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Local spectroscopy of carrier reflection at the interface between a normal metal and the
Peierls conductor K 0.3MoO3
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The nature of carrier reflection from a normal metal–Peierls conductor interface is clarified by
studying the characteristics of point contacts formed with an intermediate metallic layer
sputtered onto the~010! face of K0.3MoO3 crystals~injection along the chains! or the (2̄01) face
~injection perpendicular to the chains!. In the Peierls state, for bias voltageseV smaller
than the Peierls gapDP , an excess differential resistance is observed with a local minimum at
V50. The magnitude of the excess resistance is proportional toa2/d2, wherea is the
contact diameter andd is the thickness of the metal film. The excess resistance is much higher
for injection along the chains than for injection perpendicular to them. A comparative
analysis of the data for different injection directions indicates that the dominant contribution to
the excess resistance for injection along the chains is from normal reflection of carriers
without changes in the sign of their charge and with a momentum transfer 2pF to the condensate
of electron-hole pairs carried away from the interface. ©1998 American Institute of
Physics.@S1063-7761~98!01905-2#
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1. INTRODUCTION

It is well known that, as the temperature is reduced
Peierls transition takes place in quasi-one dimensional c
ductors, leading to the appearance of a superlattice–a ch
density wave or spin density wave, with a period equal
twice the electron Fermi wavelength of the original met
This transition is accompanied by a partial or complete
electrization of the electron spectrum in the vicinity of pa
of the Fermi surface that are combined during the shift by
wave vector of the charge~spin! density wave. A collective
conduction mechanism is associated with the motion o
charge~spin! density wave under the influence of an elect
field. Many properties of materials with charge and spin d
sity waves have been studied in detail and these have
reviewed by Gru¨ner.1 However, a number of questions hav
not been studied, in particular, the physical mechanisms
conversion of a normal carrier current into a charge~spin!
density wave current at a normal metal–Peierls condu
interface.

Until recently, processes taking place inside a cha
density wave as it glances between current contacts loc
on the side surfaces of a ribbon sample of Peierls condu
have been examined. It can now be regarded as reliably
tablished that the current conversion process near contac
this type is accompanied by a thermally activated slippag
the phase of a charge density wave propagating a substa
distance away from the contact.2 At the same time, the
mechanism by which electrons penetrate from the metal
the charge density wave has not been studied in detail u
recently. Brazovskii3 assumed that penetration of electro
1001063-7761/98/86(5)/7/$15.00
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with energies greater than the Peierls gapDP into a charge
density wave leads to the formation of solitons, whose int
actions with one another cause the formation and growth
dislocations that create a phase slippage between glan
and fixed charge density waves. Here it was assumed
electrons with energies belowDP are reflected from the
metal–Peierls conductor interface and do not participate
the current conversion.

On the other hand, there is a formal analogy betwe
Peierls conductors and superconductors, since the conde
state in both is described by an ordering parameterD
5uDuexp(iw) whose amplitude determines the energy gap
the spectrum of single-particle excitations, while the deriv
tive of the phase~with respect to the time in Peierls condu
tors and with respect to position in superconductors! is pro-
portional to the contribution of the condensed electrons
the electric current density. While the condensate in sup
conductors is formed by pairs of electrons with opposite m
menta, a charge density wave can be visualized as a con
sate of bound pairs of electrons and holes whose mom
differ by the magnitude of the wave vector of the char
density wave. This similarity leads us to expect an effect a
metal–Peierls conductor interface that is analogous to
Andreev reflection effect in superconductors,4 reflection ac-
companied by transformation of a normal carrier current i
a charge density wave, at incident electron energies lo
than the Peierls gap.

It has been found theoretically5,6 that, after being re-
flected, an electron with energy belowDP incident on a
Peierls conductor from a normal metal moves along the
1 © 1998 American Institute of Physics
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1002 JETP 86 (5), May 1998 Sinchenko et al.
jectory of the incident particle, i.e., all three components
the velocity vectorv5d«/dp change during reflection. Th
difference from Andreev reflection is that the sign of t
charge of the reflected particle does not change, and
must cause an additional resistance at a metal–Peierls
ductor interface.

The first experiments to search for sub-gap reflection
metal–Peierls conductor interfaces were done using
Kempen’s method7 in a study of point contacts formed wit
an intermediate metal layer sputtered onto the face o
K0.3MoO3 crystal perpendicular to the chain direction8

These results are in qualitative agreement with the mod5,6

assuming the existence of a barrier at the metal–Peierls
ductor interface analogous to the barrier which arises a
normal metal–superconductor contact.9 The reflected signal
however, was an order of magnitude lower than predicted5,6

A recent theoretical paper10 examines the transport prop
erties of metal–Peierls conductor–metal heterostructu
Unlike the earlier work,5,6 which examined the static reflec
tion of an electron at a barrier owing to the Peierls gapDP ,
the later work10 took into account the movement of the co
densate from the boundary when an incident electron is
flected. Given that the reflection of a carrier from a meta
superconductor interface is not accompanied by a chang
the sign of the charge of the reflected particle, the trans
mation of the charge in the condensate which occurs du
Andreev reflection in superconductors does not take pla
However, electron–hole pairs moving from the interfa
carry away twice the momentum of an electron incident n
mal to the interface (;2\kF), which corresponds to the mo
mentum of a pair in a charge density wave, i.e., during
flection of this type the momentum transfer is analogous
charge transport during Andreev reflection in supercond
ors. In other words, a charge–momentum symmetry sh
up during reflection from a metal–Peierls conductor interfa
without charge transport, while during Andreev transp
there is no momentum transfer. It is evident that this refl
tion mechanism~we shall refer to it as the analog of Andree
reflection! can be manifested only when the incident electr
moves along the chains, since the component of the mom
tum along the chains will be less thanpF for oblique inci-
dence. As for the experiment,8 one consequence of this mu
be that the reflected signal depends on the area of the p
contact.

Another, recently proposed mechanism for t
reflection11 includes the possibility of both mirror reflectio
of carriers incident on a metal–Peierls conductor interf
and reflection at an angle determined by the projection of
wave vector of the charge density wave,Q, on a plane per-
pendicular to the direction of the chains.~In general,Q is not
parallel to the chains.1! By analogy with the coherent sca
tering of electrons on a crystalline lattice, this type of refle
tion was referred11 to as Bragg reflection from the electro
crystal. ForQ5(2kF ,Qy ,0) and a wave vector of an elec
tron escaping from an emitter with components (kx ,ky), re-
verse trajectories of the carrier into the emitter can deve
for ky1Qy52ky, i.e., when the angle to the normal isf
5arcsin(2Qy/2kF). In the case of mirror reflection, the con
dition for reverse trajectories,ky52ky , is satisfied only for
f
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normal incidence,ky50. In both cases, the reflected sign
should also be proportional to the emitter area. It has b
shown11 that the reflection coefficient, as for the previo
mechanism,10 should fall off sharply when the energy of th
incident particles exceedsDP .

The purpose of this paper is to clarify which reflectio
mechanisms operate and under which conditions by vary
the experimental configuration~contact area, metal laye
thickness, emitter orientation relative to the sample cryst!.

2. EXPERIMENTAL TECHNIQUE

Single crystals of ‘‘blue’’ bronze K0.3MoO3 with a trans-
verse cross section of 103– 104 mm2 were used as samples i
this work. The Peierls transition temperature,Tp

5181– 183 K, was determined from the temperature dep
dence of the resistance. The threshold electric field fo
glancing charge density wave was determined from
current–voltage characteristic and was 150– 500 mV/cm
T577 K. The single crystals were provided by the Cen
for Low-Temperature Research~CRTBT-CNRS, Grenoble!.

To study the processes taking place at a metal–Pe
conductor interface we have used an experimental meas
ment scheme based on the single-contact method for in
tigating Andreev reflection in superconductors.7 The physical
basis of this method is illustrated in Fig. 1b for the examp
of a superconductor. A thin film of normal metal of thickne
d is sputtered onto the superconductor and the characteri
of a point contact between a normal metal and this film~a
metal–~metal–Peierls conductor! heterostructure! are stud-
ied. Electrons are injected through a point contact into a s
angle of 2p and undergo reflection at the metal
superconductor interface. In the case of a ballistic regim
d! l , and for a!d ( l is the mean free path anda is the
diameter of the point contact!, only quasiparticles which un
dergo Andreev reflection will pass back through the po
contact, producing an excess current, which shows up in
current–voltage characteristic of the contact as a reductio
the differential resistance. This method has been used
cessfully for studying Andreev reflection in tradition
superconductors,12,13 as well as in high-temperature oxid
superconductors14,15

The geometry of the present experiment is shown in F
1a. The current–voltage characteristics and their first der
tives were measured for point contacts of a normal me
with an Au–K0.3MoO3 heterostructure. Point contacts we
formed with crystal planes perpendicular and parallel to
orientation of the chains. A gold coating was deposited
laser sputtering. The layer thicknesses for the differ
samples were 50 and 100 nm, less than or of order the m
free path in gold atT577 K, which is usually 150–200 nm
for gold films. Electrochemically sharpened thin~diameter
30–70 mm! copper and gold wires were used as norm
counterelectrodes. The radius of curvature of the needle
was less than 1mm. A point contact was formed directly a
low temperature using a precision mechanical motion tra
fer system.16 The characteristics of several point contac
were measured for each sample. The experiments were
at T577 K and at a temperature aboveTP for two orienta-
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FIG. 1. ~a! The experimental geometry and~b! a diagram
of the possible reflection processes in a single-cont
scheme for measuring Andreev reflection: the continuo
lines represent ordinary mirror reflection and the dash
line, reflection of the Andreev type.~M denotes metal.!
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tions of the point contact: parallel and perpendicular to
chains.

3. EXPERIMENTAL RESULTS

Nonlinear features associated with the appearance
Peierls gap were observed in the characteristics of
Au–Au–K0.3MoO3 point contacts only at temperatures b
low the Peierls transition temperature. AboveTP5183 K,
the current–voltage characteristics of the point contacts
symmetric and are ohmic in character with a small rise in
resistance proportional to the square of the voltage. No o
features were observed at these temperatures for any o
tations of the point contacts. The results of the measurem
for T,TP are presented below.

3.1. Orientation of the point contact along the chains

The physical picture of reflection at a metal–Peierls c
ductor interface may be clarified somewhat by experime
data on the evolution of the characteristics of t
Au–Au–K0.3MoO3 point contacts as the diameter of th
point contact and the thickness of the metal layer are var
In fact, since the Andreev-type reflection predicted in Refs
and 6 must occur for all injection directions through t
point contact~we assume that the carrier injection is isotr
pic within a solid angle of 2p!, in the ballistic regime the
experimental variation in the reflected signal amplitu
should not depend on the diameterd of the point contact. On
the other hand, when there is a large contribution from n
mal reflection, as predicted in Refs. 10 and 11, the sig
amplitude should increase as the diameter of the point c
tact is increased~i.e., as its resistance is lowered!, since the
fraction of normally reflected particles then increases
(a/d)2. For a clear manifestation of the effect, the effect
scattering has to be minimized, and this can be done
reducing the thickness of the normal layer.

Figure 2 shows typical plots of the differential resistan
Rd5dV/dI as a function of the voltageV on
e
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Au–Au–K0.3MoO3 point contacts atT577 K for two
samples. The nonlinearity of theRd(V) curves is caused by a
combination of two effects: Joule heating and the reflect
of injected carriers from the metal–Peierls conductor int
face. The latter effect typically8 has a minimum inRd at
V50 and maxima ateV056DP . It is clear from the figure
that these curves are analogous to the curves given in Re
but the signal amplitude is greater, while the peaks in
excess resistance atV56V0 corresponding to the Peierl
energy gap are much more distinct for the sample with
thinner metal layer, which may be a result either of reduc
scattering or of the change in the ratioa/d.

The substantial asymmetry of the curves is most lik
caused by a distortion in the chemical potential near
metal–Peierls conductor interface, as well as at the me
semiconductor contact.~See Fig. 5 of Ref. 8.! A final con-
clusion regarding this question, however, will require ad
tional data, specifically, on the characteristics of meta
Peierls conductor point contacts.

For most of theRd(V) curves at high bias voltagesV,
the curve emerges into a square law dependence for the
crement in resistance corresponding to Joule heating of
contact. Typically the heating is by 1–3 K for the least r
sistive contacts and, given that the linear size of the h
release region is large compared to the region over which
voltage drops,17 the heating does not affect the measurem
results significantly. In this region, the differential resistan
is determined by the resistance of the metal–metal con
RdN(V), as such. Assuming that the increment in the res
tance behaves asDRdN(V)}V2 ~dashed curve in Fig. 2!, we
can isolate the excess resistanceRd2RdN associated with the
presence of a Peierls gap in the Peierls conductor and fo
the change in the reflected signal amplitude as the con
area is varied. Figure 3 shows the amplitude of the norm
ized differential resistanceA* 5A21, where we have writ-
ten A5Rd /RdN , as a function of the voltageV for sample
No. 4 for contacts with different values ofRdN(0). As can be
e
in-
FIG. 2. The differential resistanceRd5dV/dI
as a function of voltage V for
Au–Au–K0.3MoO3 point contacts atT577 K:
~a! sample No. 1, d5100 nm, Rd(0)
554.26V; ~b! sample No. 4, d550 nm,
Rd(0)548.87V. The dashed curve shows th
voltage dependence of the resistance for the
trinsic metal–metal contact,RdN(V).
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1004 JETP 86 (5), May 1998 Sinchenko et al.
seen from the figure,A* (0) increases as the contact res
tance is raised. ForRd(0).50 V, the Peierls gap, defined a
the separation 2eV0 between the peaks in the differenti
resistance, did not vary, being equal to 2DP.100 meV
~curve 1!. One unusual effect, however, should be notic
there is a large reduction in the gap as the contact resist
is lowered for contact resistancesRd(0),50 V.

3.2. Orientation of the point contact perpendicular to the
chains

Measurements similar to those described above w
taken atT577 K with the orientation of the point contac
perpendicular to the chains in the@ 2̄01# direction. Figure 4
shows the differential resistanceRd as a function of the volt-
ageV for sample No. 5 (d550 nm) with two different re-
sistancesRdN(0). The figure shows that these curves a
very similar to the ones described above. There are, howe
two fundamental differences. First, the position of the pe
at 6V0 in the Rd(V) curves did not change for differen
thicknesses of the metal layer and for all point contact re

FIG. 3. The amplitude of the normalized differential resistanceA*
5Rd /RdN21 as a function of voltageV for sample No. 4 at point contact
with RdN(0)548.3V ~1!, 26.7V ~2!, and 15.8V ~3! at T577 K. The point
contacts are oriented along the chains.
-
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tances and corresponded to a gap of 2V052Dp.100 mV.
Second, the reflected signal amplitude is substantially lo
(,1%) than when the point contact is oriented along
chains for the same metal layer thickness; this made it
possible to determine correctly the effect of changes in
point contact diameter on the reflected signal.

4. DISCUSSION OF RESULTS

We begin the discussion with the experiments on cha
injection along the chains, i.e., along theb axis. As can be
seen from Fig. 3, theA(V)5A* 11 curve typically has a
minimum atV50 and maxima atueV0u5DP . This behavior
can be explained by the presence of carrier reflection
principle, caused by any of the mechanism
considered5,6,10,11with a barrier associated with the nonide
character of the interface, by analogy with the Tinkham
Blonder–Klapwijk model9 developed for a metal-super
conductor interface. The fundamental point is that theA(V)
curve is a mirror reflection of the corresponding curve fo
metal–superconductor interface relative to the lineA51, i.e.,
an excess resistance is observed forueV0u,DP . This indi-
cates that the reflected particles do not change their ch
state; for example, electrons are reflected as electrons.
role of the barrier, as in the case of a metal–supercondu
interface,9 reduces to lowering the probability of penetratio
of the particles into the condensate and, therefore, to s
pressing interactions of the incident electrons with the c
densate at low voltages. Without a barrier and forT50, the
A(V) curve should have the step function form

A~V!5H const.1 uVu,DP /e,

1, uVu.DP /e.

A drop in A(V) for uVu.DP /e is implied by all the models
considered in the Introduction.5,6,10,11The difference lies in
the scale of the effect. According to Refs. 5 and 6, in t
ballistic regime all the trajectories with a length shorter th
the mean free path are reversed, so that the scale of
amplitudeA* of the excess resistance isA* ;1. For mecha-
nisms analogous to Andreev reflection, i.e., mirror or Bra
reflection, only normal trajectories~the analog of Andreev
reflection, mirror reflection! or the trajectories at the Brag
angle ~Bragg reflection! are reversed, so that the amplitud
A* should be small, on the scale ofa2/d2; that is,A* must
be much smaller than unity, since in the experimentsa was
10–20 Å andd;500 Å. This estimate ford was obtained
from the Sharvin formula18 R;r l /a2, wherer is the resis-
tivity and l is the mean free path. As Fig. 3 implies, th
r-
FIG. 4. The differential resistanceRd5dV/dI
as a function of voltage V for
Au–Au–K0.3MoO3 point contacts atT577 K,
sample No. 5 withRdN(0)553.08V ~a! and
31.16V ~b!. The point contacts are oriented pe
pendicular to the chains.
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1005JETP 86 (5), May 1998 Sinchenko et al.
magnitude of this effect is quite small (;1 – 3%), which
evidently allows us to neglect mechanisms of the type p
posed in Refs. 5 and 6.

It should be noted that the amplitudeA* increases as the
film thicknessd is reduced~Fig. 2!. This may be related to
the reduced influence of scattering for smallerd, or be the
result of a dependence of the forma2/d2. To verify this
dependence, experiments with different contact diame
~different resistances! were set up. Some of the results a
shown in Fig. 3. We note the following:

~1! As the degree of clamping is increased~the contact
resistance is reduced!, the picture does not change qualit
tively for Rd(0).50 V. The positions of the peaks at6V0

is unchanged and corresponds to a Peierls gap ofV0

52DP5100 meV, in agreement with optical measureme
and measurements of the thermally activated conducti
along theb axis.19

~2! For Rd(0),50 V the value of 2DP begins to de-
crease. We attribute this distortion to nonequilibrium effe
caused by strong current injection into the Peierls conduc
~For more detail, see below.!

~3! The reflected signal atV50 ~under conditions of
minimal injection! is proportional toa2/d2 ~Fig. 5!. Behavior
of this sort is implied by two of the models, the analog
Andreev reflection10 and Bragg and mirror reflection,11 but
contradicts the model proposed in Refs. 5 and 6.

In analyzing the possible contribution of Bragg scatt
ing, it is necessary to keep in mind that the wave vector o
charge density wave in K0.3MoO3 has the form20

q50a* 1qbb* 10.5c*

~the corresponding lattice parameters area516.23 Å,
b57.55 Å, andc59.86 Å; b594.89°!, where qb is the
projection ofq on theb axis, with qb;2kF . The condition
for a reversed trajectory during Bragg reflection givesqc5
22kc ~see the Introduction!, wherekc is the projection of the
wave vector of the incident electron on thec axis. Forkc

,kF this means thatqc must be less than 2kF and, therefore,
less thanqb , i.e., the conditionqc,qb must be satisfied. An
approximate estimate givesqc.0.5/c.5•106 cm21 and qb

FIG. 5. The amplitudeA* (0) at T577 K as a function of the paramete
(RdN(0)d2)21 ~d d550 nm, s d5100 nm!. The point contacts are ori
ented along the chains.
-

rs

s
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.0.25/b.3•106 cm21, and we see that Bragg reflectio
does not produce reversed trajectories in K0.3MoO3 because
of the very large projectionqc .

This analysis, therefore, leaves the possibility of tw
mechanisms for reflection of normal carriers during injecti
along the chains, the analog of Andreev reflection or mir
reflection, but it is not possible to separate the contributio
from these two mechanisms using only longitudinal me
surements. The picture can be clarified by comparing d
obtained in two injection directions: along the chains~paral-
lel to the b axis! and perpendicular to the chains~perpen-

dicular to theb axis in the@ 2̄01# direction!. In analyzing the
results for transverse injection, we begin by noting two i
portant points:

First, the Rd'(V) curves have the same shape as
Rdi(V) curves for largeRd . Here the positions of the peak
in Rd(V) are the same (650 mV) as for longitudinal injec-
tion. This indicates that the Peierls gap is isotropic para
and transverse to the chains in the plane (b,2a* 2c). Until
recently, a result of this sort had been obtained only fr
indirect, averaged measurements of thermally activated c
duction along these directions.19

Second, during injection perpendicular to the cha
there can be no contribution from the mechanism analog
to Andreev reflection,10 since then the longitudinal compo
nent of the momentum~along the chains! is essentially zero
or at least much smaller thanpF , i.e., momentum cannot b
transferred to the moving condensate during reflection. Th
the observed response during this kind of injection can o
be attributed to the Bragg or mirror reflection mechanis
Then, as noted previously,11 the contribution from mirror
reflection should dominate because of the large differe
between the effective masses of the carriers in the metal
in the Peierls conductor~in a direction perpendicular to th
chains!.

On the other hand, the contribution of mirror reflectio
during injection perpendicular to the chains should be no l
than during injection along the chains~because of the lowe
effective mass along the chains!. However, in the experimen
it was found that the signal amplitude during injection alo
the chains is systematically roughly a factor of three hig
when the other conditions~film thickness, contact resistanc
etc.! are the same.~See Figs 3 and 4, for example.! This
indicates the presence of an additional contribution bey
mirror reflection during longitudinal injection, which we a
tribute to a mechanism analogous to Andreev reflection.
sides the estimates given above, this hypothesis is suppo
first, by a correct orientation for the appearance of t
mechanism, second, by a linear dependence of this contr
tion ~as of the entire signal! on the parametera2/d2, and
third, by theDP(I ) curve at high currents, which indicate
that a charge density wave moves in the carrier inject
region ~see below!.

Analysis of data for high current injection

We now return to examining the results for injectio
along the chains at low resistance contacts~Fig. 4!. The fig-
ure implies that as the contact resistance is lowered, the
a noticeable reduction in the Peierls gap, which we define
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the distance between the peaksRd(6V0), and the reduction
in the gap set in only for contact resistancesRd0(0)
,50 V. For Rd.50 V the gap 2DP.100 meV did not
vary, which fact is, as noted above, in good agreement w
data from optical and thermal activation measurements of
conductivity.

Lowering the resistance leads to an increase in the
rent through the contacts required to attain voltages co
sponding to the gap features. Thus, it is logical to assu
that one possible reason for the reduction inDP as the con-
tact resistance is varied may be suppression of the gap o
to a higher current density through the metal–Peierls c
ductor interface. In our case,a!d for all the contacts, where
d is the thickness of the gold film. Given that injection
isotropic through a point source, we can estimate the cur
density through the metal–Peierls conductor interface as

J5
I cos2 f

2pd2 ,

whereI is the total current through the contact andf is the
injection angle. Figure 6 shows a plot of the voltage 2V0 ~it
will be shown below that this is not equal to the equilibriu
value of 2DP /e! as a function of the parameterI /d2, which
is proportional to the current density through the interfa
for samples with normal layer thicknessesd550 and 100
nm. This dependence has a distinct threshold character,
V0 is essentially independent ofJ up a critical value of the
current density through the metal–Peierls conductor in
face,Jc54.8•107 A/cm2, at which there is a sharp drop i
V0 ; this corresponds to suppression of the Peierls gap.
can say thatDP is essentially independent ofJ up toJc , after
which the gap goes discontinuously to zero. Evidently,
this interpretation, for small contact resistances the volt
V0 corresponds to a nonequilibrium value of the gap~less
than the equilibrium valueDP!, since it is measured at cur
rent densities close to the critical value corresponding to
maximum propagation speed of a charge density wave
should be specially noted that this interpretation is poss
only in the case where the injected carriers interact with

FIG. 6. The voltage 2V0 as a function of the current densityJ through a
metal-Peierls conductor interface with normal injection of quasiparticles~d
d550 nm, s d5100 nm! at T577 K. The point contacts are oriente
along the chains.
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charge density wave so that momentum is transferred
electron–hole pairs in the condensate. In fact, an estimat
the propagation speedv of the charge density wave corre
sponding to the current densityJc for normal injection using
the simplest formulav5Jc /ne, wheren is the density of
condensed carriers, yieldsv50.6•105 cm/s, which is close
to the sound speed in this material. But the propagat
speed of the charge density wave obviously cannot exc
the sound speed.

In principle, one can recover the shape of the reflect
spectra without current suppression of the gap. As can
seen from Fig. 3, the depth of the minimum atV50, which
is determined by the potential barrier at the metal–Pei
conductor interface, changes substantially when the con
resistance is reduced. At the same time, there are no rea
for a large spatial variation in the barrier at the sample s
faces~and, therefore, from contact to contact!. Then the re-
flection spectrum for curve3 of Fig. 3, A3* (V), without cur-
rent suppression is obtained by multiplying the amplitude
the excess resistanceA1* (V) for curve 1 by the normalizing
factor h5A3* (0)/A1* (0). Following the same procedur
with curve 2, we obtain the spectra shown in Fig. 7, whi
show clearly that the reflected amplitude would increase
ticeably without current suppression, even forV5V0 .

5. CONCLUSIONS

~1! The contribution of reflected quasiparticles to t
contact resistance is sharply reduced when the energy o
incident particles exceeds the Peierls gap of the charge
sity wave, which means that the injected carriers inter
with the condensate of the charge density wave.

~2! When normal carriers are reflected from a meta
Peierls conductor interface, their charge state does
change, unlike in Andreev reflection at a metal–sup
conductor interface.

~3! It has been shown that the barrier effect owing to t
nonidealness of a metal–Peierls conductor interface sh
up as a suppression of the gap feature near zero bias vo
similar to that observed at a metal–superconductor interfa

~4! Local measurements show that in K0.3MoO3 the gap
is isotropic in the@010# direction along the chains and in th

@ 2̄01# direction perpendicular to the chains.
~5! The existence of an excess resistance during injec

perpendicular to the chains in the@ 2̄01# direction is evidence
of mirror reflection from a barrier of heightDP .

~6! A comparison of the measurement data for injecti
along and perpendicular to the chains shows that during
gitudinal injection there is reflection involving momentu
transfer from the incident particles to the condensate of m
ing pairs in the charge density wave~an analog of Andreev
reflection!.

~7! The experimental results indicate that the Peie
gap is suppressed by the current for high injection lev
along the chains corresponding to a current den
.5•107 A/cm2.

We thank S. N. Artemenko, S. N. Za�tsev-Zotov, V. Ya.
Pokrovski�, P. Monso, and R. Escudeiro for useful discu
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FIG. 7. The amplitudehA* (V) for sample No. 4 without current
suppression of the Peierls gap for contacts withRdN(0)548.3V ~1!,
26.7V ~2!, and 15.8V ~3! at T577 K. The point contacts are oriente
along the chains.
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Paramagnetic labeling as a method for the soft spectroscopy of electronic states
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A self-consistent microscopic theory of the relaxation of the crystal-field levels of an impurity
ion in a state with an integer valence implanted in a normal metal is devised. A
microscopic approach based on the Coqblin–Schrieffer–Cooper approach, rather than the formal
model of thes f exchange interaction, makes it possible to take into account the specific
details of both the crystal-field states of the impurity ion and the electronic band spectrum of the
metal. A new method for the soft spectroscopy of electronic states based on measurements
of the temperature dependence of the widthGMM8(T) of transitions between the crystal-field states
uM & of a paramagnetic ion implanted in the compound being studied is proposed. To make
specific use of this method in neutron and optical spectroscopy, a classification of the types of
temperature dependence of the natural relaxation widthgM(T) of the levels is devised,
and procedures for possible experimental methods are proposed. A nonzero value of the natural
relaxation widthgG(T) of the crystal-field ground stateuG& of an impurity ion at zero
temperature is obtained within the proposed self-consistent model, but is beyond the scope of
perturbation theory. It is shown that the widely accepted estimate of the characteristic
temperature of Kondo systemsT* 5GG(T50)/2 from the quasielastic scattering width at zero
temperatureGG(T50)/2 is incorrect in the case of strong relaxation in a system with
soft crystal fields. The proposed model is applied to the quantitative analysis of the relaxation of
the crystal-field levels of paramagnetic Pr31 ions implanted in CeAl3 and LaAl3. The
results of the calculations are in quantitative agreement with the experimental data. ©1998
American Institute of Physics.@S1063-7761~98!02005-8#
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1. INTRODUCTION

The methods that have been developed for studying e
tronic states in metals~angle-resolved photoemissio
spectroscopy;1 quantum oscillations of the magnet
susceptibility,2 conductivity,3 magnetostriction,4 and elastic
moduli5 associated with the de Haas–van Alphen effect;
frared spectroscopy;6 Raman scattering;7 etc.! provide
complementary information regarding the structure of el
tron spectra. A comparison of the experimental data obtai
by different methods with the results of band calculations
the electronic structure provides fairly reliable data on
properties of the compounds studied.

The methods for investigating electronic states can
divided into ‘‘hard’’ and ‘‘soft’’ methods. In the case of har
spectroscopy, the influence of the measurement proces
the system exceeds the scalesW* of the characteristic inter
actions forming the electronic spectrum of the system~in
Kondo systemsW* is of the order of the Kondo temperatu
TK ; in variable-valence systemsW* is of the order of the
valence fluctuations!. Therefore, compounds with stron
electron correlations, which have low-energy modes in
spectrum of elementary excitations, can be investigated m
effectively by soft spectroscopic methods, in which the m
surement process does not destroy the eigenstates of the
tem being investigated. The conditions imposed on spec
scopic measurements by the softness of the elemen
excitations in variable-valence and Kondo systems gre
1001063-7761/98/86(5)/12/$15.00
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restricts the set of methods that are applicable to the inv
tigation of highly correlated systems. For example, the int
pretation of photoemission measurements~because of the
large energy transfers in the measurement process! and data
from methods based on de Haas–van Alphen oscillati
~because of the large magnetic fields, which can destroy
structure of soft excitations! requires a special investigatio
of the influence of the measurement process on the l
energy properties of the compound being studied. Theref
the development of new soft spectroscopic methods
highly correlated electronic systems is an important und
taking.

This paper proposes a method for analyzing the e
tronic structure based on measurements of the tempera
dependence of the relaxation of crystal-field levels of an
purity ion which has special properties~a paramagnetic la-
bel! and is implanted in the compound being investigated
similar idea for investigating semiconductor compounds
an electron paramagnetic resonance technique was prop
back in Ref. 8. The method discussed in this paper relies
the technique of measuring the neutron or optical respons
the system and is intended for studying metallic compoun
A spectroscopic procedure employing a paramagnetic la
can be divided into two stages. In the first stage highly co
plete information on the energies and wave functions of
paramagnetic label P must be obtained. To this end a c
bined study~neutron scattering or Raman scattering me
surements; magnetic susceptibility and specific heat m
8 © 1998 American Institute of Physics



o
tic
i
e
e

ag

th
a
,
a

on
th

ef

s,
ta
t o
ar

la
ta
ifi
th

ay

o

ion

lf
ls
tu
ith
riv
o

th
e
a
n-
tro
e
la
a
th
b
ic

re
dt

.

g-
ion
de-
ec-

x-

m,
ny
l or
ith

a
c-

he
–

la-
2–

the

rons

ator

r-

n

1009JETP 86 (5), May 1998 M. N. Kiselev and A. S. Mishchenko
surements! must be made of a reference single crystal
Pl$B% ~$B% is the chemical formula without the paramagne
label!. In the second stage small quantities of the A ions
the compoundAl$B% under investigation are replaced by th
paramagnetic label P. Scrutiny of the temperature dep
dence of the relaxation of crystal-field levels of the param
netic label P in the compound (A12xPx) l$B% can provide
unique information regarding the electronic structure of
compound under investigation when several conditions
fulfilled. First, the inequalityx!1 is a necessary condition
which allows us to treat the relaxation of the crystal field
the paramagnetic label as a purely single-ion effect. Sec
it must be shown that the structure of the crystal field of
paramagnetic label P in (A12xPx) l$B% does not differ signifi-
cantly from the structure of the crystal field in the pure r
erence crystal of Pl$B%. Fulfillment of the second condition
has already been demonstrated for several compound
which the main contribution to the formation of the crys
field is made by the nearest neighbors from a formula uni
$B%, and hence the structures of the crystal fields of the p
magnetic label P in Pl$B% and (A12xPx) l$B% are practically
identical. Examples of such compounds include RAl3,

9–11

RNi5,
12–14 and RNi14–16 ~R is a rare-earth ion!.

It should be noted that the existing methods for calcu
ing the temperature dependence of the relaxation of crys
field states cannot be applied to the analysis of spec
highly correlated systems. Some of the methods employ
formal Hamiltonian, i.e., one which is not related in any w
to the electronic structure, of thes f model.17–19Another de-
ficiency of the previously developed methods is the use
nonself-consistent second-order perturbation theory,17,18,20,21

which is inapplicable in the case of the large relaxat
widths characteristic of highly correlated systems.

The goal of the present work is to devise a se
consistent theory for the relaxation of crystal-field leve
which can serve as a tool for studying the electronic struc
of particular, highly correlated electronic systems w
strong relaxation broadening. Section 2 presents the de
tion of a microscopic interaction Hamiltonian, an analysis
the differences between it and the formal Hamiltonian of
s f model, and a discussion of the Coqblin–Schrieffer mod
In Sec. 3 self-consistent equations are obtained for the n
ral relaxation widths of the crystal-field levels, and their i
fluence on the cross section for magnetic inelastic neu
scattering is analyzed. In Sec. 4 qualitatively different typ
of temperature dependence of the relaxation width are c
sified. The effects associated with departure from the we
relaxation approximation are analyzed in Sec. 5. In Sec. 6
conditions which must be satisfied by the paramagnetic la
are analyzed in detail, and experimental procedures wh
provide the most easily interpreted information are p
sented. The results of measurements of the relaxation wi
of the crystal-field states of the paramagnetic label Pr31 in
the compounds LaAl3 and CeAl3 are considered in Sec. 7
The conclusions are presented in Sec. 8.
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2. SPECIFIC DETAILS OF THE INTERACTION OF CRYSTAL-
FIELD STATES WITH CONDUCTION ELECTRONS IN
THE COQBLIN–SCHRIEFFER MODEL

The interpretation of the relaxation of a real parama
netic label in a particular compound requires the formulat
of a problem which takes into account both the specific
tails of the state of the impurity and the features of the el
tronic structure of the metal. Therefore, thes f exchange
Hamiltonian, which is often employed to analyze the rela
ation of crystal-field levels,17–19

Hs f5 (
MM8

~ f M
† ĴMM8 f M8!~ca

†sabcb! ~1!

~whereM andM 8 are the indices of the crystal-field states,a

and b are the spin indices of the conduction electrons,Ĵ is
the total momentum operator, ands denotes a Pauli matrix!
is unsuitable for analyzing relaxation in a particular syste
since it is a purely formal object, which is not related in a
way to the features of the electronic structure of the meta
to the real character of the interaction of an impurity w
conduction electrons.

The specific features of the relaxation occurring as
consequence of the interaction of an impurity with condu
tion electrons can be taken into account in t
approaches22–25 based on the Schrieffer–Wolff and Cornut
Coqblin formalisms.26–28 A scheme permitting a first-
principles calculation of the relaxation of a paramagnetic
bel can be devised within the method proposed in Refs. 2
25. The Anderson Hamiltonian describing an impurity ion1!

with one f electron implanted in a metal is represented in
form of the sum

H5H01H1 . ~2!

Here the first term

H05(
uks

eukcuks
† cuks1(

M
EM f M

† f M

1
U

2 (
MM8

MÞM8

f M
† f M f M8

† f M8 ~3!

describes the subsystem of delocalized conduction elect
with consideration of the single-particle potential of thef
subshell~which is treated as a core state! and the subsystem
of the crystal field of thef subshell in the single-particle
potential created by the conduction electrons. The oper
cuks

† (cuks) describes the creation~annihilation! of a conduc-
tion electron with the energyeuk , whose state is characte
ized by the Bloch wave

uuks&5uuk~r !eikr us& ~4!

with the wave vectork, the band indexu, and the spin pro-
jection s. The operatorf M

† ( f M) describes the creation~an-
nihilation! of the crystal-field stateuM & with the energyEM .
The wave functionsuM & of the states of anf electron trans-
form in accordance with the irreducible representationYM of
the point group of the site of the rare-earth impurity io
G imp :
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uM &5 (
m52Jimp

Jimp

Lm,Jimp

M um&. ~5!

Here theum& are spherical harmonics, which describe t
projectionsm of the total angular momentum of the impuri
Jimp , andU is the on-site Coulomb repulsion constant.

For a microscopic calculation procedure we must rep
sent the many-particle interaction of the localized and de
calized subsystems in terms of the nomenclature for the b
states of conduction electrons, rather than in the approxi
tion of symmetrized partial waves.27,28 In this nomenclature
the interaction Hamiltonian

H15 (
uksM

Vuks
M f M

† cuks1H.c. ~6!

describes the mixing of the localized stateuM & with the
Bloch waveuuks&, and the hybridization parameter

Vuks
M 5^uksuVmix~r !uM & ~7!

can be calculated by a band-calculation procedure. In
case of an impurity state with a nearly integer valence~the
hybridization scaleuVuks

M u is considerably smaller than th
distance from theEM andEM1U levels to the Fermi energy
eF!, the Coqblin–Schrieffer transformation,26,27which elimi-
nates the first order with respect to the hybridization from
Hamiltonian, is applicable. As a result, the interaction of t
localized and delocalized subsystems is described by el
and inelastic scattering processes of the conduction elect
on localized crystal-field states of the impurity:

Hex5 (
MM8

(
uks

(
u8k8s8

Juks,u8k8s8
MM8 f M

† f M8cuks
† cu8k8s8 . ~8!

The interaction constants of the effective Hamiltonian
expressed in terms of quantities which can be determine
band-calculation methods:22–25

Juks,u8k8s8
MM8 5

Vuks
M8 ~Vu8k8s8

M
!*

2 F 1

euk2EM
1

1

eu8k82EM8
G .

~9!

Although the nomenclature of the band states of cond
tion electrons is adequate in cases where the problem
first-principles calculation of the parameters, the nomen
ture of symmetrized partial waves, which permits the use
symmetry arguments, is more convenient for qualitat
analysis. As a result of the standard transformation into
representationsuukM& of the partial waves27,28

cuks
† 5 (

kM9
^uksuukM9&cukM9

† ~10!

~herecukM9
† is the annihilation operator of a conduction ele

tron in the state centered on the impurity ion with the wa
numberk, the total angular momentumJimp , and the angular
dependence described by the irreducible representa
YM9!, the Hamiltonian of the exchange interaction can
represented in the form
-
-
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Hex5 (
MM8

f M
† f M8 (

M9M-
(
kk8

(
uu8

QukM9
u8k8M-~M ,M 8!

3cukM9
† cu8k8M- , ~11!

where

QukM9
u8k8M-~M ,M 8!5(

kk8
(
ss8

^uksuukM9&

3^uk8M-uuk8s8&Juks,u8k
s8

MM8 . ~12!

The only restriction which is imposed on the symmetry
the exchange interaction is the condition that the interac
~11! have the symmetry of the point group of the impuri
site.31 Generally speaking, the seed basis of crystal-fi
states$uM &% obtained with consideration of only the single
particle crystal potential is not diagonal when the pertur
tion ~11! is taken into account. In low-symmetry systems th
perturbation can mix seed states of the crystal-field bas32

Therefore, in the general case the relation

QukM9
u8k8M-~M ,M 8!5 J̃uk,u8k8

MM8 dM-MdM9M8 , ~13!

which reduces the exchange Hamiltonian to the stand
Coqblin–Schrieffer expression in the partial-wave repres
tation

Hex5 (
MM8

f M
† f M8(

kk8
(
uu8

J̃uk,u8k8
MM8 cukM8

† cu8k8M , ~14!

is an artefact of the simplifying assumption that the mixi
potential has spherical symmetry in the vicinity of the imp
rity. Nevertheless, even in the simplest approximation,
which the band indexu and the dependence on the wa
numberk are neglected~i.e., the band system of the condu
tion electrons is replaced by an effective density of state!,
the approximate Hamiltonian

Hex5 (
MM8

Ī MM8 f M
† f M8cM8

† cM , ~15!

which faithfully takes into account the principal features
the symmetry of the states of the delocalized electrons,
fers significantly from the formals f exchange Hamiltonian
~1!. When the relaxation width is calculated, thes f exchange
Hamiltonian~1! induces only transitions with a change in th
projection of the total angular momentum of the impurity
unity or without any change in its projection. The relativ
values of the matrix elements specifying the transitio
uM 8&→uM & do not depend on the features of the electro
structure and are determined only by the properties of
Pauli matrices and the structure of the wave functionsuM & of
the localized states. Conversely, all the quantities appea
in the Hamiltonian~11! can be calculated for a specific im
purity in a specific crystal, and the parameters of the appro
mate Hamiltonian~15! are obtained by averaging~11!. Thus,
in the general case the Hamiltonian~15! has nonzero matrix
elements for the transition between any local statesuM & and
uM 8&, and the relations between the different matrix e
ments Ī MM8 are determined by the localized states of bo
the crystal field of the impurity and the band structure of t
conduction electrons.

The calculation of the averaged parametersĪ MM8 can be
performed by the methods described in Refs. 22–25 an
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beyond the scope of the present work. In this paper we w
to analyze which features of the temperature dependenc
the relaxation widths of the crystal-field levels can be o
served for various relations between the symmetrized
change constantsĪ MM8 of the Hamiltonian~15!.

3. RELAXATION WIDTHS OF CRYSTAL-FIELD LEVELS AND
THEIR INFLUENCE ON THE WIDTHS OF THE PEAKS
FOR NEUTRON TRANSITIONS

The relaxation widthG i f associated with the transitio
u i &→u f & is determined by the natural widthsg i andg f of the
initial u i & and final u f & states. It should be noted that th
natural widths are determined not only by the mutual rel
ation processes of the initial and final statesu i &↔u f &, but
also by the processesu i &↔uM & (u f &↔uM &), which are asso-
ciated with the interaction of the initial~final! states with all
the other crystal-field states$uM &%. In this case the natura
width of the initial ~final! state is determined by the set
parameters$ Ī iM % ($ Ī f M%) of the Hamiltonian~15!.

Let us consider the process responsible for the inela
neutron transitionu i &→u f & from the initial stateu i & with the
energyEi to the final state with the energyEf5Ei1D f i . We
introduce the Matsubara Green’s functions describing
crystal-field states of the impurity centerj and the Green’s
functions of similar nature for Abrikosov pseudofermions33

G l52^Tt f j ,M~t! f j ,M
† ~0!&, ~16!

which have the following forms in the zeroth approximati
~i.e., in the absence of relaxation!:

G i
~0!5~ iv2Ei1m!21, ~17!

G f
~0!5~ iv2Ei2D f i1m!21 ~18!

~in the notation adoptedm is the chemical potential of the
pseudofermions, and in the final formulas it must be assum
that m→2`!.

The retarded Green’s functions, which specify the sp
tral response of the system, can be obtained using the
lytic continuation of the Matsubara Green’s functions fro
the upper semiaxis onto the entire complex plane ofv. Pas-
sage to the retarded Green’s functions in the zeroth-o
Green’s functions requires the replacementiv→v1 id. The
interactions of the crystal-field states with other subsyste
of elementary excitations of the crystal lead to renormali
tion of the crystal-field energy and to the appearance o
frequency-dependent imaginary part in the denominato
the Green’s function. The renormalizations of the cryst
field splittings can be included in the definition of th
Green’s functions~17! and ~18! and will not be considered
further. Let us next concentrate our attention on the temp
ture dependence of the relaxation width and take into
count that the retarded Green’s functions of the crystal-fi
levels can be written in the pole approximation in the for

G i
R~v!5@v2Ei1m1 ig i~v!#21, ~19!

G f
R~v!5@v2Ei2D f i1m1 ig f~v!#21. ~20!
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The on-site susceptibility, which determines the magne
neutron response of an impurity center, is expressed33 in
terms of the retarded Green’s function

x i f
R~t!52^Tt f i

†~t! f f~t! f f
†~0! f i~0!&,

whose analytic continuation onto real frequencies has
following form:

x i f
~0!R~V!52uQ i f u2E

2`

` de

2p
tanhS e

2TD @ Im G i
R~e!

3G f
R~e1V!1Im G f

R~e!G i
A~e2V!# ~21!

~hereQ i f is a matrix element, which depends on the wa
functions of the initial and final crystal-field states and det
mines the intensity of the neutron scattering peak!. Repre-
senting the resonant part of the susceptibilityx i f

R(V) at V
'D f i in the form

x i f
R~V!5

J0

V2D f i1 iG i f
, ~22!

whereJ0 is the residue at the respective pole!, we can obtain
the dependence ofG i f on the corresponding natural dam
ings of the pseudofermion Green’s functions. In the lim
g i , f!D f i or g f ,i!T the relation between the relaxation co
stantG i f extracted from the results of magnetic inelastic ne
tron scattering experiments and the natural damping of
pseudofermion Green’s functions acquires a simple form

G i f 5g i~v5Ei !1g f~v5Ef !. ~23!

Thus, in the cases which are most interesting for a r
able experimental analysis~where the width of the inelastic
transition is smaller than its energy! the problem of deter-
mining the temperature dependence of the widthG i f of a
transition reduces to a calculation of the natural widths of
initial and final states.

Let us consider the influence of conduction electrons
the natural width of crystal-field states in the Cornu
Coqblin model. For this purpose we use the effective Ham
tonian ~15! obtained in the preceding section as the inter
tion Hamiltonian. The natural widths are calculated
standard Feynman-diagram techniques at finite temperatu
This allows us to partially sum diagram series and to obt
a closed system of self-consistent equations. The depa
from perturbation theory is critical in the case of fairly stron
relaxation, since the natural widthgM(v5EM) of each
crystal-field stateuM & depends on the relaxation widths o
the entire system of crystal-field levels and must, therefo
be found self-consistently. To illustrate this point, we co
sider the interaction between the statesuM & and uM 8& with
the energiesEM and EM85EM1DM8M , respectively. The
simplest diagram which leads to relaxation of the cryst
field states is shown in Fig. 1a. The dashed line corresp
to the Green’s function of the conduction electron

G~r ,t!52^TtCj~r ,t!Cj
†~0,0!&, j5M ,M 8 ~24!

~we neglect the difference between the Green’s functions
the conduction electrons for differentM !. The diagrams cor-
responding to the vertex corrections can be classified in
following manner. The first are parquet diagrams, which
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FIG. 1. Feynman diagrams: a—simple diagra
describing the shift and damping of a crysta
field level ~dashed line—conduction electro
Green’s function, solid line–crystal-field excita
tions!; b—conduction electron polarization op
erator, which describes the electromagnetic
teraction between crystal-field excitations; c—
eigenenergy part of the crystal-field excitation
with consideration of the vertex renormaliza
tion; d—skeletal diagrams for vertex correc
tions.
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similar to the Abrikosov diagrams considered in the analy
of the Kondo effect in Ref. 33. Consideration of the cont
bution from the first nonvanishing term leads to the appe
ance of an interaction in the channelGM5M8
;(I MM8

2 /W)ln(W/DMM8) and to the correctionsdGMM8
(3,p)

;(I MM8
3 /W2)ln2(W/DMM8) ~W is the width of the conduction

electron band!. The second are nonparquet diagrams.34 Con-
sideration of the contribution from the first correction~Fig.
1d! leads to the additional contributiondGMM8

(3,np)

;(I MM8
3 /W2)ln(W/DMM8). We shall henceforth assum

I MM8 /W!1 and (I MM8 /W)ln(W/DMM8)!1 and neglect the
vertex corrections in the perturbative approach. Under th
circumstances

sM~ ivn!5@ Ī MM8#2T2(
e1e2

1

N 2 (
p1,p2

G~p1 ,e1!G~p2 ,e2!

3G M8~ÞM !~e11e22v! ~25!

~N is the total number of conduction electrons!. Performing
the analytic continuation of the expression~25! into the up-
per half-plane of the complex variablev according to the
usual rules,35–37 we obtain the following expressions for th
eigenenergy parts at real frequencies~the analogous equa
tions for thes f exchange Hamiltonian were obtained by M
leev in a treatment of the relaxation of the crystal field
cubic metals19!:

gM~v!52Im sM
R ~v!

5
1

p
@ Ī MM8#2E

2`

`

dx
1

N
(

p
@N~x!1n~x

1v!#Im G M8~ÞM !
R

~x1v!Im PMM8
R

~p,x!.

~26!

HereN(x)5(ex/T21)21, n(x)5(ex/T11)21, P(p,x) is the
polarization operator of the conduction electrons~Fig. 1b!,
whose imaginary part describes the two-particle density
states:

Im
1

N
(

p
PR~p,x!52

p

2
N0

2x, ~27!

whereN0 is the single-particle density of states of the co
duction electrons at the Fermi level, in terms of which t
dimensionless coupling constantsgMM8 are expressed:

gMM8
2

5
1

2
@ I MM8N0#2. ~28!
is

r-

se

f

-

In the integrals~26! we perform the replacementv1m

5ṽ corresponding to the displacement of the energy re
ence point. Allowingm to tend to2`, we neglect the Ferm
function on the right-hand side. This replacement has
simple physical meaning: the singularities of the functionsG

are determined by a far larger energy scale, and, theref
the terms corresponding to consideration of the poles of
pseudofermion functions should be omitted.38

According to~23!, the natural dampingg of the crystal-
field states at the frequencies corresponding to the ener
of the crystal-field levels must be calculated to determine
width of a neutron transition. Thus, in the case of the int
action of uM & and uM 8&, the quantitiesgM(v5EM) and
gM8(v5EM8) must be calculated. Determining the dampi
at the poles of the corresponding Green’s functions, we
tain the system of coupled equations

5
gM~v→EM !5pgMM8

2 E
2`

`

dxxN~x!P

3~x2DM8M ,gM8!,

gM8~v→EM1DM8M !5pgMM8
2 E

2`

`

dxxN~x!

3P~x1DM8M ,gM !,

~29!

whereP(x,g) is the spectral function normalized to unity:

P~x,g!5
1

p

g

x21g2 . ~30!

The expressions obtained are easily generalized to
case of an arbitrary set of constants in the Hamiltonian~15!

($ Ī MM8%; M ,M 851,...,2Jimp11! and an arbitrary system o
crystal-field states with the energiesEM . Proceeding pre-
cisely as in the derivation of~25!–~29!, we obtain the expres
sions for the frequency-dependent damping rates

gM
R ~v!52Im sM

R ~v!

5
1

p (
M851

2Jimp11

Ī MM8
2 E

2`

`

dx
1

N
(

p
@N~x!1n~x

1v!#Im G M8
R

~x1v!Im PMM8
R

~p,x!,

M51,...,2Jimp11. ~31!

Neglecting the Fermi function on the right-hand side of~31!,
we obtain the system of self-consistent equations
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gM~v!52 (
M851

2Jimp11

gMM8
2 E

2`

`

dxxN~x!Im G M8
R

~x1v!,

M51,...,2Jimp11. ~32!

Here the dimensionless coupling constants are expresse
terms of the parameters of the Hamiltonian~15!:

gMM8
2

5gM8M
2

5
1

2
@ Ī MM8N0

MM8#2, ~33!

whereN0
MM8 is the partial density of states of the conducti

electrons corresponding to theM→M 8 transition.
The system of equations for finding the natural rela

ation constants at the frequencies which determine
widths of the neutron transitions@see ~23!# can be repre-
sented in the explicit form2!

gM~v→EM !5E
2`

`

dxxN~x!

3 (
M851

2Jimp11

gMM8
2 P~x2DM8M ,gM8!,

M51,...,2Jimp11, ~34!

where

DM8M5EM82EM .

4. CLASSIFICATION OF THE TEMPERATURE DEPENDENCE
OF RELAXATION WIDTHS

The temperature dependence of the natural relaxa
widths ~and the widths of the neutron transitions determin
by them! depends on the relationship between the differ
constants in the Hamiltonian~15! and on the energies of th
crystal-field states. In this section we shall classify the ty
of temperature dependence for cases in which solution
the self-consistent system of equations~34! can be obtained
explicitly.

The simplest condition under which the system of eq
tions ~34! is decoupled is that the relaxation widths be sm
(gM→0). In this case, instead of the system of equatio
~32!, we obtain the following expressions for the non-se
consistent widths of the levelsgM

(0) :

gM
~0!5p (

M851

L E
2`

`

gMM8
2 xN~x!d~x2DMM8!. ~35!

The calculation of~35! permits separation of the contr
butions to the temperature dependence of the natural w
gM(T) into three types:

gM~T!5gM
~eq!~T!1gM

↑ ~T!1gM
↓ ~T!. ~36!

The first type is associated with the relaxation caused by
interaction of the crystal-field stateuM & with the levels
$uM 8&%, whose energiesEM8 equalEM :

gM
~eq!~T!5pT (

M8

EM85EM

gMM8
2 . ~37!
in

-
e

n
d
t

s
of

-
ll
s
-

th

e

The contributions to the natural relaxation width of the lev
uM & from higher-lying (EM8.EM) and lower-lying (EM8
,EM) levels are given by the expressions

gM
↑ ~T!5p (

M8

EM8.EM

gMM8
2 DM8MN~DM8M ! ~38!

and

gM
↓ ~T!5p (

M8

EM8,EM

gMM8
2 DMM8@N~DMM8!11#, ~39!

respectively. In the limit of high temperatures,T
@max(EM), in accordance with the results in Refs. 17–2
the temperatures dependences of all three contribution
the relaxation are indistinguishable. All three contributio
obey a Korringa law, and the expression for the natural
laxation width takes the form

gM~T!5pT (
M851

2Jimp11

gMM8
2 . ~40!

At low temperatures the contributions of the higher-lyin
(EM8.EM) and lower-lying (EM8,EM) crystal-field levels
differ significantly. In the limitT→0, N(D) is exponentially
small,N(D)→exp(2D/T), and~38!–~39! take the form

gM
↑ ~T!5p (

M8

EM8.EM

gMM8
2 DM8M expS 2

DM8M

T D , ~41!

gM
↓ ~T!5p (

M8

EM8,EM

gMM8
2 DMM8 . ~42!

Thus, asT→0, the contributions to the natural relaxatio
width from the higher-lying levels tend exponentially
zero, and the contributions from the lower-lying levels
not depend on the temperature.

Since the shape of the line for the neutron transitionu i &
→u f & is measured directly in an experiment, it would b
interesting to analyze the temperature dependence of
width of the transitionG i→ f(T)5g i(T)1g f(T) ~see Fig. 2!
for different relationships between the constants of
Hamiltonian~1!. The diagonal interactionsI i i (I f f) lead to a
contribution ;pgii

2T (;pgf f
2 T), which is proportional to

the temperature. In the case of the relaxation of only
initial ~final! state as a result of interactions with the upp
~↑! levels, we have@G i→ f

↑ (T)# i ( f );N(D↑ i ( f )), which leads
to exponentially small damping,;exp(2D↑i(f ) /T), at low
temperatures. When only the initial~final! state relaxes as a
result of interactions with lower~↓! levels, we have
@G i→ f
↓ (T)# i ( f );D i ( f )↓@N(D i ( f )↓)11#, which can be de-

scribed by a constant;D i ( f )↓ at low temperatures. The
fourth special case is the one in which relaxation is media
by the interaction between the initial and final statesI i f . In
this caseG i→ f

i f (T);D f i@2N(D f i)11#5D f i cosh(Dfi/2T).
If the special cases just described are realized in

system being studied, they are easily distinguished from
another even by qualitative visual inspection. The situat
in which relaxation of the initial and final levels occurs on
because of the influence of the higher-lying levels is ea
distinguished ~the dotted line in Fig. 3!. In this case
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FIG. 2. General case of the classification of sources for the re
ation of the levels of the initial (i ) and final (f ) states of a tran-
sition ~thick vertical arrow! due to interactions with lower-lying
levels~I ↓ i andI ↓ f! and higher-lying levels~I ↑ i andI ↑ f! and due to
mutual coupling of the initial and final states~I i f , wavy lines!.
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G i→ f
↑ (T→0)→0. The mutual relaxation processes~the solid

line in Fig. 3! are also visually distinguishable from the va
ants in which the broadening is a consequence of the in
actions of the initial or final state with lower-lying levels~the
dashed line in Fig. 3!. The sharpness of the temperature d
pendence can serve as a criterion in these cases. In
former variant ~see Fig. 3! we have G i→ f

i f (T
52DMM8)/G i→ f

i f (T50)'4, and in the latter variant we hav
G i→ f
↓ (T52DMM8)/G i→ f

↓ (T50)'2.5.

5. CONSEQUENCES OF THE SELF-CONSISTENT
PROCEDURE

Beside the obvious quantitative influence of the se
consistent procedure manifested as renormalization of
numerical values of the natural relaxation constants, ther
a qualitative difference, which is expressed by the nonz
value of the relaxation width of the ground stateuG& at zero
temperature.

In the non-self-consistent procedure@see~41!# the width
gG

(0)(T→0)5pgGE
2 DEG exp(2DEG/T)→0 ~E is the higher-

lying level with the smallest value ofDEG!. The solution of
the system of self-consistent equations~29! ~for M5G,
M 85E! gives a nonzero width:gG

(sc)(T50)Þ0. Under the
conditionsT!gEG and T!DEG an explicit expression can
be obtained for the widthgG

(sc)(T50) of the level. Since at
low temperatures the non-self-consistent natural width of
crystal-field excited level isgE

(0)(T→0)5pgGE
2 DEG , the

weak corrections caused by the influence of the lower le
can be neglected. Then the self-consistent width of the lo
level is proportional to the square of the coupling consta

gG
~sc!'pgGE

2 gE
~0! lnS W

DGE
D ~43!

~in the calculation we cut off the integral~29! at the width of
the conduction electron bandW!. Substituting the expressio
for gE

(0) into ~43!, we obtain3!
r-

-
the

-
e
is

ro

e

el
er
:

gG
~sc!'p2gGE

4 DEG lnS W

DGE
D . ~44!

Since the corrections associated with the influence of
width of the lower level on the upper level contain an ad
tional small factor;gGE

2 , ~43! is the explicit solution of the
system of self-consistent equations to within terms;gGE

4

inclusively.
This result, which is unexpected from the standpoint

perturbation theory, can have a physical interpretation in
self-consistent theory. It should, first of all, be taken in
account thatuG& is the ground state of the system only wh
the interactions are disregarded. When the interaction w
the delocalized conduction electrons is included, the nom
clature of the localized states is no longer the true quant
mechanical basis, anduG& is not the true ground state.

A specific mechanism, which causes damping of
crystal-field stateuG& at zero temperature, can be pointe
out. The physical cause of the damping ofuG& is the nonzero
broadening of the excited stateuE& ~which also occurs in
perturbation theory!. Figure 4 presents the spectral functio
of uE& @P(x21,gE

(0)50.4)# and uG& @P(x,gG
(0)50)5d(x)#

in the perturbative approximation. The width ofuG& in the

FIG. 3. Reduced temperature dependences of the total inelastic scatt
width G i f due to relaxation processes with a higher-lying level~dotted line!
and a lower-lying level~dashed line! and mutual processes~I i f , solid line!.
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self-consistent approach is nonzero (gG
(sc)Þ0) because of the

allowed transitionsI GE induced by the width of the uppe
level uE& to the low-energy tail~the darkened area in Fig. 4!
of the Lorentzian contour of the upper level.

The result obtained, which attests to the nonzero con
bution to the natural relaxation width of the ground-sta
level, calls for caution in approaching methods for estimat
the characteristic temperatureT* in Kondo systems from the
full width at half maximum~FWHM! of the quasielastic neu
tron scattering peak at zero temperature. According to
generally accepted approach,39,40 the characteristic tempera
ture is determined from the relationT* 5Gqe

exp(T50)/2,
whereGqe

exp(T50) is the experimentally observed quasielas
scattering width at zero temperature. In this procedure i
assumed that the width of the peakGqe

exp(T50) is determined
only by the anomalous widthGK(T50), which is associated
with Kondo scattering processes on the lowest crystal-fi
state. However, the presence of the nonzero contribu
gG

(sc)(T50) from the normal relaxation processes calls
additional refinement in the case of strong relaxation bro
ening in systems with soft crystal fields. In this situatio
since the experimental widthGqe

exp(T50) is determined not
only by the anomalous widthGK(T50), but also by the
relaxation contributiongG

(sc)(T50), we have

Gqe
exp~T50!5GK~T50!12gG

~sc!~T50!, ~45!

and the standard relation should be rewritten in the form

T* 5
Gqe

exp~T50!22gG
~sc!~T50!

2
. ~46!

Thus, when there is strong relaxation in systems w
soft crystal fields, the determination of the characteristic te
perature is complicated by the nonzero relaxation contri
tion atT50. Nevertheless, the use of~46! and~44! provides
an estimate in this case too. To analyze the contribution fr
the normal relaxation processes of a specific compound
must determine the parameters~the crystal-field splitting
DMM8 and the dimensionless relaxation constantsgMM8!
which describe the relaxation in the particular material. T
set of techniques discussed in the next section can be u
in solving this problem.

FIG. 4. Illustration of the origin of the finite width of the crystal-fiel
ground stateuG& ~vertical arrow atx/DEG50! due to relaxation processe
~wavy lines with arrows! which couple theuG& level to the low-energy tail
~darkened region! of the spectral functionP(x21,gE

(0)Þ0) of the upperuE&
state.
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6. PARAMAGNETIC LABELING

Studying the electronic structure by measuring the rel
ation of a paramagnetic label requires the observance of
eral conditions, which must be satisfied by the compou
being studied Al$B% and the paramagnetic ion P. In this se
tion we describe the most desirable general conditions, un
which performing and interpreting paramagnetic labeling
periments are simplest, and we present some example
compounds which satisfy these necessary conditions.

One necessary condition which must be satisfied by
compound Al$B% being studied is the existence of a refe
ence compound Pl$B% containing the paramagnetic label P
The reference compound must be a structural analog of
compound being studied. In the first stage the propertie
the reference compound Pl$B% must be investigated. The
purpose of studying the reference compound is to obtain
formation on the crystal-field energies and wave functions
the paramagnetic label. This information can be obtained
analyzing experimental data from measurements of magn
neutron scattering~or Raman scattering! and the thermody-
namic properties~the magnetic susceptibility and specifi
heat!. For neutron scattering experiments, which require
fairly large quantity of the material, it should be noted tha
single-crystal sample is not required. This greatly facilita
implementation of the method, since magnetic susceptib
data suitable for reconstructing the crystal-field wave fu
tions can be obtained from measurements on tiny sin
crystal samples.

In the second stage, for which a polycrystalline sam
suffices, inelastic neutron scattering experiments are
formed on the compound (A12xPx) l$B%. The theoretical
analysis requires information on the crystal-field states of
paramagnetic label P in (A12xPx) l$B%. The experimental
neutron scattering data provide information on the energ
of the crystal-field levels of the paramagnetic label in t
compound being studied. Since it is impossible to study
crystal-field states of an ion of P in (A12xPx) l$B% by ther-
modynamic methods, additional information on the cryst
field wave functions is needed. This information can be o
tained by studying the trends in the variation of the cryst
field parameters of a family of compounds Rl$B% ~where
R5A,P,...!. There are presently several families of com
pounds for which such investigations have already been
formed: RAl3,

9–11 RNi5,
12–14, and RNi14–16~R is a rare-earth

ion!. In these families the main contribution to the formatio
of the crystal field is made by the ions in the local enviro
ment and the conduction electrons. Therefore, the struct
of the crystal-field wave functions of the paramagnetic la
P in the reference compound and in the compound be
studied are practically identical. Thus, the systems which
suitable for the proposed procedure are compounds in w
the nearest neighbors of each ion of A that is replaced by
paramagnetic label are ions from an unsubstituted form
unit of $B%. The best systems for application of the meth
are materials in which the crystal-field parameters are de
mined predominantly by the nearest neighbors.

The next necessary condition is a small concentration
the ions of the paramagnetic label,x!1, in (A12xPx) l$B%.
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This condition permits consideration of the crystal fields a
their relaxation as purely single-ion phenomena. A sm
value ofx is also necessary to be sure that doping with
paramagnetic label did not lead to significant alteration of
electronic structure of the compound being studied.

An important desirable restriction imposed on the pa
magnetic label is nondegeneracy of the crystal-field gro
state of the ion. Fulfillment of this condition significant
simplifies the interpretation of the experimental data, sin
the natural width of the crystal-field ground state is specifi
by a simple exchange Hamiltonian of the form~15!. A de-
generate ground stateuG& can lead to a Kondo effect, whic
results in the appearance of a specific temperature de
dence of the quasielastic neutron scattering width:Gqe(T)
52gG(T)5a1bAT.40 The presence of a specific temper
ture dependence of the natural width of the crystal-fi
ground state greatly complicates the interpretation, since
width GGM(T)5gG(T)1gM(T) of any inelastic transition
from the ground state contains this poorly studied com
nent. This circumstance greatly complicates the analy
since the theoretical treatment is simplest, if the tempera
dependence of the natural widthsgM(T) of the levels is de-
termined during the experiment. This dependence can be
tracted from the solution of the system of equations

GMM8~T!'gM~T!1gM8~T!, ~47!

whose features must be analyzed separately for each sp
case.

It is also noteworthy that one of the significant adva
tages of the method can be the possibility of regulating
selection rules by choosing different paramagnetic labels
can easily be seen that different symmetries for the crys
field states of the paramagnetic label will lead to differe
types of temperature dependence of the relaxation proc
Therefore, significant information can be obtained by anal
ing situations with different ions serving as the paramagn
label in relaxation spectroscopy.

7. RELAXATION OF THE PARAMAGNETIC LABEL Pr 31 IN
Pr0.03Ce0.97Al3 AND Pr0.03La0.97Al3

An example of a favorable combination of properties
the paramagnetic label and the compound being studie
the Pr31 ion in the hexagonal compounds RAl3 ~R is a lan-
thanide!. The crystal-field ground state~level 1 in Fig. 5! in
pure PrAl3 is the singletuG1&5u0&, and the only allowed
transition atT→0 is the uG1&→uG6& transition to theuG6&
5u61& state ~level 2 in Fig. 5!. The crystal fields of the
praseodymium ion in PrAl3 were studied in detail in Ref. 9
~see Fig. 5, in which the crystal-field levels are numbe
from 1 to 6 in order of increasing energy!. The singlet char-
acter of the ground state rules out both the Korringa rel
ation channel;uI 11u2 and the relaxation channel associat
with Kondo processes.

The relaxation of the paramagnetic label Pr31 was stud-
ied in Pr0.03Ce0.97Al3 and Pr0.03La0.97Al3. The crystal-field
splitting energy of the praseodymium ionD21 in both
Pr0.03Ce0.97Al3 and Pr0.03La0.97Al3 differs only slightly from
the crystal-field energyD21

R '4.5 meV in the reference com
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pound PrAl3. More specifically, in Pr0.03Ce0.97Al3 D21

'4.2 meV, and in Pr0.03La0.97Al3 D21'3.5 meV. Therefore,
in the simplest approximation the wave functions of t
crystal-field states of the paramagnetic label in the co
pounds studied can be assumed to be only slightly alte
from those in the reference. To describe the relaxation of
paramagnetic label in CeAl3, we selected a system of leve
which coincides with the crystal-field system in pure PrA3,
and to analyze the relaxation in LaAl3, we chose a system in
which all the splitting energies are reduced by a factor
3.2/4.5'0.711 ~see Fig. 5!. The thoroughly studied laws
governing the variation of the crystal field of the parama
netic label in Pr~La!Al3 ~Refs. 9 and 10! can be used for a
more exact calculation.

In the experiments in Ref. 11 measurements of the te
perature dependence of only the transition widthG12(T)
were performed~the FWHM of the Lorentzian, which corre
sponds to 2G in our notation, was measured in Ref. 11!,
while the natural relaxation widthsg1(T) and g2(T) were
not distinguished. Nevertheless, even in this case defi
conclusions regarding the difference between the relaxa
behavior of the paramagnetic label in CeAl3 and LaAl3 can
be drawn.

Since level 1 of the paramagnetic label in CeAl3 corre-
sponds to the ground state, the relaxation of level 1 in in
actions with lower-lying levels is impossible. Moreover,
visual comparison of the experimental data~Fig. 6! with the
calculated dependences shown in Figs. 2 and 3 allows u
state that the mutual relaxation processesI 12 are also absent
This conclusion can be drawn on the basis of a compari
of the widths at low and high temperatures: there is
temperature-dependent contribution atT,20 K. Therefore,
the only possible sources of natural relaxation broadening
levels 1 and 2 are the interactions of levels 1 and 2 w
higher-lying levels 3, 4, 5, and 6.

Although the only quantum numbers in whose nome

FIG. 5. Level scheme of the paramagnetic label Pr31 in CeAl3 ~on the left!
and LaAl3 ~on the right!. Wave functions of the levels:9 uG1&5u0&; uG6&
5u61&; uG4&5221/2u23&2221/2u23&; uG52&5au64&2A12a2u72&;
uG3&5221/2u3&1221/2u23&; uG51&5A12a2u64&1au72&. The neutron
transition studied in Ref. 9 is denoted by a vertical arrow. The postula
relaxation channels affecting the initial and final states are denoted by w
lines with arrows.
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clature correct arguments can be advanced are the indic
the irreducible representationsM5G1 ,G3 ,G4 ,G6 ,G51, and
G52, we shall demonstrate that the nomenclature of the p
jections m of the spherical representation@see ~5!# is also
useful for a qualitative analysis of relaxation.

Using the known wave functions of the crystal-fie
states~see the caption to Fig. 5!, we can rule out the transi
tions with dm561 because of the lack of theuG1&↔uG6&
mutual relaxation channel. The transitions withdm562
should lead to interactions ofuG1& with uG51& and uG52& and
of uG6& with uG4& and uG3&. However, if the occurrence o
transitions withdm562 is assumed, the relaxation ofuG6&
according to a Korringa law (}T) should be observed. The
~if it is assumed within a qualitative analysis that the int
action constants are identical for all the transitions withdm
562! the occurrence of relaxation according to a Korrin
law does not correspond to the weak dependence ofG12 on
the temperature in the range 0,T,20 K ~see the experi-
mental points in Fig. 6!. Therefore, the occurrence of trans
tions with dm562 should also be ruled out.

The next possible change in the spherical projecti
dm563, leads to interactions ofuG1& with uG4& and uG3&
and of uG6& with uG52& and uG51&. These interactions do no
lead to a contribution that is proportional toT to the widths
of the levels of the initial state (g1) and the final state (g2)
and do not contradict the weak temperature dependenc
G12 at T,20 K. The energy splittingsD42 and D62 corre-
sponding to the interactions of theuG6& level are smaller than
the corresponding splittingsD41 andD51 for the uG1& level.
Therefore, the contribution}exp(2D/T) to the transition
width G12 at T,100 K ~under the assumption of approx
mately equal values ofg for all dm563! from the natural
width g2(T) of the uG6& level can be considered the ma
contribution.

In the quantitative calculations presented below we to
into account only the interaction constantsI 24 and I 26. In
such an approximation the natural width of the crystal-fi
ground state isg1(T)50, and, therefore,G125g2(T). For
simplicity, the values ofI 24 and I 26 were set equal to one
another~see Fig. 5!. The conduction electron band was a

FIG. 6. Temperature dependence of the FWHM (2G in) of the inelastic
uG1&→uG6& transition in CeAl3 for the paramagnetic label Pr using the lev
scheme in Fig. 5. Dotted line—best fitting in the non-self-consistent
proximation for g5g(0)50.115. Solid line—best fitting in the self
consistent approximation forg5g(sc)50.111. Dashed line—non-self
consistent width forg5g(sc)50.111.
of

o-

-

,

of

k

proximated by a constant density of states with a width o
eV. The best fit for the experimental data in the non-se
consistent approximation is achieved with the value of
dimensionless coupling constantsg(0)5guG6&uG52&

(0) [guG6&uG51&
(0)

50.115. The self-consistent procedure gives the best res
when g(sc)5guG6&uG52&

(sc) [guG6&uG51&
(sc) 50.111. It is noteworthy

that the self-consistent value of the natural widthgG6
(T

50) obtained in the numerical calculation coincides
within a few percent with the results of the analytical fo
mula ~44!. Figure 6 presents a comparison of the theoreti
temperature dependences of the width of the 1→2 inelastic
neutron transition with experimental data. The theoreti
data are presented in different approximations, viz., the s
consistent and non-self-consistent approximations. To ill
trate the influence of the self-consistent approximation,
figure shows the temperature dependences of the
consistent and non-self-consistent widths~the solid and
dashed lines, respectively! calculated for the same dimen
sionless constantg(sc)50.111. It is seen from Fig. 6 that th
self-consistent width is greater than the non-self-consis
width for the same value of the interaction constant. T
effect of the self-consistent approximation,G12

(sc)/G12
(0)@1, is

most easily observed when the non-self-consistent widt
small. Unfortunately, the instrumental errors of the neutr
scattering method make it difficult to reliably isolate the e
fects of the self-consistent approximation. Therefore, the p
formance of Raman scattering experiments, whose exp
mental errors are considerably smaller, can prov
important additional information.

A qualitative analysis of the experimental temperatu
dependence of the relaxation in LaAl3 like the analysis per-
formed above for CeAl3 shows that the main relaxation cha
nel corresponds to a change in the spherical projectiondm
561. We note that this channel does not lead to Korrin
relaxation for the initial state 1 or the final state 2. In th
approximation relaxation of the initial state is possible on
in the mutualI 12 processes, and relaxation of the final state
possible both in the mutualI 12 processes and in theI 24 and
I 26 interactions with higher-lying levels~see the right-hand
part of Fig. 5!.

Since the non-self-consistent width is greater at all te
peratures, it is difficult to observe the effects of the se
consistent approximation. Therefore, we calculated the tr
sition width only in the non-self-consistent approximatio
~Fig. 7!. It is noteworthy that the results of the fitting wit
consideration of onlyI 12 are in better agreement with th
experimental data than are the results of the calculations
consideration of equal values for all the interaction consta
I 125I 24/A12a25I 26/a. These results are reminiscent of th
qualitative character of the estimates based on the nomen
ture of the spherical projections of the angular moment
m. A more rigorous approach would take into account,
example, that the contributions of them50↔m561 and
m561↔m562 transitions, which are both associate
with a change in the spherical projectiondm
561, can be significantly different in a lattice of fairly low
symmetry.

-
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8. CONCLUSIONS

The proposed self-consistent microscopic theory of
spectroscopy of the crystal-field levels of an impurity ion
a normal metal has several consequences, which can ha
significant influence on our understanding of the relaxat
processes in highly correlated systems.

Most importantly, the proposed approach, which
based on the Coqblin–Schrieffer–Cooper approach, ra
than the formals f exchange model, permits a first-principle
microscopic calculation of the temperature dependence
the relaxation width of crystal-field states. A comparison
such calculations with experimental data, as well as the
of the conventional methods of infrared, Raman, and pho
emission spectroscopy, makes it possible to test the faith
ness of the band calculations. Like the traditional metho
the proposed method permits the performance of a qu
qualitative visual analysis of the experimental results
tained. An additional significant feature of the propos
spectroscopic method is the possibility of regulating the
lection rules by choosing an appropriate paramagnetic la
which is impossible within the traditional methods.

The new soft spectroscopic method considered in
paper permits the investigation of the role of strong elect
correlations in shaping the relaxation processes of crys
field states. Since strong correlations can significantly a
the simple form of the effective Hamiltonian~15!, relaxation
features, whose characteristic temperatures are not relat
the crystal-field splitting energies, can be observed in
highly correlated system. The observation of such featu
provides weighty evidence in support of the important role
strong correlations in the compound being studied. Mo
over, the calculations performed in the self-consistent
proach indicate that in the case of strong relaxation broad
ing the upper crystal-field levels have a significant influen
on the experimentally measured characteristics, which
was previously assumed, are determined only by the pro
ties of the ground state of a highly correlated system.
example of the properties of the ground magnetic state
ions in highly correlated systems, which can be subject t
significant influence from crystal-field excited states, is
residual width of the magnetic quasielastic neutron scatte

FIG. 7. Temperature dependence of the FWHM (2G in) of the inelastic
uG1&→uG6& transition in LaAl3 for the paramagnetic label Pr in the non-se
consistent approximation using the level scheme in Fig. 5. Dashed lin
model with g125g24 /A12a25g26 /a50.094; solid line—model withg24

5g2650, g1250.108. The dotted line1 ~2! corresponds to the natural re
laxation widthgG1

(T) (gG6
(T)) of the levels.
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peak at zero temperatureGG(T50). In the case of soft
crystal-field splittings, employment of the widely accept
phenomenological formulaT* 5GG(T50)/2 to determine
the characteristic temperatureT* of the Kondo system is in
need of additional analysis.

In conclusion, we wish to note that the proposed a
proach should be useful in the case of the analysis of syst
in which the crystal-field states transform into more comp
cated objects as a result of strong electron correlations. S
systems include concentrated Kondo systems, in which
rare-earth ions form a coherent lattice. In this case the lo
ized crystal-field ground-state levels transform into a coh
ent continuum,41 which has been termed a spin fluid. Whe
there are sufficiently soft crystal-field splittings, a spin flu
undergoes strong interactions with localized excited state42

which should produce features in the relaxation of the m
netic states. Since crystal-field states are nothing more
well defined levels, this relaxation cannot be studied in
neutron scattering experiment within the proposed meth
However, the relaxation in the magnetic subsystem sho
have a significant influence on the spectroscopic charact
tics of the system that can be detected using resonance m
ods, such as muon spin rotation~mSR! and nuclear magnetic
resonance. These processes can be studied experime
and calculated theoretically after the proposed formalism
appropriately generalized.
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1!Below we shall consider a case which corresponds to the conditions o

proposed experimental method. In this situation the concentration of
paramagnetic label is chosen small enough that the interactions bet
the impurities can be neglected in each specific case.29 For this reason, the
influence of the impurity on the state of the conduction electrons can
neglected.30

2!All the expressions presented above were obtained without consider
of the vertex corrections~Fig. 1d!,37 which, however, are insignificant in
the case of sufficiently small dimensionless interaction constantsgMM8

2

!1.
3!Consideration of the vertex corrections in the perturbative approach, un

~44!, leads to correction of the coefficient in front of the exponentia
small natural width~41!.
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Magnetic and resonance properties of LiCu 2O2 single crystals
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We study the structural, magnetic, and resonance properties of LiCu2O2 single crystals grown by
the spontaneous crystallization method. The data are interpreted on the assumption that the
crystalline structure of the grown single crystals is orthorhombic. Long-range antiferromagnetic
order sets in at temperatures below 22.5 K, while above this temperature the dependence
of the magnetic susceptibility has a shape characteristic of interacting antiferromagnetic
Heisenberg chains. We hypothesize that long-range magnetic order sets in below 22.5 K
through the destruction of the ideal ladder structure of LiCu2O2 because of partial redistribution
of copper and lithium ions at the crystal lattice sites and because of the presence of other
defects in the crystalline structure. ©1998 American Institute of Physics.
@S1063-7761~98!02105-2#
co
g

.

nt
gs

et

t

fe
op

l-
u
.
in
-
re

T
m
th
n

ul

The
llel

m
re

as
ys-

-

ed
om

etic-
ith
m
re-

eter

etic
ic
r

n-
th
fac-

The
1. INTRODUCTION

The discovery of high-Tc superconductivity initiated a
new stage in studies of oxocuprates, which are not super
ductors but contain in their crystalline structure various fra
ments of Cu–O characteristic of high-Tc superconductors
The oxocuprates Bi2CuO4 and CuGeO3, which were studied
earlier,1–3 in their stoichiometric state contain only bivale
ions Cu21 in quadrant and octahedral oxygen surroundin
respectively.

The present paper is a first report on a study of magn
and resonance properties of LiCu2O2 single crystals. In con-
trast to Bi2CuO4 and CuGeO3, which contain only bivalent
copper ions, in the LiCu2O2 single crystal there are univalen
and bivalent copper ions. The magnetic Cu21 copper ions in
this crystal are in pyramidal oxygen surroundings. These
tures determined our interest in studying the physical pr
erties of LiCu2O2 single crystals.

2. SAMPLES AND THE EXPERIMENTAL METHOD

The LiCu2O2 single crystals were grown by slowly coo
ing the melt at a rate of 3–5 degrees per hour. The mixt
for the melt consisted of Li2CO3 and CuO in a 1.2-to-1 ratio
The mixture was placed in an alundum crucible, which
turn was place inside a ZrO2 crucible. The temperature re
gime was chosen with allowance for dehydration of the
agents and for the decomposition of Li2CO3 in the heating
process. The peak temperature of the melt was 1150 °C.
time during which the melt was exposed to the peak te
perature depended on the amount of mixture placed in
crucible, the size of the crucible, the size of the grains, a
the extent to which the powders of the initial reagent co
1021063-7761/98/86(5)/6/$15.00
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be mixed, and amounted to about three to four hours.
crystals were shiny black plates pccupying positions para
to the surface of the fusing agent.

The crystals were drawn mechanically. The maximu
dimensions of the crystals produced in this way we
3-by-4-by-1 mm.3 Prolonged storage in the open air w
found to lead to the formation of a mat coating on the cr
tal’s surface.

Earlier x-ray studies of the samples4 showed that the
crystalline structure is orthorhombic with unit cell param
etersa55.725 Å, b52.857 Å, andc512.409 Å. These pa-
rameters coincide with the data of Ref. 5.

Magnetic susceptibility was measured by vibrating-re
and SQUID magnetometers in the temperature interval fr
300 K to 4.2 K.

In our resonance measurements we used a magn
resonance spectrometer with a pulsed magnetic field w
wavelength of 8 and 6 mm in the temperature interval fro
300 K to 4.2 K. Magnetic resonance in the paramagnetic
gion was studied using an SE/X-2544 EPR spectrom
with l53 cm.

3. EXPERIMENTAL RESULTS

Figure 1 depicts the temperature curves for the magn
susceptibility of LiCu2O2 measured in an 80-Oe magnet
field along thec axis and along two mutually perpendicula
directions in theab plane. Estimates of the diamagnetic co
tribution and the Van Vleck susceptibility show that bo
contributions are smaller than the measured values by a
tor of ten.

The susceptibility along thec axis is higher than in the
other two directions over the entire temperature range.
0 © 1998 American Institute of Physics
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FIG. 1. Temperature curves for the magnetic susce
bility of LiCu2O2: h—Hic, ands andn—H'c. The
theoretical curves are denoted as follows:1—
alternatingly spaced magnetic chain,2—two-
dimensional Heisenberg model, and3—one-
dimensional model with interchain interaction. Th
inset depicts the temperature dependence of the
temperature derivatives of susceptibility.
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high-temperature part of the reciprocal susceptibility is u
to determine the values of the paramagnetic Ne´el tempera-
tures in all three directions:

Qc5247 K, Q'15250 K, Q'25238 K.

These values are lower than the valueQ5275 K for poly-
crystalline LiCu2O2 given in Ref. 6. The corresponding va
ues of the effective magnetic moment are

mc52.01mB , m'151.83mB , m'251.76mB ,

which are close to the theoretical value of 1.73mB for Cu21.
Figure 2 depicts the field curves for magnetization m

sured at 4.2 K along thec axis and along two mutually per
pendicular directions in theab plane. All three curves rep
resent a linear dependence up to 15 kOe. No resid
magnetic moment or hysteresis phenomena were detect

The results of studies of the temperature dependenc
the EPR linewidth for three orientations of the magnetic fi
~along thec axis and in theab plane! are depicted in Fig. 3
As the temperature lowers, the EPR linewidth sharply
creases asT approachesT.30 K. Below this temperature
no EPR signal was detected with the magnetic field direc
along thec axis. When the field was parallel to theab plane,
below T.30 K we observed resonant absorption, whose

FIG. 2. Field curves for the magnetization of LiCu2O2 at T54.2 K: h—
Hic, ands andn—H'c.
d

-

al
.
of

-

d

-

tensity was found to diminish as the temperature was lo
ered still further. Below 15 K this resonance signal was n
detected.

The angular curves for the EPR linewidth measured
room temperature are depicted in Fig. 4. When the magn
field rotates in theab plane, the linewidth varies in sinuso
dally with a period ofp/2. When the magnetic field rotate
in a plane perpendicular to theab plane, the functionA
1B(11cos2u) provides a good description of the angul
dependence ofDH, with the fitting parametersA andB de-
pending on the orientation of this plane in relation to t
crystallographic axes in theab plane.

The temperature curves for EPR fields with both fie
orientations are depicted in Fig. 5. Figure 6 depicts the
gular curves for theg factors measured at room temperatu
For Hic we havegc52.225, while in theab plane theg
factor slowly varies sinusoidally with a period ofp/2 and
extremal values 2.00 and 1.95.

Figure 7 depicts the frequency vs. field dependence
magnetic resonance, measured atT54.2 K in Hic. The
dashed straight line shows the linear dependencen5gH,
whereg corresponds to the valuegc measured at room tem

FIG. 3. Temperature curves for the EPR linewidth in LiCu2O2 at
n59.4 GHz: 1—field H is parallel to theab plane, 2—Hic. The solid
curves represent the results of power-law calculations.
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perature. The frequency vs. field dependence has a gap a
described by the polynomial

n5nc1aH1bH2, ~1!

where nc529.83 GHz, a50.5754 GHz kOe21, and
b50.0265 GHz kOe22. Note that the frequency vs. field de
pendence does not asymptotically approach the linear dep
dencen5gH as the field becomes stronger; it intersects th
linear dependence atH.13 kOe.

We measured the temperature behavior of the resona
fields in Hic at two frequencies, 44.61 and 46.27 GHz. U
der the assumption that the coefficientsa andb in Eq. ~1! are
temperature-independent, we calculated the temperature
pendence ofnc ~Fig. 8!. According to this dependence, th
nc (T) curve is approximately equal to zero atT.23 K.

Figure 9 depicts the results of measuring the angu
curves for the resonance field when the magnetic field
rotated in two mutually perpendicular planes containing thc
axis. Within experimental error, both curves coincide. F
the magnetic field in theab plane the resonance field sharp
increases, which made it impossible to measure the
quency vs. field dependence for this orientation.

FIG. 5. Temperature curves for the EPR field in LiCu2O2 at n59.4 GHz:
1—Hiab, and2—Hic.

FIG. 4. Angular curves for the EPR linewidth in LiCu2O2 at room tempera-
ture atn59.4 GHz.
d is
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r
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4. DISCUSSION

The crystalline structure of LiCu2O2 was determined by
Hibble et al.6 by the x-ray method. They interpreted th
structure LiCu2O2 as tetragonal with the space grou
P42 /nmc anda55.714 Åandc512.401 Å. Later, however
Bergeret al.5 interpreted the crystalline structure of LiCu2O2

as orthorhombic with the space groupPnma and the unit
cell parametersa55.72 Å, b52.86 Å, andc512.4 Å. They
explain why Hibbleet al.6 inferred tetrahedral symmetry in
LiCu2O2 by pointing out thata52b, so that there is crysta
twinning, and this causes the x-ray spectra to have quas
ragonal symmetry. In Ref. 6 it was assumed that depend
on the rate of melt cooling and other conditions of synthe
the crystal symmetry may be either tetragonal or orthorho
bic. Thus, the difference in determining the space group
the LiCu2O2 crystal may be due to the different origin of th
samples.

The crystalline structure of LiCu2O2 with orthorhombic
symmetry is depicted in Fig. 10a. The Cu21 ions are at the
base of the pyramid consisting of oxygen ions and are c
nected into chains along theb axisof the crystal. The mag
netic structure of LiCu2O2 in this case is formed by two
exchange-coupled chains of Cu21 ions oriented along theb
axis of the crystal and belonging to two neighboring atom
planes that are perpendicular to thec axis of the crystal.
These planes form a layer in which the adjacent exchan
coupled pairs of chains consisting of copper ions are far fr

FIG. 6. Angular curves for theg factor of LiCu2O2 at room temperature and
n59.4 GHz.

FIG. 7. Frequency vs. field dependence of the AFMR signal in LiCu2O2 at
T54.2 K in Hic. The solid curve represents the theoretical curve cor
sponding to Eq.~1!.
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each other and are separated by chains consisting of lith
ions also oriented along theb axis. Each layer is separate
from a neighboring layer of the same kind by a plane c
taining nonmagnetic Cu1 ions. Thus, we have described
magnetic structure consisting of isolated pairs of exchan
coupled chains of Cu21 ions, with a fragment shown in Fig
10b.

Such magnetic structures are known in the literature
ladder systems,7 and lately there has been an upsurge of
terest in these structures. A ladder system consisting of
chains, or a two-leg ladder, is described by two excha
interactions, the intrachain interaction and the interchain
teraction. In our case, as Fig. 10b clearly shows, we m
introduce three exchange interactions to describe the m
netic structure. A similar structure was observed in
KCuCl3 crystal by Tanakaet al.,8 who found that such a
magnetic structure is a ladder system.

If there is twinning of the orthorhombic crystal, the cry
tal becomes divided into domains in such a way that
neighboring domains the crystallographicb axes are turned
through 90° in relation to each other. However, in this ca
too the magnetic structure within a single domain is a lad
one. Since in crystal twinning the domains are usually m
roscopic, the magnetic structure of the crystal as a whole
also be considered a ladder system.

When the symmetry is tetragonal, the crystalline str
ture of LiCu2O2 proposed by Hibbleet al.6 differs from the
orthorhombic in that in two neighboring atomic planes t

FIG. 8. Temperature curve for the AFMR gap in LiCu2O2: s—n
544.61 GHz, andd—n546.27 GHz.
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ion copper chains are perpendicular to each other. In
case the magnetic structure is not a ladder one; more lik
it forms a two-dimensional system that is a bulk ‘‘lattice’’ o
exchange-coupled chains consisting of neighboring ato
planes.

Thus, depending on the type of structure~orthorhombic
or tetragonal! and the strength of the exchange coupling b
tween the chains, LiCu2O2 can be in the form of the follow-
ing magnetic structures: noninteracting magnetic cha
exchange-coupled pairs of magnetic chains, or a tw
dimensional magnetic structure consisting of two neighb
ing atomic planes with the chains in these planes perpend
lar to each other.

Since x-ray studies of our samples of LiCu2O2 con-
firmed the orthorhombic symmetry of the crystal, below w
discuss the various magnetic structures that can arise in
case.

As shown in Refs. 7–10, the ground state of a lad
system withS51/2 is nonmagnetic and is characterized
an energy gap between the ground and excited magn
states. The presence of such a gap leads to a situatio
which the magnetic susceptibility drops exponentially to ze
as the temperature falls below a certain critical value.

The temperature curves for the susceptibility depicted
Fig. 1 do not exhibit the low-temperature exponential dr
characteristic of ladder systems. More than that, the peak

FIG. 9. Angular curves for the resonance field of the AFMR signal
LiCu2O2 at T54.2 K andn541.62 GHz. The data1 and2 were obtained as
a result of rotating the sample in two mutually perpendicular planes c
taining thec axis of the crystal.
FIG. 10. ~a! The crystalline structure of
LiCu2O2 with orthorhombic symmetry~accord-
ing to the data of Ref. 5!. ~b! A fragment of the
crystalline structure of LiCu2O2 illustrating ex-
change interactions.
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the first temperature derivatives for all three direction of
magnetic field atT522.5 K ~the inset in Fig. 1! suggest that
long-range magnetic order sets in below this temperat
which is assumed to be the Ne´el temperatureTN . Presum-
ably, the existence of long-range magnetic order is also s
ported by the presence of a gap in the magnetic reson
spectrum at temperatures below 22.5 K~Figs. 7 and 8!. The
presence of magnetic order in the crystal suggests that t
is no need to examine in detail the case of noninterac
magnetic chains.

Strictly speaking, the absence of an exponential drop
susceptibility makes it impossible to reject with certainty t
ladder nature of the magnetic structure of LiCu2O2. Fuku-
yamaet al.11 studied the ladder system SrCu2O3 and found
that zinc ion impurities and, probably, other structural d
fects can give rise to a magnetic phase and, at sufficie
high concentrations of such defects, to the formation o
Néel state. According to Watanabeet al.,10 strong anisotropy
of the exchange interaction in a chain can also lead to su
state.

The presence of a broad maximum in the tempera
curve for the susceptibility and the inequalityTN /Txmax

50.59,1 indicate that the magnetic structure of LiCu2O2 is
low-dimensional, with the antiferromagnetic interaction in
chain realized through a 90° bond. This situation is enco
tered in oxocuprates and, in particular, in CuGeO3. It was
given a theoretical basis by Geertsma and Khomskii.12

Figure 1 depicts the theoretical temperature curves
the susceptibility calculated in the two- and one-dimensio
Bonner–Fisher models for planes and interacting antife
magnetic Heisenberg chains.13,14 Figure 1 also depicts the
theoretical temperature curve for the magnetic susceptib
of an alternatingly spaced magnetic chain, whose behavio
similar to that of a ladder system.15 The best agreement wit
experiment is achieved for a system of interacting antifer
magnetic chains withJ15231.5 K and uJ2u50.06 K with
the external magnetic fieldH parallel to thec axis ~hereJ1

andJ2 are the intra- and interchain exchange integrals!. The
value of the intrachain exchange interactionJ1, estimated
from the relationTxmax51.32uJ1uS(S11) ~see Ref. 16!, is
uJ1u539.6 K.

A comparison of the theoretical and experimental cur
suggests that the magnetic structure in LiCu2O2 is quasi-one-
dimensional. The absence of an exponential decay in sus
tibility to zero ~a decay characteristic of ladder systems! in
this case is probably due to the presence of defects in
sample, which destroy the purely ladder state.

The crystalline structure of LiCu2O2 shows that the Li1

and Cu21 ions have the same pyramidal oxygen surrou
ings. This probably facilitates the situation in which in som
of the lithium and bivalent copper ions change places. T
possibility of such redistribution is corroborated, for i
stance, by the fact that doping CuMg2O3 with lithium ions
leads to a uniform distribution of the impurity ions amon
the Cu and Mg positions,17 while in LiCu3O3 the Li and Cu
ions are distributed among equivalent positions statistica6

On the one hand, such redistribution of ions violates
homogeneity of the ladder structure but, on the other,
exchange coupling develops between isolated ladder pai
e
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chains via the Cu21 ions that have occupied the positions
lithium ions. When the number of such copper ions is su
ciently large, long-range magnetic order of the Ne´el type
may set in at a finite temperature in the crystal,11 and the
temperature curve for magnetic susceptibility is described
the theoretical curve for interacting chains. Here by e
change interaction between chains we mean an average v
of the exchange interactions between chains within a two
ladder and the interaction between ladder pairs via the c
per ions introduced into the lithium chains.

Another fact that speaks in favor of partial redistributio
of copper and lithium ions in LiCu2O2 is that after hardening
the samples from high temperatures, the resonance and
netic properties undergo a considerable change~as shown by
preliminary measurement!. Here we have not excluded th
possibility that the redistribution of cations may lead to fo
mation of a tetragonal phase. The problem of how heat tr
ment affects the structural and magnetic properties
LiCu2O2 requires a special study.

We cannot exclude the possibility that conduction ele
trons also participate in the formation of long-range ma
netic order in LiCu2O2. Most likely, the presence of coppe
ions with different valencies leads to a situation in which t
electrical resistivity of LiCu2O2 at room temperature is
roughly 102–103Vcm, which is smaller by several orders o
magnitude than in CuGeO3 or Bi2CuO4.

The frequency vs. field dependence of magnetic re
nance at low temperatures and, in particular, the presenc
a gap in the magnetic excitation spectrum~Fig. 7! and the
temperature dependence of this gap~Fig. 8! also suggest tha
antiferromagnetic order sets in at temperatures lower t
22.5 K. However, the gap in the AFMR spectrum is e
tremely narrow for orthorhombic antiferromagnets. As
well known,18 the size of the gap in the AFMR spectrum fo
an orthorhombic antiferromagnet is given by the followin
expression:

nc5gA2HEHa8,

whereHE is the exchange field, and, depending on the o
entation of the external magnetic field with respect to
crystallographic axis,Ha8 is one of the two effective fields
Ha1 and Ha2 describing the anisotropy of a biaxial antife
romagnet or the difference of these fields. A possible sit
tion ~at least in principle! is whenHa1 andHa2 are close in
value and their difference determines a small value of
energy gap. But in this case, too, the absence of signific
anomalies in the field curves for magnetization in a fie
Hc5A2HEHa8'11.8 kOe due to a spin-flop transition re
mains unexplained.

On the other hand, the frequency vs. field depende
does not approach the linear dependencen5gH asymptoti-
cally as the magnetic field strength grows, as was to be
pected in orthorhombic antiferromagnets, but intersects it
frequency vs. field dependence of this kind can be obser
for instance, in antiferromagnets with a triangular~noncol-
linear! magnetic structure.19

When the external magnetic field was at right angles
the c axis of the crystal, we were unable to measure
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frequency vs. field dependence at frequencies above 37
because of a sharp increase in the resonance field. How
on the basis of the angular dependence of the resonance
of AFMR ~Fig. 9! it can be assumed that the external ma
netic field deviates from thec axis of the crystal, the gap in
the AFMR spectrum diminishes and the slope of the f
quency vs. field curve decreases.

It is quite possible that all the unusual properties
AFMR are due to the formation of a noncollinear magne
structure forT,TN . Such a structure may develop becau
of frustration of the exchange interaction in the triangu
bond configuration~see Fig. 10b!.

The increase in the EPR linewidth with the temperat
decreasing below'80 K ~Fig. 3! is described by the theo
retical formulaDH}@(T2TN)/TN#2n. The best agreemen
with the experimental results is achieved atn51.28 and
n51.35 forHic andH'c, respectively. These values of th
critical indices are close to the valuesn51.1–1.2 determined
from experiments with the quasi-one-dimensional magn
materials CuCl2•2NC5H5, CsNiCl3, and RbNiCl3 ~see Refs.
20 and 21!.

An analysis of linewidths and the values ofg factors
measured at room temperature~Figs. 4 and 6! suggests the
following. The large value ofDH cannot be explained by
dipole–dipole and effective exchange (Jeff}3QN/2zS(S
11) interactions and is determined by the anisotropic
change interaction. When the magnetic field changes its
entation from thec axis to theab plane,DH and theg-factor
exhibit a typical angular dependence,}A(11cos2u). How-
ever, in theab plane both are characterized by 90° perio
icity, while in orthorhombic crystals this angular dependen
has a 180° period and tetragonal crystals exhibit no s
angular dependence, provided that we ignore contributi
of higher-order exchange interactions. We believe that s
discrepancy is due to crystal twinning, in which the cryst
lographic axes in neighboring domains are rotated about
c axis through an angle of 90°.

5. CONCLUSION

Our study of the structural, magnetostatic, and resona
properties of LiCu2O2 single crystals leads to the followin
conclusions.

The LiCu2O2 compound is a quasi-low-dimension
magnetic material. AtT522.5 K, long-range antiferromag
netic order sets in in a LiCu2O2 single crystal. It is hypoth-
esized that the magnetic structure in the magnetically
dered phase is noncollinear.

