Vnondiag =
σ

4
√
πTg

∑

i<j

(
r(i) − r(j)

)2
.

(25)
3
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It is clear that for a symmetric configuration r(1) =
r(2) = r(3), one has Vconf = 0. To study this cancel-
lation further, let us take into account that, if the
triangle made of quarks has all angles less than 120◦
(since the string junction is at the Torricelli point),
then the string junction is inside this triangle. In this
case, one can write

∑

i<j

(r(i) − r(j))
2
= 2((r(1))2 + (r(2))2 (26)

+(r(3))2) + r(1)r(2) + r(2)r(3) + r(1)r(3);

i.e., Vconf vanishes quadratically in differences of quark
distances from the string junction. In practice, this
brings about a strong effective cancellation in Vconf for
a 3q system with equal masses at approximately equal
distances. Numerically and analytically, this fact was
discovered first in [44] for a static 3Q potential. It
was argued there that Vnondiag brings about a smaller
slope of V (3Q) at small to intermediate distances, as
was indeed found on the lattice [45]. An assumption
that a triangular 3q string configuration is responsi-
ble for the smaller slope, however, cannot explain it,
since that configuration is impossible to construct in
a gauge-invariant way [46]. Explicit expressions for
V (3) in the general case are given in [46]. Here and in
[46] a missing in [44] factor of−1/2 in front of Vnondiag
is restored.

3. GAUSSIAN REPRESENTATION
FOR THE EFFECTIVE ACTION

OF QUARKS AND STRING

Consider now the exponent of the FFS represen-
tation for the 3q Green’s function (16), (19) in the
simplified case when (i) spin interaction is neglected
and (ii) large distances |Ri| � Tg are taken into ac-
count.

In this situation, one can use the form (20) instead
of (19) and write the exponential term in (16) as

G3q(x, y) (27)

= trL



Γout

∏
(mi − ip̂i)

∞∫

0

dsi(Dz(i))xyΓin



 e−A,

where A plays the role of effective action,

A =
3∑

i=1

(Ki + σSi). (28)

Our purpose is finally to construct the effective
Hamiltonian, considering A as an effective action for
three quarks and the composite string with the string
junction. To achieve this goal, one must (i) go over
from the proper time si to real time integration in 4d
P

Euclidean spacetime (later on to be transformed into
Minkowskian time), and (ii) transform the Nambu–
Goto form of the lobe area Si [see below in (35)] into a
quadratic form, as is necessarily done in string theory
[since otherwise the path integral (27) is not properly
defined]. Both operations are the same as in the qq̄
case, considered in [34], and we shall follow closely
that procedure.

The resulting Hamiltonian depends on the choice
of the hypersurface, and for the qq̄ system both the
c.m. [34] and light-cone [47, 48] cases were consid-
ered.

Below, in the next chapter, the c.m. Hamiltonian
will be derived, and to this end we choose the hy-
perplane intersecting all three quark trajectories and
the Y trajectory at one common time t, to be con-
sidered in the interval 0 ≤ t ≤ T , so that the quark
coordinates are z(i) = (t, z(i)), and the string junction
coordinate is z(Y ) = (t, z(Y )).

Now, one can make a change of variables, intro-
ducing the einbein variable [34, 49] µ(t) for a given
trajectory z(i)(τ (i)), 0 ≤ τ ≤ s, and one defines

dτ (i) ≡ dz
(i)
4 (τ (i))

dz
(i)
4 (τ (i))/dτ (i)

=
dz

(i)
4 (τ

(i))

2µi(z
(i)
4 )

, (29)

so that kinetic termKi becomes

Ki =

T∫

0

dt

[
m2

i

2µi(t)
+
µi(t)
2
(ż2(t) + 1)

]
. (30)

The transition from the integral over dsidz
(i)
4 to the

integral overDµ(i)(t) is known to have a nonsingular
Jacobian (see Appendix A of the second paper in [34]
for more details and explanations),

Dµ2(t) ∼ exp



−iconst
ε

T∫

0

√
µ2(t)dt



 dsDz4(t),

(31)

where ε ∼ 1/Λ, and Λ is an ultraviolet cutoff param-
eter.

Hence, the integrals in (27) can be rewritten as
∏

i

dsiD
4z(i) →

∏
DµiD

3z(i), (32)

where the integration measure for Dµi can be speci-
fied further to be [34]Dµ(t) ∼

∏N
n=1 dµ(tn)/µ

3/2(tn).
As a next step, one introduces the c.m. and relative
coordinates

Ṙ =
1

µ+(t)

3∑

i=1

µi(t)ż(i)(t), (33)
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ξ̇ =

√
3
2

(
µ1ż(1) + µ2ż(2)

2
− µ3ż(3)

)
1
µ+

,

η̇ =
µ1ż(1) − µ2ż(2)

µ+

√
2

.

Here, µ+ =
∑3

i=1 µi.
From our discussion above, it is clear that the time

t coincides with the fourth component of the c.m.
coordinate, t = R4, and the whole quark kinetic term
in (28) is

3∑

i=1

Ki =

T∫

0

dt

[∑(
m2

i

2µi
+
µi
2

)
(34)

+
1
2
µ+(t)Ṙ2 +

1
2
µηη̇2 +

1
2
µξξ̇2

]
.

Here, µη and µξ will be found below, (42). The
area-law term in (28) can be written as follows:

3∑

i=1

σSi (35)

= σ

3∑

i=1

T∫

0

dt

1∫

0

dβi

√
(ẇ(i)

µ )2(w′(i))2 − (ẇ(i)
µ w

′(i)
µ )2,

where w(i)
µ (t, β) is the ith string position at time t

and coordinate β along the string and the dot and
prime signs have the meaning of time and β deriva-
tives, respectively. In the spirit of our approach, one
should take the world sheets of the strings corre-
sponding to the minimal area of the sum of surfaces
between quark trajectories and Y trajectory of the
string junction. At this point, we make a simplifying
approximation [33, 34] that strings at any moment t
can be represented by pieces of straight lines. In this
way, one disregards string excitations (hybrids) and
mixing between these excitations and ground-state
baryons. This can be done for ground states since the
mass gap for string excitations is around 1 GeV [24].

For higher excited states, the mixing should be
taken into account analogously to what was done in
the meson sector [50].

Thus, one writes

w(i)
µ (t, β) = z(i)

µ (t)β + z(Y )
µ (t)(1 − β), (36)
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and time derivatives of w(i)
µ in (35) can be replaced

using (36) by time derivatives of z(i)
µ and z(Y )

µ . Since
also the string junction position is expressed through
the quark coordinates, the string does not possess
dynamical degrees of freedom of its own (in this
straight-line approximation). To recover the latter,
one can use background perturbation theory and
consider the states with 3q and additional valence
gluon(s). The latter describes gluonic excitation of
baryons and has its own dynamical degree of freedom.
Note that this way of systematic description of string
excitation is different from the ad hoc assumption
that the string is described by Nambu–Goto ac-
tion with all dynamical string degrees of freedom
included,which does not follow from the QCD La-
grangian.

Consider now the string-junction trajectory. In
line with the whole approach, one requires that, at

any given moment, z(Y )
µ (t) occupy the position which

gives the minimal string energy; i.e., z(Y )
µ (t) should

coincide with the Torricelli point, giving the minimum
of the sum of lengths of three strings:

L =
3∑

i=1

|z(i)(t)− z(Y )(t)|, ∂L

∂z
(Y )
k (t)

= 0. (37)

Therefore, z(Y )(t) is not an independent dynamical
degree of freedom and ż(Y ) is expressed in terms of
ż(i), i = 1, 2, 3.

Now, one can introduce (as is usual in string the-
ory [51]) the auxiliary fields (einbein fields [49]) to
replace the intractable square-root terms in (35) by
quadratic expressions. In this way, one writes

Si =
1
2ν̃i
[(ẇ(i))2 + (σν̃i)2(r(i))2 (38)

− 2ηi(ẇ(i)
k r

(i)
k ) + (ηi)

2(r(i))2].

Here, ν̃i(t, β) ≥ 0 and ηi(t, β) are two einbein
fields [which are integrated out to yield back the form
(35)], and r(i) = z(i) − z(Y ). As a result, one has for
the 3q Green’s function
G3q(x, y) =
∫
DRDξDη

3∏

i=1

DµiDν̃iDηitr(Γout(mi − ip̂i)Γin)e−A. (39)
3
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4. QUANTIZATION OF THE STRINGS
AND DERIVATION OF THE 3q-STRING

HAMILTONIAN

The action (28) using (34), (36), and (38) can be
written as

A =

t∫

0

dt

3∑

i=1

[
m2

i

2µi
+
µiż2

i

2
+
µi
2

(40)

+

1∫

0

dβi
σ2r2

i

2νi
+
1
2

1∫

0

dβiνi(ṙiβi + ż(Y ))2

+
1
2

1∫

0

dβiνiη
2
i r

2
i −

1∫

0

dβiνiηiri(ṙiβi + ż(Y ))

]
,

where we have defined νi = 1/ν̃i and ri = z(i) − z(Y ),

z
(Y )
µ (t) = (t, z(Y )).
As the next step, we introduce the c.m. coordinate

R and Jacobi coordinates ξ,η as follows [36]:

ż
(1)
k = Ṙk +

(
µµ3

µ+(µ1 + µ2)

)1/2

ξ̇k (41)

−
(

µµ2

µ1(µ1 + µ2)

)1/2

η̇k,

ż
(2)
k = Ṙk +

(
µµ3

µ+(µ1 + µ2)

)1/2

ξ̇k

+
(

µµ1

µ2(µ1 + µ2)

)1/2

η̇k,

ż
(3)
k = Ṙk −

(
µ(µ1 + µ2)
µ+µ3

)1/2

ξ̇k,

with the inverse expressions

Ṙk =
1
µ+

3∑

i=1

µiż
(i)
k , (42)

η̇k = (ż
(2)
k − ż

(1)
k )
(

µ1µ2

µ(µ1 + µ2)

)1/2

,

ξ̇k =
(

µ3

µ+(µ1 + µ2)µ

)1/2

(µ1ż
(1)
k + µ2ż

(2)
k

− (µ1 + µ2)ż
(3)
k ).

In (41) and (42), the mass µ is arbitrary and drops
out in the final expressions.

Using (41), one can rewrite the kinetic part of the
action as follows:

3∑

i=1

Ki =

T∫

0

dt

[ 3∑

i=1

(
m2

i

2µi
+
µi
2

)
(43)
PH
+
1
2
µ+Ṙ2 +

1
2
µ(η̇2 + ξ̇2)

]
.

The string part of the action can be transformed
using (38) and integrating over ηi to the form

exp

(
3∑

i=1

σSi

)
= exp

{
−

T∫

0

dt (44)

× 1
2

3∑

i=1

∫
dβi

[
νi

(
(ṙ(i)βi + ż(Y ))2

− [(ṙ(i)β + ż(Y ))r(i)]2
1

(r(i))2

)
+
σ2r2

i

νi

]}
.

At this point, it is important to note that z(Y ) is not a
dynamical variable, since it is defined by the minimum
of the action.

Taking this minimum at a given moment, one
arrives at the definition of z(Y )(t) as a Torricelli point,
which is to be expressed through the positions z(i)(t):

z(Y )(t) = f(z(1)(t), z(2)(t), z(3)(t)), (45)

where the function f is defined explicitly in [36].
Therefore ż(Y )(t) is also expressed in terms of ż(i)(t)
or in terms of Ṙ(t) and ṙ(i)(t).

Below, a simplified procedure will be used in which
one identifies z(Y ) with the c.m. coordinate R, which
is true on average for equal-mass quarks. Explicit
formulas for the general case z(Y ) �= R are given in
the Appendix. We are now in position to get the final
coordinates η, ξ or their linear combinations r(i) ≡
z(i) − R read from (41). To this end, we replace ż(Y )

by Ṙ in (44) and integrate over DṘ in both expres-
sions (43) and (44) in the same way as was done in
the second paper of [34] {Eqs. (37)–(49) in [34]}, with
the result

Ã =

T∫

0

dt
1
2

{
3∑

i=1

(
m2

i

µi
+ µi

)
(46)

+ µ(η̇2 + ξ̇2) +
3∑

i=1

1∫

0

dβi

×
[
νi(βi) +

σ2(r(i))2

νi

+νiβ2
i

(
(ṙ(i))2 − (ṙ(i) · r(i))2

(r(i))2

)]}
.

The last term on the right-hand side of (46) can be
rewritten as νiβ2

i (ṙ
(i) × ṙ(i))2/(r(i))2 and disappears

when the partial angular momentum li vanishes.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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In this case, (46) is simplified, and using in (46)
ṙ(i) instead of η̇ and ξ̇, one gets in a standard way the
Hamiltonian

H0 =
1
2

3∑

i=1

[
m2

i

µi
+ µi +

p2
i

µi
(47)

+

1∫

0

dβi

(
νi(βi) +

σ2(r(i))2

νi

)]
.

One can now apply to (47) the minimization proce-
dure to define µi and νi from the conditions

0 =
∂H0

∂µi
=
∂H0

∂νi
, (48)

which yields

µi =
√

p2
i +m2

i , νi = σ|ri|. (49)

Note that, in this case (li = 0, i = 1, 2, 3), νi do
not depend on βi and they play the role of po-
tential. Inserting (49) into (47), one obtains the
form well known from the standard relativistic quark
model (RQM) [1–9]

HRQM =
3∑

i=1

(√
p2
i +m2

i + σ|r(i)|
)
. (50)

Note that (50) is valid under assumptions that
(i) string junction z(Y ) coincides with the c.m.;
(ii)
∑3

i=1 pi = 0; and (iii) all angular momenta of
quarks li, i = 1, 2, 3, are zero, so that only the radial
part of momentum pi enters into (50). However, in
the RQM, the form (50) is used without condition (3).
As one will see in what follows, at nonzero li, the
Hamiltonian H0 will be modified, and for not large
li, li ≤ 4, this modification can be taken into account
as a string correction ∆Hstring similarly to the meson
case in [27, 34].

We consider now the general case of li > 0. To this
end, we separate transverse and longitudinal compo-
nents for each r(i) as follows (omitting index i for a
moment):

ṙ2 =
1
r2

{(r · r)2 + (ṙ× r)2}, (51)

and correspondingly define transverse and longitudi-
nal momenta,

p2
r =

(p · r)2
r2

=
(µr · ṙ)2
r2

, (52)

p2
T =

(p × r)2

r2
=



µ+
∫

0

dββ2ν(β)




2

(ṙ × r)2

r2
.

(53)
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One can now derive the Hamiltonian from (46) in the
usual way,

H =
3∑

i=1

[
m2

i + p2
ri

2µi
+
µi
2

(54)

+
l̂2i /r

2
i

2(µi +
∫ 1
0 dβiβ

2
i νi(βi))

+
σ2

2

1∫

0

dβi
νi(βi)

r2
i

+
1
2

1∫

0

νi(βi)dβi

]
.

This is a general form for any values of li; the limit
of li → 0 is obtained in (50). Now, we shall derive the
opposite limit li → ∞. As in the meson case, one can
argue that in this case µi � νi and one can use the
quasiclassical method and retain in (54) only the last
three terms, expanding them around the stationary

point at r(i) = r
(i)
0 , where

(r(i)
0 )

2 (55)

=

[
l̂2i

2(µi +
∫ 1
0 dβiβ

2
i νi(βi))σ2

∫ 1
0 dβi/νi(βi)

]1/2
.

Inserting (55) back into (54), one obtains the fol-
lowing quasiclassical energy of the ith string, E =∑3

i=1Ei:

Ei = σ

√
l̂2i

( ∫ 1
0 dβiν

−1
i∫ 1

0 dβiβ
2
i νi

)1/2

+
1
2

1∫

0

νidβi, (56)

and from the stationary point of Ei, δEi/δνi(βi) = 0,
one has

νi(βi) =

√
2
π
(1− β2

i )
−1/2. (57)

Inserting (57) into (56), one finally obtains the energy
of rotating string

E2
i = 2πσ

√
l̂2i , l̂2i ≡ li(li + 1). (58)

This result shows that our general baryonic Hamil-
tonian indeed admits a simple rotating string limit at
large li, as was in the case of mesonic Hamiltonian.

The difference from the mesonic case is, however,
that, for the 3q system, one should be careful in proper
exclusion of the c.m. motion and in quantizing angu-
lar momenta li, which should add up to a total angular
momentum L =

∑3
i=1 li. To do this, one should go

over from r(i), li to the independent Jacobi coordi-
nates and momenta ξ, η, lξ, lη which add up to L as
L = lξ + lη.
3
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To accomplish this task, one should express r(i)k =

z
(i)
k − z

(Y )
k using (41) and the Appendix through

ξ, η, and li through lξ, lη, and insert it into (54),
which makes the whole expression rather compli-
cated and not very tractable. Instead, we adopt here
another strategy and consider the contribution of
string rotation as a correction, similarly to the case
of mesons [34], where this approach has proved to
be successful up to L = 4 [27]. Therefore, we shall
represent the Hamiltonian (54) as a sum of unper-
turbed term H0 plus a string correction ∆Hstring,
which should work with accuracy better than 5% up
to l ≈ 3–4,

H = H0 +∆Hstring, (59)

where we have defined

H0 =
3∑

i=1

(
m2

i

2µi
+
µi
2

)
+

p2
ξ + p2

η

2µ
(60)

+ Vconf(r1, r2, r3)

and

Vconf = σ

3∑

i=1

|z(i) − z(Y )| = σ

3∑

i=1

ri. (61)

The string correction ∆Hstring is computed to be

∆Hstring = −
3∑

i=1

l̂2i σ〈r−1
i 〉

2〈σri〉(µi + 1
3〈σri〉)

. (62)

The total Hamiltonian for the bound 3q system
in c.m. coordinates, taking into account only valence
quarks, can now be written as follows:

Htot = H0 +∆Hstring +∆HCoul +∆Hself +∆Hspin,
(63)

where H0 is given in (60); ∆Hstring is given in (62);
∆Hspin is given in [40]; and ∆HCoul is easily com-
puted allowing for perturbative gluon exchanges in
W3, resulting in a standard expression

∆HCoul = −2αs
3

∑

i<j

1
|z(i) − z(j)|

. (64)

As to∆Hself, it was found in [41] to originate from the
〈σFσF 〉 correlator referring to the same quark line. It
has the form {[41], Eq. (36)}

∆Hself = −2σ
π

3∑

i=1

ηi
µi
, (65)

where ηi = 1 for light quarks.
P

5. THE LIGHT-CONE QUANTIZATION
OF THE 3q SYSTEM: DERIVATION

OF THE LIGHT-CONE HAMILTONIAN

The general expression of the 3q Green’s function
allows one to calculate the Hamiltonian correspond-
ing to any prescribed hypersurface, with the evolution
parameter T orthogonal to it, according to the equa-
tion (in Euclidean spacetime)

∂G

∂T
= −HG. (66)

In the previous section, the hypersurface was

chosen to be z
(i)
4 = const, and the corresponding

c.m. Hamiltonian was written in (63). The obtained
Hamiltonian is a 3q equivalent of the qq̄ c.m. Hamil-
tonian found earlier in [34, 47, 48].

The light-cone version of the qq̄ Hamiltonian was
derived in [47] and solved numerically in [48].

In this section, we shall follow the same technique
as in [47] to obtain the 3q Hamiltonian on the light
cone. To this end, one should choose the hypersurface

to be the plane with fixed values of z(i)
+ , where we use

the following convention:

ab = aµbµ = aibi − a0b0 = a⊥b⊥ + a+b− + a−b+
(67)

and a± = (a3 ± a0)/
√
2.

The same decomposition of quark coordinate z(i)
µ

will be used as in (41), but for the light-cone (l.c.) co-
ordinates (67). Again for simplicity, we shall identify

Rµ and z(Y )
µ so that

r(i)
µ = z(i)

µ −Rµ = z(i)
µ − z(Y )

µ . (68)

Some kinematical properties of the l.c. coordinates
to be used below are

w(i)
µ (z+, βi) = z(i)

µ βi + z(Y )
µ (1− βi) (69)

= r(i)
µ βi + z(Y )

µ
∼= r(i)

µ βi +Rµ,

r2
µ = r2

⊥, r+ ≡ 0;
∂w

(i)
µ

∂βi
= r(i)

µ ;

ẇ2
µ = ẇ2

⊥ + 2ẇ−; ẇ⊥ = ṙ⊥β + Ṙ.

Having this inmind, one can directly obtain the l.c.
action from (40) (cf. [47] for the equivalent derivation
of qq̄ l.c. action),

Al.c. =

T∫

0

dz+

3∑

i=1

{
m2

i

2µi
+
µi
2
((Ṙ⊥ + ṙ

(i)
⊥ )

2 (70)

+ 2(Ṙ− + ṙ
(i)
− )) +

1
2

1∫

0

dβi

[
σ2(r(i)

⊥ )
2

νi
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+ νi((ṙ
(i)
⊥ βi + Ṙ⊥)2 + 2(ṙ

(i)
− βi + Ṙ−))

+ νiη
2
i r

2(i)
⊥ − 2νiηi((ṙ(i)

⊥ βi + Ṙ⊥)r
(i)
⊥ + r

(i)
− )

]}
,

where ṙ(i)
µ (µ =⊥,−) can be expressed in terms of ξ̇

and η̇ using the parametrization

Ṙµ =
3∑

i=1

xiż
(i)
µ ,

3∑

i=1

xi = 1, xi ≥ 0, (71)

ż(1)
µ − Ṙµ =

(
x3

x1 + x2

)1/2

ξ̇µ (72)

−
(

x2

x1(x1 + x2)

)1/2

η̇µ,

ż(2)
µ − Ṙµ =

(
x3

x1 + x2

)1/2

ξ̇µ

+
(

x1

x2(x1 + x2)

)1/2

η̇µ,

ż(3)
µ − Ṙµ = −

(
x1 + x2

x3

)1/2

ξ̇µ.

One can rewrite (70) in the same form as in [47],

Al.c. =
1
2

T∫

0

dz+

{
a1Ṙ

2
⊥ + 2a1Ṙ− (73)

+ 2a2⊥Ṙ⊥ + 2a2− − 2c1⊥Ṙ⊥

+
3∑

i=1

[
− 2c2iṙ(i)

⊥ r
(i)
⊥ + a3i(ṙ

(i)
⊥ )

2 − 2c1ir(i)
−

+ a4i(r
(i)
⊥ )

2 +
m2

i

µi

]}
,

where we have defined

a1 =
3∑

i=1



µi +
1∫

0

νi(β)dβ



 =
3∑

i=1

a1i, (74)

a2⊥ =
3∑

i=1



µi +
1∫

0

νi(β)βdβ



 ṙ
(i)
⊥ ,

a2− =
3∑

i=1



µi +
1∫

0

νi(β)βdβ



 ṙ
(i)
− =

3∑

i=1

a2iṙ
(i)
− ,

c1⊥ =
3∑

i=1

1∫

0

dβνi(β)ηir
(i)
⊥ , (75)
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c1i =

1∫

0

νi(β)ηidβ, c2i =

1∫

0

dβνi(β)βηi,

a3i = µi +

1∫

0

νi(β)β2dβ,

a4i =

1∫

0

dβ

(
νiη

2
i +

σ2

νi

)
.

We now require as in [47] that transverse velocity
be diagonalized; i.e., we require the mixed term a2⊥
to vanish. This gives conditions on coefficients xi
when a2⊥ is expressed in terms of two independent
velocities: ξ̇⊥ and η̇⊥.

This immediately yields expressions for xi:

xi =
µi +

1∫
0

νi(β)βdβ

3∑
i=1
(µi +

1∫
0

νi(β)βdβ)
. (76)

Now, one can integrate over
∏3

i=1Dηi in the same
way as was done for the qq̄ system in [47] with the
result

A′
l.c. =

1
2

T∫

0

dz+

{
a1(Ṙ2

⊥ + 2Ṙ−) (77)

+
3∑

i=1

[ 1∫

0

dβ
σ2(r(i)

⊥ )
2

νi
+
m2

i

µi
+ a3i(ṙ

(i)
⊥ )

2

−
(r(i)

− + r
(i)
⊥ Ṙ⊥ + 〈β〉iṙ(i)

⊥ r
(i)
⊥ )

2
∫
νidβ

(r(i)
⊥ )2

− (r(i)
⊥ ṙ

(i)
⊥ )

2

(r(i)
⊥ )

2

1∫

0

dβνi(β)(β − 〈β〉i)2
]}

.

Here, we have defined

〈β〉i =
1∫

0

νi(β)βdβ
/ 1∫

0

νi(β)dβ. (78)

Our next step is the integration overDṘ, which is
done in the same way as in [47], and choosing the sys-
tem where the transverse total momentum vanishes,
P⊥ = 0, one obtains

Al.c =
1
2

T∫

0

dz+

3∑

i=1

{
m2

i

µi
+

1∫

0

dβ
σ2(r(i)

⊥ )
2

νi
(79)
3
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+ a3i(ṙ
(i)
⊥ )

2 − 〈ν(2)
i 〉(ṙ

(i)
⊥ r

(i)
⊥ )

2

(r(i)
⊥ )

2

−
〈ν(0)

i 〉a1i(r
(i)
− + 〈β〉iṙ(i)

⊥ r
(i)
⊥ )

2

(r(i)
⊥ )

2(a1i − 〈ν(0)
i 〉)

}
,

where we have defined

〈ν(k)
i 〉 =

1∫

0

νi(β)(β − 〈β〉i)kdβ. (80)

Integration over DṘ− with exp(iP⊥
∫ T
0 Ṙ−dz+)

(the exponent appearing in the standard way when
going from Lagrangian to Hamiltonian representa-
tion) yields the important constraint δ(a1 − P+), i.e.,

a1 = P+, (81)

and integration overDR+ is trivial sinceAl.c. does not
depend onR+.

Before doing calculations for the l.c. Hamiltonian,
one should go over to the Minkowskian action, which
is achieved by replacements

µi → −iµ(M)
i , νi → −iν(M)

i , (82)

ai → −ia(M)
i , A→ −iA(M).

Omitting the superscript “M” in what follows, one
obtains for the Minkowskian action

A
(M)
l.c. =

1
2

T∫

0

dz+

3∑

i=1

{
− m2

i

µi
+ a3i(ṙ

(i)
⊥ )

2 (83)

−
1∫

0

σ2dβ

νi
(r(i)

⊥ )
2 − 〈ν(2)

i 〉(ṙ
(i)
⊥ r

(i)
⊥ )

2

(r(i)
⊥ )2

− 〈ν(0)
i 〉a1i(r

(i)
− + 〈β〉i(ṙ(i)

⊥ r
(i)
⊥ ))

2

(r(i)
⊥ )2(a1i − 〈ν(0)

i 〉)

}
.

From (83), one can define in a direct way the l.c.
Hamiltonian, writing

A
(M)
l.c. =

∫
dz+L

(M), H =
∑

p⊥ · q̇⊥ − L(M).

(84)

One cannot choose q(i)
⊥ , strictly speaking, as a set of

canonical momenta for coordinates r(i)
⊥ , since the lat-

ter are not independent variables, subject according
to (72) to a condition

3∑

i=1

xiṙ
(i)
⊥ = 0. (85)
PH
Instead, the pair of coordinates ξ̇⊥, η̇⊥ is independent,

and one can define canonical momenta p(ξ)
⊥ and p(η)

⊥
as

p(ξ)
⊥ =

1
i

∂

∂ξ⊥
, p(η)

⊥ =
1
i

∂

∂η⊥
. (86)

We can nevertheless use p(i)
⊥ =

1
i

∂

∂r(i)
⊥

. Then,

p(ξ)
⊥ =

3∑

i=1

p(i)
⊥ ciξ , p(η)

⊥ =
3∑

i=1

p(i)
⊥ ciη, (87)

where ciξ and ciη are listed from (75):

c1ξ =
(

x3

x1 + x2

)1/2

= c2ξ, (88)

c3ξ = −
(
x1 + x2

x3

)1/2

,

c1η = −
(

x2

x1(x1 + x2)

)1/2

,

c2η =
(

x1

x2(x1 + x2)

)1/2

, c3η = 0.

We are now in the position to use (84) and calcu-
late the l.c. Hamiltonian,

H =
3∑

i=1

{
m2

i

2µi
+
1
2

1∫

0

σ2dβ

νi
(89)

+
(p(i)

⊥ )
2 − (p(i)

⊥ · r(i)
⊥ )

2/(r(i)
⊥ )

2

2a3i
+

〈ν(0)
i 〉a1i(r

(i)
− )

2

2(r(i)
⊥ )2µi

+
(p(i)

⊥ r
(i)
⊥ + 1

µi
〈ν(0)

i 〉a1ir
(i)
− )

2µ2
i

2(r(i)
⊥ )2a3ia2

2i(2µi − a2i)2

×
[
µia3i +

(a2i − µi)2

µi
(a3i − 2µi)

]}
,

where ani are defined in (74) and (75).

Momenta p(i)
⊥ are not linearly independent, and

from (85), expressing ṙ(i)
⊥ through p(i)

⊥ , one obtains
the connection

3∑

i=1

xi
a3i

(90)

×
(

p(i) −Cr(i) + r(i)D
p(i) · r(i) − C(r(i))2

a3i − (r(i)
⊥ )

2D

)
= 0,

where we have defined

C = −
〈ν(0)

i 〉a1ir
(i)
− 〈β〉i

(r(i)
⊥ )

2(a1i − 〈ν(0)
i 〉)

, (91)
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D =
〈ν(2)

i 〉(a1i − 〈ν(0)
i 〉) + 〈ν(0)

i 〉a1i〈β〉2i
(r(i)

⊥ )
2(a1i − 〈ν(0)

i 〉)
. (92)

To understand the structure of the Hamilto-
nian (89) better, consider first the limit of heavy
quarks mi �

√
σ, in which case, as was shown

in [47], the following inequality holds: µi � νi, i =
1, 2, 3. One has from (74) and (75) a1i = a2i = a3i =
µi, and the Hamiltonian assumes the form

HHQ =
3∑

i=1

{
m2

i

2µi
+
1
2

1∫

0

σ2dβ

νi
(93)

+
(p(i)

⊥ )
2 − (p(i)

⊥ · r(i)
⊥ )

2/(r(i)
⊥ )

2

2µi

+
(r(i)

− )
2

2(r(i)
⊥ )

2

1∫

0

νidβ +
(p(i)

⊥ r
(i)
⊥ + 〈ν(0)

i 〉r(i)
− )

2

2(r(i)
⊥ )

2µi

}
.

Introducing the dimensionless quantity yi ≡ νi/P+

(which will be shown to be independent of β and
small, yi � 1), one has from (76) and (81)

xi =
1

1− Y

(
µi
P+

+
1
2
yi

)
, (94)

3∑

i=1

(
µi
P+

+ yi

)
= 1,

where Y = (1/2)
∑
yi.

This enables one to expand the mass term in (93)
around stationary points in xi, and retaining the first
order term in yi, one obtains

3∑

i=1

m2
i

2µi
=

1
2P+

{
M2(1 + 2Y ) (95)

+ 2M
∑(

xi −
mi

M

)2 1
2mi

}
,

whereM =
∑3

i=1mi.

We now define, as in [47], the z component of
momenta

M
(
xi −

mi

M

)
≡ p(i)

z . (96)

Retaining now in expansion of (93) only lead-
ing terms, one obtains HHQ =M2/(2P+) with total
mass operator

M2 =M2 + 2M
3∑

i=1

(p(i))2

2mi
+M2

3∑

i=1

yi

(r(i)
⊥ )2

(97)
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×



(r(i)
⊥ )

2 +
(P+r

(i)
− )

2

M2
+

σ2

M2

(
(r(i)

⊥ )
2

yi

)2


.

One can now define the stationary point of (97) with
respect to yi,

y
(0)
i =

σ(r(i)
⊥ )

2

Mr(i)
, (r(i))2 = (r(i)

⊥ )
2 + r(i)

z , (98)

r(i)
z ≡ P+r

(i)
−

M
.

