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Abstract—The cross section of magnetic absorption of a small elongated cylindrical particle with a dielectric core
and metallic shell is calculated. The general case of an arbitrary value of the ratio of the dielectric core radius to
the radius of the particle is considered. The condition of mixed (mirror–diffuse) reflection of conduction electrons
from the boundaries of the metal layer of the particle is chosen as the boundary condition to the problem. The lim-
iting cases are considered, and the results obtained are discussed. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The electromagnetic properties of small metal parti-
cles exhibit a number of distinctive features [1]. These
features are related to the fact that the electron mean
free path in small particles is comparable to their linear
size. Therefore, nonlocal effects begin to play an
important role. In metals with good conductivity (alu-
minum, copper, silver, etc.), the electron mean free path
Λ at room temperature is typically 10–100 nm. The size
of experimentally studied particles can be as small as
several nanometers; i.e., this situation is indeed real-
ized. In this case, the classical theory of interaction of
electromagnetic radiation with metal particles (the Mie
theory) [2] based on the local equations of macroscopic
electrodynamics is not valid.

In [3, 4], the theory of interaction of electromagnetic
radiation with a spherical particle was developed.
Somewhat earlier, a result similar to that in [3] was
obtained in [5, 6] in the limiting case of low frequencies
(far IR range). In those studies, the approach based on
the solution of the transport Boltzmann equation for
conduction electrons in a metal was used. An alterna-
tive approach to the problem was proposed in [7, 8].

In [9–11], it was conjectured that the specular
reflection of conduction electrons from the surface can
have a substantial effect on the electromagnetic proper-
ties of small metal particles.

Recently, interest in the problem of interaction of
electromagnetic radiation with nonspherical particles
has increased [12]. We also note studies in which an
attempt was made to account for quantum-mechanical
effects in this problem; these effects are especially
important at low temperatures [13, 14].

In [15–18], the magnetic dipole absorption of IR
radiation by cylindrical particles was investigated. To
describe the electromagnetic response of a particle, the
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standard transport theory of a degenerate Fermi gas of
conduction electrons in metals was used [19]. In [15,
16, 18], the approach was restricted to the case of
purely diffuse reflection of conduction electrons from
the inner surface of a particle, and in [17] a detailed
study of the magnetic dipole absorption of a cylindrical
particle was performed for the case where the reflection
of electrons from the particle surface has a mixed (mir-
ror–diffuse) character [19]. In all the studies cited
above, only homogeneous particles were considered;
i.e., the problem of the inner structure of absorbing par-
ticles did not arise.

However, experimental studies of particles with a
complicated structure have recently been reported [20,
21]. Such particles consist of a dielectric (or metallic)
core surrounded by a metallic shell, which, naturally,
affects the optical properties of these particles. The
importance of the investigation of particles with com-
plicated inner structure was pointed out, e.g., in [22].

In this study, which is a logical continuation of [17],
the theory of interaction of electromagnetic radiation
with a nonuniform cylindrical particle (a metallic parti-
cle with a dielectric core) is constructed under the
assumption that the reflection of conduction electrons
inside the cylindrical metallic layer has a mixed (mir-
ror–diffuse) character.

2. STATEMENT OF THE PROBLEM

We consider a metallic cylinder of length L with a
dielectric core placed in the field of a plane electromag-
netic wave. We denote the radius of the cylindrical core
by R1 and the radius of the cylindrical shell by R2 and
assume that L @ R2. The wave frequency is assumed to
be bounded from above by the frequencies of the near
IR range (ω < 2 × 1015 s–1). In the frequency range con-
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sidered, the contribution from dipole electric polariza-
tion currents is small in comparison with the contribu-
tion of vortex currents induced by the external magnetic
field of the wave in the metallic shell of the particle [3].
Therefore, the effect of the external electric field of the
wave is disregarded. In the dipole approximation,
neglecting the skin effect (we assume that R2 < δ, where
δ is the skin depth), the vortex electric field inducing
vortex currents is

 (1)

where H = H0exp(–iωt) is the magnetic field, r is the
radius vector (the origin is chosen to be on the axis of
the particle), H0 is the amplitude of the magnetic field
of the wave, ω is the angular frequency of the wave, and
c is the velocity of light.

The average power  dissipated in the particle is
given by [23]

 (2)

where a bar denotes time averaging, the asterisk
denotes complex conjugation, and j is the vortex cur-
rent density.

In the case where the particle radius R2 is compara-
ble to (or smaller than) the electron mean free path Λ in
the metal, the relation between E and j appears to be
substantially nonlocal. To derive this relation, we apply
the transport equation (in the relaxation time approxi-
mation) to the degenerate Fermi gas of conduction elec-
trons in the cylindrical metallic shell of the particle.

For sufficiently weak external fields, this equation
can be linearized with respect to the external field E and
to small deviations f1(r, v) from the equilibrium Fermi
distribution function f0:

 (3)

where e and v are the charge and velocity of conduction
electrons, respectively, and τ is the electron relaxation
time.

In what follows, we assume that the velocity depen-
dence of the electron energy ε is quadratic, ε = mv 2/2
(m is the electron effective mass), and use a step
approximation to the equilibrium function f0(ε) for the
electron energy distribution [24]:

 

where εf =  is the Fermi energy (v f is the Fermi
velocity). We assume that the Fermi surface of the
cylindrical metal layer of the particle is spherical in
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shape and that the velocities of all electrons at the
Fermi surface are equal to v f .

The electron distribution function is

 

The deviation f1(r, v) of the electron distribution func-
tion f(r, v) from the equilibrium function f0(ε) arising
under the action of a vortex electric field induces a vor-
tex current inside the particle,

 (4)

The electron concentration n0 in the metallic layer of
the particle can be determined using the standard for-
mula

 (5)

where h is the Planck constant.

Substituting the field E in the form of Eq. (1) into
Eq. (3), we can find f1(r, v) as a solution to this equa-
tion. Then, using Eqs. (4) and (2), we find the current in
the metallic shell and the absorption cross section of the
energy of the external electromagnetic field for the par-
ticle:

 (6)

The solution of this problem is unique if we impose
boundary conditions on the unknown function f1(r, v) at
the cylindrical surfaces of the metal shell and the
dielectric core of the particle. We choose the boundary
conditions corresponding to mirror–diffuse reflection
of electrons from these surfaces [17]. Since electrons
can be reflected from the inner (R1) and outer (R2)
boundaries of the metallic layer, we write two boundary
conditions:

 (7)

 (8)
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r and velocity v of an electron, respectively, in the plane
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normal to the axis of the inhomogeneous cylinder;

 

is the velocity vector, which transforms into v⊥  upon
specular reflections from the inner or outer surface of
the metallic layer at a point r⊥  (|r⊥ | = R1 or |r⊥ | = R2);
vz is the component of the electron velocity along the
particle axis; and q1 and q2 are the reflectivities of a
smooth surface (probabilities of specular reflection):

 

The case of r⊥ v⊥  > 0 (r⊥ v⊥  < 0) corresponds to electrons
moving away from the core (towards the core).

For q1 = 0 (q2 = 0), we have the conditions of diffuse
reflection of conduction electrons from the inner or
outer surface of the metallic layer of the particle, and
for q1 = 1 (q2 = 1) we have the conditions of purely
specular reflection. At q ≠ 0 and q ≠ 1, various types of
mixed (mirror–diffuse) reflection of electrons are real-
ized.

3. DISTRIBUTION FUNCTION

Transport equation (3) can be solved using the
method of characteristics [25]. The variation of f1 along
a trajectory (characteristic)

 

is determined by the equation

 (9)

where

 

is the complex scattering frequency.
Boundary conditions (7) and (8) determine the vari-

ation in the function f1(r⊥ , v⊥ , vz) along the specularly
reflected trajectory. At the point t = tn of reflection (from
any surface), the function f1(t) is discontinuous:

 (10)

The plus and minus sign denotes the limits (with
respect to the time of flight) immediately after and
before a reflection, respectively, of the function f1(r⊥ ,
v⊥ , vz) at the reflection point tn.

For specular reflection, the angular momentum
[r⊥ , v⊥ ] = [r⊥ , ] is conserved; therefore, on the trajec-
tory in question, we have

[r⊥ , v⊥ ] = const. 
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The difference tn – tn – 1 does not depend on the number
n of the reflection point:

 

where T is the transit time of an electron with velocity
v⊥  from the point rn – 1⊥  to the point rn⊥  and

 

The quantity v · E is also constant on the trajectory:

 

The solution to Eq. (9) is

 (11)

where A = – .

The parameter t in Eq. (11) has the meaning of the
transit time of an electron moving along the trajectory
from the reflecting boundary to the point r⊥  with veloc-
ity v⊥ .

Let us solve this equation in the interval (tn – 1, tn) for
the case where an electron moves along a trajectory that
does not intersect the cylindrical dielectric core of the
particle after specular reflection.

At the initial point (t = 0), we have

 

From this, we can find the constant C:

 

Now, we obtain the relation between the initial values
of the function f1 on two neighboring segments of the
trajectory. Since tn – 0 = tn – 1 + T, we have

 

Using Eq. (10), we obtain

 (12)

With recurrence relation (12), we express f1(tn – 1 + 0) in
terms of f1(tn – 2 + 0) and so on and arrive at an expres-
sion for f1(tn + 0) in terms of the sum of the infinite geo-
metrical progression with the denominator q2exp(–νT).
After summing, we obtain

 (13)

tn nT const, n Z ,∈+=

T
2 vn⊥ rn⊥⋅( )

v⊥
2

----------------------------.–=

v E⋅ ω
2ic
-------- r H,[ ] v

iω
2c
------ r v,[ ] H const.= = =

f 1 C νt–( )exp A,+=

e v E⋅( )
ν

-------------------
∂ f 0

∂ε
--------

f 1 tn 1– 0+( ) C A.+=

C f 1 tn 1– 0+( ) A.–=

f 1 tn 0–( ) f 1 tn 1– 0+( ) A–( ) νT–( )exp A+=

=  A 1 νT–( )exp–( ) f 1 tn 1– 0+( ) νT–( ).exp+

f 1 tn 0+( )
=  q2 A 1 νT–( )exp–( ) f 1 tn 1– 0+( ) νT–( )exp+{ } .

f 1 tn 0+( )
q2A 1 νT–( )exp–( )

1 q2 νT–( )exp–( )
------------------------------------------------.=



1194 ZAVITAEV, YUSHKANOV
To find a specific form of the solution to Eq. (9), we
use initial condition (13). At t = 0, we find

 

From this, we obtain

 

Therefore,

 (14)

The parameters t2 and T2 can be related to the coordi-
nates of the point (r⊥ , v⊥ ) in the phase space (at n = 0,
v0⊥  = v⊥ ) by the conditions

 

 

where r0⊥  is the component of the radius vector of an
electron in the plane perpendicular to the cylinder axis
at the instant of its reflection from the cylindrical
boundary of the particle. By eliminating r0⊥  from these
expressions, we obtain

 (15)

 (16)

Relations (14)–(16) fully determine the function f1(r⊥ ,
v⊥ , vz) in the case where electrons move along a trajec-
tory not intersecting the core of the particle.

Now, we pass to the case of double specular reflec-
tion of an electron (from the cylindrical core and from
the outer cylindrical boundary of the metal). We solve
transport equation (9) in the interval (tn – 1, tn) by assum-
ing that, at some instant, an electron is reflected from
the boundary of the metallic layer (previously, the elec-
tron was reflected from the core). In this way, we find
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the deviation f12(t) of the electron distribution function
from the equilibrium function:

(17)

Likewise, we find the deviation f11(t) of the distribution
function for electrons reflected from the cylindrical
core of the particle. We directly write out the final
result:

 (18)

The parameter t1 in Eq. (18) is given by

 (19)

Indeed, this equation follows from the obvious vector
equality r⊥  = r0⊥  + v⊥ t1, where r0⊥  is the radius vector
of the electron at the moment of reflection from the core

of the particle (  = ). If we square both parts of
this equality and then solve it with respect to t1, we will
obtain Eq. (19).

The parameter T1 (the period of motion of an elec-
tron at double reflection, i.e., the time after which the
electron is again reflected from the core or from the
outer boundary of the metal) can be found using the
vector equality  = r0⊥  + v⊥ T1, where r0⊥  = r⊥  – v⊥ t1,

|r0⊥ | = R1, and | | = R2 (we assume that the electron
moves from the core to the particle boundary). Squar-
ing both sides of this equality, we obtain the quadratic
equation

 (20)

whose solution (written out below) allows us to find the
parameter T1.

Relations (15) and (17)–(20) fully determine the
function f1(r⊥ , v⊥ , vz) for the case where electrons are
doubly reflected from the cylindrical core and from the
outer cylindrical boundary of the particle.

4. ABSORPTION CROSS SECTION

The distribution functions found above allow us to
calculate the current (4), the average dissipated power (2),
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and the cross section (6) for the absorption of the
energy of the external electromagnetic field.

When calculating integrals in Eqs. (4) and (2), it is
convenient to pass to cylindrical coordinates both in the
coordinate space (r⊥ , ϕ, rz; z is the polar axis coinciding
with the cylinder axis and parallel to the vector H0) and
in the velocity space (v ⊥ , α, v z; the v z axis is the polar
axis).

In cylindrical coordinates, field (1) has only a ϕ
component,

 (21)

Accordingly, current (4) has only a ϕ component (cur-
rent lines are closed circles lying in planes perpendicu-
lar to the z axis, with their centers on the z axis).

When integrating expression (4), we should bear in
mind that the point of reflection of electrons inside the
particle is determined by the angle α in the velocity
space. Let us consider different situations.

(i) If the inequality α0 ≤ α ≤ π – α0 is satisfied, where
the angle α0 is determined by the expression

 (22)
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then the electron trajectory does not intersect the core
and the electron is reflected from the outer boundary of
the metallic layer of the particle. In this case, the elec-
tron scattering from the cylindrical surface is described
by the function f10(r⊥ , v⊥ ) (t = t2, T = T2) [see Eq. (14)].

(ii) If π – α0 < α ≤ π, then the electrons move
towards the core of the particle and the function f1(r⊥ ,
v⊥ ) becomes f12(r⊥ , v⊥ ) (t = t2, T = T1) [see Eq. (17)].

(iii) If 0 < α ≤ α0, the electrons move away from the
core of the particle and the function f1(r⊥ , v⊥ ) becomes
f11(r⊥ , v⊥ ) (t = t1, T = T1) [see Eq. (18)].

The motion of electrons is symmetric with respect to
any plane that contains the axis of the particle and in
which lies the point of their position on a trajectory;
therefore, we can assume that the angle α in the veloc-
ity space changes from 0 to π and double the result of
integration with respect to this variable.

In terms of symmetry, the integration over the entire
range of the velocities v z can be replaced by integration
over the positive range and the result is doubled. There-
fore, taking into account that vϕ = v ⊥ sinα and substi-
tuting the limits of integration, we arrive at the follow-
ing expression for the components of the vortex cur-
rent:
(23)

jϕ
3n0Eϕe

2

πv f
3
mν

--------------------
v ⊥

3

v f
2

v ⊥
2

–
-----------------------

q2 1–( ) νt2–( )exp
1 q2 νT2–( )exp–
-------------------------------------------- 1+

 
 
 

α v ⊥ αddsin
2

α0

π α0–

∫
0

v f

∫=

+
3n0Eϕe

2

πv f
3
mν

--------------------
v ⊥

3

v f
2

v ⊥
2

–
-----------------------

q1 1 νT1–( )exp– q2 νT1–( )exp+( ) 1–
1 q1q2 2νT1–( )exp–

-------------------------------------------------------------------------------------------- νt2–( )exp 1+
 
 
 

α v ⊥ αddsin
2

π α0–

π

∫
0

v f

∫

+
3n0Eϕe

2

πv f
3
mν

--------------------
v ⊥

3

v f
2

v ⊥
2

–
-----------------------

q2 1 νT1–( )exp– q1 νT1–( )exp+( ) 1–
1 q1q2 2νT1–( )exp–

-------------------------------------------------------------------------------------------- νt1–( )exp 1+
 
 
 

α v ⊥ α .ddsin
2

0

α0

∫
0

v f

∫

Here, we assumed that the concentration of conduction
electrons in metals is determined by Eq. (5).

The absorption cross section of electromagnetic
radiation for the inhomogeneous particle is given by

 

With Eqs. (21) and (23), after simple transforma-
tions, this expression reduces to the form
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 (26)

 (27)

Let us introduce new variables:

 (28)

Here, x = R2/τv f is the ratio of the particle radius R2 to
the electron mean free path Λ (τ is the electron relax-
ation time for the shell, v f is the Fermi velocity of the
electrons in the shell) and y = R2ω/v f is the ratio of the
frequency ω of the external field to the frequency v f/R2
of electron scattering by the particle surface. For exam-
ple, for an aluminum particle (v f = 2.02 × 106 m/s) and
for R2 = 10 nm, the dimensionless frequency y = 7 cor-
responds to the angular frequency of the external field
ω = yv f/R2 ≈ 1.4 × 1015 s–1 (in this case, the dependence
of the absorption cross section on the reflectivities and
on the presence of an inner core is most pronounced).

Using Eqs. (28), we transform Eqs. (15), (16), (19),
and (22) to the form
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Here, we used the relation r⊥ v⊥  = r⊥ v ⊥ cosα (all elec-
trons at the Fermi surface inside the cylindrical metal
layer move with velocities equal to v f).

By solving Eq. (20), we determine the parameter T1:

 

Next, absorption cross section (24) can be rewrit-
ten as

 

where
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neous cylindrical particle,

 (33)
F x y κ q1 q2, , , ,( ) F1 x y κ q1 q2, , , ,( )=

+ F2 x y κ q1 q2, , , ,( ) F3 x y κ q1 q2, , , ,( )+

0 2
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y
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Fig. 1. Dimensionless absorption cross section F as a func-
tion of dimensionless frequency y = R2ω/v f at x = 0.1; κ =
0.7; and (1) q1 = 0 and q2 = 0, (2) q1 = 0.5 and q2 = 0.5, and
(3) q1 = 1 and q2 = 1.
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Fig. 3. Dimensionless absorption cross section F as a func-
tion of the dimensionless inverse mean free path x = R2/τv f
at y = 1; κ = 0.7; and (1) q1 = 0 and q2 = 0, (2) q1 = 0 and
q2 = 1, and (3) q1 = 1 and q2 = 0.
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and the dimensional absorption cross section,

 (34)

As κ  0 (α0  0), i.e., in the case where there is

σ σ0F x y κ q1 q2, , , ,( ).=
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Fig. 2. The same as in Fig. 1, but for x = 0; κ = 0.7; and (1)
q1 = 0 and q2 = 0, (2) q1 = 0 and q2 = 1, and (3) q1 = 1 and
q2 = 0.
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Fig. 4. The quantity G as a function of the ratio (κ) of the
core radius to the particle radius at y = 3; x = 0; and (1) q1 =
0 and q2 = 0, (2) q1 = 0 and q2 = 1, and (3) q1 = 1 and q2 = 0.
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no core in the particle, it follows from Eq. (33) that

 

This expression coincides with the result obtained in
[17] for a homogeneous cylindrical metallic particle.

The results of calculations of F(x, y, κ, q1, q2) are
shown in Figs. 1–6.

5. DISCUSSION

In the limit of purely specular reflection of electrons
at the boundaries of the metallic layer of the particle
(q1 = 1, q2 = 1), using formulas (30)–(32), we obtain the
following expression for the dimensionless absorption
cross section F(x, y, κ):

 (35)

Therefore, dimensional absorption cross section (34)
becomes

F x y,( ) Re 2
y

2

z
----- ξ3 ξ ρ3

1 ρ2
–

------------------

0

π

∫
0

1

∫d

0

1

∫



=

×
q2 1–( ) zη /ρ–( )exp
1 q2 zη0/ρ–( )exp–( )

-------------------------------------------------- 1+ α ρ αddsin
2





.

F z κ,( ) Re
y

2

z x y,( )
----------------π

6
--- 1 κ 4

–( )
 
 
 

.=

0

F(q1)

q1

0.4 0.8

0

0.02

0.04

0.03

1.2

1

2

3

0.01

Fig. 5. Dimensionless absorption cross section F as a func-
tion of the electron reflectivity q1 of the inner surface of the
metallic layer of the particle at y = 1, x = 0, κ = 0.95, and
various values of q2: (1) 0, (2) 0.5, and (3) 1.0.
P

 (36)

In the case of a metallic particle without a core (κ 
0), this expression reduces to the classical result for a
cylindrical particle (the Drude formula) [15]:

 

With Eqs. (28) and (29), absorption cross section (36)
coincides exactly with the classical result for a cylindri-
cal metallic layer. The reason for this is that, at q1 = 1
and q2 = 1, the boundaries of the metallic layer of the
particle have no effect on the electron distribution func-
tion f(r⊥ , v⊥ , vz). The vortex current inside the specu-
larly reflecting metal layer [see Eq. (23)] satisfies the
local Ohm law for any relationship between the layer
thickness l and the electron mean free path Λ. Thus, for
specular reflection, there are no nonlocal (surface)
effects.

Irrespective of the character of reflection of elec-
trons from the boundaries of the metallic layer (i.e., at
arbitrary values of q1 and q2), macroscopic asymptotic
expression (35) also becomes valid as the particle size
increases (at x @ 1); in this case, we can disregard the
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Fig. 6. Dimensionless absorption cross section F as a func-
tion of the electron reflectivity q2 of the outer surface of the
metallic layer of the particle at y = 1, x = 0, κ = 0.95, and
various values of q1: (1) 0, (2) 0.5, and (3) 1.0.
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terms with rapidly decaying exponential functions in
Eqs. (30)–(32).

Figures 1 and 2 show the dependence of the dimen-
sionless absorption cross section F on the dimension-
less frequency of the external field y. Figure 1 corre-
sponds to the case of equal electron reflectivities of the
particle surfaces. For each curve, the ratio of the core
radius to the particle radius κ is fixed. It is seen in Fig. 1
that, at low dimensionless frequencies y (where y ! 1),
F can be greater for particles in which the reflection of
conduction electrons is purely specular. At y > 1, the
dimensionless absorption cross section is greater for
particles in which the reflection of conduction electrons
from each of the surfaces is purely diffuse. Figure 2
shows the data for very small particles (as compared to
the electron mean free path), where R ! Λ (x = 0). The
curves correspond to different values of the reflectivi-
ties q1 and q2. The appearance of oscillations in the fre-
quency dependence is due to the fact that the energy
dissipation inside the metallic shell of the particle
depends on the ratio of the time of flight of an electron
between collisions with the surfaces to the period of the
external electromagnetic field. This effect is most pro-
nounced for diffuse reflection of electrons from the
boundaries of the metallic layer of the particle (q1 = 0
or q2 = 0) and decreases with increasing surface reflec-
tivity. With an increase in the particle radius, the oscil-
lations of the frequency dependence become smoother
because of the enhancement of the effect of electron
collisions in the bulk. As the reflectivities increase, the
absorption cross section decreases, because the surface
effects in energy dissipation become less important.

In Fig. 3, the dimensionless absorption cross section
F is plotted as a function of the dimensionless inverse
mean free path x. The curves correspond to the same
dimensionless frequency but various values of the
reflectivities q1 and q2. Curve 2 starts virtually at the
origin and has a maximum. This dependence is close to
the classical result (36), since the main contribution to
the absorption cross section comes from the electrons
specularly reflected from the boundary of the inhomo-
geneous particle. At intermediate values of the reflec-
tivities (q ≠ 0, q ≠ 1), the dimensionless absorption
cross section is nonzero even for a highly pure metal,
where x = 0. As the particle radius increases, all curves
merge and we obtain the classical result. As the fre-
quency increases, the absorption cross section also
increases, since the intensity of the vortex electric field
is directly proportional to the frequency of the external
field.

To analyze the dependence of the dimensionless
absorption cross section F on the ratio κ of the core
radius to the particle radius, we use Fig. 4. This figure
shows the dimensionless absorption cross section per
PHYSICS OF THE SOLID STATE      Vol. 47      No. 7      200
unit volume of the metal G(κ) (specific absorption
cross section),

,

for a metallic cylindrical particle with a dielectric core.
We restrict ourselves to the case of purely metallic

particles (x = 0) and a fixed value of the dimensionless
frequency of the external field y. For such particles
(electrons in pure metals have a large mean free path),
in a wide range of κ values, the cross section can be
greater for specular reflection of electrons from the
outer surface of the metallic layer of the particle. At val-
ues of κ close to unity, the specific absorption cross sec-
tion is low at all frequencies and at all values of the
reflectivities, since the cylindrical metallic shell of the
particle is very thin and, during the flight between the
surfaces of the shell, electrons have no time to be appre-
ciably accelerated by the external electromagnetic field
(thus, the current density in the shell tends to zero).

Figures 5 and 6 show the effect of the reflectivities
q1 and q2 on the dimensionless absorption cross section
F for a particle with a thin metallic shell (κ is close to
unity). In Fig. 5, we see that, in the absence of electron
scattering in the bulk of the metal (the size of the metal-
lic layer is extremely small), the dependence of the
dimensionless absorption cross section F on the reflec-
tivity q1 is especially complicated in the case of specu-
lar reflection of electrons from the outer boundary of
the metallic layer (q2 = 1). In this case, the absorption
cross section tends to zero for all values of y when elec-
tron scattering by the two reflecting surfaces of the
metal becomes purely specular (q1 = 1, q2 = 1). Figure 6
shows how the dimensionless absorption section F
depends on the reflectivity q2. At almost any values of
q2 (except in a narrow region near unity), the absorption
cross section increases as the reflection of electrons
from the inner boundary of the cylindrical metal layer
becomes more specular.
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Abstract—The dynamics of hydrogen atoms in Ta–H and Ta–O–H interstitial solid solutions is analyzed. The
vibrational energies of hydrogen interstitial impurity atoms are determined, and the metal–impurity interaction
constants are calculated taking into account the atomic thermal vibrations in the host lattice. It is found that, in
the Ta–O–H solid solution, as in the Ta–H solid solution, hydrogen atoms are located in relatively undistorted
tetrahedra and the distance between the hydrogen and oxygen atoms is no shorter than that in the third coordi-
nation shell of the octahedral interstices. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In interstitial ternary alloys, the dynamics and local
structure of the nearest hydrogen environment depend
on the concentrations of hydrogen atoms and p ele-
ments, the temperature, and the structure of the host lat-
tice. Oxygen atoms involved in metals can serve as
traps for hydrogen atoms. Capture of hydrogen atoms
by impurities leads to a number of interesting effects,
such as hydrogen stabilization of the α phase at low
temperatures, changes in the hydrogen location, etc.
For example, in solid solutions of the Ti–O–H system
at a particular concentration of oxygen atoms, hydro-
gen atoms occupy octahedral interstices rather than tet-
rahedral positions. In this case, hydrogen remains in
octahedral interstices of the solid solution down to a
temperature of 5 K [1].

It has been found that, in Group Va transition metals,
oxygen and nitrogen atoms serve as traps for hydrogen
atoms. This finding has been confirmed by various
experimental methods. Slow-neutron inelastic scatter-
ing has been used primarily for studying solid solutions
in the niobium-based system (see, for example, [2]). It
has been established that, in solid solutions of the Nb–
(O,N)–H system, oxygen and nitrogen atoms act as
traps capturing one hydrogen atom per p atom and, con-
sequently, suppress the hydride formation down to liq-
uid-helium temperature. Moreover, it has been demon-
strated that, in these solid solutions, both untrapped and
trapped hydrogen atoms are located in tetrahedral inter-
stices of the host lattice. Heene et al. [3] obtained sim-
ilar results for solid solutions in the Ta–N–H system.
Solid solutions in the Ta–O system have not been stud-
ied using slow neutron inelastic scattering. However,
such investigations are of undeniable interest. In the
present work, we studied interstitial solid solutions in
the Ta–H and Ta–O–H systems in order to elucidate the
mutual influence of interstitial atoms of different types
on their location in the crystal structure. Necessary
information can be obtained from analyzing the struc-
1063-7834/05/4707- $26.00 1201
ture of the local modes of oxygen and hydrogen atoms,
because the local vibrations of interstitial atoms are
very sensitive to variations in the type and size of the
interstices, as well as in the local environment of the
interstitial atoms themselves. This effect has been reli-
ably established for Me–H solid solutions and is espe-
cially pronounced in solid solutions in which hydrogen
atoms can occupy both tetrahedral and octahedral inter-
stices (V–H [4–6], Ti–O–H [1, 7]).

In the primary Ta–H solid solution, hydrogen atoms
occupy tetrahedral interstices (see, for example, [8]). In
order to determine the location of hydrogen atoms in
interstitial solid solutions of the Ta–O system, we mea-
sured the slow-neutron inelastic scattering spectra of
the TaO0.03H0.01 and TaH0.01 compounds.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

Samples of the TaH0.01 compound were prepared
through the saturation of tantalum plates with hydrogen
from the gas phase. Samples of the TaO0.03H0.01 com-
pound were prepared in two stages. At the first stage,
tantalum plates were saturated with oxygen from the
gas phase at a temperature T = 1100°C with subsequent
oil quenching after homogenizing annealing for 5 h.
According to x-ray diffraction analysis, oxygen atoms
are located in an interstitial solid solution with the lat-
tice parameter a = 3.314 ± 0.002 Å corresponding to the
composition TaO0.03 (3.077 ± 0.002 at. %), which is in
good agreement with the amount of the absorbed gas.
At the second stage, the TaO0.03 sample was divided
into two equal parts. Either of these two parts was sat-
urated with oxygen until it reached the composition
TaO0.03H0.01. For this purpose, gaseous hydrogen was
preliminary accumulated in calibrated volumes and
was then supplied to the sample placed in a known vol-
ume at a temperature of 1000°C. The gas pressure
exerted on the sample was increased to a saturation
© 2005 Pleiades Publishing, Inc.
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hydrogen vapor pressure P ≈ 150 mmHg, which corre-
sponds to the composition TaH0.01 at 1000°C. After the
homogenizing annealing, the sample was subjected to
oil quenching. The composition of the final product was
determined from the weight increment and corre-
sponded to the formula TaO0.03H0.01. This composition
was confirmed by slow-neutron inelastic scattering
investigations.

The neutron scattering investigations were carried
out on a DIN-2PI time-of-flight direct-geometry spec-
trometer installed on an IBR-2 reactor [9]. The slow-neu-
tron inelastic scattering spectra were recorded in a neu-
tron energy gain mode. In addition to the TaH0.01 and
TaO0.03H0.01 interstitial solid solutions, the neutron scat-
tering experiments were performed with samples of pure
tantalum and the TaO0.03 solid solution. All the measure-
ments were carried out in the same geometry. The sam-
ples were assembled into flat plates 100 × 100 × 1 mm in
size. The mean transmittance of these plates with
respect to the neutron scattering cross section was
approximately equal to 96%, which excluded notice-
able contributions of multiple scattering to the slow-
neutron inelastic scattering spectra. The initial energy
of neutrons incident on the sample was E0 = 8.2 meV.
The scattered neutrons were detected in the angle range
70°–134°. The instrumental resolution was R ~ 12 meV
in the energy transfer range ε = E – E0 = 0–120 meV,
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Fig. 1. Slow-neutron inelastic scattering spectra of hydro-
gen atoms in the TaH0.01 and TaO0.03H0.01 alloys. Numbers
over the arrows are the transferred energies ε given in mil-
lielectron-volts. Vertical and horizontal dashes indicate the
statistical accuracy and the half-width of the instrumental
resolution function, respectively. The solid lines correspond
to the smoothening of the experimental spectrum by the fast
Fourier transform method.
P

which corresponds to local vibrations of hydrogen
atoms.

By subtracting the fast-neutron scattering back-
ground (with due regard for the detector efficiency and
the attenuation of the primary and singly scattered neu-
tron beams) from the slow-neutron inelastic scattering
spectra, we obtained the double-differential scattering
cross sections for Ta, TaH0.01, TaO0.03, and TaO0.03H0.01
samples. Then, the spectra of the double-differential
scattering cross sections were processed using the sub-
traction method in the incoherent approximation. As a
result, we obtained the partial frequency spectra of oxy-
gen and hydrogen impurity atoms. Practical experience
shows that this technique works very well in the case of
low (≤2–3 at. %) concentrations of impurity atoms and
accounts for the contribution of the multiphonon neu-
tron scattering by the host atoms.

3. RESULTS AND DISCUSSION
The slow-neutron inelastic scattering spectra of the

hydrogen-containing solid solutions TaH0.01 and
TaO0.03H0.01 in the energy transfer range ε1 ≈ 115 meV
exhibit additional features with respect to the spectra of
pure tantalum and the TaO0.03 solid solution. Figure 1
shows the angle-averaged differences in the slow-neu-
tron inelastic scattering spectra (TaO0.03H0.01–TaO0.03)
and (TaH0.01–Ta).

The difference spectra correspond to scattering by
hydrogen atoms. It can be seen from Fig. 1 that, in the
spectra of both solid solutions, the location and shape of
the peak in the energy transfer range ε1 = 115 ± 3 meV
coincide with each other. Thus, no noticeable effect of
oxygen atoms on the dynamics of hydrogen atoms is
observed. However, the dynamics of the interstitial
atom is very sensitive to variations in its local environ-
ment. Hence, this finding indicates that hydrogen atoms
are located in undistorted tetrahedral positions. We can
also draw the conclusion that solid solutions in the Ta–
O–H system are similar to solid solutions in the Ta–N–
H system in terms of both structure and dynamics. The
above energy of the low-frequency vibrational mode of
hydrogen atoms is close to the value obtained for
hydrogen atoms in interstitial solid solutions of the Ta–
H and Ta–N–H systems (ε1 = 113 ± 1 meV) [3]. As was
shown in [3], the energy corresponding to the high-fre-
quency mode of hydrogen [ε2, 3 = (160–163) ± 1 meV]
does not undergo substantial variations either upon
addition of nitrogen to the Ta–H solid solution or upon
the phase transition of the Ta–H solid solution from the
α phase to the hydride phase. The main differences in
the spectra of the high-frequency vibrations of hydro-
gen atoms in tantalum in the presence and in the
absence of impurity traps are observed in the linewidth
(∆ε2, 3 ≈ 11.5 meV for the TaH0.086 solid solution, and
∆ε2, 3 ≥ 20 meV for the TaN0.006H0.003 solid solution [3]).

The high-frequency peak, which corresponds to the
doubly degenerate vibrations of hydrogen atoms in the
HYSICS OF THE SOLID STATE      Vol. 47      No. 7      2005
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tetrahedral positions, is almost entirely absent in the
difference spectra presented in Fig. 1. One can see only
an insignificant inflection at an energy ε = 170 meV,
which corresponds to the predicted energy of high-fre-
quency vibrations of hydrogen atoms in the sample
under investigation. This is associated with a small pop-
ulation of the corresponding levels of vibrational ener-
gies at room temperature. Based on the above conclu-
sion that the shape of the hydrogen spectrum does not
depend on the presence of p-element impurities in the
alloy, we can summarize both spectra of slow-neutron
inelastic scattering in order to increase the statistical
accuracy. After this summation, the frequency spec-
trum of hydrogen atoms was calculated for the aver-
aged spectrum of neutron inelastic scattering by hydro-
gen atoms. The results of these calculations are pre-
sented in Fig. 2. The generalized partial frequency
spectrum of hydrogen atoms exhibits a high-energy
peak (ε ≈ 175 meV). The calculated energy of the high-
frequency peak is higher than the energies of the hydro-
gen doublet reported both for the α phase of the Ta–H
solid solution (ε2, 3 ≈ 154–164 meV) [3, 8] and for the
TaN0.006H0.003 solid solution (ε2, 3 ≈ 160–163 meV) [3].
However, it is worth noting that the allowance made for
the Debye–Waller factor leads to a shift of the maxi-
mum toward higher energies. This effect also manifests
itself in a shift of the low-frequency singlet (at ε1 = 115
± 3 meV in the slow-neutron inelastic scattering spec-
trum in Fig. 1 and at ε1 = 118 ± 3 meV in the spectrum
gH(ε) in Fig. 2). The above effect is especially notice-
able in the case of broad peaks, which, as a rule, occurs
when there are high-frequency modes of hydrogen
atoms in Group V transition metals.

Within the limits of experimental error, the ratio
between the obtained vibrational frequencies of hydro-
gen atoms ε2, 3/ε1 ≈  corresponds to a splitting of the
vibrational modes in an undistorted tetrahedron of the
body-centered cubic structure. The atomic interaction
constant for the Ta–H bond was calculated taking into
account the vibrations of the host atoms (by analogy with
the calculation performed earlier in [10]) in both solid
solutions systems: fl = (6.9 ± 0.5) × 104 dyn/cm. The con-
stant of interaction between the nearest neighbor
atoms involved in the Ta–Ta bond was estimated in the
Einstein approximation from the mean-square frequency
of vibrations of the host atoms 〈ω2〉 = 257 meV2. As a
result, we obtained the interaction constant fl ≈ 6.7 ×
104 dyn/cm. The closeness of the given values of the
interaction constants has a stochastic nature. In the sim-
ilar Nb–H system, the vibrational energies of hydrogen
atoms (see, for example, [2]) and, correspondingly, the
interaction constant for the Nb–H bond almost coincide
with the values obtained for the Ta–H solid solution.
However, the interaction constant for the Nb–Nb bond,
which was also estimated in the Einstein approximation
from the mean-square frequency of vibrations of the host
atoms 〈ω2〉 = 360 meV2 [11], gives the value fl = 4.8 ×

2
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104 dyn/cm, which is inconsistent with the isotopic
approximation.

4. CONCLUSIONS

Thus, the behavior of hydrogen in solid solutions of
the Ta–O–H system is similar to that in solid solutions of
the Ta–N–H system at least at a temperature T ≈ 300 K.
The results obtained allow us to assert that, both in the
α-TaO0.03H0.01 alloy and in the α-Ta–H alloy, hydrogen
atoms occupy tetrahedral positions. The similarity
between the low-frequency spectra of hydrogen atoms
in solid solutions of both systems indicates that hydro-
gen atoms are located in relatively undistorted tetrahe-
dra and that the distance between the hydrogen and
oxygen atoms is no shorter than that in the third coordi-
nation shell of the octahedral interstices. Otherwise, the
RO–H distance would be either comparable to or less
than the RMe–H distance, which would inevitably lead to
a noticeable distortion of the spectrum of local vibra-
tions of hydrogen atoms as compared to the oxygen-
free sample.
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Abstract—Binary icosahedral and crystalline phases of the Zr70Pd30 alloy were obtained in crystallization
from the amorphous state during heat treatment. The specific heat and electrical resistivity of the icosahedral,
amorphous, and crystalline phases were measured and compared. An increase in the electronic density of states
on the Fermi surface, lattice softening, and an increase in the electron–phonon coupling constant were observed
to occur with decreasing structural order. Despite the high valence electron density in the icosahedral phase,
where the electronic densities of states are twice those in the crystal, the electrical resistivity of the icosahedral
phase is ~50 times as high. Superconductivity was observed for the first time in the icosahedral phase of a binary
system of transition metal atoms, Zr70Pd30. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The icosahedral phase has been observed to form in
a number of Zr-based alloys in the course of metallic-
glass crystallization occurring under heat treatment.
Earlier studies assumed quasicrystalline phases in Zr-
based multicomponent alloys to be stabilized by some
elements, such as O, Pd, Ag, Au, Pt, and Ti [1–6].
Recent papers have reported the preparation of binary
quasicrystalline icosahedral phases in Zr–Pd and Zr–Pt
alloys [7–10], thus suggesting that, in order for an
icosahedral phase to form, a system need not necessar-
ily be multicomponent.

The structure of the quasicrystalline Zr70Pd30 phase
obtained in the course of crystallization of a Zr70Pd30

amorphous alloy has been studied in considerable
detail [7–11]. A structural analysis of quenched and
annealed samples of the Zr70Pd30 alloy showed that Zr
rather than Pd acts as a center of icosahedral clusters in
quenched alloys and that the fraction of icosahedral
clusters grows under annealing [8]. Note that the binary
icosahedral phase in Zr-based alloys is limited to the
Zr–Pd and Zr–Pt systems. This may be assigned to the
large negative enthalpy of a Zr and Pt mixture, a crite-
rion for the formation of quasicrystalline phases in any
system [11]. Earlier studies of Zr75Rh25 [12], Zr70Be30

[13], Zr70Co30, Zr70Ni30, and Zr50Cu50 [10] alloys
revealed that icosahedral phases do not form in these
alloys in crystallization from the amorphous state.

The Zr70Pd30 alloy arouses interest for a number of
reasons. It was established in [9] that this alloy may
reside in three phase states, namely, amorphous, icosa-
1063-7834/05/4707- $26.00 1205
hedral, and crystalline, which permits one to study the
effect of a change in short-range order in the course of
transition from the amorphous to the icosahedral or
crystalline state without a simultaneous change in the
concentration of the components. Moreover, as found
in the present work, the alloy is superconducting in all
three phases, thus permitting one not only to determine
some phonon and electronic characteristics experimen-
tally but also to estimate the electron–phonon coupling.
The absence of complex concomitant magnetic effects
simplifies separation of the phonon and electronic char-
acteristics of the phases of interest.

To understand the conditions favoring the formation
and stabilization of a quasicrystalline structure and to
investigate the nature of many of the physical proper-
ties of quasicrystals, detailed information is needed
concerning the vibrational spectrum and electronic
density of states on the Fermi surface. No such infor-
mation was available on the samples for study.

Thus, this study was aimed at a comparative investi-
gation of the electronic, vibrational, and superconduct-
ing characteristics of quasicrystals and of their crystal-
line and amorphous analogs by measuring the temper-
ature dependence of the heat capacity and electrical
resistivity.

2. PREPARATION OF SAMPLES 
AND THEIR CHARACTERISTICS

A Zr70Pd30 alloy was prepared from electrolytically
pure zirconium (99.99%) and pure palladium
(99.96%). To produce crystalline samples, the starting
© 2005 Pleiades Publishing, Inc.
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elements were melted in an induction furnace in an
argon ambient. To obtain amorphous samples, the start-
ing elements were placed in a boron nitride ampoule
and melted in an induction furnace at a low argon pres-
sure and then were quenched by spinning in the liquid
state on a rotating copper disk. The quenching rate was
estimated to be ~106 K/s. Amorphous samples prepared
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Fig. 1. X-ray diffractograms of (a) the amorphous phase,
(b–d) the icosahedral phase for Tann equal to (b) 740 and
(c) 760 K and also for (d) Tann = 760 K with the sample
held for 2.5 min at this temperature, and (e) the crystalline
phase of Zr70Pd30. The Bragg peaks corresponding to the
icosahedral phase are indexed following the scheme pro-
posed in [14].
P

in this way were ribbons 1.5- to 2.0-mm wide and
~0.03-mm thick. After measurements, amorphous sam-
ples were annealed in a helium gas flow in a quartz tube
mounted in a resistance furnace. To find the conditions
best suited for preparing a near-perfect icosahedral
sample, annealing was conducted at several tempera-
tures, followed by fast quenching.

The crystallization kinetics of a Zr70Pd30 alloy was
studied with a differential scanning calorimeter. A heat-
ing thermogram obtained at a rate of 18 K/min showed
that the crystallization passes through two exothermal
peaks. The first of them corresponds to a transition to
the icosahedral phase at T = 723 K, and the second, at
T = 800 K, signals a transition to the crystalline phase,
in full agreement with the results reported in [8–11].

The structure of the samples thus prepared and the
effect of annealing on their state were determined,
using x-ray diffraction, on a DRON-2 diffractometer
(CuKα radiation). The phase assignment and lattice
parameter determination were performed from the dif-
fraction patterns. The diffraction pattern of a Zr70Pd30

sample quenched from liquid state is displayed in
Fig. 1a. The overall shape of the curve is typical of an
amorphous metal and reveals that there is no long-range
order. The first broad maximum lies at about 2θ = 37°,
and the second lies at 2θ = 63°. To find the regime most
promising for obtaining as perfect an icosahedral sam-
ple as possible, the annealing was carried out at several
temperatures, more specifically, at 740 and 760 K and
also at 760 K with the sample held at this temperature
for 2.5 min followed by fast quenching. The increase in
the electrical resistivity of the icosahedral sample
observed after annealing up to 760 K and the negative
temperature coefficient of the resistivity result from the
improved quality of the icosahedral sample. After
annealing up to 760 K with the sample held at this tem-
perature for 2.5 min, however, the diffraction pattern
characteristic of the icosahedral phase starts to reveal
peaks typical of the crystalline phase. The x-ray diffrac-
tograms of the icosahedral phase presented in Figs. 1b–
1d reveal Bragg peaks that correspond to an icosahedral
structure; these peaks are indexed in accordance with
the scheme proposed by Bancel et al. [14]. The value of
the six-dimensional hypercubic lattice parameter as
derived from the positions of the [100000] and
[110000] peaks is 7.624 Å. Figure 1e displays an x-ray
diffraction pattern obtained for the crystalline phase.
This phase is tetragonal (space group J4/mmm) with the
lattice parameters a = 3.306 Å and c = 10.894 Å
(according to [15]).

The heat capacity of the samples was measured in an
adiabatic calorimeter with pulsed heating [16]. The
experimental error in determining the heat capacity was
2% in the temperature interval 2–4 K, 1% at 4–10 K,
and 0.2–0.5% in the range 10–40 K. The superconduct-
HYSICS OF THE SOLID STATE      Vol. 47      No. 7      2005



        

SPECIFIC HEAT AND ELECTRICAL RESISTIVITY OF AN ICOSAHEDRAL-STRUCTURE 1207

                                                                                                     
ing transition temperature was derived from the jump in
the heat capacity.

The electrical resistivity of the samples was deter-
mined using the four-probe method. Measurements
were conducted on ribbons about 0.03 × 1.5 × 9 mm in
size. The measuring current was small enough (<1 mA)
to preclude sample overheating. The temperature was
measured to within ±0.01 K with a TSU carbon ther-
mometer. The value of Tc was found from the resistivity
at the midpoint of the superconducting transition.

3. EXPERIMENTAL RESULTS AND DISCUSSION

The temperature dependence of electrical resistivity
of the Zr70Pd30 alloy in the amorphous, icosahedral, and
crystalline states was studied within the temperature
range 2–300 K in different stages of structural relax-
ation occurring in the course of thermally induced
ordering (Fig. 2).

Heat treatment translates the ρ(T) curves toward an
increase in ρ, so they remain nearly parallel to one
another. This means that heat treatment has almost no
effect on the temperature-dependent components of
ρ(T). Therefore, the values of ρ thus found can be used
as a measure of the carrier concentration, because ρ in
quasicrystals is dominated by the concentrations of free
carriers and of structural defects.