Our experimental results have been interpreted on
basis of the assumption that the crystalline structure of
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samples is orthorhombic~the space groupPnma). In an
ideal crystalline structure of LiCu2O2 the positions of the
atoms predetermine a magnetic structure of a two-leg lad
However, defects in the crystalline structure, among wh
the most probable are the partial redistribution of copper
lithium ions Cu21 and Li1 in chains and the oxygen nons
toichiometry, destroy the singlet state~a state characteristic
of ladder systems with spinS51/2) and introduce long-
range magnetic order in the system.
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In the magnetic field rangeDH58 –60 kOe we observed and studied the anomalous oscillations
in the magnetic field dependence of the resistance and magnetization of single crystals of
n-HgCr2Se4. The absence of periodicity in 1/H in the DH58 –20 kOe range can be explained
by the non-Fermi-liquid behavior of the electron subsystem and agrees with the theory of
the de Haas–van Alphen in systems with intermediate valence. In stronger fields,
DH520–60 kOe, the amplitude of the fundamental harmonic decreases, with the number and
amplitude of the higher-order harmonics increasing. As a result, noise is superimposed
on the signal as magnetic field strength grows. The temperature dependence of the magnetization
is the sum of the monotonic spin-wave contribution and the oscillating part. ©1998
American Institute of Physics.@S1063-7761~98!02205-7#
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1. INTRODUCTION

Landau oscillations, which arise because of quantiza
of electron orbits in a magnetic field, usually lead to oscil
tions ~periodic in 1/H) of the thermodynamic and kineti
characteristics of degenerate Fermi systems. If the de
dence of the chemical potentialm on temperature and mag
netic field differs from that in standard Fermi liquids, e.
due to strong electron correlations, anomalous quantum
cillations may occur. In an earlier paper1 we reported the
detection of temperature oscillations of magnetization
single crystals of the degenerate magnetic semicondu
n-HgCr2Se4. In the present paper we give the results of o
servations of weakly periodic and aperiodic~in 1/H) oscilla-
tions of the resistanceR and magnetizationM of the same
samples. While observing temperature oscillations of mag
tization required complicated multiparameter processing
experimental data,1 oscillations in the field dependence ofM
andR are visible without any theoretical processing.

The ferromagnetic semiconductorn-HgCr2Se4 has a
temperature-independent electron concentrationn of roughly
1018cm23 in the temperature range 4.2,T,77 K ~in which
the investigations took place! and a high carrier mobility
;103cm2 V21s at 77 K, which makes it possible to obser
Landau oscillations in fields up to 10 kOe. Non-Fermi-liqu
1021063-7761/98/86(5)/4/$15.00
n
-

n-

,
s-

n
or
-

e-
f

FIG. 1. Magnetic field dependence of the total resistance~a!, the oscillating
part of the resistance~b!, and the relative magnetization~c! of the degener-
ate semiconductorn-HgCr2Se4 measured atT54.2 K.
6 © 1998 American Institute of Physics
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FIG. 2. Dependence of resistance~a! and magne-
tization ~b! on the reciprocal magnetic field fo
n-HgCr2Se4 at T54.2 K.
ed
n
al
ly

i
n

he
n

et
te
b

,
-

y-
ac

as

au-
ting

the

d
sis-
ee
per-
ep-

-
n

e

eak

al

the
in-

gnal

car-

te,
re-

ed
t

effects in HgCr2Se4 are due to the presence of a localiz
d-level of chromiumV near the bottom of the conductio
band.2 In a degeneraten-type semiconductor, the chemic
potentialm is pinned near the localized level and is weak
dependent onT andH, while the bottom of the conduction
band is shifted in proportion to the magnetizationM (T,H).
As a result the functionm(T,H) acquires non-Fermi-liquid
corrections. Temperature oscillations of magnetization
such a multielectron model were predicted in Ref. 3, a
after the necessary experimental work was done~see Ref. 1!,
a more comprehensive theory of the de Haas–van Alp
effect was developed in a recent paper by Val’kov a
Dzebisashvili.4 In the temperature intervalmB!T!\vc , re-
alized because of the small effective carrier massm
;0.01me , the new theory yields a temperature and magn
dependence of magnetization such that the chemical po
tial measured from the bottom of the conduction band can
written as4

m~T,H !5m~0!2
J

2
ZS 3

2D t3/21JtAh2
35

96p
JAth, ~1!

where Z(3/2)52.612, J is the 3d-exchange integral
t5T/4pIS, and h5mBH/IS, with I the parameter of ex
change between the neighboring spins of ad-ion, andS the
spin of thed-ion. Since the oscillating part of the thermod
namic potential and its derivatives is determined by the f
tor

sinS 2pk
m̃

\vc
D 5sinH 2pk

\vc
Fm~0!2

J

2
ZS 3

2D t3/2

1JtAh2
35

96p
JAthG J , ~2!

it is clear that the field dependence of the oscillation ph
assumes the form

w;
a

H
1

b

AH
,

i.e., the periodicity of oscillations in 1/H is violated, al-
though the oscillations remain.
n
d

n
d

ic
n-
e

-

e

2. FIELD DEPENDENCE OF MAGNETIZATION AND
RESISTANCE

The magnetization of samples was measured by an
tomatic vibrating-reed magnetometer with a superconduc
solenoid in fields up to 60 kOe~Ref. 5! at T54.2 K. The
magnetic field was applied along the^100& axis of the crys-
tal. Longitudinal magnetoresistance was measured by
four-contact method.

Figure 1 depicts the oscillating partR; of the resistance
and the magnetizationM as functions of the magnetic fiel
strength, while Fig. 2 depicts the dependence of the re
tanceR on the reciprocal field strength. From Fig. 1a we s
that a magnetoresistance linear in the field strength is su
imposed on the oscillating part of the resistance, so we r
resentR(H) in the form

R~H !5R;~H !2cH, ~3!

wherec5R(60 kOe)31024kOe21 is a parameter. The os
cillating part R;(H) defined in this manner is depicted i
Fig. 1b. A comparison of theR; vs. H curve in Fig. 1b and
the M vs. H curve in Fig. 1c shows that the extrema in th
two curvesR;(H) and M (H) coincide. As expected, the
oscillations are periodic neither inH nor in 1/H. The spectral
density of the signal depicted in Fig. 2b has a smeared p
corresponding to an approximate period in 1/H in 0.8
31026Oe. However, it is possible to detect a distinct sign
only in the magnetic field rangeDH58 –20 kOe~Fig. 3a!. In
stronger fields, e.g., in the rangeDH520–60 kOe, the am-
plitude of the fundamental harmonic decreases, with
number and amplitude of the higher-order harmonics
creasing. As a result, noise is superimposed on the si
~Fig. 3b!. Knowing the period, we calculated the areaS of
the extremal cross section of the Fermi surface and the
rier concentrationn. The results wereS59.331013cm22 and
n54.331018cm23.

The relative amplitudes of the oscillations are modera
;1024, but they are larger than the magnetization measu
ment errors by a factor of approximately ten.5 The smallness
of the magnetization oscillation amplitude can be explain
by the smallness of the carrier concentration, since an
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FIG. 3. Spectral density of magnetizatio
M (1/H) in magnetic field ranges
DH58 –20 kOe~a! and 20–60 kOe~b!.
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;1018cm23 the number of electrons per cell is roughly 1024.
The relative amplitude of resistance oscillations is appro
mately five times larger than the magnetization oscillat
amplitude.

3. TEMPERATURE DEPENDENCE OF MAGNETIZATION AND
RESISTANCE

Formula ~2! shows that temperature variations cau
large shifts in the chemical potential and intersections w
the Landau levels, which gives rise to oscillations in t
temperature dependence of the magnetization and resist
i-
n

e
h

ce.

Since the oscillation phase is a nonlinear function of te
perature, the oscillations are aperiodic inT. Here, however,
the damping of the oscillation amplitude with increasi
temperature makes observation of a large number of t
perature oscillations difficult.

The other fact that sets temperature oscillations ap
from field oscillations is that temperature oscillations a
masked by a complicated temperature dependence of
magnetization and resistance. Hence to identify the osc
tion contribution one must subtract the monotonic parts.
instance, for the average spin the spin-wave theory yield6
eld
FIG. 4. Difference of the experimental curveM expt(T) for
n-HgCr2Se4 and the theoretical curveM theor(T) expressed in the
spin-wave approximation as a function of temperature for a fi
of 60 kOe.
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^Sz&SW~T!5
3

2
2at3/2Z3/2~x!2bt5/2Z5/2~x!2ct7/2Z7/2~x!,

~4!

wherex52mBH/kT, andZp(x) is the generalized Rieman
zeta function,

Zp~x!5 (
n51

`
exp~2nx!

np
.

The parametersa, b, andc were found by fitting the results
to the experimental curveMexpt(T) measured in a field
H560 kOe via the simplex method. The values a
a50.8499,d520.5545, andc50.1294.

The difference of the measured curveMexpt(T) and the
theoretical curveM theor(T) determined via~4! is depicted in
Fig. 4. Thus, the total temperature dependence of the m
netization can be written as the sum of the monotonic cu
~4! and the oscillating part.

The temperature dependence of the electrical resista
measured inH560 kOe is depicted in Fig. 5. As in the cas
of the Mexpt(T) curve, to identify the oscillations we mus
subtract the monotonic temperature dependence, which is

FIG. 5. Temperature dependence of the resistance ofn-HgCr2Se4 in a mag-
netic field of 60 kOe.
g-
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related to Landau quantization. Although the various mec
nisms of the temperature dependence of the electrical re
tance of magnetic semiconductors have been thoroug
studied,7 quantitative comparison with experimental resu
requires special calculations that allow for the behavior
the band structure ofn-HgCr2Se3. Such calculations are out
side the scope of the present paper.

5. CONCLUSION

In this paper we have shown that the Shubnikov–
Haas and de Haas–van Alphen effects in the degene
semiconductorn-HgCr2Se3 can be observed in magnet
fields of the 8–60 kOe range but that their field depende
is not described by functions periodic in 1/H, in contrast to
the case of an ordinary Fermi liquid. The non-Fermi-liqu
nature of the temperature dependence of the chemical po
tial also gives rise to quantum temperature oscillations
magnetization.

This work was made possible by a grant from the R
sian Fund for Fundamental Research~Grant No. 96-02-
16075!.
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Raman scattering of light and IR absorption in carbon nanotubes
A. V. Bazhenov,* ) V. V. Kveder, A. A. Maksimov, I. I. Tartakovski , R. A. Oganyan,
Yu. A. Ossipyan, and A. I. Shalynin
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Russia
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Raman light scattering and IR absorption spectra of samples containing multilayer carbon
nanotubes in different stages of purification by the selective oxidation technique have been
investigated. It was found that the Raman spectra of carbon nanotubes exhibit softening
of the mode at 1582 cm21 corresponding toE2g vibrations of graphite hexagons and a line at
120 cm21 due to the radial vibrations of nanotubes. In IR absorption spectra measured
in the region of 0.07–0.3 eV, several sets of lines with a spacing of 15 meV~120 cm21) between
lines of each group have been detected. We suggest that each group corresponds to electron
transitions generating electron–hole pairs in semiconducting nanotubes and contains a phononless
00-line and its phonon replicas with spacing between them equal to the ‘‘breathing’’ mode
energy of 120 cm21. Measurements of electric conductivity at a frequency of 9300 MHz indicate
that, in addition to semiconducting nanotubes, the samples contain nanotubes with properties
of a highly disordered semimetal. ©1998 American Institute of Physics.
@S1063-7761~98!02305-1#
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1. INTRODUCTION

It is widely known that the standard arc-discharge te
nique, which is used in fabrication of fullerenes from grap
ite, allows one to produce macroscopic quantities of mu
layered carbon nanotubes1–3 with an outside diameter o
about 10 nm and a length of several microns to tens of
crons. X-ray and electron-microscope experiments4,5 show
that these nanotubes consist of concentric cylindrical gra
ite layers imbedded one inside another~this configuration is
traditionally called the ‘‘Russian-doll’’ model!. Depending
on the regime of the arc-discharge synthesis, nanotubes
have various numbers of layers, different chiral angles,
different diameters.

It is obvious that carbon nanotubes can have pecu
electronic properties and constitute a new class of quasi-
dimensional structures. Since their radius is very small,
can expect manifestations of size quantization of their e
tron wave functions in the direction perpendicular to the tu
diameter, which should give rise to one-dimensional ene
bands in their electron spectra. According to theoreti
calculations, the electron spectrum of a nanotube can
either metallic or semiconducting, depending on
configuration.6212 Unfortunately, published experimenta
data concerning these novel species are still sparse bec
of considerable technical problems. Measurements of ma
scopic samples containing large fractions of nanotubes i
cate that the electrical conductivity is not metallic and dro
with decreasing temperature~see, for example, Refs. 13 an
14!. The conductivity as a function of temperature can
described in terms of incoherent, thermally activated tunn
ing. In these experiments, however, the sample resistance
function of resistivities of both nanotubes and contacts
1031063-7761/98/86(5)/5/$15.00
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tween them. With the help of modern lithographic nanote
niques, the dc conductivity of several isolated nanotubes
measured.15,16 The electric contacts were narrow metall
strips deposited in vacuum across the nanotubes laid on
sulating substrates. These measurements indicate tha
shapes of nanotube conductivity curves plotted against t
perature vary considerably: several nanotubes demonstr
thermally activated~semiconducting! conductivity with acti-
vation energies of about 0.1 and 0.3 eV, whereas the con
tivity of others behaved like that of a semimetal or a sem
conductor with a very narrow band gap.

It is obvious that additional research using various e
perimental techniques is needed for better understandin
electronic properties of nanotubes. This paper reports m
surements of IR absorption and optical Raman scatte
performed on either isolated strands of carbon nanotube
samples composed of nanotubes isolated from one ano
which were purified of inclusions of graphite particles a
amorphous carbon by the selective oxidation technique.

2. FABRICATION OF SAMPLES AND MEASUREMENT
TECHNIQUES

Carbon nanotubes were fabricated using the stand
technique in a dc electric arc discharge between two e
trodes from pure graphite in helium atmosphere. The heli
pressure was 600 mbar, the arc length was about 2 mm
constant discharge current of 80 A. The central part of
carbon deposit generated by the arc discharge, which c
tains a higher proportion of nanotubes, was separated
drilling. The resulting material was composed of need
shaped pieces~Fig. 1a!, which were ‘‘bundles’’ of nanotubes
baked to one another. In order to reduce the content of sm
graphite particles and soot, the samples were annealed fo
0 © 1998 American Institute of Physics
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FIG. 1. ~a! Image of needle-shaped conglomerates of carbon nanotubes in type-1 samples in a scanning tunnel microscope;~b, c! typical images of a type-3
sample in a transmitting tunnel microscope. The sample has the shape of ‘‘cotton wool’’ formed of isolated carbon nanotubes~c!, one of them is shown on
a larger scale~b!.
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min in air at a temperature of 650 °C. The fraction of weig
lost in the process was about 10%. Hereafter the sam
manufactured by this method are called type1. They were
composed largely from nanotube bundles and small car
particles baked together in needle-shaped pieces. The
step in purification of nanotube samples was partial dest
tion of these pieces by ultrasound in ethanol and a sec
annealing of the produced powder in air at a temperatur
670–700 °C until about 80% of the sample weight was bu
out ~type-2 samples! or until 97–99% of weight loss~type-3
samples!. Figure 1c shows an electron microscope image o
type-3 sample. Such samples had the form of ‘‘cotton woo
composed of isolated pure carbon nanotubes. Figure
shows as an illustration one of such nanotubes imaged
large magnification factor. Typical outside diameters
nanotubes in our samples were 10–15 nm. According
electron microscope measurements, type-2 samples were like
type 3 samples, but contained a larger proportion of s
particles and other undesired carbon species.

Raman spectra were measured on a Dilor XY-500 sp
trometer equipped with a multichannel optical detector a
Olympus BH-2 optical microscope, which allowed us
measure Raman spectra with a spatial resolution of less
1 mm. Samples were excited by an Ar1 laser at a wavelength
l5488 nm. Measurements were performed at room te
perature.

IR absorption spectra were recorded between 0.05
0.6 eV using a Bruker IFS-113v Fourier-transform spectro
eter at room temperature.
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In addition to optical measurements, we also measu
microwave absorption of samples at a frequency of 93
MHz at temperatures between 1.5 and 300 K. In order to
rid of the skin-effect, samples for microwave experimen
were fabricated by mixing nanotube powder with melted p
affin in the ultrasound field. After solidification of the para
fin, a ball-shaped sample with a volume of about 5 mm3 and
containing 0.5 mg of nanotubes was cut out. The sample
placed in a rectangular microwave cavity, and the real a
imaginary parts of its permittivity,«5«81 i«9, were derived
from measurements of the cavity resonant frequencyFr and
FWHM DF of its resonant curve.

3. RESULTS AND DISCUSSION

Figure 2 shows Raman spectra of carbon nanot
samples of types1, 2, and3 in the region of high-frequency
vibrations. For comparison, a Raman spectrum of pyrolit
graphite measured under the same conditions is given.
crystalline graphite spectrum contains an isolated hi
frequency line, which corresponds, as is well known, to
Raman-activeE2g mode due to vibrations in carbon hex
gons with an energy of 1582 cm21. It is also well known
that, if the translation symmetry breaking is essential,
example, if the graphite particle size is smaller than 100 n
another line with an energy of 1360 cm21 can be seen in the
Raman spectra. This line is due to a vibrational mode, wh
is usually Raman-silent, so the ratioR between the intensi-
ties of the 1360 cm21 line and the allowed line at 1582 cm21
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is commonly used as a criterion of the presence of very sm
graphite particles in a sample and in estimating their size17

If the particle sizeL is larger than 100 nm,R is less than
0.03, whereas atL510 nm this ratio is about 0.4.17

One can see in Fig. 2 that the Raman line in the ene
region near 1360 cm21 in spectra of samples of type1 and2
has a fairly large amplitude, which indicates the presence
very small fragments of graphite layers. At first sight, th
line could be attributed to nanotubes. In fact, given t
graphite layer dimension close to the nanotube diamete
10 to 15 nm, one could expectR5I 1360/I 1582 to be
0.2–0.4,17 which is in fair agreement with measurements
the type-1 spectrum~curve1 in Fig. 2!. But the amplitude of
the 1360 cm21 line drops with the sample is purified by
selective oxidation, andR is also smaller in the type-3
sample, which contains a small proportion of impurities, th
in the initial type-1 material. This means that the parameterR
is very small for nanotubes, and the forbidden 1360 cm21

line cannot be used as a test of the presence of nanotube
seems that in type-1 and type-2 samples this line is due to the
presence of a large amount of very small nanoparticles
graphite and amorphous carbon.

Figure 2 also shows that the main difference between
spectra of the pure nanotube sample~curve 3! and that of
graphite in this energy region is the shift of theE2g mode
from 1582 cm21, which is typical of usual plane graphite
layers, to 1575 cm21. This shift is in good agreement with
calculations,18 which indicate that bending a graphite laye
into the shape of a cylinder with a radius approximate
equal to that of nanotubes should soften this mode by 8–

FIG. 2. Raman spectra for samples of type1, 2, and 3 in the region of
high-frequency vibrations. For comparison, the spectrum of pyrolith
graphite is also shown~dashed curve!. The inset shows on a larger scale th
spectral lines corresponding to theE2g mode in samples2 and 3 in com-
parison with the graphite line.
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cm21. Thus, this shift of the Raman line to the low
frequency region detected in the type-3 sample indicates tha
the main contributors to this spectrum are nanotubes.

Figure 3 shows Raman spectra of samples of type1, 2,
and3 in the region of small Raman shifts. One can see a l
corresponding to a vibrational energy of about 120 cm21 in
the Raman spectrum of the nanotube sample. This line
absent in samples of pyrolithic graphite, and its intens
increases as nanotube samples are purified of undesired
cies. Thus, the low-frequency mode in the region about 1
cm21 is a feature of nanotubes and, apparently, correspo
to the ‘‘breathing’’ mode of oscillations in cylindrical nano
tube walls.19,20

Figure 4 shows optical absorption spectra,K(E)
52log(T(E)), whereT(E) is the optical transmission spec
trum of a sample. Curve1 from the type-1 sample was taken
from a single needle-shaped cluster~see Fig. 1a! with dimen-
sions of about 0.0430.0430.12 mm3 with the help of an IR
microscope. The light spot on the sample was smaller th
the sample itself, which allowed us to measure the spectr
using the traditional Fourier transform technique. One c
see a considerable decrease in the absorption in the en
region below 0.15 eV, which means a lower combined de
sity of electron states at smaller energies.

Curve3 was taken from a type-3 sample, which had the
form of a piece of ‘‘cotton-wool’’ formed by pure nanotube
In this specific case, measurements were performed on a
layer of nanotubes mechanically deposited on a transpa
substrate. The absorption spectrum of a similar sample
corded using a parallel light beam incident normally on t
substrate resembles the spectrum of the type-1 sample, but it
has additional features in the form of oscillations on the a
sorption curve. Since the sample was very inhomogeneou
the latter case, it produced a great amount of diffusely sc

c

FIG. 3. Low-frequency sections of Raman spectra of samples of type1, 2,
and3.
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tered light, and we were wary of mistaking an artefact due
light interference for a real physical effect. In order to chec
whether the recorded oscillations were due to interferen
we calculated absorption spectra using measurements of b
transmitted and diffusely scattered light collected from
large solid angle. In this case, interference effect should ha
been suppressed by a considerable factor. This is the sp
trum shown in Fig. 4 by curve3. It turned out that the new
oscillatory features in the 0.1–0.3-eV region were not elim
nated as a result of such data processing, but on the cont
became more pronounced.

The narrow lines recorded in the 0.1–0.3-eV region c
be divided into several groups, each of which includes thr
of four equidistant lines with a spacing of 15 meV betwee
them. The inset in Fig. 4 shows as an illustration a Four
transform of curve3. It contains a pronounced peak corre
sponding to the 15-meV period. This energy is consiste
with the Raman peak at 120 cm21 corresponding to radial
vibrations of nanotube walls.

We suggest the following interpretation of the narro
lines in the absorption spectrum. Suppose that our samp
contain a certain proportion of semiconducting nanotub
with a fully occupied valence band and a vacant conducti
band~at T50, of course!, which are separated by a band ga
of width Eg . The latter should, naturally, be a function of th
nanotube configuration, namely its diameter, number of la
ers, and chiral angle. But since all these parameters are i
ger ~or, at least, discrete!, the set of possibleEg is limited.
Since the density of states in a one-dimensional band is p
portional to E21/2, where the energy is measured with re

FIG. 4. IR absorption spectra atT5300 K of type1 ~needle-shaped nano-
tube clusters! and type 3 ~nanotubes purified by selective oxidation!
samples. The inset shows a Fourier transform of curve3.
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spect to the band bottom, there should be a singularity in
density of states atE5Eg . Therefore the optical absorptio
spectrum of a semiconducting nanotube should have a
row peak atEg corresponding to phononless 00-transition
Owing to the electron–phonon interaction, additional pea
due to phonon-assisted transitions involving one~01! or sev-
eral ~02, 03, etc.! phonons can be detected. In the context
this model, we can attribute the absorption spectrum sho
by curve3 to semiconducting nanotubes with different g
widths, each of which generates a phononless peak and
eral phonon replicas due to interaction with the 120-cm21

vibrational mode seen in Raman spectra. Since two or th
phonon replicas of the 00-transition are clearly seen in
spectrum, we assume that the electron–phonon interac
involving the radial mode at 120 cm21 is very strong.

On the base of this model, we conclude that our samp
contain notable fractions of semiconducting nanotubes w
Eg50.07, 0.11, 0.16, and 0.22 eV. These conclusion is c
sistent with measurements of the conductivity activat
energy.16,21 Specifically, activation energies of 0.1 and 0
eV were measured in two different nanotubes,16 and a set of
activation energies of 0.04, 0.11, and 0.23 eV were detec
in electric conductivity of thin nanotube films grown on a
insulating substrate.21 If we assume that the Fermi level of
semiconducting nanotube is approximately in the middle
the band gap at low temperatures, the reported activa
energies approximately correspond to gap widthsEg50.08,
0.22, 0.46, and 0.6 eV.

If most of the nanotubes in our samples are semic
ducting, we cannot account for the broad featureless ba
ground in the IR absorption spectra. This component of
absorption spectrum can be ascribed to the presenc
highly conductive metallic or semimetallic tubes, in additio
to semiconducting species. In order to verify this assum
tion, we performed contactless measurements of electric c
ductivity of our samples by the microwave absorption tec
nique. Measurements of the type3 sample are given in Fig
5. It turned out that, even atT51.5 K, the average nanotub
conductivitysv , which was derived from measurements22,23

of «5«81 i«9 and the number of nanotubes in the samp
was about 100–300V21

•cm21, which indicates an appre
ciable quantity of metallic or semimetallic nanotubes.
shown in Fig. 5, the conductivity of these highly conducti

FIG. 5. Microwave electric conductivity of sample3 versus logarithm of
temperature.
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nanotubes is roughly proportional to lnT in the temperature
interval 1.5–50 K. This result is in agreement with the d
by Langeret al.,15 who derived a logarithmic temperatur
dependence of the conductivity from direct measurement
an isolated nanotube with four metallic contacts fabrica
by the lithographic technique. They interpreted this logari
mic dependence in terms of weak localization due to
large contribution of quantum interference corrections to
sample resistance. This contribution drops with tempera
owing to the decrease in the coherence length. Thus, in
dition to semiconducting nanotubes, our samples conta
large amount of nanotubes whose conductance behaves
that of a metal with a large concentration of defects~or a
semiconductor with a vanishing band gap!.

The work was financially supported by INTAS~Grant
94-0157!.
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Optical solitons and quasisolitons are investigated in reference to Cherenkov radiation. It is
shown that both solitons and quasisolitons can exist, if the linear operator specifying their
asymptotic behavior at infinity is sign-definite. In particular, the application of this criterion
to stationary optical solitons shifts the soliton carrier frequency at which the first derivative of the
dielectric constant with respect to the frequency vanishes. At that point the phase and group
velocities coincide. Solitons and quasisolitons are absent, if the third-order dispersion is taken into
account. The stability of a soliton is proved for fourth order dispersion using the sign-
definiteness of the operator and integral estimates of the Sobolev type. This proof is based on the
boundedness of the Hamiltonian for a fixed value of the pulse energy. ©1998 American
Institute of Physics.@S1063-7761~98!02405-6#
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1. INTRODUCTION

Solitons in nonlinear optical fibers have been very po
lar objects of investigation since the early nineteen seven
i.e., since the structural stability of the solitons for t
Korteweg-de Vries ~KdV! equation1 and the nonlinear
Schrödinger equation2 was demonstrated and since Has
gawa and Tappert3 subsequently proposed the use of opti
solitons as data bits in fiber communications. The interes
optical solitons has increased dramatically in the last dec
due to the practical achievements from the use of soliton
modern optical communication systems.4,5 However, despite
the great practical significance of optical solitons, the the
for them is far from complete.

When reference is made to optical solitons, it is assum
that their spectrum is concentrated within a certain trans
ency window, where the linear damping is small and disp
sion effects dominate. The width of the soliton spectrumdv
is assumed to be fairly small compared with the freque
band Dv of that window, i.e.,dv!Dv. In real systems,
however, the bandDv is always narrower than the mea
frequency of the windowv̄, i.e.,Dv!v̄. Thus, we have the
following hierarchy of inverse characteristic times:

dv!Dv!v̄. ~1.1!

These criteria permit consideration of the slow (t21;dv)
dynamics of soliton propagation in terms of amplitude en
lopes. In particular, to derive a nonlinear Schro¨dinger equa-
tion ~NLSE!, i.e., the basic model for describing optical e
velope solitons, the wave number is approximated by
quadratic polynomial

dk5
1

vgr
dv2

1

2

v9

vgr
3 ~dv!2. ~1.2!

Heredk5k2k0 , dv5v2v0 , vgr5]v/]k is the group ve-
locity, andk0 andv0 are the wave number and frequency
the soliton carrier wave. However, in the frequency inter
Dv the dispersion of the wave can differ significantly fro
1031063-7761/98/86(5)/12/$15.00
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the quadratic approximation~1.2!, although it remains smal
in the sense of the criterion~1.1!. It is noteworthy that the
existing experimental possibilities~see, for example, Ref. 6!
make it possible to obtain very short pulses, for whi
dv/v0,1. On the other hand, the efficiency of optical fibe
as media for transmitting information is inversely propo
tional to the soliton width. Thus, practical considerations c
for reducing the soliton width as much as possible.

In this paper we show that the properties of ‘‘short’’ an
‘‘long’’ solitons can be very different. For short solitons th
expansion~1.2! is largely incorrect and should be replace
by the more general formula

dk2
1

vgr
dv52F~dv!. ~1.3!

HereF(z) is a certain function, which should be taken fro
a microscopic treatment or extracted from experimental d
Although F(z) can be far from the parabolic dependen
~1.2!, averaging over the fast time 1/v0 can be performed,
providing a description of slow soliton dynamics by mea
of a generalized nonlinear Schro¨dinger equation~GNLSE!.
This averaging also leads to the appearance of an additi
integral of motion, viz., an adiabatic invariant, which has t
meaning of the pulse energy. Accordingly, owing to this
variant, the GNLSE allows a soliton solution for the env
lope of the electromagnetic fieldE(x,t) in the form a propa-
gating pulse with the additional phase multipliereilx:

E~x,t2x/vgr!5eilxc~ t2x/vgr1bx!, vgr
21@b.

The main result of this paper is as follows. Solitons c
exist, if L(z)5l2bz1F(z) is a positive~or negative! defi-
nite function for all z. This criterion is the basic selectio
rule for solitons. If this criterion is not satisfied, the solito
loses its energy through Cherenkov radiation and cease
exist after a certain time. This occurs, for example, ifF(z) is
a third-degree polynomial.
5 © 1998 American Institute of Physics
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Even if L(z) is positive definite and a soliton exists, th
question of its stability is far from trivial. In this paper w
establish that a soliton is stable ifL(z) is a positive definite
fourth-order polynomial. The proof of its stability is base
on the boundedness of the Hamiltonian for a fixed adiab
invariant. We assume that the same conclusion regarding
stability will be valid for any positive definite polynomia
L(z).0 of even degree. However, if we have

uF~z!u,Cuzua for uzu→` ~1.4!

anda<1/2, stability of the soliton is doubtful, and it is mor
likely unstable.

There is one more important point on which we wou
like to focus attention in this article. The objects which ha
traditionally been called solitons in nonlinear optics are
such in the strict sense of the word. They are quasisolito
i.e., approximate solutions of Maxwell’s equations, whi
depend on four parameters. Real stationary solitons, w
propagate with a constant velocity without changing th
form, are exact solutions of Maxwell’s equations, which d
pend on two parameters. The latter exist, if the dielec
constant«~v! has a maximum in the frequency range und
consideration for a focusing nonlinearity or a minimum,
the medium is defocusing. In a purely conservative medi
quasisolitons exist for a finite time owing to radiation as
result of multiphoton processes. In reality, however, this ti
is much greater than the lifetime resulting from the line
damping, and the difference between solitons and quasi
tons is insignificant.

2. STATIONARY SOLITONS

In this section we demonstrate how to find a soliton
lution directly from Maxwell’s equations. We consider
very simple model of the simultaneous propagation
pulses, assuming that the polarization is linear and that
electric fieldE(x,t) is perpendicular to the propagation d
rection. In this case Maxwell’s equations can be reduced
the wave equation for the fieldE(x,t):

]2D

]t2 2c2
]2E

]x2 50, ~2.1!

where the electric displacementD is assumed to be related t
the electric field by the expression

D~x,t !5 «̂~ t !E~x,t !1xE3~x,t !. ~2.2!

In this expression«̂ is an integral operator; the Fourier tran
form of its kernel is«~v!, i.e., the dielectric constant. Th
second term in~2.2! corresponds to the Kerr effect, andx is
the Kerr constant.

The function «~v! is analytically continuable into the
upper half-plane ofv ~see, for example, Ref. 7!. For real
values of v the magnitude of«~v! obeys the Kramers–
Kronig relations. It particular, it follows from these relation
that on the real axis the imaginary part of the dielectric c
stant«9, which is responsible for the dissipation of electr
magnetic waves, cannot be equal to zero at all frequenc
Below we shall assume that there is a certain frequency b
ic
he
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s,
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-
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Dv, within which the imaginary part of the dielectric con
stant is small enough that it can be neglected.

Let us consider the propagation of a wave packet wit
spectrum lying within this transparency window, assumi
that the frequency width of the pulse spectrum is small co
pared withDv. A solution in the form of an isolated pulse
i.e., a soliton, can be expected only under such condition

As was noted in the Introduction, two types of solito
are possible. The solitons of the first type are stationary
moving frame. They propagate with a constant velocity wi
out changing their form. A classical example of solitons
this type is provided by the solitons for the KdV equatio
which, in particular, describe solitary waves in shallow w
ter. The solitons of the other type are called quasisolito
They have internal dynamics and propagate with a cons
velocity only on the average. The classical quasisolitons
clude breezers, which are described by the sine-Gor
equation~for further information, see, for example, Refs. 8
10!.

Stationary solitons are exact solutions of Eq.~2.1!. We
shall seek these solutions in the form

E5E~x2vt !, ~2.3!

wherev is the constant velocity andE tends to zero at in-
finity. The substitution of~2.3! into ~2.1! makes it possible to
integrate the equation twice:

L̂E~x!5aE3~x!, a5xv2/c2, ~2.4!

where the operatorL̂ equals

L̂512
v2

c2 «̂. ~2.5!

In the Fourier representationL̂ is written in the form

L~v!512
v2«~v!

c2 , ~2.6!

where the frequencyv and the wave numberk are related by
the equalityv5kv. The second term in~2.6! is the square of
the ratio betweenv and the phase velocity of an electroma
netic wave of small amplitude:

vph5c/A«~v!. ~2.7!

Hence it is easily seen that the operatorL̂ becomes positive
definite if and only if

vph
2 ~v!.v2, ~2.8!

for all v, and it accordingly becomes negative definite in t
opposite case:

vph
2 ~v!,v2. ~2.9!

We now show that a soliton solution is possible only wh
condition ~2.8! or ~2.9! is satisfied. Let us assume that th
opposite is true, i.e., let the conditions~2.8! and~2.9! not be
satisfied. In this case the equation

v2«~v!

c2 51 ~2.10!
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has a solution~for simplicity we assume that it is unique
v5v0!. Then Eq.~2.3! can be rewritten in the following
manner:

E~x2vt !5E0~x2vt !1L̂21~12 P̂!aE3~x2vt !.
~2.11!

Here

E0~x2vt !5Re~A exp@2 iv0~ t2x/v !# !

is the solution of the homogeneous linear equation

L̂E050, ~2.12!

and P̂ is a projector onto the stateE0(x2vt), so that (1
2 P̂)xE3(x2vt) is orthogonal toE0 and, therefore, the op
erator L̂ is reversible in this class of functions. To find th
explicit solution of Eq.~2.11!, we can use, for example, a
iterative scheme, takingE0 as the zeroth approximation. It i
of fundamental significance that, by proceeding in this m
ner, we must arrive at nonlocalized solutions, which dep
on two parameters, viz., the imaginary and real parts of
complex amplitudeA. Hence the following conclusion ca
be drawn: the stationary equation~2.3! can have a soliton
solution if L̂ is sign-definite. If Eq.~2.12! has a nontrivial
solution, or, equivalently, if the phase velocityvph and the
velocity v are equal, i.e., if

vph5v, ~2.13!

there is no stationary soliton solution. We note that this c
clusion relies heavily on the fact that the singularity on t
right-hand side of Eq.~2.11! (E3)v /L(v) is not removable.
As will be shown below, singularities of this type can b
removed, if the matrix element of the four-wave interacti
~x in the present case! has a frequency dependence.

Equation~2.13! can also be regarded as a condition
Cherenkov radiation by a moving object. The nature of
object itself is not important here. It can be a charged p
ticle, a ship, or, for example, a soliton. In any case the m
ing object loses energy as a result of Cherenkov radiation
the case under discussion this means that if the velocity o
electromagnetic soliton satisfies the conditions~2.9!, it must
emit waves, and, therefore, such a pulse cannot exist
stationary object. Thus, we arrive at the following conditi
for the existence of solitons: a soliton solution can ex
when the equation

v~k!5kv ~2.14!

does not have a~real! solution. Herev5v(k) is the disper-
sion law. For electromagnetic wavesv(k) is determined
from the equation

v25k2c2/«~v!. ~2.15!

The relation~2.14! has a simple interpretation in thev2k
plane. The right-hand side of~2.14! corresponds to a straigh
line emerging from the origin of coordinates, and, acco
ingly, the velocityv in this plane equals the slope tanf:

v5tan f.
-
d
e

-

r
e
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-
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n
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The existence of a solution for Eq.~2.14! is indicated by the
intersection of thev5v(k) curve by the straight lines. This
assigns a complete cone of anglesV, where stationary soli-
ton solutions are impossible. ConeṼ, which is complemen-
tary to V, corresponds to possible soliton solutions. On
boundary]V between the cones the straight lines are tang
to the v5v(k) dispersion curve, and at the points of ta
gencyki the group and phase velocities coincide:

v~k!

k U
ki

5
]v~k!

]k U
ki

. ~2.16!

For the dispersion law~2.15! this relation is written as

d«~v!

dv U
v i

50. ~2.17!

It is natural to assume that the soliton amplitude va
ishes at these critical points~since there should not be an
stationary soliton solutions outsideṼ!. As will be shown
below, the behavior of a soliton solution near these criti
points is universal. We demonstrate this fact in the case
the stationary equation~2.3!. It is, however, fundamentally
important that the result is general and can be used for o
models. This fact was first investigated for capillar
gravitational solitons in deep water.11–13 The spectrum of
capillary-gravitational waves is known to have a minimu
phase velocity for wave numbers lying in the intermedia
region between the gravitational and capillary portions of
spectrum.

For simplicity, we assume that Eq.~2.17! has only one
positive solutionv5v0 @because of the parity of«~v! there
is one more rootv52v0#, and let the cone of anglesṼ lie
below the critical velocity:

v,vcr5
c

A«~v0!
.

Thus, the function«~v! has two identical maxima at sym
metric points, and

d2«~6v0!

dv2 ,0.

In this caseL̂ is an invertible operator, and Eq.~2.4! can be
written in the form

Ev5
1

L~v!
a~E3!v . ~2.18!

Near the critical velocity (vcr2v!vcr) the plot ofL(v) as a
function of v is close to zero in small vicinities of the tw
pointsv56v0 because of its symmetry with respect tov.
Therefore, according to~2.18! the distribution ofE(v) is
determined to a considerable extent by the function 1/L(v).
Accordingly, in thet-representation the solution will be clos
to a monochromatic wave. It is important that the monoch
maticity of the wave improves asv approachesvcr . There-
fore, E(t8) (t85t2x/v) will be sought in the form of an
expansion in the harmonicsnv0 :
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E~ t !5 (
n50

`

@E2n11~t!e2 i ~2n11!v0t81c.c.#. ~2.19!

Here we have formally introduced the small parameter

e5A12v/vcr ~2.20!

and the slow timet5et8, so that theE2n11(t) are the en-
velope amplitudes of each harmonic. The representa
~2.19! means that the width of each harmonic along the f
quency scale,dv;e, is small compared with the frequenc
v0 , i.e., the Fourier spectrum~2.19! is a series of narrow
peaks. The main peaks correspond to the first harmo
Therefore, the action ofL̂ on ~2.19! can be expanded into
series in powers ofe. Assuming thatE2n11;e2n11 and sub-
stituting ~2.19! into the stationary equation~2.4!, with con-
sideration of~2.17! in the first order we arrive at a stationa
nonlinear Schro¨dinger equation:

e2E12S
]2E1

]t2 2
3

2
auE1u2E150, ~2.21!

where

S52
v2

4c2

d2e~v0!

dv2 .0. ~2.22!

Equation~2.21! has a soliton solution only ifa.0:

E1~ t8!5
2e

A3a
sechF e~ t2x/v2t0!

AS
G . ~2.23!

This solution is unique to within a constant phase multipli
It is the universal asymptote of the soliton solution. Asv
approachesvcr , its amplitude vanishes according to
square-root law;Avcr2v, and the soliton pulse widthDt
increases in inverse proportion to this factor:

Dt5AS/e.

For times greater thanDt we must take into account th
following expansion terms, particularly the third-order d
persion and the corrections to the cubic nonlinearity. In t
time range the soliton behavior is no longer universal.

It is noteworthy that Eq.~2.21! does not have solitonlike
solutions whene2512v/vcr,0.

When the tangent approaches the dispersion curve f
above,S becomes negative. For this reason solitons e
only for defocusing media (a,0).

The case where the point of tangency satisfiesv050
calls for a special treatment. Near the critical velocity t
stationary equation~2.3! does not require the expansio
~2.19!. It is sufficient to expande~v! nearv50:

«~v!5«~0!1
1

2

d2«~0!

dv2 v2.

According to this expansion, the stationary equation takes
the form

e2E2S] t
2E2

1

2
aE350, ~2.24!
n
-

ic.

.

s

m
st

n

where, as before,e, S, anda are given, respectively, by Eqs
~2.20!, ~2.22!, and ~2.4! taken atv50. The localized solu-
tion of Eq. ~2.24! has the form of a soliton for the modifie
Korteweg-de Vries~MKdV ! equation:

E~ t2x/v !5
2e

Aa
sechF e~ t2x/v2t0!

AS
G .

3. QUASISOLITONS; HIGHER-ORDER DISPERSION

In this section we discuss the difference between solit
and quasisolitons in the case of a generalized nonlin
Schrödinger equation~GNLSE!. The GNLSE has a more ex
tensive class of soliton solutions than does the original M
well equation. Unlike the stationary solitons~2.23!, these
solutions are approximate and depend on four parame
However, the mechanism for selecting the soliton solutio
remains the same as for the stationary solitons considere
the preceding section.

The transparency windowDv must be small compared
with the mean value of the frequencyv0 : v0@Dv. In this
case an envelope can be introduced for the entire region.
most convenient and systematic approach for obtaining
equation for the envelopes is based on the Hamilton
formalism.14

Let us consider Eq.~2.1!, which we present in the form
of a system of equations:

]r

]x
1

]2f

]t2 50,
]f

]x
1

1

c2 S «̂r1
4px

c2 r3D50. ~3.1!

The potentialf and the ‘‘density’’ r introduced here are
related to the electric fieldE and the magnetic fieldH by the
expressions

E5
A4p

c
r, H5A4p

]f

]t
. ~3.2!

Equations~3.1! can be written in Hamiltonian form:

]r

]x
5

dH

df
,

]f

]x
52

dH

dr
. ~3.3!

Here x plays the role of the time, and the Hamiltonian h
the form of an integral with respect to time:

H5E F1

2 S ]f

]t D 2

1
1

2c2 r«̂r1
px

c4 r4Gdt

[
1

8p E FH21E«̂E1
1

2
xE4Gdt. ~3.4!

The quadratic part ofH defines a linear dispersion law fo
k5k(v), which coincides with~2.15!. We can go over to the
normal variablesav(x) using the replacements

rv5A v2

2k~v!
~av* 1a2v!,

fv52 iAk~v!

2v2 ~av* 2a2v!, ~3.5!

whererv andfv are the Fourier transforms of the densityr
and the potentialf, andk(v) is understood in these formu
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las as a positive root of the dispersion relation~2.15!. The
substitution of these relations into Eq.~3.3! gives the equa-
tions of motion in the variablesav :

]av

]x
5 i

dH

dav*
, ~3.6!

where the HamiltonianH takes the standard form~compare
Ref. 14!:

H5E k~v!uavu2dv1
1

2 E Tv1v2v3v4
av1
* av2

* av3
av4

3dv11v22v32v4
P idv i . ~3.7!

The matrix elementT appearing therein is assigned by t
formula

Tv1v2v3v4
5

3x

4pc4 F v1
2v2

2v3
2v4

2

k~v1!k~v2!k~v3!k~v4!
G1/2

. ~3.8!

If the fourth-order susceptibilityx depends on the frequen
cies, the constantx in the matrix element~3.8! is replaced by
x(v1v2v3v4) with the necessary symmetry properties~see
Refs. 7 and 15!, which ensure the following symmetry rela
tions for T:

Tv1v2v3v4
5Tv2v1v3v4

5Tv1v2v4v3
5Tv3v4v1v2

* . ~3.9!

In the Hamiltonian~3.7! we retained only the terms respo
sible for the scattering of waves, neglecting all the oth
processes, which make a contribution in the next~sixth! or-
der with respect to the amplitude of the waves for narr
wave packets.

The Hamiltonian formulation of the equations of motio
~3.6! guarantees ‘‘conservation’’~absence of a dependenc
on x! of the HamiltonianH, as well as of the ‘‘momentum’’

P5E vuavu2dv, ~3.10!

which coincides exactly with the Poynting vector integrat
over time:

P5
c

4p E
2`

`

EHdt.

Let us now proceed to the derivation of the equation
the envelopes by introducing the packet envelope amplitu

c~ t,x!5
1

A2p
E ave2 i ~v2v0!t2 ik0~v0!xdv.

Here we assume that the spectrum ofav is concentrated in a
narrow intervaldv nearv0 and thatv0@dv. Accordingly,
c(t,x) is a slow function of the coordinates and the time

Next, expandingk(v) and Tv1v2v3v4
into a series in

V5v2v0 at v0 we have

k~V!5k~v!2k~v0!5
1

vgr
V2k0SV22gV31dV41...,

~3.11!
r

r
e:

Tv1v2v3v4
5T01

]T

]v1
~V11V21V31V4!

1
1

2

]2T

]v1
2 ~V1

21V2
21V3

21V4
2!

1
]2T

]v1]v2
~V1V21V3V4!

1
]T

]v1]v3
~V1V31V1V41V2V3

1V2V4!1... . ~3.12!

In the expression fork(v) we have retained the terms up
fourth order in V, and in the matrix elementT we have
retained the terms that are quadratic inV. In expanding the
matrix element, for simplicity, we considered it to be re
and utilized its symmetry properties~3.9!. Accordingly, the
coefficients in~3.12! are

T05Tv0v0v0v0
,

]T

]v1
5

]Tv1v2v3v4

]v1
U

vk5v0

,

]2T

]v i]v j
5

]2Tv1v2v3v4

]v i]v j
U

vk5v0

.

Next, performing the inverse Fourier transformation with r
spect toV, for c we obtain the generalized nonlinear Schr¨-
dinger equation

i S ]c

]x
1

1

vgr

]c

]t D1K0Sc tt1b1ucu2c

52 igc ttt24ib2ucu2c t2dc tttt1~b32b4!@~c2c t* ! t

2~c t!
2c* #1~b31b5!c* ~c2! tt2b6ucu4c. ~3.13!

The left-hand side of this equation corresponds to the cla
cal nonlinear Schro¨dinger equation: the second term in
describes the propagation of a wave packet as a whole
therefore, can be eliminated by going over to the local co
dinate frame. The next term (;S) is responsible for qua-
dratic dispersion. Now, forde(v0)/dv050 the coefficientS
coincides with the expression in~2.22!. The last term on the
left-hand side defines a nonlinear correction to the freque
of the monochromatic wave. The first two terms on the rig
hand side are;(dv/v0)3. It is important that there are only
two such terms. In this case the coefficientb252p]T/]v is
nonzero even for a constant fourth-order susceptibilityx.
When x5const holds,b2 can vanish only ifk;v2. The
remaining terms are;(dv/v)4. Among them we took into
account the terms;ucu4c, which are of the same order o
magnitude.

The coefficientsb i appearing in Eq.~3.13! take on a
very simple form for the matrix element~3.8!:

b15
3

2
k0

2xS vph

c D 4

, b25
b1

v0
S 12

vph

2vgr
D ,
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b35b1

k1/2

v0

]2

]v0
2 S v0

k1/2D , b45b55
b1

v0
2 S 12

vph

2vgr
D 2

.

~3.14!

According to its derivation, Eq.~3.13! should be classified a
a Hamiltonian equation:

i
]c

]x
52

dH

dc*
. ~3.15!

Here the HamiltonianH can be represented in the form of
sum of Hamiltonians:

H5H11H21H31H41...,

where

H15
i

vgr
E c* c tdt, ~3.16!

H252E S k0Suc tu22
b1

2
ucu4Ddt, ~3.17!

H35E $ igc* c ttt1 ib2~c* c t2cc t* !ucu2%dt, ~3.18!

H45E H duc ttu22
b3

2
ucu2~cc tt* 1c.c.!2

b4

2
~c t

2c* 2

1c.c.!2
b5

2
c* 2] t

2c21
b6

3
ucu6J dt. ~3.19!

Here H2 corresponds to the classical NLSE, and the n
Hamiltonian corresponds to the complex MKdV equation
is important that each of the successive Hamiltonians
smaller than the preceding one. However, this situation
change, if any of the expansion coefficients introduces a
tional smallness. As is seen from~2.23!, the soliton width
decreases as the quadratic dispersion coefficientS decreases
Therefore, whenS is small ~such a situation arises near th
so-called zero-dispersion point!, the cubic dispersion (;g)
must be taken into account with neglect of all the high
order terms, as well as the term that is proportional tob2 . If
b1 is small, the nonlinear dispersion, which is proportion
to b2 , must be taken into account with neglect of the cu
linear dispersion.

Let us now turn to an analysis of the solitonlike solutio
for the generalized Schro¨dinger equation.

To illustrate how the mechanism~2.23! operates, we first
consider the nonlinear Schro¨dinger equation with quadrati
dispersion@which corresponds to the Hamiltonian~3.17!#:

i
]E

]x
1Ett12uEu2E50. ~3.20!

Here we have used dimensionless variables, and the no
earity is assumed to be focusing,Sa.0.

It is noteworthy that, unlike the wave equation~2.1!, a
generalized NLSE, particularly the NLSE with quadratic d
persion, has an additional symmetry, viz.,E→Eeif, which
appears as a result of the averaging of the equations of
oscillations. Therefore, the envelope soliton solutions form
more extensive class of solutions than does the wave e
tion ~2.1!. According to our definition, they should be cla
t
t
is
n
i-

-

l
c

in-

-

st
a
a-

sified as quasisolitons. To find the corresponding solutio
we should setE(x,t)5eilxc(t1bx), where c obeys the
equation1!

L~ i ] t!c[2 ibc t1lc2c tt52ucu2c. ~3.21!

In the case under consideration the conditions for Cheren
radiation~2.14! are written in the following manner:

bV5k~V! or L~V!50, ~3.22!

where the dispersion relation for Eq.~3.21! takes the form

k~V!5l1V2. ~3.23!

Hence it is seen that forl,0 the resonance condition~3.22!
is satisfied for any value of the velocity~Fig. 1!, and hence
no solitons exist in this case. This is verified directly b
solving Eq.~3.21!: for l,0 all the solutions are periodic o
quasiperiodic. Soliton solutions are possible only for posit
values of l. Their velocities lie in the range22Al<b
<2Al ~Fig. 2!. At the pointsV56Al the straight linek
5bcrV is tangent to thek5k(V) dispersion curve. Accord-
ing to the results of Sec. 2, the soliton solution should van
at these points, as follows directly from the solution of E
~3.21!:

FIG. 1. Dispersion curve~3.23! for negativel. Any straight line emerging
from the origin of coordinates intersects the dispersion curve.

FIG. 2. Dispersion curve~3.23! for positivel. The dashed lines which are
tangent to the dispersion curve correspond to the critical veloci
b562Al. These straight lines specify the boundary of the soliton cone
angles.
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E5eilx
eibt8DV

cosh~DVt8!
, DV5Al2

b2

4
. ~3.24!

Hence, the region for the existence of solitons is given by
inequality l.b2/4. The upper bound in this inequalit
specifies the critical velocity

bcr562Al.

It is important to note that the operatorL in Eq. ~3.21! is
positive definite forl.b2/4.

Let us now turn to the third-order dispersion. We a
sume, as before, that the soliton solution contains an ex
nential multiplier

E~x,t !5eilxc~ t8!, t85t1bx. ~3.25!

The corresponding operatorL( i ] t) has the form

L~V!52bV1l1SV21gV3. ~3.26!

This operator is sign-definite for any values ofl, b, S, and
gÞ0. This means that the equationL(V)50 or the equiva-
lent equation

bV5l1SV21gV3,

has at least one real solution: the dispersion curve fork(V)
5l1SV21gV3 always intersects any straight line emer
ing from the origin of coordinates. For example, forl50
andb>b052S2/(4g) all the straight linesk5bV intersect
the k5k(V) dispersion curve twice. Forb,b0 the straight
lines have one point of intersection, and forb5b0 tangency
occurs~Fig. 3!. However, one point of intersection is suffi
cient for the absence of solitons. On the other hand, the
ample of the KdV equation, which simultaneously has cu
dispersion and solitons, apparently contradicts the forego
statement. Actually, there is no contradiction here. Eve
thing is explained by the dependence of the matrix elem
on the wave vector, which provides for cancellation of t
singularity in the equation of the form~2.18!.

We can show in the example of the KdV equation

Ut1Uxxx16UUx50, ~3.27!

FIG. 3. Third-order dispersionk5SV21gV3. The dashed straight line is
tangent to the dispersion curve atV5V0 , but intersects it atV50.
e

-
o-

x-
c
g
-
nt

how cancellation of a singularity occurs. For a soliton mo
ing with the velocityv,

L~k!5 ik~v1k2!.

For v.0 the equationL(k)50 has one real rootk50. In
this case the analog of Eq.~2.18! is

Uk5
3ik~U2!k

L~k!
,

which clearly does not contain a singularity atk50. The
situation is similar for other equations of the KdV type~see,
for example, Ref. 16!.

Solutions of the soliton type were recently obtained17 for
a generalized Schro¨dinger equation, which simultaneous
takes into account the third-order dispersion and correspo
to its nonlinearity@in the present paper this corresponds
consideration of the Hamiltonians~3.17! and ~3.18!#. If the
relations betweeng andb2 are arbitrary, the soliton solution
found in Ref. 17 has a spectrum concentrated at the frequ
ciesV;1/g, 1/b2 , i.e., at frequencies comparable tov0 . In
the unique case where the relation between the coeffici
has the form

K0S

b1
5

3g

4b2
,

the soliton spectrum is displaced by a small amount. T
case is special, i.e., Eq.~3.13! ~written in dimensionless vari-
ables!,

iEx1Ett12uEu2E5 i e~Ettt16uEu2Et!, ~3.28!

allows application of the inverse scattering problem te
nique ~see, for example, Ref. 8!. In this case the Hamilto-
nians ~3.17! and ~3.18! are conserved independently. The
are both created by the same associated operator, viz.
Zakharov-Shabat operator.2 The parametere in this equation
is of orderdv/v, andE takes values of order unity. Solito
solutions for this equation were first pointed out in Ref. 1
The simplest of them is the solution

E5eim2x
m

Chm~ t2em2x!
,

which transforms into a stationary soliton of the NLS
~3.24! whene50.

One conclusion which can be drawn from the foregoi
material is that the existence of soliton solutions for t
third-order operatorsL is due to the presence of derivative
in the nonlinear term or, stated differently, the dependenc
the matrix elements on the frequency. If there is no su
dependence, or if it is insignificant, as is the case, for
ample, near the point of zero dispersion, there are no rea
for cancellation of the singularities in the equation of t
form ~2.18!. Therefore, the results in Ref. 19 of the nume
cal observation of solitons for the NLSE with cubic dispe
sion should be revised~see also Ref. 20, which was devote
to this equation!.

We shall henceforth confine ourselves to considerat
of the case where there is no dispersion of the nonlinearit
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it is insignificant. In such a situation third-order dispersi
cannot provide for the existence of solitons, i.e., the n
expansion terms must be taken into account.

For fourth-order dispersion the corresponding operatoL
has the form

L~V!52bV1l1SV21gV31dV4. ~3.29!

The sign-definiteness ofL is now determined by the sign o
d : the operator is positive definite ford.0 and negative
definite in the opposite case.

The cubic term can always be eliminated fromL by
means of an appropriate frequency shiftV→V1n. Further-
more, using simple scaling and sign reversal,L(V) can be
brought into the following two canonical forms:

L~V!52bV1k~V!52bV1l1~V22g0
2!2, ~3.30!

L~V!52bV1k~V!52bV1l1~V21n0
2!2. ~3.31!

Then, applying the criterion~3.22! to the dispersion law
~3.30! with l,0, we can easily see that the resonance c
dition ~3.22! is satisfied for all values ofb and that the ex-
istence of solitons is, therefore, impossible in this region
parameters.

For positivel5m4 solitons are possible in the regio
2bcr<b<bcr , where

bcr54V0~V0
22n0

2! and V0
25

1

6
~2n0

21A16n0
4112m4!.

~3.32!

Near the critical velocity~3.32! the dispersion is positive
therefore, localized solutions of the soliton type can ex
only for focusing (dx.0) nonlinearity, while nonlinearity
with respect to the quadratic dispersion would be defocus
The form of the soliton in this case is determined from t
equation

L~ i ] t!c52sucu2c, ~3.33!

whereL( i ] t) is given by Eq.~3.30! or ~3.31!, s5sgn(dx)
specifies the character of the nonlinear interaction: fors
51 it is attractive, and fors521 it is repulsive. Soliton
solutions are possible only for a focusing medium.

The simplest solutions of~3.33! are stationary solitons
Their form is found by integrating the equation

m4c1~] t
21n0

2!2c22ucu2c50. ~3.34!

It is significant that a moving soliton for fourth-order dispe
sion has a profile which differs from a soliton for the NLS
with quadratic dispersion. It cannot be deformed into a s
tionary soliton by simple scaling and phase transformatio

To find the solution, Eq.~3.34! must be supplemented b
the boundary conditions

c, c t→0 as t→6`.

The symmetry of Eq.~3.34! allows real symmetric~relative
to t! solutions:c(t)5c(2t)5c* (t). At infinity ( t→6`)
these solutions should decay exponentially:c;ent→0,
where the exponentn is determined from the equation

n41~n21n0
2!21m450.
t

-

f

t

g.

-
.

The roots of this equation are assigned by the expressio

n56F1

2
~Am41n0

42n0
2!G1/2

6 i F1

2
~Am41n0

42n0
2!G1/2

.

~3.35!

They are all complex. This means, in particular, that all s
tionary solitons should have an oscillating structure. Ifm
;n0 holds, the real and imaginary parts of the exponenn
are of the same order. Critical tangency occurs whenm50.
Near this point the real part ofn8 is small for a finite value of
the imaginary part:

n56m2/n06 in0 . ~3.36!

Envelope solitons of the universal form~2.23! appear in just
this limit.

For largem (m@n0) the roots have the asymptote

n5m
616 i

&

.

Figures 4–6 show the solitons for different values ofm and
n0 . In the limit m→0 ~Fig. 4! the soliton has a clearly ex
pressed envelope soliton form, and at largem (m@n0) the
soliton has only one oscillation on its scale~Fig. 6!. At large
distances~large times! the solitons for all the values ofm and
n0 have exponentially decaying, oscillating tails. As the ra
m/n0 increases, the amplitude of the soliton increases, an
width decreases. The solitons obtained here, like the

FIG. 4. Dependence of the soliton amplitude~in units ofn0
2! on the time~in

units of n0
21! for m/n051/3. The soliton envelope has the form of th

function sech to good accuracy.

FIG. 5. Form of a soliton whenm/n051. The amplitude of the soliton~in
units ofn0

2! increases, and its width~in units ofn0
21! decreases. Oscillations

are still observed on the scale of the soliton.
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solutions of Eq.~3.34!, are simultaneously solutions in th
form of stationary solitons for Eq.~2.1! with the dielectric
constant

«~v!5«02a~v22v0
2!2 and xa.0.

As for the dispersion~3.31!, here the situation is simila
to what occurs for the NLSE with quadratic dispersi
~3.20!. Solitons are possible forl.2n0

4. The only differ-
ence from quadratic dispersion is the change in the valu
the critical velocity. Near these points the structure of
solitons has the universal form~2.23!.

4. STABILITY OF SOLITONS

Let us examine the stability of the solitons obtained
the preceding section. We first show how stability can
proved for the NLSE with quadratic dispersion~3.20!. The
Hamiltonian for it has the form

H5E ~ uc tu22ucu4!dt[I 12I 2 , ~4.1!

and the soliton solution~3.24! has the form of the stationar
point of the Hamiltonian for a fixed momentum

P52 i E cc t* dt

and a fixed number of particles~energy! N5* ucu2dt:

d~H1bP1lN!50.

Following Ref. 21, we shall prove stability in the sense
Lyapunov, i.e., we shall show that the soliton has a minim
for H at fixedP andN. For this purpose, it is convenient t
representl in the form of a sum ofb2/4 and the positive
quantity m2. We next consider the functionalF5H1bP
1(b2/4)N, which, as can easily be seen, is the same Ham
tonian in a moving coordinate frame: the replacement of
wave functionc→ceitb/2 transformsF into H ~4.1!. Thus,
for stability it is sufficient to establish thatH has a minimum
in the stationary soliton.

Let us consider the integralI 25* ucu4dt. It is easy to
prove that the following chain of inequalities holds~see also
Refs. 21 and 22!:

FIG. 6. Form of a soliton whenm/n0510. The oscillating tail is scarcely
visible.
of
e

e

f

il-
e

E
2`

`

ucu4dt<max
t

ucu2E
2`

`

ucu2dt

5E
2`

tmax ducu2

dt
dtE

2`

`

ucu2dt

<2NE
2`

tmax
ucuuc tudt<2NE

2`

`

ucuuc tudt

<2N3/2F E
2`

`

uc tu2dtG1/2

. ~4.2!

This inequality can be enhanced by finding the best cons
@instead of 2 in~4.2!#. The maximum value of the functiona

G@c#5
I 2

N3/2I 1
1/2

clearly solves this problem. To find the maximum ofG@c# it
is sufficient to consider all the stationary points of this fun
tional and then to select the one which has the maxim
value ofG. All the stationary points ofG@c# are determined
from the following equation, which coincides with the equ
tion for a stationary soliton:

2m2c1c tt12ucu2c50,

wherel5m2.0. Hence it can easily be seen that the ma
mum ofG@c# is achieved in a real soliton solution, which
unique~to within a constant phase multiplier!:

cs5
m

cosh~mt !
.

After this, all the integrals inG@c# are easily calculated:

N52m, I 1s5
2

3
m3, I 2s5

4

3
m3,

and the inequality~4.2! ultimately takes the form

E
2`

`

ucu4dt<
1

)

N3/2F E
2`

`

uc tu2dtG1/2

. ~4.3!

The substitution of this inequality into~4.1! gives the follow-
ing estimate:

H>Hs1~AI 12AI 1s!
2,

whereHs522m3/3,0 is the value of the Hamiltonian in
the soliton solution. This estimate becomes exact in the s
ton solution, proving the stability of the solitons with qu
dratic dispersion in the sense of Lyapunov. We stress
this proof provides for the stability of solitons not only wit
respect to small perturbations, but also with respect to fin
perturbations.

Now let us turn to fourth-order dispersion. We represe
the corresponding functionalF5H1bP1lN in the form of
a sum of the mean value of the operatorL( i ] t) ~3.29! and the
nonlinear term:

F5E c* L~ i ] t!cdt2E ucu4dt. ~4.4!

To prove the stability of solitons, we must find the analog
the inequality~4.3! for the mean̂ L( i ] t)&.

Let L(V) be the positive definite polynomialVP
(2`,`) of degreeN52l . ThenL(V) can be expanded as
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L2l~V!5 (
p50

l

L2l 22p~Vp!)
i 51

p21

~V2V i !
2, ~4.5!

where V i and the polynomialsL2l 22p(V) are constructed
from L2l according to the following rule. LetV5V0 be the
minimum point of L2l(V): min L2l(V)5L2l(V0). The latter
allows us to writeL2l(V) in the form

L2l~V!5L2l~V0!1~V2V0!2L2l 22~V!,

whereL2l 22(V) is a nonnegative polynomial of degree 2l
22. The expansion of the polynomialL2l 22(V) gives a new
nonnegative polynomial of degree 2l 24. Further recursion
leads us to formula~4.5!. It is important that all the coeffi-
cients in this expansion are nonnegative:L2l 22p(Vp)>0. It
is also clear thatL0(V l)5C2l .

Expansion~4.5! generates the corresponding expans
for the mean value ofL2l( i ] t):

^L2l~ i ] t!&[E c* L2l~ i ] t!cdt

5L2l~V0!N01L2l 22~V1!N11...1L0~V l !Nl ,

~4.6!

where

Np5E ucpu2dt; cp5 )
q50

p21

~ i ] t1Vq!c, p>1;

c0[c.

This representation shows how the square of the norm of
positive definite polynomial operator expands in the nor
Np with the nonnegative coefficientsL2l 22p(Vp).

For the positive definite fourth-order dispersion~3.29!

L~V!5l2bV1DV21gV31V4

the expansion~4.5! reads as

L~V!5m41h2~V2V0!21~V2V0!2~V2V1!2, ~4.7!

wherem4 replacesL4(V0), andh2 replacesL2(V1). With
no loss of generality, we can setV052V15n0 in Eq. ~4.7!
~this corresponds to the replacementc→c exp$2i(V0

1V1)t/2%), so that Eq.~4.7! takes the form

L~V!5m41h2~V2n0!21~V22n0
2!2. ~4.8!

The difference between the dispersions~3.30! and ~3.31!
stems from the fact that the quantity 2n0

22h2 can be positive
or negative. For~3.30! 2n0

2.h2, and for~3.30! 2n0
2,h2. In

accordance with~4.8!, the integral expansion of the norm o
the operatorL is written as

^L~ i ] t!&5m4N1h2E u~ i ] t1n0!cu2dt

1E u~] t
21n0

2!cu2dt. ~4.9!

This representation means that a moving soliton can be
garded as a stationary point of the new Hamiltonian
n

e
s

e-

H85h2E u~ i ] t1n0!cu2dt1E u~] t
21n0

2!cu2dt2E ucu4dt

~4.10!

when the number of particlesN is fixed:

d~H81m4N!50. ~4.11!

If the HamiltonianH8 is bounded from below for a fixed
value ofN, and its lower bound corresponds to a soliton, t
soliton will be stable.

In terms of the new Hamiltonian the soliton solutio
obeys the equation

m4cs1h2~ i ] t1n0!2cs1~] t
21n0

2!2cs22ucsu2cs50.
~4.12!

Next, multiplying this equation bycs* and integrating overt,
we arrive at the following relation between the integrals a
pearing inH8:

m4Ns1h2E u~ i ] t1n0!csu2dt1E u~] t
21n0

2!csu2dt

22E ucsu4dt[Hs81m4Ns2E ucsu4dt50.

Another relation follows after the multiplication of~4.12! by
t] tcs* and integration:

~m41h2n0
21n0

4!Ns1~2n0
22h2!E u] tcsu2dt

23E u] t
2csu2dt2E ucsu4dt50.

Combining these two relations, we obtain

Hs85~h2n0
21n0

4!Ns1~2n0
22h2!E u] tcsu2dt

23E u] t
2csu2dt.

For both dispersions the HamiltonianHs8 is bounded from
above in the soliton solution by the number of particles m
tiplied by a certain positive factor: for~3.30!

Hs8<F 1

12
~2n0

22h2!21h2n0
21n0

4GNs ,

and for ~3.31!

Hs8<~h2n0
21n0

4!Ns .

We now prove thatH8 has a lower bound for a fixed value o
N. For this purpose we first evaluate the two integrals

J15E u~ i ] t1n0!cu2dt and J25E u~] t
21n0

2!cu2dt

in terms of two other integrals:N andI 25* ucu4dt. It is easy
to see that the estimate~4.3! is valid for the first integralJ1 :

E
2`

`

ucu4dt<
1

)

N3/2F E
2`

`

u~ i ] t1n0!cu2dtG1/2

. ~4.13!
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Using the inequality~4.3! again, we can obtain the estima
sought for J2 , if we first perform integration by parts in
* uc tu2dt using the Cauchy–Bulyakovski� inequality,

E uc tu2dt52E c* ~c tt1n0
2c!dt1E n0

2ucu2dt

<N1/2F E u~] t
21n0

2!cu2dtG1/2

1n0
2N,

and then substitute the result obtained into~4.3!:

J2>
1

N S 3I 2
2

N3 2n0
2ND 2

. ~4.14!

Using the inequalities~4.13! and ~4.14! we obtain an esti-
mate ofH8 in terms ofN and I 2 :

H8> f ~ I 2!5
3I 2

2

N3 1
1

N S 3I 2
2

N3 2n0
2ND 2

2I 2 . ~4.15!

Continuing this inequality, we obtain

f ~ I 2!>2
)I 2

N2 S 3I 2
2

N3 2n0
2ND 2I 2 .

Finally, from this we arrive at the desired inequality, i.e., t
boundedness of the Hamiltonian:

H8>2
4)N

9 F11
)N

6n0
2 G3/2

. ~4.16!

According to Lyapunov’s theorem, this proves the stabil
of the stationary point of the Hamiltonian corresponding
its minimum. This minimum point is a certain soliton sol
tion of Eq. ~4.12!. It need not be unique. It is noteworth
that, according to the estimate~4.16!, the Hamiltonian can
take negative values. If initially we haveH8,0, the maxi-
mum value ofucu2 will be bounded from below by the con
served quantity~compare Ref. 21!:

max
t

uEu2>uH8u/N.

Thus, an initially existing intensity maximum cannot vani
as the pulse propagates~asx increases!. On the other hand
small-amplitude radiation should ensure relaxation of the
tial distribution toward a certain soliton state, which is po
sible owing to the lower bound on the Hamiltonian.

To conclude this section we wish to say a few wor
about the stability of the stationary solitons~2.23!. Near the
critical velocity this question can be treated within the pa
bolic NLSE ~3.20!, for which the answer is already known
As for the stability of solitons with velocities far from th
critical value, the terms for dispersion of the next order m
be taken into account. As we saw in this section, the fou
order terms, which ensure that the corresponding operatL
is positive, also provide for the stability of solitons. We a
sume that the positive definite four-order polynomial ope
tors should ensure the stability of one-dimensional solito
It is possible that the solitons will be unstable only for o
erators which increase at infinity (uVu→`) in proportion to
AuVu.
i-
-

-

t
-

-
-
s.

5. CONCLUDING REMARKS

In conclusion, we would like to note that the selectio
rules for solitons based on the criteria~2.8! and ~2.9! are
valid for arbitrary dimensionality. It is significant that th
conditions for the existence of solitons remain unchang
the corresponding operatorL must be sign-definite. In addi
tion, the fourth-order dispersion for all physical dimensio
alities D ensures the existence of stable solitons for
GNLSE with cubic nonlinearity~with neglect of its disper-
sion!. This follows from the estimate of the dispersion ter
of the Hamiltonian in terms ofI 2 and N. In this case the
inequality ~4.3! has the form

E ucu4dDx<CF E uDcu2dDxGD/4F E ucu2dDxG22D/4

.

~5.1!

Substituting this estimate into the Hamiltonian

H5E uDcu2dDx2E ucu4dDx

gives its lower bound:

H>E uDcu2dDx2CF E uDcu2dDxGD/4F E ucu2dDxG22D/4

>2S 4

D
21D S 4

CDD 4/~D24!

N~82D !/~42D !.

Apart from soliton stability, for media with Kerr nonlin
earity this also proves that wave collapse ceases becau
fourth-order dispersion for the physical dimensionalitiesD
52,3.

One last remark: in the present work we confined o
selves to consideration of equations with only cubic nonl
earity, although in the general expansion of the electric d
placementD ~2.2! the term which is quadratic with respect
the amplitude must be taken into account. If tangency occ
at a nonzero frequency, the quadratic anharmonic terms
not resonant near the critical velocity and can be elimina
by a canonical transformation~for further details regarding
this, see the review in Ref. 14!. These terms lead to renor
malization of the four-wave matrix element~3.8!. Thus, the
universality of the behavior of solitons near the critical v
locity remains in force.
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Zh. Éksp. Teor. Fiz.113, 1915~May 1998!

@S1063-7761~98!02505-0#

On page 555 the last term in Eq.~1! should be:( nm
8 Mnm

0 Vm
1Vn Bm

1 Bn .

Erratum: On the nature of turbulence †JETP 86, 107–114 „January 1998 …‡

L. N. Pyatnitski 

Institute of High Temperatures, Russian Academy of Sciences, 127412 Moscow, Russia
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Equations of motion of a spinning relativistic particle in external fields
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We consider the motion of a spinning relativistic particle in external electromagnetic and
gravitational fields to first order in the external field but to arbitrary order in the spin. The influence
of the spin on the particle trajectory is properly accounted for by describing the spin
noncovariantly. Specific calculations are performed through second order in the spin. A simple
derivation is presented for the gravitational spin–orbit and spin–spin interactions of a
relativistic particle. We discuss the gravimagnetic moment~GM!, a particular spin effect in
general relativity. We show that for a Kerr black hole the gravimagnetic ratio, i.e., the coefficient
of the GM, equals unity~just as the gyromagnetic ratio equals 2 for a charged Kerr hole!.
The equations of motion obtained for a spinning relativistic particle in an external gravitational
field differ substantially from the Papapetrou equations. ©1998 American Institute of
Physics.@S1063-7761~98!00105-X#
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1. INTRODUCTION

The problem of the motion of a particle with intern
angular momentum~spin! in an external field consists of tw
parts: the description of the spin precession and accoun
for the influence of the spin on the trajectory of motion. T
the lowest nonvanishing order inc22, the complete solution
for the case of an external electromagnetic field was gi
more than 70 years ago.1 The precession of a gyroscope in
centrally symmetric gravitational field was considered to
same approximation even earlier.2 Spin precession for the
case of the gravitational spin–spin interaction was stud
much later.3 The fully relativistic problem of spin precessio
in an external electromagnetic field was also solved m
than 70 years ago,4 and then in a more convenient formalism
using the covariant spin vector, in Ref. 5.

The situation with the second part of the problem, wh
refers to how the spin influences the trajectory, is differe
The covariant equations of motion for a spinning relativis
particle in an electromagnetic field were written by Fren
in the same paper,4 and for the case of a gravitational field
Ref. 6. These equations have been discussed repeatedly
various points of view in many papers~see, e.g., Refs. 7–1
and 38!. The problem of the influence of the spin on th
trajectory of a particle in external fields is not only of the
retical interest: it is related to the problem of describing
motion of ultrarelativistic particles in accelerators17 ~see a
recent review by Heinemann18!. There are also macroscop
objects whose internal rotation affects their motion in
external gravitational field: Kerr black holes. This problem
especially important in calculations of the gravitational
diation of binary stars. In this connection it was examined
Refs. 19–22. However, when we turned to these calc
tions, we found23 that even in the simpler case of an extern
field the equations of motion with spin taken into account
the lowest nonvanishing order inc22 used in these paper
8391063-7761/98/86(5)/11/$15.00
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lead to results that differ from the well-known gravitation
spin–orbit interaction. The problem is essentially related
the proper definition of the center-of-mass coordinate. Mo
over, it was found that in the samec22 approximation the
Papapetrou equations6 also fail to reproduce the result for th
gravitational spin–orbit interaction found in Ref. 2. This di
crepancy was pointed out long ago in Ref. 24; however,
explanation suggested in that paper does not appear t
satisfactory~see Ref. 23!.

In the present work we derive the equations of motion
a relativistic particle with a noncovariant description of sp
They agree with well-known limiting cases. Although for a
external electromagnetic field such equations have been
tained earlier to first order in the spin17 ~see also Ref. 18!, we
would like to start with comments related to the use of t
approximation in electrodynamics.

2. COVARIANT AND NONCOVARIANT EQUATIONS OF
MOTION OF A SPINNING PARTICLE IN AN
ELECTROMAGNETIC FIELD

The interaction of spin and an external electromagne
field is described, through to terms of orderc22, by the
well-known Hamiltonian~see, e.g., Ref. 25!

H52
eg

2m
s•B1

e~g21!

2m2
s•~p3E!, ~1!

whereB andE are the external magnetic and electric field
e, m, s, andp are the particle charge, mass, spin, and m
mentum, andg is the gyromagnetic ratio. Note that the stru
ture of the second~Thomas! term in this expression has no
only been firmly established theoretically but has also b
confirmed with high accuracy experimentally, at any rate
atomic physics. To avoid misinterpretations, we also n
that the second term on the right-hand side of Eq.~1! should
have been written in Hermitian form~see, e.g., Ref. 26!:
© 1998 American Institute of Physics
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p3E→
1

2
~p3E2E3p!5p3E1

i

2
¹3E.

But since we are interested primarily in the quasiclass
approximation, the interaction linear in spin the terms co
taining the derivatives of the fields are discarded.~Moreover,
the correction containing¹3E vanishes in the case of
potential electric field considered in Ref. 25!.

We attempt to build a covariant equation of motion w
spin, an equation that yields an expression for the force
the same approximation,

fm5
eg

2m
sB,m1

e~g21!

2m S d

dt
@E3s#m2s@v3E,m# D , ~2!

corresponding to the Hamiltonian~1! ~here and below a
comma with an index denotes a partial derivative!. The co-
variant correctionf m to the Lorentz forceeFmnun , linear in
the spin tensorSmn and in the gradient of the electromagne
field tensorFmn,l , may depend also on the 4-velocityum.
Since it satisfiesumum51, this correction must satisfy th
condition um f m50. Only two independent structures mee
ing the last condition can be constructed from the quanti
mentioned above. The first,

hmkFnl,kSnl2Fln,kukSlnum,

reduces in the adopted approximation to

2s~B,m2@v3E,m# !,

and the second,

ulFln,kukSnm,

reduces to

d

dt
@s3E#m .

~Note that the structures with the contractionFnk,lSkl re-
duce to these two expressions due to the Maxwell equat
and the antisymmetry ofSkl .)

Obviously, no linear combination of these two structur
can reproduce the correct expression~2! for the spin-
dependent force.

In a somewhat less general form this was demonstra
in Ref. 23. There it was pointed out that the coordinate in
covariant equation does not coincide with the usual o
Therefore, to obtain the correctc22 approximation to the
covariant equation of motion one needs to perform an a
tional redefinition of the coordinate:

r→r2
1

2m
@v3s#. ~3!

In the case of 1/2 spin this redefinition is closely related
the Foldy–Wouthuysen transformation.27 A generalization of
this substitution to the case of arbitrary velocities was
cently suggested by Heinemann.18

The correct equations of motion in an electromagne
field that allow for spin to first order have been known for
fairly long time.17 We recall that the initial physical defini
tion of spin is noncovariant and refers to the proper refere
frame of the particle: it is the three-dimensional vectors ~or
l
-

in

s

ns

s

d
e
e.

i-

o

-

c

e

three-dimensional antisymmetric tensor! of the internal an-
gular momentum defined in this reference frame. The co
riant vector of spinSm and the covariant antisymmetric ten
sor Smn are obtained from the above entities by a Loren
transformation. By the way, in this approach the constra
umSm50 andumSmn50 are valid identically. The precessio
frequency for spins at an arbitrary velocity is well-known
~see, e.g., Ref. 25!:

V5
e

2m H ~g22!FB2
g

g11
v~v•B!2v3EG

12F1

g
B2

1

g11
v3EG J , ~4!

where g51/A12v2 . Naturally, the corresponding interac
tion Lagrangian~here the Lagrangian formulation is som
what more convenient than the Hamiltonian one! is

L1s5V•s5
e

2m
sH ~g22!FB2

g

g11
v~v•B!2v3EG

12F1

g
B2

1

g11
v3EG J . ~5!

The equation of motion for the position has the usual for

S ¹2
d

dt
¹vDL tot50, ~6!

whereL tot is the total system Lagrangian, and the equation
motion for the spin in general form is

ṡ5$L,s%, ~7!

where$•••,•••% is the Poisson bracket, or

ṡ52 i @L,s# ~8!

in the quantum problem.
To conclude this section, let us discuss the followi

problem. It is far from obvious how meaningful these sp
corrections to the equations of motion of elementary p
ticles, say, electron or proton, are in general. According
the well-known Bohr argument~see Ref. 28!, the additional
Lorentz force due to the finite size of the wave packet o
charged particle and to the uncertainty relation exceeds
corresponding component of the Stern–Gerlach force.
the other hand, some time ago it was proposed that a bea
charged particles could be separated according to par
polarizations in a storage ring via the spin interaction w
external fields.29 Although this proposal is being actively dis
cussed~see, e.g., the review by Heinemann18!, the feasibility
of such a scheme~at least in principle! is unclear.

3. EQUATIONS OF MOTION OF A SPINNING PARTICLE IN
AN ELECTROMAGNETIC FIELD: GENERAL FORMALISM.
EFFECTS LINEAR IN THE SPIN

In this section we develop a general approach to
derivation of the equations of motion in an external elect
magnetic field to arbitrary order in the spin. We also rep
duce in passing the well-known result~4!.
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Our approach is based on the following physically ob
ous reasoning. As long as we do not discuss internal exc
tion of a body moving in an external field, this body~even if
it is macroscopic! can be considered an elementary parti
with spin.

Hence the Lagrangian describing the interaction of s
and an external field can be derived from the amplitude

2eJmAm ~9!

of elastic scattering of the particle with spins by the vector
potentialAm . In view of the arguments presented at the e
of Sec. 2, accounting for effects nonlinear in spin~which are
of primary interest to us! can be physically meaningful onl
in the classical limits@1. It is basically this approximation
that is used throughout the paper.

The matrix elementJm of the electromagnetic curren
operator between states with momentak andk8 can be writ-
ten ~provided thatP andT invariance apply! as follows~see
Refs. 30 and 31!:

Jm5
1

2e
c̄~k8!$pmFe1SmnqnFm%c~k!, ~10!

wherepm5(k81k)m andqm5(k82k)m .
The wave functionc of a particle with arbitrary spin can

be written as~see, e.g., Ref. 25, § 31!

c5
1

A2
S j

h D . ~11!

Both spinors,j5$j
ḃ1ḃ2•••ḃq

a1a2•••ap% andh5$h
ȧ1ȧ2•••ȧp

b1b2•••bq%, are sym-

metric in the dotted and undotted indices separately, anp
1q52s. For a particle with half-integer spin we can sele
p5s11/2 andq5s21/2. In thecase of integer spin it is
convenient to usep5q5s. The spinorsj andh are selected
so that under reflection they transform into each other~to
within a phase!. For pÞq they are different objects and be
long to different representations of the Lorentz group. F
p5q the two spinors coincide. Nevertheless, we use
same expression~11! for the wave function of any spin, i.e
we also formally introduce the objecth for integer spin,
bearing in mind that it can be expressed in terms ofj. This
makes it possible to do calculations for integer and h
integer spins in a unified way.

In the rest frame bothj andh coincide with the nonrel-
ativistic spinorj0, which is symmetric in all indices; in this
frame there is no difference between dotted and undo
indices. The spinorsj andh can be obtained fromj0 via the
Lorentz transformation

j5exp$S•f/2%j0 , h5exp$2S•f/2%j0 . ~12!

Here the vectorf is directed along the velocity, tanhf5v,

S5(
i 51

p

si2 (
i 5p11

p1q

si ,

andsi acts on thei th index of the spinorj0 as follows:

sij05~si !a ib i
~j0!

•••b i•••
. ~13!
-
a-

n

d

t

r
e

-

d

In the Lorentz transformation~12! for j, after the operatorS
has acted onj0 the first p indices become identical to th
upper undotted indices and the nextq indices become iden
tical to the lower dotted indices. Forh the situation is just
the opposite.

We note that in an external field the components of
locity v ~and the components off) do not commute, in
general. However, in the adopted approximation, linear
the external field, the noncommutativity, proportional to t
field, can be ignored. Moreover, we are mainly interested
the classical limit of the final result, where such commutat
are negligible, since they are proportional to an extra pow
of \. Therefore,v andf will be treated as ordinary numeri
cal parameters.

Next,

c̄5c†g05c†S 0 I

I 0D ,

where I is the sum of 232 identity matrices acting on al
indices of the spinorsj andh. The components of the matri
Smn52Snm are

S0n5S 2Sn 0

0 Sn
D , ~14!

Smn522i emnkS sk 0

0 sk
D , ~15!

s5
1

2 (
i 51

2s

si .

The scalar operatorsFe,m depend on two invariants,t
5q2 and t5(Smqm)2. The covariant spin vectorSm is de-
fined, e.g., for the state with momentumkm and can be ob-
tained via the Lorentz transformation from the spin vec
(0,s) in the rest frame:

Sm5~S0 ,S!, S05
~s•k!

m
, S5s1

k~k•s!

m~e1m!
. ~16!

In the expansion in the electric multipoles

Fe~ t,t!5 (
n50

Ne

f e,2n~ t !tn,

the highest powerNe obviously iss and s21/2 for integer
and half-integer spin, respectively. In the magnetic multip
expansion

Fm~ t,t!5 (
n50

Nm

f m,2n~ t !tn,

the highest powerNm is s21 and s21/2 for integer and
half-integer spin, respectively. Clearly,

f e,0~0!51, f m,0~0!5
g

2
.

Note that we have chosen the noncovariant normal
tion for the amplitude~9!, since we are interested in th
Lagrangian referring to the world timet and not to the proper
time t.
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Let us now reproduce in this approach the well-kno
result ~5! for the case of a constant external field. We st
with terms proportional to theg-factor. The corresponding
term in the scattering amplitude can be written as

eg

4e
j08

†H @exp$S•f/2%~s•B!exp$2S•f/2%

1exp$2S•f/2%~s•B!exp$S•f/2%#1
i

2
@exp$S•f/2%

3~S•E!exp$2S•f/2%2exp$2S•f/2%~S•E!

3exp$S•f/2%#J j0 . ~17!

What is important in the case of a constant external field
that we can putk85k, v85v, andf85f, sinceq5k82k
corresponds to the field gradient.

In our further calculations we use the well-known ide
tity

exp$Â%B̂ exp$2Â%5B̂1
1

1!
@Â,B̂#

1
1

2!
@Â,@Â,B̂##1•••,

and the following relationships:

@S i ,S j #54i e i jksk , @S i ,sj #5 i e i jkSk , ~18!

coshf5g, sinhf5vg. ~19!

After some simple algebraic transformations, the express
~17! reduces to

eg

2m
s•FB2

g

g11
v~v•B!2v3EG . ~20!

Let us now discuss the contribution of the convecti
term

2
e

2e
c̄~k8!c~k!pmAm . ~21!

We write the product of the exponentials in

c̄~k8!c~k!5 1
2j08

†@exp$S•f8/2%exp$2S•f/2%

1exp$2S•f8/2%exp$S•f/2%#j0

~22!

as

exp$S•f8/2%exp$2S•f/2%

5)
p

exp$s•f8/2%exp$2s•f/2%)
q

exp$2s•f8/2%

3exp$s•f/2%. ~23!

Let us consider a typical factor in this formula:
t

is

n

exp$s•f8/2%exp$2s•f/2%

5cosh~f8/2!cosh~f/2!2~n8•n!sinh~f8/2!

3sinh~f/2!1s•@n8sinh~f8/2!cosh~f/2!

2n cosh~f8/2!sinh~f/2!#

2 i ~s•@n83n# !sinh~f8/2!sinh~f/2!, ~24!

wheren85v8/v8, andn5v/v. Here we are interested in gra
dients only as long as they enter into the expression toge
with the spin, in cosh(f8/2)cosh(f/2)2(n8•n)3sinh(f8/2)
3sinh(f/2) we putf85f andn85n, after which this com-
bination becomes equal to unity. Since we are intereste
an interaction which is linear in the spin, the product~23!
reduces to

11S•@n8sinh~f8/2!cosh~f/2!2n cosh~f8/2!sinh~f/2!#

22i ~s•@n83n# !sinh~f8/2!sinh~f/2!.

When this combination is plugged into~22!, the terms pro-
portional toS cancel out. If we now limit ourselves to term
linear in q, we reduce the spin-dependent part of~21! to

2e
pm

2e

i ~s•k3q!

m~e1m!
Am .

We note that sincepmqm50, the following identity holds:

pmqaAm5pm~qaAm2qmAa!5pmiF am . ~25!

Now we can putpm→2mum , whereum is the 4-velocity. As
a result we arrive at the following expression:

2
e

2m
s•F2S 12

1

g DB2
2g

g11
v~v•B!2

2g

g11
v3EG .

~26!

The sum of~20! and ~26! yields ~5!. Thus, we have repro
duced the well-known result for the interaction linear in t
spin, starting from the relativistic wave equation for arbitra
spin.

Below we repeatedly use identities of the form~25!. In
classical terms such a transformation amounts to discardi
total time derivative in the Lagrangian~or adding such a
derivative to the Lagrangian!. Indeed,

umqm→um]m5gS ]

]t
1v•¹D5g

d

dt
.

4. EQUATIONS OF MOTION OF A SPINNING PARTICLE IN
AN ELECTROMAGNETIC FIELD. EFFECTS QUADRATIC
IN THE SPIN

Let us now investigate the interaction of second orde
the spin. The explicitly quadrupole ‘‘bare’’ interaction in~9!
and ~10! is

2e
pm

2e
f e,2~Saqa!2Am . ~27!

Using the identity~27! and Eqs.~16!, we reduce the interac
tion to
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2e fe,2gH ~v•s!F ]

]t
1

g

g11
~v•¹!G1

1

g
s•¹J F ~s•E!

2
g

g11
~s•v!~v•E!1s•v3BG .

Discarding the total time derivative]/]t1v–“, we arrive at
the following expression:

L2s52e fe,2Fs•¹2
g

g11
(v–s)(v•¹) GFs•E2

g

g11

3(s•v)(v•E)1s•(v3B) G . ~28!

If we use the Maxwell equations and add a total derivat
with respect tot, we can show that the tensorsisj in ~28! can
be written in the following irreducible form:

sisj→sisj2~1/3!d i j s
2.

Now, from the nonrelativistic limit of~28! it follows that
~28! indeed describes the interaction between the exte
field and the quadrupole moment

Qi j 522e fe,2~3sisj2d i j s
2!, ~29!

Q5Qzzusz5s522e fe,2s~2s21!.

As g→`, the interaction~28! tends to the constant

L2s52e fe,2@s•¹2~v•s!~v•¹!#@s•E2~s•v!~v•E!

1s•~v3B!#. ~30!

It is well known that even in the absence of a bare qu
rupole term, i.e., forf e,250, a quadrupole interaction in th
nonrelativistic limit arises due to the convection and ma
netic terms in~9!. The value of this induced quadrupole m
ment for a particle with arbitrary spin was obtained in R
31:1)

Q152e~g21!S \

mcD
2H s, integer spin,

s21/2, half2integer spin.
~31!

Here we have explicitly displayed the Planck constant\ to
show that the induced quadrupole momentQ1 vanishes in
the classical limit\→0, s→`, \s→const. Hence the inter
action that is second order in the spin and proportional toQ1

has no real effect on the equations of motion of a class
particle ~although it does play a role in atomi
spectroscopy31!.

The convection and magnetic terms in~9! induce an in-
teraction of second order in the spin with a classical limit,
interaction of interest for our problem. It is convenient he
to start with the convection current interaction. Let us
back to Eq.~24!. In it we again put

cosh~f8/2!cosh~f/2!2~n8•n!sinh~f8/2!sinh~f/2!51.

In the other terms which are linear ins we keep only the
first power ofq→2 i\¹ in the hope that in the final resu
~23! \ will be present in the combination\s→const. Nev-
ertheless, these terms by themselves are small compar
unity, so that in the classical limit the expression~24! can be
written as
e

al

-

-

.

al

n

to

exp$s•@n8 sinh~f8/2!cosh~f/2!2n cosh~f8/2!

3sinh~f/2!#

2 i ~s•@n83n#sinh2~f/2!%.

Clearly, in the product~23! the operatorss attached to
n8sinh(f8/2)cosh(f/2)2n cosh(f8/2)sinh(f/2) combine in
the exponent of the resulting exponential into the operatoS,
which vanishes in the classical limit. In this limit the on
operatorss that survive are those that are attached to (n8
3n)sinh2(f/2); they combine into 2s. Thus, in the classica
limit with the second identity in~19! taken into account, the
product~23! reduces to

expH g

g11
~s•v3“ !J . ~32!

Note that the action of the operator~32! on any function
of position, whether it is the vector potential or the fie
strength, amounts to shifting the function’s argument:

r→r1
1

m

g

g11
s3v.

Interestingly, this substitution was suggested
Heinemann18 for a transition from covariant equations line
in spin to noncovariant equations. Equation~3! is a particular
case of this substitution in thec22 approximation.

Now, taking into account the second term in the expa
sion of the exponential function~32! and using the identity
~25! once more, we can easily obtain the following expre
sion for the interaction quadratic in the spin that arises fr
the convection current:

2
e

2m2

g

g11
~s•v3¹!F S 12

1

g D s•B2
g

g11

3~s•v!~v•B!2
g

g11
~s•v3E!G . ~33!

Now we discuss the contribution to the effect being d
cussed due to the magnetic moment. It is convenient to w
the term in the scattering amplitude we are interested in~it is
proportional to theg-factor! as

eg

4e
j08

†$@exp$S•f8/2%exp$2S•f/2%exp$S•f/2%~s•B!

3exp$2S•f/2%1exp$2S•f8/2%exp$S•f/2%

3exp$2S•f/2%~s•B!exp$S•f/2%#1~ i /2!

3@exp$S•f8/2%exp$2S•f/2%exp$S•f/2%~S•E!

3exp$2S•f/2%2exp$2S•f8/2%exp$S•f/2%

3exp$2S•f/2%~S•E!exp$S•f/2%#%j0 . ~34!

Using in this case the first term in the expansion of t
exponential function~32!, we arrive at the following expres
sion for the contribution proportional to the magnetic m
ment:
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eg

2m2

g

g11
~s•v3¹!F ~s•B!2

g

g11
~s•v!~v•B!

2~s•v3E!G . ~35!

The final result for the induced interaction quadratic in t
spin is

L2s
i 5

e

2m2

g

g11
~s•v3¹!F S g211

1

g D ~s•B!2~g

21!
g

g11
~s•v!~v•B!2S g2

g

g11D ~s•v3E!G . ~36!

We note that in the nonrelativistic limit the induced i
teraction with the magnetic field tends to zero asv/c and that
with an electric field, as (v/c)2. Moreover, the part of the
interaction~36! that is not related to theg-factor is not irre-
ducible in the spin; in other words,sisj in it cannot be re-
duced to the irreducible tensorsisj2(1/3)d i j s

2. In fact, the
interaction ~36! is not a quadrupole one. However, i
asymptotic behavior forg→` is of interest. In this limit

L2s
i 5

e

2m2 ~g21!~s•v3“ !~s•B!2~s•v!

3~v•B!2~s•v3E!. ~37!

Surprisingly, the asymptotic formulas~30! and~37! coincide
to within a factor and a total time derivative. To prove this
is convenient to introduce a triple of orthogonal unit vecto

v; r5
v3s

uv3su
, z5v3r.

Using the fact that this triple forms a complete basis and
equationĖ5“3B and discarding the total derivative wit
respect tot, we can easily verify that

@~s•¹!2~v•s!~v•¹!#@~s•E!2~s•v!~v•E!1~s•v3B!#

5@v3s#2~z•¹!@~z•E!1~r•B!#

coincides with

@s•~v3¹!#@~s•B!2~s•v!~v•B!2s•~v3E!#

52~v3s!2~r•¹!@r•~v3B!1r•E#.

Thus, there is a special value of the bare quadrupole
ment,

Q522~g21!
es2

m2
, or f e,25~g21!

1

2m2
~38!

~recall that now we are considering a classical situati
where s@1), for which the total interaction, quadratic i
spin,L2s1L2s

i , asymptotically decreases with increasing e
ergy.

The situation is similar to the one involving an intera
tion that is linear in spin. It is well known~see, e.g., Refs. 11
32, and 33! that there exists a special value of theg-factor,
g52, at which the interaction linear in spin decreases ag
:

e

o-

,

-

→`. This follows immediately from the formula~5! for the
first-order Lagrangian. Thus, if we also assumeg52, we
obtain

Q522
es2

m2
, or f e,25

1

2m2
. ~39!

Note thatg52 for the bare magnetic moment is a ne
essary~but not sufficient! condition for quantum electrody
namics to be renormalizable.11,32,33The condition is satisfied
not only for the electron but also for the charged vector b
son in the renormalizable electroweak theory.

In one respect, however, the situation with the spec
values~38! and~39! of the quadrupole moment differs from
the situation with theg-factor. The conditions~38! and~39!,
as distinct from the conditiong52, are not universal, since
they are valid only for large spins,s@1; in other words, they
refer only to classical objects with internal angular mome
tum. In particular, for the charged vector boson of the ren
malizable electroweak theory the bare quadrupole interac
is absent,f e,250. The quadrupole moment of this particle
~in our terms! induced and is given by Eq.~31! at s51 and
g52.

5. SPIN PRECESSION IN A GRAVITATIONAL FIELD

In this section we present a simple and general der
tion of the equations of spin precession in a gravitatio
field. This approach not only makes it possible to easily
produce and generalize known results for spin effects. T
remarkable analogy detailed above between gravitational
electromagnetic fields makes it possible to easily apply
results of Secs. 3 and 4 to the case of an external grav
tional field.

The law of angular momentum conservation in fl
space–time and the equivalence principle imply that the s
4-vector Sm is in translational motion along the particle
worldline. The parallel transport of a vector along a geode
xm(t) means that its covariant derivative vanishes:

DSm

Dt
50. ~40!

~In this section we restrict our discussion to effects that
linear in the spin.! At this point in our discussion we intro
duce the tetrad formalism, which is a natural way to descr
spin. In view of Eq.~40!, the equation for the tetrad compo
nents of spinSa5Smem

a is

DSa

Dt
5

dSa

dt
5Smem;n

a un5habgbcdu
dSc, ~41!

where

gabc5eam;neb
mec

n52gbac ~42!

are the Ricci rotation coefficients.34 Of course, the equation
for the tetrad 4-velocity components is exactly the same:

dua

dt
5habgbcdu

duc. ~43!
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The meaning of Eqs.~41! and ~43! is clear: the tetrad com
ponents of both vectors vary in the same way due only to
rotation of the local Lorentzian 4-frame.

In exactly the same way, the 4-dimensional spin a
velocity of a charged particle with the gyromagnetic ratiog
52 precess with the same angular velocity in an exter
electromagnetic field by virtue of the Bargman–Miche
Telegdi equation5,25 ~at g52) and the Lorentz equation:

dSa

dt
5

e

m
FabS

b,
dua

dt
5

e

m
Fabu

b.

Thus we have the evident correspondence

e

m
Fab↔gabcu

c. ~44!

The correspondence makes it possible to obtain the pre
sion frequencyv of the three-dimensional spin vectors in an
external gravitational field from~4! via the simple substitu-
tion

e

m
Bi→2

1

2
e iklgklcu

c,
e

m
Ei→g0icuc. ~45!

This frequency is

v i52e iklS 1

2
gklc1

uk

u011
g0lcD uc

uw
0

. ~46!

The common factor 1/uw
0 in this expression is related to th

passage in the left-hand side of Eq.~41! to differentiation
with respect to the world timet:

d

dt
5

dt

dt

d

dt
5uw

0 d

dt
.