Inserting yi = y
(0)
i back into (97), one arrives at the

familiar nonrelativistic expansion

M2 =M2 + 2M
3∑

i=1

[
(p(i))2

2mi
+ σr(i)

]
. (99)

Connection between p(i) is also simplified for yi � 1,
so that (90) goes over to a simple relation

∑3
i=1 p(i) =

0, as expected.
We now turn to the case of light quarks, where

relations (76) and (81) hold with yi nonzero, and
observe that three strings contribute an amount
P

string
+ ≡

∑
i

∫ 1
0 νi(β)dβ to the total momentum P+,

which can be significant and comparable to that
of valence quarks,

∑3
i=1 µi. The numerical value of

〈y〉 ≈ 0.2 obtained in [48] for a light meson suggests

that a larger value can be obtained for P string
+ /P+,

which can be comparable to the 55% of the energy–
momentum sum rule observed in DIS experiment
on nucleons. We suggest at this point following [48]
that this 55% contribution is mostly due to the string
contribution P string

+ from all Fock components of the
nucleon, most importantly from the ground-state
strings, and from hybrid baryon excitation, where the
ratio P string

+ /P+ is even larger.

This point will be elaborated elsewhere [52].

Another topic connected to the l.c. Hamilto-
nian (89) is the whole range of dynamical calculations
similar to those done for mesons in [48]. One can
solve for the eigenfunctions of (89) and calculate
the form factor and valence part of the structure
function of the baryon for ground and excited states.
To compute the full structure function, however, one
needs higher Fock components and, first of all, the
lowest hybrid excitations. Here one comes to the
important problem of small x–Regge-type behavior
and connection of t-channel Regge poles (including
Pomeron) with s-channel summation over baryon
resonances (primarily hybrid excitation), which is
planned to be discussed in [52].
3
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6. DISCUSSION OF THE c.m.
WAVE-FUNCTION PROPERTIES

In this section, we consider possible strategies and
first estimates in the determination of eigenvalues
and eigenfunctions of the c.m. Hamiltonian (63). The
latter is the sum of the spin-independent part [the first
four terms on the right-hand side of (63)] and∆Hspin,
which is calculated in [40] and has a full relativistic
Dirac 4⊗ 4⊗ 4 structure.

At this point, one can apply two different ap-
proaches in treating ∆Hspin. In most of this section,
we shall consider ∆Hspin as a correction that should
be taken into account in the first order of pertur-
bation theory. This is especially consistent for the
perturbative part of ∆Hspin, which is known for light
quarks only to the order O(αs). In the next section,
we also consider another strategy, when ∆Hspin, and
especially its hyperfine part, is treated in a full matrix
form.

We start with the first approach and concentrate
on the first term H0 in (63), which is given in (60).
This term was considered before in [36], and numer-
ical solution of the ∆-type states is presented there,
including the study of Regge trajectories.

Since H0 does not depend on spin or isospin and
color degrees of freedom are already integrated out,
one should look for fully symmetric wave functions
depending on spin variables σ, isospin variables τ ,
and coordinates ξ, η. Relativistic effects are taken
into account in the kinematics, where einbein fields µi
are introduced in (60), and the latter upon stationary
point optimization in µi yield relativistic energies
as in (50). However, it is more advantageous to
solve (60), which has nonrelativistic form without
square roots, and perform optimization in µi for the
resulting total mass M0(µi). The accuracy of this
procedure for mesons was checked in [53] to be
around or better than 5%. This type of procedure also
simplifies calculation of all four corrections in (63),
which contain µi explicitly.

Hence, one can follow the construction of the fully
symmetric wave function as was done in [9, 36],
which we slightly simplify and adopt the notation
used before. Namely, Jacobi coordinates ξ, η (41) are
chosen to be symmetric (s) and antisymmetric (a)
with respect to interchange of indices 1 and 2, and
belong to the two-dimensional mixed representation
of the permutation group S3, denoted by ψ′′ and ψ′,
while one-dimensional ones are ψs and ψa. The same
holds true for isospin wave functions η′′, η′, ηs, and ηa

and spin–isospin wave functions ϕ′′, ϕ′, ϕs, and ϕa,
and, finally, the full coordinate–spin–isospin wave
function which should be symmetric in interchange
of all three indices is

Ψ(z(i), σ, τ) = ψsϕs + ψaϕa + ψ′′ϕ′′ + ψ′ϕ′. (100)
PH
An additional requirement is that ϕ(i) and ψ(i),
i = ′′, ′, s, a, must belong to given total angular
momentum L,mL and total spin S,mS and isospin
I, I3.

Inclusion of ∆Hspin helps to construct the wave
function as the eigenfunction of total momentum
J,mJ .

Since the construction of spin–isospin functions
for three quarks is well known [1–9], we consider here
only the coordinate part ψ(i)(ξ,η). As in [2–4, 9, 36],
we shall use the hyperspherical formalism [54] that
has proved to be very accurate for the 3q case; namely,
the lowest hyperspherical function yields eigenvalues
with 1% accuracy.

One can introduce hyperradius ρ in the following
way (note the difference from the definition in [36],
where the case of equal masses µi was considered):

ρ2 =
3∑

i=1

µi(z(i) − R)2

µ
= ξ2 + η2. (101)

The coordinate wave function ψ(ξ,η) can be ex-
panded in an infinite series of hyperspherical functions
uνK(Ω) depending on angular variables Ω, with K
being the grand angular momentum, K = L, L+ 2,
L+ 4, . . . , and ν being the set of all other quantum
numbers (see [54] for a review),

ψ(ξ,η) =
1
ρ2

∑

K,ν

uνK(Ω)ψ
ν
K(ρ). (102)

Writing (60) as

H0 =
3∑

i=1

(
m2

i

2µi
+
µi
2

)
+ h0, (103)

one can reduce the equation h0ψ = Eψ to a system of
equations

d2ψν
K

dρ2
+
1
ρ

dψν
K

dρ
+
[
2µE − (K + 2)2

ρ2

]
ψν
K (104)

= 2µ
∑

K ′,ν′

Uνν′
KK ′(ρ)ψν′

K ′(ρ),

where one defined

Uνν′
KK ′(ρ) =

∫
uν+
K (Ω)Vconf(ξ,η)uν

′
K ′(Ω)dΩ. (105)

The confining potential Vconf was considered in [36]
assuming a linear Y -type form. The analysis of matrix
elements (105) is also given in [9, 54], and here we
shall use only the simplest form, namely, the so-called
hypercentral component, which for the equal-mass
case (µi = µ) is

U00
00 (ρ) = 1.118

√
2σρ = 1.58σρ. (106)
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Baryon masses (in GeV) averaged over hyperfine spin splitting for σ = 0.15GeV2, αs = 0.4,mi = 0

State MKn + 〈∆Hself〉 〈∆HCoul〉 M tot
Kn M tot(exp)

K = 0, n = 0 1.36 −0.274 1.08 1.08
K = 0, n = 1 2.19 −0.274 1.91 ?
K = 0, n = 2 2.9 −0.274 2.62 ?
K = L = 1, n = 0 1.85 −0.217 1.63 1.6
K = 2, n = 0 2.23 −0.186 2.04 ?
The lowest order equation (105) forK = K ′ = 0 was
solved numerically in [2, 9]. Below, we shall demon-
strate a simpler approach that allows one to obtain
eigenvalues of this equation analytically with an ac-
curacy of 1% for the lowest states. To this end, we take
in (105) K = K ′ (neglecting nondiagonal coupling)
and, making the replacement ψν

K(ρ) = ψ̄ν
K(ρ)/

√
ρ,

reduce the equation to the form

− 1
2µ

d2ψ̄ν
K(ρ)
dρ2

+WKK(ρ)ψ̄ν
K(ρ) = EKnψ̄

ν
K(ρ)

(107)

with

WKK(ρ) = bρ+
d

2µρ2
, b = σ

√
2
3
32
5π
, (108)

d =
(
K +

3
2

)(
K +

5
2

)
.

The eigenvalue EKn can be found using the oscilla-
tor-well approximation near theminimum ofWKK(ρ):

dWKK(ρ)
dρ

∣∣∣∣∣ρ=ρ0 = 0, ρ0 =
(
d

µb

)1/3

, (109)

which yields

EKn
∼=WKK(ρ0) + ω

(
n+

1
2

)
≡ σ2/3

µ1/3
cn, (110)

where, forK = 0,

W00(ρ0) =
3
2

(
b2d

µ

)1/3

, ω =

√
3d

µρ2
0

. (111)

The spectrum ωn in (110) corresponds to the so-
called “breathing modes,” when a baryon is excited
in its ρ-dependent mode only.

Finally, adding other terms in (60), one has for
MKn the eigenvalue ofH0,

MKn =
3
2
µ+ EKn(µ). (112)

At this stage, one defines µ from the stationary point
of (112), ∂MKn/∂µ |µ=µ0 = 0 , which yields

µ0 =
(
2
9
cn

)3/4 √
σ, (113)
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MKn(µ0) =
√
σ · 6
(
2
9
cn

)3/4

.

The total spin-averaged mass of the baryon corre-
sponding to the Hamiltonian (63) is

M tot
Kn =MKn(µ0) + 〈∆Hstring〉 (114)

+ 〈∆HCoul〉+ 〈∆Hself〉.
For the lowest states with L = 0, 1, one can neglect
〈∆Hstring〉, while the other two terms are

〈∆Hself〉 = − 6σ
πµ0

, 〈∆HCoul〉 = − λb1/3

(2µ0)2/3ρ0
,

(115)

where 〈∆Hself〉 is given in [41], while 〈∆HCoul〉 is
given in [9, 37]. Here, the following notation is used:

λ = αs
8
3

(
10
√
3µ2

0

π2σ

)1/3

. (116)

Now, MKn(µ0) is defined in (113) and one should
choose the only input parameters (for light quarks,
we set all mi = 0) σ and αs. The string tension σ
is renormalized due to the presence of nondiago-
nal terms (23) and therefore is smaller than in the
mesonic case (see [46] for a comparison with lattice
data and more discussion). For a simple estimate
below, we choose σ = 0.15 GeV2 (the same value as
in [8]) and take αs = 0.4, which is near its saturated
value [55].

Results of calculations made according to
Eqs. (112)–(115) are given in the table.

As is seen from the table, the calculated spin-

averaged mass (
1
2
)(MN +M∆) =M tot

00 agrees well

with the experimental average, and the same is also
true for the lowest negative-parity states with K =
L+ 1, which should be compared with the 1/2− and
3/2− states ofN and∆, respectively.

We also note that breathing modes (n > 0) have
an excitation energy around 0.8GeV, while orbital ex-
citations K = L = 1 have an energy interval around
0.5 GeV.
3
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7. PROBLEM OF SPIN-DEPENDENT
FORCES

We now turn to the spin-dependent interaction.
For the 3q case, the corresponding nonperturbative
and perturbative terms are given in [40]. They have
been derived only under the assumption of Gaussian
dominance; i.e., only the contribution of the bilocal
correlator (represented by scalar functionsD andD1)
was retained in (9), Gaussian dominance being sup-
ported by recent lattice data [25, 26]. The resulting
spin-dependent forces in general have the form of a
product of two 4× 4matrices, one for each interacting
quark, and this is the most general relativistic spin
interaction.

The expansion in powers of inverse quark mass
was not used in [40], and for light quarks the spin-
dependent interaction is proportional to the terms
1/(µiµj) and higher inverse mass terms, where µi
are the same as in (103) and (113) and have the
meaning of constituent-quark masses, which grow
with excitation. For the lowest states, µ0

∼= 0.37GeV
and grows fast with increasing K, L, and n.

Now, one could use two types of strategy to imple-
ment spin-dependent forces.

(i) Since all terms in (63) except the last one
∆Hspin are diagonal in Dirac indices, one can cal-
culate spin-independent wave functions and ac-
count for spin effects calculating matrix elements
〈∆Hspin〉KLn. This procedure is actually used bymost
authors, and one can mention two positive moments
associated with it. First of all, in this procedure, one
treats spin-dependent forces as a perturbation, and it
should work at least for high enough excitation, when
µiµj in the denominator become large. Secondly,
the perturbative spin-dependent forces are known
for light quarks only to the lowest order in αs, and
therefore it is illegitimate to account for those terms
in higher than first-order approximation.

However, doing so, one immediately comes to a
serious contradiction. Namely, the theoretical esti-
mates of perturbative hyperfine splitting for a reason-
able value of αs ≈ 0.4 yield values around 100 MeV
instead of 300 MeV for the ∆–N case [9]. The phe-
nomenological remedy used is to take αs ∼ 1 and,
smearing the hyperfine δ function, take the resulting
potential to higher orders, which was criticized above.

To resolve this contradiction, it is suggested, first
of all, to take into account the nonperturbative part
of hyperfine interaction, which was derived in [40]. It
is known to yield a large part of hyperfine splitting
in light mesons [27, 28] and may also be large for
baryons. Secondly, it is suggested in addition that
another strategy discussed below be used.

(ii) In the case when spin forces are important,
as was discussed in the hyperfine case, one should
P

take into account that the same-type matrix ele-
ment which creates hyperfine splitting also connects
lower and higher components of the Dirac bispinor.
Physically, this means excitation of negative-energy
components of the quark wave function in baryons,
which is also associated with the backward-in-time
propagation of quarks.

Therefore, the strong hyperfine splitting also im-
plies strong negative-energy-component excitation,
and the solution to the total Hamiltonian (63) should
be sought in the form

ΨB =
∑

Cαβγ
ikl ψ

(i)
α ψ

(k)
β ψ(l)

γ ,

where α, β, γ are Dirac bispinor indices and i, k, l refer
to the excitation state of a given quark.

This strategy is equivalent to the full relativis-
tic three-body Bethe–Salpeter equation, which was
studied in the quasi-potential form in [56].

Another possible treatment of the same problem
was recently initiated in [38, 39], where threefold
Dirac equations were derived from the QCD La-
grangian for the baryon Green’s function.

8. CONCLUSION

We have derived the 3q Hamiltonian both in the
c.m. and in the l.c. coordinate systems. It was demon-
strated that the c.m. Hamiltonian can be written con-
veniently as a sum of a main term H0 and four cor-
rections in (63), representing rotating string energy,
Coulomb energy, nonperturbative self-energy correc-
tion, and spin interaction, respectively. The explicit
form of all terms is given above, except for the last
one, published recently in [40].

The spin-averaged energy levels have been calcu-
lated analytically, using the hyperspherical formalism
yielding an accuracy of around 1% for energy levels
in a linear confining potential. Results for the ∆–N
system are in good agreement with experiment.The
present paper is meant to be a starting point of a
new treatment of baryons, where all types of forces
are derived explicitly from first principles only under
the assumption of Gaussian dominance. The spin-
dependent forces derived for the first time in its to-
tality in [40] constitute an essential part of this new
approach.
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APPENDIX

We start with the definition of the string-junction
position z(Y ) which is obtained from the minimum
condition of the sum

3∑

i=1

|r(i)| =
3∑

i=1

|z(i) − z(Y )| (A.1)

and yields, after differentiating in z(Y ),
3∑

i=1

r(i)

|r(i)|
=

3∑

i=1

n(i) = 0. (A.2)

This implies that three unit vectors n(i) are at 120◦
with respect to each other, being in one plane. There-
fore, one can relate positions of quarks z(ij) ≡ z(i) −
z(j) to r(i) as follows:

(z(ij))2 = (r(i))2 + (r(j))2 + |r(i)||r(j)|, (A.3)

i �= j = 1, 2, 3.

One can finally relate r(i) to the Jacobi coordinates ξ,
η [Eq. (41)]:

r(i) = biξ + ciη + δ, (A.4)

where coefficients bi and ci are given in (41) and
δ = R− z(Y ) is found by solving (A.2) and (A.3).
Equations (A.3) are algebraic and allow one to find
the lengths ri ≡ |r(i)|, i = 1, 2, 3, through the quark
positions |z(ij)|; therefore, ri will be assumed to be
found explicitly. To find δ, we place three quarks on
the plane x, y so that quarks 1 and 2 are on the x
axis. Assuming the 3q triangle to have all angles less
than 120◦, one can compute both components δx, δy
in terms of ri. Thus, the position of the string junction
z(Y )(x0, y0) is found to be

y0 =
√
3r1r2√

3r2
2 + (2r1 + r2)2

, (A.5)

x0 − x1 =
(2r1 + r2)r1√
3r2

2 + (2r1 + r2)2
,

where (x1, 0) is the position of quark 1.
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Similarly, one obtains for δx, δy

δx =
1
3

[(
r2 + r3
2

− r1

)
(2r1 + r2) (A.6)

+ 3(r2 − r3)r2

]
1√

3r2
2 + (2r1 + r2)2

δy =
r3(r1 + r2)− 2r1r2√
3
√
3r2

2 + (2r1 + r2)2
. (A.7)

One can see that, for the symmetric case r1 = r2 =
r3, the string junction and the c.m. positions coincide,
δx = δy = 0.

Finally, we quote for the convenience of the reader
the expression of the sum (A.1) through the quark
positions only, taken from [36]:

3∑

i=1

ri =
√
3
2
[(z(12))2 + 3(z(3) − R)2 (A.8)

+ 2
√
3|z(12) × (z(3) − R)|]1/2.
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Abstract—Predictions of the model that relies on purely one-pion exchange and which describes well
GAMS data on the rearrangement of the S-wave mass spectrum of the π0π0 system in the region of the
f0(980) resonance with increasing −t in the reaction π−p→ π0π0n are compared with detailed data that
were recently obtained at the Brookhaven National Laboratory (BNL) for the m and t distributions of the
number of events of the reaction π−p→ π0π0n. An analysis revealed that these BNL data disagree with the
predictions of this model. This suggests that a differentmechanismmust be responsible for the phenomenon
discovered experimentally. Most likely, this is the a1-exchange mechanism. c© 2003 MAIK “Nau-
ka/Interperiodica”.
1. INTRODUCTION

Recent experiments that were devoted to studying
the reaction π−p→ π0π0n at high energies and
which were performed by the GAMS Collaboration
at the Institute for High Energy Physics (IHEP,
Protvino) [1, 2] and by the E852 Collaboration at
the Brookhaven National Laboratory (BNL) [3, 4]
discovered an interesting phenomenon: with increas-
ing −t, where t is the square of the 4-momentum
transfer from π− to the π0π0 system, the S-wave
mass spectrum of the π0π0 system undergoes a
rearrangement in the region of the f0(980) resonance.
At low −t—that is, in the region where the reaction
π−p→ π0π0n is determined predominantly by the
one-pion-exchange mechanism—the f0(980) reso-
nance manifests itself in the S-wave mass spectrum
of the π0π0 system as a dip caused by the destructive
interference between the contribution of the f0(980)
resonance and a large smooth background accompa-
nying it, while, at high −t, the resonance produces a
distinct peak [1–4].

The fact that both the GAMS and the BNL data
are based on high statistics imposes quite stringent
limitations on the phenomenological models con-
structed for explaining these data.

Historically, the first description [5] of the GAMS
data on the production of the f0(980) resonance [1]
relied on the model of purely one-pion exchange.
Within this model, the authors of this description had
to assume very specific t dependences of the ampli-
tudes for individual contributions that determine the

*e-mail: achasov@math.nsc.ru
**e-mail: shestako@math.nsc.ru
1063-7788/03/6602-0355$24.00 c©
total amplitude of the S-wave process π∗+(t)π− →
π0π0 [where π∗(t) is the Reggeized pion]. With minor
modifications, this method for describing the GAMS
data was repeatedly reproduced in later publications
[6, 7]. A radically new explanation of the GAMS re-
sults in question was proposed in [8], where the main
role was attributed to the amplitude of the reaction
π−p→ π0π0n involving the t-channel exchange of
the quantum numbers of the a1 Regge pole. Briefly,
the scenario considered in [8] is the following. In
the region of low −t, the reaction π−p→ (π0π0)Sn
[hereafter, (ππ)S means that we consider a ππ system
having zero orbital angular momentum] is dominated
by the one-pion-exchange mechanism, with the re-
sult that the f0(980) resonance produced via this
mechanism manifests itself as a dip. With increasing
−t, the contribution of one-pion exchange decreases
fast, and the main contribution to the reaction π−p→
(π0π0)Sn at high−t comes from a1 exchange [8]. The
f0(980) resonance produced owing to a1 exchange is
observed as a peak in the two-pion mass spectrum. It
is precisely the way in which the f0(980) resonance
manifests itself in all known reactions where it is
produced through channels other than that of elastic
ππ interaction [8].

Although the descriptions of the GAMS data were
satisfactory both in [5] and in [8], the two models be-
ing considered require additional experimental tests
[8]. We note that the scenario considered in [8] can
be disproved solely by experiments studying the reac-
tion π−p→ (π0π0)Snwith polarized targets, because
only on the basis of data of such experiments can one
separate the mechanisms of π and a1 exchange. As
2003 MAIK “Nauka/Interperiodica”
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to the model relying on the mechanism of purely one-
pion exchange [5], its experimental verification may
be straightforward owing to spectacular predictions of
the model—for example, the prediction for the t dis-
tribution of events of the reaction π−p→ (π0π0)Sn
in the range 0 < −t < 0.2 GeV2 at the π0π0 invariant
mass satisfying the condition m < 1 GeV—and we
partly touched upon this point in [8]. A comparison
with the existing GAMS data cannot reveal all pre-
dictions hidden in themodel proposed in [5]. However,
recent detailed BNL data [4] on them and t distribu-
tions of events of the reaction π−p→ (π0π0)Sn offer a
unique possibility for subjecting the predictions of this
model [5] to a comprehensive experimental test, and
this is precisely the main objective of present study.

The ensuing exposition is organized as follows. In
Section 2, we give a concise account of the original
one-pion-exchange model constructed in [5] to de-
scribe the dip in the mass spectrum of the (π0π0)S
system in the region of the f0(980) resonance at low
−t and the emergence of a f0(980) peak instead of
the dip with increasing −t in the reaction π−p→
(π0π0)Sn. We also briefly consider all further versions
of this model [6, 7, 9, 10]. We emphasize that the
model does not respect the standard hypothesis that
the t dependence factorizes in the amplitude of the
S-wave process π∗(t)π → ππ—previously, this hy-
pothesis was always widely used as a reliable tool
for obtaining data on partial waves in ππ scattering
(see, for example, [8, 11–16])—and indicate that the
predictions of the model that are associated with the
violation of this hypothesis can be subjected to a
P

direct experimental test. In Section 3, we perform a
detailed comparison of the model proposed in [5] with
the BNL data [4]. In Section 4, we briefly formulate
our main conclusions.

2. MODEL OF THE ONE-PION-EXCHANGE
AMPLITUDE FOR THE PRODUCTION

OF THE (π0π0)S SYSTEM IN THE REACTION
π−p→ (π0π0)Sn

In [5], the differential distribution of events of the
reaction π−p→ (π0π0)Sn at a fixed momentum of
the incident π− meson was represented in the form

d2N

dmdt
= C

∣∣∣∣

√
−t

m2
π − t

F (t)aππ(m, t)
∣∣∣∣
2

, (1)

where C is a normalization factor, F (t) is the form
factor associated with the π∗(t)NN vertex, and
aππ(m, t) is the amplitude of the S-wave process
π∗(t)π → ππ for the isospin of I = 0. The amplitude
aππ(m, t) was constructed in [5] by using the K-
matrix method. In order to describe the data in
the range 0.7 < m < 1.2 GeV, two bare resonances
coupled to the ππ and KK̄ channels were taken into
account in the K matrix, along with some back-
ground contributions. From the general expression
Â = K̂(t)(Î − iρ̂K̂)−1 for the amplitude (Â and K̂
are 2 × 2 matrices that describe transitions in the ππ
and KK̄ channels, Î is the identity matrix, and ρ̂ is
the diagonal phase-space matrix), it follows that
aππ(m, t) =
Kππ(t) + iρK [KπK(t)KKπ −Kππ(t)KKK̄ ]

1 − iρπKππ − iρKKKK̄ + ρπρK [KπKKKπ −KππKKK̄]
, (2)
where, according to [5], ρπ = (1 − 4m2
π/m

2)1/2 and
ρK = (1 − 4m2

K/m
2)1/2 (ρK → i|ρK | for 0 < m <

2mK); Kπb(t = m2
π) =Kπb; for t→ m2

π, the ampli-
tude aππ(m, t) reduces to the standard ππ scattering
amplitude; KπK = KKπ; and KKK̄(t) ≡ KKK̄ . The
specific expression for theK-matrix elements has the
form

Kab(t) =
[
ga(t)gb
M2

1 −m2
+

Ga(t)Gb
M2

2 −m2
+ fab(t)

]
(3)

×
(

1 − m2
π

2m2

)
,

where the subscripts a = π,K and b = π,K (or K̄)
form the condensed notation used in [5] for the ππ
and KK̄ channels; fKK̄ = 0; and gb and Gb are the
H

coupling constants of the input resonances having the
massesM1 andMD, respectively.1)

In order to make the analysis of the structure of
expression (2) clearer, it is convenient to discard the

1)By using representation (2), one can easily show that the
expression for d2N/dmdt normalized correctly at the pion
pole differs from (1) by the factor mρπ/(1 GeV), which, in
[5], was unjustifiably set to unity for all values of m (this is
so only in the vicinity of the pointm = 1 GeV). We also note
that the authors of [5] deemed that, with the aid of the factor
(1 −m2

π/(2m
2)) in expression (3), they took into account

the Adler zero in the ππ-scattering amplitude. However, this
function is not good since it has a pole at m2 = 0. Further,
it reduces to unity at mπ = 0. At the same time, the Adler
concept emerged from the theory where pions are massless,
and the success of chiral theory gives every reason to believe
that the world of massless pions is close to the real world.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003



PRODUCTION OF THE f0(980) RESONANCE 357
background contributions in (3), which are described
by the functions fab(t), and to neglect, in the paren-
thetical factor, the term m2

π/(2m
2), which is much
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
less than unity at the m values being considered.
With allowance for these simplifications, expression
(2) assumes the form
aππ(m, t) =
gπ(t)[D2(m)gπ + Π12(m)Gπ] +Gπ(t)[D1(m)Gπ + Π12(m)gπ]

D1(m)D2(m) − Π2
12(m)

, (4)
where D1(m) = M2
1 −m2 − ig2

πρπ − ig2
KρK and

D2(m) = M2
2 −m2 − iG2

πρπ − iG2
KρK are the in-

verse propagators of the bare resonances and
Π12(m) = igπGπρπ + igKGKρK is the amplitude
that describes the transitions between these two
resonances via real intermediate ππ and KK̄ states.
One can easily see that expression (4) represents the
amplitude of the process π∗(t)π → ππ for L = I = 0
due to the contributions of two mixed resonances
coupled to the ππ andKK̄ channels.

It is now clear that the experimentally observed
rearrangement of the (π0π0)S mass spectrum with
increasing −t can be explained within the model be-
ing considered only if the destructive interference be-
tween the contributions of two resonances at m ≈
1 GeV in the region of low −t gives way to con-
structive interference with increasing −t. In terms of
expression (4), this means the change in the character
of the interference between the terms proportional
to gπ(t) and Gπ(t). This is possible only if one of
the residues of, say, gπ(t), decreases in magnitude
with increasing −t, vanishes at some t = t0, and
then changes sign. According to the analysis of the
GAMS data that is given in [5], this must occur at
−t < 0.2 GeV2. It follows that, within this approach,
the t dependence does not factorize in the amplitude
aππ(m, t) at m ≈ 1 GeV even at low −t. As was
mentioned in the Introduction, the hypothesis that
the t dependence factorizes in the partial-wave am-
plitudes of the process π∗(t)π → ππ was widely used
as a standard tool for extracting information about ππ
scattering from πN → ππN reactions. The results
obtained in this way were always in good agree-
ment with the results of the Chew–Low extrapolation
method [8, 11–16], which is more general. In our
case, this hypothesis essentially consists in the as-
sumption that the amplitude aππ(m, t) is proportional
to the amplitude aππ(m, t = m2

π) at low −t—that is,
at −t in the range between 0 and 0.15–0.2 GeV2 [8,
11–16]. The proportionality factor is usually taken to
be a form factor of the exp[b(t−m2

π)] type. On the
other hand, it follows from [5] that, for the model of
the purely one-pion exchange to be consistent with
the GAMS data, the hypothesis in question must be
completely rejected.
3

In [5], the residues of gπ(t), Gπ(t), fππ(t), and
fπK(t) were parametrized as

gπ(t) = gπ + (1 − t/m2
π)tg

′
π/m

2
π, (5)

Gπ(t) = Gπ + (1 − t/m2
π)tG

′
π/m

2
π,

fππ(t) = (1 − t/m2
π)tf

′
ππ/m

2
π, (6)

fπK(t) = fπK + (1 − t/m2
π)tf

′
πK/m

2
π.

Three versions of a fit to the GAMS data [1] were
presented in [5]; in the best one, M1 = 0.773 GeV,
M2 = 1.163 GeV, gπ = 0.848 GeV, g′π = 0.0479 GeV,
Gπ = 0.848 GeV,G′

π = −0.0259 GeV, f ′ππ = 0.0963,
fπK = 0.687, and f ′πK = 0.0818. It follows from (5)
that gπ(t) vanishes at t ≈ −0.0728 GeV2.2) With
increasing −t, the dip in the mass spectrum of
the (π0π0)S system in the region of the f0(980)
resonance will therefore gradually disappear, finally
giving way to a resonance-type enhancement [5].
We emphasize that, owing to the destructive in-
terference between various contributions, the on-
shell amplitude aππ(m, t = m2

π) (2) vanishes at m =
m0 ≈ 0.986 GeV—that is, slightly below the KK̄
threshold—the phase of the amplitude at this point
taking the value of 180◦, in agreement with exper-
imental data from [12, 13]. Analyzing the model
proposed in [5], we found that, with increasing−t, the
amplitude in (2) still retains the property of vanishing,
but this occurs at other values of m < 2mK , which

2)In addition, the functions g2
π(t) andG

2
π(t) increase by factors

of about 22 000 and 6000, respectively, as −t grows from
0 to 1 GeV2. In order to compensate for this anomalous
growth, the form factor F (t) = [(Λ −m2

π)/(Λ − t)]4 with
Λ = 0.1607 GeV2 was introduced by Anisovich et al. [5]
in the one-pion-exchange amplitude of the reaction π−p→
(π0π0)Sn [see expression (1)]. However, this form factor,
which decreases fast with increasing −t and which was
associated in [5] with the nucleon vertex (see also [6, 7,
10]), leads to unsolvable difficulties in other reactions [8].
For example, this form factor causes an anomalously fast de-
crease in the one-pion-exchange (OPE) contribution to the
differential cross section for the charge-exchange reaction
np→ pn. Since dσ(OPE)(np→ pn)/dt ∼ |F (t)|4, the cross
section decreases approximately in proportion to exp(56t)

in the interval of −t values from 0 to 0.2 GeV2; this is
commensurate only with the decrease in cross sections for
diffractive processes on heavy nuclei.
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Fig. 1. Trajectory of the zero of the amplitude aππ(m, t)
in the model proposed in [5].

depend on −t. Figure 1 displays the trajectory of the
zero of the amplitude in (2) in the plane spanned by
the variables m and −t. It is clear from the figure
that, with increasing −t, the zero of the amplitude
moves, at an ever greater rate, from the region around
m ≈ 2mK to the region of lower masses. By way
of example, we indicate that, as −t increases from
0.09 GeV2 only by 0.026 GeV2, the zero traverses a
wide interval ofm from 0.91 to 0.60 GeV.

Thus, we have found two spectacular predictions
of the model constructed by Anisovich et al. [5]. First,
the distribution dN/dt of events with respect to the
square of 4-momentum transfer is predicted to have a
dip in the region of low −t at each fixed value of the
mass of the (π0π0)S system in the region m< 2mK

(more precisely in each narrow interval of the mass
value). For example, the dip in dN/dt must occur
at −t ≈ 0.1 GeV2 in each m interval from the range
0.6 < m < 0.91 GeV; with increasing m from 0.91
to 0.986 GeV, the dip in dN/dt must move toward
the point t = 0. Second, the cross section for the
reaction π−p→ (π0π0)Sn at 0.6 < m < 0.9 GeV is
expected to be suppressed in the vicinity of the point
−t ≈ 0.1 GeV2, because, in this region of variables,
the one-pion-exchange amplitude is close to zero; for
m > 0.9 GeV, the cross section must increase fast.
Thus, the model being considered, which describes
the GAMS data [1] on the rearrangement of the
(π0π0)S mass spectrum in the region of the f0(980)
resonance for−t > 0.3 GeV2, can be unambiguously
tested on the basis of its predictions for the distri-
butions dN/dt and dN/dm of events for 0 < −t <
0.2–0.25 GeV2 and 0.6 GeV< m < 2mK . Of course,
such tests require muchmore detailed data than those
presented by the GAMS Collaboration [1]. We re-
call that the GAMS data [1] on the reaction π−p→
(π0π0)Sn include the distribution dN/dm of events
for the m interval between 0.8 and 1.2 GeV for 0 <
−t < 0.2GeV2—that is, the distribution for the entire
P

region of low−t—and five more distributions dN/dm
in them interval between 0.6 and 1.4 GeV for various
−t intervals from the range 0.3 < −t < 1 GeV2.