The observed increase in ρ with an increase in the
annealing temperature and the negative temperature
coefficient of electrical resistivity for the icosahedral
phase (annealed up to 760 K) argue for the improved
quality of the icosahedral sample [17]. The electrical
resistivity of the icosahedral phase (Tann = 760 K) is
considerably higher than that of the amorphous phase
and exceeds the resistivity of the crystalline phase by
~50 times at low temperatures.

The inset to Fig. 2 compares measurements of the
low-temperature electrical resistivity and of Tc of the
amorphous and crystalline phases, as well as of the
icosahedral phase obtained by annealing up to 740 and
760 K and also at 760 K with the sample held at this
temperature for 2.5 min. These samples in all three
phases are superconducting. The superconducting tran-
sition temperatures Tc are 2.97 K for the amorphous
phase and 2.54 and 2.05 K for the icosahedral phase
annealed up to 740 and 760 K, respectively. No super-
conducting transition was observed down to 1.5 K dur-
ing annealing of a sample to 760 K with the sample held
at this temperature for 2.5 min, a procedure in which
the icosahedral phase starts to convert into the crystal-
line phase and peaks typical of crystals appear in the
diffractogram. The resistivity jumps that are observed
to appear after annealing and precede the supercon-
ducting transition are apparently due to residues of the
amorphous phase in the icosahedral sample. Thus,
PHYSICS OF THE SOLID STATE      Vol. 47      No. 7      200
improvement of the quality of an icosahedral sample
gives rise to an increased electrical resistivity, the
appearance of a negative temperature coefficient of
electrical resistivity, and a decreased value of Tc. The
superconducting transition in the crystalline phase is
observed at Tc = 1.5 K, which is lower than Tc for the
amorphous and icosahedral phases. The above observa-
tions reflect the effect of the formation kinetics of the
binary Zr70Pd30 icosahedral phase in the course of crys-
tallization of the amorphous Zr70Pd30 alloy.

The measured temperature dependence of electrical
resistivity of the icosahedral-structure Zr70Pd30 alloy
differs radically from that for the crystalline and amor-
phous structures; namely, the resistivity of the icosahe-
dral phase is substantially higher than that of its analogs
and increases with increasing structural perfection of
the quasicrystal.

Investigation of the evolution of the electronic
parameters of the Zr70Pd30 icosahedral phase with
increasing structural perfection sheds light on what
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Fig. 2. Temperature dependences of the electrical resistivity
of (a) the amorphous phase, (b, c) the icosahedral phase for
Tann equal to (b) 740 and (c) 760 K, (d) the icosahedral
phase for Tann = 760 K with the sample held for 2.5 min at
this temperature, and (e) the crystalline phase of the
Zr70Pd30 system in the range 2–300 K. The inset shows
analogous dependences near the superconducting transition
point.
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drives the transformation of a “good” metal to a high-
resistivity metal and allows one to draw the fairly gen-
eral conclusion that electron localization is the driving
force (this viewpoint is in qualitative agreement with
the cluster model of quasicrystal structure [17]).

The heat capacity of the Zr70Pd30 alloy with icosahe-
dral, amorphous, or crystalline structure was measured
in the temperature interval 1.5–40 K. Throughout this
temperature range, the specific heat of the icosahedral
phase is lower than that of the amorphous phase but
higher than that of the crystalline phase.

Figure 3 displays the behavior of the low-tempera-
ture specific heat of the three phases in the range 1.5–
4.5 K plotted as C/ T versus T 2 graphs. The amor-
phous phase exhibits a sharp superconducting transi-
tion at a temperature Tc = 2.6 K, with a transition
width ∆Tc = 0.2 K. The superconducting transitions in
the icosahedral and crystalline phases as derived from
the heat capacity data are broader and are observed at
similar temperatures: Tc = 2.1 K (∆Tc = 0.6 K) for the
icosahedral phase and Tc = 1.9 K (∆Tc = 0.7 K) for the
crystalline state. Each phase reveals a heat capacity
jump at about the same temperature as obtained from
resistivity measurements. This suggests a volume char-
acter of superconductivity. Note that the absence of a
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Fig. 3. Temperature dependences of the specific heat of
(a) the amorphous, (c) icosahedral, and (e) crystalline
phases of Zr70Pd30 measured in the range 1.5–4.5 K and
plotted in the C/T vs. T2 coordinates. The curve notation is
the same as in Fig. 1.
PH
second jump in the heat capacity associated with traces
of the amorphous phase (which was observed for the
resistivity) indicates that the amount of the amorphous
phase present in the icosahedral sample is small (rough
estimates yield 1–2%).

The data derived from the electrical resistivity and
heat capacity measurements are given in the table. As
seen from the table, the characteristic parameters of the
icosahedral phase lie between those of the amorphous
and crystalline phases. A comparison of the electronic
heat capacity coefficients for the icosahedral phase with
those of the amorphous and crystalline phases reveals
that the electronic density of states on the Fermi surface
in the icosahedral phase of Zr70Pd30 is less than that in
the amorphous phase but is twice that of the crystalline
phase.

The heat capacity data suggest that the phonon spec-
trum softens with decreasing structural order, which is
observed to occur as one goes over from the crystalline
to icosahedral phase and then to the amorphous phase
(Fig. 4).

Our results provided an estimate of the electron–
phonon coupling constant λ and the electronic density
of states NF(0) within the McMillan theory [18]. Both
quantities, λ and NF(0), increase with decreasing struc-
tural order. All three of the phases are weak-coupling
superconductors.

Our studies of the kinetic and thermodynamic prop-
erties of the amorphous, icosahedral, and crystalline
phases of the Zr70Pd30 alloy allow us to make a sugges-
tion regarding the mechanism of formation of a
pseudogap in the electronic density of states near the
Fermi level in the icosahedral phase.

The existence of a pseudogap is certainly insuffi-
cient to account for the anomalously high electrical
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Fig. 4. Temperature dependences of ΘD(T) measured in the
range 3–40 K for (a) the amorphous, (c) icosahedral, and
(e) crystalline Zr70Pd30 phases. The curve notation is the
same as in Fig. 1.
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resistivity. In actual fact, the reason lies in the anoma-
lously low electron mobility in a perfect quasicrystal,
which is associated with the lack of translational sym-
metry and the lack of universal short-range order in the
mutual arrangement of configurations. It is known [19]
that quasi-periodicity is capable of appreciably chang-
ing the electronic structure and that interaction of the
Fermi surface with faces of the Brillouin zone may give
rise to the formation of a pseudogap in the electronic
density of states.

Electron localization in a quasicrystal differs from
the Anderson localization, which occurs due to atomic
disorder in a system. In a quasicrystal, an electronic
state may become localized by a quasi-periodic poten-
tial [20].

Our results provide a positive answer to the question
of whether a valence electron system can be localized
in a medium that consists only of metal atoms (without
metalloid atoms) and is a metal with a standard electron
concentration.

An analysis of the experimental data obtained pro-
vides support for the conclusion made by Gantmakher
[21] that a quasicrystalline system consisting only of

Parameters characterizing the amorphous, icosahedral, and
crystalline phases of the Zr70Pd30 system

Parameter
Amor-
phous 
phase

Icosahe-
dral

phase

Crystal-
line

phase

ρ300, µΩ cm 250 310 70

ρ4.2, µΩ cm 270 324 7

Tc (from resistivity), K 2.97 2.05 1.5

∆Tc (from resistivity), K 0.05 0.15 0.1

γ, mJ/mol K2 5.25 4.75 2.45

β, mJ/mol K4 0.195 0.114 0.063

Tc (from heat capacity), K 2.6 2.1 1.9

∆Tc (from heat capacity), K 0.2 0.6 0.7

Ces/Cen(Tc) 1.98 1.15 1.15

ΘD, K 215 257 313

λ 0.58 0.54 0.51

NF(0), states/eV atom 0.70 0.66 0.34

Note: ρ4.2 and ρ300 are resistivities at 4.2 and 300 K, respectively;
coefficients γ and β approximate the specific heat at low
temperatures by the relation C = γT + βT3; Ces/Cen(Tc) is the
ratio of electronic specific heats in the superconducting and
normal states; ΘD is the low-temperature characteristic
Debye parameter; NF(0) is the electronic density of states on
the Fermi surface; and λ is the electron-phonon coupling
constant.
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metal elements and approaching a metal–insulator tran-
sition should support (despite its high valence-electron
concentration) the formation of stable atomic configu-
rations that could serve as deep potential wells (traps)
for the valence electrons.

4. CONCLUSIONS

For the first time, a comparative study of the elec-
tronic, vibrational, and superconducting characteristics
of a Zr70Pd30 icosahedral quasicrystal and its crystalline
and amorphous counterparts has been performed from
measurements of the heat capacity and electrical resis-
tivity.

The high electrical resistivity of the Zr70Pd30 quasi-
crystal (~50 times that of the crystalline phase), the
negative temperature coefficient of resistivity, and the
electronic specific heat being twice that in the crystal-
line phase should be apparently assigned to electron
localization and the existence of a pseudogap in the
electronic density of states on the Fermi surface.

Superconductivity has been observed for the first
time in the icosahedral phase of Zr70Pd30 at the super-
conducting transition temperature Tc = 2.1 K.
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Abstract—The local environment of fluorine atoms in Sr2Can – 1CunO2n + δF2 ± y (n = 2, 3) high-temperature
superconductors (Tc = 99 and 111 K) is studied using soft x-ray emission and absorption spectroscopy. The flu-
orine spectra of the samples studied are found to be similar to those of SrF2, which supports the conjecture that
fluorine atoms substitute for apex oxygen atoms and form double SrF layers. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Methods of high-pressure synthesis of
Sr2Can − 1CunO2n + δF2 ± y (n = 2–5) compounds have
been developed recently. These superconductors have
critical superconducting transition temperatures Tc up
to 111 K [1, 2]. The local environments and chemical
bond configurations of dopant atoms are crucial for
understanding the nature of the superconducting and
transport properties of these materials.

According to [3], the tetragonal unit cell parameter
c of Sr2Can – 1CunO2(n + 1) is equal to 20.4 Å for n = 2 and
27.2 Å for n = 3. These values significantly exceed the
parameters c = 19.88 Å (n = 2) and c = 26.17 Å (n = 3)
obtained for Sr2Can – 1CunO2n + δF2 ± y (n = 2–5) in [1].
This disagreement makes plausible the assumption that
fluorine atoms substitute for certain apex oxygen atoms
of Sr2Can – 1CunO2(n + 1), with the formation of
Sr2Can − 1CunO2n + δF2 ± y. Models proposed in [1] for the
structures of Sr2CaCu2O4 + δF2 ± y (0212–F) and
Sr2Ca2Cu3O6 + δF3 ± y (0223–F) are shown in Fig. 1. In
these models, it is supposed that the double “SrF” lay-
ers contain interstitial fluorine atoms. It is expected that
the interstitial fluorine atoms can be partly substituted
for by oxygen (these structures are not shown in Fig. 1).

In the present paper, we report results of studies of
the local environment of fluorine atoms in 0212–F and
0223–F performed using soft x-ray emission and
absorption spectroscopy, which is sensitive to the local
environment of excited atoms in complex compounds.
1063-7834/05/4707- $26.00 ©1211
2. EXPERIMENTAL

X-ray fluorescence spectra of 0212–F and 0223–F
superconductors were measured using the fluorescent
endstation set on Beamline 8.0.1 of the Advanced Light
Source at the Lawrence Berkley National Laboratory
(USA). The technical specifications of the endstation
are well known (see, e.g., [4]). Fluorescence radiation
is directed into a Rowland-circle grating spectrometer
equipped with a photon-counting multichannel plate
area detector. The instrument resolution for x-ray fluo-
rine Kα spectra is 0.9 eV. X-ray absorption spectra were
measured in the total electron yield mode with an
energy resolution E/∆E = 5000. All absorption and
emission spectra were normalized to the total number
of incoming photons by using a transparent gold mesh
installed in front of the sample.

Samples were prepared using only high-purity start-
ing materials: SrF2 (99.9% pure), CaF2 (99.9%),
SrCuO2, SrO2, Ca2CuO3, and CuO (99.9%). The initial
mixture was sealed in a gold capsule and kept at
1250°C under high pressure (5.5 GPa) for 3 h with sub-
sequent annealing at room temperature. The 0212–F
and 0223–F phases produced in this way have Tc values
of 99 and 111 K, respectively. X-ray diffraction mea-
surements were performed with a Philips PW-1800 dif-
fractometer (Cu Kα radiation), and the crystal lattice
parameters were determined by the least square fit. The
tetragonal unit cell parameters for our samples are
found to be a = 3.843(1) Å and c = 19.88(1) Å for the
0212–F phase and a = 3.840(1) Å and c = 26.17(1) Å
for the 0223–F phase.
 2005 Pleiades Publishing, Inc.
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3. RESULTS AND DISCUSSION

X-ray emission spectroscopy (XES) and x-ray
absorption near-edge spectroscopy (XANES) are mutu-
ally supplementing methods and produce full informa-
tion about electron structure. XES makes it possible to
study radiative electron transitions from the valence
band to the vacant core levels created by synchrotron
radiation. XANES provides data concerning x-ray
absorption processes accompanied by excitation of
electrons from core levels into the conduction band.
Both methods have the advantage of being sensitive
mainly to the first coordination shell of the excited
atom; so they provide information on the structure of
the local electron environment and chemical bonds of
that particular atom. Emission and absorption spectra
studied using soft x-ray spectroscopy obey the single-
electron selection rules ∆l = ±1. Therefore, XES F Kα
spectra and XANES F 1s spectra characterize the distri-
bution of occupied and vacant 2p states of fluorine
atoms, respectively.

Nonresonance XES F Kα spectra of 0212–F and
0223–F phases are shown in Fig. 2 together with spec-
tra of the reference compounds CuF2, CaF2, and SrF2.
The excitation energy of the spectra shown in Fig. 2 is
indicated by the letter d in the XANES spectra pre-
sented in Fig. 3. The emission spectra exhibit a strong

Sr
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Cu

O

F

CuO2

SrF1 + d

0201–F

SrF1 + d

CuO2

SrF1 + d

SrF1 + d

CuO2

0212–F

0223–F

Fig. 1. Model structures of the Sr2CaCu2O4 + δF2 ± y (0212–F)
and Sr2Ca2Cu3O6 + δF3 ± y (0223–F) superconductors.
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 peak (corresponding to the KL electron transi-
tion) situated at approximately 677 eV and a satellite

 structure in the higher energy part of the spectra;
the intensity of this structure varies significantly as one
goes from CuF2 to CaF2 and SrF2. The satellite K1L1

structures have been the subject of a number of studies
(a review can be found in [5]) and are attributed to the
KL transition in the two-hole atomic shell configura-
tions 1s–12p–1 [6].

XANES F 1s spectra of the two compounds under
study and reference samples are shown in Fig. 3. The
XANES spectra of the CaF2 and SrF2 reference samples
have two peaks, a and b, situated near the absorption
edge. According to [7], the interband transition edge in
XANES F 1s spectra is located at a much higher energy
than the peak a; so this peak can be attributed to a core
exciton forming below the conduction band. The fine
structure of the CuF2 spectrum is quite different; it has a
low-intensity peak (a') at about 684 eV. It was found that
this peak is related to transitions to vacant 3d states and
that its intensity progressively decreases in the sequence
of difluorides of 3d metals Mn2  FeF2  CoF2 
NiF2  CuF2 [8]. So, this peak carries information on
the number of holes in the d states.

Since the XES F Kα and XANES F 1s spectra of the
reference samples differ qualitatively, they can be used

Kα1 2,

Kα3 4,
YSICS OF THE SOLID STATE      Vol. 47      No. 7      2005
to identify the features associated with the F–Cu, F–Ca,
and F–Sr chemical bonds in the samples under study.
The XES F Kα and XANES F 1s spectra of the 0212–F
and 0223–F samples we measured are very similar to
those of SrF2. The 0212–F and 0223–F spectra differ
from the CuF2 spectra in terms of their fine structure
and from the CaF2 spectra in terms of the energy posi-
tions of maxima. It follows that fluorine is surrounded
by Sr atoms only; so it has to substitute for oxygen in
the apex positions according to the structure models
shown in Fig. 1.

It is suggested in [8] that the ratio of the intensities
of the satellite F K1L1 structure and the main emission
band decreases as the covalence of the chemical bonds
increases. This trend is well pronounced in the XES F
Kα spectra of the reference samples (Fig. 2); indeed, the
K1L1 satellite in the SrF2 spectrum is weaker than that
in the CaF2 spectrum and the satellite in the CuF2 spec-
trum is the strongest. An increase in the covalence of a
bond results either in a decreased probability of radia-
tive relaxation of two-hole states or in a decreased cross
section of multiple ionization. Consequently, the low
intensity of the K1L1 satellite in the spectra of 0212–F
and 0223–F suggests that there is a strong covalent Sr–
F bond in these compounds, which serves to addition-
ally confirm the models presented in Fig. 1.
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In attempt to verify that fluorine takes the apex oxy-
gen positions in the 0212–F and 0223–F crystal lattices,
we studied resonant inelastic x-ray scattering (RIXS)
spectra near the F Kα edge. It was shown previously [9,
10] that, for superconducting cuprates and related com-
pounds, it is possible to selectively obtain the x-ray
emission spectra of excited oxygen atoms located at
nonequivalent lattice sites by carefully choosing the
excitation energy. The full widths at half-maximum
(FWHM) of the fluorine  emission lines of refer-
ence samples are different (Fig. 2); so the resonance
spectra of fluorine atoms in the 0212–F and 0223–F
samples can be used to identify the F–Cu, F–Ca, and F–
Sr bonds.

The excitation energies for RIXS are chosen to cor-
respond to the energies of the features a, b, c, and d in
the F 1s absorption spectra of the 0212–F and 0223–F
samples (Fig. 3). The emission spectra obtained in this
way are shown in Figs. 4 and 5.

Notice that the F K1L1 satellite does not appear at all
in the spectra near the threshold excitation. Therefore,
this satellite is indeed due to multiple ionization. The
FWHM of the main peak in the 0212–F and 0223–F
spectra is independent of the excitation energy (Fig. 5)
and virtually coincides with the width of the SrF2 spec-

Kα1 2,
PH
trum, which confirms the assumption that fluorine
atoms form double layers in the 0212–F and 0223–F
lattices as shown in Fig. 1.

4. CONCLUSIONS

High-temperature superconductors 0212–F and
0223–F produced under high pressure have been stud-
ied using resonance and nonresonance x-ray F K emis-
sion spectroscopy and F 1s absorption spectroscopy. It
has been shown that fluorine atoms take the apex posi-
tions in the crystal lattices of these compounds and
form double SrF layers with strong covalent F–Sr
bonds. Hence, all our data confirm the structure models
of the 0212–F and 0223–F superconductors suggested
in [1].
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Abstract—The thermal conductivity κ and electrical resistivity ρ of a SiC/Si biomorphic composite were mea-
sured at temperatures T = 5–300 K. The composite is a cellular ecoceramic fabricated by infiltrating molten Si
into the channels of a cellular carbon matrix prepared via pyrolysis of wood (white eucalyptus) in an argon
ambient. The κ(T) and ρ(T) relations were measured on a sample cut along the direction of tree growth. The
experimental results obtained are analyzed. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The SiC/Si biomorphic ceramics, presently also
called ecoceramics (environment-conscious ceramics),
have recently been attracting considerable attention
from technologists, physicists, and engineers on
account of their unusual physical properties, as well as
because of their remarkable application potential.

Biomorphic composites are fabricated from cellular
carbon matrices obtained via pyrolysis (carbonization)
of various kinds of wood (pine, eucalyptus, mango, oak,
beech, maple, etc.), followed by infiltration of molten Si
into the empty through channels (~4 to 100 µm in diam-
eter) of these matrices. Silicon reacts chemically with
the carbon matrix to produce a SiC/Si composite [1].1 

These composites have a cellular (channel-type)
structure depending on the actual technology employed
for their preparation and on the wood species. Most of
a composite sample (85 to 55%) may consist of SiC,
while the channels, which are extended along the direc-
tion of tree growth and either are filled by Si or remain
empty, occupy 15 to 35% and 7 to 30% of the compos-
ite volume, respectively.

The SiC/Si ecoceramics feature a variety of unusual
properties, which make them promising for applica-
tions and more cost-effective than the classical ceram-
ics. They exhibit a high mechanical strength [1–3], are
oxidation and corrosion resistant, and have low weight
(their density is ~2.3 g/cm3). Among their technological

1 Information on the fabrication, study of the structural and
mechanical properties, and application potential of the SiC/Si
biomorphic composites can be found in review [1], which also
gives 60 relevant references.
1063-7834/05/4707- $26.00 1216
advantages are a high rate of production at relatively
low temperatures and a fairly low production cost.

A unique feature of biomorphic composites is the
possibility they offer of fabricating ceramic objects of a
desired shape, which can be achieved by a fairly simple
woodworking procedure. After the pyrolysis and Si
infiltration into such preforms, one obtains high-
strength, difficult-to-machine ceramic objects that
retain their original shape [1].

SiC/Si biomorphic ceramics can be employed to
advantage as a light, superhard material in the aero-
space and car industries and in medicine (orthopedics),
as well as in the manufacturing of high-temperature
heaters, resistance thermometers, etc.

Investigation of the physical properties of this
unusual class of materials is of fundamental importance
for solid-state physics. Regrettably, physical studies of
biomorphic composites have thus far been focused pri-
marily on their structural and mechanical characteris-
tics [1–3]. We have studied (in the range 10–300 K) the
behavior of electrical resistivity of the SiC/Si biomor-
phic composite prepared from carbonized Sapele wood
(African Entandrophragma Cylindricum) [4].

Note that investigation of a larger number of physi-
cal properties of biomorphic composites may, in addi-
tion to being of considerable scientific interest, prove to
be of advantage (and even necessary) in the search for
additional potential applications.

A fundamental physical parameter that can be used
to obtain information on the phonon-assisted heat
transport and dissipation in composites is the thermal
conductivity. It is necessary to know the thermal con-
ductivity when carrying out engineering calculations of
© 2005 Pleiades Publishing, Inc.
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heat losses and flows in devices and constructions fab-
ricated from this unusual ceramic.

The thermal conductivity of the SiC/Si biomorphic
ceramic has not yet been studied. It is this subject that
the present communication addresses.

2. PREPARATION OF SAMPLES 
AND THEIR CHARACTERIZATION

A sample of the SiC/Si biomorphic composite was
prepared by infiltrating molten Si in vacuum into a cel-
lular carbon matrix of white-eucalyptus wood obtained
by pyrolysis in an argon ambient at 1000°C [1].

Following infiltration, a 2.2 × 1.5 × 3.4 mm parallel-
epiped-shaped sample was cut from a rod of the SiC/Si
biomorphic composite. The long side of the sample was
directed along the direction of tree growth. We also pre-
pared a sample of the carbon matrix of white-eucalyp-
tus wood for the study.

For these samples, we performed microstructural
and x-ray diffraction studies and measured their density
at 300 K.

The photomicrographs obtained with a Philips
XL30 scanning electron microscope are similar to
those presented in [2]. The microphotograph of the car-
bon matrix sample reveals a clearly pronounced cellu-
lar structure with channels extending along the direc-
tion of tree growth. On the end faces of both samples,
individual pores with different diameters are observed.2 

Diffractometric scans of samples of the SiC/Si bio-
morphic composite and of the corresponding carbon
matrix of white-eucalyptus wood obtained on a
DRON-2 (CuKα radiation) are displayed in Fig. 1. The
x-ray diffraction pattern of the SiC/Si biomorphic com-
posite shows that this composite consists of a mixture
of two phases: cubic 3C-SiC (lattice parameter a =
4.358 Å) and Si (a = 5.430 Å). Both phases are well
formed. Based on the x-ray diffraction data for the com-
posite and silicon samples, the silicon content in the
SiC/Si sample is estimated to be ~15 vol %. The dif-
fraction pattern of the carbon matrix of white-eucalyp-
tus wood contains only diffuse halos typical of amor-
phous material (see inset to Fig. 1).

The densities of the carbon matrix and SiC/Si com-
posite samples were 0.68 and 2.37 g/cm3, respectively.
Based on these values and on the density of the original
white eucalyptus wood (0.84 g/cm3), the conclusion was
drawn in [2] that a SiC/Si sample contains ~6 vol %
excess silicon and 15–20% empty channels. Note the
appreciable difference between the contents of excess
Si estimated from the x-ray diffraction and density
measurement data.

2 Electron microscope measurements performed on a large number
of carbon matrix samples of white eucalyptus established [1] that
small pores (with an average diameter of ~4 Å) and large pores
(average diameter of ~62.5 Å) occupy ~29 and ~14% of the total
sample volume, respectively.
PHYSICS OF THE SOLID STATE      Vol. 47      No. 7      2005
3. EXPERIMENTAL RESULTS

The thermal conductivity κcomp and electrical resis-
tivity ρcomp of a sample of a SiC/Si biomorphic compos-
ite were measured in the temperature interval 5–300 K
on a setup similar to that employed in [5] and are dis-
played in Figs. 2 and 3, respectively. Because the value
of ρcomp is fairly large, the quantity κcomp obtained in the
experiment is the lattice thermal conductivity (κph).

Figure 2 also presents available experimental data
on the thermal conductivity of polycrystalline 3C-SiC.
Unfortunately, we have not succeeded in locating liter-
ature data on the thermal conductivity of 3C-SiC in the
temperature interval 40–300 K. For this reason, Fig. 2
represents a hypothetical curve (dashed curve 11) con-
necting the low- and high-temperature parts of the ther-
mal conductivity graph of 3C-SiC.

Figure 3 (see also insets to it) shows the ρcomp(T)
curve obtained for the sample under study without
regard for its porosity. We readily see that, in the low-
temperature range (5–20 K), ρcomp(T) = const, but for
T > 20 K the electrical resistivity increases with tem-
perature to fit the ρcomp ~ T0.3 scaling at T > 150 K.

4. DISCUSSION OF THE RESULTS

The sample of the biomorphic composite studied
here consists of a 3C-SiC polycrystalline base, silicon
filling the channels, and empty channels (accounting
for the sample porosity). Using the Litovskiœ formula
[12]

 (1)

the porosity P was taken into account and the thermal

conductivity  relating to 3C-SiC and Si only
(curve 10 in Fig. 2) was isolated from the experimen-
tally measured κcomp. In these calculations, P was
assumed to be 0.2.
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Fig. 1. Diffractometric scan of a SiC/Si biomorphic com-
posite sample with reflections from (1) 3C-SiC and (2) Si.
Inset shows the diffraction pattern of the carbon matrix of
white eucalyptus.
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Fig. 2. Temperature dependences of the lattice thermal con-
ductivity (1) of a SiC/Si biomorphic composite sample
measured in the direction of tree growth; (2–8) of polycrys-
talline 3C-SiC samples taken from (2) [6], (3) [7], (4, 6) [8],
(5, 8) [9], and (7) [10]; and (9) of high-purity silicon [11].

(10) Thermal conductivity  of a SiC/Si biomorphic

composite sample. (11) Hypothetical curve interpolating lit-
erature data on the low- and high-temperature thermal con-
ductivity of 3C-SiC. Inset shows a SiC/Si biomorphic com-
posite sample (schematic).
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Fig. 3. Temperature dependence of the electrical resistivity
ρcomp of the SiC/Si biomorphic composite measured (with-
out inclusion of porosity) on a sample cut along the growth
direction of white eucalyptus wood within the range 100–
300 K. Insets show the ρcomp(T) dependence (a) at low-tem-
peratures (5–80 K) and (b) (drawn on a log scale) over the
range 50–300 K.
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A microstructural analysis of the carbon matrix of
white eucalyptus wood and the SiC/Si biomorphic
composite fabricated from this matrix shows that the
sample has a cellular structure made up of empty and
silicon-filled channels. These channels have various
diameters and are extended along the longer side of the
sample (i.e., along the direction of tree growth). In the
subsequent analysis of the experimental data on the
thermal conductivity, we assume these channels to be
parallel to the heat flow propagating into the sample
(see inset to Fig. 2). To calculate the thermal conductiv-
ity of a system consisting of alternating parallel layers
of different materials, we use the Dul’nev–Zarichnyak
formula [13]

 (2)

where κ1 and κ2 are the thermal conductivities of 3C-
SiC and Si, respectively, and m is the percentage of Si
in the sample.

In Fig. 4,  as calculated from Eq. (2) is plotted
(curve 4) together with available data on the thermal con-
ductivities of 3C-SiC (κ1, curve 2) and Si (κ2, curve 3). It

was found that the values of (T) in the low-tem-
perature region (curve 4) lie substantially above the

experimental (T) values (curve 1).

Based on the behavior of (T) derived experi-
mentally for medium temperatures (200–300 K), one
might expect the calculations performed using the
above values of the thermal conductivity of 3C-SiC and
Si to be in better agreement with experiment at higher
temperatures, as suggested by Fig. 4.3

What could the reason be for the substantial dis-
agreement between the calculated and experimental
data for the low-temperature region and, possibly, for
there not being such a dramatic discrepancy at high
temperatures?

This is most likely due to the fact that the thermal
conductivities of the 3C-SiC making up the SiC/Si bio-
morphic composite and of the Si filling its channels dif-
fer considerably from (are lower than) the respective
literature data for 3C-SiC and high-purity Si. The ther-
mal conductivities of these materials should differ
strongly from literature data at low temperatures,
whereas at high temperatures they can approach the
values given in the literature.

To substantiate this assumption, hypothetical curves
for the thermal conductivities of the 3C-SiC (curve 5)
and Si (curve 6) making up the SiC/Si composite are
constructed in Fig. 4 under the condition

 (3)

3 Unfortunately, we have to restrict ourselves here to the statement

“one might expect,” because experimental data on (T) for

temperatures T > 300 K are lacking.
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The calculation was performed using Eq. (2) for m =
0.15. Condition (3) can also be satisfied at a slightly dif-
ferent ratio of the thermal conductivities of 3C-SiC and
Si (as compared to that in Fig. 4), but this would not
change the overall pattern markedly. The true value of
the thermal conductivity of the 3C-SiC making up the
ecoceramic can be obtained (and compared with the
hypothetical curve) only after measuring the thermal
conductivity of the SiC/Si biomorphic composite after
complete removal of Si from it by chemical means.

A decrease in the thermal conductivity of Si infil-
trated into the channels of a white-eucalyptus carbon
matrix at a high temperature appears to be a reasonable
conjecture, because chemical analysis of such a matrix
revealed the presence in it of such impurities as Al, Cu,
Fe, S, Tl, and, most of all, Ca and P, which (particularly
the latter) may act as a dopant that brings about a
decrease in the κ and ρ of Si. The κ of silicon in the
composite may also be reduced by specific structural
defects forming in the silicon in the course of its infil-
tration into the carbon matrix channels. Hypothetical
curve 6 for the κ(T) of Si (Fig. 4) fits well into the fam-
ily of curves plotting the thermal conductivity of Si
with various degrees of purity [11] (Fig. 5).
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Fig. 4. Temperature dependence of the lattice thermal con-
ductivity (1) for the SiC/Si biomorphic composite under

study ( ), (2) for 3C-SiC at low (curve 4 in Fig. 2) and

high (curves 5–8 in Fig. 2) temperatures, and (3) for high-

purity Si [11]; (4)  as calculated from Eq. (2); and

(5, 6) hypothetical values of the thermal conductivity for the
3C-SiC and Si making up the SiC/Si biomorphic composite,
respectively.
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The impurities mentioned above may also give rise to
a decrease in the 3C-SiC thermal conductivity as com-
pared to the literature data. The κ of 3C-SiC could also
be lowered by part of the 3C-SiC being present in the
biomorphic composite in the nanocrystalline state [1].

The SiC/Si biomorphic composite belongs to non-
oxide ceramics featuring a fairly high thermal conduc-
tivity for T ≥ 300 K [14]. In the table, 300-K thermal
conductivity data are listed for ceramics based on the
6H-SiC polytype, which are used in industry [14]. The
thermal conductivity of the SiC/Si ecoceramic sample
studied in this work is ~80 W/m K at 300 K, which like-
wise makes this ecoceramic promising for practical use.

Let us turn to a discussion of the above experimental
data on the electrical resistivity of the SiC/Si biomor-
phic composite sample studied here. This composite is
specific in that its ρcomp increases with temperature.4

This is most probably due to the fact that, for Si and,
possibly, for the SiC making up the SiC/Si biomorphic
composite, the ρ(T) dependence becomes metallic in
character, because these materials are doped by the

4 Samples of the SiC/Si biomorphic composite fabricated from the
carbon matrix of Sapele wood reveal the same behavior of
ρcomp(T) [4].
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Fig. 5. Temperature dependence of the Si lattice thermal
conductivity. (1) Hypothetical κph(T) curve for Si in chan-
nels of the biomorphic composite sample under study
(curve 6 in Fig. 4) and (2–7) κph(T) of Si samples with dif-

ferent carrier concentrations [11] (cm–3): (2) p ~ 1012,
(3) p = 2.2 × 1016, (4) p = 2.2 × 1017, (5) n = 3 × 1019,
(6) n = 1.7 × 1020, and (7) p = 3 × 1020 (n and p specify the
conduction type of the material).
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above impurities present in the carbon matrix of white
eucalyptus wood.

The ρ(T) dependence acquires a metallic pattern in
crystalline carbon [15], but x-ray diffraction did not
reveal this carbon in the sample under study (Fig. 1).
The possible presence of amorphous carbon in the bio-
morphic composite sample [1] should have produced
the opposite effect, because the ρ of amorphous carbon
increases with decreasing temperature [16], as is also
the case with the ρ of nanoporous carbon [16]. This
leaves us with only one explanation, namely, that the
observed behavior of ρcomp(T) of the biomorphic SiC/Si
composite is due to Si (and SiC) being doped by the
impurities present in the carbon matrix.

5. CONCLUSIONS

We have shown that the calculated lattice thermal
conductivity of 3C-SiC in the SiC/Si biomorphic com-
posite at temperatures of 5–100 K is much smaller than
that of a standard polycrystalline 3C-SiC sample,
which is apparently associated with the presence of
impurities and specific defects in the silicon carbide
contained in the biomorphic composite.

It should be pointed out, however, that the SiC/Si
non-oxide ecoceramic nevertheless has a sufficiently
high thermal conductivity at room temperature, which
makes it promising for several applications.
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Abstract—The electrical resistivity of TlInTe2 chain-structure semiconductors in directions parallel and per-
pendicular to the chains is analyzed as a function of temperature. It is demonstrated that, in both cases, the tem-
perature dependences of the electrical resistivity in the temperature range under investigation are characterized
by two portions associated with different mechanisms of electrical conduction. In the high-temperature range,
the electrical conduction is predominantly provided by thermally excited impurity charge carriers in the allowed
band. In the low-temperature range, the conduction occurs through charge carrier hopping between localized
states lying in a narrow energy band near the Fermi level. The activation energy for impurity conduction is
determined. The localization lengths and the density of localized states near the Fermi level, the spread in ener-
gies of these states, and the average carrier-hopping distances are estimated for different temperatures. © 2005
Pleiades Publishing, Inc.
1. INTRODUCTION

Single crystals of the TlInTe2 compound belonging
to p-type semiconductors have been extensively studied
as promising materials for a wide range of practical
applications. In particular, the TlInTe2 compound and
its structural analog TlInSe2 have been used in fabricat-
ing high-speed photoresists and x-ray detectors. The
theoretical interest expressed in TlInTe2 single crystals
is associated with the specific features of their struc-
ture. Since TlInTe2 single crystals have a chain struc-
ture, their investigation is of importance in revealing
the physical phenomena inherent in low-dimensional
systems.

The TlInTe2 compound (like its structural analogs
TlInSe2 and TlGaTe2) crystallizes in a body-centered
lattice of the tetragonal crystal system and belongs to

space group –14mcm, which is characteristic of
crystals with an anisotropic lattice of the TlSe type [1].
Indium ions form indium–tellurium chains along the
tetragonal c axis of the crystal. These chains are linked
together through univalent thallium ions. Thallium ions
are located in the tetrahedral environment of the tellu-
rium ions. Anisotropy of the crystal structure leads to
anisotropy of the bonding forces in the crystal, which,
in turn, is responsible for the anisotropy of the physical
properties.

The electrical properties of TlInTe2 single crystals
have not been adequately investigated. Guseinov et al.
[2] studied the electrical conductivity and the Hall
effect in TlInTe2 single crystals at temperatures above
room temperature. The data obtained by those authors
are in good agreement with the band structure calcu-

D4h
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1063-7834/05/4707- $26.00 1221
lated for TlInTe2 single crystals by Gashimzade and
Orudzhev [3]. According to the results of those calcula-
tions, the compound under consideration is an indirect-
band-gap semiconductor in which the direct transition
is forbidden by the selection rules. The numerical val-
ues of the minimum direct and indirect band gaps are
equal to 1.16 and 0.65 eV, respectively. In the present
work, we investigated the charge transfer in TlInTe2
semiconductors with a chain structure at low tempera-
tures.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

The dc electrical resistivity was measured by a mod-
ified four-point probe method [4] in directions parallel
(ρ||) and perpendicular (ρ⊥ ) to the tetragonal c axis
(coinciding with the direction of the chains in the crys-
tal) in the temperature range 80–300 K. The samples
for measurement were prepared in the form of 0.25- to
0.50-mm-thick rectangular plates, with the chains
being aligned with the plate plane. Indium contacts and
their sizes and arrangement satisfied the requirements
described in [4]. The strength of the applied electric
field (E = 102–103 V/cm) corresponded to the ohmic
portion of the current–voltage characteristic.

3. SPECIFIC FEATURES OF THE ELECTRICAL 
CONDUCTIVITY IN TlInTe2 SINGLE CRYSTALS

The temperature dependences of the electrical resis-
tivity of TlInTe2 single crystals in directions parallel
(curve 1) and perpendicular (curve 2) to the tetragonal
c axis of the crystal are plotted in the Arrhenius coordi-
© 2005 Pleiades Publishing, Inc.
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nates in Fig. 1. Both dependences ρ(T) are character-
ized by two portions with a different behavior upon
cooling. In the range of relatively high temperatures
(120 K < T < 300 K), the electrical resistivities ρ||(T)
and ρ⊥ (T) increase exponentially with a decrease in the
temperature. In this temperature range, the electrical
conduction is predominantly provided by thermally
excited impurity charge carriers in the allowed band. A
decrease in the temperature is accompanied by a rapid
decrease in the concentration of impurity charge carri-
ers (the so-called range of impurity carrier freeze-out).
The activation energies determined for impurity charge
carriers from the data on the electrical resistivities ρ||(T)
and ρ⊥ (T) are approximately equal to 0.35 and 0.34 eV,
respectively. These activation energies are in close
agreement with those obtained by Guseinov et al. [2].
According to [2], the activation energies determined for
acceptors from the data on the electrical conductivity
and the Hall effect in the TlInTe2 compound at high
temperatures (T > 300 K) are equal to 0.25 and 0.28 eV,
respectively. It should also be noted that a decrease in
the temperature by a factor of only three (from 300 to
100 K) leads to an increase in the electrical resistivity
of the TlInTe2 single crystals in both directions by
almost eight orders of magnitude (from 103–104 to
1011–1012 Ω cm). This renders the TlInTe2 single crys-
tals promising for use as sensitive temperature sensors
or in systems of high-precision control and stabilization
of temperature.

It can be seen from Fig. 1 that, in the temperature
range 120 K < T < 300 K, the electrical resistivities sat-
isfy the relationship ρ|| . ρ⊥ . This is consistent with the
inference made from the calculations of the band struc-
ture of TlInTe2 single crystals [3] that the effective
masses of charge carriers in these crystals are charac-
terized by a weak anisotropy. However, with a further
decrease in the temperature (at T < 120 K), the electri-
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Fig. 1. Temperature dependences of the electrical resistivity
in the directions (1) parallel and (2) perpendicular to the tet-
ragonal c axis of TlInTe2 single crystals.
PH
cal resistivity in the direction perpendicular to the crys-
tal chains becomes considerably higher than that along
the chains. The electrical conductivity in the direction
of the strong bonding substantially exceeds the conduc-
tivity in the direction of the weak bonding. A similar
result was obtained earlier for the InSe layered semi-
conductor [5], the TlSe semiconductor [6] isostructural
to the TlInTe2 compound, and many other anisotropic
crystals. This anisotropy of conductivity, which does
not correspond to the anisotropy of effective masses of
charge carriers, was explained in terms of defects and
dislocations (typical of crystals characterized by weak
bonding) in real crystal structures of the aforemen-
tioned compounds.

The electrical conductivity in the low-temperature
range (T < 140 K) is of special interest. As can be seen
from Fig. 1, the activation energy for electrical conduc-
tion gradually decreases in this temperature range. The
temperature dependences of the electrical resistivities
ρ|| and ρ⊥  in the low-temperature range are plotted in
the Mott coordinates in Fig. 2. It is clearly seen that the
experimental points in these coordinates fit a straight
line fairly well. This allows us to assume that, in the
temperature range under consideration, charge transfer
along and across the chains in the TlInTe2 single crys-
tals occurs through charge carrier hopping between
localized states lying in a narrow energy band near the
Fermi level. In this case, the electrical conductivity can
be adequately described by the Mott relationship [7]

 (1)

Here, g(µ) is the density of localized states at the Fermi
level, a is the localization length of localized states near
the Fermi level, k is the Boltzmann constant, and β is a
number dependent on the dimension of the problem.

Most likely, the rapid freeze-out of impurity charge
carriers in the allowed band with a decrease in the tem-
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Fig. 2. Temperature dependences of the electrical resistivity
of TlInTe2 single crystals in the Mott coordinates (80 K < T <
120 K). Designations of the curves are the same as in Fig. 1.
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perature leads to the fact that, at a specific temperature,
the dominant contribution to the electrical conduction
is made by charge carrier hopping between individual
impurity states without activation into the allowed
band. Of course, the hopping mechanism of conduction
is characterized by a very low mobility of charge carri-
ers, because their hopping occurs through slightly over-
lapped tails of the wave functions of the nearest neigh-
bor acceptors. However, the contribution of the hopping
conduction is larger than the contribution of the band
conduction. Actually, all the holes located at acceptors
can contribute to the hopping conduction, whereas only
an exponentially small number of holes in the valence
band can be involved in the band conduction.

The electrical conductivity governed by the Mott
law (1) is also referred to as electrical conductivity with
a monotonically decreasing activation energy ε0(T).
According to Shklovskiœ and Éfros [8], the temperature
dependence of the activation energy can be described
by the relationship

 (2)

Figures 3 and 4 depict the temperature dependences
of the activation energy ε0(T), which were experimen-
tally determined as the derivatives d(lnρ)/d(kT)–1 in the
range of hopping conduction at a temperature T. It can
be seen from these figures that, at temperatures corre-
sponding to variable-range hopping conduction, a
decrease in the temperature leads to a monotonic
decrease in the activation energy. In this case, the
dependences ε0(T3/4) are approximated well by straight
lines.

Let us return to Fig. 2. The temperature T0 = 1.06 ×
107 K for the electrical conductivity in the direction
parallel to the chains in the TlInTe2 crystals was deter-
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Fig. 3. Temperature dependence of the activation energy ε|| =

d(lnρ||)/d(kT)–1 for charge transfer along the tetragonal c
axis of the crystal at temperatures corresponding to vari-
able-range hopping conduction.
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mined from the slope of the straight line (T –1/4).
By setting β = 21 [8] and assuming that the localization
length of impurity states is equal to the characteristic

length of the Coulomb bound state in AIIIBIII  crys-
tals (a1 = 20 Å) [9], the density of states localized near
the Fermi level in the TlInTe2 single crystals is esti-
mated as g(µ) = 3 × 1018 eV–1 cm–3. Such a high density
of localized states in the band gap is characteristic of

AIIIBVI [5] and AIIIBIII  [9] crystals with layered and
chain structures. The anisotropy of bonding forces in
layered structures encourages the formation of numer-
ous defects, interstitial impurities, vacancies, and dislo-
cations. This brings about a disturbance of the lattice
periodicity and the formation of localized states with
energies corresponding to the energies forbidden in an
ideal crystal. In our previous study [5] of charge trans-
fer in InSe layered crystals, it was demonstrated that
only the real-crystal model accounting for the crystal
structure imperfections has offered a satisfactory expla-
nation of the strong conductivity anisotropy, which is
inherent not only in AIIIBVI layered crystals but also in
classical layered crystals, such as graphite [10].

At a specified temperature T, the relationship [8]

 (3)

gives an estimate of the average distance R of charge
carrier hopping between the localized states near the
Fermi level. It can be seen that, in the range of applica-
bility of relationship (3), a decrease in the temperature
results in an increase in the average carrier-hopping dis-
tance. This can be explained by the fact that the
decrease in the temperature leads to an increase in the
probability of charge carrier hopping between the cen-
ters of localization that are more widely spaced but
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Fig. 4. Temperature dependence of the activation energy ε⊥  =
d(lnρ⊥ )/d(kT)–1 for charge transfer in the direction perpen-
dicular to the tetragonal c axis of the crystal at temperatures
corresponding to variable-range hopping conduction.
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have closer values of the energies. As a rule, the charge
carrier executes hopping to a state characterized by the
lowest possible activation energy ε. According to Mott
and Davis [7], this activation energy, which is equal to
the width of the optimum energy band (in the vicinity
of the Fermi level) and whose contribution determines
the electrical conductivity as a whole at a given temper-
ature, can be estimated from the following expression:

 (4)

From relationships (3) and (4), we obtained the aver-
age carrier-hopping distance R = 135 Å and the spread in
energies of localized states ε = 33 meV at a temperature
T = 100 K. The same parameters at a temperature T =
80 K are found to be R = 143 Å and ε = 27 meV. There-
fore, as the temperature decreases, the charge carriers
execute hoppings to the centers of localization that are
more widely spaced but have closer values of the ener-
gies. The activation energies calculated from formula (4)
are in close agreement with the quantities d(lnρ||)/d(kT)−1

presented in Fig. 3. It should also be noted that, in an
electric field, the average distance R is almost seven
times larger than the localization length a1.