We have attached a subscriptw to the quantityuw
0 to empha-

size that this is a world component of 4-velocity rather th
a tetrad component. The other indices in~46! are tetrad in-
dices, c50, 1, 2, 3 andi , k, l 51, 2, 3. The corresponding
spin-dependent correction to the Lagrangian is

L1sg5s•v. ~47!

As an illustration of Eqs.~46! and ~47!, we apply them
to the cases of spin–orbit and spin–spin interactions.
restrict discussion~as is common in such problems! to the
linear approximation in the gravitational field. However,
our approach, in contrast to the standard approaches,
problems can easily be solved for arbitrary particle velo
ties.

The tetradseam are related to the metric as follows:

eamebnhab5gmn .

In the linear approximation we can putgmn5hmn1hmn , so
that there is no need to distinguish between tetrad and w
indices ineam . The ambiguity in the choice of tetrads can
resolved by selecting the symmetric gaugeemn5enm . Then

emn5hmn1 1
2hmn .

Using the expression~42! for the Ricci coefficients, in the
linear approximation we find that
e

d

al

s-

n

e

th
-

ld

gabc5
1
2~hbc,a2hac,b!. ~48!

We start with the spin–orbit interaction. In the centra
symmetric field created by a massM the metric is

h0052
2kM

r
, hmn52

2kM

r
dmn . ~49!

Here the nonvanishing Ricci coefficients are

g i jk5
kM

r 3
~d jkr i2d ikr j !, g0i052

kM

r 3
r i . ~50!

Plugging these coefficients into~46! yields the following ex-
pression for the precession frequency:

vls5
2g11

g11

kM

r 3
v3r . ~51!

In the limit of low velocities,g→1, the answer goes ove
into the classical result.2

Now we examine spin–spin interaction. Let the spin
the central body bes0. The components of the metric that a
linear in s0, which are responsible for the spin–spin intera
tion, are

h0i52k
@s03r # i

r 3
.

Here the nonvanishing Ricci coefficients are

g i j 05kS ¹i

@s03r # j

r 3
2¹j

@s03r # i

r 3 D , ~52!

g0i j 52k¹i

@s03r # j

r 3
.

The the spin–spin precession frequency is

vss52kS 22
1

g D ~s0•¹!¹
1

r
1k

g

g11
@v~s0•¹!2s0~v•¹!

1~v•s0!¹#~v•¹!
1

r
. ~53!

In the low-velocity limit this formula also becomes the co
responding classical result.3

To conclude this section we note that in the case of
external gravitational field there is no covariant express
for the force linear in the particle spin. In other words, t
deviation of the trajectory of a spinning particle from th
geodesics is not described by the Riemann tensor. In
case the possible covariant structure is unique to withi
factor ~in Ref. 6 this factor equals21/2m): Rmnabu

nSab. As
mentioned in the Introduction, this covariant description~as
distinct from our formulas~46! and ~47!! contradicts the
classical results in the low-velocity limit.

6. EQUATIONS OF MOTION OF A SPINNING PARTICLE IN A
GRAVITATIONAL FIELD: GENERAL APPROACH

The equations of motion in an external gravitational fie
to any order in spin are constructed similarly to the equati
of motion in the case of an electromagnetic field.
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We start the elastic scattering amplitude in a weak
ternal gravitational fieldhmn . This amplitude will be used
only as a guide, and later we will step outside the line
approximation. The amplitude is

2 1
2Tmnhmn. ~54!

The matrix elementTmn of the energy–momentum tenso
between states with momentak andk8 can be written as

Tmn5
1

4e
c̄~k8!H pmpnF11

1

2
~pmSnl1pnSml!qlF2

1~hmnq22qmqn!F31@SmSnq22~Smqn1Snqm!

3~Sq!1hmn~Sq!2#F4J c~k!. ~55!

The scalar operatorsFi in this expression are also expand
in powers oft5(Sq)2:

Fi~ t,t!5 (
n50

Ni

f i ,2n~ t !tn.

Clearly, the total number of invariant form factorsf i ,2n is
4s12 and 4s11 for integer and half-integer spin, respe
tively. The independence of the four tensor structures in~55!
is obvious. As for the completeness of the expansion, it
be verified, e.g., by calculating the total number of invaria
form factors in the annihilation channel and showing tha
coincides with the above result.

In the generally covariant notation, the structu
(hmnq22qmqn)hmn corresponds to the scalar curvatureR,
and @SmSnq22(Smqn1Snqm)(Sq)1hmn(Sq)2#hmn corre-
sponds to the productRmnSmSn, whereRmn is the Ricci ten-
sor. Since we are interested in the equations of motion
sourceless field, the corresponding terms in the expan
~55! are omitted.

Just as in electrodynamics charge conservation lead
the conditionf e,0(0)51, here energy conservation leads
f 1,0(0)51. As for the term in the amplitude~54! containing
f 2,0, it is convenient to write it in a different form, using th
analogy~44! with an electromagnetic field. Puttingg52 and
(e/m)Fab5 f ab5gabcu

c in the corresponding electromag
netic term

i
eg

8e
c̄~k8!SabFabc~k!,

we arrive at the following contribution to the Lagrangian
the gravitational interaction:

i
1

4uw
0

c̄~k8!Sabf abc~k!, ~56!

where, as usual,uw
0 5e/m. If for gabc we use the linear ap

proximation~48!, we can easily see that~56! indeed corre-
sponds to the discussed contribution to the amplitude p
vided thatf 2,051. Thus, under gravity the value of one mo
form factor at zero momentum transfert is fixed. This cor-
responds to conservation of angular momentum. This
pointed out long ago by Kobzarev and Okun’35 and Hehl
et al.36
-

r

n
t
t

a
on

to

o-

s

Let us now go back to the convection term in~54!. As in
electrodynamics, when we go over to spinors in the r
frame, the term of first order in spin can be written as

2
pmpn

8e

1

m

u0

u011
~s•v3“ !hmn . ~57!

Using ~25! and ~48!, we obtain

pm¹khmn→2pm~2]khmn1]mhkn!→22pagakn .

Thus, the expression~57! can be written in terms of the Ricc
coefficients as follows:

1

uw
0

u0

u011
emnksmvnuaucgakc . ~58!

Clearly, the sum of~56! and~58! reproduces the Lagrangia
~47!.

7. EQUATIONS OF MOTION OF A SPINNING PARTICLE IN A
GRAVITATIONAL FIELD. SECOND ORDER IN THE SPIN

Let us now investigate the effects of second order in
spin in the equations of motion in a gravitational field. In t
case of a binary star these effects are of the same orde
magnitude as the spin–spin interaction when the spins of
components of the system are comparable.23 The influence of
the latter on the characteristics of gravitational radiation
comes noticeable for a system of two extreme black hole20

Correspondingly, second-order spin effects in the equati
of motion become substantial if at least one component o
binary is an extreme black hole.23 Therefore, it is interesting
to study these effects not only from the theoretical vie
point: they can be detected~at least in principle! with the
gravitational wave detectors under construction.

An obvious source of second-order spin effects is
term

L2sg52 f 1,2

1

8e
pmpn~Sq!2hmn ~59!

in the amplitude~54!. Due to the relation

pmpnqaqbhmn5pmpn~qaqbhmn1qmqnhab2qaqnhmb

2qbqmhna!→2pmpnRmanb ,

the Lagrangian~59! is written in terms of the Riemann ten
sor:

L2sg52
k

2e
uaSbucSdRabcd. ~60!

Instead off 1,2, we have introduced a dimensionless para
eterk:

f 1,25
k

2m2 .

At this point it is convenient to use the Petrov represe
tation for the components of the Riemann tensor:34

Ekl5R0k0l , Ekl5Elk ,

Ckl5
1
4ekmne lrsRmnrs, Ckl5Clk , ~61!



it

n

ee

on
h

g

e-

n

, i
b

f
s
-

of
he

e

is

tic

-
at
ac-

it is

,
the

847JETP 86 (5), May 1998 A. A. Pomeranski  and I. B. Khriplovich
Bkl5
1

2
e lrsR0krs , Bkk50.

We limit our discussion to the case of a sourceless grav
tional field. Then, atRab50, we can simplify~61! still fur-
ther:

Ckl52Ekl , Bkl5Blk , Ekk5Ckk50. ~62!

Finally, we arrive at the following interaction Lagrangia
that is quadratic in the spin:

L2sg52
k

2e F ~2u211!Ekl22S 22
1

u011D ukumElm

1dklumunEmn1
1

~u011!2
ukulumunEmn

22u0ekmnumBnl1
2

u011
ukume lrnurBmnG

3S sksl2
1

3
dkls

2D . ~63!

To avoid any misunderstanding, we note that all thr
dimensional indices in Eq.~64! ~and in Eq.~65!! are in fact
contravariant.

As in electrodynamics, along with the bare interacti
~63! there is an induced interaction quadratic in the spin. T
explicit expression can be obtained most easily by setting
52 in the electromagnetic formula~36! and by introducing
the substitution~45!. We also take into account the corr
spondence

qigabcu
c5~qigabc2qcgabi!u

c

→ i ~] igabc2]cgabi!u
c→ i Rabciu

c.

Finally, using~61! and ~62!, we obtain the following result
for the induced interaction:

L2sg
i 5

1

2e H S 2u22
u021

u011
D Ekl22F22

1

u011
2

1

~u011!2G
3ukumElm1F12

1

~u011!2GdklumunEmn1
1

~u011!2

3ukulumunEmn22S u02
1

u011D ekmnumBnl

1
2

u011
ukume lrnurBmnJ sksl . ~64!

As in the electromagnetic case, the induced interaction te
to zero in the nonrelativistic limit;v/c and the spin factor
sksl in it is not an irreducible tensor.

The asymptotic behavior ofL2sg and L2sg
i is the same:

both Lagrangians increase linearly with energy. However
this case too the coefficient in the bare interaction can
chosen in such a way,k51, that the total Lagrangian o
second order in the spin decreases~as well as the analogou
interaction in electrodynamics! when the energy tends to in
finity. At k51,
a-

-

e

ds

n
e

L2sg1L2sg
i 52

1

e~u011!
S u0Ekl2

1

u011
ukumElm

1
1

2~u011!
dklumunEmn1ekmnumBnlD sksl .

~65!

8. GRAVIMAGNETIC MOMENT: MULTIPOLES OF BLACK
HOLES

There is a profound analogy between the Lagrangian
the interaction of the magnetic moment which is linear in t
spin and the electromagnetic field,

Lem52
eg

4m
FabS

ab, ~66!

and the bare gravitational Lagrangian~60!, which is qua-
dratic in the spin.11 ~Here it proves more convenient to writ
the gravitational Lagrangian~like Lem) for the proper timet
rather than the world timet, i.e., to multiply ~60! by e/m.!
This analogy is based on the following observation. It
well-known that the canonical momentumi ]m enters into
relativistic wave equations for a particle in electromagne
and gravitational external fields via the combination

Pm5 i ]m2eAm2 1
2S

abgabm .

The structure of the commutator~or Poisson bracket in the
classical limit! implies that

@Pm ,Pn#52 i ~eFmn2 1
2S

abRabmn!

that in a sense2(1/2)SabRabmn plays the same role in grav
ity as eFmn in electromagnetism. It is quite natural then th
the gravitational analog of the electromagnetic spin inter
tion ~66! is

Lgm5
k

8m
RabcdS

abScd. ~67!

Clearly, ~67! and ~60! coincide ~to within the factore/m).
This become evident if we bear in mind thatSab

5eabcdScud and that

R̃abcd5
1
4 eab

e f ecd
gh Re f gh2Rabcd,

which is true for a sourceless gravitational field.
By analogy with the magnetic moment

eg

2m
Smn,

it is natural to introduce the gravimagnetic moment

2
k

2m
SabScd.

The gravimagnetic ratiok, like the gyromagnetic ratiog in
electrodynamics, can generally take any value. However,
quite natural that under gravity the valuek51 is just as
special, asg52 is in electrodynamics. In any case, atg52
andk51 the spin equations of motion are the simplest.

For a classical object the values of both parametersg
and k, generally depend on the various properties of
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object. For black holes the situation is different, howev
From an analysis of the Kerr–Newman solution it follow
that the gyromagnetic ratio of a charged rotating black h
is universal~and equal to that of the electron!: g52 ~see Ref.
37!.

Let us show that for a Kerr black hole the gravimagne
ratio isk51. In fact, this value follows from the analysis o
the motion of the spin of a black hole in an external fie
done by Thorne and Hartle19 ~although they did not formu-
late this statement explicitly!. Here we present an indepen
dent and, in our opinion, simpler derivation of this importa
result.

At great distances from a Kerr hole the hole can be c
sidered a point source of a weak gravitational field. To fi
order in the field of the hole at rest, the Lagrangian den
corresponding to the interaction~60! can be written as

L5
k

4m
~s•¹!2h00d~r !. ~68!

The correction to the energy-momentum tensor induced
this manner has only one component,

dT0052
k

2m
~s•¹!2d~r !. ~69!

Let us find the corresponding correction to the 00-compon
of the metric. In the gauge

hmn,n50, h̄mn5hmn2 1
2hmnha

a , ~70!

the static Einstein equation forh00 in the linear approxima-
tion is

Dh0058pkT00 .

The induced correction to metric is

h005k
k

m
~s•¹!2

1

r
. ~71!

Let us now compare this corrections with the cor
sponding contribution to the Kerr metric. In Boyer
Lindqvist coordinates this metric is

ds25S 12
r gr

S Ddt22
S

D
dr22Sdu22S r 21a2

1
r gra2

S
sin2u D r 2sin2u1

2r gra

S
sin2udf dt,

~72!

whereD5r 22r gr 1a2, S5r 21a2 cos2u, and a5s/m. For
r g50 the metric~72! describes a flat space in spheroid
coordinates.34 At the same time, in a flat space Cartesi
coordinates correspond to the gauge~70!. The transition
from spheroidal coordinates to Cartesian coordinates is
ried out with the required accuracy by the substitution

r→r1
a~a•r !2ra2

2r 2
.

Obviously, in Cartesian coordinates the spin-dependent
of the 00-component of the metric
.

e

t

-
t
y

in

nt

-

l

r-

rt

g00512
r g

r
1

r ga2

2r 3
~3cos2u21!,

coincides withh00 of ~71! at k51. A somewhat more com
plicated discussion of the spatial components of the K
metric leads to the same result,k51.

Note that the motion of a Kerr black hole in an extern
gravitational field is not described by the Papapetrou eq
tion even we ignore the problem of a spin–orbit interacti
which is linear in the spin. The important thing is that th
equation refers to the casek50 ~see Ref. 14!.

Reasoning along similar lines, we can prove that fo
charged Kerr hole the gravimagnetic ratiok is also unity.
Moreover, it can be proved that the electric quadrupole m
ment of a charged Kerr hole also equals

Q522
es2

m2
,

a value at which the interaction that is quadratic in spin
creases with increasing energy. We can also demonstrate
the higher multipoles of a charged Kerr hole have values
guarantee that the interaction of any order in the spin~but, of
course, linear in the external field! asymptotically decrease
with increasing energy.
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Mass operator of an axion in a crossed field
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The dominant one-loop electron contribution to the mass operator of an axion in a crossed field
in the asymptotic limits of the parametersq2/me

2 andx5Ae2(qF2q)/me
3 is calculated.

The corresponding electromagnetic mass of the axion is compared with the quantum-
chromodynamic mass due to mixing withp0. Expressions are derived for the probability of pair
creationa→e1e2, and the fundamental conclusion is reached that refractive effects are
present in the propagation of an axion in an external electromagnetic field. ©1998 American
Institute of Physics.@S1063-7761~98!00205-4#
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The axion is a hypothetical particle whose existence m
explain the absence of violations of CP invariance in stro
interactions on the basis of natural dynamical consideratio
Specifically, in the Peccei–Quinn scheme1 the pseudoscala
axion field a is introduced as initially massless with a L
grangian for the interaction with the quantum chromodyna
ics ~QCD! color field ~with a kinetic term! in the form

La5
1

2

]a

]xm

]a

]xm 2
as

8p f a
aGbmnG̃b

mn , ~1!

whereas is an effective dimensionless coupling constant
the strong interactions,b is the color index,G̃ is the dual
tensor, f a is a constant with dimensions of energy~the
Peccei–Quinn energy scale!. The global symmetryUPQ of
~1! consists in invariance of the sum of the LagrangianLa

and the effective QCD LagrangianLs ~Ref. 2! with respect
to the corresponding transformation, reducing for the ax
field to the shifta→a1a0 .

The main idea of Peccei and Quinn is that in quant
theory the axion acquires a dynamical mass due to mix
with p0, since the transition axion→2 gluons→2 quarks
→p0 meson has nonzero amplitude. The corresponding t
in the Lagrangian (1/2)ma

2a2 violates theUPQ symmetry of
~1!; however, this means that in general the low-energy
grangian ~1! contains an effective potentialV(a) (Va→0

.(1/2)ma
2a2). The parameters ofV(a) can be chosen suc

that the sumLs1La does not contain CP-invariant term
~for more details, see the review in Ref. 3!. In other words,
the axion is a pseudoscalar Goldstone boson, that is allo
upon spontaneousUPQ symmetry breaking in~1!, and f a is
the energy scale of this symmetry breaking, wheref a

*1010 GeV ~although arguments exist both in favor of
larger4 and a smaller5 value1! of the lower limit!.

An equivalent scheme for realizing this mechanism c
sists in introducing a direct axion–fermion coupling6 of the
form

L5
cf

2 f a
~C̄gag5C!

]a

]xa
, ~2!
8501063-7761/98/86(5)/4/$15.00
y
g
s.

-

n

g

m

-
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-

which is preferable3 ~herecf is a model-dependent dimen
sionless constant of order unity!. This gives rise to the exis
tence of self-energy diagrams with a fermion loop~see Fig.
1!. As the axion propagates in an external electromagn
field, as a result of its interaction with the charged fermi
propagator the axion can acquire an electromagnetic m
dma , and it is of interest to compare it with the QCD ma
ma . The latter, according to astrophysical data, can v
over a wide range: 1025 eV&ma&10 eV. For reasonable
values of the field and energy of the axion~in the same
reference frame! it is possible to restrict the discussion to th
contribution of the electron loop (f 5e), which corresponds
to the lowest charged fermion mass.

In a more general formulation it is necessary to find t
mass operator of the axion in an electromagnetic field, wh
imaginary part determines the probability of creation of
e1e2 pair in this field, which is of independent interest.

In the calculations that follow, we employ the invaria
crossed-field technique developed by Ritus.7 In such a field,
the two invariants

h5
e2~F2!a

a

m4 , g5
e2

m4 emnabFmnFab

are equal to zero (e and m are the charge and mass of th
electron!. However, ifx2@h,g, where

x5
1

m3 Ae2~qF2q!, ~3!

the method also yields adequate results for arbitrary wea
varying external electromagnetic fields.

In accordance with the form of the interaction Lagran
ian ~2!, the single-loop electron contribution to the axio
mass operator has the form

M252
ice

2

4 f a
2 E d4zei ~qz!Tr@ q̂g5G~z!q̂g5G~2z!#, ~4!

whereq is the momentum of the external line,G(z) is the
coordinate-difference–dependent part of the total Gree
function of an electron in the crossed field
© 1998 American Institute of Physics
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S~x,y!5expF ieE
x

y

~dx8A~x8!!GG~x2y!, ~5!

which in the proper-time representation is equal to (eF
→F)

G~z!52
1

~4p!2 E
0

` ds

s2 expF2
iz2

4s
2 ism2

2 is
~zF2z!

12 GFm1
ẑ

2s
2

s

3
~gF2z!

1
ms

2
~gFg!2

ig5~gF̃z!

2 G , ~5a!

F̃ab5(1/2)eabmnFmn is the dual tensor, and
g552 ig0g1g2g3 ~the phase factor in Eq.~5! in the loop
with two vertices cancels out!. Taking Eq.~5a! into account,
expression~4! can be written in the form

M252
ice

2

4~4p!4f a
2 E

0

` ds1

s1
2 E

0

` ds2

s2
2 TrH q̂g5Fm1

ẑ

2s1

2
s1

3
~gF2z!1

ms1

2
~gFg!2

ig5~gF̃z!

2 G q̂g5

3Fm2
ẑ

2s2
1

s2

3
~gF2z!1

ms2

2
~gFg!

1
ig5~gF̃z!

2 G J F exp@2 im2~s11s2!#, ~6!

wherez here is understood to mean the differential opera
za52 i ]/]qa acting on the functionF that appears as
result of integration over the coordinatez:

F 516ip2b2 expF ibS q22
1

3
s1s2~qF2q! D G ,

~7!

b5
s1s2

s11s2
.

After taking the trace and calculating quadratic com
nations likez2, (zF2z), (qF2z)2, etc. with the help of the
relation

zmzn→2 i ~2b!S gmn2
1

3
s1s2Fmn

2 D1~2b!2Fqm

2
1

3
s1s2~qF2!mGFqn2

1

3
s1s2~qF2!nG

we obtain

FIG. 1.
r

-

M25
ce

2

16p2f a
2 E

0

`E
0

` ds1ds2

~s11s2!2 expH 2 im2~s11s2!

1 ibFq22
1

3
s1s2~qF2q!G J H 2ibF2

q2

2s1s2

2
1

3 S s1

s2
1

s2

s1
21D ~qF2q!G2m2@q2

22s1s2~qF2q!#1~2b!2F2
q4

4s1s2

1
1

6 S s1

s2
1

s2

s1
1

5

2Dq2~qF2q!

2
1

9
s1s2S s1

s2
1

s2

s1
1

5

2D ~qF2q!2G J . ~8!

The given expression diverges at smalls1 ands2 . This is
a consequence of the indeterminacy of the single-loop c
tributions toM2 in the absence of a field due to multivar
ance of the axion interactions. The ‘‘field’’ contribution

MF
25M22M2uF50 , ~9!

which is of interest to us, converges.
Transforming to dimensionless coordinates

v5~s11s2!m2, u5
4s1s2

~s11s2!2 , ~10!

after some additional transformations we obtain the fi
general result

MF
25

ce
2m4

64p2f a
2 E

0

` dv
v E

0

1 du

~12u!1/2 expS 2 iv1 i q̃2
uv
4 D

3H S 12expS 2
i

48
x2u2v3D D q̃2S 11

u

4
q̃21

i

v D
1

1

2
x2v expS 2

i

48
x2u2v3D F2 i S 4

3
2uD

1uv1
1

3
q̃2uvS 11

u

8D2
1

18
x2u2v3S 11

u

8D G J , ~11!

whereq̃25q2/m2 andx is given by Eq.~3!.
Calculation of the integrals in expression~11! is not pos-

sible; therefore it is necessary to restrict the discussion
special values of the parametersq̃2 andx.

1. x!1, q̃2 anywhere in the spacelike regionq̃2,0. The
leading contribution here is obtained by formally expandi
expression~11! in x2. After some simple calculations w
find

MF
25

ce
2m4x2

96p2f a
2

~D2q̃2!2

D4 H 3F21~42D!
D1q̃2

D2q̃2G
1

4

D

D2q̃2

D1q̃2 F11
4

~D2q̃2!4 ~D1q̃2!

3~D21q̃4!~2D2q̃2!G lnS D1q̃2

D2q̃2D J , ~12!
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where D5(q̃424q̃2)1/2. Analytic continuation into the re-
gion q̃2.0 is realized by familiar methods.8 This form, how-
ever, is uninteresting since it in fact describes virtual effe
and in any case makes only a small field correction to
mass operator in the absence of an external field.

2. In the description of the behavior of a physical axi
q25ma

2 in an external electromagnetic field, by virtue of i
negligibly small mass we can in fact setq̃250 in expression
~11!.

Introducing the complex-valued Hardy–Stokes functi

f ~x!5 i E
0

`

dt expF2 i S tx1
t3

3 D G , ~13!

whose imaginary part coincides with the well-known Ai
functionF(x), after transforming from the variablev to the
new variable

t5v/x, x5~4/xu!2/3, ~14!

we obtain

MF
25

ce
2m4x2

384p2f a
2 E

0

1 x du

~12u!1/2 F2~423u! f

13ux f81
1

6
x2u2S 11

u

8D x3f-G . ~15!

Using the differential equation for the functionf (x)

f 92x f521, ~16!

it is more convenient, taking the explicit form ofx ~14! into
account, to rewrite formula~15! in the form

MF
25

ce
2m4x2

288p2f a
2 E

0

1 x du

~12u!1/2

3F S 211
5

2
uD f 1S 21

5

2
uD x f8G . ~17!

This expression for arbitrary finitex has both a real and a
imaginary part, where the latter is related to the probabi
WF of pair creation by an axion in a crossed field by t
unitarity condition

Im MF
252q0WF . ~18!

a! x!1. To find the real part it is sufficient to use th
expansion

f ~x!ux@15
1

x
1

2

x4 1...,

after which we easily obtain

Re MF
2.2

ce
2m4x2

48p2f a
2 . ~19!

This result follows from Eq.~12! for q̃250 and is valid in
arbitrary F5const, since the possible difference consists
adding a term of the formh(ma

2/m2) to x2 in Eq. ~19!, which
is negligibly small.

Next, replacingf by F in expression~17! and using the
asymptotic limit of the Airy functions asx→`,
s
e

y

n

F~x!.
Ap

2x1/4 expS 2
2

3
x3/2D , ~20!

employing standard integral formulas9 we find the following
approximate expression for the imaginary part ofMF

2 :

Im MF
2.2S 3

2D 1/2 ce
2m4

32p f a
2 x expS 2

8

3x D . ~21!

Such a dependence~taking Eq.~18! into account! of WF on x
is of a general character and was noted, for example, in R
7 for the process of pair formation by a photon in a cross
field.

b! x@1. In the treatment of this limit we cannot se
f (x)→ f (0) andf 8(x)→ f 8(0) in ~17!, since the integral will
diverge; therefore the calculations require care. To this e
we split the integral in Eq.~17! into three parts

I 5I 11I 21I 3 , ~22!

H I 1

I 2

I 2

J 5E
0

1 du x

A12u 5
5

2
ux f8

2x f8

S 211
5

2
uD f 6 . ~22a!

First note that in the calculation of an integral of the type

J5E
0

1

du f~x!w~u! ~23!

in the asymptotic limitx→`, taking the argument of~14!
into account, the leading term can be obtained by making
substitutionf (x)→ f (0) if the remaining part of the integra
converges, while the following term of the expansiondJ is
formed in the regionu&x21, wherex is large andf .1/x.
We then easily find that

dJ}1/xa11, ~23a!

wherea is determined by the conditionwuu→0}ua. This is
done by making the substitutionf→ f 8 in Eq. ~23!. The
asymptotic limit I 1 is then determined in the convention
way by taking the value of the resulting integral,9 and is
equal to

I 1515Ap f 8~0!
G~2/3!

G~1/6! S 4

x D 4/3

1OS 1

x2D . ~24!

Taking relation~23a! into account we write the termI 2 in the
form

I 252E
0

1

du x2f 8~x!

12 f 8~0!E
0

1

du x2S 1

A12u
21D 1OS 1

x2D .

Since

f 8~x!52
3

2 S x

4D 2/3

u5/3
d f

du
,
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the first integral can be integrated by parts, and the sec
integral, upon making the substitutionu512y2, reduces to
a tabulated integral9 giving

I 2523S 4

x D 2/3F f ~0!1S 4

x D 2/3

f 8~0!G1E
0

1

du x f~x!

26 f 8~0!S 4

x D 4/3

FS 1,
4

3
;

5

3
;21D1OS 1

x2D , ~25!

whereF is the hypergeometric function.
Taking relation~23a! into account we write the termI 3

in the form

I 35 f ~0!E
0

1 du x

A12u
S 5

2
u21D13 f ~0!S 4

x D 2/3

2E
0

1

du x f~x!1OS 1

x2D . ~26!

The first term vanishes identically,9 and the last two terms
cancel when combined withI 2 ~25!.

Finally, taking expressions~22! and ~24!–~26! and the
value

f 8~0!5
G~2/3!

2•31/3 ~12 i) !,

into account, we obtain the asymptotic limit of the ma
operator~17!

MF
25

ce
2m4

f a
2

62/3G~2/3!~12 i) !

144p2 H 5Ap
G~2/3!

G~1/6!

12FS 1,
4

3
;

5

3
;21D21J @x2/31O~1!#, ~27!

where the value in braces is positive.
Note that in the electrodynamics of a strong field t

typical dependence at largex has the formx2/3 ~e.g., in the
asymptotic limit of the probability of the processg
→e1e2; see Ref. 7! and is universal, similar to the logarith
mic dependence at high energies in the absence of a field
noted in Ref. 7, replacing the logarithmic dependence b
power-law dependence in an external field leads to an
crease in the role of radiative corrections at high energ
The situation is analogous in axion interactions sinceMF

2 is
also proportional tox2/3 ~27!.

Turning now to a discussion of the results, let us fi
walk through a formal comparison of the effective ‘‘mass
meff5uMF

2u1/2 with the QCD massma , where in the optimal
version we should use expression~27!. After some transfor-
mations we find to order of magnitude

meff ;1026cex
1/3ma , ~28!

where we have used the relationma f a.63104 MeV2. Tak-
ing ce;1, we conclude that interaction effects of the axi
with the magnetized electron–positron vacuum can domin
at valuesx>1018, which is unrealizable even in astrophys
cal situations.
nd

s

As
a
-

s.

t

te

The concrete physical interpretation of the electrom
netic correctiondma to the axion mass simplifies for reaso
able values ofx!1, whereuReMF

2u@uIm MF
2u. It then follows

from Eq. ~19! that

dma5AMF
2. i

cem
2x

4)p f a

, ~29!

i.e., dma is purely imaginary. Physically, this implies th
presence of refractive effects in the propagation of an ax
in an electromagnetic field; however, they have no pract
significance in any case due to their obvious smallness. N
ertheless, the given circumstance is fundamental si
coupling of the form~2!, i.e., pseudovector̂pseudovector,
leads to the absence of refraction for a finite density
the electron gas3 ~in contrast to the coupling
pseudoscalar̂pseudoscalar!. As can be seen, in the propag
tion of an axion in an electromagnetic field allowing fo
polarization of the electron–positron vacuum, the situation
substantially different.

Equations~18!, ~21!, and ~27! also determine the prob
abilities ofe1e2 pair creation by an axion in an electroma
netic field in the asymptotic limits in the parameterx, which
complements the results of Ref. 4, where, in particular,
probability in a superstrong magnetic field was found, a
Ref. 5, which in a number of other questions discussed
annihilation channel in a crossed field.

Overall the results of this work are an indication of th
unchanged applicability of existing ideas about the mag
tude of the axion mass, even in the presence of exte
electromagnetic fields.

1!There is a typographical error in Ref. 5: relation~26! should readf

>107 GeV.
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An anomaly-free quantum theory of a relativistic string is constructed in two-dimensional
space–time. The states of the string are found to be similar to the states of a massless chiral
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1. INTRODUCTION

It has recently been asserted in a number of works~see,
for example, Refs. 1 and 2! that anomaly-free quantization o
some models of two-dimensional gravity is possible. Spec
cally, Ref. 1 examined a model of two-dimensional gravi3

which in certain variables was described by the same c
straints of the first class as those describing a relativi
bosonic string in two-dimensional space–time:

E52E01E1'0,

E05
1

2
~~p0!21~r 08!2!, E15

1

2
~~p1!21~r 18!2!,

~1.1a!

P 5r a8pa5r 08p01r 18p1'0. ~1.1b!

Dimensionless quantities are employed. Herer a(x) and
pa(x), a50,1, are canonically conjugate fields on a on
dimensional manifold, so that the nonzero commutation
lations are

@r a~x!,pb~y!#5 id b
ad~x2y!. ~1.2!

A prime or overdot signifies a derivative]/]x or ]/]t, re-
spectively.

The ground state of the theory is determined at this st
of quantization. This makes it possible to perform norm
ordering of the operator in the constraints~1.1!. The deter-
mined normal ordering in the constraints can lead in turn
anomalies in the commutators of the constraints. Th
anomalies partially violate the weak equalities~1.1!. To de-
termine the ground state of the field,r a andpa are expanded
in the modes that arise when solving the Heisenberg eq
tions

i ṙ a5@r a,H#, i ṗa5@pa ,H#,

H5E dxE . ~1.3!

The solutions of Eqs.~1.2! and ~1.3! can be written in the
form

r a~ t,x!5E dk

2p

1

A2uku
$ck

a exp~2 i ~ ukut2kx!!

1ck
a1 exp~ i ~ ukut2kx!!%,
8541063-7761/98/86(5)/6/$15.00
-
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a-

pa~ t,x!52 i E dk

2p
Auku

2
$ck

a exp~2 i ~ ukut2kx!!

2ck
a1 exp~ i ~ ukut2kx!!%,

@ck
a ,cp

b1#52phabd~k2p!, @ck
a ,cp

b#50. ~1.4!

Here hab (below—hmn)5diag(21,1). We also have the
commutation relations

@H,ck
a#52ukuck

a , @H,ck
a1#5ukuck

a1 . ~1.5!

In conventional quantization the operatorsck
a are annihi-

lation operators, while their hermitian conjugate operat
ck

a1 are creation operators. The ground stateu0& satisfies the
conditions

ck
au0&50. ~1.6!

Normal ordering of the operators (ck
a1, ck

a) in the quantities
~1.1! means that the creation operators stand to the left o
annihilation operators.

Let us consider the state

uk, a&5ck
a1u0&. ~1.7!

It follows immediately from the commutation relations~1.5!
that

Huk, a&5~ uku1E0!uk,a&, ~1.8!

whereE0 is the value of the operatorH for the ground state.
The relation~1.8! signifies that the operatorH is positive-
definite.

In consequence of Eqs.~1.4! and ~1.6! we have for the
scalar product of the vectors~1.7!

^k, aup, b&52phabd~k2p!. ~1.9!

Hence it is seen that the metric in the full state space
indefinite.

Next, let us calculate the commutator@E , P #. According
to Eq. ~1.1! it can be represented as a sum of two terms

@E~x!, P ~y!#52@E0~x!, r 08p0~y!#

1@E1~x!, r 18p1~x!#. ~1.10!

In consequence of Eq.~1.2!, both commutators on the right
hand side of Eq.~1.10! are identical to within a change of th
index a. These commutators are proportional~to within the
© 1998 American Institute of Physics
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ordering! to the quantitiesE0 and E1 , respectively. As is
well known, normal ordering of the operators in these co
mutators leads to anomalies.

Indeed, it follows from the commutation relations~1.4!
that the correspondencesck

0↔ck
11 andck

01↔ck
1 establish an

isomorphism of the Heisenberg algebrasH0 andH1 , whose
generators are~ck

0 , ck
01! and~ck

11 , ck
1!, respectively. In this

case the normal ordering of the operators in the algebraH1 is
transformed by the indicated isomorphism into antinorm
ordering in the algebraH0 . It is known that in problems of
the type we are studying normal and antinormal orderi
lead to anomalies that differ only in sign. Therefore the co
tribution of the first commutator on the right-hand side of t
Eq. ~1.10! to the anomaly will be2A and that of the second
will be A. But, since a minus sign stands in front of the fi
commutator in Eq.~1.10!, the anomaly in Eq.~1.10! equals
2(2A)1A52A.

Let us now examine the problem from a different po
of view.

In Ref. 1 it is asserted that in the present theory
positive-definiteness condition~1.8! for the operatorH is
not necessary. The initial requirement of the theory is sa
faction of the weak equalities~1.1!. Therefore we have the
right to reject the quantization conditions~1.6! and replace
them with the conditions

ck
01u0&50, ck

1u0&50. ~1.11!

Under the quantization conditions~1.11! the basis of the full
Fock space of the theory consists of vectors of the form

ck1

0 ...ckm

0 cp1

11 ...cpn

11u0&. ~1.12!

It follows from the commutation relations~1.4! that the
scalar product of the states~1.12! is positive-definite. More-
over, there is no anomaly in the operator algebra~1.1!.

Indeed, under the conditions~1.11! normal ordering con-
sists of arranging the operators (ck

0 , ck
11) to the left of all

operators~ck
01 , ck

1!. This means that normal ordering occu
in both Heisenberg algebrasH0 andH1 . Now, with normal
ordering both commutators in~1.10! make the same contri
bution, equal toA, to the anomaly. If we take account of th
minus sign in front of the first commutator on the right-ha
side of the equality~1.10!, the total anomaly is2A1A50.

The absence of an anomaly in the operator alge
~E , P ! makes it possible to satisfy all weak equaliti
E'0 andP '0. Two physical states which the operatorsE

andP annihilate are presented in Ref. 1:

Cgravity~r a!5exp6
i

2 E dx«abr
ar b8.

In the present paper we shall likewise reexamine
quantization conditions for a relativistic string in two
dimensional space–time. In so doing, we shall determine
space of physical states with a positive-definite scalar pr
uct. The nonphysical states are not studied in the theory.
physical states annihilate all constraints of the first class,
all operators are Virasoro. The physical states are chara
ized by a continuous parameter, which has the meanin
momentum. However, in our theory not all dynamical va
-
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ables are linear operators in the space of physical state
the proposed theory the states of a relativistic string in tw
dimensional space–time are found to be identical to
states of a massless chiral particle.

2. RELATIVISTIC BOSONIC STRING IN TWO-DIMENSIONAL
SPACE–TIME

Let Xm, m50,1, be coordinates in two-dimension
Minkowski space. Let us examine the Nambu action fo
bosonic string

S52
1

l 2 E A2gd2j5E dt L. ~2.1!

Hereja5(t,f) are the parameters of the world sheet of t
string and

g5det gab , gab5hmn

]Xm

]ja

]Xn

]jb .

Heret is timelike andf is spacelike. The partial derivative
]/]t and ]/]f will be denoted below by an overdot and
prime, respectively. It is easy to show that the generali
momentapm5]L/]Ẋm satisfy the conditions

E5
l 2

2
pmpm1

1

2l 2 Xm8Xm8 '0,

P 5Xm8pm'0. ~2.2!

The quantitiesE~f! andP ~f! exhaust all constraints of th
first class. The Hamiltonian of the system is

H5E dfpmḟm2L'0.

For this reason, following Dirac, we must employ a gener
ized Hamiltonian which is an arbitrary linear combination
constraints of the first kind of~2.2!

HT5E df~vP 1wE !. ~2.3!

The equations of motion can be obtained from the variatio
principle

dS5d H E dtS E dfpmẊm2HTD J 50. ~2.4!

In the case of an open string, whenf varies from 0 top, the
variational principle~2.4! gives, besides the equations of m
tion, the boundary conditions

S vpm1w
1

l 2 Xm8 D U
f50,p

50, ~2.5!

which ordinarily are replaced by the conditions

vuf50,p50, Xm8 uf50,p50. ~2.6!

For a closed string, besides a boundary condition, ther
also a periodicity condition.

Let us study an open string next.
The first step in the quantization process is to postu

the commutation relations for the generalized coordina
and momenta:
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@Xm~f!,pn~f8!#5 ihmnd~f2f8!. ~2.7!

The commutation relations~2.7! and the boundary condition
~2.6! are satisfied if

Xm~f!5
1

Ap
S xm1 i (

nÞ0

1

n
an

m cosnf D ,

pm~f!5
1

Ap l
(

n
an

m cosnf, ~2.8!

and the elements~xm, an
m! satisfy the commutation relation

@xm,an
n#5 ihmndn , @xm,xn#50,

@am
m ,an

n#5mhmndm1n . ~2.9!

Since the quantities~2.8! are real,

xm15xm, an
m15a2n

m . ~2.10!

The constraints~2.2! can be represented as

~E6P !~f!5
1

2
~j6

m ~f!!2, ~2.11!

where

j6
m ~f!5

1

Ap
(

n
an

m exp~7 inf!. ~2.12!

Hence it is seen thatE2P differs from E1P by the re-
placement off by 2f. This simplifies the analysis, since o
the interval2p<f<p the quantityE1P contains all in-
formation about the quantitiesE6P on the interval 0<f
<p. Therefore, the Fourier components

Ln5
1

2 E
2p

p

df~E1P !exp~ inf! ~2.13!

are equivalent to the set of quantities~2.2! for 0<f<p.
According to Eqs.~2.11!–~2.13!, we have

Ln5
1

2
:(

m
an2m

m amm :. ~2.14!

The meaning of the ordering operation in Eq.~2.14! is deter-
mined by the quantization method.

Let us also write out expressions for the momentum a
angular momentum of a string:

Pm5E
0

p

dfpm, Jmn5E
0

p

df~Xmpn2Xnpm!. ~2.15!

With the aid of Eqs.~2.6! and ~2.7! we immediately
verify that

@Pm, HT#50, @Jmn, HT#50.

This means that the momentum and angular momentum
the string are conserved.

In the currently employed quantization the ground st
u0& satisfies the conditions

am
m u0&50, m>0. ~2.16!
d

of

e

The complete space of states is a linear span of vectors o
form

am1

m1...ams

msu0&, mi,0. ~2.17!

Therefore allam
m are linear operators in the full space

states. From Eqs.~2.9! and~2.16! it follows that the metric in
the state space~2.17! is indefinite. The ordering in Eq.~2.14!
means that the operatorsam

m with m,0 are arranged to the
left of all operatorsan

m for n>0. With this ordering the com-
mutators of Virasoro operators contain anomalies

@Ln ,Lm#5~n2m!Ln1m1
1

12
D~n32n!. ~2.18!

HereD is the dimension of thex space, which in our case i
2. Therefore the most that can be achieved is annihilation
the operatorsLn with n>0. As a result the theory is consis
tent only forD526. A detailed study of the problems arisin
with the quantization~2.16! can be found in Ref. 4.

We shall now present the path proposed here for qu
tization of a two-dimensional string that leads to a se
consistent theory of a string in a space of two dimensio
Our method of quantization of a string is similar to Dirac
method of quantization of the electromagnetic field~see Ref.
5, and also Appendix!.

Let

x65x06x1, am
~6 !5am

0 6am
1 . ~2.19!

From Eq.~2.9! we obtain

@am
~1 ! ,an

~1 !#5@am
~2 ! ,an

~2 !#50,

@am
~1 ! ,an

~2 !#522mdm1n ,

@x1 ,x2#50, @x1 ,an
~1 !#5@x2 ,an

~2 !#50,

@x1 ,an
~2 !#522idn , @x2 ,an

~1 !#522idn . ~2.20!

Let us write the Virasoro operators in the variablesa (6):

Ln52
1

2
:(

m
an2m

~1 ! am
~2 ! :. ~2.21!

By definition, the ordering operation in Eq.~2.21! signifies
that either the elementsa (1) are arranged to the left of al
elementsa (2) or the elementsa (2) are arranged to the lef
of all elementsa (1). Both orders are equivalent. Indeed,

(
m

am
~2 !am

~1 !5(
m

am
~1 !am

~2 !12(
m

m.

It can be assumed that the last sum is zero, since it ca
written asz(21)2z(21), wherez(s) is the Reimann zeta
function. It is known that the zeta function

z~s![ (
n51

`

n2s

possesses a unique analytical continuation to the p
s521 andz(21)521/12.

For definiteness, let us choose the same ordering a
Eq. ~2.21!.

According to Eq.~2.20!, we have
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@Lm ,an
~2 !#52nam1n

~2 ! . ~2.22!

One can see from Eqs.~2.20! and ~2.22! that the weak in-
equalitiesan

(2)'0 andLn'0 are algebraically compatible
For this reason, we determine the physical states as the s
satisfying the conditions

an
~2 !u&50, n50, 61, ... ~2.23!

It follows immediately from Eqs.~2.23! and ~2.21! that

Lnu&50, n50, 61, ... . ~2.24!

for any physical states. The inequalities~2.24! signify that
for the quantization~2.23! the Virasoro algebra has n
anomalies:

@Ln ,Lm#5~n2m!Ln1m . ~2.25!

The last formula can also be easily obtained by direct ca
lation of the commutators, provided that the ordering is
sumed to be the same as in Eq.~2.21!. The quantization
conditions~2.23! are precisely analogous to the quantizati
conditions~A8! used by Dirac to quantize the electroma
netic field.5

We call attention to the fact that states of the form

an
~1 !u&, nÞ0, ~2.26!

are not studied in this theory, since these states do not sa
the conditions~2.23!. For this reason, the matrix elements
the quantitiesan

(1) with nÞ0 with respect to the physica
states~2.26! cannot be calculated. Therefore the quantit
an

(1) with nÞ0 cannot be operators in the space of physi
states. Hence it follows that observables cannot depend
the elementsan

(1) with nÞ0. In other words, observable
must commute with all operatorsan

(2) . According to
Eq. ~2.20!, there are two such quantities:x2 and
p1(p6[a0

(6)). Both are real.
Thus we can see that the quantitiesan

m with nÞ0 are
not, generally speaking, linear operators in state space in
conventional sense. Here we adhere to the concept for
lated and applied by Dirac in Ref. 5. According to this co
cept, in quantum field theory linear operators operating
certain linear spaces are replaced by so-calledq numbers,
which form an associative noncommutative algebra with
involution over the complex numbers. Here we shall form
late Dirac’s concept using the conventional mathematical
minology.

Let A be an associative noncommutative involutory
gebra with an identity over the complex numbers. Assoc
tivity means that for any elementsu, v, andw of the algebra
A and any numberc the inequalities

~uv !w5u~vw!, ~cu!v5u~cv !5c~uv !.

hold. The involution property of the algebra means that th
exists a mappingu°u1 from A into A such that

~u1!15u, ~c1u1c2v !15 c̄1u11 c̄2v1, ~uv !15v1u1

for any u,vPA and any numbersc1 and c2 . An overbar
signifies complex conjugation. Itu15u holds, the elementu
is said to be hermitian.
tes
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It is also assumed that the algebraA has a system of
generators$ap% for which all relations are limited by the
form of the commutators

@ap ,ap8#5cpp8 .

Herecpp8 are complexc numbers~in the Dirac sense!.
The definition of involutory algebras~or algebras with

involution! and other mathematical definitions present
here can be found in Refs. 6 and 7.

Let V be a vector space with elementsuL&, uS&, . . . over
the complex numbers and letV1 be the complex conjugate
space, whose elements are denoted by^ . . . u. There is a one-
to-one correspondence between the elements of the spacV

andV1 such thatcuL&↔^Luc̄.
For any two vectorsuL& anduS& there exist two complex

self-conjugatec-number quantitieŝLuS& and ^SuL&. It is
assumed that in the spaceV there exists a basis$uL&% such
that

^LuS&5dLS . ~2.27!

If the indicesL andS run through a continuous set, then
Eq. ~2.27! dLS must be interpreted as a delta function. T
spaceV is the space of physical states of the theory.

Let B,A be a noncommutative involution subalgeb
with the identity element. The elements of the subalgebraB

are linear operators in the spacesV andV1 and, as usual,

~uuL&)15^Luu1, uPB.

The observables correspond to certain hermitian elem
from B. If uPA andu¹B, then the action of the elemen
u on vectors from the spacesV andV1, generally speaking
is not defined. This distinguishes the Dirac theory from t
conventional quantum field theory.

In the theories under study all vectors of the spaceV are,
ordinarily, annihilated by a series of operators of the sub
gebraB. Therefore the conditions

uNu&50, uN8u&50, ...,u&PV. ~2.28!

hold. The indicesN, N8, . . . in Eq. ~2.28! run through a
certain setJ of indices. The conditions~2.28! must be alge-
braically compatible, i.e., the relations

@uN ,uN8#5(
N9

kNN8,N9uN9 ,

whereN, N8, N9PJ andkNN8, N9 can be any elements of th
algebraA, must hold. Evidently, the operatorsuN in Eq.
~2.28! do not include the identity or simply unity. We deno
by N ,B the subalgebra without identity with the gener
tors $uN%, where NPJ. Thus N annihilates the space o
physical statesV.

Let us now examine the set of elements of the formuv,
whereuPA and vPN . We denote this set asN 8. It is
evident from the definition thatN 8 is a left A-module and
a subalgebra inA, but N 8 is not a subalgebra inB. None-
theless, the action of the subalgebraN 8 on the spaceV is
defined since it is trivial:N 8 annihilates the spaceV. We
note that the commutator@N 8, N 8# is contained inN 8.
Indeed, ifr ,sPA andu,vPN , then
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@ru,sv#5$@ru,s#v1s@r ,v#u1sr@u,v#%PN 8,

since @u,v#PN . For this reason, the conditionsN 8V50
are algebraically compatible.

Concrete theories can also contain other elements of
algebraA, which are not contained in eitherB or N 8 and
are linear operators on the spaceV.

A distinguishing feature of the Dirac theory is that
does not treat nonphysical state vectors that do not satisfy
conditions~2.28!. Moreover, in the Dirac theory there arise
an indefinite metric in the state space. This circumstance
radically alter the theory.

Let us return to the discussion of string theory. In t
theory proposed here for a two-dimensional string the a
bra A has generators$x6 ,am

(6)%, while the subalgebrasB
andN have generators$x2 ,p1 ,am

(2)% and $am
(2)%, respec-

tively. The Virasoro operatorsLn are contained in the suba
gebraN 8. Note that the algebra of operatorsLn is an invo-
lutory subalgebra inN 8, and sinceLn

15L2n holds, the
action of the operatorsLn is defined in both spacesV and
V1.

From the definitions~2.15! we obtain the following for-
mulas:

~exp~ ivJ01!!am
~6 !~exp~2 ivJ01!!5~exp~6v!!am

~6 ! ,

~exp~ ivJ01!!x6~exp~2 ivJ01!!5~exp~6v!!x6 ~2.29!

and

~exp~ iamPm!!x6~exp~2 iamPm!!5x61
Ap

l
a6 ,

~exp~ iamPm!!am
~6 !~exp~2 iamPm!!5am

~6 ! . ~2.30!

Herev andam are arbitrary real numbers. It is evident fro
Eqs.~2.29! and~2.30! that translations and Lorentz transfo
mations preserve the condition~2.23!.

Both observablesx2 and p15a0
(1) are real, and

@x2 ,p1#522i . For this reason, we assume that the phy
cal states are eigenstates of the operatorp1 :

p1uk&52kuk&. ~2.31!

Here k is a continuous real parameter. According to E
~2.29!

p1~exp~2 ivJ01!!5~exp v!~exp~2 ivJ01!!p1 . ~2.32!

Let us formally operate with the relation~2.32! on the state
uk&. As a result of Eq.~2.31! we obtain

p1~exp~2 ivJ01!!uk&52kev~exp~2 ivJ01!!uk&. ~2.33!

The last identity makes it possible to determine the action
the operators (exp2iv J01) on the physical states, as follow

~exp~2 ivJ01!!uk&5 f vu~exp v!k&. ~2.34!

Here f v is a complex number different from zero. If th
scalar product on physical state vectors is defined in
Lorentz-invariant manner as

^kuk8&5kd~k2k8!,

then u f vu51. From Eq.~2.34! it is evident that one can as
sume
he

he

an

e-

i-

.

f

a

k.0. ~2.35!

The hermitian angular momentum operator can be rep
sented in the form

J015
1

2
~x2p12x1p2!

1
i

4 (
nÞ0

1

n
~an

~2 !a2n
~1 !2an

~1 !a2n
~2 !!. ~2.36!

We can see that although the expression~2.36! does not be-
long to either the subalgebraB or the subalgebraN 8, the
action of the quantities (expiv J01) on the space of physica
states is nonetheless correctly determined.

According to Eqs.~2.8! and ~2.15!

Pm5
Ap

l
a0

m5
Ap

2l
$~d0

m1d1
m!p11~d0

m2d1
m!p2%.

Therefore, we obtain from Eqs.~2.23! and ~2.31!

Pmuk&5
Ap

l
kmuk&, km5~k,k!. ~2.37!

Thus, as a result of the procedure described above
quantizing a two-dimensional string there arises a sys
similar to a massless chiral quantum particle in space–t
with two dimensions.

3. CONCLUSIONS

Let us note the differences of the main properties
string theory quantized in the conventional manner fro
those of the string theory proposed in the present pape
the conventional quantization there exists a state which
invariant under Lorentz transformations. This state is
ground state. In this respect the conventional string theor
similar to the standard quantum field theory of point objec
In such field theories the ground state ordinarily is Loren
invariant. Conversely, in our approach there does not exi
state that is invariant under Lorentz transformations. For
reason, the quantum-string theory proposed above is an
gous to a quantum theory of a single relativistic partic
Once again there does not exist a Lorentz-invariant quan
state of a single relativistic particle. In order for a Lorent
invariant state to exist in our theory we would have to intr
duce a string field and second-quantize the string field
such a theory the ground state would be Lorentz-invaria
since there would be no real strings in the ground state.

In closing, we note that the quantization method p
posed here can be applied to aD-dimensional string. This
assertion is based on the fact that in string theory there ex
an infinite set of so-calledDDF operators4 which commute
with all Virasoro operators. TheDDF operators describe al
most all ~with the exception of the total momentum of th
string! physical degrees of freedom of the string. The ind
pendence of Virasoro operators fromDDF operators signi-
fies that Virasoro operators can be put into the form~2.21!,
after which the quantization scheme which we have p
posed above can be applied. However, the theory is m
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more complicated in theD-dimensional case because the
exists an infinite set of physical degrees of freedom, c
tained in theDDF operators.

This work was supported by the Russian Fund for F
damental Research under Grant No. 96-02-17331-a an
the Higher School of Science under Grant No. 96-15968

APPENDIX

We shall describe the quantization of a free electrom
netic field, as proposed by Dirac in Ref. 5, following Dirac
concept, which is formulated in Sec. 2. The quantizat
which we propose for a two-dimensional string is perform
in accordance with Dirac’s procedure.

The quantization of an electromagnetic field is presen
in the form

Am~x!5E d3k

~2p!3

1

A2k0
$am~k!eikx1am

1~k!e2 ikx%.

~A1!

Herem,n, . . .50, 1, 2, 3;kx[kmxm52k0x01k–x, k05uku
and$am(k), am

1(k)% are generators of an associative invo
tory algebraA with an identity element~see Sec. 2!. The
nonzero commutation relations between these genera
have the form

@am~k!,am
1~p!#5~2p!3hmnd~3!~k2p!. ~A2!

One can see from the expansion~A1! that the set of element
]mAm(x) is linearly equivalent to the set of elemen
kmam(k) and kmam

1(k) from the algebraA. Let ai
T(k) be

two independent elements~for fixed k! satisfying the condi-
tions

(
i 51

3

kiai
T~k!50,

@ai
T~k!, aj

T1~p!#5~2p!3S d i j 2
kikj

k2 D d ~3!~k2p!. ~A3!

From Eqs.~A1! and ~A2! follow the commutation relations
(Fmn5]mAn2]n Am)

@Fmn~x!, klal~k!#5@Fmn~x!, klal
1~k!#50. ~A4!

@kmam~k!, pnan
1~p!#50. ~A5!

It is obvious that

@ai
T ,kmam~k!#5@ai

T , kmam
1~k!#50. ~A6!

Dirac quantization presupposes that the condition

ai
T~k!u0&50 ~A7!

is imposed on the ground state and the conditions
-

-
by
.

-

n
d

d

rs

kmam~k!u&50, kmam
1~k!u&50. ~A8!

are imposed on all states. As a result of Eqs.~A5! and ~A6!
the conditions~A7! and ~A8! are algebraically compatible
The states satisfying the conditions~A8! are called physical.
The Fock space of all physical states is constructed with
aid of the creation operatorsai

T1(k) from the ground state
satisfying the conditions~A7! and ~A8!. As a result of Eq.
~A6! any state of the Fock space constructed satisfies
conditions ~A8!. Following the terminology introduced in
Sec. 2, this Fock space is designated by the symbolV, the set
of elements$ai

T , ai
T1 , kmam(k), kmam

1(k)% is a system of
generators of the subalgebraB and the set of element
$kmam(k), kmam

1(k)% is a system of generators of the suba
gebraN .

Let k2
m 5(2k0, k). We find from Eq.~A2!

@k2
m am~k!, pnan

1~p!#52k2~2p!2d ~3!~k2p!. ~A9!

The relations~A4! and~A9! signify that the observablesFmn

do not depend on the generators$k2
m am(k), k2

m am
1(k)%, but

rather they are linear combinations of the generators of
subalgebraB. Therefore all matrix elements of the form
^LuFmnuS&, whereuL&, uS&PV, are determined.

We note that as a result of Eqs.~A3! and~A7! the scalar
product in the spaceV is positive-definite provided tha
^0u0&51. We call attention to the fact that the action of th
generatorsk2

m am(k) and k2
m am

1(k) on the physical states i
not determined in Dirac quantization, and therefore th
generators of the algebraA are not linear operators in th
space of physical statesV.

In closing, we call attention to an analogy between t
generators$k2

m am(k), k2
m am

1(k)% and $kmam(k), kmam
1(k)%

in quantum electrodynamics and the generators$an
(1)% and

$an
(2)% in string theory, respectively.
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Ionization of atoms in electric and magnetic fields and the imaginary time method
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A semiclassical theory is developed for the ionization of atoms and negative ions in constant,
uniform electric and magnetic fields, including the Coulomb interaction between the
electron and the atomic core during tunneling. The case of crossed fields~Lorentz ionization! is
examined specially, as well as the limit of a strong magnetic field. Analytic equations are
derived for arbitrary fieldsE and H that are weak compared to the characteristic intraatomic
fields. The major results of this paper are obtained using the ‘‘imaginary time’’ method
~ITM !, in which tunneling is described using the classical equations of motion but with purely
imaginary ‘‘time.’’ The possibility of generalizing the ITM to the relativistic case, as
well as to states with nonzero angular momentum, is pointed out. ©1998 American Institute of
Physics.@S1063-7761~98!00405-3#
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INTRODUCTION AND STATEMENT OF THE PROBLEM

The problem of the hydrogen atom in electric and ma
netic fields is of fundamental significance for atomic phys
and is often encountered in applications. An extensive lite
ture has been devoted to this topic1–30 ~see the references i
Refs. 8, 9, 19, and 20 as well!. The properties of the energ
spectrum of atomic hydrogen and other atoms in strong
ternal fields have been discussed by many authors,9–16 but
the level widthsGn5\wn have usually been neglected.

Problems associated with the ionization of atoms a
ions in strong fields became especially timely after the
velopment of lasers. In the 1960’s a semiclassical theory
ionization in an electric fieldE was developed for neutra
atoms1–6 and negative ions such as H2, J2, etc.7,8 ~the first
of these problems is more complicated, owing to the nee
allow for the Coulomb interaction between the ejected el
tron and the atomic core!. The semiclassical theory yield
analytic equations for the ionization probabilityw which are
asymptotically exact in the limit of ‘‘weak’’ fields~see the
conditions ~1.2! below!. Currently, numerical cal-
culations11,15–28are also available in which the positions a
widths of the atomic levels have been calculated in p
electric17–24 and magnetic25–27 fields, as well as in
parallel11,15,28 and mutually perpendicular26,27 E and H

fields. Despite the obvious value of such calculations~as
applied to selected magnitudes of the fields and to spe
atoms!, they cannot replace an analytic theory.

The effect of the magnetic fieldH on the ionization
probability w(E ,H) has been studied,29–31 but it has been
possible to consider only the case of negative ions, wh
there is no Coulomb interaction at large distances from
atom. Both the exponential factor29 in the probabilityw and
the multiplicative factor30,31 have been calculated~albeit the
latter only in a few special cases!.
8601063-7761/98/86(5)/15/$15.00
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Including the Coulomb interaction in problems of th
kind presents great difficulty and, for example, it has not
been fully1! accounted for in the theory of multiphoton ion
ization of atoms.32,3,4For the ionization of an atomic level b
constant and uniformE andH fields, this type of calculation
can be carried out analytically if the tunneling transition
the electron is described using the ‘‘imaginary time’’ meth
~ITM !.3,36 The results of this calculation are discussed belo

This paper is organized as follows. In Sec. 1 the ba
equations for the ionization probabilityw(E ,H) are intro-
duced and the limiting cases of strong and weak magn
fields are discussed. Section 2 is devoted to the special
E'H, which includes the particular case of Loren
ionization,30,37 which arises during the motion of atoms in
constant magnetic field. In Sec. 3, a simple asympto
theory is developed for the case of a strong magnetic fi
g@1 ~see Eq.~1.7! below!. In Sec. 4, equations are intro
duced for the asymptotic coefficientCk , in terms of which
the ionization probability of the atomics-level can be ex-
pressed. In Sec. 5, the main computational technique,
ITM, is described. It is shown that with this method it is ea
to obtain the basic equations in this paper. A brief review
the results obtained in this paper is contained in Sec. 6.

In Appendix A we present an explicit expression for t
Green function of an electron inE and H fields with arbi-
trary magnitudes and directions, and derive an integral eq
tion for the energy of the quasistationary state in this c
(Z50), when there is no Coulomb interaction at large d
tances. Some auxiliary equations and asymptotic dep
dences are given in Appendix B and the details of the ca
lation for the caseg@1 are discussed in Appendix C. Som
of the results in this paper have been announ
previously.38,39

We dedicate this paper to the memory of Mikha�l
Vasil’evich Terent’ev~1935–1996!, an outstanding theoreti
© 1998 American Institute of Physics
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TABLE I. Parameters of atoms and ions.

Note: Parameters for outer~valence! electrons in the states indicated in parentheses are listed in the tab
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cal physicist and one of the originators of the imaginary ti
method, with whom we had valuable conversations and w
taught us much.

1. EFFECT OF A MAGNETIC FIELD ON THE IONIZATION
PROBABILITY FOR ATOMS AND NEGATIVE IONS

Let E052k2me4/2\2 be the energy of the unperturbe
atomic level with orbital angular momentuml 50 ~we ne-
glect spin in the following!, and e and h be the reduced
values of the external fields:

e5E /k3Ea , h5H/k2Ha . ~1.1!

whereEa5m2e5/\455.142•109 V/cm andHa5m2ce3/\3

52.350•109 G are the atomic units for the field strengths~in
the following, as a rule\5e5m51, but in the final equa-
tions we restore the dimensionality of the quantities c
tained in them!. The ratioH/E , as well as the angleu be-
tween the fields, can be arbitrary. The condition
applicability of the semiclassical approximation in this ca
is

e!1, h!1. ~1.2!

For the ground states of the neutral atomsk'1 ~see Table I!,
but for highly excited~Rydberg! states and negative ions
can be much smaller than unity. In this case, valuese,h;1
are attained even for fields substantially lower than
atomic fields~this applies to semiconductors as well40!.

For calculating the ionization probabilitiesw we shall
use the ITM. In this method electron tunneling is describ
using subbarrier trajectories that satisfy the classical eq
tions of motion, but with imaginary ‘‘time.’’ The imaginary
part of the reduced actionW ~see Eq.~5.1! below! calculated
e
o

-

r
e

e

d
a-

along this trajectory determines the tunneling probabili
i.e., ~in this case! the ionization probability of a bound state

w~E ,H!}expH 2
2

\
Im W~0,t0!J , ~1.3!

where t0 is the initial time for subbarrier motion, whilet
50 is the time of particle escape from under the barrier. W
leave a detailed discussion of the ITM to Sec. 5. There it w
also be shown that in the case of constantE and H fields,
the Coulomb interaction of an electron with the atomic co
~chargeZ! can be taken into account using a particular va
ant of perturbation theory, so that it is enough to determ
the subbarrier trajectory of an electron forZ50, i.e., in effect
for a d-potential. The extremal trajectory which minimize
the imaginary part of the action determines the most pr
able tunneling path for a particle from a bound state to
continuum, and is found using the classical equations of m
tion with boundary conditions

r ~ t0!50, ṙ2~ t0!52k2, Im r ~0!5Im ṙ ~0!50.
~1.4!

Here we note their intuitive significance, referring th
reader to Ref. 36 for details. The first two conditions me
that at the initial time the electron is already beyond t
confines of the atomic core~i.e., uV(r 0)u!k2), but the dis-
tortion of the wave function caused by the externalE andH

fields can still be neglected.2! The latter condition means tha
the most probable~extremal! trajectory att50 becomes rea
and subsequently describes the motion of the particle at
finity, even in the classically allowed region. Settingt5
2 ivct, we find the desired trajectory:3!
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x5 i
ueuE
mvc

2 S t2t0

sinh t

sinh t0
D sin u,

y5
eE

mvc
2

t0

sinh t0
~cosht02cosht!sin u,

z5
eE

2mvc
2 ~t0

22t2!cosu ~1.5!

(2t0<t<t0). The second of the conditions~1.4! yields an
equation for the initial time of subbarrier motiont0

52 ivc
21t0 :

t0
22sin2 u~t0 coth t021!25g2, ~1.6!

or

tanht0

t0
5

sin u

sin u1At0
22g2

. ~1.68!

Here

g5
uvcu
v t

5
kH

cE
5

h

e
, ~1.7!

vc5eH/mc is the Larmor or cyclotron frequency, andv t

5E /k is the characteristic tunneling frequency in the elec
field. In this case, the imaginary tunneling time of the p
ticle is

Tt5E
0

b dx

up~x!u
5

k

E
[

1

v t
,

whereup(x)u5Ak222Ex andb5k2/2E is the barrier width.
Note that the parameterg is analogous to the Keldys
parameter32 which shows up in the theory of the multiphoto
ionization of atoms by a variable electric field. It appea
because in this problem there are two frequencies,v t and
vc , which can have an arbitrary ratio. Then, we have

g5A I

I 0

H

Ha
S E

Ea
D 21

, ~1.78!

where I 5k2/2 is the binding energy of the level andI 0

513.6 eV is the ionization potential of the hydrogen ato
~the parameterk includes the shift of the level in an extern
field!.

It is clear from Eq.~1.68! that there is a unique~real!
solution t05t0(g,u), with t0>g. If on the other hand
g.1, then the following stronger constraint holds:

t0. t̃0[
sin2 u1g2

sin2 u1Asin2 u1g2 cos2 u
, ~1.8!

which becomes asymptotically exact forg@1 ~see Fig. 1!.
In Eqs.~1.5! and~1.6! and in the subsequent equations

is assumed that the magnetic field is directed along thz
axis, thex axis is perpendicular to the (E ,H) plane, andu is
the angle betweenE and H. Substituting Eq.~1.5! in Eq.
~1.3! yields the exponential factor in the ionization probab
ity. In order to determine the preexponential factor, we a
c
-

s

.

t

o

have to include the contribution from a beam of ne
extremal subbarrier trajectories. As a result of the calcu
tions, we arrive at the following formula:

w~E ,H!5
me4k2

\3 •22huCku2S \4E

m2e5k3D 122h

3PQh expH 2
2m2e5k3

3\4E
g~g,u!J . ~1.9!

Here Ck is the asymptotic coefficient for the normalize
wave function of the initial state (l 50):

c0~r !'CkAk3/p e2kr~kr !h21, r @k21 ~1.10!

~in particular,Ck51 for the 1s- and 2s-states of the hydro-
gen atom andCk51/& for the level in a three dimensiona
delta function potential!,

g~g,u!5
3

2
bS 12

Ab221

g
sin u2

1

3
b2 cos2 u D ,

~1.11!

b5t0 /g>1 and the Coulomb factor has the form (h
5Z/k is the Sommerfeld parameter!

Q~g,u!5expH 2S ln
b

2
1E

0

t0
dtF g

j~t!
2

1

t02tG D J ,

~1.12!

where

j~t!5H 1

4
~t0

22t2!2 cos2 u1t0
2F S cosht02cosht

sinh t0
D 2

2S sinh t

sinh t0
2

t

t0
D 2Gsin2 uJ 1/2

~1.128!

and, finally, the preexponential factor is

P~g,u!5
g2

t0
F S sinh 2t0

2t0
1t0 coth t022D

3sin2 u1sinh2 t0 cos2 uG21/2

. ~1.13!

The simplest way of obtaining these formulas is to u
the ITM; this is discussed in Sec. 5. The preexponential f
tor P(g,u) can also be calculated independently by solvi
an integral equation for the~complex! energy of the quasis
tationary state,E5Er2 iG/2:

k5k01kA h

4p i E0

` du

Au3

3H u

sin u
exp@2 iLw~u!#2exp~ iLg2u!J ~1.14!

~see Appendix A!, wherek05A22E0 and k5A22E are
the parameters for a free (E5H50) atom and for an atom
in external fields,
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L5e2h23, w~u!5@g21~12u cot u!

3sin2 u#u1
1

3
u3 cos2 u. ~1.15!

Equation~1.14! defines both the level shiftEr2E0 and
its width G, and is obtained if we impose on the functio
~A13! the boundary condition atr→0 corresponding to a
d-potential, i.e., to the approximation of zero-range forces~in
Appendix A we obtain Eq.~A18!, which includes a correc
tion for the effective radius!. If L@1, then the integral in Eq
~1.14! can be calculated by the method of steepest desce
and this leads to Eq.~1.9! with h50 in the preexponentia
factor ~1.13!. The calculation of the Coulomb factor~1.12! is
discussed below in Sec. 5.

We now discuss the results.
a! In the absence of a magnetic field (g50), the equa-

tions can be simplified:g(g,u)5P5Q[1 and

w~E !522hk2uCku2e122h exp~22/3e!, ~1.16!

in agreement with the results of Refs. 1–3 and 7 for as
level.

b! In the case of parallel fields, we havet05g,

g~g,0!5Q~g,0![1, P~g,0!5g/sinh g. ~1.17!

c! For g!1 ~i.e., at low magnetic fields! and arbitrary
anglesu, we can use an expansion of these functions, wh
is given in Appendix B~see Eqs.~B1!–~B4!!.

d! In the opposite case ofg→` the functionsg(g,u)
and Q(g,u) approach constant limits~if u,p/2) and the
preexponential factorP(g,u) falls off exponentially; see the
asymptotes~B6!–~B9! in Appendix B. The caseu5p/2 is
special and will be discussed in the following section.

e! If uÞ0, theng(g,u).1, so the magnetic field reduce
the ionization probability, stabilizing the level. This is r
lated to the fact that because of the Lorentz force, the s
barrier trajectory of the electron is ‘‘twisted’’ and the widt
of the barrier increases~an intuitive explanation of this is
provided by the ITM; see Sec. 5!. On the other hand, includ
ing the Coulomb interaction greatly increases the probab
of ionizing a neutral atom compared to the case of a nega
ion ~for equal binding energiesk2/2 and comparable value
of the constantsCk

2!. This is explained by the fact that in
Coulomb field the electron density at the ‘‘edge’’ of the ato
is higher; see Eqs.~5.8! and ~5.9! below.

f! The Coulomb and preexponential factors in Eq.~1.9!
are corrections~both of the same order of magnitude; ln e
in the small parametere→0! to the leading term, which is
proportional to e21, in the exponent. For this reaso
Q(g,u) andP(g,u) can be calculated independently of o
another.

g! The leading~exponential! factor in Eq.~1.9! has been
calculated before~see Eqs.~35! and ~36! in Ref. 29!; this
yielded a more cumbersome expression than Eq.~1.11! for
g(g,u), but reduces to it when Eq.~1.6! is used. Note that
the coefficient ofg2 in the expansion of the preexponenti
factor P ~which is independent of the angleu according to
Eq. ~B2!! is the same as that calculated previously for
special casesu5031 andp/2.30
ts,

h

b-

y
e

e

The results of some numerical calculations using th
formulas are shown in Figs. 1 and 2. Note thatt0

5t0(g,u) has a simple physical significance:t052 ivc
21t0 ,

wheret0 is the time~purely imaginary! of subbarrier motion.
The functionsg, P, andQ are plotted as functions ofg in
Figs. 2a–c.

With rising magnetic field, the barrier width increase
while the ionization probability decreases. We introduce
‘‘stabilization factor’’ S, which accounts for the suppressio
of the decay of a bound state by a magnetic field:

w~E ,H!5Sw~E ,0!. ~1.18!

For parallel fields this factor can be found analytically:

S~g,0!5
g

sinh g
5H 12

1

6
g21

7

360
g41... g→0,

2ge2g1O~e23g!, g→`,
~1.19!

and, in this case, it is the same for neutral atoms and nega
ions. In the general case, we have

S5PQh expH 2
2

3e
@g~g,u!21#J , ~1.20!

so that forg→0 we obtain

S512s1g21....., s15
1

6
1

2

9
~0.1e212h!sin2 u.

~1.21!

As a rule, the coefficients1 is positive~in particular, for all
negative ions!. The stabilization factor falls off rapidly as th
magnetic field increases, especially wheng.1 ~Fig. 3!. The
dependence ofS on the Coulomb parameterh becomes sig-
nificant for g.2. The preexponential factorP sharply re-
duces the probabilityw if g*10 ~Fig. 2b!.

2. THE CASE E'H

The case of mutually perpendicular fields is special, b
formally ~the asymptotes of the functions in Eq.~1.9! have a

FIG. 1. t0 as a function of the parameterg according to Eq.~1.6!. The
anglesu between the electric and magnetic fields are indicated next to

curves. The dashed curves correspond to the approximationt̃0 from Eq.

~1.8!; heret̃051 for g51 and arbitraryu.
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different form for largeg! and physically: a field configura
tion of this type shows up in the rest frame of an atom m
ing in a constant magnetic field~Lorentz ionization37!. The
equations take the form

FIG. 2. The functionsg ~a!, P ~b!, andQ ~c! in Eq. ~1.9!. In b the curves
correspond to the same anglesu as in a. Because of the strong dependen
of Q(g,u) on g, in c we have introducedAQ.
v-

g~g!5
3

2
b3F12S coth t02

1

t0
D coth t0G ,

P~g!5
g

b F S sinh t0

t0
1

t0

sinh t0
D cosht022G21/2

, ~2.1!

and

Q~g!5
1

4
b2 expS 2E

0

t0
dtH b21F S cosht02cosht

sinh t0
D 2

2S sinh t

sinh t0
2

t

t0
D 2G21/2

2
1

t02tJ D , ~2.2!

where t0(g) is determined from the equationt0

5t0 /(11At0
22g2), andb5@12cotht021/t0)2] 21/2.

For g!1 ~weak magnetic field!,

g~g!511
1

30
g21

11

7560
g4

1
53

2 041 200
g62

2507

538 876 800
g81..., ~2.3!

and

P~g!512
1

6
g22

1

3240
g41..., Q~g!511

2

9
g21... .

~2.4!

On the other hand, forg@1, we have~see Appendices B
and C!

g~g!5
3

8
g~11g22!2@12c1e2g2

1O~e22g2
!#, ~2.5!

and

P~g!5c2e2g2/2gS 12
1

2g2 1...D ,

Q~g!5c3epgg22@11O~g21!#, ~2.6!

where theci are numerical coefficients:c152e2150.7358,
c2523/2e21/251.716, andc350.0106. Thus,g(g)}g for
g→`, while for anglesu,p/2 this function approaches a
constant; asymptotically, of the functionsP andQ also differ
substantially.

ce
ith
FIG. 3. The stabilization factorS for u590° ~a!
and 45° ~b!: the smooth curves are for the
ground state of the hydrogen atom (k5h51)
and the dashed curves, for a negative ion w
k51 andh50. The values ofg are indicated
on the curves (h5H/Ha).
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TABLE II. Approximations tog(g).

Note:The table contains values ofg(g,u) for u5p/2: A! numerical calculation; B! according to Eq.
~2.3! with terms up tog4 andg8, inclusive, retained in the upper and lower lines, respectively; C! the
asymptote~2.5!. The relative errorsd in the corresponding approximations~percent! are given in
square brackets; the order of magnitude is indicated in parentheses, i.e.,a(b)[a•10b.
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A remarkable feature of these expansions is that th
domains of applicability ‘‘stretch down’’ tog;1, where
these asymptotes merge smoothly into one another. Th
illustrated in Table II, which lists values ofg(g) calculated
using the approximate equations~2.3! and~2.5! in columns B
and C, respectively, as well as the results of a numer
calculation~column A!. It is clear that forg&2, g(g) can be
calculated using Eq.~2.3!, and that forg.1.5 it can be cal-
culated using the asymptotic expansion~2.5! without having
to solve a transcendental equation. Although the functi
P(g) andQ(g) vary more rapidly thang(g) wheng@1, the
probabilityw is most sensitive to the changes ing(g) itself,
since this function appears in the exponent of Eq.~1.9!, and
with a large coefficient 2/3e at that. Here the Coulomb an
preexponential factors are parametrically small relative to
leading asymptotic term exp$2(2/3e)g(g)%; to exponential
accuracy, we have

w~g!'expH 2
h

4e2 @112~h22phe!1...#J ,

g5
h

e
@1, ~2.7!

where the term 2h in square brackets comes from the pree
ponential factorP(g), while the term proportional toh
comes from the Coulomb factorQ(g).

It is interesting to note that for the ground state of t
hydrogen atom (k5h51), the overall factorPQ in front of
the exponential in Eq.~1.9! is close to unity for 0<g&4
~Fig. 4!, althoughP(g) and Q(g) individually vary within
this range ofg by more than two orders of magnitude~e.g.,
P(4)52.2331023, while Q(4)5227.3!. Here essentially
all the dependence of the ionization probability ong is de-
termined by the exponential factor~if hÞ1, then this is no
longer true!.

Note that in the caseu5p/2 and g.1, although the
ionization probabilityw is small ~especially in view of the
linear growth ing(g) asg→`!, it does not go identically to
zero, notwithstanding the claim made in Ref. 30. The eq
tions in Ref. 30 forw in the regiong,1 are also wrong,
except for the expansion~9! for g→0.
ir
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3. ASYMPTOTIC BEHAVIOR FOR g@1

In this case, which is analogous to the antiadiabaticv
@v t) approximation in the theory of multiphoton ionization
we can develop a simpler asymptotic theory~this approach
may also be useful for a number of other problems.!

The equations for the subbarrier trajectory of the el
tron take the form

x5 iaS t

t0
2et2t0D sin u, y52a~12et2t0!sin u,

z52
a

2t0
~t0

22t2!cosu, ~3.1!

wherea5Et0vc
22 , t52 ivct, andt0@1. Here

ṙ252
k2

g2 $t2 cos2 u2~122t0et2t0!sin2 u%. ~3.2!

The initial conditionṙ2(t0)52k2 yields the approximation
~1.8! for t0 , which is highly accurate forg*1. Thus, in the
case of parallel fieldst̃05t05g, while for u5p/2 we have
t̃05(g211)/2 and d(g)[(t02 t̃0)/t050.052, 0.019,

FIG. 4. The preexponential factorP, Coulomb factorQ ~dashed curves!,
and their product~smooth curve! as functions ofg for u5p/2.
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TABLE III. Accuracy of the adiabatic approximation.

Note:The relative errorsdg anddP are given in percents. A dash indicates that the corresponding value is less
than 10230.
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on is
3.6(24), and 1.2(210), respectively, forg51.5, 2, 3, and
5. Expanding the function~1.8! in reciprocal powers ofg
yields all of the terms in the series~B6!.

Using the approximation~3.1!, we find

g~g,u!5
3t0

2g H 12
1

g2 F ~t021!sin2 u1
1

3
t0

2 cos2 uG J
~3.3!

and

P~g,u!52g2~t0 sin2 u1t0
2 cos2 u!21/2e2t0, ~3.4!

as well as Eq.~2.6! for Q(g,p/2) ~see Appendix C!. Here
one must substitute the approximation~1.8! for t0 ; for ex-
ample,t05g for u50, t05A2(11g2)21 for u545°, and
t05(g211)/2 for u590°.

These asymptotic formulas are surprisingly accura
starting with byg;3 ~see Table III, whered denotes the
relative error in the corresponding asymptote; thus,dg5(g
2gas)/g, whereg is calculated using Eq.~2.1! and gas is
calculated using Eq.~3.3!, while dP and dQ are defined
analogously!. Note that in the case of parallel fields,gas

5Qas[1, independently ofg, while Pas52t0 exp(2t0) and
dP5exp(22g). On the other hand, foru5p/2, we have

gas5
3t0

2

2~2t021!3/2, Pas5
2~2t021!

At0

e2t0. ~3.5!

with dg'2c4 exp(2g2), dP;c5g2 exp(2g2), andc452c5

50.736. This approximation is not so accurate forQ, be-
cause of the complicated form of the Coulomb integ
~1.12!. A comparison of the asymptote~2.6! with the numeri-
cal calculations shows thatdQ510.6%, 2.7%, and 0.69% fo
g55, 10, and 20, anddQ falls off asg22, rather than expo-
nentially.

Finally, using Eq.~3.1! it is easy to see how the actionW
accumulates during subbarrier motion. Letr5r /b, wherer
[(x21y21z2)1/2 is the distance between the electron a
nucleus~here the componentx(t) is purely imaginary, while
y and z are real! and b is the barrier width~see Eq.~C5!!.
For u,p/2 we easily find

W~r!/W~1!512~12r!3/21O~g21!. ~3.6!

It is interesting to note that the same dependence holds
g50, i.e., in the case of a purely electric field, when3,36

x5b0F12S t

t0
D 2G , W~ t,t0!5

ik3

3E
F12S t

t0
D 3G ~3.7!
,

l

or

(b05k2/2E). Thus, on going fromg!1 to g@1, i.e., from
a weak magnetic field to a strong one, the way the act
varies along the subbarrier trajectory is essentially
changed.

4. ASYMPTOTIC COEFFICIENT AT INFINITY

As Eq. ~1.9! shows, the ionization probability for an
atomic level is proportional touCku2. This is not surprising,
since fore,h!1 ionization takes place from the ‘‘tail’’ of
the atomic wave functionc0(r ), while the barrier is wide
(kb;1/e@1). We now briefly discuss the properties of th
coefficientsCk .

For potentials with a Coulomb ‘‘tail’’ at infinity,V(r )
52Z/r 1o(r 22), the asymptote of the normalized radi
wave function has the form

xk l~r !52Ck lAke2kr~kr !h

3F11
~ l 1h!~ l 112h!

2kr
1...G , r→`, ~4.1!

which determines the asymptotic coefficientCk l . Note that
under the similarity transformationr→ar , in the Schro¨-
dinger equation

Ek l→a2Ek l , k→ak, V~r !→a2V~ar !,

x l~r !→Aax l~ar !, Ck l→Ck l . ~4.2!

Thus, the coefficientsCk l are dimensionless and scal
invariant, i.e., they depend only on the form of the poten
V ~and number of the level!, but not on its depth and radiu
individually. For thens-state of a hydrogenlike atom, w
have

Ck52n21/n!, l 50, ~4.3!

and these coefficients are independent of the nuclear cha
(Ck51 for n51,2.!

The parametersk andCk for neutral (Z51) atoms and
for negative (Z50) and singly-charged positive (Z52) ions
are listed in Table I, which we have compiled from han
book data.42 HereCk5(2kh11/2)21A, whereA are the cor-
responding coefficients from Ref. 42. The values ofCk for
the ground states of atoms and ions lie within fairly narro
limits: for neutral atoms, fromCk50.926 for the Cs atom to
Ck51.22 for Hg, and in most cases they are close to un
~We have mostly chosen cases where the valence electr
in the s-state.! Thus, the asymptotic coefficientsCk ~and,
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thereby, the ionization probabilityw! are insensitive to the
form of the potentialV(r ) outside the atomic core.

5. IMAGINARY TIME METHOD

In calculating the ionization probabilities, we used t
imaginary time method~ITM !. This made it possible, in par
ticular, to find the Coulomb correction to the probabili
w(E ,H), which can hardly be found in any other way. He
we present some necessary explanations regarding the u
the ITM in ionization problems.

1! According to Feynman,43 in order to calculate the
probability of a transition from an initial into a final state,
is necessary to allow for contributions from all possible pa
linking these states. In the case of subbarrier~tunneling! tran-
sitions and within the domain of applicability of the sem
classical approximation, it suffices to restrict attention to
class of smooth paths that satisfy the classical equation
motion ~but with imaginary timet! and the natural boundar
conditions: att5t0 the electron is bound to the atom and
t→` it escapes to infinity in specified external fieldsE and
H. The contribution of such a path to the tunneling pro
ability is36 exp(22 Im W), whereW is the reduced action,

W5E
t0

0FL1E02
d

dt
~p–r !Gdt, L5

1

2
mv21

e

c
A–v2ew,

~5.1!

E052k2/2 is the energy of the initial state,t0 is the initial
time for subbarrier motion, andt50 is the time the particle
escapes from under the barrier (lnW(t) no longer changes fo
t.0!. In the following, we consider constant and unifor
fields and a potentialU(r ) with zero range~a d-potential!.
Making the substitutions

A5
1

2
@Hr #, w52Er

in Eq. ~5.1! and bearing the equation of motion and the init
condition r (t0)50, in mind, we obtain

W5
1

2 H eEE
t0

0

r ~ t !dt1k2t02m~r–ṙ ! t50J . ~5.2!

This then is the basic formula with which we shall calcula
the ionization probability. We now proceed to some e
amples~\5e5m51).

2! In a purely electric fieldE5(0,0,E) the subbarrier
trajectory of an electron can be characterized by the tra
verse momentump' :

r ~ t !5H p'~ t2t0!,
1

2
E~ t22t0

2!J ,
~5.3!

t05
i

E
Ak21p'

2 5
ik

E
S 11

p'
2

2k2 1...D ,

which implies that (r• ṙ ) t5052p'
2 t0 and

W~p'!5
1

6
E 2t0

31
1

2
~k21p'

2 !t05
i

3E
~k21p'

2 !3/2.

~5.4!
of

s

e
of

-

l

-

s-

In the D-dimensional case, the total ionization probab
ity for the s-level is given by

wsr~E !5
k2

p
uCku2E exp$22 Im W~p'!%dD21S p'

k D
'k2p~D23!/2uCku2e~D21!/2e22/3e, e→0, ~5.5!

whereCk is the dimensionless asymptotic coefficient of t
~normalized! wave function in the short-range potenti
U(r ):

c0~r !'Ak

p
Cke2kr r 2~D21!/2, r 5S (

i 51

D

xi
2D 1/2

@k21

~5.6!

~in the case of ad-potential,p (D23)/2uCku251, Ap/2, and
1/2, respectively, forD51,2, and 3!. Here the distribution of
escaping electrons with respect top' is narrow ~on an
atomic scale!: ^p'&;Aek!k.

Equation~5.5! applies to ionization of ans-level bound
by a short-range potential and reveals the dependence o
probabilitywsr on the dimensionality of the space.4! Here we
also give the ionization probability for the ground state o
D-dimensional ‘‘hydrogen atom:’’

wH~E !5k2
2D21

G~~D11!/2!
e2~D21!/2e22/3e ~5.7!

~for E50 the energy of the ground state isE0

522(D21)22, so thatk52/(D21) for D.1!. Note that
Eq. ~5.7! follows directly from the general formula2,3,6 for
the ionization probability of the stateun1n2m& in a weak
electric field if we note that the ground state in th
D-dimensional Coulomb problem is equivalent to a nodel
(n15n250, n5k215(D21)/2! state of the three-
dimensional hydrogen atom.46 Here n1 , n2 , and m are the
parabolic quantum numbers, withn5n11n21umu11.

A comparison of Eqs.~5.5! and ~5.7! shows that they
have the same exponential factors, but the preexpone
factors are substantially different: for short-range potent
it decreases as the dimensionalityD increases, while for the
Coulomb potential it increases. This is explained by the f
that for e!1, ionization takes place from the ‘‘tail’’ of the
wave functionc0(r ), where the electron density

c0
2~r !}r 2h2~D21!e22kr , kr @1 ~5.8!

is greater for larger values of the exponent 2h2(D21)
5(Z21)(D21).

3! If both E and H fields, are present, then th
extremal5! path is no longer one-dimensional and has
form ~1.5!. The velocity of the particle along it isv
5 ivcdr /dt, with
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v2~t!5S eE

vc
D 2H t0

2F S coth t02
1

t0
D 2

12
cosht02cosht

t0 sinh t0
Gsin2 u

2~t0
2 sin2 u1t2 cos2 u!J . ~5.9!

Equation ~1.6! follows directly from the condition
v2(t0)52k2, and fort50 we find that the momentum o
the particle as it escapes from under the barrier is direc
perpendicular to the~E ,H! plane and has magnitude

p05vx~0!5
eE

vc
S 12

t0

sinh t0
D sin u

'k sin uH 1

6
g, g!1,

g21, g@1.

~5.10!

In contrast to the one-dimensional case, the point of esc
from under the barrier is not a point at which the partic
stops; however, the velocity componentsvy and vz , which
are imaginary in the subbarrier motion, go to zero at t
point.

It follows from Eq. ~1.5! that for the extremal trajectory
(r• ṙ ) t5050 and

W52 i
E2

2vc
3 t0F ~t0 coth t021!sin2 u

1
1

3
t0

2 cos2 uG1 i
k2

2vc
t05

i

3e
g~g,u!. ~5.11!

Using Eq. ~1.6! and the equationsE /vc5k/g, k2/vc

5(eg)21, andE 2/vc
35(eg3)21, we arrive at Eqs.~1.9! and

~1.11!.
4! To calculate the preexponential factorP, we have to

include the contribution not only from the extremal traje
tory, but from the entire bundle of ‘‘classical’’ trajectorie
close to it. We now illustrate this for parallel fields:r (t)
5$r(t),z(t)%, where

r[x1 iy5 i
p'

vc
@exp~2 ivct !2exp~2 ivct0!#,

z5
1

2
E~ t22t0

2! ~5.12!

~the fields E and H are directed along thez axis!, with
r (t0)50 and ṙ (0)5p' . The second condition of Eq.~1.4!
takes the form

E2t0
21p'

2 exp~22ivct0!52k2

and determines the initial time for subbarrier motion,

t05
ik

E
S 11

p'
2

2k2 e22t01...D , p'!k.

The first two terms on the right-hand side of Eq.~5.2! yield
a contribution
d

pe

s

1

6
E2t0

31
1

2
k2t05 i

k3

3E
F11OS S p'

k D 4D G ,
and in the Gaussian (;p'

2 ) approximation their dependenc
on the transverse momentum must be neglected. The
term of Eq.~5.2! remains:

~r–ṙ ! t505
1

2
~ ṙ–r* 1ṙ* –r! t5052p'

2 t0

sin vct0

vct0
.

Sincevct05 ig@11O(p'
2 /k2)#, we have, finally,

W~p'!5
i

e H 1

3
1

sinh g

g

p'
2

2k2 1...J . ~5.13!

Integrating overd2p' yields a factoreg/sinhg in the preex-
ponential factor~see Eqs.~1.9! and ~1.17!!. We now make
some comments on the resulting solution.

a! In finding the subbarrier trajectories we allowed on
for externalE andH fields, which actually implies a zero
range approximation for the potentialU(r ) binding the elec-
tron to the atom. Including a finite range of the forces,r s ,
yields small corrections of orderr s /b;e(kr s) in the preex-
ponent, which we shall neglect.

b! The ITM provides an easy explanation for the redu
tion in ionization probability with increasing magnetic field
The barrier widthb is given by

b[Ar2~0!5
k2

2E
d~g,u!, ~5.14!

where

d~g,u!5S t0

g D 2Acos2 u1F tanh~t0/2!

t0/2 G2

sin2 u

5H 11
sin2 u

36
g21..., g!1,

1

cosu
2

2 tan2 u

g
1..., g→`.

~5.148!

For g&1 the barrier width is essentially constant and co
cides with the widthb05k2/2E for a constant electric field
with kb051/2e@1. For g@1, for which the magnetic field
exceeds the electric, however,d(g,u) increases; this widens
the barrier and sharply reduces its permeability.

c! At the time of escape from under the barrier,

x50,
y

z
[tan u0 , u05arctanH tanh~t0/2!

t0/2
tan uJ .

Wheng&1 the particle moves along the electric field durin
subbarrier motion. If, on the other hand,g@1, then the sub-
barrier trajectory is ‘‘clamped’’ to the direction of the mag
netic field (u0!u).

5! Proceeding to the calculation of the Coulomb corre
tion, we setV5V01dV, while the extremal subbarrier tra
jectory r0(t) in the potentialV0 is assumed to be known
~analytically or numerically!, while the perturbationdV is
small everywhere along it. The variation in the action is

dS52E
t0

0

dV~r0~ t !!dt. ~5.15!
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In this case,dV52Z/r , so the integral~5.15! diverges loga-
rithmically as r→0 ~or t→t0); in general, for the ground
and low-lying excited states of atoms, the regionr &k21

cannot be treated semiclassically. This difficulty is overco
with the aid of a matching technique~cf. Ref. 1!. Sincee
!1, we have6! b@r 0@k21, whereb is the barrier width and
r 05AZ/E is the distance over which the Coulomb field
the atomic core~chargeZ! is comparable to the external fiel
E . This makes it possible to introduce a matching pointr 1

(k21!r 1&r 0) such that forr .r 1 the Coulomb interaction
distorts the subbarrier trajectory only weakly and Eq.~5.15!
still works, while for r ,r 1 the external fields can still be
neglected, so that

c0~r !'r 21 exp$2kr 1h ln~kr !1O~1!%

5r 21 exp$2Im@S0~r !1dS~r !#%.

Ultimately, for the Coulomb correction we obtain

dSC52 ih ln~kr 1!1ZE
t1

0 1

Ar0
2~ t !

dt,

exp~22 Im dSC!5S e

2D 22h

@Q~g,u!#h, ~5.16!

where r 15Ar0
2(t1) and h5Z/k. This procedure is verified

by the fact that the arbitrary matching pointr 1 drops out of
the final answer.

6! We illustrate Eq.~5.16! for an electric field, for which
~see Eq. ~5.3! for p'50! r 0(t)5E(t22t0

2)/2 and t0

5 ik/E :

dSC52 ih ln~kr 1!1
2Z

E
E

t1

0 dt

t22t0
2

52 ih ln
~ t01t1!kr 1

t02t1
.

Sincer 0(t)5 ik(t2t0)1... for t→t0 , we have

dSC52 ih ln~22ik2t0!52 ih ln~2k3/E !,

exp~22 Im dSC!5~2/e!2h, ~5.17!

which coincides with the standard result obtained using
asymptotic solution of the Schro¨dinger equation in parabolic
coordinates for the hydrogen atom1–3 and for a short-range
potential.7,8 A comparison with these references shows h
much simpler the calculation becomes when the ITM is us
Applying Eq.~5.16! to the subbarrier trajectory~1.5! leads to
Eq. ~1.12! for the Coulomb correction.

6. CONCLUSION

A semiclassical theory of the ionization of atoms a
ions in electric and magnetic fields that allows for the Co
lomb interaction between the electron and the atomic c
has been constructed. The resulting formulas are asymp
cally exact for weak (e,h!1) fields, and forH50 trans-
form to the well known results1–7 for the case of an electric
field. Here the answer~Eq. ~1.9!! contains only two constant
~k andCk!, which characterize the given atomic level.

There are two questions which require further work.
e

e

d.

-
e,
ti-

1! We have discussed ionization of thes-level,7! but the
ITM can be generalized to states withlÞ0. Then, at short
distances (kr &1), where the atomic potential is spherical
symmetric, it is necessary to account for the removal of
degeneracy in the projection ofm in the external fieldsE and
H. This can be done using Eqs.~A1!–~A5! from Appendix
A, which solve for the correct wave functions in the zero
approximation.8!

2! The ITM can be generalized to the relativistic cas
which makes it possible to examine the ionization of lev
whose binding energy is comparable to the rest energymc2.
Allowing for corrections of ordera2, the ionization prob-
ability ~to exponential accuracy! is

w~E ,H!}expH 2
2

3e
~12c1a2k2!J , ~6.1!

where

c15
1

30 F9

4
2S H

E
D 2

sin2 uG , a5
e2

\c
5

1

137
. ~6.2!

In particular, c153/40 for a pure electric field andc1

51/24 for crossed fields. In these cases the relativistic c
rection increases the ionization probability slightly, but
changes sign ifE /H,(2/3)sinu.

The relativistic version of the ITM can be used to obta
the analog of Eqs.~1.9! and ~6.1! for a level with arbitrary
energy~from mc2 to 2mc2!, but this question lies outside
the scope of this article.47

We thank N. B. Delone and V. P. Kra�nov for discus-
sions of the results of this work, S. G. Pozdnyakov and A.
Sergeev for help with the numerical calculations, and M.
Markina for help in preparing the manuscript. This work w
partially supported by the Russian Fund for Fundamen
Research.

APPENDIX A

It has been shown48 that in external staticE and H

fields, the energy spectrum of an electron bound by a sh
range potentialU(r ) of radiusr s is given by

det@Alm
l 8m8~E!2Bl~E!dmm8#50, ~A1!

which follows from the matching condition for the inner an
outer wave functions in the overlap region,

r s!r !min$k21,LE ,LH%.

Here k5A22E, LE5E 21/3 is the electric length andLH

5(H/c)21/2 is the magnetic length.10,48 Since LE

5k21e21/3 andLH5k21h21/2 and assuming that condition
~1.2! are satisfied, in our case it is sufficient that

r s!r !k21, ~A2!

which can always be satisfied forkr s!1, i.e, in the case of a
shallow level.

The coefficientsAlm
l 8m8 appear in the expansion of th

solutions of the Schro¨dinger equation,
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glm~r ;E!5r 2~ l 11!YlmS r

r D1...

1 (
l 8,m8

Alm
l 8m8~E!r l 8Yl 8m8S r

r D1..., r→0,

~A3!

which satisfy the Sommerfeld radiation condition at infinit
and theBl(E) are determined by the scattering phases in
potential U(r ). In the effective radius approximation, w
have

~2l 11!!! ~2l 21!!! Bl~E!5k2l 11 cot d l
~s!~k!

52
1

al
1r lE, ~A4!

whereal is the scattering length,r l is the effective radius,
andl is the orbital angular momentum. Solutions~A3! can be
expressed in terms of the Green functionG by

glm~r ;E!5
2p

~2l 21!!!
YlmS ]

]r 8DG~r ,r 8;E!ur 850 . ~A5!

In particular,g00(r ;E)5ApG(r ,0;E). In turn, G(r ,r 8;E) is
given in terms of the time-dependent Green function by

G~r ,r 8;E!5 lim
d→10

i E
0

`

G~r ,t;r 8,0!ei ~E1 id!tdt, ~A6!

which in uniform electric and magnetic fields can
factored43,49

G~r ,t;r 8,0!5
1

A~2p i t !3

u

sin u
exp$ i @S2~r,r8;t !

1S1~z,z8;t !#%, ~A7!

where

S1~z,z8;t !5
~z2z8!2

2t
2

1

2
~z1z8!F it2

1

24
F i

2t3, ~A8!

and

S2~r,r8;t !5
~r2r8!2

2t
u cot u1

1

2
v~x2x8!~y1y8!

2
1

2
@~x2x8!~cot u2u21!1~y1y8!#F't

2
1

8
F'

2 t3
12u cot u

u2 , ~A9!

r5$r,z%, F i5ueuE cosu, andF'5ueuE sinu ~for an elec-
tron e,0!, we have introduced the variable

u5vt/2, v5uvcu, ~A10!

and chosen the gaugeA5$2Hy ,0,0%. HereS1 is the action
for one-dimensional motion in a uniform fieldF i and S2 is
the two-dimensional action for crossed fieldsF' andH.

We write Eq.~A7! in the form

G~r ,t;r 8,0!5G0~r ,t;r 8,0!1j~r ,r 8;t !, ~A11!
e

whereG05(2p i t )23/2 exp$i(r2r 8)2/2t% is the free-particle
Green function, while the functionj does not lead to diver-
gence asr→r 8 in Eq. ~A6!. In particular, ast→0,

j~0,0;t !5
1

24
v2t22

i

24
F2t31..., F25F i

21F'
2 .