In the further versions of the model (see [6, 7,
9, 10]), the K-matrix analysis of the IJPC = 00++

waves was extended to a wider region of invariant
masses and a greater number of coupled channels.
In [6], Anisovich and Sarantsev included, in the K
matrix, four bare resonances coupled to the ππ,KK̄,
ηη, and 4π channels and analyzed the mass region
up to 1.55 GeV. In [7, 9, 10], the authors included, in
theK matrix, five bare resonances coupled to the ππ,
KK̄, ηη, ηη′, and 4π channels and extended the m
region over which they described data up to 1.9 GeV.
Of course, the additional resonances from the mass
range 1.2–1.9 GeV that were introduced in [6, 7, 9,
10] have an effect on the regionm < 1 GeV.However,
the main predictions of the two-resonance model in
[5] at m < 1 GeV still remain valid, apart from some
details. For example, the most significant feature of
the parametrization proposed in [5] for the one-pion
exchange amplitude—namely, the vanishing of the
residue for the lightest bare resonance with increasing
−t—occurs in all versions of the model. The mass
of this resonance changed from one version of the
model to another within the interval between 0.65 and
0.86 GeV. In the fit leading to the smallest value of
χ2, the zero of the residue for the lightest resonance
occurs at −t = 0.0728 GeV2 according to [5] (as
was already mentioned), −t = 0.117 GeV2 according
to [6] (solution I), −t = 0.0683 GeV2 according to
[7] (solution I), and −t = 0.038 GeV2 according to
[9]. Unfortunately, the parameter values required for
determining the position of the zero were not given
in [10].

We note that, after the appearance of the analysis
presented in [8] and aimed at providing a new de-
scription of the GAMS data [1], the contribution of a1

exchange was also included in [9]. However, this con-
tribution was taken into account there in a cosmetic
manner: this did not induce any changes in the char-
acter of parametrization of the one-pion-exchange
amplitude, while the amplitude itself retained its dom-
inant role in the description of the effect found experi-
mentally. Since the contribution of a1 exchange at low
−t is in fact small, the predictions of the model from
[9] for the region of low−t andm < 1 GeV are by and
large close to the predictions of the model proposed in
[5], which have already been described qualitatively.
This is clear from the curves for the distributions
dN/dm and dN/dt in [9] (Figs. 3 and 5 in the article
published in Physics Letters or Figs. 5 and 7 in the
article published in Physics of Atomic Nuclei, these
two pairs of figures being identical). It is interesting
to note that, in the article quoted in [10], which was
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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Fig. 2. Mass spectra of the (π0π0)S system from the reaction π−p→ (π0π0)Sn for six successive intervals of −t. Points
represent BNL data from [4]. The curves were calculated on the basis of Eqs. (1)–(3), (5), and (6) by using the parameter
values and the overall-normalizationmethod indicated in the main body of the text.
published later than those in [9], the mechanism of a1

exchange was disregarded, as earlier in [5–7].3)

We also note that the absence of data on the de-
cay a1(1260) → f0(980)π cannot invalidate evidence
obtained in [8] (see also [16]) that quantum numbers
of the a1 Regge pole are exchanged in the reaction
π−p→ (π0π0)Sn. The point is that this decay, which
is a P-wave process, is strongly suppressed by the
phase space; for this reason, it is difficult to separate
it from the dominant background decay a1(1260) →
ρπ. We emphasize once again that the contribution
of a1 exchange to the integrated cross section for the

3)It is worth noting that the comment following Eq. (8) in [5]
and concerning the smooth term that effectively describes,
among other things, the contribution of a1 exchange to the
πN → (ππ)SN amplitude with the quantum numbers of t-
channel one-pion exchange from Eq. (5) or (6) in [5] may
lead one astray. As a matter of fact, the amplitudes featuring
the exchanges of π and a1 Reggeons have different spin
structures at high energies, their contributions to the cross
section for the reaction involving unpolarized nucleons being
noncoherent.Therefore, the exchange of a1 was not included,
even effectively, in the analyses given in [5–7, 10].
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reaction π−p→ (π0π0)Sn is small—it does not ex-
ceed 5–10%. However, this small contribution is sig-
nificant in the region of kinematical variables where
one-pion exchange is small, describing the observed
rearrangement of the (π0π0)S mass spectrum in the
region of the f0(980) resonance [8].

3. COMPARISON WITH BNL DATA

The Е852 collaboration presented high-statistics
data on the distribution dN/dm of events of the re-
action π−p→ (π0π0)Sn in the m region from the
ππ threshold to 2.2 GeV with step ∆m = 0.04 GeV.
These data cover nine successive intervals of −t in
the range 0 < −t < 0.4 GeV2 and one interval of
−t from 0.4 to 1.5 GeV2 [4]. Figures 2 and 3 dis-
play those BNL data from [4] that we use here to
test the predictions of the model proposed in [5]. We
emphasize that we do not fit the data within this
model [5]; we merely take the model with the same
parameter values at which it provides a very good
description of the GAMS data [1] and contrast its
3
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are combined. The curves were calculated on the basis of
Eqs. (1)–(3), (5), and (6) by using the parameter values
and the overall-normalization method indicated in the
main body of the text.

predictions against the BNL data [4] on the distribu-
tions dN/dm in all six narrow intervals of−t from the
range 0 < −t < 0.2 GeV2 and on the distributions
dN/dt for six m intervals of width 0.04 GeV each
that were chosen by way of example from the range
0.6 < m < 1.12 GeV. There were no such detailed
distributions in the GAMS data quoted in [1, 2]. The
normalization factor C in (1) is the only parameter
to be determined anew. We evaluate it by normal-
izing the theoretical distribution to the total num-
ber of events in the interval 0.6 < m < 1.2 GeV for
0.01 < −t < 0.03 GeV2. Figure 2 displays the data
on dN/dm for this region of the variables. We note
that, of all −t intervals of the same width, the inter-
val 0.01 < −t < 0.03 GeV2 contains the maximum
number of events for 0.6 < m < 1.2 GeV. We deem
that this choice of normalization is quite appropriate
P

for performing an informative comparison of the ex-
perimental and theoretical distributions with respect
tom and t.

It is clear from Fig. 2 that the experimental
and theoretical distributions dN/dm are in satis-
factory qualitative agreement in the intervals 0 <
−t < 0.01 GeV2 and 0.01 < −t < 0.03 GeV2. With
increasing −t, however, the behavior of the theoret-
ical distributions dN/dm changes sharply, showing
perfect conformity with the expectations described
in Section 2 and disagreement with the data. In
addition, it can be seen from Fig. 2 that, in the model
proposed in [5], the dip in the region of the f0(980)
resonance prematurely transforms with increasing−t
into a peak in the interval between 0.1 and 0.2 GeV2.
As to the experimental distributions dN/dm, they
remain similar over the entire range of low −t from
0 to 0.2 GeV2 (see Fig. 2) and have a dip at the m
value near the KK̄ threshold. We emphasize once
again that, in contrast to the detailed BNL data [4],
shown in Fig. 2, the data of the GAMSCollaboration
include only one “global” distribution dN/dm for
the entire range 0 < −t < 0.2 GeV2, which contains
about 90% of all events. It is precisely with this
coarse distribution dN/dm (associated with a broad t
interval) that satisfactory agreement was obtained in
[5] by fitting the model of purely one-pion exchange.

Figure 3 shows the BNL data from [4] on t distri-
butions. It can clearly be seen that, for m < 1 GeV,
the dN/dt distributions feature no dips expected in
the model proposed in [5]. That the t distributions for
the reaction π−p→ π0π0n behave smoothly in the
region m < 1 GeV is also confirmed by KEK data
reported in [17].

We emphasize that allowance for finite experimen-
tal resolutions in m and t in calculating theoretical
curves cannot change the character of the predictions
of the model constructed in [5] and does not improve
its agreement with the BNL data.

4. CONCLUSION

The question of whether the rearrangement of the
(π0π0)S mass spectrum in the region of the f0(980)
resonance with increasing −t in the reaction π−p→
(π0π0)Sn can be described in terms of only the am-
plitude involving the t-channel quantum numbers of
the π Regge pole is quite reasonable and deserves a
careful investigation. In this respect, the first attempt
at answering this question in [5] was of paramount
importance. In our opinion, it was to the credit of
this attempt that it resulted in explicitly formulat-
ing the one-pion-exchange model capable of yielding
spectacular predictions, which can easily be tested
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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experimentally. From the aforesaid, it is obvious that
these predictions are in a glaring contradiction with
detailed BNL data on the m and t distributions of
events of the reaction π−p→ (π0π0)Sn. In our opin-
ion, however, the most important point is that the
path outlined in [5] can be traced to the very end.
Nevertheless, it is highly desirable that the GAMS
Collaboration, which accumulated the highest statis-
tics on the reaction π−p→ π0π0n [1, 2], would also
present data on the distributions dN/dm for narrow
−t intervals from the range 0 < −t < 0.2 GeV2 and
on the distributions dN/dt for narrow m intervals in
the region m < 1 GeV that are associated with the
production of the S-wave π0π0 system.

In this connection, we also note that the conclu-
sions drawn in [9, 18] from the analyses of GAMS
data [1] on the basis of the model from [5] for the one-
pion-exchange amplitude and its versions from [6, 7,
9, 10] are not justified.
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Abstract—Maximum fluctuations of charged-particle multiplicities over narrow rapidity intervals are
investigated for high-P⊥ processes in π−A collisions (where A = H, D, C, Cu, Pb) at 40 GeV/c.
The observed fluctuations are studied by the method of factorial moments. The results show that the
factorial moments 〈Fi〉 vary in proportion to a power of the rapidity gap δy. This suggests that there are
dynamical fluctuations in the processes under study. The experimental data are compared with theoretical
results obtained on the basis of the model of quark–gluon strings by using the FRITIOF-7.02 package.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Multiparticle correlations in multiparticle-pro-
duction processes induced by hadron–hadron and
hadron–nucleus collisions attract much attention [1].
Interest in such phenomena is motivated both by
searches for manifestations of the phase transition
of hadron matter into a quark–gluon plasma and
by the desire to study purely nuclear effects, which
distinguish a hadron–nucleus collision from a super-
position of nucleon–nucleon interactions [2–4].

Significant fluctuations in rapidity (or pseudora-
pidity) distributions have been observed in various
high-energy experiments—for example, in those
where nuclear photoemulsions are exposed to cosmic
rays [5] and those that study hadron–hadron [6, 7]
and nucleus–nucleus [8] collisions. The existence
of such fluctuations can be explained within various
models [9, 10].

In [9], it was proposed to study such fluctuations
on the basis of an analysis of hadron multiplicities
versus rapidity intervals. The dependence of hadron-
multiplicity distributions on the rapidity interval can
be characterized by factorial moments of order i that
are defined as

〈Fi〉 =
1

〈n̄m〉i
(1)

×
〈

1
M

M∑

m=1

nm(nm − 1) . . . (nm − i+ 1)

〉
,

*e-mail: etheri@iph.hepi.edu.ge
1063-7788/03/6602-0362$24.00 c©
〈n̄m〉 =

〈
1
M

M∑

m=1

nm

〉
,

where the rapidity interval∆y is broken down intoM
intervals of dimension δy = ∆y/M , nm is the multi-
plicity in themth interval (m = 1, 2, . . . ,M ), and the
average is taken over all events.
Themain results of the aforementioned studies can

be summarized as follows:
(i) In the case of purely statistical fluctuations,

the function 〈Fi〉 is expected to be saturated with
increasing δy.
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(ii) In the case of dynamical fluctuations, 〈Fi〉 is an
exponential function of δy,

〈Fi〉 ∼ (∆y/δy)fi , fi > 0. (2)

This dynamical effect is referred to as intermittency.
Of particular interest are fluctuations of the mul-

tiplicity of charged particles from hadron–nucleus
collisions that produce hadrons of high transverse
momenta (high-P⊥ processes). Currently available
experimental data on such processes at intermediate
energies are scanty. Within QCD, the production of
particles of high transverse momentum P⊥ on nuclei
may be due either to a deformation of the parton dis-
tribution in the nucleus involved (hard interaction) or
to the rescattering of partons in nuclear matter. In ei-
ther case, an outgoing particle acquires an additional
transverse momentum, with the result that inclusive
cross sections may become considerably larger.
It was found in [11] that, at intermediate ener-

gies, hard processes play a significant role in high-
P⊥ processes induced by π−A collisions. Observation
of dynamical fluctuations of charged particles in such
processes would provide an additional argument in
favor of this conclusion.
In this article, we report on an investigation of fluc-

tuations of charged-particle multiplicities over nar-
row rapidity intervals. Experimental data used in this
investigation were obtained for high-P⊥ processes
in π−A collisions (where A = H, D, C, Cu, Pb) at
40 GeV/c.

2. EXPERIMENTAL SETUP

A 5-m streamer chamber placed in a magnetic
field of strength 15 kG is the hub of the RISC
(Relativistic Ionization Streamer Chamber) appa-
ratus used in our experiment. A beam of negatively
charged particles produced in the internal target
of the U-70 proton synchrotron installed at the
Institute for High Energy Physics (IHEP, Protvino)
was transported along the magnetooptical channel to
a target arranged within the streamer chamber. The
beam consisted of π−,K−, and p̄ in the proportion of
π− : K− : p̄ = (98 : 1.7 : 0.3)%. Secondary charged
particles of high transverse momenta were detected
by a telescope consisting of three two-coordinate
proportional chambers of width 1.0 m and height
0.5 m each. The proportional chambers were placed
above the streamer chamber and covered the polar-
angle range 12◦ < θ < 22◦ in the laboratory frame
for particles escaping from the target (this corre-
sponds to the polar-angle range 85◦ < θ∗ < 120◦
in the reference frame comoving with the center of
mass of the pion–nucleon system). The transverse-
momentum cutoff was varied from 1.0 to 1.5 GeV/c.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
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Fig. 2. Rapidity distributions of maximum fluctuations,
dnmax/dy, over the interval ∆y (δy = 0.1) for various
nuclei.

For targets, we used liquid hydrogen, deuterium,
carbon, copper, and lead. A more detailed description
of the experimental setup can be found in [12].

3. FLUCTUATIONS
OF CHARGED-PARTICLE MULTIPLICITIES

Multiparticle correlations in maximum fluctua-
tions of charged-particle multiplicities over narrow
rapidity intervals were sought in the followingway: for

Table 1. Experimental data

A Nint 〈Nch〉
H 5427 6.3 ± 0.1

D 5496 6.8 ± 0.2

C 5003 9.9 ± 0.2

Cu 3478 14.3 ± 0.3

Pb 2393 19.4 ± 0.4
3
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Fig. 3. As in Fig. 2, but for δy = 0.5.
each individual event, the distribution with respect to
the rapidity

y = −0.5 ln
E + P||
E − P||

, (3)

where E and P|| are, respectively, the energy and the
longitudinal momentum of a secondary particle, was
scanned with a bin of fixed width δy in order to deter-
mine the maximum number nmax of particles that fall
within this bin. The rapidity interval ∆y was chosen
in accordance with the actual rapidity distribution
of secondaries. Such distributions, normalized to the
total number of interactions,Nint, are shown in Fig. 1
for various nuclei. It is seen that, in all cases under
study, −2 < y < 7.
Experimental data used in our study are compiled

in Table 1.

The resulting distributions dnmax/dy of the max-
imum values of fluctuations, nmax, over the interval
∆y are shown in Fig. 2 (for δy = 0.1) and Fig. 3 (for
δy = 0.5).
As can be seen from Figs. 2 and 3, large fluc-

tuations of charged-particle multiplicities, nmax > 5,
over narrow rapidity intervals δy occur for both light
PH
and heavy nuclei. The question of whether these fluc-
tuations are dynamical or statistical is considered in
the next section.
It can also be seen from Figs. 2 and 3 that the

central value of the distribution dnmax/dy increases
with increasing mass number of the target nucleus.
At the same time, the central value of the distribution
dnmax/dy decreases as the interval δy becomes nar-
rower.
The dashed curves in Figs. 2 and 3 represent the-

oretical predictions obtained on the basis of the model
of quark–gluon strings by using the FRITIOF-7.02
package [13, 14]. It can be seen that, for nmax < 5,
the model predictions agree well with the experi-
mental data, but that, in the region of large fluc-
tuations, the model underestimates dnmax/dy. The
discrepancy between the predicted and experimental
distributions for nmax > 5 may stem from the fact
that the FRITIOF-7.02 package does not include
intranuclear rescatterings, which play a significant
part in hA interactions at intermediate energies.
The existence of dynamical fluctuations of char-

ged-particle multiplicities in high-P⊥ processes in-
duced by π−A collisions may be caused by hard in-
teractions between the projectile and target nucleons.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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Table 2. Slope parametersBi and B∗
i for various factorial moments and nuclei

A Bi B∗
i B∗∗

i A Bi B∗
i B∗∗

i

i = 2 i = 4
D 0.063 ± 0.006 0.09 ± 0.03 D 0.30 ± 0.02 0.3 ± 0.1
C 0.058 ± 0.005 0.06 ± 0.02 0.026 ± 0.008 C 0.34 ± 0.02 0.35 ± 0.06 0.113± 0.041
Cu 0.065 ± 0.007 0.07 ± 0.02 Cu 0.24 ± 0.02 0.25 ± 0.07
Pb 0060 ± 0.006 0.07 ± 0.02 Pb 0.17 ± 0.01 0.22 ± 0.05

i = 3 i = 5
D 0.19± 0.02 0.24 ± 0.05 D 0.76 ± 0.03 0.8 ± 0.2
C 0.18± 0.01 0.20 ± 0.05 0.067 ± 0.018 C 0.60 ± 0.03 0.63 ± 0.09 0.185± 0.153
Cu 0.16± 0.01 0.17 ± 0.06 Cu 0.22 ± 0.03 0.6 ± 0.1
Pb 0.12± 0.01 0.14 ± 0.04 Pb 0.25 ± 0.02 0.27 ± 0.09
However, large fluctuations may also result from in-
tranuclear rescatterings.

In the present study, fluctuations of charged-
particle multiplicities in events involving the produc-
tion of neutral strange particles are explored indi-
vidually. Investigations revealed that neutral strange
particles originating from high-P⊥ processes in π−A
collisions are predominantly produced via hard inter-
actions (this especially concerns K0 mesons and Λ̄
hyperons).

The rapidity distributions of the maximum fluc-
tuations, dnmax/dy, over the interval ∆y in events
involving the production of neutral strange particles
are shown in Figs. 4 (δy = 0.1) and 5 (δy = 0.5). It
can be seen that the fraction of large fluctuations in
such events is smaller than that in ordinary high-
P⊥ processes (Figs. 2 and 3). This distinction can be
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explained by the fact that, in reactions leading to the
production of neutral strange particles, intranuclear
rescatterings, which give rise to large fluctuations, are
suppressed.

4. ANALYSIS OF FLUCTUATIONS
BY THE METHOD OF FACTORIAL

MOMENTS
As was mentioned in the Introduction, the dy-

namical nature of the fluctuations in question can be
established by the method of factorial moments.
The dependence of the logarithms of the facto-

rial moments 〈Fi〉 (i = 2, 3, 4, 5) calculated by for-
mula (1) on the variable − ln δy over the rapidity
interval −2 < y < 7 is shown in Fig. 6 for all charged
hadrons produced in high-P⊥ processes induced by
π−A collisions at 40 GeV/c. The analogous depen-
dence for events involving the production of neutral
strange particles is given in Fig. 7.
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It can be seen from Figs. 6 and 7 that the functions
Fi increase with decreasing δy. For the i > 3 factorial
moments, this growth is more pronounced. In order to
determine the slope parameter in (2), the experimen-
tal data were approximated by the linear function

ln〈Fi〉 = Ai −Bi lnM. (4)

The dependence of the slope parameters Bi on the
order i of moments is shown in Fig. 8 for various
target nuclei (D, C, Cu, and Pb). It can be seen that
the slope parameter Bi increases with increasing i.
The power-law dependence of 〈Fi〉 on δy provides
evidence for the dynamical character of fluctuations
in the processes under study.
The slope parameterBi for all events and the slope

parameter B∗
i for production of neutral strange par-

ticles are quoted in Table 2. Also given in this table
for the sake of comparison are data for minimum-bias
events (B∗∗

i ) in π
−C interactions at 40 GeV/с [14].

It can be seen that Bi and B∗
i are both invariable

within the errors, but that the parameter B∗
i exceeds

Bi for all nuclei studied here. This trend may be
attributed to the fact that neutral strange particles
are produced for the most part in hard interactions,
where the dynamical fluctuations are generated with
a higher probability than in ordinary interactions. The
data in Table 2 also show that the slope parameter
B∗∗
i for minimum-bias events is substantially smaller

than the parameters B∗
i and Bi. This is because the

fraction of hard interactions is greater in high-P⊥
processes than in ordinary minimum-bias processes.
Thus, the analysis of maximum fluctuations of

charged-particle multiplicities in high-P⊥ processes
induced by π−A collisions at 40 GeV/c reveals that
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
〈Fi〉 varies in proportion to a power of δy [see formula
(4)]. This suggests a dynamical character of fluctua-
tions in the processes under study.

5. CONCLUSION

Maximum fluctuations of charged particles pro-
duced in high-P⊥ processes induced by π−A colli-
sions at 40 GeV/c have been obtained over narrow
rapidity intervals δy. Our experimental data on fluc-
tuations have been compared with theoretical predic-
tions derived on the basis of themodel of quark–gluon
strings by using the FRITIOF-7.02 package, and the
nature of fluctuations has been investigated by the
method of scale factorial moments.
It has been found that large fluctuations of multi-

plicities, nmax > 5, over narrow rapidity intervals δy
(0.1 or 0.5) are observed for both light and heavy
nuclei. The model of quark–gluon strings describes
well experimental data for nmax < 5, but it underes-
timates dnmax/dy in the region of large fluctuations.
The analysis of maximum fluctuations for high-P⊥
processes in π−A collisions at 40 GeV/c has revealed
that 〈Fi〉 varies in proportion to a power of δy [see
formula (4)]. This suggests the presence of dynamical
fluctuations.
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Abstract—A detailed analysis of the fragmentation of tensorially polarized deuterons into pions in the
kinematical region forbidden for free nucleon–nucleon collisions is performed. Within the relativistic
impulse approximation, the inclusive spectrum of product pions and the tensor analyzing power T20 are
explored by using various forms of the deuteron wave function. The effect of the P-wave component of the
deuteron wave function on these observables is also investigated. It is shown that the invariant spectrum
is more sensitive to the form of the NN → πX invariant amplitude than the tensor analyzing power T20.
The inclusion of nonnucleon degrees of freedom in the deuteron makes it possible to reproduce the pion
spectrum over the entire kinematical region and improves the description of experimental data on T20.
According to present-day experimental data, T20 is positive and very small in magnitude, less than 0.2,
which is at odds with the results of theoretical calculations disregarding nonnucleon degrees of freedom.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The problem of nuclear structure at short internu-
cleon distances (r < 1 fm), which correspond to high
internal momenta (k [GeV/с] ≈ 0.2/(r [fm])), has at-
tracted the attention of theorists and experimentalists
for more than two decades. A theoretical descrip-
tion of nucleon states at distances commensurate
with nucleon dimensions is complicated at present
by the absence of a unified theory of strong inter-
actions. Within QCD, which is claimed to play the
role of strong-interaction theory, the problem of the
hadronization of quarks has yet to be solved. Pertur-
bative QCD only describes the Q2 evolution of quark
distributions in hadrons and quark–hadron fragmen-
tation functions, leaving aside the question of the form
of distribution functions at low Q2, where evolution
equations are inapplicable. Existing nonperturbative
models inspired by QCD make it possible to study
quark distributions in hadrons at low and interme-
diate values of Q2; however, a theoretical investiga-
tion of nuclear structure at short distances involves a
number of difficulties. By way of example, we indicate
that, because of the nonpointlike character of nucle-
ons, not only is it unclear how one should describe
their interaction, but also the very concept of nucleons
as quasiparticles is questionable. An analogy with
phenomena accompanying the rearrangement of the

*e-mail: Alexei.Illarionov@jinr.ru
**e-mail: litvin@moonhe.jinr.ru
***e-mail: lykasov@nusun.jinr.ru
1063-7788/03/6602-0368$24.00 c©
external electron shells of atoms upon the formation of
molecules or solids suggests that nonnucleon degrees
of freedom must manifest themselves here [1].

From the experimental point of view, difficulties
in studying nuclear structure at short distances stem
from a low probability of relevant configurations and,
as a consequence, from small values of cross sec-
tions for corresponding processes. For example, the
fact that data on deep-inelastic scattering, which is
a traditional tool for studying the structure of par-
ticles and which is the most convenient for a the-
oretical interpretation among reactions used for this
purpose, furnishes virtually no information about the
high-momentum component in nuclei is partly due
to small cross-section values. For deep-inelastic-
scattering reactions, Bjorken variable values in the
region xb > 1 correspond to nonzero internal mo-
menta. Currently available experimental data relevant
to the problem in question are contradictory (the
slopes of the spectra in [2] and [3] differ by nearly
a factor of 2) and were obtained only for the re-
gion xb < 1.2, which corresponds to internal momen-
ta of k ≈ 0.2 GeV/с (the relevant internal momen-
tum, which is the relative momentum in the nucleon
pair, can be estimated by the formula k ≈ m(xb − 1),
where m is the nucleon mass).

As is well known, cross sections for processes
featuring a hadron probe are larger than similar
cross sections for the case of a lepton probe. It
was found that the momentum distribution of the
deuteron nucleons that was extracted from data on
2003 MAIK “Nauka/Interperiodica”
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proton–deuteron reactions is in agreement with that
from data on inelastic electron–deuteron scattering
[4]. It can therefore be assumed that hadron and
lepton probes furnish identical information about the
structure of the deuteron. Hence, implementation
of experimental programs at various facilities may
provide comprehensive information about the internal
structure of the deuteron. However, a relevant theo-
retical analysis is complicated by an intricate interac-
tion mechanism. The fragmentation of a nucleus into
hadrons in a kinematical region that is forbidden for
free nucleon–nucleon scattering [1, 5]—these are so-
called cumulative processes—exemplifies reactions
for which a vast body of experimental data has been
accumulated.

In this connection, the deuteron is of particular
interest. First, this nucleus has received the most
comprehensive study, both from the experimental and
from the theoretical point of view. Second, it is eas-
ier to disentangle the reaction mechanisms for the
deuteron since it is the simplest nucleus. Deuteron
fragmentation into cumulative hadrons (often referred
to as deuteron breakup), dp → p′X, is among re-
actions involving a hadron probe that were used to
investigate the deuteron core and which were studied
more comprehensively. In order to single out nonzero
values of internal momenta in this reaction, the sec-
ondary proton must be recorded with a momentum
that ensures fulfillment of the following inequality
for the light-front variable: 1 < x = 2(E′ + p′)/(Ed +
Pd) ≤ 2, with E′ (Ed) and p′ (Pd) being, respectively,
the energy and the momentum of the secondary pro-
ton (primary deuteron). Interest in this reaction was
caused, first, by a large value of the cross section for
the above internal momenta and, second, by the fact
that secondary protons are rather easily identifiable
in relevant experiments. In the impulse approxima-
tion, the inclusive spectrum of spectator protons in
the deuteron-stripping reaction dp → p′X is propor-
tional to the square of the deuteron wave function,
which depends on the spectator momentum. As was
shown in [6], the application of the impulse approx-
imation in analyzing this reaction is quite legitimate
at high x, x > 1.7, or at high spectator momenta,
p′ > 0.4 GeV/с. From experimental data on deuteron
fragmentation into protons, one can therefore directly
extract information about the high-momentum dis-
tribution of nucleons in the deuteron. It was shown
in [6] that the deuteron wave function for the so-called
Paris potential [7] provides a satisfactory description
of the spectrum of protons in the deuteron-breakup
reaction with respect to the Lorentz-invariant square
of the internal momentum [5],

k2 =
m2 + p2

⊥
4x(1 − x)

− m2,
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where p⊥ is the transverse momentum of the spec-
tator proton. This relation between the proton mo-
mentum and the internal momentum arises in the so-
called minimal-relativization scheme (see [5, 6]).

However, there appear difficulties in theoretically
analyzing polarization observables. For example, only
for k < 0.25 GeV/с can one describe, within the
spectator mechanism, the tensor analyzing power
T20 measured in the reaction dp → pX. Moreover,
a simultaneous description of data on the tensor
analyzing power T20 and on the polarization-transfer
factor κ proved to be impossible within the spectator
mechanism if the deuteron was treated on the basis of
the two-component model (S and D waves) [8]. The
inclusion of additional product-hadron rescattering
makes it possible to reproduce both the spectrum of
protons and the analyzing power T20 up to internal
momenta of k ≤ 0.65 GeV/с by using only nucleon
degrees of freedom [6]. However, the entire body of
data on the deuteron-breakup reaction could not be
described within the nucleon model.

It can be assumed that these discrepancies be-
tween theoretical and experimental results may be
due largely to the decisive role of nonnucleon degrees
of freedom in the formation of the deuteron structure
at high internal momenta (greater than 0.20 GeV/с),
which correspond to short internucleon distances
(less than 1 fm). The inclusion of nonnucleon degrees
of freedom, such as six-quark states [9] or ∆∆,
NN∗, and NNπ deuteron states, made it possible
to describe the inclusive spectrum of protons for
x ≥ 1.7 [6]. However, a universal theoretical model
that would be able to describe T20 and κ over the
entire region of momenta of protons that are emitted
into the forward hemisphere in the reaction dp → p′X
has yet to be constructed.

In order to explore nonnucleon and quark states in
nuclear structure, it seems natural to study, both ex-
perimentally and theoretically, polarization features of
the cumulative production of hadrons that have differ-
ent quark compositions. Such reactions are exempli-
fied by relativistic-deuteron fragmentation into pions,
dp → πX, which was investigated at the Laboratory
of High Energies at the Joint Institute for Nuclear
Research (JINR, Dubna) [1, 10, 11]. In that case, a
deuteron of momentum Pd = 8.9 GeV/с fragmented
on target nuclei (hydrogen, carbon, beryllium) into
pions at angles close to zero. The experiments in-
volved measuring the spectra of outgoing pions [1]
and the tensor analyzing power T20 [10, 11]. As a
result, it was shown that the analyzing power T20 is
virtually equal to zero in the precumulative region,
x < 1, and is very small in the cumulative region,
x ≥ 1.
3
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Fig. 1. Relativistic-impulse-approximation diagram for
deuteron fragmentation into cumulative pions, �d+ p→
π +X. Here, s = (p+D)2 is the square of the total
reaction energy; t′ = (D − p′)2 is the invariant square of
the momentum transfer; and sX and sY are the squares
of the effective masses of undetected composite particles
X and Y , respectively.

It is well known that, in contrast to the deuteron-
breakup reaction, the production of cumulative pi-
ons in the process dp → π(0◦)X proceeds predom-
inantly through pion production on an intranuclear
nucleon carrying a high internal momentum, and this
corresponds to the impulse approximation or to the
so-called direct mechanism [12, 13]. Rescattering
and final-state interaction are much less intense here
than in the deuteron-breakup reaction (see, for exam-
ple, [14]) and can be disregarded for a first approx-
imation. In turn, the impulse-approximation contri-
bution is due to the high-momentum component of
the deuteron wave function. Thus, the structure of the
deuteron at short distances is studied directly here.

A rather high yield of high-momentum pions orig-
inating from pd and pA interactions in the kinemati-
cal region that is forbidden for free nucleon–nucleon
scattering was described on the basis of the model
of few-nucleon correlations [5, 15], the multiquark-
bag model [9, 16], and the model of quark–gluon
strings [17]. However, the polarization features of
deuteron fragmentation into pions have not yet at-
tracted the attention of theorists.

Before proceeding to consider contributions from
nonnucleon degrees of freedom and from more com-
plicated reaction mechanisms, it is necessary to take
into account the predictions of the nucleon model
in the leading order and for various schemes for the
inclusion of relativistic effects in a bound system. It
seems natural that only upon a consistent relativistic
calculation of this leading contribution would it be
reasonable to discuss the contribution of other (non-
standard) reaction mechanisms, and we focus here on
performing precisely such a calculation.