Similarly, the temperature T0 = 2.6 × 106 K for the
electrical conductivity in the direction perpendicular to
the chains in the TlInTe2 crystals was obtained from the
slope of the straight line (T –1/4) in Fig. 2. Taking
into account the calculated density of localized states
g(µ) = 3 × 1018 eV–1 cm–3 and using formula (1), we
determine the carrier localization length a2 ~ 1.6a1 =
32 Å for charge transfer in the direction perpendicular
to the chains in the crystals. Thus, the wave function of
the localized state is anisotropic and has ellipsoidal
symmetry with the semiaxes a1 = 20 Å and a2 = 32 Å.
Note that the major semiaxis is aligned parallel to the
direction of strong bonding. From expression (3), we
obtained the average carrier-hopping distance R = 152 Å
at T = 100 K and R = 160 Å at T = 80 K. According to
formula (4), the spread in energies of localized states is
estimated as ε = 23 meV at T = 100 K and ε = 19.5 meV
at T = 80 K. These data are in good agreement with the
quantities d(lnρ⊥ )/d(kT)–1 presented in Fig. 4. With a
decrease in the temperature, charge transfer is provided
by charge carrier hopping between the localized states
(in the vicinity of the Fermi level), which are widely
spaced but energetically more favorable. As was noted
above, this is a characteristic feature of variable-range
hopping conduction. In the case of conventional hopping
conduction, the average carrier-hopping distance is of
the order of the average distance between the impurities
and remains constant with temperature change.

Strong conductivity anisotropy at low temperatures
does not correspond to the anisotropy of the effective
masses of charge carriers and can be explained only in
terms of the real crystal structure of the compound
under investigation. The anisotropic arrangement of
defects in the TlInTe2 single crystals (this is possible in

ε 3

4πR
3
g µ( )

-------------------------.=

ρ⊥log
P

an anisotropic crystal structure) and the anisotropy of
the wave functions of the localized states can lead to the
observed considerable anisotropy of hopping conduc-
tivity [11].

4. CONCLUSIONS

Thus, the experimental results have demonstrated
that, in TlInTe2 single crystals with a chain structure at
temperatures ranging from 300 to 140 K, the electrical
conduction in directions parallel and perpendicular to
the chains is provided by thermally excited impurity
charge carriers in the allowed band. The activation
energy for electrical conduction in this temperature
range is equal to 0.34 eV. At lower temperatures, the
activation energy for electrical conduction decreases
monotonically. In the temperature range 80 K < T < 120
K, the electrical conduction in TlInTe2 single crystals in
both directions is provided by charge carrier hopping
between localized states in the vicinity of the Fermi
level. At these temperatures, the electrical conduction
occurs through the variable-range hopping mechanism.
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Abstract—Structural imperfections were studied in Si1 − xGex (1–9 at. % Ge) solid-solution single crystals
grown using the Czochralski method. The studies were performed using x-ray diffraction topography with lab-
oratory and synchrotron radiation sources, x-ray diffractometry, and synchrotron radiation phase radiography.
In all crystals studied, irrespective of the Ge concentration, impurity bands (growth bands) were observed. An
increase in the Ge concentration in the range 7–9 at. % was shown to bring about the nucleation and motion of
dislocations on a few slip systems and the formation of slip bands. Local block structures were observed in the
places where slip bands intersected. The most likely reason for the formation of slip bands is the inhomoge-
neous distribution of Ge atoms over the ingot diameter and along the growth axis. Therefore, the structure of
Si1 − xGex solid-solution single crystals can be improved by making them more uniform in composition. © 2005
Pleiades Publishing, Inc.
1. INTRODUCTION

Currently, epitaxial Si1 − xGex solid-solution layers
grown on silicon substrates are used in electronics, but
Si1 − xGex single crystals also hold promise. To circum-
vent technological problems associated with the growth
of Si1 − xGex solid-solution films, thick relaxed Si1 − xGex

layers are used, on which, in turn, thin elastically
strained silicon layers are grown. These additional
operations in the fabrication of semiconductor struc-
tures increase their cost. For this reason, the idea of
growing elastically strained Si layers on Si1 − xGex sin-
gle-crystal substrates is becoming more and more
attractive. However, these substrates have to have a
high Ge concentration (of up to 20 at. %) and a low den-
sity of structural defects.

Si1 − xGex solid solutions are also used as an active
element in photoelectric converters (solar cells) due to
their sensitivity to radiation in the long-wavelength
region of the visible spectrum. The quality of solar cells
based on epitaxial layers of gallium arsenide and
related III–V compounds is low due to structural imper-
fections caused by the lattice mismatch between the
active layer and the silicon substrate. Replacing the Si
substrates by Si1 − xGex decreases this mismatch and
makes it possible to optimize the fabrication technol-
ogy of GaAs-based solar cells and enhance their reli-
ability.

Large Si1 − xGex single crystals are usually grown
using the Czochralski method [1, 2]. In this case, the
1063-7834/05/4707- $26.00 1225
spatial distribution of germanium is inhomogeneous.
Due to segregation of germanium in silicon, the germa-
nium concentration in these crystals varies over a cross
section and along the length of an ingot. By controlling
the growth conditions, ingots with the desired lattice
parameter gradient along the growth axis can be
obtained [3]. Si1 − xGex crystals with lattice parameter
profiles hold promise for use in synchrotron radiation
optics. For example, a crystal monochromator in which
the interplanar distance varies along the surface enables
one to decrease the beam divergence and to increase the
reflectance of the monochromator, with the reflected
beam remaining monochromatic [3].

The growth of Si1 − xGex single crystals with a uni-
form spatial distribution of germanium poses severe
problems, which have not yet been overcome. Impurity
bands (growth bands) are always present in Czochral-
ski-grown Si1 − xGex crystals [4]. These bands arise due
to microscopic fluctuations in the growth rate, which, in
turn, are caused by nonsteady-state convective flows in
a melt [5].

A change in the Ge distribution in silicon leads to a
change in the lattice parameter and favors the formation
of structural defects. Since defects have an adverse
effect on the parameters of devices and the characteris-
tics of x-ray monochromators based on Si1 − xGex, it is
of importance to develop a technology for producing
uniform crystals with desired properties. With this aim,
the relation between the growth conditions and the
structural perfection of crystals should be investigated.
© 2005 Pleiades Publishing, Inc.



 

1226

        

ARGUNOVA 

 

et al

 

.

                                                                                                
To date, it has been established that (i) the Ge concen-
tration and the growth front curvature have an effect on
the distribution of growth bands and their structure [6],
(ii) the amount of dislocations in a crystal and their dis-
tribution in horizontal and vertical cross sections of an
ingot depend on the Ge concentration and the orientation
of the growth axis [1, 3], and (iii) the mobility of disloca-
tions is determined by microscopic inhomogeneities of a
solid solution [7, 8]. Micro-inhomogeneities in Si1 − xGex

and Ge1 – xSix solid solutions also have an effect on the
stress–strain curves of these materials [9].

The objective of this work is to comprehensively
study the formation of defects in Si1 − xGex crystals
depending on the Ge content in the range 1–9 at. % for
crystals with various orientations of the growth axis.
We used different methods based on x-ray diffraction:
x-ray topography, diffractometry, and synchrotron radi-
ation phase radiography.

2. SAMPLES AND EXPERIMENTAL 
TECHNIQUES

2.1. Si1 − xGex Single Crystals

Si1 − xGex crystals (0.01 ≤ x ≤ 0.09) were grown
using the Czochralski method at the Crystal Growth
Institute (Institut für Kristallzüchtung, Berlin, Ger-
many). Ingots up to 42 mm in diameter had a weak Ge
concentration gradient along the growth axis. The
growth direction was parallel to 〈110〉 , 〈111〉 , 〈001〉 , or
〈122〉  (the last growth direction arose after twinning of
a crystal grown along 〈001〉). Crystals (with n- or p-type
conductivity) were lightly doped with phosphorus and
boron to a concentration of approximately 1015 cm–3 and
contained oxygen at a concentration of 6 × 1017 cm–3. We
studied samples in the form of ~0.4-mm-thick plates
cut perpendicular to the growth axis, with both faces
polished using chemical and mechanical methods.

2.2. X-ray Images of Crystals

X-ray images of the plates under study provided
most of the information on crystal imperfections. The
images were obtained in three different ways: (i) x-ray
diffraction topography with a laboratory x-ray source,
(ii) Bragg diffraction with a synchrotron source, and
(iii) Fresnel diffraction with a synchrotron source. Let
us describe each of the above means of obtaining
images.

(i) Laboratory x-ray topographs were obtained using
the Lang projection method in the Bragg or Laue geom-
etry with commercial equipment (Cu and Mo  radi-
ation). The beam divergence was dependent on the radi-
ation wavelength and was of the order of a few minutes
of arc. The resolution of the method was a few
micrometers. The images were recorded using photo-
graphic plates with nuclear emulsion whose resolution
corresponded to the highest resolution of the method.

Kα1
P

(ii) Synchrotron radiation topographs were obtained
using polychromatic radiation with an energy of 10 to
60 keV. The spatial beam divergence was 2 and 5 µrad
in the vertical and horizontal planes, respectively. A
beam of radiation with small divergence and with a
large cross-sectional area on a sample can only be pro-
vided by a sufficiently remote source. A source of syn-
chrotron radiation satisfies these requirements and pro-
vides high-intensity beams. When radiation with a con-
tinuous spectrum is incident on a single crystal, each set
of crystallographic planes “selects” the wavelengths for
which the angle between the diffracting planes and the
beam satisfies the Bragg condition. As a result, there
appear many diffracted beams behind the crystal, with
each Laue spot being a high-resolution topograph [10].
The contrast of the images in polychromatic radiation is
due to variations in the orientation and extinction. In the
former case, the intensity varies from point to point
depending on the lattice misorientations. The extinction
contrast is due to local variations in the crystal imper-
fection: in the vicinity of a defect, x rays are scattered
in much the same way as in a mosaic crystal and the
integrated reflection intensity from this region is higher
than that from a more perfect region of the crystal [10].

The detecting device consisted of a 200-µm-thick
CdWO4 crystal scintillator, a lens to magnify the image,
and a CCD camera. The field of vision was 8 × 8 mm in
size, and the pixel size was 15 µm. The sample–scintil-
lator distance was 8 cm. Experimentally, there was
room for only one Laue topograph on the CCD array.

(iii) The images were also obtained using synchro-
tron radiation phase radiography. The description of the
technique for producing x-ray phase images can be
found in [11–13]. We employed this technique to detect
inhomogeneities (e.g., Ge inclusions) in which the
material density differs from that in the matrix. The
images were recorded using a method similar to the
white-beam method, but the resolution of the CCD array
was significantly higher: the pixel size was 0.14 µm and
the sensitivity was 16 bit. The highest resolution of the
detecting device was 2 µm. The sample–scintillator dis-
tance was 8–10 cm.

Synchrotron radiation experiments were carried out
in Pohang (Republic of Korea) at Pohang Light Source,
station 7B2 (a third-generation synchrotron radiation
source).

2.3. X-ray Diffractometry: Measurement 
of the Lattice Parameter

The lattice parameter was measured using a triple-
crystal spectrometer [14]. The beam diameter in the
scattering plane was 0.5 mm. The sample could be dis-
placed within ±20 mm in a horizontal direction. The
horizontal displacement and rotation of the sample
about the axis perpendicular to the sample surface
made it possible to measure the Bragg angle at various
points and determine the variation in the lattice param-
HYSICS OF THE SOLID STATE      Vol. 47      No. 7      2005
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Table 1.  Parameters of several samples studied

Sample
no.

Conductivity
type

Resistivity,
Ω cm Orientation X-ray

reflection

Rocking-curve 
half-width, arc 
seconds; ±0.1″

Ge content,
at. %; ±0.1%

105-3 p 10 (110) 220 6 1.5

222-9 n 2.2 (110) 220 8–20 3.0–3.2

104-4 p 7.2 (110) 220 6.5

33-1 p 0.6 (001) 004 7 1.0

33-6 p 0.6 (001) 004 7 1.5

60-2 p 2.7 (122) 244 4.4

16-14 n 2.5 (111) 111 8–12 4.1
eter over the crystal area. The lattice parameter was
measured with an accuracy of ±0.00012 Å (including
systematic error). The Ge concentration was deter-
mined with an accuracy of ±0.1%.

According to Vegard’s law, the lattice parameter var-
ies in proportion to the Ge concentration:

 (1)

where d is the interplanar distance, C is the Ge concen-
tration (in atomic percent), and J is a coefficient of pro-
portionality. However, it has been found that Si1 − xGex

single crystals do not follow Vegard’s law [3] and that
the coefficient J in Eq. (1) for small Ge concentrations
can be found from the empirical formula

 (2)

Table 1 lists the values of the Ge concentration for
several samples determined using Eqs. (1) and (2).
Rocking curves were recorded by scanning near a
reflection angle using a double-crystal technique. By
comparing the measured and calculated half-widths of
the rocking curves, a conclusion was drawn concerning
crystal imperfections. For comparison, the calculated
half-width of the rocking curve for the (220) reflection
from a perfect Si crystal is 5.5 arc seconds.

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1. Si1 − xGex (1–7 at. % Ge)

The main structural imperfections in crystals with
1–7 at. % Ge detected using x-ray topography are
impurity bands (due to variations in the Ge concentra-
tion) and dislocation slip bands. Figure 1 shows topo-
graphs taken of (110)-, (001)- and (122)-oriented plates
with various Ge contents. The topograph in Fig. 1a is
taken of a sample with 1.5 at. % Ge. It can be seen that
there are impurity bands in the form of concentric rings
and widely spaced dislocation slip bands corresponding
to a single slip system, which look like thin lines in the

Bragg geometry. These lines are parallel to the [ ]

direction, which is the line of intersection of the ( )

∆d/dSi JC,=

J 3.67 10
4–

1 10
4–
C.×+×≈

112

111
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slip plane and the (110) surface of the sample. The posi-
tions of the slip planes and x-ray reflections on the ste-
reogram with respect to the (110) reflection are shown
in Fig. 2b. Figure 1b shows a topogram taken of a sam-
ple with the same orientation with 3 at. % Ge. It can be
seen that there are dislocations on all three slip planes,

(111), ( ), and ( ). In topograms obtained in the
Laue geometry, the slip bands are seen to propagate
through the entire thickness of plates and are located,
for the most part, at the periphery of the plates. Individ-
ual dislocations with the least resolvable separation
between them can be seen in the slip bands, which
makes it possible to estimate the dislocation density to
be ≈105 cm–2. At the intersection points of bands

111 111

(a) 3 mm 5 mm

3 mm 3 mm

(110)(110)

(001) (122)

g = 422 g = 111

g = 422g = 422

(c)

(b)

(d)

Fig. 1. (a–d) Impurity bands in the form of concentric rings
and (a, b) slip bands in Si1 − xGex samples. (a) Sample 105-3
with a (110)-oriented surface and a Ge content of 1.5 at. %;
(b) sample 222-9 with a (110) surface and 3 at. % Ge;
(c) sample 33-6 with a (001) surface and 1.5 at. % Ge; and
(d) sample 60-2 with a (122) surface and 4.4 at. % Ge.
(a, c, d) Bragg geometry, Cu  radiation, and a Bragg
angle of 44.8°; and (b) Laue geometry, Mo  radiation,
and a Bragg angle of 6.6°.
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belonging to different slip systems, the dislocation den-
sity is noticeably higher.

Table 2 lists the products |g · b × l |, where g is the
diffraction reflection vector, b is the Burgers vector, and

3 mm

g = 422

112

111

101
211

111

011

112
111

121

110

111

112

110 111
112

101

111

110 011

121

211

(a)

(b)

Fig. 2. Structural imperfections (slip bands, a small-angle
boundary, sources of long-range stresses) in Si1 − xGex sam-
ples with Ge contents ranging from ~7 to 9 at. %. (a) X-ray
topograph taken of sample 104-4 with a (110)-oriented sur-
face and a Ge content of 6.5 at. % (the image of a source of
long-range stresses is indicated by an arrow); Bragg geom-
etry, Cu  radiation, and a Bragg angle of 44.8°. (b) Ste-
reogram of a cubic crystal (the projection axis is [110]).

Kα1

Table 2.  Product |g · b × l| for 60° dislocations lying in the

(111), (1 1), and (1 ) slip planes and x-ray reflection 11

Burgers
vector, b

Dislocation 
line, l

Direction
 of the vector

b × l
|g · b × l|

[01 ] [10 ] [111] 1

[10 ] [110] [1 1] 1

[01 ] [110] [1 ] 3

1 1 1 1

1 1

1 1

1 1 1
PH
l is a unit vector along the dislocation line. If this prod-
uct is nonzero, then the edge component of a disloca-
tion with the given Burgers vector will be detected in an
x-ray topograph. According to this criterion, all slip
systems will be observed with a high contrast in the

Laue diffraction spot with g =  from a (110)-ori-
ented sample. This is indeed the case and does not con-
tradict the assumption that slip bands consist, for the
most part, of 60° dislocations.

The inhomogeneous intensity distribution in Fig. 1b
indicates the presence of unrelaxed elastic strains. Fur-
thermore, the rocking curves obtained using the two-
crystal technique are broadened, which indicates that
the crystal lattice is bent due to slip bands. The Ge con-
centration varies over the sample area within ±0.2 at. %
(Table 1), which exceeds the measurement error.

In variously oriented samples with a uniform Ge
distribution over the sample area and Ge contents rang-
ing from 1 to 7 at. %, slip bands are not observed at all
or correspond to a single slip system. Typical topo-
graphs for (001)- and (122)-oriented samples are shown
in Figs. 1a, 1c, and 1d. The [122] growth direction arose
due to twinning of crystals grown along the [001] axis.
In plates cut perpendicular to the [122] new growth
axis, the main structural imperfections are impurity
bands, whereas slip bands are not observed in x-ray
topographs at up to 7 at. % Ge. The structure of the
growth bands varies with increasing Ge content. By
comparing the images shown in Figs. 1a, 1c, and 1d, it
can be seen that, as the Ge content increases, the impu-
rity bands in the form of a regular oval ring progres-
sively broaden and become stepped. Analogous pat-
terns were observed in [6], but no explanation was pro-
vided for this phenomenon.

Thus, the density of slip bands in Si1 − xGex crystals
increases with Ge content and with increasing degree of
inhomogeneity of the Ge distribution over the crystal
area (see, e.g., sample 222-9 in Table 1 and Fig. 1b).
The reason for the generation and slip of dislocations is
most likely the inhomogeneous Ge distribution along
both the length and diameter of ingots causing a change
in the lattice parameter of the crystal. Moreover, the
evaporation of Ge from the melt surface and its deposi-
tion on the crystal surface can bring about the formation
of misfit dislocations on the lateral surface of the crys-
tal. This effect increases in importance with increasing
Ge concentration in the melt. Under these conditions,
temperature gradients arising during both the growth
and cooling of a crystal produce strong thermoelastic
stresses. In the field of these stresses, asperities of the
free crystal surface become sources of dislocations.
The multiplication of dislocations during their motion
increases the dislocation density in slip bands, and
when dislocations go into other slip planes, the slip
bands broaden.

The dependence of the dislocation density on the
orientation of the growth axis in Si1 − xGex crystals was
pointed out in [3]. In that work, the most perfect crys-

111
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tals with a Ge content of approximately 7 at. % were
produced in the case where the growth axis was 〈112〉
and the most imperfect crystals were grown along the
〈110〉  axis. To explain this result, the authors of [3]
assumed that the interaction of dislocations in the bulk
of crystals grown along the 〈110〉  axis occurs in the

( ) and ( ) slip planes parallel to the growth axis.
In contrast to crystals grown along the 〈110〉  axis, a
crystal grown along 〈112〉  has only one {111} plane
parallel to the growth axis. It should also be noted that,
under uniaxial loading, there is no shear stress in the
planes perpendicular and parallel to the loading axis,
because the shear stress τ is equal to τ = σcosχcosλ,
where σ is the applied stress and χ and λ are the angles
that the normal to the slip plane and the slip direction
make with the direction in which the external stress is
applied, respectively [15]. Although the stress distribu-
tion in the crystals studied is not uniaxial, the existence
of a lattice parameter gradient along the growth axis
suggests that the stresses in planes parallel (or nearly
parallel) to the growth axis are minimum. In crystals
grown along 〈122〉 , none of the {111} slip planes is par-

allel to the growth axis. Two of them, (111) and ( ),
make a large (74.2°) and a small (11.1°) angle with the
growth axis, respectively; so the shear stresses in these
planes should be less than those in the planes making
angles close to 45° with the growth axis. These stresses
are likely to be insufficient to produce plastic strains
with the formation of dislocations.

3.2. Si1 − xGex (7–9 at. % Ge)

In the Ge concentration range 7–9 at. % in samples
cut from crystals with all the orientations studied,
increased densities of slip bands were observed for all
systems of {111} slip planes intersecting the sample
surface. Furthermore, x-ray topography revealed struc-
tural defects that are sources of long-range stresses.
One of these defects is marked in Fig. 2 and is located
at a small-angle boundary that crosses the image from
the top down. Near this defect, the Bragg reflection
intensity is distributed very inhomogeneously, which
indicates that the defect causes strong distortions of the
lattice: misorientation, deformation, and bending of
crystallographic planes. Variations in the reflection
intensity near the defect obscure the details of its
image. It is noteworthy that the central region of the
defect has a zero contrast. This may suggest that the lat-
tice misorientation in this region is higher than the
divergence of the incident beam; therefore, the defect
has a block structure and a composition close to that of
the nearby regions. However, if the defect is an inclu-
sion of another material (e.g., germanium), then the
absence of reflection from it can be due to a change in
the interplanar distance; in this case, monochromatic
radiation satisfying the condition of Bragg reflection
for the surrounding matrix will not be reflected from the
inclusion. Based on topographs obtained with a weakly

111 111

111
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divergent monochromatic beam, these two cases cannot
be distinguished. For this reason, we used polychro-
matic synchrotron radiation to analyze the nature of
these defects.

Figure 3 shows synchrotron radiation Laue topo-

grams obtained in the ( ) reflection from the region
marked with an arrow in Fig. 2a. It can be seen that the
central region of the defect has a zero contrast as before
and that there are small-angle boundaries around the
zero-contrast region of the defect. In the topogram,
these boundaries look like lines of high intensity. This
extinction contrast can only be due to a high density of
structural defects in these boundaries. Now, the zero
contrast can no longer be accounted for as being due to
the difference between the interplanar distances of the
inclusion and the matrix, because radiation is polychro-
mic and for each set of crystallographic planes there is
a wavelength satisfying the Bragg reflection condition.
Weak lattice misorientations likewise cannot be the rea-
son why the reflected rays are not detected by the crys-
tal scintillator. A misorientation of blocks of a few
degrees can cause a change in the direction of the
reflected rays and, hence, in the detected reflection
intensity but cannot cause this intensity to vanish.

There is also no reason to believe that these defects
are germanium inclusions. Indeed, these defects were
not observed in synchrotron radiation phase-radio-
graphic images, although the resolution and sensitivity
of this method was sufficient to detect germanium
inclusions as small as a few micrometers in size via
absorption and refraction of radiation (the Ge density is
approximately 2.3 times greater than that of silicon).

111

(a)

g = 111

(b)

(c)

Fig. 3. X-ray topograms taken (in polychromatic synchro-
tron radiation) of the sample area marked with an arrow in
Fig. 2a. Images (a, b, c) differ in terms of the orientation of
the sample in the reflection region.
5
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Thus, we arrive at the conclusion that the central
region of the defect scatters x rays in all directions and,
therefore, consists of blocks separated by large-angle
boundaries. In this case, the fraction of the scattered
radiation falling on the scintillator is small and insuffi-
cient to form the image. The region of the crystal not
involved in the formation of contrast is several hun-
dreds of micrometers in size.

The noticeable variations in the scattering intensity
at a distance from the defect region shown in Fig. 2a
can be explained in terms of the following model.
Long-range elastic stresses are most likely caused by
dislocations that are piled up before large-angle bound-
aries of the blocks inside the defect core. Since the dis-
location density in slip bands is high (≈105 cm–2), the
dislocation pileups produce significant stresses. Let us

Fig. 4. 60° dislocations (with Burgers vectors opposite in

direction) lying in the ( ) slip plane and piled up before
the large-angle boundaries of blocks (schematic). The
blocks are positioned within a region shown as a black rect-
angle in the center of the figure. Bent atomic planes are
depicted by curved lines. (a) The plane of the figure is par-
allel to the sample surface and is perpendicular to [110]; the

( ) slip planes are depicted by dashed lines, and atomic
planes are bent in the direction perpendicular to the sample
surface due to the edge components of dislocations. (b) The

plane of the figure is parallel to the ( ) slip plane; dislo-
cation loops are depicted by lines skirting the black rectan-
gle, and atomic planes are bent in the direction perpendicu-
lar to the sample surface due to the screw components of
dislocations.

111

111

111

[110] [110]

[001]

[111] [112]

[110]
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(b)
g = 422

b [101] –b

l [110]
PH
consider the mechanism of dislocation pinning in more
detail.

Figure 4 schematically shows dislocations lying in

the ( ) slip plane (only 60° dislocations are
depicted). The parallelepiped at the center (its rectan-
gular cross section is shown) has a block structure. In
order to explain the contrast observed in the Bragg
geometry, we assume that the region with a block struc-
ture is located near the free surface of the sample. If a
slip plane intersects the large-angle boundaries of
blocks, dislocations are stopped at the boundaries and
form pileups opposite in sign along opposite sides of
the block-structured region [16]. The head dislocations
in the pileups can skirt the block-structured region via
the Orowan mechanism [17] and form closed slip dislo-
cation loops around it. The dislocation pileups produce
strong elastic stress fields, which cause the atomic
planes to bend. Since we consider only 60° disloca-
tions, the atomic planes perpendicular to the sample
surface will be bent by the edge components of the dis-
locations, whereas the sample surface will be bent
along its normal by the screw components. The bent
planes are shown in Fig. 4.

The integrated intensity of a Bragg reflection
depends on the mutual orientation of the diffraction
vector and the curvature vector of the reflecting planes.
The integrated intensity is higher for reflection from
concave planes (g · N > 0) and is lower for reflection
from convex planes (g · N < 0) [18], where g is the dif-
fraction vector and N is the curvature vector directed
toward the center of curvature. In Fig. 4b, reflection

vector  is decomposed into two components, one of
which is parallel to the sample surface and the other is
perpendicular to it. The higher and lower contrasts near
the source of strains shown in Fig. 2a are due to the
complicated topography of the bent atomic planes.

Studies into the crystal structure are insufficient to
reveal the reason for the formation of regions with a
local block structure in Si1 − xGex crystals with a high
Ge content. However, x-ray images make it possible to
draw preliminary conclusions. Figure 5a shows a topo-
graph of a plate cut from a crystal for which the growth
axis was along 〈111〉 . From this topograph, it follows
that segregation bands are not observed in the central
part of the crystal but are clearly visible in its periphery.
Therefore, the crystallization front was flat in the cen-
tral region and was concave at the periphery. It is also
seen that there are dislocation slip bands along the

( ), ( ), and ( ) planes. Various sources of
stresses are seen to be arranged in groups near the cen-
tral part of the sample. The sources are closely spaced,
and their images overlap. As in Fig. 4, the defects are
seen to have reflectionless cores around which the
reflection intensity varies sharply. It may be assumed
that these defects form as follows. It was mentioned
previously that slip bands consist of dislocations that
are generated by sources located in the periphery of the

111

422

111 111 111
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crystal and then (driven by thermoelastic stresses) pen-
etrate deep into it. At the intersection points of bands
formed by dislocations gliding in the three {111}
planes, the dislocation density is high, which favors the
formation of regions with a local block structure. The
arrangement of groups of these regions exhibits 60°
symmetry, as can be seen in Fig. 5a. This symmetry is
due to dislocations gliding from opposite sides of an
ingot, as shown schematically in Fig. 5b. 

The half-width of the rocking curves of x-ray dif-
fraction peaks from various parts of the sample
depicted in Fig. 5 varies over a very wide range. For
clusters of defects with a local block structure, the half-
width of rocking curves is 30 times as large as that for

5 mm

g = 422

Slip
planes

Slip

(a)

(b)

Fig. 5. X-ray topograph taken of a Si1 − xGex crystal (sam-
ple 16-14) and its interpretation. (a) Bragg geometry,
Cu  radiation. (b) Dislocation loops moving away from
dislocation sources that are located at the crystal surface;
the slip planes form a tetrahedron.

Kα1
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comparatively homogeneous parts of the crystal (Table
1), which supports the conclusion that these defects
have a block structure.

4. CONCLUSIONS

Structural imperfections have been studied in
Si1 − xGex crystals (1–9 at. % Ge) with various orienta-
tions of the growth axis and with a weak Ge concentra-
tion gradient along the growth axis. Impurity bands
have been found to exist in all crystals studied, irrespec-
tive of the Ge content and the growth axis orientation,
which is consistent with the results of previous studies.
As the Ge content increases within the range from 7 to
9 at. %, dislocations move away from dislocation
sources located at the free surface of a crystal and single
dislocation slip transforms into multiple slip; slip bands
arise, and their density increases. In a number of sam-
ples, the Ge concentration is distributed nonuniformly
over the sample area. In these samples, the slip band den-
sity is high even for a small Ge content (3 at. %). The
conclusion has been drawn that the most likely reason
for the formation of the slip band is the nonuniform Ge
distribution along both the diameter and growth axis of
an ingot, due to which temperature gradients (which
occur during the growth and cooling of crystals) bring
about high thermoelastic stresses.

It has been established that, in crystals with Ge con-
tents ranging from 7 to 9 at. %, there appear regions
with a local block structure several hundreds of
micrometers in size. The formation of these regions is
most likely due to the significantly increased disloca-
tion density at the points of intersection of slip bands.
These regions can be barriers to the motion of new dis-
locations and, therefore, can be sources of long-range
stresses. Thus, a more uniform Ge distribution in sili-
con is a necessary condition for producing Si1 − xGex

crystals with a reduced amount of structural imperfec-
tions.

ACKNOWLEDGMENTS

This study was supported by the program “Low-
Dimensional Quantum Structures” (no. 6.3) under the
Presidium of the Russian Academy of Sciences.

REFERENCES
1. N. V. Abrosimov, S. N. Rossolenko, V. Alex, A. Gerhardt,

and W. Schröder, J. Cryst. Growth 166, 657 (1996).
2. R. H. Deitch, S. H. Jones, and T. G. Digges, Jr., J. Elec-

tron. Mater. 29 (9), 1074 (2000).
3. A. Erko, N. V. Abrosimov, and V. Alex, Cryst. Res. Tech-

nol. 37 (7), 685 (2002).
4. N. V. Abrosimov, A. Lüdge, H. Riemann, and

W. Schröder, J. Cryst. Growth 237–239, 356 (2002).
5. O. V. Smirnova, V. V. Kalaev, Yu. N. Makarov,

N. V. Abrosimov, and H. Riemann, J. Cryst. Growth
266, 74 (2004).
5



1232 ARGUNOVA et al.
6. K. Wieteska, W. Wierzchowski, W. Graeff, M. Lefeld-
Sosnowska, and M. Regulska, J. Phys. D: Appl. Phys.
36, A133 (2003).

7. N. V. Abrosimov, V. Alex, D. V. Dyachenko-Dekov,
Yu. L. Iunin, V. I. Nikitenko, V. I. Orlov, S. N. Rosse-
lenko, and W. Schröder, Mater. Sci. Eng. A 234–236, 735
(1997).

8. Yu. L. Iunin, V. I. Nikitenko, V. I. Orlov, D. V. D’yachenko-
Dekov, B. V. Petukhov, N. V. Abrosimov, S. N. Rosso-
lenko, and W. Schröder, Zh. Éksp. Teor. Fiz. 121 (1), 129
(2002) [JETP 94 (1), 108 (2002)].

9. I. Yonenaga, Mater. Sci. Eng. A 234–236, 559 (1997).

10. D. K. Bowen and B. K. Tanner, High Resolution X-ray
Diffractometry and Topography (Taylor Francis, Lon-
don, 1998).

11. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and
I. Schelokov, Rev. Sci. Instrum. 66 (12), 5486 (1995).
P

12. P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, and
M. Schlenker, J. Phys. D: Appl. Phys. 29, 133 (1996).

13. G. Margaritondo and G. Tromba, J. Appl. Phys. 85 (7),
3406 (1999).

14. P. F. Fewster and N. L. Andrew, J. Appl. Cryst. 28, 451
(1995).

15. R. Berner and H. Kronmüller, Plastische Verformung
von Einkristallen, in Moderne Probleme der Metall-
physik, Ed. by A. Seeger (Springer, Berlin, 1965; Mir,
Moscow, 1969).

16. J. P. Hirth and J. Lothe, Theory of Dislocations
(McGraw-Hill, New York, 1967; Atomizdat, Moscow,
1972).

17. J. Friedel, Dislocations (Pergamon, Oxford, 1964; Mir,
Moscow, 1967).

18. U. Bonse and W. Graeff, Naturforscher A 28 (5), 558
(1973).

Translated by Yu. Epifanov
HYSICS OF THE SOLID STATE      Vol. 47      No. 7      2005



  

Physics of the Solid State, Vol. 47, No. 7, 2005, pp. 1233–1235. Translated from Fizika Tverdogo Tela, Vol. 47, No. 7, 2005, pp. 1192–1194.
Original Russian Text Copyright © 2005 by Golubkov, Didik, Kaminski

 

œ

 

, Skoryatina, Usacheva, Sharenkova.

                                                                                                     

SEMICONDUCTORS
AND DIELECTRICS
Europium Diffusion in SmS
A. V. Golubkov, V. A. Didik, V. V. Kaminskiœ, E. A. Skoryatina, 

V. P. Usacheva, and N. V. Sharenkova
Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, St. Petersburg, 194021 Russia

e-mail: didik@mail.ioffe.ru
Received October 19, 2004

Abstract—Europium diffusion in samarium sulfide was studied in the temperature range from 780 to 1100°C.
Data on the diffusion coefficient and activation energies for the diffusion of europium in single-crystal and poly-
crystalline SmS samples were obtained. In single-crystal samarium sulfide, europium was shown to migrate
predominantly over lattice sites (D . 10–12–10–9 cm2/s). In SmS polycrystals, diffusion was found to exhibit a
complex pattern and have both a slow (D . 10–10–10–9 cm2/s) and a fast (D . 10–8–10–7 cm2/s) component.
Europium diffusion in a polycrystal is primarily due to europium migration over the boundaries of single-crys-
tal grains in the polycrystal, whose characteristic size is assumed to be that of x-ray coherent-scattering regions.
© 2005 Pleiades Publishing, Inc.
The interest in europium diffusion in samarium sul-
fide (SmS) has arisen in connection with studies of the
emf generation in this semiconductor material, because
the temperature of the onset of generation and the mag-
nitude of the emf depend on impurity concentration [1].
The most natural impurity to expect in this case is
europium, which neighbors samarium in the lanthanide
series and, thus, is similar to it in many characteristics.
There is a difference, however, in that europium does
not change its valence state (Eu2+) under heating,
whereas samarium does (Sm2+  Sm3+). However,
SmS and EuS crystallize in the NaCl structure with
extremely close lattice parameters, 5.967 and 5.968 Å,
respectively. Note that semiconductors with lattice mis-
fits less than 0.01 Å are believed to be most promising
for the development of heterostructures [2]. The sub-
stantial difference between the band structures and, in
particular, in the depth of the 4f levels [3] coupled with
the close similarity of the thermal, electrical, and crys-
tallochemical properties accounts for the interest in
studies of SmS- and EuS-based heterostructures. Inves-
tigation of SmS-based heterostructures is made partic-
ularly attractive by the possibility of producing an
inverse level population in this semiconductor under a
comparatively weak physical action (heating up to T ~
400 K), as is the case with emf generation. In these con-
ditions, one can expect the generation of optical radia-
tion with photon energies of 0.03–0.06 eV [4]. Study-
ing mutual diffusion in heterostructures is also of con-
siderable scientific interest.

SmS polycrystals were synthesized of elemental
ingredients (samarium and sulfur) and compacted, with
subsequent homogenization annealing performed at
different temperatures in sealed molybdenum cruci-
bles. SmS single crystals were prepared by zone melt-
ing of polycrystals [5]. Samples of single-crystal SmS
1063-7834/05/4707- $26.00 1233
were plane-parallel plates cleaved along the (100)
planes. The plates measured 8 × 5 × 3 mm. The plane
parallelism of the samples (±2 µm) was attained by dry
precision grinding with abrasive cloth and checked
with an IKV-1 vertical optometer to within 1 µm.

Experiments were performed with the 152Eu radio-
active isotope in the temperature interval 780–1100°C.
The radioactive europium isotope was introduced into
both single-crystal and polycrystalline SmS samples
during vacuum annealing. Concentration–depth pro-
files were obtained by layer-by-layer removal of the
material. The gamma activity of the layers removed
was determined using a BDZA2-01 NaI(Tl) scintilla-
tion detector combined with the corresponding elec-
tronics. The measurements yielded profiles of the dis-
tribution of the 152Eu radioactive isotope in SmS sam-
ples at different temperatures.

The europium penetration profiles in single-crystal
SmS samples obtained after annealings of single-crys-
tal SmS samples at temperatures of 950, 1000, and
1050°C (annealing time 1–21 h) are curves that fall off
smoothly (Fig. 1a). As should be expected, the profile
depth increases with temperature. The europium con-
centration is 1019–1021 cm–3 near the sample surface
and decays to 1015–1016 cm–3 deep in the bulk of the
sample.

Samples of polycrystalline SmS were annealed at
780–1100°C for 2–10 h. The diffusion profiles of
europium in polycrystalline SmS (Fig. 1b) are complex
in character; indeed, the europium concentration near the
surface is the same as in single crystals, 1019–1021 cm–3,
and then decreases smoothly to 1016–1017 cm–3, after
which the profile flattens out at a depth of more than
500 µm. Studies revealed that in polycrystalline sam-
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Europium concentration–depth profiles in samarium
sulfide for various temperatures T and annealing times t for
(a) single-crystal SmS: (1) 950°C and 21 h, (2) 1000°C and
10 h, and (3) 1050°C and 1 h; and (b) polycrystalline SmS:
(1) 780°C and 540 min, (2) 950°C and 280 min, and
(3) 1100°C and 140 min.
P

ples europium diffuses considerably faster than in sin-
gle crystals.

We used the solution to the Fick equation to describe
the diffusion processes occurring in SmS samples. The
concentration profiles for single-crystal SmS can be
satisfactorily fitted by the erfc function. In the temper-
ature region covered, europium diffusion into single-
crystal SmS is characterized by a diffusion coefficient
D = 10–12–10–9 cm2/s. The activation energy is 7.4 eV.
The temperature dependence of D (Fig. 2) can be
described by the relation D = 6 × 1019exp(–7.4/kT) [6].

The concentration–depth profiles of europium in
polycrystalline SmS cannot be described by one erfc
function. To adequately describe diffusion in these
samples, we represented a concentration profile as a
sum of two erfc functions corresponding to the fast and
slow diffusion components. The diffusion coefficients
for the slow component in the temperature region of
interest are D ~ 10–10–10–9 cm2/s. The activation energy
is 0.83 eV, and the temperature dependence of D can be
fitted by the expression D = 1.4 × 10–6exp(–0.83/kT).
We believe that the slow component of diffusion is
associated predominantly with impurity diffusion
inside the grains.
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Fig. 2. Diffusion coefficient of europium in samarium sul-
fide plotted vs. temperature (1) for single-crystal SmS and
(2, 3) for polycrystalline SmS, the slow and fast diffusion
components, respectively.

T, °C
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The values of the diffusion coefficient for the fast
component range from D . 4 × 10–8 to 1 × 10–7 cm2/s.
The diffusion coefficient is only weakly dependent on
temperature.

The fast diffusion component is most likely associ-
ated with impurity migration only over the paths of
enhanced diffusion in polycrystals, namely, grain
boundaries and pores.

A characteristic feature of polycrystals is the exist-
ence of grain boundaries, pores,1 and other defects, for
instance, dislocations, which may be present inside
grains (crystallites). In view of this multiplicity of
defects, one should have a criterion for characterizing
the extent to which a polycrystal is imperfect. We chose
for such a criterion the size of the coherent scattering
region (CSR) for x-ray radiation. This quantity deter-
mines the average size of defect-free single-crystal
regions [7]. The dimensions of a CSR range from 102 to
103 Å, which is one to two orders of magnitude less
than the dimensions of pores and crystallites in a poly-

1 The existence of pores in polycrystalline SmS samples is borne
out by x-ray diffraction studies of the europium distribution over
the sample area. The diffraction patterns reveal a fairly large frac-
tion of impurities built up in pores. The number and area of such
clusters decreased with depth.
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Fig. 3. Europium concentration profile in samarium sulfide
plotted against the size of coherent scattering regions for
(1) single-crystal SmS and (2, 3) polycrystalline SmS. The
size of coherent scattering regions is (2) 1100 and (3) 650 Å.
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crystal. Accordingly, the total area of all CSR surfaces
exceeds the area of crystallites and pores by several
orders of magnitude. Thus, when considering fast diffu-
sion, we may assume that the main contribution to it is
from diffusion over CSR surfaces; therefore, its rate
should depend primarily on the CSR size.

The validity of this assumption was verified experi-
mentally. Prior to diffusion measurements, the starting
polycrystalline SmS samples were annealed at different
temperatures and in different regimes (sample 1 at
1700°C and sample 2 at 1200°C). The CSR size as mea-
sured using standard x-ray techniques [7] was 1100 Å
for sample 1 and 650 Å for sample 2. In both samples,
europium diffusion was studied at a temperature of
950°C for 280 min. The concentration profiles obtained
are displayed in Fig. 3. Sample 1 shows signs of slow dif-
fusion only, with D = 5.6 × 10–12 cm2/s. In sample 2, both
slow (D = 5.5 × 10–10 cm2/s) and fast (D = 4 × 10–8 cm2/s)
components of diffusion were observed. We readily see
that the smaller the CSR size, the faster the diffusion
rate.

This correlation between the values of the CSR size
and D suggests that diffusion of europium in polycrys-
talline SmS is dominated by migration over CSR sur-
faces. The low diffusion rate and the high activation
energy of europium in single-crystal SmS samples lead
one to conclude that in this case europium migrates pre-
dominantly over crystal lattice sites.
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Abstract—A model is developed according to which a hop of an electron (or hole) between two hydrogenic
donors (or acceptors) occurs only when their energy levels become equal due to thermal and/or electrostatic
fluctuations in a doped crystal. The main contribution to the real part of the high-frequency hopping electrical
conductivity is assumed to come from acceptor pairs in which the time of hole tunneling is equal to the half-
period of the external electric field and the phase of tunneling coincides with that of the field. In this case, the
imaginary and real parts of the hopping conductivity are approximately equal. The results of calculations based
on this model are compared to the experimental data for p-Ge : Ga with an intermediate degree of compensation
of the main doping impurity. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

It is experimentally established (see, for example,
[1, 2]) that, in the case of electron (hole) hopping
between localized states in a doped semiconductor
crystal, the frequency dependence of the real part of the
high-frequency electrical conductivity follows the law
Reσh(ω) ∝ ω s (0.6 < s < 1) in the radio frequency range
(102 < ω/2π < 107 Hz).

To date, there is no analytical description of the ac
hopping electrical conductivity between the impurity
ground states in compensated covalent crystalline
semiconductors (see reviews [3–5]). In [6, 7], the para-
metric frequency and temperature dependences of the
hopping electrical conductivity were presented for the
case of an extremely low degree of compensation,
where electron (hole) hopping occurs only with the
absorption or emission of a phonon. The interaction
constant of phonons with charge carriers localized on
donors (acceptors) acts as a fitting parameter. For
example, for an n-type semiconductor, it was assumed
in [6] that the high-frequency hopping conductivity is
due to electron hopping between the ground states of
two nearest neighbor donors in charge states (0) and
(+1) located in the vicinity of an acceptor in charge
state (–1). In [7], the features of the temperature depen-
dence of the high-frequency hopping conductivity of
weakly compensated n-type crystals were described
with regard to the possible electron hopping between
two donors via a third (intermediate) donor located in
the vicinity of a negatively charged acceptor. It was
assumed that one ionized donor is the nearest neighbor
of the neutral donor and the energy of the other ionized
1063-7834/05/4707- $26.00 1236
donor is closest to the energy of the neutral donor. In the
models proposed in [3, 6, 7], it was assumed that the
impurity band is “classical,” i.e., that the scatter in the
energy levels of the main alloying impurity is much
greater than the quantum-mechanical broadening of
these levels due to the finiteness of the time a charge
carrier spends on the impurity. In [8], the temperature
dependence of the high-frequency hopping conductiv-
ity of amorphous germanium and silicon was described
using a model of electron transitions (hops) in pairs of
defects with deep levels lying in the band gap. This
model takes into account one excited state and the two
ground states of the defects of a pair, between which an
electron transition occurs through its thermal excitation
from one defect to the excited state of the pair and sub-
sequent tunneling to the other defect.

It is important to note that, in the models used in [3–
8], the energy of each one-electron state (an impurity
level) in doped covalent crystals was assumed to be
fixed; i.e., the energy does not change during hopping
of an electron (hole) between impurity atoms.

However, when describing small polaron hopping
over lattice sites in ionic crystals, Holstein (see reprints
of his 1959 article in [9] and also [10–12]) introduced
the concept of the “coincidence event” for polaron
potential wells. A polaron energy level is a function of
the positions of the atoms nearest to it. Due to thermal
vibrations of the atoms, their positions vary in time; so
the energy of a conduction electron captured by the lat-
tice polarization created by the electron itself also var-
ies in time. At some instant, a situation can arise where
the energy of the site with a bound electron becomes
equal to the energy of the nearest neighbor free site of
© 2005 Pleiades Publishing, Inc.
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the crystalline lattice. This instantaneous coincidence
of the energy levels is referred to as the “coincidence
event.” In the model considered in [9], polaron hopping
was assumed to occur when the energies of the initial
occupied state and the final free state coincide. In this
case, the lattice deformation in the final state is not nec-
essarily the same as that in the initial state. Therefore,
in an individual hopping event, the phonon energy is
either released or absorbed by the lattice; however, on
the average, the polarization energy is not transferred
with a moving polaron.

In [13], a model of fluctuation-caused coincidence
of the energy levels of localized states (of impurity
atoms) was used to describe the dc hopping conductiv-
ity of doped semiconductors.1 It was assumed that tem-
poral fluctuations in the energy of localized states are
caused by hopping diffusion of electrons via these
states. However, the formulas derived in that study
agree only qualitatively with the available experimental
data.