We first consider ad-potential. G(r ,0;E) describes a
quasistationary state of the particle in the combined field~E ,
H, and a well with zero range located at the pointr 850! if
the boundary condition

G~r ,0;E!5const•$r 212k01O~r !%, r→0 ~A12!

is satisfied, wherek051/as is the coupling constant of the
d-potential, andE5Er2 iG/252k2/2 andE052k0

2/2 are,
respectively, the energy of the level in the external fields a
the energy of the level for the free atom~ion!. From Eqs.
~A7!–~A9! and the integral

E
0

`

expH i S Et1
r 2

2t D J dt

t3/25
A2p i

r
exp~2A22Er !

we obtain

G~r ,0;E!5
1

2p i H 1

r
2k1

1

A2p i

3E
0

` dt

t3/2 eiEtj~ t !1...J , r→0. ~A13!

where

j~ t ![j~0,0;t !5
u

sin u
expH 2

i

24
[F i

21F'
2 f 1~u!] t3J 21,

f 1~u!5
3

u2 ~12u cot u!511
1

15
u21..., u→0, ~A14!

and the dots in Eq.~A13! represent terms that vanish asr
→0. A comparison of Eq.~A13! with Eq. ~A12! yields

k2k05
1

A2p i
E

0

` dt

t3/2 eiEtj~ t !, ~A15!

which can also be written in the same form as~1.14! with
u5k2ht/2.

We now discuss some special cases. IfE50, thenL→0,
Lg25h21, and, after some manipulations, Eq.~1.14! be-
comes the equation corresponding to a purely magnetic fi
~see Ref. 8 forl 50 and Ref. 48 for arbitrary angular mo
mentuml ).

When the magnetic field is turned off, we have

h→0, u50, j~ t !5expS 2
i

24
E2t3D21.

Transforming to the variablet5k2t/2 in Eq. ~A15!, we ob-
tain
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k05k1
k

A4p i
E

0

` dt

t3/2 e2 i tF12expS 2
i

3
e2t3D G ,

e5
E

k3 , ~A16!

which agrees with an earlier paper50 for l 50 ~here we take
the opportunity to correct a misprint in that paper:t23/2 in
the integral in Eq.~10! should readt21/2).

When the conditions~1.2! are satisfied, the integrals i
Eqs. ~1.14! and ~A15! can be calculated by the method
steepest descent~the saddle point isu052 i t0 , where t0

.0 is the root of Eq.~1.6! given by the ITM!. The calcula-
tions yield both the level shift

DE5Er2E05E0d, d5
1

2
uCku2S e22

1

3
h2D1....

~A17!

and the level widthG5\w ~Eq. ~1.9! with h50 and the
factor ~1.13!!. We emphasize that Eq.~A17! refers only to a
weakly bound level in a short-range potential. For examp
for the ground state in a Coulomb field,1 Ck51 and d
5(9e22h2)/21... .

Proceeding in similar fashion, from Eqs.~A1!–~A5! we
can obtain an equation for the energyE5k2/2, of the s-
state including a correction for the effective radius of t
system,

k2
1

as
2

1

2
k2r s5

1

A2p i
E

0

` dt

t3/2 eiEtH u

sin u

3expF2
1

24
~F i

21F'
2 f 1~u!!t3G21J ,

~A18!

which transforms to Eq.~A15! in the approximation of zero
range forces (r s50, 1/as5k0!. In particular, in a purely
electric field,50 we have

w~E !5k2Ck
2ee22/3e@12c1e1O~e2!#, ~A19!

where

Ck5
1

&

S 11
1

2
k0r s1...D , c15

5

3 S 11
3

20
k0r s1...D .

~A20!

Including the Coulomb interaction in the framework
the approach discussed here requires knowledge of the G
function, allowing for the effects of the externalE andH, as
well as of the Coulomb field, which can scarcely be done
analytic form.

APPENDIX B

Here we introduce the expansion of the functions in E
~1.9!. For g!1,

t0~g,u!5 (
k50

`

ckg
2k11, g~g,u!5 (

k50

`
3ck

2k13
g2k,

~B1!
,

en

n

.

P~g,u!512
1

6
g21

1

3240
~20s2284s163!g41...,

~B2!

and

Q~g,u!511
2

9
sg21..., ~B3!

wheres5sin2 u and

c051, c15
s

18
, c25

1

3240
~35s2224s!,

c35
11s3

3888
2

s2

270
1

s

1050
,... ~B4!

The relation between the expansion coefficients for the fu
tions t0 andg indicated in Eq.~B1! follows from the equa-
tion

t0~g,u!5
1

3g

]

]g
@g3g~g,u!#, ~B5!

whose validity can be verified by writing Eq.~1.11! in the
form

1

3
g3g5

1

2 Fg2t02
1

3
t0

3

2S t0
2 coth t02t02

1

3
t0

3D sin2 uG
and then calculating](g3g)/]g23gt0 .

For g@1 ~strong magnetic field! andu,p/2, we obtain

t0~g,u!5
g

cosu
2tan2 uS 12

1

2g cosu
1...D , ~B6!

g~g,u!5
1

cosu
2

3 tan2 u

2g S 12
1

g cosu
1...D , ~B7!

P52g expS 2
g

cosu
1tan2 u D @11O~g21!#, ~B8!

and

Q5
1

cos2 u F112
sin2 u

g
ln

g

cosu
1O~g21!G . ~B9!

The caseu5p/2 is special: Eq.~1.6! for t0(g) takes the
form f (t0)5g2, where

f ~t!52t coth t2S t

sin t D 2

21

5 (
k51

`
22k~2k11!

~2k!!
B2kt

2k,

andB2k are the Bernoulli numbers. Reverting this series a
using Eq.~B5!, we arrive at the expansions~2.3!. If g@1,
then Eq.~1.6! can be conveniently written in the form

t22(
n51

`

~nt22t!e22nt5
1

2
~g211!.
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Solving iteratively, we arrive at the rapidly converging e
pansions

t0~g!5 (
n50

`

Pn~z!e2nz, g~g!5g23(
n50

`

Qn~z!e2nz,

~B10!

where

z5g211, P05
1

2
z, P15

1

2
z22z,

P252
1

2
z413z324z21z,

Q052
1

2
Q15

3

8
z2, Q25

3

8
~z424z312z2!,

and for arbitraryn,

Pn~z!5
2

3
~Qn82nQn!, n50,1,... . ~B11!

Finally, for small anglesu!1, we have

t0~g,u!5g~11t1u21...!, g~g,u!511g1u21...,

P5
g

sinh g
~12p1u21...!, Q511q1u21... ,

~B12!

where

t1~g!5
1

2
~coth g2g21!2,

g1~g!5
3

2g2 S 11
1

3
g22g coth g D ,

~B13!

p1~g!5~g coth g21!S g221

2g2 2
coth g

2g
1

1

sinh2 g D .

Note the extreme smallness of these coefficients forg!1:

t15
1

18
g22

1

35
g41..., g15

1

30
g22

1

315
g41...,

p15
7

270
g41... . ~B14!

Thus, for weak magnetic fields, the dependence of the
ization probability on the angle betweenE and H can be
neglected right up tou;1 ~in agreement with the numerica
calculations of Fig. 2!. In the other limit, we have

t15
1

2
2g211..., g15

1

2
2

3

2g
1...,

p15
1

2
g211O~g22!, g→` ~B15!

~all these coefficients increase monotonically with increas
g!.
n-

g

APPENDIX C

We now discuss the details of some of the calculations
Sec. 3. For the components of the velocity of subbarrier m
tion, Eq. ~3.1! gives (e521)

vx5 ẋ5
k

g
~12t0 et2t0!sin u, ẏ52 i

k

g
t0 et2t0 sin u,

ż52 i
k

g
t cosu, ~C1!

which implies Eq.~3.2!. Furthermore,

W~ t0 ,t !5E
t0

t

~L1E0!dt5
i

vc
H 1

2
k2~t02t!2E

t

t0
L dtJ ,

~C2!

L5
1

2
ṙ22

1

2
vc~xẏ2yẋ!2E~y sin u1z cosu!

5
k2

2g2 $~t0
222t2!cos2 u1@t011

1t0~t02t23!et2t0#sin2 u1...%.

An elementary integration yields

W~ t0 ,t !5
i K

2 H t02t2
1

g2 F1

3
~t0

323t0
2t12t3!

3cos2 u1~t0
22t02~t011!t!sin2 uG J ,

~C3!

whereK5k2/vc51/eg, t02t@1, and we have discarde
terms proportional to exp(t2t0). Upon escape from unde
the barrier, Eq.~C3! transforms to Eq.~3.3! for g(g,u).
From Eq.~3.1! we also find

r 5~E /vc
2!j~t!,

j5t0H 1

4
t0

2~12u2!2 cos2 u1~12u!

3~12u22e2t0~12u!!sin2 uJ 1/2

, ~C4!

whereu5t/t0 . Here the barrier width is

b5
E

vc
2 j~0!5

k2

2E

t0

g2 At0
2 cos2 u14 sin2 u , ~C5!

and in the limitg→`, we have

b5
k2

2E

3H 1

cosu
22g21 tan2 u1..., g@

1

cosu
~0<u,p/2!,

11g221..., u5p/2.

~C6!
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We calculate the Coulomb correction using Eq.~1.12!. If
u,p/2, thenj/g5t0(12u2)/2, the integral in Eq.~1.12! is
given byJ5 ln 2, andQ(`)'(t0 /g)251/cos2 u. In the spe-
cial caseu5p/2, we have

j5t0Ay@2~12e2t0y!2y#, y512u, ~C7!

and t05(g211)/2. Introducing the matching pointa such
that 1/t0!a!1, we separate the integralJ into two parts and
proceed to Eq.~2.6!, where the constant is given by

c35
1

4
exp$2~J11J222!%, ~C8!

where

J15E
0

1S 1

Ax~12e2x!
2

1

xD dx,

J25E
1

`S 1

A12e2x
21D dx

Ax
.

Numerically, we haveJ150.25433 andJ250.16692,
whereuponc350.01063. Numerical calculations ofQ(g)
confirm the validity of the asymptote~2.6!, which, however,
holds only forg*15.

* !E-mail: karnak@theor.mephi.msk.su
1!Here we have in mind analytic formulas, and not numerical calculation33

We note, however, that some partial results have, in fact, been obta
elsewhere.34,35

2!Strictly speaking, these conditions correspond to a zero range of actio
the forces binding an electron to the atomic core. It can, however
shown that allowance for the finite radius~range! of the forces yields
corrections of ordere!1 in the multiplicative factor preceding the expo
nential, which we shall neglect~see Eq.~A19!, in particular!.

3!These expressions were obtained by analytic continuation of the stan
formulas for the motion of a charged particle in constant and unifo
fields.41

4!The transition from the physical valueD53 to arbitraryD has been de-
veloped extensively in recent years and is widely used in theoretical p
ics ~the 1/D-expansion, or dimensional scaling!; see Refs. 44 and 45, an
references therein.

5!That is, the subbarrier path that minimizes ImW and determines the mos
probable path for tunneling of the particle. It is selected by the bound
conditions~1.4!.

6!Note thatr 0 /b;AZEk22;AZF, whereF5n4E /Ea is the reduced elec-
tric field, which is conveniently introduced in the analysis of the Sta
effect for Rydberg states.21–23 The barrier in the potentialU2(h) vanishes
for a ‘‘critical’’ field F5F* , whereF* varies between 0.130 for a state o
the typeu0,n21,0& and 0.383 for statesun21,0,0& with n@1. The condi-
tion for applicability of the equations of perturbation theory for the Co
lomb interaction~5.16! is F!F* .

7!This case is encountered most often. Thus, among the neutral atoms~from
hydrogen to uranium! the valence electron is in ans-state in 61 cases, in a
p-state in 30 cases, and in anl 52 state for only one atom~Pd!.42

8!This method has been used48 to calculate the quasienergy spectrum of t
p-levels of an electron in a short-range potential and the field of a ci
larly polarized wave. Here it is important to include degeneracy with
spect tom, but it only changes the partial widthsG lm , while the total
width G l5Sm52 l

l G lm is the same as that calculated previously.3,4
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Dynamic theory of two-photon correlators in the spectroscopy of single impurity
centers
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~Submitted 17 October 1997!
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A dynamic theory of two-photon correlators measured in experiments with single molecular
impurity centers has been developed. The theory takes into account the interaction between
optically active electrons of an impurity center and phonons, excitations in tunneling
systems of polymers and glasses, and transverse electromagnetic field. Both the correlator
measured in the start-stop regime and the ‘‘full’’ correlator have been analyzed, and equations for
these correlators have been derived. An equation relating these two correlators has been also
obtained. The effect of the triplet level of an impurity molecule on the correlators leading to
bunching of spontaneously emitted photons has been studied. The two-photon correlators
have been calculated numerically, and their dependence on the incident light frequency and time
between the pairs of detected photons in various realistic situations has been derived.
© 1998 American Institute of Physics.@S1063-7761~98!00505-8#
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1. INTRODUCTION

The basic measurements in spectroscopy of ensem
of impurity centers are of absorption and fluorescence ba
In most cases, these bands are notably broader than ban
a single impurity center owing to inhomogeneous broad
ing. In real crystals, the local environment of each impur
center always varies slightly, which causes some inhomo
neous broadening of the spectral lines due to impurities
solid solutions. This inhomogeneous broadening can be
or three orders of magnitude larger and reach several h
dreds of wave numbers if a polymer or glass is doped
impurity molecules.

The principal problem of the selective spectroscopy
impurity centers is getting round this inhomogeneous bro
ening, which obscures the fine features of impurity band1

The techniques of persistent spectral hole burning2 and fluo-
rescence line narrowing3 have allowed researchers to get r
of most of the inhomogeneous broadening, but not all. T
point is that these two techniques select some molec
from an ensemble using the frequency of their phonon
line. Leaving aside the impossibility of absolutely accura
frequency selection, selected molecules always have an
certainty in the amplitude of electron–phonon interaction
interaction with tunneling systems of polymers and glas
in the local impurity environment. This means that even
spectra of molecular subensembles selected using reso
excitation are different from those of individual molecule
and the problem of measuring a really uniform spectrum
be resolved only on the level of individual molecules.

The problem of measuring optical spectra of individu
impurity centers was solved several years ago,4,5 and this
event initiated intense development of single-molec
spectroscopy.6,7 At the present time, the following features o
individual molecules have been measured: absorption
shape,8 vibronic spectra,9 magnetic resonance of triple
8751063-7761/98/86(5)/13/$15.00
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levels,10,11 static Stark effect,12 dynamic Stark effect,13 and
distribution over optical line widths of individual impurity
centers.14

Optical parameters of individual impurity centers a
usually measured at liquid-helium temperatures under cw
tical excitation by a laser with a spectral line width of seve
megaherz. Photons sequentially emitted by a center are
tected. Measurements are performed in the photon coun
regime, and the measured parameter is the correlator in p
of photons emitted by the studied impurity center. For t
reason, development of the theory of two-photon correlat
is, undoubtedly, a key problem in single-molecule spectr
copy. This paper is devoted to the solution of this proble

The paper is organized as follows. Section 2 descri
specific features of measurements in the start-stop reg
and gives an expression for a two-photon correlator m
sured in the start-stop regime. Section 3 presents deriva
of the so-called full two-photon correlator. In these two se
tions the interaction between molecules and phonons is
glected. In Sec. 4 we will consider the effects of phonons a
tunneling systems of polymers and glasses on two-pho
correlators. Section 5 gives equations relating correlator
these two types. In Sec. 6 we will discuss the correlators
functions of time and pumping laser light frequency. Final
Sec. 7 considers the effect of a triplet level on the full tw
photon correlator, which shows itself in the grouping
emitted photons on the time axis and is termed ‘‘phot
bunching.’’

2. TWO-PHOTON CORRELATOR MEASURED IN THE
START-STOP REGIME

Consider a situation when a single atom is exposed to
monochromatic laser radiation. In each elementary event,
atom absorbs and after some time emits one photon. A se
sequentially emitted photons flies through space with rand
© 1998 American Institute of Physics
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FIG. 1. Sequence of photons emitted by an atom exposed to
light. The time intervals between photons in pairs~2, 3!, ~4, 6!, and
~12, 13! are equal.
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time intervals between individual photons, as shown in F
1. When fed into a PMT cathode, these photons genera
sequence of electric pulses apparently randomly distribu
in time. There is, however, a certain regularity in the times
which photons are detected by the PMT. This can be chec
by setting two PMTs on the beam line and detecting t
photons following one another after a certain time intervalt0.
This kind of measurement is called the start-stop regime.
example, if the interval between photons 2 and 3 in Fig. 1
t0, the second event will be detected only after the arriva
photons 12 and 13.

If the total time of the experiment on detection of certa
photon pairs is relatively short, the number of such eve
should greatly fluctuate from one experiment to another. T
longer the measurement time, the smaller the ratio of
fluctuation amplitude to the average number of interest
events. Therefore, after a sufficiently long measurem
time, the ratio

N2~ t0 ,t !

N2~ t !
5S~ t0!, ~1!

where the numerator is the number of interesting events
tected during the time intervalt, and the denominator is th
total number of pairs arriving at the PMT during the sam
time, should be a function only oft0 and independent oft.

Consider the probabilitiesW0, W1, andWk of detecting
the atom in the ground state, excited state, and after emis
of a spontaneous photon with momentumk, respectively. Let
us analyze the relation between the ratio~1!, which is, of
course, less than unity, and these three probabilities.
time when the PMT detects the first emitted photon sho
be defined ast50. At this moment we haveW051, i.e., the
atom is in the ground state, and the other probabilities
zero. If at timet0 the second PMT detects a photon spon
neously emitted by the atom permanently exposed to
laser field, the probability of this event is the sum of all t
probabilitiesWk and, obviously, equals the ratio~1!, i.e.,

(
k

Wk~ t0!5S~ t0!. ~2!

Usually experimenters measure not the total number of in
esting events, but their number per unit time, i.e., the co
rate. This count rate is determined by the following expr
sion:

s~ t0!5Ṡ~ t0!5
d

dt0
(

k
Wk~ t0!. ~3!

Now let us calculate the probability.
Let H be the Hamiltonian of a closed system, for e

ample, an atom plus an electromagnetic field, andum& the
wave functions of the system state at the initial moment. T
state changes with time in accordance with the Schro¨dinger
equation, whose solution is

um,t&5exp~2 i tH /\!um&. ~4!
.
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The final stateum,t& in the general case is a superposition
many atomic states, including, for example,u l &. Then the
integral^ l um,t& is the probability amplitude of detecting th
system in stateu l &, although it was in stateum& at the initial
time. Let us denote this amplitude as

Glm~ t !52 i ^ l um,t&52 i ^ l uexp~2 i tH /\&!um&. ~5!

Here the factor2 i is introduced for convenience in calcu
lating Laplacian components of amplitudes. It does not aff
the results because the probability measured in experim
is uGlm(t)u2.

By expressing the Hamiltonian in the form of the su
H5H01L, whereL is responsible for the interaction be
tween the atom and the transverse electromagnetic field,
ferentiating both sides of Eq.~5! with respect to time, and
using the completeness condition for the set of wave fu
tions, we obtain an equation for the amplitudes:

Ġlm~ t !52 iv lmGlm~ t !2
i

\(
s

L lsGsm~ t !, ~6!

where the frequency is expressed in terms of the eigenva
of the HamiltonianH0 asv lm5(El2Em)/\.

Let the initial stateum& be characterized by the following
wave function and energy:

um&5u0&un&[U0
nL , Em[En5\v0n1E0 , ~7!

whereE0 is the energy of zero-field oscillations andn is the
number of photons in the laser mode interacting with
atom. Initially the atom is in the state whose energy has b
set to zero. This initial state of the ‘‘atom1 field’’ system is
not steady. Under the action of interaction operatorL, the
atom should absorb a photon of the laser mode, and
system gets to the stateu1&un21& with energyE1\v0(n
21)1E0, whereE is the atom excitation energy, etc. Th
chain of states connected by operatorL is as follows:

U0
nL↔U 1

n21L↔U 0

n21,kL↔U 1

n22,kL↔ . . . ~8!

Hereafter we use the resonant approximation, i.e., we t
into account only the part ofL which does not change th
full number of excitations.

By applying the quantum states~8! to Eq. ~6! and omit-
ting the subscript of the initial state of amplitudes, we obta
the following infinite chain of coupled equations:

Ġn
0~ t !52 iL* Gn21

1 ,

Ġn21
1 ~ t !52 iDGn21

1 ~ t !2 i FLGn
0~ t !1(

k
lkGn21k

0 ~ t !G ,
~9!

Ġn21k
0 ~ t !52 iDkGn21k

0 ~ t !2 ilk* Gn21
1 ~ t !1 . . . ,
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HereD5V2v0, Dk5vk2v0, V is the electron excitation
frequency,vk is the frequency of the spontaneously emitt
photon, v0 is the laser photon frequency, and the mat
elements of the operatorL are determined by the following
equations:

L5
L10

\
52 iVA 4p

\v0
d•e0An

V
52 i

d•E

\
52 ix,

~10!

lk52 iVA 4p

\vk
d•ekA1

V
,

whereV is the volume occupied by the laser field,e andn
are the polarization vector of photons and their number,d is
the dipole moment of the atomic transition, andE andx are
the electric field vector of the laser wave and the so-ca
Rabi frequency.

The first three lines of Eq.~9! contain the amplitudes
needed for our analysis of the start-stop correlator. In ca
lating these amplitudes, we take into account only the te
given in Eq.~9! in the explicit form and neglect the rest.
fairly simple and persuasive argument in favor of this a
proximation is that it will allow us to derive optical Bloc
equations. A more rigorous argumentation is given in
Appendix.

Using Eq.~9! and the complex-conjugate equations, a
the formula

d

dt
uG~ t !u25ĠG* 1GĠ* , ~11!

we easily obtain the following conservation law:

d

dtS uGn
0~ t !u21uGn21

1 ~ t !u21(
k

uGn21k
0 ~ t !u2D 50. ~12!

This is the law of probability conservation in the start-st
regime, which proves that our approximation has not bro
the unitarity of the approximate amplitudes. Specifica
given that these amplitudes are related to the previously
troduced probabilities by the formulasuGn

0(t)u25W0,
uGn21

1 (t)u25W1, and uGn21k
0 (t)u25Wk , and that W0(0)

51, with due account of Eq.~12! we obtain

W0~ t !1W1~ t !1(
k

Wk~ t !51. ~13!

These probabilities are, by definition, diagonal eleme
of the density matrix. Using Eqs.~11! and~9!, we can derive
similar equations for nondiagonal elements of the den
matrix. By using the formula

(
k

lkGn21k
0 ~ t !52

i

2T1
Gn21

1 ~ t !, ~14!

whose validity was discussed previously15 and where

1

T1
5

4d2

3 \ S V

c D 3

~15!

is the rate of spontaneous emission from the excited at
we can exclude from the three upper lines of Eq.~9! the
amplitudes that are the functions of the wave vectork of the
spontaneously emitted photon and derive the two equati
d

u-
s

-

e

d

n
,
n-

s

y

,

s

Ġn
0~ t !52 iL* Gn21

1 ,
~16!

Ġn21
1 ~ t !52 i S D2

i

2T1
DGn21

1 ~ t !2 iLGn
0~ t !.

Using these two equations and their complex-conjugates
easily obtain, using Eq.~11!, the following system of equa
tions for elements of the density matrix:

Ẇ1052 i ~D2 iG!W102x~W02W1!,

Ẇ015 i ~D1 iG!W012x~W02W1!,
~17!

Ẇ152x~W101W01!2W1 /T1 ,

Ẇ05x~W101W01!,

whereG51/2T1 and

W10~ t !5Gn21
1 ~ t !Gn*

0~ t !, W01~ t !5W10* ~ t !. ~18!

Although this system of equations resembles the sys
of optical Bloch equations, it has two essential distinctio
First, in the equations for nondiagonal elements we seeT1

instead of the dephasing timeT2. This difference is due to
neglect of the electron–phonon interaction. Secondly, E
~17! and ~12! yield not the conservation lawẆ01Ẇ150,
which follows from the Bloch equations, but the relation

Ẇ01Ẇ152
W1

T1
52(

k
Ẇk . ~19!

By taking into account Eq.~3!, we obtain a very simple
expression for the two-photon correlator measured in
start-stop regime:

s~ t !5W1 /T1 , ~20!

where the time-dependent probabilityW1(t) is derived from
equation system~17!.

3. FULL TWO-PHOTON CORRELATOR

The two-photon correlator is measured in the start-s
regime under the condition that one photon immediately f
lows another. But one can also measure the so-called
correlator, i.e., ignore the latter condition and detectall pairs
of photons separated by the time intervalt0. Let us again
take as an illustration Fig. 1. Whereas in the start-stop
gime we detect only the pairs~2, 3! and~12, 13!, in measur-
ing the full two-photon correlator we should additionally d
tect the pair~4, 6!. In the interval between photons 4 and
the atom has emitted photon 5. The two-photon correla
taking into account all photon pairs separated by a giv
time interval is termed the full two-photon correlator. Th
count rate of such photon pairs will be denoted byp(t). Let
us derive the formula for the full two-photon correlator.

It is obvious that, in counting all photon pairs detect
by two PMTs per unit time, we measure the probability

p~ t !5r11~ t !/T1 , ~21!

wherer11(t) is the probability of detecting the atom in th
excited state. In what follows, we will find out that such
probability can be derived from an equation system sim
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to the Bloch equations. We can also suggest a simple ju
fication of Eq.~21! on the qualitative level. Let us first con
sider the steady case over a sufficiently long time interv
when the result is independent of the length of the interv
Then we have the time-independent probability of detect
the atom in the excited state,r11(`). By multiplying this
probability by the total numberN of atoms, we obtain the
number of atoms in the excited state,N1(`)5Nr11(`). The
atoms spontaneously emit photons and get to the gro
state. In the steady state, laser pumping compensates fo
loss of excited atoms due to generation of photons. Th
fore, the flow of emitted photons is constant, and the num
of photons emitted per unit time isN1(`)/T1. Therefore the
probability of photon emission by one atom in the stea
state is

p~`!5r11~`!/T1 . ~22!

It is obvious that, if the population of excited atoms is
function of time, the probability of photon emission is al
time-dependent, in accordance with Eq.~21!. Therefore, now
we are confronting the problem of deriving equations for
new probabilityr11 of detecting the atom in the excited sta
irrespective of how many times it has returned to the grou
state since the timet50. It is obvious that the numerator o
the right of Eq.~21! should take into account the number
all photons separated by time intervalt0, but not only those
which immediately follow one another, as it is done in t
start-stop regime. In order to calculate this probability,
have to reconsider the infinite chain of equations for am
tudes~9!, i.e., the full set of states in Eq.~8!.

Consider Eq.~9! for the probability amplitudes. Now we
do not cut off the equation chain and also write down
equations of higher orders. Then we have the following s
tem:

Ġ052 iL* G1,

Ġ152 iDG12 i FLG01(
k

lkGk
0G ,

Ġk
052 iDkGk

02 i @lk* G11L* 8Gk
1#,

Ġk
152 i ~D1Dk!Gk

12 i FLk8Gk
01(

k8
lk8Gkk8

0
1lkA2G2k

0 G ,

~23!

Ġ2k
0 5 . . . ,

Ġkk8
0

52 i ~Dk1Dk8!Gkk8
0

2 i @lk* Gk8
1

1lk8
* Gk

11L* 9Gkk8
1

#,

Ġkk8
1

52 i ~D1Dk1Dk8!Gkk8
1

2 i Fl9Gkk8
0

1(
k8

lk8Gkk8k9
0

1lkA2G2kk8
0

1lk8A2Gk2k8
0 G ,

Here we use a simplified notation and omit the subscriptsn,
n21, n22, etc., of the laser mode amplitudes. All the oth
ti-

l,
l.
g
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the
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y

e

d

i-

e
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notation is the same as in Eq.~9!. This infinite chain of
equations takes into account all states in the chain~8!. We
use three approximations in our calculations.

The first approximation is that we neglect states i
which wave vectorsk, k8, k9, . . . of the spontaneously emit
ted photons are equal, i.e., the states withk5k8, etc. Since
the variablek is continuous, the number of neglected sta
is vanishingly small in comparison with the number of r
maining states. This approximation allows us to omit fro
the system~23! all underlined and similar terms not writte
explicitly.

The second approximationconcerns matrix element
L5Anl0, L85An21l0, L95An22l0 , . . . , depending
on the numbern of laser photons. Since this number is larg
we assume thatL5L85L95 . . .

The third approximation can be formulated as follows

(
k

lkGk
052

i

2T1
G1, (

k8
lk8Gkk8

0
52

i

2T1
Gk

1 ,

(
k9

lk9Gkk8k9
0

52
i

2T1
Gkk8

1 , . . .

~24!

We have used this approximation previously@Eq. ~14!#,
when we analyzed the truncated hierarchy of equations~9!.
The second, third, etc., lines in Eq.~24! are justified in a
similar manner. The approximation~24! is of fundamental
importance in separating the infinite chain of coupled eq
tions into an infinite number of decoupled pairs of equatio
Thus, using all these three approximations, we transform
system of equations~23! to

Ġ052 iL* G1,

Ġ152 iDG12 i FLG02
i

2T1
G1G ;

Ġk
052 iDkGk

02 i @lk* G11L* Gk
1#,

~25!

Ġk
152 i ~D1Dk!Gk

12 i FLGk
02

i

2T1
Gk

1G ;
Ġkk8

0
52 i ~Dk1Dk8!Gkk8

0
2 i @lk* Gk8

1
1lk8

* Gk
11L* Gkk8

1
#,

Ġkk8
1

52 i ~D1Dk1Dk8!Gkk8
1

2 i FLGkk8
0

2
i

2T1
Gkk8

1 G ;
The first pair of equations describes the evolution of am
tudes in the presence of the photon detected by the
PMT. The second pair of equations applies to the case w
the laser field and the second photon with wave vectok
emitted by the atom are present. The third pair of equati
describes two spontaneously emitted photonsk and k8, etc.
In analyzing the time dependence of the amplitudes in
start-stop regime, we ignored all equation pairs except
first. Now we will calculate the time dependence of the pro
abilities, taking into account all equations of the system~25!.

We have derived the system of four equations~17! from
the first two lines of Eq.~25! and the complex-conjugat
equations at the end of the previous section. Let us apply
procedure to other equation pairs. Consider the second
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of lines in Eq.~25! and their complex conjugates. Using th
method developed above, we derive the following equati
for the elements of the density operator:

d

dt(k
Gk

1Gk*
052 i S D2

i

2T1
D(

k
Gk

1Gk*
02xS (

k
uGk

0u2

2(
k

uGk
1u2D 1 i(

k
lkGk

1G* 1,

d

dt(k
Gk

0Gk*
15S d

dt(k
Gk

1Gk*
0D *

,

~26!

d

dt(k
uGk

1u252x(
k

~Gk
1Gk*

01Gk
0Gk*

1!2
1

T1
(

k
uGk

1u2,

d

dt(k
uGk

0u25x(
k

~Gk
1Gk*

01Gk
0Gk*

1!1
1

T1
(

k
uGk

1u2.

In deriving these equations, we have used the approxima
~24!. One can also prove the following relations:

(
k

lkGk
1.

i

2T1

L

V
G1, (

k8
lk8Gkk8

1 .
i

2T1

L

V
Gk

1 ,

(
k9

lk9Gkk8k9
1 .

i

2T1

L

V
Gkk8

1 , . . .
~27!

Allowing for these formulas and the inequalityL!V, we
can omit the underlined term in the first line of Eq.~26!.
Similar omissions based on Eq.~27! can be done in equa
tions for the density operator derived from the third and
following pairs of lines in Eq.~25!. This is the fourth ap-
proximation which can be formulated in addition to the pr
vious three.

Using the third pair of lines in Eq.~25! and the fourth
approximation, we obtain the following system of equatio

d

dt

1

2!(kk8
Gkk8

1 Gkk8
* 0

52 i S D2
i

2T1
D 1

2!(kk8
Gkk8

1 Gkk8
* 0

2xS 1

2!(kk8
uGkk8

0 u22
1

2!(kk8
uGkk8

1 u2D ,

d

dt

1

2!(kk8
Gkk8

0 Gkk8
* 1

5S d

dt

1

2!(kk8
Gkk8

1 Gkk8
* 0 D *

,

~28!

d

dt

1

2!(kk8
uGkk8

1 u252x
1

2!(kk8
~Gkk8

1 Gkk8
* 0

1Gkk8
0 Gkk8

* 1
!

2
1

T1

1

2!(kk8
uGkk8

1 u2,

d

dt

1

2!(kk8
uGkk8

0 u25x
1

2!(kk8
~Gkk8

1 Gkk8
* 0

1Gkk8
0 Gkk8

* 1
!

1
1

T1
(
kk8

uGk
1u2.
s

on

e

:

On the base of the next pairs of lines in Eq.~25!, one can
construct groups of four equations similar to Eq.~28!. The
prescriptions for their derivation are straightforward.

Let us introduce the following infinite sums:

r005W01(
k

uGk
0u21

1

2!(kk8
uGkk8

0 u21 . . . ,

r115W11(
k

uGk
1u21

1

2!(kk8
uGkk8

1 u21 . . . ,

r105W101(
k

Gk
1Gk*

01
1

2!(kk8
Gkk8

1 Gkk8
* 0

1 . . . ,

~29!

r015W011(
k

Gk
0Gk*

11
1

2!(kk8
Gkk8

0 Gkk8
* 1

1 . . .

It is obvious that each of the four new elementsr00, r11,
r10, and r01 is the trace of the full density matrix of th
‘‘atom 1 field’’ system with respect to the quantum numbe
of the spontaneously emitted photons. The new matrix e
ments are elements of the atomic density matrix, which
longer depend on the indices of field modes. Using this d
sity operator, we can calculate the mean value of any op
tor acting on the dynamic variables of the atom.

Now let us derive equations which are satisfied by
infinite sums~29!. To this end, let us add the first, secon
third, and fourth lines in Eqs.~17!, ~26!, ~28!, etc., respec-
tively. As a result, we obtain the following four equations f
the elements of the atomic density matrix:

ṙ1052 i ~D2 iG!r102x~r02r1!,

ṙ015 i ~D1 iG!r012x~r02r1!,

ṙ1152x~r101r01!2r11/T1 ,

~30!

ṙ005x~r101r01!1r11/T1 ,

whereG51/2T1. This is the system of optical Bloch equa
tions for a two-level atom which takes into account spon
neous light emission of this atom, i.e.,T1-relaxation, but
neglects the electron–phonon interaction. The last term
the last line is the full two-photon correlator. It should b
calculated by solving the system of equations~30!.

4. EFFECT OF PHONONS AND TUNNELING EXCITATIONS
ON CORRELATOR EQUATIONS

Of course, a two-level atom or molecule in a solid latti
interacts with phonons. There are tunneling systems in p
mers and glasses in addition to phonons. Andersonet al.16

and Phillips17 suggested modeling such entities by two-lev
systems. Hence the question arises as to how the intera
between optically active electrons of an impurity on o
side, and phonons and tunneling systems on the other sh
affect the systems~17! and ~30! for calculating two-photon
correlators of either type.

In order to clarify this issue, let us consider an equat
for the density operator
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ṙ̂5
1

i\
@H,r̂ #, ~31!

which includes the Hamiltonian of the full system incorp
rating the electrons of the chromophore, the phonons,
excitations of the two-level systems~tunnelons!, and pho-
tons. It can be expressed as

H5Hch1H'1L, ~32!

whereH' is the Hamiltonian due to the transverse elect
magnetic field andL is the operator of the interaction be
tween this field and the chromophore. To begin with,
assume that we know the solutions to the Schro¨dinger equa-
tion with the HamiltonianHch:

Hchu0&ua&5\Vau0&ua&, Hchu1&ub&5\~V1Vb!u1&ub&,
~33!

whereV is the chromophore excitation frequency,u0& and
u1& are its wave functions, andua& and ub& are functions
corresponding to the states of the phonon system and
level systems coupled to the chromophore in the ground
excited electron states, respectively. The eigenfunction
the system including the noninteracting chromophore
electromagnetic field are direct products of eigenfunctions
the chromophore and field:

ua)5u0&un&ua&, ub)5u1&un8&ub&, ~34!

wheren is the number of photons in the active laser fie
mode. If we neglect spontaneous emission of light, the
erator equation~31! in the basis of the functions~34! reads as
follows:

ṙba52 ivbarba2 i(
a8

Lba8ra8a1 i(
b8

rbb8Lb8a ,

ṙab5 ṙba* ,
~35!

ṙbb852 ivbb8rbb82 i(
a

~Lbarab82rbaLab8!,

ṙaa852 ivaa8raa82 i(
b

~Labrba82rabLba8!,

where the frequencies with two subscripts are differen
between the corresponding frequencies of the unpertu
Hamiltonian. It is clear that including the interaction wi
phonons and two-level systems inevitably leads to an infi
system of equations. If the spontaneous emission of ligh
taken into account, the system~35! becomes even more com
plicated. Such a system was presented in the prev
publication.15 Nonetheless, this infinite system of equatio
can be successfully used in analysis of specific effects, s
as the shapes of the spectral holes burnt in optical band
laser light or the signals of the femtosecond photon echo.18,19

It was also shown in the previous publication15 that, if the
phononless optical line dominates over a real optical ran
the infinite set of equations for such a system can be redu
to four Bloch equations~30! with

G[
1

T2
5

g~T!

2
1

1

2T1
. ~36!
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Here the temperature-dependent FWHMg(T), which is
called the pure dephasing constant, is completely determ
by the quadratic electron–phonon and electron–tunnelon
teractions. Therefore, by substituting in Eqs.~17! and ~30!
the constantG given by Eq.~36!, we take into account the
effect of phonons and tunnelons on the phononless line. T
case is of considerable importance for the spectroscop
isolated molecules, whose spectral lines are usually phon
less.

5. RELATION BETWEEN TWO TYPES OF CORRELATORS

Let us determine the relationship between the tw
photon correlators measured in different fashion. They
given by the formulas p(t)5r11(t) /T1 and s(t)
5W1(t)/T1, respectively, wherer11(t) andW1(t) are solu-
tions of Eqs.~30! and~17!, respectively. It is easier to dete
mine the relation between Laplace components of th
probabilities. First let us consider the probability correspon
ing to the two-photon correlator. By taking the formulas

~G~ t !!v5G~v!5E
0

`

G~ t !eit ~v1 i0!dt, ~37!

~Ġ~ t !!v52G~ t50!2 i ~v1 i0!G~v! ~38!

instead of Eq.~30! for the time components, we obtain a
equation system for the Laplace components of the den
matrix:

@ iv2 i ~D2 iG!#r105x~r002r11!,

@ iv1 i ~D1 iG!#r015x~r002r11!,
~39!

~ iv21/T1!r115x~r101r01!,

ivr001~1/T1!r1152x~r101r01!2r00~0!.

By expressing the nondiagonal elements of the density
trix in terms of the diagonal elements, we obtain the follo
ing equations for the diagonal elements:

~ iv21/T12k!r111kr0050,
~40!

~1/T11k!r111~ iv2k!r00521,

where

k~v!52ix2
v1 iG

~v1 iG!22D2
. ~41!

By solving equations~40! for r11 and taking into account the
formula p(t)5r11(t)/T1, we obtain

p~v!5
r11~v!

T1
5

k

T1Dp
, ~42!

where the determinant of the system~40! is given by the
formula

Dp5 iv~ iv21/T122k!. ~43!

Now let us consider the probability measured in t
start-stop regime. As was noted above, it is determined
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s(t)5W1(t)/T1, whereW1(t) is derived from Eq.~17!. By
performing the Laplace transformation of this equation s
tem, we get

@ iv2 i ~D2 iG!#W105x~W02W1!,

@ iv1 i ~D1 iG!#W015x~W02W1!,
~44!

~ iv21/T1!W15x~W101W01!,

ivW052x~W101W01!2W0~0!.

After eliminating from this system the functionsW10 and
W01, we find

~ iv21/T12k!W11kW050,
~45!

kW11~ iv2k!W0521.

By solving these equations we have

s~v!5
k

T1Ds
, ~46!

where

Ds5Dp1k/T1 . ~47!

Using Eqs.~42!, ~43! and ~46!, ~47!, we easily findp2s
5ps. From this relationship we derive the following equ
tion for the Laplace transform of the full correlator:

p~v!5s~v!1s~v!p~v!. ~48!

After taking into consideration the formula

E
2`

`

s~v!p~v!e2 i tv
dv

2p
5E

0

t

s~ t2x!p~x!dx ~49!

and performing the inverse Laplace transform of both si
of Eq. ~48!, we easily obtain the following equation relatin
the full two-photon correlatorp(t) to the correlators(t)
measured in the start-stop regime:

p~ t !5s~ t !1E
0

t

s~ t2x!p~x!dx. ~50!

An iterative solution of this equation yields the probab
ity p(t) in the form of a power series in the correlators. The
physical meaning of this expansion is transparent. The t
linear in s corresponds to the start-stop regime, when
atom has emitted no photon in the interval between the
detected photons. The term

p1~ t !5E
0

t

s~ t2x!s~x!dx ~51!

corresponds to the situation when the atom emits one u
tected photon in the interval between two detected photo
i.e., photon 5 between photons 4 and 6. in Fig. 1. The te
cubic in s corresponds to the situation with two undetect
photons in the intervalt, etc. Equations~50! and ~51! deter-
mine the relationship between the two kinds of two-pho
correlators.
-

s

m
e
o

e-
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6. TWO-PHOTON CORRELATORS AS FUNCTIONS OF TIME
AND LASER LIGHT FREQUENCY

Let us consider first the full two-photon correlator as
function of time. By substituting expression~43! in Eq. ~42!,
we obtain the following expression for the Laplace transfo
of the desired probability:

p~v!5
2ix2

T1

v1 iG

Qp~v!
, ~52!

where

Qp~v!5v$4x2~v1 iG!2~v1 i /T1!@~v1 iG!22D2#%

5~v2v1!~v2v2!~v2v3!~v2v4!. ~53!

Herev j are the roots of the equationQp(v)50. These four
roots are the poles of the desired function, so it can be
pressed as a sum of pole terms:

p~v!5(
j 51

4
pj

v2v j
, ~54!

where

pj5@~v2v j !p~v!#v5v j
. ~55!

The inverse Laplace transform of Eq.~54! yields the follow-
ing expression for the full two-photon correlator:

p~ t !52 i (
j 51

4

pj exp~2 iv j t !. ~56!

One conclusion about the time dependence of this correl
can be drawn using the general formula~56!. Since one root
of the polynomialQp(v) is zero, one term in the sum in Eq
~56! is time-independent, so the full two-photon correlat
unlike the correlator measured in the start-stop regime, d
not tend to zero as the time tends to infinity.

The expression for the time-dependent two-photon c
relator measured in the start-stop regime can be derived s
larly to that for the full two-photon correlator given abov
By substituting Eq.~41! in ~46!, we obtain the following
expression for the Laplace transform of the probability:

s~v!5
2ix2

T1

v1 iG

Qs~v!
, ~57!

where

Qs~v!5S v1
i

2T1
D4x2~v1 iG!

2vS v1
i

T1
D @~v1 iG!22D2#

5~v2n1!~v2n2!~v2n3!~v2n4!. ~58!

Here n j are the roots of the equationQs(v)50. The two-
photon correlator measured in the start-stop regime is
pressed in terms of these roots as follows:

s~ t !52 i (
j 51

4

sj exp~2 in j t !, ~59!

where
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FIG. 2. Full two-photon correlator as a functio
of the detuningT1D at various pumping inten-
sities: ~a! xT150.1; ~b! 1; ~c! 2; ~d! 5; and dif-
ferent times:t/T150.3 ~solid line!; 0.6 ~dotted
line!; 5 ~dashed line!.
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sj5@~v2n j !s~v!#v5n j
. ~60!

Equations~55!, ~56! and~59!, ~60! allow us to calculate both
correlators as functions of~1! the time intervalt between two
detected photons,~2! the detuningD, and ~3! the pumping
intensityx. The correlators can be calculated numerically
arbitrary values of relaxation constants 1/T1 and G. But in
two specific cases, namely, atD50 andG51/T15g, fairly
simple analytic expression convenient for analysis can
obtained.

The correlatorp(t) as a function of the detuningD
yields the absorption line shape at different timest. Consider
this dependence in the specific caseG51/T15g. One can
easily check that the equationQp(v)50 can be solved ana
lytically in this specific case and has the following fo
roots:

v152 i0, v252 ig, v352 ig1Q, v452 ig2Q,
~61!

where

Q5AD214x2. ~62!

In this case, we can derive the following expression for
Laplace transform of the full two-photon correlator fro
Eqs.~55! and ~56!:

p~v!5
2ix2g

Q21g2F 1

v1 i0
2

1

2S 12 i
g

QD 1

v1Q1 ig

2
1

2S 11 i
g

QD 1

v2Q1 igG . ~63!

After the inverse Laplace transform, the pole of each te
yields an exponent. Therefore, the full two-photon correla
is expressed as
t

e

e

r

p~ t !5
2x2g

Q21g2F12exp~2tg!S cos~Qt!1
g

Q
sin~Qt! D G .

~64!

Unlike the correlator measured in the start-stop regim
which vanishes as the time tends to infinity, the asympto
limit of the full two-photon correlator is

p~D!5
2x2g

D214x21g2
, ~65!

which describes the absorption line shape as a function
detuning. This line is a Lorentzian with FWHM given by

Dv1/252A4x21g2, ~66!

which is a function of the pumping intensityx2.
The two-photon correlator allows one to analyze the

sorption line shape at short timest. At this point, we have the
line shape as a function of time. This effect is illustrated
Fig. 2. The three curves in each graph demonstrate how
absorption lines transform with time. They change from lin
of complex shapes with central quasi-Gaussian peaks~at
short times! to Lorentzians~at long times!. The latter conclu-
sion, however, applies only to the case of a low pump
power. By comparing Figs. 2a–2d, we can see how the
crease in the pumping intensity changes the line shape
high pumping rates, the Lorentzian line splits owing to t
Stark effect caused by the electric field of the electrom
netic wave.

Now let us consider the time dependence of the full tw
photon correlator and compare it with the time depende
of the two-photon correlator measured in the start-stop
gime. We calculate the time dependence for the case of
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FIG. 3. Two-photon correlatorss(t) ~curves1, 3, and
5! and p(t) ~curves2, 4, and6! as functions of time
between two photon detection events.D50; ~1, 2!
xT150.1; ~3, 4! 0.2; ~5, 6! 1.
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ing to resonance, when we haveD50 andG51/2T15g/2.
In this case, the roots are given by the following formula

n1,252 i
g

2
, n3,452 i

g

2
6Rs , Rs5A4x22

g2

4
,

v152 i0, v252 i
g

2
, v3,452 i

3g

2
6Rp , ~67!

Rp5A4x22
g2

16
.

The pumping intensityx at which the functionsR change
from imaginary to real is different for correlatorss and p.
Hence the criterion for low pumping is different for the tw
correlators because the systems of equations~39! and ~44!
have different relaxation matrices.

Given the rootsn j , we can obtain the formula for th
correlator measured in the start-stop regime. By substitu
these roots in Eqs.~59! and ~60!, we easily derive the for-
mula for the required correlator:

s~ t !5
2x2g

Rs
2

expS 2
g

2
t D @12cos~Rst !#. ~68!

The rootsv j in Eq. ~67! yield the full two-photon correlator
for the specific case under consideration. By substitut
these roots in Eqs.~55! and ~56!, we obtain the formula for
this correlator:

p~ t !5
2x2g

Rp
21gp

2F12exp~2gpt !S cos~Rpt !1
gp

Rp
sin~Rpt ! D G ,

~69!

where gp53g/2. This formula is very similar to Eq.~64!
derived for another specific case. Figure 3 shows the cu
of the start-stop correlator and full two-photon correlator v
sus time. The higher the pumping power, the faster the
relator rises on the initial stage. The drop in the two-pho
correlators(t) at large times is also determined by the pum
ing intensity.
g

g
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-
r-
n
-

7. EFFECT OF A TRIPLET LEVEL ON THE FULL
TWO-PHOTON CORRELATOR

Almost all complex organic molecules have sets of tr
let levels in addition to singlet electron levels. The grou
electron state of most organic molecules has spin zero, i.e
is a singlet level, and the lowest triplet level is placed, a
rule, below the first excited singlet state, as shown in Fig

Although direct optical transitions between singlet a
triplet levels are almost completely forbidden, the trip
level, nonetheless, has a considerable effect on the 0–1
sition between singlet levels because the probability of n
radiating intersystem crossing, i.e., a transition from leve
to 2, is quite considerable. In many molecules, the cons
GTS which determines the rate of this transition is comp
rable to 1/T1 or even larger. Therefore a notable fraction
molecules transfer to the triplet level 2 without emitting
photon under cw laser radiation. The transition between
triplet level 2 and singlet level 0 is very slow. For this re
son, a considerable fraction of molecules accumulate on
triplet level and thus are ‘‘out of the play,’’ i.e., they n
longer absorb light. The typical rate constants for the tran
tion shown in Fig. 4 are as follows:

1/T1.1092108 s21, GTS.101121010 s21,

gST.1062100 s21.
~70!

Note that the capital and small letters label relatively lar
and small rate constants, respectively. In the spectroscop
single molecules, the presence of triplet levels radica
changes both the time and frequency dependence of the
photon correlator. These effects will be discussed in this s
tion of the paper.

FIG. 4. Diagram of typical configuration of electron levels in a chr
mophore molecule and the transition rate constants.
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Since the triplet level is optically inactive, the system
optical Bloch equations derived previously can be gene
ized to take into account these levels:

ṙ1052 i ~D2 i /T2!r102x~r02r1!,

ṙ015 ṙ10* ,

ṙ152~1/T11GTS!r12x~r101r01!, ~71!

ṙ05r1 /T11x~r101r01!1gSTr2 ,

ṙ25GTSr12gSTr2 .

Here we have introduced the traditional notation for t
dephasing rate by replacingG with 1/T2. The fifth line de-
scribes the population of the triplet level, and the third a
fourth lines take into account the drain to the triplet level a
molecules returning from this level.

The determinant of this equation system has five ro
so it can be solved only by numerical methods. Howev
when the pumping intensity is low in comparison with t
dephasing rate 1/T2, we can setṙ015 ṙ1050 in the equations
for the nondiagonal elements. In this case, the Bloch eq
tions transform to kinetic equations, whose solution is no
bly easier, and the result is close to the exact solution. Th
using this approximation, we replace Eq.~71! by the follow-
ing system of kinetic equations:

ṙ152~G1k!r11kr0 ,

ṙ05~1/T11k!r12kr01gSTr2 , ~72!

ṙ25GTSr12gSTr2 ,

where

k52x2
1/T2

D21~1/T2!2
, G5

1

T1
1GTS. ~73!

This system of three kinetic equations can be solved ana
cally. We first perform the Laplace transforms of the le
and right-hand sides. Using the formula (ṙ(t))v52r(t
50)2 i (v1 i0)r(v), we obtain the following algebraic
equations for the Laplace components:

~ iv2G2k!r11kr050,

~1/T11k!r11~ iv2k!r01gSTr2521, ~74!

GTSr11~ iv2gST!r250.

The determinant of this system can be expressed in term
its roots:

Det52 i ~v1 i0!~v2v1!~v2v2!, ~75!

where

v1,252 i ~g07R!, g05
G12k1gST

2
,

R5AS G12k2gST

2 D 2

2GTSk.

~76!
f
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By solving equations~74!, we derive the following expres
sion for the Laplace component of the full two-photon co
relator:

p~v!5
r1~v!

T1
5

ik

T1

iv2gST

~v1 i0!~v2v1!~v2v2!

5
ik

T1
F2

gST

v1v2

1

v1 i0
1

iv12gST

v1~v12v2!

1

v2v1

2
iv22gST

v2~v12v2!

1

v2v2
G . ~77!

The transition from the Laplace representation to the fu
tion of time is performed by replacing each pole with
exponential function with the exponent corresponding to
pole. Given thatv1,252 i (g07R), we finally obtain an ex-
pression for the full two-photon correlator:

p~ t !5
k

T1
F gST

g0
22R2

1S 12
gST

g02RDexp@2~g02R!t#

2R

2S 12
gST

g01RDexp@2~g01R!t#

2R G . ~78!

If GTS50 holds, the triplet level is not populated as a res
of optical pumping. One can easily verify that the first c
factor in parentheses on the right-hand side of Eq.~78! goes
to zero.

Time dependence of the correlator.If we have GTS

Þ0, transitions to the triplet level are allowed. In this cas
the time dependence of the correlator is radically differe
Consider the case of

G@k@gST. ~79!

Sinceg01R;G andg02R;k, the time dependence is ea
ily predictable. The correlator, which is zero att50, first
increases with time, then it drops and tends to a const
This behavior of the two-photon correlator is illustrated
Fig. 5. The correlator increases concurrently with a ra
drop in the term proportional to exp@2(g01R)t#. This rise is
almost independent of the pumping intensityk. The cor-
relator drops to zero, concurrently with the slow decrease
exp@2(g02R)t#, and this drop is slower at lowerk. This is
clearly seen in Fig. 5, where the abscissa is thelogarithm of
time. Therefore the shift in the trailing edge of the correla
curve toward larger times means that the rate of transi
from the singlet level 1 to triplet level 2 decreases by seve
orders of magnitude. The constant level in the limit of in
nite time drops with the pumping power. This fact is eas
understandable, given that the triplet population increa
with the pumping, hence the probability of detecting a m
ecule in a singlet state, in particular, on level 1, decrea
The curves in Fig. 5 were obtained for the case of tuning
resonance, i.e.,D50. In the nonresonant case, the cur
shapes are basically the same.

The presence of a triplet level radically changes the d
tribution of emitted photons over time. Let us first consid
the time distribution of photons emitted by a molecule wit
out a triplet level. One can see in Fig. 3 that the full tw
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FIG. 5. Full two-photon correlator of a chro
mophore with a triplet level versus time. Calcula
tions were performed using Eq.~78! at the follow-
ing parameters: T2 /T151022; gSTT251026;
GTST159; ~1! xT251024; ~2! 2•1024; ~3! 1023;
~4! 2•1023; ~5! 1022; ~6! 2•1022; ~7! 1021; ~8! 2
•1021.
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photon correlator increases with time and remains cons
as the timet between the recorded photons increases. T
means that two photon emission events separated by a
time are uncorrelated, i.e., they proceed independently
small timet, on the contrary, the correlation is quite stron
namely, we can detect very few photon pairs separated
short time interval. Therefore a sequence of photons emi
by a molecule without a triplet level isquasi-uniform, i.e.,
without a tendency to form groups.

The distribution of emitted photons is different if th
molecule has a triplet level. Curves 5–8 in Fig. 5 indica
that light detectors should detect few pairs of photons se
rated by large time intervalst1 corresponding top(t1)50.
This means that emitted photons should assemble in gro
with large time intervals between them. This tendency
grouping is termedphoton bunching.This effect is illustrated
by Fig. 6, where each vertical bar denotes a propaga
photon. If the average ‘‘dimension’’ of a group ist0 and the
average ‘‘separation’’ between groups ist1 and they satisfy
t0!t1, the probability of detecting a photon pair with sep
ration t1 is very small, which is demonstrated by Fig. 5.

The effect of photon bunching can be interpreted
qualitative terms as follows. When a single chromoph
molecule is exposed to cw laser light, it jumps random
between the ground and excited singlet levels during timet0.
This process generates the photon bunch shown in Fig
But if a chromophore molecule falls occasionally on the tr
let level, it no longer absorbs light, and hence does not e
photons. The absence of emitted photons during the t
interval t1 is illustrated by Fig. 6. This effect of photo
nt
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rge
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bunching has been observed many times in experiments
single molecules.20

Frequency dependence of the two-photon correlator.
Equation~78! allows us to calculate the full two-photon co
relator as a function of light frequency at a fixed separatiot
between two detected photons. First let us consider the
relator at small times. By expanding the exponential fun
tions in Eq.~78! in powers, we obtain a simple result:

p~D,t !.
t

T1
k5

t

T1

2x2/T2

D211/T2
2

, ~80!

i.e., the correlator is proportional to the probability of a
sorbing a photon in unit time. This probability is describ
by a Lorentzian with FWHM

D1/252/T2 . ~81!

Now let us calculate the correlator at long times, wh
the correlator is constant with time. Although the correla
p(D,t5`) is small, it can be measured, as can be seen
Fig. 4. This correlator is described by the expression

p~D,`!5
k

T1

gST

g0
22R2

. ~82!

By substitutingk, g0, andR given by Eqs.~73! and ~76! in
Eq. ~82!, we obtain

p~D,`!5
1

T1G

2x2/T2

D21~1/T2
2!~112x2hT2tT!

, ~83!
h a
FIG. 6. Spontaneous emission of photons by a molecule wit
triplet level exposed to cw laser light~photon bunching!.
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where

h5
gST1GTS

G
'

GTS

G
, tT5

1

gST
~84!

are the quantum yield of intersystem conversion and lifeti
of the triplet level, respectively. Equation~83! describes a
Lorentzian with FWHM

D1/25
2

T2
A112x2hT2tT, ~85!

which is a function of the pumping intensity. By comparin
Eq. ~85! to the well-known formula

D1/25
2

T2
A114x2T1T2

for a two-level chromophore, we find out that the presence
the triplet level leads to the following changes in the para
eters determining the line FWHM:

2T1→tT , x2→x2h. ~86!

Thus, in the presence of a triplet level the Lorentzian h
width depends on the Rabi frequency when it is three ord
of magnitude smaller than in the absence of a triplet leve

Summarizing our results, we can write the followin
three inequalities involving the pumping intensity, i.e., t
Rabi frequency:

4xT2>1, 2xAT2T1>1, xA2hT2tT>1. ~87!

When the first condition is satisfied, which means that
pumping intensity is high, the other two conditions are s
isfied automatically. In this case, the Bloch equations can
be replaced by kinetic equations. The analysis performe
this section was based on the assumption that the inv
inequality holds:

4xT2,1. ~88!

Since the optical dephasing life timeT2 is one or two
orders of magnitude shorter than the energy relaxation t
T1, the latter condition~88! is compatible with the secon
and third inequalities in Eq.~87!. These two conditions de
termine the range of pumping intensities over which the c
relator Lorentzian FWHM depends on the pumping in t
limit of large times. The second inequality corresponds to
case when transitions to the triplet level are forbidden
some reason, and its presence can be neglected. The
inequality defines the case when transitions from the exc
singlet level to the lower triplet level are highly probable.

Equation~78! also allows one to analyze the region
intermediate times, which is a transitional region betwe
short and long times. A numerical calculation yields the
sults depicted in Fig. 7. One can see that the Lorentzia
broadened at longer times, i.e., when the correlator drops
tends to a constant, as can be seen in the upper curves o
5.

8. CONCLUSIONS

The main results of the present work are Eq.~17! and
~30! and the justification of their applicability to calculation
e
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of the two-photon correlator measured in the start-stop
gime and the full two-photon correlator. The present nume
cal calculations of both correlators graphically demonstr
how various relaxation processes in single molecular im
rity centers can be investigated using these correlators.
suggested approach to calculations of two-photon correla
can be generalized in order to analyze other processes
example, slow relaxation in polymers and glasses, wh
leads to so-called spectral diffusion.21,22 This problem has
not been discussed in the present paper; it deserves sep
study.

The work was supported by the Russian Fund for F
damental Research~Grant 97-02-17285! and the ‘‘Universi-
ties of Russia’’ program.

APPENDIX

If we go over to the Laplace transform in Eq.~9!, we
obtain the following system of equations:

Gn
05

1

v1 i0
1

1

v1 i0
L* Gn21

1 ,

Gn21
1 5

1

v2D1 i0 FLGn
01(

k
lkGn21k

0 G ,
~A1!

Gn21k
0 5

1

v2Dk1 i0
@lk* Gn21

1 1L* 8Gn22k
1 #,

Gn22k
1 5

1

v2D2Dk1 i0 FL8Gn21k
0 1(

k8
lk8Gn22kk8

0 G ,

Here we have used the notation

D5V2v0 , Dk5vk2v0 , L5l0An, L85l0An21,
~A2!

where

l052 iVA 4p

\v0V
e0•d ~A3!

is derived from Eq.~10! by replacing the subscriptk of a
spontaneous mode with the laser mode subscript 0.

FIG. 7. Evolution of the spectral line of the full two-photon correlato
t/T251025 ~dashed line!; 105 ~solid line!; 107 ~dotted line!.
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The solution of Eq.~A.1! can be expressed in the form
of a continued fraction, for example,

Gn21
1 5

LGn
0

v2D2(
k

ulku2

v2Dk2
uL8u2

v2D2Dk2(
k8

. . .

.

~A4!

The matrix elementslk which do not contain the photo
numbers are small, since they determine the intensity of
electromagnetic interaction, which can be treated as a pe
bation. On the other hand, the matrix elementsL andL8 are
large since they include, in accordance with Eq.~A2!, the
square root of the number of laser photons, which is lar
The large and small matrix elements alternate in the con
ued fraction in Eq.~A4!. It is obvious that the effect of the
matrix elementL8 is compensated for by the smallness
the matrix elementlk . Therefore the infinite equation sys
tem ~A1! can be truncated by settingL850. Then the sys-
tem of equations~A1! transforms to

Gn
05

1

v1 i0
1

1

v1 i0
L* Gn21

1 ,

Gn21
1 5

1

v2D1 i0 FLGn
01(

k
lkGn21k

0 G , ~A5!

Gn21k
0 5

1

v2Dk1 i0
lk* Gn21

1 .

The inverse Laplace transform yields equations~9! contain-
ing only terms written in explicitly.
e
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Power broadening of a diffusion resonance
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We derive an expression in terms of cylinder functions for the shape of a nonlinear resonance in
a two-level system with a rapidly decaying level. We show that when the natural linewidth
is negligible, the square of the total width is the sum of squares of the power and diffusion widths.
The traditional variational approximation yields a correct value for the full width at half
maximum, but distorts the line profile. We derive a formula for the absorbed power as a function
of the incident wave intensity for comparable power and diffusion broadening. The formula
is found to be valid for a power width that is small or large compared to the diffusion width, and
in a new intermediate domain where homogeneous saturation becomes inhomogeneous.
© 1998 American Institute of Physics.@S1063-7761~98!00605-2#
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1. INTRODUCTION

The subject of this paper is resonant absorption~or am-
plification! of a strong electromagnetic wave by ions of
plasma. Knowledge of the laws of amplification is necess
in calculating ion lasers and in optimizing the characteris
of such lasers~for example, to increase the output power
tuning range of a Raman laser!. Measuring the absorption~or
amplification! spectrum of waves propagating through
plasma is one of the most important plasma diagnostic te
niques.

From a theoretical standpoint, the simplest and most
portant case~from a practical standpoint! is that of resonant
interaction of an electromagnetic wave and a plasma w
the wave frequencyv is close to the Bohr frequencyv21

5(E22E1)/\ of the transition between intrinsic statesu1&
and u2& of an ion. Because of the Doppler effect, the wa
interacts most effectively with ions that satisfy the resona
conditionk•v5v2v21, wherek is the wave vector andv is
the ion velocity. The power absorbed from a weak elect
magnetic field in the linear approximation~when changes in
the ion state initiated by the wave are ignored! is propor-
tional to the number of particles that interact with the wa
As the frequency varies, the wave resonantly interacts w
ions that have a different velocity. The width of the abso
tion spectrum is determined by the characteristic sprea
the velocitiesvT of the ions, i.e., by the width of the Max
wellian velocity distribution, and is equal tokvT . By mea-
suring the linear absorption spectrum we can find the
temperature.

Much more information about the plasma paramet
and the relaxation processes inside an individual ion can
gathered if one employs the methods of nonlinear spect
copy. An electromagnetic wave interacting with the plas
tends to equalize the populations of the intrinsic states of
ions. Because of the resonant nature of this interaction,
velocity distribution of the populations acquires narrow no
equilibrium structures known as Bennett dips or peaks.1 The
8881063-7761/98/86(5)/9/$15.00
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shape of Bennett dips can be found by the probe field te
nique by measuring the absorption of another electrom
netic wave as a function of frequency. The absorption sp
trum of the probe wave that resonantly interacts with
same transition has a nonlinear resonance, a dip in the v
ity of the frequency at which the probe wave resonantly
teracts with those ions whose populations have been part
equalized by the first wave. A similar dip emerges in t
absorption spectrum of a standing wave consisting of t
counterpropagating traveling waves.

The velocity of an ion in a plasma changes with tim
since the ion is in the field of the other charged partic
comprising the plasma. In contrast to gases, where collis
with other atoms are infrequent but in each such collision
atom dramatically changes velocity, an ion is constantly i
rapidly varying field, which leads to diffusion variations i
its velocity.2 The description of collisions as diffusion i
velocity space is also possible for heavy neutral particles
buffer gas of light particles.

The first theoretical study of the diffusion shape of t
Bennett dip in a weak field as applied to ions in a plasma w
Ref. 3. It was shown that because of diffusion in veloc
with a coefficientD, the dip in level j acquires a width
AD/G j equal to the characteristic variation of the ion velo
ity during the lifetimeG j

21 in level j . If the diffusion width
exceeds the natural width, the dip in the distribution over
projection of velocity on the wave vector has a characteri
cusp at the center described by the exponential func
exp(2uxu), wherex is the dimensionless deviation of the v
locity projection from the center of the dip. Quenching
levels by electrons and other processes described by
relaxation-constant model may add to the natural width
the dip.

In the limit of a weak electromagnetic field, the depth
Bennett dips is proportional to the wave’s intensity. But t
increase in the depth with wave intensity slows down as
level populations become equalized. In a strong field,
populations at the center of the resonance are essen
© 1998 American Institute of Physics
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equal, and the range of velocities in which the populat
difference decreases substantially broadens as the field in
sity increases.4 The problem of adding diffusion broadenin
to power broadening was studied in Ref. 5 by a variatio
method, and the Lorentzian contour was taken as the
function for the dip profile. When the diffusion and pow
widths are comparable, the shape of the dip is some so
average between a Lorentzian and an exponential. In Re
the shape of the dip was found in the limit of a small natu
width. In the present paper we discuss this problem in gre
detail.

The saturation curve, i.e., the dependence of the po
absorbed from the field on the intensity of the incident wa
also makes it possible to measure a number of plasma
rameters and relaxation constants of the transition. A kno
edge of the analogous dependence of the gain is require
calculate the output power of a laser. Diffusion leads to
situation in which some of the ions depart from resonance
their velocities change, while other ions that have not
absorbed~or emitted! a photon begin to participate in th
resonance process. Because of this, the power absorbed
the field ~or imparted to it! increases. This dependence
relatively weak fields, where the power width of the Benn
dip is much less than the diffusion width, was derived in R
7 and experimentally corroborated by Apolonskyet al.8 It
was shown that in the presence of diffusion the absorp
saturation becomes homogeneous and sets in at lower
intensities than in the absence of diffusion. The intensity
which saturations sets in proved to be proportional to
square root of the diffusion coefficientD. The case in which
the diffusion and power widths of Bennett dips are com
rable remained unexplored.

In Sec. 2 we give the initial equations for the ion dens
matrix, a classification of the processes of interaction of
ion and the field of electromagnetic waves, and the cha
teristic values of the main parameters. In Sec. 3 we derive
expression for the shape of the Bennett dip when ther
both power broadening and diffusion broadening. In Sec
we calculate the saturation curve, i.e., the power absor
from a strong field. For this curve we give simple interpo
tion formulas, which make it possible to forego the assum
tion that the radiative width must be small. Section 5 co
tains a qualitative discussion of the results.

2. BASIC EQUATIONS

We normalize the Maxwellian velocity distribution o
the ions to unity:

W~v!5
1

~ApvT!3
expS 2

v2

vT
2D ,

vT5A2T

m
, E dvW~v!51,

whereT is the temperature of the ions in the plasma, andm
is the ion mass. We take two excited ion statesu1& and u2&
with energiesE1 andE2 (E1,E2) and examine the resonan
interaction of the given two-level system with a travelin
electromagnetic wave
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E~ t,r !5 1
2~E0e2 i ~vt2k–r !1c.c.!

that is offset from resonance byV5v2v21!v, where
v215(E22E1)/\. Assuming a dipole ion–wave interaction
in the resonance approximation we have the following qu
tum transport equations for the density matrix in the Wign
representation:9

S ]

]t
1v•¹1G1D r15nV̂ r122Re~ iG* ei ~Vt2k•r !r21!

1q1W~v!1A21r2 , ~1!

S ]

]t
1v•¹1G2D r25nV̂ r212Re~ iG* ei ~Vt2k•r !r21!

1q2W~v!,

S ]

]t
1v•¹1G12D r215nV̂ r211 iGe2 i ~Vt2k•r !~r22r1!,

where

V̂ 5
]

]va
Fab~v!S vT

2

2

]

]vb
1vbD ;

r j5^ j ur̂u j & andr215^2ur̂u1& are the matrix elements of th
density matrix;G1, G2, andG12 are relaxation constants o
the statesu1& and u2& and of the ‘‘coherence’’r21 of these
states;G5E0^2ud̂u1&/2\, with d̂ the dipole moment opera
tor; qjW(v) is the excitation function ofu j &; A21 is the Ein-
stein coefficient; the diffusion operatorV̂ describes diffusion
in velocity space;Fab(v) is the diffusion tensor; andn is the
transport collision rate, or the reciprocal of the time it take
particle to change velocity~due to diffusion! by a quantity of
ordervT .

Effects related to the dependence ofFab on v were dis-
cussed in Ref. 10. There it was shown that forn!G j , i.e.,
when the diffusion width of Bennett dips alongk is much
less thanvT , we can adopt a constant and isotropic diffusi
coefficient Fab(v)5dab , introduced into nonlinear spec
troscopy by Rautian.11 If we align the z axis with k, then
only the diffusion tensor componentFzz(v) averaged over
the transverse velocity and taken at the longitudinal veloc
corresponding to the center of the dip affects the shape of
Bennett dip. The adopted approximation makes it possibl
integrate the system of equations~1! with respect to veloci-
ties transverse tok. For the sake of brevity, we denote th
longitudinal velocity projectionv i5k•v/k by v.

Bearing in mind the various applications to nonline
spectroscopy, we are interested in the steady-state solutio
the system of equations~1!:

r j5r j , r215r 21e
2 i ~Vt2k•r !,

G1r 15nV̂ 1r 122 Re~ iG* r 21!1q1W1~v !1A21r 2 ,

G2r 25nV̂ 1r 212 Re~ iG* r 21!1q2W1~v !, ~2!

@G122 i ~V2kv !#r 215nV̂ 1r 211 iG~r 22r 1!,
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W1~v !5
1

ApvT

expS 2
v2

vT
2D , V̂ 15

d

dv S vT
2

2

d

dv
1v D .

The power absorbed from the wave per unit volume is
product of the concentration of ions absorbing a photon
unit time and the energy of the photon:

P~V!52\vE dv Re~ iG* r 21!. ~3!

We now present numerical values of the characteri
parameters, which can be divided into plasma parame
and the parameters of a singe ion. The ion temperaturTi

characteristic of discharge is roughly 1 eV, and the conc
tration of ions in the plasma of an argon laser,Ni , is roughly
1014 cm23. The wavelength of the radiation that is in res
nance with the laser transitions of a singly charged ion,l, is
approximately 531025 cm. The relaxation constantsG j and
G i j are determined by the rates of relaxation processes
quenching processes in the plasma. Depending on the le
selected, these constants can vary from 107 to 109 s21. For
Ar II we have vT.23105 cm/s, kvT.2.531010 s21, and
the transport collision rate

n5
16Ape4Ni

3m2vT
3

L.107 s21,

wheree is the electron charge andL is the Coulomb loga-
rithm. The parameters of the gas-discharge plasma have
thoroughly discussed in Ref. 9. The above values of the
rameters were used in the numerical calculations. Note
all of the relaxation constants (G j andG i j ) and the transpor
collision raten are small compared to the Doppler linewid
kvT .

3. BENNETT DIP IN COMBINED POWER AND DIFFUSION
BROADENING

In the absence of diffusion, the shape of the Bennett
Dr j is Lorentzian, and the width of the dip is the sum of t
homogeneous widthG12 and the power widthwF ~Ref. 4!:

Dr j}@G12
2 1wF

21~V2kv !2#21,

wF5A2G12uGu2

k2 S 1

G1
1

1

G2
2

A21

G1G2
D .

If r j (v) has widthw, then in order to estimate the orde
of magnitude of the individual terms in the equation forr j

we must replace the derivatived/dv by w21. The collisional
term consists of two terms, (nvT

2/2)d2r j /dv2 and
n(d(vr j )/dv). The first describes velocity diffusion, whil
the second describes dynamic friction on an ion moving w
respect to the entire plasma. The diffusion widthwjD of the
Bennett dip at levelj comes into play because of the equal
of G j r j and the diffusion term, (nvT

2/2)d2r j /dv2

;(nvT
2/2wjD

2 )r j , with the result thatwjD5vTAn/2G j . For
moderate concentrations of charge carriers in the plasmn
!G j andwjD!vT , and we can neglect terms correspondi
to dynamic friction. Due to friction, the variation of the io
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velocity during the lifetimeG j
21 is small in comparison to

the diffusion variation of the velocity,wjD , and is of order
vTn/G j .

Below we examine the shape of the Bennett dip in t
limits:

1. The upper level is long-lived, and the lower lev
rapidly decaying (G2!G1). This situation leads, for equa
rates of excitation of levels, to steady-state population inv
sion, and is typical of laser transitions of cw ion lasers.9

2. The lower level is long-lived, orG1!G2. A meta-
stable lower state is used in the absorbing transition of
man lasers.8

In both cases we assume that the diffusion width of the B
nett dip in the short-lived level is much less than the hom
geneous or power width. Neglecting diffusion operators
the population equations of this level and for the cohere
r 21 in the system of equations~2!, we obtain an ordinary
second-order differential equation for the populationr 2 of
the long-lived level in case 1:

F11JS 12
A21

G1
D G r 25w2D

2 d2r 2

dv2
1r 2

~0!

1JS r 1
~0!2

A21

G1
r 2

~1!D , ~4!

where

J5
2G12uGu2

G2@G12
2 12G12uGu2/G11~V2kv !2#

,

andr j
(0) is the population of levelj in the absence of a field

The shape of the Bennett dip is described by the functioy
5(r 22r 2

(0))/(r 1
(0)2r 2

(0)), which obeys the equation

S 11
A2

W21x2D y5
d2y

dx2
1

A2

W21x2
, ~5!

where

x5
V2kv
kw2D

, A5
wF

w2D
, W5

~G12
2 12G12uGu2/G1!1/2

kw2D
.

Note that althoughuGu2 is present in the expression forW,
the latter is not simply the ratioA of the power width to the
diffusion width. For instance, in a strong field,W
.(G2 /G1)1/2A!A. The exact solutions of the homogeneo
equation can be expressed in terms of spheroidal function12

These functions, however, have been rather poorly stud
and no integral representations are known for them.

In case 2, reasoning along similar lines, we have

F11JS 12
A21

G2
D G r 15w1D

2 d2r 1

dv2
1r 1

~0!1JS 12
A21

G2
D r 2

~0! ,

~6!

where the expression forJ can be obtained from its counte
part in case 1 via the interchange 1↔2. If we interchange the
indices in the expressions forx, y, A, andW, we again arrive
at Eq.~5!.
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FIG. 1. The Bennett dipy(x): ~a! the solution
~10!, and ~b! the results of numerical calcula
tions. G,51023kvT and G.5431022kvT ,
where G, (G.) is the smaller~larger! of the
two quantitiesG1 and G2. G125(G11G2)/2, n
51025kvT , and V50. The curvesn50,1,2,3
correspond to the different values ofuGu
510n/322kvT .
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Equation~5! has a simple physical meaning: there is
reservoir of particles and a set of states that differ in
value of the parameterx. In these states, a particle expe
ences diffusion inx and decay~the unity on the left-hand
side of the equation!. The external field resonantly interac
with particles, initiating transitions between the statesx and
the reservoir; the resonance width isW. There is a nonvan-
ishing probability of arrival or departure of a particle in sta
x, and this probability isA2/(W21x2).

We now analyze Eq.~5!. If either A or W is large (W
@1 or A@1), the width of the Bennett dip exceeds the d
fusion width, and we can ignore the derivatived2y/dx2 in
the equation, so that the Bennett dip becomes Lorentzia

y5
A2

W21A21x2
. ~7!

In weak fields,A!W;1, the dip is a convolution of Lorent
zian and exponential contours:

y5
1

2
e2uxu *

A2

W21x2
[

A2

2 E dx8
e2ux2x8u

W21x82
. ~8!

We now examine the case in which the diffusion wid
of the Bennett dip in the long-lived level exceeds the hom
geneous width,W!1. Replacing 1/(W21x2) by pd(x)/W,
we obtain

y5
d2y

dx2
1

pA2

W
d~x!@12y~0!#,

whose solution is

y~x!5
A2

2W/p1A2
e2uxu. ~9!

This solution is valid for weak fields,A!1. As the field
intensity grows, the depth of the dip,y(0), approaches unity
and the accuracy of the approximation based on this su
tution decreases. In very strong fields,A;1, the shape of the
Bennett dip differs from the exponential shapee2uxu.

Let us construct a solution of Eq.~5! for large values of
x (x@W). We will then attempt to correlate the solution
behavior with the condition of solvability for small values
x;W. Whenx@W, we can ignoreW2 in the denominators
of ~5!. Then the solutiony(x) can be expressed in terms
cylinder functions:

y~x!5A2Ai uxu @CKa~ uxu!2S23/2,a~ i uxu!#, ~10!
e

-

ti-

where a5AA211/4 , Ka(z) and Sm,a(z) are the modified
Bessel function of the second kind and Lommel function13

and C is a constant that can be found by examining t
behavior of the solution~10! at smallx.

When x;W, we can ignore the unity on the left-han
side of Eq.~5!, A@W. The resulting inhomogeneous equ
tion has the trivial solutiony[1. The solution of the homo-
geneous equation can be expressed in terms of hypergeo
ric series2F1 ~Ref. 14!. However, whenA2@W, the constant
C can be found from the condition that the solution~10!
must be regular atx50:

C5
e2 iap/2

23/2p
GS 21/22a

2 DGS 21/21a

2 D
3cosFp2 S 3

2
1a D G .

The solution~10! can then be written in terms of the mod
fied Bessel functionI a(z) and the generalized hypergeome
ric series1F2 ~Ref. 14!,

y~x!51F2S 1;
3/21a

2
,
3/22a

2
;
x2

4 D
2Auxu

2
GS 3/21a

2 DGS 3/22a

2 D I a~ uxu!,

which implies thaty(0)51. The solution~10! contains the
Lorentzian and exponential contours as limiting cases:

y5H e2uxu, A!1,

1

11~x/A!2
, A@1.

~11!

In weak fields,A2;W!1, the Bennett dip is described b
the exponential contour~9! with y(0)Þ1.

Figure 1 depicts examples of Bennett dips:~a! the solu-
tion ~10!, and ~b! the numerical solutions of four couple
diffusion equations for the elements of the density matrix
~2!. The range of possible velocities in~2! is infinite, so for
numerical calculations the limits of this interval were tak
at v564vT , and the values of the density matrix at the
limits were chosen according to the asymptotic behavior
the analytic Lorentzian. Figure 1 clearly shows the transit
from an exponential contour to a Lorentzian contour~from
curven50 to curven53). The curvesn51,2,3 in Fig. 1a
almost coincide with the curvesn51,2,3 in Fig. 1b; the dif-
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ference between Figs. 1a and 1b at the center of the Ben
dip in a weak field~curven50) can be explained by the fac
that only in the numerical calculations have we allowed
the finite natural widthWÞ0.

The type of solutiony(x) given by~10! depends only on
the parameterA5wF /wD , wherewD is the diffusion width
of the Bennett dip in the long-lived level (wD5w2D in case
1 andwD5w1D in case 2!. Thus, the halfwidthvL of the dip
over a fractionL (0,L,1) of the total height of the dip
(vL5wDxL , wherey(xL)5L) is a homogeneous function o
wD andwF of order unity. This means that ifwD andwF are
increasedp-fold (p.0), then so isvL. In the (wF

2 ,wD
2 )

plane, the various level curves ofvL with the same value o
L but different values ofvL , can be mapped into one anoth
via a scale transformation centered at (0,0). For instance
halfwidth at half maximum is

v1/25H wFF11S wD

2wF
D 2G , wD!wF ,

wD ln 2, wD@wF,

and can be approximated by the interpolation formula

v1/2.AwF1wD
2 /25wDAA211/2. ~12!

Note that the simplicity of~12! derives from the approxi-
mate equalityA2• ln 250.9803 . . ..1 ~if wF50, then~12!
yieldsv1/25wD /A2.wD ln 2). At A51/A2 the width of the
Bennett dip exceeds both the power width and the diffus
width by a factor of almost 1.5. Such a contour is depicted
Fig. 2.

Babin et al.5 used a Lorentzian function for an approx
mate solution. The amplitude and width were found by
variational method. The width of the approximating Loren
zian satisfies the quartic equation

v1/2
4 2~w21wF

21wD
2 /2!v1/2

2 22wwD
2 v1/223w2wD

2 /250,
~13!

wherew5wDW ~in Ref. 5 w was taken to bewH5G12/k,
which is justified if the field is not too strong!. Its solution
whenwD ,wF@w is given by~12!, i.e., the halfwidths at half
maximum of the solution of~13! and the approximating
Lorentzian in the variational method are essentially identic
The level curves for the solution of Eq.~13! in the (wF

2 ,wD
2 )

FIG. 2. The shape of the dipy(x) given by formula~10! at A5A1/2 ~curve
1!, the diffusion contour exp(2uxu) ~curve 2!, and the Lorentzian 1/(1
1(x/A)2) ~curve3!.
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plane are segments of straight lines, which become par
for wD ,wF@w, and can thus be mapped into one another
a scale transformation centered at the origin.

The values ofvn/4 , n51,2,3, in Fig. 3 are selected i
such a way that the curvesn51,2,3 coincide if the dip is a
pure Lorentzian. Thus, the distance between curves is
measure of the deviation of the shape from a Lorentzian.
deviation is greater at the center of the dip than in the win
~curven53 deviates from curven52 more than does curve
n51) and if the power broadening is smaller than the dif
sion broadening. When the power width is large,wF@wD ,
the curves merge, so that saturation effects mask diffus
broadening.

The modified Bessel functionKn(z) for half-integern
5n11/2, with n50,61,62, . . . , can beexpressed in terms
of elementary functions. However, the solution~10! of the
inhomogeneous equation reduces to elementary funct
only if a52n11/2, n50,1, . . . . Forinstance, ata51/2 the
contour is exponential~see~11!!, while ata55/2 the shape
of the dip is given by

y~x!5
622e2uxu~313uxu1x2!

x2
,

which differs from a Lorentzian of widthA13/2 ~see Eq.~13!
and Ref. 5! by 8%.

We now attempt to find the spectrum of a probe fie
The shape of the Bennett dip can be found by measuring
absorption spectrum for a probe wave that is in resona
with the same transition as the strong wave. To determine
spectrum of the probe wave, we must augment the system
equations~1!, so that it reflects the interaction with the prob
wave. In the linear approximation in the probe field intensi
the probe field induces the coherencer21 and population
corrections, which oscillate in time with frequenciesVm and
Vm2V, whereVm is the probe wave offset from resonanc
The corrections to the density matrix induced by the pro
field are proportional to the population difference when t
longitudinal velocity is in resonance with the probe field.
we assume that the rates of excitation of levels 1 and 2
the same, the population of the long-lived level will be mu
higher than that of the rapidly decaying. Due to field splitti
of levels, the resonant velocity is a nonlinear function

FIG. 3. Level curves forvn/4 , n51,2,3, corresponding tovn/45A4/n21 .
The dashed curve depicts the approximation~12! for the curven52.



s
i
lo

e
a

a

a
th

he
l
s
e

ar
e

ve
e

th-

e

tch
for

1
-

ic

nts;
ions

893JETP 86 (5), May 1998 D. A. Shapiro and M. G. Stepanov
Vm . This leads to a situation in which the absorption~am-
plification! spectrum for the probe wave acquires dips who
shape does not follow that of a Bennett dip. The profile
distorted by the nonlinear dependence of the resonant ve
ity on Vm , that is, by power broadening.

4. SATURATION CURVE

First and foremost, we show that the power absorb
from the field can be expressed solely in terms of the are
the Bennett dip,*2`

` dx y(x). For case 2, substituting
2 Re(iG* r 21) from the first equation in~2!, we obtain

P~V!52\vE dv Re~ iG* r 21!

5\vG1E dvFw1D
2 d2r 1

dv2
2r 11r 1

~0!1
A21

G1
~r 22r 2

~0!!G .

~14!

Expressingr 1 and r 2 in terms ofy, r 1
(0) , andr 2

(0) , we have

P~V!5\vG1 E dv~r 1
~0!2r 2

~0!!

3F y2
d2y

dx2
1

A21

G1
J~12y!G .

Since the width of the Bennett dip is much less thanvT , we
can taker 1

(0)2r 2
(0) outside the integral sign and evaluate it

v5V/k. Noting that J(12y)5(y2d2y/dx2)
3(12A21/G2)21, we obtain

P~V!5
\vG1w1D~N12N2!

ApvT~12A21/G2!

3expF2S V

kvT
D 2G E

2`

`

dx y~x!, ~15!

where Nj5*dv r j
(0) is the initial concentration of ions in

level j . Similarly, for case 1 we have

P~V!5
\vG2w2D~N12N2!

ApvT

expF2S V

kvT
D 2G E

2`

`

dx y~x!.

~16!

Thus, studying the intensity dependence of the power
sorbed from the field reduces to studying the behavior of
integral*2`

` dx y(x), wherey is the solution of Eq.~5!.
This fact has a simple qualitative explanation. In t

steady-state situation, the area of the Bennett dip in levej ,
i.e., *dv(r j2r j

(0)), is the ratio of the concentration of ion
that absorb~or emit! one field photon per unit time to th
population relaxation rate for the given levelG j . The power
absorbed from the field can be expressed in terms of the
of the Bennett dip if the rate of particle ejection from th
level due to collisions is independent of the translational
locity of the particles~e.g., collisions have no effect on th
number of particles in the level!.

Consider the Fourier transform of Eq.~5!:
e
s
c-

d
of

t

b-
e

ea

-

S W21
A2

11t2D Y5
d2Y

dt2
12pA2d~ t !, ~17!

where

Y~ t !5~11t2!E
2`

`

dx eitxy~x!.

The entire dependence of the absorbed powerP(V) on the
wave’s intensity is contained in the amplitude of the zero
order harmonicY(0)5*2`

` dx y(x).
WhenW@A, we can neglect the termA2/(11t2) on the

left-hand side of Eq. ~17!, with the result that
Y(t)5pA2 exp(2Wutu)/W. When W@1 or A@1, the func-
tion Y(t) has a width (W21A2)21/2!1. We then can assum
that t is small, t!1, and

Y~ t !5
pA2

AW21A2
exp~2AW21A2utu!.

In a different limiting case,W!min$A,1%, we solve Eq.
~17! in two rangest, namely t@1 and t!A/W. When A
@W, these ranges overlap, and when 1!t!A/W, both
asymptotes are applicable, which makes it possible to ma
them, with the result that we obtain an approximation
Y(t) that is equally suitable for all values oft.

For t@1 we can neglect the 1 in the denominator
1t2, with the result that Eq.~17! reduces to Bessel’s differ
ential equation. This yields

Y~ t !5C3AtKa~Wt!, ~18!

whereC3 is a constant determined by matching~18! to the
solutionY(t) for small t.

When t!A/W, we can neglectW2 on the left-hand side
of Eq. ~17!, whereupon~17! reduces to the hypergeometr
equation.

Y~ t !5C16~ i 1t !2F1S 1

2
1a,

1

2
2a;2;

i 1t

2i D
1C26~ i 2t !2F1S 1

2
1a,

1

2
2a;2;

i 2t

2i D ; ~19!

for t.0 the constantsC1 andC2 carry a plus sign, while for
t,0 they carry a minus sign. Here2F1(a,b;c;z) is the hy-
pergeometric series~see Ref. 14!.

What remains to be done is to find the constantsC16 ,
C26 , and C3. Constraints on the behavior ofY(t) near
t50 impose two constraints on the values of the consta
another emerges when we match the asymptotic solut
~18! and ~19!, and finally, the fact thaty(x) is real leads to
two more.

Integrating~17! locally neart50, we find that

lim
t→10

Y~ t !5 lim
t→20

Y~ t !,

lim
t→20

dY~ t !

dt
2 lim

t→10

dY~ t !

dt
52pA2, ~20!

C111C215C121C22 ,
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C122C222C111C215
2pA2

2F12A2
2F1

1/4
,

where

2F152F1S 1

2
1a,

1

2
2a;2;

1

2D ,

2F1
152F1S 3

2
1a,

3

2
2a;3;

1

2D .

Since y(x) is real, Y(2t)5Y* (t), so thatCm252Cm1* ,
with m51,2.

When 1!t!A/W, the solutions~18! and ~19! must co-
incide. Here the argument of the hypergeometric series
~19! is large,t@1, and in~18! the argument of the modified
Bessel function can be chosen to be small,Wt!1. Expand-
ing ~18! as a power series int at t50 ~see Ref. 13! and~19!
as a power series int21 at t5` ~see Ref. 14!,

Y~ t !5
pC3At

2 sin pa F ~Wt/2!2a

G~12a!
2

~Wt/2!a

G~11a!G1•••,
~21!

Y~ t !5expF2
ip

2 S a1
1

2D G~C112 ieipaC21!

3
G~22a!

G~1/22a!G~3/22a! S t

2D 1/22a

1expF ip

2 S a2
1

2D G~C112 ie2 ipaC21!

3
G~2a!

G~1/21a!G~3/21a! S t

2D 1/21a

1•••,

and equating the coefficients oft1/26a, we obtain

C112 ie2 ipaC21

C112 ieipaC21

5«e2 ipa,

~22!

«52W2a
G~22a!G~12a!G~1/21a!G~3/21a!

G~2a!G~11a!G~1/22a!G~3/22a!
.

RepresentingC11 in the formC115mC21 , we obtain

m5 ie2 ipa
12«eipa

12«e2 ipa
, umu51,

Y~0!5 iC212F152
pA2

2F1

2~2F12A2
2F1

1/4!

u11mu2

Im m

5
pA2

2F1

2F12A2
2F1

1/4
cotS p

2 S a2
1

2D
1arctan

« sin pa

12« cospa D . ~23!

Thus, when the power width exceeds the radiative wi
(A@W), the power absorbed from the field per unit volum
is given by ~16! for case 1 and by~15! for case 2, with
*2`

` dx y(x)5Y(0) given by~23!. The power width is com-
parable to the diffusion width,A;1. The expression~23! is
cumbersome, so we start with several limiting cases, a
which we suggest a simple but accurate approximation.
in

h

er

4.1. Limiting cases

Suppose that the field is weak (A!1). Then a.1/2
1A2, «.W2a, and the argument of cotz in ~23! is small,
with the result that

Y~0!.
pA2

W2a1pA2/2
. ~24!

A similar result, Y(0)5pA2/(W1pA2/2), which differs
from ~24! only in the exponent ofW in the denominator, can
be obtained by replacingA2/(W21x2) in ~5! with
pA2d(x)/W ~Ref. 7!. The extent to which the approximatio
based on this substitution differs from~24! can be estimated
by the difference 12W2A2

, which for W!A!1 can be of
order unity. The expression~24! describes so-calledhomo-
geneous saturation, where the diffusion shape of the Benne
dip does not change~it remains exponential!, while the depth
of the dip,y(0), reaches its maximum value, equal to unit
as the field strength increases.

Now consider strong fields (A;1). We can then neglec
the correction to the argument of cotz in ~23!, which is re-
lated to the fact that« is nonvanishing~see Appendix!. Set-
ting «50 in ~23!, we can write the asymptotic formulas fo
Y(0) for strong and weak diffusion broadening as compa
to power broadening~see~11!!:

Y~0!5H 2, A!1,

pA~111/4 A2!, A@1.J ~25!

4.2. Interpolation formulas

For strong fields (A;1), Y(0) obeys the interpolation
formula

Y~0!.pA~2/p!21A2, ~26!

which, as numerical calculations show, is valid in the reg
whereW!min$A2,1% with an accuracy no worse than 2%.

Combining ~26! and ~24!, we arrive at an interpolation
formula with an applicability range broader than~26!:

Y~0!.
pA2A~2/p!21A2

~2/p!W2a1A2
. ~27!

This expression is valid in the regionW!1 and, in particu-
lar, in the case of a weak field,A2;W.

Finally, altering~27! somewhat, we obtain at the inte
polation formula

Y~0!.
pA2A~2/p!21W21A2

~2/p!W2a/~112W2a!1W21A2
, ~28!

which is valid for allA, W.0 with an accuracy of about 3%
Examples of saturation curves~which reflect the dependenc
of the power absorbed from the field on the field intensi!
calculated with~28! are depicted in Fig. 4. We see that th
smaller the natural widthW, the sooner homogeneous sat
ration sets in~the transition from curve1 to curves2 and3 in
Fig. 4b!. However, a further increase inA2 ~Fig. 4a! leads to
a square-root increase in the absorbed power. This increa
almost unnoticeable on the scale of Fig. 4b.
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FIG. 4. The absorbed powerY(0) as a function of
the field intensityA2. Curven corresponds to the
valueW5102n ~curve` corresponds toW50).
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Reverting to the original variables of the problem, w
obtain

P~V!5
2Ap\vG12uGu2~N12N2!

kvT
expF2S V

kvT
D 2G

3
AG12

2 1F 21~2/p!2D

G12
2 1F 21~2/p!Dp/~112p!

,

F 252G12uGu2S 1

G1
1

1

G2
2

A21

G1G2
D , D5

nk2vT
2

2G,
,

p5S G12
2 12G12uGu2/G.

D
D AF 2/D11/4

,

whereG, (G.) is the lesser~greater! of the two quantities
G1 andG2. In case 1 we haveG,5G2 andG.5G1, while in
case 2 we haveG,5G1 andG.5G2.

5. DISCUSSION

Two results have been obtained in the previous sectio
1. We derived an expression for the shape of the Ben

dip in a two-level system with a rapidly decaying level, f
an arbitrary ratio of the power and diffusion widths of th
dip. The expression is valid if the natural width of the dip
small compared to the total width and the width of the Ma
wellian distribution exceeds that of the dip. We show that
square of the total dip width at half maximum is the sum
squares of the power and diffusion widths.

2. Under the above conditions, we derived a formula t
reflects the dependence of the absorbed power on the in
sity of the incident wave. The formula describes the we
known limiting cases of low and high intensity and th
smooth transition from homogeneous saturation to inhom
geneous saturation in a new intermediate region. An inter
lation formula has been suggested for this dependence.
formula is valid even if the homogeneous width is not sm

5.1. Shape of dip

Equation~5! contains three widths: the diffusion widt
~equal to unity!, the power widthA, and the homogeneou
width W. The solutions for the shape of the Bennett dip
the collisionless case~both A andW are large compared to
unity! and in the case of a weak field (A is small compared
to W and unity! were obtained earlier. The only case th
remained unexplored was when one of the three width
s.
tt

-
e
f

t
n-

-

-
o-
he
l.

t
is

small and the other two are comparable~W small!. Here we
add power broadening to diffusion broadening. The de
y(0) of the Bennett dip forA2@W reaches its maximum
y(0)51, while the shape of the dip forA!1 is determined
by diffusion and is described by an exponential contour.
the field intensityA2 increases, the dip flattens out. The ge
eral case, in which all three widths are comparable,
hardly be solved in terms of hypergeometric function
which usually contain only two widths. For instance,Jn(z)
contains two scales: unity~the period of oscillations at large
values ofz), andn ~the distance fromz50 to the origin of
oscillations!. However, even if we were able to write th
solution in some form, it would still be simpler to find it b
direct numerical methods in each specific case. Furtherm
when W is of order unity the shape of the dip is close
Lorentzian, so that the variational approximation describ
in Ref. 5 yields satisfactory results.

5.2. Saturation curve

The expression for the absorbed power obtained in R
7 and formula~9! of the present paper can be applied in tw
regions:A2!1/u ln Wu, W!1, andW!A2!1. This provides
a correct description of homogeneous saturation forW!1.
The condition that they can be used to describe homo
neous saturation is the smallness of the parameterWu ln Wu,
which tends to zero asW→0. Formula~9! cannot be applied
in the case of strong fields (A;1), when the power width of
the Bennett dip is of the order of the diffusion width. On
property of ~9! is that for large values ofA, the integral
*dx y(x) reaches its maximum value, equal to 2. It w
unclear how the absorbed power behaves atA;1, since it is
known that*dxy(x)5pA for A@1, i.e., the absorbed powe
grows with the wave intensity. The expression~23! or the
interpolation formulas~27! and ~28! describe precisely the
case whereA;1. They can also be applied for weak field
(A!1). These expressions cannot be applied when the w
of one of the levels is small compared to that of the other
when the width of the Bennett dip is small compared to
width vT of the Maxwellian distribution. If the diffusion
width of the Bennett dip is less thanvT , saturation associ-
ated with the fact that the power width becomes equal tovT

~and hence the square-root increase in the absorbed po
*dx y(x)5pAA2 , with the field intensityA2 becoming lim-
ited to the extent that the absorbed power finally become
constant! can be described without taking diffusion into a
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count (A@1). This limiting case has been thoroughly di
cussed in the literature~see Ref. 15!. When saturation is
homogeneous, the increase in the absorbed power with
field intensity slows down as the depthy(0) of the dip ap-
proaches unity. However, in strong fields the dip flattens o
and because of this, the increase in the absorbed power
not stop. The transition from the homogeneous satura
region to the dip-flattening regime occurs
A;W1/4, when the increase in the absorbed power due
homogeneous saturation slows down so much that it
comes comparable to the increase due to dip flattening.

We are grateful to E. V. Podivilov for fruitful discus
sions and to A. I. Chernykh for consultations on numeri
methods. The present work was partially supported by
Russian Fund for Fundamental Research~Grant Nos. 96-02-
19052 and 96-15-96642!, the Interdisciplinary Science an
Technology Program in Optics and Laser Physics~Grant
1.53!, and the Soros Students Program~M.G.S, Grant s97-
215!.

APPENDIX

The correction to the argument of cotz in ~23! related to
the finite value of« can become important in three cases

1. « is large (a is close to 1,2, . . . ,n, . . . ).
2. The value of cotz is large (a is close to 5/2,9/2,. . . ,

2n11/2, . . . ).
3. The value of cotz is small (a is close to 3/2,7/2,. . . ,

2n21/2, . . . ).
Let a5n1d, with d!1. Then«.(21)n11CnW2a/d2,

with Cn positive ~e.g., C153/64), sinpa.(21)nd, and
cospa.(21)n. The argument of arctanz in ~23! can be writ-
ten as

« sin pa

12« cospa
.2

pdCnW2a

CnW2a1d2
.