Specifically, a Lorentz-invariant analysis of the
tensor analyzing power T20 and of the inclusive spec-
trum of unpolarized pions from the reaction �dp →
πX [18] is performed in the present study. The main
PH
problem addressed here is to describe this reaction
within a consistent relativistic scheme on the basis
of the nucleon model of the deuteron with various
deuteron wave functions. For this purpose, fully co-
variant expressions for all observables are written
within the Bethe–Salpeter formalism. This approach
makes it possible to draw general conclusions on the
amplitude of the process and to go over to various
schemes for taking into account relativstic effects and
to the nonrelativistic limit. In addition, we consider
the question of how the results of our theoretical
calculations are affected by theoretical uncertainties
arising in the impulse approximation because of the
need for using off-shell elementary amplitudes.

2. RELATIVISTIC IMPULSE
APPROXIMATION

Let us consider an inclusive reaction of the form
�d + p → π(0◦) + X, (1)

where the incident polarized deuteron has an energy
of a few GeV and where one final pion is detected in
the direction of the projectile-deuteron momentum.
Since the deuteron is a loosely bound system, this
reaction can be considered, for a first approximation,
as a process where one of the nucleons of the deuteron
is knocked out from it upon undergoing a collision
with a target nucleon, producing a pion, while the
other nucleon continues moving at a nearly the same
momentum as that before the collision event. If the
reaction in question is indeed governed by this mech-
anism, its spectrum must not depend on the target
mass number A; that is, the process is determined by
the internal structure of the deuteron exclusively and
can be represented by the diagram of the relativistic
impulse approximation (see Fig. 1).

In this approximation, the amplitude T π
pd for the

reaction �dp → πX can be written in the Lorentz-
invariant form [18–20]

T π
pd =

(
ŪY ΓNN

)
αβ

ū
(σp′ )
γ (p′) (2)

×
(

n̂ + m

n2 − m2

)

βδ

u
(σp)
α (p) (Γµ(D, q)C)δγ ξµM (D),

where (ŪY ΓNN ) is the vertex for the NN → πY ele-
mentary event; α, β, γ, and δ are Dirac indices (sum-
mation over dummy indices is implied here); µ is the
Lorentz index; C = iγ2γ0 is the charge-conjugation
matrix; M is the polarization of the deuteron; and,
finally, σp′ and σp stand for the nucleon-spin projec-
tions [21]. Further, we note that the deuteron vertex
(Γµ(D, q)C) satisfies the Bethe–Salpeter equation
and depends on two variables, the relative momentum
q = (n − p′)/2 and the total momentum D = n + p′
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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of the deuteron, its mass being denoted by Md. The
deuteron polarization vector ξµM(D) satisfies the con-
ditions

ξµM (D)Dµ = 0, ξµM (D)ξµM ′(D) = −δMM ′ ; (3)
∑

M

(ξµM (D))∗ ξνM(D) = −gµν +
DµDν

M2
d

. (4)

Since the spectrum depends only slightly on the tar-
get type, the vertices of the diagram factorize. It fol-
lows that, upon squaring the reaction amplitude (2),
the corresponding inclusive spectrum of pions can be
represented in the factorized form

ρπpd = επ
dσ

d3pπ
=

1
(2π)3

(5)

×
∫ √

λ(p, n)√
λ(p,D)

ρµν(D)
[
ρπpN · Φµν(D, q)

] m2d3p′

E′ ,

where λ(p1, p2) ≡ (p1p2)2 − m2
1m

2
2 =

λ(s12,m
2
1,m

2
2)/4 is a kinematical factor, with s12

being defined as s12 = (p1 + p2)2; p and n are the
4-momenta of, respectively, the target proton and
an intranuclear nucleon; and ρπpN ≡ επdσ/d3pπ is
the Lorentz-invariant inclusive spectrum of pions
produced in the interaction of a deuteron nucleon
with a target proton. In general, this spectrum can
be represented as a function of three variables, ρπpN =
ρ(xF, π⊥, sNN ). Here, the Feynman variable xF is
defined as xF = 2π||/

√
sNN , where π = (π||,π⊥) is

the pion momentum in the c.m. frame of colliding
nucleons and sNN = (p + N)2 is equal to the square
of the total energy of these nucleons.

In expression (5), the quantity ρµν(D) is the
deuteron density matrix, which can be represented
in the manifestly covariant form [22]

ρµν(D) = (ξµM (D))∗ξνM (D) (6)

=
1
3

(
−gµν +

DµDν

M2
d

)
+

1
2
(Wλ)µνsλd

−
[

1
2

((Wλ1)µρ(Wλ2)
ρ
ν + (Wλ2)µρ(Wλ1)

ρ
ν)

+
2
3

(
−gλ1λ2 +

Dλ1Dλ2

M2
d

)(
−gµν +

DµDν

M2
d

)]
pλ1λ2
d ,

where (Wλ)µν = iεµνγλD
γ/Md and sd and pd are

the deuteron-spin vector and the deuteron-alignment
tensor, respectively.

Further, the fully symmetric tensor Φµν(D, q) in
Eq. (5) can be expanded in covariant quantities as

Φµν(D, q) =
1
4
tr

[
Ψ̄µ

(
n̂ + m

m

)2

Ψν
p̂′ − m

m

]
(7)
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= −f0(n2)gµν + f1(n2)
qµqν
m2

.

In doing this, we have introduced the modified vertex
Ψµ(D, q), which is related to the vertex Γµ(D, q) by
the equation

Ψµ(D, q) =
Γµ(D, q)

m2 − n2 − i0
= ϕ1(n2)γµ (8)

+ ϕ2(n2)
nµ
m

+
n̂ − m

m

(
ϕ3(n2)γµ + ϕ4(n2)

nµ
m

)
.

The form factors ϕi(n2) are associated with two large
deuteron-wave-function components U and W (cor-
responding to the 3S1 and 3D1 deuteron states) and
two small components Vt and Vs (corresponding to
the 3P1 and 1P1 states).

Substituting formula (8) into expression (7) and
equating the structures at identical covariant quan-
tities on the left- and the right-hand side of the re-
sulting equation, we find that the invariant functions
f0,1(n2) can be explicitly written as

f0(n2) =
M2
d

m2

(
ϕ1 −

m2 − n2

m2
ϕ3

)
ϕ1 (9)

−
(

m2 − n2

m2

)2

(ϕ1 − ϕ3) ϕ3,

f1(n2) = −4

{
ϕ1 + ϕ2 −

m2 − n2

m2
(10)

×
(ϕ2

2
+ ϕ3 + ϕ4

)}
(ϕ1 + ϕ2)

+
M2
d

m2

(
ϕ2 −

m2 − n2

m2
ϕ4

)
ϕ2

−
(

m2 − n2

m2

)2

(ϕ2 + 2ϕ3 + ϕ4)ϕ4.

The corresponding scalar functions ϕi(n2) in the
deuteron vertex featuring one off-shell nucleon can
be calculated in any reference frame. We note that,
in our case, where one particle in on the mass
shell, only four partial waves of the deuteron make
nonzero contributions—namely, only the U = 3S++

1 ,
W = 3D++

1 , Vs = 1P−+
1 , and Vt = 3P−+

1 partial
waves are operative according to the ρ-spin classifi-
cation [23].

In order to relate the functions ϕi(n2) to the non-
relativistic S, D, and P waves, it is convenient to
recast them into the form

Ndϕ1 = U − W√
2
−
√

3
2

m

|q|Vt, (11)

Ndϕ2 = − m

(Eq + m)
U − m(2Eq + m)

|q|2 (12)
3
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× W√
2

+

√
3
2

m

|q|Vt,

Ndϕ3 = −
√

3
2

mEq

|q|(2Eq − Md)
Vt, (13)

Ndϕ4 =
m2

Md(Eq + m)
U − m2(Eq + 2m)

Md|q|2
(14)

× W√
2
−

√
3

m2

|q|(2Eq − Md)
Vs,

where all functions are defined in the deuteron rest
frame; all kinematical variables must be calcu-
lated precisely in this reference frame; and Eq =√

|q|2 + m2. The normalization constant N−1
d =

π
√

2/Md is chosen in accordance with the nonrela-
tivistic normalization of the deuteron wave function:1)

∞∫

0

|q|2d|q|
[
U2(|q|) + W 2(|q|)

]
= 1. (15)

Equations (11)–(14) define the invariant functions
f0,1(|q|) in terms of the partial waves of the deuteron
as

f0(|q|) = N−2
d

M2
d

m2

[(
U − W√

2

)2

(16)

+
√

6
|q|
m

(
U − W√

2

)
Vt −

3
2
V 2
t

]
,

2
3
|q|2
m2

f1(|q|) = N−2
d

M2
d

m2

[
2
√

2UW + W 2 (17)

+ V 2
t − 2V 2

s − 4√
3
|q|
m

((
U − W√

2

)
Vt√
2

+ (U +
√

2W )Vs

)]
.

1)We note that the definition given by Gross [24] for the
deuteron vertex Ψ̃µ(q) differs from our definition of the
Bethe–Salpeter vertex Ψµ(q) (8). They are related as

Ψ̃µ(q) = Ψµ(−q).
Taking this into account and comparing Eqs. (11)–(14) with
the corresponding Eqs. (46) from [24], one can see that the
Gross wave functions Ũ(q), W̃ (q), Ṽs(q), and Ṽt(q), whose
parametrizations will be used here below, are related to our
functions by the equations

Ũ(q0, |q|) = U(−q0, |q|);
W̃ (q0, |q|) = W (−q0, |q|);
Ṽs(q0, |q|) = −Vs(−q0, |q|);
Ṽt(q0, |q|) = −Vt(−q0, |p|),

where q0 = Md/2 − Eq.
PH
Further, we use the explicit form (6) of the deuteron
density matrix to obtain the identity

Φ ≡ ρµνΦµν = Φ(u) + Φ(v)
λ sλd + Φ(t)

λ1λ2
pλ1λ2
d . (18)

The superscripts (u, v, t) label functions correspond-
ing to the cases of zero (unpolarized deuteron), vector,
and tensor polarizations, respectively; that is,

Φ(u)(q) = f0 +
1
3
|q|2
m2

f1, (19)

Φ(v)
λ (q) = 0, (20)

Φ(t)
λ1λ2

(q) =

[
1
3
|q|2
m2

(
−gλ1λ2 +

Dλ1Dλ2

M2
d

)
(21)

−
(
−gλ1µ +

Dλ1Dµ

M2
d

)(
−gλ2ν +

Dλ2Dν

M2
d

)
qµqν

m2

]
f1.

The above formulas are applicable to calculating
deuteron fragmentation into pions for any deuteron
polarization.We now consider a specific case of tensor
polarization, with the deuteron being aligned only
along the pZZd component of the density matrix (6).
In this case, the inclusive spectrum (5) of pions from
the reaction �dp → πX can be represented in the form

ρπpd
(
pZZd

)
= ρπpd

[
1 + AZZ · pZZd

]
, (22)

where ρπpd is the inclusive spectrum of pions in the

case of unpolarized deuterons and AZZ ≡
√

2T20 is
the tensor analyzing power, −

√
2 ≤ T20 ≤ 1/

√
2. In

a compact form, we have

ρπpd =
1

(2π)3

∫ √
λ(p, n)√
λ(p,D)

[ρπpN · Φ(u)(|q|)]m
2d3q

Eq
;

(23)

ρπpd · AZZ = − 1
(2π)3

∫ √
λ(p, n)√
λ(p,D)

[ρπpN · Φ(t)(|q|)]

(24)

×
(

3 cos2 ϑq − 1
2

)
m2d3q

Eq
,

where the functions Φ(u)(|q|) and Φ(t)(|q|) are ex-
pressed in terms of deuteron partial waves as

Φ(u)(|q|) = N−2
d

M2
d

m2

[
U2 + W 2 − V 2

t − V 2
s (25)

+
2√
3
|q|
m

((√
2Vt − Vs

)
U −

(
Vt +

√
2Vs
)

W
)]

,

Φ(t)(|q|) = N−2
d

M2
d

m2

[
2
√

2UW + W 2 + V 2
t (26)
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Minimum momenta of the deuteron nucleons involved in deuteron fragmentation into cumulative pions, dp → πX , at
Pd = 8.9 GeV/с and a pion emission angle of ϑπ = 0◦, along with the expectation values of these momenta and their
root-mean-square deviations

xC |q|min, GeV/с 〈q〉, GeV/с
√
〈δq2〉, MeV/с |k|min, GeV/с 〈k〉, GeV/с

√
〈δk2〉, MeV/с

0–1 0.0 0.09 ∼1.1 0.0 0.10 ∼1.5

1.1 0.07 0.23 2.5 0.07 0.27 3.7

1.2 0.14 0.37 3.4 0.13 0.40 4.0

1.3 0.22 0.49 3.1 0.20 0.50 3.4

1.4 0.30 0.57 2.5 0.26 0.57 2.8

1.5 0.40 0.64 2.1 0.34 0.62 2.4

1.6 0.50 0.72 1.8 0.40 0.67 2.1

1.7 0.64 0.83 1.5 0.50 0.73 1.8

1.8 0.79 0.96 1.3 0.60 0.80 1.5

1.9 1.05 1.20 1.0 1.74 0.90 1.0
− 2V 2
s − 4√

3
|q|
m

((
U − W√

2

)
Vt√
2

+
(
U +

√
2W

)
Vs

)]
.

It is intuitively clear that, in the deuteron, which
is a loosely bound nuclear system, nucleons occur
predominantly in the states of angular momenta L =
0, 2, so that the probability of the L = 1 Vs,t states in
Eqs. (25) and (26) is much less than the probability
of the U and W configurations. A similar conclusion
follows from a numerical analysis of solutions to the
Bethe–Salpeter equation in terms of ρ-spin ampli-
tudes [25, 26]. Moreover, it can be shown that the U
and W waves are in one-to-one correspondence with
the nonrelativistic S and D waves of the deuteron.
Thus, those terms in Eqs. (25) and (26) that involve
only the U and W waves are identified as the main
contributions to the respective observables and can be
contrasted against their nonrelativistic counterparts.
The remaining terms in the equations are proportional
to the relative momentum q/m (the contribution of
off-diagonal terms, V 2

s,t, is negligible) and can be
referred to as relativistic corrections because of their
relativistic origin.

In this approach, relativistic effects are of dynam-
ical character [25, 26], involve (in addition to S and
D waves) negative-energy components (that is, P
waves), and do not reduce to a simple change of
arguments (in contrast to what we have within the
minimal-relativization scheme [5, 27–29]). The idea
of the minimal-relativization scheme consists in con-
structing a relativistic quantum model by using a
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
realistic nonrelativistic potential of nucleon–nucleon
interaction as a starting point. This scheme was used
quite successfully in describing differential cross sec-
tions for deuteron-breakup processesA(d, p)X and is
specified by

(i) the scale transformation from the momentum q
to the light-front variables k = (k⊥, k||),

k2 =
m2 + k2

⊥
4x(1 − x)

− m2, (27)

k|| =

√
m2 + k2

⊥
x(1 − x)

(
1
2
− x

)
,

where, in our case, x = (Eq + |q| cos ϑq)/Md = (ε′ −
p′||)/Md and |k⊥| = p′⊥;

(ii) a renormalization of the deuteron wave func-
tion such that this renormalization satisfies the re-
quirement that the procedure of the change of argu-
ments be unitary, which leads to a multiplication by a
factor proportional to 1/(1 − x).

As a result, the argument is shifted toward smaller
values, so that the deuteron wave function decreases
less fast. This effect of enhancement of the deuteron
wave function is compensated by a kinematical factor
proportional to 1/(1 − x).

3. RESULTS AND DISCUSSION

Let us now proceed to discuss the results that are
obtained by calculating the aforementioned obser-
vables—that is, the invariant spectrum ρπpd =
επdσ/d3pπ (23) of pions and the tensor analyzing
power T20 (24) for the fragmentation process �dp →
3
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πX—and which are given in the figures below, along
with available experimental data [1, 10, 11]. These
results are presented versus the so-called cumulative
scaling variable xC (also referred to as the cumulative
number [30]), which is defined as

xC = 2
(pπ) − µ2/2

(Dp) − Mdm − (Dπ)
(28)

= 2
t − m2

(t − m2) + (Md + m)2 − sX
≤ 2

and which takes into account the fact that the
primary-particle energy is finite. In the deuteron rest
frame, D = (Md,0), the variable xC has the form of
the pion light-front variable α = (Eπ − π cos ϑπ)/Md

in the presence of a correction for the finiteness of
interacting-particle masses:

xC = 2
EEπ − ppπ cos ϑπ − µ2/2

Md(E − Eπ − m)
(29)

→ 2
E

Tp

α

1 − Eπ/Tp
.

The quantity xC corresponds to the minimum mass
(in nucleon-mass units) of the fragmenting-nucleus
(deuteron) part involved in the process. Thus, a value
of xC in excess of unity corresponds to the production
PH
of a cumulative pion. As can be seen, this kinematical
region corresponds to light-front-variable values of
x ≥ 1 (27) and to internal momenta of k ≥ 0, as is
demonstrated in the kinematical table.

The simplest reactions of deuteron fragmentation
into hadrons are processes of forward or back-
ward proton scattering. In particular, the deuteron-
stripping reaction d + A → p(0◦) + X (both for the
case where the deuteron involved is polarized and for
the case where it is unpolarized) is one of the reactions
featuring a hadron probe that have been studied
most intensively. The factors that motivated such a
meticulous study are the following: (i) this reaction
has a large cross section; (ii) in collinear geometry,
the final-proton momentum is directly related to the
argument of the deuteron wave function, provided
that the reaction mechanism is dominated by one-
nucleon exchange. This leads to a simple relationship
between the inclusive spectrum in the reaction and
polarization observables, on one hand, and the S and
D waves of the deuteron wave function, on the other
hand. By way of example, we indicate that, in the
impulse approximation, the tensor analyzing power
T20 for the stripping reaction dp → pX assumes the
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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Fig. 3. Inclusive spectrum of pions according to calculations allowing for the contribution of P waves of the deuteron and
employing the relativistic deuteron amplitudes of two forms, from [38] and from [24, 40], that involve different percentages
of the P-wave components, PV =

∫∞
0

|q|2d|q|[V 2
s (|q|) + V 2

t (|q|)]: (solid curve) results obtained with the deuteron wave
function from [38], where PV � 0.2%, and (dashed and dash-dotted curves) results obtained with the Gross deuteron wave
function [24, 40] for the cases where the limiting content of the small components in the deuteron is PV = 0.03 and 1.46%,
respectively. The thin dashed curve represents the results of the calculation with the nonrelativistic deuteron wave function for
the Reid potential [35]. The displayed experimental data (points) were borrowed from [1].
simple form [31]

T20 = − 1√
2

2
√

2UW + W 2

U2 + W 2
(30)

and is independent of the amplitude for the subpro-
cess pn → pX. Thus, a direct experimental investi-
gation of the momentum distribution in the deuteron
seems quite feasible [31–34]. However, the impulse
approximation both for the spectrum and for the an-
alyzing power T20 is applicable only for internal mo-
menta of k ≤ 0.2 GeV/с [6]. At higher values of k, the
contributions of nonpole diagrams—such as those
describing nucleon or meson rescattering in the in-
termediate state and those corresponding to virtual-
meson absorption by a nucleon—may become com-
mensurate with the contribution of the pole diagram;
therefore, they must be taken into account for observ-
ables to be described correctly. In view of this, it is
hardly possible to extract nontrivial information about
the structure of the deuteron at short internucleon
distances.

In the case of deuteron fragmentation into cumu-
lative pions, d + p → π(0◦) + X, rescattering mech-
anisms are kinematically suppressed [14]. It follows
that, in studying this reaction theoretically, one can
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
rely on the impulse approximation (see the diagrams
in Fig. 1). We will now discuss the results of our
calculations for the observables ρπpd (23) and T20 (24).

The inclusive spectra of pions from the reaction
pd → πX at Pp = 9 GeV/с were computed on the
basis of the relativistic impulse approximation with
the deuteron wave function of various forms [7, 35,
36]. In these calculations, the spectrum ρπNN for the
elementary event was parametrized in the form pro-
posed in [37]. The results are presented in Figs. 2–
4 for the pion emission angle of ϑπ = 180◦. From
these figures, it can be seen that the model used
here produces results that are in excellent agreement
with experimental data in the precumulative region
xC < 1, where the spectrum of pions is basically de-
termined by the ratio of the reaction phase space to
the normalization of the deuteron wave function (see
table) and, hence, depends only slightly both on the
choice of form of the deuteron wave function and on
the structure of the vertex for the elementary process
NN → πY . Figure 2 shows that, in the cumulative
region, xC ≥ 1, ρπpd exhibits a high sensitivity to the
structure of this vertex and a low sensitivity to the
form of the nonrelativistic deuteron wave function.
3
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Fig. 4. Inclusive spectrum of pions according to calculations on the basis of the minimal-relativization scheme [5, 27–29]
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The inclusion of the contribution of deuteronP waves
(see Fig. 3) within the Bethe–Salpeter formalism [38]
or within the Gross approximation [39, 40] improves
insufficiently the description of the experimental situ-
ation. Figure 4 displays the results obtained for the
spectrum of pions within the minimal-relativization
scheme [5], which provides the best description of
experimental data without going beyond the nucleon-
model concepts for the deuteron.

Let us now proceed to discuss the results obtained
by calculating, in the relativistic impulse approxima-
tion, the tensor analyzing power T20 for the reac-
tion �dp → πX at Pd = 8.9 GeV/с for the pion emis-
sion angle of ϑπ = 0◦. These results are displayed in
Figs. 5–7, along with experimental data from [10, 11].
In the precumulative region, the analyzing power T20

is virtually equal to zero owing to the presence of the
angular factor in (24), and this is confirmed by exper-
imental data. Figure 5 shows that, in the cumulative
region, xC ≥ 1, T20, in contrast to the spectrum of
pions, depends only slightly on the structure of the
NN → πY vertex, on one hand, and is highly sensi-
tive to the form of the deuteron wave function, on the
other hand. In other words, investigation of this polar-
ization feature provides a direct means for extracting
information about the structure of the deuteron.

As can be seen from Figs. 5–7, none of the forms
used here for the deuteron wave function leads to an
P

adequate description of the tensor analyzing power
T20. Naturally, this fact may be interpreted as a man-
ifestation of a nontrivial structure in the deuteron.

The assumption that nonnucleon or quark degrees
of freedom may exist in nuclei [6, 41–44] underlies
an alternative approach to describing the structure of
the deuteron at short internucleon distances. By way
of example, we indicate that, according to [5], one
can assume that intranuclear nucleons acquire high
momenta owing to short-range few-nucleon correla-
tions, and this makes it possible to find the form of the
effective distribution of “nucleons” or color-singlet 3q
clusters in a nucleus [9, 16]. On the other hand, the
behavior of the high-momentum tail in the distribu-
tion of deuteron nucleons can be constructed on the
basis of a correct Regge asymptotic behavior [15];
in [6, 15], this permitted extracting parameters of
the distribution function from experimental data on
the inclusive spectrum of protons originating from
the deuteron-stripping reaction dp → pX. According
to [6, 15], one can therefore assume the renormalized
form [20]

Φ̃(u)(|k|) = N−1
d

M2
d

m2
(31)

×
(

(1 − α2(3q))[U
2(|k|) + W 2(|k|)]
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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+ α2(3q)
8πx(1 − x)

Ek
G2(3q)(x,k⊥)

)
,

which is related to Φ(u)(|q|) (25) by the requirement
that the transformation of variables be unitary:

Φ(u)(|q|) =
Ek/Eq

2(1 − x)
Φ̃(u)(|k|). (32)

The parameter α2(3q) is the probability that, in the
deuteron, there exists a nonnucleon state of two
bound color-singlet 3q clusters,

G2(3q)(x,k⊥) =
b2

2π
(33)

× Γ(A + B + 2)
Γ(A + 1)Γ(B + 1)

xA(1 − x)Be−bk⊥ .

Figure 8 shows the invariant spectrum ρπpd of pions
that was calculated with allowance for the nonnu-
cleon component in the deuteron [see Eq. (31)] at
α2(3q) = 0.02 and 0.04 (dashed and dotted curves,
respectively). From this figure, we can see that, at any
value of the cumulative variable xC , the results of our
theoretical calculations are in excellent agreement
with experimental data from [1].

A similar procedure for estimating the contribu-
tion of the nonnucleon component in the deuteron
can be implemented for the tensor analyzing power
T20. We note that only the form of the distribution
Φ̃(u)(|k|) was constructed in [15], but this is not suf-
ficient for evaluating T20—the corresponding partial
waves must be known for this. We will take into ac-
count the contribution of the nonnucleon component
in the deuteron, assuming that it changes predom-
inantly only the S and D waves in the deuteron. In
doing this, we require that the square of the new
wave function be equal to the square of the wave
function in (31). We introduce the mixing parameter
α = πa/4 and, in accordance with [20], assume the
renormalized form

Ũ(|k|) =
√

1 − α2(3q)U(|k|) + cos(α)∆(|k|); (34)

W̃ (|k|) =
√

1 − α2(3q)W (|k|) + sin(α)∆(|k|),
(35)

where the function ∆(|k|) can be found from the
equation

Φ̃(u)(|k|) = N−1
d

M2
d

m2

[
Ũ2(|k|) + W̃ 2(|k|)

]
. (36)

In Fig. 9, the solid, dashed, and dash-dotted
curves (α2(3q) = 0.04, 0.03) illustrate the contribution
of this component to T20 under the assumption that
it changes the S and D waves of the deuteron, with
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
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Fig. 5. Tensor analyzing power T20 calculated for
deuterons within the relativistic impulse approximation
by using various forms of the nonrelativistic deuteron
wave function, along with experimental data from [10,
11] (points): (solid and dashed curves) results obtained
with the deuteron wave function for the Reid ([35]) and
the Paris ([7]) potential, respectively; (dash-dotted and
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the relativistic and the total deuteronwave function for the
Bonn potential [36]; and (dotted curve) results obtained
by evaluating expression (24) with the deuteron wave
function for the Reid potential [35] without taking into
account the internal structure of the elementary vertex,
ρπNN = 1.

the mixing parameter being a = 0.0 and 2.3. It can be
seen the the inclusion of the nonnucleon component
of the deuteron wave function in our consideration
makes it possible to reproduce experimental data on
T20 over the region xC > 1.4.

For incident deuterons of momentum Pd =
8.9 GeV/с, the tensor analyzing power T20 as a
function of the minimum nucleon momentum in the
deuteron is shown in Fig. 10 for deuteron fragmenta-
tion into cumulative pions, d(p, π)X [10, 11], and for
deuteron fragmentation into protons, d(p, p′)X [45],
the hadron emission angle being equal to zero in both
cases.

4. PROSPECTS FOR STUDYING
THE ANGULAR DEPENDENCE

OF POLARIZATION OBSERVABLES

We have considered the fragmentation reaction
dp → πX for the case where cumulative pions are
emitted at zero angle. In recent years, the SFERA
group at the Laboratory of High Energies at the Joint
3
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at various values of the mixing parameter a under the
assumption that it changes only the S and D waves of
the two nucleons in the deuteron [see Eqs. (34), (35)]:
(solid curve) a = 0.0 (α2(3q) = 4%), (dashed curve) a =
0.0 (α2(3q) = 3%), and (dash-dotted curve) a = 2.3
(α2(3q) = 3%). The thin dashed curve represents the re-
sults of the calculation that employed the deuteron wave
function from [35], but which relied on the minimal-
relativization scheme.

Institute for Nuclear Research (JINR, Dubna) inves-
tigated this reaction at nonzero pion emission an-
gles [46]. For the case where deuterons of momentum
Pd = 8.9 GeV/с fragmented into pions emitted at an
angle of ϑπ = 135 mrad, the tensor analyzing power
AY Y , which is linearly related to the polarization fea-
ture T20 at ϑπ = 0, T20 = −

√
2AY Y , was measured in

those experiments over the cumulative-number range
xC = 0.75–1.6. It is also planned to measure AY Y

at larger values of the angle ϑπ—in particular, data
on AY Y at ϑπ = 178 mrad are expected [47]. Since,
in the process being discussed, the deuteron receives,
from the proton, a momentum that is commensurate
with the deuteron mass, investigation of the angular
dependences of polarization observables would make
it possible to deduce new information both about the
structure of the deuteron at short internucleon dis-
tances and about the reaction mechanism. In Fig. 1,
we present predictions for the tensor analyzing power
AY Y that are obtained within the relativistic impulse
approximation. In the case where the deuteron is
aligned only with the pY Yd component of the density
matrix (6), the deuteron tensor analyzing power AY Y
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cleon momentum in the deuteron at Pd = 8.9 GeV/с
for zero hadron emission angle: (solid curve) T20 calcu-
lated for pions with allowance for the nonnucleon com-
ponent (α2(3q) = 4%) at zero mixing parameter (a =
0.0), (dashed curve) T20 calculated for pions with the
deuteron wave function from [35] by using the minimal-
relativization scheme, and (dash-dotted curve) T20 cal-
culated for protons within the minimal-relativization
scheme. The displayed experimental data were borrowed
from [10, 11] for pions (closed circles) and from [45] for
protons (open circles).

can be represented in the form [48]

ρπpdAY Y =
1

(2π)3

∫ √
λ(p, n)√
λ(p,D)

[ρπpN · Φ(t)(|q|)]

(37)

×
(

1 − 3 sin2 ϑq sin2 ϕq

2

)
m2d3q

Eq
,

which differs from expression (24) for AZZ only by
the angular factor in the integrand. Concurrently, the
domain of integration also changes of course.

The results for AY Y in the fragmentation re-
action dp → πX at Pd = 8.9 GeV/с as a function
of the pion emission angle ϑπ that were obtained
in the relativistic impulse approximation within the
minimal-relativization scheme [5, 27–29] by using
the deuteron wave function for the Reid potential [35]
are displayed in Fig. 11, along with available ex-
perimental data from [46, 47]. From this figure, one
can see that the relativistic impulse approximation is
unable to reproduce the behavior of AY Y . It should
be noted that, at nonzero pion emission angles, the
contribution of higher, two-step, reaction mecha-
nisms increases greatly [12]. However, estimation
of nonpole diagrams shows that their contributions
3
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Fig. 11.Angular dependence of the tensor analyzing powerAY Y for the fragmentation reaction �dp→ π−X atPd = 8.9GeV/с
according to our calculations relying on the minimal-relativization scheme [5, 27–29] and employing the deuteron wave
function for the Reid potential [35]. The solid, the dashed, and the dash-dotted curve correspond to the pion-emission-angle
values of ϑπ = 0, 178, and 300 mrad, respectively. The displayed experimental data (points) were borrowed from [46, 47]
(ϑπ = 135, 178 mrad) and [10, 11] (ϑπ = 0) and were obtained for different targets (beryllium, hydrogen, and carbon).
gradually die out as the process becomes more
cumulative, so that the main contribution, at least
to the momentum spectrum of pions, comes from the
relativistic-impulse-approximation diagram, which,
however, fails to describe available experimental data
at large xC within the nucleon model of the deuteron.

On the basis of the aforesaid, it can be concluded
that the kinematical region that is the most favorable
for studying the structure of the deuteron corresponds
to large cumulative numbers (xC) of product pions,
while the region that is themost favorable for studying
the reaction mechanism is that of large pion emission
angles. Therefore, it is highly desirable to have data
on the angular dependence of various polarization
features at different values of the cumulative number
xC .

5. CONCLUSIONS

Here, we would like to summarize the conclusions
drawn from the above analysis:

(i) In analyzing deuteron fragmentation into had-
rons—in particular, into cumulative pions—it is in-
correct to employ a nonrelativistic deuteron wave
function. Relativistic effects are significant, especially
in the kinematical region corresponding to short in-
ternucleon distances or high values of x. This conclu-
sion follows from the behavior of the inclusive spectra
PH
of pions and, even more clearly, from the behavior of
the tensor analyzing power T20 at high values of xC .

(ii) At present, there is no consistent approach
that would make it possible to take into account
relativistic effects in the deuteron. It has been shown
that the tensor analyzing power T20 for the reaction
dp → πX in the kinematical region xC ≥ 1 displays
a rather high sensitivity to the form of the relativistic
wave function.

(iii) The inclusive spectrum of π mesons is highly
sensitive to the choice of form of the NN → πX
vertex, while the tensor analyzing power T20 is weakly
sensitive to it. This may suggest the presence of some
uncertainty in theoretical calculations that are asso-
ciated with choosing the vertex appropriately.