In [15, 16], the dc hopping conductivity and thermo-
electric power were described in terms of a model in
which the majority impurity (acceptors) and a compen-
sating impurity (donors) form a common simple cubic
“impurity lattice” in the crystalline matrix. Hopping of
holes occurs when the energy levels of acceptors
become equal due to thermal fluctuations, whereas
donors block the corresponding sites of the lattice of
impurity atoms. Let the acceptors be labeled with index
α or β. We note that the coincidence of the levels of two
closely spaced acceptors can occur due both to the elas-
tic strain of the crystalline lattice near the acceptors cre-
ated by phonons and to the effect of Coulomb fluctua-
tions arising because of hole hopping between other
acceptors. At the instant of coincidence of the levels2 of
a neutral and a negatively charged acceptor, a “reso-
nant” two-site cluster is formed: the hole on an acceptor
α becomes bound to a negatively charged acceptor β
and belongs simultaneously to these two acceptors.
After some time, the resonance conditions are no
longer satisfied and the hole can become localized on
the acceptor β or again on the acceptor α. After that, the
acceptors α and β can again form a resonance cluster or
be joined to other resonance clusters (pairs). For the
regime of hopping between the nearest neighbor impu-
rity atoms, a quantitative description of the concentra-
tion dependence of the activation energy and preexpo-
nential factor for the hopping conductivity was given in
[15], with application to p-Ge : Ga. The results of cal-
culations based on the model developed in [16] agree
with available experimental data on the low-tempera-
ture hopping thermoelectric power and thermal capac-

1 The model of the fluctuation-induced formation of a barrier
through which an atom (or a molecule) can tunnel made it possi-
ble to explain the main characteristics of solid-phase cryochemi-
cal reactions (see, e.g., [14]).

2 To within quantum-mechanical broadening of the acceptor levels
due to the finite time of hole localization on these levels.
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ity on the dielectric side of the insulator–metal phase
transition.

The aim of this study is to extend the model [15, 16]
of fluctuation-caused coincidence of acceptor energy
levels in the band gap of a crystal to the high-frequency
hopping conductivity in the pair approximation. We
analyze the case where the concentrations of acceptors
in the (0) and (–1) charge states are approximately
equal, i.e., the case of a moderate degree of compensa-
tion. We consider relatively low doping levels of p-type
samples (far from the insulator–metal transition) at
temperatures where hole hopping between nearest
neighbor acceptors (nearest neighbor hopping, NNH)
dominates.

2. HOPPING CURRENT DENSITY 
AND ELECTRICAL CONDUCTIVITY

Let us consider a p-type crystalline semiconductor
with a concentration N = N0 + N–1 of hydrogenic accep-
tors (the indices indicate their charge state) and a con-
centration N+1 = KN of donors in the (+1) charge state,
where K is the degree of compensation of acceptors by
donors.3 The electrical neutrality condition is written as
N–1 = KN. We assume that the temperature is suffi-
ciently low for the exchange of holes between acceptors
in the (0) and (–1) charge states to occur only by hop-
ping (without involving the states of the valence band
and the excited states of the acceptors) and that the dop-
ing level is low; so the Bohr radius for a hole localized
at an acceptor is much smaller than the average hopping
distance.

Let an ac electric field % = %0sin(ωt) be applied to
a macroscopic three-dimensional semiconductor sam-
ple along the x axis (2π/ω is the period of harmonic
oscillations, t is time).

The time-dependent probability fα that an acceptor
α is in the (0) charge state satisfies the rate equation [3]

 (1)

where the indices α, β = 1, 2, 3, … label all acceptors
in the sample and Γαβ is the probability (per unit time)
of hole hopping from acceptor α to acceptor β (hole
transition rate).

The ac hopping current density Jh is determined by
the time variation of the projection of the electric dipole
moment (per unit volume of a crystal with equal num-

3 We refer to a compensation degree as moderate if 0.1 < K < 0.9;
these values of K do not belong to the ranges of low (K ! 1) and
high (1 – K ! 1) values. At a moderate degree of compensation,
the dc hopping conductivity is maximum [17].

d f α

dt
--------- f β 1 f α–( )Γβα f α 1 f β–( )Γαβ–[ ] ,

β
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bers of ionized acceptors and donors) onto the x axis
(cf. [18]):

 (2)

Here, e is the elementary charge, V is the volume of the
sample, and xα is the coordinate of the acceptor α. By
substituting Eq. (1) into Eq. (2) and following [3, 19],
we obtain

 (3)

where (xβ – xα) = rαβcosθαβ is the projection of the vec-
tor rαβ connecting acceptors α and β onto the x axis
(parallel to the external electric field) and θαβ is the
angle between the vector rαβ and the x axis.

We assume that, in an external homogeneous elec-
tric field % = %0sin(ωt), the frequency of hole hopping
between acceptors is

 (4)

where the superscript (eq) denotes the equilibrium

value  (at %0 = 0) for acceptors α and β separated
by a distance rαβ, kB is the Boltzmann constant, and T is
temperature.

With regard to Eq. (4), in the case of a weak electric

field (|e(xβ – xα)%0 | ! kBT), where fα ≈ , we obtain
from Eq. (3) the following expression for the real part
of the hopping conductivity (similar to the Titeica rela-
tion [20, 21]):4 

 (5)

In what follows, we omit the index (eq) since we con-
sider only equilibrium quantities.

It should be noted that, in Eqs. (1)–(5), we assume
that the acceptor coordinates xα and xβ are fixed; actu-
ally, they are not known and, therefore, formulas of this
type cannot be directly applied to quantitative descrip-
tion of the experimental data on hopping electrical
transport.

Now, we pass from the discrete description of hop-
ping transport of holes inside pairs of acceptors to a
continuous description. To replace summation over α
and β in Eq. (5) by integrating with respect to continu-
ous variables r and θ, where rαβ  r and θαβ  θ,

4 Harmonic oscillations of the hopping current density Jh shifted
in  time with respect to the oscillations of the electric field % are
determined by the imaginary part of the electrical conductivity σh.

Jh
e
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------- xα
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∑– .=
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e

2V
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eq( ) e xβ xα–( )%

kBT
----------------------------- 

  ,exp=

Γαβ
eq( )

f α
eq( )

Re σh = 
e

2

VkBT
------------- xβ xα–( )2

f α
eq( )

1 f β
eq( )

–( )Γαβ
eq( )

.
β
∑

α
∑

PH
we find the density of the distribution of the distance r
between the acceptors in the (0) and (–1) charge states
and of the angle θ specifying the orientation of acceptor
pairs with respect to the x axis.

In a moderately compensated semiconductor, we
can assume that the distribution of charge states of
impurity atoms over the sites of the crystalline lattice is
random even at rather low temperatures. Then, the
probability that there are l acceptors in the (–1) charge
state in a volume v  does not depend on the shape and
location of the volume v  and is given by a Poisson dis-
tribution [22–25],

 (6)

where N–1 = KN is the concentration of ionized accep-
tors averaged over the crystal.

Let us consider an acceptor in the (0) charge state
and choose a spherical system of coordinates with the
origin at the acceptor. Between the spheres of radii r
and r + dr, we choose a ring with radius rsinθ, width
rdθ, and thickness dr. Using Eq. (6) with l = 1, we
obtain the probability that there is an acceptor in the
(−1) charge state in a ring of volume v  = 2πsinθr2dθdr:

 (7)

where 0 ≤ θ ≤ π.
We assume that only the pairs of acceptors in the (0)

and (–1) charge states contribute to the real part of the
high-frequency hopping conductivity. The distance Rω
between the acceptors of a pair should be such that the
duration of hole tunneling between them is equal to the
half-period of harmonic oscillations of the external
electric field, since hole transitions with both smaller
and greater times do not contribute to Reσh(ω). This
means that it is necessary to multiply the density P(r, θ)
of the distribution of pair distances by the dimension-
less delta function δ(1 – r/Rω), which satisfies the rela-

tion (1 – r/Rω)dr = Rω. Therefore, the probability

that (for an arbitrary pair) the acceptors are in the vol-
ume 2πsinθr2dθdr and the distance r = Rω between
them lies in the range (r, r + dr) is equal to P(r, θ)δ(1 –
r/Rω)drdθ, where the density of the distribution of the
angle θ between the x axis and a vector of length Rω
uniformly distributed over the sphere is (1/2)sinθ [22,
25]. Thus, the probability that there is an acceptor at a
distance r = Rω from a given acceptor in the interval (r,
r + dr) in the solid angle 2πsinθdθ is

 (8)

where P(r, θ) is given by formula (7).
According to the above arguments, we make the sub-

stitutions fα  (1 – K), (1 – fβ)  K, (xβ – xα) 
rcosθ, and Γαβ(rαβ)  Γh(r) in Eq. (5) and pass from

3 l v N 1–,( ) 1
l!
--- v N 1–( )l

v N 1––( ),exp=

P r θ,( )dθdr 2π θr
2
KNdθdr,sin=

δ
0

∞∫

1
2
--- θP r θ,( )δ 1 r

Rω
------– 

  dθdr,sin
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the summation over β to integration over the volume V
of the crystal. The remaining sum over α contains (1 –
K)NV identical nonzero terms, where (1 – K)NV is the
number of acceptors in the (0) charge state. Therefore,
from Eqs. (5) and (8) in the pair approximation, the real
part of the high-frequency hopping conductivity can be
found to be

 (9)

where Nh = N0N–1/N = K(1 – K)N is the effective con-
centration of acceptors involved in hopping conduction
and Γh(Rω) is the frequency of hole hopping between
the acceptors in the (0) and (–1) charge states, which
will be found below.

3. FREQUENCY OF HOLE HOPPING 
BETWEEN ACCEPTORS

We consider the case of a Gaussian (normal) density
ga(Ea – ) of the distribution of acceptor energy levels

Ea with respect to the average value . Let f0(Ea) be
the probability that an acceptor with energy level Ea is
in the (0) charge state. By averaging over energy,5 we
find the probability that an arbitrary acceptor in the
semiconductor is neutral:

 (10)

where ga = ( )–1exp[–(Ea – )2/2W2] is the den-
sity of the distribution of acceptor energy levels in the
band gap; W is the effective width of the acceptor band;
(1 – f0) = f–1 = {1 + βaexp[(Ea + EF)/kBT]}–1 is the prob-
ability that the acceptor with an energy level Ea > 0 is
ionized; βa is the energy level degeneracy; EF < 0 is the
position of the Fermi level in the band gap measured
from the top of the valence band;  > 0 is the center

of the acceptor band; and u = (Ea – )/kBT, ζ = (EF +

5 In the case of an intermediate degree of compensation, the corre-
lation between the acceptor positions at the sites of the crystalline
lattice and their energies can be disregarded.
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 + kBTlnβa)/kBT, and γ = W/kBT are dimensionless
parameters.

The width of the classical acceptor band W is mainly
determined by the Coulomb interaction of only the
nearest neighbor charges (ionized acceptors and
donors) and, according to [26], is equal to6 

 (11)

where |U| = e2/4πεr is the modulus of the Coulomb inter-
action energy of two ions; ε = εrε0 is the static permittiv-
ity of the crystalline lattice; ε0 is the permittivity of free
space; P(r)dr = 4πr2(N–1 + N+1)exp[–(4π/3)r3(N–1 +
N+1)]dr is, according to Eqs. (6) and (7), the probability
that the impurity ion nearest to an acceptor in the (–1)
charge state is located at a distance lying in the interval
(r, r + dr); and N–1 + N+1 = 2KN is the total concentra-
tion of ionized acceptors and donors.

Thus, according to Eq. (10), the concentrations of
neutral and ionized acceptors averaged over the crystal
(without regard for the excited states) are

From the electrical neutrality condition  = 1 –

 = K, with regard to Eq. (11), we can find the depen-
dence of the Fermi level EF on the temperature T, com-
pensation degree K, and acceptor concentration N =
N0 + N–1.

Due to thermal (absorption or emission of phonons)
and Coulomb (hole hopping between acceptors) fluctu-
ations, the positions of acceptor energy levels with
respect to the top of the valence band of the semicon-
ductor change in time. Following [13, 15], we assume
that hopping of a hole between two acceptors in the (0)
and (–1) charge states can occur only if the energy lev-
els of these acceptors coincide.7 

The number of transitions of a hole between accep-
tors in the (0) and (–1) charge states per event of fluctu-
ation-caused coincidence of their levels Ea1 =  +

u1kBT and Ea2 =  + u2kBT is equal to the integral part
of the ratio of the duration ti(u) of one coincidence
event of the two levels (u1 = u2 = u) to the tunneling time
τ(u, r). We assume that, during a time interval t, the
total duration of all events where the levels of two
acceptors coincide is tc(u) = . The probability
that, during the period of time over which the acceptor
levels separated by a distance r remain coincident, j =

6 We consider samples on the insulator side of the insulator–metal
phase transition.

7 Due to hole hopping, the (–1) charge states of immobile acceptors
migrate over the crystal.
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0, 1, 2, ... hole transitions occur can be approximated by
a Poisson distribution [22–25, 27],

 (12)

where tc(u)/τ(u, r) =  is the average num-
ber of transitions of a hole between the nearest neighbor
acceptors. The frequency of hole hopping between two
acceptors in the (0) and (–1) charge states in the case
where their energy levels remains coincident (Ea1 = Ea2 =
Eτ) over time t is [15]

 (13)

From the Markov chain theory [22, 27], it follows that,
if the hole transitions between two acceptors are
observed over a long time interval (t @ τ(u, r), then the
fraction of time tc(u)/t spent by the acceptors in one of
two possible states (where their energy levels are coin-
cident and noncoincident, respectively) is approxi-
mately equal to the stationary probability 3(u, ζ) of the
acceptors being in these states. Therefore, the ratio
tc(u)/t is approximately equal to the probability that the

3 j( )
tc u( )/τ u r,( )[ ] j

j!
------------------------------------

tc u( )
τ u r,( )
----------------– ,exp=

j3 j( )
j 0=
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Γ u r,( ) 1
t
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Fig. 1. Frequency dependence of the hopping conductivity.
Points are experimental data for p-Ge : Ga at K = 0.4:
(a) T = 4 K, N = 3.2 × 1014 cm–3 [34]; (b) T = 4 K, N =
7.8 × 1014 cm–3 [34]; and (c) T = 2.3 K, N = 3.4 × 1015 cm−3

[35]. Curves 1–3 are calculated using Eq. (21) for data (a–
c), respectively.
PH
energy levels of the two acceptors in the (0) and (–1)
charge states coincide [15]:

 (14)

Here, f0(u, ζ) = [1 + exp(–ζ – u)]–1 is the probability that
one of the acceptors of a pair with an energy level Eτ =

 + ukBT is occupied by a hole; f–1(u, ζ) = [1 + exp(u +
ζ)]–1 is the probability that the other acceptor of the pair
with the same energy level Eτ is in the (–1) charge state,

i.e., is ionized;  = (1 – K); and  = K (see formula
(10)).

By analogy with the theory of a molecular hydrogen
ion ( ), the hole tunneling time between two accep-
tors in the (0) and (–1) charge states at a distance r from
each other in the case where their energy levels are ran-
domly coincident (u1 = u2 = u) can be estimated as [15,
28, 29]

 (15)

where δEτ(r) is the energy splitting (broadening) of the

hole inter-acceptor tunneling level Eτ =  + ukBT mea-

tc u( )
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Fig. 2. Gallium concentration dependence of the real part of
the hopping conductivity of germanium crystals at K = 0.4
and T = 3.3 K. Points are the experimental data from [34]:
(a) ω/2π = 103 Hz and (b) ω/2π = 105 Hz. Curves 1 and 2
are calculated using Eq. (21) for data (a, b), respectively.
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sured from the top of the valence band of the undoped
crystal and aτ = e2/(8πεEτ) is the Bohr radius for a hole
localized on an acceptor.

Using the quasi-classical approximation and disre-
garding the acceptor excited states, in the case of
δEτ(r) ! Eτ, we find [29, 30]

 (16)

where ρ = r/aτ and S = [1 + ρ + (ρ2/3)]exp(–ρ).

Let us average Γ(u, r) over the distribution ga = ga(u,

γ) of tunneling energy levels u = (Eτ – )/kBT in the
acceptor band of width γ = W/kBT. Using Eqs. (13)–(15)
and (10), the average frequency Γh(r) of hole hopping
between two acceptors separated by a distance r can be
written as

 (17)

where ga(u, γ) = ( )–1exp(–u2/2γ2).

It follows from Eqs. (15) and (16) that the tunneling
time τ(u, r) increases monotonically as the tunneling
level Eτ is displaced into the band gap of the crystal,
i.e., with increasing u. If the temperature is sufficiently
low, so that W @ kBT, then the function 3(u, ζ)ga(u, γ)
has a narrow peak8 at u = –ζ. Therefore, in Eq. (17), we
can take the monotonic function τ(u, r) (at u = –ζ) out
of the integral. In this case, the average equilibrium fre-
quency of hole hopping between the acceptors at a dis-
tance r is [15]

 (18)

where τh(r) ≡ τh(u = –ζ, r) is the time of hole tunneling
between the acceptors in the (0) and (–1) charge states
with equal energy levels Eτ =  – ζkBT (coinciding to
within δEτ ! Eτ). With allowance for Eqs. (10) and

8 In the case of a narrow impurity band (W ! kBT), the function
ga(u, γ) 3(u, ζ) has a maximum at u = 0 and the tunneling energy

level for holes is Eτ ≈ .

δEτ r( ) 4Eτ=

× ρ 1 ρ+( ) ρ–( )exp 1 1 ρ+( ) 2ρ–( )exp–[ ] S–

ρ 1 S
2

–( )
-----------------------------------------------------------------------------------------------------------,

Ea

Γh r( ) Γ u r,( )ga u γ,( ) ud

∞–

+∞

∫=

=  
3 u ζ,( )ga u γ,( )

τ u r,( )
-------------------------------------- u,d

∞–

+∞

∫

2πγ

Ea

Γh r( ) 1
τh r( )ξh

-----------------,≈

Ea
PHYSICS OF THE SOLID STATE      Vol. 47      No. 7      200
(14), the dimensionless parameter ξh is defined by the
relation [31]

 (19)

For the case where the acceptor band is narrow as com-
pared to the thermal excitation energy (γ = W/kBT ! 1)
or is wide (γ = W/kBT @ 1), formulas (10) and (19) for
ζ and ξh can be simplified:

(i) for γ ! 1, we have ζ ≈ –ln[K/(1 – K)], ξh ≈ 1;

(ii) for γ @ 1, we have

 (20)

where ζ/γ is the ratio of the energy corresponding to the
Fermi level position to the acceptor band width.

4. REAL PART OF THE AC HOPPING 
CONDUCTIVITY

We assume that only the pairs of acceptors in which
the hole tunneling time τh(r = Rω) is equal to the half-
period π/ω of the external electric field contribute to the
real part of the ac conductivity;9 i.e., τh(Rω) = π/ω. In
this case, Γh(Rω) = ω/(2πξh) and, from Eqs. (9) and
(18), the real part of the high-frequency hopping con-
ductivity Reσh(ω) can be found to be

 (21)

where Rω = ρωaτ is the distance of hole hopping between

the acceptors of a pair, aτ = e2/[8πε(  – ζkBT)] is the
Bohr radius, and ρω is the solution to the equation

9 In this approximation, the imaginary part of the hopping ac elec-
trical conductivity is equal to its real part.
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with Sω = [1 + ρω + ( /3)]exp(–ρω). The quantities

ζkBT = EF +  + kBT lnβa and ξh ≥ 1 are found from
Eqs. (10) and (19). The values of ζ and ξh for a narrow
and wide acceptor band are given by relations (20)10

and Nh = K(1 – K)N. 

From Eq. (22), we see that Rω depends on the angu-
lar frequency ω, the energy position of the center of the
acceptor band , the Fermi level position EF (with
respect to the top of the valence band), and temperature.
The quantity Rω depends on the acceptor concentration

N and compensation degree K via  and EF. We esti-
mate the effect of Rω on the Reσh(ω) dependence in the
frequency range 102 < ω/2π < 107 Hz at K ≈ 0.5 and
low temperatures (  @ |ζ |kBT) for gallium-doped

germanium crystals (N = 1015 cm–3,  = 10 meV, εr =
15.4). Under these conditions, from Eq. (22), we obtain
the approximation Rω = 155 – 11.3 , where
Rω is measured in nanometers and ω/2π in hertz. Thus,

from Eq. (21), we have Reσh(ω) ∝   ∝  ωs, where
the value s ≈ 0.76 is close to the experimental values
(Fig. 1).

In Eq. (22), the energy  of thermal ionization of a
neutral hydrogenic acceptor (disregarding the shift and
fluctuations of the top energy of the valence band) aver-
aged over the crystal can be found to be [26]

 (23)

where Ia is the ionization energy of an isolated acceptor,
d = 0.554[(1 + K)N]–1/3 is the average distance between
the impurity atoms, and Λs is the length (radius) of elec-
trostatic screening of the Coulomb potential by holes
migrating over the acceptors. According to [31], the
screening (Debye–Hückel) length

 (24)

is determined by holes with concentration Nh = K(1 –
K)N hopping in the acceptor band. We note that the
ratio of the diffusion coefficient to the hopping dc drift
mobility of holes exceeds the classical value kBT/e of
this ratio by a factor of ξh ≥ 1.

10According to Eqs. (20) and (11), the quantity kBTξh for a wide
acceptor band (W @ kBT) is determined only by the acceptor con-
centration and the compensation degree.
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The shift of the center of the acceptor band  > 0
towards the top of the valence band described by
Eq. (23) is determined by the decrease in the hole affin-
ity of an ionized acceptor due to static screening of
impurity ions by holes hopping over the acceptors [26].
At high temperatures (kBT @ W), by substituting
Eq. (20) into Eq. (24), we find the screening length [32,
33] Λs = [εkBT/e2Nh]1/2. At low temperatures (kBT ! W),

we find [31] Λs = [εW /(e2N)]1/2exp(ζ2/4γ2), where
the ratio ζ/γ is determined from the equation 2K = 1 –

erf(ζ/γ ).
Thus, by finding from Eq. (22) the average distance

Rω between the acceptors involved in hopping conduc-
tion at a frequency ω/2π, we can calculate Reσh(ω)
from Eq. (21) using Eqs. (10), (11), (19), (23), and (24).

We note that, from Eqs. (21) and (22), it follows that
Reσh(ω)|ω → 0  0; i.e., Reσh(ω) is the difference
between the real part of the ac hopping conductivity
and the dc hopping conductivity.

5. COMPARISON OF THE CALCULATIONS
WITH EXPERIMENTAL DATA

In [34, 35], experimental data on the hopping con-
ductivity of gallium-doped p-Ge crystals (K = 0.4)
obtained by neutron irradiation were reported for vari-
ous temperatures and electric field frequencies.11 With
the results of this study, we try to describe those data
quantitatively without any fitting parameters.

Figure 1 compares the results of simulation of the
frequency dependence of the ac hopping conductivity
Reσh(ω), using Eqs. (21) and (22)–(24), with experi-
mental data from [34, 35]. The following parameter
values were used in the calculations for p-Ge : Ga: εr =
ε/ε0 = 15.4, Ia = 11.32 meV, and βa = 4. From Fig. 1, we
see that, on the whole, the results of the simulation
based on our model of the high-frequency hopping con-
ductivity agree with the experimental data from [34,
35] over a wide range of electric field frequencies.

The experimental [34] and calculated dependences of
Reσh(ω) on the concentration N of Ga atoms in
p-Ge : Ga crystals at K = 0.4 are shown in Fig. 2 for
ω/2π = 103 and 105 Hz; the agreement is seen to be
quite satisfactory.

Figure 3 shows the experimental temperature depen-
dences of the ac hopping conductivity of p-Ge : Ga at

11It has been subsequently shown [36] that the degree of compen-
sation of germanium with natural isotope composition changes in
the range from K = 0.3 to 0.6, depending on the energy of the
reactor neutrons. In particular, the value K = 0.35 corresponds to
the samples studied in [35].

Ea

2π

2
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frequencies ω/2π = 105 and 106 Hz [34, 35]. Calcula-
tions of the high-frequency hopping conductivity
(Figs. 1–3) were performed in the range between the
low-temperature (Tl) and high-temperature (Th) bound-
aries of the region of the dc NNH conduction regime.12

The experimental data for Tl and Th for p-Ge : Ga in the
range 2 × 1014 < N < 2 × 1016 cm–3 and K = 0.3 [37, 38]
can be approximated by the expressions Tl ≈ 2.67 ×
10–4N0.244 and Th ≈ 7.6 × 10–4N0.258, where Tl and Th are
measured in kelvins and N in cm–3. We see that, accord-
ing to the calculations based on our model, Reσh(ω) is
virtually independent of temperature both at T ≈ Tl and
at T ≈ Th. However, the experiment shows a tendency
toward a decrease in the high-frequency hopping con-
ductivity at T < Tl.

In the case of a wide acceptor band (W @ kBT), the
decrease in Reσh(ω) at T < Tl even for an intermediate
compensation degree (K ≈ 0.5) is probably caused by
the correlation between the spatial distribution of
acceptors and their energies (the variable range hop-
ping regime). This correlation implies that the averag-
ing over the distance between acceptors and over the
distribution of their energy levels cannot be performed
separately [see Eqs. (9), (17)].

12As the temperature decreases (at T < Tl), the NNH regime is
transformed into the hole variable range hopping regime. At T =
Th, the hopping conductivity in the NNH regime is equal to the
band electrical conductivity of holes in the valence band.

1

Reσh(ω), Ω–1 cm–1

T, K

10–7

10–6

a

2

10–8
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2 43

1
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3

4

c
d

Fig. 3. Temperature dependence of the high-frequency hop-
ping conductivity in neutron transmutation-doped germa-
nium crystals. Points (a–c) are the experimental data for
p-Ge : Ga (K = 0.4, ω/2π = 105 Hz) [34]: (a) N = 3.2 × 1014,
(b) 7.8 × 1014, and (c) 2.14 × 1015 cm–3; (d) K = 0.4,
ω/2π = 106 Hz, N = 3.4 × 1015 cm–3 [35]. Curves 1–4 are
calculated using Eq. (21) for data (a–d), respectively.
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For a narrow acceptor band (W ! kBT), formula (21)

predicts that the high-frequency hopping conductivity
of a compensated semiconductor should decrease with
increasing temperature, since in this case the effect of
an ac electric field of constant amplitude on the hole
hopping frequency becomes weaker (see the derivation
of formula (5)). Although this effect is weak, it can be
observed for very lightly doped samples at relatively
high temperatures. We note that, when calculating
Reσh at temperatures T ≈ Th (i.e., in the region of satu-
ration of the dc hopping conductivity [37, 38]), it is
probably necessary to take into account the excited
states of the acceptors [39]. It is also possible that, even
for semiconductors with an intermediate compensation
degree, where the doping level approaches the isolator–
metal transition, it is necessary to take into account the
contribution from the acceptor A+ band [40, 41] formed
by acceptors in the (+1) charge states to the high-fre-
quency conductivity.

6. CONCLUSIONS

To describe the high-frequency hopping conductiv-
ity of doped covalent crystalline semiconductors with
moderate compensation degree, we have suggested a
model of hole (or electron) hopping inside pairs of
hydrogenic acceptors (or donors) with a random distri-
bution of charge states. We have described the distribu-
tion of acceptor energy levels in the band gap as a Gaus-
sian function and assumed that the width of the accep-
tor band is entirely determined by the Coulomb
interaction of the nearest neighbor ionized acceptors
and donors with a random (Poisson) distribution in the
crystal. The idea behind the proposed model is that only
the pairs of acceptors in the (0) and (–1) charge states
with coincident energy levels give the main contribu-
tion to the ac hopping conductivity Reσh(ω). Within the
framework of equilibrium thermodynamics, we have
determined the probability of coincidence of the energy
levels of two acceptors under the action of thermal
and/or Coulomb fluctuations of hopping nature. An
important result for calculations is that the optimum
acceptor pairs appear to be located at such a distance
that the time of hole tunneling between them is equal to
the half-period of oscillations of the external electric
field. We have calculated the time of hole tunneling
between acceptors using the model of an ionized hydro-

gen molecule ( ); i.e., we have assumed that hole
hopping occurs only if the levels of two hydrogenic
acceptors coincide. Analytical expressions have been
obtained that describe the relation between the fre-
quency of hole hopping in acceptor pairs, the acceptor
concentration, and the compensation degree. The cal-
culations of Reσh(ω) agree with the experimental data
for the transmutation-doped p-Ge : Ga crystals.

H2
+

5



1244 POKLONSKI et al.
ACKNOWLEDGMENTS

This study was supported by the Belarussian Repub-
lican Foundation for Basic Research (grant no. F01-
199), the Russian Foundation for Basic Research
(project no. 04-02-16587), and a grant from the presi-
dent of the Russian Federation (project NSh-
2223.2003.02).

REFERENCES

1. N. F. Mott and E. A. Davis, Electronic Processes in Non-
Crystalline Materials (Clarendon, Oxford, 1971; Mir,
Moscow, 1982).

2. J. C. Dyre and T. B. Schrøder, Rev. Mod. Phys. 72 (3),
873 (2000).

3. I. P. Zvyagin, Kinetic Phenomena in Disordered Semi-
conductors (Mosk. Gos. Univ., Moscow, 1984) [in Rus-
sian].

4. J. C. Dyre and T. B. Schrøder, Phys. Status Solidi B 230
(1), 5 (2002).

5. M. Pollak, Phys. Status Solidi B 230 (1), 295 (2002).
6. S. D. Baranovskiœ and A. A. Uzakov, Fiz. Tekh. Polupro-

vodn. (Leningrad) 15 (5), 931 (1981) [Sov. Phys. Semi-
cond. 15 (5), 533 (1981)].

7. B. V. Klimkovich, N. A. Poklonski, and V. F. Stelmakh,
Phys. Status Solidi B 134 (2), 763 (1986).

8. B. V. Klimkovich, N. A. Poklonskiœ, and V. F. Stel’makh,
Fiz. Tekh. Poluprovodn. (Leningrad) 19 (5), 848 (1985)
[Sov. Phys. Semicond. 19 (5), 522 (1985)].

9. T. Holstein, Ann. Phys. 281 (1-2), 706 (2000).
10. R. R. Heikes, in Thermoelectricity: Science and Engi-

neering (Interscience Publishers, New York, 1961),
Chap. 4.

11. Polarons, Ed. by Yu. A. Firsov (Nauka, Moscow, 1975)
[in Russian].

12. P. Nagels, in Amorphous Semiconductors, Ed. by
M. H. Brodsky (Springer, New York, 1979; Mir, Mos-
cow, 1982), p. 177.

13. A. L. Burin and L. A. Maksimov, Zh. Éksp. Teor. Fiz. 95
(4), 1345 (1989) [Sov. Phys. JETP 68 (4), 776 (1989)].

14. V. I. Gol’danskiœ, L. I. Trakhtenberg, and V. N. Flerov,
Tunneling Phenomena in Chemical Physics (Nauka,
Moscow, 1986) [in Russian].

15. N. A. Poklonskiœ, S. Yu. Lopatin, and A. G. Zabrodskiœ,
Fiz. Tverd. Tela (St. Petersburg) 42 (3), 432 (2000)
[Phys. Solid State 42 (3), 441 (2000)].

16. N. A. Poklonski and S. Yu. Lopatin, Fiz. Tverd. Tela (St.
Petersburg) 43 (12), 2126 (2001) [Phys. Solid State 43
(12), 2219 (2001)].

17. H. Fritzsche and M. Cuevas, in Proceedings of Interna-
tional Conference on Semicond. Phys. Pub. Czech. Acad.
Sci., Prague, 1961, p. 222.

18. B. Sandow, O. Bleibaum, and W. Schirmacher, Phys.
Status Solidi C 1 (1), 92 (2004).
P

19. A. Miller and E. Abrahams, Phys. Rev. 120 (3), 745
(1960).

20. S. Titeica, Ann. Phys. (Leipzig) 22 (2), 129 (1935).
21. P. S. Zyryanov and M. I. Klinger, Quantum Theory of

Electron Transport Phenomena in Crystalline Semicon-
ductors (Nauka, Moscow, 1976) [in Russian].

22. P. Whittle, Probability (Wiley, New York, 1976; Nauka,
Moscow, 1982).

23. D. K. Pickard, J. Appl. Probab. 19 (2), 444 (1982).
24. C. V. Heer, Statistical Mechanics, Kinetic Theory, and

Stochastic Processes (Academic, New York, 1972; Mir,
Moscow, 1976).

25. M. G. Kendall and P. A. Moran, Geometric Probability
(Hafner, New York, 1963; Nauka, Moscow, 1972).

26. N. A. Poklonski, A. I. Syaglo, and G. Biskupski, Fiz.
Tekh. Poluprovodn. (St. Petersburg) 33 (4), 415 (1999)
[Semiconductors 33 (4), 402 (1999)].

27. D. R. Cox and W. L. Smith, Queues (London, 1961; Mir,
Moscow, 1966).

28. E. O. Kane, in Tunneling Phenomena in Solids, Ed. by
E. Burstein and S. Lundqvist (Plenum, New York, 1967;
Mir, Moscow, 1973).

29. L. A. Blumenfel’d and A. K. Kukushkin, Course of
Quantum Chemistry and Structure of Molecules (Mos.
Gos. Univ., Moscow, 1986) [in Russian].

30. A. S. Davydov, Quantum Mechanics, 2nd ed. (Nauka,
Moscow, 1973; Pergamon, Oxford, 1976).

31. N. A. Poklonski and V. F. Stelmakh, Phys. Status Solidi
B 117 (1), 93 (1983).

32. N. A. Poklonski, V. F. Stelmakh, V. D. Tkachev, and
S. V. Voitikov, Phys. Status Solidi B 88 (2), K165
(1978).

33. A. A. Uzakov and A. L. Éfros, Zh. Éksp. Teor. Fiz. 81
(5), 1940 (1981) [Sov. Phys. JETP 53 (5), 1008 (1981)].

34. S. Golin, Phys. Rev. 132 (1), 178 (1963).
35. I. V. Klyatskina and I. S. Shlimak, Fiz. Tekh. Polupro-

vodn. (Leningrad) 12 (1), 134 (1978) [Sov. Phys. Semi-
cond. 12 (1), 76 (1978)].

36. A. G. Zabrodskiœ and M. V. Alekseenko, Fiz. Tekh. Polu-
provodn. (St. Petersburg) 28 (1), 168 (1994) [Semicon-
ductors 28 (1), 101 (1994)].

37. A. G. Zabrodskiœ, A. G. Andreev, and M. V. Alekseenko,
Fiz. Tekh. Poluprovodn. (St. Petersburg) 26 (3), 431
(1992) [Sov. Phys. Semicond. 26 (3), 244 (1992)].

38. A. G. Zabrodskiœ and A. G. Andreev, Int. J. Mod. Phys.
B 8 (7), 883 (1994).

39. N. A. Poklonski, S. A. Vyrko, A. G. Zabrodskiœ, and
S. V. Egorov, Fiz. Tverd. Tela (St. Petersburg) 45 (11),
1954 (2003) [Phys. Solid State 45 (11), 2053 (2003)].

40. N. A. Poklonski and A. I. Syaglo, Fiz. Tekh. Polupro-
vodn. (St. Petersburg) 33 (4), 402 (1999) [Semiconduc-
tors 33 (4), 391 (1999)].

41. V. D. Kagan, Zh. Éksp. Teor. Fiz. 117 (2), 452 (2000)
[JETP 90 (2), 400 (2000)].

Translated by I. Zvyagin
HYSICS OF THE SOLID STATE      Vol. 47      No. 7      2005



  

Physics of the Solid State, Vol. 47, No. 7, 2005, pp. 1245–1248. Translated from Fizika Tverdogo Tela, Vol. 47, No. 7, 2005, pp. 1203–1206.
Original Russian Text Copyright © 2005 by Krivolapchuk, Kozhanova, Lundin, Mezdrogina, Rodin.

                                                                       

SEMICONDUCTORS
AND DIELECTRICS
Parameters of Thulium-Doped Gallium Nitride Crystals 
with Wurtzite Structure

V. V. Krivolapchuk*, Yu. V. Kozhanova**, V. V. Lundin*, M. M. Mezdrogina*, and S. N. Rodin*
*Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, St. Petersburg, 194021 Russia

e-mail: vlad.krivol@mail.ioffe.ru, margaret.m@mail.ioffe.ru
**St. Petersburg State Polytechnic University, Politekhnicheskaya ul. 25, St. Petersburg, 195251 Russia

Received July 26, 2004; in final form, November 9, 2004

Abstract—A study was made of GaN crystals grown by HVPE and MOCVD. Thulium was introduced by dif-
fusion. It is shown that the Tm rare-earth ion acts as an acceptor in a GaN semiconductor matrix if the undoped
crystal contains deep-level defects. Intracenter f−f transitions characteristic of Tm were observed in the short-
and long-wavelength spectral regions. The short-wavelength emission intensity is higher in crystals obtained
by MOCVD. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Wide-bandgap semiconductors based on nitrides of
Group III elements enjoy broad application as a mate-
rial for fabricating light-emitting devices (lasers, light-
emitting diodes) intended for operation in the short-
wavelength spectral region. Light-emitting diodes for
the visible range have been recently developed using
quantum-confined InGaN/GaN structures [1, 2].

Earlier studies revealed that doping GaN crystals
with rare-earth metals (Er, Sm, Eu) gives rise to intrac-
enter f−f transitions with emission lines at wavelengths
of 0.54–0.56 (Er, Eu), 0.81 (Sm), and 1.54 µm (Er) (vis-
ible, infrared, and far infrared spectral regions, respec-
tively) [3, 4]. It was also shown that a rare-earth (RE)
ion in GaN wurtzite-structure crystals can act both as a
donor and as an acceptor, depending on the total defect
concentration in the starting semiconductor matrix. The
intensity of the emission lines characteristic of the f−f
intracenter transitions of RE ions in GaN crystals cor-
relates with the defect concentration in the starting
semiconductor matrix; more specifically, the lower the
defect concentration, the stronger the intensity of intra-
center transition lines.

It has also been established that the mechanisms of
RE diffusion and doping in crystals are governed by the
defect concentration and the Fermi level position in the
GaN semiconductor matrix. If the Fermi level lies in the
bandgap at T = 77 K (for low defect concentrations of
less than <1017 cm–3), RE ions most likely enter the
original crystal lattice and change its bonding character
(from the covalent bond typical of Ga–N to an ionic Er–
N bond), because RE ions are substitutional impurities
[4]. As the defect concentration in the host matrix
increases (up to n > 1018 cm–3, where the Fermi level is
close to the conduction band bottom at T = 77 K), RE
ions become apparently embedded in the space
between domains of the mosaic structure; in this case,
1063-7834/05/4707- $26.00 1245
all changes in the crystal parameters are associated with
changes in these regions.

Doping GaN crystals with RE ions to obtain struc-
tures suitable for developing light-emitting diodes may
be considered a more cost-effective alternative to the
InGaN/GaN heterostructure technology [5]. Thulium
emission lines deriving from intracenter f−f transitions
lie in the visible and near infrared regions of the spec-
trum. Tm has one charge state (3+), as does Er3+, while
the other two ions (Eu, Sm) are characterized by vari-
able charge states (2+, 3+). Defects in the starting semi-
conductor matrix form both shallow (in the case of dop-
ing by Er) and deep (in the case of Sm doping) levels in
the bandgap of GaN. The effect of the charge state of
impurity RE ions, namely, of Eu and Er (as substitu-
tional impurities), on the change in their position in the
host lattice (depending on the method of incorporating
these ions into the starting semiconductor matrix and
on the defect concentration and type) with respect to the
normal position of the Ga ion was studied in [5].

In this paper, we report on a study of the effect of
Tm doping on the parameters of near-edge photolumi-
nescence (NEPL) in GaN wurtzite-structure crystals,
determination of the nature of impurity centers, and
observation of the gettering effect. We also studied the
dependence of the intensity of the f−f intracenter tran-
sitions characteristic of Tm that produce spectral lines
at 477 nm (1G4–3H6), 647 nm (1G4–3H4), and 801 nm
(3F4–3H6) in the presence of defects forming deep levels
in the starting semiconductor matrix.

2. EXPERIMENT

As in [3, 4], to explore the possibility of a broader
variation in defect concentration in the starting semi-
conductor matrix, we used crystals prepared using two
different methods, namely, MOCVD, or decomposition
© 2005 Pleiades Publishing, Inc.
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of metalorganic mixtures (type I), and HVPE (type II).
Unlike in the previous study [4] of the effect of Er dop-
ing on the NEPL spectra of GaN crystals with defects
forming shallow levels in the bandgap, the GaN crystals
chosen for the present investigation were of different
types with defects producing deep levels.

As in [3, 4], RE ions were incorporated by diffusion;
the procedure consisted in thermal deposition of a rare-
earth metal film on the crystal surface followed by
annealing of the sample in ammonia for 1.0–1.5 h at a
temperature of 1000–1050°C.

Most of the information on defect concentration in
the starting crystals, as in [3, 4], was extracted from
photoluminescence (PL) spectra and from the half-
width of the diffraction scattering curve (when using x-
ray structural analysis).

In the analysis of the PL spectra, attention was pri-
marily focused on the intensity of the NEPL line and its
half-width (FWHM). This line is inhomogeneously
broadened, because the lines deriving from the radia-
tive recombination of carriers localized at different
shallow centers differ slightly in wavelength. The rea-
son for this difference lies in the dispersion of the val-
ues of the thermal activation energy of shallow donors
ELT. The dispersion of ELT, in turn, stems from different
values of the local potential Vloc at the sites of shallow
impurities. This means that various defects located
close to shallow impurities affect the crystal field and,
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Fig. 1. Photoluminescence spectra of (1) undoped and
(2) Tm-doped MOCVD-grown GaN crystals (type I) taken
at T = 77 K.
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through this, the emission wavelength. Therefore, the
noticeable difference in FWHM between the NEPL
lines in the starting samples should be assigned to the
different concentrations of various defects in these
samples. The intensity and FWHM of an NEPL line
depend on the density of radiative and nonradiative
states and carrier transport to them. The carrier trans-
port parameters are determined by the tails of the den-
sity of states function in the bandgap and the position of
the percolation level [3]. It follows that samples pro-
ducing different PL intensities under the same experi-
mental conditions differ primarily in defect concentra-
tion. These defects are responsible both for the deep
levels (which substantially reduce the free carrier life-
time) and for fluctuations in the density of band states.
It was shown in [4] that the FWHM of the NEPL line in
n-GaN crystals at T = 77 K depends on carrier concen-
tration and should be no less than 30 meV for the sam-
ples under study (Nd – Na > 1017 cm–3).

Optical measurements were conducted on an SDL-
2 grating spectrometer with a reciprocal linear disper-
sion of 1.3 nm/mm in the edge luminescence region of
GaN. Photoluminescence was pumped by an LGI-21
pulsed nitrogen laser operating at a wavelength of
3371 Å with a pulse duration (FWHM) τ ≈ 10 ns. To be
able to accurately compare emission spectra of differ-
ent GaN crystals, the controllable parameters, such as
the beam incidence angle, pump light intensity, and
temperature, were kept constant.

3. RESULTS AND DISCUSSION

Figure 1 presents PL spectra of undoped and Tm-
doped GaN crystals (type I).

The undoped GaN crystal exhibits an emission line
(Emax = 3.48 eV at T = 77 K) shifted by 17 meV toward
shorter wavelengths relative to the line of the exciton
bound to a neutral donor D0x (Emax = 3.463 eV, T = 77 K)
that is usually observed in MOCVD-grown GaN crys-
tals [3, 4]. It may be assumed that the former emission
line derives from free-exciton (FE) emission (A at an
energy E = 3.4789 eV or B at an energy E = 3.48 eV)
[6] of N-face GaN crystals. This shift of the emission
line may also originate from strains in the crystal under
study. The FWHM of this line is 29 meV, but its inten-
sity is fairly weak.

The NEPL spectrum undergoes substantial
changes after crystal doping with Tm. The position of
the NEPL peak remains unchanged (at 358 nm, i.e.,
3.48 eV) and, as before, it cannot be identified with
emission of the bound exciton involving a neutral
donor, D0x (at 3.463 eV). Additional emission lines
appear: a line at 3.423 eV (362 nm) and a band deriv-
ing from donor–acceptor recombination (DAR) with
peaks at 3.264 and 3.170 eV (380 and 390 nm). The
spectrum contains emission lines characteristic of the
Tm intracenter f−f transition in the visible range at
477 nm (2.597 eV) and in the near IR range at 798.6,
HYSICS OF THE SOLID STATE      Vol. 47      No. 7      2005
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808, 813, and 820 nm. Studies of RE-doped MOCVD-
grown GaN crystals (GaN〈Eu,Sm,Er〉) [3, 4] did not
reveal any changes in the shape of NEPL spectra; by
contrast, crystals grown by HVPE and doped by the
same impurities do exhibit changes. The line FWHM
measured in the present work on type-I GaN crystals is
smaller than that reported in [3, 4]; however, the NEPL
spectra of crystals doped by Tm (GaN〈Tm〉) changed.
The changes in the NEPL spectra caused by Tm doping
of type-I crystals having a line (with an FWHM of 29
meV that is weak in intensity) near the free-exciton
emission line (FE) are most likely due to doping-
induced transformation of the deep states present in the
starting semiconductor matrix into shallow levels.
Simultaneously, as in earlier studies, a gettering effect
is observed (an increase in NEPL intensity, formation
of the DAR band). Thus, RE metals exert the same
effect on the shape of NEPL spectra of the GaN semi-
conductor matrix, irrespective of the actual charge state
and ionic radius of the dopant.

Figure 2 shows PL spectra of undoped and Tm-
doped type-II GaN crystals.

We immediately see that the main emission line in
undoped n-type crystals (with a high shallow-donor
concentration) is the A0x line associated with the exci-
ton bound to a neutral acceptor (361 nm, 3.454 eV) and
that the emission band characteristic of DAR (peaks at
3.25 and 3.17 eV) is weak (curve 1 in Fig. 2). The total-
ity of our experimental data suggests that we witness in
this case a shift of the line of the bound exciton involv-
ing a neutral donor (D0x) to longer wavelengths, an
effect induced by tensile stresses.

Tm doping of type-II GaN crystals (curve 2 in Fig. 2)
brings about a change in the shape of NEPL spectra.
The emission line does not change its position (as com-
pared to that of the undoped crystal), but one clearly
sees a broadening of this line and an increase in the
DAR band intensity, as well as the appearance of emis-
sion lines characteristic of the Tm intracenter f−f tran-
sition in the short- (477 nm, 2.597 eV) and long-wave-
length (790, 808, 820 nm) regions of the spectrum. The
doping-induced increase in the DAR band intensity of
GaN〈Tm〉  crystals may indicate that the dopant is a
shallow acceptor. This is typical of crystals with defects
forming deep levels in the bandgap of the starting semi-
conductor matrix, as is the case with Sm doping [4].