It is at its maximum atd;Wa; the maximum value of the
argument is of orderWa!1.

Let a52n11/21d, with d!1. Then«.CnW2ad ~e.g.,
C152/675), sinpa.1, and cospa.0. The value of cotz in
~23! is given by the approximate expression
he

t,
oes
n

to
e-

l
e

cot z.
1

~p/21CnW2a!d
,

i.e., the correction related to«Þ0 is small (W!1). Note that
if we put n50 ~a weak field!, then «.W2a, i.e., « is not
small in terms ofd.

Finally, let a52n21/21d, with d!1. Then
«.2CnW2ad ~e.g.,C152/9), sinpa.21, and cospa.0.
The value of cotz in ~23! is given by the approximate ex
pression

cot z.2~p/2 1CnW2a!d,

i.e., the correction related to«Þ0 is small (W!1).
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We derive a simple analytic formula that describes the relative difference of transport collision
rates,Dn/n, for collisions of molecules and atoms in the rovibrational excitation of the
former by light, as a function of the rotational quantum numbers of the combining~i.e., affected
by radiation! levels of the molecules.~The relative difference of transport collision rates
can be measured in light-induced drift, or LID, experiments and is proportional to the LID effect.!
The formula is valid in the energy sudden approximation and is based on the well-known
factorization formula for cross sections of RT-transitions in linear molecules that collide with
atoms. We show that in this approximation the factorDn/n is the sum of two independent
terms, the vibrational term (Dn/n)vib and the rotational term (Dn/n)rot . Each term can be
measured individually in LID experiments. ©1998 American Institute of Physics.
@S1063-7761~98!00705-7#
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1. INTRODUCTION

Light-induced drift, or LID,1 predicted in Ref. 2, is
being actively investigated both theoretically a
experimentally.3–6 This effect consists in the formation of
macroscopic flux of absorbing particles that interact with
traveling light wave and collide with buffer gas particle
The magnitude of the LID effect is proportional toDn/n
[(nm2nn)/nn , the relative difference of the transport co
lision ratesna (a5m,n) of the collision of resonant par
ticles and buffer particles in the ground (n) and excited (m)
states. This is the basis of one of the fundamental scien
applications of LID, namely measuring the relative var
tions of the transport collision rates caused by excitation
the particles.

Recent LID experiments involving molecules7–9 have re-
vealed unexpectedly strong dependence~which remains un-
explained! of the factor Dn/n on the rotational quantum
numbers of the molecules.

A theoretical explanation of this dependen
would make it possible to predict the magnitude of t
LID effect for specific molecules and to calculate t
variations in the transport collision rates of molecu
under rovibrational excitation. These results wou
certainly be pertinent to the separation of mixtur
and isotopes of molecular gases using LID. Th
would also be of interest for the physics of intermolecu
interactions.

In this paper we solve for the dependence of
factor Dn/n on the rotational numbers for linea
molecules in the sudden approximation, which is effect
for molecules with a moderate value of the rotational co
stant.
8971063-7761/98/86(5)/6/$15.00
a

c
-
f

y
r

e

e
-

2. GENERAL RELATIONSHIPS FOR COLLISION RATES

We consider LID in the field of a traveling light wave
The interaction between the radiation and the molecule
the buffer gas are described by the following transport eq
tions:

d

dt
rm~Jm ,v!5Sm~Jm ,v!1NP~v!dJmJm0

,
~1!

d

dt
rn~Jn ,v!5Sn~Jn ,v!2NP~v!dJnJn0

.

Herera(Ja ,v) is the population distribution for the absorb
ing molecules over velocityv and the rotational levelsJa in
the vibrational statea (a5n is the vibrational ground state
a5m is a vibrational excited state, andJa denotes the set o
rotational quantum numbers characterizing the rotatio
state!, Sa(Ja ,v) is the collision integral reflecting the colli
sions of buffer particles and molecules in the vibration
statea and the rotational stateJa , P(v) is the probability
~per unit time! that a molecule with fixed velocityv absorbs
radiation, andN5Nm1Nn is the concentration of the ab
sorbing molecules, with

Na5(
Ja

E ra~Ja ,v!dv.

In Eqs.~1! we assume that the radiation is in resonance w
the rovibrational transitionnJn0–mJm0. Here we ignore ra-
diative relaxation, since it affects rovibrational transitio
only at very low pressures.

An absorbing molecules as a whole is subject to a fr
tion force
© 1998 American Institute of Physics



d
m

ly
rs

n

o
he
th

th

al

al

l
l

l-

g

-

g
s,
l

-

tes

, re-

Eq.

en-

es

ort

898 JETP 86 (5), May 1998 A. I. Parkhomenko and A. M. Shalagin
F5Fm1Fn , Fa5M (
Ja

E vSa~Ja ,v!dv,

a5m,n, ~2!

due to collisions of exciteda5m and unexciteda5n mol-
ecules and particles of the buffer gas (M is the mass of a
molecule!. Obviously, the partial frictional forcesFa opp-
pose the partial fluxesja5(Ja

*vra(Ja ,v)dv of molecules
in statesa:

Fa52Mnaja , a5m,n. ~3!

The proportionality factorna has both the dimensions an
sense of a collision rate. In steady-state and spatially ho
geneous conditions, the initial equations~1! and the defini-
tion of Fa in ~2! imply F50 ~steady-state flow!. Using this
fact and Eqs.~2! and ~3!, we find the following expression
for the total absorbing-particle fluxJ5 jm1 jn ~see Ref. 10!:

J[Nu05
nn2nm

nn
jm , ~4!

where u0 is the LID velocity. In steady-state and spatial
homogeneous conditions we find that multiplying the fi
equation in~1! by v, summing the product overJm , and
allowing for ~2! and ~3! yields

jm5
N

nm
E vP~v!dv. ~5!

As a result, for the LID velocity we have the well-know
formula11

u05
nn2nm

nnnm
E vP~v!dv. ~6!

This formula has been used to process the results of m
experiments in LID of molecules. In particular, having t
experimental data, we can use this formula to calculate
factor Dn/n[(nm2nn)/nn , which is the relative difference
of the transport collision rates.

We now establish the import of the collision ratesnm

and nn in ~6!, so that we can see how they depend on
rotational quantum number. The collision integral in Eqs.~1!
and ~2! has the structure

Sa~Ja ,v!5(
Ja1

E @A~aJa1v1→aJav!ra~Ja1 ,v1!

2A~aJav→aJa1v1!ra~Ja ,v!#dv1. ~7!

We note that the two kernels of the collision integr
A(aJa1v1→aJav) andA(aJav→aJa1v1), describe inelas-
tic (JaÞJa1) collisional transitions between the rotation
states of the given vibrational levela and elastic (Ja

5Ja1) collisions in the rotational stateJa . In ~7! the colli-
sional transitionsm→n and n→m between the vibrationa
levels are ignored. Using~7!, we can transform the frictiona
force Fa in ~2! to

Fa5M (
Ja

(
Ja1

E ~v12v!ra~Ja ,v!

3A~aJav→aJa1v1!dv dv1. ~8!
o-

t

st

e

e

,

The kernel of the collision integral is given by the fo
lowing formula:5,12

A~aJav→aJa1v1!52E rb~v2u!

3u f ~aJau→aJa1u1!u2

3dS v12v2
m

M
~u12u! D

3dS u1
22u21

2D«a~Ja1Ja!

m Ddu du1, ~9!

Here u and u1 are the relative velocities of the collidin
particles before and after collision,rb(v2u) is the velocity
distribution of the buffer particles~which are assumed struc
tureless!, f (aJau→aJa1u1) is the scattering amplitude in
the Ja→Ja1 channel with the relative velocity changin
from u to u1, m is the reduced mass of the colliding particle
D«a(Ja1Ja)5«a(Ja1)2«a(Ja) is the change in rotationa
energy of the molecules due to inelastic transitionsJa

→Ja1 in the vibrational statea, and«a(Ja) is the rotational
energy of stateJa of rotational levela. Substituting~9! into
~8!, we obtain the following expression for the partial fric
tional forceFa ~see Ref. 5!:

Fa52M (
Ja

E vra~Ja ,v!na~v,Ja!dv. ~10!

Here we have introduced the transport collision ra
na(v,Ja) described by

na~v,Ja!5
m

M (
Ja1

E u
u–v

v2
rb~v2u!

3sa
tr~u,D«a~Ja1Ja!; Ja→Ja1!du,

sa
tr~u,D«a~Ja1Ja!; Ja→Ja1!5E S 12

u•u1JaJa1

u2 D
3sa~Ja ,u→Ja1 ,u1!dn1,

~11!

u1JaJa1
5Au22

2D«a~Ja1Ja!

m
, n1[

u1

u1
,

sa~Ja ,u→Ja1 ,u1!5
u1JaJa1

u
u f ~aJau→aJa1u1!u2,

and sa(Ja ,u→Ja1 ,u1) and sa
tr(u,D«a(Ja1Ja);Ja→Ja1)

are the differential and transport scattering cross section
spectively.

If the transport collision ratesna(v,Ja) in Eq. ~10! are
independent of velocity and rotational number, we obtain
~3! and, as a result, Eq.~6!, wherenm andnn are completely
determined by the properties of the medium and are indep
dent of the parameters of the laser light~frequencies, inten-
sities, and types of excited transition!. Generally, however,
nm andnn depend on the specific distribution over velociti
and rotational levels. It would seem that to findnm andnn we
might again have to revert to solving the original transp
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equations. However, in real situations the transport collis
rates change very gradually over the velocity and rotation
number intervals important for the process. This make
possible to either neglect such changes or approximately
count for them with satisfactory accuracy.

3. APPROXIMATE EXPRESSIONS FOR TRANSPORT
CHARACTERISTICS

The results of many LID experiments involving mo
ecules~see, e.g., Refs. 13–15 and the literature cited ther!
show that the model of velocity-independent transport co
sion rates usually yields satisfactory results. Only in r
cases in which the difference betweennm and nn is ex-
tremely small does the velocity dependence of the trans
rates become significant and lead to so-called anoma
LID.7,15–17 In this paper we focus on theJ-dependence o
LID, which is related, as we have just seen, to theJ-
dependence of the transport collision ratesna(v,Ja). As for
the v-dependence ofna(v,Ja), we employ the model of
velocity-independent transport collision rates. To this end
~10! we make the substitution

na~v;Ja!→na~Ja!. ~12!

For the sake of definiteness we takena(Ja) in the form

na~Ja!5
M

kT E ~n–v!2W~v!na~v,Ja!dv, ~13!

wheren is a randomly directed unit vector, andW(v) is the
equilibrium Maxwellian distribution for the absorbing pa
ticles. Clearly, ifna(v,Ja) in ~13! is velocity-independent
this equation becomes an identity~if we allow for ~12!!. Our
choice ofna(Ja) in the form~13! is convenient because~13!
is the usual relation for introducing the average transport
n, which is simply related to the diffusion coefficient:

D5
kT

Mn
. ~14!

If we allow for the substitution~12!, then using Eq.~10! and
Eq. ~6! we obtain the following expression forna (a
5m,n):

na5
(Ja

na~Ja! j a~Ja!

(Ja
j a~Ja!

, ~15!

where j a is the partial flux of absorbing particles in rota
tional levelJa of the vibrational statea.

Laser light induces a fluxj a(Ja0) of particles in rota-
tional levelJa0. This flux is partially transferred to neighbo
ing rotational levelsJa by collisions. In the process, the flu
slows down. The effective interval of rotational levels in t
neighborhood ofJa0 where j a(Ja) differs significantly from
zero can be assumed small compared to the interval in w
variations ofna(Ja) are significant. On the basis of this, w
can takej a(Ja) with the valueJa5Ja0 outside the sum in
~15!, i.e., at the point where the fluxj a(Ja) is at its maxi-
mum. As a result, Eq.~15! yields

na5na~Ja0!. ~16!
n
l-
it
c-

n
-
e

rt
us

n

te

ch

Thus, in the given approximation theJ-dependence of LID is
explicitly related to theJ-dependence of the transport coll
sion rates.

On the basis of~13! and ~11! we can derive the follow-
ing expression for the transport ratesna(Ja):

na~Ja!5
2a

3~kT!3 (
Ja1

E
f ~D«a~Ja1Ja!!

`

dE E2expS 2
E

kTD
3E dVS 12A12

D«a~Ja1Ja!

E
cosu D

3sa~E,u,f; Ja→Ja1!, ~17!

where

a5
m

M
NbvT , vT5A8kT

pm
,

E5
mu2

2
, cosu5

u–u1JaJa1

uu1JaJa1

,

f ~x!5H 0, x<0,

x, x.0,
dV5sin u du df,

u and f are the polar and azimuthal scattering angl
sa(E,u,f;Ja→Ja1) is the differential scattering cross se
tion in the channelJa→Ja1, andE is the kinetic energy of
the relative motion of the colliding particles. Note that in th
integral with respect toE in ~17! the lower integration limit,
f (D«a(Ja1Ja)), can formally be set to zero, since fo
D«a(Ja1Ja).0 in the energy range 0<E,D«a(Ja1Ja) we
havesa(E,u,f;Ja→Ja1)50 due to energy conservation.

For subsequent analysis it is convenient to transform
integral forna(Ja) in ~17! and represent it as a sum of tw
terms,

na~Ja!5na
t ~Ja!1na

t ~Ja!, ~18!

where

na
t ~Ja!5

2a

3~kT!3 E0

`

E2 expS 2
E

kTDsa
t ~E,Ja! dE, ~19!

na
c ~Ja!5

2a

3~kT!3 (
Ja1

E
0

`

dE E2 expS 2
E

kTD
3S 12A12

D«a~Ja1Ja!

E Dsa
c ~E;Ja→Ja1!.

~20!

Here we have introduced the notation

sa
t ~E,Ja!5E ~12cosu!S (

Ja1

sa~E,u,f; Ja→Ja1! DdV,

~21!

sa
c ~E;Ja→Ja1!5E cosusa~E,u,f; Ja→Ja1!dV.

For subsequent calculations we use the well-known f
mula that relates the differential cross sections of R
transitions in linear molecules when they collide wi
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atoms,18–21 which is derived in the sudden-perturbation a
proximation commonly used in the theory of inelastic m
lecular collisions

sa~E,u,f; Ja→Ja1!5
E1«a~Ja!

E
~2Ja111!

3 (
L5uJa2Ja1u

L5Ja1Ja1 S Ja Ja1 L

0 0 0D
2

3sa~E1«a~Ja!,u,f; 0→L !, ~22!

where( abc
000) is the Wigner 3j -symbol.22 This formula is

valid if the atom–molecule collision timetcol is less than the
molecule’s rotation periodt rot ~see Ref. 23!,

tcol

t rot
!1. ~23!

For diatomic molecules this condition becomes24,25

AmD«

MrkT
!1, ~24!

wherem is the reduced mass of the collision partners,Mr is
the reduced mass of the atoms comprising the diatomic m
ecule, andD«5uD«a(Ja1Ja)u.

Khare20 derived Eq.~22! in the~energy! sudden approxi-
mation, i.e., by replacing the rotational energy operator
the molecule with a constant. This energy approximation
nores the dependence of the cross section on the ener
the outgoing channel. The factor 11«a(Ja)/E in ~22! ap-
pears by virtue of detailed balance.20,24 The sudden approxi
mation is effective when the change in rotational energy
small compared to the total energy.

Taking into account the orthogonality relation20

(
Ja1

~2Ja111!S Ja Ja1 L

0 0 0D
2

51 ~25!

and combining~21! with ~22!, we obtain

sa
t ~E,Ja!5F11

«a~Ja!

E Gs0a
t ~E1«a~Ja!!, ~26!

where

s0a
t ~E1«a~Ja!!

5E ~12cosu!S (
L

sa

3~E1«a~Ja!,u,f; 0→L ! DdV. ~27!

Since in the sudden approximation it is assumed that the
only a small change in rotational energy, Eq.~26! is valid if
«a(Ja)!E. In an approximation that is linear in the sma
parameter

«a~Ja!

kT
!1, ~28!
-
-

l-

f
-
in

s

is

Eqs.~19! and ~26! yield

na
t ~Ja!5n0a

vib1
«a~Ja!

kT
n1a

vib , ~29!

where

n0a
vib5

2a

3~kT!3 E0

`

E2 expS 2
E

kTDs0a
t ~E!dE, ~30!

n1a
vib5n0a

vib2
2a

3~kT!2 E0

`

E expS 2
E

kTDs0a
t ~E!dE, ~31!

s0a
t ~E!5E ~12cosu!S (

L
sa~E,u,f; 0→L ! DdV.

~32!

The quantitiesn0a
vib and n1a

vib in ~29! have the dimensions o
collision rate and depend only on the vibrational statea. All
of the dependence ofna

t (Ja) on the vibrational stateJa is in
the factor«a(Ja)/kT. The quantitys0a

t (E) in ~32! is the
total ~i.e., elastic and inelastic! transport scattering cross se
tion of a molecule in vibrational levela and rotational state
Ja50.

We now simplify Eq.~20! for na
c (Ja). Since the main

contribution to the integral in~20! is provided by energies
E;kT, in view of condition~28! the square root in the inte
grand can be expanded in a power series in the small q
tity D«a(Ja1Ja)/E ~energiesE→0 contribute essentially
nothing to the integral!. In an approximation linear in the
small parameter

uD«a~Ja1Ja!u
kT

!1, ~33!

Eq. ~20! yields

na
c ~Ja!5

a

3~kT!3 (
Ja1

D«a~Ja1Ja!

3E
0

`

E expS 2
E

kTDsa
c ~E;Ja→Ja1! dE. ~34!

Allowing for the correction term«a(Ja) in the linear ap-
proximation in~22!, substituting~22! into ~34! would exceed
the numberical precision. Hence we must plug~22! into ~34!
with «a(Ja)50. We also allow for the fact that for linea
molecules the energy of the rotational levelJa is

«a~Ja!5BaJa~Ja11!, ~35!

whereBa is the rotational constant for vibrational levela.
Next, using the fact that26,27

(
Ja1

Ja1~Ja111!~2Ja111!S Ja Ja1 L

0 0 0D
2

5Ja~Ja11!1L~L11! ~36!

and taking~25! into account, we obtain from~34!
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na
c ~Ja!5na

c [
a

3~kT!3 (
L

«a~L !

3E
0

`

E expS 2
E

kTDsa
c ~E;0→L !dE. ~37!

It is clear from~37! that in the linear approximation,na
c (Ja)

is independent of the initial rotational state of the molecu
Thus, if for the overwhelming majority of molecules th

conditions~24!, ~28!, and ~33! are met, then to a first ap
proximation the transport collision ratena(Ja) in ~17! is

na~Ja!5na
vib1

«a~Ja!

kT
n1a

vib , ~38!

wherena
vib[n0a

vib1na
c andna

vib depend only on the vibrationa
statea. The dependence of the transport ratena(Ja) on the
initial rotational stateJa is due only to the factor«a(Ja)/kT.

4. RELATIVE DIFFERENCE OF TRANSPORT COLLISION
RATES

Suppose that the light is in resonance with the rovib
tional transitionnJi→mJf . Then for the relative difference
of the collision rates that enter into Eq.~6! for the LID ve-
locity, Eqs.~16! and ~38! yield

Dn

n
[

nm2nn

nn
5

nm~Jf !2nn~Ji !

nn~Ji !
'

nm~Jf !2nn~Ji !

nn
vib

5
nm

vib2nn
vib

nn
vib

1
«m~Jf !n1m

vib2«n~Ji !n1n
vib

kTnn
vib

. ~39!

Here we can neglect the difference between the values o
rotational energy«m(J) and«n(J) with the sameJ in differ-
ent vibrational states, since it does not exceed sev
percent,28 which is less than the numerical precision. Sin
experiments have shown that the relative difference of
transport collision rates of molecules in the vibration
ground and excited states,unm

vib2nn
vibu/nn

vib , is usually&1%
~see Refs. 7–9!, in ~39! we also neglect the difference be
tween n1m

vib and n1n
vib because it is expected thatun1m

vib

2n1n
vibu/nn

vib is also&1%. As a result, from~39! we obtain

Dn

n
5S Dn

n D
vib

1S Dn

n D
rot

, ~40!

where

S Dn

n D
vib

5
nm

vib2nn
vib

nn
vib

, ~41!

S Dn

n D
rot

5
«~Jf !2«~Ji !

kT

n1n
vib

nn
vib

.

Here«(J)5BJ(J11), with B the rotational constant. Thus
the factorDn/n is a sum of two independent terms, the v
brational term (Dn/n)vib and the rotational term (Dn/n)rot .
The vibrational term (Dn/n)vib depends only on the vibra
tional numbersm andn, while the rotational term (Dn/n)rot

depends only on the rotational numbersJi andJf .
.

-

he

al

e
l

The representation~40! of the factorDn/n as a sum of
independent vibrational and rotational terms was sugge
on qualitative grounds by Chapovskyet al.7 and has been
used to process the data of LID experiments.7–9,29

The quantityd[n1n
vib/nn

vib in ~41! can be calculated if we
assume that the dependence of the total transport cross
tion s0n

t (E) on the kinetic energy is given by a power law
s0n

t (E)}E22/n. In elastic scattering, such an energy depe
dence of the cross section corresponds to a power-law in
action potentialU}r 2n ~see Ref. 30!. Since when~33!
holds, inelastic rotational transitions have a small effect
the path of the colliding particles, for the total transport cro
section the dependences0n

t (E)}ED22/n also approximately
corresponds to the potentialU}r 2n.

Substitutings0n
t (E)}E22/n into ~30! and ~31! yields

d'
n1n

vib

n0n
vib

5
~122/n!G~222/n!

G~322/n!
, ~42!

whereG(x) is the gamma function. Since the valuen@1 is
usually most suitable for describing realistic interaction p
tentials, Eq.~42! yields d'0.5. Thus, for sufficiently short-
range interaction potentials,

S Dn

n D
rot

'
«~Jf !2«~Ji !

2kT
. ~43!

In the transitionsP(Ji) ~i.e., with Ji→Jf5Ji21) and
R(Ji21) ~i.e., with Ji21→Jf5Ji), the absolute value o
the factor (Dn/n)rot is the same but the signs are differen

S Dn

n D
rot R~Ji21!

52S Dn

n D
rot P~Ji !

5
2BJi

kT

n1n
vib

nn
vib

'
BJi

kT
.

~44!

The sum of the relative differences of the collision rat
Dn/n for the transitionsP(Ji) and R(Ji21) does not con-
tain the rotational term (Dn/n)rot :

S Dn

n D
P~Ji !

1S Dn

n D
R~Ji21!

52S Dn

n D
vib

. ~45!

On the other hand, the difference of the relative collisi
rates does not contain the vibrational term (Dn/n)vib :

S Dn

n D
P~Ji !

2S Dn

n D
R~Ji21!

52S Dn

n D
rot P~Ji !

. ~46!

To give a numerical example, atB50.5 cm21 and T
5300 K we have (Dn/n)rot P(1)'20.25% and
(Dn/n)rot P(4)'21%. For a typical value (Dn/n)vib'1%
~Refs. 7–9!, we then haveDn/n'0 for the P~4! transition
and, according to Ref. 14, anomalous LID is to
expected.7,15–17

5. CONCLUSION

We have derived, in the~energy! sudden approximation
a simple analytic dependence~Eqs. ~40! and ~41!! for the
relative difference of transport collision ratesDn/n of colli-
sions of linear molecules and atoms on the rotational nu
bers of the combining levels of the molecules~i.e., those
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affected by radiation!. The factorDn/n measured in molecu
lar LID experiments was found to be equal to the sum
independent vibrational (Dn/n)vib and rotational (Dn/n)rot

terms. For the rotational term, the distinguishability of t
buffer particles is unimportant in view of the weak depe
dence ofn1n

vib/nn
vib in ~41! on the details of the interactio

potential. It is to be expected that at room temperature
derived expressions are valid for linear molecules with m
erate values of the rotational constantB&1 cm21 and initial
rotational numberJi , since the sudden approximation pr
supposes a small variation in rotational energy in compari
to the kinetic energy of the relative motion of the collidin
particles.

In LID experiments involving molecules with a sma
value of the rotational constant, it is possible to verify E
~41! for (Dn/n)rot based on the factorization formula~22! for
cross sections. LID experiments are significantly less co
plicated than experiments with molecular beams, and es
lishing the accuracy and limits of applicability of the facto
ization formula~22! for cross sections in LID experiments
of some interest for the physics of intermolecular inter
tions.

Among linear molecules, only HF has been studied
LID experiments.8,9 For this molecule the condition~24! of
applicability of the sudden approximation is not met beca
of the large rotational constant,B'21 cm21. Nevertheless,
for moderate valuesJi51,2,3 at which the rotational energ
«(Ji)&kT, Eq. ~44! describes the trends in the behavior
(Dn/n)rot with increasingJi fairly well for the transitions
P(Ji) andR(Ji21) ~in the experiments described in Refs.
and 9, for the mixtures HF–Ar, HF–Kr, and HF–Xe an i
crease inJi for Ji51,2,3 was found to lead to an almo
linear decrease in (Dn/n)rot P(Ji )

and an almost linear in

crease in (Dn/n)rot R(Ji21), in accordance with~44!!.

For the HF molecule, Eq.~44! yields a rate of variation
of (Dn/n)rot as a function of the initial rotational numberJi

that is several times greater than the actual value. The re
is that collision rotational transitions, which are responsi
for the dependence of (Dn/n)rot on Ji , emerge solely be-
cause of the anisotropy~nonsphericity! of the intermolecular
interaction potential. When condition~23! is violated, the
angle through which the molecule rotates in the course of
collision ~time tcol) is not small, and the interaction potenti
is effectively averaged over angle. As a result, the effec
anisotropy of the interaction potential decreases, which
sures a dependence of (Dn/n)rot on Ji in HF that is weaker
than the one predicted by~44!.

In their LID experiment involving CH3F molecules,
Bloeminket al.,29 also thoroughly studied of the dependen
of Dn/n on the rotational number. In Ref. 29, as with the H
molecule, the applicability condition~24! of the sudden ap-
proximation is not met. Although our results cannot be
rectly applied to symmetric top molecules~such as CH3F),
we can compare the experimental results with those obta
from Eq. ~41! if the energy factor«(Jf)2«(Ji) is replaced
by «(Jf ,K f)2«(Ji ,Ki), where K is the projection of the
angular momentum on the axis of the top. With this chan
Eq. ~41! correctly describes trends in the behavior ofDn/n
f
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as a function of the rotational numberKi ~an almost linear
dependence ofDn/n on Ki was observed in the experiment!,
and forJi>11 Eq.~41! also correctly describes the behavi
of Dn/n as a function of the rotational numberJi .
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Nonexponential temperature dependence of the rate of threshold inelastic processes in
dense media

N. L. Aleksandrov* ) and A. N. Starostin

Moscow Physicotechnical Institute, 141700 Dolgoprudnyi, Moscow Region, Russia
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The influence of the density of the medium on the temperature dependence of the rate constants
of inelastic processes is investigated. It is shown that besides the effects like lowering of
the ionization potential, which accelerate excitation and ionization processes in a nonideal plasma,
there is a stronger mechanism for such acceleration, which is associated with the high
frequency of collisions between particles and leads to destruction of the one-to-one relation
between the energy and momentum of the particles in a dense medium. It is manifested by the
presence of power-law tails in the equilibrium momentum distribution of the particles,
which leads to a nonexponential temperature dependence of the rates of inelastic reactions in
dense gases and nonideal plasmas. A kinetic equation for the generalized energy and
momentum distribution function of electrons in an external electric field, which permits
investigation of the effect under consideration under nonequilibrium conditions, is presented.
© 1998 American Institute of Physics.@S1063-7761~98!00805-1#
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1. INTRODUCTION

The temporal relaxation of the density of particles a
excited states in different media is described by the co
sponding balance equations. The coefficients in these e
tions, which may be called rate constants, usually do
depend on the particle density. However, in dense nonid
media the strong interparticle interaction causes the rate
elementary processes to depend on the density of the
dium. This phenomenon is most pronounced for thresh
processes. Its study~mainly by theoretical methods! has been
confined to the electron-impact ionization and excitation
atoms~and the reverse reactions! and electron attachment t
molecules.1–10 However, the nonideal behavior caused
both the Coulomb interaction in a plasma1–6 and by
electron–atom and atom–atom interactions as elect
move in dense gases and liquids7–10 has also been consid
ered.

It is presently believed that the main reason for the va
tion of the rate of threshold electron processes as the de
of the medium increases is the lowering of their ene
threshold. The temperature dependence of the rate con
remains exponential, although it can fail to coincide with t
Arrhenius law because of a possible temperature depend
of the decrease in the ionization potential. Other effects, s
as degeneracy of the electron gas in a plasma4 or the appear-
ance of a structure for the medium in a liquid7,8 are assumed
to be less important. The systematic theoretical approac
the determination of the lowering of the energy threshold
elementary processes is based on the formalism of kin
Green’s functions.11 Under such a treatment the real part
the density shift of the energy is taken into account, and
imaginary part is neglected, i.e., it is assumed that there
one-to-one relationship between the energy and momen
of the particles. At the same time, it is known that in den
9031063-7761/98/86(5)/8/$15.00
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media the quantum uncertainty of the energy of partic
caused by their frequent collisions destroys the one-to-
relationship between the energy and momentum of
particles.12 In this case a generalized energy and moment
distribution function of the particles and scattering cross s
tions of the particles outside the mass surface must be in
duced. This formalism has previously been used to desc
resonant radiation transfer in dense absorbing media.13 It has
been shown in reference to particles that the quantum un
tainty of the energy arising as a result of collisions leads
the appearance of power-law tails in the particle moment
distribution even under thermodynamic equilibriu
conditions.14

The purpose of the present work is to theoretically stu
the temperature dependence of the rates of threshold
cesses in dense media with consideration of the effects
sulting from the quantum uncertainty of the energy of p
ticles caused by interparticle interactions.

2. QUALITATIVE TREATMENT

As was shown in Ref. 13, the radiative energy transfe
dense, strongly absorbing media, in which the mean free p
of the resonant ‘‘photon’’ is commensurate with its wav
length, should be described by the generalized spectral in
sity J(v,k), in which the frequencyv and the wave vectork
are independent variables. In Ref. 13 equations which
satisfied byJ(v,k) were presented, and some consequen
of the solution of these equations, some of which could
proved experimentally,15,16 were considered. The machiner
of the generalized energy and momentum distribution fu
tions f (E,p) as applied to particles was considered in Re
12, 14, 17, and 18. Let us recall the basic definitions int
duced in those studies. For example, forf (E,p) we have
© 1998 American Institute of Physics
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f ~E,p!5
1

2p E dt d3r exp~ iEt2 ip•r!

3^Ĉ1~x2!Ĉ~x1!&. ~1!

Heret5t12t2 , r5r12r2 , andĈ(x) is the field operator of
a particle in the Heisenberg representation, and the a
brackets denote quantum-statistical averaging. To simp
the writing of the equations we shall assume, for now, t
\51. By definition, the energy~frequency! E and the mo-
mentump in ~1! are the independent variables for Four
transformation with respect to the time and coordinate
ferences, and, for example, the values ofE over the entire
real axis from2` to 1` should be considered. The func
tion f (E,p) introduced in this manner is a generalization
the Wigner distribution~see Refs. 12 and 18, where th
physical meaning of this distribution in the quasiclassi
limit is explained!. Integrating~1! over the energy or ove
the momentum, we can obtain the distribution with respec
the momentum alone,f (p), or the distribution with respec
to the energy alone,f (E). Under the conditions of thermo
dynamic equilibrium we can obtain12,14,18

f ~E,p!52 i
n~E!

2p
~GR~E,p!2GA~E,p!!. ~2!

In ~2! n(E) denotes the equilibrium occupation numbers
the particles. For example, for fermions

n~E!5
1

e~E2m!/T11
. ~3!

In addition, GR and GA are the retarded and advanc
Green’s functions, which are related by

GA5~GR!* .

For GR(E,p) we can write the expression

GR~E,p!5
1

E2«p2SR~E,p!
, ~4!

where«p5p2/2M , M is the mass of a particle, and the ma
operator SR is consistent with the rules of the diagra
formalism.12,14,17,18The quantity ReSR specifies the shift of
the kinetic energy of a particle due to its interaction with t
surrounding neighbors, and ImSR specifies the width or
damping of an excitation with the energyE and the momen-
tum p. For example, in a weakly nonideal plasma the el
tron energy shift~in the present case it is the renormalizati
of the electron chemical potentialm! can be represented i
the form11

Re SR52
G

2
T, ~5!

whereG5e2/r DT is the interaction parameter,r D is the De-
bye radius,T is the temperature, ande is the charge of an
electron. It was shown in Refs. 1–8 during an analysis of
influence of density effects on the ionization rate const
that including ReSR lowers the ionization potential in dens
media ~the ionization potential lowering mechanism!; in a
nonideal plasma this causes exponential acceleration o
le
fy
t

-

f

l

o

r

-

e
t

he

reaction (}eG). It should be noted here that the expressi
~5! can be rigorously obtained only in the limitG&1 and
that, from the standpoint of this theory, the quantitative
appreciable acceleration of the reaction observed forG.1
results from extrapolating its results beyond its range of
plicability. The width ImSR was neglected in the studies ju
cited.1–8 In the gas approximation we can obtain the estim

Im SR } n } Nsv,

wheren is the collision frequency,N is the particle density,
s is the scattering cross section, andv is the velocity. For
Coulomb scattering we have

Im SR}
|

r D
GT. ~6!

Here| is the thermal de Broglie wavelength of the partic
i.e., ImSR is determined by quantum effects. In a nonide
plasma the dimensionless parameters|/r D and G are inde-
pendent, and conditions under which ImSR}ReSR holds are
easily created.

In the low-density limit, where we haven/T!1 and
ReSR/T!1, from ~2! we can obtain

f ~E,p!5n~E!dS E2
p2

2M D . ~7!

In this case the energy and momentum are uniquely rela
by the dispersion relation for a free particleE5p2/2M , and,
just as for photons in a rarefied gas, the following relati
holds:13,18

J~v,k!5n~v!d~v22c2k2!. ~8!

The interaction effects broaden thed functions in~7! and~8!
and shift the particle or photon energies. Thus, instead of~7!,
from ~2! and ~4! we obtain an analog of the Lorentzian lin
shape:

f ~E,p!5
n~E!

p

Im SR

~E2«p2Re SR!21~ Im SR!2 . ~9!

Because of the finite value of the width ImSR, it follows
from ~9! that for a fixed value of the energy~frequency! E
the magnitude of the momentum can take any value, i.e.,
dense medium the dispersion of a free particleE5p2/2M
spreads out because of the frequent collisions, and the
mentum distribution contains power-law tails, whose ex
tence was first discussed in Ref. 14. Thus, using the
approximation to calculateSR14 and integrating~9! over the
energy, for nondegenerate particles we obtain

f ~p!5E
2`

`

dE f~E,p!5 f M~p!1
\npT

2p«p
2 em/T, ~10!

where f M(p) is the Maxwellian momentum distribution o
the particles andnp is the collision frequency, which depend
on the momentump. The quantum nature of the effect
underscored here by the explicit introduction of Planc
constant\. In Ref. 14 an expression similar to~10! was
obtained for degenerate particles, and the non-Maxwel
term was proportional to the square of the gas density
should be noted that the presence of power-law tails in
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equilibrium particle momentum distribution can be obtain
explicitly only in the gas approximation, i.e., when the a
proximation of binary collisions is used for ImSR(E,p) ~see
Ref. 14!. In the general case of nonideal media of hig
density gases, where we have\n/T>1, this approximation
can be violated, and finding quantitative results becom
practically impossible.

However, in the limit of a relatively low density th
presence of the power-law tails can have a significant in
ence on the rate constants of processes with a large en
threshold. To underline the importance of this effect, we n
that the particle energy distribution obtained from~9! by
integrating over the momentum remains exponential, e
on distant tails. For example, whenn5np5const holds, for
f (E) at E.0 we obtain

f ~E!5e~m2E!/T ReAE1 in. ~11!

To ascertain the rate constants of the processes, the gen
ized cross sections outside the mass surface@which depend
both on the momenta before and after scattering and on
energyE, which is not related to the momentum by expre
sions of the form~7!# should be integrated in the general ca
with the generalized distribution functions~1! defined above
~for further details, see the next section!. For example, in the
Born approximation for the case of a static particle inter
tion potential, the scattering amplitude and cross section
specified by the Fourier component of the potential and
pend only on the difference between the momenta. When
scattering cross section is averaged, it is obvious in this c
that the result is determined by a momentum distribut
function of the type~10! and can differ strongly, by an orde
of magnitude, from the standard result, which takes into
count only the Maxwellian distribution, i.e., the first term
~10!, for large momenta.

The effects associated with the presence of power-
tails in the particle momentum distribution can lead to exp
nential acceleration of reactions, such as the electron-im
excitation and ionization of atoms and ions, electron atta
ment to molecules, theV2T relaxation of molecules, and
chemical and nuclear conversions in dense gases and
ideal plasmas. Moreover, these effects are not associate
rectly with the ionization potential lowering mechanism
which was essentially taken into account only in Refs. 1
and are manifested forG<1, where the theory is still appli
cable.

3. RATE CONSTANTS OF INELASTIC PROCESSES IN
DENSE MEDIA

Let us consider the general expression for the rate c
stant of a process in which the colliding particlese and a,
which are initially in statesi (e) anda(a), pass into statesj
and b. In the Born approximation this process is describ
by the diagramS ia, j b

12 Ga
12 ,17,18which is presented in Fig. 1

For the averaged quantitynenakia, j b we can use the equilib
rium values of the kinetic Green’s functions12,17,18 and this
diagram to obtain
-

-

s

-
rgy
e

n

ral-

he
-

-
re
-

he
se
n

-

w
-
ct
-

on-
di-

,

n-

d

nenakia, j b5E d4pd4p1d4q

~2p!12 uVia, j b~q!u2ne~v1!

3dg~v12«p1
!~12ne~v11v!!

3dg~v11v2vba2«p11q!Na~vp!

3dg~vp2Ep!~12Na~vp2v!!

3dg~vp2v1v i j 2Ep2q!. ~12!

In ~12! we introduced the notation

ne~v!5
1

e~v2me!/T11
, Na~v!5

1

e~v2ma!/T11
,

«p5
p2

2me
, Ep5

p2

2Ma
,

and Via, j b(q) is the Fourier transform of the particle inte
action potential matrix element for the processi (e),a(a)
→ j (e),b(a). In ~12! we used the four-dimensional vecto
p(p,vp), p1(p1 ,v1), and q(q,v). The quantity dg(v
2«p) has the form~compare Ref. 19!

dg~v2«p!5
g~v,p!

p@~v2«p2D~v,p!!21g2~v,p!#
. ~13!

Formula~13! was written in analogy to~9!, the widthg
is equivalent to ImSR, and the shiftD5ReSR. In the limit
g,D→0 Eq.~12! transforms into the ordinary expression f
the rate constant, if the Pauli effects are omitted, i.e., if
assume that the occupation numbers are small and ne
them in comparison to unity:

nenakia, j b5E d3pd3p1d3q

~2p!12 uVia, j b~q!u2ne~«p1
!

3Na~Ep!d~«p1
1Ep1v i j

1vab2«p11q2Ep2q!. ~14!

Thus, the general expression~12! contains the generalize
distribution functionsf e(v1 ,p1) and f a(vp ,p) for colliding
particles and takes into account the degeneracy and Pa
principle ~the multipliers of the form 12n!. The ordinaryd
functions expressing the energy conservation law have b
replaced in~12! by Lorentzians of the form~13! with a finite
width and a finite shift. In the general case the widthg is
determined by all the interaction processes of a particu
particle with the surrounding particles and must be found

FIG. 1. Diagram of a process in the Born approximation.
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FIG. 2. Sum of ladder diagrams.
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solving multidimensional nonlinear integral equations~com-
pare Refs. 12, 19, and 20! consistently using expressions
the types~12! and ~13!, since

ge[Im SR} (
ia, j b

nakia, j b.

If the colliding particles are not at equilibrium, a more ge
eral expression can be obtained from Fig. 1:

nenakia, j b5E S ia, j b
12 Ga,a

21
d4p

~2p!4 5E Ge,i
21~p1!Ga,b

12

3~p2q!Ge, j
12~p11q!Ga,a

21~p!uVia, j b~q!u2

3
d4pd4p1d4q

~2p!12 , ~15!

where the Green’s functionsGaa8(p) ~Refs. 12, 17, and 18!
for each kind of particle should be found from the solution
the generalized kinetic equations.12,18–20 We note that the
kinetic equations for the particle momentum distributi
functions obtained by integrating the equations for the g
eralized distribution functionsf (E,p) @for the equivalent
Green’s functionsG21(E,p)52p i f (E,p)# over the energy
are obtained in a closed form only in the approximationg
→0, i.e., when thedg(v2«p) are replaced by ordinaryd
functions.12,17,18 A similar situation occurs in the theory o
resonant radiation transfer in dense dispersive media, w
a closed equation forJv cannot be obtained from the equ
tion for the generalized spectral intensityJ(v,k) in the gen-
eral case by integrating the equation forJ(v,k) over the
-

f

-

re

wave vector.13 An example of such a generalized kinet
equation for the electron distribution functionf (E,p) in a
dense Lorentz gas is given in the next section.

The expression~15! can be generalized by dispensin
with the Born approximation in describing a collision. F
this purpose we should consider ladder diagrams with
number of rungs~see Fig. 2!, but with one replacement of a
minus sign by a plus sign in order to remain within the g
approximation of binary collisions.

It can be shown~compare Refs. 12, 21, and 22! that the
square of the absolute value of the Fourier transform of
interaction potential matrix elementVq in ~15! should be
replaced by the square of the absolute value of the scatte
amplitude of the particles in the mediumT(p,p1 ,q), which
satisfies the equation

T~p,p1 ,q!5Vq1E Vq2q1
Ge

22~p11q2q1!Ga
22

3~p2q2q1!T~p,p1 ,q1!
d4q1

~2p!4 . ~16!

For simplicity in writing the equation, here we confine ou
selves to elastic scattering. In the equilibrium caseG22(p)
can be written in the form18

G22~p!5~12n~E!!GR1n~E!GA.

As was shown in Refs. 21 and 22, to findT in the gas
approximation we can confine ourselves to the scattering
plitude of the particles in a vacuum,T(p,p1 ,q)' f (p,p1 ,p
2q,p11q), which satisfies the ordinary Lippman
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Schwinger equation. In this approximation the scattering a
plitude depends only on the relative movement of the p
ticles in the center-of-mass system before and a
scattering, where these momenta lie outside the mass sur
i.e.,

piÞpf , pi5
mape2mepa

ma1me
, pf5pi1q.

The energy variableE5v1v1 appears in the general ex
pression forT(p,p1 ,q), but it vanishes in the approximatio
described, since the vacuum scattering amplitude outside
mass surface depends only on the three-dimensional rel
momenta.21,22

To obtain qualitative and quantitative results, the expr
sions of the form~12! and ~15! should be simplified. We
assume that heavy nondegenerate particles of kinda interact
weakly with other particles, i.e.,ga→0, Da→0. For ex-
ample, the particles of speciesa correspond to neutral atoms
whose density can be large, butNasaana!T. The particles
of speciese correspond to electrons, for which we take in
account the frequent collisions with neutrals and ions, so
geÞ0.

In this approximation it follows from~15! and ~16! that

neki , j5E dE d3pd3p8

~2p!7 n~E!~12n~E2I !!u f i , j~p,p8!u2

3dg~E2«e~p!!dg~E2I 2«e~p8!!. ~17!

In ~17! I corresponds to the threshold energy of the inela
excitation or ionization process. The density shift of the e
ergy can alterI , and its inclusion is thus equivalent to takin
into account the ionization potential lowering mechanism

We first consider the case of relatively low electron te
peratures (I /T@1) and use the approximationf i , j (p,p8)
' f i j 5const for a qualitative estimate. This approximation
fairly reasonable near the threshold of an inelastic proces23

We neglect the degeneracy of the electrons and assume
the width is a constant, i.e.,g(E,p)5g5const. This pro-
vides an approximate description of the scattering of e
trons on neutrals, for example, on He atoms, wheresv
5const. In this model case the integration overp andp8 in
~17! can be performed explicitly, and for the excitation co
stantkex ~the ionization constantkion! in the approximation
just described we obtain

nekex~ion!5Aex~ion!E dE n~E!ReAE1 ig ReAE2I 1 ig.

~18!

HereAex~ion! is a normalization constant, which also contai
the value of the constantu f i j u2. In the limit g→0 the ordi-
nary near-threshold approximation for the rate constan
the process follows from~18!:

nekex~ion!5Aex~ion!E
I

`

dE n~E!AEAE2I . ~19!

However, for gÞ0 it follows from ~18! that values ofE
smaller thanI make a nonzero contribution to the integr
over the energy. In the present case this reflects the influe
-
r-
r
ce,

he
ive

-

at

ic
-

-

.
hat

-

-

f

ce

described above of the power-law tails in the particle m
mentum distribution. From~18! we can obtain the estimate

kex~ion!5kex~ion!
~0! S e2I /T1

\g

2I D . ~20!

The second, nonexponential term in~20! can be small com-
pared with unity~in the limit \g!I !, but at low tempera-
tures it can exceed the first term by many orders of mag
tude. In this sense it can be stated that the reaction
exponentially accelerated in dense gases due to the pres
of the power-law tails in the particle momentum distributio
As the temperature rises, the usual relationk}e2I /T also
holds at low gas densities. Although consideration of
ionization potential lowering mechanism increases the re
tion rate, it is less important under the present conditio
than consideration of the finite width in~17!. To estimate the
analogous increase in the excitation~ionization! rate constant
in a nonideal plasma, we numerically integrated~17! in the
approximationf (p,p8)5 f 5const, but with consideration o
the dependence of the widthg on the momentumg(E,p)
'gp5NisCv, where Ni is the ion density andsC is the
Coulomb transport scattering cross section@sC

}(pe4/«2)L, whereL is the Coulomb logarithm#. Figures 3
and 4 present the results of the numerical integration of~17!
for estimating the ionization rate of atoms in a model den
neutral gas@approximation~18!# and in a nonideal plasma.

As can be seen from Fig. 3, the ionization rate of a de
gas at low temperatures increases with increasing den
according to a power law rather than an exponential law@as
is reflected by the second term in~20!#. In Ref. 7 ~see also
Ref. 8! similar calculations were performed, but with consi
eration of the ionization potential lowering mechanis
which leads to an exponential dependence ofkion on the gas
density, and a comparison with an experiment in liquid
was made. Unfortunately, because of the large measurem
error at low values ofE/N ~E is the electric field strength
andN is the atomic density!, which specifies the mean elec
tron energy, it is difficult to make an unequivocal choice
favor of a power-law or exponential dependence ofkion on
N. The following conclusions can be drawn on the basis
the calculations whose results are presented in Fig. 4: a! the

FIG. 3. Rate of the ionization of atoms by electron impact in a model
with I 510 eV andg5const as a function of the gas density.
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increase in the ionization rate constant due to considera
of the finite widthg @see~12! and ~17!#, which introduces
power-law tails in the particle momentum distribution, is s
nificantly greater than the increase observed when the
ization potential lowering mechanism is taken into accou
b! this acceleration occurs at values of the Coulomb coup
parameterG<1, where the theory can be substantiated, wh
the ionization potential lowering mechanism produces
large effect forG.1, i.e., outside the region of applicabilit
of the theory; c! consideration of the degeneracy effects
more significant in the theory considered here than in R
1–6. Verification of the theory developed requires spec
and fairly exact experiments involving, for example, me
surements of the excitation or ionization constants in a n
ideal plasma or equivalent measurements of the time for
tablishment of the charge composition.

4. KINETIC EQUATION FOR THE GENERALIZED ELECTRON
DISTRIBUTION FUNCTION IN AN ELECTRIC FIELD

The influence of the ionization potential lowerin
mechanism on the rate of the ionization of atoms by elect
impact in a nonequilibrium plasma immersed in a fai
strong electric field was investigated in Refs. 4 and 6. Sin
as was shown above, the influence of collisional coupling
not confined to this mechanism alone already under equ
rium conditions, the question of generalizing the theory
veloped to nonequilibrium conditions arises. Let us consi
the model of a Lorentz gas for electrons in an external e
tric field. This model presumes that the electrons collide o
with neutrals, whose distribution function is assumed to
known. The problem thus formulated is linear, and in t
case of gases of fairly low density, where the widthg is
neglected@i.e., dg in ~12! is replaced by an ordinaryd func-
tion#, it has been thoroughly studied in reference to the
scription of the kinetics of electrons in weakly ionize
gases.24,25

The derivation of the generalized kinetic equations
presented after Ref. 18 using the same notation for

FIG. 4. Ionization rate in a nonideal hydrogen plasma as a function o
density:1—ratio of the result of the present work with neglect of the d
generacy of the electrons to the result of the conventional approach;2—ratio
of the same quantity to the result of the theory in Refs. 1–6;3—same as
curve1, but with consideration of the degeneracy of the electrons.
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electron kinetic Green’s functionsGaa8(x1 ,x2), where
a,a856 correspond to the type of chronological orderin
In the matrix representation with respect to the indicesa and
a8 the electron Green’s function satisfies the equations18

Ĝ01
21G125szd~x12x2!1E szS13G32d

4x3 , ~21!

Ĝ02
21G125szd~x12x2!1E G13S32szd

4x3 . ~22!

HereĜ01
21 , Ĝ02

21 , andsz denote the operators

Ĝ01
215 i

]

]t1
1

1

2m
D12U~x1!1m, ~23!

Ĝ02
2152 i

]

]t2
1

1

2m
D22U~x2!1m, ~24!

sz5S 1 0

0 21D .

The ordinary kinetic equation is obtained by taking the~21!
components of the matricesG12 in Eqs. ~21! and ~22! and
writing down the difference between the terms in the
equations:18

L̂1G12
21[~Ĝ02

212Ĝ01
21!G12

2152E ~S13
22G32

21

1S13
21G32

111G13
21S32

111G13
22S32

21!d4x3 .

~25!

We introduce new coordinates:

t5
t11t2

2
, t5t12t2 , R5

r11r2

2
, r5r12r2 .

For the operatorL̂1 we obtain

L̂152 i S ]

]t
2

i

m
¹R¹rD1US R1

r

2D2US R2
r

2D . ~26!

In the gaugeU(r1)52eF•r1 the difference between the las
terms reduces to

US R1
r

2D2US R2
r

2D52eF•r. ~27!

Going over to Fourier variables and using the definiti
@compare~1!, f (E,p)52( i /2p)G21(E,p,R,t)#

G21~E,p,R,t !5E exp~2 ip•r1 iEt!G21S R1
r

2
,t

1
t

2
,R2

r

2
,t2

t

2Dd3r dt, ~28!

after standard transformations18 we obtain

2 i S ]G21

]t
1

p

m

]G21

]R D1 ieF
]G21

]p
5St1G

21. ~29!

In ~29!, after Fourier transformation and application of th
quasiclassical approximation~compare Ref. 18!, the collision
integral St1 reduces to

ts
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St1G
2152S21G121S12G21. ~30!

Mass operators likeS12 and S21 are depicted in Figs. 1
and 2. In the standard kinetic theory the equation for
particle momentum distribution function is obtained by in
grating Eq.~29! over the energy:

f ~p,R,t !52
i

2p E G21dE. ~31!

Here we shall not integrate over the energy, since our pr
lem is to obtain the kinetic equation for a generalized dis
bution function which depends on the energy and momen
simultaneously.

We note that foreF|!«p , where| is the de Broglie
wavelength, the retarded (GR) and advanced (GA) Green’s
functions can be assumed to be independent of the ele
field F. If the electron density is small and the degeneracy
the electrons can be neglected, the following approxima
can be used for the Green’s functionG12:

G125GR2GA522p idg~E2«p!. ~32!

Using Eqs.~29!, ~30! and ~32! and the explicit forms of the
diagrams forS12 andS21 ~of the form in Fig. 1!, as well
as assuming that the distribution functions for the atoms
which electrons are scattered have the form@compare~7!#
Na(E,p)5n(E)d(E2«p), we obtain the kinetic equation fo
the generalized electron energy and momentum distribu
function f (E,p,R,t)5 f :

] f

]t
1~v•¹! f 2eF

] f

]p
5St$ f %. ~33!

When elastic and inelastic collisions are taken into
count, the linear integral for collisions with atoms who
populations at the energy levelsEi are equal toNi has the
form

St$ f %5(
i ,k

NiE d3quVik~q!u2$dg~E2«p! f ~E1Eki ,p2q!

2dg~E2Eki2«p2q! f ~E,p!%. ~34!

In this model example, for the widthg appearing in the defi-
nition ~13! of the dg function we can write a nonlinear inte
gral equation~compare Ref. 20! with consideration of only
elastic scattering:

g54p2E d3p8d3q

~2p!6 uVqu2dg~E1«p82«p81q!Na~p8!.

~35!

In the simplest approximation the expression for the f
quency of transport collisions of electrons with neutrals c
be used to estimateg. It is seen from~33! and ~34! that a
closed equation for the momentum distribution function c
be obtained by integrating these equations over the ene
only if the dg functions are replaced by their limit forg
→0.

Since in the present case consideration of the broade
leads to power-law momentum distributions and to all
effects indicated above of the significant increase in the r
of threshold processes in dense media, when the questio
e
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the effects of the deviation from equilibrium is investigate
the kinetic equation~33! presented above should be us
under the assumption thatE andp are independent variables
Within the approach in Ref. 6 these effects vanish co
pletely. We note that the generalized distribution functi
should satisfy the equation obtained by summing Eqs.~21!
and ~22! to the same accuracy with which the kinetic equ
tion ~33! was obtained by finding the difference betwe
Eqs.~21! and~22!. Omitting the details of the derivation, w
present this equation in the following form:

H 2~E2«p!2SR2SA22m1
1

4m
DR22eF•RJ G21

52S21
$2~E2«p!2SR2SA22m%

uE2«p2SRu2
. ~36!

The quantity SR1SA52 ReSR corresponds to twice the
density shift of the kinetic energy which leads to the ioniz
tion potential lowering mechanism. The quantity

S2152(
i ,k

NiE d3q

~2p!3 uVik~q!u2dg~E2«p!

3 f ~E1Eki ,p2q!

corresponds to the term describing arrival on the right-ha
side of Eq.~34!. We note that in the homogeneous equili
rium case in the absence of external fields the expres
following from ~36! for G21 is

G2152
S21

S212S12 ~GR2GA!. ~37!

It can be shown that this expression is exactly equivalen
Eq. ~2!. To solve inhomogeneous problems concerning
distribution of electrons with respect to the energy and m
mentum in an electric field, Eqs.~33! and ~36! must be
solved together. A similar procedure was used for the gen
alized radiated intensityJ(v,k) in Ref. 13, which contains
examples of the combined use of kinetic and wave equat
that are satisfied byJ(v,k) @analogs of~33! and ~36!# to
solve problems concerning the escape of radiation from
finite volume.

In the general case a solution of Eqs.~33!, ~34!, and~36!
can be found only by numerical methods, as can the elec
energy distribution function in the standard formulation. W
shall not dwell here on a more detailed analysis of the kine
equations obtained. We note only that the numerical solu
of the Kadanoff–Baym equations, to which Eqs.~33! are
related, has recently been a subject of investigation in
scribing the kinetics of electrons in semiconductors.26

In conclusion, let us formulate the principal results of t
present work. It has been shown that in dense media con
eration of the frequent collisions which destroy the one-
one relationship between the energy and the momentum
particle and lead to the existence of equilibrium power-l
tails in the particle momentum distribution function can s
nificantly increase the rate constants of reactions which t
place with an appreciable energy threshold. The tempera
dependence of such constants can be nonexponential,
they can exhibit a power-law dependence on the dens
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Such a non-Arrhenius dependence of the rates of the
cesses can be manifested in high-pressure chemistry
breakdown of liquid insulators, the acceleratedV2T relax-
ation in dense molecular gases, and the appearance of
radiation at relatively low temperatures and high plasma d
sities.

As a guide, we can point out conditions under which t
effects associated with the quantum uncertainty of the ene
should occur due to collisions and should be manifested
the processes just cited. The criterion\g}T holds at room
temperature for gas pressures;103 atm. As follows from
~20!, appreciable acceleration of a process in compariso
the classical exponential approximation occurs in the li
\g/I @exp(2I/T). This relation holds for\g!min(T,I), i.e.,
at far lower pressures. The conditions in a nonideal plas
under which the effects of the power-law tails strongly infl
ence the rates of the excitation and ionization of atoms
ions, correspond to the criteriaG;1 andl/r D;1 and are
partially represented in Figs. 3 and 4.

When these effects are verified experimentally, attent
should be focused on the fact that the phenomena desc
here must occur under equilibrium conditions and must
be associated with the presence of a group of fast parti
arising from accelerating mechanisms in an unstable plas
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Localized axisymmetric inhomogeneous states with a continuous distribution of the director field
can exist in nematics. Such structures are compressed into dense filaments under the
influence of a magnetic or electric field. It is hypothesized that the given states can be achieved
in filamentary nematic textures. This model is an alternative to the conventional disclination
model. Two types of lattices of axial structures can exist in the entire range of existence of the
modulated state. Axial structures with a kernel of finite radius can exist in cylindrical
capillaries. The structure and equilibrium dimensions of the axial states are easily altered over a
wide range under the influence of an applied field. The feasibility of utilizing isolated
axial structures and lattices of such structures in optical data processing and imaging devices is
discussed. The most promising outlook in this regard is for modulated states and axial
structures in chiral liquid crystals exhibiting spontaneous polarization. ©1998 American Institute
of Physics.@S1063-7761~98!00905-6#
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1. INTRODUCTION

Liquid crystals usually form complex textures containi
various combinations of point, line, and planar inhomoge
ities, which are observed as filaments, loops, inversion wa
nuclei, drops, confocal domains, etc. The appearance of m
liquid-crystal textures is determined mainly by the prese
of various line defects.1–3 According to conventional no
tions, such defects~disclinations! comprise singular lines, in
the vicinity of which the field of molecular orientations~i.e.,
the field of the directorn(r )) acquires a discontinuous cha
acter. The earliest theory was developed for planar discl
tions, i.e., the topic was a structure in which the vecton
rotated in the plane perpendicular to the axis of the discli
tion. A theory of planar disclinations was formulated b
C. W. Oseen and F. C. Frank~see Refs. 1 and 2! for the case
of equal elastic constants and was later generalized to
case of arbitrary constants.4 It is important to emphasize tha
the results of the theory of planar disclinations have create
model base, which has subsequently been used to desc
classify, and analyze the observed line defects in liqu
crystal textures. Exhaustive empirical material from stud
of inhomogeneous states in liquid crystals, spanning a pe
of several decades, has been organized within the framew
of the given model~more information is available in book
and survey papers1–3,5–8!.

By the early seventies, however, it was noticed that
majority of observable line defects in liquid crystals did n
conform to the model of planar disclinations. It has be
shown theoretically9,10 that planar disclinations with Fran
index n52 in nematics become unstable when the vecton
deviates from the basal plane; the ‘‘digression’’ of a disc
nation into the third dimension forms an axial structure w
a continuous distributionn(r ) on the axis. Structures of thi
kind have been observed in capillaries10,11 and have also
been identified in several common nematic textures.10 It has
9111063-7761/98/86(5)/13/$15.00
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subsequently come to light that planar disclinations with
even Frank index are unstable for all realistic parameter
nematics and cholesterics~see Refs. 1 and 12!, and only for
a definite relation between the elastic constants is it poss
for planar disclinations with indexn561 to be stable.12 In
particular, it has been found that only bulk disclinations c
exist in such model nematics asp-azoxyanisol~PAA! and
n-methoxybenzylidenep–n-butylaniline~MBBA !.12 Conse-
quently, the true structure of line defects in liquid crysta
differs significantly from the planar disclination model.

In planar disclinations the solutions possess diverg
energies both at the center and far from the axis.1,2 Axial
structures with a nonsingular nucleus studied in Refs. 10
11 have finite energy on axis, but they are nevertheless
localized. As we show in the present paper, the equation
the phenomenological theory of liquid crystals also have
calized nonsingular solutions with axial symmetry. Simil
localized time-independent inhomogeneities in magnetic m
terials, superconductors, and other branches of nonlin
physics are calledvortices~see, e.g., Ref. 13!. Since the term
vortex refers to a well-known dynamical construct in liqu
crystals, the static two-dimensional axial inhomogeneities
liquid crystals that we study here will be calledaxial struc-
tures. To refer to localized line defects with a nonsingul
core we can use the termfilament.

Another type of axial structure is observed in cholest
ics with positive anisotropy in electric and magnetic fiel
parallel to the helicoid axis. Here a square lattice is formed
a certain range of fields.14–18 Two-dimensional lattices can
also be induced in cholesterics by mechanical deformati
and temperature gradients.17

A bona fide theoretical analysis of axial structures h
not been published to date.~Scattered results have been o
tained for nematic nonlocalized axial structures
capillaries,10,11and the feasibility of localized states has be
proved.19! In this paper we systematically develop a theo
© 1998 American Institute of Physics
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of such states and analyze their properties. We determine
structure and equilibrium parameters of solitary axial form
tions as well as lattices of such formations in nematic a
cholesteric liquid crystals. We investigate the evolution
the structures in external fields, analyze their stability, a
determine the boundaries of their existence.

2. NEMATICS

We consider an axisymmetric distribution of the dire
tor; on the symmetry axis~Z axis! the vectorn(r ) is parallel
to this axis and, by a continuous change of orientation of
director, ends up in antiparallel orientation at a large dista
from the axis~localized structure, or filament! or attains a
certain orientationn0 at a distanceR from the center~non-
localized structure; see Fig. 1!. In contrast to disclinations
these structures are nonsingular inhomogeneities in the
of the liquid crystal.

In the continuum theory the possible distributionsn(r )
are determined by minimizing the elastic energy

W5E wdx5E 1

2
@K1~div n!21K2~n•curl n1q0!2

1K3~n•curl n!22Dx~n•H!2# dx, ~1!

whereKi andq0 are elastic constants; the last term in Eq.~1!
describes the energy density of interaction with an exte
magnetic fieldH ~the energy density of interaction with a
electric fieldE is equal toD«(n–E)2, whereDx andD« are
the diamagnetic and dielectric anisotropies, respectively!.1 In
the model discussed here~excluding electrical conduction
effects! the interaction with a static magnetic field and
static electric field is described in the energy of the syst
by contributions having the same functional dependence
the material parameters, so that both the magnetic and
electric field lead to analogous orienting effects in the giv
structures. It is therefore sufficient to limit discussion to t
influence of the magnetic field, with the tacit understand
that analogous results hold in an electric field.

The functional~1! describes the energy of a nematic f
q050 and the energy of a cholesteric forq0Þ0. The abso-
lute minimum of the system corresponds to solutions t
form the potential~1! at zero. In zero field these solution
give a homogeneous state for a nematic and a helicoid s
ture for a cholesteric.1 It is clear that all other distributions

FIG. 1. Distribution of the director in axial structures withc5w1p/2.
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n(r ) minimizing the energy functional can correspond on
to local minima, i.e., they describe metastable states.

We now show that among the metastable states of
system are solutions that describe axial structures. Owin
the axial symmetry of the problem, it is convenient
represent the vector in spherical coordinates,n
5(sinu cosc, sinu sinc, cosu), and the spatial position
variable in cylindrical coordinates,r5(r,w,z). In these new
coordinates the energy density assumes the form

w5
1

2
K1Fcosu cos~c2w!ur2sin u sin~c2w!cr

1
cosu sin~c2w!

r
uw1

sin u cos~c2w!

r
cwG2

1
1

2
K2Fsin~c2w!ur 2sin u cosu cos~c2w!cr

2
cos~c2w!

r
uw1

sin u cosu sin~c2w!

r
cw

1q0G2

1
1

2
K3H sin2uFcos~c2w!ur

1
sin~c2w!

r
uwG2

1sin4uFcos~c2w!cr

1
sin~c2w!

r
cwG2J 2

1

2
DxH2 cos2u. ~2!

In Eq. ~2! the magnetic field is assumed to be directed alo
the symmetry~Z! axis of the structure.

We begin the investigation with nematic crystals (q0

50) in zero field. We consider localized solutions. If th
vector n is parallel toZ on the filament axis (r50) and
becomes antiparallel far from it, the system of equatio
minimizing the potential~2! has axisymmetric solutions o

FIG. 2. Phase diagram of axial states in a nematic.
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the typeu5u(r) and c5c(w)5w1g ~whereg is a con-
stant angle!. An analysis of the functional~2! for the given
class of solutions shows that, depending on the relation
tween the elastic constants, a stable state of the system
responds either to the solutionc5w1p/2 ~I! (K1.K2) or
to the solutionc5w ~II ! (K1,K2). In a narrow neighbor-
.
-
o

i.e
t

.

re
lu

n-

-

e-
or-

hood of the phase equilibrium lineK15K2 ~Fig. 2! the al-
ternative solutions are metastable, i.e., the transition betw
these structures is of the nature of a first-order phase tra
tion. The standard procedure for calculating the bounda
of stability of extremals yields the following expression f
the instability line of the solution~I!:
K2

K3
55

2~2t21!~4t23!At~12t !1@4~2t21!~12t !11#arcsinA12t

2~2t21!At~12t !1@8t~12t !11#arcsinA12t
, t5

K1

K3
,1

1, t51

2~2t21!~4t23!At~12t !1@4~2t21!~12t !11# ln~At1A12t !

2~2t21!At~12t !1@8t~12t !11# ln~At1A12t !
, t.1.

~3!
he

lu-
-

-

For the solution~II ! the instability line is obtained from Eq
~3! by the substitutionK1↔K2. In Fig. 2 the phase equilib
rium line is shown bold, and the boundaries of stability
the individual phases are shown as dotted lines. WhenK1

5K25K3, the solutions become azimuthally degenerate,
the energy of the axial structures does not depend on
angle g. In this case the functional~1! coincides with the
energy functional of an isotropic ferromagnet in zero field20

For all known nematicsK1.K2 ~Refs. 1–3!, and struc-
tures withc5w1p/2, corresponding to zero divergence, a
therefore stable in them. We limit the present study to so
tions of this kind.

Substitutingc5w1p/2 into Eq.~1! and integrating the
energy overw andz, we obtain for the structure~I!

W5pLK2E
0

r1F S du

dr
1

sin u cosu

r D 2

1k
sin4 u

r2 Gr dr,

~4!

wherek5K3 /K2 is the ratio of the elastic constants in lo
gitudinal bending (K3) and torsion (K2), andL is the length
of the filament. In Eq.~4! it is assumed thatu(0)50 on the
filament axis, and the vectorn becomes antiparallel at a dis
tancer1 from the axis:u(r1)5p. In particular, forr15`
Eq. ~4! corresponds to the energy of a solitary filament.

The Euler equation for the functional~4!!

d2u

dr2 1
1

r

du

dr
2

sin 4u

4r2 2k
sin2u sin 2u

r2 50 ~5!

in combination with the boundary conditionsu(0)50 and
u(r1)5p describes the distributionn(r ) in the filament.

In particular, for isolated filaments (r15`) in a nematic
the multiplication of Eq.~3! by r2(du/dr) and integration
over r yield the first integral

S r
du

dr D 2

5sin2u@11~k21!sin2u#. ~6!

Separating variables and performing the integration in~6!,
we obtain the following equation foru(r):
f

.,
he

-

coth u5
12k~r2r0!2

2~r/r0!
, ~7!

wherer0 is an arbitrary positive number characterizing t
dimensions of the core of the filament. At smallr the angle
u;r; in the limit r→` the angular variable goes asu;p
21/r. We note that Eq.~7! contains the arbitrary positive
numberr0. The presence of this free parameter in the so
tion means that Eq.~7! describes an entire family of solu
tions of Eq. ~5!. The significance of this condition will be
discussed below. In the one-constant approximation (k51)
Eq. ~7! coincides with the solution for a vortex in an isotro
pic ferromagnet20:

tanS u

2D5
r

r0
. ~8!

In the limit k→0 a singularity is formed in the region
u'p/2, and fork50 relation~7! goes over to the equation

tan u52S r

r0
D , ~9!

which describes the structure withn rotated throughp/2.
Figure 3 shows the profile ofu(r/r0) ~7! for various

FIG. 3. Axial structures in a nematic for various values ofk.
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values ofk. For k,1 theu(r/r0) curves have a characte
istic hump shape; fork.1 the profile~7! contains an inflec-
tion point.

Substituting the solutions~7! into ~4! and integrating, we
obtain expressions for the energy of isolated filaments:

EV

2pK2L
55 11

k

2A12k
ln

11A12k

12A12k
, 0,k,1

11
k

A12k
arcsinAk21

k
, k.1

. ~10!

The energy~10! has the minimum valueEV52pK2L for
k50 and increases monotonically ask increases. Fork51
the filament energy is 4pK2L and coincides with the energ
of a vortex in an isotropic ferromagnet.20 At large k the
filament energy is proportional toAK2K3.

For fixedk the solutions~7! represent a family of func-
tions of the typeu(r/r0). The existence of solutions of th
type ~7! is a consequence of the invariance of the nem
energy ~2! under radial extension (r0.1) or compression
(0,r0,1) of the functionsu(r). Consequently, the result
ing vortex states in a nematic have an ‘‘amorphous’’ char
ter: For a fixed value ofk the energy of the filaments~10!
remains constant under arbitrary radial compression or
tension of the profileu(r).

Equations~6! and~7! can be used to determine the fun
tional relation betweendu/dr andu:

du

dr
5 f ~u!5

1

r0
A11~k21!sin2u~cosu1A11~k21!sin2u!.

~11!

The phase portraits~11! of the solutions~7! begin at the
points (0, 2/r0) and end at the point (p,0). The trajectories
~11! fill the entire phase plane (u,du/dr) asr0 varies from
zero to infinity.

Besides the localized solutions~7! for isolated filaments,
Eq. ~5! also has axisymmetric solutions with the bounda
conditions

u~0!50, u~r1!5u0~0,u0,p!. ~12!

From the form of the solutions~7! it follows that a function
passing through the point (r1 ,u0) can be found in the set o
solutionsu(r/r0) ~7! by an appropriate choice ofr0. It is
clear that the resulting profile will describe the solutions
Eq. ~5!, subject to the boundary conditions~12!.

Axial structures of finite radius can be induced in cap
laries. The boundary conditions~12! hold in capillaries of
radiusr1 when suitable orienting films are sprayed onto t
walls.1–3 Axial states of this kind withu0590° have been
observed previously.10,11

The indicated properties of structures withc5w1p/2
remain in effect for the solutionsc5w. Because so far ther
are no known substances in which defects of the given t
can be stable, we omit any discussion of the properties
these solutions. The influence of magnetic and electric fie
on the investigated nematic structures will be discussed
Sec. 3.3.
ic
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3. CHOLESTERICS

The ground state in cholesterics corresponds to a o
dimensional modulated structure — a helicoid. In cholester-
ics with positive anisotropy of the susceptibility (Dx.0) in
a magnetic field perpendicular to the helicoid axis and
cholesterics withDx,0 in a field parallel to the helicoid
axis the helical structure is distorted by the field~the field-
distorted helicoid is called a cycloid!, and the period of the
structure increases as the field is increased; finally, in
critical field

Hc
25p2q0

2K2/4Dx, ~13!

unbounded growth of the period takes the system into a
mogeneous state.21,22 Experimental studies of the evolutio
of a cycloid in magnetic and electric fields have been
ported for a great many cholesterics.23–26

In this section we need to know the boundaries of ex
tence and energies of various helical structures in a helic
We therefore summarize the results of calculations of
equilibrium parameters of helicoid states in Refs. 1–3, alo
with those obtained in the present study~Fig. 4!. In analyz-
ing the equations for various helical structures in choles
ics, we have found that in the range of smallk @k,kc

5(2/p)250.4053, where the parameterk is defined in Eq.
~4!# in a certain critical fieldH1 ~Fig. 4! the axis of the helix
rotates parallel to the magnetic field, transforming the h
coid into a conical phase. Subsequent evolution of the s
tem takes place by virtue of the decreasing angle of the c
~the vectorn bends toward the direction of the field!; finally,
in the upper critical fieldH25(2pAk)Hc the cone collapses
and we have a transition to a homogeneous state. Region
thermodynamic stability of the individual phases are mapp
in the H –k phase diagram~Fig. 4!.

We now show that together with one-dimensional mod
lated structure~various helicoids!, two-dimensional modu-
lated structures and two-dimensional localized states also
ter into the set of metastable solutions of the equations
state of a cholesteric.

We now consider axisymmetric structures in cholester
in a field directed along the symmetry axis. The minimum
the functional~2! in this case corresponds to structures w
c5w1p/2. Integrating the functional~2! over w andz and
introducing the new length and field units

FIG. 4. Phase diagram of helicoid states in a cholesteric. I! Homogeneous
state; II! conical phase; III! cycloid.
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r 5
r

r0
, h5

H

Hc
, r05

p

q0
~14!

(Hc is given by Eq.~13!!, we can write the energy of th
cholesteric in the form

w5
W2W0

pLK2
5E

0

R

w̃r dr

5E
0

RF S du

dr
1

sin u cosu

r
2p D 2

1k
sin4u

r 2 1
p4

4
h2sin2u2p2G r dr , ~15!

whereW05p3LKq0
2(12h2/4) is the energy of the homoge

neous state withniZ, andL andk are defined in Eq.~4!.
The Euler equation for the functional~15!

d2u

dr2 1
1

r

du

dr
1

sin4u

4r 2 2k
sin2u sin2u

r 2 12p
sin2u

r

2
p4h2

8
sin2u50 ~16!

with the boundary conditions

u~0!50, u~R!5p ~17!

describes an axial structure of radiusR in a cholesteric. As in
nematics, states with a finite radius can occur in cylindri
capillaries, and isolated states in the bulk of a cholest
correspond to the boundary conditionR5`.

For k51 Eq. ~16! coincides functionally with the equa
tion for two-dimensional axisymmetric distributions of th
magnetization~‘‘vortices’’ ! in uniaxial ferromagnets withou
an inversion center.27–29

Unlike Eq. ~5!, this equation cannot be solved analy
cally. A standard difference method is suitable for the n
merical integration of Eq.~16! with the boundary conditions
~17!. After linearization in the vicinity of the trial function
the differential equation reduces to a system of linear a
braic equations for the values of the functionu(r ) at discrete
sites. The interaction matrix for the given system has a b
structure: only elements on the principal diagonal and a
‘‘parallels’’ are nonvanishing. Special computational me
ods and procedures described in Ref. 30 have been us
solve such systems of equations.

However, the convergence of the differencing method
largely determined by an auspicious choice of trial functio
To look for possible solutions of the boundary-value pro
lem ~16! and ~17! and to determine their nature, it is nece
sary to switch to an auxiliary Cauchy problem, specifically
begin by solving Eq.~15!, subject to the initial condition

u~0!50, S du

dr D
r 50

5a~0<a<`!. ~18!

The numerical calculation of the functionsu(r ) ~in this pa-
per we use the Runge–Kutta method! for various values ofa
provides a means of analyzing the behavior of the integ
curves of the Cauchy problem and choosing those wh
satisfy the given boundary-value problem~or proving that
l
ic
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d
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to
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none exists!. The possible integral curves of Eqs.~16! and
~18! have been analyzed on the phase planes (r ,u) and
(u,du/dr). Whenever solutions corresponding to th
boundary-value problem could be found, the profiles o
tained by the Runge–Kutta method served as trial functi
for the differencing method.

The numerical calculations and analytic investigati
have led to the following results.

A. Localized Structures and Solutions with Finite Radius

The nature of the solutions of Eq.~16! varies signifi-
cantly according to whether the applied magnetic field
above or below the critical levelHc ~13!.

In supercritical fields,H.Hc , the energy of inhomoge
neous structures in a cholesteric is higher than the energ
the homogeneous state. The inhomogeneities therefore
to localize here. Theu(r ) profiles for the solutions of the
boundary-value problem~16! and ~17! are shown in Fig. 5,
and the corresponding phase portraits are shown in Fig
The behavior ofu(r ) depends on the value of the parame
a ~18!. If a is lower than a critical valuea0(h,k), the solu-
tions u(r ) describe structures with finite radiiR(a) and a
nonzero derivative at boundary points ((du/dr)R.0)
~curves1, 2, and3 in Fig. 5!. For a,a0 the trajectories of
the phase portraits for the integral curves of the Cau
problem~I! cross the axisu5p for du/dr.0 and terminate
at one of the poles (p(2n11)/2, 0), n51, 2, 3, . . . ~the
phase trajectory with a pole at the point (3p/2, 0) is shown
in Fig. 6!. Along these curves the solutions of the bounda
value problem~17! and ~18! correspond to the range 0<u
<p ~Fig. 6!. The boundary conditions for such solutions c
be established in cylindrical capillaries by appropriate s
face treatment.

For a.a0 the functionsu(r ) describe solutions of finite
radiusR0 with the vectorn rotated through an angle smalle

FIG. 5. Behavior of the solutions of the boundary-value problem for ax
structures in a cholesteric forH.Hc .
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than p, where (du/dr)50 at r 5R0 ~curves5, 6, and7 in
Fig. 5!. In Fig. 6 these solutions correspond to segments
trajectories terminating at the pole (p/2, 0) ~III !.

Finally, for a5a0 we encounter localized solutions d
scribing isolated filaments in the bulk of the choleste
~curve4 in Fig. 5!. These solutions correspond to separat
trajectories of the type~II ! beginning at the vertical axis an
terminating at the point (p,0).

Figure 7 shows the profiles of localized solutions f
k54 and several supercritical values of the field. Localiz
tion of the filaments intensifies drastically as the field is
creased. The effective dimensions of the filament core
crease monotonically with increasing field~the solutions do
not become unstable in this case!. The process naturally cul
minates with the filament cores being compressed to su
degree that the distances between molecules become
mensurate with their diameters. The methods of the c
tinuum theory are no longer valid in this region.

As the field decreases in the rangeH.Hc and approach
the critical value, the filaments expand, and their energy
proaches the energy of the homogeneous state. A na

FIG. 6. Phase portraits of the solutions shown in Fig. 5.

FIG. 7. Localized axial structures of a cholesteric for various values of
magnetic field,k54.
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transition region begins to form between the core w
u'0 and the outer region, or ‘‘domain boundary.’’ A
H→Hc , unbounded expansion of the core takes the filam
into a homogeneous state. Localized axial structures do
exist in cholesterics forH<Hc .

In the range 0,H,Hc the energy of the modulate
states is lower than the energy of the homogeneous phas
that the solutions for axial structures have an altogether
ferent nature here. For arbitrary values of the parame
a.0 the solutions of the Cauchy problem~16! and ~18! are
functionsũ(r ) that increase monotonically to infinity. Thes
solutions correspond to a modulated structure consisting
concentric circles~‘‘water ripples’’!. The solutions of the
investigated boundary-value problem on theũ(r ) trajectories
correspond to segments 0<u<p describing axial structures
of finite radius. Small values of the parametera correspond
to axial solutions of large radius. Suchu(r ) profiles are cy-
lindrical domains, whose ample inner region existing in t
homogeneous state withu'0 is separated from the oute
region withu5p by a thin 180° wall. In the limitR→` the
diameter of this domain grows without bound, and localiz
structures are therefore unstable in cholesterics in fields
low the critical valueHc ~13!.

This result has a simple physical interpretation. ForH
,Hc the energy of the inhomogeneous state has a lo
energy than the homogeneous state. Consequently, as
profile expands indefinitely, the volume occupied by the e
ergetically favorable inhomogeneous part~the ‘‘domain
boundary’’! grows without bound. Thus, upon transition in
the region where modulated structures exist, unbounded
pansion of the core of the structure must take place in
localized filaments present in the bulk of the cholesteric~in
other words, they must ‘‘swell and burst’’!.

B. Lattices of Axial Structures

Inasmuch as the energy of the inhomogeneous state
cholesteric is lower than the energy of the homogene
state in the entire region whereH,Hc , structures with the
maximum possible extent of inhomogeneity should be
countered here. One example of such a state is the helic
In this case the vectorn varies periodically in a certain di
rection~axis of the helicoid!. The helicoid can be regarded a
a one-dimensional lattice or a one-dimensional modula
structure. In effect, the inhomogeneity of the structure, a
hence the energy stability, increase in the presence of mo
lation in other directions as well, i.e., in two-dimensional a
three-dimensional lattices. We know that the thermodyna
stability of two-dimensional lattices of inhomogeneous sta
has been proved for superconductors in the mixed state~lat-
tices of Abrikosov vortices! ~Refs. 31 and 32! and in a defi-
nite range of magnetic fields for magnets without an inv
sion center~lattices of magnetic vortices! ~Ref. 28!. Related
structures have been observed in cholesterics under ce
conditions: square lattices15–18 and three-dimensional modu
lated structures~so-called blue phases! ~Ref. 33!. In this sec-
tion we discuss two-dimensional lattices of the axial stru
tures obtained above.
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The stabilization of modulated structures in cholester
and in other chiral systems is associated with the energ
Lifshitz invariants in the system, which ensure that the
ergy of the system will decrease only when the order par
eters vary in a definite direction~chirality!!.1 In particular, in
cholesterics this term has the formq0n curl n ~see~I!!, and
the sign of the parameterq0 in a given substance determine
the energetically favorable direction of rotation of the vec
n in it. Consequently, of all the various lattices of axial stru
tures in a cholesteric, the only ones that ensure a decrea
the system energy~relative to the homogeneous state! are
those in which a specified direction of rotation of the direc
n is preserved. This condition is obviously satisfied by l
tices in whose unit cell the vectorn is parallel to the sym-
metry axis~Z axis! and, by 180° rotation, becomes antipa
allel to the cell boundaries. We refer to such structures ap
lattices. Also possible are lattices with films in whichniZ
and, by 90° rotation, become perpendicular to the axis of
axial structure at the cell boundaries (p/2 lattices!.

The physical equivalence of states withn and2n can be
exploited in this case as well to maintain rotational inva
ance of the director in the lattice. It is obvious that the s
ond type of lattice cannot exist in systems whose states
described by a vector order parameter~e.g., in ferromagnets!.
It is important to note that inp/2 lattices consisting of trian
gular, square, or hexagonal cells then(r ) field has disconti-
nuities at the vertices. These singularities are radial line
clinations. They can also be removed by the ‘‘digression’’
a disclination into the third dimension. Consequently, inp/2
lattices with a continuous structure the main lattice is acco
panied by the formation of a system of cells with centers
the nodes of the lattice.

The equilibrium states of two-dimensional lattices in
cholesteric are determined by solving the system of differ
tial equations foru(x,y) and c(x,y), which minimize the
energy functional~1!. This problem is difficult to solve, even
numerically. The problem can be simplified considerably
invoking the approximation of circular cells.30,28 In this ap-
proximation the unit cell of a lattice with a hexagonal~or
square! cross section is replaced by a circular cylinder
equal volume. Accordingly, the boundary conditions are
placed by circular counterparts: by the rotation~17! for p
cells, and forp/2 cells by the relation

u~0!50, u~R!5p/2 ~19!

~it is assumed here that inp/2 lattices both systems of cell
have identical dimensions!.

In the given approximation the problem of calculatin
the equilibrium structure of the lattices restores axial sy
metry and reduces to the integration of Eq.~16!, subject to
the boundary conditions~17! or ~19!, with subsequent mini-
mization of the lattice energy density

F5w/pR2 ~20!

with respect toR ~the energyw is given by Eq.~15!!. Con-
sequently, the solutions of Eq.~15! with finite radius corre-
spond to a vortex lattice. As mentioned above~see Figs. 5
and 6!, for H,Hc Eq. ~16! with the boundary conditions
~17! has solutions for arbitrary radii. The corresponding p
s
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files for structures with the boundary conditions~19! can be
obtained by drawing the straight lineu5p/2 in Fig. 5.

The procedure for numerically calculating the optimu
lattice radii entails solving Eq.~16! for various values ofR
and comparing their energies~20!. The calculations show
that the energy~20! has a minimum for finite cell radiiR in
the entire region 0<H,Hc for both types of lattices. In
particular, forp lattices the minimum energy is attained
R051.37 for k51 and atR051.68 for k54; in the case of
p/2 lattices the minimum occurs atR051.08 fork51 and at
R051.31 for k54. ~By way of comparison, the half-period
of a helicoid structure in a cholesteric is equal to unity.3!

Usually in cholesterics the elastic constant in longitu
nal bendingK3 is several times the torsion constantK2, so
that the parameterk ~4! assumes values of the order of unit
In a mixture of cholesteryl nonanoate with MBBA, for ex
ample, Hervet et al.15 give k53.886 andT522°C. However,
in the vicinity of spontaneous phase transitions the param
k(T) can vary over a wide range. At smallk the distribution
u(r ) in equilibrium structures ofp lattices is generally lin-
ear, and the core increases in size ask increases. A calcula-
tion shows that the functionsu(r ) describe the equilibrium
profiles ofp/2 lattices to within one percent foru<p/2.

Graphs of the equilibrium cell radius as a function of t
parameterk are shown in Fig. 8 for both types of lattice i
zero field. The period of the lattices increases monotonic
with k, and the cells ofp lattices have larger radii for al
values ofk.

Over a wide range of fields (H,Hc) the equilibrium
lattice periods exhibit weak field dependence, but begin
grow without bound as the critical fieldHc is approached
~Fig. 8!. Figure 9 shows the evolution of the equilibrium
structure of the unit cells inp lattices as the magnetic field i
increased. In the vicinity of the critical field the inhomog
neity in the distribution ofn is localized in a narrow transi

FIG. 8. Equilibrium radii of unit cells. I! p lattice; II! p/2 lattice; III!
helicoid. Inset:R0 versusk in zero magnetic field. I! p lattice; II! p/2
lattice.
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tion region. In the cells ofp/2 lattices, conversely, the inho
mogeneities are concentrated at the cell boundaries.
difference is readily understood if we recall that states w
u5p/2 have the maximum energy in a magnetic field. The
states occur at the cells boundaries inp/2 lattices, whereas in
the alternative lattices they occur in the interior of the ce
The inhomogeneities are localized specifically in the reg
of states close top/2 in both cases. AsH→Hc , the cell radii
increase sharply in both of the investigated lattice types,
thep/2 lattices are characterized by a steeper increase in
equilibrium dimensions of the structure~Fig. 8!.

Throughout the entire region of existence of modula
structures the energy density ofp/2 lattices is greater than
the energy density ofp lattices ~Fig. 10!. Like the

FIG. 9. Equilibrium structures of the unit cells of ap lattice for various
values of the field,k54.

FIG. 10. Equilibrium energies of axialp lattices EII and p/2 latticesEI

versus magnetic field,k510. For comparison the thin curve represents
helicoid energyEs , and the dotted curve represents the energy of the
mogeneous stateE0. Inset: equilibrium energies of axial lattices versusk in
zero magnetic field (EII and EI correspond top and p/2 lattices, respec-
tively!.
is
h
e

.
n

ut
he

d

helicoid,21,22 both of the investigated lattice types go over
a homogeneous state by virtue of the unbounded growth
the system period in the fieldHc . Clearly, the energies of al
modulated structures become equal to the energy of the
mogeneous state in this critical field.

The difference between the distributions of the inhom
geneities in the helicoid and in both lattice types disappe
asH→Hc ; the modulated states discussed here form a s
tem of growing regions occupied by the homogeneous s
with u50 ~domains!, and the inhomogeneities are localize
in narrow layers (180° domain boundaries!. In this region,
therefore, the inhomogeneous states can effectively be
scribed by the model of a solitary thin, plane doma
boundary.30 In the nonequilibrium energy of the system th
energy contribution of these inhomogeneous regions can
represented by a global parameter: the energy density o
domain boundariess. The energy densitys is negative in
the entire region whereH<Hc and is equal to zero in the
critical field. The transition to the homogeneous state ta
place as a result of the unbounded expansion of the dom
and the displacement of the domain boundaries to infin
Consequently, the nature of the transition of modula
structures into the homogeneous state enables us to d
mine the boundaries of their existence from an analysis
the plane domain boundary of a cholesteric.

We recall that an analogous situation occurs
superconductors31 and in magnets without an inversio
center.27–29 For cholesterics the role of the Ginzburg
Landau parameter is played by the quantityh ~14!, which
characterizes the relative contribution of interactions t
form equilibrium modulated structures.

We close this section with a discussion of the limits
validity of the results obtained in the circular-cell approx
mation. It is clear that the structure of the cells of tw
dimensional lattices, calculated by exact solution of the
propriate differential equations, preserves axial symme
only at the center; near the cell boundaries the symmetr
the lattice is manifested, and the distributionsu(x,y) and
c(x,y) deviate substantially from axial. An analysis show
that taking the lattice symmetry into account cannot sign
cantly influence the results obtained above. An import
consideration here is that the main contribution to the ene
of the system is from zones located at the centers of the c
Consequently, the variation of the structure in the periphe
regions of the cells only slightly affects the overall ener
balance of the system. For example, a variation of the ra
components in an axial cell of ap lattice does not alter the
results by more than two percent.28

All the same, it is important to calculate the equilibriu
states of the unit cells with allowance for their real symm
try. In zero field the absolute minimum of the functional~1!
corresponds to a helicoid. However, the difference betw
the energies of helicoid structures and two-dimensio
modulated structures does not exceed ten percent and di
ishes as the field is increased. Consequently, this cons
ation leaves open the question of which of the modula
structures is thermodynamically stable in a magnetic field

Upon transition into the homogeneous state, all
modulated phases of a cholesteric are transformed into s

-



on
a
ld

e
la

ld

i-
si
ia

ar

o

l
n

.

in

.

e

un-
pre-

n-
pro-
w-
in

d
tion

ini-
,
d
flu-
sh-
u-

c
his
es,
the

ry
for-

m-
ave

ort
fair
s.
nd
ts
ns
m-

int
h a
ts

t in-
tic.
ex-
la-
is-

s-
m-

cy-
e
ures
nd
real
ce

919JETP 86 (5), May 1998 A. N. Bogdanov and A. A. Shestakov
tures with highly localized inhomogeneities. In this regi
the limitations imposed by using the circular-cell approxim
tion are lifted, and the results, including the critical fie
values, can be regarded as exact.

C. Radial Stability of the Solutions

In the overall energy balance of an axial structure~15!
we can distinguish components with different types of d
pendence on the spatial variable: the regular part of the e
tic energy (wr), terms contained in the invariantn curl n
(wc), and the energy of interaction with the external fie
(wh):

wr5E
0

RF S du

dr
1

sin u cosu

r D 2

1k
sin4u

r 2 G r dr ,

wc522pE
0

RS du

dr
1

sin u cosu

r D r dr ,

wh5
p4

4
h2E

0

R

sin2ru dr. ~21!

The energywr is proportional to@(du/dr)211/r #r 2;r 0,
i.e., it is zero-dimensional inr ; wc;r 1 is linear, andwh is
proportional tor 2. These differences in the number of d
mensions of the energies of different interactions have a
nificant influence on the character of the solutions for ax
states. To corroborate this assertion, we consider the v
tion of the energy~15! in the scale transformation

r 5~11a!r 8 ~22!

of a u(r ) profile of radiusR. Performing the integration in
Eq. ~15!, we can write an exact expression for the energy
the deformedu(r 8)2w8 profile:

w85w1~wc12wh!a1wha2. ~23!

Equation ~23!, first derived for localized two-dimensiona
structures ~vortices! in magnets without an inversio
center,29 is valid for fairly general models34 and leads to
important conclusions about the stability of axial states
follows from Eq.~23! that au(r ) profile with the boundary
conditions~16! is stable under the transformation~22! if

wc12wh50, wh.0. ~24!

To verify whether the solutions of Eq.~16! satisfy these con-
ditions, we multiply it byr 2(du/dr)2 and integrate from 0 to
R. Substituting the boundary conditions at zero, we obta

wc12wh52@r 2~du/dr !2# r 5R

1Fcos2u1~k21!sin4u1pr sin 2u

1
p4h2

8
sin2uG

r 5R

. ~25!

For localized solutions of Eq.~16! the right-hand side of Eq
~25! vanishes, and conditions~24! are therefore satisfied.

For solutions of finite radius, according to~17!,
(du/dr) r 5R.0. Consequently, here we havewc12wh,0
and, according to~23!, the given solutions are unstable und
-

-
s-

g-
l

ia-

f

It

r

radial expansion. For axial solutions, in which (du/dr) r 5R

50 and u(R),p at the boundary, condition~25! has the
form wc12wh.0. Such structures are therefore unstable
der compression. Consequently, only localized states
serve stability under radial perturbations of the type~22! in
the bulk of a cholesteric. Other solutions are radially u
stable, and expansion or compression transforms their
files into types corresponding to localized solutions. Ho
ever, axial structures of finite radius can be induced
cylindrical capillaries.

The energywc , which lowers the energy of localize
states in cholesterics, plays a decisive role in the stabiliza
of such states. In centrosymmetric materials we havewc

50, and the condition~24! for the radial stability of axial
structures is not satisfied~see Ref. 29 for details!.

In this regard we consider the axial solutions~7! for
nematics. It follows from Eq.~21! that such solutions are
unstable in a magnetic field. Here the energy attains a m
mum at R50 in a magnetic field. In all known nematics
Dx.0 and thuswh.0. This means that the investigate
axial lines in nematics become compressed under the in
ence of a magnetic field. The process does not exhibit thre
old behavior in the given ideal model: the haphazard infl
ence of even weak magnetic fields~e.g., the earth’s magneti
field! can cause the filamentary structures to collapse. T
effect results in the formation of dense localized structur
in which the intermolecular distances are comparable to
molecular diameters. The ‘‘dark filaments’’ in filamenta
nematic textures can be assumed to represent just such
mations.

For many years filamentary textures now known as ne
atics, like other inhomogeneous states in liquid crystals, h
been explained on the basis of disclination theory.1 Accord-
ing to the descriptions, the ‘‘filaments’’ attached to supp
surfaces in filamentary textures are accompanied by a
number of similar formations with one or two free end
These line defects are highly mobile: they bend easily a
are carried off by a flow. This behavior of the free filamen
is consistent with their interpretations as localized formatio
having a continuous structure. The free filaments can co
prise localized structures of finite length terminating in po
defects. Disclinations, in turn, are nonlocalized states wit
discontinuity of the director field. The motion of such defec
requires considerable energy expenditures, because i
volves major reorientation of large volumes of the nema
Careful observations of various defects in filamentary t
tures should reveal the actual structure of the ‘‘dark fi
ments.’’ We recall that the theoretical prediction of the ex
tence of axial structure with a nonsingular kernel9,10 was
followed by focused investigations, from which it was po
sible to identify these objects in a number of the most co
mon nematic textures.10

Nematic axial structures have also been observed in
lindrical capillaries,10,11 but the influence of fields on thes
structure has not been investigated. Since the axial struct
did not collapse in the earth’s magnetic field in Refs. 10 a
11, we can assume that the compression of axial lines in
materials is masked by effects of interaction with the surfa
and defects or is possibly a threshold process.
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D. Linear Ansatz for Axial Solutions

To analyze the basic laws governing the formation
axial structures in liquid crystals, we consider the ene
~15! for the elementary model distribution

u~r !5p
r

R
~r ,R!, u~r !50~r .R! ~p-lattice!,

~26!

u~r !5
p

2

r

R
~r ,R!, u~r !50~r .R! ~p/2-lattice!,

~27!

The substitution of relations~26! and ~27! into the energy
~15! and subsequent integration yield the following result
the energy densities of the latticew ~20! with the model
distribution ~26! and ~27!:

E5
w̃

q0
2 5

A

R2 2
B

R
1C. ~28!

HereR serves as the parameter to be varied. Forp lattices
the coefficientsA, B, andC have the values

A15E
0

1F S 11
sin 2px

2px D 2

1k
sin4px

p2x2 Gx dx5~0.540

10.084k!,

B15E
0

1S 2x1
sin 2px

p Ddx51,

C15
p2h2

4 E
0

1

~sin2px!x dx50.617h2, ~29!

and the integration forp/2 lattices leads to the results

A25~0.25710.053k!, B250.5~114/p2!,

C250.867h2.

The integration of Eq.~15! with the model solution~26!
yields the potential

F5A2BR1CR2, ~30!

which describes localized states in a cholesteric~the coeffi-
cientsA, B, and C are given by Eqs.~29!, and R has the
significance of a characteristic radius of the filament core!.

The functional dependences of the potentials~28! and
~29! correspond to the transformation properties of the s
tem energy~15! discussed in the preceding section. The c
efficient A includes the contribution of the regular~nematic!
part of the elastic energy as described by terms quadrat
the spatial derivative. This energy is always positive a
makes the energy of the inhomogeneous state higher
that of the homogeneous state. In contrast, the invari
linear in the spatial derivatives, being attributable to t
chirality of the system, provide a negative contribution to t
energy of modulated states. In the model energy~28! their
contribution is represented by the term linear inR, which
tends to stabilize the system for finite lattice dimensions.

The balance of the indicated opposing contributions
the system energy determines the equilibrium parameter
f
y
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the inhomogeneous structures. The inhomogeneity of
system increases upon transition from one-dimensio
modulated structures to two dimensions~lattices!. The abso-
lute values of the competing contributions to the system
ergy increase in this case: on the one hand, the value of
coefficientB increases and, on the other, the ‘‘stiffness’’
the system~the value of the parameterA! increases. As
shown above, the equilibrium energy of a helicoid is low
than the energy of lattices. Consequently, in contrast to
homogeneous states in the mixed state of superconduc
where a two-dimensional modulated structure~lattice of
Abrikosov vortices! is stable,31,32 in cholesterics the system
of minimum energy is one with moderate inhomogenei
i.e., a one-dimensionally modulated structure~helicoid!.

It follows from an analysis of the potential~28! that the
equilibrium radii ofp andp/2 lattices (R0) do not depend
on the field and, accordingly, areR0

(1)52A1 /B15(1.079
10.168k) and R0

(2)52A2 /B25(0.73210.150k). Outside
the immediate vicinity of the critical fields the distributio
u(r ) in the cell~Fig. 9! exhibit more or less regular behavio
The results obtained above in the ‘‘linear’’ approximatio
give a correct qualitative description of the evolution of t
system in this region~in particular, the lattice dimension
increase ask increases, and they are independent of the m
netic field away from the critical fields!; moreover, there is
reasonably good quantitative agreement with the results
numerical calculations.

It is significant that the dimensions of localized structu
do not depend onA, but the ‘‘stiffness’’ of the system is
governed by the energy of interaction with the field. T
equilibrium radius of the core of a filamentR05B1 /(2C1)
;1/h2 increases without bound in the limith→0 ~cf. Fig. 7!.
A potential of the form~30! has been obtained in Ref. 35, i
which the first study of axial structures in systems without
inversion center is reported.

Consequently, the model potentials~28! and~30! can be
used to analyze the physical causes responsible for the
bilization of axial structures; the majority of the results o
tained in the given approximation are confirmed by a m
rigorous treatment and fall within a fairly broad class of fie
models~see Ref. 34!.