(iv) New interesting experimental data on the an-
alyzing power T20, which indicate that it is approxi-
mately equal to zero in the region xC ≥ 1, cannot be
understood within the standard nucleon model of the
deuteron. The fact that, for the reaction of deuteron
fragmentation into pions, a simultaneous satisfac-
tory description of experimental data on the inclusive
spectrum of pions from this reaction and the analyz-
ing power T20 for it is impossible in the kinematical
region that is forbidden for pion production on a free
nucleon may give impetus to further studying, both
theoretically and experimentally, polarization observ-
ables in similar processes.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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(v) For the process of deuteron fragmentation into
protons, the behavior of the tensor analyzing power
T20 for xC ≥ 1.7 [6] cannot be reproduced within the
standard nucleon model of the deuteron. At the same
time, the behavior of T20 for deuteron fragmentation
into pions cannot be described under similar assump-
tions over the entire cumulative region xC ≥ 1. The
available experimental data on the inclusive spectrum
of pions originating from the reaction under study can
be described over the entire kinematical region (see
Fig. 8) upon taking into account nonnucleon degrees
of freedom in the deuteron within the model proposed
in [15], the parameters of the model being fixed on
the basis of a fit to experimental data on the inclusive
spectra of protons from the deuteron-stripping reac-
tion [6]. That the parameter values obtained in this
way proved to be appropriate is not surprising since
the same deuteron is the main subject of the analysis
of the reactions dp → p′X and dp → πX within the
relativistic impulse approximation. Therefore, investi-
gation of the contribution from nonnucleon degrees of
freedom in analyzing polarization observables in such
processes may furnish new, independent information
about the structure of the deuteron at short internu-
cleon distances, and a comparison with experimental
data may be a test of the modification used for the
deuteron wave function. New interesting experimen-
tal data on the tensor analyzing power T20, which
indicate that it is positive and small inmagnitude, less
than 0.2, can be understood upon applying a rather
simplified procedure for taking into account nonnu-
cleon degrees of freedom in the region xC ≥ 1.4 (see
Fig. 9). Of course, this procedure is quite rough, but it
enables one to estimate qualitatively the contribution
of the high-momentum component of the deuteron
wave function to T20. The inclusion of this component
leads to a result that is consistent with the behavior of
T20 for the deuteron-stripping reaction for xC > 1.7.
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Abstract—A new method is proposed for calculating amplitudes of processes involving spin-1/2
fermions. The method is based on the use of the isotropic-vierbein vectors in Minkowski space and
the basis spinors associated with them. The amplitudes for the electron–positron interaction processes
e−e+ → f f̄ and e−e+ →W−W+ and the amplitude for one of the possible diagrams for the process
e+e− → e+e−e+e−e+e− are calculated in order to test and illustrate the potential of the method.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, a comparison of consequences from
quantum-field theories with the results of exper-
iments in high-energy physics requires a high-
precision calculation of observables. A reduction of
the square of the absolute value of the relevant matrix
element to the trace of the products of γ matrices is
a universally accepted method for calculating cross
sections for reactions involving spin-1/2 fermions.
In studying, however, multiparticle final states in
reactions and polarization effects, there arose a need
for new computational procedures, since the applica-
tion of the standard method to those cases involves
calculating traces for a rather large number of Dirac
γ matrices.

An approach that is based on directly calculating
matrix elements became an alternative to the stan-
dard method. The idea of calculating amplitudes has
a rather long history. As early as 1949, Powell [1]
proposed calculating a matrix element by using the
explicit form of Dirac γ matrices and bispinors (a
more comprehensive list of references to the studies
dealing with this problem can be found in [2, 3]).

A great number of methods for calculating ampli-
tudes of reactions involving spin-1/2 fermions have
been developed up to the present time; therefore,
it can be stated that, in high-energy physics, the
method in question has become a standard means for
deriving results. The set of methods used to calculate
matrix elements can be broken down into two large
classes. Methods involving a direct numerical calcu-
lation of the relevant Feynman diagram belong to the
first class (see, for example, [4]).

*e-mail: Andreev@gsu.unibel.by
1063-7788/03/6602-0383$24.00 c©
The second class consists of methods where an
analytic calculation of amplitudes is followed by a nu-
merical computation of the reaction cross section. It
should be noted that there are methods for calculating
reaction cross sections without employing Feynman
diagrams [5–7].

By convention, the group of analytic methods for
calculating Feynman amplitudes can be divided into
two subgroups. The first group includes methods that
reduce the calculation of a matrix element to the
evaluation of traces. This procedure forms a basis for
many methods (see, for example, [2, 3, 8–16]). In this
method, the matrix element reduces to a combination
of scalar products and contractions with the Levi-
Civita tensor.

The second subgroup consists of analytic meth-
ods that perform virtually no operations with traces
of γ matrices. The method that was developed by
the CALCUL group and which was used to cal-
culate observables of reactions involving massless
fermions [17–19] is the most widespread. Within this
method, the matrix element being considered is re-
duced to spinor products, which in turn are calcu-
lated in terms of vector components with the aid of
traces. Spinor products for two vectors are not much
more complicated than scalar products. However, the
reduction of a matrix element is not as simple as
the calculation of traces. It requires employing the
Chisholm spinor identities (see [18]) and expressing
the contractions of γ matrices with the 4-momenta
of particles and their polarization vectors in terms
of bispinors. It should be emphasized that, although
the latter renders the relevant calculations even more
efficient in the case of massless fermions and bosons,
additional mathematical constructions are necessary
in the case of massive gauge bosons [18].

There are generalizations of this method to the
case of massive Dirac particles both for a special
2003 MAIK “Nauka/Interperiodica”
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choice of fermion polarization vectors [18, 20, 21]
(in the following, such polarization states of fermions
will be referred to as KS states) and for an arbitrary
polarization vector [22, 23]. By using the Weyl rep-
resentation for γ matrices, Hagiwara and Zeppen-
feld [21] proposed an original algorithm of reduction
to spinor products for massive chiral fermions. It
should be noted that, for massless fermions, ma-
trix elements can be reduced to products of the
4-momentum vectors and current constructions of
the type Jµ ∼ Uλ(p)γµUλ(k) [Uλ(p) and Uλ(k) are
bispinors], which admit a component-by-component
calculation in terms of the projections of the vectors
p and k—this is the so-called E-vector formalism
(see [24]).

For KS states, Ballestrero and Maina [25] pro-
posed an iterative computational scheme that reduces
the expression for the Uλ(p)QUν(k) fermion line in-
volving a matrix operator Q to a combination of the
spinor products Uλ(p)Uν(k) and (or) Uλ(p)γµ(gV +
gAγ5)Uν(k) by inserting, in the fermion line being
considered, the total set of unphysical bispinor states
(those for which p2 < 0).

In the above methods, spinor products and current
constructions were preliminarily calculated with the
aid of traces and were then used as universal func-
tions that are similar to the expression for the scalar
product of 4-vectors in terms of their components.

It is rather difficult to assess the efficiency of one
or another method for calculating a matrix element
since it is the physical problem to be solved that
dictates the application of a specific method. For ex-
ample, computational methods employing traces are
universal and do not require, in contrast to the spinor
technique, additionally constructing contractions of
particle polarization vectors. If, however, the number
of particles in the final state is large, the number of
terms in calculating relevant traces will strongly in-
crease. Moreover, different spin configurations must
be calculated separately.

The spinor technique is efficient in that the pro-
cedure for computing a matrix element in terms of
the components of 4-vectors (or their scalar prod-
ucts) amounts to reducing the relevant amplitude
to basic building blocks of corresponding Feynman
diagrams—that is, to spinor products, which were
preliminarily calculated. This reduces the number of
terms and is convenient at the stage of direct nu-
merical calculations. However, treatment of the sim-
ple process e+e− →W+W− involving polarized W
bosons is more complicated within the spinor tech-
nique than within the procedure employing traces.
PH
Other methods are disadvantageous in that they
use a specific choice of polarization vectors and, ac-
cordingly, require additional calculations if it is neces-
sary to calculate different polarization configurations
of fermions.

Many analytic methods form a basis both for uni-
versal codes for calculating matrix elements and cross
sections—such as CompHEP [26] (this package is
intended for calculating matrix elements in terms of
traces of γ matrices—see [27]), GRACE [28], and
FeynCalc [29]—and for special codes developed to
deal with processes of the types e+e− → 4f , 6f , f f̄ +
nγ. An extensive list of such codes can be found
in [30, 31]. For reactions involving collinearly moving
photons, Carimalo et al. [32] proposed a method that
relies on approximately calculating matrix elements
and which makes it possible to obtain compact ex-
pressions.

The objective of this article is to present a new
method for calculating the amplitudes of processes
involving both massive fermions of arbitrary polar-
ization and massless fermions. This method is based
on the use of basis vectors of an isotropic vierbein in
Minkowski space and basis spinors that are associ-
ated with these vectors. The method does not employ
either the explicit form of bispinors and Dirac γ ma-
trices or the evaluation of traces. But as in methods
that make use of traces, the matrix element being
considered is reduced here to a combination of the
scalar products of particle momenta and polarization
vectors and the vectors of the isotropic vierbein. The
method in question is efficient and is readily imple-
mented in calculations owing to the simplicity of its
algorithm featuring a small number of operations.
In contrast to the spinor technique in the versions
presented in [17–20], the proposed method does not
invoke either the Chisholm spinor identities or rep-
resentations of contractions of particle 4-momenta
and polarization vectors with γ matrices in terms of
bispinors.

Since the method in question is based on exten-
sively using the basis spinors related to the isotropic-
vierbein vectors, we will refer to this method in the
following as the method of basis spinors.

The ensuing exposition is organized as follows.
The isotropic vierbein and the complete set of mass-
less spinors that is associated with it are defined in
Section 2. Basic formulas of the proposed method are
also given there. The coefficients in the expansion of
bispinors for an arbitrary polarization vector in basis
bispinors are considered in Section 3, and the expan-
sion coefficients for fermions are presented there for
the polarization states that are used most frequently.
An account of the method of basis spinors and a
concise comparison of the proposed computational
scheme with spinor-technique methods and methods
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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employing traces are given in Section 4. In Section
5, the amplitudes for the reaction e+e− → f f̄ involv-
ing massive fermions f and for the process e+e− →
W+W− involving polarized bosons are calculated to
test the method of basis spinors; in addition, one
of the possible diagrams for the reaction e+e− →
e+e−e+e−e+e− (for the case of massless fermions) is
calculated in the same section for purposes of illus-
tration. Section 6 contains the conclusions and final
comments.

2. ISOTROPIC VIERBEIN AND BASIS
SPINORS

In Minkowski space, we introduce a quartet of
orthonormalized vectors that satisfy the relations

lµ0 · lν0 − lµ1 · lν1 − lµ2 · lν2 − lµ3 · lν3 = gµν , (1)

(lA)µ = δµA, A, µ, ν = 0, 1, 2, 3,

where g is a metric tensor and δ is a Kronecker delta
symbol. With the aid of (1), an arbitrary 4-vector p
can be represented in the form

p = (pl0) · l0 − (pl1) · l1 − (pl2) · l2 − (pl3) · l3. (2)

Using the vectors lA, we determine lightlike vec-
tors that form an isotropic vierbein in Minkowski
space (for information about the isotropic vierbein,
the interested reader is referred to [33]):

bρ = l0 + ρl3, nλ = l1 + iλl2, ρ, λ = ±1. (3)

From relations (1)–(3), it follows that

(bρb−λ) = 2δλ,ρ, (nλn−ρ) = −2δλ,ρ, (4)

(bρnλ) = 0,

1
2

1∑

λ=−1

[bµλ · b
ν
−λ − nµλ · n

ν
−λ] = gµν . (5)

Therefore, the matrix γµ and, accordingly, its con-
traction p̂ = γµpµ with an arbitrary 4-vector pµ can
be written as

γµ =
1
2

1∑

λ=−1

[b̂−λb
µ
λ − n̂−λn

µ
λ], (6)

p̂ =
1
2

1∑

λ=−1

[(b−λp)b̂λ − (n−λp)n̂λ]. (7)

With the aid of the isotropic vierbein (3), we define
the basis spinors Uλ(b−1) and Uλ(b1) as

Uλ(b−1)Uλ(b−1) = ωλb̂−1, (8)

Uλ(b1) ≡
b̂1
2
U−λ(b−1), (9)
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
ωλUλ(b±1) = Uλ(b±1), (10)

where ωλ ≡ 1/2(1 + λγ5).

Constructing the raising and lowering operators
for spin via the relation

λ

2
n̂λU−ν(b−1) = δλ,νUλ(b−1), (11)

we fix the phase of the basis spinor Uλ(b−1) and the
phase of the spinor Uλ(b1).

From the properties of the lightlike vectors (3) and
the algebra of γ matrices, we obtain

b̂−1

2
U−λ(b1) = Uλ(b−1), (12)

λ

2
n̂λUν(b1) = −δλ,νU−λ(b1). (13)

The completeness condition

1
2

1∑

λ,A=−1

Uλ(bA)U−λ(b−A) = I, (14)

which can be derived from relations (8)–(10), is an
important property of the basis spinors (8) and (9).
Thus, an arbitrary bispinor can be expanded in the
basis spinors Uλ(bA).

Since the phases of basis spinors are fixed, the
result of applying the γ matrices to these spinors can
be found with the aid of relations (6) and (11)–(13);
that is,

γµUλ(b−1) = bµ−1U−λ(b1) + λnµλU−λ(b−1), (15)

γµUλ(b1) = bµ1U−λ(b−1) + λnµ−λU−λ(b1). (16)

Relations (15) and (16) can be recast into the general
form

γµUλ(bA) = bµAU−λ(b−A) + λnµ−AλU−λ(bA). (17)

The basis spinors possess yet another important
property: their spinor products have a simple form and
are similar to scalar products of the isotropic-vierbein
vectors; that is,

Uλ(bC)Uρ(bA) = 2δλ,−ρδC,−A, (18)

C,A = ±1, λ, ρ = ±1.

Relations (17) and (18), together with the equality

ωλUρ(bA) = δλ,ρUρ(bA), (19)

form a basis of the proposed method (method of basis
spinors), whose algorithm will be described below.
3
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3. EXPANSION OF BISPINORS IN BASIS
SPINORS

Evaluation of the coefficients in the expansion of
an arbitrary bispinor in the basis spinors (8) and (9) is
an important ingredient of the method. The possibility
of obtaining these coefficients is based on the fact that
an arbitrary bispinor of a fermion can be determined in
terms of the basis spinor Uρ(b−1) [or Uρ(b1)] with the
aid of projection operators.

First, we will find the expansion coefficients for
massless bispinors. An arbitrary bispinorUλ(p) char-
acterized by a 4-momentum p [p2 = 0, (pb−1) �= 0]
and a helicity λ is defined in terms of a basis spinor
as (see, for example, [18])

Uλ(p) =
p̂√

2(pb−1)
U−λ(b−1). (20)

From the completeness condition (14), it follows
that the coefficient in the expansion in the basis
spinors are spinor products of the type

Dλ,ρ(A; p) ≡ 1
2
Uλ(bA)Uρ(p). (21)

With the aid of (17)–(21), we obtain

Dλ,ρ(A; p) =
δλ,−ρ√

2
(22)

×
[
δA,−1

√
(pb−1) + δA,1

λ(pnλ)√
(pb−1)

]
.

If p = const · b−1, the expansion takes the simplest
form, because, in this case, we have

Uλ(p) =
√

const · Uλ(b−1). (23)

As in the case where use is made of the spinor
technique, it is convenient, for numerical calcula-
tions, to rewrite coefficient (22) in terms of the com-
ponents of the 4-vector p = (p0, px, py, pz) as

Dλ,ρ(A; p) =
δλ,−ρ√

2
(24)

×
[
δA,−1

√
p+ − δA,1λ exp(iλϕp)

√
p−
]
,

where

p± = p0 ± pz,

px + iλpy =
√

(px)2 + (py)2 exp(iλϕp).

The expansion for the antifermion Vλ(p) is derived
from the relation

Vλ(p) = U−λ(p). (25)

Let us now proceed to consider massive Dirac
particles. The bispinors of massive fermions and an-
tifermions having arbitrary polarization vectors can
P

be defined with the aid of the basis spinor via the
relations (see, for example, the Appendix in [20])

Uλ(p, sp) =
τλu (p, sp)√

b−1(p+mpsp)
U−λ(b−1), (26)

Vλ(p, sp) =
τλv (p, sp)√

b−1(p+mpsp)
Uλ(b−1), (27)

where the projection operators τλu (p, sp) and τλv (p, sp)
are given by

τλu (p, sp) =
1
2
(p̂+mp)(1 + λγ5ŝp), (28)

τλv (p, sp) =
1
2
(p̂−mp)(1 + λγ5ŝp). (29)

It can easily be shown that

p̂Uλ(p, sp) = mpUλ(p, sp), (30)

p̂Vλ(p, sp) = −mpVλ(p, sp),
γ5ŝpUλ(p, sp) = λUλ(p, sp),
γ5ŝpVλ(p, sp) = λVλ(p, sp);

that is, the bispinors Uλ(p, sp) and Vλ(p, sp) satisfy
the Dirac equation and the spin conditions for a mas-
sive fermion and a massive antifermion. It can easily
be proven that the bispinors in (26) and (27) are
related by the equations

Vλ(p, sp) = −λγ5U−λ(p, sp), (31)

V λ(p, sp) = U−λ(p, sp)λγ5.

Upon calculations on the basis of (26) and (27),
we find that the expansion coefficients for a massive
fermion having a momentum p, an arbitrary polar-
ization vector sp, and a mass mp can be written in
the form of scalar products of the vierbein vectors and
physical vectors:

Dλ,ρ(A; p, sp) =
1√

2(b−1ξ
p
1)

(32)

×
[
δA,−1

{
δλ,−ρ(b−1ξ

p
1) − ρδλ,ρ

2mp
((b−1ξ

p
1)(n−ρξ

p
2)

+ (n−ρξ
p
1)(b−1ξ

p
2))
}

+ δA,1

{
− ρδλ,−ρ(n−ρξ

p
1)

+
δλ,ρ
2mp

((b−1ξ
p
1)(b1ξ

p
2) − (n−ρξ

p
1)(nρξ

p
2))
}]
,

ξp1 = p+mpsp, ξp2 = p−mpsp. (33)

Let us find the expansion coefficients for the KS
helicity and polarization states of fermions. Such po-
larization states are most frequently used in calculat-
ing reactions induced by elementary-particle interac-
tions.
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003



ANALYTIC CALCULATION OF FEYNMAN AMPLITUDES 387
The polarization vector for KS states is defined
as [18, 23, 25]

sp =
p

mp
−mp

b−1

(pb−1)
. (34)

In this case, the relation between the massive fermion
and a basis bispinor has the simplest form [18, 25]

Uλ(p,KS) =
p̂+mp√
2(pb−1)

U−λ(b−1), (35)

and the expansion coefficients have a compact form in
terms of scalar products:

Dλ,ρ(A; p,KS) =
1√
2

{
δλ,−ρ

[
δA,−1

√
(pb−1) (36)

+ δA,1
λ(pnλ)√
(pb−1)

]
+ δλ,ρδA,1

mp√
(pb−1)

}
.

Taking the polarization vector in the form

sp =
(pl0)p−m2

pl0

mp

√
(pl0)2 −m2

p

, (37)

we obtain helicity fermion states.
For helicity states, the expressions for the expan-

sion coefficients in terms of the scalar products of
physical vectors and the isotropic-vierbein vectors
are more cumbersome than those for KS states. But
if we consider this expression in terms of the com-
ponents of the momentum p = (p0, |p| sin θp sinϕp,
|p| sin θp cosϕp, |p| cos θp), the coefficients will also
assume the compact form

Dλ,ρ(A; p,Hel) =
1√
2

[√
p0 + |p|

(
δA,−1 cos

θp
2
(38)

+δA,1ρ exp(−iρϕp) sin
θp
2

)
δλ,−ρ +

√
p0 − |p|

×
(
δA,1 cos

θp
2

+ δA,−1ρ exp(−iρϕp) sin
θp
2

)
δλ,ρ

]
.

The absence of a denominator as in the massless
case is a distinct feature of the expansion for helicity
fermion states. It can easily be proven that, atmp = 0,
relation (38) reduces to (24).

An analysis of the expansion coefficients for mas-
sive and massless spin-1/2 fermions reveals that, for
massless fermions, not only does there occur a natural
decrease in terms proportional to the fermion mass,
but also the expansion coefficients Dλ,ρ become di-
agonal in the spin indices λ and ρ, the latter circum-
stance simplifying the calculation of relevant matrix
elements.

The expansion coefficients for the antifermion de-
scribed by the bispinors in (27) can easily be obtained
with the aid of expression (31).
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4. METHOD OF BASIS SPINORS

The amplitude for a Feynman diagram can be rep-
resented in the form

Mλp,λk(p, sp; k, sk) = Uλp(p, sp)QUλk(k, sk). (39)

Expression (39) corresponds to a disconnected fer-
mion line involving a matrix operator Q that is a
combination of γ matrices and (or) their contractions
with 4-vectors.

In the method based on the use of traces, rela-
tion (39) is recast into the form

Mλp,λk(p, sp; k, sk) = tr(Uλk(k, sk)Uλp(p, sp)Q).
(40)

The main problem in this approach is to ob-
tain an explicit form of the transition operators
Uλk(k, sk)Uλp(p, sp). It is the solution to this problem
that forms a basis of the methods for calculating
matrix elements via traces. In our case, we can also
derive, for various spin configurations of fermions,
an expression for the matrix describing the transition
from one bispinor to another using expressions (26)
and (27); that is,

Uλ(k, sk)Uλ(p, sp) (41)

=
τuλ (k, sk)ω−λb̂−1τ

u
λ (p, sp)

4
√
b−1(p +mpsp)

√
b−1(k +mksk)

,

U−λ(k, sk)Uλ(p, sp) (42)

=
λτu−λ(k, sk)n̂λωλb̂−1τ

u
λ (p, sp)

8
√
b−1(p +mpsp)

√
b−1(k +mksk)

.

Thus, we see that, in order to rewrite expression
(39) in terms of scalar products and contractions with
the Levi-Civita tensor, it is thus necessary to evaluate
the relations

Mλ,λ(p, sp; k, sk) (43)

=
tr(τuλ (k, sk)ω−λb̂−1τ

u
λ (p, sp)Q)

4
√
b−1(p +mpsp)

√
b−1(k +mksk)

,

Mλ,−λ(p, sp; k, sk) (44)

=
λtr(τu−λ(k, sk)n̂λωλb̂−1τ

u
λ (p, sp)Q)

8
√
b−1(p +mpsp)

√
b−1(k +mksk)

.

That, with increasing number of γ matrices in the
operatorQ, the number of terms that arise in calculat-
ing the traces in (43) and (44) increases considerably
is the main drawback of this method. For this reason,
it was proposed in [27] to use KS polarization states
in order to reduce the number of terms in the tran-
sition operator Uλk(k, sk)Uλp(p, sp) [see (35)] and,
accordingly, in expressions (43) and (44). It can be
3
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seen from (43) and (44) that each spin configuration
of fermions must be computed separately, which also
complicates the calculations.

Here, a method is proposed for evaluating expres-
sions of the type in (39) without recourse to the above
scheme—that is, a method that does not involve cal-
culating traces of the types in (43) and (44). This
procedure can be realized by using the properties of
the basis spinors (8) and (9). Therefore, this method
is referred to as the method of basis spinors.

The basic point of the method is as follows. With
the aid of the completeness condition (14), we expand
the bispinors in (39). The resulting matrix element
takes the form

Mλp,λk(p, sp; k, sk) (45)

=
1∑

σ,ρ=−1

1∑

A,C=−1

D†
λp,σ

(C; p, sp)Γ
−C,A
−σ,ρ (Q)

×D−ρ,λk(−A; k, sk),

where the coefficients Dρ,λ are the coefficients in the
expansion of bispinors and the quantity Γ is given by

ΓC,Aσ,ρ (Q) ≡ Uσ(bC)QUρ(bA). (46)

Thus, we can see that, within the method of basis
spinors, the problem of evaluating expressions of the
type in (39) in terms of scalar products is broken
down into two problems: (i) that of calculating the
expansion coefficients and (ii) that of calculating the
quantity ΓC,Aσ,ρ (Q) with subsequent summation.

The first part of the problem was solved in the
preceding section. Obviously, such calculations are
performed only once; further, the expansion coeffi-
cients are used as known functions.

With the aid of relations (17)–(19), we can easily
determine the result of applying the matrix operator
Q to the basis spinor in (46) and, accordingly, cal-
culate the quantity Γ(Q) in terms of the scalar prod-
ucts of the vectors appearing in Q and the isotropic-
vierbein vectors. The ensuing summation procedure
is substantially simplified owing to the Kronecker
delta symbols that arise both in calculating the ex-
pansion coefficients and in calculating the quantity
in (46). By way of example, we indicate that, if the
operator Q contains an odd number of γ matrices, we
obviously have ΓC,Aσ,ρ (Q) = δσ,ρΓ

C,A
ρ,ρ (Q).

But if Q involves uncontracted Lorentz indices,
the final result will take the form of an appropriate ten-
sor constructed from the isotropic-vierbein vectors.

We first illustrate the application of this method
by calculating the current construction for massless
fermions, in which case we have

Mλp,λk(p, k) = Jµλp,λk(p, k) ≡ Uλp(p)γ
µUλk(k).

(47)
PH
With the aid of the completeness condition (14) for
the basis spinors, expression (47) can be reduced to
the form

Jµλp,λk(p, k) =
1∑

σ,ρ=−1

1∑

A,C=−1

D†
λp,σ

(C; p) (48)

× {U−σ(b−C)γµUρ(bA)}D−ρ,λk(−A; k).

By using relations (17) and (18), we obtain

Γ−C,A
−σ,ρ (γµ) = 2δσ,−ρ(δC,−Ab

µ
A + ρnµ−AρδC,A). (49)

Thus, expression (47) can be recast into the form

Jµλp,λk(p, k) (50)

= 2
1∑

A,σ=−1

(bµA[D†
λp,σ

(−A; p)Dσ,λk (−A; k)]

− σnµAσ[D
†
λp,σ

(A; p)Dσ,λk (−A; k)])

= 2
1∑

σ=−1

(bµ−1[D
†
λp,σ

(1; p)Dσ,λk (1; k)]

+ bµ1 [D†
λp,σ

(−1; p)Dσ,λk (−1; k)]

− σnµ−σ[D
†
λp,σ

(−1; p)Dσ,λk (1; k)]

− σnµσ[D
†
λp,σ

(1; p)Dσ,λk (−1; k)]).

Substituting the expansion coefficients (22) and per-
forming summation, we derive an expression in terms
of scalar products of the physical vectors p and k and
the isotropic-vierbein vectors:

Jµλp,λk(p, k) = δλp,λk

(
[
√

(pb−1)(kb−1)]b
µ
1 (51)

+

[
(pnλp)(kn−λp)√

(pb−1)(kb−1)

]
bµ−1−

[
(pnλp)

√
(kb−1)
(pb−1)

]
nµ−λp

−
[
(kn−λp)

√
(pb−1)
(kb−1)

]
nµλp

)
.

The corresponding calculation for massive fermions
proceeds along similar lines and leads to the emer-
gence of additional terms in front of the isotropic-
vierbein vectors.

It should be noted that an increase in the number
of γ matrices in the operator Q does not lead to an
avalanche-like increase in the number of terms, in
contrast to what occurs within methods employing
traces. In the present approach, the matrix element
can be obtained for arbitrary spin configurations of
fermions.

We will now perform a concise comparison of the
method of basis spinors and the spinor technique
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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applied in [18] by considering the example of massless
fermions. For this, we reproduce some details of the
spinor technique with small modifications. Instead of
the vectors k0 = (1, 1, 0, 0) and k1 = (0, 0, 1, 0) used
in [18], we take the vectors b−1 and nλ, respectively.

The spinor technique involves the following math-
ematical transformations:

(i) An arbitrary massless spinor Uλ(p) is defined in
terms of the basis spinors by relation (20).

(ii) Use is made of the Chisholm identities

γµ{Uλ(p)γµUλ(k)} = 2[Uλ(k)Uλ(p) (52)

+ U−λ(p)U−λ(k)].

(iii) The contraction of p̂ satisfying the condition
p2 = 0 with the polarization vectors of a massless
vector boson, εµλ(k), is expressed in terms of the
bispinors as

p̂ =
∑

λ

Uλ(p)Uλ(p), (53)

εµλ(k) ∼ Uλ(q)γµUλ(k). (54)

The amplitude for the reaction involving massless
fermions then reduces to a combination of spinor
products of the type

sλ(p, k) ≡ Uλ(p)U−λ(k) = −sλ(k, p). (55)

By virtue of (6)–(8), the spinor products (55) reduce
to evaluating a trace [18]:

sλ(p, k) =
λ

4
tr(ω−λb̂−1p̂k̂n̂λ)√
(b−1p)

√
(b−1k)

(56)

=
λ[(pb−1)(knλ) − (kb−1)(pnλ)] − iε(b−1, nλ, p, k)

2
√

(b−1p)(b−1k)
.

By using in (56) the properties of the isotropic vier-
bein, one can obtain the expression [23]

sλ(p, k) =
λ[(pb−1)(knλ) − (kb−1)(pnλ)]√

(b−1p)(b−1k)
. (57)

A comparative analysis of the algorithms for re-
ducing (calculating) matrix elements shows that the
spinor technique and the method of basis spinors
differ significantly. The method of basis spinors does
not employ either the Chisholm identities (52) or ad-
ditional constructions of the type in (53) or in (54), nor
does it require a special procedure for constructing the
polarization vectors of massive gauge bosons (see, for
example, [18]), since all 4-vectors are treated in the
same way within this method. In addition, it should be
noted that, if the vector p or k coincides in (52) with
b1 or b−1, one must use the spinor Chisholm identities
with care, since they take a modified form (see [34]).
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The method of basis spinors can be supple-
mented with a construction of the polarization vectors
for massless and massive bosons in the isotropic-
vierbein basis (for the case of photons, the interested
reader is referred to [33]). The final expressions for
(47) will then involve only the scalar products of
the 4-momentum vectors for the process and the
isotropic-vierbein vectors.

For a specific reaction, there is always the possi-
bility for constructing the isotropic-vierbein basis (3)
in terms of physical vectors. This procedure makes it
possible to obtain an expression for the matrix ele-
ment of a Feynman diagrams in terms of the scalar
products involving only vectors characterizing the
reaction being considered and their contractions with
the Levi-Civita tensor. Thus, we can obtain a mani-
festly Lorentz-invariant matrix element. Additionally,
an appropriate construction of the basis can lead to a
significant reduction of the number of terms.

5. EXAMPLES

In order to illustrate and test the method of ba-
sis spinors, we will consider a number of examples.
We restrict our consideration to reactions induced by
electron–positron interactions, since there are nu-
merous examples of analytic calculations of matrix
elements for these reactions. For the sake of simplifi-
cation and clarity, we assume that the initial fermions
are massless.

By way of example, we will calculate the amplitude
for the process

e−(p1, λ1) + e+(p2, λ2) → W−(k1) +W+(k2).
(58)

This amplitude can be represented in the form

Me+e−→W+W− = MγZ +Mν , (59)

MγZ =
4πα
P 2

[
V λ2(p2)γµUλ1(p1) (60)

− P 2

(P 2 −m2
Z)2 sin2 θW

× V λ2(p2)γµ(geV − geAγ5)Uλ1(p1)

]

× Γµαβ(P, k1, k2)εα(k1)εβ(k2),

Mν =
πα

2Q2 sin2 θW
(61)

× V λ2(p2)ε̂(k2)(1 − γ5)Q̂ε̂(k1)(1 − γ5)Uλ1(p1),
3
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where geA and geV are, respectively, the axial and the
vector coupling constant of the electron and the ele-
ment of the three-boson vertex within the Standard
Model is given by

Γµαβ(P, k1, k2) = gαβ(k1 − k2)µ (62)

+ 2(Pαgµβ − P βgµα).

In expression (59), we have also used the following
notation: α is the fine-structure constant, θW is the
Weinberg–Salam angle, and P = p1 + p2 and Q =
p1 − k1 are momenta.