Note also the high intensity of the emission line typ-
ical of the Tm intracenter f−f transition in type-II GaN
crystals as compared to the intensity of the same line
observed in type-I GaN crystals. Most probably, the
concentration of optically active Tm3+ centers in type-
II GaN is higher than that in type-I crystals because of
the difference in the local environment between these
centers [7], and this is what accounts for the enhanced
intensity of the lines produced in the Tm intracenter f−f
transitions.
PHYSICS OF THE SOLID STATE      Vol. 47      No. 7      2005
Time-resolved spectra obtained by varying the gate
delay time in type-II undoped crystals with deep
defects exhibit the same pattern as those reported in [4],
i.e., for crystals with defects creating shallow levels in
the bandgap of the semiconductor matrix. The pattern
of time-resolved spectra obtained by varying the time
delay for type-I crystals did not differ from that charac-
teristic of crystals having primarily shallow levels in
the bandgap [8].

4. CONCLUSIONS

It has been shown that the rare-earth Tm ion incor-
porated into GaN samples with defects forming deep
levels (irrespective of their concentration) acts as an
acceptor. We have observed intracenter f−f transitions
characteristic of Tm in the short- and long-wavelength
spectral regions. The emission intensity at short wave-
lengths is stronger in type-II crystals, and that in the
long-wavelength region is the same in crystals of types I
and II.
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Abstract—Our earlier experimental data on the thermal conductivity of porous glass and of the porous glass +
NaCl composite in the temperature interval 25–300 K are analyzed from a different standpoint. It is shown that
the thermal conductivity of sodium chloride filling randomly arranged nanochannels in porous glass behaves
exactly like that of a strongly disordered crystalline system and can be described in terms of Einstein’s model
of the thermal conductivity of solids. © 2005 Pleiades Publishing, Inc.

l

Our earlier study [1] of the thermal conductivity of
the porous borosilicate glass + NaCl composite (κcomp)
carried out in the temperature interval 5–300 K yielded
an interesting result: the thermal conductivities of the
composite and of porous glass (κpg) in the interval 5–
25 K turned out to be equal (κcomp = κpg).

An analysis of the experimental data revealed that,
in this temperature region, the thermal conductivity of
NaCl embedded in nanochannels of porous glass (κNaCl)
is substantially smaller than that of the matrix (κNaCl !
κpg) and, therefore, introduces only an insignificant
contribution to κcomp. In [1], we searched primarily for
the physical factors responsible for the small values of
κNaCl at 5–25 K.

In the range 25–300 K, κcomp was found to be larger
than κpg, as should be the case in conventional compos-
ite materials. Therefore, the behavior of κcomp(T) within
this temperature interval was not adequately analyzed
in [1].

In [2], we also studied the behavior of the thermal
conductivity of NaCl in the opal + NaCl nanocomposite

( ) at 5–300 K in the case where sodium chloride
filled all first-order voids in the opal; these voids form
a close-packed, face-centered cubic lattice.

It is of interest to compare (within the same temper-
ature interval) the behavior of the thermal conductivity
of NaCl filling the regular voids in opal with that of
NaCl forming clusters in the randomly distributed
nanochannels of a porous glass. To do this, we make
here a more detailed analysis of the experimental data
reported in [1] on the thermal conductivity of porous
glass and of the porous glass + NaCl composite relating
to the range 25–300 K.

The technique used to prepare the porous glass and
the porous glass + NaCl composite was described in

κNaCl
op
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[1]. Figure 1 displays the temperature dependences of
their thermal conductivities obtained in [1]. We also
took from [1] information on the structural features and
the values of some physical parameters of this compos-
ite, which turned out to be necessary in analyzing
experimental data on its thermal conductivity.

Sodium borosilicate glasses consist of SiO2, B2O3,
and Na2O3, with SiO2 accounting for 80 to 96% of the
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Fig. 1. Temperature dependences of the thermal conductivity
of (1) porous borosilicate glass and (2) the porous glass +
NaCl composite [1].
© 2005 Pleiades Publishing, Inc.
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sample volume. Chemical etching removes sodium and
boron oxides from the original material, leaving porous
glass in the form of an array of close packed spheres of
amorphous SiO2 with various diameters. The space
between these spheres (porosity) may add up in glasses
to ~20–30% of the sample volume, and the diameters of
the randomly distributed pores (channels) may vary
from 30 to 150 Å. The channel diameter in the porous
glass samples studied in [1] was ~70 Å.

The porous glass + NaCl composite was obtained in
[1] by immersing a sample of porous glass in an aque-
ous solution of NaCl. NaCl occupied 1/4 of the pore
volume of the sample.

The crystal structure of an opal is also made up of
amorphous SiO2 spheres [2, 3]. There are, however, two
substantial differences from the case of porous glasses.

(i) The amorphous SiO2 spheres forming the opal
are fairly complex in structure. The crystal structure of
the opal is made up of close-packed amorphous SiO2
spheres of the same diameter (most frequently, ~2000–
2500 Å), usually called first-order spheres. These
spheres contain an array of close-packed amorphous
spheres of a smaller size, ~300–400 Å (second-order
spheres), which are likewise formed of close-packed
amorphous particles ~100 Å in size (third-order
spheres).
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Fig. 2. Temperature dependence of the thermal conductivity
of porous borosilicate glass. Solid lines 1 and 2 are data
from [1] and [9], respectively; (3, 4) thermal conductivity
calculated for porous glasses using Eq. (2) [7] for porosities
of 30 and 20%, respectively; and (5) calculation from
Eq. (3) [11, 12] for 30% porosity.
PH
(ii) First-order amorphous SiO2 spheres form face-
centered cubic structures with giant lattice parameters
(~3000–4000 Å).

The dimensions and arrangement of the voids
between the SiO2 spheres in opals and porous glasses
are also substantially different. The opal lattice has
octahedral and tetrahedral voids interconnected by
horn-shaped channels with bottlenecks ~100 Å in
diameter. By analogy with amorphous SiO2 spheres,
the voids can also be grouped as belonging to first, sec-
ond, or third order. The average diameters of octahedral
and tetrahedral voids and of channels of the first order
are 800, 400, and 300 Å, respectively. First-order voids,
just as the amorphous SiO2 spheres, form a face-cen-
tered cubic structure with a lattice parameter of ~3000–
4000 Å. First-order opal voids can be filled to 100%
of their volume by various fillers using a variety of meth-
ods [2, 3] to produce opal-based three-dimensional
opal + filler nanocomposites, which can be conceived
of as two nested cubic lattices of the matrix and the
filler.

In this study, we are interested only in the behavior
of the thermal conductivity of NaCl infiltrated into
voids of the opal + NaCl nanocomposite [2].

In the studies devoted to analyzing experimental
data on the thermal conductivity of opals [4], opal-
based nanocomposites, and fillers embedded in first-
order opal voids (PbSe [5], HgSe [6], NaCl [1]), the
Litovskiœ formula [7] was used:

 (1)

where ν = κpor/κmat; κcomp, κpor, and κmat are the thermal
conductivities of the composite, the filler occupying its
pores, and the composite matrix, respectively; and p is
the filler concentration in the composite.

The value of κcomp of the porous glass + NaCl nano-
composite was estimated in [1] using the fairly crude
Odelevskiœ formula [8], which is not very sensitive to
the structural features of a composite. In order to com-
pare the thermal conductivities of NaCl filling regular
first-order opal voids [2] and randomly distributed
nanochannels in porous glass, we have to estimate the
thermal conductivity of the latter also from Eq. (1), as
has been done in analyzing data on the thermal conduc-
tivity of NaCl in opal [2].

Figure 2 compares the experimental temperature
dependences of the thermal conductivities of samples
of porous glass studied in [1, 9] with those calculated
from the Litovskiœ formula for porous solids [7]1 

 (2)

1 The calculation of the thermal conductivity of the porous glass
studied in [9] is presented here to illustrate (and verify) the possi-
bility of using Eq. (2) to describe the behavior of the thermal con-
ductivity of porous solids.

κ comp/κmat 1 p–( ) 1 p– p4 ν ,+=

κpg κ0 1 p'–( ) 1 p'– ,=
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where p' is the glass porosity and κ0 is the thermal con-
ductivity of amorphous SiO2 [10]. The calculated and
experimental thermal conductivities of these samples
coincide, and the glass porosities derived using the data
from [1] and [9] turned out to be 30 and 20%, respec-
tively. The fact that the porosity of the sample studied
here is 30% is also supported by calculations of its ther-
mal conductivity based on the widely used Maxwell
formula [11, 12] (Fig. 2)

 (3)

The calculation with Eq. (3) was performed assuming
d = 2, which corresponds to cylindrical pores.

Figure 3 presents the calculated thermal conductiv-
ity of NaCl clusters (κNaCl) located in randomly distrib-
uted nanochannels of porous glass. The calculation was
performed with Eq. (1) assuming κmat = κ0 and κpor =
κNaCl. The quantity κcomp(T) was calculated with due
account of the porosity left as a result of partial filling
of empty channels in the glass by sodium chloride.

For comparison, Fig. 3 also shows data on the ther-
mal conductivity of NaCl single crystals: pure NaCl,
NaCl with an Ag impurity [10], a strongly disordered
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Fig. 3. Temperature dependence of thermal conductivity.
(1) NaCl in nanochannels of porous glass (κNaCl); (2, 3) NaCl

single crystal, pure and with the addition of 3 × 10–4 at. %
Ag, respectively, [10]; (4) NaCl in first-order opal voids (the

case of 100% filling of the voids by NaCl) ( ) [2];

(5) (NaCl)0.14(NaCN)0.76 [13]; and (6) calculated “mini-
mum” thermal conductivity for bulk crystalline NaCl
(κmin) [13].

κNaCl
op
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(NaCl)0.14(NaCN)0.76 system [13], and NaCl in first-
order opal voids (under 100% filling) [2].2

The determination of κNaCl in porous glass channels
yielded an unexpected and interesting result. In the tem-
perature interval 25–300 K, this quantity was found to be
close to the thermal conductivity κmin(T) for NaCl
obtained in [13] using a modified Einstein relation for the
thermal conductivity of solids [14] (see [13, Eq. (17)]).3 

The modified Einstein model of the thermal conduc-
tivity of solids divides a sample into randomly distrib-
uted regions in which the atomic Einstein oscillators
are coherent but there is no coherence among these
regions. Einstein’s model describes fairly well the tem-
perature dependence of heat capacity [15] but does not
fit the temperature dependence of thermal conductivity
of crystalline solids. This model is satisfied by amor-
phous (Figs. 4, 5) and strongly disordered crystalline
materials (Figs. 3, 5)4 [13, 16]. It still remains unclear
why Einstein’s model of thermal conductivity fits well
the behavior of the thermal conductivity of NaCl filling

2 Later on, we will discuss the data in Fig. 3 more comprehen-
sively.

3 In [13], a brief account is given of Einstein’s theoretical study
published in 1911 [14].

4 For instance, the thermal conductivity of the strongly disordered
(NaCl)0.14(NaCN)0.76 system (curve 5 in Fig. 3) at T > 100 K
approaches κmin(T) for NaCl [13].
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Fig. 4. Comparison of experimental data on the thermal
conductivity of amorphous Se and SiO2 [13] (dashed lines)
and crystalline NaCl located in the form of clusters in ran-
domly distributed nanochannels of porous glass (points)
with the values of κmin [13] calculated for the correspond-
ing crystalline solids (solid curves).
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randomly distributed channels in porous glass. X-ray
data show NaCl in the porous glass sample under study
to be a clearly defined crystalline solid with a lattice
constant a = 5.641(1) Å (the tabulated value of a for
sodium chloride is 5.6402 Å). There is no information
suggesting that the NaCl in channels of porous glass is
strongly defective.

It might seem, at first glance, that Einstein’s model
fits well the behavior of the thermal conductivity of
NaCl filling channels in porous glass. NaCl nanoclus-
ters with a regular lattice are randomly distributed over
the matrix channels. Thermal contact among the clus-
ters is established through the glass matrix. A more sub-
stantiated conclusion on the reasons behind the unusual
behavior of κNaCl(T) can apparently be drawn only after
the fine crystal structure of the NaCl clusters located in
the porous glass channels has been studied (after their
dimensions and geometric arrangement in channels of
porous glass have been determined).

Figure 4 compares experimental thermal conductiv-
ity data obtained for NaCl in channels of porous glass
with those for amorphous Se and SiO2 [13]. The ther-
mal conductivities of these three materials behave in
approximately the same way with respect to the corre-
sponding values of κmin(T). Note, however, a certain
difference in the course of the thermal conductivity of
Se and SiO2 from that of κNaCl(T). As the temperature is
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Fig. 5. Comparison of experimental and theoretical (κmin)
values of the thermal conductivity at 300 K for some (1)
amorphous and (2) strongly disordered crystalline solids.
The data, except point 3 for NaCl (κNaCl), were taken from
[13, 16].
PH
lowered (T ≤ 50 K), the thermal conductivities of Se
and SiO2 deviate from the values for the corresponding
κmin(T). As pointed out in [13, 16], this behavior is asso-
ciated with the phonon mean free path l in these mate-
rials increasing with decreasing temperature. By con-
trast, κNaCl(T) in channels of porous glass remains close
to κmin(T) for NaCl down to the lowest temperatures
covered. This behavior of κNaCl(T) can apparently be
assigned to the fact that the mean free path l for NaCl
in porous glass channels does not grow with decreasing
temperature, because phonons are scattered from the
walls of the channels filled by sodium chloride (or from
NaCl nanocluster boundaries).

In Fig. 5, the experimental thermal conductivities at
300 K for some amorphous and strongly disordered
crystalline solids [13, 16] are compared with the values
of κmin calculated for the same temperature from Ein-
stein’s relation. The values of the thermal conductivity
of NaCl confined to nanochannels of porous glass are
seen to group together with the classes of materials
mentioned above.

Based on a different theoretical model, Slack [17]

obtained values (let us denote them by (T)) close to
κmin(T) as calculated with Einstein’s model [13, 16].

The values of (T) are reached when the mean free
path of phonons becomes comparable to the phonon
wavelength, i.e., when the Ioffe–Regel criterion [18,
19] is satisfied. According to the calculations per-
formed by Slack [17], the thermal conductivity of pure
alkali halide crystals approaches the corresponding val-
ues of κmin only at temperatures close to the melting
points of these materials.

One of the aims of the present study was to compare
the behavior of the thermal conductivity of NaCl con-

fined to regular opal voids ( ) with that of NaCl
occupying randomly distributed nanochannels of
porous glass (κNaCl).

Let us return to the plots of thermal conductivity
presented in Fig. 3. Curves 1 and 4 represent κNaCl(T)

and (T). The thermal conductivities of NaCl in the
opal and in porous glass are seen to differ strongly in
terms of magnitude and temperature behavior. It is even
more significant that their behavior in these two porous
media is governed by different physical mechanisms.

Indeed, at low temperatures (T < 20 K), (T) is
governed by phonon boundary scattering from bottle-
necks (~100 Å in diameter) of regularly spaced horn-
shaped channels interconnecting first-order octahedral
and tetrahedral voids in opal filled by sodium chloride,
whereas in the high-temperature range (50–300 K)
phonon scattering is due to specific defects that form in
sodium chloride because of its being confined to opal
voids [2].

κmin
Sl

κmin
Sl

κNaCl
op

κNaCl
op

κNaCl
op
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Sodium chloride in randomly distributed nanochan-
nels of porous glasses apparently behaves like a
strongly disordered crystalline structure whose thermal
conductivity can be described in terms of Einstein’s
model.

In closing, we note that the values of κNaCl(T) calcu-
lated in this work are not in conflict with experimental
data obtained for the temperature interval 5–25 K and
with the conclusion [1] that κpg is equal to κcomp in this
temperature region because κNaCl ! κpg in the compos-
ite. The results of the present study do indeed suggest
that κNaCl ! κpg (Figs. 2, 3).
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Abstract—Tetragonal paramagnetic centers with spin S = 7/2 were detected in x-ray-irradiated BaF2 : Fe
(cFe ≈ 0.002 at. %) crystals using the EPR method. Electronic transitions between the |±1/2〉  states of a Kramers
doublet were observed in the X and Q ranges. In the EPR spectra of the tetragonal centers, a ligand hyperfine
structure (LHFS) was observed corresponding to the interaction of the electron magnetic moment of the tetrag-
onal center with eight equivalent ligands. The large spin moment, significant anisotropy of the magnetic prop-
erties, and the characteristic LHFS indicate that the tetragonal center is a Fe1.5+–Fe1.5+ dimer in which the two
iron ions are bound via superexchange interaction. It is assumed that, before crystal irradiation, this dimer was
in the Fe3+(3d5)–Fe+(3d7) state. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The iron impurity centers in fluorite-structure crys-
tals have been studied by several research teams. The
authors of [1, 2] studied CdF2 : Fe and CaF2 : Fe crys-
tals using the EPR method. At a frequency of 9.3 GHz
and T = 4.2 K, they observed the EPR spectra of tetrag-
onal paramagnetic centers. These spectra were attrib-
uted to electronic transitions |MS = +2〉   |MS = –2〉  in
impurity Fe2+(3d6, 5D) ion clusters with an effective
electron spin S = 2. The authors of [1, 2] assumed that
other EPR transitions do not take place due to large ini-
tial splittings, which arise in the system of the cluster
spin levels due to the static Jahn–Teller effect. CdF2 : Fe
crystals have also been studied using optical [3, 4] and
Mössbauer [5, 6] spectroscopy. In those studies, it was
shown that the Jahn–Teller effect is much more pro-
nounced in the excited orbital triplet 5T2g of the
[FeF8]–6(Oh) cubic cluster, which forms in the CdF2 : Fe
crystal during its doping. In addition to clusters of indi-
vidual impurity Fe2+ ions, the authors of [6] observed
clusters of individual Fe3+ ions associated with charge
compensation defects and Fe2+ ion dimers. It was indi-
cated that a large amount of Fe2+ dimers are contained
in CdF2 : Fe samples with a high content of impurity
iron. It turned out [6] that the concentration of impurity
iron dimers significantly deviates from the Poisson dis-
tribution. This fact obviously suggests that condensa-
tion of individual iron centers into dimers is energeti-
cally favorable.

In this paper, we report on the results of an EPR
study of BaF2 : Fe crystals. As shown in our preliminary
study [7], the diffusion coefficient of impurity iron ions
in BaF2 crystals at temperatures close to their melting
points is so high that impurity clusters with a regular
1063-7834/05/4707- $26.00 1254
structure can be synthesized. As in CdF2 : Fe [6], the
tendency of complexes of individual iron ions toward
condensation into multinuclear clusters was detected in
the crystals under study. However, the case considered
in this paper differs from that in [6] in the fact that the
synthesis of impurity clusters is possible not only in
powders but also in single-crystal samples. This offers
great opportunities for studying the structure and mag-
netic properties of synthesized clusters using the very
informative method of EPR.

2. EXPERIMENT AND RESULTS
BaF2 : Fe crystals were grown using the Bridgman

method in graphite crucibles in a helium atmosphere
with fluorine impurity introduced in the form of a fine-
dispersed metal powder. The temperature gradient in
the crystallization front region was 10 deg/mm. The
grown samples were studied using the EPR method in
the X and Q ranges at temperatures of 4.2 and 77–80 K.
EPR spectra of at least two types of centers with integer
spins and tetragonal symmetry of the magnetic proper-
ties were observed in grown (but not irradiated) sam-
ples of BaF2 : Fe crystals with an impurity iron concen-
tration of 0.2 mol % at 4.2 K. The lines of these spectra
have no hyperfine structure and are not observed at
77 K and above.

After 30-min room-temperature irradiation with x
rays, the spectra of another three types of centers fea-
turing half-integer spins appear in addition to the
above-mentioned spectra. The line intensities of centers
with integer spins appreciably decrease after sample
irradiation. All the new (radiation-induced) centers fea-
ture an allowed ligand hyperfine structure (LHFS). It
was established in [7] that two types of radiation cen-
© 2005 Pleiades Publishing, Inc.
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Fig. 1. EPR spectra of type-III paramagnetic centers in a BaF2 : Fe crystal for various orientations of an external dc magnetic field:
(a) 〈001〉  || B0 || z, (b) 〈010〉  || B0 ⊥  z, and (c) 〈100〉  || B0 ⊥  z. T = 4.2 K and νEPR = 37.1 GHz.
ters are formed by individual impurity ions Fe3+(3d5,
6S) associated with a compensator of an excess positive
charge (an interstitial fluorine ion). The differences
between their magnetic properties are caused by the
difference in the relative positions of the Fe3+ ion and
the charge compensator.

In this study, we expand on the third type of centers
(III). In some samples, the concentration of these cen-
ters appeared higher than the concentration of centers
of individual impurity Fe3+ ions. The resonant magnetic
field of the central line of the group corresponding to
magnetically equivalent type-III centers varies in a very
wide range as the vector B0 rotates in the 〈110〉  and
〈001〉  crystal planes. The minimum values of the reso-
nant magnetic field in the X and Q ranges at T = 77 K
correspond to effective g factors of 8.243 and 8.224,
respectively. The maximum value of the resonant mag-
netic field corresponds to an effective g factor of 2.002
(in the X and Q ranges). Three magnetically nonequiv-
alent ensembles of type-III centers are observed simul-
taneously. Their EPR spectra reveal an LHFS (Fig. 1),
which explicitly indicates ligand hyperfine interaction
(LHFI) with the magnetic nuclei of eight equivalent flu-
orine ions (IF = 1/2). The angular dependences of reso-
nant magnetic fields of the central lines of the EPR
spectra of the three groups of magnetically nonequiva-
lent type-III centers in the BaF2 : Fe crystal are shown
in Fig. 2. Curves 1–4 and 5 show the centroid positions
of the groups of nondegenerate and doubly degenerate
EPR lines, respectively. The angle ϑ1 defines the orien-
tation of the external dc magnetic field (B0) during its
rotation in one of the 〈001〉  crystallographic planes of
the sample, and the angle ϑ2 corresponds to one of the
〈110〉  planes. The shape of these curves gives reason to
state that these centers are tetragonal.
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3. DISCUSSION 
OF THE EXPERIMENTAL RESULTS

Based on the values of the components of the effec-

tive tensor geff (  = 2.002,  = 8.243) and the shape
of curves 1–5 in Fig. 2, the spin of the type-III center
can be determined. Above all, it seems obvious that the
spin of this center is half-integer and the observed spec-
trum corresponds to EPR transitions between the |MS =
+1/2〉  and |MS = –1/2〉  states. It is also clear that the ini-
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Fig. 2. Angular dependences of resonant magnetic fields of
the central lines of the EPR spectra of three groups of mag-
netically nonequivalent type-III centers in a BaF2 : Fe crys-
tal. T = 4.2 K and νEPR = 37.1 GHz.
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tial splitting of the spin levels is much larger than the
energy quantum corresponding to the Q range of an
EPR spectrometer. It can be shown that the spin of the
type-III center cannot be smaller than S = 5/2. More-
over, it is reasonable to argue that the most probable
value is 7/2. Indeed, the effect of states |MS = ±3/2〉 ,
|MS = ±5/2〉 , etc. on the magnetic properties of the
|±1/2〉  Kramers doublet at a large initial splitting is gen-
erally reduced to increasing the actual value of g⊥  by
factors of approximately 2, 3, and 4 in the case of S =
3/2, 5/2, and 7/2, respectively. It is clear that the value

 = 8.243 is almost improbable at S = 3/2, because
the actual value of g⊥  would be greater than 4 in this
case. If we assume that S = 5/2, then it is unclear why
the electron Zeeman interaction is highly anisotropic
(in this case, the actual value of g⊥  should be approxi-
mately equal to 2.7). The reason for this anisotropy is
very difficult to explain, at least in the case where a sin-
gle impurity Fen+ ion is in the neighborhood of eight
equivalent fluorine ions (n is an odd integer in this
case). Furthermore, experimental statistics associated
with the doping of ionic crystals should be taken into
account. From the viewpoint of this statistics, it seems
unlikely that the effective charge of the Fen+ ion can dif-
fer significantly from the charge of the Ba2+ ion substi-
tuted for it (the Ba2+ charge is close to 2+), since the lat-
tice energy should strongly increase in this case.

Let us discuss this situation in more detail. Among
the cases possible, we first mention the Fe3+ ion, which
is in the ground state with electronic configuration 3d5.
In the free state, its ground term is 6S and the total spin
is S = 5/2. Since the orbital angular momentum of the
free Fe3+ ion is almost zero, there is no reason to expect
large deviations of g⊥  from 2.0023. Thus, the case with
Fe3+ in the 3d5(6S) state is excluded. Now, let us con-
sider the case where the impurity Fe3+ ion in the crystal
is in the state with electronic configuration3d44s. We
assume that the Hund rule is satisfied. In this case, the
6D term will most likely be the ground state. In the
cubic crystal field, the ground state will be the orbital
doublet 6Eg. Therefore, in the impurity cluster formed,
the static Jahn–Teller effect is possible, which is asso-
ciated with the interaction of the impurity ion with tet-
ragonal-symmetry nuclear vibration. However, the
spin–orbit coupling in the Fe3+(3d44s) ion is unlikely to
be much larger than 100 cm–1. Therefore, the effect of
this coupling on the 6Eg ground-state doublet is only a
second-order correction of the perturbation theory. For
this reason, the value g⊥  = 2.7 seems unlikely. More-
over, the static Jahn–Teller effect should be considered
in this case. Due to this effect the eight ligands of the
iron ion become nonequivalent, which contradicts
observations.

Let us consider the possibility that S = 7/2. Here, it
should be emphasized that this value of the total spin
seems impossible for iron-group ions. However, there

g⊥
eff
PH
is a low probability that the electronic configuration
3d54s4p with parallel electron spins can be the ground
state of the Fe+ ion under the crystal field. The monov-
alent state itself is not unexpected for the impurity iron
ion in crystals. However, the probability that this con-
figuration is the ground state in the crystal field seems
low. Although it was shown in [8, 9] that the ground
state of the Mn+ ion in CaF2 and SrF2 crystals is the
3d54s configuration with spin S = 3, it seems more prob-
able that the type-III center is the exchange-coupled
pair Fe2+(3d6)–Fe+(3d7). Let us consider this assump-
tion. It is known that the ground state of the free Fe2+

ion is the 5D term. In a cubic field, the ground state is
the orbital doublet 5Eg; hence, the static Jahn–Teller
effect is possible. Since the matrix elements of the
spin–orbit coupling operator for the 5Eg representation
are zero, the static Jahn–Teller effect can bring about
the formation of a system of five ground levels sepa-
rated from the other states of the Fe2+ ion by a wide
energy interval. As is known, the magnetic properties of
this system of levels can be described in terms of the
effective spin Seff = 2 and the spin Hamiltonian of tet-
ragonal symmetry.

The ground state of the free Fe+(3d7) ion is the 4F
term. In a cubic field, this term is split and the ground
state becomes the orbital singlet 4A2. In this case, the
vibronic interactions cannot be efficient. Therefore, the
four ground states corresponding to the different pro-
jections of the total spin S = 3/2 form a spin quadruplet.
Under the influence of the axial component of the crys-
tal field induced by a neighboring Fe2+ ion, this quadru-
plet is split into two Kramers doublets, |MS = ±1/2〉  and
|MS = ±3/2〉 . Thus, under steady-state conditions, the
low-temperature magnetic properties of the Fe2+(3d6)–
Fe+(3d7) pair can be approximately described by the
spin Hamiltonian

 (1)

where S1 and S2 are the electron spin operators of the
fragments of the impurity dimer formed by individual
Fe2+(3d6) and Fe+(3d7) ions with S1 = 2 and S2 = 3/2,
respectively; J is the tensor of the exchange interaction
between the fragments of this pair; g1 and g2 are the ten-
sors of the electron Zeeman interaction of the pair frag-
ments with an external magnetic field; βe is the Bohr
magneton; B0 is the external magnetic field; and

(S1) and (S2) are the Stevens spin operators.

The experimental facts we obtained suggest that the
exchange interaction in the dimer is ferromagnetic and
much stronger that the interaction with the external
magnetic field. The ground states in the dimer are eight
states whose transformation properties can be approxi-
mately described by the total spin S = 7/2. The EPR

HS S1 J S2 βeS1 g1 B0 B2
0O2

0 S1( )+⋅ ⋅+⋅ ⋅=

+ βeS2 g2 B0 B2
0O2

0 S2( ),+⋅ ⋅

O2
0 O2

0
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spectra shown in Fig. 1 also suggest that the electronic
state of the Fe2+(3d6)–Fe+(3d7) dimer is not stationary.
Indeed, in the cubic BaF2 crystal, an electron jump from
the Fe+ to the Fe2+ ion can result in the formation of the
energetically equivalent Fe+(3d7)–Fe2+(3d6) state of the
dimer. It seems that the barrier to electron transfer from
one dimer fragment to the other is insufficiently high;
therefore, the frequency of electron jumps is higher
than the EPR frequency. This resulted in the EPR spec-
tra representing an averaged pattern in which both
impurity ions (dimer fragments) are in the (1.5+)
valence states (with a mixed valence) and the dimer
molecular structure features D4h symmetry. In this case,
the sixteen fluorine ions belonging to the first coordina-
tion shells of the two iron ions are separated into two
groups (with eight equivalent F– ions in each group). It
is clear that the bond between the iron ions in the dimer
caused their displacement towards each other. The
LHFI with one group of ligands became stronger than
the interaction with the other group. As a result, the
LHFS corresponding to the LHFI with the group or
more distant ligands is not resolved and only the
resolved LHFS caused by the interaction with the other
eight ligands is observed.

Thus, in the case of the half-integer spin, the equiv-
alence of the eight fluorine ions in orientations 〈001〉  ||
B0 || z and 〈010〉  || B0 ⊥  z clearly indicates that the ions
of the impurity pair rapidly exchange electrons and that
each event of such exchange (superexchange) corre-
sponds to a tunneling transition of this pair from one
well of the adiabatic double-well potential [correspond-
ing to the Fe2+(3d6)–Fe+(3d7) state] to the other well
[corresponding to the Fe+(3d7)–Fe2+(3d6) state]. Hence,
the averaged molecular structure of the radiation-
induced Fe1.5+–Fe1.5+ dimer has the form shown in
Fig. 3 (bold lines represent the bonds of iron ions with
the ligands for which the LHFI is detected in the EPR
spectra).

As mentioned above, the crystal contains tetragonal
centers with an integer spin that transform into type-III
centers under irradiation. If our interpretation of the
type-III centers is correct, one of the ensembles of cen-
ters with an integer spin corresponds to the Fe3+–Fe+

impurity pair. The high concentration of these pairs in
the crystal is explained by the fact that the Coulomb
interaction of uncompensated charges of two individual
centers (Fe3+, Fe+) favors the formation of these impu-
rity pairs. An example demonstrating that the forma-
tion of pairs from impurity centers with unlike uncom-
pensated charges can be favorable is the formation of
titanium ion dimers in SrF2 : Ti crystals [10]. In some
SrF2 : Ti crystal samples, the titanium dimer concentra-
tion was tens times higher than that of centers of single
titanium ions.
PHYSICS OF THE SOLID STATE      Vol. 47      No. 7      2005
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Abstract—The advantages and disadvantages of the method of automatic analysis of electron backscattering
diffraction (EBSD) patterns for studying spatial orientation distributions are considered as compared to trans-
mission electron microscopy (TEM). A misorientation spectrum in a test alloy (Kh20N80 alloy) having a high
content of annealing twins is experimentally studied using both TEM and EBSD, and the results obtained are
compared. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Until recently, two radically different materials sci-
ence approaches to the description of polycrystalline
microstructures had been conventionally distinguished.
In one of them, the morphology of crystallites is
described, their characteristic sizes are measured, and
so on; such methods can conventionally be called “met-
allographic” [1]. As a rule, such experiments are per-
formed with optical and scanning (or, less often, trans-
mission) electron microscopy. The aim of the other
approach is to study a crystal lattice, namely, its pre-
ferred orientation (texture), internal stresses, etc.; such
studies, as a rule, are conducted using x-ray diffraction.
The methods used in this approach can conventionally
be called “x-ray diffraction” methods [2]. For a long
time, these two approaches to the integrated description
of a microstructure were employed independently and
they helped make it possible to achieve significant
progress in studying structural evolution during heat or
mechanical treatment.

However, to refine the knowledge of certain pro-
cesses occurring in solids (e.g., martensitic transforma-
tions, twinning, fragmentation), it is necessary to obtain
qualitatively novel information that could not be
obtained by using these two approaches separately. A
technique is needed that combines these two
approaches and allows the determination of local crys-
tallite orientations. Until recently, this problem had
been solved using only one method, namely, transmis-
sion electron microscopy (TEM). A fundamentally new
method for microstructural studies in which the spatial
orientation distributions are examined makes it possi-
ble to measure a radically new microstructural charac-
teristic, the misorientation of neighboring crystallites.
1063-7834/05/4707- $26.00 1258
This method, alongside other factors, has given impe-
tus to the rapid development of the concepts of plastic
flow of metals at the stage of large (developed) defor-
mation [3].

The recently developed method of automatic analy-
sis of electron backscattering diffraction patterns
(EBSD analysis) likewise enables one to study spatial
orientation distributions. In this respect, this method
competes with TEM. Currently, EBSD is being more
and more extensively applied to investigate the micro-
structure of crystalline materials. However, we believe
there is a lack of publications in Russia dealing with the
analysis of the specific features, advantages, and disad-
vantages of this new method as compared to the tradi-
tional TEM method. This circumstance makes it diffi-
cult to interpret EBSD data and compare them with
TEM results.

The goal of this work is to compare the EBSD-scan-
ning method and TEM as applied to investigate spatial
orientation distributions. We hope this information will
prove useful in studies with an EBSD attachment and in
interpreting experimental data obtained with this
attachment.

2. EXPERIMENTAL

We studied a germanium single crystal, nichrome
alloy Kh20N80 (20% chromium, 80% nickel), and
commercial-purity Grade 2 titanium.

With the germanium single crystal, we determined
the EBSD-measurement error for the misorientation
angle. The nichrome and titanium were used to experi-
mentally determine the limiting permissible error in
determining the orientation by using EBSD. We chose
© 2005 Pleiades Publishing, Inc.
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Table 1.  EBSD-scanning conditions

EBSD-scanning parameters
Material

Kh20N80 germanium single crystal grade 2 titanium

Microscope type Philips XL-30
JSM-840A

JSM-840A JSM-840A

Software for EBSD scanning TexSEM Lab.(TSL)
INCA Crystal 300

INCA Crystal 300 INCA Crystal 300

Accelerating voltage, kV 20
20

20 20

Scanning grid Hexagonal
Square

Square Square

Number of scanned regions 1
1

4 1

Scanning area, µm2 100 × 100
 131 × 61.5

72 × 47 260 × 80

Scanning step, µm 0.2
1

1 2

Total number of scanned 
points

288 711
     7620

3220 4953
titanium and nichrome as the objects of investigation
for this purpose, since they differ significantly in terms
of their lattice symmetry. The choice of the Kh20N80
alloy was dictated by the fact that it contains a high den-
sity of annealing twins (and special Σ3 60°〈111〉  bound-
aries) after a certain thermomechanical treatment. This
feature makes this alloy very convenient for performing
comparative experimental determination of a misorien-
tation spectrum by using TEM and EBSD.

The Kh20N80 alloy was hot-rolled at room temper-
ature to a 70% reduction and then annealed at 993 K for
2 h in a salt bath. As a result, the alloy underwent pri-
mary recrystallization with the formation of a uniform
structure with an average grain size of 6 µm and a low
dislocation density, which is characteristic of primary
recrystallization. The commercial-purity titanium was
in the form of a hot-rolled rod, and its structure con-
sisted of equiaxed grains with an average size of 20 µm.

TEM measurements of spatial orientation distribu-
tions in the Kh20N80 alloy were performed on a Tesla
BS-540 microscope at an accelerating voltage of
120 kV. A detailed description of the experimental pro-
cedure can be found in [4]. To determine misorienta-
tions, we used a single-reflection technique. A detailed
description of this technique and its adaptation to a
Tesla BS-540 can be found in [3] and [4], respectively.
The essence of the single-reflection technique consists
in measuring the laboratory coordinates of several (at
least two) reciprocal lattice vectors and calculating the
orientation matrix for each crystallite using the infor-
mation obtained. We determined the orientations of 54
grains and then used them to calculate the misorienta-
tions of 134 grain boundaries.

The procedure of EBSD analysis is described in
detail in [5]. In general, it consists in the following. A
PHYSICS OF THE SOLID STATE      Vol. 47      No. 7      200
sample (inclined at an angle of 70°) is placed in a scan-
ning electron microscope. An electron beam in the
microscope is contracted to its minimum size, and the
surface under study is subjected to automatic step-by-
step scanning from point to point. Backscattered dif-
fracted electrons at each scanned point form a Kikuchi
pattern on a fluorescent screen located inside the micro-
scope chamber; the image from this screen is trans-
ferred to a digital video camera. Diffraction patterns
taken at each scanned point are averaged, digitized, and
automatically identified. Then, the following data are
calculated and saved to computer: three Euler angles
characterizing the crystallite orientation, the (x, y) coor-
dinates determining the position of a point on the sam-
ple surface, a coefficient characterizing the sharpness of
Kikuchi lines, a coefficient specifying the probability
of correct orientation determination, and the phase of
the material. This process is repeated until the given
surface area of a sample is scanned. In this way, we find
the spatial distribution of crystallite orientations on the
polished-section surface to be studied. The conditions
of EBSD scanning of the materials under study are
given in Table 1.

In all cases, we described misorientations using a
description with the minimum misorientation angle of
all crystallographically equivalent descriptions. To
attribute a misorientation to a special boundary, we
used the Brandon angle criterion.

3. RESULTS AND DISCUSSION

3.1. Analysis of the Advantages and Disadvantages 
of EBSD Scanning as Compared to TEM

When studying spatial orientation distributions,
EBSD analysis has a number of advantages, which
5
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make it not only competitive with TEM but even pref-
erable in some cases. The most substantial advantages
and our comments are given below.

3.1.1. Advantages of the EBSD Analysis

3.1.1.1. Less labor-intensive preparation of sam-
ples. In many cases, the requirements imposed on sam-
ples for EBSD analysis are not much more stringent
than those for ordinary metallographic examination.
Emphasis is usually placed on three factors. First, there
must not be any oxide film on the sample surface, since
this film can substantially hinder or even falsify scan-
ning results. Second, surface-roughness requirements
are more stringent, since a sample is inclined at a sig-
nificant angle during EBSD recording and even a small
relief can significantly hinder examination. Third, a
surface to be studied must not be damaged during the
preparation of the sample for the experiment. This
requirement is especially important for materials that
can easily generate twins, e.g., for titanium; a high con-
tent of twins forming upon polishing can substantially
change the misorientation spectrum. However, even
under these restrictions, a sample for EBSD analysis is
much easier to prepare than a thin foil in many cases.
Another advantage of the EBSD analysis is the possi-
bility of studying bulk samples, since a significantly
larger surface area to be examined provides more rep-
resentative results from a statistical standpoint. More-
over, a wider range of samples, from thin foils to bulk
samples, can be investigated.

3.1.1.2. Simplicity and accessibility. Complete
automation of both the process of obtaining informa-
tion and its processing facilitates investigations.
Decreasing the amount of human labor substantially
decreases the qualifications required for an operator.
Even recently, misorientation studies have been rather
rare and have been considered an art because of the
strict skills required by the researcher for the obtain-
ment and processing of data. The increased number of
recent publications dealing with misorientation mea-
surements (mainly performed using EBSD) suggests
that such investigations are gradually becoming a regu-
lar occurrence and will eventually become routine.

3.1.1.3. High objectivity upon obtaining primary
information (by analyzing electron diffraction pat-
terns). This advantage stems, first, from the exclusion
of the human factor (error) and, second, from the more
comprehensive analysis of the electron diffraction pat-
terns. For example, in many cases, a large number of
Kikuchi lines and poles are present in the electron dif-
fraction patterns. Although it suffices to identify two
Kikuchi poles in order to determine the orientation of a
crystallite, a software program can analyze all of their
possible combinations (by extrapolating the Kikuchi
lines that intersect beyond the electron diffraction pat-
tern). Therefore, as a rule, a few solutions are obtained
and arranged according to their probabilities. The solu-
tion with the maximum probability is chosen. This cir-
P

cumstance also ensures relatively high objectivity for
subsequent data processing, e.g., for the rejection of
low-probability results. In [5], orientations were deter-
mined both by several independent operators and using
a software program. The computer determination of the
orientations was found to be more accurate.

3.1.1.4. High productivity. Complete automation
of the process, the use of high-speed processors, and
modern methods of image processing (subtraction of
the background of an electron diffraction pattern, the
Hough transforms of Kikuchi patterns [6], etc.) ensure
a data-processing rate of 1 to 25 points (electron dif-
fraction patterns) per second. Moreover, it is possible to
operate for a long time without a break. In principle, the
scanning time is only limited by the life of a cathode
(this is especially important for thermionic cathodes)
and by the extent of contamination of a sample surface
during an experiment. As shown in [7], the use of
microscopes with field-emission cathodes allows scan-
ning for a few days without a break.

3.1.1.5. Significantly larger statistical sample of
experimental results. This advantage is a consequence
of the advantages described in Subsections 3.1.1.1 and
3.1.1.4 and is one of the key advantages, since many
structural characteristics are statistical in nature; a large
sample means a better approximation to reality. This
statement refers to comprehensive study of the distribu-
tion of structural characteristics rather than to calculat-
ing their average values. For the description of such a
distribution to be most accurate, the relation between
the number of intervals n in a histogram and the size of
the experimental sample (the number of measurements)
N should be n ~ N1/3 [8]. In other words, for a sample of
1000 measurements, the most correct histogram should
contain 10 intervals. Thus, an increase in the sample
size leads to decreased intervals in a histogram (and to
an increased number of intervals) and, as a conse-
quence, to the possibility of describing a distribution
more accurately. For example, the maximum misorien-
tation angle in α titanium is about 93.8° for the descrip-
tion with a minimum angle. A sample of 30000–40000
grain boundaries (which is impossible for TEM studies)
allows a distribution to be constructed in steps of 3°,
which makes the description fairly accurate. It should
be noted that EBSD scanning describes misorientation
distributions using the boundary length rather than the
number of boundaries, which is better grounded from a
physical standpoint in some cases.

3.1.1.6. Large amount of diverse information
obtained in one scanning. This advantage is a result of
the statistical sample being relatively large and the stan-
dard software used with an EBSD attachment; in the
case of TEM, this information is either used in single
instances or is not used at all. Above all, we note the
possibility of not only obtaining microtexture data but
also comparing the orientations measured using EBSD
and x-ray diffraction (XRD). We also note a number of
advantages of the EBSD analysis as compared to stan-
HYSICS OF THE SOLID STATE      Vol. 47      No. 7      2005
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dard XRD analysis. First, since EBSD scanning pro-
vides complete information on a crystallite orientation
in a scanned area, full pole figures can be constructed
for any plane of interest. We recall that pole figures con-
structed using XRD (the tilt method), as a rule, are
incomplete (up to 65°–75°) and that constructing a pole
figure for each plane would requires a separate experi-
ment. Second, the possibility of constructing inverse
pole figures (IPFs) for a few external directions is an
advantage. As a rule, the software makes it possible to
construct them for at least three directions: the normal
to a sample surface and two preferred directions in this
plane. However, since there is complete information on
the orientation, one can process this information for any
external direction. Note that constructing an IPF for a
new direction using standard XRD analysis would
require an additional experiment and is not always pos-
sible. For example, it is impossible to construct an IPF
for a foil sample in the rolling direction. Third, the ori-
entation at each scanned point is determined experi-
mentally during EBSD analysis. Therefore, the orienta-
tion distribution function plotted from these data is
more correct than in the case of XRD (where the orien-
tation distribution function is calculated rather than
measured directly) [5].

Given the spatial orientation distribution, one can
derive information on the size of building blocks; that
is, one can determine the average grain size and con-
struct the size and specific-area distributions of grains
for a scanned surface. As a rule, the concept of a “grain”
can vary; that is, one can vary the minimum misorien-
tation angle of a boundary that completely borders a
crystallite. The grain size is frequently taken to be the
diameter of a circle whose area is equal to the grain
cross-sectional area [the so-called equal circle diameter
(ECD)] rather than the length of a random secant,
which is usually applied in metallography. The use of
the ECD is especially convenient in cases where a
change occurs both in the grain shape (e.g., its elonga-
tion) and in the grain size during structural evolution;
the use of ECD instead of the length of a random secant
allows one to detect the instant of grain refinement
more reliably.

3.1.1.7. Less labor-intensive separation of phases.
EBSD analysis offers this advantage when studying
multiphase materials (e.g., simultaneously analyzing
up to six different phases with INCA Crystal 300).
Owing to its large statistical sampling, EBSD analysis
can also be used to determine the percentage ratios of
phases.

It should be noted that these studies can also be per-
formed using TEM and, as shown in [9], even unknown
phases can be identified in certain cases.

3.1.2. Disadvantages of EBSD analysis

Apart from its obvious advantages, EBSD analysis
also has disadvantages, which are discussed below.
PHYSICS OF THE SOLID STATE      Vol. 47      No. 7      2005
3.1.2.1. Lower accuracy of orientation determi-
nation. As has been indicated in the literature, this
accuracy is 1°. Thus, the error in determining the mis-
orientation angle is about 2° (for comparison, the error
in determining the misorientation angle by using the
single-reflection technique (TEM) is about 0.5° [4]).
The main problem resulting from this large error is that
one cannot reliably detect grain boundaries with a mis-
orientation angle of less than 2°; as a rule, misorienta-
tion angle distributions of boundaries are constructed
starting from 2° or above. Therefore, the EBSD exami-
nation of low-angle boundaries and the EBSD determi-
nation of the relation between low-angle and high-
angle boundaries are rather conventional. For this rea-
son, we believe that it is more helpful to use EBSD
analysis to study variations in these structural parame-
ters (rather than their absolute values) when a material
is subjected to an external action (e.g., deformation).

In certain EBSD attachments (e.g., INCA Crystal
300), this problem can be solved by decreasing the per-
missible error for determining the orientation (or by
increasing the level of confidence for determining the
orientation) upon scanning. The points at which the ori-
entation is determined with an insufficient confidence
probability (so-called black points) are rejected
(excluded from further consideration). To reveal the
error in determining the misorientation angle, we car-
ried out EBSD scanning of a germanium single crystal
at different tolerances for orientation determination.
The results are given in Table 2.

The results of scanning are shown in Fig. 1. It is seen
that, at the minimum error of orientation determination,
the most probable error for the misorientation angle is
0.05° and the maximum error does not exceed 0.75°.1

An increase in the tolerance does not change the most
probable error of orientation determination, and the
maximum error shifts gradually to reach approximately
1.5°. Thus, our experiment shows that, with EBSD
scanning, a misorientation can be determined with an
accuracy comparable to that of TEM. However,
decreasing the tolerance for orientation determination

1 When the maximum permissible error of orientation determina-
tion was less than 1°, the software program could not determine a
misorientation; at a permissible error above 4°, high-angle mis-
orientations appeared.