For k51 the energy~15! functionally coincides with the
energies of axial structures~magnetic vortices! in an easy-
axis ferromagnet without an inversion center in ze
field.27–29 The energy of a magnetic vortex in a uniaxial a
tiferromagnet has the same functional form.36 As in choles-
terics, in antiferromagnets without an inversion center in
modulated state a helicoid structure is always thermodyna
cally stable, and vortex lattices can exist as metasta
formations.36

We conclude this section with the observation that top
logical and structural analogs of inhomogeneous configu
tions of n(r ) in liquid crystals can be found in various non
linear field models of the physics of the condensed state
the theory of elementary particles. For example, the distri
tion of the magnetization in a helicoid structure of an anis
tropic magnet without an inversion center22 is the same as
the distribution of the director in a cholesteric in an extern
field.21 The Kosterlitz–Thouless vortex structures in an ea
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plane Heisenberg ferromagnet37 are analogous to planar dis
clinations of index 2 in nematics. The structural and top
logical similarity between inhomogeneous configurations
antiferromagnets and nematics is well known~see, e.g., Ref.
13!. The two-dimensional axial structures with a nonsingu
core discussed in the present paper are analogous to v
states in superconductors,31,32 in liquid He4 ~Ref. 38!, and in
magnets.28,29 An analogy exists between three-dimension
defects in liquid crystals~drops! and monopoles in the theor
of gauge fields.39,40

The stated similarity in the basic properties of localiz
states~solitons! and nonlocalized states in various physic
models, on the one hand, is based on the common topo
cal properties of such structures41 and, on the other, is a
consequence of general theorems on the character of th
lutions for various types of nonlinear differentia
equations.34,42

A liquid crystal has several advantages over other ph
cal systems for the modeling and investigation of vario
inhomogeneous structures. The system parameters ca
varied over wide limits to establish the necessary conditi
for a given experiment; as a rule, the experiments are c
ducted at room temperature and are comparatively sim
the results of investigations are easily visualized, to a deg
not usually attainable in the investigation of other nonline
media.

The results of the theoretical investigation and some
perimental data lead to the assumption that cholesterics i
external field model a uniaxial ferromagnet or antiferroma
net without an inversion center, while a nematic models
isotropic ferromagnet or antiferromagnet. Moreover, in t
paper~see also Refs. 29 and 34! we have shown that certai
properties of the inhomogeneous states of the investig
inhomogeneous states of liquid crystals are not associ
with a specific model, but are characteristic of a broad cl
of systems and therefore have a universal character. Co
quently, the results obtained in the investigation of ax
structures in liquid crystals should be useful in oth
branches of physics of the condensed state~primarily in
magnetism! and in the theory of solitons.

4. POSSIBLE EXPERIMENTS AND APPLICATIONS

The applied physics of liquid crystals has begun to
velop at a vigorous pace through the application of el
trooptical field effects in optical devices using nematics43

Despite impressive progress, the subsequent refineme
liquid-crystal devices~primarily color displays! will require
the solution of a host of complex technological, engineeri
and fundamental problems.44

Research aimed specifically at axial structures in liq
crystals has not been carried out to date. We have cited s
ies of nematic structures in cylindrical capillaries10,11 and a
number of papers reporting the observation of tw
dimensional modulated structures in cholesterics in a defi
range of electric and magnetic fields.14–18 Two-dimensional
lattices induced by stresses and temperature gradients
also been observed in cholesterics.15 Two-dimensional
modulated structure are also induced in chiral smectics un
-
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the influence of stresses and light beams~Kahn effect!.1,45

Spatially periodic structures of this kind have been trea
theoretically as slight periodic distortions of a helico
~Helfrich–Hurault effect!.46,47

According to the results of the present study, static tw
dimensional modulated states in the form of lattices of ax
structures are possible in liquid crystals without an invers
center. These states are separated from the helicoid pha
a finite potential barrier and are impossible to obtain by
continuous deformation of a helical structure. Unfortunate
so far no one has established the distributionn(r ) in the bulk
of materials in which two-dimensional modulated structu
are observed. It would be important to conduct such inve
gations and also to analyze the influence of external fields
the lattice parameters. According to the results of the pres
study, weak external fields can induce appreciable reg
distortions of the field of the directorn(r ) in the lattice.
Research of this kind could therefore have practical appl
tions.

Since the helicoid phase is thermodynamically stable
the entire region of existence of modulated structures, spe
conditions are necessary for the induction of lattices. F
example, in Refs. 14–18 the dimensions of the planar u
cell and the character of the interaction of a cholesteric w
the support surfaces have played an important role in
formation of two-dimensional structures. Consequently, o
direction in which to expand the investigations reported h
entails the calculation of modulated structures in plane c
illaries of finite thickness, taking into account the influen
of horizontal support surfaces.

Also promising from the standpoint of applications a
investigations of cholesteric axial structures in cylindric
capillaries. As shown in the present study, the distribut
n(r ) in cholesterics is easily altered by external fields, a f
that can exploited in various optical devices. We recall t
nematic axial structures with a continuous distributionn(r )
have been observed experimentally in cylindric
capillaries.10,11

We have discussed the relationship between the liqu
crystal axial structures discussed here and vortex state
magnets without an inversion center. In a ferromagnet i
magnetic field the energy includes a term linear in the m
netization. Interaction with an external field reduces the
ergy equivalence of antiparallel directions of the structu
vector~the magnetization in our case!. This effects affords an
added possibility of regulating the structure of modulat
states. The evolution of ferromagnetic vortex lattices a
solitary vortices in a magnetic field has been studied in s
eral papers.27–29,35In particular, it has been determined th
vortex lattices can be thermodynamically stabilized in a c
tain range of fields. A lucrative undertaking in this regard
the investigation of axial structures in chiral liquid crysta
exhibiting spontaneous polarization~e.g., in smecticsSc* ;
see Refs. 3, 44, and 48! and in suspensions of ferroparticle
in cholesterics. Judging from the results of Refs. 27–29
35 and data on the properties of ferroelectric liquid crysta48

and ferronematics,49 in such systems we can anticipate t
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formation of thermodynamically stable lattices of axial stru
tures, which are easily controlled by external fields, in su
systems.

5. CONCLUSIONS

1. The equations of the phenomenological theory of e
ticity for nematics have solutions in the form of axisymme
ric localized states with a continuous distribution of the
rector n(r ) ~6!; axial structures withn rotated through an
angle less than 180° can exist in cylindrical capillaries
nematics. These solutions become radially unstable in ex
nal fields. In a magnetic field the axial structures are co
pressed into dense filaments, in which the distances betw
molecules are comparable with their diameters. The colla
of axial structures also takes place in nematics with posi
dielectric anisotropy; however, ifD«,0, radial instability is
manifested in the unbounded expansion of the given a
formations. In our ideal model the instability has a no
threshold character and will necessarily occur in an ind
nitely small field. According to experimental data, real sy
tems must be characterized by a threshold field, below wh
an axial structure is stable.

2. ‘‘Dark filaments,’’ the most common type of nemat
texture, are possibly localized axial structures compresse
random external fields. Evidence in support of this mode
the fact that axial structures, unlike disclinations, have fin
energy. It is also known that free dark filaments have a h
mobility; the motion of disclinations, on the other hand,
associated with energy expenditures due to discontinuitie
the field of the directorn(r ).

3. Coexisting with one-dimensional modulated sta
~helicoids! in cholesterics are lattices of axial structures. Tw
types of lattices are possible according to whether the di
tor is rotated through 90° or 180°. The equilibrium dime
sions of the unit cells are comparable to the period of
helicoid. The lattices have finite dimensions throughout
entire region in which the modulated state exists; their en
gies are lower than the energy of the homogeneous state
are slightly higher than the energy of the helicoid phase.
modulated states~helicoid and both lattice type! go over to
the homogeneous state through the unbounded growth o
period in a critical magnetic fieldHc ~13!.

4. A system of localized structures can exist in chol
terics above the critical fieldHc . As the field is increased
the effective dimensions of such formations decrease,
even in very strong fields they do not collapse.

5. Axial structures with a core of finite radius can ex
in cylindrical capillaries of cholesterics. Even low extern
fields induce substantial regular variations of the distribut
n(r ) in such structures.

6. The new types of inhomogeneous states obtaine
the present study in liquid crystals readily change struct
and, hence, optical properties under the influence of a fi
A benefit of this behavior is the potential for practical app
cations of both isolated axial structures and lattices of s
structures.

Localized axial structures and lattices of such structu
can also exist in chiral liquid crystals exhibiting spontaneo
-
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polarization~e.g., in ferroelectric liquid crystals!. Lattices of
axial structures can become thermodynamically stable
such systems in a certain range of fields.
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4I. E. Dzyaloshinski�, Zh. Éksp. Teor. Fiz.58, 1443 ~1970! @Sov. Phys.
JETP31, 773 ~1970!#.

5M. J. Stephen and J. P. Straley, Rev. Mod. Phys.46, 618 ~1974!.
6A. S. Pikin, Structural Transformations in Liquid Crystals@in Russian#,
Nauka, Moscow~1981!.

7S. Chandrasekhar,Liquid Crystals, Cambridge Univ. Press, New York
~1977!.

8Liquid Crystals (Applications and Uses), Vols. 1–3, ~Ed.!, B. Bahadur
World Scientific, Singapore–River Edge, N.J.–London~1990!.

9P. E. Cladis and M. Kleman, J. Phys.~Paris!, Colloq. 33, 591 ~1972!.
10R. B. Meyer, Philos. Mag.27, 403 ~1973!.
11C. Williams, P. Pieranski, and P. E. Cladis, Phys. Rev. Lett.29, 90 ~1973!.
12S. I. Anisimov and I. E. Dzyaloshinski�, Zh. Éksp. Teor. Fiz.61, 2140
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Magnetic properties and energy transfer in the luminophors CaS:Eu,Cl
S. O. Klimonski , A. É. Primenko, and V. D. Kuznetsov
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Studies have been performed on the magnetic properties and electron paramagnetic resonance
~EPR! spectra of the small-crystal luminophors CaS:Eu,Cl. By comparing the EPR and
magnetic susceptibility data we have determined that Eu enters into the CaS matrix primarily in
the trivalent state Eu31. We have found that the magnetic susceptibility of the sample with
the lowest europium content (531023 at. %) has a sharp peak atT'5 K. A model is proposed
of clusters into which the europium ions in these luminophors can associate. On the basis
of this model an explanation is given for the anomalous temperature dependence of the magnetic
susceptibility as well as a long list of other experimental facts~including peculiarities of the
thermal luminescence!. © 1998 American Institute of Physics.@S1063-7761~98!01005-1#
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1. INTRODUCTION

Studies of luminescence and the associated energy tr
fer are a vigorously developing branch of research. The
termination of the mechanisms of these processes is of
damental scientific interest for solid state physics. One ob
of such research is europium activated CaS, which ha
characteristic luminescence band corresponding to 5d– 4f
transitions in Eu21. To elucidate the luminescence mech
nism in CaS:Eu it is necessary to elucidate the nature of
radiating centers and the path of energy transfer to them.
task is complicated by the fact that the energy trans
mechanism depends on the number of intrinsic defects,
ditional impurities and complexes formed of defects and
purity atoms. Thus, for the luminophor CaS:Eu,Sm the f
lowing mechanism of thermal luminescence is proposed1

—liberation of electrons from samarium ions~playing
the role of electron traps! Sm215Sm311e2,

—recapture by Eu31: Eu311e25Eu21,
—luminescence of the excited Eu21 ions.
In the case when the additional impurity is chlorin

~CaS:Eu,Cl!, the main thermal luminescence peak turns
to be associated with liberation of holes rather than electro
In this case the fraction of europium ions found in the st
Eu21 is almost independent of illumination of the materia

For an isolated europium ion replacing a Ca21 ion, the
Eu21 charge state is preferred. However, in this case str
lattice distortions arise since the Eu21 ion is substantially
larger than Ca21 ~the ionic radii are respectively 1.17 an
1.00 Å!. Therefore the alternative state Eu31 is possible
~ionic radius 0.95 Å! if other impurities and defects uphol
the principle of charge compensation. The europium dis
bution over the two charge states depends on the condit
of synthesis of the luminophor. It is necessary to know t
distribution in order to understand the structure of the
ropium centers. Magnetic methods can be very helpful h
9241063-7761/98/86(5)/6/$15.00
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since the magnetic properties of the Eu21 and Eu31 ions
differ sharply: Eu31 is found at low temperatures (T
,200 K) in the nonmagnetic state7F0 and is characterized
by very weak temperature-independent van Vleck param
netism. Even at room temperature it gives hardly any con
bution to the electron paramagnetic resonance~EPR! and
magnetic susceptibility. At the same time, Eu21 is found in
the8S7/2 state with purely spin magnetic momentS57/2 and
has a characteristic EPR center and magnetic susceptib
obeying a Curie law.

2. EXPERIMENTAL METHODS

In the present work we combined magnetic susceptibi
and EPR studies of powdered small-crystal samples
CaS:Eu,Cl with varying europium (0.005,x,0.16 at. %)
and chlorine content (0,y,0.32 at. %). To prepare them
we first synthesized CaS by reducing CaSO4 in a hydrogen
flux at 900 °C, where the initial CaSO4 was prepared by
precipitation from solutions of~NH4!2SO4 and Ca~NO3!2 first
washed with organic solvents to remove transition me
impurities.2 The synthesized high-purity CaS was then mix
with the activating impurities Eu2O3 and CaCl2 and annealed
in sulfur vapors at 1100 °C. As a result, we obtain
samples containing around 0.521 at. % O,'1023

21022 at. % residual impurities Cl, F, Na, Li and less tha
1026 at. % Cr, Co, Fe, Pb, and some other elements.
samples had a thermally stimulated luminescence spec
similar to that described earlier,2 whose main peak~at 210 K!
is associated with liberation of holes.

The EPR measurements of the CaS:Eu,Cl samples w
performed at room temperature with the help of an RE´ -1301
EPR spectrometer at 9.1 GHz. The magnetic susceptib
measurements were performed on a SQUID magnetome3

in a constant magnetic fieldH5777 Oe at temperature
2 K<T<50 K. In preparation for the measurements, t
© 1998 American Institute of Physics
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samples were pumped down and sealed in quartz ampo
with a thin partition making a negligibly small and prac
cally temperature-independent contribution to the read
The gaseous medium needed for rapid establishment of
mal equilibrium was created by diffusing helium through t
walls of the ampoules. For a mass of the charges around
mg the error of the magnetic susceptibilityx measurements
was on the order of6531029 g21.

3. EXPERIMENTAL RESULTS AND DISCUSSION

We investigated the samples indicated in Table I
CaS:Eu in which special care was taken not to introd
chlorine, samples additionally doped with chlorine, and
control sample containing neither Eu nor Cl. The susce
bility of the last sample had quite a weak temperature dep
dence, withxCaS'2331027.

For most of the samples not containing Cl~i.e., contain-
ing Cl only at the level of a residual impurity!, besides
samples No. 1 and 2 with the highest Eu content (x50.01
and 0.005 at. %!, the magnetic susceptibility data were we
rectified in coordinatesx2T21 ~Fig. 1!, which corresponds
to the dependencex(T)5x01C/T, where the first
~temperature-independent! term characterizes the susceptib
ity of the crystalline matrix (x0'xCaS), and the second is
the nearly Curie-law contribution of the Eu21 ions. The cor-
responding values ofC, determined forT.7 K, are given in
Table I, which, along with Fig. 2, give the values ofx21, the
concentration of europium in the ‘‘21 ’’ state, calculated
from C. In the chlorine-free samples the fraction of e
ropium in this state falls with growth of its total concentr
tion. This may be due to a growth of strains of the crys
lattice resulting from the large ionic radius of Eu21. At large
x values, up to 80% of the europium turns out to be in
Eu31 state and is found in the crystal primarily in the charg
compensated complexesVCa

22Eu31 ~where V denotes a va-
cancy!. Chlorine doping leads to an increase in the Eu21

fraction, which is entirely natural since the substituti
S22→Cl2 leaves an excess electron. It is interesting that
influence of small Cl concentrations on the Eu21 content is
les

g.
er-

00

f
e
a
i-
n-

l

e
-

e

quite weak; however, already at 0.24 at. % Cl the Eu21 con-
centration grows by almost a factor of two. This result co
firms the conclusion drawn in Ref. 4 that at small concent
tions (y,0.2 at. %) Cl enters into CaS mainly in the for
of @VCaClS

2# (2) acceptor centers, and only later do isolat
@ClS

2# (1) ions appear.
For samples No. 2 (x50.01 at. %) and No. 5/24 (x

50.08 at. %,y50.24 at. %! at temperatures below 5 K de-
viations~toward a decrease! from a Curie law were observed
This indicates the presence of an anomalous compon
whose contribution, however, is barely noticeable against
background of the susceptibility of the Eu21 ions, which
rises rapidly as the temperature is lowered. This effec
most distinctly observed in sample No. 1 (x50.005 at. %).

FIG. 1. x(T21) curves: No. 2, 3—right axis, No. 4, 5 and 5/24—left axi
Curve numbers correspond to sample numbers in Table I. The straight
approximate the experimental data forT.7 K.
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926 JETP 86 (5), May 1998 Klimonski  et al.
For this sample the dependencex(T) clearly deviates
from a Curie law already atT,15 K, and atT'5 K the
paramagnetic susceptibility passes through a maximum,
ing abruptly with further reduction of the temperature~Fig.
3!. Such an anomaly can have the following explanation

1! the disappearance of the paramagnetic susceptib
of Eu21 below 5 K is the result of an antiferromagnetic in
teraction~possibly an antiferromagnetic phase transition! in
clusters or inclusions that contain europium;

2! almost all of the europium is found in the state Eu31,
and peculiarities in thex(T) curves are due to other para
magnetic centers associated with residual impurities and
trinsic defects;

3! at high temperatures some of the europium is found
the state Eu21; however, at temperatures below 5 K it loses

FIG. 2. Dependence of the areaS under the Eu21 EPR spectrum and the
Eu21 ion concentration~calculated from the Curie constantC! on the incor-
porated europium concentration for non-chlorine-doped samples.

FIG. 3. Temperature dependence of the magnetic susceptibility for sa
No. 1. The solid curve was calculated forDE'13 K ~see text!. For com-
parison, the dependencex(T) is shown for the Eu3O4 phase in the direction
of the b and c axes.9 Inset: calculated curves for antiferromagnetica
bonded pairs for the spinsS51/2 andS57/2 ~in arbitrary units!.
ll-

ty

n-

n

an electron to a neighboring defect and transitions to
nonmagnetic state Eu31.

Let us consider these three possibilities in sequence
In case~1! the most likely candidate is the phase Eu3O4,

which is an antiferromagnet5 with Néel temperatureTN

'5 K. This hypothesis is supported by the appreciable c
tent ('0.5– 1%) of residual oxygen in the samples~see
above!. However, x-ray diffraction studies carried out by u
on similar samples with somewhat greater europium conc
tration (x.0.2 at. %) showed that the the nonmagne
phase that is observed to precipitate out is Eu2O2S, not
Eu3O4. Furthermore, the decrease of the susceptibility of t
compound below the Ne´el temperature is extremely insig
nificant when the magnetic field is aligned with the ha
magnetization axis.6 After averaging over all crystallo-
graphic directions in a powdered sample, the depth of fal
of x(T) should not exceed 50%. In the temperature ran
4,T,6 K, just where a sharp peak inx(T) should be ob-
served for Eu3O4 ~Fig. 3!, we instead observe a wide max
mum, and as the temperature is lowered to 2 K the suscep-
tibility decreases by roughly fivefold, i.e., significantly mo
strongly than even in ideal samples of the phase Eu3O4.

Speaking of antiferromagnetic interactions, we sho
also recall the possible existence of Eu21 antiferromagnetic
clusters. Among such clusters only antiferromagnetic pa
can give a distinct maximum in thex(T) dependence.7 How-
ever, to use them to explain the anomalous behavior
served for sample No. 1 is also impossible. The reasons
this are the following. First, for the Eu21 susceptibility to fall
abruptly atT'2 K the exchange interaction parameter in t
pairs should have the valueJ/kB'24 K, which is an order
of magnitude greater than the values characteristic of
ropium chalcogenides~in EuS J/kB50.2 and20.08 K re-
spectively for the first and second coordination sphere5!.
Second, the greater the spin of the centers bound to the
tiferromagnetic pairs, the wider and flatter the maximum
x(T) ~Ref. 7!. The dependence actually observed for sam
No. 1 is similar in shape to the curve corresponding to pa
of particles with spinS51/2, but corresponds poorly to th
curve for pairs of Eu21 ions withS57/2 ~see the inset to Fig
3!. Thus, if the anomalous dependence ofx(T) can be con-
nected with antiferromagnetic pairs, then those pairs
only be Eu21 pairs.

Let us now consider case~2!, which assumes that all o
the europium is found in the Eu31 state. To test this hypoth
esis it is necessary to enlist additional experimental d
e.g., EPR spectra.

EPR spectra of all the chlorine-free samples are v
similar ~see Fig. 4!: they all contain sharp, narrow lines co
responding to the hyperfine structure of the two isotop
151Eu21 and153Eu21 located at positions with nearly octahe
dral local symmetry, and also a wide, smooth line super
posed on them. This line results primarily from broadeni
and overlap of lines from Eu21 ions located in a non-
octahedral environment upon averaging of the signal o
grains with different orientations.4

To compare the Eu21 concentration in the various
samples we calculated the total areaS under all the EPR
lines for each sample. The results are plotted in Fig. 2.

le
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largex the dependenceS(x) is sublinear, in agreement wit
the magnetic susceptibility data, and indicates a decreas
the Eu21 fraction with growth ofx. Note that the nonlinear
ity of S(x) is evident even at smallx. Such behavior can be
linked with the influence of residual impurities on the char
state of the europium ions. Thus we see that the hypoth
of the absence of Eu21 in sample No. 1 is not confirmed
moreover, the EPR spectra show that the Eu21 fraction in
this sample is higher than in the others. Additional confirm
tion of the presence of Eu21 is provided by the presence o
thermal luminescence in all the samples~see above!.

It follows from the above that the anomalous behavior
the magnetic susceptibility for sample No. 1 should be link
with the Eu21 ions because there is no other paramagn
contribution that could be linked with europium in th
sample. Moreover, if we were dealing with paramagneti
of any other centers, they would have been detected in
sample not containing europium, which did not happen.

Hypothesis~3!, which we consider the most likely, i
that in sample No. 1 below 5 K one of the electrons jump
from the Eu21 ion to a neighboring defect. As a result, th
magnetic Eu21 ion is converted into a Eu31 ion with zero
magnetic moment. In the other samples having anomalie
the dependence below 5 K a similar conversion is observed
obviously, for only some of the Eu21 ions.

FIG. 4. EPR spectra for samples No. 1, 2, and 5. The broad line, hid
under the narrow peaks, is shown for sample No. 5.
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What kind of defect adjacent to the Eu ion are we de
ing with? First note that the formation of Eu-containing com
plexes with anomalous magnetic susceptibility is enhan
in the chlorine-doped samples; consequently, Cl should
part of such complexes. As residual impurities, Cl and F
quantities up to 102321022at. % are also present in th
intentionally undoped samples, and this quantity can
enough to completely bond the europium in sample No
Second, at low concentrations Cl enters into CaS in the fo
VCaClS

2 centers,4 and consequently we can conclude wi
confidence that Eu is present in complexes withVCaClS

2 or
VCaFS

2 centers. This is indicated by the fact that for samp
No. 5/24 (x50.080 at. %, y50.24 at. %! a more pro-
nounced deviation from the Curie law was observed than
sample No. 5/32 (x50.080 at. %,y50.32 at. %! since the
largest number ofVCaClS

2 centers is formed precisely aty
50.2 at. %.

As a criterion of the validity of the hypothesis that com
plexes are formed with recharging europium ions we cite
conformity of such a hypothesis with the properties
sample No. 1, since there are no other paramagnetic ce
in this sample~in the remaining samples isolated Eu21 ions
are probably also present!. As a candidate for such a com
plex we propose the following cluster:

EuCa
312VCa

~22!2ClS
22EuCa

31 ~1!

~we have indicated here its low-temperature ground-s
charge configuration, which does not have a magnetic m
ment!. It differs from the complex Eu31–VCa

~22!–Eu31, in
which Eu31 ions can be found,8 by the fact that in it Cl2 ions
substitute at sulfur sites. As a result, the complex is po
tively charged relative to the lattice and requires charge co
pensation, which can be provided by the residual impu
ions @NaCa

1 #2, @LiCa
1 #2, andVCa

~22!ClS
2 centers and other ac

ceptors.
We believe that above 2 K the given complex can hav

another charge configuration:

EuCa
312VCa

~2!2ClS
22EuCa

21. ~2!

The configuration has a large magnetic moment associ
with the Eu21 ion and the hole residing at the vacancyVCa

~2! .
At high temperatures the complex should easily transit
from the one configuration into the other. This is facilitat
by the Cl2 ions, which are positively charged relative to th
lattice and lower the height of the barrier the electron has
overcome to make the transition. The probability of the
alization of each of configurations~1! and ~2! should be de-
termined by their statistical weight and the Boltzmann fac
exp(2DE/kBT), whereDE is the energy difference betwee
the two configurations. When all of the europium is bou
up in complexes~1! and ~2!, as is probably the case fo
sample No. 1, it is not hard to calculate the correspond
temperature dependence of the magnetic susceptibility:

xp5
C

T S 11
n1

n2
expF2

DE

kBTG D 21

,

C5
mBNAx

kBMCaS
~gEu

2 SEu~SEu11!1gh
2Sh~Sh11!!,

n
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Heren1 andn2 are the statistical weights of complexes~1!
and~2!, respectively,kB is the Boltzmann constant,mB is the
Bohr magneton,NA is Avogadro’s number,x is the atomic
fraction of europium,MCaS is the molecular weight of CaS
gEu and gh are theg factors of the Eu21 ion and the hole,
respectively, andSEu57/2 andSh51/2 are their respective
spins. In the calculation we neglected the interaction betw
the europium ion and the hole, and we took the twog factors
gEu andgh to be equal to 2. The statistical weight for com
plex ~1! n151, and for complex~2! n2516 ~the eightfold
degenerate europium ion complexed with a doubly dege
ate hole!. The quantityDE was used as a fitting paramete
As a result of fitting the experimental data, we obtained
resultDE'13 K ~see Fig. 3!. It can be seen from this figur
that the agreement between the calculated curve and the
perimental points is entirely satisfactory.

According to the calculation, the susceptibility at hig
temperatures is governed by configuration~2!. Taking its
large statistical weight into account, it turns out that at h
temperatures 47% of the Eu ions should be found in th
1 state. This number is found to be in good agreement w
the experimental data~see Table I!. At low temperatures, on
the contrary, the complexes transition back to the grou
state~1!, and their susceptibility essentially vanishes. In t
intermediate temperature regionT.10 K the dependence
can be formally approximated by a Curie–Weiss la
x2xCaS5C/(T2u) with negative temperature paramet
u'26 K, which within the context of the proposed mod
characterizes not an antiferromagnetic interaction, but a
crease in the paramagnetism as the temperature is lower
a consequence of the transition to the nonmagnetic state

As has already been noted, sample No. 1 exhibits th
mally stimulated luminescence. Therefore, let us cons
how the proposed complexes can store light energy. This
happen as a result of the ejection of one electron in confi
ration ~1! from a vacancy to Eu31:

EuCa
312VCa

~22!2ClS
22EuCa

~31!1hn

→EuCa
212VCa

~2!2ClS
22EuCa

~31!. ~3!

The resulting configuration can be represented as config
tion ~2!, in which the Eu21 and Eu31 have changed places
Obviously, the Eu31 ion here occupies an unfavorable po
tion nearby the positively charged~relative to the lattice!
center@ClS

2# (1) and, consequently, the given configurati
has a large energy in comparison with configuration~2!. If
all the complexes~1! transition to this configuration, the
precisely 50% of the Eu ions will wind up in the 21 charge
state. On the other hand, at high temperatures 47% of
europium is found in the form Eu21 in configurations~1! and
~2!. Thus, it follows from our model that if almost all of th
Eu is found in complexes~3! after illumination of the sample
at low temperatures, then after thermal luminescence at
temperatures the amount of Eu21 will hardly change. Such
an effect was indeed observed in Ref. 2.

Free transition of an electron back from an Eu21 ion to a
VCa

~2! vacancy does not take place, apparently because o
n

r-
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existence of a significant energy barrier~associated also with
deformation of the complex!. The process of release of th
stored energy should start, in our opinion, with the capture
an electron by an Eu31 ion:

EuCa
212VCa

~2!2ClS
22EuCa

~31!1e2

→EuCa
212VCa

~2!2ClS
22EuCa

~21!. ~4!

In CaS:Eu,Cl the electrons located in traps at low tempe
tures begin to escape from them atT5100– 150 K. Falling
into europium complexes, they cause the number of E21

ions to increase according to Eq.~4!, which leads to the
growth of the magnetic susceptibility and EPR line intens
observed in Ref. 2. As the temperature is raised furthe
200–210 K, holes are liberated from the traps, thereby ca
ing the complexes to luminesce in accordance with the eq
tion

EuCa
212VCa

~2!2ClS
22EuCa

~21!1h1

→EuCa
312VCa

~2!2ClS
22EuCa

~21!1hn. ~5!

This luminescence takes place on the Eu21 ion neighboring a
ClS

2 substituted site, to which the energy should be re
nantly transferred from the Eu31 ion, which is found in an
excited state after capture of a hole. The possibility of re
nant energy transfer from Eu31 to Eu21 also has experimen
tal confirmation.9 Finally, the complexes transition to con
figuration~2! and the number of Eu21 ions and the associate
magnetic susceptibility and EPR signal intensity decrease
complete agreement with the experimental results of Ref

4. MAIN RESULTS AND CONCLUSIONS

We have carried out combined measurements of
magnetic susceptibility and EPR spectra of the small-cry
luminophors CaS:Eu,Cl. We found that:

Eu enters into the CaS matrix primarily in the trivale
state Eu31, and the fraction of ions in this state is 70–80%
the chlorine-free samples and increases with growth of
total europium concentration. Chlorine doping causes
Eu21 fraction to increase to 50%.

The sample with low Eu concentration (x
50.005 at. %) compared with the residual Cl concentrat
possesses an anomalous temperature dependence of th
ceptibility x(T), which passes through a maximum at 5
Weak anomalies~which grow with chlorine doping! are also
observed in other samples.

We have advanced the hypothesis that the anoma
temperature dependence of the susceptibilityx(T) is
associated with recharging of Eu21 to Eu31. We have
proposed a structure of the complexes into which
europium ions enter: EuCa

31–VCa
~22!–ClS

2–EuCa
31 ~1! and

EuCa
31–VCa

~2!–ClS
2–EuCa

21 ~2!, where complex~1! possesses
zero magnetic moment and does not contribute to the m
netic susceptibility or the EPR signal.
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The anomalous dependence ofx(T) is explained by re-
charging of europium in these complexes:

EuCa
312VCa

~22!2ClS
22EuCa

~31!→EuCa
312VCa

~2!2ClS
22EuCa

~21!.

On the basis of the proposed model, by fitting to the exp
mental data we have estimated the energy difference of c
plexes~1! and ~2! to beDE'13 K.

We have shown that the proposed model of the co
plexes enables one to explain the mechanism of storage
release~luminescence! of light energy:

EuCa
312VCa

~22!2ClS
22EuCa

~31!1hn

→EuCa
212VCa

~2!2ClS
22EuCa

~31!,

EuCa
212VCa

~2!2ClS
22EuCa

~31!1e2

→EuCa
212VCa

~2!2ClS
22EuCa

~21!,

EuCa
212VCa

~2!2ClS
22EuCa

~21!1h1

→EuCa
312VCa

~2!2ClS
2–EuCa

~21!1hn.
i-
-

-
nd

Additional studies are necessary to clarify the extent
which the given mechanism controls thermal luminesce
for samples with different Eu and Cl content.
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Nonmonotonic behavior of the superconducting transition temperature in bimetallic
ferromagnet–superconductor structures
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For layered ferromagnet/superconductor (F/S) structures we develop a theory of the proximity
effect. In contrast to previous approaches, this theory allows for a finite transmission
coefficient of the interface between the two metals and competition between the diffusion and spin-
wave types of quasiparticle motion in the ferromagnet’s strong exchange field. The
superconductivity inF/S systems proves to be a superposition of BCS pairing with a constant-
sign pair amplitude in theS-layers and Larkin–Ovchinnikov–Fulde–Ferrell~LOFF!
pairing with an oscillating wave function in theF-layers. We show that the oscillatory behavior
of the superconducting transition temperatureTc is due to oscillations of the Cooper pair
flux from theS-layer to theF-layer, which are the result of oscillations of the discontinuity~jump!
of the pair amplitude at theF/S boundary as the thicknessdf of the F-layer increases. The
presence of nonmagnetic impurities leads to heavy damping of the oscillations of the LOFF pair
amplitude and rapid deterioration of the coherent coupling of the boundaries of theF-layer
in which theTs vs. df dependence reaches a plateau asdf increases. InF/S superlattices, in
contrast toF/S double-layer junctions, there are two forms of the LOFF state, the 0-phase
and thep-phase, which differ in their symmetry with respect to the center of theF layer. This
gives rise to additional oscillations in theTc (df) dependence due to the 0 –p transitions.
As the most vivid manifestation of LOFF states inF/S-systems, we predict the existence of
recurrent and periodically recurrent superconductivities. We give a qualitative explanation
of the different behavior of the superconducting transition temperature observed by different
groups of experimenters dealing with the same ferromagnet–superconductor structures.
© 1998 American Institute of Physics.@S1063-7761~98!01105-6#
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1. INTRODUCTION

The antagonism that exists between superconducti
and ferromagnetism leads to a number of new nontrivial p
nomena related to their coexistence and mutual adjustme
F/S junctions and superlattices formed by alternating fer
magnetic (F) and superconducting (S) layers.1–14 For in-
stance, the emergence of superconducting phases with
commensurate magnetic ordering in ferromagnetic insula
superconductor structures2,3 explains the presence of
nonuniform internal field that causes the BCS peak in
quasiparticle density states in EuO/Al~Ref. 4! and EuS/Al
~Ref. 5! junctions to split, and the anomalously weak su
pression of superconductivity in EuO/V multilayers.6 New
critical behavior of interphase boundaries and the spin-w
spectrum near an unusual Lifshitz point are expected in s
systems.3

Bimetallic F/S structures also exhibit some unusu
physical properties. The results of an analysis of rec
experiments7–11 with ferromagnet/superconductor multilay
ers suggest that the behavior of the dependence of the s
conducting transition temperatureTc as a function of the
thicknessdf of the ferromagnetic layers may be very diffe
ent for the sameF/S structures. In particular, while in som
experiments involving Fe/V~Ref. 7! and Gd/Nb ~Ref. 8!
systems instead of the initial rapid drop inTc with increasing
9301063-7761/98/86(5)/13/$15.00
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df Tc reaches a plateau; in other experiments with the sa
systems~Ref. 9 and Refs. 10 and 11, respectively!, the tem-
peratureTc oscillates before reaching the plateau. The th
retical interpretation of oscillations inTc(df) in Ref. 12 and
13 reduces to periodic ‘‘switching’’ of the superconduct
type from the 0-phase to thep-phase, with the sign of the
order parameterD reversed as anF-layer is crossed. How-
ever, we will see that both theories~Refs. 12 and 13! are
valid only when the transparence of theF/S boundary is
high and are restricted by the extremely ‘‘dirty’’ limit of th
ferromagnetic metal, with 2I t f !1, whereI is the exchange
field andt f

21 is the collision rate of electrons and nonma
netic impurities. Hence the limitations of Refs. 12 and
make it impossible to describe two different types of beh
ior of Tc(df) in a unified manner. More than that, recently
has been found that oscillations of the functionTc(df) also
occur in the Fe/Nb/Fe triple-layer structure,14 wherep-phase
superconductivity is impossible in principle. All this require
stating the problem of the nature of the nonmonoto
Tc (df) dependence inF/S systems anew and building
theory that gives a meaningful explanation of the exist
experimental data.

Historically, the effect of quantum oscillations ofTc as a
function of the thickness of the nonsuperconducting layer
a semiconductor or semimetal first arose in the experime
© 1998 American Institute of Physics
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of Golyanov and Mikheeva.15 Kagan and Dubovski�16

showed this effect to be related to oscillations of the elect
density of states in the superconducting metal, due to
quantization of the transverse motion of the current carr
in the nonmetallic film. However, when the normal metal
a ferromagnetic metal with a strong exchange field, ther
another mechanism for the oscillations ofTc(df), which we
believe to be more suitable for anF/S structure and which is
examined below.

Indeed, in systems such as Fe/V and Gd/Nd the fe
magnetic layers are strong magnets. The depairing actio
the exchange polarizationI is so strong that the presence
one atomic plane of magnetically ordered iron is enough
destroy the superconductivity of one hundred atomic pla
of vanadium.9 Hence an important condition for the prese
vation of superconductivity in such structures is moderat
high transparency of theF/S boundaries~in addition to the
requirement that the thicknessds of theS-layers be large, or
ds@df). Probably, this condition corresponds to the expe
mental situation~see the discussion in Secs. 4 and 5!. How-
ever, as noted by Radovic´ et al.,12 at present the microscopi
boundary conditions for the wave function of Cooper pa
for arbitrary transparency of theF/S boundary are unknown
At the same time, the theory of the proximity effect in
normal metal/superconductor (N/S) system17,18suggests tha
the Cooper pair flux from theS-layer to theN-layeris pro-
portional to the product of the transmission coefficient by
discontinuity~jump! of the pair amplitude at theS/N bound-
ary. We can expect that boundary conditions of this type
valid for F/S systems, too.

Due to the proximity effect, pair correlations~to the ex-
tent to which theS/F boundary is transparent! are induced in
F-layers byS-layers, but the large exchange splitting of t
Fermi surface (2I @pTc) changes the pairing conditions i
the ferromagnet. InF-layers, pairs form quasiparticles from
constant-energy statesp,↑ and 2p1k,↓ whose momenta
differ in absolute value, wherek.2I /v f is the coherent mo-
mentum of the pair andv f is the Fermi velocity. This is
known as the Larkin–Ovchinnikov–Fulde–Ferrell~LOFF!
state,19,20which is characterized by a pair amplitude oscilla
ing with a periodaf.k21. Scattering by nonmagnetic impu
rities, which has no effect on BCS pairing with a zero to
momentum inS-layers, hinders the formation of a LOF
phase inF-layers.21,22 Hence pair amplitude oscillations i
relatively pure ferromagnetic layers with 2I t f.1 decay over
distances of order the mean free pathl f5v ft f ( l f.af) from
the S/F boundary. At the same time, it is known that th
wave function of Cooper pairs inS-layers has a constant sig
but an arbitrary phase. Thus, we should expect that su
conductivity inF/S systems is a combination of BCS pairin
in S-layers and LOFF pairing19,20 in F-layers.

The essence of the proposed mechanism of oscillat
of Tc(df) can easily be understood if we turn to the exam
of an F/S double-layer junction. The condition that there
no LOFF pair flux across the external ferromagnet–vacu
boundary leads to oscillations of the discontinuity of the p
amplitude at theF/S boundary as the thickness of theF-
layer increases. Each time a node of the LOFF pair am
tude finds itself at theF/S boundary, the discontinuity an
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the related Cooper pair flux from theS-layer to theF-layer
are at their maximum values. Since on penetration of
F-layer the Cooper pairs are immediately destroyed by
strong exchange field, these values of the thickness of
F-layer correspond to minima in theTc (df) dependence or
even to disappearance of superconductivity. But when a c
of the LOFF pair amplitude finds itself at theF/S boundary,
the Cooper pair flux across theS/F boundary is at its mini-
mum. Such thicknesses of theF-layercorrespond to maxima
in the Tc (df) dependence. This mechanism explains n
only the oscillations of the superconducting transition te
perature inF/S multilayers10,11,14but also new effects, such
as a periodically recurrent superconductivity. Thus, the
cillations of the discontinuity of the pair amplitude lead to
distinctive periodic self-locking of theF/S boundary and
hence to periodic compensation of the paramagnetic effec
the exchange field for theS-layers.

As the concentration of the nonmagnetic impurities
the F-layers rises, the spin-wave nature of quasiparticle m
tion, inherent in a pure ferromagnet, is replaced, for 2I t f

,1 (l f,af), by the diffusion type.23–25 In the process, the
pair momentumk becomes a poor quantum number, and
heavily damped oscillations of the LOFF-state pair amp
tude cease to ensure coherent coupling between the bo
aries of aF-layer. In this case theTc (df) dependence in
F/S systems may become monotonic, a fact observed in
experiments of Koorevaaret al.7 and Strunket al.8

In this paper we develop a theory of the proximity effe
for layeredF/S systems. In contrast to previous theories,12,13

this theory allows theF/S boundary to have a finite trans
mission coefficient and permits competition between the
fusion and spin-wave types of quasiparticle motion in t
ferromagnet layers. Section 2 is devoted to a novel mic
scopic derivation of the Usadel equations and the co
sponding boundary conditions, which relate the flux of t
Usadel function to the discontinuity of the function at th
F/S boundary. The solution of the resulting boundary-val
problem for the proximity effect in theF/S junction, given in
Sec. 3, makes it possible to establish the dependence o
superconducting transition temperatureTc on the parameter
2I t f , on the transmission coefficientss of the F/S bound-
ary, and on the thicknesses of the ferromagnetic (df) and
superconducting (ds) layers. In Sec. 4 we study the comp
tition between the 0- andp-phase types of superconductivit
in F/S superlattices. Finally, Sec. 5 is devoted to a disc
sion of the results.

2. THE PROXIMITY EFFECT IN AN INHOMOGENEOUS F/S
SYSTEM: GENERAL FORMALISM

Near a second-order phase transition point, the super
ducting transition~or critical! temperatureTc of an inhomo-
geneous superconductor can be found by solving
Gor’kov integral equation for the order parameterD(r ) ~Ref.
26!:

D~r !5V~r !T(
v

8 E H~r ,r 8,v!D~r 8!d3r 8, ~1!
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whereV(r ) is the electron–electron interaction potential
point specified by the radius vectorr , the prime on the sum
mation sign indicates cutoff at the Debye frequencyvD ,
v5pT(2n11) is the Fermi frequency, withn50,61,
62, . . . , andT is the temperature. The kernelH(r ,r 8,v) of
the integral equation~1! is given by the following expres
sion:

H~r ,r 8,v!5
1

2
Tr^ĝ21Ĝ~r ,r 8,v!ĝĜ~r ,r 8,2v!&, ~2!

whereĜ(r ,r 8,v) is the matrix Green’s function of electron
in the normal phase,ĝ5 isy , with sy the Pauli matrix, and
the angle brackets stand for averaging over all the impu
configurations.

Let us consider a planar junction of a ferromagne
metal (F) occupying the region2`,z,0 and a supercon
ductor (S) occupying the region 0,z,`. Due to the trans-
lation invariance of theF/S junction in thexy plane, the
order parameterD depends only onz and Eq.~1! becomes

D~z!5
1

2
V~z!T(

v
8 (

aÞb
E

2`

`

Hab~z,z8,v!D~z8!dz8,

~3!

whereV(z.0)5Vs , V(z,0)5Vf , a andb are spin indi-
ces (aÞb), and

Hab~z,z8,v!5E d2rHab~r ,r 8,v!,

wherer5(r2r 8)' is the two-dimensional radius vector i
the junction plane. Diagrammatic methods27 reveal that in
the presence of an exchange field and nonmagnetic scatt
by impurities, the kernelHab(z,z8,v) of Eq. ~3! is the solu-
tion of another integral equation,

Hab~z,z8,v!5Kab~z,z8,v!

1E
2`

` Kab~z,z1 ,v!Hab~z1 ,z8,v!

2pN~z1!t~z1!
dz1,

~4!

where we have introduced the following notation:

Kab~z,z8,v!5E d2p

~2p!2
K̃ab~p,z,z8,v!,

~5!

K̃ab~p,z,z8,v!5Gaa~p,z,z8,v!Gbb~p,z,z8,2v!,

Gaa(p,z,z8,v) is the Green’s function of the conductio
electron in the normal phase averaged over the impurity c
figurations,p is the two-dimensional momentum in the jun
tion plane, andN(z) and t21(z) are, respectively, the den
sity of states on the Fermi level and the rate of scattering
impurities ~both change their values suddenly when t
boundaryz50 is crossed!. Solving the problem with a po
tential barrier at the boundary between two semi-infin
metals in the spirit of Ref. 28, we can show th
K̃ab(p,z,z8,v) obeys the differential equation
t

y

ing

n-

y

F2vab~z!2vz~z!l ab~z!
]

]z2Gvz~z!K̃ab~z,z8!52d~z2z8!

~6!

with the boundary conditions

vszl sab

]K̃ab~z,z8!

]z
U

z510

5v f zl f ab

]K̃ab~z,z8!

]z
U

z520

5
s

2~12s!
@vszK̃ab~10, z8!

2v f zK̃ab~20, z8!#, ~7!

where for brevity some arguments have been dropped,vz is
the z-component of the electron velocity,s is the barrier
transmission coefficient, and

vab~z!5uvu1
1

2t~z!
1 i I ~z!gabsgnv,

~8!

l ab~z!5
vz~z!

2vab~z!
.

Here the dependence of all quantities onz is steplike, i.e.,
I (z.0)50 and I (z,0)5I , vz(z.0)5vsz and vz(z,0)
5v f z , andt(z.0)5ts andt(z,0)5t f .

By using Eq.~6! with the boundary conditions~7! we
can reduce the problem of solving the integral equation~4!
for an inhomogeneousF/S-system to an integro-differentia
boundary-value problem for the quantityH̃ab(p,z,z8,v),
which is related to the kernelHab(z,z8,v) by the formula

Hab~z,z8,v!5E d2p

~2p!2
H̃ab~p,z,z8,v!. ~9!

Note that due to the proximity of the characteristic mome
to the Fermi momenta, integration with respect top in ~5!
and ~9! reduces to integration with respect to the angleq
between the electron velocity vectorv and a unit vectorn
normal to the boundary:

E d2p

~2p!2
→pN~z!E

0

1

vz~z!dx5pN~z!v~z!E
0

1

x dx,

~10!

x5cosq.

Plugging ~4! and ~5! into ~6! and ~7!, we arrive at the fol-
lowing integro-differential equation:

F2vab~z!2vz~z!l ab~z!
]2

]z2GpN~z!vz~z!H̃ab~p,z,z8,v!

5
1

t~z!
Hab~z,z8,v!12pN~z!d~z2z8! ~11!

with boundary conditions forH̃ab(p,z,z8,v) of the form
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vszl sab

]H̃ab~z,z8!

]z
U

z510

5v f zl f ab

]H̃ab~z,z8!

]z
U

z520

5
s

2~12s!
@vszH̃ab~10, z8!

2v f zH̃ab~20, z8!#. ~12!

If we solve the boundary-value problem represented by
system of equations~9!–~12!, we can find the kerne
Hab(z,z8,v). Then, substituting the kernel into he integr
equation, we can find~in principle! the superconducting tran
sition temperatureTc and the spatial dispersion of the ord
parameterD(z) of the inhomogeneousF/S system without
imposing restrictions on the value of the barrier transmiss
coefficients and the purity of the ferromagnetic and supe
conducting materials.

The above integro-differential boundary-value proble
~9!–~12! for the proximity effect in anF/S junction simpli-
fies considerably in the dirty limit, where the electron me
free pathl j5v jt j ( j 5 f ,s) becomes much smaller than

j j v5ReA D j

2~ uvu1 i I j !
,

the range of the kernelHab(z,z8,v) ~hereD j5v j l j /3 is the
diffusion coefficient!. We also assume thatl f is smaller than
the spin rigidity lengthaf5v f /2I of the ferromagnet, with
2I t f,1. An analysis of Eqs.~9!–~11! suggests that the an
isotropic correlatorvz(z)H̃ab(p,z,z8,v) can be written as a
sum of two terms,

pN~z!vz~z!H̃ab~p,z,z8,v!5Hab~z,z8,v!

1hab~p,z,z8,v!, ~13!

an isotropic termHab(z,z8,v) with a characteristic scale
j j v , and an anisotropic termhab(p,z,z8,v) with a range of
order l j (!j j v) ~the anisotropic term vanished after ang
averaging!. The representation~13! reflects the physical fac
that the two-particle Green’s functionvz(z)H̃ab(p,z,z8,v)
becomes more and more isotropic as the impurity concen
tion rises~see, e.g., Ref. 29!.

Since the spatial scales of interest to us are large c
pared to the mean free pathsl j , we can ignorehab in ~13!
everywhere except the region near theF/S boundary. This
corresponds to what is known as the diffusi
approximation.30 Inserting~13! in ~11!, averaging the resul
over the angle between the velocity vector and thez axis,
and taking into account what was said earlier, we arrive
the following differential equation of diffusion form for th
kernelHab(z,z8,v):

F uvu1 i I ~z!gab sgnv2
1

2
Dab~z!

]2

]z2GHab~z,z8,v!

5pN~z!d~z2z8!. ~14!

Note that this equation is related to Eq.~11! in the same way
as the Usadel equations are related to the Eilenberger e
tions~see, e.g., Ref. 29!. Since Eq.~14! does not describe th
real behavior ofHab(z,z8,v) near the boundary between th
e

n
-

n

a-

-

t

ua-

metals, it must be augmented by appropriate boundary c
dition, which asymptotically smooth out at distances grea
than l j . The required expressions that link the flux of th
kernel Hab(z,z8,v) across the junction to the value of th
kernel at theF- and S-sides of the junction can be derive
directly from the exact boundary conditions~12!. In the case
of a flat F/S boundary, which conserves the component
momentum parallel to the surface of the junction, the
boundary conditions are

Dsab

]Hab~z,z8!

]z U
z510

5D f ab

]Hab~z,z8!

]z U
z520

5
1

4
@ssvsHab~10, z8!

2s fv fHab~20, z8!#, ~15!

wheress ands f are the transmission coefficients at the jun
tion from theS- andF-sides, respectively. The two transmi
sion coefficients are related by the detailed balance condi
ssvsNs5s fv fNf ~see Ref. 17!, which states that the num
bers of transitions from theS-layer to theF-layer and back
are equal. In~14! and~15! we have introduced the following
notation:

Dab~z!5
D~z!

112i t~z!I ~z!gab sgnv
,

~16!

D~z!5D j , s j5 K sv jz

~12s!v j
L .

The complex-valued denominator inDab(z) describes the
suppression of the diffusive motion of the conduction ele
trons in the ferromagnet by the strong exchange field of
localized spins.23 Because of this the motion of the spin ca
riers in the ferromagnet acquires a mixed diffusion–sp
wave nature. As the parameter 2I t f increases, the spin-wav
nature becomes dominant. The angle brackets^•••& denote
averaging over the angle between the direction of elect
velocity and a normal to the junction surface. Equations~3!,
~14!, and~15! generalize the problem of the proximity effe
for an arbitrary transmission coefficient of theN/S
boundary17,18 to the case where the normal metal (N) is a
ferromagnet with an exchange splitting 2I that is consider-
ably smaller than the Fermi energyEf . In this case the dif-
ferences in the densities of states and the transmission c
ficients of theF/S boundary for electrons with oppositel
directed spins can be ignored.

If we define an anomalous Usadel functionFab(z,v)
~see Refs. 12,13, and 29! as

Fab~z,v!5
1

pN~z!
E

2`

`

Hab~z,z8,v!D~z8!dz8, ~17!

Eqs. ~14! with the boundary conditions~15! can easily be
transformed into the corresponding boundary-value prob
for the Usadel functions. In terms of the functionsFab(z,v),
the problem of the proximity effect in anF/S junction is
described by an equation for the order parameter obta
from ~3!,
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D~z!5
1

2
l~z!pT (

aÞb
(
v

8 Fab~z,v! ~18!

(l(z)5N(z)V(z) is the dimensionless electron–electron
teraction parameter!, and Usadel equations that are lineariz
for T→Tc ,

F uvu1 i I ~z!gab sgnv2
1

2
Dab~z!

]2

]z2GFab~z,v!5D~z!,

~19!

with boundary conditions that relate the flux of the pair a
plitudeFab(z,v) to the discontinuity of the amplitude at th
boundaryz50:

Dsab

]Fab~z,v!

]z U
z510

5
ssvs

4
@Fab~10,v!2Fab~20,v!#,

D f ab

]Fab~z,v!

]z U
z520

5
s fv f

4
@Fab~10,v!2Fab~20,v!#.

~20!

The resulting boundary-value problem~18!–~20! for the
proximity effect in theF/S junction differs from the previous
boundary-value problems~see Refs. 12 and 13! in two ways.
First, the boundary conditions used in Refs. 12 and 13
amounting to the continuity of the Usadel function in t
passage through the planez50 constitute a particular case o
Eqs.~20! and correspond to the limit of a large transmissi
coefficient,s j@ l j /j j v , i.e., the flux ofFab(z,v) across the
F/S boundary can be ignored. Buts j , which determines the
amplitude of the Cooper pair flux from theS-layer to the
F-layer,17 strongly depends on the conditions and method
formation of theF/S boundary. Hence either it can serve
am adjustable parameter or must be measured experim
tally. Second, suppression of the diffusive motion of the s
carriers by the ferromagnet8s exchange field results in th
emergence of spin rigidity,23–25 i.e., the appearance of a
imaginary part in the effective diffusion coefficient~see Eq.
~16! and the beginning of Sec. 3!:

D f~ I !5
D f

112i I t f
. ~21!

Because of this, the solutions of the Usadel equation~19! in
a sufficiently pureF-layer with a strong exchange field o
cillate with relatively low damping, which suggest that the
is a LOFF state.19,20 Oscillations of the discontinuity in the
pair amplitude at theF/S boundary lead, in accordance wit
the boundary conditions~20!, to periodic variation in the
Cooper pair flux from theS-layer to theF-layer, thus forcing
oscillations to appear in theTc(df) dependence. These osc
lations, whose observability strongly depends ons j , prove
to be possible not only inF/S multilayers but also inF/S
double layers.

3. SUPERCONDUCTING TRANSITION TEMPERATURE OF
AN F/S DOUBLE-LAYER JUNCTION

As an example of how the obtained Usadel equati
~19! and the boundary conditions~20! can be used, we cal
culate the superconducting transition temperature of a pla
-

d

f

n-
n

s

ar

F/S junction in which the ferromagnetic metal occupies t
region 2df,z,0 and the superconductor, the region 0,z
,ds . Allowing for the symmetry properties of the Usad
function, Fab(z,v)5Fba* (z,v)5Fba(z,2v) and going
over to positive frequenciesv, we write Eqs.~18! and ~19!
separately for theS- andF-layers, discarding the spin indice
for convenience. For theF-layer we obtain

Ds~z!52lspT Re(
v.0

8 Fs~z,v!, ~22!

Fv2
Ds

2

]2

]z2GFs~z,v!5Ds~z!, 0,z,ds . ~23!

Similarly, for theF-layer we have

D f~z!52l fpT Re(
v.0

8 F f~z,v!, ~24!

Fv1 i I 2
D f~ I !

2

]2

]z2GF f~z,v!5D f~z!, 2df,z,0,

~25!

with D f(I ) specified in~21!. The boundary conditions at th
planez50 corresponding to Eqs.~23! and ~25! become

Ds

]Fs~z,v!

]z U
z510

5
ssvs

4
@Fs~10,v!2F f~20,v!#,

~26!

D f~ I !
]F f~z,v!

]z U
z520

5
s fv f

4
@Fs~10,v!2F f~20,v!#.

We seek the solutions to Eqs.~23! and ~25! together with
boundary conditions~26! and the conditions

]F f ,s

]z
~z52df ,ds!50, ~27!

corresponding to a zero electron flux across the exte
boundaries of the junction in the form (v.0)

Fs~z,v!5
Ds0

v
1A

cosh@qs~z2ds!#

coshqsds
, 0,z,ds ,

~28!

F f~z,v!5
D f 0

v1 i I
1B

cosh@qf~z1df !#

coshqfdf
, 2df,z,0,

whereDs0 andD f 0 are the initial values of the order param
eters for the thinS- and F-layers,A and B are parameters
determined from the conditions~26! and ~27!, and the wave
numbersqs andqf are given by the following expressions

qs
25

2v

Ds
, qf

25
2~v1 i I !

D f~ I !
. ~29!

The mutual effect of the metalsF and S across the
boundary is especially significant in the Cooper limit, whe
the thicknessesdj of the layers are small compared to th
coherence lengths

j j5ReA D j~ I j !

2~pT1 i I j !
, j 5 f ,s; I f5I , I s50.
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In this case the order parameter and the Usadel function
essentially constant inside theF- and S-layers, sinceuqjdj u
!1 in ~28!. Then the condition that Eqs.~22! and ~24! are
simultaneously nontrivial yields, after we sum over the f
quenciesv, the following expression for the reduced supe
conducting transition temperaturet5Tc /Tcs of theF/S junc-
tion (Tcs is the transition temperature of the isolat
S-layer!:

@ ln t2Re~cs8x21cf8x1!#@ ln t1l f
212ls

212Re~cf8x2

1cs8x1!#2@Re cs9~x22x1!#@Re cf9~x22x1!#50.

~30!

Here we have introduced the following notation:

x65CS 1

2D2CS 1

2
1

G6

2pTcst
D1 lnS 11

G6

vD
D ,

G65
G1 i I 6A~G1 i I !224i I Gs

2
,

G5Gs1G f , G j5
s jv j

8dj
, ~31!

cf85
G12G f2 i I

G12G2
, cs85

G12Gs

G12G2
,

cf95
Gs

G12G2
, cs95

G f

G12G2
,

whereC(x) is the digamma function, andG f andGs are the
electron transition rates from theF-layer andS-layer and
back, respectively. AtI 50 Eq. ~30! becomes the equatio
for the superconducting transition temperature of theN/S
junction at arbitrary values of the transmission coefficient
the interface of the metals, which was derived earlier in R
17 by one of the present authors. Here we haveG250 and
G150, and the coefficientscj85cj9 are equal tocj , where

cj5
Njdj

Nsds1Nfdf
, cfG f5csGs , ~32!

i.e., cf andcs are relative bulk densities of electron states
the metalsF andS, respectively.

Here we have examined only the corollaries of Eq.~30!
that reflect the experimental facts, according to whichI
@pTcs andds@df . In particular, the suppression ofTc for
the smallest thicknessesdf of the ferromagnetic layer is de
scribed by the formula

ln t.2
cf~ls2l f !

ls~csls1cfl f !
1CS 1

2D
2Re CS 1

2
1

ic f I

2pTcst
D , G f.I . ~33!

This formula predicts strong initial lowering ofTc with in-
creasingdf because of the averaging of the electron–elect
interactionsl f andl f and also because of spin polarizatio
of I over the entire sample due to the rapid electron excha
between theF- andS-layers. The exchange rate is charact
ized by the parameterG5G f1Gs ~see Ref. 17!, where in this
re

-
-

f
f.

n

ge
-

caseG f.I .vD@Gs ,pTcs . Here, initially for cf I !pTcs ,
the suppression ofTc by the first term in~33! dominates,
since the initial contribution of the exchange field is qu
dratic in the parametercf andul f u!ls probably holds due to
the electron repulsion~supplementing attraction! via spin
waves in the ferromagnet.31 Then, asdf increases, a more
rapid drop inTc ensures the depairing action of the avera
exchange polarizationcf I . For large thicknesses of th
F-layer, whenG f becomes smaller thanI , theF/S boundary
becomes effectively self-locked and theF andS subsystems
are weakly coupled, so that instead of Eq.~33! for Tc , Eq.
~30! yields

ln t.CS 1

2D2CS 1

2
1

Gs

2pTcst
D , G f,I . ~34!

In this case the rateGs at which pairs leave the supercon
ductor for the ferromagnet acts as the depairing parame
and for Gs,pTcs/2g (g51.781 is Euler’s constant! the
functionTc(df) becomes a finite constant. Hence, for a giv
thickness of theF-layer, superconductivity in theF/S junc-
tion arises only ifds is larger than the critical thicknessdsc

5ssvsg/4pTcs'ssjs0, where js0 is the BCS coherence
length. The relationG f.I allows for a minimum~for small
transmission coefficients! estimate of the critical thickness o
the F-layer,df c.s fv f /8I 5s faf , above whichTc ceases to
depend ondf . The existence of the critical thicknessesdsc

and df c has been noted in all experiments withF/S
multilayers.7–11,14

The possibility of the Usadel function in theF-layer
behaving in an oscillatory manner and the experimental c
ditions require considering arbitrary thicknessesdf and ds .
As demonstrated earlier, the difference in the electro
electron interaction parameters (l f,ls) causes the super
conducting transition temperature of theF/S junction to de-
crease only up to thicknessesdf of order the interatomic
distance. The strong depairing effect of the exchange fieI
(I @pTcs) is the main mechanism for the destruction of s
perconductivity inF/S systems. Hence, ignoring~to make
matters simpler! the order parameter induced in theF-layer,
D f(z).0 (l f.0), we seek the solutions of Eqs.~22!–~27!
in the form

Fs~z,v!5
Ds~z!

v1Dsks
2/2

5
C

v1Dsks
2/2

3
cos@ks~z2ds!#

cosksds
, 0,z,ds ,

~35!

F f~z,v!5E
cos@kf~z1df !#

coskfdf
, 2df,z,0,

whereC andE are constants, andks andkf are wave num-
bers independent of the frequencyv (v!I ). Then for the
superconducting transition temperature of theF/S junction
we obtain an ordinary equation of the Abrikosov2Gor8kov
type,
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FIG. 1. Reduced superconducting transitio
temperatureTc /Tcs of the F/S junction vs. the
reduced thicknessdf /af of the ferromagnetic
layer, described by Eqs.~36!, ~37!, and ~41! at
Nsvs5Nfv f , ds5500 Å, and js05400 Å,
wherejs0 is the BCS coherence length. The va
ues of the parametersss and 2I t f are given in
each diagram;~a! Tc reaches a plateau,~b! re-
current superconductivity,~c! oscillations of
Tc , and~d! periodically recurrent superconduc
tivity. The dashed curves labeledt* in Figs. b
and d are lines of tricritical points.
ht
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1a

rved
ln t5CS 1

2D 2Re CS 1

2
1

Dsks
2

4pTcst
D , ~36!

where the depairing parameterDsks
2 is the solution of an-

other equation,

Dskstan ksds5
ssvs

42@s fv f /D f~ I !kf #cot kfdf
, ~37!

and the wave numberkf for t f
21.2I @2pTcs is given by the

following expression:

kf
25

22i I

D f~ I !
5

22i I ~112i I t f !

D f
. ~38!

Plugging the solutions~35! into the first boundary condition
in ~20!, we can easily see that the left-hand side of Eq.~37!,
which defines the depairing parameterDsks

2 in Eq. ~36! for
Tc , is proportional to the Cooper pair flux from theS-layer
to the F-layer. Here the resonant denominator of the rig
hand side of Eq.~37!, being inversely proportional to th
discontinuity in the pair amplitude at theF/S boundary, pe-
riodically changes the value of this flux as the thickness
the F-layer increases due to the function cotkfdf .

In the Cooper limitukjdj u,1, the system~36!–~38! re-
produces formulas similar to~33! for G f.I and ~34! for G f

,I . Hence the single-mode approximation32 used in deriving
Eq. ~36!, which is an approximation in which multiple reflec
tion and the passage of electron waves across theF/S bound-
ary are ignored, is not too crude. Going beyond the Coo
-

f

er

limit, where the oscillatory nature of the pair amplitude
the F-layer cannot clearly manifest itself, requires a mo
detailed analysis of Eqs.~36!–~38!.

Spatial variations of the Usadel function in theF-layer
are characterized by the wave numberkf51/j f82 i /j f9 , where
j f8 is responsible for the oscillation period andj f9 , for the
depth of penetration of the pair amplitude into the ferroma
net. In the dirty limit (l f!af!v f /2pT) these two lengths are
approximately equal and, as Eq.~38! suggests, differ only in
small corrections of orderI t f :

j f85AD f /I ~12I t f !, j f95AD f /I ~11I t f !, 2I t f!1.
~39!

In this case, due to the heavy damping of the funct
F f(z,v), as df increases, only one node of this functio
which leads to a minimum in theTc (df) dependence, can
reach theF/S boundary. Asdf increases further, the cohe
ent coupling of the two boundaries of theF-layer deterio-
rates and the Cooper pair flux from theS-layer to theF-layer
becomes constant, with theTc (df) dependences reaching
plateau. For small values of the parameterss and 2I t f , the
minimum of Tc almost merges with the plateau, as Fig.
clearly shows. Such behavior, with the functionTc(df) first
rapidly decreasing and then reaching a plateau, was obse
in bimetallic Gd/Nb junctions9 and is also known from early
experiments withF/S double layers.33 However, when the
transmission coefficientss of theF/S boundary is large, the
development of this minimum inTc with increasing 2I t f
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may lead to recurrent superconductivity, depicted in Fig.
Clearly, there are two critical thicknesses here:df c1, at which
superconductivity in theF/S junction disappears, anddf c2,
at which superconductivity is restored in the system. He
Eq. ~37! can be interpreted as a relation from which we c
find all the crystal thicknesses mentioned earlier:df c ~at
larger thicknessesTc is independent ofdf), dsc ~at smaller
thicknesses the superconductivity in theF/S junction is sup-
pressed!, anddf c1 anddf c2 as functions of the exchange fie
I and the transmission coefficientss of the FS boundary.

When the transmission coefficientss of the FS bound-
ary is large and the exchange field is strong~as in the case
depicted in Fig. 1b!, we must allow for a possible change
the phase transition type. The tricritical pointtc* below which
the transition from a superconducting state to a normal s
is second-order, can be found by simultaneously solving
~36! and the equation for the line of tricritical point
t* 5T* /Tcs :

Re C~2!S 1

2
1

Dsks
2

4pTcst*
D 50, ~40!

whereC (2)(x) is the tetragamma function. The region whe
the Tc(df) curve intersects the line of tricritical pointst* is
characterized by the fact that the solution of Eq.~36! for Tc

in this region is two-valued, so that new states of the LO
type19,20 can occur in this region. Probably, a new LOF
state appears via additional sinusoidal modulation of the
amplitude in thexy plane of the junction with a characteris
tic wave vectorq'5 iqx1 jqy . Here, due to an increase i
the coherence lengthjs5ADs /2pT, at low temperatures
modulation extends not only to theF-layer but also to the
S-layer. Hence the neighborhood of the critical pointtc* in
the Tc (df) dependence requires a special investigati
which lies outside the scope of the present paper.

If 2 I t f.1 holds~this is possible, sinceI;103K for Gd
and Fe!, the diffusion approximation used in our descriptio
of conduction electron motion in the ferromagnetic
inapplicable,23 although the ordinary condition for the dirt
limit, pTt f!1, may be met. The important thing is that th
mean free pathl f becomes longer than the spin rigidi
lengthaf , which is now the smallest characteristic scale
the problem. In this case, quasiparticle motion in the fer
magnet is predominantly spin-wave, and scattering by im
rities leads to slowly decaying spin waves.

Note that our approach to the proximity effect inF/S
systems, developed in Sec. 2, is generally free~in contrast to
the previous theories12,13! from restrictions on the strength o
impurity scattering in theF- andS-layers. In particular, for
pTt i!1 but arbitrary 2I t f , there is no way in which Eq
~25! for F f(z,v) can be used, although Eq.~23! for Fs(z,v)
in this case remains valid. In this case, by solving Eqs.~9!,
~11!, and~17! simultaneously, we can show that the chara
teristic equation forkf is more complicated than Eq.~38!:

kf l f

arctan@kf l f /~112i I t f !#
51. ~41!
.

e
n

te
q.

F

ir

,

-
-

-

An approximate solution of this equation for 2I t f,1 corre-
sponds to the adopted diffusion approximation and yie
formula ~38! for kf .

If 2 I t f.1 holds, the asymptotic behavior ofF f(z,v) is
described by a wave numberkf that differs somewhat from
~38!:

kf
2'

22i I ~112i I t f !

v f l f
, ~42!

where Rekf is a quantity of order the coherent pair mome
tum k in a LOFF state,19,20 and Imkf; l f

21 determines the
spread in the values ofk, i.e., the decay of the LOFF phas
Here the oscillation period of the pair amplitude,j f8 , be-
comes much smaller than the depth of penetration of p
into the ferromagnet,j f9 :

j f8'af5
v f

2I
, j f9.2l f , 2I t f@1. ~43!

To within theD f→3D f substitution, the system of equation
~36!–~38! proves applicable in a qualitative description
the Tc(df) dependence inF/S junctions with relatively pure
ferromagnetic layers, too. Asds increases, the Usadel func
tion, the depairing factorDsks

2 , and theTc(df) dependence
oscillates with a period determined by the spin rigidity leng
af . These oscillations decay fordf.2l f (@af), causing
F f(z,v) to vanish as we move away from theF/S boundary
and makingTc constant, as shown in Fig. 1c. Such behav
of Tc(df) was observed in the Fe/Nb/Fe triple-lay
junction.14 To generalize our results toF/S/F triple layers,
we need only replaceds with ds/2 in the above formulas
Interestingly, for sufficiently large values of the paramete
ss and 2I t f , the superconductivity of theF/S junction at
low temperature is of a periodically recurrent nature, w
sections that are superconductors within theF-layer alternat-
ing with normal sections, as shown in Fig. 1d.

Clearly, the maxima and minima in theTc(df) depen-
dence in Figs. 1c and 1d appear when, respectively, cr
and nodes of the pair amplitudeF f(z)}cos@kf(z1df)# cross
the F/S boundary (z50). The Cooper pair flux from the
S-layer to theF-layer, given by Eq.~37!, decreases (sinkfdf

→0) or increases (coskfdf→0) in step with the discontinuity
of the pair amplitude at theF/S boundary. Formally, this
looks like periodic modulation of the transmission coefficie
of the F/S boundary or like periodic compensation of th
paramagnetic effect of the exchange field of theF-layer. As
the impurity concentration in theF-layer increases tot f

21

.2I , the motion of paired particles becomes diffusive an
according to~39!, Rekf.Im kf;Al faf . Then the oscilla-
tions of the pair amplitude in the LOFF phase beco
heavily damped, and their effect on the behavior ofTc(df) is
much weaker than when 2I t f.1 holds~Figs. 1a and 1b!.

4. COMPETITION OF 0-PHASE AND p-PHASE STATES
IN F/S MULTILAYERS

To calculate the superconducting transition temperat
of an F/S superlattice formed by alternating ferromagne
layers of thicknessdf and superconducting layers of thick
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nessds , we study the spatial variations of the Usadel fun
tion in a unit cell consisting of anF-layer (2df,z,0) and
an S-layer (0,z,ds). To this end we augment the syste
of equations~22!–~26! by periodicity conditions for the Us
adel function and the order parameter:

Fs, f~z1L,v!5eiwFs, f~z,v!, D~z1L !5eiwD~z!, ~44!

whereL5df1ds is the superlattice period, andw is an ar-
bitrary phase. In addition, we require that bounda
conditions of type~26! are met at the outer boundarie
z52df ,ds of the unit cell of the superlattice. In what fo
lows we assume that the interaction of the magnetization
the neighboring F-layers through the superconductin
S-layers can be ignored. This assumption is justified forF/S
multilayers in which the thicknessds of theS-layers is larger
thanjs , since in this case the indirect RKKY exchange b
tween neighboringF-layers is exponentially small~see, e.g.,
Refs. 2 and 3!. This corresponds to the conditions of th
experiments discussed in Refs. 7–11, and 14, where it
noted that the critical thicknessesdsc of the superconducting
layers below which there can be no superconductivity in
F/S system are larger thanjs . In these cases the mutu
orientation of the magnetizations of the neighboringF-layers
in metallic F/S superlattices is unimportant.

Clearly, all the physically distinct values of the phasew
lie within the segment 0<w<p. However, the general solu
tion of the boundary-value problem~22!–~26!, ~44! implies
that the only the solutions withw50 andw5p are the most
stable in a broad range of thicknessesdf andds . Estimates
have shown12,13 that the ranges where the intermediate v
ues of the phase 0,w,p are realized are extremely narro
and correspond to transitions from one stable state to
other. Hence here we give only the solutions for the 0-ph
(w50) andp-phase(w5p) states of theF/S superlattice.

In the 0-phase case, the characteristic solutions of
boundary-value problem for the Usadel function are th
with crests at the centers of theS- andF-layers:

Fs~z,v!}cos@ks~z2 ds/2!#, 0,z,ds , ~45!

F f~z,v!}cos@kf~z1 df /2!#, 2df,z,0. ~46!

These solutions lead to the already familiar equation~36! for
the superconducting transition temperatureTc , where the de-
pairing factorDsks

2 is now given by the equation

Dsks tan
ksds

2
5

ssvs

42@s fv f /D f~ I !kf #cot~kfdf /2!
, ~47!

which differs from the similar equation~37! for the F/S
junction in thatdj is replaced bydj /2. This is a natural con-
sequence of the symmetry of the superlattice if one igno
the interaction between neighboringF-layers through the su
perconducting layers.

In the p-phase case, the corresponding solution for
Usadel function has a node at the center of theF-layer ~in
contrast to~46!!, i.e.,

F f~z,v!}sin@kf~z1 df /2!#, 2df,z,0. ~48!

Hence, the depairing parameterDsks
2 in Eq. ~36! for Tc is

described by a different transcendental equation:
-

of

-

as

e

-

n-
e

ur
e

s

e

Dsks tan
ksds

2
5

ssvs

41@s fv f /D f~ I !kf #tan~kfdf /2!
. ~49!

Note that the only way in which the right-hand side
Eq. ~47! differs from the right-hand side of Eq.~49! is that
the second contains2tanx where the first contains cotx.
The wave numberkf for both equations, Eq.~47! ~the
0-phase! and Eq.~49! ~the p-phase!, is determined by the
expression~38! for 2I t f,1 and~42! for 2I t f.1. We also
note that the 0-phase~46! and p-phase~48! solutions, dif-
fering in the parity of the pair amplitude with respect to t
center of theF-layer, are two variants of the quasi-on
dimensional LOFF state19,20 in F/S superlattices. Here the
pair amplitude is doubly periodic: ‘‘microscopically’’ inside
eachF-layer and ‘‘macroscopically’’ in the superlattice as
whole. The latter period in the 0-phase case isL5df1ds ,
while in the 0-phase case it is 2L. A comparison of~47! and
~49! shows that now, asdf increases, the Cooper pair flu
may also oscillate due to transitions between 0- andp-phase
states.

The results of a numerical analysis of the behavior
Tc(df) for the 0- andp-phase states of anF/S superlattice
for different values of the parameters are depicted in Fig
Figure 2a shows theTc(df) dependence, from which it fol-
lows that forss.2I t f.0.5 the transition from the 0-phas
branch to thep-phase branch leads to a single burst in t
superconducting transition temperature, which then reach
plateau. This behavior ofTc(df) resembles the results o
experiments10,11 with Gd/Nb multilayers. For somewha
smaller values of these quantities (ss;2I t f;0.3) the 0-
and p-phase solutions in the ‘‘switching’’ region com
closer, and instead of the burst inTc in the same Gd/Nb
multilayers8 and in Fe/V superlattices,7 the superconducting
transition temperature reaches a plateau. Our analysis sh
that the differences in the nature of theTc(df) dependence
reported by different groups of researchers for the sameF/S
systems can probably be explained by the different transm
sion coefficients of theF/S boundaries and the different pu
rity of the ferromagnetic layers. This in turn may be relat
to differences in the experimental conditions and the me
ods of preparation ofF/S structures used by the differen
groups. We also note that when the transmission coefficie
of the boundaries are large inF/S superlattices with 2I t f

,1, recurrent superconductivity is possible~see Fig. 2b!. In
contrast toF/S junctions ~Fig. 1b!, recurrent superconduc
tivity in F/S superlattices is characterized by the proximi
in the Tc(df) phase diagram, of the 0- andp-phase regions
limited by the thickness of theF-layer. The first time at
which Tc vanishes is when 0-phase nodes approachF/S
boundaries. The finite value ofTc is restored when the node
of the p-phase pair amplitude approaches the boundar
The second timeTc vanishes is whenp-phase nodes ap
proachF/S boundaries. A further increase indf leads to a
situation in which the heavy damping of both 0- andp-phase
solutions for 2I t f,1 destroys the coherent coupling b
tween the neighboringF/S boundaries in the superlattice an
the Cooper pair flux becomes constant but sufficiently stro
~in this case! to suppress superconductivity.

Figure 2 shows that for relatively pureF-layers with a
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FIG. 2. The (Tc /Tcs ,df /af) phase diagrams of
the F/S superlattice for Nsvs5Nfv f , ds

5500 Å, andjs05400 Å, wherejs0 is the BCS
coherence length. The values of the paramet
ss and 2I t f are given in each diagram;~a!
single burst inTc , ~b! recurrent 0–p supercon-
ductivity, ~c! oscillations ofTc with competition
of 0- and p-phase states, and~d! periodically
recurrent superconductivity with alternation o
0- andp-phase states. The 0 andp labeling the
curves indicate that the curves belong to 0- a
p-phase states, respectively.
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strong exchange field (2I t f.1) and moderate transmissio
coefficients of theF/S boundaries, the competition of 0- an
p-phase states causes them to alternate in theTc(df) phase
diagram. Here the oscillation periods for the functionTc(df)
for 0- andp-phase solutions are twice as large, separately
the periods in the correspondingF/S junction. The competi-
tion of the same states leads to a situation in which the
cillation periods ofTc(df) in junctions and in superlattice
coincide. Periodically recurrent superconductivity, which
possible when bothss and 2I t f are large, is depicted in Fig
2d. InF/S superlattices it emerges as an alternation of 0-
p-phase peaks separated by nonsuperconducting sectio
the phase diagram. The points at which the 0- andp-phase
branches of theTs(df) dependence intersect the lines of t
critical points t* ~to simplify matters we do not show the
here! correspond, as in the case ofF/S junctions~Fig. 1d!, to
the points at which the second-order phase transition
comes first-order. Near these points one should expect
emergence of new states of the LOFF type,19,20 which are
probably realized~just as they are inF/S junctions! through
additional sinusoidal modulation of the pair amplitude in t
xy plane. However, the phases of these two-dimension
modulated structures in the neighboringS-layers coincide in
the 0-phase case, but probably differ byp in the p-phase
case.
as

s-

d
in

e-
he

ly

5. CONCLUSIONS AND DISCUSSION

Here is a short list summarizing the results of our stu
ies.

1. We have proposed a model of the superconduc
state inF/S systems that allows for a combination of BC
pairing with zero total momentum inS-layers and LOFF
pairing19,20with a coherent momentum of transverse motio
k.2I /v f , in F-layers. The pair amplitude inS-layers has a
constant sign, while inF-layers it oscillates with a period
af5k21. Scattering by nonmagnetic impurities for 2I t f,1
gives rise to heavy damping as the distance from theF/S
boundary grows and to loss of coherent coupling between
two boundaries of anF-layer.

2. The oscillatory dependence of the superconduct
transition temperature on the thickness of theF-layers is
related to the oscillations of the discontinuity in the pa
amplitude at theF/S amplitude, which lead to oscillations in
the Cooper pair flux from theS-layer to theF-layer. This
nonmonotonic dependence is inherent not only in multilay
but also inF/S double layers, which makes it possible~in
contrast to the earlier theories of Radovic´ et al.12 and Buzdin
et al.13! to explain the presence of oscillations in theTc(df)
dependence in the Fe/Nb/Fe triple-layer structure.14

3. As the most striking consequence of the quasi-o
dimensional realization of LOFF states, we have predic
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the phenomena of recurrent and periodically recurrent su
conductivities inF/S junctions and superlattices.

4. We have established that, depending on the valu
the transmission coefficient of theF/S boundary and the
purity of the ferromagnetic layers inF/S multilayers of the
same composition, theTs(df) dependence may reach a pl
teau in a monotonic manner or in an oscillatory manner. T
provides an explanation for the contradiction between
results of different groups of experimenters~see Ref. 8 and
Refs. 10 and 11 for Gd/Nb multilayers and Ref. 7 and Re
for Fe/V superlattices!.

The difference of the Usadel equation~25! stated in the
present paper from a similar equation obtained in ear
theories12,13refers only to the ferromagnetic metal and aris
because it was essentially postulated rather than derived.
approach, discussed in Sec. 2, to deriving Usadel equat
was based on using the integral equation~4! for the cor-
relatorHab(z,z8,v). This approach makes it possible to o
tain not only Eq.~19! for the pair amplitudeF(z,v) but also
the necessary boundary conditions~20!. The reason is tha
the integral equation~4! contains the full information abou
the parameters of the electronic structure and the trans
characteristics of the metals comprising the junction as w
as the information about the abrupt variation of the resp
tive quantities where the well-definedF/S boundary is
crossed. The boundary conditions~20! relating the flux of the
Usadel function to the discontinuity at theF/S boundary
generalize the conditions obtained earlier in Ref. 34 fo
junction comprised of dirty normal and superconducti
metals to the case of anF/S junction. Strictly speaking, of
the boundary conditions used in Refs. 12 and 13 only
first is correct, i.e., the one that states that the fluxes fromF
to S and back are proportional. The second condition c
cerning the continuity of the pair amplitude,F(10,v)5F
(20,v), introduced by de Gennes,35 is valid only for s j

→` (s51). For a finite value of the transmission coef
cient of theF/S boundary, the functionF(z,v) has a dis-
continuity proportional to the Cooper pair flux across t
boundary, as follows from~20! and as noted in Refs. 32 an
34. This fact together with the oscillatory behavior of t
pair amplitude inF-layers causes the superconducting tra
sition temperature to oscillate inF/S systems. Clearly, the
transmission coefficients j , which controls the amplitude o
the Cooper pair flux from theS-layer to theF-layer, is
largely determined by the technology of preparingF/S struc-
tures. Hence it must either be found from independent
periments~say, from electrical conductivity measuremen!
or be a adjustable parameter in the theory. Indeed, our
sults, reflected in Eqs.~37!, ~47!, and~49! and in Figs. 1 and
2, suggest that together with 2I t f the parameters j plays an
extremely important role in describing the various types
Tc(df) dependence in layeredF/S systems. The above for
mulas also suggest that decreasing the transparency o
F/S boundary~say, by moderate oxidation of the bounda
in the process of its formation! makes it possible to preserv
the superconducting properties of the system even when
S-layers are very thin (ds,js).

The difference in the nature of the mutual adjustment
superconductivity and ferromagnetism in superlattices an
r-
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F/S junctions is due primarily to the nonequivalence of t
boundaries of the ferromagnetic layer in the latter. Inde
the condition that there is no flux of LOFF pairs across
ferromagnet–vacuum boundary pins a crest of the func
F f(z,v) at this boundary, and an increase in the thicknessdf

of the F-layer leads to the above-mentioned oscillations
the discontinuity of the pair amplitude at theF/S boundary
and in the Cooper pair flux across the boundary, and t
nonmonotonicTc(df) dependence. Because of their perio
icity along the z axis, F/S superlattices with a period
L5df1ds have equivalent boundaries within one unit ce
This means that they allow not only for cosine (0-pha!
solutions but also for sine (p-phase solutions, which pin a
crest and node of the pair amplitude at the center of
F-layer. In accordance with the theory of second-order ph
transitions, within which we operate, in the given conditio
a state with a higher superconducting transition tempera
~a lower free energy! is realized. Hence the phase diagram
represented in Fig. 2 describe different cases of competi
of 0- and p-phase states due to simultaneous node–c
transitions at neighboringF/S boundaries of a superlattic
with increasingdf .

From the formal viewpoint, it can be expected that a
mechanism leading to oscillations in the discontinuity of t
pair amplitude and the Cooper pair flux across the bound
separating a superconductorS and a normal material also
leads to oscillations ofTc as the thickness of the norma
material increases. In this sense, the mechanism propose
Kagan and Dubovski�16 that explains the oscillations inTc by
the existence of quantum coupling between the two bou
aries of a semimetal or a semiconductor due to oscillation
the electron wave function, is universal. However, if the n
mal part of the junction is a metal, the reflection of the ele
tron waves with a wavelength on the order of the interatom
distance from inevitable roughnesses of the surface of
same scale complete averages these oscillations. In the
ence of impurities, this averaging is due to the scattering
electrons in the bulk of the film if the film is thicker than th
mean free path. Hence, in the case where a ferromagn
metal with a strong exchange field is in contact with a sup
conductor, we believe that the oscillatory nature of the p
amplitude in theF-layer is related to a LOFF state,19,20 and
the paramagnetic effect is, naturally, the mechanism
which Cooper pairs arriving from theS-layer are destroyed
Here one must bear in mind that the absence of electr
electron attraction in theF-layer (l f50 in our model! does
not stop quasiparticles from forming pairs. In view of th
proximity effect, pair correlations, whose source is t
S-layer, are induced in theF-layer up to depths on the orde
of the coherence lengthj f9 . Indeed, as shown in Sec. 3
electron exchange, whose intensity strongly dependence
the transparency of the boundary, causes collectivization
electron–electron interactions in the junction layer with
thickness of orderjs1j f9 . We note in this connection tha
the true order parameter for our inhomogeneousF/S system
is not D(z)5l(z)F(z)/N(z) but the pair amplitude35

F~z!}Re(
v.0

F~z,v!,
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which, in contrast toD, does not vanish when we go over
a F-layer.

Since all the results obtained in this paper are interpre
in terms of realization of a LOFF state with an oscillatin
pair amplitude inF-layers, we will briefly discuss the non
trivial effect of impurity scattering on this phase. As is we
known, a LOFF state is extremely sensitive the presenc
nonmagnetic impurities.21,22 The reason is that pair correla
tions in an F-layer are effective only for quasiparticle
whose constant-energy states (p,↑;2p1k,↓) are not mutu-
ally inverted in time, and the Anderson theorem is invalid
them. It is no surprise, then, thatj f9 acts as the coherenc
length in anF-layer; for 2I t f.1 this length is of order of
the mean free pathl f . Scattering by nonmagnetic impuritie
leads to damping of the oscillations of the functionF f(z,v)
as we move deeper into theF-layer and reduces the ampl
tude of this function at theF/S boundary atz50. This is
why Tc at the maximum points (df}paf) is restored only
partially and not to its nominal valueTcs ~see Figs. 1c, 1d
2c, and 2d!. At the first maximum point the value of th
depairing parameterDsks

2 proves to be of orderdf /dst f . As
the impurity concentration rises to 2I t f,1, the coherence
length and the oscillation period ofF f(z,v) decrease toj f9
.j f8;Aaf l f . In this case, in theTc (df) dependence ther
can be only one minimum~node! in F/S junctions and two
minima (0 andp) in superlattices~see Figs. 1a, 1b, 2a, an
2b!. After this the connection between the boundaries
F-layers is lost and a constant Cooper pair flux fromS-layers
to F-layers sets in.

What is important is that the approach to the descript
of the proximity effect inF/S systems developed in Sec. 2
free, in principle, from restrictions on the rate of impuri
scattering,t j

21 ( j 5 f ,s). However, the simple equations~19!
for the pair amplitude can be obtained only in the dirty lim
for pTt j!1 and 2I t f!1. Thus, the dirty limit condition for
a ferromagnetic metal withI @pT proves to be much more
stringent than for the superconducting part of theF/S
sample, which limits the applicability of Eq.~25! for the
function F f(z,v) considerably. ForpTt f!1 but an arbi-
trary value of the parameter 2I t f , we are forced to seek
simultaneous solution of Eqs.~9!, ~11!, and~17!, which leads
to the characteristic equation~47! for the complex-valued
wave numberkf . This makes it possible to study the effe
of competition of the diffusion (2I t f,1) and spin-wave
(2I t f.1) types of quasiparticle motion on the spatial b
havior of the pair amplitude in a ferromagnet. In such stro
ferromagnets as Fe and Gd, the exchange splitting of
Fermi surface amounts to 2I;103K, so that the value of the
parameter 2I t f to a great extent depends on the purity of t
metal. For instance, for Gd withv f51.23105ms21 and the
mean free pathl f;20 Å we have 2I t f;2. The spin rigidity
lengthaf in this case is of order 10 Å, so that the oscillatio
of Tc(df) should be appreciable. However, mutual diffusi
of the metals and uncontrollable impurities introduced in
process of preparing theF/S structures may considerabl
reduce the value of 2I t f ~especially in thinF-layers! and
make it impossible to detect the oscillations.

The presence of oscillations in theTc(df) dependence
does not necessarily mean that the experimental phase
d
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gram of superlattices contains ap-phase. The thing is tha
these oscillation occur in 0- andp-phase states, but the
periods are twice as large as in the case of aF/S junction.
The competition of these states related to the separatio
the maxima inTc by ddf5paf leads a situation in which the
periods of oscillations inF/S junctions and superlattice for
mally become equal. Hence only simultaneous experime
with F/S double layers and multilayers can irrefutably pro
the presence of ap-phase in theTc (df) phase diagram.
Note that, in contrast to the 0-phase state, thep-phase state
is characterized not only by the presence of pair-amplitu
oscillations inside theF-layer but also by the fact that th
phase of this amplitude changes byp when any layer (F or
S) is passed. In this sense thep-phase state having a one
dimensionally modulated and pair amplitude and an or
parameter closely resembles the LOFF state19,20 in ferromag-
netic superconductors. As a LOFF state, thep-phase is a
state with a spontaneous superconducting current. Howe
as Fulde and Ferrell showed in their pioneering paper,20 in a
LOFF phase this current is fully balanced by the current
unpaired quasiparticles. Probably, a similar situat
emerges inp-phaseF/S superlattices, which may serve a
ideal model systems for studying states of the LOFF typ

All our results were obtained under the assumption t
on the atomic scale theF/S boundary is well-defined and
that ferromagnetic ordering exists even in the thinn
F-layers possible. Clearly, the situation is much more co
plicated for the realF/S systems studied in the experimen
described in Refs. 7–11 and 14. Sometimes in view of
mutual solubility of theF and S metals and sometimes fo
purely technological reasons, theF/S boundary is found to
be smeared. Hence thin layers of a ferromagnetic mate
may prove to be paramagnetic8 or even nonmagnetic.14 In
principle, the adopted model ofF/S systems can easily b
broadened to incorporate the case of a thin nonmagn
layer between theF- and S-layers or allow for a
paramagnet–ferromagnet phase transition when theF-layer
reaches a critical thickness. Physically it is clear, howev
that if the depth of penetrationj f9 is much larger than the
typical thickness of the nonferromagnetic layers~7–10 Å!,
oscillations in the Cooper pair flux through such a smea
S/F boundary will still remain. Probably, the effect of buffe
layers with fairly thickF-layers can roughly be taken int
account by a simple renormalization of the exchange field
the electron–electron interaction constantls .

A critical comparison of the oscillatoryTc vs. df curves
depicted in Figs. 1c, 2a, and 2c~for F/S junctions and su-
perlattices! and the experimental results~Ref. 14 and Refs.
10 and 11, respectively! indicates two important discrepan
cies. First, only one maximum is detected inTc(df). Second,
the experimental plateau for this function always lies bel
the first minimum. The first discrepancy can be satisfacto
explained by the contamination of the ferromagnetic lay
by nonmagnetic impurities~so that 2I t f<1 holds! and the
slight or moderate transparency of theF/S boundary (ss

,1). For superlattices this means that the curves represe
in Fig. 2a must be replaced by the curves in Fig. 2a, wh
for F/S and F/S/F functions this means that the secon
maximum in Fig. 1c is too low to be observed against t
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plateau. The second discrepancy may be due primarily to
fact that the proposed theory does not allow for the effec
spin and spin–orbit scattering of electrons in the ferrom
netic layers. Incidentally, nonmagnetic impurities in the f
romagnetic act as spin scatterers.26 Since spin and spin–orbi
scattering mixes the quasiparticle spins↑ and↓, it will de-
stroy LOFF pair correlations21,22 and cause an additional de
crease inTc , this increasing the discontinuity in the pa
amplitude at theF/S boundary. Here, in view of the prox
imity effect, spin scattering has a depairing effect also on
BCS condensate of the superconducting layer to depth
order js . Additional suppression ofTc by spin and spin–
orbit scattering increases with the thickness of theF-layer up
to values of orderj f9 . Hence the positions of the minima an
the point at which theTc(df) dependence reaches a plate
gradually become lower. It can also be expected that the
and spin–orbit scattering will lead to additional damping
the pair amplitude in theF-layer, which may also have a
effect on the observability of oscillations in theTc (df) de-
pendence. Further development of the proposed theory is
visable and will facilitate the construction of a model ofF/S
systems that correctly explains their nature.

We are grateful to I. A. Garifullin, Yu. A. Izyumov
M. Yu. Kagan, B. I. Kochelaev, G. B. Te�tel’baum, and I. M.
Suslov for the interest in the present work and for the use
discussions.
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To examine the effect of hybridization of 4f electrons with conduction electrons on the crystal
field potential using neutron spectroscopy, we studied the effects of the crystal electric
field ~CEF! in intermetallic compounds of the type ReNi, in which chemical substitution is
followed by a transition of the cerium ions from an intermediate valence state to the Kondo state.
Measurements were performed both on cerium ions in the compounds Ce12xLaxNi (x50.5,
0.8!, where they have a whole-number population of the 4f shell, and on the paramagnetic
impurity ion Nd in the series of compounds Re12xNdxNi (Re5Ce, La, Y!, in which the
cerium ions are found either in an intermediate valence state or in the Kondo state. From the
neutron inelastic magnetic scattering spectra on Nd ions, we have reconstructed the
crystal field parameters in ReNi compounds and calculated the CEF level diagram of Ce ions in
these compounds as functions of the inter-ion distances Re–Ni. The results of our
calculations are in good agreement with the experimentally determined splitting diagram of the
ground-state multiplet of the Ce ions. We have determined that as the degree of
hybridization with the conduction electrons grows the CEF potential varies considerably and the
effective splitting of the 4f shell of the cerium ions increases. The estimated energy scale
of the splitting of the ground-state multiplet of the Ce31 ions in the ReNi CEF (DCEF;15 meV)
turns out to be commensurate with the Kondo temperature (TK;140 K for CeNi. Analysis
indicates that the CEF potential has a substantial effect on the formation of the valence-unstable
ground state of thef shell in this compound. ©1998 American Institute of Physics.
@S1063-7761~98!01205-0#
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1. INTRODUCTION

In compounds based on rare-earth elements the inte
tion of the localized 4f shell with the crystal electric field
~CEF! potential plays an extraordinarily important role in th
formation of the ground state and the excitation spectrum
the 4f electrons, these being the two most important fact
determining the physical properties of these compound
low temperatures. At the same time, for compounds in wh
the rare-earth ions have an unstable 4f shell, in theoretical
treatments the interaction with the CEF is typically cons
ered to be insignificant in comparison with hybridizatio
with the conduction electrons and, as a rule, is neglected

The excitation spectrum of the 4f electrons of cerium
ions in unstable-valence compounds obtained at temp
turesT.TK ~whereTK is the Kondo temperature! on poly-
crystalline samples using inelastic neutron scattering is u
ally a broad quasielastic distribution, which can be descri
with the help of the Lorentzian function. When the tempe
ture is lowered, there also appears an inelastic compo
with a maximum at an energy on the order of a few tens
meV ~see, for example, Ref. 1!. Recently, a number o
9431063-7761/98/86(5)/10/$15.00
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cerium-based unstable-valence compounds have been
covered, so-called Kondo insulators~CeNiSn, Ref. 2;
Ce3Bi4Pt3, Ref. 3!, in which, with the help of neutron scat
tering a gap~pseudogap! was discovered in the spectrum o
magnetic excitations of the 4f electrons along with the pres
ence of a narrow gap in the density of electron states nea
Fermi level. Moreover, a study on a CeNiSn single crys
showed that in CeNiSn the excitation spectrum of thef
electrons has the following structure: two peaks with en
gies ;2 meV and;4 meV. A gap in the excitation spec
trum of the 4f electrons can be obtained theoretically as
result of hybridization of the degenerate ground-state mul
let of the f electron with states in the conduction band wit
out taking other interactions into account. The spectr
above the gap in this case turns out to be broad and fre
noticeable structure.4,5 A possible reason for the appearan
of features in the energy spectrum may have to do with
interaction of spin-liquid Fermi-type excitations with singl
particle excitation of the CEF. A model was proposed in R
6 which takes this interaction into account in order to expl
the formation of the pseudogap in the excitation spectrum
4 f electrons of Ce ions in CeNiSn. A necessary condition
© 1998 American Institute of Physics
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this model is proximity of the excitation energies of thef
electrons in the CEF to the Kondo temperature. In this c
hybridization of the Kondo ground state and the CEF le
can lead to a gap~pseudogap! in the spectrum of spin states
An experimental estimate of the CEF level diagram of thef
electrons in CeNiSn has confirmed7 that for this compound
the energy of the first excited level and the half-width
quasielastic scattering characteristic of the Kondo interac
are close in value and have the scale;4 meV.

A 4 f gaplike excitation spectrum, similar to the spe
trum of Ce3Bi4Pt3, was discovered recently for a polycry
talline sample in the metallic compound CeNi atT512 K
~Ref. 8!. The thermodynamic and kinetic properties of th
compound are characteristic of systems with intermediate
lence. The temperature dependence of the magnetic sus
tibility has a maximum atT5140 K, and when the tempera
ture is lowered further the compound behaves like a P
paramagnet withx(0)'231023 emu/mol~Ref. 9!. The co-
efficient of the electronic component of the specific heatg is
equal to 85 mJ/~mol•K2! ~Ref. 10!. The temperature depen
dence of the magnetic component of the resistance (rm) has
a broad maximum atT'150 K, and at low temperature
rm;T2, which is characteristic of a Fermi liquid.9

On the basis of these data the Kondo temperature
estimated asTK'140 K, which is close to the characterist
energies for other compounds with intermediate valence
the same time, in contrast to the majority of compounds w
intermediate valence that have been examined, the mag
excitation spectrum in CeNi atT,TK has a gaplike form and
cannot be fitted by a Lorentzian at low energies. The mo
fied shape of the magnetic excitation spectrum in CeNi m
be associated with structure similar to that found in CeN
single-crystal studies althoughTK is considerable larger~by
severalfold! for CeNi than for CeNiSn. With the aim of ex
amining the possible role of the CEF potential in the form
tion of the ground state of unstable-valence ions it is of
terest to estimate the scale of the interaction of thef
electrons with the CEF in this compound.

2. EXPERIMENTAL APPROACH

For CeNi so far there have been no estimates of
interaction energies with the CEF. This situation is in p
due to the fact that cerium ions in CeNi are found in
intermediate valence state and it is not possible to dire
observe splitting off -electron levels in the CEF. The valenc
of the cerium ions in CeNi (v53.15 atT577 K! turns out to
depend on external parameters: it decreases when the
perature is increased11 and grows when pressure is applied12

In connection with the possibility of acting on the valence
cerium ions, an estimate of the splitting diagrams of
4 f -electron levels of Ce ions in a CEF can be approache
two ways.