Let us consider reaction (58) in the e+e− c.m.
frame. The isotropic-vierbein vectors (3) can then be
expressed in terms of the physical vectors p1, p2, and
k1 as

b1 =
√

2p1√
(p1p2)

, b−1 =
√

2p2√
(p1p2)

, (63)

nλ =
b−1(k1b1) + b1(k1b−1) − 2k1 + iλ[b1, b−1, k1]

2
√

(b−1k1)(b1k1)
,

[p, r, k]µ = εαβρµpαrβkρ.

By using the method of basis spinors, we can
easily find, in this case, that

V λ2(p2)γµUλ1(p1) = λ1δ−λ2,λ1

√
2(p1p2)n

µ
λ1
. (64)

For the matrix elements corresponding to processes
involving the exchange of a photon and a Z0 boson,
the expression in terms of the scalar products of the
physical and isotropic-vierbein vectors is then imme-
diately obtained in the form

MγZ = 4πα
λ1δ−λ2,λ1√

2(p1p2)

(
1 − χ(P 2)

g−λ1
e

2 sin2 θW

)

(65)

× (nλ1)µΓ
µαβ(P, k1, k2)εα(k1)εβ(k2)

= 4πα
λ1δ−λ2,λ1√

2(p1p2)

(
1 − χ(P 2)

g−λ1
e

2 sin2 θW

)

× [(ε(k1)ε(k2))((k1 − k2)nλ1)
+ 2((Pε(k1))(ε(k2)nλ1) − (Pε(k2))(ε(k1)nλ1))],

whereχ(P 2) = P 2/(P 2 −m2
Z) and gλe = (geV +λgeA).

It should be noted that the corresponding calculation
on the basis of the spinor technique proposed by the
CALCUL group requires a much greater amount of
effort.

It is somewhat more difficult to calculate the
neutrino-exchange diagram, but, even in this case,
the use of relations (17)–(19) yields

Mν =
πα
√

2(p1p2)(−1 + λ1)
sin2 θW(m2

W − 2(k1p1))
(66)
P

×
[
{(n−λ1k1)(ε(k1)b1) − (b1k1)(ε(k1)n−λ1)}

× (b−1ε(k2)) +
{

(ε(k1)n−λ1)(k1nλ−1)

+
(√

2(p1p2) − (b−1k1)
)

(ε(k1)b1)
}

× (ε(k2)n−λ1)
]
δ−λ2,λ1.

In order to derive a manifestly Lorentz-invariant
expression for amplitude (59) in terms of the scalar
products of the vectors characterizing the process
in (58) and their contractions with the Levi-Civita
tensor, it is necessary to substitute the isotropic-
vierbein vectors (63) into relations (65) and (66).

Considering that, in the c.m. frame, the compo-
nents of the vectors characterizing the reaction being
considered are given by (here, we take into account
the kinematics of the process)

p1 =
√
s

2
(1, 0, 0, 1), p2 =

√
s

2
(1, 0, 0,−1), (67)

k1 =
√
s

2
(1, βW sin θ, 0, βW cos θ),

k2 =
√
s

2
(1,−βW sin θ, 0,−βW cos θ),

εµT (k1) =
1√
2
(0, cos θ, ν1i,− sin θ),

εµT (k2) =
1√
2
(0, cos θ,−ν2i,− sin θ),

εµL(k1) = γW (βW , sin θ, 0, cos θ),

εµL(k2) = γW (βW ,− sin θ, 0,− cos θ),

where s = (p1 + p2)2; βW =
√

1 − 4m2
W /s; γW =

√
s/(2mW ); ν1, ν2 = ±1; and θ is the W−-boson

scattering angle in the c.m. frame, and performing
some simple transformations, we find for the longitu-
dinally polarizedW bosons (ε(k1,2) ≡ εL(k1,2)) that

MLL
γZ = 4παλ1δ−λ2,λ1 (68)

×
(

1 − χ(s)
g−λ1
e

2 sin2 θw

)
βW (2γ2

W + 1) sin θ,

MLL
ν =

2παδ−λ2,λ1

βW sin2 θW
(1 − λ1)

×
(
γ2
W − 1

γ2
W (1 + β2

W − 2βW cos θ)

)
sin θ.

Apart from a phase factor, expressions (68) coincide
with the matrix elements calculated for this process
in [35].
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For yet another example, we consider the process

e−(p1, λ1) + e+(p2, λ2) → f(k1, ν1) + f̄(k2, ν2)
(69)

(f �= e),

where f(k, ν) is a massive fermion having a momen-
tum k and a spin projection ν.

The amplitude for this process can be represented
in the form

Me+e−→ff̄ (λ1, λ2; ν1, ν2) (70)

= (4πα/s)[Mγ(λ1, λ2; ν1, ν2) +MZ0(λ1, λ2; ν1, ν2)],

where

Mγ(λ1, λ2; ν1, ν2) (71)

= QfV λ2(p2)γµUλ1(p1)Uν1(k1)γµVν2(k2),

MZ0(λ1, λ2; ν1, ν2) = RZ(gµν − PµP ν/m2
Z) (72)

× V λ2(p2)γν(geV − geAγ5)Uλ1(p1)Uν1(k1)

× γµ(g
f
V − gfAγ5)Vν2(k2)

with RZ = (GFm
2
Zs)/(2

√
2πα(s −m2

Z)). The quan-

tities gfV and gfA are the fermionic coupling constants,
GF is the Fermi constant, and Qf is the charge of
the fermion f in e units. We will now calculate the
amplitude of process (69) for KS polarization states
of final fermions in the c.m. frame.

By using relation (64) and the expansion coeffi-
cients (36) for theKS polarization states, it can easily
be found within the method of basis spinors that the
expressions for the relevant amplitudes in terms of
scalar products and in terms of the vector components
can be represented, respectively, as

MKS
e+e−→ff̄ (λ1, λ2; ν1, ν2) =

−8πα
s

(73)

×
√
sδλ1,−λ2√

(b−1k1)(b1k2)
[δλ1,ν1(b−1k1)(λ2Qf

−RZg
−λ1
e g−ν1f )((nν2k2)δν1,−ν2 +mfν2δν1,ν2)

+ ν2(b−1k2)(ν1δν1,−ν2δ−λ1,ν1(nν1k1)(−Qfλ2

+RZg
−λ1
e g−ν1f ) +mf (Qfλ2 −RZg

−λ1
e gν1f ))]

and as

MKS
e+e−→ff̄ (λ1, λ2; ν1, ν2) =

4παδλ1 ,−λ2√
1 − β2

f cos2 θ
(74)

×
[
δν1,−ν2βf (λ1Qf +RZg

−λ1
e g−ν1f ) sin θ

× {δλ1,ν1(1 + βf cos θ) − δ−λ1,ν1(1 − βf cos θ)}

+ δν1,ν2δν1,λ1ν1
2mf√
s
{2Qfλ1 +RZg

−λ1
e [g−ν1f (1
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One of the possible diagrams for the reaction e+e− →
e+e−e+e−e+e−.

+ βf cos θ) + gν1f (1 − βf cos θ)]}
]
.

The differential cross section obtained by perform-
ing standard calculations for unpolarized fermions
coincides with known expressions (see, for exam-
ple, [33, 36]). Apart from a phase factor, the matrix
element (74) coincides with the matrix element cal-
culated in [16] for the limit of zero fermion masses.

It should be noted that the delta symbols in ex-
pressions (73) and (74) appear in the course of the
calculation by the method that we use (and are not in-
troduced in an ad hoc manner). Therefore, an analytic
expression for the matrix elements is obtained within
this method for all polarization states of fermions.
Owing to this circumstance, the proposed method
compares favorably with those that employ traces,
since, in the latter, the polarization states of Dirac
particles must be calculated individually for each con-
figuration. In addition, it is worth mentioning that,
within the method of basis spinors, it is convenient to
use the left- and the right-handed coupling constant
(g±1
f ≡ gfV ± gfA), because they factorize in calculat-

ing the quantity in (46) with spinors corresponding to
massless fermions.

In order to avoid creating the impression that the
proposed method is applicable only to trivial binary
processes, we consider, by way of illustration, the
calculation of one of the possible diagrams (see fig-
ure) for the process e+e− → e+e−e+e−e+e− involv-
ing massless fermions. It is obvious that, in contrast
to the case of binary reactions, it is next to impossible
to compare this calculation with analogous ones. Us-
ing the notation in (47) and disregarding the masses
of electrons in the propagators, we can represent the
matrix element for the Feynman diagram in the figure
as

Me+e−→e+e−e+e−e+e− (75)
3
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=
e6

P 2
12Q

2
12Q

2
34Q

2
1Q

2
2

Jβ−λ2,λ1
(p2, p1)J

ρ
ν1,−ν2(k1, k2)

× Jσν3,−ν4(k3, k4)Uν5(k5)γσQ̂2γβQ̂1γρVν6(k6),

where the following notation is used for the 4-vectors
involved:

Q1 = −(k1 + k2 + k6), Q2 = k3 + k4 + k5, (76)

Q34 = k3 + k4, Q12 = k1 + k2, P12 = p1 + p2.

Within the method of basis spinors, the matrix ele-
ment (75) can be reduced to the form

Me+e−→e+e−e+e−e+e− (77)

=
δν1,−ν2δν3,−ν4δν5,−ν6δλ1,−λ2√

(k5b−1)(k6b−1)

√
sλ1e

6

P 2
12Q

2
12Q

2
34Q

2
1Q

2
2

× (δλ1,−ν5[(Q1b1)((k6b−1)(j2n−ν5)
− (j2b−1)(k6n−ν5)) + (Q1n−ν5)((j2nν5)

× (k6n−ν5) − (k6b−1)(j2b1))][(Q2b−1)((k5nν5)
× (j3n−ν5) − (k5b−1)(j3b1))(Q2n−ν5)((k5b−1)
× (j3nν5) − (j3b−1)(k5nν5))] − δλ1,ν5[(k6n−ν5)

× ((j2b−1)(Q1nν5) − (Q1b−1)(j2nν5))
+ (k6b−1)((j2b1)(Q1b−1) − (Q1nν5)(j2n−ν5))]
× [(Q2b1)((k5b−1)(j3nν5) − (j3b−1)(k5nν5))

+ (Q2nν5)((j3n−ν5)(k5nν5) − (k5b−1)(j3b1))]),

which is quite compact for such reactions and which
involves the following conventions for the fermion
currents:
jµ2 ≡ Jµν1,−ν2(k1, k2), jµ3 ≡ Jµν3,−ν4(k3, k4). (78)

The scalar products of the vectors j2 and j3 with the
isotropic-vierbein vectors can easily be found with the
aid of (51).

6. CONCLUSION

From the methodological (but not from the com-
putational) point of view, the present method for cal-
culating matrix elements is similar to the method pro-
posed in [21, 25] for KS helicity and fermion states.
In contrast to the latter, the former has a simpler
algorithm, does not employ explicit expressions for
γ matrices, and can be used for vectors having an
arbitrary polarization.

The calculation of a matrix element within the
method of basis spinors is simplified owing to the
introduction of a complete set of massless basis
spinors—as a result, some of the calculations become
trivial. The calculation of the coefficients in the ex-
pansion of physical bispinors in basis bispinors is the
main cumbersome operation. The proposed method
combines advantages of methods exploiting traces
and computational methods based on the spinor
PH
technique. In the present method, one can compute,
in just the same way as in spinor-technique methods
(see, for example, [18, 25]), blocks of Feynman
diagrams (current constructions, spinor products,
and even more involved structures) and employ them
in subsequent calculations. As in methods relying
on trace calculations, there is no need here either
for a mandatory additional procedure of constructing
boson polarization vectors, or for the transformations
of the contraction of Dirac matrices with 4-momenta
into bispinors, or for quite an involved procedure of
reduction to spinor products.

The proposed method can easily be realized in
systems for analytic calculations, such as Mathe-
matica, Maple, and Reduce. For example, all of the
present calculations have been performed with the
aid of a code in the Mathematica system for analytic
calculations. It should be noted that, with an ordinary
computer (Pentium III), the analytic expression in
terms of scalar products that is calculated with the
preliminarily determined matrix element for the dia-
gram describing a binary reaction is obtained within a
time of less than 0.1 s.

In conclusion, it is worth emphasizing that the
objective of this article was to present a new method
for analytically calculating matrix elements for re-
actions featuring massless and massive fermions. In
view of this, I would not like to focus on assessing the
efficiency of one method versus another, especially as
efficiency criteria may be different. In addition, a par-
ticular method may prove to be more straightforward
or more involved, depending on the physical problem
to which it is applied.

REFERENCES
1. J. L. Powell, Phys. Rev. 75, 32 (1949).
2. M. V. Galynskiı̆ and S. M. Sikach, Fiz. Élem. Chastits
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Abstract—Expressions for the spectral–angular density of bremsstrahlung from a relativistic electron in a
thin layer of matter are obtained. The effect that the multiple scattering of electrons bymedium atoms exerts
on the spectral–angular features of radiation in a thin amorphous target is studied. It is shown that, if the
root-mean-square angle of multiple scattering is much larger than the characteristic angle of relativistic-
electron radiation, there occurs the bremsstrahlung-suppression effect, which is similar to the Landau–
Pomeranchuk–Migdal effect. c© 2003 MAIK “Nauka/Interperiodica”.
1. The multiple scattering of high-energy elec-
trons in a medium can have a considerable effect on
bremsstrahlung. The case where the radiation coher-
ence length is much greater than the target thick-
ness is of particular interest. In [1–3], it was shown
that the bremsstrahlung-suppression effect, which is
similar to the Landau–Pomeranchuk–Migdal effect,
can arise in this case. Experimentally, this effect was
studied at the SLAC accelerator [4, 5], the spectral
properties of bremsstrahlung in the low-frequency
region being explored there.

Here, we consider the spectral–angular proper-
ties of bremsstrahlung from high-energy electrons in
a thin layer of matter. Particular attention is given
to the conditions under which the bremsstrahlung-
suppression effect is more pronounced in the angular
than in the spectral distribution. It is shown that,
if the root-mean-square angle of multiple scatter-
ing is much larger than the characteristic angle of
relativistic-electron radiation, θ ∼ γ−1 (θ is the an-
gle between the wave-propagation and the electron-
velocity vectors, and γ is the electron Lorentz factor),
the angular distribution of electron radiation within
the region around the angle θ ∼ γ−1 with respect to
the projectile-beam direction is virtually independent
of the target thickness, with its maximum being at an
angle of θm ≈ γ−1.

2. Within classical electrodynamics (see [6, 7]),
the spectral–angular density of radiation from an

1)Kharkov Institute for Physics and Technology, Akademich-
eskaya ul. 1, Kharkov, 310108 Ukraine.

2)BelgorodStateUniversity, Studencheskaya ul. 12, Belgorod,
308007 Russia.
*e-mail: sfomin@kipt.kharkov.ua
1063-7788/03/6602-0394$24.00 c©
electron moving along the trajectory r(t) is given by

d2E

dωdo
=

e2

4π2
[k× I]2, (1)

where

I =

∞∫

−∞

ṙ(t)ei(ωt−k·r(t))dt, (2)

and k and ω are, respectively, the wave vector and the
frequency of the emitted wave (we use the system of
units where the speed of light in a vacuum is taken to
be unity).

In a thin layer of matter, characteristic values of
the relativistic-electron-scattering angle ϑe are much
smaller than unity. If, concurrently, the radiation co-
herence length is much greater than the target thick-
ness T ,

lc ≈
2γ2

ω

1
1 + γ2θ2 + γ2ϑ2

e

� T, (3)

then the quantity I can be represented in the form (see
[7])

I ≈ i

ω

(
v′

1 − n · v′ −
v

1 − n · v

)
, (4)

where v and v′ are the electron velocities before and
after scattering, respectively, and n = k/ω. In this
case, the spectral–angular density of radiation from
an electron depends only on the particle-scattering
angle in matter. Substituting (4) into (1), we find that,
at small values of the scattering and radiation angles,

d2E

dωdo
=

e2γ2

π2

{
1 + α2 + α2β2 + 2αβ cos ϕ

1 + α2 + β2 − 2αβ cos ϕ
(5)
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× 1
(1 + α2)2

− 1
(1 + α2 + β2 − 2αβ cos ϕ)2

}
,

where α = γθ, θ and ϕ being, respectively, the polar
and the azimuthal angle of radiation, and β = γϑe,
ϑe being the electron-scattering angle. The angles θ
and ϑe are reckoned from the direction of the initial
electron velocity v, while ϕ is the angle between the
vectors k⊥ and v′

⊥ in the plane orthogonal to v.
Expression (5) must be averaged over the angles

of particle scattering within the target. Given the
angular distribution of scattered particles, f(ϑe), we
can determine the averaged spectral–angular density
of radiation according to the formula

〈
d2E

dωdo

〉
=
∫

d2ϑef(ϑe)
d2E

dωdo
, (6)

which is valid for any type of target, provided that its
thickness is much smaller than the bremsstrahlung
coherence length. The specific features of the scat-
terer would affect only the form of the distribution
function f(ϑe).
For an amorphous target, the scattering-angle

distribution of particles is described by the Bethe–
Molière function (see [8, 9]),

fBM(ϑe) =
1
2π

∞∫

0

ηdηJ0(ηϑe) (7)

× exp
{
−nT

∫
χdχσ(χ)[1 − J0(ηχ)]

}
,

where n is the medium-atom density and σ(χ) is the
differential cross section for electron scattering by a
single medium atom at a small angle χ.
The distribution function (7) is independent of ϕ;

therefore, integration with respect to ϕ in expression
(6) can be performed in a general form. The result is

〈
d2E

dωdo

〉
=

∞∫

0

ϑedϑefBM(ϑe)Φ(θ, ϑe), (8)

Φ(θ, ϑe) =
e2γ2

π2

{
2 + β2

(1 + α2)q1/2
(9)

− 1 + α2 + β2

q3/2
− 1

(1 + β2)2

}
,

where q = (1 + α2 + β2)2 − 4α2β2.
For the case of a screened atomic potential, Bethe

derived a somewhat simplified expression for the dis-
tribution function (see [9]); that is,

fB(ϑe) =
∞∑

n=0

fn(ϑe)
1

Bn
, (10)
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fn(ϑe) =
1

2ϑ2

∞∫

0

uduJ0

(
u

ϑe
χcB1/2

)
(11)

× e−u
2/4 1

n!

(
u2

4B
ln

u2

4

)n
,

where ϑ2 = χ2
cB is the mean-square value of the

multiple-scattering angle, χ2
c = 4πnT Z2e4/(pv)2,

and B is obtained from the relation

B − ln B = ln
χ2
c

χ2
1

+ 1 − 2C. (12)

Here, Z|e| is the medium-atom charge; p is parti-
cle momentum; χ1 = 1/pR, R being the radius of
atomic-potential screening; and C = 0.577... is the
Euler constant.
Expression (8), involving the distribution function

(10), describes the spectral–angular distribution of
bremsstrahlung from relativistic electrons in a thin
amorphous-medium layer.

3. We will now focus on some special features of
the spectral–angular distributions of radiation from
a relativistic electron in a thin amorphous-medium
layer. First, we consider the angular distribution of
radiation from an electron in the (v,v′) plane. Rewrit-
ing (5) in terms of the Cartesian coordinates (x, y, z),
with the z axis being directed along v and the y axis
being orthogonal to the (v,v′) plane, we find that the
distribution of radiation in the (v,v′) plane is

d2E

dωdo
=

e2γ2

π2

[
αx

1 + α2
x

− αx − β

1 + (αx − β)2

]2

, (13)

where αx = α cos ϕ.
Let us examine the asymptotic behavior of this

expression at small and large scattering angles.
For small scattering angle (β 	 1), we have

d2E

dωdo
=

e2γ2

π2
β2 (1 − α2

x)2

(1 + α2
x)4

. (14)

This expression shows that, for β 	 1, the an-
gular distribution of radiation peaks at αx = 0 and
that the spectral–angular density of radiation from
an electron vanishes at αx = ±1. In the case being
considered, the bulk of the radiation spectral density
is concentrated within the angular region θx ≤ γ−1,
where θx = θ cos ϕ.
For large values of the scattering angle (β � 1),

the angular distribution (13) of radiation has maxima
atαx ≈ 1 andαx ≈ β − 1 and vanishes atαx ≈ −1/β
and αx ≈ β + 1/β. Expression (13) also shows that
the angular density of radiation decreases fast in the
angular intervals corresponding to the regions αx ≤
−1 and αx ≥ β + 1. In the region 1 ≤ αx ≤ β, the
3
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Fig. 1. Angular distribution of radiation from an electron
in the xy plane, which is orthogonal to the direction of ini-
tial electron velocity at β = 10. The figures on the curves
correspond to the values of the angular-distribution den-
sity (5) in units of 10−2e2γ2/π2.

angular density of radiation takes commensurate val-
ues over a rather broad interval of scattering angles.
By way of example, we indicate that, for β = 10,
the angular density of radiation has a minimum at
αx = β/2, where the radiation intensity is about half
its value at the maxima. This means that, at β � 1,
the bulk of the spectral density of radiation from an
electron is concentrated within the angular range 0 �
ϑx � ϑe.
For β � 1, it follows from (5) that, in directions

close to that of the initial particle-motion velocity v,
the angular density of radiation can be represented as

d2E

dωdo
≈ e2γ2

π2

α2

(1 + α2)2
(α 	 β). (15)

In this case, the angular density of radiation is inde-
pendent of the scattering angle.
These results are illustrated in Fig. 1, which dis-

plays, for β = 10, isolines of the angular density of
radiation from an electron in the xy plane.
We now consider the multiple-scattering effect on

the angular distribution of bremsstrahlung. For small
scattering-angle values such that the condition β2 =
γ2ϑ2

e 	 1 is satisfied, the function Φ(θ, ϑe) in (8) can
be expanded in β. In the first order of this expansion,
PH
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Fig. 2. Spectral–angular density of electron radiation
as a function of the polar angle θ with respect to the
direction of initial electron velocity. Figures on the curves

correspond to the values of the parameter
√
β2.

the spectral–angular density of radiation is given by
the expression

〈
d2E

dωdo

〉
=

2e2γ2

π2
β2

1 + α4

(1 + α2)4
, (16)

which coincides with the corresponding result for
the spectral–angular density of radiation in Bethe–
Heitler theory, according to which the radiation inten-
sity grows linearly with increasing target thickness
{see, for example, expression (5.9) in [10]}.

The inequality β2 	 1 is a condition under which
the dipole approximation is valid in describing radi-
ation from a particle in a medium [7]. As the tar-
get thickness is increased, the condition β2 	 1 is
violated (since β2 ∼ T ); therefore, effects associated
with a nondipole character of radiation must be taken
into account. For arbitrary values of β2, averaging in
(8) can be performed only on the basis of numerical
methods.
The spectral–angular density of radiation as a

function of its polar angle θ is given in Fig. 2 for

various values of the parameter
√

β2. The displayed

curves show that, for β2 < 1, the angular distribution
of radiation has a maximum in the direction of the
initial particle velocity and decreases fast with in-
creasing θ [see Eq. (16)]. At β2 ∼ 1, the maximum in
the angular distribution of radiation is shifted into the
region of angles around θ ∼ γ−1. Concurrently, the
growth of radiation intensity with increasing target
thickness becomes slower than a linear one, which is
typical of Bethe–Heitler theory. For β2 > 1, the max-
imum in the angular distribution of radiation occurs in
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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the angular region around θ ∼ γ−1, with the radiation
intensity at thismaximumbeing virtually independent
of β2 (that is, of the target thickness). However, the
angular distribution broadens with increasing target
thickness. For β2 > 1, the radiation intensity in the
angular region θ 	 γ−1 decreases fast with increas-
ing β2. For β2 � 1, the distribution of radiation in the

angular region θ 	
√

β2 is given by (15). Within this
region of radiation angles, the angular distribution is
of a universal form; that is, it is independent of the
form of scattering-angle distribution of particles.

Thus, we see that, for β2 � 1, bremsstrahlung is

suppressed in the angular region θ 	
√

ϑ2
e in relation

to the corresponding result in Bethe–Heitler theory.
This bremsstrahlung-suppression effect is similar to
the effect of suppression of the spectral density of
bremsstrahlung in a thin layer of matter (see [2, 3]).
For the spectral density of radiation as a function of
the target thickness, however, there occurs a transi-
tion from a linear to a logarithmic target-thickness
dependence of the radiation intensity, while, for the
spectral–angular distribution of radiation, a linear
growth of the radiation intensity with the target thick-
ness at small β2 gives way to a constant value at large
β2. This means that the bremsstrahlung-suppression
effect is more pronounced in the spectral–angular
distribution of radiation than in its spectral density.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
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Abstract—The problem of transition radiation generated by relativistic particles incident on atomic strings
in a crystal at a small angle is considered. Conditions are obtained under which the problem of transition
radiation reduces to that of radiation generated by a collision with a filament-like target. It is shown
that the angular distribution of transition radiation is symmetric with respect to the atomic-string axis.
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1. INTRODUCTION

Transition radiation is known to be generated by
a charged particle traversing the interface between
two media (see [1–4] and references therein). For a
relativistic particle, radiation of this type is concen-
trated in the region of small angles with respect to the
direction of particle motion. At such angles, radiation
is generated over a long segment along the particle-
velocity direction, the length of this segment being re-
ferred to as the radiation coherence length [2, 5, 6]. If,
within such a segment, the particle being considered
traverses a few interfaces between different media, the
interference between the waves generated by the par-
ticle upon traversing each interface is of importance.
It was shown in [7] that, in the limit of long-wave
transition radiation, both longitudinal and transverse
dimensions of the domain where transition radiation
is generated may be macroscopic. If, concurrently,
the transverse dimensions of the target used satisfy
the condition L⊥ ≤ γλ (where λ is the wavelength
of the radiation and γ is the particle Lorentz factor),
transition radiation depends strongly both on these
transverse dimensions and on the shape of the target.

In this study, we consider the problem of transi-
tion radiation from relativistic particles incident on
an atomic string in a crystal at a small angle ψ with
respect to the string axis (see Fig. 1). We study this
radiation at high frequencies, in which case the di-
electric permittivity can be represented in the form

εω = 1 − ω2
p/ω

2, ω � ωp, (1)
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where ω2
p = 4πe2ne(r)/m is the plasma frequency, m

is the electron mass, and ne(r) is the density of elec-
trons in the target. Under such conditions, transition
radiation is associated with the nonuniformity of the
electron density in the atomic string. The problem
under consideration is similar to the problem of the
effect that the target boundaries exert on transition
radiation, since electrons in the atomic string are
concentrated near the string axis. We find conditions
under which transition radiation is unaffected by the
nonuniformity of the electron distribution along the
string axis and determine the angular distribution
of transition radiation for this case. We also study
transition radiation generated by particle interaction
with a set of atomic strings whose axes form a periodic
or a chaotic structure in the transverse plane. (We use
the system of units where the speed of light is equal to
unity.)

 
x

 

z

 

y

y

 

0

 

ψ

Fig. 1. Disposition of an atomic string (cylinder) and
the trajectory of a particle incident on it (z axis) in the
transition-radiation problem being considered.
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2. TRANSITION RADIATION
IN A COLLISION OF A PARTICLE

WITH AN ISOLATED ATOMIC STRING

The spectral–angular distribution of transition ra-
diation in a heterogeneous medium whose dielectric
permittivity is given by (1) has the form

dE

dωdo
=

1
4π2

|k× I|2, (2)

where

I ≈ 1
4πω

∫
d3reik·rω2

p(r)Eω(r), (3)

k is the wave vector of the emitted wave, andEω(r) is
the Fourier transform of the particle field with respect
to time. In perturbation theory in the deviation of
the dielectric permittivity from unity, the first-order
expression for the quantityEω(r) appearing in (3) has
the form

E(0)
ω (r) =

∫
d3k

π
ie

k − ωv
ω2 − k2

δ(ω − k · v)eik·r. (4)

This quantity is the Fourier transform of the unper-
turbed Coulomb field of a particle moving at a con-
stant velocity v. Substituting (4) and (3) into (2), we
obtain the angular distribution of transition radiation
in the form

dE

dωdo
=

e6

m2

∣∣∣∣
k
ω
× Jk

∣∣∣∣
2

, (5)

where

Jk =
∫

d3q

2π2
nq

k− q − ωv
ω2 − (k − q)2

δ(ω − (k− q) · v)

(6)

and nq is the Fourier transform of the electron density
in the medium,

nq =
∫

d3rne(r)e−iq·r. (7)

Let us consider the case where the coherence
length is much greater than the length of the atomic
string along the particle trajectory,

lcoh ∼ 2γ2

ω

1
1 + γ2θ2

� 2R
ψ

, (8)

where R is the radius of atomic-potential screening
and θ is the angle between the wave vector of the
emitted wave and the particle velocity (it is assumed
that the particles are incident on the string at a small
angle ψ with respect to the string axis). In this case,
the atomic string can be considered as a homoge-
neous and infinitely thin dielectric filament; therefore,
the spatial distribution of electrons can be represented
in the form of a delta function:

ne(r) = neδ(x− zψ)δ(y − y0). (9)
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Here, ne is the electron density per unit length of the
string; the z axis is parallel to the particle velocity; and
y0 is the distance between the particle trajectory and
the string axis (see Fig. 1). The Fourier transform of
this distribution has the form

nq = 2πnee−iqyy0δ(qxψ + qz). (10)

The spectral–angular distribution (5) must be av-
eraged over all allowed values of the impact parameter
y0; that is,

〈
dE

dωdo

〉
=

1
ay

∞∫

−∞

dy0
dE(y0)
dωdo

, (11)

where ay is the spacing between neighboring strings
in the crystal along the y axis.

For the averaged distribution, we obtain
〈

dE

dωdo

〉
=

e6n2
eγ

aym2ωψ2
F (θ, ϕ), (12)

where F (θ, ϕ) is a function that describes the distri-
bution of radiation with respect to the polar (θ) and
the azimuthal (ϕ) emission angle [the polar angle was
defined in (8)],

F (θ, ϕ) =
1 + 2

(
γθ cosϕ− 1 + γ2θ2

2γψ

)2

[
1 +

(
γθ cosϕ− 1 + γ2θ2

2γψ

)2
]3/2

,

(13)

where ϕ is the angle between the x axis and the
projection of the wave vector onto the xy plane; it is
assumed that θ 
 1.

We will now focus on some special features of the
angular distribution (12) of transition radiation inten-
sity. First of all, we note that the distribution in (12)
is symmetric with respect to the atomic-string axis
(θ = ψ, ϕ = 0). In order to demonstrate this explic-
itly, we go over from polar to Cartesian coordinates
in (13) (θx = θ cosϕ, θy = θ sinϕ) and perform the
transformation according to the formulas θ′x = ψ− θx
and θ′y = θy. For the function F (θ′x, θ′y), this yields

F (θ′x, θ
′
y) =

1 +
1

2γ2ψ2
(1 + γ2(θ′2 + ψ2))2

[
1 +

1
4γ2ψ2

(1 + γ2(θ′2 + ψ2))2
]3/2

.

(14)

Since this function depends only on the polar angle

θ′ =
√

θ′2x + θ′2y , the distribution of radiation in (12)

is symmetric with respect to the atomic-string axis.
Formula (13) indicates that the minimum of the

radiation intensity is somewhat shifted from the value
3
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Fig. 2. Graph of the function F (θ, ϕ) that determines
the angular distribution of transition radiation from a
relativistic particle incident on a filament-like target for
γ = 2000 and ψ = 10−3; the values of θx = θ cosϕ and
θy = θ sinϕ are plotted along the axes in the horizontal
plane.

of θ = 0, which corresponds to the direction of particle
motion (see Fig. 2).

It should be noted that, in the vicinity of the sym-
metry axis of the distribution of radiation (θ = ψ, ϕ =
0), the radiation intensity does not have a deep mini-
mum, which often occurs there in transition-radiation
problems; instead, it approaches a plateau that lies
rather high.

3. TRANSITION RADIATION
IN A COLLISION WITH A FEW ATOMIC

STRINGS

We now proceed to consider special features of
transition radiation generated in a collision of a parti-
cle with a few atomic strings.

If the atomic-string axes are disposed at ran-
dom in the transverse plane (this corresponds to the
chaotic motion of a particle in the periodic field of
atomic strings in a crystal [8]), the interference be-
tween waves that are emitted in particle interac-
tion with different atomic strings can be neglected.
The total radiation will then be given by the sum of
the contributions that arise from particle interactions
with different atomic strings. Since the angular dis-
tribution of radiation is symmetric with respect to the
axis of an atomic string, the resulting intensity of
the radiation from a particle executing chaotic motion
is proportional to the number of strings involved in
the interaction with the particle, so that the form
PH
of the angular distribution of radiation will remain
unchanged [that given by formula (12)].