Table 2.  Determination of the measurement error for the
misorientation angle measured by EBSD scanning

Maximum per-
missible error in 
orientation deter-

mination, deg

Number of misori-
entations above 0°

Maximum misori-
entation, deg

1 5954 0.79

2 3049 1.41

3 3789 1.06

4 1529 1.65
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is fraught with the rejection of a large number of points
and, thus, with the loss of a significant body of poten-
tially important information. Hence, in each specific
case, a researcher should either find a compromise
between the measurement accuracy and the body of
information obtained or perform several scannings with
different tolerances.

3.1.2.2. Lower spatial resolution. Upon TEM
examination, a crystal lattice can be resolved directly
and orientations can be determined for crystallites (as
small as several nanometers in size) that are capable of
generating single reflections [4, 9]. The resolution of
EBSD analysis is specified by the volume of a material
that backscatters electrons having an energy sufficient
for them to reach a detector. In turn, this volume
depends on both the microscope parameters (the accel-
erating voltage, the cathode heater current, the current
through a sample) and the material (the larger the
atomic number of an element, the smaller the volume).
The spatial resolution can be roughly estimated as fol-
lows. If a structure revealed during EBSD scanning is
similar (in morphology and size) to the structure
revealed by other methods (e.g., TEM), the spatial res-
olution is satisfactory. Otherwise, the resolution is most
likely unsatisfactory. An analysis of the data from [7,
10] indicates that, for thermionic cathodes, the spatial
resolution varies from 0.5 to 0.1 µm while, in the case
of field microscopy, this resolution is several tens of
nanometers. Thus, in most cases, EBSD scanning can
be used to study a structure with a characteristic size of
down to a fraction of a micron. For example, submicro-
crystalline materials were successfully investigated in
[7, 10].

3.1.2.3. Discreteness in orientation determina-
tion. During EBSD scanning, as noted above, the crys-
tallite orientation is measured at certain points on a sur-
face to be studied, which are specified by the scanning
grid and the scanning step. As a rule, the surface is thor-
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Fig. 1. Effect of the maximum permissible error in orienta-
tion determination θ on the misorientation angle distribu-
tion in a germanium single crystal (EBSD scanning).
PH
oughly polished and structural features (especially fine
features) are invisible; therefore, choosing the correct
scanning step is a problem. If the scanning step is large,
certain boundaries can be omitted; this is especially true
of low-angle boundaries, which are not spaced far apart.
At a relatively small scanning step (e.g., 0.05–0.1 µm), it
is highly probable that all boundaries (with a misorien-
tation angle of higher than 2°!) would be recorded in a
selected area. However, as the scanning step decreases,
the area to be studied also decreases (at the same
recording time). When a relatively coarse-grained
structure is examined, the entire area of scanning can
fall inside either one grain or one grain boundary.
Therefore, the fraction of high-angle grain boundaries
can be overestimated (or underestimated, respectively).
Moreover, scanning results are unlikely to be statisti-
cally representative in this case, since they are substan-
tially determined by the orientations of this grain and
the neighboring grains. Examination of an area at a
minimum scanning step requires a long time and,
hence, cannot always be accomplished (e.g., because of
a limited cathode life).

In these cases, it seems reasonable to perform a few
scannings at different steps for the same structure and
to use the totality of information to analyze the struc-
ture. In particular, to study the relation between the
fractions of low-angle and high-angle boundaries and
to examine an array of low-angle boundaries, it is rec-
ommended that data obtained at a minimum scanning
step be used. When an array of high-angle grain bound-
aries or of special and near-special boundaries (which
are usually high-angle) is analyzed, it is better to use the
results of scanning at a step at which the number of
high-angle grain boundaries becomes statistically rep-
resentative.

3.1.2.4. Significant deterioration of the scanning
quality with increasing lattice microstrain. This
deterioration occurs due to the smearing of Kikuchi
lines and results in a decreased probability of correct
orientation determination (or even in incorrect determi-
nation) and, correspondingly, in a significant increase
in the fraction of the so-called wrong points and black
points. Because of this, accurate interpretation of the
experimental data becomes difficult.

However, this fact does not mean that such materials
cannot be studied using EBSD. Our experience and the
data from [7, 10] indicate that these materials can be
analyzed in many cases. The methods for obtaining
information can conventionally be divided into three
groups.

First, experience suggests that there is a substantial
potential for increasing the quality of EBSD informa-
tion at the stage of recording. This potential consists in
the following:

(a) scanning an as-prepared surface that has been
thoroughly polished immediately before scanning;

(b) choosing a compromise combination of the
accelerating voltage, the cathode heater current, and the
YSICS OF THE SOLID STATE      Vol. 47      No. 7      2005
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sample current to reach the minimum beam size that
provides for a still sufficient intensity of backscattered
electrons (field-emission microscopy is highly desir-
able in this case);

(c) averaging images of several Kikuchi patterns
taken from the same scanned point;

(d) increasing the time it takes for an orientation to
be determined at each scanned point; and

(e) using modern achievements in image processing
(subtraction of the background of an electron diffrac-
tion pattern, the Hough transform, etc.), which allow a
computer to detect even rather weak and smeared Kiku-
chi patterns that cannot be detected by the human eye.

Second, the efficiency of scanning results can be
enhanced even at a relatively high content of black
points and wrong points.

Vorhauer et al. [10] proposed a method for extract-
ing information on the average grain size under condi-
tions with a relatively high content of black points.
They proposed constructing a misorientation angle dis-
tribution as a function of the distance between scanned
points. In other words, they proposed measuring mis-
orientations not only between neighboring points but
also between second, third, and more distant neighbor
points. It was found that, as the distance between
scanned points increases, the content of low-angle
boundaries gradually decreases and virtually disap-
pears at a certain distance between the points. This dis-
tance was considered in [10] to be the equivalent of the
average grain size. It was emphasized in [10] that, with
this method of data processing, the information
obtained can be used more completely. We would like
to add that, in this case, it is also useful to consider the
misorientation spectrum obtained for the misorienta-
tions of all possible permutations of scanned points (so-
called uncorrelated distribution). Its comparison with a
real spectrum (involving misorientations only between
neighboring points) will enable one to determine the
relation of the uncorrelated distribution to texture.

Unlike black points, which carry no information on
the structure, wrong points carry distorted information.
Therefore, wrong points are much more dangerous
from the standpoint of interpreting results; hence, it is
desirable to eliminate these points. However, this is not
easy, since, in contrast to black points (which are
clearly visible in EBSD-scanning maps), wrong points
can only be identified from indirect signs. The criterion
for their determination could be a certain error in orien-
tation determination during the interpretation of a
Kikuchi pattern. To estimate this error, we carried out
the following experiment: the software was adjusted to
titanium (hcp lattice) but was applied to scans of
nichrome (fcc lattice). In addition, we performed an
inverse experiment in which titanium was scanned
using software adjusted for nichrome. In this way, we
modeled a situation where the computer solution was
wrong in advance. Orientations were determined by the
software program with a relatively large error. The error
PHYSICS OF THE SOLID STATE      Vol. 47      No. 7      200
distribution is shown in Fig. 2. It is seen that, beginning
from an error of 3.5°–4°, the EBSD-scanning results
are extremely questionable. Note that this finding cor-
relates with the data given in Fig. 1; specifically, if the
tolerance is higher than 4°, high-angle misorientations
are detected during scanning of the single crystal (i.e.,
the result is obviously wrong). Thus, the scanned points
with this error were qualified as wrong points in orien-
tation determination and were rejected (eliminated
from consideration).

Apart from rejecting points, the software program
can also automatically change the orientations of ques-
tionable points. During this operation, to each question-
able point is assigned the orientation of one of the adja-
cent points whose orientation is determined with a min-
imum error. A similar procedure can also be used to
eliminate black points. However, it should be remem-
bered that this procedure actually entails falsification of
the experimental data. Therefore, wherever possible,
this procedure should be avoided, and questionable
points should simply be rejected.

Third, in extreme cases (when information cannot
be obtained using other methods), it is recommended to
subject a material to a low-temperature annealing to
relieve internal stresses. In some cases, this approach
gives excellent results [7]. However, it is necessary to
carefully choose the heat-treatment conditions in order
to exclude changes in the spatial orientation distribu-
tion (e.g., due to recrystallization).
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Fig. 2. Frequency distribution of the inaccuracy in orienta-
tion determination: (a) nichrome EBSD scanned as “tita-
nium” and (b) titanium EBSD scanned as “nichrome.”
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3.1.2.5. Conventionality of the computer repre-
sentation of a real structure. (i) Depending on the
scanning grid, a certain shape (e.g., a square or a hexa-
gon) is assigned to each scanning point; thus, a real
structure is “reconstructed” from these geometrical fig-
ures. If the scanning step is small as compared to the
crystallite size, this reconstruction is virtually invisible;
however, if they are comparable, the representation of a
real crystallite shape is distorted.

(ii) The misorientation spectrum obtained can
depend on the scanning grid chosen (quadratic, hexag-
onal, etc.), i.e., on the number of neighbors near each

2 µm(a)

(b)
20.00 mm = 100 steps

Fig. 3. Microstructure of a Kh20N80 alloy: (a) TEM and (b)
EBSD map.

Table 3.  Relation between low-angle and high-angle grain
boundaries in nichrome examined by TEM and EBSD

Boundary type TEM EBSD

Low-angle boundaries (misorienta-
tion angles up to 15° inclusive)

0.50 3.55

High-angle boundaries (misorien-
tation angles above 15°)

99.5 96.45

Total boundary length, µm 240 23813.8
P

point. In order to obtain as much information as possi-
ble, it is recommended that a scanning grid be used that
provides the maximum number of neighbors for each
point.

EBSD scanning is still an unusual method for struc-
tural studies. Its specific features and disadvantages
necessitate experimental verification on a real poly-
crystalline structure. In the next subsection, we com-
pare the misorientation spectra of the Kh20N80 alloy
constructed using TEM and EBSD. Unless otherwise
specified, the misorientations are reduced to the total
boundary length.

3.2. Experimental Study of the Misorientation 
Spectrum of a Test Material by Using EBSD 

Scanning and TEM

The microstructure of the Kh20N80 alloy, observed
in a transmission electron microscope, and its EBSD-
scanning map are shown in Fig. 3. It is seen that these
images are very similar. In both cases, the microstruc-
ture consists of approximately equiaxed grains (metal-
lographic texture is absent) with clear, relatively

50 10 15 20 25 30 35 40 45 50 55 60 65

(a)

(b)

5

10

15

20

25

30

35

40

45

n,
 %

50 10 15 20 25 30 35 40 45 50 55 60 65
Misorientation angle, deg

5
10
15
20
25
30
35
40
45
50
55

n,
 %

Fig. 4. Misorientation angle distribution of boundaries in
nichrome: (a) TEM and (b) EBSD. The distribution is over
the number of boundaries for TEM and over the boundary
lengths for EBSD.
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straight-line boundaries. The microstructure also fea-
tures a significant number of crystallites approximately
rectangular in shape (annealing twins) located inside
coarser equiaxed grains. As is seen from Table 3, the
misorientation spectra in both cases are characterized
by predominant high-angle grain boundaries, whose
content exceeds 95%. It should be noted that the total
length of low-angle boundaries revealed with TEM is
slightly lower than that revealed with EBSD (approxi-
mately 1 and 5%, respectively).

As follows from Fig. 4, the misorientation angle dis-
tributions of boundaries measured using these two dif-
ferent methods are qualitatively very similar. The two
histograms are characterized by a sharp peak near a
misorientation angle of 60° and a weaker maximum
near 40°, which is revealed more clearly by TEM.
Small quantitative differences should be noted: the
peak at about 60° is more pronounced in the EBSD
spectrum, and the peak at about 40° is better defined in
the TEM spectrum.

The contents and ranges of special and near-special
boundaries revealed by both methods are given in
Table 4. The results obtained using these two experi-
mental methods are seen to be very similar both quali-
tatively and quantitatively. Indeed, the total contents of
special boundaries virtually coincide, misorientation
Σ3 dominates in all cases, and the content of misorien-
tations Σ9 and Σ27 is elevated. However, there are small
quantitative discrepancies: the contents of Σ3, Σ9, and
Σ27 as revealed by TEM are slightly higher, and, on the
contrary, the contents of the other misorientations are
lower (most of them are altogether absent).

Thus, the misorientation spectra obtained with TEM
and EBSD are qualitatively similar and are character-
ized by the following common features: a predomi-
nance of high-angle grain boundaries; similar shapes of
the misorientation angle distributions of boundaries;
and high contents of special boundaries, in particular,
Σ3 boundaries. Moreover, the quantitative characteris-
tics of the spectra determined using both methods are
also quite similar. The slight discrepancies (in the rela-
tions between low-angle and high-angle boundaries
and the contents of special boundaries) are likely due to
the much larger statistical sampling in EBSD or to the
procedures used for constructing misorientation angle
distributions (distributions over the number of bound-
aries for the case of TEM and distributions over the
boundary length in the case of EBSD).2 However, these
differences are unlikely to be fundamental; therefore,
we can conclude that both methods for examining
microstructures give reproducible results. On the one
hand, this finding suggests that our experimental results
reflect the real state of things, and, on the other, these
results imply that EBSD analysis can be used to study
real polycrystalline structures.

2 When morphologically anisotropic (e.g., fibrous) structures are
studied, the results obtained using these two procedures will be
likely to differ much more strongly.
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4. CONCLUSIONS

We have compared the advantages and disadvan-
tages of EBSD scanning as compared to TEM when
studying spatial orientation distributions. The advan-
tages of EBSD analysis are the following: the possibil-
ity of examining bulk samples, less labor involved in
the sample preparation, a wider range of samples, sim-
plicity and accessibility for users, high objectivity of
the analysis of electron diffraction patterns, high pro-
ductivity, the possibility of operating for a long time
without a break, a significantly larger statistical sample
of experimental results, the possibility of studying ori-
entation distributions over grain boundary lengths, the
possibility of obtaining a large amount of diverse infor-
mation in one scanning, and less labor required to sep-
arate phases when studying multiphase materials. The
disadvantages of EBSD analysis are the following: a
lower accuracy of orientation determination, a lower
spatial resolution, discreteness in orientation determi-
nation, significant deterioration of the scanning quality
with an increase in lattice microstrain, and the conven-
tionality of the computer representation of a real struc-
ture. The misorientation spectrum of a test Kh20N80
alloy has been studied using TEM and EBSD. The
reproducibility of the results obtained by both tech-
niques implies that EBSD analysis can be used to study
real polycrystalline structures.

Table 4.  Percentage of special boundaries in nichrome mea-
sured by TEM and EBSD

Special boundary TEM EBSD

Σ3 50.7 49.55

Σ5 0.30 0.36

Σ7 0.00 0.39

Σ9 4.9 2.85

Σ11 0.00 1.00

Σ13 0.00 0.75

Σ15 0.00 0.21

Σ17 0.00 0.32

Σ19 0.00 0.46

Σ21 0.00 0.35

Σ23 0.00 0.11

Σ25 0.00 0.29

Σ27 3.2 1.38

Σ29 0.00 0.56

Total content of 
boundaries

59.6 62.56

Note: The boundaries whose content exceeds 1% are in boldface.
5
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Abstract—The structure of a CaMnO3 − δ perovskite single crystal was studied for the first time using thermal
neutron diffraction in the temperature range 300–840 K. It was detected that oxygen vacancies in the crystal are
ordered into two types of superstructure. A phase with a relative number of vacancies δ = 1/4 occupies the larg-
est volume fraction of oxide (~75%); the other volume is occupied by a superstructure with a lower vacancy
content (δ = 1/5). The oxygen deficiency in the crystal lattice was determined to be δ = 0.238. The mechanism
of oxygen vacancy ordering in the oxide is discussed taking into account its charge state. © 2005 Pleiades Pub-
lishing, Inc.
The compounds CaMnO3 − δ belong to a wide class
of nonstoichiometric ABO3 − δ oxides with a perovskite
structure. In these compounds, excess electrons are
donated by oxygen vacancies rather than by an isova-
lent impurity. Relatively long ago [1], it was indicated
that oxygen vacancy ordering can occur in oxygen-defi-
cient perovskites (with respect to the stoichiometric
composition). At small values of the parameter δ, oxy-
gen vacancies are randomly arranged in the lattice of
these oxides. However, as δ increases, an interaction
between vacancies arises and an ordered arrangement
of these defects in the lattice becomes energetically
favorable. In this case, the electrical neutrality of an
oxide with defects is provided by an adequate decrease
in the valence of transition-metal ions. Currently, the
values of δ in the CaMnO3 − δ compound near which
superstructures of oxygen vacancies can exist are
known. By using electron powder diffraction, these val-
ues were determined in [2] to be

 (1)

The main objective of this work is to study order param-
eters of oxygen vacancies in a CaMnO3 − δ single crystal
with a relatively low oxygen deficiency (0.2 < δ < 0.25).
In this case, the required experimental sensitivity,
namely, a sharp contrast of oxygen vacancies in the lat-
tice, was achieved by using thermal-neutron diffrac-
tion. Indeed, the amplitude of nuclear scattering of neu-
trons for oxygen ions is largest among the chemical ele-
ments in the oxide: bO = 0.58 × 10–12 cm, bMn = –0.37 ×
10–12 cm, and bCa = 0.47 × 10–12 cm [3].

The CaMnO3 − δ single crystal for neutron diffrac-
tion studies was grown in the Energy Research Institute

δ1 0.2, δ2 0.25, δ3 0.333, δ4 0.5.= = = =
1063-7834/05/4707- $26.00 1267
by using float-zone melting in a URN-2-ZM furnace in
an argon atmosphere, which is reducing, in contrast to
air and oxygen. Polycrystalline samples needed to grow
the crystal were prepared using a solid-phase reaction
from CaCO3 and Mn3O4 in stoichiometric ratio. The
initial synthesis was carried out at a temperature of
1100°C for 10 h. The ceramics obtained was ground,
sifted, and pressed into a cylindrical rod. Final anneal-
ing was performed at 1250°C for 10 h. The single crys-
tal growth rate was 9.5 mm/h at 1000°C in an annealing
furnace placed immediately below the crystallization
front. The grown crystal was annealed again at 1000°C
for 3 h and then was cooled slowly (for 5 h) to room
temperature. The crystallization chamber atmosphere
during the growth and annealing was maintained by
high-purity argon flowing at a rate of 10 l/h. The crys-
talline samples used for measurements were cylinders
with linear sizes d = 3 mm and l = 6 mm. The cylinder
axis was approximately parallel to the [001] crystallo-
graphic direction.

Experiments with elastic scattering of thermal neu-
trons were carried out using a special multichannel dif-
fractometer for studying single crystals [4]. The inci-
dent neutrons were formed by a double-crystal mono-
chromator made of pyrolytic graphite and deformed
germanium, and their wavelength λ was 1.567 Å.
Highly monochromatized primary beams and an opti-
mum selection of the wavelength of monochromatic
neutrons made it possible to almost completely sup-
press the effects of multiple diffraction harmonics in
the neutron diffraction pattern of the single crystal,
which significantly improved the sensitivity of the tech-
nique. For example, the relative intensity of Bragg
© 2005 Pleiades Publishing, Inc.
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reflections in the x-ray diffraction pattern of a reference
oxide crystal, which correspond to the wavelength λ/2,
was only 0.02% of the intensity of the main Bragg
reflections.

We note once again that appropriate choice of the
technique and the use of a single-crystal sample in
experiments significantly increase the reliability and
accuracy of determination of the periods of possible
oxygen vacancy ordering.

Neutron scattering patterns of the CaMnO3 − δ crys-
tal were taken at T ≥ 300 K. It is known [5] that the
compound to be studied is in the paramagnetic state in
this temperature range. This circumstance significantly
simplifies the interpretation of experimental results,
since the diffraction patterns of the crystal do not con-
tain any magnetic Bragg reflections in the paramagnetic
region.

Figures 1a and 1b schematically show the neutron
diffraction pattern of the crystal in planes of two sym-
metric sections of its reciprocal lattice, i.e., (110) and
(001), respectively. Solid circles (I) correspond to the
positions of main structural reflections. The other sym-
bols (II, III) correspond to positions of additional
reflections. As an example, Figs. 2a and 2b show two
actual diffraction patterns measured at 300 K along the

(a)

(b)

(002)

(000) (220)

(220)(000)

(220) (040)12

3

I

II

III

Fig. 1. Positions of (I) structural and (II, III) superstructural
reflections in (a) the (110) and (b) (001) planes of the recip-
rocal lattice of the CaMnO3 − δ perovskite crystal at 300 K.
P

crystallographic directions indicated by straight lines 1
and 2 in Fig. 1b, respectively (the scanning direction is
indicated by arrows). As can be seen in Figs. 2a and 2b,
all additional maxima are positioned strictly halfway
between the main Bragg reflections corresponding to
the perovskite cubic structure. In other words, the posi-
tions of additional peaks in the scattering pattern coin-
cide with the positions of reflections corresponding to
half the wavelength, λ/2 = 0.7835 Å. As mentioned
above, the relative intensity of multiple reflections is
Ihkl(λ/2)/Ihkl(λ) = 0.0002; i.e., it is very small. Under
actual conditions of exposure, the strongest multiple-
reflection signal does not exceed two counts and cannot
be detected in the diffraction pattern. Thus, all addi-
tional reflections in Figs. 1a and 1b are not multiple dif-
fraction harmonics and should be considered to be
superstructural. This superstructure is characterized by
the system of wave vectors

 (2)

The superstructural reflections, such as q2 in the (001)
reciprocal lattice plane (Fig. 1b), indicate the existence
of structural domains in the CaMnO3 − δ crystal. Vector
relations (2) uniquely define the unit cell size of the

q1 1/2 1/2 0, ,( )2π/ac, q2 0 0 1/2, ,( )2π/ac,= =

ac 3.73 Å.=

(b)
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Fig. 2. Neutron scattering pattern of the CaMnO3 − δ crystal
measured at 300 K (a) in the [110] direction with respect to

the ( ) reciprocal lattice point and (b) in the [100] direc-
tion with respect to the (030) reciprocal lattice point.
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observed superstructure. Figure 3a (solid lines) shows
the cell size in the (x, y) plane. As can be seen in
Fig. 3b, the unit cell parameter c is 2ac in the z direc-
tion. Figures 3a and 3b show the positions of manga-
nese ions (I) and oxygen anions (II); calcium ions are
not shown, since they are not involved in the super-
structure formation. Physically, the superstructure unit
cell in the crystal can be indicated only by oxygen
vacancies (III in Fig. 3). There is only one vacancy per
twelve oxygen ions in this cell. Since the unit cell
includes four oxide formula units, the number of vacan-
cies per formula unit is obviously δ2 = 0.25.

Thus, the fact that the ordered arrangement of
vacancies with density δ2 = 1/4 can exist in the bulk
CaMnO3 − δ crystal follows even from symmetry con-
siderations. Below, we will substantiate this prediction
by directly analyzing the intensities of superstructural
and structural reflections.

To substantiate the formation of superstructure (2),
it is instructive to consider its temperature dependence
in the bulk CaMnO3 − δ crystal. Two mechanisms of
thermal destruction of the oxygen vacancy superstruc-
ture are possible. One of them is associated with reduc-
tion of the sample stoichiometric composition in oxy-
gen (i.e., with a decrease in the parameter δ caused by
an increase in temperature). For example, according to
the data from [5], the parameter δ becomes zero after
annealing of a polycrystalline CaMnO2.84 sample in the
presence of oxygen at a temperature of 1000 K. This
effect is irreversible. The other mechanism is associ-
ated with oxygen vacancy mobility at high tempera-
tures. There is an empirical relation between the start-
ing temperature TS of vacancy motion and the melting
temperature of a material Tm [6]:

. (3)

In our opinion, the second mechanism is dominant in a
bulk CaMnO3 − δ single crystal. This is confirmed by the
temperature dependence of the peak intensity of the

( , 3/2, 0) superstructural reflection in the range
300–840 K (Fig. 4). We can see from Fig. 4 that the
superstructural reflection intensity in the diffraction
pattern decreases when the crystal is heated above
530 K. This temperature is close to TS determined from
Eq. (3), where Tm = 1770 K is the temperature at which
the liquid phase appears in the phase diagram of
CaMnO3 [7]. Figure 5 shows rocking curves of the

CaMnO3 − δ crystal measured in the vicinity of the ( ,
3/2, 0) reflection at 300 (curve 1) and 780 K (curve 2).
We can see from Fig. 5 that only the peak intensity
depends on temperature, while the reflection width
remains unchanged over the temperature range 300–
780 K. Moreover, the superstructure reflection intensity
recovers its initial value (to within experimental error)
after slow cooling of the sample from T = 840 K. Thus,
the facts presented above count in favor of the conclu-

TS 0.3Tm≅

1/2

1/2
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Fig. 3. Oxygen vacancy ordering in the CaMnO2.75 perovs-
kite crystal (a) in the (110) plane (the unit cell dimensions
are indicated by solid lines) and (b) in the [001] direction
(with respect to the 1–3 line in panel (a)). I–IV are Mn3+,
O2–, oxygen vacancy, and Mn4+, respectively.
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Fig. 4. Temperature dependence of the peak intensity of the
(201)o superstructural reflection in the neutron scattering
pattern of the CaMnO3 − δ crystal.
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Fig. 5. Rocking curves of the CaMnO3 − δ crystal measured in the vicinity of the ( , 3/2, 0) superstructural reflection at (1) 300
and (2) 780 K.

1 2⁄
sion that the superstructure in the bulk CaMnO3 − δ sin-
gle crystal is destroyed at not very high temperatures
due to oxygen vacancy diffusion.

It should be noted that the oxygen vacancy super-
structure described above is the main superstructure but
is not the only one in the CaMnO3 − δ crystal. We inten-
tionally did not complicate Fig. 1 and did not indicate
the reflections from another superstructure, whose
intensities are much lower than those from the main
superstructure. Let us determine the unit cell and the
volume fraction of the weaker superstructure in the
crystal under study. This seems to be instructive, since
the result could identify the mechanism of the concen-
tration-induced transition in CaMnO3 – δ between the
ordered states specified in Eq. (1).

Figure 6 shows the neutron scattering pattern of the

crystal obtained at 300 K in the [ ] direction with
respect to the (020) reciprocal lattice point. In Fig. 1b,
this direction is indicated by line 3. As can be seen in

Fig. 6, the pattern contains the ( , 2.9, 0) superstruc-
ture peak in addition to already known structural and
superstructural peaks. The wave vector of the second
phase is

 (4)

We note that it is practically impossible to determine a
wave vector like that in Eq. (4) from neutron powder
diffraction data because its orientation in the crystal
reciprocal lattice is asymmetric. Using Eq. (4), we can
construct the unit cell of the second superstructure. Its
dimensions in the (110)c plane are indicated by dashed

130

0.3

q3 030( ) 0.3 2.9 0, ,( )– 0.3 0.1 0, ,( )2π/ac.= =
PH
lines in Fig. 3a. The cell parameter of the second super-
structure in the (xy) plane is a = [(3ac)2 + (ac)2]0.5 =
3.162ac; i.e., it is incommensurate with the perovskite
cube parameter. This cell is tetragonal, since its param-
eter c in the [001]c direction is identical to the perovs-
kite cube parameter. It can be easily concluded from
Fig. 3a that the cell includes 30 oxygen sites (ten for-
mula units), two of which are vacant: one is at a corner
of the cell and the other is at the center of a basal face.
Thus, the vacancy density per formula unit is δ1 = 0.2.
Two conclusions follow from this fact. First, the exist-
ence of two superstructures in one sample suggests that
phase separation occurs in the oxide in the case where
the parameter δ is not equal to one of the values in
Eq. (1). Therefore, the transition from the structure
with δ1 = 0.2 to the superstructure with δ2 = 0.25 occurs
via the formation of nuclei of the new phase and their
further growth as the oxygen vacancy concentration
increases in the crystal. Second, it is reasonable to
assume the existence of a vacancy superstructure with
the minimum parameter δ0 = 0.1. For this ordering, the
basic periods are the same as those in Eq. (4). The dif-
ference is that oxygen vacancies are arranged only at
the corners of the cell bounded by the dashed lines in
Fig. 3a.

The volume fraction of the ordered phases in the

crystal can be estimated using the simple relation I( ,

7/2, 0)/I( , 2.9, 0) = 4.5 ≅  /(1 – ν) , where ν is
the fraction of the main superstructure. Thus, the value
of ν in the sample is ≅ 75% and the average density of
oxygen vacancies in the crystal under study is given by

1/2

0.3 νδ2
2 δ1

2
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δ = 0.75δ2 + 0.25δ1 = 0.238. Now, we can calculate the
intensities in the neutron diffraction pattern of the
CaMnO3 − δ crystal in order to describe in more detail
the unit cells of superstructures (2) and (4). As an exam-
ple, let us carry out this procedure for the superstructure
corresponding to an oxygen vacancy content δ2 in the
oxide.

The unit cell dimensions for superstructure (2) are
shown in Fig. 3, and the atomic coordinates for the unit
cell are listed in the table. It is convenient to compare

the intensities of the ( )c structural peak and the

( , 3/2, 0)c superstructural reflection. These reflec-
tions are closely spaced in the scattering plane and have
slightly different intensities in the scattering pattern
(Fig. 2a). The experimental ratio of their intensities is

I( )c/I( , 3/2, 0)c = 3.3. Let us compare this value
with calculations. In the basis of the superstructure cell,
the indices of these reflections will be (200) and (210),
respectively. The structure amplitudes for the (200) and
(210) reflections can be calculated using the well-
known relation

 (5)

where bj are the nuclear scattering amplitudes of oxy-
gen, manganese, and calcium. For the (200) structural
reflection, the quantity in Eq. (5) is F(200) = (3 × 0.58 +
4 × 0.37 – 4 × 0.47) × 10–12 cm = 1.34 × 10–12 cm. From
the expanded form of F(200), it is evident that we took
into account the existence of an oxygen vacancy in the
cell and that the small structure amplitude is caused, in
particular, by the fact that the nuclear scattering ampli-
tudes of manganese and calcium are close in magnitude
and correspond to neutron scattering in antiphase. The
structure amplitude F(210) is equal to –1 × 0.58 × 10–12 cm
if only the oxygen vacancy is taken into account in

Eq. (5). In this approximation, we have I( )c/I( ,

3/2, 0)c =  = 7.1, which substantially
exceeds the experimental value. To attain better agree-
ment with experiment, we complicated the unit cell
model. The modification is associated with a partial
change in the electronic structure of manganese ions in

110

1/2

110 1/2

Fhkl Σb jΣxyz 2π hx ky lz+ +( ),cos=

110 1/2

F 200( )
2

/νF 210( )
2
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the CaMnO2.762 crystal with oxygen vacancies. Indeed,

beginning from the stoichiometric Ca2+Mn4+  per-
ovskite, the generation of one anionic vacancy results
in the reduction of 2Mn4+ to 2Mn3+. Simultaneously,
two Mn4+O6 octahedra are transformed into two
Mn3+O5 pyramids in which the Mn3+ ion is obviously
not a Jahn–Teller ion. Thus, the fraction of Mn3+ ions is
two times greater than the fraction of oxygen vacancies
in CaMnO2.75 (Fig. 3). In order to fit the calculated
intensities to the experimental data, we assumed that

Mn3+ ions are displaced into the pyramid by 0.02 .
The displacement directions are indicated in Fig. 3 by
arrows. In our opinion, these displacements reduce the

O3
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Fig. 6. Neutron scattering pattern of the CaMnO3 − δ crystal

taken at 300 K in the [ ] direction with respect to the
(020) reciprocal lattice point.

130
Atomic coordinates in the basis of the unit cell of the superstructure described by Eqs. (2)

Oxygen ions Manganese ions Calcium ions

nos. x y z nos. x y z nos. x y z nos. x y z

1 0 0 0 7 0 0 1/2 1 1/4 1/4 0 1 3/4 1/4 1/4

2 0 1/2 0 8 0 1/2 1/2 2 3/4 3/4 0 2 1/4 3/4 1/4

3 1/2 1/2 0 9 1/2 1/2 1/2 3 1/4 1/4 1/2 3 3/4 1/4 3/4

4 1/2 0 0 10 1/2 0 1/2 4 3/4 3/4 1/2 4 1/4 3/4 3/4

5 1/4 1/4 1/4 11 1/4 1/4 3/4

6 3/4 3/4 1/4 12 3/4 3/4 3/4
5



1272 DUBININ et al.
local stresses caused by oxygen vacancies in
CaMnO2.75. Thus, the structure amplitudes and struc-
ture factors calculated within our model are F(210) =
−1 × 0.58 – cos292° × 0.37 – cos292° × 0.37 = 0.85 and

 = 0.72; so  = 3.3, which is in good
agreement with the experimental data.

The established fact of Mn3+ ion displacements is
fundamental, since it indicates that, in the CaMnO3 − δ
paramagnetic crystal, there occurs charge ordering,
which is closely related to oxygen vacancies. Indeed,
on the one hand, Mn3+ ions arise in the oxide only in the
presence of oxygen vacancies and, on the other hand,
cause their long-range Coulomb interaction, via which
superstructures (2) and (4) form. Under these condi-
tions, it seems quite natural that separation into two
superstructures occurs in an imperfect crystal with an
arbitrary value of δ. These superstructures strictly cor-
respond to the δ1 and δ2 levels, and even partial disorder
in the arrangement of vacancies, which necessarily
exists in a single phase, is energetically unfavorable.
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Abstract—Spatial localization of deformation bands in LiF and KCl single crystals caused by instability of
plastic flow in the strain rate range from 5 × 10–6 to 2 × 10–4 s–1 was studied experimentally. The geometrical
parameters of localized shift bands (LSB) were studied as a function of strain rate and temperature. To study
the LSB relief, a surface profilometry technique was used for the first time, which made it possible to determine
the LSB parameters at the early stages of plastic flow (for strains in the range from 0.5 to 2%). The formation
and branching of LSB steps on the surface of a deformed crystal due to the generation and motion of disloca-
tions were found to be scaled. It was shown experimentally that the LSB formation is a thermally activated pro-
cess that occurs through dislocation glide and is limited by dislocation creep. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION
It is well known that a growing nonuniformity of

strain can cause instability of plastic flow followed by
localization of deformation [1]. The beginning of the
localized flow is usually accompanied by a yield drop
in the stress–strain curve. A yield drop can appear due
to “geometrical softening” caused by rotation of a glide
plane; “physical” softening caused by intense disloca-
tion multiplication, which occurs when a certain stress
is reached; and dynamic strain-induced aging [1, 2].
Under these conditions, localized slip bands (LSBs)
associated with slight strengthening were observed in
metals and alloys.

In alkali halide crystals, strain localization has been
studied in compression tests at a constant strain rate in
the range 10–4–10–2 s–1 [3–5] or under a constant load
[6, 7] at temperatures above 0.5Tm (where Tm  is the
melting point) and for strains in the range 5–15%.
Rough traces forming in this case are commonly
referred to as localized shift bands (LSBs) [3–8]. The
LSB parameters for deformation at a constant rate are
listed in Table 1. In this work, we study the regularities
of LSB formation in pure KCl and LiF crystals as a
function of strain rate (unlike in previous studies [3–8],
where the LSB parameters were studied as a function of
1063-7834/05/4707- $26.00 1273
strain and stress). To investigate these objects, we used
surface profilometry for the first time, which made it
possible to study localization of plastic flow at strains
from 0.5 to 2% and to establish the range of strain rates
at which the LSB formation occurs for these small total
strains.

2. EXPERIMENTAL

Pure LiF and KCl single crystals were chosen for
the studies. The content of metal impurities in both
crystals was measured using the inductively coupled
plasma (ICP–MS) technique and was found to be lower
than the detection threshold. Therefore, the concentra-
tion of the tested impurities (Ca, Mg, Mn, Cu, Sr, Cd,
Ba, Cs) was lower than 10–4 wt %.

Specimens were cleaved along the {100} cleavage
planes in the form of rectangular prisms3 × 3 × 15 mm
in size, compressed in an Instron test machine at con-
stant rates ranging from 5 × 10–6 to 2 × 10–4 s–1 up to a
strain ε = 0.5–2% in the temperature range 20–750°C
(0.26–0.91Tm) for LiF and 20–650°C (0.28–0.88Tm) for
KCl, and then cooled in the furnace in steps of 50°C.
Table 1.  LSB parameters in LiF under various deformation conditions

Td, K Deformation 
type

Strain
rate, s–1 Strain, % Step height, 

µm
LSB width, 

µm
LSB spacing, 

µm Reference

>600 Compression 10–4 14–15 >100 10–50 100–500 [3]

573–1123 Compression, 
tension

10–3, 10–2 12–30 10 [4]

673–1073 Compression 10–4 15 10–160 5–20 50–100 [5]
© 2005 Pleiades Publishing, Inc.
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In order to study the microstructure and to analyze
the LSB relief, we used surface profilometry and light
microscopy.

The surface microstructure was studied using Docu-
val and Neophot optical microscopes. The surface
topography of the deformed specimens was studied at
room temperature using a Talystep profilometer (Tay-
lor–Hobson) in accordance with a technique developed
in [9]. To analyze the surface relief quantitatively, the
{100} faces of the deformed specimens were scanned
using a standard conical diamond stylus designed for
measurements of step heights. A stylus with a radius of
curvature of 12.5 µm moved automatically at a rate of
25 µm/s normally to a defect line and covered a dis-
tance of 100–250 µm. A step profile was simulta-

Table 2.  Step heights HLSB left by LSBs on a face where
screw dislocations end

Material Td, K (frac-
tion of Tm) v, s–1 ε, % HLSB,

µm

KCl 723 (0.70) 5 × 10–6 1 1.2

923 (0.88) 5 × 10–6 1 1.8

LiF 573 (0.50) 10–5 0.5 1.1

993 (0.88) 10–5 1 8

993 (0.88) 5 × 10–6 1 20

(b)

(a)

Fig. 1. Microphotographs of LSBs on faces where screw
dislocations end in (a) LiF and (b) KCl compressed at Td =
0.88Tm   and v  = 10–5 s–1.
PH
neously recorded by a plotter pen on a paper sheet and
also displayed on a monitor. The measurement accu-
racy depended on the chosen magnification scale of
vertical movement of the stylus and was either ±0.1 µm
(for a magnification of 5 × 103) or ±0.01 µm (for a mag-
nification of 5 × 104). The choice of the scale was con-
ditioned by the mean step height, which was different
for LiF and KCl.

The accuracy of step height measurements was no
worse than 5%.

3. EXPERIMENTAL RESULTS
It was found experimentally that localization of

plastic deformation begins both in LiF and KCl crystals
at the same homologous temperature 0.51Tm, which is
300 and 260°C, respectively. Strain rates at which this
phenomenon was observed lie within the range 5 × 10–6–
10–4 s–1. At higher compression strain rates beyond
these limits, the deformation was observed to develop
in the conventional way, with slip bands propagating
throughout the specimen volume.

In what follows, we will consider the specific char-
acter of LSB formation on the faces where screw dislo-
cations end (in generally accepted terms [7]) within the
temperature and strain rate ranges indicated above.

Experimentally, it was shown that the regularities of
LSB formation with variations in the temperature (Td),
strain rate (v), and strain (ε) in LiF and KCl are similar.
Thus, the height of the LSB steps on a face where screw
dislocations end increases with deformation. For exam-
ple, if Td = 0.88Tm   and v  = 10–5 s–1, then the mean LSB
height in LiF is 3 µm at ε = 0.5% and 10 µm at ε =
1.5%, which agrees well with the observed changes in
LSB height in LiF at larger strains [5]. It follows from
Table 2 that, for a fixed strain, the step height increases
with temperature and with a decrease in the strain rate.
It also follows from Table 2 that LSB heights in KCl are
several times lower than in LiF, with all other deforma-
tion parameters being equal.

The number of dislocations involved in the forma-
tion of an LSB could be estimated using the measured
height of steps left on the surface after passage of the
LSB. In [1], the following formula was derived:

 (1)

where γ = h/d = 5–10 is the localized-shift deformation
(the height-to-width ratio of a step); n is the number of
dislocations involved in the step formation; b = 2.85 ×
10–8 cm is the Burgers vector; ρ0 is the initial disloca-
tion density; and z is the number of possible slip sys-
tems, which is equal to 12 in an fcc lattice. For LiF
compressed at 720°C to a strain of 0.5% at a strain rate
of 10–5 s–1 (10 µm/min), we find that n = 100–150 if the
initial dislocation density is 106 cm–2.

Figure 1 shows microphotographs of LSBs on faces
where screw dislocations end taken for LiF and KCl

γ n
3
bρ0

1/2
/z,=
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crystals. It can be seen from Fig. 1 that the LSBs in KCl
are far wavier than those in LiF. It is likely that the LSB
waviness on crystal faces is caused by cross slip in the
bulk of a specimen. This difference is probably due to
the fact that, under the same external conditions, cross
slip is more intense in a softer KCl crystal than in a
harder LiF crystal. It should be noted that LSBs
become wavier with an increase in Td in both types of
crystals. The volume fraction of the material
deformed due to LSB generation and propagation
increases with Td (curve 2 of Fig. 2). The strain rate
also affects the LSB shape significantly. As is seen from
Fig. 3a, an increase in v  causes LSBs to branch. Figure
3b shows the profile of a branched step in LiF. It was
found that the sum of the branch heights is equal to the
step height before branching. This result is consistent
with the results reported in [7]. This behavior is
observed both in LiF and in KCl crystals.

As the strain rate increases, the number of branches
in a group increases (as seen in Fig. 4), while the dis-
tances between LSBs in a group decrease (Fig. 5). It
follows from Fig. 2 (curve 1), Fig. 5, and Table 2 that
an increase in temperature and a decrease in strain rate
have a similar effect on LSBs. Indeed, the distances
between LSBs and the heights of surface steps caused
by the passage of an LSB increase with a decrease in v
or an increase in Td. The LSB density varies nonmono-
tonically with the strain rate: it first increases and then
decreases (curve 2 of Fig. 4). The increase in LSB den-
sity is associated with LSB branching within a separate
group, while the decrease in LSB density is due to the
fact that not only LSB expansion contributes to the
deformation. Indeed, as the strain rate v  increases, the
deformation becomes more homogeneous over the bulk
and develops in the conventional way through the
expansion of glide lines and slip bands.
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Fig. 2. Dependence of (1) the distance between LSBs and
(2) the LSB linear dislocation density on temperature Td for
KCl crystals deformed at v  = 5 × 10–6 s–1 up to ε = 1 %.
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4. DISCUSSION

The observed effects of the deformation tempera-
ture and strain rate on the formation of LSBs (an
increase in the LSB step heights, variations in the LSB
density with an increase in Td or a decrease in v) indi-
cate that inhomogeneous deformation caused by LSB

3.
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2

(a)

(b)

Fig. 3. Branched LSB in LiF at Td = 0.88Tm , v  = 5 × 10–5 s–1,
and ε = 1%. (a) Microphotograph and (b) profilogram
(numerals indicate the LSB step heights in micrometers
measured with a profilometer).
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and ε = 1%.
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development in alkali halide crystals is a thermally acti-
vated process. This conclusion is consistent with the
data [4] on the temperature dependence of the strain
rate, which indicate that localized deformation in LiF is
a diffusion-controlled process and is limited by disloca-
tion creep. The experimental data obtained in the
present study enable us to estimate the strain rate in LiF
crystals at the stage of deformation localization in the
absence of strengthening. According to [1], the strain
rate in this case is given by

 (2)

where, in our case, ρ∞ = 105 cm–2 is the dislocation den-
sity far from LSBs, b = 2.85 × 10–8 cm is the Burgers
vector in LiF, and 〈vLSB〉  = h/t is the cross-slip rate of
LSBs (h is the LSB width, t is the LSB expansion time).
Taking into account the linear dependence of the LSB-
generated surface step height on the total deformation
[5], we assume, as in [10], that an LSB propagates dur-

ε* ρ∞b v LSB〈 〉 ,=
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Fig. 5. Dependence of the distance between LSBs in a
group on strain rate for a LiF crystal deformed at Td =
0.88Tm   up to ε equal to (1) 0.5 and (2) 1%.
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Fig. 6. Dislocation configuration associated with LSB
branching (schematic).

b2
P

ing the entire time of loading. In this case, at ε = 0.5%
and v  = 10 µm/min, the time of LSB expansion is 400 s;
the measured mean value of h is 10 µm. Consequently,
we have 〈vLSB〉  = 2.5 × 10–2 µm/s and ε* = 7 × 10–9 s–1.
According to [1], this strain rate corresponds to defor-
mation through creep-limited dislocation glide.

Special attention should be paid to the observed
branching of LSBs in which the sum of branch heights
is equal to the step height before splitting. A possible
mechanism of this LSB branching (Fig. 3) is illustrated
in Fig. 6. It should be noted that single dislocations with
kinks resulting from dislocations cutting through one
another have a similar configuration [11]. This result
agrees with the conclusions drawn from examining a
surface relief with a tunneling microscope [12].
According to the data from [12], the formation of sur-
face steps caused by dislocation generation and motion
in deformed crystals is scaled. It is clearly seen in Fig. 6
that, after intersecting, the branches move at different
levels, which means that the intersection of dislocations
belonging to different slip systems leads to step gener-
ation. The motion of steps is not conservative and is
limited by the diffusion of vacancies [1].

5. CONCLUSIONS

(1) It has been shown experimentally that, in alkali
halide crystals at temperatures exceeding 0.5Tm, plastic
flow instability leads to localization of plastic deforma-
tion if the total strain is small (0.5–2%) and the strain
rate lies in the range from 2 × 10–6 to 10–4 s–1. It has
been found that localization of plastic deformation is
observed in LiF and KCl crystals under the same exter-
nally imposed deformation conditions.

(2) It has been shown that an increase in strain rate
causes LSB branching and the generation of steps,
whose number increases with strain rate. From our
experiments, it follows that the surface step formation
in deformed crystals that is related to dislocation gener-
ation and motion is scaled.