The first way is connected with the application
‘‘negative’’ chemical pressure upon substitution of some
the Ce ions by La. In this case, when the lanthanum conc
tration is increased tox;0.5 in Ce12xLaxNi compounds the
cerium ions transition from the intermediate valence state
the Kondo regime, i.e., the degree of hybridization is d
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creased, and the valence becomes almost integer-valued
transition of the Ce ions into the Kondo regime leads to
appearance in the neutron inelastic magnetic scattering s
trum of peaks associated with transitions between
4 f -electron states due to splitting of the ground-st
J-multiplet in the CEF.8 Thus, the possibility opens up o
indirectly examining CEF effects on cerium ions in com
pounds of the type Ce12xLaxNi. Since the immediate envi
ronment of the rare-earth ions consists of seven nickel i
~orthorhombic crystalline lattice of CrB type!, when cerium
is substituted by lanthanum no changes in the type of ato
in the immediate environment take place, only the distan
to the neighboring nickel ionsR(Re–Ni), and to first order it
can be assumed that the ionic component of the CEF po
tial remains unchanged. Extrapolation of the values of
splitting energies of the CEF levels for cerium ions, whi
have a stable shell, with changes in the lattice parame
taken into account, allows one to estimate the scale of
splitting of the 4f shell in a CEF for compounds existing i
an intermediate valence state.

To determine the diagram of the CEF levels of the c
rium ions, when they are found in a state with a localizedf
shell, we can use the results of Ref. 8 forx50.8 ~0–7–15
meV!. For Ce0.5La0.5Ni, in which Ce is found near a transi
tion between the Kondo regime and an intermediate vale
state, low-temperature measurements are insufficient:
widths of the transitions between the CEF levels, determi
by the degree of hybridization of thef electrons with the
conduction electrons, are comparable to their energie
T512 K and it is impossible to unambiguously reconstru
the level diagram. Since the valence of the cerium ions
CeNi decreases with increase of the temperature, it may
expected that for the sample withx50.5, with increase of
the temperature the degree of hybridization will also d
crease. This should lead to a decrease of the widths of
transitions between the CEF levels in the neutron spec
i.e., measurements of inelastic neutron scattering spe
over a wide temperature range can make it possible to ob
the diagram of CEF levels of the cerium ions in this co
pound.

The second way of estimating the splitting diagram
the 4f shell is to determine the parameters of the CEF
tential with the aid of measurements of CEF effects on
elastic magnetic scattering by an impurity paramagnetic
~paramagnetic tag! in ReNi-based matrices and is similar
the approach used in Ref. 7. On the basis of the experime
data, it is possible to reconstruct the parameters of the C
potential in ReNi compounds and calculate the level diagr
of the cerium ions in CeNi. In addition, from a compariso
of the data for neodymium ions in compounds contain
cerium ions and without them, it is possible to determine
influence of the unstable valence of the cerium ions on
CEF potential. In principle, these methods can give vary
results for the CEF potential at the site of the rare-earth
since hybridization can lead to an additional ‘‘contribution
to the effective ‘‘CEF splitting’’ observed for the Ce ion i
an unstablef -shell.

In the present work we have implemented both of t
above-indicated methods and have compared the results
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FIG. 1. Temperature dependence of the electronic componen
the thermal expansion coefficient for the compounds Ce12xYxNi
and Ce12xLaxNi.
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3. MEASUREMENT TECHNIQUE AND SAMPLES

To perform the measurements, it is necessary first o
to choose the composition of the samples in which the
rium ions are found in a state with partially delocalizedf
shells. The state of the cerium ions with intermediate vale
in the investigated samples was determined on the bas
the experimentally obtained dependence of the valence
on the interion distances. To this end, we performed pr
sion x-ray measurements of the lattice parameters
Ce12x(La,Y)xNi substituted compounds over a wide tem
perature range~10–300 K!. The use of La and Y ions lead
to an increase~La! or decrease~Y! of the lattice parameters
Here the absence of anf shell in these ions allows one t
avoid additional contributions to the temperature variatio
of the lattice parameters from CEF effects. On the basis
these measurements we calculated the distances betwee
rare-earth ions and the neighboring nickel ionsR(Re–Ni).
Use of the distanceR(Re–Ni) as a physical parameter mak
it possible for compounds with low crystal symmetry to re
resent the influence of changes in the lattice constants
only one parameter. From the temperature dependence o
R(Re–Ni) distances obtained from x-ray diffraction me
surements we determined the thermal expansion coeffici
for the Ce12x(La,Y)xNi samples and isolated the electron
component of this coefficient (ael5aReNi2aLaNi) ~Fig. 1!.
For all the yttrium-bearing compounds and for some w
lanthanum a maximum is observed inael(T). A maximum
in the temperature dependence of the electronic compo
of the thermal expansion coefficient of intermediate-vale
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compounds is usually associated with a change in the m
number of localized electrons in the 4f shell of the cerium
ions with temperature.13 Substitution of Ce by La increase
the R(Ce–Ni) distance~Fig. 2! and forx.0.3 the lack of a
maximum is an indication of a transition to a stable state

FIG. 2. Concentration dependence of the distancesR(Re–Ni) for the com-
pounds Ce12xLaxNi ~j!, Ce12xYxNi ~h!, and Ce12xNdxNi ~s! at room
temperature. The measurement error is less than the width of the sym
The dashed lines were drawn by eye. The solid line is Ve´gard’s law for the
compounds Ce12xNdxNi for x.0.
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the f electron. This conclusion is also supported by t
change in the slope in the concentration dependence
R(Re–Ce) atx;0.5 ~Fig. 2!. An increase in the Y ion con
centration, on the other hand, decreases theR(Ce–Ni) dis-
tance and increases the valence.14 It turns out that for
R(Ce–Ni).2.98 Å the cerium ions have an integer-valu
population of their 4f shell over the entire investigated tem
perature interval. For CeNi compounds the position a
magnitude of the maximum in the electronic component
out of the observed systematic dependence onx: its position
turns up at a higher temperature and with a larger value
the amplitudeael than is the case even for the samp
Ce0.8Y0.2Ni ~Fig. 1a!, which has smaller values o
R(Re–Ni). This circumstance is possibly connected with
appearance of an additional contribution to the thermal
pansion coefficient at low temperatures from the Ce–Ce
teraction in the intermediate-valence lattice upon format
of the ground state of the cerium ions. This interaction c
also affect the interion distances in the regular~in the Ce
ions! rare-earth sublattice and is suppressed by the disor
ing attendant to substitution.

On the basis of the data on the dependence of the
lence state on the interion distanceR(Re–Ni) we determined
the composition of the samples to determine the parame
of the CEF potential and prepared polycrystalline sample
NdxCe12xNi (x50.1, 0.3!, in which the Ce ions are found in
an intermediate valence state, and Nd0.1La0.5Ce0.4Ni, in
which the cerium ions are found in the Kondo regime.
determine the effect of variations of the lattice parameters
the CEF potential at the rare-earth ion sites, we used sam
of Nd0.1La0.5Y0.4Ni and Nd0.3La0.7Ni, which do not contain
cerium ions. The same polycrystalline samples
Ce12xLax

60Ni (x50.5, 0.8! were used as in Ref. 8. All poly
crystalline samples were prepared in an arc furnace in
argon atmosphere. X-ray diffraction analysis of the samp
showed that the prepared compounds have orthorhom
structure of the type CrB. The fraction of other phas
present was less than 3%. The mass of the polycrysta
samples used in the neutron scattering measurements v
depending on the cerium concentration from 60 to 120 g

Inelastic neutron scattering experiments on samples c
taining Nd ions were performed on 4F2 and 2T three-a
spectrometers outfitted with cold~4F2! and hot~2T! neutron
sources on the Orphe´e neutron reactor~LLB, Saclay!, and
also on the MIBEMOL time-of-flight spectrometer~LLB,
Saclay!.

The measurements on the three-axis spectrometers
performed using theQ5const method withEf58.05 meV
on the 4F2 andEf514.7 meV on the 2T instrument. As th
monochromator and analyzer we used pyrographite~the
~002! reflection!, and with the help of the pyrographite filte
we suppressed the higher orders of reflection. The FW
energy resolution of the elastic peak wasdE50.44 meV
~4F2! anddE50.9 meV~2T!. We studied energy transfer i
the range 0–14 meV at temperatures 1.8–160 K~4F! and
0–30 meV at 12–80 K~2T!. The values of the neutron mo
mentum transfer varied from 0.9 to 5 Å21. For the
Nd0.1La0.5Ce0.4Ni sample the position of the level with
E>15 meV was determined from measurements on
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KDSOG-M time-of-flight spectrometer with reverse geom
etry ~IBR-2, JINR, Dubna! at T510 K.

The low-energy part of the inelastic neutron scatter
spectrum for the Nd0.3La0.5Ce0.4Ni sample was investigated
on the MIBEMOL time-of-flight spectrometer with fixed en
ergy of the incident neutronsEi53.27 meV at 15 and 45 K
The energy resolution atE50 was 0.16 meV.

The inelastic neutron scattering spectrum was separ
into its magnetic and phonon components on the basis
differences in the dependence of the intensity of magn
and nuclear scattering on the magnitude of the momen
transferQ. For the magnetic component the dependence
the intensity onQ was modeled by the form-factor for Nd31

ions,15 and for the phonon component we used the quadr
law S(Q);Q2. We analyzed the inelastic neutron scatteri
spectra corresponding to small (0.9– 2 Å21) and large
(4 – 6 Å21) values of momentum transfer. The correctne
of the procedure was confirmed by coincidence within
limits of experimental error of the calculated and measu
spectra for intermediate values ofQ. The procedure is de
scribed in detail in Ref. 7. Figure 3 presents the inelas
neutron scattering spectrum for Nd0.3La0.7Ni, measured on
the 4F2 spectrometer withQ51.76 Å21, with the magnetic
and phonon contributions plotted separately. It was fou
that at smallQ and low temperatures (T,60 K) the phonon
fraction did not exceed 10%.

To determine the CEF level diagram of the cerium io
when they are found in the state with the localized 4f shell,
we used the results of measurements on samples
Ce12xLaxNi (x50.5, 0.8!. Measurements of the inelasti
neutron scattering spectra forx50.5 at 12, 50, 100, and 15
K were performed on the HET time-of-flight spectromet
~ISIS, RAL! with incident neutron energyEi580 meV~Ref.
16!. The technique for separating out the magnetic com
nent is analogous to the procedure described in Ref. 8.
perimental data for the Ce0.2La0.8Ni sample are given in Ref
8.

4. EXPERIMENTAL RESULTS AND DISCUSSION

4.1. Parameters of the CEF potential in Nd xRe12xNi

The CEF potential at the neodymium ion sites in orth
rhombic compounds of the type ReNi with point group sy
metry C2v can be described within the framework of a ph
nomenological approach with the help of a Hamiltonian w
nine independent parameters. To determine the paramete
the CEF Hamiltonian we used the parametrization sugge
in Ref. 17:

Hc f5W(
nm

xnmÕn
m ,

whereÕn
m5Ôn

m/Fnm , Ôn
m is the Stevens operator,18 and the

normalized factorsFnm are tabulated in Ref. 17. The param
eterW is a scale factor. The CEF parametersxnm are related
by the condition(uxnmu51.

In the case under consideration, to determine the par
eters of the CEF potential it is necessary to obtain exp
mental data containing at least nine independent parame
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FIG. 3. Magnetic~circles! and phonon~triangles! components of
the neutron inelastic scattering spectra for the sample Nd0.3La0.7Ni.
The measurements were made atT55.8 K on a 4F2 spectromete
by theQ5const method forQ51.76 Å21.
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such as the energy positions of the peaks and their inte
ties. The Nd31 ions have total angular momentumJ59/2,
i.e., the ground-state multiplet has degeneracy equal toJ
11510. The interaction of thef shell with the CEF can
lower the degeneracy to two. Thus, the ground-stateJ mul-
tiplet of the 4f shell in NdNi splits into five levels~dou-
blets!. Measurement of the inelastic neutron scattering sp
tra at low temperatures allows one to measure transit
only from the ground state to all excited levels of the groun
state multiplet and thereby indirectly obtain the splitting d
gram of the 4f level for Nd31. The diagrams of the Nd ion
4 f levels so obtained are depicted in Fig. 4 for all the inv
tigated samples as functions of the distanceR(Re–Ni) be-
tween the rare-earth ion and the neighboring Ni ions. T
figure also plots results of a calculation of the energy lev
of the 4f electrons of the Nd31 ions for two of the distances
for which experimental data exist. The CEF parameters
energy levels were calculated from relations of the CEF
perposition model19 which allows for the dependence of th
geometrical coordination factors on the lattice paramet
As our starting parameters we took the CEF parameters
tained from experimental data for the Nd0.3La0.7Ni sample
~diagram 5 in Fig. 4!. For changes in the interion distanc
on the order of 50% of the maximum change in our series
experiments the calculated level diagram~squares in Fig. 4!
is found to be in good agreement with a linear interpolat
~solid line in Fig. 3! between the experimentally obtaine
level diagrams. With further variation of the interion di
tances the calculated positions of the energy levels begi
differ substantially from their experimental values. In vie
of this, as a dependence linking the CEF parameters and
interion distances, we used a linear interpolation of the
perimental results for the Ndx(La,Y)12xNi samples.

From the results presented in Fig. 4 it follows that as
interion distanceR(Re–Ni) decreases, the splitting of the 4f
si-
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n
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shell increases for Nd31 ions in compounds not containin
cerium ions ~the ‘‘normal’’ matrix, corresponding to dia-
grams 1 and 5 in Fig. 4!. In compounds containing cerium
ions, the observed changes in the energy levels follow
opposite trend. In Nd0.1Ce0.4La0.5Ni, in which cerium has a
localized f shell ~the Kondo regime! ~diagram 4 in Fig. 4!,
only an insignificant decrease of the magnitude of splitting
observed. At the same time, for compounds containing

FIG. 4. Experimentally determined splitting diagrams for the 4f levels of
Nd31 in ReNi compounds as functions of the distance between the rare-e
ion and the neighboring Ni ions@R(Re–Ni)# ~1—Nd0.1La0.5Y0.4Ni, 2—
Nd0.3Ce0.7Ni, 3—Nd0.1Ce0.9Ni, 4—Nd0.1Ce0.4La0.5Ni, 5—Nd0.3La0.7Ni!. The
solid line corresponds to measurement of the positions of the levels o
4 f electrons as functions of the distanceR(Re–Ni) and was obtained by
interpolation. The symbolsj and h correspond to the calculated resul
~see text!. The dashed lines were drawn by eye.
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rium ions with intermediate valence~diagrams 2 and 3 in
Fig. 4! the decrease in the energy levels is much greater

Attention is drawn to the nonlinearity of the dependen
of R(Re–Ni) for Ce12xNdxNi on x in the region of smallx
~Fig. 2!. Substitution of 10% Ce by Nd leads to an increa
in R(Re–Ni) in comparison with CeNi. At the same tim
with further growth ofx from 0.1 to 0.3, as could be ex
pected from a comparison of the neighboring distan
R(Nd–Ni)52.947 andR(Ce–Ni)52.955 Å, the distance
R(Re–Ni) decreases with growth ofx, i.e., the CeNi lattice
has noticeably smaller parameters than could be expe
from the extrapolation fromx50 of the values ofR(Re–Ni)
for samples containing neodymium ions. The anomaly in
concentration dependence of the distance to the neighbo
Ni ions, observed in pure CeNi, is in accord with the ‘‘no
monotonicity’’ of the data on the electronic component
the thermal expansion coefficient~Fig. 1!: apparently, in the
ordered rare-earth sublattice an additional interaction
present, which is probably the reason for the observed
fects. The presence of an additional interaction is appare
also the reason for the stronger deviation of the level d
gram for the sample withx50.1 from the interpolationa
dependence in comparison with the results forx50.3 ~dia-
grams 3 and 2 in Fig. 4, respectively!.

The low-temperature measurements of the inelastic n
tron scattering spectra~i.e., when only the ground state
populated! yield eight independent parameters: the energ
of the four excited levels and the four values of the dev
tions of the intensities for the transitions from the grou
state. Additional parameters can be obtained by measu
the intensities of the transitions between the excited level
the 4f electrons, which become increasingly populated as
temperature is increased. Thus, for example, the meas
ments of the inelastic neutron scattering spectra of
Nd0.3La0.7Ni sample in the temperature interval 5–160
made it possible to determine the values of the nine indep
dent experimental parameters: the energies of all the exc
levels ~Fig. 4! and the ratios of the intensities for the fiv
transitions~see Table I for Nd0.3La0.7Ni! ~The intensity of the
transition from the ground state to the first excited state w
used to calibrate the measurements performed on diffe
spectrometers.! But for the samples with Nd ions in a cerium
matrix (Nd0.3Ce0.7Ni band Nd0.1Ce0.9Ni! we determined 10
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independent experimental parameters: the energies of al
excited states~Fig. 4! and the ratios of intensities for si
transitions~these data are given in Table I for Nd0.3Ce0.7Ni!.
Thus, for the samples with impurity ions in lanthanum a
cerium matrices we obtained experimental informati
which turned out to sufficient to uniquely determine the p
rameters of the CEF Hamiltonian. First we reconstructed
CEF parameters for the compounds Nd0.3La0.7Ni,
Nd0.3Ce0.7Ni, and Nd0.1Ce0.9Ni. The procedure for calculat
ing the CEF parameters, based on a complete grid searc
CEF parameter space, is described in detail in Refs. 20
21. For the remaining samples, the values of the CEF par
eters were obtained by using the CEF parameters
Nd0.3La0.7Ni as the starting parameter set in the local mi
mization procedure.20 A grid search of the space of all pos
sible values of the CEF parameters showed that there exi
unique parameter set which is adequate to the available
perimental information for each of the investigated samp
Final results for the parameters of the CEF potential
Walter’s parametrization17 are listed in Table II for all the
investigated samples.

4.2. Ce level diagram in Ce 12xLaxNi

Figure 5 plots the results of measurements of the te
perature dependence of the magnetic component of the
elastic neutron scattering on the Ce0.5La0.5Ni sample. In con-
trast to the measurements performed atT512 K ~Ref. 8!,
two peaks are observed in the neutron spectra as the tem

TABLE I. Experimentally determined values of the ratios~with relative
accuracy roughly 30%! of the squares of magnitudes of the matrix eleme
of the transitions between the CEF levelsu i & andu j & to the probability of the
transitions between the statesu1& and u2& (u^ j uJ'u i &u2/u^2uJ'u1&u2) for
Nd0.3La0.7Ni and Nd0.3Ce0.7Ni.

Nd0.3La0.7Ni Nd0.3Ce0.7Ni

i / j 1 2 3 4 5 i / j 1 2 3 4 5
1 4.6 1 0.61 0.30 1.1 1 - 1 0.1 0.58 0.3
2 - 0.85 ,0.1 0.44 2 - ,0.15 ,0.15 0.36
3 - ,0.2 ,0.2 3 - 0.62 0.70
4 - ,0.4 4 - 1.02
5 - 5 -
s
TABLE II. Values of the nearest-neighbor distances between the rare-earth ions and Ni@R(Re–Ni), DR>60.001 Å# and the CEF parameters in Walter’
parametrization17 for the investigated samples:W(DW.60.02 meV) andxnm(Dxnm.60.015).

Nd0.3La0.7–Ni Nd0.1Ce0.9Ni Nd0.3Ce0.7Ni Nd0.1La0.5Y0.4Ni Nd0.1Ce0.4La0.5Ni

R(Re–Ni),Å 2.997 2.968 2.958 2.926 2.992
W, meV 0.49 0.56 0.60 0.52 0.46
x20 0.225 0.165 0.152 0.191 0.226
x22 0.066 0.199 0.205 0.029 0.056
x40 0.020 20.101 20.091 0.013 0.013
x42 20.049 20.020 20.029 20.060 20.042
x44 0.069 0.030 0.048 0.067 0.021
x60 20.394 20.292 20.276 20.356 20.400
x62 20.043 20.040 20.048 20.016 20.061
x64 20.057 20.081 20.087 20.061 20.098
x66 0.080 20.072 20.064 0.228 0.072
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ture is raised, more distinctly and with larger widths than
Ce0.2La0.8Ni. These peaks may be associated with transiti
between CEF levels. Fitting the spectra with the help of t
inelastic and one elastic Lorentzian gives the following e
ergies: E'9 meV (G/2;5 meV) and 18 meV (G/2
;10 meV). At low temperatures, when only the grou
state is populated, these peaks correspond to two transi
from the ground state, which allows one to directly det
mine the CEF level diagram of the 4f electrons of the cerium
ions in this compound.

Note that raising the temperature should lead to pop
tion of the first excited state, i.e., it should be accompan
by a decrease in the intensity of the transitions from
ground state and an increase in the intensity of the trans
from the first excited state (E'9 meV). The energy of this
transition is approximately equal to the energy of the tran
tion from the ground state to the first excited state. In ot
words, the peak atE'18 meV should decrease as the te
perature is increased while the peak withE'9 meV can vary
arbitrarily since its intensity is determined by the ratio of t
matrix elements of the two transitions contributing to th
peak at intermediate temperatures. Figure 6b plots the t
perature dependence of the intensity of theE'18 meV peak

FIG. 5. Magnetic component of neutron inelastic scattering in the sam
Ce0.5La0.5

60Ni, measured in the temperature interval 12–150 K. The so
lines are fits to the spectra using two inelastic~dotted lines! and one quasi-
elastic~dashed line! Lorentzian.
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and a calculation of the variation of the intensity in th
single-ion approximation, due to temperature population
the ground state. For ease of comparison, the data are pl
in relative units and scaled to the values atT5150 K. As
can be seen from the figure, as the temperature is decre
the intensity of the observed experimental transition does
increase, as follows from calculation, but remains const
and forT,50 K it even decreases. What is more, a notic
able increase in the transition energies takes place in
temperature interval~Fig. 6a!. A similar change in the mag
netic excitation spectrum of the cerium ions with decrease
the temperature was observed for the heavy-fermion c
pound CeAl3 ~Ref. 22! and was interpreted as a consequen
of formation of the Kondo ground state as the temperat
was lowered. In the compound Ce0.5La0.5Ni, in which the
cerium ions are found in the Kondo regime, it appears tha
new singlet ground state is also formed and the excita
spectrum of the 4f electrons is correspondingly transforme
when the temperature is lowered.

As R(Re–Ni) decreases with increasing Ce concen
tion in ~Ce,La!Ni compounds, the hybridization energy in
creases. A comparison of the obtained level diagrams for
Ce0.5La0.5Ni samples ~0–9–18 meV for T>50 K! and
Ce0.2La0.8Ni samples~0–7–15 meV! ~Ref. 8! shows that as
the hybridization energy increases, an increase is observe
the splitting energy of the 4f levels combined with a broad
ening of the transitions between these levels. Note tha
increase in the hybridization energy also leads to an incre
in the temperature of the maximum in the thermal expans
coefficient~Fig. 1!, which is consistent with ideas about th
connection between the position of the maximum and
hybridization energy.13

le

FIG. 6. a! Temperature dependence of the energy of the inelastic peak
the spectra of the magnetic component of inelastic neutron scattering fro
sample of Ce0.5La0.5

60Ni. ~Lines drawn by eye.! b! Temperature dependenc
of the relative total intensity of the inelastic peak withE'18 meV; solid
line—calculation of the variation of the population of the ground state ba
on the level diagram of the cerium ion; triangles—experimental d
~dashed line drawn by eye!.
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4.3. Influence of intermediate-valence state on level splitting
and potential parameters

Figure 7 plots as functions ofR(Re–Ni) some of the
CEF potential parameters that have relatively large val
and at the same time appear to be most sensitive to delo
ization of the 4f electrons. All of the values of the CE
parameters obtained for compounds with cerium ions in
Kondo regime coincide well with the quantities obtained
interpolation of the CEF parameters obtained for a ‘‘n
mal’’ matrix ~see Sec. 3.1!. The only exception is the valu
of W, which is somewhat smaller. For the matrix with inte
mediate valence the deviation of all the plotted paramete
significant, which is evidence of an appreciable redistrib
tion of charge brought about by partial delocalization of t
4 f electrons of the cerium ions in the intermediate-valen
regime. It is striking that, as was the case in the meas
ments on the other intermediate-valence compound Ce5

~Ref. 23!, considerable variation was observed in the six
order parameters for the CEF potential at the paramagn
tag, to which only electrons with orbital angular momentu
l>3 can contribute. In the compounds under study, onlf
electrons possess such large angular momentum, and
variations indicate either partial delocalization of these el
trons or formation~as a result of hybridization of thef elec-
trons with states in the conduction band! of a new electron
density distribution withf -type symmetry from the electro
wave functions~e.g., ofd andp type! of lower symmetry.

The CEF Hamiltonian for the cerium ions, for which th
total angular momentumJ55/2, contains five independen
terms. To determine these parameters only on the bas
measurements of inelastic neutron scattering spectra on
Ce ions in CeNi, it is necessary to determine at least
independent quantities characterizing the splitting of
ground-state multiplet in the CEF~the energy levels, and th
probabilities of the transitions between them!. In principle,

FIG. 7. Values ofW and the CEF parametersx30 , a22 , x60 , and x66 ,
derived from the experimental data, plotted versus distanceR(Re–Ni) for
Nd0.1La0.5Y0.4Ni, Nd0.3Ce0.7Ni, Nd0.1Ce0.9Ni, Nd0.1Ce0.4La0.5Ni, and
Nd0.3Na0.7Ni ~see Fig. 4!. The squares~j! plot the results of calculation~see
text!.
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the required number of parameters of the CeNi spectrum
be obtained. However, in the given situation, where the tr
sition widths are comparable to the energy levels but
energies of the transition from the ground state to the fi
excited state and between excited states are roughly equ
is quite difficult to obtain the transition intensities direct
with reasonable accuracy. Furthermore, sixth-order terms
absent from the CEF Hamiltonian for the cerium ions, whi
precludes a direct comparison of the CEF potential para
eters obtained from measurements on Nd and Ce ions. W
this in mind, to compare data on the CEF potential obtain
by different methods, we calculated the splitting diagrams
the 4f levels of the cerium ions in CeNi from the CEF p
rameters obtained from measurements on neodymium ion
ReNi compounds. These results, and also results of di
measurements of the energy levels of the Ce ions, are plo
in Fig. 8. It is evident from a comparison of the calculat
splitting diagrams that the dependence of the energies of
excited levels on the interion distances, obtained by two
ferent methods, are in good agreement. On the basis of
fact, we can conclude that the CEF potential parameters
termined on the basis of measurements with a paramagn
tag ~Nd! give a realistic estimate of the CEF in ReNi com
pounds.

As follows from our calculation of the CEF level dia
gram of the Ce ions, based on measurements with the p
magnetic tag Nd~Fig. 8!, with decrease ofR(Re–Ni), i.e.,
with increase of the degree of hybridization of the 4f elec-
trons of the Ce ions in the ReNi matrix, the variation of t
CEF potential is manifested in an increase of the CEF ene
levels. The same trend is also seen in results obtained
direct measurement on Ce ions~Fig. 8!, i.e., the two ap-
proaches to determining the CEF potential give identical
sults. At the same time, in the matrix not containing ceriu

FIG. 8. Splitting diagrams of the 4f levels of the Ce31 ions in a crystal
electric field, derived from measurements of inelastic neutron scattering
rectly from the Ce ions (Ce12xLax

60Ni: 4—x50.5, 6—x50.8! and calcu-
lated from values determined experimentally from measurements on
paramagnetic tag Nd of the CEF parameters in the ReNi compound~1—
Nd0.1La0.5Y0.4Ni, 2—Nd0.3Ce0.7Ni, 3—Nd0.1Ce0.9Ni, 5—Nd0.3Na0.7Ni! ver-
sus the distance between the rare-earth ion and the neighboring Ni
@R(Re–Ni)#. The solid line is an extrapolation of the positions of th
4 f -electron levels of the Ce31 ions plotted versusR(Re–Ni) according to
data for samples 4 and 6. The dotted line is an interpolation of the pos
of the 4f level plotted versusR(Re–Ni) in a ‘‘normal’’ matrix. The solid
vertical line shows the value ofR(Re–Ni) for CeNi.
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ions ~sample 1!, a decrease in the Re–Ni distance leads to
insignificant decrease in the calculated CEF energy levels
the cerium ions. It can be concluded that hybridization of
4 f electrons with conduction electrons in intermedia
valence compounds makes a substantial additional contr
tion to the energy splitting of the ground-state multiplet
the 4f shell of the cerium ions.

Comparison of the CEF potential parameters obtai
earlier with the help of a Pr impurity tag21 with the results of
the present work demonstrates qualitative agreement of
obtained data: only an insignificant change in the scale fa
W is noticed in the Kondo regime while in the intermedia
valence state along with a change inW a pronounced chang
is observed in a number of CEF parameters, above all
sixth-order parameters. Calculation of the Ce level diagr
on the basis of the CEF parameters in ReNi compoun
obtained from measurements with the Pr tag, also leads t
increase in the splitting energies of the CEF levels of the
ions when going from the Kondo regime to the intermedia
valence regime. However, the values of the CEF energy
els of the cerium ions turn out to be approximately half tho
obtained in the present work. The marked difference in
CEF parameters reconstructed from the inelastic neu
scattering spectra on Pr and Nd ions is also the case for o
nickel compounds, in particular for ReNi5 ~Refs. 24 and 25!.
It is possible that the difference in the results obtained on
and Nd ions has to do with the pronounced perturbation
the electronic subsystem caused by the Pr ions, which ca
near to a valence-unstable state. Therefore the use of Pr
as the paramagnetic tag does not always make it possib
obtain quantitative information about the CEF potential.

Extrapolation of the excited energy levels of the Ce io
as functions of the Re–Ni distance makes it possible to e
mate the possible splitting diagram of the cerium ions in
CeNi matrix in the case when the cerium ions have a loc
ized 4f shell: 0,;14, ;25 meV. On the basis of specifi
heat and magnetic susceptibility measurements in CeNi,
arrive at the estimateTK;120– 150 K.9,10 If we use an em-
pirical relation between the maximum in the magnetic co
ponent of the inelastic neutron scattering spectrumE
'45 meV, Ref. 8! and the Kondo temperature determin
from thermodynamic characteristics,26,27 then we obtain a
value close toTK'130 K. The quantityTK turns out to be
approximately equal to the energy of the first excited C
level. Thus, as in the case of CeNiSn, the energy scale o
interaction of the 4f electrons with the CEF in CeNi turn
out to be similar to the energy of hybridization with th
conduction electrons, and neither of these interactions ca
excluded from consideration in an analysis of the format
of the ground state of the Ce ion, i.e, the CEF poten
probably plays a role in the formation of the ground state
the f shell in CeNi. It may be surmised that it is precise
this closeness between the hybridization energy and the m
nitude of the splitting of the 4f level in a CEF that leads to
novel magnetic excitation spectra.

5. CONCLUSION

The studies reported here of the CEF potential in Re
compounds make it possible to estimate the possible ma
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tude of the splitting of the 4f shell of cerium ions in the
intermediate-valence compound CeNi, which turns out to
comparable to the Kondo temperature. The CEF level d
gram of the 4f electrons of the Ce ions was obtained both
extrapolation of inelastic neutron scattering data on ceri
ions with almost integer-valued population of thef shell in
compounds near the transition to the intermediate-vale
state and from a calculation of the CEF parameters rec
structed from experimental data for Nd impurity ions
CeNi-based valence-unstable compounds. The good ag
ment of the results confirms the applicability of the param
netic tag method for obtaining a realistic estimate of t
magnitude of the CEF potential in intermediate-valence co
pounds. Note that as in the case of CeNi5 ~Ref. 23!, a sub-
stantial change in the sixth-order CEF parameters, which
determined mainly by electrons with wave-function symm
try corresponding tof electrons, is observed in CeNi.
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1/f Noise in a nonequilibrium phase transition: experiment and mathematical model

V. P. Koverda,* ) V. N. Skokov, and V. P. Skripov
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The results of an experimental investigation of a high-power source of broad-band 1/f noise,
which can be generated in a system of two interacting nonequilibrium phase transitions,
are presented. This process takes place when a normal conductor-superconductor phase transition
is superposed on the critical liquid-vapor transition in a boiling coolant. A mathematical
model describing a nonequilibrium phase transition in a complicated nonlinear system with two
interacting order parameters, which involves the conversion of white noise into stochastic
fluctuations of the order parameters with 1/f and 1/f 2 spectra, is proposed. The properties of the
model fluctuations with a 1/f spectrum agree qualitatively with the experimentally observed
properties. A characteristic difference between the model fluctuations with a 1/f 2 spectrum and
random walks is also noted. ©1998 American Institute of Physics.@S1063-7761~98!01305-5#
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1. INTRODUCTION

The interest in random processes whose spectral de
varies in inverse proportion to the frequency, which has
waned over the course of many years, is due to the w
spread occurrence of this phenomenon and the absenc
generally accepted, universal mathematical models. Stoc
tic processes with a spectrum that is inversely proportiona
the frequency~1/f noise! are observed in systems of ve
diverse types, i.e., from current fluctuations in radiophysi
devices to cellular automata simulating the phenomenon
self-organized criticality, and nonlinear dynamic syste
with intermittency. As a result of numerous investigatio
~see, for example, Refs. 1–5!, the main properties of 1/f
noise have been established. However, the mechanism
the appearance of a 1/f spectrum and the location of it
sources are frequently unclear. Thermal mechanisms for
appearance of 1/f n noise in metals were discussed in Refs
and 7. It was noted that the value ofn depends on the ther
mal isolation of the substrate. Theoretical arguments reg
ing the possibility of switching off the heat conductio
mechanism were advanced in Ref. 8. It was claimed the
that 1/f n noise arises as a result of a nonlinear interact
between diffusive and heat conduction modes. The idea
n can vary in the passage through a second-order phase
sition point was advanced in Ref. 9. General arguments
garding the appearance of 1/f n noise in distributed system
were presented in Ref. 10. According to Ref. 10, the sc
invariant power-law form of the spectra in phonon system
attributable to fluctuations of the phase diffusion rate a
relaxation of the phonon modes. Most of the published st
ies devoted to this phenomenon deal with spatially dist
uted systems. In Ref. 11 we presented the results of the
perimental detection of the generation of signals with af
spectrum when a superconductor undergoes Joule heati
a boiling coolant. The distinguishing feature of these exp
ments is that there was only one source of stochastic sig
with a 1/f spectrum in the system. Such behavior is asso
9531063-7761/98/86(5)/6/$15.00
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ated with the interaction of phase transitions occurring
nonlinear subsystems containing both a superconductor
a current and a boiling coolant.

In this paper we present detailed experimental res
from the observation of the stochastic process with a hi
intensity 1/f spectrum accompanying the Joule heating
thin films of high-temperature superconductors in boiling
trogen and propose a mathematical model of a nonequ
rium phase transition in a two-dimensional system wh
converts white noise into noise with 1/f and 1/f 2 spectra.

2. EXPERIMENT

The experiments were performed on thin-fil
YBa2Cu3O72x bridges. The thickness of the bridges w
'0.3mm, its width was 0.5–1.0 mm, and its length was 2
mm. The superconducting transition temperatures wereTc

586– 88 K, and the critical current densities werej c

5105– 106 A/cm2 at 77 K. During the experiment the
samples were immersed directly into liquid nitrogen. T
current–voltage characteristics were measured in a pote
static regime.

When a transport current above the critical value w
passed, thermal instability developed in the films with t
formation of a temperature–electric-field domain, leading
the appearance of ‘‘descending’’ segments on the curre
voltage characteristic with a negative differential resistan
Figure 1 presents a typical current–voltage characteristic
sample. SegmentAB corresponds to a superconducting
stable low-resistivity state. SegmentBC corresponds to the
appearance of a thermal domain in the superconducting fi
Heat exchange with the liquid nitrogen is mediated on t
segment by single-phase convection. When there was f
convective heat transfer, the nitrogen layer near the sur
of the high-Tc superconductor heating element was sup
heated. When superheating amounting to several deg
was achieved, local bubbling of nitrogen on a ‘‘weak’’ sp
of the sample occurred. Bubbling was observed visually,
© 1998 American Institute of Physics
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a jump occurred along the loading line on the curren
voltage characteristic~CD in Fig. 1!. SegmentDE in Fig. 1
corresponds to local~‘‘point’’ ! boiling.

Oscillations associated with oscillations of the he
removal rate were observed on the current–voltage cha
teristic in a nucleated boiling regime. In Fig. 1 they are
dicated by short strokes~along the loading line of the
electrical circuit!. The fluctuations of the voltage drop on th
potential contacts and the transport current were recorde
S9-8 oscilloscopes connected to a computer. At certain lo
~segmentEF in Fig. 1! a significant increase in the oscilla
tion amplitude was observed, and random jumps occu
from pointE to pointF ~along the loading line!. The detach-
ment diameter of the bubbles increased, and the train o
dividual bubbles transformed into a vapor jet with the fo
mation of a ‘‘dry’’ spot at the boiling site. The heat flu
density in this case corresponded to the first critical flux d
sity for the transition of nitrogen from nucleated to film bo
ing (;106 W/m2). In other words, segmentEF in Fig. 1 can
be associated with a nonequilibrium phase transition fr
nucleated to film boiling~a boiling crisis!. However, the lo-
cal nature of the boiling process was not destroyed, and
vapor was generated, as before, from a focal ‘‘weak’’ spot
the film. The local nature of the boiling crisis observed c
be associated with the strong variation of the release of
along the sample due to localization of the thermal domain
a potentiostatic regime.

When the load was increased further, the vapor bou
ary underwent abrupt motion with the formation of a co
tinuous vapor film on the sample surface~point G in Fig. 1!.
The reverse transition from continuous film boiling to nuc
ated boiling occurred at different loads~point K!, i.e., hys-
teresis was observed on the current–voltage characteris

The measured oscillograms of the voltage drop on
potential contacts~or the transport current! were used to cal-
culate the spectral densities of the oscillations associ

FIG. 1. Current–voltage characteristic of a thin-film high-Tc superconductor
bridge in boiling nitrogen.
-
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with the boiling of nitrogen. With the exception of segme
EF in Fig. 1, the spectra obtained had a typical Lorentz
shape. On segmentEF, along with the nonequilibrium
superconductor–normal-conductor phase transition, th
was a phase transition associated with a local boiling cr
under the conditions of Joule heating~which always occurs
when a current–voltage characteristic has ‘‘descendin
segments!. Figure 2~curve1! shows a typical realization o
the voltage drop on the potential contacts corresponding
segmentEF in Fig. 1 ~the critical regime!. For comparison,
the figure also shows a realization of the voltage drop~curve
2! corresponding to segmentDE in Fig. 1. The length of
each realization was determined by the buffer memory of
oscilloscope and corresponded to 2048 points. The time
terval between the points varied from 500ms to 20 ms, mak-
ing it possible to vary the signal observation time~which
determines the lower frequency boundary in the spectru!
from approximately 1 to 40 s. The observed oscillatory p
cesses were stationary. Figure 3 presents typical distribu
functions of the voltage-drop fluctuation amplitude in t
critical regime. It is seen from the figure that the proce
observed can be considered Gaussian in some approx
tion. However, it is seen that the experimental distributi
function could be separated into two maxima. The separa
is greater, the greater is the angle of inclination of the lo
ing line of the electrical circuit relative to the current

FIG. 2. Realization of the voltage drop on potential contacts in the crit
regime~1! and in the ‘‘ordinary’’ nucleated boiling regime~2!.

FIG. 3. Distribution functions of the voltage-drop fluctuation amplitud
1—load resistanceR051 V, 2—R055 V.
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voltage characteristic~the greater is the load resistance of t
electrical circuit!. Complete symmetry of the distributio
function relative to its mean value was observed only wh
the working point corresponded to the midpoint of the int
val EF ~see Fig. 1!. Otherwise the distribution function wa
asymmetric, i.e., the system spent more time at pointE or at
point F.

The spectral densities were calculated from the m
sured realizations by fast Fourier transformation. For all
realizations recorded in the critical regime with differe
time intervals between the points, the spectral density va
in inverse proportion to the frequency in the frequency ran
f <100 Hz. Such behavior remained unchanged when
voltage of the source varied over a range of several tenth
a volt and when the load resistance of the circuit varied
several fold, which corresponded to variation of the angle
inclination of the loading line relative to the current–volta
characteristic over a range of.30°. It should be noted tha
the observed amplitudes of the voltage drop on the samp
the critical regime amounted to tenths of a volt and were t
more than five orders of magnitude greater than the cha
teristic signal amplitudes detected when such 1/f noise is
observed in solids.

Figure 4 presents the spectral density of the voltage-d
fluctuations in the critical regime. The spectrum was o
tained from realizations recorded with different temporal d
cretization and was averaged over a set of realizations~about
70 realizations!. The dashed line in Fig. 4 was obtained as
result of treatment of the low-frequency part of the spectr
( f 52310222102 Hz) and corresponds to a functio
}1/f 1.02. In the frequency rangef .102 Hz a dependence
close to 1/f 1.5 was observed. We stress that Fig. 4 cor
sponds to a fairly large ensemble of realizations; howev
the spectra for the individual realizations~which cover three

FIG. 4. Spectrum determined from experimental realizations in the crit
regime.
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orders of magnitude in the frequency! also had the 1/f form.
Thus, the interaction of two nonequilibrium phase tra

sitions associated with nonlinear processes in a super
ductor with a current and a boiling coolant gives rise to
tense stochastic fluctuations with a 1/f spectrum.

3. MATHEMATICAL MODEL

The experiment described certainly shows that we
dealing here with a single point source of 1/f stochastic sig-
nals. These results cannot be explained within the wid
used model of an exponentially broad distribution of rela
ation times,1–3 in which 1/f noise is treated as a result of th
superposition of random relaxation processes. To obta
range covering four orders of magnitude with respect to
frequency, a spread of time constants of the individ
sources over a range of six orders of magnitude is requ
according to that model.3

An alternative approach to explaining the experimen
results described is to find a dynamic system which wo
convert white noise into noise with a 1/f spectrum. The ex-
periment also showed that such a system operates in th
cinity of a nonequilibrium phase transition.

In the vicinity of the phase transition, for the order p
rameterT we can write the equation

Ṫ5aT2bT31G~ t !, ~1!

whereG(t) is a source of white noise, which is present
any physical system. It is known that the fluctuations d
scribed by an equation of the typeẋ5F(x)1G(t), where
F(x) is a smooth continuous function andG(t) is Gaussian
d-correlated noise, cannot lead to a 1/f spectrum. Equations
of this type give a spectrum with a Lorentzian or qua
Lorentzian shape. In particular, Eq.~1! gives a Lorentzian
spectrum.

As was noted above, 1/f behavior was observed exper
mentally under conditions in which two interacting noneq
librium phase transitions take place in a two-component n
linear system. Therefore, the following two-dimension
system of equations was proposed in Ref. 12 for this cas

Ṫ52bTP21aP1G~ t !,

Ṗ52bPT21gT1G~ t !. ~2!

System~2! describes two phase transitions with the intera
ing order parametersT and P. The parametersT and P are
determined by the specific nature of the nonequilibriu
phase transitions and can be related to the temperature
dimensions of the dissipative regions, or fluctuations of
kinetic coefficients. Fluctuations of the latter near pha
transition points were treated theoretically in Ref. 9. W
shall describe the properties of this system without spec
ing the physical meaning ofT andP in the present work.

When the coefficients are equal (a5g), system~2! has
a potential character and is equivalent to Eq.~1!. In this case
it gives coinciding Lorentzian spectra forT andP regardless
of the value of the coefficients. However, ifa,g holds, a
noise intensity levelG(t) at which the fluctuations ofT are
proportional to 1/f and the fluctuations ofP are proportional

l
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to 1/f 2 can easily be selected for any values of the coe
cients. Such a dependence was traced in Ref. 12 over fo
five orders of magnitude in frequency by performing nume
cal integration by the Euler method and employing a
quence of random numbers with a Gaussian distribution
G(t).

Let us first consider the behavior of the system~2! in the
absence of noise@G(t)50#. The asymptotic solutions in th
limit t→` for b.0, 0,a,g, and nonzero initial condi-
tions have the form

T5A a

2b~g2a!t
, P5A2a~g2a!t

b
, ~3!

i.e., they describe a relaxation process withT}t21/2 and P
}t1/2, so that their product is a constant:TP5a/b.

However, numerical integration of the system by the E
ler method with the integration stepdt,

Ti 115Ti1~2bTi Pi
21aPi !dt,

~4!
Pi 115Pi1~2bPiTi

21gTi !dt,

reveals that as time passesT andP follow the asymptotes~3!
only up to a certain limit, which depends only ondt. When
this limit is achieved,P decreases abruptly, whileT in-
creases, then relaxation occurs again, and thereafter the
cess repeats itself~Fig. 5!. Such behavior is attributed to th
fact that the derivative is taken at the initial point of thei th
interval when the system is integrated numerically and
numerical integration is unstable. To make it more stable
went over to the system

Ti 115Ti1$@2b~~12c!Ti1cTi 11!#Pi
21aPi%dt,

~5!
Pi 115Pi1$@2b~~12c!Pi1cPi 11!#Ti

21gTi%dt,

in which, depending onc (0<c<1), the value ofTi in the
first equation and the value ofPi in the second equation ca
be taken for calculating the derivative not only at the init
(c50) or final point (c51), but also at the midpoint of the
i th integration interval. In particular, whenc51, the system
~5! gives the asymptotes~3! for any value ofdt and initial
conditions.

FIG. 5. Results of the numerical integration of system~4!.
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However, if the value of the quantity being integrated
taken away from the initial point of the integration interva
some ambiguity in the way to introduce the noise into t
system appears. We tested several variants, and below in
paper we shall present the results of the numerical inte
tion of a system with noise of the following form:

Ti 115$Ti1@2~12c!bTi Pi
21aPi #dt%

3~11cPi
2dt!211Widt,

~6!
Pi 115$Pi1@2~12c!bPiTi

21gTi #dt%

3~11cTi
2dt!211Widt,

in which the value of the derivative is calculated during t
numerical integration precisely as in the system witho
noise ~5! and the effect of the noise is taken into accou
later on. The noiseWidt has the form of a random-walk
differential, whereWi is a Gaussian distribution of random
numbers with the root-mean-square deviationD.

As an example, Figs. 6–8 present the results of the
merical integration of the system~6! with the following val-
ues of the parameters:b51, a50.5, g51, D52.14, and
c50.5. Whendt50.05, each integration interval include
130 000 points. A realization of the processT(t) and its
spectrumST( f ) are presented in Fig. 6, and the distributio
functionFT is presented in Fig. 7. It is seen that it resemb
a Gaussian distribution, but this is true only whena
,0.5g. Whena.0.5g holds,FT has a minimum near zero
which is characteristic of other values of the parameters
the realizations of~6! calculated.

For comparison, the inset in Fig. 8 presents a realiza
of the random-walk process

w~ t !5E
0

t

W~ t !dt,

which has the same spectrum asSP(t), together with a real-
ization of P(t). This comparison reveals that the 1/f 2 diver-

FIG. 6. Spectrum ofST( f ) and realization ofT(t) obtained by numerical
integration of the system~6!. Dashed line—plot ofST( f )}1/f 1.05.
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gence of the spectrum asf→0 for the realization ofP(t) is
caused by increases in the derivatives, rather than an incr
in the amplitude as in the case of random walks. The sa
applies toT(t), which has 1/f divergence. Both noise com
ponents, i.e., the 1/f and 1/f 2 components, are stationary an
do not depend on the initial conditions. Good reproducibil
of the spectra and the distribution functions is noted for ot
sequences of random numberswi . A decrease inc from
unity down to zero does not strongly alter the appearanc
the realizations, but a peak appears in the high-freque
region of their spectra due to the instability of the numeri
integration at small values ofc.

It is noteworthy that the spread of the fluctuation amp
tudes ofP andT for an assigned value ofdt correlates with
the limiting values ofP andT, which are given by the inte

FIG. 7. Distribution function of the fluctuation amplitude ofT(t) obtained
by numerical integration of the system~6!: 1—a50.5, 2—a50.75.

FIG. 8. Spectrum ofSP( f ) and realizations ofP(t) and of the random
walks w(t) obtained by numerical integration. Dashed line—plot
SP( f )}1/f 2.
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gration of the system~4! without noise. The spikes of larges
absolute value only slightly exceed these limits. Another
teresting property of the solutions of the system is the f
that the productP(t)T(t) has a spectrum of white noise, an
the mean valuêP(t)T(t)&.a/b holds to within good ac-
curacy for any values of the parameters of the system
realization lengths. This means that the equation for the fl
tuations ofT adjusts itself to the characteristic zero eigenf
quency and that we are dealing with self-organized critic
ity.

The results of the integration of~6! for the parameters
indicated withdt50.05 and the root-mean-square deviati
D51.8 in Figs. 6–8 show the behavior of the 1/f noise and
1/f 2 noise over a range of five orders of magnitude in f
quency. When the number of integration points is increa
further, the branches of the fluctuation spectra ofT and P
become horizontal, i.e., for assigned values of the integra
step and the dispersion of the 1/f and 1/f 2 spectra are ob-
served only in a limited frequency range. However, th
range can be increased, and more distant low-frequencyf
and 1/f 2 asymptotes can be traced for the same values of
parametersa, b, andg of the system, if the integration ste
dt is diminished by a factor ofn with a simultaneous in-
crease inD by a factor ofAn as the number of intervals i
increased. Therefore, the hope remains that if we would h
a source of ‘‘true’’ white noise in the form of a sequence
d functions with infinitely short spacing and if we knew ho
to integrate such equations, the system~2! would give
branches of the 1/f and 1/f 2 spectra with infinite low-
frequency asymptotes down tof 50.

At the values 0,a,g the proposed model gives a 1/f
spectrum for the fluctuations ofT, a realization ofT(t), and
a distribution function which conform with the experime
described above~Figs. 2–4!. The properties of the 1/f noise
in this case are similar to those observed in radiophys
devices, where the mean is^T(t)&50. However, ifa andg
are negative (0.a.g), or if they are positive, but the nois
acts on the equations forP and T in antiphase, we have
^T(t)&Þ0 and ^P&Þ0. The behavior of the 1/f and 1/f 2

components and their stationary character are maintaine
this case for the same absolute values ofa, b, andg in the
system. The realizations of the fluctuations ofT in this case
contain sharp spikes and outwardly resemble the realizat
which are obtained in models of ‘‘sand-pile’’ cellula
automata13 or highway traffic,14 in which there has recently
been interest in connection with the study of self-organiz
criticality.

4. CONCLUSIONS

In this paper we have presented the results of an exp
mental investigation of an unconventional source of 1f
noise for radiophysics, where we are apparently always d
ing with the superposition of a large number of sources
noise of different nature. In our case the source of inte
broad-band 1/f noise is associated with the interaction of tw
nonequilibrium phase periods. The mathematical model p
posed for describing its properties conforms qualitativ
with the experiment, but, apart from the generation of 1f
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noise, it predicts the generation of a satellite with a 1f 2

spectrum. The properties of the 1/f 2 noise differ from those
of random walks, since no increase in the amplitude of
spikes is observed, and the divergence, as in the case o
1/f noise, is associated with increases in the derivatives.
1/f 2 noise was not observed experimentally. It is possi
that the fluctuations responsible for that noise are associ
with the parameters of the nonequilibrium phase transition
the boiling coolant, require additional diagnostics, and we
therefore, not detected. In any case, this poses a new pro
for experimentation.

This work was supported by the Russian Fund for F
damental Research~Project Code 96-02-16077a!.
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Dynamics of small spin polaron in the three-band model of two-dimensional spherically
symmetric antiferromagnet

A. F. Barabanov and E. Z̆a̧sinas
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The retarded Green’s functionG(k,v) of a single small spin polaron in the three-band model for
the CuO2 plane is calculated in the self-consistent Born approximation. It is shown that such
a spin polaron is a good quasiparticle excitation for realistic values of spin exchangeJ and
effective hoppingt. The polaron spectral densityAp(k,v) demonstrates small damping in
contrast to the results of calculations starting from the bare hole; i.e., the pole strengthZp(k) of
the energetically low-lying quasiparticle peak varies from 50% to 82% forJ/t;0.1– 0.7.
The quasiparticle peak dispersion reproduces the main features of the bare polaron spectrumVk
near the band bottom. The spherically symmetric approach is used for the description of
spin excitations. This approach makes it possible to consider the quantum antiferromagnetic
background without the spontaneous symmetry breaking and the unit cell doubling. The
new method of the self-consistent calculation, which is based on continuous-fraction expansion
of the Green’s function, is presented in detail. The method preserves the proper analytical
properties of the Green’s function and makes it possible to analyze the nature of its singularities.
© 1998 American Institute of Physics.@S1063-7761~98!01405-X#
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1. INTRODUCTION

The hole motion in a two-dimensional~2D! s51/2 quan-
tum antiferromagnet~AFM! has been studied in dept
theoretically.1 The important question is whether a hole i
jected in the undoped ground state behaves like a quas
ticle. This problem is mainly investigated in the framewo
of self-consistent Born approximation~SCBA! for the t2J
model2–7 and Kondo lattice.8 There are only a few studie
devoted to the three-band Hubbard model or the Em
model,9,10 which is more realistic for CuO2 planes in high-Tc

superconductors~HTSC!. For thet2J model it was shown
that the spectral density functionAh(k,v) of a doped hole
revealed a quasiparticle peak of intensityZk'J/t and a
broad incoherent part that has a width of about (6 – 7)t. The
quasiparticle band bottom corresponds to the mome
k15(6p/2,6p/2). Similar results were obtained for th
Emery model.11,12 The presence of a large incoherent p
and small intensity of the quasiparticle peak indicate t
bare holes are rather poor elementary excitations even fo
case in whichk is close tok1 .

In order to investigate the hole motion in thet2J model
one usually decouples the hole operator into a spinless
mion and an antiferromagnetic magnon operator. As a re
the zero approximation corresponds to the dispersion
band with zero energy of the hole. The hopping of the p
ticle appears only due to the fermion–magnon scatter
9591063-7761/98/86(5)/12/$15.00
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which is treated by the usual perturbation method ink-space.
For this reason, we think that in this approach the result
quasiparticle pole in the fermion Green’s function involv
mainly a polaron with a large radius. A similar situatio
takes place in the usual treatment of a hole motion in
effective three-band model11–13 and the Kondo-lattice
model,8 where one starts from a bare hole rather than from
small-radius magnetic polaron.

In the framework of the effective three-band model w
studied the spectral density functionAp(k,v) of a single
small polaron, i.e., an excitation which at the outset ta
into account a local hole-spin coupling. It is known that t
simplest candidate for such a small polaron is an analog
the so-called Zhang–Rice singlet in the CuO4 plaquette.14,15

The mean-field spectrumVk of this excitation has been stud
ied extensively15 and will be used as the zero approximatio
in our treatment. We shall consider the coupling of a sm
polaron to spin-wave excitations in SCBA for the corr
sponding two-time retarded Green’s functionG(k,v).

Our motivations to studyAp(k,v) and the correspond
ing quasiparticle band are the following. First, it is easy
show for the one-hole problem that the mean-field energy
the polaronVk represents the center of gravity of the spect
function:

Vk5E
2`

`

vAp~k,v!dv. ~1!
© 1998 American Institute of Physics
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This means that the minimum ofVk is the upper bound o
the actual position for the quasiparticle band bottom. T
SCBA based on a bare hole Green’s function gives the m
mum value of the quasiparticle energyvh

min522.6t12 for a
typical value of copper–copper AFM exchange const
J50.7t. Here t is a constant of the effective oxygen
oxygen hopping via an intervening copper site~note that our
unit of energy is twice that of Ref. 12,t52t!. As to the
value of the small polaron mean-field band bottom, it tu
out to be substantially lower thanvh

min , Vk523.17t, for
the same value ofJ/t. We may conclude, therefore, tha
important local correlations are lost in SCBA when we st
from the bare hole operators.

Second, we shall show that a small polaron represe
the elementary hole excitation much better than a bare
dressed by magnons in the framework of the SCBA. This
manifested by a relatively large intensity of a quasiparti
peak in our calculation.

Finally, the mean-field spectrumVk of the simplest
small spin polaron explicitly depends on the state of the
tiferromagnetic background. In the case of the long-ran
order stateVk demonstrates a flat band region, which is clo
to the magnetic Brillouin zone boundary.15 This region cor-
responds to the bottom of the band. Moreover, if the dir
oxygen–oxygen hopping, the finite temperature, and a m
complicated form of a small polaron wave function are tak
into account, thenVk reproduces the experimentally ob
served, extended saddle point,16–20 which is directed along
the line (0,p)2(0,0).21 Therefore, it seems important to a
certain whether the quasiparticle band reproduces the p
liarities of Vk dispersion. Using a very simple variant of th
model, we shall determine below whether this is in fact
case.

The distinctive feature of our investigation is the cons
eration of the AFM copper spin subsystem in a spherica
symmetric approach.22,23Such an approach is most approp
ate in treating the quantum 2D AFM at any finite tempe
ture. As a result, the scattering of a spin polaron by s
excitations in the singlet spin background leads to the sp
tral function periodicity relative to the full Brillouin zone
Note that the conventional two-sublattice spin approa
leads to periodicity relative to the magnetic~reduced! Bril-
louin zone.2–7,12

This paper is organized as follows. In Sec. 2 we give
derivations for the self-consistent equation for the Gree
function in the case of the small polaron approach. In Se
we present the procedure that makes it possible to avoid
iterative solution of the self-consistent equation for comp
energies. The procedure is based on the continuous-frac
expansion of the Green’s function and consequently mak
possible to calculate the coefficients of the continuo
fraction expansion with use of the quadrature method.
Sec. 4 we deal with the termination of the continuou
fraction, which leads to the correct analytical properties
the resulting Green’s function. The numerical results for
self-energies and spectral functions, the relation of our
sults to the previous approaches, and the discussion are g
in Sec. 5. In Sec. 6 we summarize the results. The Appen
contains some details of the approach, which gives the
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pression for the integrals over the spectral density in term
the chain representation of the continuous fraction.

Some of our results were presented in a brief report.24 In
this paper we present additional results, describe the
method, and give more details about the calculations.

2. EFFECTIVE HAMILTONIAN AND SMALL POLARON
GREEN’S FUNCTION

Following Refs. 9, 10, and 15, we adopt the Hamiltoni
that corresponds to one-hole problem in the CuO2 plane of
the high-Tc superconductors:

Ĥ5t (
r ,a1 ,a2 ,s,s8

cr1a1 ,s
† cr1a2 ,s8S 1

2
dss812sss8Sr D

1
J

2 (
r ,g

SrSr1g , ~2!

wherea1 ,a256gx/2, 6gy/2, g56gx , 6gy . Here and be-
low gx,y are the basic vectors of a copper square latt
(ugu[1), r1a are four vectors of the O sites nearest to t
Cu siter , the operatorcs

† creates a hole with the spin inde
s561 at the O site,sss85sss8/2, and the operatorS rep-
resents the localized spin at the copper site. As mentio
above,t is the integral of oxygen hole hoppings, which tak
into account the coupling of the hole motion with copp
spin subsystem, andJ is the constant of the nearest-neighb
AFM exchange between the copper spins.

It is well known that the most prominent feature of th
Hamiltonian~2! is that the low-energy physics of hole exc
tations is described by the Bloch sumsBk,s

† which are based
on one-site small-polaron operatorsBr ,s

†

Bk,s
† 5

1

ANKk
(

r
eikr Br ,s

† , ~3!

Br ,s
† 5

1

2 (
a

~cr1a,s
† Zr

s̄s̄2cr1a,s̄
† Zr

ss̄!. ~4!

Kk5K 1

N (
r ,r8

e2 ik~r2r8!$Br ,s ,Br8,s
† %L

511S Cg1
1

4Dgk .

Here and below$,% and @,# stand for an anticommutator an
commutator, respectively; ^...&[Q21Tr@e2bH...#, and
Q5Tre2bH; b5(kT)21 is the inverse temperature;s̄[
2s; Zr

s1s2[us1&^s2u are the Hubbard projection operato
for Cu sites state,gk5(1/4)(g exp(ikg), andCg5^S0Sg&.

To calculate the average for commutators and antico
mutators such asKk , we take into account that these expre
sions are reduced to the two-site or three-site spin correla
functions. In principle, it is necessary to solve a se
consistent problem for the hole and spin subsystems in o
to find these correlation functions. However, in the limit of
small number of holes it is possible to ignore the reve
influence of the holes on the spin subsystem. We can t
use the results of Refs. 22 and 23, where the indicated
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correlation functions are calculated in the spherically sy
metric approach for the spin subsystem. In particular, in
approach the three-site correlation functions can be
pressed in terms of the two-site spin correlation functio
Cr5^S0Sr&. We recall that due to the spherical symme
^Si

aSj
b&5dab^Si

aSj
a&5 1

3^SiSj&, ^Si
a&50. Simultaneously, as

T→0, the spin subsystem is described by a long-range-o
state with finite effective magnetizationm, Cr(ur u→`)
5m2(21)r x1r y; here the value ofm is dictated by the Bose
condensation of spin excitations at the antiferromagn
vectorq05(p,p).

Note thatBk,s
† uL& corresponds to the CuO2 plane state

with the total spin equal to 1/2 ifuL& is the singlet state. We
treat Bk,s

† as a candidate for the elementary excitations
erator and calculate the corresponding retarded two-t
Green’s functionG(k,v) and the spectral density

Ap~k,v!52
1

p
Im G~k,v1 i01!,

G~k,v!5^Bk,suBk,s
† &v[2 i E

t8

`

dteiv~ t2t8!

3^$Bk,s~ t !,Bk,s
† ~ t8!%&. ~5!

Using the equations of motion, the retarded two-tim
Green’s functionG(k,v) can be expressed~see, for ex-
ample, Refs. 25 and 26! in the following form, which is
analogous to the Dyson equation:

G21~k,v!5G0
212S~k,v!, ~6!

S~k,v!5^RuR&~ irr !5^Rk,suRk,s
† &2^Rk,suBk,s

† &

3^Bk,suBk,s
† &21^Bk,suRk,s

† &, ~7!

where

G05~v2Vk!21, Rk,s5@Bk,s ,Ĥ#

5
1

ANKk
(

r
e2 ikr Rr ,s , ~8!

Rr ,s524tBr ,s1Rr ,s
t 1Rr ,s

J , ~9!

Rr ,s
t 52

t

2
sS (

g,a,s1

s1Zr
s̄s1cr1g1a,s̄1

2 (
g,a,s1 ,s2

s2Zr
s̄s1Zr1g

s1s2cr1g1a,s̄2D ,

Rr ,s
J 5

J

4
sS (

g,a,s1

s1~Zr
s̄s2Zr1g

s2s̄12Zr1g
s̄s2Zr

s2s̄1!Cr1a,s1D ,

~10!

Vk5^$Rk,s ,Bk,s
† %&5~tQt1JQJ!/Kk , ~11!

Qt~k!52
7

2
28S 1

4
1CgDgk1S 1

8
2Cg1

1

2
C2gDg2k

12S 1

8
2Cg1

1

2
CdDgdk ,

QJ~k!5Cg~gk24!.
-
is
x-
,

er

ic

-
e

Here and belowd5gx1gy , andgdk5cos(kxg)cos(kyg).
Note that the expression~6! is formally exact. However,

in contrast with the Dyson equation for the causal Gree
functions, the diagrammatic representation is absent for
self-energy part~7!. We see from Eqs.~6! and ~7! that the
self-energyS~k,v!, which accounts for the interaction e
fects, is expressed in terms of the higher-order Green’s fu
tions. One should notice, first, that the terms linear inBk,s

do not contribute to the irreducible Green’s function~7!.
Second, the lowest-order self-energy contribution is provid
by the first term on the right-hand side of expression~7!,
while the second term leads to higher-order corrections. F
lowing Ref. 7, we evaluate~7! with a proper decoupling
procedure for the two-time correlation functio
^Rk,s(t)Rk,s

† (t8)&. This procedure is equivalent to SCB
in a usual diagrammatic technique.7 In our case this mean
that the two-time correlation function is decoupled into t
spin–spin correlation function and the polaron–polaron c
relation function. The adopted decoupling procedure p
serves the main character of the polaron site operator~4!—
four hole site operators surround the copper spin operato
can be represented schematically in the form

K Zr1
~ t !S (

a1

cr21a1
~ t !Zr2

~ t ! D
3S (

a2

Zr3
~ t8!cr31a2

† ~ t8! DZr4
~ t8!L

.K S (
a1

cr21a1
~ t !Zr2

~ t ! D S (
a2

Zr3
~ t8!cr31a2

† ~ t8! D L
3^Zr1

~ t !Zr4
~ t8!&. ~12!

We note that the more complex decoupling procedure w
also tested by us; it did not qualitatively alter the resu
given by approximation~12!. In the next step we project th
polaron operators in~12! onto Bks :

ci~ t !Zj~ t !.jBks~ t !, j5^$ci~ t !Zj~ t !,Bk,s
† %&. ~13!

Since we calculate only the irreducible part of th
Green’s function~7!, the averageŝZr 1

(t)Zr1
(t8)& are trans-

formed to the corresponding spin-spin correlation functio
^Sr1

a (t)Sr4

a (t8)&. Collecting all the terms, we have

^Rk,s~ t !Rk,s
† ~ t8!&.N21(

q

Kk2q

Kk
G2~k,q!

3^Bk2q,s~ t !Bk2q,s
† ~ t8!&

3^S2q~ t !Sq~ t8!&, ~14!

where

G~k,q!5tGt~k,q!1
J

2
GJ~k,q!,

Gt~k,q!54gk2qS 11gk2q

2Kk2q
21D ,

GJ~k,q!54gqF S 3

4
2CgD 4gk2q

3Kk2q
21G ,
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^S2q~ t !Sq~ t8!&5
1

N (
r ,r8

eiq•~r82r !^Sr~ t !Sr8~ t8!&.

Using the spectral representation for the Green’s fu
tions, we obtain the following intermediate result for th
self-energy:

S~k,v!5
1

N (
q

Kk2q

Kk
G2~k,q!

3E
2`

` dv1

p E
2`

` dv2

p

eb~v11v2!11

~ebv111!~ebv221!

3
Im@G~k2q,v11 i01!#Im@D~q,v21 i01!#

v2~v11v2!1 i01 .

~15!

The spin excitation Green’s function is22,23

D~q,v!5^S2q
z uSq

z&52
8JCg

3

12gq

v225vq
2 , ~16!

where

vq
25232Ja1Cg~12gq!~2D111gq!.

We ignore the influence of doped holes on the copper s
dynamics and use the spin spectrum parameters calculat
Ref. 22 ~the vertex correctiona151.7, the spin excitations
condensation partm250.0225, andD50 at T50!.

As a result, we obtain the integral equation for t
Green’s function that always arises in the framework of
SCBA:

G~k,v!5
1

v2Vk2S~k,v!
, ~17!

where

S~k,v!5
1

N (
q

M2~k,q!@~11nq!G~k2q,v2vq!

1nqG~k2q,v1vq!#. ~18!

Herenq51/@exp(bvq)21# is the Bose function and

M2~k,q!5
Kk2q

Kk
G2~k,q!

~24Cg!~12gq!

vq
. ~19!

The functionG~k,q! corresponds to the bare vertex for th
coupling between a spin polaron and a spin wave. It
known27 that this vertex is substantially renormalized forq
close to the AFM vectorq05(p,p). This renormalization is
due to the strong interaction of a polaron with the conden
tion part of spin excitations that must be taken into acco
at the outset. As a result, the renormalized vertexG̃(k,q)
must be proportional to27 A(q2q0)21Ls

22, whereLs is the
spin–spin correlation length;Ls→` in the case of a long-
range-order state of the spin subsystem. Below we take
renormalization into account empirically by the substitutio

G~k,q!→G̃~k,q!5G~k,q!A11gq. ~20!

The introduced vertex correction is proportional touq2q0u
for q close to q0 . We have used also the following tw
-

in
in

e

s

a-
t

is

functions for the vertex correction,A11gq
3 and A11gq

5,
and have obtained the results similar to those presented
low. Note that the bare vertex leads to a dramatic decreas
the quasiparticle band width.

3. SOLUTION OF THE INTEGRAL EQUATION

The equation~17! is usually solved by an iteration pro
cedure. We propose here an alternative method, whic
based on the continuous-fraction expansion ofG(k,z):

G~k,z!5
b0

2

z2a02

b1
2

z2a12
¯

bn
2

z2an2
¯ ,

an5an~k!, bn5bn~k!, ~21!

where

b0
25E

2`

`

Ap~k,v!dv5Kk ,

a05
1

b0
2 E

2`

`

vAp~k,v!dv5Vk .

The coefficientsbn , an , n.0 are related to the spectra
density Ap(k,v) via the set of orthogonal polynomial
Pn(v), which satisfy the recurrence:28–32

P21~v!50, P0~v!51,

Pn11~v!5~v2an!Pn~v!2bn
2Pn21~v!, ~22!

and

an5
*2`

` vPn
2~v!Ap~k,v!dv

*2`
` Pn

2~v!Ap~k,v!dv
, ~23!

bn11
2 5

*2`
` Pn11

2 ~v!Ap~k,v!dv

*2`
` Pn

2~v!Ap~k,v!dv
. ~24!

Here we have used the nonnormalized form of the poly
mials

E
2`

`

Pn~v!Ps~v!Ap~k,v!dv5dnsS )
m51

m5n

bmD 2

.

Comparing Eqs.~21! and ~17!, we see that the self
energyS(k,z) is the continuous fraction which is similar t
G(k,z). Thus we can introduce the spectral density

r~k,v!52Im@S~k,v1 i01!#/p

and the set of polynomialsPn(v) with the recurrence analo
gous to~22!:

Pn~v!5~v2an!Pn21~v!2bn
2Pn22~v!,

P0~v!51, P21~v!50,

where

b1
25E

2`

`

r~k,v!dv, a15
1

b1
2 E

2`

`

vr~k,v!dv,

an115
*2`

` vPn
2~v!r~k,v!dv

*2`
` Pn

2~v!r~k,v!dv
,
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FIG. 1. The coefficientsan ~squares! and bn

~crosses! of the continuous-fraction expansion o
Gp(k,v) as functions onn for k5(p/2,p/2): a!
J50.7t; b! J50.1t. Calculated on the 32332 cell
lattice.
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bn11
2 5

*2`
` Pn

2~v!r~k,v!dv

*2`
` Pn21

2 ~v!r~k,v!dv
, n>1. ~25!

On the other hand, we have the following relation fro
Eq. ~18!:

r~k,v!5
1

Kk

1

N (
q

M2~k,q!@~11nq!Ap~k2q,z2vq!

1nqAp~k2q,z1vq!#. ~26!

Inserting the expression forr(k,v) in Eq. ~25!, we can
express the coefficientsan11 andbn12 in terms of the inte-
grals of the form

E
2`

`

~v6vq!mP i
2Ap~k2q,v!dv, i<n, m50,1.

~27!

Now, the trick is that the polynomials inv in the inte-
grals ~27! have the degree less than or equal to 2n11. As
was proved by Nex,29 such integrals may be expressed
terms of the coefficients$a0 ,...,an ,b0 ...,bn%. The details of
such a procedure are presented in the Appendix. It turns
therefore, that in SCBA we can recursively calculate pairs
coefficients an11 ,bn11 and obtain S(k,v) in the
continuous-fraction form. Of course, we must calculate
multaneously the coefficients at all the chosenk1q points in
the first Brillouin zone. Below the chosen points correspo
to a lattice of 32332 unit cells. Our procedure allows us t
avoid the iterative solution of Eq.~17! for complex energies.

4. TERMINATION OF THE CONTINUOUS FRACTION

The procedure outlined in the previous section would
efficient if after calculating a finite number of coefficien
an , bn , n<n0 , we could appropriately approximate tha
part ~infinite in our case! of the continuous fractionTn0

which has not been calculated. In other words, we rewrite
expression~21! in the form
n

ut,
of

i-

d

e

t

he

G~k,z!5
b0

2

z2a02

b1
2

z2a12
¯

bn0

2

z2an0
2Tn0

~k,z!
~28!

and try to find a functionT̃n0
~so-called «terminator»! that is

close toTn0
.

Various ways to construct such approximations are
scribed in the literature on the recursion method.29–31 The
asymptotic behavior of continuous-fraction coefficients
governed by the band structure and singularities of spe
density.31 The main asymptotic behavior depends on
band structure:$an% and $bn% converge toward limits in the
single band case and oscillate endlessly in a predictable
in the multiband case. Damped oscillations are created
isolated singularities. The main point here is that an isola
simple pole produces exponentially damped contribution
$an%, $bn%, n→`. For our case it means that the quasip
ticle pole position and weight could be obtained with hi
accuracy from finite number of coefficients, and t
asymptotic behavior determines the incoherent part of
spectrum. It is obvious that the spectrum we deal with ha
lower bound and no upper bound. We can thus expect
coefficients will not converge to some finite values but w
rather tend to infinity.

In Fig. 1 we represent the coefficientsan andbn as func-
tions ofn calculated according to the procedure described
the preceding section for two values ofJ ~J50.7t and
J50.1t! and for k5(p/2,p/2). We see that the distinctiv
feature of this dependence is that for largen the coefficients
an and bn are linear functions ofn. Accordingly, the slope
for an coefficients is twice as large as the slope forbn . The
behavior of the coefficients may therefore be approxima
as

bn'l1n1l2 , an'2l1n1l3 , l i5l i~k!, n@1.
~29!

It is interesting that the coefficients for thet2J model have
analogous behavior when the slave-fermion Hamiltonian
this model2 is treated in SCBA.4 For J50.4t, k
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5(p/2,p/2) the coefficientsan andbn , which are governed
by the relation analogous to~18!, are shown in Fig. 2a.

Now we shall show that the same asymptotic express
~29! has the continuous-fraction expansion of the incomp
gamma function which is written as33

G~a,x!5
e2xxa

x1

12a

11

1

x1

22a

11
¯ ~30!

We shall use this circumstance for the construction of
terminatorT̃N(k,z) for G(k,z) @Eq. ~28!#.

We introduce the function

g̃~a,x!52
G~a,2x!

ex~2x!a 5S x2
12a

12u1
D 21

, ~31!

where

un5nS x2
n112a

12un11
D 21

. ~32!

In order to rewrite the continuous fraction~31! in the form
analogous to Eq.~21!, we denote

1

12un
[11ntn . ~33!

We can then obtain the relations

tn5
1

x2~2n112a!2~n11!~n112a!tn11
, ~34!

so that

g̃~a,x!5t0 ~35!

has the form~28! with the coefficientsb̃0
251 and

ān52n112a, b̄n
25n~n2a!. ~36!

Comparing Eqs.~29! and ~36! for largen, whenAn(n2a)
'n2a/2, we see that the substitution

a52
2l2

l1
, x5

z12l22l31l1

l1

leads to the functionG̃:

G̃~k,z!5
1

l1
g̃S 2

2l2

l1
,

z12l22l31l1

l1
D , ~37!

which has the same asymptotic behavior asG(k,z) @Eq.
~21!#. This means thatG̃(k,z) can be used as the terminat
for G(k,z); i.e., we can expressT̃n0

(k,z)5b̄n011tn011 in

terms of G̃(k,z) and the coefficientsãn , bn , n<n0 , and
then substitute it forTn0

(k,z) ~see Ref. 30 for the particula
features of the matching Greenians!.

We thus obtainG(k,z) in the total complex energy plan
including the real axis. Note that usually the procedure
discretizing the energy rangev is used for the iteration pro
cess where the Dyson equation is solved numerically. I
not obvious that such a self-consistent solution leads to
correct analytical properties of the resulting Green’s fu
tion. In contrast, the continuous-fraction representation gu
antees these properties@e.g., the positive definiteness of th
spectral functionAp(k,v)].
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5. RESULTS AND DISCUSSION

In this section we present our results for the retard
Green’s function G(k,v) for the three-band model a
T50. The self-consistent equation~17! was solved on a 32
332 cell lattice. The number of calculated continuou
fraction levelsn0 was assumed to ben0530.

First, we check the validity of the method outlined abo
by calculating the spinless hole Green’s function for t
t2J model and compare the results with the results of M
tinez and Horsch4 obtained by the usual iteration procedur
In Fig. 2 Ah(k1 ,v1 ih), ReS(k1 ,v), 2Im S(k1 ,v), k1

5(p/2,p/2) for the value ofJ50.4t are represented for th
16316 site lattice and broadening constanth50.01t. Com-
parison of Fig. 2b–2d and the corresponding functions giv
in Figs. 7 and 8 from Ref. 4~the same lattice size and th
sameh! demonstrates that the positions of the peaks of
hole spectral function and the peak’s intensities coinci
The difference is that ourAh(k1 ,v) is smoother and there
are no strong oscillations in the self-energyS(k,v) in the
interval 22t,v,20.75t.

The results for the small spin polaron spectral dens
real and imaginary parts of the self-energy for the charac
istic value of the energy parameterJ50.7t, are given in Fig.
3 for the symmetrical pointsk15(p/2,p/2), k25(0,0), k3

5(p,p). The energy broadening parameter ish50.002~we
will refer to all quantities in units oft from now on!. The
main common feature in the spectral density fork1 andk2 is
the existence of a sharp quasiparticle peak at the bottom
each spectrum. The position of the quasiparticle peak co
sponds to the condition ReG21(k,v)50, i.e., the point
where we have the crossing of the functionsy5v2Vk and
ReS(k,v), see Figs. 3a and 3b. In Fig. 3d we sho
Ap(k1 ,v) calculated for h50.002 ~solid line! and
h50.0005~dashed line! in order to study the scaling behav
ior of the peaks and their widths with respect to changes
h. Both peaks fit quite closely with a Lorentzian (1/p)
3$Z(k1)h/@(v2e(k1))21h2#%, where e(k1) is the loca-
tion of the peak, which in the limith→0 becomes
Z(k1)d(v2e(k1)). This means that ImS(k,vp)→0 in the
same limit. Here and below we speak about the positione(k)
of such peaks~with the imaginary part of the pole close t
zero! in terms of the quasiparticle energy.

Figures 3a and 3b also demonstrate that the incohe
part of Ap(k,v) increases and the pole strength decrea
with increasinge(k), Z(k1)50.82,Z(k2)50.347. We recall
that Vk represents the center of gravity of the spectral fu
tion. In our figures the center of gravity corresponds to
crossing of the real axis by the liney5v2Vk . Therefore, if
the quasiparticle peak is far from this point, we would hav
large incoherent part.

Quite different features are demonstrated inAp(k3 ,v) in
Fig. 3c. The broad lowest peak is determined by the app
ance of nonzero ImS(k3 ,v) in the region where
ReG21(k3 ,v) has no zeros. Two broad additional peaks
v'21.6 andv'21.05 are formed because the zero valu
of ReG21(k3 ,v) are close to thesev. At the same time, the
Im S(k3 ,v) is strong in these regions. Moreover, the ma
mum of ImS(k3 ,v) ~near the pointv'21.37! determines
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FIG. 2. Results for the hole Green’s functio
Gh(k,v) for the t2J model calculated with the
same parameters as in Ref. 4~J50.4t, k
5(p/2,p/2), h50.01, 16316 site lattice!: a! the
coefficientsan ~squares! and bn ~crosses! of the
continuous-fraction expansion ofGh(k,v) as func-
tions ofn; b! spectral functionAh(k,v); c! real part
of the self-energy; d! imaginary part of the self-
energy. The unit of energy ist51.
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the local minimum ofAp(k3 ,v), despite of the fact that this
point is close to the frequency where ReG21(k3 ,v)50. It is
clear that it is impossible to treat any of theAp(k3 ,v) peaks
as a quasiparticle peak. Bear in mind that the qualita
behavior of the real part of the self-energy in Fig. 3c is clo
to the one which is represented by Kampf and Schrieffer;
Fig. 3b in Ref. 34, for the pseudogap regime of the Hubb
model. Figure 3c gives three solutions of ReG21(k3 ,v)
50. Although there is a sharp crossover from a situat
with three solutions to one quasiparticle solution, the spec
function still changes smoothly due to the presence of
imaginary part ofS.

Figures 3b and 3c demonstrate qualitatively a differ
character ofAp(k,v) for the pointsk25(0,0), k35(p,p).
This is a consequence of the spherically symmetric appro
in treating the AFM copper spin subsystem. As mentioned
the Introduction, this approach gives rise to the spectral fu
tion periodicity relative to the full Brillouin zone, not th
magnetic zone.

In Fig. 4 we show the dispersion relatione~k! of the
quasiparticle band and the mean field dispersionVk along
the symmetry lines in the Brillouin zone. Fore~k! we repro-
duce only thosek values for which the lowest peak has
e
e
e
d

n
al
e

t

ch
n
c-

pronounced quasiparticle peak, taking into account the
lowing criteria:2Im S(k,e(k)1 ih),2h. h50.002. As we
know,15 due to the antiferromagnetic character of the s
correlation functions theVk demonstrates a «flat dispersio
region» close to the linegk,0, ugku<1, i.e., close to the
boundary of the magnetic Brillouin zoneN–N–X ~see Fig.
4!. As we see from Fig. 4, the quasiparticle band exists in
greater part of the Brillouin zone except the region at the
of the Vk spectrum. Moreover, the dispersion relatione~k!
qualitatively reproduces the main features of the spectr
Vk . As we mentioned in the Introduction,Vk demonstrates
the important features of the hole spectrum for CuO2 plane if
the O–O hoppings and spin frustration are taken i
account.21 We hope that in this casee~k! will reproduce
these features also.

Let us compare the small polaron spectral dens
Ap(k,v) with the results for the bare holeAh(k,v) given by
Kabanov and Vagov12 for k15(p/2,p/2), J50.7t ~see Fig.
3a!. First, in Fig. 3a we see thatAp(k1 ,v) has much sharpe
quasiparticle peaks relative to the results for a bare hole.
example, the pole strengthZp(k1) for the quasiparticle peak
of Ap(k,v) is Zp(k1)50.82. The corresponding value forAh

given by Ref. 12 is much smaller,Zh(k1)50.25.
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FIG. 3. Spin polaron spectral density~Ap(k,v),
solid lines!, real ~ReS(k,v), dashed lines! and
imaginary~2Im S(k,v), dotted lines! parts of the
self-energy calculated forJ50.7t, 32332 cell lat-
tice, and differentk: a! k5(p/2,p/2), here we also
reproduce the hole spectral functionAh(k,v),
which was obtained in Ref. 12; b! k5(0,0); c!
k5(p,p). In Fig. 1a–1ch50.002t, the sloping
straight lines represent the functionv2Vk . d! The
dependence of the quasiparticle peak ofAp(k
5(p/2,p/2),v) for two values of the broadening
factor h: 1—h50.02; 2—h50.0004. The unit of
energy ist51.
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Second, Fig. 3a explicitly demonstrates the one-p
structure ofAp(k1 ,v) in contrast toAh(k1 ,v). Finally, it is
important that the bottom of the quasiparticle bande~k!
523.52 is substantially lower thanvh

min522.6 from Ref.
12. These results are a consequence of the fact that ele
tary excitation, i.e., spin polaronBk,s , of small radii from
the beginning involves the strong local hole-spin couplin

It is clear that the quasiparticle peaks for a bare hole
a small polaron must coincide in the exact solution of
problem. The above-mentioned discrepancies between
calculations and those of Ref. 12 are the consequenc
different approximations.

In order to test the convergence of our results relative
the increase of the lattice size and the numberNL of calcu-
lated continuous-fraction levels, in Fig. 5 we show the q
siparticle peak ofAp(k,v) at k5(p/2,p/2), J50.7 for dif-
ferent lattices andn0 . This peak, as is evident from Figs. 5
and 5b, changes insignificantly in going from 24324 to 32
332 cell lattice and fromNL522 to NL530.

We consider now the transformation ofG(k,v) with the
k

en-
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-

FIG. 4. The dispersion of the quasiparticle bande~k! ~symbols! and the
mean field dispersionVk ~solid line! along the symmetry lines in the Bril-
louin zone~see the inset! for J50.7, 32332 cell lattice, andh50.002.
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FIG. 5. The functionAp(k5(p/2,p/2),v)
for J50.7 and h50.002 calculated for a!
NL530 and different lattice sizes; b! 32332
cell lattice and different numbersNL of cal-
culated continuous-fraction levels.
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decrease ofJ. In order to clarify how the character of th
Ap(k,v) peaks is changed, in Fig. 6 we showAp(k,v) for
the value ofJ50.1 at pointsk15(p/2,p/2), k25(0,0), and
k35(p,p). The decrease ofJ leads to the enlargement o
the broad, incoherent part ofAp(k,v).

As before, the flat band region of the quasiparticle ba
bottom enlarges along a magnetic Brillouin zone bounda
It is represented by the pointk1 . In Fig. 6aAp(k1 ,v) dem-
onstrates explicitly a rather strong quasiparticle pe
Zp(k1)50.5, which corresponds to the conditio
ReG21(k,v)50. Quite different character ofAp(k,v) is
typical for k that correspond to the tops ofVk band: In the
low-energy sector fork2 ,k3 ~see Figs. 6b and 6c! one ob-
serves low-intensityAp(k,v) peaks. For example, the po
strengthZp of such a quasiparticle peak forAp(k2 ,v) is
Zp(k2)50.016. Assumingv l(k) to be the value ofv corre-
sponding to the center of these lowest-energy peaks, we
that ReG21(k,v l(k))Þ0 for thek under discussion. Figure
6b and 6c demonstrate that these peaks are determined b
peaks in ImS(k,v) at the pointsv l(k). The self-energy par
S(k,v) occurs through the Green’s function of a small p
laron bounded to spin waves. These peaks can be consid
as the quasiparticle band of such complex states.

If we treat the widthW of the quasiparticle band as th
differencev l(k25(0,0))2v l(k15(p/2,p/2)), thenW turns
out to be of the order ofJ for small values ofJ (J.0.1),
consistent with the results for the hole Green’s funct
approach.12

It is clear that for smallJ/t the concept of a small spin
polaron fails and it is important to estimate the validity lim
of this concept. Our calculations demonstrate that the in
sity of quasiparticle peaks and the structure ofAp(k,v) do
not change dramatically fork, which corresponds to the ban
bottom, up to J/t50.1. For example, Zp(p/2,p/2)
d
y.

,

ee

the

-
red

n-

'Zp(p,0)'0.50 at J/t50.1. Therefore, theJ/t lowest
boundary value of the small spin polaron concept validity
lower thanJ/t50.1.

Table I presents the numerical valuesv l(k) of the center
position of the lowestAp(k2 ,v) peaks@v l(k)5e(k) for k
values where the quasiparticle peak is observed! and their
pole strength ~area under the peak! Zp(k) for k
5(p/2,p/2),(0,0),(0,p) and different values ofJ.

We do not represent the results for largeJ (J@t) since
our approach in the present form fails to describe this lim
Here, from the very beginning we treat a small polaron b
single site operatorB r ,s ~4!. For largeJ the mean-field static
energy of such a state is proportional toJ and such a state is
unstable. In this limit, therefore, we must extend the basis
the site operators. The simplest way to do this is to include
the basis the additional operator of a bare hole. In SCBA
will lead to the system of two self-consistent equations. A
result, all effects of interaction between a spin subsystem
holes will be proportional tot/J. The more general proce
dure for extending the small polaron operator basis is o
lined in Ref. 21.

6. SUMMARY

We have studied the small spin polaron motion in t
three-band model. The two-time retarded Green’s funct
was calculated in the framework of self-consistent Born
proximation for 32332 cell lattice. We have shown that sp
polaron of small radius represents a good approximation
the true quasiparticle low-energy excitation even at
mean-field level. Allowance for the self-energy does not c
cially change the polaron motion picture for realistic valu
of parameters. For quasimomentak values, which corre-
spond to the band bottom, most of the total spectral weigh
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FIG. 6. Spin polaron spectral density~Ap(k,v) solid lines!,
real ~ReS(k,v), dashed lines! and imaginary
~2Im S(k,v), dotted lines! parts of the self-energy
S(k,v) calculated forJ50.1t, h50.002, 32332 cell lat-
tice at three differentk: a! k5(p/2,p/2); b! k5(0,0); c!
k5(p,p).
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concentrated in the quasiparticle peak~Table I!. In the same
region of k-space the shape of the quasiparticle dispers
curvee(k) reproduces the shape of the mean-field dispers
Vk ~Fig. 4!.

We compared our results with the previous studies11,12

which started from the bare hole. We see that the small
laron mean-field energyVk lies much lower than the quas
particle pole obtained from SCBA for the bare hole. Sin
Vk determines the center of gravity for the Green’s funct
spectral density, the actual quasiparticle pole position~at
least for the band bottom! should lie deeper in energy tha
Vk ~Figs. 3 and 6!. This means that in the three-band mod
the important local correlations should be taken into acco
n
n

o-

e

l
nt

in zero approximation and small spin polaron should be c
structed. The polaron scattering on spin waves will then
of less importance and it may be treated by perturbat
methods.

We conclude that the low-energy physics of high-Tc su-
perconductors should be considered in terms of small s
polaron dynamics. In particular, the problem of superco
ducting hole pairing must be treated as pairing of these q
siparticles rather than pairing of bare holes.

Finally, we wish to clarify the difference between ou
approach and those that use a Ne´el-type spin subsystem
state. Our calculations are based on the approach devel
in Refs. 22 and 23, where it is shown that a two-dimensio
TABLE I. Positionv l(k) of the lowest in energy peak and the areaZp(k) under the peak for different values ofJ/t andk.

J/t Zp(0,0) v l(0,0) Zp(p/2,p/2) v l(p/2,p/2) Zp(p,0) v l(p,0)

0.1 0.016 24.24 0.50 24.48 0.55 24.51
0.3 0.039 23.37 0.72 24.09 0.714 24.13
0.5 0.174 22.714 0.793 23.79 0.738 23.83
0.7 0.347 22.25 0.823 23.52 0.808 23.56
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s51/2 antiferromagnetic system at low temperature is in
rotationally invariant state that preserves this invariance
the limit whereT goes to zero and the correlation length go
to infinity. Then, even forT50, the points~0,0! and ~p,p!
are not equivalent due to the numerator in the spin Gree
function @see Eq.~16!#. As a result, the short-range spin-sp
correlation functions, such asCr ,R

125^Sr
1Sr1R

2 &, do not de-
pend on the siter . We note that according to Marshall’
theorem,35 the ground state of an antiferromagnet may b
spherically symmetric singlet state in the limitN→`. The
question about the ground state of a two-dimensionas
51/2 AFM system is not established exactly. Since at a
finite temperature the rotationally invariant theory is true
the paramagnetic system with strong short-range AFM c
relations, we think that it is impossible for the system
undergo an abrupt transition to a state with a spontaneo
broken symmetry atT50. Such a transition would mean a
abrupt rise of ther -dependence inCr ,R

12 and finite^Sr
z&. We

believe that the ground state of a two-dimensionals51/2
AFM system is a spherically symmetric state with a lon
range order, and that it does not lead to the symmetry of
reduced antiferromagnetic zone. The energy bands there
change infinitesimally as we go fromT50 to a temperature
that is infinitesimally above zero.

In addition, our results demonstrate that the nonequ
lence of the~0,0! and ~p,p! points for the spectral function
A(k,v) and Vk do not contradict the exact diagonalizatio
studies for the ground state of thet2J model~see, e.g., Figs
18a and 23 in Ref. 1!.

A few words about the scenario which assumes tha
smooth transition from rotationally invariant state to the st
with spontaneously broken symmetry takes place. Suc
transition implies a smooth increase in̂Sr

z& and r -
dependence ofCr ,R

12 . The main effect consists not in th
changes ofVk andA(k,v) at ~0,0! and ~p,p! points but in
the opening of the gap along the boundary of the magn
~reduced! Brillouin zone. As a result, we shall have two di
ferent bands with the periodicity of the magnetic Brillou
zone, i.e., the~0,0! and ~p,p! points become equivalent fo
each of the two bands.

We are grateful to O. A. Starykh and P. Horsch for va
able discussions and comments. This work was supporte
part, by the INTAS-PFBR organization under proje
INTAS-RFBR No. 95-0591, by the Russian Fund for Fund
mental Research~Grants Nos. 98-02-17187 and 98-0
16730!, and by the Russian National Program on Superc
ductivity ~Grant No 93080!.

APPENDIX

Chain representation and integrals over the spectral
density

The integration over spectral density could be done w
the quadrature approach,29 which is very efficient when ap
plied to the electron structure calculations.32 Unfortunately,
the spectral density we deal with has no upper bound
depends exponentially on the energy; i.e., it substantially
fers from the typical spectral density that appears in ba
structure calculations. It turned out that the direct applicat
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of Nex’s quadrature approach29 is not stable numerically for
our purpose. For calculations of the integrals~27! we there-
fore use the chain representation of the continuous fract
This means that the continuous-fraction expansion of
form ~21! may be interpreted as the Green’s functionG(v)
5^u0u(v2ĥ)21uu0& of the one-particle, tight-binding
Hamiltonian ĥ of the semi-infinite one-dimensional lattic
with an , bn , anduun& as the site energies, nearest-neighb
hoppings and on-site basis states, respectively:

an5^unuĥuun&, bn115^unuĥuun11&.

We introduce the eigenstatesucm& and eigenenergiesEm of
the chain Hamiltonian:

ĥ5(
m

ucm&Em^cmu.

The Green’s function spectral density then becomes the l
density of states at the zeroth site of the chain:28

A~v!52
1

p
Im G~v1 i01!

5(
m

^u0ucm&d~v2Em!^cmuu0&.

The following identities will then hold:

F5E
2`

`

f ~v!A~v!dv5E
2`

`

f ~v!(
m

^u0ucm&d~v

2Em!^cmuu0&dv5(
m

^u0ucm& f ~Em!^cmuu0&

5^u0u f ~ ĥ!uu0&. ~38!

Nex29 has proved that for a polynomialf of the degree 2n0

11 the integralF for the infinite chain has the same value
an analogous integral for the truncated chain of lengthn0

11. The Hamiltonian of the truncated chain in the basis
the states$uu0&...uun0

&% has the form of the tridiagonal (n0

11)3(n011) matrix:

hT5F a0 b1

b1 a1 b2

¯

an021 bn0

bn0
an0

G .

Now, instead of integrating the spectral density functi
over v, we directly calculate the matrix functionf (hT) in
order to usef 00 matrix element. ThenF5 f 00, as follows
from the last identity in Eq.~38!. We see that the result forF
is expressed only in terms of the first coefficien
$a0 ,...,an ,b0 ...,bn%.
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A transport equation is derived for the distribution function of heavy fermions in electric and
magnetic fields that allows for potential and spin–spin interactions between the heavy
fermions. The spectrum of the spin waves in the paramagnetic heavy-fermion state is calculated.
Finally, processes associated with pair collisions of heavy fermions and the scattering of
such fermions by charged impurities are studied. ©1998 American Institute of Physics.
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1. INTRODUCTION

In heavy-fermion compounds at temperatures below
Kondo temperatureT0, the antiferromagnetic exchange inte
action between conduction electrons and electrons local
in the partially filled f shell of rare-earth ions leads to
coherent Kondo effect. This manifests itself in the formati
near the Fermi surface of quasiparticle states that have
effective mass that is two orders of magnitude greater t
the electron mass in normal metals. Such quasiparticles
came known as heavy fermions, and this name gave ris
an entire class of metals, which became known as hea
fermion metals. Experiments have shown that at low te
peratures,T!T0, heavy-fermion compounds behave as n
mal Fermi liquids. This manifests itself in the nature of t
temperature behavior of the resistance (R5R01AT2), the
magnetic susceptibility (x5x(0)1bT2), heat capacity (C
5gT), and other physical properties. Note that the para
etersA, x(0), b, and g have anomalously large values
comparison to the values for normal metals, e.g.,x(T50)
;102x0, g;102g0, andA;104A0. According to the theory
of normal Fermi liquids,x(T50) andg are proportional to
the effective massm* of quasiparticles on the Fermi surfac
Hence the above experimental data suggest that heavy fe
ons have a massm* of order 102m0. The presence on th
Fermi surface of heavy quasiparticles was corroborated
studies of the de Haas–van Alphen effect. A comprehen
list of the experimental papers can be found in the review
Refs. 1 and 2. In a state with heavy fermions in some hea
fermion compounds magnetic and superconducting ph
transitions may occur into states with properties that dif
considerably from those of normal metals.1,2 Only some of
these properties have been explained by the theory.

The microscopic theory of the heavy-fermion state
based on the Anderson lattice model~see, e.g., the review
article in Ref. 3!. However, in analyzing the magnetic pro
erties, magnetic phase transitions, and transport phenom
in which the competition between the coherent Kondo eff
and magnetism may play an important role, the microsco
approach encounters serious difficulties because it is still
known how to account for the magnetic interaction betwe
heavy fermions.
9711063-7761/98/86(5)/5/$15.00
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The Fermi-liquid nature of the heavy-fermion state su
gests using Landau’s phenomenological theory of Fermi
uids to describe the thermodynamic and transport proper
Such an approach was proposed in Refs. 4 and 5, an
main merit consists in the following. First, the approa
makes it possible to take into account in a self-consist
manner the potential and exchange interactions betw
heavy fermions. Second, it provides a transparent phys
interpretation of phenomena in heavy-fermion compound

This paper uses the Landau theory for normal Fermi
uids to develop the kinetic theory of heavy-fermion com
pounds. A transport equation is derived for the distributi
function of heavy fermions in electric and magnetic fiel
that allows pair collisions of quasiparticles and scattering
charged impurities. The paper also studies the spectrum
spin waves.

2. TRANSPORT EQUATION FOR HEAVY FERMIONS

Phenomenological Fermi-liquid theory of the heav
fermion state4,5 is based on two assumptions:~1! the heavy-
fermion wave function is a linear combination of the wa
functions of the electron states in a broad conduction b
and a narrowf -band, and~2! because of strong single-sit
Coulomb repulsion the concentration off -electrons does no
depend on timet and radius vectorr . The first assumption
implies that the distribution of electrons over states with
wave vector k is described by a Hermitian matri
Nab

ab (k,r ,t), where the band indicesa and b take valuesc
and f , anda andb are spin indices for spin12. The diagonal
elementsNab

cc (k,r ,t) and Nab
f f (k,r ,t) describe the distribu-

tion of electrons in the conduction band and thef -band. The
off-diagonal elements characterize the formation of coh
ence between the conduction electrons and thef -electrons.
To find N̂, we must solve the following transport equatio
~the standard equation in the Landau theory of Fermi
uids!:

]N̂

]t
1$¹ rN̂¹k«̂%2$¹kN̂¹ r «̂%2 i @ «̂,N̂#5 Î ~N̂!, ~1!
© 1998 American Institute of Physics
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where 2$ÂB̂%5ÂB̂1B̂Â, @Â,B̂#5ÂB̂2B̂Â, and Î (N̂) is the
collision integral. The quasiparticle energy matrix«̂ is a
functional of N̂ ~Refs. 4 and 5!. According to the second
assumption, the transport equation~1! must be solved unde
the condition that thef -electron concentration is constant:

(
ka

Naa
f ~k,r ,t !5Nf . ~2!

Let us study the small deviations of the distribution m
trix N̂5N̂01N̂1 ~these deviations are characterized by
wave vectorq and a frequencyv) from the equilibrium
value N̂0:

N̂1~k,r ,t !5N̂1~k,q,v!exp~ iq–r2 ivt !1c.c. ~3!