But in the case where a particle executes a reg-
ular motion in a crystal, the effect of interference
must be taken into account. By way of example,
we indicate that, for a particle sequentially scattered
by N (N � 1) parallel strings at the same impact-
parameter value y0, expression (12) reduces to the
corresponding result of the theory of transition radi-
ation (or resonance radiation, according to the termi-
nology used by Ter-Mikaelyan) for relativistic elec-
trons in a crystal {see formula (28.160) in [2]}; that is,

〈
dE

dωdo

〉
=

e6n2
eγ

aym2ωψ2
F (θ, ϕ) (15)

×N
2π
b

∞∑

n=−∞
δ

(
ω

2γ2
(1 + γ2θ2) − 2π

b
n

)
,

where b is the spacing between atomic strings along
the z axis. The presence of a delta function in formula
(15) implies that the frequency of radiation at a given
angle θ is given by

ωn =
2γ2

1 + γ2θ2
n

2π
b

n. (16)

Thus, the disposition of atomic strings in a crystal
in the transverse plane and the character of particle
motion have a pronounced effect on transition radia-
tion.

4. COMPARISON WITH PARAMETRIC
(RESONANCE) RADIATION

In the case of a three-dimensional periodic me-
dium (for example, a crystal), the integral with respect
to q in (6) can be replaced by a sum over a discrete
set of reciprocal-lattice vectors g. In this case, the
substitution of expression (6) into (5) leads to the re-
quired result for the angular distribution of parametric
radiation in a periodic three-dimensional medium {see
formula (28.160) in [2]}, provided that the dielectric
permittivity is taken in the form (1). The transition
from the integral with respect to q in (6) to a sum
over g suggests the emergence of a relation between
the frequency and the emission angle. This relation
arises in the case of particle motion along a straight
line in a crystal and is due to the interference between
waves generated by a particle interacting with atoms
that occupy the sites in a periodic crystal lattice.

Formula (12) describes the angular distribution of
radiation in the case of particle interaction with an
isolated atomic string. In contrast to the correspond-
ing result of the theory of parametric radiation, this
formula features no relation between the frequency
and the emission angle.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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As was mentioned above, formula (12) is appro-
priate for describing the radiation from an electron
moving in the field of many atomic strings if particle
interactions with different strings do not interfere with
one another. This type of situation is realized un-
der the conditions of dynamical chaos accompanying
particle motion in the periodic field of atomic strings
in a crystal (see [8]).

Formula (12) can also be derived from the corre-
sponding result of the theory of parametric x-ray radi-
ation if, in this result, one considers a particle moving
at a small angle with respect to a crystallographic axis
(axis z′) and assumes that atomic strings parallel to
this axis are widely spaced in the transverse direction.
For this purpose, the lattice constants ax′ and ay′

along the x′ and y′ axes orthogonal to the crystal-
lographic axis z′ must be made to tend to infinity in
the Ter-Mikaelyan formula {formula (28.160) in [2]}.
In this limit, summation over the components qx′ and
qy′ in the Ter-Mikaelyan formula can then be replaced
by relevant integration. If the condition in (8) is sat-
isfied, the main contribution to the angular density
of radiation then comes from the component gz′ = 0,
this corresponding to the approximation of a continu-
ous electron-density distribution along the string axis
(z′ axis). It should be noted that the present analysis
of the features of parametric x-ray radiation from a
relativistic electron in a crystal is analogous to the
analysis performed in Chapter 4 of [6] for coherent
radiation generated by fast electrons in a crystal via
various mechanisms.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
ACKNOWLEDGMENTS

This work was supported in part by the Interna-
tional Association for the Promotion of Cooperation
with Scientists from the Independent States of the
Former Soviet Union (grant no. INTAS-97-30392),
the Russian Foundation for Basic Research (project
no. 00-02-16337), and the Ministry for Higher Ed-
ucation of the Russian Federation (grant no. 97-0-
143-5).

REFERENCES
1. V. L. Ginzburg and V. N. Tsytovich, Transition Ra-

diation and Transition Scattering (Nauka, Moscow,
1984).

2. M. L. Ter-Mikaelian, High-Energy Electromagnetic
Processes in Condensed Media (Akad. Nauk Arm.
SSR, Yerevan, 1969; Wiley, New York, 1972).

3. G. M. Garibyan and Yan Shi, X-Ray Transition Radi-
ation (Akad. Nauk Arm. SSR, Yerevan, 1983).

4. P. Rullhusen, X. Artru, and P. Dhez, Novel Radiation
Sourses Using Relativistic Electrons (World Sci.,
Singapore, 1998).

5. B.M.Bolotovsky, Tr. Fiz. Inst. Akad. Nauk SSSR 140,
95 (1982).

6. A. I. Akhiezer and N. F. Shul’ga, High-Energy Elec-
trodynamics in Matter (Nauka, Moscow, 1993).

7. N. F. Shul’ga and S. N. Dobrovol’skiı̆, Zh. Éksp. Teor.
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Abstract—The properties of parametric x-ray radiation generated in a crystal are investigated in detail
on the basis of a numerical simulation, strong multiple scattering being taken into account in this
investigation. The contributions of various generation mechanisms to the total intensity of this radiation
are explored. The results of numerical calculations are compared with experimental data obtained by
measuring the integrated intensity of parametric x-ray radiation as a function of charged-particle energy.
It is shown that theoretical results are in good agreement with experimental data. c© 2003 MAIK “Nau-
ka/Interperiodica”.
1. INTRODUCTION

The effect of multiple scattering on parametric
x-ray radiation in a crystal target and the contri-
bution of bremsstrahlung to the total intensity of
this radiation at the diffraction maximum were taken
phenomenologically into account in [1–4]. However,
only in the case of weak multiple scattering—that is,
in the case where the crystal-layer thickness along
the direction of charged-particle motion satisfies the

condition L0 � LBr, where LBr =
√

4c/ωθ2
s is the

bremsstrahlung coherence length, θ2
s is the mean

square of the multiple-scattering angle per unit of the
distance that a charged particle travels in matter, and
ω is the frequency of the emitted photon—do results
obtained on the basis of this theory agree well with ex-
perimental data. In this case, multiple scattering only
results in that the intensity of generated x-ray radia-
tion develops a moderately small correction caused by
the bremsstrahlung radiation mechanism and in that
there appears the effect of multiple scattering in the
phase of parametric x-ray radiation. In the opposite
case of L0 > LBr, multiple scattering changes signif-
icantly the parameters of parametric x-ray radiation
itself. In the majority of relevant experiments (for ex-
ample, in those reported in [5, 6]), the condition under
which multiple scattering is weak was not satisfied;
in order to interpret these experiments, it is therefore
necessary to take rigorously into account multiple
scattering and the contribution of various generation
mechanisms to the total intensity.

*e-mail: olug@inp.minsk.by
1063-7788/03/6602-0402$24.00 c©
A theoretical approach that may be used in quan-
titatively analyzing the effect that the multiple scat-
tering of a charged particle exerts on the properties
of parametric x-ray radiation was formulated as far
back as some twenty years ago [1]. In the two-wave
approximation, a theory of the multiple-scattering
effect on the properties of parametric x-ray radiation
was given in [7], where the kinetic equation for the
distribution of particles with respect to coordinates
and velocities was solved in constructing this the-
ory. In the case of intense multiple scattering (L0 ≥
LBr), the expressions obtained in [7] for the spectral–
angular distribution are very involved for exploring
them analytically (they feature double integrals of
quickly oscillating functions); therefore, it is desirable
to perform a computer-based numerical analysis of
the properties of the radiation in question.

In the present study, we give a detailed quantitative
analysis of the properties of x-ray radiation generated
in a crystal, taking consistently into account mul-
tiple scattering. In addition, we compare the results
of our numerical calculations with experimental data
reported in [5, 6].

2. CONTRIBUTION OF VARIOUS
RADIATION MECHANISMS

TO THE FORMATION OF DIFFRACTION
MAXIMA

For radiation generated by the propagation of rel-
ativistic charged particles through a crystal layer, the
expressions for the spectral–angular distributions of
the intensity for the case where two-wave diffraction
is realized and where no account is taken of the mul-
tiple scattering of charged particles on crystal atoms
2003 MAIK “Nauka/Interperiodica”
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are given in [8]. The contribution of one term in the
expression for the spectral–angular intensity of the
radiation or another (“vacuum” radiation formed as
a particle traverses the crystal–vacuum interface or
“volume” radiation associated with emission with-
in the target) may change significantly in response
to variations in diffraction geometry, the energy of
the charged particles involved, and the crystal-layer
thickness.

In an optically thick target,L0 � lopt = c/ω|n − 1|
(lopt is the optical thickness, and n is the medium
refractive index), the main contribution to the in-
tensity comes from volume radiation if the charged-
particle energy satisfies the condition Ep ≥ Ethr

(Ethr = mc2/
√

|χ′
0| is the threshold energy of para-

metric x-ray radiation [3, 4], and χ′
0 is the real part

of the Fourier transform of the crystal susceptibil-
ity). An analysis reveals that, in the case where
the crystal-layer thickness exceeds the transition-
radiation coherence length l = 2c/ω(γ−2 + ω2

L/ω
2)

(ωL is the Langmuir frequency, and γ is the particle
Lorentz factor), but where it remains less than the
radiation-absorption depth in the target, l < L0 ≤
Labs, the spectral–angular distribution develops, in
addition to a peak due to fulfillment of the Vavilov–
Cherenkov condition, a peak corresponding to angles
and frequencies at which the factor RL(B), which de-
termines the efficiency of photon diffraction in Laue’s
or Bragg’s geometry [7], is maximal. In [7], radiation
associated with this peak was dubbed diffraction
transition radiation. For a lateral diffractionmaximum
in Laue’s geometry, this region of angles (θ, ϕ) and
frequencies (ω) is determined by the equation

χ′
0(β1 − 1) + αB(θ, ϕ, ω) = 0, (1)

where αB = (2k · τττ + τ2)/k2 is a parameter that
characterizes the deviation from exact fulfillment of
Bragg’s condition (here, k is the wave vector of the
emitted photon and τττ is the reciprocal-lattice vector of
crystal planes, |τττ | = 2π/d, with d being the interplane
spacing) and β1 = γ0/γ1 [γ0 = nγ ·N with nγ =
k/|k| and γ1 = nγτ · N with nγτ = (k + τττ)/|k + τττ |,
N being the unit vector that is orthogonal to the
entrance surface of the crystal layer and which is
directed toward the interior of the crystal].

An analysis of the expression for the spectral–
angular distribution of radiation at a lateral diffraction
maximum reveals [8] that, in the region of angles
and frequencies satisfying the condition in (1), the
spectral–angular distribution of diffraction transition
radiation either (for l � L0 < Labs) quickly oscillates
or (in the case of L0 � Labs) appears to be a uni-
form background under the spectral–angular peak
for which the Cherenkov condition is satisfied. In
either case, however, the intensity of parametric x-ray
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
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Fig. 1. Peaks of diffraction transition radiation and
superlight bremsstrahlung radiation in the spectral–
angular distribution of radiation. The curve that exhibits
themaxima denoted by 1 and 2was computed for a crystal
layer of thickness L0 = 10lopt, the peaks being due to
(1) superlight bremsstrahlung radiation and (2) diffrac-
tion transition radiation. The curve having the maximum
denoted by 3 represents our results for a layer of thick-
nessL0 = lopt, the maximum corresponding to diffraction
transition radiation.

radiation exceeds the intensity of diffraction transition
radiation.

In a thin crystal layer (L0 < l), it is necessary
to take into account, in addition to radiation in the
medium, radiation due to the electromagnetic field
generated by a charged particle moving in a vacuum
prior to entering the layer. An analysis shows that the
main contribution to the intensity of the diffraction
maximum may come either from the term that repre-
sents diffraction transition radiation or from the term
that represents resonance radiation, which was first
considered by Ter-Mikaelyan in [9].

The multiple scattering of charged particles on
medium atoms leads to the emergence of yet an-
other type of radiation, bremsstrahlung, which, in
a crystal target, also undergoes diffraction on a
chosen system of planes. As the energy of charged
particles is decreased or the layer thickness is in-
creased, the relative bremsstrahlung contribution to
the diffraction maximum becomes greater, which
leads to a gradual change in the spectral–angular
and the angular distribution of the radiation. In
just the same way as in the case of the genera-
tion of parametric x-ray radiation, it can be shown
that, in the two-wave approximation, diffraction in
the first dispersion branch (µ = 1) results in that
the medium refractive index becomes greater than
unity in some region of bremsstrahlung angles and
frequencies. In [7], bremsstrahlung whose photons
propagate in a crystal at a phase velocity less than
the velocity of charged particles generating them
3
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Fig. 2. Sections of the angular distributions for parametric x-ray radiation and bremsstrahlung radiation at an azimuthal
angle of ϕ = 0 rad. The energy of the charged-particle beam was taken to be either (a) 900 or (b) 400 MeV. Curves 1 and 2
represent the results obtained for parametric x-ray radiation without and with allowance for multiple scattering, respectively,
while curve 3 corresponds to bremsstrahlung radiation.
was dubbed superlight bremsstrahlung. In the same
article, bremsstrahlung in the second dispersion
branch (µ = 2) and bremsstrahlung in the first branch
for angles θ and frequencies ω such that the refractive
index is less than unity, n1s < 1, were called diffrac-
tion bremsstrahlung. Diffraction bremsstrahlung is
emitted at the same angles and at the same frequen-
cies as the diffraction transition radiation. In contrast
to radiation generated by a particle moving along
a straight line at a constant speed, bremsstrahlung
(both of superlight and of diffraction species) has,
however, a maximum in the angular distribution at
ϑ = 0 (that is, strictly along the direction toward the
diffraction maximum).

If the particle energy satisfies the condition Ep <
Ethr, diffraction bremsstrahlung and diffraction tran-
sition radiation appear to be dominant radiation
mechanisms for the target thickness taking values
in the range l < L0 < lopt. In the case where the
crystal-layer thickness L0 is much larger than the
depth of radiation absorption in the crystal, there is
no peak due to diffraction transition radiation, since
this radiation is formed only as a charged particle
traverses the first boundary of the layer and since, in
the case of L0 � Labs, it is completely absorbed in
the medium. In the limit Labs � L0 ≤ LBr, the peak
specified by Eq. (1) is therefore due exclusively to
diffraction bremsstrahlung.

For symmetric geometry of Laue diffraction, Fig. 1
displays the spectra of radiation generated by a 200-
MeV electron beam in a silicon crystal [(220) reflec-
tion and 2θB = 19◦, where θB is the angle between
the particle-velocity vector v and the planes corre-
sponding to the vector τττ ]. The threshold energy of
charged particles was Ethr = 321 MeV. The spectra
PH
were calculated at a polar angle of ϑ = 0 for two
values of the crystal-layer thickness. For the layer of
thickness L0 = 10lopt = 7.97 × 10−3 cm (the thicker
one), the maximum in the spectrum (1) is attained
at the frequency that satisfies the Cherenkov condi-
tion at µ = 1, which means that we are dealing here
with superlight bremsstrahlung. The maximum la-
beled with 2 corresponds to fulfillment of the condition
in (1) and is due to diffraction bremsstrahlung (the
first dispersion branch is responsible for this maxi-
mum as well).

In the crystal layer of thickness about lopt =
7.97 × 10−4 cm (the thinner one), the intensity of
diffraction bremsstrahlung at the maximum is one-
third as great as that in the thick layer, but this
peak becomes dominant because the peak corre-
sponding to superlight bremsstrahlung disappears.
A smaller value of the intensity at the diffraction-
bremsstrahlung peak in the layer of thickness lopt
than in the layer of thickness 10lopt is explained as
follows: since the bremsstrahlung coherence length is
LBr = 2.7 × 10−3 cm here, we have L0 = lopt < LBr
for the thin layer and L0 = 10lopt > LBr for the thick
layer, so that the conditions of weak and strong
multiple scattering hold in the first and the second
case, respectively.

In the situationwhere the target thickness exceeds
the bremsstrahlung coherence length, L0 > LBr, and
where the charged-particle energy is lower than the
threshold energy of parametric x-ray radiation, Ep <
Ethr, the bremsstrahlung contribution to the intensity
of the diffraction maximum may appear to be on the
same order of magnitude as the intensity of paramet-
ric x-ray radiation or even exceed it. For a silicon
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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Table 1. Parameters of the experiment reported in [5] for various energy values

Ep, MeV ϑph, mrad ϑMP
ph , mrad LBr × 103, cm R =

IPXR
IBR

900 1.69 2.9 12.2 3.9

700 1.75 3.1 9.45 2.5

600 1.81 3.3 8.10 2.1

500 1.89 3.7 6.75 1.5

450 1.96 4.0 6.08 1.4

400 2.04 4.3 5.40 1.2

350 2.16 4.5 4.73 0.91

300 2.33 4.8 4.05 0.77

Table 2. Parameters of the experiment reported in [6] for various energy values

Ep, MeV ϑph, mrad ϑMP
ph , mrad LBr × 103, cm R =

IPXR
IBR

1100 2.21 2.65 17.3 6.7

900 2.24 2.87 14.2 5.3

700 2.28 3.24 11.0 4.3

500 2.39 4.02 7.87 2.3

400 2.51 4.76 6.30 1.4

300 2.75 6.04 4.72 0.69

200 3.35 8.74 3.15 0.23
crystal of thickness 0.01 cm, the angular distributions
of parametric x-ray radiation and bremsstrahlung are
displayed in Fig. 2 at the electron-beam energies of
(a) 900 and (b) 400 MeV (γ0 = γ1 = cos 9.5◦) for the
(220) reflection; here, parametric x-ray radiation is π-
polarized, while bremsstrahlung is of a mixed polar-
ization. The distributions labeledwith 1were obtained
by integrating the spectral–angular distribution [8]
with respect to the frequency around the point ωB
(ωB = πc/d sin θB) over the range ∆ω/ωB = 10−3. In
this case, a dominant contribution to the radiation
intensity comes from terms that are proportional to
[ω − k1τπ · v]−1, the contribution of the remaining
terms not exceeding a few percent. The distributions
labeled with 2 are those of parametric x-ray radia-
tion treated with allowance for multiple scattering—
that is, they were obtained without including terms
that are responsible for bremsstrahlung. The dis-
tributions labeled with 3 are the angular distribu-
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 20
tions of bremsstrahlung due to multiple scattering.
The situation of strong multiple scattering is real-
ized at either value of the charged-particle energy—
specifically, LBr = 5.4 × 10−3 cm at 400 MeV and
LBr = 1.22 × 10−2 cm at 900 MeV, whence it follows
that LBr � L0 in both cases.

Even at the energy value of 900 MeV, the an-
gular intensity of bremsstrahlung at the maximum
(for ϑ = 0) exceeds the angular intensity of paramet-
ric x-ray radiation at the maximum (for an angle of
ϑ = ϑph =

√
γ−2 − χ′

0). This leads to a substantial
change in the character of the angular distribution of
parametric x-ray radiation—the intensity no longer
shows a dip at an angle of ϑ = 0. Thus, allowance
for bremsstrahlung emitted owing to the multiple
scattering of charged particles leads to significant
changes both in the spectral–angular and in the in-
tegrated features of parametric x-ray radiation.
03
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Fig. 3. Energy dependence of the quantum yield: (1) re-
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3. ANALYSIS OF THE RESULTS
OF AN EXPERIMENTAL OBSERVATION
OF PARAMETRIC X-RAY RADIATION

WITH ALLOWANCE
FOR THE MULTIPLE-SCATTERING EFFECT
AND THE CONTRIBUTION OF VARIOUS

SCATTERING MECHANISMS

For the first time, the goal of experimentally
studying the multiple-scattering effect on the prop-
erties of parametric x-ray radiation was pursued by
Afanasenko et al. [5], who measured the angular
distributions and quantum yields of radiation gener-
ated by 300- to 900-MeV electron beams incident on
diamond and silicon crystals having various thick-
nesses and various orientations and who obtained
the experimental dependence of the quantum yield
of radiation on the electron-beam energy. Instead of
a dependence of the form lnEp above the threshold
value Ethr and a sharp drop in proportion to E4

p

below Ethr, those authors observed a significant
increase in the radiation yield at energies in the region
400–600 MeV. They attributed this to the effect of
strong multiple scattering. A comparison of these ex-
perimental data with estimates obtained on the basis
of formulas from [3, 4, 7], where multiple scattering
was taken phenomenologically into account, revealed
only qualitative agreement.

In Table 1, we quote main parameters that charac-
terize the experimental situation at various values of
the electron-beam energy; here, ϑMS

ph is the effective
angle of the emission of parametric x-ray radiation
with allowance for multiple scattering—this angle is
defined as that at which the angular distribution of
parametric x-ray radiation attains a maximum. The
experiment was performed with a silicon crystal of
PH
thickness L = 1.3 mm for the (220) reflection (γ0 =
γ1 = cos 9.5◦), the angular size of the detector used
being 9.5 × 10−3 rad.

From the data in Table 1, it follows that, for all
values of the electron-beam energy, L0 > LBr, which
means that the case of strong multiple scattering
is realized there. In this situation, the threshold en-
ergy Ethr for parametric x-ray radiation is 321 MeV;
because of strong multiple scattering, however, the
total threshold energy changes, reaching the value
of EMS

thr = 1175 MeV. This means that, even at the
electron-beam energy of 900 MeV, the intensity of
parametric x-ray radiation decreases because of mul-
tiple scattering.

The ratio of the integrated intensity of para-
metric x-ray radiation to the integrated intensity
of bremsstrahlung is given in the last column of
Table 1. It can be seen that, at energies in the region
Ep < 400 MeV, the intensity of bremsstrahlung be-
comes commensurate with the intensity of parametric
x-ray radiation and even begins to exceed it.

The quantum yield of parametric x-ray radiation
proper and the quantum yield of the total radi-
ation (parametric x-ray radiation plus superlight
bremsstrahlung plus diffraction bremsstrahlung plus
diffraction transition radiation) versus the charged-
particle energy are displayed in Fig. 3 (curves 1
and 2, respectively) according to the calculations
based on rigorous formulas that take into account the
contributions of various radiation mechanisms and
the interference between them.

The experimental curve shows an increase in
the intensity over the energy range 400–600 MeV,
while the numerical calculations predict a smooth
decrease in the intensity of the quantum yield with
decreasing Ep (Fig. 3, curve 2). The quantum yield
at Ep = 900 MeV exceeds that at Ep = 300 MeV
by a factor of 1.65, whereas the calculation by the
Feranchuk–Ivashin formula (where multiple scat-
tering is taken phenomenologically into account)
[3] predicts a change by a factor of 2.3 (see Fig. 1
in [5]). Thus, our calculations did not exhibit an
increase in the quantum yield at energies in the range
400–600 MeV; therefore, this effect is due to some
other factors, which were also indicated in [5].

The results obtained by measuring the quantum
yield of x-ray radiation as a function of the electron-
beam energy in the range 200–1100 MeV were pre-
sented in [6].

The main parameters that characterize the exper-
imental situation there are given in Table 2 (these
parameters are analogous to those in Table 1). In that
situation, the threshold energy for parametric x-ray
radiation was Ethr = 236 MeV (EMS

thr = 730 MeV).
For all values of the electron-beam energy there,L0 =
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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tering [8], (open circles) contribution of parametric x-
ray radiation (and diffraction transition radiation) alone
(without bremsstrahlung), (closed circles) results of the
calculation by complete formulas allowing for multiple
scattering (integration with respect to the frequency over
the range �ω/ωB = 10−3), and (crosses) experimental
values from [6].

L/ cos θB > Labs and L0 > LBr. This is the region of
a strongmultiple-scattering effect, and it is necessary
to take everywhere into account the bremsstrahlung
contribution to the total intensity of the radiation. The
inclusion of bremsstrahlung is of crucial importance
for Ep < 700 MeV (this radiation contributes here as
much as about 20%), its contribution becoming dom-
inant for Ep < 400 MeV. It should be noted that the
contribution to the intensity from radiation generated
in the non-Cherenkov dispersion branch, as well as
from radiation formed over the vacuum segment of
the trajectory and its interference with the radiation in
the medium, does not exceed 5.5% in the geometric
configuration being considered.

Experimental results obtained in [6] by measuring
the quantum yield of radiation are given in Fig. 4,
along with the absolute radiation yield calculated on
the basis of various models of multiple scattering. The
dashed curve represents results obtained within the
ideal model, while the thick solid curve corresponds
to the Feranchuck–Ivashin model, which takes into
account multiple scattering in a phenomenologi-
cal coherent way and absorption. The thin solid
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
curve was computed by integrating the spectral–
angular distribution with respect to the frequency
(over the range ∆ω/ωB = 10−3) and with respect
to the angles. Closed circles represent the results
of the calculations that employed exact formulas
(integration with respect to the frequency covered
the range ∆ω/ωB = 10−3) allowing for radiation in
both dispersion branches, radiation in a vacuum
before the crystal used, and interference terms, as
well as bremsstrahlung, while open circles corre-
spond to taking into account only parametric x-ray
radiation (and diffraction transition radiation), but
not bremsstrahlung. The experimental values of the
quantum yield (crosses) fall between the values ob-
tained on the basis of the ideal and the “noncoherent”
model and are virtually independent of energy in
the range 400–1100 MeV, remaining approximately
equal to 10−5 photon/e−, decreasing somewhat at an
energy of 350 MeV, and showing more than a twofold
drop at an energy of 200 MeV.

As can be seen from Fig. 4, the results of the
calculations in which multiple scattering is rigorously
taken into account on the basis of complete formulas
(closed circles) are in excellent agreement with ex-
perimental data. Indeed, multiple scattering changes
significantly the properties of parametric x-ray radi-
ation, reducing its intensity (curve formed by open
circles); however, bremsstrahlung that arises owing
to multiple scattering compensates for this decrease,
with the result that the quantum yield of radiation ex-
hibits a smooth dependence on the charged-particle
energy without a manifest threshold behavior.

4. CONCLUSION

In interpreting experimental data on x-ray radia-
tion generated by charged particles in crystals, use
has so far been made either of a theory where a cal-
culation of parametric x-ray radiation involves taking
phenomenologically into account multiple scatter-
ing [2–4]; or of asymptotic formulas obtained in the
approximation of weak multiple scattering [7]; or of
the approach where multiple scattering is included in
the analysis via averaging, over multiple-scattering
angles, the expression found for the angular distribu-
tion of parametric x-ray radiation within the kinemat-
ical theory of diffraction [10].

All these approaches are unable to provide an
adequate quantitative description of the radiation in-
tensity in the case of strong multiple scattering. In
order to obtain such a description, it is necessary
to perform calculations on the basis of taking rigor-
ously into account the multiple-scattering effect on
the mechanism of the emission of parametric x rays,
bremsstrahlung arising as the result of multiple scat-
tering, and the interference of bremsstrahlung and
3
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parametric x-ray radiation. A comparison of experi-
mental data and the results of our theoretical calcula-
tions gives every reason to state that this approach
to taking into account multiple scattering in radia-
tion generated by charged particles ensures very good
agreement between theoretical and experimental re-
sults.
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Abstract—The spectral–angular and angular distributions of parametric x-ray radiation generated in the
vicinity of the maximum at small angles to the direction of charged-particle motion are studied under the
conditions of Laue and Bragg diffraction geometries. Detector parameters at which the dynamical maxima
of parametric x-ray radiation can be observed against the background of transition radiation are indicated.
The spectral–angular and angular distributions of parametric x-ray radiation are analyzed for the case of
backward geometry. The results of the present theoretical calculations are found to be in good agreement
with experimental data. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It was first shown in [1] that, if the conditions
of dynamical diffraction are met for radiation gen-
erated by charged particles, an abrupt change in
the refractive index of a medium for x rays leads
to a substantial change in the spectral proper-
ties of this radiation. In particular, the refractive
index can become greater than unity; therefore,
the Vavilov–Cherenkov condition can be satisfied,
which results in the generation of radiation. This
mechanism of radiation was first predicted theo-
retically in the early 1970s [2, 3] (see also [4, 5]),
and the radiation itself was dubbed parametric x-
ray radiation. After parametric x-ray radiation had
been observed experimentally [6, 7], there appeared
many theoretical and experimental studies devoted
to the subject (see, for example, [8–13] and [14–
20], respectively). The results of some experiments
agree well with the kinematical theory of parametric
x-ray radiation [14–16], while the results of the
others require a further theoretical interpretation
[17–19]. Despite a large number of publications
dealing with parametric x-ray radiation, the ap-
plicability range of dynamical theory and its con-
sistency with available experimental data have not
yet received adequate study. Moreover, the need for
the dynamic approach is still the subject of lively
discussions.

The main distinction between the kinematical and
the dynamical approach is that, for example, in the
case of two-wave diffraction, dynamical theory pre-
dicts, in addition to radiation emitted at large angles
to the direction of the charged-particle velocity and
described within both approaches, parametric x rays

*e-mail: bar@inp.minsk.by
1063-7788/03/6602-0409$24.00 c©
emitted at small angles to this direction [9]. The latter
component has not yet been observed. The recent
experiment reported in [20] did not yield a positive
result in this respect either.

Thus, there are two problems to be solved: first,
there are a number of experiments devoted to mea-
suring parametric x-ray radiation in Bragg diffraction
geometry that have yet to be interpreted theoreti-
cally; second, all attempts at experimentally observ-
ing parametric x-ray radiation at small angles to the
direction of charged-particle motion have so far been
futile. It is precisely the problems that are considered
in the present article.

2. ANALYSIS OF THE INTENSITY
OF PARAMETRIC X-RAY RADIATION

AT SMALL ANGLES TO THE DIRECTION
OF CHARGED-PARTICLE MOTION

General expressions for the spectral–angular dis-
tributions of parametric x-ray radiation at the max-
imum in the region of small angles to the charged-
particle velocity were obtained in [9]. According to [9],
the cases of Laue and Bragg diffraction must be dis-
tinguished in studying forward radiation. For the case
of Laue diffraction geometry, the expression for the
differential number of photons having the polarization
vector es (s = σ, π) that are emitted in the directions
determined by the wave vector k has the form

d2Ns
dωdo

(1)

=
e2Q2ω

4π2�c3
(es · v)2

∣∣∣∣∣
∑

µ=1,2

ξ0µs exp
(
i
ω

cγ0
εµsL

)
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×
[

1
ω − k · v − 1

ω − kµs · v

]

×
[
exp

(
i(ω − kµs · v)

c
L0

)
− 1
] ∣∣∣∣∣

2

.

The analogous expression for the case of Bragg
diffraction geometry is

d2Ns
dωdo

=
e2Q2ω

4π2�c3
(es · v)2 (2)
PH
×
∣∣∣∣∣
∑

µ=1,2

γ0
µs exp

(
i
ω

cγ0
εµsL

)

×
[

1
ω − k · v − 1

ω − kµs · v

]

×
[
exp

(
i(ω − kµs · v)

c
L0

)
− 1
] ∣∣∣∣∣

2

.

In these expressions,

ξ01(2)s =
2ε2(1)s − χ0

2(ε2(1)s − ε1(2)s)
; γ0

1(2)s =
2ε2(1)s − χ0

(2ε2(1)s − χ0) − (2ε1(2)s − χ0) exp
(
i ωcγ0 (ε2(1)s − ε1(2)s)L

) ;
eσ || [k × τ ], where τ is reciprocal-lattice vector of
crystallographic planes (|τ | = 2π/d, with d being
the intraplanar spacing) and eπ || [k× eσ] are the
radiation-polarization vectors; v is the charged-
particle-velocity vector; Q is the particle charge; ω
is the radiation frequency; kµs = k + (ω/cγ0)εµsN,
N being the unit vector that is orthogonal to the
entrance surface of the plate and which is directed
toward the interior of the crystal; L is the crystal
plate thickness; L0 = L/γ0, where γ0 = nγ · N and
nγ = k/k, is the crystal thickness along the direction
of charged-particle motion; and

εµs =
1
4

{
−αBβ1 + χ0(β1 + 1) (3)

±
√

[−αBβ1 + χ0(β1 − 1)]2 + 4β1χsτχ
s
−τ

}
.

Here, the plus and minus signs in front of the square
root correspond to µ = 1 and µ = 2, respectively;
χ0, χsτ , and χ

s
−τ are the Fourier components of the

complex-valued polarizabilities of the crystal used;

αB =
2k · τ + τ2

k2
(4)

is a parameter that specifies the deviation from exact
fulfillment of Bragg’s condition; and β1 = γ0/γ1,
where γ1 = nγτ ·N with nγτ = (k + τ )/|k + τ |.