(3) The experimental results indicate that LSB for-
mation is thermally activated and is controlled by dislo-
cation creep.
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DEFECTS, DISLOCATIONS, 
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Multistage Radiation-Stimulated Changes in the Microhardness 
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Abstract—Radiation-stimulated and postradiation changes in the microhardness of silicon single crystals
exposed to irradiation with a low-intensity flux of β particles (I = 9 × 105 cm–2 s–1, W = 0.20 + 0.93 MeV) are
studied. It is established that the inversion of the radiation-induced plastic effect occurs at a characteristic irra-
diation time τc = 75 min; i.e., irradiation of silicon single crystals for a time τ < τc leads to nonmonotonic revers-
ible hardening, whereas nonmonotonic reversible softening is observed under irradiation for a time τ > τc. It is
demonstrated that there exists a correlation between the nonmonotonic dependences of the microhardness and
the concentration of electrically active defects at acceptor levels with energies Ec – 0.11 eV, Ec – 0.13 eV, and
Ec – 0.18 eV on the irradiation time. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Irradiation of single-crystal silicon by electrons
with an energy higher than the defect-producing thresh-
old (W > 170 keV) provides a means for selectively
modifying the electrical properties of this material [1,
2]. At present, the majority of electrically active radia-
tion-induced defects have been reliably identified. Irra-
diation at temperatures T ≥ 300 K is of most interest.
This is associated with the thermal stability of electron-
generated defects at temperatures close to room tem-
perature [3]. It is known [4, 5] that, at T ≈ 300 K, the
microhardness of silicon single crystals is primarily
governed by the mobility of nonequilibrium point
defects and, quite possibly, by phase transitions occur-
ring under an indenter. Therefore, the microhardness
can serve as an indication of the states of intrinsic and
radiation-induced structural defects. Actually, in our
previous work [6], we revealed nonmonotonic revers-
ible changes in the microhardness of silicon single
crystals under β irradiation with low doses (at fluences
F < 1.2 × 1012 cm–2) at room temperature. It was found
that, in the range of fluences F from 3 × 1011 to
1.2 × 1012 cm–2, the microhardness regains its initial
value H0. Relaxation of the microhardness H to the
initial value H0 was also observed when the irradiation
was terminated after the fluence reached a value F =
3 × 1011 cm–2. It is interesting to note that, in both
cases, the rates of recovery of the microhardness coin-
cide with each other (within the limits of experimental
error). On this basis, it was assumed [6] that there can
exist a critical fluence (at an earlier stage of irradiation)
responsible for the subsequent evolution of the sub-
system of structural defects in silicon crystals.
1063-7834/05/4707- $26.00 1278
It should be noted that, in contrast to spectroscopic
methods, microhardness testing does not allow one to
identify the particular type of point defects involved;
hence, it is expedient to record, for example, the deep-
level transient spectra simultaneously with the micro-
hardness measurements. In this respect, the purpose of
the present work was to determine the particular stages
of irradiation initiating further changes in the micro-
hardness and to reveal a correlation between the radia-
tion-stimulated changes in the microhardness and the
concentration of electrically active defects.

2. SAMPLE PREPARATION
AND EXPERIMENTAL TECHNIQUE

Experiments were performed with dislocation-free
single-crystal silicon samples of two types: Fz-Si
(BIGE-600) crystals grown using crucibleless zone
melting and Cz-Si (KÉF-10) crystals grown by the Czo-
chralski method. The concentration of oxygen in these
samples differs by two orders of magnitude. However,
it was demonstrated earlier in [6] that, under β irradia-
tion, the changes in the microhardness of both types of
samples occur in much the same manner.

The samples were irradiated with the use of a radio-
active source 90Sr + 90Y with an activity A = 14.5 MBq.
The mean energy of emitted electrons was equal to
0.20 MeV for 90Sr and 0.93 MeV for 90Y, and the irra-
diation intensity was I = 9 × 105 cm–2 s–1. Irradiation
was performed in air at room temperature in the range
of fluences F from 109 to 1.2 × 1012 cm–2. The Vickers
microhardness H of the (111) surfaces was measured
on a PMT-3 microhardness tester. The state of deep-
lying levels generated by radiation-induced defects was
© 2005 Pleiades Publishing, Inc.
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controlled by recording the deep-level transient spectra
[7]. For this purpose, a Schottky-barrier diode was pro-
duced on the (111) surface of the studied sample (this
series of experiments was performed with Cz-Si single
crystals in which the contents of oxygen and carbon
were usually of the same order of magnitude) through
the deposition of a 2- to 3-µm-thick gold layer under
vacuum at a residual pressure of no higher than 10–3 Pa.
The deep-level transient spectra were obtained accord-
ing to the standard technique. In order to test the micro-
hardness and to measure the deep-level transient spec-
tra, the samples were periodically withdrawn from the
irradiation chamber. Subsequently, the time spent to
measure the microhardness (~30 min) was taken into
account (i.e., it was subtracted from the total time of the
experiment) when constructing the dose dependence of
the microhardness.

3. RESULTS AND DISCUSSION

It is found that the behavior and kinetics of the radi-
ation-stimulated variations in the microhardness H of
Fz-Si single crystals depend on the dose of β irradiation
(Fig. 1). Exposure of the silicon single crystals to β irra-
diation for a time τ = 20 min leads to nonmonotonic
reversible hardening of the samples (Fig. 1a). The
results of microhardness testing of two different sam-
ples irradiated under the same conditions are repre-
sented by squares and rhombuses in Fig. 1a. As can be
seen from this figure, the time dependences of the
microhardness H(t) measured for two samples coincide
with each other. This indicates that the manifestation of
the postradiation hardening effect at such low doses is
quite reliable, even if unexpected at first glance. Expo-
sure of the samples to irradiation with β particles for a
time τc = 75 min results in suppression of the postradi-
ation hardening effect, and further variations in the
microhardness of the samples are not revealed (within
the limits of experimental error) (Fig. 1b). Irradiation of
the samples for 2 h leads to reversible softening
(Fig. 1c). It follows from these findings that, in the
vicinity of the characteristic irradiation time τc, there
exists a point of inversion of the radiation-induced plas-
tic effect. In the case of continuous irradiation for
413 h, the microhardness H nonmonotonically
decreases with subsequent recovery of the initial value
H0 (Fig. 1d). The time dependence of the microhard-
ness H(t) in the case of continuous irradiation for 400 h
was also examined for two samples. The results
obtained indicate that, even at the early stages of irradi-
ation (F ~ 109 cm–2), long-term processes affecting the
microhardness H are initiated in the subsystem of struc-
tural defects. Most probably, the nonmonotonic charac-
ter of the postradiation changes in the microhardness is
due to variations in the concentrations of different com-
plexes of radiation-induced defects with time.

Since the radiation-stimulated changes in the micro-
hardness could also be caused by electrically active
PHYSICS OF THE SOLID STATE      Vol. 47      No. 7      200
complexes of radiation-induced defects, we carried out
the second series of experiments in which the micro-
hardness was tested simultaneously with the recording
of the deep-level transient spectra characterizing the
concentration of acceptor complexes N as a function of
the irradiation time τ.

It is known [8, 9] that, as a rule, irradiation with a
fluence F > 1014 cm–2 and an intensity I = 1012 cm–2 s–1

at room temperature brings about the generation of
donor and acceptor complexes, which are identified as
divacancies, A centers, E centers, K centers, etc.

Figure 2 shows a typical deep-level transient spec-
trum obtained under the conditions of our experiment
(I = 9 × 105 cm–2 s–1, F = 4 × 1011 cm–2). It can be seen
from this figure that the spectrum exhibits only three
peaks (as opposed to the case of high-intensity irradi-
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ation up to fluences F in the range from ~1014 to
1015 cm–2, in which there appear additional peaks asso-
ciated with divacancies and vacancy–impurity com-
plexes). The results presented in Fig. 3 demonstrate a
correlation between radiation-stimulated variations in
the concentration N of acceptor complexes with ener-
gies E1 = Ec – 0.11 eV, E2 = Ec – 0.13 eV, and E3 = Ec –
0.18 eV (Fig. 3a, curves 1–3, respectively) and the
microhardness H of Cz-Si single crystals exposed to
irradiation with β particles (Fig. 3b).

Interstitial silicon atoms can displace carbon atoms
(located at lattice sites) into interstitial sites according
to the Watkins reaction Sii + Cs  Sis + Ci. Interstitial
carbon atoms correspond to an acceptor level at an
energy Ec – 0.11 eV [8]. The carbon atoms displaced
into interstitial sites can form bonds with carbon atoms
located at lattice sites [10]. The acceptor level corre-
sponding to the Ci–Cs complex is characterized by an
energy Ec – 0.17 eV [8, 10]. It is known [11] that free
vacancies generated in a silicon single crystal under
irradiation diffuse over the crystal and are most actively
captured by isolated oxygen atoms to form complexes
of the acceptor type V + O  V–O (the depth of their
location corresponds to an energy Ec – 0.17 eV). There-
fore, the peaks observed at energies Ec – 0.11 eV and
Ec – 0.18 eV in our experiment can be assigned to inter-
stitial carbon Ci and an A center or a Ci–Cs complex,
respectively. The acceptor level at an energy Ec – 0.13 eV
is usually attributed either to interstitial boron [8] or an
FeAl pair [12], or, in proton-irradiated silicon, to a
hydrogen-containing complex [13]. The samples and
the type of irradiation used in the present work rule out
the possibility that the last three radiation-induced
defects can be formed in amounts sufficient for identi-
fication. For this reason, we cannot determine the
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Fig. 2. Typical deep-level transient spectrum obtained under
the following conditions: frequency ν = 164 Hz, pulse width
τp = 0.1 µs, blocking voltage Ub = 4.0 V, inverted-pulse volt-
age Up = 3.5 V, and irradiation time τ = 137 h.
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nature of the observed defect at an acceptor level with
an energy Ec – 0.13 eV.

The concentrations of two identified defects can
vary as a result of many reactions proceeding with the
formation of electrically inactive products:

V + Oi  VO, Sii + VO  Oi, 

V + Ci  Cs, Sii + Cs  Sis + Ci,

Ci + Cs  CiCs, Sii + V  Sis, etc. 

It seems likely that the high mobility at room tem-
perature and relatively low concentrations (at an irradi-
ation intensity I = 9 × 105 cm–2 s–1) of generated vacan-
cies and interstitial atoms lead to a nonmonotonic
change in the concentrations of the aforementioned
complexes, as well as to the generation of more compli-
cated aggregates. In our opinion, the nonmonotonic
dependences of the concentration N(τ) and the micro-
hardness H(τ) are associated with the multistage com-
peting reactions with the participation of radiation-
induced defects.
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Fig. 3. Dependences of the change in (a) the concentration N
of acceptor complexes with energies (1) E1 = Ec – 0.11 eV,
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microhardness H of Cz-Si single crystals on the irradiation
time τ. Roman numerals I and II indicate the dependences
H(τ) measured with two samples of different types.
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4. CONCLUSIONS 

Thus, in the present work, we studied the kinetics of
radiation-stimulated variations in the microhardness of
Fz-Si single crystals exposed to β irradiation. The
transformation of the subsystem of structural (intrinsic
and radiation-induced) defects was found to occur
through multistage competing reactions. It was
revealed that the inversion of the radiation-induced
plastic effect is observed at a critical irradiation time τc

(irradiation intensity I = 9 × 105 cm–2 s–1). It was dem-
onstrated that, upon exposure of Cz-Si single crystals to
low-intensity irradiation, the concentration of intersti-
tial carbon atoms, as well as the concentration of oxy-
gen–vacancy complexes or complexes consisting of
interstitial carbon atoms and carbon atoms located at
lattice sites, change in a nonmonotonic manner. As the
fluence increases, the nonmonotonic changes in the
concentration of the aforementioned defects and in the
microhardness H of the silicon single crystals under
investigation occur in the antiphase.
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Abstract—The influence of a static magnetic field on the instability of plastic flow (the Portevin–Le Chatelier
effect) is revealed in NaCl : Eu quenched crystals. It is found that, in an external magnetic field, the yield stress
of the crystals is reduced, the probability of plastic strain jumps and their amplitude decrease, and the amplitude
distribution of the plastic strain jumps becomes random. The number of shear bands formed on the surface of
crystals strained in the magnetic field is halved as compared to that observed without a magnetic field. © 2005
Pleiades Publishing, Inc.
1. INTRODUCTION

The first reliable experimental evidence supporting
the existence of the magnetoplastic effect in ionic crys-
tals was obtained by Alshits et al. [1], who revealed that
a static magnetic field with an induction of ~1 T ini-
tiates displacements of individual dislocations under
internal stresses. More recently, it was established that
the magnetoplastic effect in ionic crystals can manifest
itself as a decrease in the microhardness [2], the inter-
nal friction [3], the yield stress [4], and the strain hard-
ening coefficient [5] (comprehensive reviews of the
existing literature on the magnetoplastic effects in ionic
crystals are given in [6–8]). All these macroscopic char-
acteristics of plasticity are related in an intricate ambig-
uous fashion to the mobility of individual dislocations
and the elementary processes occurring in a magnetic
field. Hence, it is important to investigate the magneto-
plastic effect on the mesoscopic level under conditions
where plastic deformation manifests itself as jumps in
the stress–strain curves, steps on the crystal surface,
shear bands, dislocation slip bands, etc. As is known,
jerky plastic flow, i.e., the Portevin–Le Chatelier effect,
has been observed in NaCl : Eu crystals at a specific
impurity concentration [9]. This effect is associated
with the dynamic aging of dislocations; in other words,
it is caused by the formation of Cottrell or Snoek impu-
rity clouds around the dislocation cores. This process is
accompanied by the clustering of individual impurity–
vacancy dipoles. Earlier [10–13], it was shown that an
external magnetic field affects the structure of Eu2+

small-sized clusters formed in NaCl : Eu crystals in the
course of impurity aggregation or dislocation motion.
Therefore, we can assume that the Portevin–Le Chate-
lier effect should be sensitive to variations in a mag-
netic field. In this respect, it is of interest to examine the
1063-7834/05/4707- $26.00 1282
Portevin–Le Chatelier effect in magnetic fields with the
aim of revealing a correlation between the structure of
europium impurity clusters and the dislocation motion.

The purpose of this work was to create the appropri-
ate experimental conditions for studying the Portevin–
Le Chatelier effect in a static magnetic field and to elu-
cidate the influence of the magnetic field on the mesos-
copic characteristics of plastic flow and on the motion
of large-sized ensembles of dislocations in NaCl : Eu
crystals.

2. SPECIMEN PREPARATION
AND EXPERIMENTAL TECHNIQUE

The influence of a magnetic field on plasticity was
studied with NaCl : Eu crystals (600 ppm) 2 × 2 × 5 mm
in size. The crystals were quenched using isothermal
treatment at a temperature of 770 K for 2 h and subse-
quent rapid cooling on a metal plate to 293 K. Then, the
crystals were subjected to uniaxial compression in two
regimes: (1) on an Instron hard compression testing
machine, which made it possible to specify the strain
linearly increasing with time (ε ~ t) and to measure the
mechanical stress σ; and (2) on a soft compression test-
ing machine, which made it possible to specify the
mechanical stress linearly increasing with time (σ ~ t)
and to measure the strain ε. It is known that the soft
machine has significant advantages over the hard
machine for studying the Portevin–Le Chatelier effect,
because the experimental data obtained in the former
case can be analyzed without regard for the character-
istics of the machine itself and the noise level of the
machine is considerably lower [14]. We specially
checked that the eigenfrequency of vibrations of the
soft compression machine is two orders of magnitude
higher than the mean frequency of plastic strain jumps
© 2005 Pleiades Publishing, Inc.
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characteristic of the Portevin–Le Chatelier effect in the
crystals under testing. The time constant of the strain
gauge is approximately equal to 1 ms, which is three
orders of magnitude shorter than the expectation time
(~1 s) for the appearance of strain jumps. The gauge
resolution with respect to the displacement magnitude
was 0.1 µm. This corresponds to the strain ε = 2 × 10–5

for crystals 5 mm in height.

The Instron hard compression machine was
equipped with an electromagnet producing a magnetic
field with a maximum induction of 0.9 T. During com-
pression of the crystals, the magnetic field was
switched on for short times ranging from 10 to 100 s.
The soft compression machine was mounted on a
JMTD-LH15T40 superconducting magnet, which pro-
duced a magnetic field with a maximum induction of
15 T at room temperature. Since the time required to
create a magnetic field in the superconducting magnet
was as long as a few hours [this time considerably
exceeded the time (~30 min) spent to strain the studied
crystals], the check experiments without a magnetic
field were carried out on the compression machine
remounted from the superconducting magnet to an iso-
lated frame. In the measurements performed at differ-
ent inductions B < 15 T, the rod length was varied so
that the specimen appeared to be in a vertical bore of
the superconducting magnet at a point with the known
magnetic induction.

Moreover, particular care was taken to exclude arte-
facts associated with the influence of the magnetic field
on the operation of the compression machine. The com-
pression machines of both types were equipped with
quartz rods in order to keep movable parts of the
machine from pulling in the magnetic field and to
insure against an uncontrollable change in the effective
load on the crystal. It was verified that, in the experi-
ments with the soft machine, the displacement of the
upper quartz rod, which was freely suspended by soft
springs and was loaded with a linearly increasing
weight, did not depend on the magnetic field (Fig. 1).
During loading the upper rod mounted on the fixed
lower brass rod, the magnetic field also did not affect
the dependence ε(σ), which, in this case, characterized
the elastic properties of the machine (Fig. 1). These
findings and the absence of differences between the
stress–strain curves obtained for unquenched as-grown
crystals in the magnetic field and without it (see below)
indicate that any changes revealed in the stress–strain
curves of the specimens in the magnetic field cannot be
explained in terms of the influence exerted by the field
on the operation of the compression machine and dis-
placement gauges. Furthermore, as is seen from Fig. 1,
the elastic characteristics of the soft compression
machine cannot lead to substantial changes in the
stress–strain curve whose mean slope differs signifi-
cantly from the slopes of the reference stress–strain
curves obtained in the check experiments without spec-
imens. The spatial inhomogeneity of the plastic defor-
PHYSICS OF THE SOLID STATE      Vol. 47      No. 7      200
mation on the surface of the strained crystals was exam-
ined with a Neophot-32 optical microscope.

3. RESULTS AND DISCUSSION

The experiments with the hard compression
machine were performed using NaCl : Eu as-quenched
crystals at a strain rate of 5 × 10–5 s–1. It can be seen
from Fig. 2 that, above the yield point, the stress–strain
curve is characterized by jumps in the compressive
stress, i.e., the Portevin–Le Chatelier effect. Upon

0
0

∆L
, m

m

G, kg4 8

0.3

0.6 1
2
3
4
5

Fig. 1. Dependences of the displacement ∆L of the upper rod
on the load G in the soft compression machine: (1, 4) the
loading upper rod in the absence of a specimen rests firmly
against the fixed lower rod, and (2, 3) the loading upper rod
in the absence of a specimen is freely suspended by soft
springs. The measurements are performed in (1, 2) the mag-
netic field with an induction of 15 T and (3, 4) zero magnetic
field. (5) Stress–strain curve for the NaCl : Eu specimen.

0.01 åPa
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σ,
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ε

Fig. 2. A typical fragment of the stress–strain curve mea-
sured for the NaCl : Eu as-quenched crystal in the Instron
hard compression testing machine. Arrows indicate the
instants of time when the magnetic field with an induction
of 0.9 T is switched on and switched off.
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Fig. 3. Averaged stress–strain curves for (a) NaCl : Eu as-
quenched specimens and (b) NaCl : Eu aged specimens (not
subjected to special heat treatment) in (1) zero magnetic
field and (2) the magnetic field with an induction of 15 T.
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Fig. 4. Typical stress–strain curves for NaCl : Eu specimens
in (1) zero magnetic field and (2) the magnetic field with an
induction of 15 T.
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application of a static magnetic field with an induction
of 0.9 T, the amplitude of stress jumps decreases and
the stress–strain curve becomes smoother (Fig. 2). This
manifestation of the magnetoplastic effect can be
repeated several times under compression of the same
crystal. The magnetoplastic effect was revealed in other
specimens.

The experiments with the soft compression machine
were also carried out using NaCl : Eu as-quenched
crystals. The mean strain rate was approximately equal
to ~10–5 s–1. The yield point was determined taking into
account the specimen shape; i.e., the yield stress was
normalized to the length-to-width ratio of the specimen
base. A comparison of the stress–strain curve obtained
by averaging over ten curves measured in the magnetic
field with an induction of 15 T and the stress–strain
curve obtained by averaging over ten curves measured
without a magnetic field showed that the yield stress is
halved in the magnetic field (Fig. 3a). This is compara-
ble to the change in the yield stress of NaCl : Eu crys-
tals in magnetic fields with an induction B < 1 T [4]. For
NaCl : Eu unquenched crystals, the averaged stress–
strain curves obtained in zero magnetic field are identi-
cal to those measured in the magnetic field with an
induction of 15 T (Fig. 3b).

The manifestation of the Portevin–Le Chatelier
effect revealed in the experiments performed with the
soft compression machine differs from that revealed
with the hard compression machine [14]. In the former
case, the Portevin–Le Chatelier effect manifests itself
in the form of a serrated deformation (Fig. 4). It should
be noted that, in an external magnetic field, the param-
eters of the serrated deformation change significantly.
Figure 4 shows typical stress–strain curves measured in
a magnetic field and without it. The application of the
magnetic field leads to a substantial decrease in the

0.2
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Fig. 5. Dependence of the fraction of the specimens free of
Portevin–Le Chatelier instabilities on the magnetic induc-
tion B.
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probability of plastic strain jumps. Figure 5 presents the
ratio between the number of crystals characterized by a
smooth stress–strain curve (Nsmooth) and the total num-
ber of specimens (Ntotal = 10) as a function of the mag-
netic induction. It can be seen from this figure that, in
the magnetic field, the ratio Nsmooth/Ntotal increases by a
factor of four.

However, for a number of specimens strained in the
magnetic field, the stress–strain curves exhibit jumps. A
comparison between the portions of the serrated stress–
strain curves for the specimens strained in the magnetic
field and those for the specimens strained without a
magnetic field (Fig. 6) shows that, in the magnetic field,
the size distribution of the steps in the stress–strain
curve depicted in Fig. 6b becomes random; i.e., the dis-
tribution of the expectation time for the appearance of
a strain jump (which is proportional to the increment of
the mechanical stress ∆σ) and the distribution of the
strain amplitude ∆ε become less regular. The depen-
dence of the average strain amplitude 〈∆ε〉 (obtained by
averaging of individual jumps over ten specimens) on
the magnetic induction B is shown in Fig. 7. As can be
seen from this figure, the average strain amplitude
decreases by a factor of approximately two with an
increase in the magnetic induction and reaches satura-
tion in magnetic fields with an induction B > 10 T.

As a rule, an increase in the inhomogeneity of the
plastic deformation with time is accompanied by the
spatial inhomogeneity of the deformation of the speci-
men, which frequently manifests itself in the form of
deformation steps or shear bands on the surface of the
strained crystal [15]. Since the amplitude of strain
jumps in the stress–strain curves obtained in our exper-
iments falls in the range 1–10 µm, these jumps should
correspond to spatial inhomogeneities with the sizes
lying in approximately the same range. Examination of
the surfaces of the strained crystals under the optical
microscope revealed alternating regions (bands) of
plastic deformation with a mean width of ~20 µm
(Fig. 8a). These bands are aligned parallel to the (001)
plane to which the mechanical load is applied. The
crystals strained in the magnetic field with an induction
of 15 T are characterized by a decrease in the number
of deformation bands (cf. Figs. 8a and 8b). Taking into
account that the number of bands reflected the deforma-
tion prehistory of the crystal, the total number of inho-
mogeneous deformation bands was determined for six
pairs of specimens (in each pair, one specimen was
strained in the magnetic field, whereas the other speci-
men was strained without a magnetic field). It was
found that the number of deformation bands on the sur-
face of the crystals strained in the magnetic field, on
average, is halved as compared to that of the crystals
strained without a magnetic field.

The results obtained in the experiments with the soft
compression machine were analyzed using the follow-
ing procedure. First, for the specimens characterized by
Portevin–Le Chatelier instabilities, we determined the
PHYSICS OF THE SOLID STATE      Vol. 47      No. 7      2005
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Fig. 6. Fragments of the stress–strain curves for the NaCl : Eu
specimens characterized by instability of the plastic flow in
(a) zero magnetic field and (b) the magnetic field with an
induction of 15 T.
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Fig. 7. Dependence of the average strain amplitude (or the
average step width in Fig. 6) 〈∆ε〉 on the magnetic induction
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derivative of the stress–strain curve. As a result, we
obtained the curve dσ/dε with maxima (instead of the
monotonic stress–strain curve), which is more conve-
nient for counting and analyzing the strain jumps.
Then, the coordinates of all peaks in the curve dσ/dε
were determined and the histograms of the distribution
of separations between the peaks, i.e., the histograms of
the distribution of the strain amplitudes ∆ε, were con-
structed with the use of a computer. The obtained histo-
grams of the distributions of strain jumps over their
amplitude were averaged for all the crystals strained
under identical conditions. It can be seen from Fig. 9a
that, in the check experiments at B = 0, the averaged
histogram exhibits a maximum at ∆ε = 0.15%. How-
ever, for crystals strained in the magnetic field, the
maximum in the histograms is either altogether absent
or shifted toward the range of very small strain ampli-
tudes (Fig. 9b).

The probability densities p of amplitude distributions
of strain jumps in the crystals strained in the magnetic
field and without a magnetic field also differ from each
other (Fig. 10). The probability density of the amplitude

(a) 0.1 mm

0.1 mm

(001)

·001Ò

(001)

·001Ò

(b)

Fig. 8. Micrographs of the surface of the NaCl : Eu crystals
strained in (a) zero magnetic field and (b) the magnetic field
with an induction of 15 T. Fragments of the stress–strain
curves for these specimens are shown in Fig. 6.
P

distribution of strain jumps was calculated from the for-
mula p = Ni(∆ε)/(εi – εi – 1)Ntotal, where Ni(∆ε) is the num-
ber of strain jumps in the range εi – εi – 1. The curves
depicted in Fig. 10 allow us to assume that the proba-
bility density of the amplitude distribution of strain
jumps can be represented as the sum of two compo-
nents, namely, the Gaussian distribution with amplitude
A1 and a noiselike distribution described by the function
A2/∆ε with amplitude A2. To put it differently, plastic
deformation in the crystals can occur through two addi-
tive flows of events: (i) motion of correlated ensembles
of dislocations and (ii) independent noiselike motion of
dislocation groups. Under this assumption, the proba-
bility densities of amplitude distributions obtained
were approximated by the sum of the two aforemen-
tioned functions. As can be seen from Fig. 10, the cal-
culated curves adequately describe the experimental
data obtained both from the measurements in the mag-
netic field and from the check experiments without a
magnetic field. This made it possible to construct the
dependences of the amplitudes A1 and A2 on the mag-
netic induction B (Fig. 11). It can be seen from Fig. 11

0 0.3 0.6

50

100

150

n

(a)

0 0.3 0.6
∆ε, %

50

100

150
(b)

n

∆ε, %

Fig. 9. Averaged histograms of the distribution of strain
jumps over their amplitude ∆ε in (a) zero magnetic field and
(b) the magnetic field with an induction of 15 T.
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that the magnetic field decreases the contribution from
the correlated component of the dislocation motion and
increases the contribution from the noiselike compo-
nent. This implies that, in the magnetic field, the ampli-
tude distribution of strain jumps becomes noiselike in
character. The dislocation slip bands revealed on the
surface of the NaCl : Eu crystals (Fig. 8) are located at
an angle of 45° with respect to the [001] direction of the
deformation. It is quite probable that these bands corre-
spond to the contribution from the noiselike component
of the amplitude distribution of strain jumps. The bands
aligned with the (001) plane, whose number decreases
in the magnetic field, are most likely associated with
the contribution of the Gaussian component to the
amplitude distribution of strain jumps.

In [10–13], it was shown that the influence of a mag-
netic field on the plasticity of NaCl : Eu crystals can
manifest itself, among other factors, through changes
both in the spin state and in the atomic structure of
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∆ε, %

p

Fig. 10. Probability density p of the distribution of strain
jumps over their amplitude ∆ε (symbols) and the approxi-
mation of the probability density (solid line) by the sum of
the Gaussian function with amplitude A1 (dashed line) and
of the function A2/∆ε with amplitude A2 (dashed line) in
(a) zero magnetic field and (b) the magnetic field with an
induction of 15 T.
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obstacles to dislocation motion, namely, small-sized
europium nonequilibrium clusters, which can be
formed either upon aggregating individual impurity–
vacancy dipoles into complexes or upon cutting large-
sized precipitates by dislocations. The magnetic field
favors the formation of precipitates from nonequilib-
rium clusters arising in the course of plastic deforma-
tion. Moreover, it was found [9] that the presence of
precipitates in NaCl : Eu crystals leads to suppression
of the Portevin–Le Chatelier effect. Taking into account
the fast formation of precipitates in a magnetic field in
our experiments, the suppression of the Portevin–Le
Chatelier effect can be explained by the fact that the
time required for depinning of dislocations from obsta-
cles (large-sized clusters) changes and that the plastic
strain of the crystals no longer exhibits instabilities.
However, it is not ruled out that, in strong magnetic
fields, the plasticity of crystals can be affected by the
magnetic field through other factors, such as aggregates
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Fig. 11. Dependences of the amplitudes in the decomposi-
tion of the probability density of the strain amplitude distri-
bution into (a) the Gaussian function (A1) and (b) the func-
tion A2/∆ε (A2) on the magnetic induction B.
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of paramagnetic ions moving along the dislocation
cores due to a magnetic-field gradient, the effect of the
Lorentz force on mobile charged dislocations, etc.

4. CONCLUSIONS
Thus, it was established that a static magnetic field

with an induction of up to 15 T partially suppresses the
Portevin–Le Chatelier effect in NaCl : Eu quenched
crystals. This manifests itself in the fact that the proba-
bility of plastic strain jumps and their amplitude
decrease, the amplitude distribution of the plastic strain
jumps becomes random, and the number of shear bands
on the surface of the strained crystals decreases. The
Portevin–Le Chatelier effect is observed in many met-
als and alloys important for practical applications. As a
rule, this effect plays a negative role: it leads to a heter-
ogeneous plastic flow and a premature fracture of the
material. In this respect, one of the applied problems
associated with the Portevin–Le Chatelier effect is to
devise efficient methods for suppressing serrated plas-
tic deformation. In the present work, it was demon-
strated that serrated plastic deformation can be sup-
pressed by applying a static magnetic field.
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Abstract—Dislocation-kinetics equations are used to consider the effect of precipitates and disperse particles
on the conditions of formation of defectless channels and the appearance of a yield drop and a yield plateau in
the stress–strain curves of neutron-irradiated metals and alloys. It is found that, at a volume particle concentra-
tion higher than a certain critical value depending on the radiation dose, channels do not form and the yield drop
and yield plateau in the stress–strain curves disappear. A high concentration of disperse particles in a metal
strongly decreases the uniform strain above which plastic instability in the form of a neck appears in a tensile
specimen. The theoretical results are illustrated by available experimental data for copper and copper alloys.
© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The effect of radiation hardening on the stress–
strain curves and the plastic-deformation stability of
pure fcc metals was theoretically considered in [1].
Using a kinetic equation for a dislocation density, it was
shown that deformation instability and the appearance
of a yield drop and a yield plateau in the initial stage of
the stress–strain curves of irradiated metals are related
to strong deformation localization at a microscopic
level due to the transformation of radiation defects
(vacancy and interstitial loops) into mobile disloca-
tions. Because of their high density, dislocations anni-
hilate partly to form defectless channels (along disloca-
tion-slip planes) with a width ∆Λ = 0.1–0.5 µm and a
spacing Λ = 1–5 µm between them, and these channels
deteriorate the strength properties of an irradiated
material.

Experiments have shown that, if a material has a suf-
ficiently high volume fraction of precipitates or other
disperse particles before irradiation, then its plastic
deformation after irradiation does not cause the forma-
tion of defectless channels and its stress–strain curves
have no yield drop or yield plateau. For example, this
situation was reported in [2, 3] to be observed in a cop-
per CuNiBe alloy if the volume fraction of Be particles
in it was rather high and comparable to the radiation-
defect density. A similar situation was also detected in
an irradiated Cu–Al2O3 alloy containing a few percent
of aluminum dioxide particles [2]. It is obvious that dis-
perse particles in these alloys are obstacles to disloca-
tion motion and violate the conditions of formation of
defectless channels in irradiated materials.
1063-7834/05/4707- $26.00 1289
The authors of [4] found that defectless channels
form in a CuCrZr alloy containing Zr precipitates
whose volume density is an order of magnitude lower
than the radiation-defect density and that the stress–
strain diagram of the irradiated alloy contains a yield
drop. It should be noted that, near rather coarse zirco-
nium particles, defectless channels are formed; this for-
mation is likely related to a relaxation of local stresses
due to the difference in the elastic constants or the ther-
mal expansion coefficients of the zirconium particles
and the copper matrix.

In the copper alloys studied in [2–4], precipitates
and oxides in channels remained unbroken (no cutting
or decrease in their size was detected) despite intense
dislocation motion along them. This phenomenon,
however, takes place in neutron-irradiated austenitic
steel [5]. When deformation is localized in 0.05- to
0.10-µm-wide channels, precipitates and vacancy voids
are obstacles to dislocation motion and fail as a result
of deformation localization in the channels.

The short review of experimental data given above
indicates that precipitates and other disperse particles
substantially affect the strength and deformation prop-
erties of irradiated materials. Their most important
action is the effect on deformation localization and sta-
bility in both the initial and final deformation stages; in
the latter case, a neck that forms in a tensile specimen
upon tension is a deformation localization zone. The
strain at which a neck forms decreases as the radiation
dose and volume fraction of precipitates increase. The
purpose of this work is to theoretically study these phe-
nomena.
© 2005 Pleiades Publishing, Inc.
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As in [1], we use a kinetic equation to describe the
dislocation density. In Section 2, we apply this equation
to consider the effect of the volume concentration of
disperse particles on the formation criterion for defect-
less channels. In Section 3, we analyze the effect of
these particles on the appearance of a yield drop and a
yield plateau in the stress–strain curves of irradiated
and precipitation-hardened metals. Finally, Section 4
deals with an analysis of the effect of disperse particles
on the uniform strain before the beginning of formation
of a neck-type plastic instability during tension of such
materials.

2. DISPERSE PARTICLES AND A CRITERION 
FOR CHANNEL FORMATION

With allowance for kinetic interaction between dis-
locations and disperse particles, the kinetic equation for
the density of radiation-induced dislocations ρi = πdiNi

(where di is the diameter of radiation vacancy or inter-
stitial dislocation loops and Ni is their current volume
density) has the form [1, 6]

(1)

Here, n = n(ρi0) is the volume density of dislocation
sources; ρi0 = πdiNi0 and Ni0 are the initial densities of
radiation dislocations and radiation defects, respec-
tively; km = 1/blm; lm = (dpNp)–1/2 is the mean path of dis-
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Fig. 1. Regions of values of the parameters ψ0 and ψm in
which defectless channels form according to Eqs. (3) and
(6) at volume concentrations of disperse particles of (2, 5)
10–3 and (3, 4) 10–5 and dislocation immobilization coeffi-
cients of (2, 3) 1.5 and (4, 5) 0.5.
P

locations between incoherent and uncuttable disperse
particles with a volume density Np and an average size
dp; b is the Burgers vector; βim is the coefficient of dis-
location immobilization due to particles; ka is the dislo-
cation annihilation coefficient; λy is the characteristic
dislocation diffusion distance in the direction normal to
the plane of dislocation motion; ξ > 1 is the coefficient
of sign inversion of the dislocation diffusion flux due to
strain hardening [6]; and γi is the local shear strain in
the channels.

For further analysis, it is convenient to put Eq. (1) in
dimensionless form,

(2a)

where the following dimensionless variables and
parameters are introduced:

(2b)

As is seen from the structure of Eq. (2a), its solutions
depend on two parameters, namely, ψm and ψ0. Defect-
less channels appear when the following relation
between these parameters is satisfied [6, 7]:

(3)

When this condition is met, Eq. (2) describes the
motion of the Lüders front in the direction normal to a
dislocation slip plane; this motion is accompanied by
the formation of a system of defectless channels with a
width ∆Λ and an average spacing Λbetween them [6,
7]. In the case of polycrystals, the direction of motion
of the Lüders front coincides with the tensile axis of an
irradiated sample and channels in grains arise along slip
planes with the maximum Schmid factor.

Criterion (3) of channel formation can also be
rewritten in the form ψm < ±2(1 – ψ0)1/2 – 1. According
to this criterion, curve 1 in Fig. 1 confines the region of
values of the parameters ψm and ψ0 where defectless
channels can form. Negative values of the parameter ψm

mean that the coefficient of dislocation immobilization
due to disperse particles βim is larger than unity; that is,
the particles mainly act as dislocation stoppers rather
than dislocation obstacles at which dislocations can
multiply (in the latter case, βim < 1).

It follows from condition (3) that, in the absence of
disperse particles (ψm = 0), channels appear if ψ0 < 3/4.
Since the volume density of dislocation sources in

Eq. (2b) is n =  (where li =  is the average
length of dislocation segments forming Frank–Read
dislocation sources and δ0 < 1 is the relative fraction of
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effective sources), we arrive at the conclusion that
channels will appear if the initial density of radiation
dislocations ρi0 and, hence, the initial density of radia-
tion defects Ni0 exceeds the critical values ρic =
(4δ0/bka)2 and Nic = ρic/πdi, respectively. These critical
values are specified by the balance of the processes of
dislocation generation and annihilation during plastic
deformation of an irradiated material. The initial den-
sity of radiation defects depends on the radiation dose
φ according to the expression [1]

(4)

Therefore, in the absence of disperse particles, chan-
nels will form when the dose exceeds the critical value

(5)

For copper [1, 8], Nim = 7 × 1017 cm–3, φ0 = 3 × 1020 cm–2,
di = 2 nm, δ0 = 5 × 10–2, ka = 3.5, and b = 0.256 nm.
Using the equations given above, we obtain ρic = 5 ×
1010 cm–2, Nic = 8 × 1016 cm–3, and φc = 1.2 × 1019 cm–2;
these values are close to the experimental values from [1].

According to the notation introduced in Eq. (2b), the
parameter ψm depends not only on the radiation-defect
density but also on the volume density of disperse par-
ticles. Since the volume concentration of particles is f =

, the average interparticle distance can be
written as lm = dp(π/6f )1/2. Therefore, the parameters ψ0
and ψm depend on the radiation dose φ and the particle
concentration f as

(6)

According to Eq. (6), we have ψm = . This
relation between the parameters ψm and ψ0 is plotted in
Fig. 1 (curves 2, 3) at two values of the particle concen-
tration f (10–3 and 10–5, respectively), particle size dp =
5 nm [2, 3], δm = 8 × 103, and dislocation immobiliza-
tion coefficient βim = 0.5, with the radiation dose vary-
ing from 1018 to 1022 cm–2. The values of the other
parameters are given above. Curves 4 and 5 illustrate
the relationship between the parameters ψm and ψ0 in
the case of predominant dislocation immobilization due
to disperse particles (βim = 1.5). The arrow near curve 3
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shows the direction in which the radiation dose
increases for curves 2–5.

The points of intersection of curves 3–5 with curve 1
in Fig. 1 (points a–d) specify the critical values of the
parameters ψm and ψ0 and, hence, the critical dose φc

and the critical particle concentration fc for the forma-
tion of defectless channels and the appearance of a
yield drop and a yield plateau in the stress–strain curves
of radiation- and precipitation-hardened copper alloys.
Point b corresponds to the absence of disperse particles
in a material. As is seen from Fig. 1, curve 2 does not
intersect curve 1; therefore, at the volume particle con-
centration f = 10–3 (where particles mainly act as cen-
ters of dislocation multiplication), channels do not
form. This behavior results from the fact that, according
to Eq. (4), the density of radiation defects reaches the
saturation value Nim at high doses; hence, there exists a
limiting value of the parameter ψ0 (which is ψ0 ≈ 0.25
in the case considered) at which the curves do not inter-
sect and, hence, condition (3) is not satisfied.

Using Eq. (6) and criterion (3), we can represent the
relationship between the critical values of f and φ in
implicit form as

(7)

Figure 2 shows this dependence for the parameter val-
ues given above and with the dislocation immobiliza-
tion coefficient equal to 0.5 (curve 2) and 1.5 (curve 1).
The plus and minus signs in Eq. (7) correspond to the
former and latter curves, respectively. It is seen that the

f c
2π
27
------

±2 ψ0 φc( )–( )1/2
1–

1 βim–
---------------------------------------------

2

ka
2
d p

2ρi0 φc( ).=

1019

10–6 10–5

φc, cm–2

fc
10–4 10–3 10–2

1018

1020

1021

1022

1
2

Fig. 2. Dependence of the critical radiation dose for the for-
mation of defectless channels φc on the volume concentra-
tion of disperse particles fc at dislocation immobilization
coefficients of (1) 1.5 and (2) 0.5. The dashed line demon-
strates the critical dose in the absence of particles.
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higher the concentration of disperse particles, the
higher the radiation dose required for the channel for-
mation. The volume concentration of precipitates in the
CuNiBe alloy was 3.3 × 10–2 [2, 3]. As follows from
Fig. 2, this concentration is significantly higher than the
critical particle concentration for the formation of
defectless channels in this alloy. In the case of the
CuCrZr alloy, the concentration of Zr particles was an
order of magnitude lower (2 × 10–3) and, in agreement
with theory, the formation of channels was observed in
this alloy [2, 4]. The radiation dose for both alloys was
the same (0.3 dpa), which corresponds to the limiting
concentration of radiation defects in copper Nim (see
Eq. (4)) and to the dose φ ≈ 3 × 1022 cm–2 [8].

3. YIELD DROP AND YIELD PLATEAU

In [1], we used Eq. (1) to analyze the mechanism of
formation of a yield drop and a yield plateau in neutron-
irradiated copper in the absence of disperse particles,
i.e., for km = 0 in Eq. (1). Figure 3 shows the calculated
stress–strain (σ–ε) curves for copper irradiated to vari-
ous doses φ. The calculation is based on a linear sum-
mation of stresses:

(8)

where σi =  and σd =  are the
stresses induced by radiation and strain hardening,
respectively;  [1] and α are the corresponding inter-
action constants; µ is the shear modulus; and m is the
Taylor factor. Curve 1 in Fig. 3 illustrates the stress–
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Fig. 3. Stress–strain curves calculated from Eqs. (8) and (9)
for pure copper irradiated to various doses φ [1].
P

strain curve of unirradiated copper according to the
law [1]

(9)

where σ3 =  is the flow stress at the end of the
third stage of the stress–strain curve (the stage of
dynamic recovery), ρ3 = (kf /ka)2 is the dislocation den-
sity at the end of this stage, and kf is a coefficient that
determines the intensity of dislocation multiplication at
forest dislocations during multiple slip (bkf ≈ 10–2). In
our calculations, we used the following relation
between the local shear strain in channels γi and the ten-
sile strain ε: ε = (∆Λ/Λ)γi/m, where ∆Λ/Λ = 0.1 is the
volume fraction of channels in the material [6, 7]. As
can be seen from Fig. 3, a yield plateau in the stress–
strain curves for copper appears at doses above
1019 cm–2.

To analyze the effect of disperse particles on the
character of the stress–strain diagrams of an irradiated
metal, we need to know the dependence of the stress σi

not only on the radiation dose φ but also on the volume
particle concentration f. To this end, it is necessary to
solve Eq. (1) with the coefficient km ≠ 0. As follows
from Eq. (2), the dimensionless form of this equation in
a uniform approximation is

(10)

The parameters  = ψ0/3 and  = 2ψm/3 are given
by Eqs. (6). By solving Eq. (10), we obtain the depen-
dence of the dislocation density in channels ψ = ρi/ρi0
on the local strain γi in the implicit form

(11)

The dependence of the dislocation density in chan-
nels on the strain in them is illustrated in Fig. 4 in the
absence of disperse particles (curve 1) and for the case
where their concentration increases (curves 2–4) in a
copper alloy irradiated to a dose of 1020 cm–2 (the dislo-
cation immobilization coefficient is βim = 0.5). The
dashed line demonstrates the initial density of radiation
dislocations. It is seen that, at the given radiation dose
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and a particle volume concentration below 10–4, the
dominating process in the alloy (as in the pure metal) is
dislocation annihilation, which brings about the forma-
tion of defectless channels and softening of the irradi-
ated material. At higher particle concentrations, dislo-
cation multiplication is dominant, channels do not
form, and the material is additionally strain-hardened.

Apart from the fact that disperse particles contribute
to the strain hardening, they are also obstacles that limit
dislocation mobility. Dislocations can bypass particles
during their motion in a slip plane if the shear stress is
equal to [9]

(12)

Here, lm = dp(π/6f )1/2 is the interparticle distance intro-
duced in Section 3. With inclusion of the Orowan stress
σor = mτor, the flow stress of a precipitation-hardened
and irradiated alloy is equal to

(13)

Formula (13) implies a linear law of summation of the
stresses σor and σd. Figure 5 shows the flow stresses cal-
culated from Eq. (13) for copper irradiated to a dose of
1020 cm–2 at various concentrations of disperse parti-
cles. It is seen that, at a particle concentration below
10−4, the stress–strain curves have a yield drop, which
indicates softening of the irradiated alloy. The dashed
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Fig. 4. Dependence of the radiation-dislocation density ρi
on the shear strain in channels γi (1) in the absence of dis-
perse particles and (2–4) at a volume concentration f equal
to (2) 10–5, (3) 10–4, and (4) 10–3. The dashed line demon-
strates the initial dislocation density.
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line in Fig. 5 demonstrates the level of a yield plateau
plotted using the equal-area rule [1]. The length of the
yield plateau (Lüders strain εL) is 3%. For a particle
concentration equal to or higher than 10–4, the results of
calculations shown in Figs. 2 and 4 indicate that the
yield drop and yield plateau disappear and that the flow
stresses increase substantially due to precipitation hard-
ening.

4. UNIFORM STRAIN AND ULTIMATE 
STRENGTH

When calculating the stress–strain curves in Fig. 5,
we did not take into account that, as the radiation and
precipitation hardening increase, the uniform strain to
necking εu (to the beginning of plastic instability and
deformation localization in the form of a neck)
decreases significantly. As a result, segments with a
decreasing stress appear in the stress–strain curves.
Their appearance and the value of the strain εu are dic-
tated by the well-known Considère criterion dσ/dε ≤ σ.
By substituting stress (13) into this criterion, we find
the dependence of the strain εu and the ultimate tensile
strength σu = σ(εu) on the particle concentration and
radiation dose:
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Fig. 5. Stress–strain curves calculated from Eq. (13) for
copper irradiated to a dose of 1020 cm–2 at various values of
the concentration of disperse particles f: (1) 10–5, (2) 10–4,
and (3) 10–3.
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(15)

The stresses σi0 and σim entering into Eqs. (14) and (15)
correspond to the initial (ρi0) and the limiting (at γi >
0.5, ε > 1.7%) densities of radiation dislocations
(Fig. 4).