The physics of the problem implies that the fluctuationsN̂1

are related to variations in the heavy-fermion distributi
function. The relation can be found by using the relations
betweenN1ab

ab (k,q,t) and the time evolution of the operato
of an electron–positron pair with momentumq:

rab
ab ~k,q!5bbk1q/2

† aak2q/2 , ~4!

where fora,b5c, f the operatorscak
† , f ak

† andcak , f ak are
the operators of electron creation and annihilation in the c
duction band and thef -band, respectively. Following Ref. 6
we assume that

N1ab
ab ~k,q,t !5^rab

ab ~k,q,t !&. ~5!

The operatorscak and f ak are related to the annihilatio
operatorsg1ak andg2ak of quasiparticle states in two hybri
bandsE1ka andE2ka by a unitary transformationÛk :

S g1ak

g2ak
D 5ÛkS cak

f ak
D . ~6!

Note that the matrixÛk also reducesN̂0 to diagonal form,
N̂05Ûk

21 f̂ Ûk ~see Ref. 4!. Now we introduce the heavy
fermion distribution matrix:

n1ab
ml ~k,q,t !5^glbk1q/2

† ~ t !gmak2q/2~ t !&, ~7!

where the band indicesm andl take values 1 and 2. Pluggin
Eq. ~6! into ~7!, we arrive at a relationship betweenN̂1 and
n̂1:

N̂15Û2
21n̂1Û1 , ~8!

with Û6[Ûk6q/2 . Here the diagonal componen
n1ab

11 (k,q,v) andn1ab
22 (k,q,v) describe the deviation of th

quasiparticle distribution in the hybrid bandsE1 andE2 from
the equilibrium distribution. The off-diagonal components
n̂1 describe hybridization of quasiparticle states in the hyb
bands due to perturbations. Suppose that the total numb
electrons per unit cell is smaller than two. Between the ba
E1 and E2 there is a curved gap of orderT0, so that forT
!T0 only the lower bandE1 is partially filled, while the
population of the upper band is negligible, i.e
n1ab

22 (k,q,v)'0.
-

p

n-

f
d
of
s

Let us derive the transport equation for the heav
fermion distribution functionn1ab

11 (k,q,v). For convenience
we introduce the following notation:

dnabk[n1ab
11 ~k,q,v!. ~9!

We start with the case of a zero external magnetic fie
where the equilibrium distribution function is independent
the spin indices. Under deviations from equilibrium the sp
density may fluctuate. Then the fluctuationsdnak[dnaak
depend on the direction of spin, i.e.,dnaÞdnb for aÞb.
Such a statement of the problem makes it possible to st
spin diffusion and spin waves. Letw(r ,t) be an external
electric potential that generates an electric fieldE52e¹rw
acting on the conduction electrons and thef -electrons. To
allow for E in Eq. ~1!, we must add the termew to the
diagonal elements«aa

cc and «aa
f f of the quasiparticle energy

matrix «̂. Linearizing the transport equation~1! in the matrix
N̂1 and using Eq.~8!, we obtain an equation forn̂1. Solving
this equation with respect to the heavy-fermion distributi
function dnak , we arrive at the desired transport equation

~q–v2v!dnak2q–vf 8~E1k!

3S F0
s

2rF*
(
bp

dnbp1
F0

asa

2rF*
(
bp

sbdnbpD
2 ieE–vf 8~E1k!52 i I ~dnak!, ~10!

wheresa561, E5E(v,q)52 iqw(v,q), v5¹kE1k is the
heavy-fermion velocity,f (E) is the Fermi–Dirac distribution
function, and 2rF* 52rFm* /m0 andm* are the renormalized
density of states with allowance for spin degeneracy and
heavy-fermion effective mass, respectively. Earlier a tra
port equation fordnak without allowance of the interaction
between heavy fermions was derived by Coleman7 within a
microscopic model of the Kondo lattice.

The Landau parametersF0
s and F0

a for q!kF and v
!T0 are given by the following simple relationships:

F0
s5

m*

m0
21@1, F0

a52
Tm

T0
,

whereTm characterizes the energy scale of the magnetic
teraction between heavy fermions.5 The large positive value
of F0

s means that there is strong potential repulsion betw
heavy fermions. Since heavy fermions are hybrid quasipa
cles, there are two mechanisms for the magnetic interac
between heavy fermions. First, there is the indirect inter
tion via conduction electrons~the RKKY interaction!. In this
caseTm is positive and is of order the energy of the RKK
interaction of two spins localized at neighboring sites (Tm

52NfG
2r0, whereG is the amplitude of the magnetic inte

action between conduction electrons andf -electrons!.5 Here
the Landau parameterF0

a is negative, which corresponds t
ferromagnetic spin–spin coupling between heavy fermio
Second, direct exchange interaction between locali
f -electrons also contributes to the magnetic interaction
tween heavy fermions. If this interaction is antiferromagne
and strong, the magnetic interaction between heavy ferm
is antiferromagnetic (F0

a.0).
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To study galvanomagnetic phenomena, we write
transport equation for the case of a transverse magnetic
H'E. In order to allow for the Lorentz force acting only o
the conduction electrons,

FL5
e

c
v03H,

wherev05¹k«(k) is the velocity of an electron in the con
duction band with dispersion«(k), we must introduce the
following substitution into Eq.~1!:

¹r«aa
cc→¹r«aa

cc 2FL .

If we ignore spin, the transport equation is

~q–v2v!dnk2q–vf 8~E1k!
F0

s

rF*
(

p
dnp2 ieE–vf 8~E1k!

2 i
e

c
v3H•¹kdnk52 i I ~dnk!. ~11!

In the case of an isotropic Fermi surface for heavy fermio
this equation yields the well-known result for the Hall co
stant R51/ecNt , where Nt5Nc1Nf is the total electron
concentration. Generally, when studying galvanomagn
phenomena, one must allow for changes in the topology
the Fermi surface resulting, first, from an increase in
number of electron states above the Fermi surface and,
ond, from the renormalization of the quasiparticle band.
deed, forT.T0 the Fermi surface is specified by the equ
tion «(k)5m, where the chemical potentialm is determined
only by the conduction electron concentrationNc . When
there is a transition to a heavy-fermion state (T,T0), we
have a quasiparticle bandE1k , while the number of electron
above the Fermi surface isNt5Nc1Nf . Obviously, in some
cases there can be a transition from an electron Fermi sur
to a hole Fermi surface, or an even more complicated tra
formation is possible.

3. SPIN WAVES

For normal metals the Landau parameters are assum
be independent of frequency. For heavy-fermion metals s
an approximation is valid only in the frequency rangev
!T0. Whenv.T0 holds, we must allow for the frequenc
dependence of the parameterF0

a :

F0
a~v!5

F0
aA~v!

12A~v!~ uF0
aum0 /m* !1/2

, ~12!

where

A~v!5x2~x221!21/2 arctan~x221!21/2, ~13!

andx52T0v21Am* /m0 . At v}2T0Am* /m0 the function
F0

a(v) changes sign. Such frequency behavior ofF0
a(v) de-

termines the spectrum of spin waves in the paramagn
heavy-fermion state. The standard analysis of Eq.~10! ~see,
e.g., Ref. 6! leads to the following equation for the spin
wave spectrum:
e
ld

s,

ic
of
e
ec-
-
-

ce
s-

to
ch

tic

G~q,v!5
1

F0
a~v!

. ~14!

In the isotropic caseG(q,v) takes the form

G~q,v!5
l

2
lnUl11

l21U21, ~15!

wherel5v/qvF . If F0
a.0 holds ~antiferromagnetic inter-

action between heavy fermions!, the spin-wave spectrum
contains only an undamped mode (v(q)5vsq) with a phase
velocity vs higher than the Fermi velocity of heavy fermion
vF . If F0

a,0 holds ~ferromagnetic interaction betwee
heavy fermions!, Eq. ~14! has a unique solution describin
undamped spin waves

v~q!5v0S 11
4p

3
~Gr0!3S Nt

Nf
D 2S q

kF
D 2D 1/2

~16!

with a finite excitation threshold

v052T0Am*

m0
~17!

and an extremely weak dependence on the wave vectoq,
since we assumedGr0!1. Equation~16! is valid atT50.

4. SCATTERING OF HEAVY FERMIONS

Now let us discuss the scattering of heavy fermions a
determine the collision integralI (dnak). In the case of pair
collisions involving heavy fermions, we must calculate t
amplitudeAka,pb(q,v) for a process in which two heav
fermions with wave vectorsk and p and spinsa and b
exchange momentumq and energyv. To this end we must
calculate~remaining within the scope of Eq.~10!! the polar-
ization induced by a localized bare quasiparticle~see, e.g.,
Ref. 6!. For v;T andT/vF,q!kF we obtain

A↑↑5
p2

kFm*
S F0

s

11F0
s

1
F0

a

11F0
aD , ~18!

A↑↓5
p2

kFm*
S F0

s

11F0
s

2
F0

a

11F0
aD .

The scattering probabilities for two heavy fermions with pa
allel spins (W↑↑) and antiparallel spins (W↑↓) are

W↑↑52puA↑↑u2, W↑↓52puA↑↓u2.

Using the standard expression6 for the reciprocal lifetime of
a quasiparticle with an energyE such thatuE2mu!T, we
find that

1

t~E!
5

~m* !3

16p4 K W

cos~u/2! L ~p2T21~E2m!2!

5
py

32

p2T21~E2m!2

«F*
, ~19!

where the angle brackets stand for averaging over ang
Moreover, we have«F* [kF

2/2m* and
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y5S F0
s

11F0
s

1
F0

a

11F0
aD 2

12S F0
s

11F0
s

2
F0

a

11F0
aD 2

. ~20!

According to Eq.~10!, the collision of two heavy fermi-
ons depends on both the potential interaction and the sp
spin coupling. If we ignore the latter, i.e., putF0

a50, and
allow for the fact thatF0

s@1, we gety53. In this case, Eq.
~19! coincides~including the numerical factor! with the ex-
pression for the rate of scattering of heavy fermions by sl
bosons found in the microscopic studies of Kon
lattices.7–10 This means that the microscopic approach u
in Refs. 7–10 to study the scattering of heavy fermions
slave bosons is simply a convenient mathematical repre
tation of the collision of heavy fermions. When there
strong competition between magnetism and the Kondo
fect, in other words, when the system is close to the thre
old of ferromagnetic instability of the heavy-fermion sta
(T0;Tm), i.e., at F0

a;21, we havey@3, and spin–spin
coupling provides the main contribution tot(E).

For normal metals, Eq.~19! contains the Fermi energ
EF[kF

2/2m05«F* m* /m0 instead of«F* [kF
2/2m* . This im-

plies that the pair collision rate for heavy fermions is mu
larger than the pair collision rate for electrons in norm
metals, i.e.,

1

t~E!
5

1

t0~E!

m*

m0
@

1

t0~E!
.

The pair collision rate determines the coefficientA in the
temperature dependence of resistance (R5R01AT2). This
is precisely why for heavy-fermion metals this coefficient
anomalously large~the expression forA can be found in
Refs. 7–10!.

Now let us examine the collision of heavy fermions wi
charged impurities. According to the theory of normal Fer
liquids,6 the effective potential energy of a quasiparticle
the field of a point impurity with chargeZe and with allow-
ance for screening effects is

Vq
eff5

4pZe2

q2

1

«~q,0!

1

11F0
s

. ~21!

This quantity is also equal to the matrix element for t
quasiparticle transition from a state with a wave vectork to a
state with a wave vectork1q. The effective potential energ
Vq

eff for q small can be found by using the static dielect
function:5,11

«~q,0!5«01
4pe2

q2

2rF*

11F0
s

. ~22!

This leads to the simple formula

Vq
eff5

Z

2rF*
, ~23!

which shows that the effective impurity potential in heav
fermion systems is lower by a factor ofm0 /m* than the
same potential in normal metals. Using the stand
electron–impurity collision integral,9 we find that for impu-
rity scattering the lifetimet i of heavy fermions increases b
–

e

d
y
n-

f-
h-

l

i

d

a factor ofm* /m0 in comparison to the lifetime in norma
metals: t i5t0,im* /m0@t0,i . This result follows from the
fact thatt i

21}rF* uVeffu2. In other words, for a given charged
impurity concentration, the rate at which heavy fermions c
lide with impurity ions ism* /m0 times lower than the rate a
which electrons collide with impurities in normal metal
This is in full agreement with the results of microscop
theory ~see, e.g., Ref. 9!. The impurity scattering rate deter
mines the value of the residual resistance, which is of
same order as in normal metals. Indeed,

s}e2rF* vF
2t i5e2r0v0F

2 t0,i}s0 .

5. DISCUSSION AND CONCLUSION

We have used the Landau theory of normal Fermi l
uids to derive a transport equation for heavy fermions a
have found that the equation is of standard form. Hence
describe transport phenomena in heavy-fermion compou
one can employ the methods developed for the kinetics
normal Fermi liquids. What is important is that the deriv
transport equation takes into account the potential and m
netic interactions between heavy fermions. We have fou
that the amplitudes of these interactions~or, in other terms,
the symmetric and antisymmetric Landau parameters! de-
pend on frequency. However, in the limitv!T0 this fre-
quency dependence can be ignored. It can play an impor
role only whenv.T0. In particular, this determines th
spectrum of spin waves in a paramagnetic heavy-ferm
state.

We have established that the spin-wave spectra for c
pounds with ferromagnetic and antiferromagnetic inter
tions between heavy fermions differ considerably. In the c
of antiferromagnetic interaction there are only gaple
acoustic-like spin waves,v(q)5vsq, with a phase velocity
higher than the Fermi velocity of the heavy fermions. But
the interaction is ferromagnetic, the Fermi-liquid approa
predicts the presence of a gap in the spin-wave excita
spectrum, a gap whose width is proportional to the lo
temperature Kondo scale. Moreover, these spin waves h
exceptionally weak dispersion. Spin waves with a gap e
only in a heavy-fermion state, i.e., at temperaturesT,T0. As
is known, the magnetic susceptibility of a heavy-fermi
metal has a peak in the temperature range of a trans
from a state with incoherent Kondo scattering to a coher
state with heavy fermions. Hence in experiments one sho
expect gap spin waves to disappear at temperatures abov
value at which the magnetic susceptibility is at its maximu
Recent inelastic neutron scattering studies in the YbAl3 ~Ref.
12! and CeNi ~Ref. 13! compounds, which belong to th
class of valence-fluctuation compounds, discovered a ga
the magnetic response that exists only at temperatures b
the temperature of the maximum in the magnetic suscept
ity, i.e., in a situation that qualitatively resembles the o
discussed earlier. Another important similarity is the proxi
ity of the energy of the observed gap to the Kondo tempe
ture for these compounds. Unfortunately, at present ther
no irrevocable evidence in favor of the formation of hybr
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quasiparticle bands in these compounds. This makes it
possible to decide whether the gap in the spectrum of s
excitations predicted by the Landau theory is the gap disc
ered by Murani12 and Lazukovet al.13

We have established that in a heavy-fermion state
galvanomagnetic properties are also determined from a s
dard transport equation. What is important here~and this fact
should be stressed in connection with studies of propertie
heavy-fermion metals! is the renormalization of the Ferm
surface and, possibly, a change in the surface’s topology
result of a transition to the heavy-fermion state.

Remaining within the scope of the standard Fermi-liqu
approach, we have found the rate of pair collision of hea
fermions and the rate of scattering of these quasiparticle
impurities. The rate of pair collisions of heavy fermion
coincides with the rate of scattering of heavy fermions
slave bosons found in the microscopic of heavy-ferm
compounds. This means that the scattering of heavy ferm
by slave bosons is only a convenient mathematical tool
describing collisions of heavy fermions due to the poten
and magnetic interactions between the heavy fermions.
results of this study of the impurity scattering of hea
fermions also fully agree with those of the microscop
theory.
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Anisotropy of the transport properties of single-crystal Bi 2Te3 disordered by electron
bombardment

A. E. Kar’kin,* ) V. V. Shchennikov, B. N. Goshchitski , S. E. Danilov, and V. L. Arbuzov

Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, 620219 Ekaterinburg,
Russia
~Submitted 30 September 1997!
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Using single-crystal samples of Bi2Te3 bombarded by 5-MeV electrons at a temperature of
250 K, we study the electrical resistivity and the Hall effect in the temperature range 1.7–370 K
and the Shubnikov–de Haas effect atT54.2 K in magnetic fields up to 14 T. We find that
electron bombardment of Bi2Te3 crystals results in a transition from the metallicp-type state to the
metallic state with a Fermi surface. Annealing at 350 K eliminates the radiation defects and
restores thep-type metallic conductance. ©1998 American Institute of Physics.
@S1063-7761~98!01605-9#
on

rm
t

ur
n

to

-
u

er
-
de

ie

om
t

di

d
ce
ed

l
vi
ca

es
on
le

nd

ct.
ag-
of

trum

e in
s-

tal
al
an
ac-

all
e
the
1-

sur-
e

the
ical

5-
tor,
o a
us-

-

1. INTRODUCTION

High-Tc superconductors in a narrow concentrati
range near the metal–insulator transition1,2 exhibit an
anomalous dependence, which disagrees with the Fe
liquid description,3 of the resistivityr and the Hall constan
R on temperature,4 level of doping,5 and degree of
disorder.2,6 For instance, the behavior ofr andR in the ab
plane and that along thec axis differ so dramatically that the
anisotropy of these effects becomes strongly temperat
dependent. This suggests that theoretical and experime
studies of high-Tc superconductors near the metal–insula
transition are very important.3,7 To be able to experimentally
investigate the properties of high-Tc superconducting mate
rials in the normal state at low temperatures, supercond
tivity must be suppressed, which is possible only in a v
strong magnetic field,B530–100 T. It is therefore prefer
able to study low-dimensional nonsuperconducting mo
systems~or systems with low transition temperatures! as
functions of the doping level or degree of disorder. Stud
of this kind involving the anisotropic KWO3 and NbSe2
compounds disordered by low-temperature neutron b
bardment made it possible to detect correlations between
variations of the electronic properties and the degree of
order in a metal–insulator transition.8

In this paper we use single crystals of Bi2Te3 as a model
system. The crystals are bombarded by fast electrons an
then annealed in order to change the charge carrier con
tration. The Bi2Te3 compound has been thoroughly studi
both theoretically9,10 and experimentally11,12 as a promising
material for thermoelements.13–15 The reason this materia
was chosen for our studies is that it is a narrow-gap hea
doped semiconductor in which the anisotropy of electri
properties resembles that of high-Tc superconducting
materials.2,8 The high perfection of the single-crystal sampl
makes it possible to detect quantum magnetic oscillati
and use these oscillations to find the parameters of the e
tron spectrum.11,12

We study the anisotropy of the electrical resistivity a
9761063-7761/98/86(5)/7/$15.00
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of the Hall effect, as well as the Shubnikov–de Haas effe
The behavior of the anisotropy parameter of galvanom
netic effects~a parameter that characterizes the motion
charge carriers in different directions! in low-dimensional
systems correlates with the changes in the electron spec
near a metal–insulator transition.2,8 The aim of our paper is
to investigate the features of the electronic states that aris
the Bi2Te3 system when disorder is introduced into the cry
talline structure by electron bombardment.

2. SAMPLES AND THE MEASUREMENT METHOD

The galvanomagnetic properties of single-crys
samples of Bi2Te3 were studied in the temperature interv
1.7–370 K in a constant magnetic field up to 14 T using
Oxford Instruments device. The electrical contacts manuf
tured by ultrasonic indium soldering measured 50 by 50mm.
The electrical resistivitiesra andrc and the Shubnikov–de
Haas effect were measured by Montgomery’s method16 us-
ing samples that measured 1 by 0.5 by 0.2 mm. The H
constantsRac andRca ~the first subscript corresponds to th
direction of the current and the second, to the direction of
magnetic field! were measured using, respectively, 1-by-
0.05 mm3 and 1-by-0.2-by 0.2 mm3 samples with four sym-
metric contacts. In the process the directions of the mea
ing current and the magnetic fieldB were changed and th
current and potential currents were switched~which is
equivalent to changing the direction of the fieldB). In con-
trast to the standard methods, in Montgomery’s method16 ra

and rc are measured in a single sample, which reduces
possible errors in estimating the anisotropy of the electr
resistivity.17

The bismuth telluride samples were bombarded with
MeV electrons in the chamber of an electron accelera
which was accompanied by cooling with gaseous helium t
temperature below 250 K. The measurements were done
ing the initial samples~denoted B1!, after irradiation with a
fluence F5131019cm22 ~B2!, and after isochronous an
nealing at 350 K~B3! and 375 K ~B4! in the course of
© 1998 American Institute of Physics
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FIG. 1. Temperature curves forra and the
resistivity anisotropyrc /ra of the bismuth
telluride samples: curve1, the initial sample
B1; curve2, the sample B2 bombarded b
5-MeV electrons atT5250 K with a fluence
131019cm22; curves3 and 4, the samples
bombarded by electrons and annealed
T5350 K and 375 K ~B3 and B4! for
20 min; and curve5, the sample annealed a
375 K ~B5! for 120 min.
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20 min and at 375 K~B5! in the course of 120 min. No an
nealing was done at higher temperatures because of the
sibility of indium diffusion into the sample.15

3. RESULTS OF MEASUREMENTS

Figure 1 depicts the temperature curves for the electr
resistivityra and the resistivity anisotropyrc /ra , while Fig.
2 depicts the temperature curves for the Hall constantsRac
os-

al

andRca of the irradiated crystals. At first glance the effect
electron bombardment onr andR is equivalent to introduc-
ing indium into the lattice:11 the hole concentration de
creases, the resistance grows, and ther (T) dependence re
sembles that of a semiconductor atT.250 K. Annealing
~sample B4! lowers the electron concentration, so that t
semiconductor behavior ofr(T) can be observed at all tem
peraturesT with the exception of the liquid-helium range
ll

g.
FIG. 2. Temperature curves for the Ha
constantsRac ( j ia, Bic) andRca in a mag-
netic fieldB512 T for samples B1–B5. The
notation for the curves is the same as in Fi
1.
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FIG. 3. Hall constantsRac andRca as functions of
the magnetic fieldB for the initial Bi2Te3 sample
~B1! at different temperatures: curve1 — 4.2 K;
curve 2 — 50 K; curve3 — 100 K; curve4 —
188 K; curve5 — 300 K; and curve6 — 350 K.
h, j, s, d, n, andm represent the experimen
tal data, and the curves are fitting curves~see the
text!.
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and there is a minimum inr at T'150 K. The emergence o
a section of activation dependence atT,150 K corresponds
to a sharp increase in anisotropy in this temperature inter
At 4.2 K the resistivity of the sample B5 is 40 times high
than that of the initial sample B1, i.e., under such annea
the properties are not completely restored.

Electron bombardment of Bi2Te3 samples changes th
sign of the Hall constantsRac andRca ~Fig. 2, sample B2!.
After annealing~samples B3–B5! there is a partial recur
rence of the galvanometric properties to the initial state. T
variations in the carrier concentrations with temperature
picted in Fig. 2 can be described qualitatively by the follo
ing expressions for an extrinsic semiconductor:18

n5
n0

2
1F S n0

2 D 2

1~4AcAv!2 expS 2
2Eg

kT D G1/2

,
~1!

p52
n0

2
1F S n0

2 D 2

1~4AcAv!2 expS 2
2Eg

kT D G1/2

,

wheren0 is the difference in the concentrations of the don
and acceptor impurities,Ac andAv are the densities of state
in the conduction and valence bands, andEg is the band gap.
Electron bombardment changes the value and sign ofn0,
which is equivalent to doping. Annealing reduces the n
equilibrium value ofn0 reached as a result of bombardme
with the curves in Fig. 2 reflecting this fact. Equations~1!
provide a good description of the behavior ofR for the
samples B1 and B2 over the entire temperature range an
the samples B3–B5 at high temperatures. At low tempe
tures, as Figs. 1 and 2 show, the samples B3–B5 acqu
new activation dependence with lower activation ener
The anisotropy ofR for B1 and B2 corresponds to the topo
ogy of the electron structure,15 for which13–15
l.

g

e
-

-

r

-
,

for
a-

a
.

n.
0.3

Race
.

0.6

Rcae
. ~2!

This relationship does not hold for the samples B3–B5.
The characteristic scale of variations ofR with tempera-

ture increases from sample B2 to sample B5; an estimate
the increase in the activation energyEg at 0.05 to 0.15 eV,
respectively. For B4 and B5 at room temperatures, the H
constants change sign; such behavior, due to the diffe
temperature dependence of the concentrations and mobi
of electrons and holes, was observed inn-type samples with
excess tellurium content.19

The Hall constantsRac have a strong field dependenc
~Figs. 3 and 4!, which points~just as the temperature depe
dence of the Hall constants does! to the fact that there are
several groups of carriers with different concentrationsni

and mobilitiesm i participating in conduction. Analogous be
havior of theR(B) dependence, related to the participati
of thermally activated electrons in the process of cha
transfer, was observed by Azouet al.11 The similar depen-
dence forRca is extremely weak at all temperatures, whic
suggests that the contribution of holes of only one type
predominant. Even in the case of two-band conductance,
act analysis of theR(B) and r(B) behavior is difficult: in
Bi2Te3 one must allow for three groups of carriers13–15 and,
moreover, the material is anisotropic. To fit the experimen
curves, we used the following expressions for an isotro
semiconductor:20

R5
^Rs2&

^s&21~^Rs2&B!2
, ~3!

r5
^s&

^s&21~^Rs2&B!2
, ~4!
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FIG. 4. Hall constantsRac andRca as functions of the
magnetic fieldB at T54.2 K for samples B1–B5.
The notation of the curves is the same as in Fig. 1.j,
n, s, d, andh represent the experimental data, an
the curves are fitting curves~see the text!.
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^s&5(
i

s i

11~Ris iB!2
, ^Rs2&5(

i

Ris i
2

11~Ris iB!2
,

~5!

with s51/r i andRi the conductivities and Hall constants fo
individual bands. For two-band conduction, Eqs.~3!–~5!
lead to the well-known expressions discussed in Ref. 21.
ignored the field dependence of the one-band parametes i

andRi , since we assumed the bands to be strongly dege
ate ~the Hall factors are equal to unity!.

The results of fitting the experimental data on t
Rac(B) and ra(B) dependence measured at different te
peratures~Fig. 3! for the sample B1 to the values obtaine
via Eqs.~3!–~5! under the assumption that there are two
three~when necessary! groups of carriers are listed in Tab
I. In the first stage we fitted the experimental data onRac(B)
with a fixed value of conductivity atB50. The obtained
parameters were then used as initial ones to fit the exp
ment data on thera(B) dependence. The parameters o
tained as a result of these two procedures were found
differ by 10–30%. They were refined to achieve the b
e

er-

-

r

ri-
-
to
t

possible description of both experimental dependences.
carrier parameterss i andRi for two orientations~along thec
axis and at right angles toc! were chosen independently.

Processing the experimental data via Eqs.~3!–~5!
showed that in the initial Bi2Te3 sample the charge transfe
in the plane is done by electrons and holes whose mob
values are close at all temperatures but that the hole co
bution to conductivity is predominant. The partial conduct
ity of the third group of carriers is low, and at low temper
tures the mobility of these carriers,m35s3R3, is much
lower than the mobility of the first two groups and is weak
temperature-dependent. Along thec axis the charge is trans
ferred only by holes, and the electrons have an extrem
low mobility. The fitting results agree with the temperatu
behavior of concentrations for the three-band model s
gested in Ref. 19. Analogous behavior ofRac and Rca and
temperature and field variations was observed by Test
et al.22

A similar fitting of the field dependence ofRac , Rca ~see
Fig. 4!, ra , andrc made it possible to obtain a set of param
eters s i and Ri for the irradiated crystals~Table II!. For
sample B2 the main contribution to the conductivity and t
all
TABLE I. One-band parameterss i andRi ( i 51,2,3) obtained in fitting the experimental curves for the H
constantsR(B) and the electrical resistivitiesr(B) in Eqs.~3!–~5! for the initial Bi2Te3 sample B1 at different
temperaturesT and field orientations with respect to the crystallographic axesa andc.

Bic Bia
s i , 106(Vm)21 Ri , 1026m3C21

T,K s1 s2 s3 R1 R2 R3 s1 , 106(Vm)21 R1 , 1026m3C21

4.2 2.5 0.5 0.03 10.5 21.6 26 0.06 1.2
50 1.2 0.2 0.01 10.5 22 26 0.05 1.1
100 0.5 0.07 – 10.6 24 – 0.02 1.1
300 0.05 0.007 – 10.7 24 – 0.003 0.9
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TABLE II. One-band parameterss i andRi obtained in fitting the experimental curves forR(B) andr(B) in
Eqs.~3!–~5! for the Bi2Te3 sample B2–B5 at different orientations of field B.

Bic Bia
s i , 106(Vm)21 Ri , 1026m3C21 s i , 106(Vm)21 Ri ,1026m3C21

Samples s1 s2 s3 R1 R2 R3 s1 s2 R1 R2

B2 0.1 0.6 – 13 20.6 – 0.005 0.02 220 21
B3 0.02 0.2 – 115 24 – 0.003 0.003 130 240
B4 0.001 131024 0.001 180 220 22000 831026 831026 173103 263103

B5 0.08 0.01 – 15 220 – 0.001 0.001 130 210
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Hall effect is provided by electrons, while the hole contrib
tion is either small~the measuring currentj is directed along
thea axis! or nil ( j ic). In contrast toRac , the value ofRca is
essentially independent of temperature, which reflects
difference in carrier type for the directions alonga ~electrons
and holes! and alongc ~only electrons!. For all the samples
Rca(B) is described by a model with two types of carrie
The nonmonotonic dependence ofRac on B ~sample B4!,
which has a maximum forB.6 T, required three types o
carrier for fitting: two with relatively high mobilities and on
with low mobility ~Table II!. The sample B4 atT54.2 K has
high valuesra'50 mV•cm andrc /ra'80 ~Fig. 1!; high-
mobility electrons and holes provide the main contribution
conductivity for the case wherej ia andB50, holes with a
lower mobility provide the main contribution for the cas
wherej ic ~Table II!.

At T54.2 K, oscillations inra in transverse and longi
tudinal magnetic fields up to 14 T were observed in the
tial sample B1. Of the irradiated samples only B5~the
sample with the smallest disorder! exhibited oscillations in
ra in a transverse field~Fig. 5!. To fit the experimental
curves we used the expression20
-

e

-

ra~B!5r0~B!F11a0 expS 2
B0

B D sinS B1

B
1w D G21

, ~6!

where the monotonic partr0(B) ~classical magnetoresis
tance! is described by Eqs.~4! and ~5!, the factor
a0exp(2B0 /B) takes into account the damping of oscillatio
(B0 is related to mobility by the formulam05p/B0), andB1

is determined by the extremal cross-sectional area of
Fermi surface:SF52peB1 /\. Processing the experimenta
curves of longitudinal magnetoresistance required allow
for the contribution of two oscillations with distinct period
The parameters obtained in the fitting process are listed
Table III. The tendency ofm0 and B1 in B5 to be smaller
than the values in the initial sample B1 on the whole agr
with the behavior of the mobilitiesm15s1R1 and concen-
trationsn1;1/R1e ~see Tables I–III!, but m0 is smaller than
m1. The quantitym0, which determines the damping of os
cillations, is related to the cyclotron mass and in the ani
tropic case does not coincide with the Hall mobilitym1. If
one uses the parameters of Azouet al.,11 the result is
m1 /m0'2. For B1 and B5 this ratio is approximately fou
for
-
al
FIG. 5. Oscillations of the transverse~curves1
and3! and longitudinal~curve2! magnetoresis-
tancesr(B) in Bi2Te3; r0 is the monotonic part
of the resistivity~see Eq.~6!!; curves1 and 2,
the initial sample B1; and curve3, the irradiated
sample B5.s, j, andn represent the experi-
mental data, and the curves are fitting curves
r0(B) ~a! and the oscillating part of the resistiv
ity ~b, the curves are shifted along the horizont
axis!.
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which is probably due to the higher anisotropy of the el
trical resistivities of our samples as compared to then-type
samples used by Azouet al.11

The periods of oscillationsBx , By , andBz for the three
crystallographic directions can be used to calculate the
rier concentration:

n56
4

3pA2
S e

hD 3/2

~BxByBz!
1/2

~for six ellipsoids!. For B1 we haven'431018cm23, while
from the Hall concentration~Eq. ~2!! we obtain n'5
31018cm23. Estimates for B5 yieldn'1.531018cm23 and
0.831018cm23, respectively.

4. DISCUSSION

Ordinarily, the Bi2Te3 compound with a C-33 layere
structure has an excess of positive charge carriers, w
form as a result of small deviations from the stoichiomet
composition in the sample crystallization process.9,12 The
rhombohedral crystalline structure of bismuth telluride co
sists of layers of tellurium and bismuth that alternate in
sequence Bi–Te–Te–Bi–Te–Bi–Te–Te–Bi~Refs. 13 and
14!, with the unit cell containing one Bi2Te3 molecule. Ac-
cording to Ref. 9, the hole and electron constant-energy
faces consist of six ellipsoids oriented at, respectively, 8
and 56°-angles to thec axis. This band structure, which ca
be considered a first approximation, determines the ani
ropy of the resistivitiesra andrc and the Hall constantsRac

andRca . Some experimental data suggest, however, that
top of the valence band and the conduction band have a m
complicated structure.15 The three-band model proposed
Ref. 19 provides a good description of the temperat
anomalies inR, including sign inversion. Calculations of th
antistructural defect in Bi2Te3 by the Green’s functions
method23 supported the version of the valence ba
used in the model of Ref. 19. According to Pechur a
Toussaint,23 the top of the valence band has maxima th
differ by 0.02 eV in the directions ZG,GA, GD, andGX of
the Brillouin zone. The minimum in the conduction band
observed along theGZ direction, where the energy chang
little. Preliminary analysis supports this picture.

When Bi2Te3 is bombarded by 5-MeV electrons, defec
form in the compound, effectively doping the material. O
estimates suggest that the relative number of initia
knocked-out atoms or dislocations~point defects of the type
of vacancies and interstitial atoms! amounts to 1023–1024

for an electron fluenceF5131019cm22. Since the irradia-
tion temperature of 250 K is relatively high~approximately

TABLE III. Parameters obtained in fitting the oscillations of the magneto
sistancera(B) ~the Shubnikov–de Haas effect to Eq.~6! for the initial ~B1!
and irradiated~B5! Bi2Te3 samples.

Sample Field orientation B0 ,T m05p/B0 B1 ,T B2 ,T

B1 Bic 15 0.2 170 –
B2 Bia 15 0.2 260 120
B5 Bic 35 0.09 80 –
-
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three-tenths of the melting point, equal to 860 K; Ref. 2!,
most initial point defects are annealed in the irradiation p
cess. The above data suggest that the main type of
radiation-induced defects in this case is the ‘‘antistructura
defects, in which Bi and Te atoms change places; these
fects are present in the initial samples.15 More complicated
defects~complexes! may also be preserved atT5250 K. The
concentration of antistructural defects is of order 1024,
which must lead to a corresponding increase in electron
hole concentrations by approximately 1018cm23.

Antistructural defects are usually assumed to be resp
sible for the hole concentration prevailing in Bi2Te3 ~Ref.
24!. The thermodynamically stable concentration of such
fects yields 1019 holes per cubic centimeter in Bi2Te3 ~Ref.
19!. The excess of defects introduced by irradiation low
the hole concentration and increases the electron contribu
to conductivity, while annealing reduces the defect conc
tration to the thermodynamically stable value at the giv
temperature and hence increases the hole contribution.
change of sign of the thermoelectromotive force and the H
effect whenp-Bi2Te3 is bombarded by neutrons and proto
has been observed earlier~see the literature cited in Ref. 15!.
Note that applying pressure up to 20 GPa, which initia
structural phase transitions in Bi2Te3 and in an indium
alloy,25 also leads to a transition fromp-type conduction to
n-type, i.e., in this case the introduced defects lower the h
concentration.

In the initial ~B1! and irradiated~B2! samples, the domi-
nant charge carriers are mobile electrons and holes. The
difference between B1 and B2 is that in the former the Fe
level is close to the lower hole band, while in the latter t
Fermi level is near the upper electron band. This band st
ture for Bi2Te3 was used in Ref. 19. The decrease in t
concentration of radiation-induced defects under isochron
annealing ensures a transition fromn-type conduction to
p-type, so that the Fermi level lands in the region near
middle of the gap~sample B4!. An important feature of this
state is that the concentrations of mobile electrons and h
are extremely low~Table II!, so that the contribution of low-
mobility carriers becomes significant.

Since in the B1 sample the main contribution to condu
tivity for all values ofT is provided by holes and in the B
sample, by electrons~see Tables I and II!, we can compare
the mobilities by defining them asm.Rac /ra . The tempera-
ture dependence of the reciprocal mobilitiesm21 is depicted
in Fig. 6 and is described fairly well by the formula

m215a1bTn, ~7!

wheren52.260.2. The terma, which corresponds to ‘‘im-
purity’’ scattering, increases under bombardment, while
temperature-dependent term change very little. The expo
n is close to two, which is characteristic of electron–electr
scattering observed in metals with strong electr
correlations.1–6,8 The quadratic temperature dependence
type ~7! also clearly manifests itself in the behavior of th
electrical conductivityra of the samples B1 and B2 when th
temperatures are not too high, so that the carrier concen
tion is essentially constant~see the inset in Fig. 6!. At low
temperatures the electrical resistivity and the Hall effect

-



de

lin
o

ug
th
ar
t

ng
th
s

in

s
t c
r
s

tifi
o-

e

s.

,

e
-

f,

k,

nd

982 JETP 86 (5), May 1998 Kar’kin et al.
the samples being studied is weakly temperature-depen
~see Figs. 1 and 2!, which justifies using Eqs.~3!–~5! for the
degenerate case.

Thus, the bombardment of Bi2Te3 crystals by 5-MeV
electrons leads to a transition from thep-type metallic state
to the metallic state with electron conduction. The annea
of defects shifts the chemical potential level from the edge
the conduction band to the top of the valence band thro
intermediate states in the middle of the energy gap in
electron spectrum, where conduction is by low-mobility c
riers. The change in the anisotropy parameter reflects
contribution of different electron bands to conduction alo
the c axis and in the plane, depending on the position of
Fermi level. Here the behavior of the transport propertie
similar to that of the ‘‘anomalous’’ properties of high-Tc

superconducting compounds, observed in a narrow dop
region near the metal–insulator transition.1,2,8 In contrast to
doping, electron bombardment leads to reversible change
the crystal lattice and the electron spectrum, changes tha
be reversed by annealing, so that in the irradiated mate
the metallicp-type conduction is restored and quantum o
cillations of the resistivity emerge again.

The present work was supported by the State Scien
and Technical ProgramsPhysics of Quantum and Wave Pr
cesses~Statistical Physics Project No. VIII-6! and Current

FIG. 6. Temperature curves for the reciprocal mobilitym215ra /Rac in
Bi2Te3 ~the inset shows the electrical resistivityra as a function ofT2);
Curve1 — the initial sample B1; curves2 and3 — the irradiated samples
B2 and B4, respectively.n, d, ands represent the experimental data, a
the curves are fitting curves~see Eq.~7!!.
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A theory of Mössbauer spectra of noninteracting Stoner–Wohlfarth~SW! particles interacting
with rf magnetic fields is developed. The theory makes it possible to calculate the
absorption spectra for arbitrary frequency and amplitude of the rf field. The main features of the
Stoner–Wohlfarth model are discussed. The Liouville superoperator formalism is used to
generalize the results to the case of arbitrarily time-varying hyperfine fields at a nucleus. To
understand the qualitative features of the collapse effect that are observed in the
Mössbauer spectra of SW particles the particular case of a circularly polarized hyperfine field is
studied, and an analytical expression is obtained describing the Mo¨ssbauer spectra for this
case. An analysis is also made for weak rf magnetic fields and in this case the resonance behavior
of the Mössbauer lines is traced as a function of the frequency of the rf field. ©1998
American Institute of Physics.@S1063-7761~98!01705-3#
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1. INTRODUCTION

The method of investigating Mo¨ssbauer spectra of th
hyperfine structure by irradiating the sample with a rad
frequency ~rf! field is now attracting increasing attentio
This method makes it possible to study the relaxation pr
erties of magnetic alloys at frequencies of the order of h
dreds of MHz, which is of great practical interest. Numero
experimental works, where the diverse behavior of
shapes of the Mo¨ssbauer spectra as a function of the f
quency and amplitude of the rf field was demonstrated qu
tatively, have been published in connection with th
problem.1–11 As the amplitude of the rf field increases, th
hyperstructure, which is well resolved in the absence of
rf field, collapses to a single line. This phenomenon, disc
ered by Pfeiffer in 1971, is called the collapse effect.

Theoretical investigations in this field are actually on
just beginning. The theoretical work published thus far a
lyzes only the case of extremely strong rf fields and does
contain even a rough description for the case of rf fields
arbitrary intensity.12–14 Only very recently we were the firs
to propose a theory that made it possible to calculate i
model the Mo¨ssbauer spectra for arbitrary frequencies a
amplitudes of the rf field.15

In the latest work the magnetic alloy was treated,
analogy to the Stoner–Wohlfarth~SW! model,16 as a collec-
tion of small uniformly magnetized particles with random
oriented axes of easiest magnetization. The rf-field-indu
magnetization reversal process was treated as random ju
from one orientation of the axis of easiest magnetization
the opposite orientation. This assumption greatly simplifi
the analysis and made it possible to obtain a closed-f
expression for the Mo¨ssbauer absorption spectrum. Even
this very simple case the final result had a very nontriv
9831063-7761/98/86(5)/10/$15.00
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form and consisted of a double integral of an operator fu
tion. Nonetheless, the formulas obtained can be program
on a computer, and in Ref. 15 a number of specific examp
were studied~see Ref. 15 for details!.

It is perfectly obvious that the model developed in R
15 is not general. For example, in the Stoner–Wohlfa
model16 magnetization reversal of a particle under the act
of a magnetic field is accompanied by a deflection of
magnetic moment of the particle away from the axis of ea
est magnetization. This circumstance makes it much m
difficult to calculate the Mo¨ssbauer absorption spectra a
makes it necessary to use more refined mathematical m
ods of analysis. Nonetheless, if the SW model, where
magnetic relaxation admits a relatively simple mathemat
description, is strictly followed, it is possible to obtain eve
in this case closed-form expressions for the Mo¨ssbauer ab-
sorption spectra and to perform concrete calculations for
bitrary rf amplitudes and frequencies. The present pape
devoted to this question. In what follows we shall wo
strictly in the SW model in its original form,16 where inter-
particle interactions were neglected.

A detailed derivation of the formulas describing th
Mössbauer absorption spectra in the case when the t
dependent hyperfine field at a nucleus reverses direction,
it remains parallel to the same axis, is given in Sec. 2. T
Stoner–Wohlfarth model is briefly discussed in Sec. 3.
Sec. 4 the results of Sec. 2 are extended to the case o
arbitrary time-dependent hyperfine magnetic field by repl
ing the Hamiltonian operators by Liouville superoperato
To understand the characteristic behavior of the Mo¨ssbauer
spectra in the SW model, the case of a circularly polariz
hyperfine field is specially studied in Sec. 5. This exam
admits a simple analytical description and makes it poss
to show a number of new features of the collapse eff
© 1998 American Institute of Physics
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FIG. 1. a—Time dependence of the hyperfine magnetic fi
~dashed line! in a strong rf field~solid line! and the corresponding
Mössbauer spectra for rf frequenciesv rf5100, 50, 36.8, 30, and
21.1 MHz ~b–f!. Here and belowvL550 MHz.
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which are manifested in the Mo¨ssbauer absorption spectra
the SW model. The case of weak rf fields, where the gen
expressions greatly simplify and the resonant character o
rf frequency dependence of the Mo¨ssbauer spectra can b
precisely traced, is analyzed in Sec. 6.

2. MÖSSBAUER SPECTRA OF THE HYPERFINE
STRUCTURE UNDER THE ACTION OF AN RF FIELD IN THE
ADIABATIC APPROXIMATION: DETERMINISTIC
DESCRIPTION OF THE HYPERFINE FIELD

A rf field influences the hyperfine spectra via the hyp
fine fieldHhf(t) acting on a nucleus. Under the action of t
rf field the hyperfine field becomes time-dependent as re
of complicated relaxation processes. The simplest and ph
cally clearest situation occurs in the cases when the re
ation processes are rapid enough thatHhf(t) follows some
macroscopic characteristics of the sample—in the SW mo
the magnetizationM i(t) of a particle, whereM i(t) in turn
varies in time as a result of the action of the rf field. If
model of magnetization reversal is given, thenM i(t) and
therefore alsoHhf(t) are known functions and the Hami
tonian of the system, which includes the hyperfine inter
al
he

-

lt
si-
x-

el

-

tion and the interaction of ag-ray with a nucleus, will have
the following form for the ground and excited states of
nucleus:

Ĥ5Ĥ01gg,emNÎ ~g,e!Hhf~ t !1V̂gN~ t0!, ~1!

whereĤ0 is the nuclear Hamiltonian determining the ener
levels of a nucleus in the ground and excited states, neg
ing the hyperfine interaction, and the second term in Eq.~1!
describes the hyperfine interaction of a nucleus. HeremN is
the nuclear magneton;gg,e is the nuclearg factor; Î (g,e) are
the nuclear spin for the ground (g) and excited (e) states of
a nucleus; and, the operatorV̂gN(t0) describes the interaction
of a g-ray with a nucleus,t0 is being the time at which this
interaction is switched on. According to the general theory
the resonant interaction of radiation with matter,17 we take
V(t)50 for t,t0 . As one can see from Eq.~1!, the form of
the absorption spectrum will be determined through the
pendenceHhf(t).

In strong rf fields, most of the time each particle w
possess a direction of magnetization that is essentially pa
lel to the direction of the rf field and, assuming extreme
rapid relaxation, its direction will change instantaneou
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when the direction of the rf field changes~see Fig. 1a!. If the
perpendicular components of the hyperfield are neglec
then we have for the wave functions of the nucleus in
ground and excited states,cm(t) andcM(t) respectively,

cm~ t,t0!5expF2 iggmNmE
t0

t

Hhf~ t8!dt8G um&,

cM~ t,t0!5expF2 igemNME
t0

t

Hhf~ t8!dt8 ~2!

1S i
E0

\
2

G0

2 D ~ t2t0!uM &.

Herem andM are the projections of the nuclear spin on t
direction of the hyperfine field in the ground and excit
states, respectively, andE0 andG0 are the energy and width
of the excited state of the nucleus.

According to Ref. 17, we have for the amplitude of t
absorption of ag-ray with energyE5\v

cmM~v!5E
t0

`

^cM* ~ t !uV̂gN~ t0!exp@ iv~ t2t0!#ucm~ t !&dt

[VmME
t0

`

expF E
t0

t

ivmM~ t8!dt81 i ṽ~ t2t0!Gdt,

~3!

wherevmM(t)5(geM2ggm)mNHhf(t), ṽ5v1 iG0/2, and
VmM are the matrix elements of the nuclear current opera
which also includes the probability of the Mo¨ssbauer effect.
The square of the absolute value of the absorption amplit
determines the absorption cross section.17 It is also necessary
to average over the switch-on timet0 . Ordinarily, no special
attention is given tot0 , but in this case there is a time
dependent rf field, which determines its own reference tim
Since the rf field is periodic, it is sufficient to average ov
one period. On this basis we have for the absorption cr
section

s~v!5sa(
a

uCau2wa~v!, ~4!

where

wa~v!5
1

Trf
E

0

TrfU E
t0

`

expH E
t0

t

i @ṽ2va~ t8!#dt8J dtU2

dt0

[
1

Trf
E

0

Trf
dt0E

t0

`

dt1 exp@2G0~ t12t0!#

3E
t1

`

dt expH E
t1

t

i @ṽ2va~ t8!#dt8J 1c.c. ~5!

Heresa5 f anas0ta is the effective thickness of the absorbe
f a is the probability of the Mo¨ssbauer effect in the absorbe
na is the density of resonant nuclei in the absorber,s0 is the
transverse absorption cross section,ta is the thickness of the
absorber,a[m and M , the coefficientsCa determine the
intensity of the corresponding transitions and can be
d,
e

r,

e

.
r
ss

,

-

pressed in terms of the Clebsch–Gordan coefficients,Trf

52p/v rf is the period of the rf field, andv rf is the frequency
of the rf field.

The periodicity of the rf field makes it possible to sim
plify the expression~5!. The integral overt0 can be per-
formed by parts, the result being

wa~v!5
1

G0Trf
E

0

Trf
dt1E

t1

`

dt

3expH E
t1

t

i @ṽ2va~ t8!#dt8J 1c.c. ~6!

Sinceva(t)5va(t1Trf!, we easily find

wa~v!5
1

G0Trf
E

0

Trf
dt1E

t1

t11Trf
dt

3
exp@ i ṽ~ t2t1!#

12exp~ i ṽTrf!Ĝ~ t1 ,t11Trf!
G~ t1 ,t !1c.c.,

~7!

where

G~ t1 ,t !5expH E
t1

t

dt8~2 iva~ t !!J . ~8!

The functionG(t1 ,t) can be factorized as

G~ t1 ,t !5G21~0,t1!G~0,t !. ~9!

As a result, Eq.~7! acquires the simpler form

wa~v!5
1

G0Trf
E

0

Trf
dt1E

t1

t11Trf
dt G21~0,t1!

3
exp@ i ṽ~ t2t1!#

12exp~ i ṽTrf!Ĝ~0,Trf!
G~0,t !1c.c. ~10!

This form, where the integration limits are finite, is mo
convenient for specific calculations for an arbitrary period
time-dependence of the hyperfine fieldHhf(t).

The integral~10! can be easily calculated in the ca
whenHhf varies in time as shown in Fig. 1a. The result is

wa~v!5
1

8G0
H 11exp~ i ṽTrf!

12exp~ i ṽTrf!
@Fa~ṽ !

1Fa~2ṽ !#1@Fa~ṽ !2Fa~2ṽ !#J 1c.c.,

~11!

where

Fa~6ṽ !5G6~ṽ,va!1G6~ṽ,2va!,

G6~ṽ,va!5~ ỹ/ya12! f 6~ ỹ1ya!,

f 1~x!5
12cosx

x2 , f 2~x!5 i
x2sin x

x2 ,

ỹ5
ṽTrf

2
, ya5

vaTrf

2
.
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FIG. 2. a—Magnetizationm of a SW particle
in an external magnetic fieldH. b—
Normalized energyh5E/(Nx2Ny)VM0

2 of a
SW particle (u545°) versus the anglef for
different values of the normalized externa
magnetic field h5H(Nx2Ny)VM0 ; the
dashed line shows the variation of the anglef
with decreasingh from a positive value above
hc to negative values.
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Examples of the transformation of the hyperfine stru
ture spectra as a function of the ratio of the rf and the Larm
frequency are presented in Figs. 1b–f. In all cases the spe
consist of a single central line and satellites. According
Eq. ~11!, we have for the intensities of the satellites in t
casev rf@G0

I k52sa(
a

F ya

~pk!22ya
2 G2

@12~21!k cosya#. ~12!

These results are in complete agreement with Refs. 13
14.

3. STONER–WOHLFARTH MODEL

The model proposed by Stoner and Wohlfarth in 1946
widely used to describe magnetization reversal in magn
alloys.16 In this model a ferromagnet is treated as a collect
of individual particles or clusters, inside which a strong e
change interaction operates, so that each particle can
treated as uniformly magnetized with magnetizationM0 . For
simplicity it is assumed that each particle is a prolate el
soid of revolution with a random orientation of the axes
space~see Fig. 2a!. As a consequence of the nonsphericity
the particles, there arises a shape energy

Ed5
VM0

2

2
~Ny cos2 c1Nx sin2 c!, ~13!

whereV is the particle volume andNx andNy are demagne-
tization factors along thex andy axes, respectively.

The SW model also assumes that

Ed@kT, ~14!

so that in the absence of external fields the magnetic mom
of each particle occupies one of two positions in the dir
tion of the axis of easiest magnetization. On account of
relation~14! jumps between these two states are assume
be very slow so that they can be neglected during the m
surement time.

If an external magnetic fieldH acts on a particle, then
the total Hamiltonian of the particle is

Ĥ52HVM0 cosf1
VM0

2

2
~Ny cos2 c1Nx sin2 c!.

~15!
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Here the first term describes the energy of the particle in
external magnetic field. Figure 2b shows a series of curve
the total energy of a particle as a function of the direction
the magnetization vector for different values of the norm
ized magnetic field intensity

h5
H

~Nx2Ny!VM0
. ~16!

As one can see from Fig. 2b, when an external magnetic fi
is applied, the energy minima shift as a function of the an
f, i.e., the magnetic moment tilts away from the axis
easiest magnetization~see Fig. 2a!. For weak magnetic fields
h,hc two energy minima of different depth and tw
maxima remain on the curve. If the external field is strong
thanhc , we have curves with one minimum (hc is the criti-
cal magnetic field intensity, which depends on the orientat
of the particle16!.

An important assumption of the SW model is that the
exist fast relaxation processes such that as the external
varies, the magnetic moment of a particle follows the po
tion of and instantaneously changes direction in accorda
with the local minimum and passes instantaneously into
absolute minimum only for fieldsh.hc . The dashed line in
Fig. 2b shows the variation of the direction of the magne
moment as a function ofh.

The behavior of the magnetic moment of a particle a
function of the external magnetic fieldH can be calculated
according to the scheme described above. The correspon
curves for an external periodic field

H~ t !5H0 sin vt ~17!

are displayed in Fig. 3, which displays the projections of
magnetic moment on the direction of the magnetic field
different groups of particles with different orientations of th
axes of easiest magnetization, as well as the general ma
tization curve with all particles randomly oriented. As on
can see from this figure, for fields abovehc the magnetiza-
tion curve reaches a stationary closed curve irrespectiv
the initial position of the magnetic moment of the particle
H50. For weak fields memory of the initial state is retaine
and for each particle there are two magnetization curv
each curve corresponding to a different initial state, dist
guished by an opposite orientation of the magnetic mom
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FIG. 3. Magnetization curves for SW particles wit
anglesu50°, 45°, and 90°~a–c! and for an en-
semble of randomly oriented SW particles (d) for
different rf amplitudesh051.5, 0.75, and 0.5~left
to right!.
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Since the critical fieldhc depends on the orientation of th
axis of easiest magnetization of a particle relative to the
rection of the magnetic field, for certain amplitudes of t
external fieldH0 in the range 0.5,h0,1 ~see the series o
curves in Figs. 3a–c! the magnetization of some particle
will reverse in the strong-field regime and that of other p
ticles will reverse in the weak-field regime. In the prese
model these features of the magnetization reversal pro
will be important for the formation of the hyperfine structu
of the Mössbauer spectra.

We note that nontrivial role of relaxation in this mode
On the one hand the relaxation process is assumed t
rapid enough for the magnetic moment to follow the posit
of the local energy minimum, while on the other hand th
process must be quite slow compared with the jumps
tween local minima. It is obvious that both conditions can
realized only if the condition~14! holds with a large margin
so that the rate of above-barrier transitions between lo
minima can be assumed to be zero with exponential ac
racy. The condition~14! is well-known to hold for large
particles. As the particle volume decreases, the role of re
ation processes changes substantially and it becomes n
sary to take into account jumps between local minima. T
extension of the SW model can be accomplished on the b
of the approach proposed in Ref. 15.
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4. MÖSSBAUER SPECTRA FOR STONER–WOHLFARTH
PARTICLES

Thus, in the Stoner–Wohlfarth model the magnetic m
ment of the particles changes direction and a special inv
tigation is required in order to take this circumstance in
account in the Mo¨ssbauer absorption spectra. Such an inv
tigation is much more complicated than not only the ca
examined in Sec. 2 but also the more general case studie
Ref. 15. In the present case the hyperfine interaction is
termined by the Hamiltonian~1! without any restrictions,
i.e., Hhf(t) can change direction arbitrarily. Since the hype
fine interaction operators taken at different times do not co
mute, a simple solution of the kind obtained in Sec. 2
longer exists.

In this case the wave functions for the ground and
cited states are sought in the form

uc~g!~ t,t0!&5cmm0
~ t,t0!um&,

~18!

uc~e!~ t,t0!&5 c̃MM0
~ t,t0!uM &.

Here m, M and m0 , M0 are the projections of the nuclea
spin on a distinguished axis at the timest and t0 , respec-
tively. In the expressions~18! and below summation ove
repeated indices is assumed. From the Schro¨dinger equations
for the coefficientscmm0

(t,t0) andc̃M0M(t,t0) we easily find
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cmm0
~ t,t0!5^muT̃ expF2 iggmNm

3E
t0

t

Ĥhf~ t8!dt8G um0&,

~19!

c̃MM0
~ t,t0!5^M uT̃ expF2 igemNME

t0

t

Ĥhf~ t8!dt8

1S i
E0

\
2

G0

2 D ~ t2t0!G uM0&.

Taking account of the averaging with respect to the i
tial states over a period of the rf field, the absorption cr
section for particles with a fixed orientation (i ) of the axis of
easiest magnetization will be given by the expression

s i~v!5
1

Trf
E

0

Trf

(
m0 ,M0

U E
t0

`

cM0M* ~ t,t0!

3VMmcmm0
~ t,t0!eiv~ t2t0!dtU2

dt0 . ~20!

To transform this expression it is convenient to introduce
Liouville operatorL̂ Ĥ(t), whose action on the ordinary op
eratorÂ(t) is determined by the relation18

i
]Â~ t !

]t
5L̂ Ĥ~ t !Â~ t !5

1

\
@Ĥ~ t !,Â~ t !#. ~21!

In our case the superoperatorL̂ Ĥ(t) operates in a space wit
(2I (g)11)(2I (e)11) variables, and for the case of57Fe nu-
clei it is a matrix of rank 8. With the aid of this operator th
expression~20! can be put into a form similar to the left
hand side of Eq.~5!:

s i~v!5
1

Trf
E

0

Trf
dt0E

t0

`

dt1 exp@2G0~ t12t0!#E
t1

`

Tr

3H V̂F T̂ expH E
t1

t

i @ṽ Î2L̂ Ĥ~ t8!dt8#J V̂G J dt1c.c.

~22!

Averaging overt0 is performed completely analogous
to Sec. 2. This gives

s i~v!5
1

G0Trf
E

0

Trf
dt1E

t1

`

TrH V̂F T̂

3expH E
t1

t

i @ṽ Î2L̂ Ĥ~ t8!#dt8J G V̂J dt1c.c.,

~23!

and since the rf field is periodic, the expression~23! can be
put into the form
-
s

e

s i~v!5
1

G0Trf
(
p

E
0

Trf
dt1E

t1

t11Trf
dt Tr

3F V̂pĜ21~0,t1!
exp@ i ṽ~ t2t1!#

Î2exp~ i ṽTrf!Ĝ~0,Trf!

3Ĝ~0,t !V̂pG1c.c., ~24!

where

Ĝ~0,t !5T̂ expH E
0

t

dt8@2 i L̂ Ĥ~ t8!#J ~25!

(T̂ is the chronological ordering operator!. In Eq. ~24! sum-
mation is also performed over different polarizationsp of the
incident g-rays. The total absorption cross section is ob
ously determined by averaging over all the differently o
ented particles.

In accordance with the definition of theT̂ product the
operatorĜ(0,t) can be represented as

Ĝ~0,t !5 lim
n→`

)
k51

n

exp~2 i L̂ Ĥ~ tk!Dt !, ~26!

whereDt5t/n andtk5t2kDt. If the magnetic dynamics o
the system is known, i.e.,M i(t), and thereforeHhf

( i )(t) are
known functions~see Fig. 3!, it is not difficult to calculate
the matrix elements of the operatorĜ(0,t) numerically in
analogy to ordinary integrals. Then the Mo¨ssbauer absorp
tion spectra can be calculated directly using Eqs.~24!–~26!.
We note that the calculations are much more involved th
in the preceding case, where the field varied only in mag
tude and not in direction. The computational results for
Mössbauer absorption spectra for different rf amplitudes
frequencies are displayed in Figs. 4 and 5.

As one can see from Fig. 4, as the rf amplitude increas
in strong magnetic rf fields the hyperfine structure that
well-resolved in weak rf fields collapses to a single cent
line with satellites located at distances6nv rf , wheren is an
integer. As the rf frequency decreases, the intensity of
satellites increases. In intermediate fields a much more c
plicated picture of the transformation of the spectra is o
served than in the case of the hyperfine structure spe
calculated in Ref. 15, where the perpendicular compone
of the hyperfine splitting were assumed to be zero.

Figure 5 shows a series of partial spectra for partic
with different orientations with anglesu50°, 45°, and 90°,
for which the role of the perpendicular components ofHhf(t)
is most conspicuous. It is easy to see that spectra witu
50° and 90° are qualitatively different from one anothe
and foru590° a unique hyperfine structure appears for b
the central line and the satellites. Moreover, splitting of t
individual components of the hyperfine structure is obser
~Figs. 5b, and 5c! for weak fields and rf frequency equal t
the frequency of the hyperfine splitting of the nuclear grou
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FIG. 4. Computed Mo¨ssbauer absorption spec
tra for an ensemble of randomly oriented SW
particles in a rf field with different frequencies
v rf560, 50, and 36.8 MHz~a–c! and ampli-
tudesh055, 1, 0.75, 0.5, and 0.25~top to bot-
tom!.
g

s

lu

n

d

te
state. These features occur over a quite wide range of an
u and they even appear clearly in the total spectra~Fig. 4!.
These effects require closer attention and will be discus
below.

5. MÖSSBAUER SPECTRA FOR A CIRCULARLY POLARIZED
HYPERFINE FIELD

It is easy to see that forh051 andu590° the hyperfine
field at a nucleus is strictly circularly polarized, i.e.,

Hhf~ t !5nx cos~v rft !1ny sin~v rft !. ~27!

As we shall see below, the expression for the Mo¨ssbauer
absorption spectrum has a relatively simple analytical so
tion in this case.

Let us consider the wave function of the nuclear grou
state. It is convenient to seek the solution in the form

uc~g!~ t !&5T̂ expS 2 i E
t0

t

Ĥ ~g!~ t8!dt8D uc~g!~ t0!&, ~28!

where

Ĥ ~g!~ t !5vgÎ–Hhf~ t !. ~29!

Here vg is the hyperfine splitting constant for the groun
state. A simpler expression can be obtained foruc (g)(t)& by
means of a unitary transformation into a coordinate sys
rotating with frequencyv rf around thez axis:

uc~g!~ t !&5exp~ iv rfÎ zt0!exp~2 iv rfÎ zt0!T̂

3expS 2 i E
t0

t

Ĥ ~g!~ t8!dt8D
3exp~ iv rfÎ zt !exp~2 iv rfÎ zt !uc~g!~ t0!&

[exp~ iv rfÎ zt0!exp~2 iH̃
ˆ ~g!~ t2t0!!

3exp~2 iv rfÎ zt !uc~g!~ t0!&, ~30!
les

ed

-

d

m

where

Ĥ̃ ~g!5v rfÎ z1vgÎ x ~31!

is a time-independent operator.
We now introduce the eigenfunctionsum̃& and um& and

the eigenvaluesvm̃ andvm for the operatorsH̃
ˆ (g) andv rf Î z .

It is easy to see that

vm̃5Av rf
21vg

2m̃, vm5v rfm, ~32!

FIG. 5. Computed Mo¨ssbauer spectra for SW particles withu50°, 45°,
and 90°~a–c! in a strong rf field,h051, with v rf550 MHz ~left side! and
in a weak rf field, h050.25, at the resonance frequencyv rf5vg

536.8 MHz ~right side!.
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wherem is the projection of the nuclear spin on thez axis
andm̃ is the projection of the nuclear spin on the quantiz

tion axis for which the operatorH̃
ˆ (g) is diagonal. Using these

expressions it is easy to express the functioncmm0
(t,t0) as

cmm0
~ t,t0!5^m0um̃&^m̃um&exp~ i ~vm0

2vm̃!t0!

3exp~ i ~vm̃2vm!t !. ~33!

Similarly, we find for the excited state

cMM0
~ t,t0!5^M0uM̃ &^M̃ uM &exp~ i ~vM0

2v M̃ !t0!

3exp~ i ~v M̃2vM !t !

3exp~ i ~E0 /\1 iG/2!~ t2t0!!. ~34!

As one can see from Eqs.~33! and~34!, a nucleus with spin
I behaves under the action of an external circularly polari
field similarly to a system with the energy levels~quasi-
levels!

v i5v M̃2vM . ~35!

The number of these quasilevels is equal to (2I 11)2. The
corresponding scheme of the splitting of the energy level
the ground and excited states of the57Fe nucleus is shown in
Fig. 6. It is obvious that these levels will appear in the a
sorption spectra as sharp lines with natural width, which
in fact observe in Fig. 5c. Using Eqs.~33! and ~34! it is not
difficult to obtain analytical expressions for the absorpti
spectrum. In so doing, it is convenient to employ not the fi
result ~24! but rather Eq.~23!. Simple manipulations yield

s i~v!5
1

G0
(
p

(
mM

m̃M̃

V
m̃M̃

~p!1

3
^m̃um&^M uM̃ &

i ~ṽ2v M̃1vm̃1vM2vm!
VMm

~p! 1c.c. ~36!

FIG. 6. Scheme of the splitting of the energy levels of a nucleus in exc
and ground states in a static hyperfine field~a! and in a circularly polarized
hyperfine fieldHhf(t) (u590°, h051! ~b!.
-

d

f

-
e
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The calculations performed using Eq.~36! and Eqs.~24!–
~26! are in complete agreement with one another.

Thus, in the case studied above the absorption spect
consists of sharp lines with a Lorentzian shape analogou
the case of a static hyperfine field but with a much larg
number of lines. In the general case, for the transition stud
the spectrum consists of 64 lines. The selection rules dicta
by the multipole nature of theM1 transition make transitions
with indicesM563/2→m571/2 forbidden and the num
ber of allowed lines is thereby reduced to 48, only
doubly-degenerate lines being actually observed. Moreo
for largev rf the lines separate into a central group consist
of six lines and side groups~satellites! with a resolved hy-
perfine structure with 5, 3, and 1 lines with increasing d
tance from center.

As direct calculations show, this picture of the more
less clearly expressed hyperfine structure of both the cen
line and the satellites remains both in a quite wide range
anglesu nearu590° and in a wide range of frequencies
the rf field.

6. WEAK RF-FIELD LIMIT

The case of weak rf fields is also of special intere
since the typical resonant effects in the form of splitting
the hyperfine lines arise even for very weak fields~see Fig.
5c!. If the rf amplitude for each particle is much less than t
anisotropy energy (h0!1), then the magnetic moment of
particle and thereforeHhf(t) also execute small oscillation
around one of two directions of the axisn of easiest magne
tization.

If the frequency of the rf field is chosen to bevg or ve ,
then it is easy to show that, to within terms quadratic inh0 ,
a system of quasilevels~see Fig. 7a! determined by equation
of the type~32! and~35! appears in complete analogy to th
results obtained in the preceding section. In the case w
v rf5ve ,

vm̃5
1

2
h0vgm̃ sin u, v M̃50,

~37!

vm5vgm, vM5veM .

Here m is the projection of the nuclear spin on then axis,
and m̃ is the projection of the nuclear spin on an axis p
pendicular ton and lying in then–H plane. Similarly, for
v rf5ve

vm̃50, v M̃5
1

2
h0veM̃ sin u,

~38!

vm5vgm, vM5veM .

The absorption spectrum is then described by Eq.~36!
obtained in the preceding section. However, it should be k
in mind that in the weak-field case under study Eq.~36! is
approximate, since it neglects corrections that are quadr
in the amplitude of the rf field. Figures 7b–d show the Mo¨ss-
bauer spectra at rf frequencies near resonance values. A
can see from these figures, the splitting of the hyperfine li

d
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FIG. 7. a—Scheme of the splitting of the energy levels o
nucleus in excited and ground states in a weak rf fie
(h050.25) at resonance frequenciesv rf5vg536.8 MHz
~left side! andv rf5ve521.1 MHz ~right side!. The corre-
sponding Mo¨ssbauer spectra for an ensemble of random
oriented SW particles in a rf field with frequency close
the resonance values (Dv55 MHz): v rf5vg,e1Dv,
vg,e , vg,e2Dv ~b2d!. The scale of the spectra in~b! is
magnified by a factor of 1.5.
r
s

en

th
s

ien

lc
th

ily
tio
a
r–
os
s

t
a
ti

it

er-
he
nes
ch

th
re-

this
use

ely.

ds
disappears when the rf frequency increases or decreases
tive to the resonance frequency. We also note that trace
this splitting remain quite far from the resonance frequ
cies, i.e., forDv rf much greater than the natural widthG0 .
Such line splittings should be observed not only foru590°
but also for smaller angles, for which the magnitude of
splitting decreases as sinu. In consequence, these splitting
remain in the total spectrum summed over all possible or
tations of the axis of easiest magnetization~see Fig. 5!.

7. CONCLUSIONS

The theory developed above makes it possible to ca
late the Mössbauer absorption spectra in the case when
hyperfine field at a nucleus changes direction arbitrar
Specific calculations were performed and the transforma
of the hyperfine spectra as a function of the frequencies
amplitudes of the rf field were analyzed for the Stone
Wohlfarth model in strict correspondence to the original p
tulates of this model.16 A series of qualitatively new effect
was observed in the hyperfine spectra as predicted by
present model. These effects are completely absent if m
netization reversal occurs as a sharp reversal of the direc
of the axis of easiest magnetization.15 To understand the
characteristics of the observed effects it was found that
ela-
of
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e

-

u-
e
.
n

nd

-

he
g-
on

is

important to study the case of a circularly polarized hyp
fine field, for which an analytical solution was obtained. T
hyperfine spectrum in this case consists of Lorentzian li
of natural width, the number of lines, however, being mu
greater than in a static hyperfine field.

It should be kept in mind that the Stoner–Wohlfar
model may be inadequate for describing magnetization
versal in real situations, first and foremost because
model neglects the interparticle interaction and also beca
the relaxation process is described very approximat
These questions require special analysis.
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Critical behavior and mechanism of strain correlations under conditions of unstable
plastic flow
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The complicated time dependence of discontinuous deformation and statistical properties of
stress drops associated with the Portevin–Le Chaˆtelier effect in single crystals and polycrystalline
samples of the Al–Mg alloy have been studied experimentally. We have determined
conditions under which the stress drops have no characteristic scale, but display a power-law
distribution. Such statistical features of critical behavior have been observed in systems
with various types of plastic strain dynamics, namely, in propagation of deformation bands and
avalanche slips, which demonstrate some properties of models of self-organized criticality.
The spatial correlation in processes of collective dislocation motion is determined by
inhomogeneous elastic stresses in the dislocation ensemble. A computer model taking into
account local nonlinearity of crystal resistance to plastic flow under conditions of the Portevin–Le
Châtelier effect and correlations between strains in different elements provides an adequate
description of both the statistical properties of the effect and the strain distribution in space and
time. © 1998 American Institute of Physics.@S1063-7761~98!01805-8#
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1. INTRODUCTION

The creation of the theory of dynamic systems1 has re-
sulted in considerable changes in approaches to various
nomena studied in different fields of science, ranging fr
physics to biology. An ensemble of dislocations is an e
ample of a dynamic dissipative system with interacting co
ponents, whose evolution displays some features of s
organization in time and space. Several review articles h
been devoted to collective behavior of dislocations.2,3 The
phenomenon of plastic flow instability, i.e., discontinuo
deformation due to abrupt coherent glide of large dislocat
groups, has been widely known. This process can be ca
by various microscopic mechanisms. The behavior of str
in time and space, however, often demonstrates some un
sal features, independent of the nature of instability.4 On the
other hand, a large variety of stress–strain curves, ran
from fairly regular to those typical of nonstationary rando
processes, can be observed for the same mechanism, de
ing on deformation conditions.5–7 Different types of macro-
scopic behavior correspond to radically different dynam
properties of moving dislocations. This variety is no le
interesting than their common properties. Attention has b
attracted to studies of plastic deformation as a model of
operative behavior of dissipative systems by the possib
of changing the dynamic state of a dislocation ensemble
varying parameters of the experiment, microstructure,
sample dimensions.

The behavior of discontinuous deformation of dilut
alloys due to the Portevin–Le Chaˆtelier effect8 is probably
the most versatile. The microscopic mechanism of this ef
has been studied in detail.9 The cause of instability in the
plastic deformation in this case is a section with negat
9931063-7761/98/86(5)/8/$15.00
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sensitivity on the curves of stresss versus strain rateė
caused by diffusion of impurities to dislocations arrested
obstacles~in other words, dynamic strain ageing!, i.e., a

lower stresss is needed at a higher plastic strain rateė. The
reason for such an effect is quite clear: the lower the pla
strain rate, the longer the time during which a dislocation
pinned on obstacles, therefore the more impurity atoms d
to the dislocation and increase the potential barrier to
dislocation unpinning. The competition between the norm
positive strain rate sensitivity owing to thermally activat
processes and the negative component due to impur
gives rise to anN-shaped stress characteristic ofs versus

strain rateė ~Fig. 1!. In the ideal case of homogeneous stra
the negative resistance of a crystal to plastic strain, like
negative differential electric resistance, should lead to p
odic oscillations in the plastic strain rate similar to relaxati
oscillations in electric circuits.10 When the testing machine i

designed to produce a constant strain rate, oscillationsė
translate into oscillations ins owing to the elastic reaction o
the testing machine. The ideal, periodic shape of oscillati
is never observed because the force coupling dislocation
one another is finite, thus the latter parameter is an impor
factor in the plastic slip dynamics and irregularities
stress–strain curves.

There is a profound similarity between the Portevin–
Châtelier effect and instabilities in dry friction, which is
based on the paradigm of self-organized criticality in d
namic systems with large numbers of degrees of fr
dom.11,12 Theoretical models of dry friction have been us
in attempts to account for the statistics of earthquakes, ba
on the assumption of an anomalous negative12 dependence of
the friction coefficient on the relative slip velocity. Instabil
© 1998 American Institute of Physics
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ties of this type lead to avalanche processes whose ma
tudes have no characteristic scale, but are described
power-law distributions, and in this sense, the system is
critical state. The possibility of self-organized critical stat
due to various mechanisms of low-temperature stress ju
was suggested by Bobrov et al.,4 and this conclusion was
based on the observation of common features in statistic
electric signals caused by the twinning and catastrophic s
The first studies of statistical properties of the Portevin–
Châtelier effect revealed that it was characterized by
power-law distribution in a certain range of deformation p
rameters, but this was not the end of the story.5–7 An alter-
native approach to the dynamic model of the effect is ba
on the possibility of chaotic behavior under conditions of t
Portevin–Le Chaˆtelier instability, which was predicted
theoretically13 and later confirmed in experiments.14 Unlike
the case of self-organized criticality, several degrees of fr
dom, which, obviously, correspond to collective degrees
freedom in a dislocation ensemble, are sufficient for the
currence of deterministic chaos. These two concepts do
rule out various types of correlated dislocation behavior,
pending on the deformation conditions.

This paper describes a statistical approach to quantita
analysis of stress–strain curves under conditions of unst
plastic flow. Effects of strain rate, temperature, microstr
ture, and the size of the Al–Mg alloy sample on the shape
deformation curves and statistics of stress drops have b
studied. The paper presents the data concerning the m
scopic mechanism of spatial correlations in deformation p
cesses and conditions under which dynamic and statis
properties of the Portevin–Le Chaˆtelier effect have a critica
character. We have studied the nonlocal dynamics of a c
puter model which represents a strained crystal as a
dimensional chain of elements whose plastic flow is
scribed by a local nonlinear material equation.

2. EXPERIMENTAL TECHNIQUES

Polycrystalline samples of the Al–3 at.% Mg alloy an
single crystals of the Al–4.5 at.% Mg alloy were cut in
standard shape for tensile experiments~symmetrical paddles!
and strained on a rigid testing machine~the machine-sample
stiffness wasC'107 N/m! at constant grip velocities corre
sponding to sample strain rateėa52•1026–2•1023 s21 at

FIG. 1. Flow stress as a function of plastic strain rate,F( ė), for two values

of the applied strain rateėa ( ėa
1. ėa
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temperatures of 20, 80, and 120° C. The lengthl , width d,
and thicknessw of the studied section of polycrystallin
samples were in the rangesl 518–36 mm,d51 –6 mm, and
w50.5–2 mm. Dimensions of single crystal samples w
l 57 –28 mm, d51 –5.5 mm, andw50.7–1.5 mm. The
alignment of the tensile axis in single crystals close to
^111& or ^100& directions corresponded to the case of m
tiple slip. In order to study the impact of the microstructur
state, polycrystalline samples shaped by cold rolling to
plastic strain value ofe50.5 were recrystallized by annea
at different temperatures in the range of 360° to 460°C. T
average grain size varied between 50 and 500mm, depend-
ing on the anneal temperature.

Since the microstructural state of crystals changes in
process of straining, which manifests itself as a change in
strain hardening rate, an ideal statistical procedure sho
accumulate measurements from a narrow range aroun
fixed strain e for a statistically large set of samples wit
equal hardening coefficient, and it would be equivalent
averaging over a statistical ensemble. This was impossibl
do in real experiments. For this reason, when the aver
stress drop magnitudeDs varied systematically as a functio
of e, which it did linearly in our experiments to a fair accu
racy, the stress drop amplitude was normalized to the lin
function f (e) obtained using a linear least-squares fit throu
points ofDs versuse. Then the distributions of the norma
ized stress drop magnitudes,s5Ds/ f (e), were plotted.

The impact of microstructure was manifested in var
tions in distribution shapes from sample to sample. Theref
statistical data were accumulated in each experiment for
eral strain ratesėa at a fixed temperature or for differen
temperatures at a fixedėa . The robustness of the distributio
shape during an experiment was tested by recording rep
edly a section of the stress–strain curve at a parameter v
selected as a reference. It turned out that the statistics c
acter varied qualitatively with the deformation conditio
similarly in all samples. The quantity of statistical data f
each set of parameters was 100 to 300 stress drops.

3. EXPERIMENTAL RESULTS

Studying statistical distributions of stress drop mag
tudes allows one to estimate deviations of a real stress–s
curve from the ideal case of regular relaxation oscillatio
with a constant amplitude. The underlying tendency in s
tistics of stress drops changing with experimental conditio
is a gradual transition from bell-shaped, almost normal d
tributions to asymmetric, monotonically dropping curves.
the same time, the shapes of the stress–strain curves ch
radically, which corresponds to changes in the pattern
localized slips in a strained sample~see also Ref. 15!. This
section presents a description of the impact of various
perimental parameters on statistical stress drop distribut
and spatial distribution of strain in the process of experime

The impact of the microstructural crystal state is se
most clearly in comparing the initial deformation stag
which is characterized by a nonequilibrium dislocation m
crostructure, with the later stage corresponding to an alm
stable microstructure, and also in comparison between
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from single crystals and polycrystals annealed at differ
temperatures. At strains ofe,3 –5% for single crystals and
6–8% for polycrystals, the strain hardening is rapid, a
stress drops are characterized by large spreads in the d
butions of their amplitudes and times at which they occ
On the later stage, when the average hardening coefficie
close to zero~in this sense, this is a quasisteady stage!, the
stress drop characteristics are more regular. Figure 2 con
curves a and c, which are sections of stress–strain curve
this stage of experiments with poly- and single crystals a
strain rate near the lower edge of the studied interval ofėa .
Such curve shapes correspond to localization of strain in
bands. As follows from optical measurements of sample s
faces, each stress drop correlates with formation of a lo
ized slip band with a typical width of about one millimete
The regularity of stress–strain curves in the stage of repe
stress drops is seen in the presence of a characteristic a
tude of stress drops, namely the peak position on the di
bution histogram~Fig. 3a and 3b!. The initial deformation
stage is characterized by a wider peak in the distribut
~polycrystals! or monotonically dropping distribution
~single crystals!. Thus, the decrease in the material plastic
owing to strain hardening leads to narrower distributions
stress drop magnitudes. The smaller the grain size in

FIG. 2. Sections of stress–strain curves at room temperature on the sta
quasi-stable jump-like deformation of a polycrystal annealed at 400° C

strain rates~a! ėa51.331025 s21 and ~b! 5.331024 s21, and of single

crystals of width~c! d54 mm and~d! 1.2 mm atėa51.331025 s21.
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nealed polycrystals, the less notable is this effect. It is alm
unobservable in nonannealed samples.

The analysis of the effect of sample pretreatment a
cold rolling of polycrystals leads to a similar conclusion co
cerning the effect of plasticity. The shapes of stress–st
curves~for example, curves a and c in Fig. 2! and distribu-
tions ~Fig. 3a and 3b! for different samples in the same stag
of irregular deformation have been compared. Differen
between distributions for poly- and single crystals in the i
tial stage were mentioned above. Under conditions of sta
lized plastic flow, the narrowest distributions are observed
nonannealed polycrystals. In tests of annealed polycrysta
single crystals, the probabilities of jumps of smaller mag
tudes are notably higher, and the distribution center of gr
ity shifts toward smaller stress drop amplitudes.

The effects of strain rate, temperature, and sample
mensions were studied in the stage of stabilized discont
ous deformation. The character of stress instability chan

with ėa ~Fig. 2a and 2b!, which corresponds to a transitio
from dislocation slip localization in immobile deformatio
bands~slip bands! to formation of bands propagating throug
a crystal. This effect has been widely known in polycrysta
which have stress–strain curves and spatial correlation
processes of dislocation slip of clearly distinguishab
types.7,15 Stress–strain curves of single crystals are less re
lar, and no accurate classification can be applied to them
this connection, the data on single crystals are sparse in
literature. It follows from experimental data that the unde
lying tendency in the effect of strain rate on stress–str
curves andDs distributions is the same in single and pol
crystals. For this reason, the statistics of stress drops pres
convenient numerical characteristics of changes due to va
tions in the deformation conditions.

The statistical analysis indicates that distributions
stress drop amplitudes gradually become broader with

creasingėa because drops of various amplitudes turn u
Beyond some strain rate, which depends on the tempera
and sample structure, monotonically decreasing distributi
are observed~Fig. 4a!. In this case, stress drops are related
the nucleation of deformation bands, and to fluctuations
their widths and velocities. Comparison of data derived fro
different samples reinforces the above conclusion about
effect of microstructure based on measurements at low st
rates: the higher the material plasticity, the smaller the str

rate ėa beyond which the distribution is described by
monotonically decreasing function. An important feature

monotonic distributions is that over wide ranges ofėa they

of
at
p
FIG. 3. Distribution histograms of normalized stress jum

amplitudes atėa51.3•1025 s21 for ~a! a polycrystal annealed
at 400° C, and single crystals of width~b! d54 mm and~c!
1.2 mm.



l-

996 JETP 86 (5), May 1998 M. A. Lebyodkin and L. R. Dunin-Barkowski 
FIG. 4. Distribution functionsD(s) of nor-
malized stress drop amplitudes for~a! a

polycrystal tested atT520° C andėa58.2
31024 s21 and ~b! a single crystal at

T5120° C and ėa51.331025 s21. The
slopes of straight lines correspond to the fo
lowing exponentsa in functionsD(s);sa:
~a! a'21.0860.06 and ~b! a'21.06
60.08.
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can be approximated with fairly good accuracy by pow
functionsD(s);sa, wherea varies from21 to 21.5. One
example ofD(s), the distribution of normalized stress dro
amplitudes approximated by a power function, is given
Fig. 4a. The absence of a characteristic stress drop scale
these processes allows us to speak about a critical state o
dislocation system.

Another feature providing evidence in favor of criticali
was observed in deformation of single crystals when the t
perature was increased to 120° C and the strain rate co
sponded~see the caption to Fig. 3! to bell-shaped distribu-
tions of Ds at room temperature. Under these conditio
stress–strain curves of single crystals have a distinctive f
characteristic of slip localization in immobile deformatio
bands, although the spread inDs is quite considerable
Nonetheless, the resulting distributions are described
power functionsD(s) ~Fig. 4b! with the exponenta in the
same range as in propagation of deformation bands at
ėa .1! A similar behavior was observed in recent experime
on direct detection of localization and propagation of def
mation bands at room temperature in polycrystals with
average grain size of up to several millimeters. Howev
unlike the case of propagation, power-law distributions as
ciated with formation of localized bands were detected o
in narrow ranges ofT andėa . A more detailed assessment
the impact of temperature on the Portevin–Le Chaˆtelier ef-
fect is given elsewhere.16

An investigation of the effect of sample length was i
teresting in the context of the self-organized critical
model,11,12 characterized by dimensional scaling of the s
tistics. Notwithstanding the predictions derived from the
models, the distributions of stress drop amplitudes un
conditions of the Portevin–Le Chaˆtelier effect proved to be
insensitive to changes in sample lengths in the studied in
val. At the same time, a reduction in the single crystal wid
had the same impact on stress–strain curves and distribu
as an increase in the sample plasticity~Figs. 2d and 3c!. No
such effect of sample dimensions was detected in polyc
tals.

The impact of deformation and transverse sample
mensions on the statistics of stress drops allows us to m
some statements about the feasible mechanism relating
processes in conditions of deformation instability. In fact,
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existence of a most probable stress drop amplitude, at w
distributions ofDs in massive samples at high strain a
centered, indicates that correlations in the dislocation sys
are stronger than in plastic or thin crystals, which disp
stress drops of various amplitudes. This can be explai
assuming that strain can propagate to neighboring slip pla
owing to elastic stresses due to inhomogeneous plastic st
Plastic relaxation of elastic stress fields should reduce
effective force coupling neighboring elements. Therefo
the impact of plastic strain can be due to less favorable c
ditions for plastic relaxation owing to production of ob
stacles to dislocation motion, and, in contrast, the reduc
in the transverse sample dimension is favorable for rel
ation due to the dislocation escape through the sample
face. No size effect has been detected in polycrystals bec
grain boundaries are efficient barriers to the dislocation m
tion. Note that the effects of temperature and initial stra
rate are consistent with our conclusions, but the analysi
these effect requires that changes in the shape of the stre
strain rate curve should be also taken into account~see be-
low!.

The nature of elastic stresses in inhomogeneous pla
slip was first explained by Eshelby.17 The point is that the
mismatch between plastic strains in neighboring regions
crystal should be compensated for by elastic strains so
the condition of full strain continuity should be satisfie
Other mechanisms connecting neighboring elements o
strained material were also discussed,15,18 such as transfer o
dislocations to neighboring planes owing to double cro
slip, nonlocal hardening in a deformation band, and, fina
breaking of the stress unidimensionality due to changes
the sample shape in the process of testing. The qualita
predictions derived from these models15,18 are in conflict
with observations of the effects of sample dimension a
strain on the statistics of stress drops. Estimates of cha
teristic coupling forces given in Refs. 15 and 18 also indic
a dominant role of elastic interaction. This allows us to d
velop a simple model of inhomogeneous serrated defor
tion.

4. NUMERICAL SIMULATION

Local dynamic properties of the Portevin–Le Chaˆtelier
effect are approximately described in the context of dislo
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tion motion in a crystal cross section using a nonlinear m
terial equation relating the stress to plastic straine and strain
rate ė19:

s5he1F~ ė !. ~1!

The hardening coefficienth characterizing the increase in th
nonthermal component ofs is assumed to be constant fo
simplicity. Dislocation models~such as that in Ref. 9! predict
an N-shaped curve ofF( ė), which is a result of interaction
between mobile dislocations and local obstacles~Fig. 1!. The
phase portrait of the system plotted in (s,ė) coordinates,
shown schematically in Fig. 1, is a cyclic orbit including tw
horizontal jumps~relaxation oscillations10!. In ~s,e! coordi-
nates this orbit corresponds to a periodic discontinu
stress–strain curve. In order to take account of the inho
geneity of plastic flow, the sample was modeled by a o
dimensional chain ofN blocks, which are small elements o
the sample where deformation can be considered to be q
homogeneous. Such regions are probably bundles of
lines, which are formed quasisimultaneously with respec
the time when deformation bands are formed. The o
dimensional model was selected on the base of the exp
mental fact that generation of bands is much faster than t
axial propagation. Given the experimental data indicat
that the nature of correlation among strained elements of
sample is elastic, we can simulate coupling between ne
boring elements by springs of strengthK. If the strain in a
specific block is inconsistent with that of its neighbors,
‘‘backstress’’ is generated which tends to equalize pla
strain rates. Now the modified material equation for theith
block reads as follows:

s5he i1F~ ė i !1K~~e i2e i 21!1~e i2e i 11!!. ~2!

In the continuum approximation, this modification is equiv
lent to the additional termCdx

2e ~Ref. 20! on the right-hand
side of Eq.~1!. HereC is the coupling constant~first deriva-
tives are not included because of the invariance under sam
rotations!. The constantsK andC are related by the formula
K5Ca2, wherea is a characteristic length which has th
sense of interaction range.

This equation should be supplemented with a relati
ship characterizing deformation conditions. The strain r
ėa , controlled by the testing machine, has two compone
namely the elastic strain rate in the machine–sample sys
described by Hooke’s law, and the plastic strain rate in
sample, determined in the case of inhomogeneous strai
averaging over the sample:

ėa5
ṡ

M
1

1

N ( ė i , ~3!

whereM is the effective system stiffness~the sample elastic
modulus in the ideal case of a machine with infinite rigidity!.

The shape of theF( ė) curve was calculated using th
microscopic model.9,21 The amplitude of the anomalous se
tion of the curve decreases withėa , and the peak positionė1

shifts towards higherė ~Fig. 1!. Similarly, ė1 increases with
temperature,7,22 although it is difficult to calculate accuratel
-
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because the thermal activation parameters are poorly kno
Details of the numerical solution of the equation system
given elsewhere.7 The model parameters were varied with
the intervalsK5(0.03–1.0)M , ėa5(0.01–0.6)ė2, h5(0 –
0.01)M , andN525–600. Inhomogeneity was introduced
the system through random initial values ofė i fluctuating
within an interval 0.05ė1. Results for each random set o
parameters were accumulated after achieving statistic
stable states of the discontinuous deformation without ad
tional noise.

The model is essentially different from the earthqua
model describing motion of a chain of stiff blocks.12 First,
our model considers plastic strain in a system of connec
blocks, each of which is characterized by its values ofe i and
ė i , which are solutions of the plastic flow equations~2! and
~3!. An important consequence is that one can use
nearest-neighbor approximation, since the plastic strain
is an exponential function of stress. Second, the frictio
force in the earthquake model is a monotonically decreas
function of velocity. If anN-shaped curve of the flow resis
tance function based on the microscopic theory is used, th
is a characteristic time scale related to the period of rel
ation oscillations in a homogeneous sample.

5. RESULTS OF COMPUTER SIMULATION

A solution to the system of equations~2! and ~3! was
sought in the form of functionss(t) and ė i(t). Curves of
s(t) were analyzed similarly to experimental data. The fun
tion ė i(t) characterizes dynamic properties of the mod
namely the evolution of the strain rate distribution in spa
It was found that the numerical solution is determined qu
tatively by parametersK and ėa , whereas variations inh
only slightly shift the intervals ofK and ėa in which a fea-
ture occurs. Below we give results of a computer simulat
at h50.01M , which is a value typical of the alloys unde
investigation.

Figure 5 shows examples of calculated stress–st

FIG. 5. Examples of calculated stress–strain curves at~a! K50.5M , ėa

50.05ė2, ~b! enhanced strain rateėa50.3ė2, and~c! reduced coupling con-
stantK50.15M .
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FIG. 6. Plastic flow rate of theith chain element as a function o

its positioni and timet; K50.5M , ėa50.3ė2. The surface shows
fluctuations in the rate and width of the excitation~‘‘deformation
band’’! propagating along the chain.
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curves for three cases. In the intervalK;(0.5–1)M the
qualitative features of the model are independent ofK. At
deformation rates belowėa;0.1ė2 the solutions yield regu-
lar curves ofs(t) ~Fig. 5a!, which are characterized by bel
shaped distributions of stress drop amplitudes. At lowerK,
jumps of smaller amplitudes occur alongside large drops
the width Ds of peaks in the distributions increases. Ea
stress drop is due to an abrupt increase inė caused by a
sudden displacementė i of a group of adjacent blocks~ten to
thirty blocks at high stress drop amplitudes! to the right-hand
rising section of theF( ė) curve. This is the process by whic
a localized deformation band is created. At higherėa , curves
~Fig. 5b! with features similar to those of polycrystal curv
~Fig. 2b! are observed. The system dynamics can be depi
graphically by a surface in ‘‘time — block numberi —
plastic flow rate in the block’’ coordinates plotted in Fig.
One can see that, in these conditions, the ‘‘deformat
bands’’ propagate through the crystal, i.e., regions with h
plastic flow rates,ė i. ė2. The smaller theK, the lower theėa

at which localization is replaced by propagation of deform
tion bands. The nucleation of bands, fluctuations in their
locities and width cause variations in stresss. Over a wide
range of strain rates, jump amplitudesDs are distributed in
accordance with a power law with exponenta from the in-
terval determined in experiments. One example of the ju
amplitude distribution obtained in computer simulations
shown in Fig. 7a.
o

ed

n
h

-
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Propagation of deformation bands at highėa in the ex-
ample withK close toM is the feature common to the mod
dynamics at allK. With a view to testing qualitative conclu
sions about the nature of spatial coupling, it is interesting
analyze changes due to a decrease inK under conditions of
localized strain. In the interval ofK about 0.3M , distribu-
tions of stress drop amplitudes correspond to those obse
in single crystals. WhenK decreases further, bell-shaped d
tributions are replaced by monotonically decreasing fu
tions. In this case features typical of stress–strain curve
single crystals at initial stages and of thin crystal deformat

are reproduced~Fig. 5c!. In narrow ranges ofK and ėa ,
power-law distributions of stress drop amplitudes are
served, i.e., there is no characteristic scale of stress d
amplitude. Figure 8 illustrates dynamics of the model
these conditions, which displays avalanches in the pla
flow. A curve ofD(s) for this case if given in Fig. 7b, which
is described by a power function because dimensions of a
lanches are distributed throughout the range of allowed
mensions in the system. Such avalanches are characteris
self-organized criticality. However, unlike previously di
cussed models,11,12 fine tuning of system parameters
needed to simulate such a deformation regime in our mo

In the cases of both localized strain and propagation
deformation bands, the power-law distributions are wea
susceptible to the number of blocks in the chain. The dis
butions deviate from power functions only forN,75, and
FIG. 7. Distribution functionsD(s) calculated
at the same parameters as~a! in Fig. 6 and~b!
in Fig. 8: ~a! a'21.1460.07; ~b! 21.12
60.06.
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FIG. 8. Profile of the plastic flow rate in a chain of blocks fo

the case of avalanche slip processes:K50.12M , ėa50.05ė2.
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the exponenta remains constant. This result is consiste
with the absence of a notable sample size effect in exp
mental data.

Our results indicate that the model provides an adequ
description of spatial patterns of strain localizations and
tistical distributions of stress drop amplitudes under con
tions of the Portevin–Le Chaˆtelier effect. The behavior o
the least plastic samples, namely cold-rolled polycryst
corresponds to the coupling constantK close to the elastic
modulus. At lowerK the model reproduces changes o
served in experiments with annealed polycrystals, sin
crystals of smaller cross sections, and at higher testing t
peratures. This facts favor our conclusion about the ela
nature of correlations in processes of discontinuous defor
tion derived from the qualitative analysis of experimen
data.

It is clear that the temperature effect can be easily in
preted in terms of a lower correlation parameterK. Let us
analyze in greater detail the role of changes in the curve
F( ė) due to variations in the strain rate and temperature
follows from our computer simulations that at givenK the
dynamics of deformation bands and shapes of distributi
of Ds depend on the strain rate controlled by the test
machine as compared to positions of peaks on the curv
F( ė). The onset of band propagation corresponds to a st
rate close to the upper edge of the instability domain, co
sponding to the minimum of the function. The peak positi
ė1 shifts towards the minimumė2 as ėa or temperature in-
creases~Fig. 1!. But in the former case this shift is slowe
than the increase inėa , which leads to the regime of ban
propagation at sufficiently highėa . When the temperature
increases,ėa is fixed, so its position becomes closer toė1,
which should result in strain localization and peaked str
drop distributions. Therefore, it is feasible that the disappe
ance of the characteristic jump amplitude with temperat
increase is due to the decrease in the coupling force ca
by plastic relaxation of elastic fields. Since high-temperat
features of the Portevin–Le Chaˆtelier effect are reproduce
by the model at the lowestK, this is another piece of evi
dence in favor of the elastic coupling hypothesis.

The good agreement between the model and experim
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tal results allows us to suggest a mechanism that determ
dynamic properties of the Portevin–Le Chaˆtelier effect. The
model dynamics is controlled by the competition betwe
the characteristic time of motion on sections of stable pla
flow on the phase trajectory~Fig. 1! and the time in which
the plastic flow rates in the sample are equalized. When
strain rate is low and the coupling force high, different e
ments of the sample have close values ofė i , therefore insta-
bility in one element leads to an avalanche-like formation
a deformation band, which terminates when the deform
stress drops. In the opposite case, an inhomogeneous s
gradient is maintained in the sample, for this reason, perio
cally repeated propagation of the plastic slip zone throu
the sample takes place.

6. CONCLUSIONS

Thus, we have obtained in this work new data providi
evidence in favor of the elastic nature of correlations amo
deformation processes in the Portevin–Le Chaˆtelier effect
and revealing two regimes in which the dislocation system
self-organized to a state with a power-law distribution
elementary process energies. These regimes are chara
ized by different dynamic features of the dislocation syste
namely, generation of localized or propagating deformat
bands, and probably these two processes are driven by
different physical mechanisms. The statistical analysis
not clarified the nature of criticality, but it has allowed us
detect the critical behavior of plastic flow. In the case
immobile bands, the dynamics and statistics of t
Portevin–Le Chaˆtelier effect are similar to those of a diss
pative system with multiple degrees of freedom and char
terized by a tendency to self-organized criticality. On t
other hand, such a state has been detected in our sys
only in narrow ranges of deformation parameters, unlike
case of self-organized criticality. This difference is probab
caused by the existence of a characteristic time for proce
in the Portevin–Le Chaˆtelier effect, namely the period o
relaxation oscillations, which leads to the presence of diff
ent statistical regimes, including those with a characteri
time scale.
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The important features of the computer model develo
in this work are the negative derivative of stress with resp
to the strain rate, which is responsible for the instability
plastic flow, and the mesoscopic spatial scale deriving fr
the assumption about elastic coupling among incohere
strained material elements. The latter feature results in c
plex spatial distributions of strain in the material. The go
agreement between computer simulations and experime
data allows us to hypothesize that in spite of the comple
of plastic flow processes these two features determine
principal dynamic properties of the dislocation system un
conditions of the Portevin–Le Chaˆtelier effect. The change
due to variations in deformation parameters inclu
avalanche-like plastic flow in different parts of the crys
and soliton-like propagation of regions with localized stra
Although our model is fairly simple, it may be used in mo
eling real systems with instabilities of this type. In this co
nection, note a recent publication23 in which an N-shaped
curve of resistance versus velocity was suggested for mo
of various excited media, such as systems with dry fricti
electric power lines, and optical waveguides.23
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