Let us compare formulas (1) and (2) with the
known formula describing the transition radiation of
x rays in an amorphous medium (see, for example, [8])
and having the form

d2Ns
dωdo

=
e2Q2ω

4π2�c3
(es · v)2 (5)

×
∣∣∣∣exp

(
i
χ0ω

2cγ0
L

)[
1

ω − k · v − 1
ω − ka · v

]

×
[
exp

(
i(ω − ka · v)

c
L0

)
− 1
]∣∣∣∣

2

,

where ka = k + (ωχ0/2cγ0)N is the photon wave
vector in the amorphous medium being considered.

Obviously, the formulas describing parametric x-
ray radiation and transition radiation are similar in
form, but the difference is that, in an amorphous
medium, as well as in a crystal where the Bragg
condition is strongly violated, only one wave, with
wave vector ka, can propagate, while, in the case of
parametric x-ray radiation, coherent superposition of
a few waves propagates through a crystal owing to
diffraction (see above).

If, however, the frequencies and angles in formulas
(1) and (2) for parametric x-ray radiation emitted at
small angles to the direction of charged-particle mo-
tion do not satisfy the conditions of diffraction (that
is, the absolute value of the parameter characterizing
the deviation from the exact Bragg condition, |αB|,
becomes much greater than |χ′0|, where χ′0 is the real
part of χ0), then these formulas reduce to formula (5)
for transition radiation, because, in this case, ε1s →
χ0/2, ξ01s → 1, and ξ02s → 0 (or ε2s → χ0/2, ξ02s →
1, and ξ01s → 0, depending on whether αB � |χ′0| or
αB 	 −|χ′0|). Concurrently, the expressions for the
spectral–angular intensity of parametric x-ray radia-
tion emitted at large angles tend to zero, because the
conditions of diffraction are not satisfied.

Laue Diffraction
First and foremost, we note that χ′0 < 0, and it

follows from the Vavilov–Cherenkov condition that
the real part of the refractive index becomes greater
than unity only for one dispersion root εµs (µ = 1 in
this case). As a result, the difference (ω − k1s · v)
may vanish, and that term in (1) which involves this
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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Fig. 1. Spectral–angular distribution of radiation generated by a single electron that traversed a crystal plate: (1) results of
the calculation by formula (1) with allowance for all terms, (2) results of the calculation by formula (1) in the approximation
where only the term proportional to 1/(ω − k1s · v) is taken into account, and (3) transition radiation contribution calculated
by formula (5).
difference in the denominator begins to increase in
proportion to L. At the same time, that term in (1)
which involves the analogous difference (ω − k2s · v)
in the denominator will never increase in proportion
to L, since this difference cannot vanish in princi-
ple. It follows that the term involving the difference
(ω − k1s · v) makes a dominant contribution to the
radiation intensity if the crystal thickness along the
direction of particle motion satisfies the condition
L/γ0 � l0 (l0 = λγ2 is the coherent radiation length
in a vacuum, λ is the radiation wavelength, and γ
is the charged-particle Lorentz factor). In the case
of L/γ0 ∼ l0, it is necessary to take into account all
terms in (1) in performing integration with respect to
frequencies. In order to observe dynamical maxima
in the forward-radiation peak, the parameters of the
experiment must be selected in such a way that the
contribution of the quasi-Cherenkov radiation mode
to the intensity would be noticeable against the back-
ground of the non-Cherenkov component.

By way of example, the spectral–angular distri-
butions of 10-keV radiation at an angle of 2.4 mrad
in a crystal of thickness L = 0.1 cm are shown in
Fig. 1 for the case of the (111) diffraction plane and
symmetric reflection. All the calculations in this study
were performed for the electron-beam energy of E =
855 MeV; the spectral–angular distributions and the
sections corresponding to angular distribution were
computed for an azimuthal angle of ϕ = π/2, which
corresponds to the σ polarization of parametric x-ray
radiation.

Bragg Diffraction
In the case of Bragg diffraction, physical phenom-

ena occurring in a crystal differ significantly from
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
those caused by Laue diffraction, because the condi-
tions for the amplitudes at the crystal–vacuum inter-
face are different. The distinction between the phys-
ical mechanisms of diffraction in different parts of
the diffraction-maximum region is a typical feature of
Bragg reflection. By way of example, we indicate that,
in some region of the maximum, the wave vectors
in the lattice become complex-valued. By analogy
with wave vectors in absorbing crystals, this must
cause an exponential decrease in the intensities of the
relevant waves as they penetrate into the crystals. The
corresponding region of themaximum is referred to as
the region of total reflection.

The spectral–angular (at an angle of ϑ =
2.4 mrad) and angular distributions of 20-keV ra-
diation for γ0 = 0.1636 and γ1 = 0.0337 are shown
in Figs. 2 and 3, respectively, in a silicon crystal of
thickness L = 0.01 cm for the (111) diffraction plane.
As can be seen from Fig. 2, the µ = 1 branch features
a distinct maximum. The angular distributions were
obtained by integrating expressions (2) and (5) over
the range ∆ω = 10−4ωB [ωB = πc/(d sin θB), where
θB is the angle between the particle-velocity vector v
and the planes corresponding to the reciprocal-lattice
vector τ ]. For polar angles ϑ > 1.5 mrad, the radi-
ation intensity obtained by integrating expressions
(2) exceeds that which corresponds to integration
of (5). It is precisely this excess of radiation in a
crystal under dynamical-diffraction conditions over
radiation emitted from a plate in the case where the
diffraction conditions are not satisfied that can be
used to reveal dynamical maxima of parametric x-ray
radiation in experiments aimed at measuring angular
distributions.
3
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3. RADIATION TO THE LATERAL
DIFFRACTION MAXIMUM IN BRAGG

DIFFRACTION GEOMETRY

For radiation that is generated by a charged par-
ticle traversing a crystal plate and which is charac-
terized by the polarization vector eτs, it was shown in
[9] that, in the case of Bragg diffraction, the spectral–
angular distribution of the intensity in the region of
the maximum occurring at the angle 2θB to the direc-
tion of its motion is given by

d2Ns
dωdo

=
e2Q2ω

4π2�c3
(eτs · v)2 (6)

×

∣∣∣∣∣∣

∑

µ=1,2

γτµs

[
1

ω − kτ · v
− 1
ω − kµτs · v

]

×
[
exp

(
i(ω − kµτs · v)

c
L0

)
− 1
]∣∣∣∣

2

,

where
γτ1(2)s =
−β1Csχτ

(2ε2(1)s − χ0) − (2ε1(2)s − χ0) exp
(
i ωcγ0 (ε2(1)s − ε1(2)s)L

) ,

kτ = k + τ ; kµτs = kτ +
ω

cγ0
εµsN; Cs = es · eτs.
Expression (6) comprises the terms describing
radiation that arises as the charged particle traverses
the crystal–vacuum interface, radiation generated
P

within the crystal plate, and their interference. It was
shown above that, in the case of Bragg diffraction,
the wave vectors in the lattice become complex-
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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valued in a certain region of the maximum, so that
the effect of total reflection is realized for the rele-
vant waves. In addition to the peak at the angles
and frequencies corresponding to fulfillment of the
Vavilov–Cherenkov condition, the spectral–angular
distribution of parametric x-ray radiation exhibits
a peak associated with the existence of the total-
reflection region.

Under the conditions of backward reflection, ex-
periments were performed in [19] to study x-ray radi-
ation generated by charged particles in Bragg diffrac-
tion geometry. The angular dependence of the radi-
ation yield was measured there as a function of the
crystal-rotation angle ψ with respect to the direction
of charged-particle motion. We have performed cal-
culations for the case where a silicon crystal plate
525 µm thick is irradiated with an electron beam of
energy 855 MeV.

Figure 4 displays the spectral–angular distri-
butions for the (555) reflection of the components
forming total radiation—that is, radiation corre-
sponding to various excitation points in the dispersion
curves (µ = 1, 2). For a crystal-rotation angle of
ψ = 0.3 mrad, a narrow maximum in the radiation
spectrum at a frequency of ω ≈ 1.0000075ωB corre-
sponds to the term proportional to (ω − k1τσ · v)−1

if the calculation is based on expression (6); that
is, this narrow maximum is associated with the
first dispersion branch (µ = 1). A broad maximum
in the range (1.0000125–1.00001875)ωB is due to
both dispersion branches. With increasing crystal-
rotation angle ψ (the corresponding polar angle of
radiation is 2ψ), the spectral–angular intensity of the
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
narrow maximum grows and, at an angle of about
ϑph =

√
γ−2 − χ′0, begins to exceed the intensity of

the maximum associated with the region of the total
reflection of x-ray radiation from crystallographic
planes.

An experiment in this geometry and with these
parameters of the crystal and of the electron beam
was performed at the Institute of Nuclear Physics
at Gutenberg University.1) We have calculated the
angular distributions of radiation for the (111), (333),
and (444) reflections by integrating expression (6)
with respect to the frequency over the range corre-
sponding to the actual energy resolution of the de-
tector used there. A comparison of our theoretical
results with the experimental angular distributions
courteously placed at our disposal by Prof. H. Backe
and his colleagues showed fairly good agreement.
For instance, the theoretical values of the angular
intensity for the (111), (333) and (444) reflections
are, respectively, 10%, 18%, and 21% lower than
the experimental ones at a crystal-rotation angle of
ψ = 0.3 mrad, at which the angular distribution of
the radiation attains a maximum. The theoretical and
experimental curves behave similarly, and the inten-
sity values nearly coincide at angles of about ϑph.
At angles smaller than approximately 0.3 mrad, there
is a distinction that grows with increasing energy of
emitted photons. This effect can possibly be explained
by the influence of multiple scattering—specifically,

1)Institut für Kernphysik, Johannes-Gutenberg-Universität,
Mainz (Germany).
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by the additional contribution to the intensity from
bremsstrahlung generated at small angles.

The relative contribution of bremsstrahlung in-
creases considerably with decreasing charged-particle
energy. Experimental results obtained by studying
parametric x-ray radiation in a similar geometry at an
electron-beam energy that is an order of magnitude
lower (E = 86.9 MeV) are presented in [19]. Our
calculations for this experiment have shown that
the result obtained for the intensity of the angular
distribution at the maximum by integrating expres-
sion (6) with respect to the frequency over the range
∆ω = 10−2ωB is approximately equal to half the
experimental value. However, it is necessary to take
into account the contribution of bremsstrahlung to
the total intensity, since bremsstrahlung becomes
sizable at such electron-beam energies [8]. Thus, it
can be stated that the results obtained theoretically
for the angular intensity of radiation are in fairly good
agreement with the available experimental data.

4. CONCLUSION

The spectral–angular distributions of radiation at
the maximum along the direction of the charged-
particle velocity have been studied on the basis of
general Eqs. (1) and (2). The results demonstrate
that, in the radiation spectra, there are distinct
maxima corresponding to angles and frequencies at
which the Vavilov–Cherenkov condition is satisfied.
In comparing the angular distributions of radiation
in a crystal under the conditions of diffraction and
in an amorphous plate (or in a crystal where the
diffraction conditions are strongly violated) for a
narrow spectral range of width about 10−4ωB, one
can see that, from a certain angle, the radiation
intensity under the diffraction conditions exceeds the
intensity of bremsstrahlung. For the case of Bragg
diffraction, the type of measurement geometry for
forward radiation can be chosen in such a way that
the angular distribution obtained under the diffraction
conditions for a narrow spectral range of radiation
(∆ω/ωB ∼ 10−4) would differ considerably from the
distributions of radiation for which there are strong
deviations from the diffraction conditions. It should
be recalled that expressions (1) and (2) were derived
without taking into account the multiple scattering
of charged particles on the atoms of a crystal-plate
material, but such multiple-scattering processes
modify considerably the properties of parametric
x-ray radiation: they change the spectral–angular
and angular distributions (reduce the intensity and
broaden spectral and angular peaks); concurrently,
the intensity of bremsstrahlung associated with
multiple scattering increases, with bremsstrahlung
photons being emitted nearly into the same region of
PH
angles and frequencies as the photons of parametric
x-ray radiation. In order to reduce the multiple-
scattering effect, one can use light crystals—for
example, LiF or LiH. The possibility of employing
heavy-particle beams (that is, beams of protons or
nuclei), as well as radiation from a beam of positrons
moving in themode of plane channeling, is a still more
efficient method. In this case, multiple scattering can
be neglected, so that expressions (1) and (2) can be
used for spectral–angular distributions in planning
relevant experiments.

The above comparison of our theoretical results,
calculated by formula (6), with the experimental dis-
tributions of parametric x-ray radiation in backward
geometry has revealed that these theoretical and
experimental distributions are in good agreement.
Therefore, it can be stated that, in the case of Bragg
diffraction, only by applying dynamical theory to
describing the radiation process can one adequately
estimate the intensity of total radiation generated by
charged particles in a crystal into the lateral diffrac-
tion maximum. It should be noted that all attempts
at interpreting experiments of the kind in question
within approximate theories (such as kinematical
theory, description of radiation at the maximum at
large angles as diffraction of transition radiation,
or disregard of the interference between radiation
corresponding to the different dispersion branches
[11, 12]) failed to reproduce experimental data.
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Abstract—On the basis of the shell model for the electron distribution in an atom, analytic expressions and
approximations are constructed for relativistic Hartree–Fock atomic form factors. The proposed approach
ensures a precision that is two to three times higher than that of approximations based on existing models.
This approachmakes it possible to obtain simple expressions for a screening function of the Thomas–Fermi
type. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The energies of lines of x-ray radiation accompa-
nying the motion of relativistic electrons through a
perfect single crystal is determined, to a precision of
about 0.5%, by the form of the continuous potential
and by the amplitude of thermal vibrations of atoms.
The experimental accuracy in measuring the line po-
sitions is comparable with the theoretical accuracy;
however, it is achieved via a complicated data treat-
ment in the planar case. By way of example, we indi-
cate that, for certain experimental geometries (plane–
axis transition), it is necessary to take into account, in
addition to other factors, the discrete structure of the
channeling plane [1].

A basic idea that simplifies significantly a theo-
retical analysis of the channeling effect is to replace
the true potential field of the crystal being considered
by the sum of the potentials of individual atoms that
is averaged along the axis or over the relevant plane.
In doing this, it is sometimes necessary to take into
account the type of chemical bonding of the atoms [2];
moreover, the accuracy of the approximation being
discussed depends on the accuracy of simulating the
actual potential of an individual atom. An atomic po-
tential is often constructed in terms of various models
for relativistic atomic form factors calculated in the
Hartree–Fock approximation [3]. In this study, we
obtain analytic approximations for the form factors on
the basis of the shell model for the electron distribu-
tion and present coefficients in these approximations
for the C, Si, and Ge atoms. We discuss the accuracy
of the approximation used and consider the question
of whether this description of the atom potential is
adequate.
1063-7788/03/6602-0416$24.00 c©
2. THEORETICAL ANALYSIS

One of the standard methods for calculating the
energy of lines of radiation emitted by particles that
traverse crystals in the channeling mode is based on
the multichannel representation of the Schrödinger
equation for the transverse motion of a particle [4].
In this formalism, the continuous potential of an axis
or a plane is expanded in the Fourier series in ba-
sic reciprocal-lattice vectors, whereupon the problem
of solving the equation reduces to diagonalizing the
matrix that arises in the Fourier representation. The
Fourier components of the continuous potential are
proportional to the electron-scattering form factors
fel(q), which in turn are related to the atomic potential
by the equation

fel(q) =
2me

�2

∞∫

0

r2V (r)
sin(qr)
qr

dr, (1)

where V (r) is the atomic potential, q is the change
in the wave vector of the scattered electron, andm is
the electron mass [5]. Since calculations on the basis
of the Hartree–Fock model describe wave functions
more precisely than the potential, the continuous po-
tential is often determined in practice with the aid of
atomic form factors (x-ray scattering factors) fX(q),
which are in fact the Fourier transforms of the spatial
atomic-electron density ρ(r); that is,

fX(q) = 4π

∞∫

0

r2ρ(r)
sin(qr)
qr

dr. (2)

The functional relation between the quantities fel and
fX is determined by Poisson’s equation and is given
2003 MAIK “Nauka/Interperiodica”
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by

fel(q) =
2

a0 q2
[Z − fX(q)], (3)

where a0 is the Bohr radius and Z is the charge
number of the atom.
Doyle and Turner [3] presented the values of the

atomic form factors calculated in the Hartree–Fock
approximation for Z = 2–92 atoms and approxi-
mated them by the nine-parameter expression

fDT
X (s) =

4∑

i=1

ai exp(−bis2) + c, (4)

where s = q/4π (0 < s < 2 Å−1) and ai, bi, and c are
adjustable parameters. The s interval bounded from
above by the value of 2 Å−1 is acceptable for analyzing
experiments studying x-ray diffraction, where the re-
flection intensity decreases fast with increasing order,
but it is insufficient for reconstructing the electron-
density distribution in a crystal. This is manifested
most clearly for axial channeling, in which case large
reciprocal-lattice vectors are required in relevant ex-
pansions [6] because of a slow convergence of the
series for the potential and for the eigenfunctions of
the Hamiltonian. For values of s > 2 Å−1 (shorter
distances from an atom), the approximation in ques-
tion is therefore usually modified by increasing the
number of terms.
As a rule, attempts at extending the wave-vector

interval in this way run into difficulties. This is be-
cause the Gaussian regression of the atomic form
factors is unstable to an increase in the number of ap-
proximation parameters. Additional coefficients de-
generate, or the contributions of new terms prove
to be negligible. In practice, one has to restrict the
number of adjustable parameters by fixing those of
them that are insignificant at large s [6, 7]. Alterna-
tively, one can construct a fit with the same number of
parameters, but with a lower accuracy [8].
An analysis revealed that the above procedure

failed because of an inappropriate choice of approx-
imating function rather than because of the bounded
number of points at which the calculations were
performed. If, in (4), one goes from momentum
to coordinate space (first discarding the constant
term, which does not have physical significance) and
obtains the spatial electron density in an atom in the
form

ρDT(r) =
Z

π3/2

∑

i

aiγ
3
i exp(−(γi r)2), (5)

where γi = 2πb−1/2
i , it immediately becomes obvious

that the asymptotic behavior of expression (5) at long
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 2 200
distances is inappropriate: the distribution decreases
overly fast with increasing r.
It is of interest to compare expressions (4) and

(5) with their counterparts that are obtained in the
Molière approximation, which is often used in radi-
ation physics, even though its accuracy is low be-
cause of averaging over all Z values. In this case, the
Thomas–Fermi screening function has the form [9]

ϕ(x) =
3∑

i=1

αi exp(−βix), (6)

where x = r/a, a being the screening radius; αi =
{0.1, 0.55, 0.35}; and βi = {1.2, 0.6, 0.3}. Going over
to the expression for the atomic potential, we then
arrive at

ρM(r) =
Z

4πr

∑

i

αi(βi/a)2 exp(−βir/a), (7)

fM
X (q) = Z

∑

i

αi
1 + (qa/βi)2

, (8)

where ρM(r) and fM
X (q) are the atomic-electron den-

sities in coordinate and momentum space, respec-
tively. In contrast to (5), expression (7) has an inap-
propriate asymptotic behavior for r → 0, rather than
for long distances. It can easily be seen that expres-
sion (8) is the expansion of (4) to the first-order terms
inclusive; however, attempts at taking into account
higher order corrections would lead to unsatisfactory
results for ρ(r), which would then have singularities
both at large and at small r.

3. CHOICE OF MODEL

The above analysis has shown that, in choosing
the type of regression for the atomic form factors, it is
necessary to employ expressions that ensure a correct
asymptotic behavior of the spatial electron density.
The choice of approximation is essentially a physical
rather than a mathematical problem. Models that
provide a realistic pattern of the charge distribution
in an atom are of interest in this connection.
Within the shell model, the atomic-electron den-

sity can be expressed in terms of the sum of monomial
Slater orbitals featuring optimized exponents; that is,

ρ(r) =
1
4π

∑

i

ci
(2ni)!

(2ζi)2ni+1r2ni−2 exp(−2ζir),

(9)

ζi = Zi/nia0,

where ni is the principal quantum number, ci is the
population factor for the ith shell, and Zi is a di-
mensionless parameter that has the meaning of the
3
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Coefficients in the approximation of the atomic form factors fX for the C, Si, and Ge atoms

K L M N σ, %

C 1.97133 3.11664 0.91203 0.0277

Zi 5.85665 3.39163 2.14034

Si ci 2.03252 5.38233 2.45530 2.88762 1.24223 0.0056

Zi 14.06573 10.32495 7.99497 4.98222 3.17091

Ge ci 1.84349 8.16582 14.11045 4.05275 2.79390 1.03359 0.0087

Zi 38.10050 28.30468 17.55801 10.09968 8.09865 4.94393
effective charge of the nucleus for electrons of the
ith shell [10]. This expression was obtained in the
self-consistent-field approximation and under the as-
sumption that the charge distribution in the atom is
spherically symmetric. Many other electron-density
distributions can be found in the literature [9], but we
choose (9) because it leads to the required asymptotic
behavior and has a direct analog in the nonrelativistic
theory of the hydrogen-like atom. The latter makes
it possible to clarify the physical meaning of all of the
parameters involved and, as a consequence, to specify
their initial values in implementing the fit procedure.
Upon performing necessary transformations, we

arrive at the expression for the atomic form factors
corresponding to the spatial distribution of electrons
that was preset above. The result is

fX(q) =
∑

i

f
(i)
X (q), (10)

where

f
(i)
X (q) =

ci
2ni(1 + (q/2ζi)2)2ni

(11)

×
ni−1∑

k=0

(−1)k



 2ni

2k + 1




(

q

2ζi

)2k

,



 n

k



 =
n!

k!(n − k)!
. (12)

Summation in (10) covers the shells entering into the
electron configuration of the atom being considered
and follows the order of filling: K, L, M , etc. It is
clear from (9) that we do not distinguish between
electrons belonging to the same shell. As the shell
is filled, a term of the same type is included in the
sum, whereby the accuracy of the approximation is
considerably improved.
The explicit expressions for the form factors corre-

sponding to theK and L shells are

f
(K)
X (q) =

cK
(1 + (q/2ζK)2)2

, (13)
PH
f
(L)
X (q) = cL

1 − (q/2ζL)2

(1 + (q/2ζL)2)4
. (14)

Comparing these expressions with their counterparts
in the Doyle–Turner and in the Molière approxima-
tion [expressions (4) and (8), respectively], we can see
that all of them are equivalent in the small-q limit.
Distinctions appear with increasing wave vector. The
form factors calculated with the approximate expres-
sion (4) prove to be underestimated, while those that
are computed with the approximate expression (8) are
overestimated.

4. RESULTS OF THE CALCULATION
AND DISCUSSION

The coefficients in the approximation of fX for
the C, Si, and Ge atoms are quoted in the table. In
the fitting procedure, use was made of expressions
(10)–(12) over the wave-vector range 0 < s < 6 Å−1.
We would like to indicate from the outset that the
proposed model ensured a high accuracy: the root-
mean-square deviation was σ = 0.0277, 0.0056,
and 0.0087% for C, Si, and Ge, respectively. The
corresponding values obtained in [3] with the nine-
parameter approximation in the interval 0 < s <

2 Å−1 are 0.0244, 0.0167, and 0.0305%. In [7], the
use of 13 parameters for the carbon atom resulted in
σ = 0.0344%, while there were only six parameters in
our procedure, which yielded σ = 0.0277%. Actually,
the accuracy of approximation is restricted either by
the accuracy of the representation of input data or by
an insufficient number of points (27 per element) at
which the calculation was performed. The latter plays
a dominant role for large-Z atoms, in which case it
is necessary to take into account a large number of
electrons.
The second special feature is associated with the

increase in the number of coefficients in the approx-
imation with increasing charge number of the atom
(Z = 6 for carbon versus 12 for germanium). The
problem of whether a two-exponential (for Z ≤ 18)
YSICS OF ATOMIC NUCLEI Vol. 66 No. 2 2003
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or a three-exponential (Z > 18) description of the
screening function for the potential is adequate was
discussed in [9], and it was concluded there that av-
eraged potentials are unable to ensure a high preci-
sion of calculations for arbitrary atoms. In the model
considered here, the number of terms in the screening
function is not fixed, but it is determined by the num-
ber of shells entering into the electron configuration of
the atom. Moreover, the table shows that, for a shell
featuring a large number of electrons, an additional
term is required to achieve the highest accuracy of the
fit.
In conclusion, we would like to emphasize that

screening functions of the Thomas–Fermi type that
are obtained from (10)–(12) have a rather simple
analytic form. In contrast to what we have for the
Molière potential or in similar approximations (see,
for example, [9]), the preexponential weight factor is
a polynomial rather than a constant. By way of exam-
ple, we indicate that, for the helium atom (Z = 2), this
is a polynomial of first degree. For the atoms of the
next period, the degree of the polynomial increases.
We did not compare the results of our calculations
with experimental data, but these results favor such
a representation of the screening function.
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Abstract—Parametric x-ray radiation is observed in a mosaic pyrolytic-graphite crystal irradiated with a
5.7-MeV electron beam. The first-order (002) reflection of parametric x-ray radiation is detected in Bragg
geometry. In the measured spectra, there is a peak at about 8 keV. The detector used is arranged at an angle
ofΘD = 2ΘB = 27◦ with respect to the electron beam, whereΘB is the Bragg angle. The target thickness
is 0.3 mm. The spectra of parametric x-ray radiation are measured at various angles of target orientation
with respect to the axis of the incident-electron beam. c© 2003 MAIK “Nauka/Interperiodica”.
Parametric x-ray radiation is emitted by relativistic
electrons in crystals at the Bragg angle ΘB with
respect to crystallographic planes owing to diffraction
of the pseudophotons of the field generated by these
electrons [1]. Special features of parametric x-ray ra-
diation such as a high intensity, pencil-like character
of its angular distribution, and a very high degree of
monochromatism are reasons behind keen interest
in studying this radiation in recent years [2–6]. This
article reports on a continuation of the experiment de-
scribed in [6] and devoted to investigating parametric
x-ray radiation generated by 5.7-MeV electrons in
a pyrolytic-graphite crystal. The measured radiation
spectrum is quasimonochromatic. Its maximum oc-
curring at about 8 keV corresponds to the first order
(002) reflection of parametric x-ray radiation.
In this experiment, the equipment used was up-

graded in order to suppress the background and to
isolate parametric x-ray radiation more correctly. We
reduced the target thickness from 1.0 to 0.3 mm, im-
proved the detector energy resolution, diminished the
air-layer thickness on the path of detected photons to
the detector, and realized the possibility of normaliz-
ing the absolute values of measured quantities to the
current of electrons traversing the crystal.
The geometry of the measurement is similar to

that in [6]. The layout of the experiment is shown in
Fig. 1. An electron beam accelerated to an energy
of 5.7 ± 0.02 MeV and extracted from the MI-5
microtron installed at the Institute of Nuclear Physics
(Tomsk Polytechnic University) was focused and
collimated by a transportation system (1, 2) to obtain

*e-mail: zabaev@npi.tpu.ru
1063-7788/03/6602-0420$24.00 c©
an angular spread of 0.02◦ and a diameter of 0.8 mm.
After a parallel shift (3), the electron beam entered
a scattering chamber (7). The basic parameters of
the accelerator were the following: the accelerated-
electron current at the target in a pulse was about
50 µA, the current-pulse duration was 0.5 µs, the
pulse-repetition frequency was 25 Hz, and the en-
ergy spread was ∆E/E = 10−3. A highly sensitive
magneto-inductive sensor (MIS) (4) and a special
amplifier (12) with an amplification factor of 20 000
were developed for detecting and monitoring the
beam current. This enabled us to normalize measured
quantities and obtain their absolute values. For the
target, we used a mosaic pyrolytic-graphite crystal
(5) of dimensions 10 × 20 × 0.3 mm3 fixed in the
goniometer head (6) at the center of the scattering
chamber (7). The mosaic structure of the crystal was
about 0.4 mrad. The electron beam hit the target
surface at an angle Θ0. Throughout the experiment,
this angle could be varied by rotating the crystal.
The experiment was performed under the conditions
of Bragg geometry; the photons of parametric x-
ray radiation were emitted from the crystal through
the same surface and were incident on a detector
(10) arranged at an angle of ΘD = 2ΘB = 27◦ with
respect to the electron-beam axis.

For a detector, we used theXR-100-CdTeAmptek
x-ray spectrometer of energy resolution about 1 keV
and diameter 2 mm. The spectrometer was calibrated
by using the K-series γ lines (Eγ1 = 13.94 keV,
Eγ2 = 17.75 keV, etc.) of the 241Am radioactive
isotope. To take correctly into account the effect of
high-frequency stray currents from the microtron
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. Layout of the experiment: (1) collimator, (2) vacuum guide, (3) deflecting magnet, (4) MIS, (5) crystal target, (6)
goniometer, (7) scattering chamber, (8) purifying magnet for removing background electrons from the beam of parametric x-
ray radiation, (9) shield, (10) semiconductor detector for x rays, (11) detector-signal preamplifier, and (12) MIS preamplifier.
modulator on the detector-pulse amplitude, we mea-
sured the spectrum of characteristic x-ray radiation
from a thin amorphous copper target (Eγ ≈ 8 keV
line). In the process of measurements, the contri-
bution from events associated with the overlap of
detector pulses was eliminated by maintaining the
accelerated-electron current from the microtron at a
level for which, on average, one event was detected
per five beam spills onto the target (five events per
second). The target–detector spacing was 90 cm.
The angular acceptance of the detector, ∆ΘD, was
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Fig. 2. X-ray-intensity spectrum: (curve) spectrum
for Θ0 = ΘB and (points) spectrum for Θ0 = ΘB + 7◦

(background).
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about 2 mrad. Thus, the measurements were per-
formed under conditions of a strong collimation of the
radiation with ∆ΘD � ∆Θγ = 5γ−1, where ∆Θγ is
the angular width of the reflection of parametric x-ray
radiation and γ is the Lorentz factor. At an energy
of 5.7 MeV, ∆Θγ ≈ 450 mrad. A purifying magnet
(8) arranged in between the target and the detector
removed the charged component from the detected
x-ray beam.

Figure 2 shows the spectra of x-ray intensity that
were measured for a symmetric position of the crystal
with respect to the detector and the electron-beam
direction Θ0 = ΘB = 13.5◦, as well as for the case of
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a disoriented crystal withΘ0 = ΘB + 7◦ (background
spectrum). The primary instrumental spectra of in-
tensity that were measured by an ADC-712 1024-
channel analog–digital converter were grouped and
averaged with a step equal to the detector energy
resolution. The detection threshold depended on the
noise level and amounted to 4 keV. During the exper-
iment, the spectra were measured at various values
of the crystal-rotation angle in the range Θ0 = 9.5◦–
18.5◦. On average, statistics corresponding to one
measured spectrum comprised about 12 000 events.
The results were normalized to unity of the electron
current incident on the crystal. The presence of a peak
in the energy range Eγ = 7–12 keV for those cases
where the angle of electron incidence on the target
was close to the Bragg value of ΘB = 13.5◦ was the
most spectacular feature of the measured spectrum.
With increasing angle, the peaks in the spectra were
shifted toward higher energies.
Figure 3 shows the position of the first peak in

the spectrum as a function of the angle of electron
incidence on the crystal surface. Points represent ex-
perimental data. The calculations were performed by
the formula that determines the position of the first
peak associated with parametric x-ray radiation [1];
that is,

Eγ =
2π�c sin Θ0

d(1 − cos ΘD + 1/(2γ2))
,

where d is the interplanar spacing in the pyrolytic-
graphite crystal.
The disposition of the peaks and the dynamics

of their shift toward the harder region of the spec-
trum with increasing angle Θ0 are in satisfactory
agreement, within the energy and angular errors
of the measurements, with the results of the cal-
culations. The deviation of the experimental data
PH
from the results of the calculation for Θ0 > 13.5◦
can be explained by the contribution from other
radiation mechanisms, such as the diffraction of
bremsstrahlung and transition radiation and coherent
bremsstrahlung. The discrepancy between the theory
and experiment will be explored in detail at the next
stage of this investigation.

The data reported here refine the results presented
in [6] and form amethodological basis for a future pro-
gram intended for studying the spectra of parametric
x-ray radiation in pyrolytic graphite and silicon more
comprehensively.
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