In Fig. 6, the solid curve illustrates the strain εu cal-
culated from Eq. (14) for copper irradiated to a dose of
1020 cm–2 as a function of the volume concentration of
disperse particles in it. The dashed line demonstrates an
analogous dependence in the absence of irradiation. It
is seen that, at particle concentrations above 1%, the
uniform strain in the irradiated copper does not exceed
1%. Irradiation additionally decreases this strain, and
the drop increases with radiation dose (Fig. 3). The
results of calculations agree with the experimental data
obtained for pure copper and the copper alloys indi-
cated in Fig. 6. Figure 7 shows the stress–strain curves
calculated with allowance for deformation localization
(necking) for copper irradiated and hardened by dis-
perse particles. At a particle concentration of 4 × 10–3,
deformation localization begins at a uniform strain of
0.7% (curve 4 in Fig. 7).
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Fig. 6. Dependence of the uniform strain εu on the concen-
tration of disperse particles f in copper irradiated to a dose
of 1020 cm–2 (solid line) and in the absence of irradiation
(dashed line). Experimental points correspond to Cu [10],
CuCrZr, and CuNiBe [2, 3].
P

From Eq. (15) and the results shown in Fig. 7, it fol-
lows that, as the radiation dose and the particle concen-
tration increase, the stress σu at which a tensile speci-
men loses its plastic stability and begins to fragment
plastically (i.e., begins to fail) increases. According to
Eq. (15), this is mainly caused by the increased yield
strength σy(φ, f ) = σ0r( f ) + σi0(φ). In this case, the ratio
σu/σy decreases and tends to a value close to unity,
which indicates a loss of the plasticity margin and the
embrittlement of a radiation- and precipitation-hard-
ened material under tension conditions. This situation
should lead, for example, to unstable propagation of
plastic microcracks in structural materials irradiated at
high radiation doses, which makes these materials
(ductile in their structure and nature) brittle and unreli-
able in operation.

In conclusion, we note that calculations of the defor-
mation and strength properties of crystalline (in partic-
ular, metallic) materials using physical microscopic
(involving dislocation) rather than phenomenological
relations between stresses and strains allow one to nat-
urally take into account the effect of structural factors
(in our case, radiation defects and disperse particles) on
the strength and deformation properties of these mate-
rials.
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Abstract—The influence of preliminary treatment of KH2PO4 (KDP) crystals in a static magnetic field of 0.5 T
for 1 h on the microhardness is revealed. It is found that, for a sample subjected to magnetization, the micro-
hardness as a function of time t exhibits a nonmonotonic behavior with a sharp maximum at t = 4 days. The
time required to reach the maximum microhardness decreases to three days when the sample is quenched before
magnetization. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The first paper [1] concerned with the influence of
preliminary magnetic treatment on the microhardness
of LiF crystals was published in 1987. The scheme of
the experiment was as follows: (i) preliminary mag-
netic treatment, (ii) storage for a certain period of time,
and (iii) measurement. These experiments demon-
strated that the microhardness of as-magnetized LiF
samples was no different from that of the initial
(unmagnetized) crystal. Then, the microhardness
increased, passed through a maximum within approxi-
mately two days of the magnetic treatment, and gradu-
ally vanished. Unfortunately, in [1], similar experi-
ments were not performed with a reference sample that
had not been subjected to magnetic treatment. Nonethe-
less, it was apparently first shown in the aforemen-
tioned work that the microhardness is responsive to
magnetic treatment; i.e., the microhardness increases
with an increase in the magnetic field strength and the
magnetic treatment time. In [1], it was assumed that
paramagnetic centers transform in response to a mag-
netic field. This assumption was experimentally con-
firmed by Golovin and Morgunov [2] and Tyapunina
et al. [3], who managed to separate the magnetic and
mechanical effects.

Earlier [4], we studied the influence of preliminary
magnetization on the yield strength of NaCl crystals
containing nickel paramagnetic impurities. Analysis of
the dependences of the yield strength on the duration of
preliminary magnetic treatment and on the time elapsed
from this treatment demonstrated that, in both cases,
the impurity subsystem undergoes a magnetic transfor-
mation with time.

More recently, the influence of preliminary thermo-
magnetic treatment on the yield strength of NaCl : Eu
[5] and NaCl : Ni [6] crystals was studied using the fol-
1063-7834/05/4707- $26.00 1296
lowing scheme: (i) thermal treatment, (ii) storage for a
certain period of time, (iii) magnetic treatment, and
(iv) measurement. For example, in our previous work
[6], samples were annealed at 1000 K for 3 h, quenched
in liquid nitrogen, and allowed to stand at room temper-
ature over different periods from 0 to 240 h, with the
yield strength being measured at regular intervals. It
was found that the yield strength varies nonmonotoni-
cally: as the storage time increases, the yield strength
first remains constant, then decreases significantly after
storage for ~40 h, and again increases.

Obviously, the above phenomena are determined by
the magnetic memory of the materials: magnetic or
thermomagnetic treatment results in the formation of
an impurity structure that evolves with time and whose
response to a magnetic field can be revealed from a
change in the microhardness or the yield strength of the
crystal. The effects observed exhibit a relaxation nature
due to the redistribution of the internal energy in the
crystal.

The purpose of the present work was to elucidate
how the preliminary magnetic and thermomagnetic
treatment affects the microhardness of KH2PO4 (KDP)
crystals grown from a solution at the Shubnikov Insti-
tute of Crystallography of the Russian Academy of
Sciences.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

The initial microhardness of aged, sawed out,
mechanically ground, and polished samples (5 × 5 ×
1 mm in size) was determined with a PMT-3 micro-
hardness meter at a load of 5 g. The samples were
divided into two groups.
© 2005 Pleiades Publishing, Inc.
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In the first series of experiments, one of two samples
with a known initial microhardness was magnetized in
a magnetic field of 0.5 T for 1 h. Then, the microhard-
nesses of this sample and the reference (unmagnetized)
crystal were measured again. These samples were
allowed to stand for 14 days, during which their micro-
hardnesses were measured at regular intervals. The
spread of microhardnesses about a mean value was
±4 kg/mm2.

In the second series of experiments (thermomag-
netic treatment), the magnetic treatment of one of two
samples with a known initial microhardness was pre-
ceded by annealing (437 K, 1 h) and subsequent
quenching to room temperature. The conditions of ther-
mal treatment are determined by the brittleness of the
KDP crystals, specifically by their instability against
heating and thermal shock.

3. RESULTS AND DISCUSSION

Figure 1 shows the time dependences of the micro-
hardness of a magnetized KDP crystal (curve 1) and a
reference (unmagnetized) sample (curve 2). It can be
seen that the microhardness of the reference sample
slightly increases with time. The microhardness of the
preliminarily magnetized sample remains nearly con-
stant and close to the initial value for the first two days,
then increases considerably, and reaches a maximum
within four days of the magnetic treatment. With a fur-
ther increase in the storage time, the microhardness
decreases to the background values obtained for the ref-
erence sample.

A similar dependence is observed in the second
series of experiments (Fig. 2), with the only difference
that, after the thermal treatment, the maximum of the
hardening effect is shifted to the left by one day; i.e., the
maximum microhardness is reached within three days
of the treatment but its magnitude remains the same as
in the first series of experiments (cf. curves 1 in Figs. 1
and 2). Moreover, the microhardness of the reference
sample (heat treated but not exposed to a magnetic
field) does not change with time (curve 2). This can be
explained by the fact that mechanical treatment (cutting
with a water jet saw, grinding, polishing) of the samples
leads to the formation of a surface crystalline layer sat-
urated with water. During thermal treatment, the water
evaporates and thus ensures a constant microhardness
of the crystal. The evaporation of water from the sample
not subjected to thermal treatment (curve 2 in Fig. 1)
proceeds over an extended period; as a result, the
microhardness of the sample increases gradually.

It is assumed that the conditions responsible for the
sensitivity of nonmagnetic crystals to a magnetic field
and those favorable for a spin transition removing the
forbiddenness of an electron transition can arise only
when the initial impurity structure is nonequilibrium.
This can be achieved through preliminary thermal treat-
ment of the crystals. As a consequence, the impurity
PHYSICS OF THE SOLID STATE      Vol. 47      No. 7      200
subsystem probably evolves with an earlier formation
of magnetically sensitive states, i.e., point defect com-
plexes that respond to subsequent magnetic action.
Annealing causes the decay of impurity complexes,
whereas quenching “freezes” centers formed after the
decay. The newly formed impurity structure evolves
through diffusion in such a way that small paramag-
netic centers increase in size. This manifests itself in
the fact that the microhardness as a function of time
exhibits a nonmonotonic behavior, with a maximum
being reached in three days (Fig. 2). A similar depen-
dence is observed without thermal treatment; however,
in this case, the maximum of the hardening effect is
reached in a longer time, t = 4 days (Fig. 1).
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Fig. 1. Comparison of the time dependences of the micro-
hardness H for (1) the sample subjected to magnetic treat-
ment and (2) the reference (unmagnetized) sample.

185

175
14

H, kg/mm2

t, days
10620

195

205

KDP

1

2

Fig. 2. Comparison of the time dependences of the micro-
hardness H for (1) the sample subjected to thermomagnetic
treatment and (2) the reference (unmagnetized) sample.
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Abstract—X-ray studies of perovskite manganites (La0.9Sr0.1)0.9MnO3 and La1 – xSrxMnO3 (x = 0.1, 0.15, 0.2,
0.25) are reported. The atom positions and interatomic distances and angles are calculated as a function of Sr
doping at room temperature using the FullProf software. The temperature dependences of the crystal lattice
parameters and unit cell volume are investigated. The effects of structural and magnetic phase transitions on the
crystal lattice parameters are studied in detail. The bulk magnetoelastic contribution to thermal expansion is
studied experimentally and calculated. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Rare-earth manganites La1 – xSrxMnO3 have three
different lattice structures at room temperature depend-
ing on the Sr or oxygen content: monoclinic (P21/c),

orthorhombic (Pnma), and rhombohedral ( ) [1–6].
All these lattices are derived from the perovskite cubic
lattice. The orthorhombic unit cell is constructed as fol-
lows: two of its three primitive vectors point in the

[110] and [ ] directions of the cubic cell, and the
third is directed along the [001] cubic axis. In the Pnma
settings, the [001] cubic axis coincides with the orthor-
hombic axis b. The monoclinic cell differs from the
orthorhombic cell in that one of the angles between its
faces is not equal to 90°. The basic axes of the rhombo-
hedral cell coincide with the [110], [101], and [011]
directions of the cubic cell. The angles between these
directions are equal to 60° in a perfect cubic lattice, but
they deviate from this value in the rhombohedral setting

(space group ). When a rhombohedral lattice is
described in the hexagonal setting, the hexagonal axis c
is chosen to be along the [111] cube body diagonal. In
a first approximation, all these lattice types of perovs-
kite manganites can be considered a distorted cubic lat-
tice. Usually, the following two types of distortion are
discussed: rotations of MnO6 octahedra relative to one
another and Jahn–Teller deformations, for which octa-
hedra themselves are distorted. In the latter case, there
are six different values for the Mn–O bond lengths (the
bond lengths are stretched or shortened depending on
their direction). Depending on the type of deformation,
Q2 or Q3 Jahn–Teller modes are considered (see, e.g.,
[1, 2, 5, 6] for details).

R3c

110

R3c
1063-7834/05/4707- $26.00 1299
Two modifications are distinguished in the orthor-
hombic structure: the pseudocubic (O*) phase, where
the lattice parameters are close to each other, a ≈ c ≈
b/ , and the O' phase, where a, c, and b/  differ
considerably. The Jahn–Teller mode Q2 is usually
present in the O' phase [1, 2]. This mode shifts oxygen
ions in the MnO6 octahedron in such a way that all three
kinds of Mn–O distances become different. The O*
phase is affected by the Q2 mode to a much lesser
degree. In several papers, another rhombohedral phase
(O'') has been reported. This phase is distinguished by
complete suppression of Jahn–Teller deformations
[7, 8].

Apart from the reasons discussed above, the lattice
can be significantly affected by various kinds of order-
ing, such as charge ordering of Mn+4 and Mn+3 ions,
dopant alignment, and magnetic ordering. In order to
understand the properties of perovskite manganites, it
is important to study how orderings affect the lattice
parameters. This influence can be detected by studying
the temperature dependences of the parameters. The
most complete data on the variation in structure with
temperature were obtained by using neutron diffraction
on powder samples and can be found in [4]. In the
present work, a detailed study on the crystal structure of
single crystals and powders of (La0.9Sr0.1)0.9MnO3 and
La1 – xSrxMnO3 (x = 0.1, 0.15, 0.2, 0.25) was performed
using x-ray analysis in the temperature range 80–
600 K; the influence of magnetic ordering on the lattice
parameters is found. Currently, there are very little data
concerning the magnetoelastic contribution.

2 2
© 2005 Pleiades Publishing, Inc.
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2. SAMPLE PREPARATION 
AND EXPERIMENTAL SETUP

Polycrystalline samples were obtained by sintering
La, Sr, and Mn oxides in a standard procedure. Next,
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Fig. 1. Portions of measured (Yobs) and calculated (Ycalc)
x-ray diffraction patterns, the difference (Yobs – Ycalc)
between them, and the Bragg peak positions for manganite
polycrystals.
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Fig. 2. Molar unit cell volume of manganites
La1 − 3SrxMnO3 as a function of Sr content for orthorhom-
bic (circles) and rhombohedral (triangles) lattices.
P

single crystals were grown from ceramic preforms by
the floating zone method using a xenon lamp for sample
heating [9]. The orientation and composition of single
crystals were controlled using x-ray methods. Needle-
shaped single crystals about 0.3-mm thick were studied
in RKU and RKV x-ray diffraction cameras using a
photographic method for recording diffraction patterns.

The crystal lattice parameters were determined from
the diffraction patterns of powders made from the sin-
gle crystals. Powders with grains 32–64 µm in size
were prepared by milling some of the crystals and bolt-
ing through the appropriate sieves. The diffraction pat-
terns were taken at room temperature by means of auto-
matic DRON x-ray diffractometers (CrKα radiation).
Temperature-dependent x-ray studies were performed
in a special vacuum chamber using filtered FeKα radia-
tion. The atom positions and the angles and distances
between them were calculated using the FullProf 2001
software package [10].

3. RESULTS AND DISCUSSION

3.1. Crystal Structure of Manganites 
at Room Temperature

According to the phase diagram [1, 2, 6, 11], man-
ganites (La0.9Sr0.1)0.9MnO3 and La1 – xSrxMnO3 (x = 0.1,
0.15) have an orthorhombic Pnma structure or (for x =

0.2, 0.25) a rhombohedral  structure at room tem-
perature. All of our single crystal samples proved to be
twinned; that is, they contained structural domains ori-
ented relative to each other in a certain way. The twin-
ning structures typical of orthorhombic manganite sin-
gle crystals were described in [12]. We observed twin-
ning structures in the smallest single crystals, which
were rods ~0.3 mm in diameter; all three types of
domains were simultaneously present in these orthor-
hombic samples. Therefore, we can conclude that the
size of the structural domains does not exceed 100 µm.
A similar value of the structural domain size was
obtained for LaMnO3 samples from magnetic measure-
ments of textured and nontextured samples. More spe-
cifically, we failed to produce textured samples of
LaMnO3 for powders with grains smaller than 100 µm,
whereas powders with large grains were easily textured
[13].

An example of calculated and measured diffraction
curves for orthorhombic (La0.9Sr0.1)0.9MnO3 and rhom-
bohedral La0.75Sr0.25MnO3 powders is shown in Fig. 1.
Solid lines below the diffraction patterns show the dif-
ference between the measured and calculated intensi-
ties, and bars indicate calculated positions of the Bragg
peaks. Diffraction patterns of all other compositions are
similar to one of the two patterns shown in Fig. 1. It is
clearly seen from Fig. 1 that the samples under study
are single-phase. The calculated atomic positions in the
lattice and the total and isotropic temperature factors
for all compositions are given in Tables 1 and 2 together

R3c
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with the crystal lattice parameters. The unit cell volume
per formula unit (Fig. 2) decreases with growing x,
since the Sr ionic radius is smaller than that of La.
Mitchell et al. [3] constructed the P–x structure phase
diagram and presented data on the crystal lattice param-
eters of all the phases that occur in the system depend-
ing on the oxygen pressure P during the synthesis of
polycrystals. From those data on the lattice parameters,
it follows that the lower the oxygen pressure (that is, the
lower the oxygen concentration in the sample), the
larger the unit cell volume. Unfortunately, the authors
of [3] did not discuss this fact and did not even give the
values of the unit cell volumes.

In our case, the unit cell volume of
(La0.9Sr0.1)0.9MnO3 is smaller than that of
La0.9Sr0.1MnO3. From comparing the crystal lattice
parameters (Tables 1, 2) to the data from [3], we con-
clude that our samples are similar in composition to
those obtained in [3] at an oxygen pressure of 1 mbar.

Table 1.  Crystal lattice parameters, atomic coordinates, total
(O) and isotropic atomic (B) temperature factors, and conver-
gence parameters (RP, RwP) as calculated for the orthorhom-
bic (Pnma) lattice, where the atomic positions for mangan-
ites (La,Sr)MnO3 are the following: the La/Sr positions are
4c (x, 1/4, z), the Mn positions are 4a (0, 0, 0), the O1 posi-
tions are 4c (x, 1/4, z), and the O2 positions are 8d (x, y, z)

(La0.9Sr0.1)0.9MnO3

(La1 – xSrx)MnO3

x = 0.1 x = 0.15

La/Sr x 0.9761 0.9822 0.9998

z 0.5025 0.5038 0.4934

B (Å2) 0.0236 0.6220 0.0429

Mn B (Å2) 0.0218 0.1725 0.0019

O1 x 0.5060 0.5062 0.5666

z 0.4130 0.4684 0.4970

B (Å2) 0.0161 0.8014 0.0018

O2 x 0.2722 0.2462 0.2193

y 0.9778 0.9649 0.9656

z 0.2473 0.2830 0.2668

B (Å2) 0.0391 0.0690 0.0500

a, Å 5.550 5.548 5.545

b, Å 7.780 7.748 7.790

(b/ , Å) (5.501) (5.479) (5.508)

c, Å 5.542 5.576 5.506

V, Å3 239.30 239.69 237.84

O, Å2 0.1313 0.1168 0.01416

RP (%) 7.25 5.35 4.81

RwP (%) 8.4 7.35 6.35

2
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As follows from Table 1, the crystal lattice parame-

ters a, b/ , and c of orthorhombic La0.9Sr0.1MnO3

samples at room temperature are very different due to
the Jahn–Teller effect, which is typical of the O' phase.
In (La0.9Sr0.1)0.9MnO3 samples, the parameters a and c
are close to each other, and in La0.85Sr0.15MnO3 samples

the parameters b/  and c are similar. These composi-
tions can also be attributed to the O' phase [14, 15]. The
lattice parameters we obtained are in good agreement
with the previously published data (see, e.g., [4, 7]).

Calculated values of the interatomic Mn–O dis-
tances and the Mn–O–Mn and O–Mn–O angles in the
MnO6 octahedron for all compositions are shown in
Fig. 3. It can be seen that, as the Sr concentration
increases at room temperature, the differences in the
interatomic distances decrease and finally vanish in the
rhombohedral phase. In the rhombohedral lattice, the
oxygen and manganese atoms each occupy only one
crystallographic position, (18e) and (6b), at the (x, 0,
1/4) and (0, 0, 0) points, respectively; so there is only
one interatomic Mn–O distance (Tables 2, 3). The
MnO6 octahedra in the rhombohedral lattice are
slightly distorted, and, according to our calculations,
the O–Mn–O angle is about 91°. Furthermore, the octa-
hedra in the rhombohedral phase are rotated relative to
each other through 164° (the Mn–O–Mn angles; see
Fig. 3).

2

2

Table 2.  Crystal lattice parameters, atomic coordinates, total
(O) and isotropic atomic (B) temperature factors, and conver-
gence parameters (RP, RwP) as calculated for the rhombohe-

dral (R c) lattice, where the atomic positions for manganites
(La,Sr)MnO3 are the following: the La/Sr positions are 6a
(0, 0, 1/4), the Mn positions are 6b (0, 0, 0), and the O posi-
tions are 18e (x, 0, 1/4)

(La1 – xSrx)MnO3

x = 0.2 x = 0.25

La/Sr B (Å2) 0.11315 0.02501

Mn B (Å2) 0.10096 0.03228

O x 0.44898 0.44520

B (Å2) 0.18854 0.33117

a, Å 5.532 5.522

c, Å 13.368 13.370

c/A 0.414 0.413

V, Å3 351.83 350.61

O, Å2 0.00763 0.0696

RP (%) 4.54 5.4

RwP (%) 5.5 7.35

3

5
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3.2. Temperature Dependence 
of the Lattice Parameters

All samples studied undergo structural phase transi-
tions in the temperature range 80–600 K. For
La0.9Sr0.1MnO3 manganites, the orthorhombic O' phase
exists in the temperature range 100 K ≤ T ≤ 330 K and
transforms into the pseudocubic O* phase both below
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Fig. 3. Interatomic Mn–O distances and O–Mn–O angles in
the MnO6 octahedron of La1 – xSrxMnO3 as a function of Sr
content.
P

and above this interval (Fig. 4a). It was established in
[5] that the O'–O* phase transitions are induced by the
Jahn–Teller deformation mode Q2, which arises in the
temperature range where the O' phase exists. For the
La0.9Sr0.1MnO3 composition, the low-temperature O*–
O' transition occurs in a narrow (3°- to 5°-wide) tem-
perature range and is first-order. The high-temperature
O'–O* transition occurs gradually over a temperature
interval 40°- to 50°-wide (Fig. 4a). Both transitions
entail a change in the unit cell volume (Fig. 5). The
Jahn–Teller phase O' has a significantly larger unit cell
volume than the O* phase. A similar transition from the
O' to the O* phase was observed in manganites
La0.89Sr0.11MnO3 in [4] as a first-order phase transition
occurring via a mixture of phases. We did not observe
coexisting phases in our samples.

Another type of structural phase transition is
observed in samples with x = 0.15 and 0.2, namely, the
transition from the low-temperature orthorhombic
Pnma phase to the high-temperature rhombohedral

 phase. This transition takes place at T ~ 360 and
115 K for x = 0.15 and 0.2, respectively (Figs. 4b, 4c).
In both cases, this transition is first-order and there is a
temperature range where the orthorhombic and rhom-
bohedral phases coexist. For x = 0.2 manganites, this
range (about 5-K wide) is considerably narrower than
that for x = 0.15 (about 20-K wide). There is a clear ten-
dency of the transition region to be wider where the
structural phase transition takes place at a higher tem-
perature irrespective of the transition type. The transi-
tion from the orthorhombic to the rhombohedral phase
is accompanied by a decrease in the unit cell volume

(Fig. 5). Published data concerning the Pnma–
transition in manganites La1 – xSrxMnO3 are scarce, and
there are no data on the phase coexistence during this
transition or data on variations in the unit cell volume.

R3c

R3c
Table 3.  Interatomic distances Mn–O (in angstrom) and Mn–O–Mn and O–Mn–O angles for manganites (La,Sr)MnO3

(La0.9Srx)0.9MnO3 La1 – xSrxMnO3

x = 0.1 x = 0.1 x = 0.15 x = 0.20 x = 0.25

Distance, Å

2.014 1.970 1.982

Mn–O 2.022 2.070 1.995 1.966 1.964

1.930 1.919 1.957

Angle, deg

150 160 159

Mn–O–Mn 165 161 163 164 164

98 93 91

O–Mn–O 92 83 91 91 91

91 91 90
HYSICS OF THE SOLID STATE      Vol. 47      No. 7      2005
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The temperature dependences of the lattice parame-
ters exhibit clear features (kinks) related to magnetic
ordering. The Curie temperatures Tc are shown in Fig. 4
by arrows. It is clearly seen that these features start at
temperatures somewhat higher than the Curie tempera-
tures. This is due to the fact that magnetically ordered
clusters are formed in the paramagnetic matrix at tem-
peratures much higher than Tc. Thus, the crystal lattice
parameters are sensitive not only to long-range order,
which appears at T = Tc, but also to short-range order,

Fig. 4. Temperature dependence of the lattice parameters of
manganite polycrystals for the orthorhombic (open sym-
bols) and rhombohedral phases (close symbols). Dot-and-
dash lines show the phonon contribution to the lattice ther-
mal expansion.

50 100 150 200 250 300 350 400
T, K

5.42

5.46

5.50

5.54

5.58

5.62

a,
 b

, c
, Å

c

a

b/√2

La0.9Sr0.1MnO3

50 100 150 200 250 300 350 400 450
5.49

5.50

5.51

5.52

5.53

5.54

5.55

5.56

b/√2

a

Tc

R3c
–

c

La0.85Sr0.15MnO3

Pnma
~~

c

a,
 b

, c
, Å

13.41

13.40

13.39

13.38
5.57

5.56

5.55

5.54

a,
 Å

~~

La0.8Sr0.2MnO3Pnma

a

c

R3c
–

a

a

c

Tc

50 100 150 200 250 300 350 400 450
T, K

5.54

5.52

5.50

5.48

5.46

T, K

13.42

13.38

13.34

13.30

5.54

5.53

5.52

c,
 Å

c,
 Å

a,
 Å

a,
 b

, c
, Å

(a)

(b)

(c)

b/√2
PHYSICS OF THE SOLID STATE      Vol. 47      No. 7      2005
which appears at a temperature much higher than the
Curie temperature.

The magnetoelastic contribution can be found by
comparing the measured temperature dependence of
the unit cell volume to the calculated phonon contribu-
tion. We calculated the phonon contribution from an
equation derived using the Debye theory and the Grü-
neisen law [16]:

where z is a lattice parameter or the unit cell volume,

F(TΘ/T) = , CV is the specific heat at constant

volume, Az is a constant, z0 is the value of z at T = 0 (we
found this value by extrapolation), and TΘ is the Debye
temperature. In our calculations, we assumed that the
temperature dependence of the lattice parameters coin-
cides with that of the phonon contribution at tempera-
tures much higher than the magnetic ordering tempera-
ture. The values of the Debye temperatures are taken
from [17]: TΘ = 390 K for x = 0.15 and TΘ = 400 K for
x = 0.2. In Fig. 4c, the phonon contribution for the case
of x = 0.2 is shown by a dot-and-dash line. It is clearly
seen that the magnetoelastic contribution is anisotropic
for La0.8Sr0.2MnO3; i.e., the deviations of the lattice
parameter temperature dependence from the calculated
Debye–Grüneisen curve for the parameters a and c are
different. The magnetoelastic contribution measured
along the c axis is significantly larger than that along
the a axis.

The temperature dependencies of the unit cell vol-
ume V for x = 0.1, 0.15, and 0.2 are shown in Fig. 5. The
V(T) curves for x = 0.15 and 0.2 clearly indicate a jump
in the unit cell volume due to the first-order phase tran-

sition from the high-temperature rhombohedral 
phase to the low-temperature orthorhombic Pnma

z T( ) z0 AzTF TΘ/T( ),+=

1
T
--- CV Td

0

T∫

R3c
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Fig. 5. Temperature dependence of the molar unit cell vol-
ume of manganite polycrystals. Dot-and-dash lines show
the phonon contribution to the volume thermal expansion.
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phase. The calculated phonon contribution for these
compositions is shown in Fig. 5 by a dot-and-dash line.
The difference ∆V between the measured unit cell vol-
ume V and the phonon contribution normalized to the
experimentally measured volume (i.e., γ = ∆V/V) is
shown in Fig. 6 as function of t = T/Tc. The dot-and-
dash line in Fig. 6 is extrapolation to t = 0. The inset to
Fig. 6 shows the γ(m2) dependence (here, m = M(H =
10 kOe)/Ms, M is the magnetization, Ms is the satura-
tion magnetization). It is clearly seen that the γ(m2)
dependence is approximately linear for m2 > 0.015,
which is typical of the magnetoelastic contribution.

The deviation of the γ(m2) curve from a straight line
at low m2 is due to a nonuniform state forming in the
vicinity of the magnetic phase transition, because the
magnetic short-range order has a significant effect on
the magnetoelastic contribution to the thermal expan-
sion of the crystal lattice. This contribution is notice-
able up to t ~ 1.25; therefore, clusters possessing short-
range magnetic order are preserved up to these values of
t in the paramagnetic matrix of manganites (Figs. 4–6).

By extrapolating γ(t) to t = 0 for samples with x =
0.15 and 0.2, we estimated the maximum magnetoelas-
tic contribution to thermal expansion to be ~3.7 × 10–3.
It is important to stress that the manganites with x =
0.15 and 0.2 have different crystal structures near Tc:
their structure is orthorhombic for x = 0.15 and rhom-
bohedral for x = 0.2; nevertheless, the γ(t) dependences
are identical.

It is well known (see, e.g., [6]) that a charge-ordered
state appears in manganites with x = 0.15 at T < 200 K.
Our measurements show that the charge ordering does
not have a significant influence on the volume temper-
ature dependence.

0.20 0.4 0.6 0.8 1.0 1.2 1.4 1.6
t

0.002

0.004
γ

0 0.2 0.4 0.6 0.8

0.0005

m2

0.0015

0.0025

0.0035
γ

x = 0.15
x = 0.20

Fig. 6. Temperature dependence of the magnetoelastic con-
tribution γ = ∆V/V(t) (t = T/Tc) of La1 – xSrxMnO3 for x =
0.15 and 0.2 (triangles and circles, respectively). The dot-
and-dash line is extrapolation of γ to t = 0. The inset shows
γ as a function of m2 (m = M/Ms(t)) for x = 0.15.
PH
4. CONCLUSIONS
The crystal structure of rare-earth manganites

(La0.9Sr0.1)0.9MnO3 and La1 – xSrxMnO3 (x = 0.1, 0.15,
0.2, 0.25) has been studied. The crystal lattice parame-
ters, atomic coordinates, and interatomic distances at
room temperature have been found. The degree of dis-
tortion of the MnO6 octahedron was shown to be differ-
ent for (La0.9Sr0.1)0.9MnO3 and La1 – xSrxMnO3 samples
with x = 0.1 and 0.15, which have an orthorhombic
structure at room temperature (space group Pnma). The
distortion is the strongest in (La0.9Sr0.1)0.9MnO3 sam-
ples and is the weakest in La0.85Sr0.15MnO3 samples.
The orthorhombic phase of La0.85Sr0.15MnO3 is closer
(in distortion magnitude and degree of rotation of the
octahedra relative to each other) to the rhombohedral

phase (space group ), which exists in manganites
with x = 0.2 and 0.25 at room temperature.

X-ray studies at low temperatures have been per-
formed to determine the temperature dependences of
the crystal lattice parameters and the volume changes
caused by structural phase transitions. The magne-
toelastic contribution to thermal expansion has been
calculated. It has been shown that the bulk magne-
toelastic contribution γ is independent of the crystal
structure and is approximately 3.7 × 10–3 at T ~ 0 K.

5. ACKNOWLEDGMENTS

The authors are grateful to G.V. Ivanova and
T.P. Lapina, employees of the Institute of Metal Physics
(Ural Division, Russian Academy of Sciences), for
their help with the x-ray measurements of single crys-
tals and to R.I. Zaœnulina for the magnetic data.

This work was supported by the Russian Foundation
for Basic Research (project nos. 02-02-16425, 00-02-
17544, 03-02-16065) and the Ministry of Education
and Science of the Russian Federation (program “Inte-
gration”).

REFERENCES
1. Y. Yamada, O. Hino, S. Nohdo, R. Ranao, T. Inami, and

S. Katano, Phys. Rev. Lett. 77, 904 (1996).
2. H. Kawano, R. Kajimoto, M. Kubota, and H. Yoshizawa,

Phys. Rev. B 53, R14709 (1996).
3. J. F. Mitchell, D. N. Argyriou, C. D. Potter, D. G. Hinks,

J. D. Jorgensen, and S. D. Bader, Phys. Rev. B 54, 6172
(1996).

4. B. Dabrowski, X. Xiong, Z. Bukowski, R. Dybzinski,
P. W. Klamut, J. E. Siewenie, O. Chmaissem, J. Shaffer,
C. W. Kimball, J. D. Jorgensen, and S. Short, Phys. Rev.
B 60, 7006 (1999).

5. S. V. Gaviko, E. V. Arkhipov, A. V. Korolev, V. E. Naœsh,
and Ya. E. Mukovskiœ, Fiz. Tverd. Tela 41 (6), 1064
(1999) [Phys. Solid State 41 (6), 969 (1999)].

6. V. E. Naœsh, Fiz. Met. Metalloved. 92 (5), 16 (2001).
7. L. Pinsard, J. Rodrigues-Carvajal, and A. Revcolevsci,

J. Alloys Compd. 262–263, 152 (1997).

R3c
YSICS OF THE SOLID STATE      Vol. 47      No. 7      2005



X-RAY STUDIES OF THE (La,Sr)MnO3 PEROVSKITE MANGANITE STRUCTURE 1305
8. Q. Huang, A. Santoro, J. W. Lynn, R. W. Erwin,
J. A. Borchers, J. L. Peng, and R. L. Greene, Phys. Rev.
B 55, 14987 (1997).

9. A. M. Balbashov, S. G. Karabashev, Y. M. Mukovskii,
and S. A. Zver’kov, J. Cryst. Growth 167, 365 (1996).

10. J. Rodrigues-Carvajal, Physica B 192, 55 (1993).

11. A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu,
G. Kido, and Y. Tokura, Phys. Rev. B 51, 14103 (1995).

12. F. Moussa, M. Hennion, J. Rodriguez-Carvajal,
H. Moudden, L. Pinsard, and A. Revcolevschi, Phys.
Rev. B 54, 15149 (1996).

13. A. V. Korolev, V. E. Arkhipov, V. S. Gaviko, M. I. Kurkin,
T. P. Lapina, and Ya. M. Mukovskii, J. Magn. Magn.
Mater. (in press).
PHYSICS OF THE SOLID STATE      Vol. 47      No. 7      2005
14. R. I. Zainullina, N. G. Bebenin, V. V. Mashkautsan,
A. M. Burkhanov, V. S. Gaviko, V. V. Ustinov,
Y. M. Mukovskii, D. A. Shulyatev, and V. G. Vassil’ev,
Zh. Éksp. Teor. Fiz. 120, 139 (2001) [JETP 93, 121
(2001)].

15. R. I. Zainullina, N. G. Bebenin, A. M. Burkhanov,
V. V. Ustinov, and Ya. M. Mukovskii, Phys. Rev. B 66,
064421 (2002).

16. N. W. Ashcroft and N. D. Mermin, Solid State Physics
(Holt, Rinehart and Winston, New York, 1976; Mir, Mos-
cow, 1979).

17. T. Okuda, A. Asamitsu, Y. Tomioka, T. Kimura, Y. Tagu-
chi, and Y. Tokura, Phys. Rev. Lett. 81, 3203 (1998).

Translated by G. Tsydynzhapov



  

Physics of the Solid State, Vol. 47, No. 7, 2005, pp. 1306–1309. Translated from Fizika Tverdogo Tela, Vol. 47, No. 7, 2005, pp. 1261–1264.
Original Russian Text Copyright © 2005 by Ol’khovik, Sizova, Shurinova, Kamzin.

                                                    

MAGNETISM 
AND FERROELECTRICITY

       
Determination of the Surface Anisotropy Contribution
to the Magnetic Anisotropy Field of a Nanocrystalline Barium 

Ferrite Powder at Various Temperatures
L. P. Ol’khovik*, Z. I. Sizova*, E. V. Shurinova*, and A. S. Kamzin**

*Kharkov National University, Svobody sq. 4, Kharkov, 61077 Ukraine

e-mail: Larisa.P.Olkhovik@univer.kharkov.ua

**Ioffe Physicotechnical Institute, Russian Academy of Sciences, 
Politekhnicheskaya ul. 26, St. Petersburg, 194021 Russia

Received August 31, 2004

Abstract—The temperature dependence of the average anisotropy field of a nanocrystalline barium hexaferrite
powder was studied by treating remanent-magnetization curves with inclusion of thermal fluctuations. The con-
tribution of surface anisotropy was isolated; its nonstandard temperature dependence is intimately related to the
specific features of formation of near-surface regions in ultrathin particles. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The recent rise in research interest in nanocrystal-
line magnetic materials has been spurred, on the one
hand, by the specific features of their magnetic proper-
ties and, on the other hand, by their obvious application
potential in nano- and microelectronics. A fundamental
parameter of a magnetic material is its anisotropy field
Ha. Because particles of any real highly dispersed sys-
tem, irrespective of the method by which it was pre-
pared, are distributed in size, these systems are charac-
terized not by one value of Ha but rather by a distribu-
tion in anisotropy fields. It follows that investigation of
the magnetic anisotropy and, in particular, of the anisot-
ropy field should be performed separately for systems
in different states of dispersion.

The goal pursued by this study was to establish the
temperature dependence of the parameters characteriz-
ing the magnetic anisotropy of highly anisotropic bar-
ium hexaferrite with the particle size reduced to the
nanometer scale.

2. OBJECT OF STUDY

The object of study was a highly anisotropic mag-
netically uniaxial ferrimagnet, hexagonal barium fer-
rite, with an unsubstituted magnetic matrix (BaFe12O19)
featuring the following main room-temperature mag-
netic parameters: the magnetocrystalline anisotropy
field Hak = 17.8 kOe, anisotropy constant K1 = 3.3 ×
106 erg cm–3, saturation magnetization IS = 358 emu cm–3

(300 K), and Curie temperature TC = 733 K [1].
1063-7834/05/4707- $26.00 1306
The sample to be studied was a nanocrystalline
powder with cryochemical prehistory synthesized at
T = 800°C. A detailed description of the technology of
its preparation can be found in [2].

The powder particles were platelets ranging from
d ≈ 10 to 100 nm in diameter (Fig. 1). An important
morphological parameter governing the anisotropy-
field distribution is the particle thickness. As seen from
Fig. 1, the powder sample under study is dominated by
5- to 10-nm-thick particles (2–4 unit cell parameters c).

The decisive role in the creation of the magnetic
anisotropy in such particles is played by the open sur-
face, which accounts for the formation of a structurally
imperfect near-surface region in a crystal.

Layer-by-layer diagnostics of the elemental compo-
sition of a BaFe12O19 single crystal along the hexagonal
axis c performed by us earlier [3] revealed the presence
of a near-surface region of finite thickness in which the
deviation of elemental composition from stoichiometry
decreases exponentially with distance from the surface
into the bulk of the crystal. We succeeded in estimating
the thickness of this near-surface region with a magnet-
ically perturbed structure by using depth-selective con-
version Mössbauer spectroscopy [4]. It was shown that
this thickness is only 2–5 nm for a highly anisotropic
BaFe12O19 crystal, at 300 K [5]. For platelet-shaped
particles (with both faces parallel to the (001) basal
plane), the total thickness of the near-surface region
turns out to be comparable to the thickness of the
nanocrystals under study.

Another essential factor to bear in mind in analyzing
experimental data is that the particles of the powder
sample under study are small Stoner–Wohlfarth parti-
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Particle-size distribution in a nanocrystalline powder: d, h, and V are the diameter, thickness, and volume of particles, respec-
tively, and c is the lattice parameter. Sampling contains N = 520 particles.
cles; i.e., they meet the criterion V ≤ 100Vso [6]. This
substantiates the particle-volume distribution displayed
in Fig. 1 (〈V 〉  ≅  30 × 10–18 cm3) for a critical (superpara-
magnetic) value of the volume Vso (300 K) = 0.5 ×
10−18 cm3.

Thus, an analysis of anisotropic properties of the
nanodisperse powder under study should take into
account both surface effects and the influence of ther-
mal fluctuations [6].

3. EXPERIMENTAL TECHNIQUE

Finding the distribution in anisotropy fields in a sys-
tem of small particles is a challenging task. The distri-
bution function f(Ha) for an ensemble of randomly ori-
PHYSICS OF THE SOLID STATE      Vol. 47      No. 7      200
ented particles was first derived analytically in [6] by
solving the integral equation

(1)

Here, mr is the averaged isothermal specific remanent
magnetization reduced to the magnetization value for
an infinitely high magnetic field, h is the external mag-
netic field reduced to the anisotropy field Ha, and
µr(h) = mr(H).

Because the experiment reported in this paper was
aimed at determining the average anisotropy field as an
integral characteristic of a nanodisperse powder, we
restricted ourselves to the zero approximation to the

dmr H( )
dH
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1
h
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solution of Eq. (1), which yields a simple expression for
the particle anisotropy-field distribution function [7]:

(2)

The mr(H) relation for a close-packed (packing fac-
tor p = 0.4), thermally demagnetized powder sample
with randomly oriented particles was found by measur-
ing hysteresis loops as the maximum field was
increased gradually up to H = 20 kOe. The measure-
ments were run in the temperature range 300–630 K.

4. EXPERIMENTAL RESULTS 
AND DISCUSSION

Figure 2 plots mr(H) graphs whose differentiation
yielded the particle anisotropy-field distribution
(Fig. 3). We readily see that the distribution is symmet-
ric with respect to the maximum and fairly broad at all
temperatures. Also, the anisotropy field range tends to
narrow with increasing temperature. Indeed, at 300 K,
the half-width of the distribution function is 3.5 kOe,
while at 621 K it drops to one-half this value. The aver-

age anisotropy fields  were identified with the
fields corresponding to the maximum in the distribution

function N = f( ).

Figure 4 presents an experimental temperature
dependence of the average anisotropy field. This depen-
dence was obtained with inclusion of the effect of ther-
mal fluctuations, for which purpose we made use of the

f Ha( )
dmr

dH
--------- 

 
H Ha/2=

.=

H̃a〈 〉

H̃a

20 6 10 14
H, kOe

0.2

0.4

0.6

0.8

1.0
m

r 1 23456

Fig. 2. Field dependence of the isothermal remanent mag-
netization at various temperatures: (1) 300, (2) 360, (3) 550,
(4) 590, (5) 610, and (6) 620 K.
P

expression from [6] relating the true anisotropy field

〈Ha〉  with the experimentally found value :

(3)

(4)

Here, Z is the thermal fluctuation coefficient, 〈V 〉  is the
average volume of particles in the powder sample, and
k is the Boltzmann constant.

H̃a〈 〉

Ha〈 〉 T( ) Z T( ) H̃a〈 〉 T( ),=

Z 1–( )Z
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50kT /IS H̃a〈 〉( )0.7
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Fig. 3. Anisotropy field distribution of particles in a nanoc-
rystalline powder at various temperatures: (1) 300, (2) 360,
(3) 550, (4) 590, and (5) 610 K.
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Note that the experimental data were treated disre-
garding the fact that, starting from T ≅  400 K, the small-
est particles undergo a transition (induced by the exter-
nal magnetic field) from the magnetically stable to a
superparamagnetic state; in other words, the average
volume was calculated taking into account all particles
of the system.

The temperature dependences of  and 〈Ha〉  in
Fig. 4 are compared with that of the magnetocrystalline
anisotropy field Hak of a bulk crystal. We readily see

that the  = f(T) graph follows the same behavior as

Hak(T). Note, however, that  vanishes at T =
670 K, which is about 60 K below the Curie tempera-
ture of the bulk crystal. Taking thermal fluctuations into
account changes both the pattern of the relation (in the
range 300–450 K, 〈Ha〉  rises slightly) and the value of
the temperature at which the anisotropy field vanishes.
As should be expected, 〈Ha〉(T) extrapolates to the
Curie point of the nanocrystalline powder under study,
TCN = 710 K.

The values of 〈Ha〉  obtained in the temperature inter-
val covered lie approximately 10–20% lower than those
for the bulk crystal. Indeed, at 300 K, we have 〈Ha〉  =
14.8 kOe, whereas Hak = 17.8 kOe. This discrepancy
cannot be accounted for by only the negative contribu-
tion provided by the shape anisotropy field, which is
〈NIS 〉  = 1.4 kOe for particles of the system under study
at the given temperature. Therefore, in contrast to the
approach employed in [6, 8], where the magnetocrys-
talline and particle shape anisotropies were taken into
account, we also included the surface anisotropy, which
is characteristic of ultrasmall particles.

The contribution of surface anisotropy (Has) to the
average anisotropy field was estimated from the rela-
tion

(5)

The Has(T) relation thus obtained is plotted in Fig. 4.
Note the anomalous behavior of the temperature depen-
dence of Has as compared to that of Hak, which becomes
particularly evident if we recall that surface anisotropy
is also magnetocrystalline in origin. The only differ-

H̃a〈 〉

H̃a〈 〉
H̃a〈 〉

Ha〈 〉 Hak HIS〈 〉– Has.±=
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ence consists in the fact that the surface anisotropy is
due to single-ion contributions of Fe3+ ions localized in
positions with lower symmetry relative to the analo-
gous positions in the bulk of the crystal. As shown in
[9], lowering of the local symmetry of crystallographic
positions may give rise to a nonstandard temperature
dependence of the parameters characterizing the aniso-
tropic properties of crystals.
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Abstract—The magnetic behavior of a HoMn0.5Co0.5O3 single crystal grown by electrochemical deposition
was studied by measuring magnetization in the temperature range 5–300 K in magnetic fields of up to 50 kOe.
The results obtained are treated within a model of the two-phase magnetic state of a crystal. A comparative anal-
ysis of the magnetic properties of HoMn0.5Co0.5O3 and LaMn0.5Co0.5O3 single crystals was carried out. © 2005
Pleiades Publishing, Inc.
1. INTRODUCTION

Substitution of magnetic or nonmagnetic ions for
manganese in pure LaMnO3, which is an antiferromag-
netic (AFM) insulator, is one of the reasons for the
appearance of the metallic ferromagnetic (FM) state.
Pure LaMnO3 has been studied in considerable detail
(see review [1] and references therein). A number of
publications dealing with investigation of the structural
and magnetic properties of LaMn1 – xCoxO3 were aimed
at establishing the source of ferromagnetism in this sys-
tem [2–8]. Studies of the La–Mn–Co–O (LMCO) sys-
tem have been performed, with the exception of [7, 8],
on polycrystalline samples and have yielded contradic-
tory results. The FM state in LMCO was assumed to be
associated with, for instance, monovalent Mn3+–O–
Mn3+ [2] or positive superexchange Mn4+–Co2+ [3–9]
interaction. However, RMnO3 compounds, where R
stands for a rare-earth ion, have been studied compara-
tively poorly. There are a few studies of PrMnO3 and
NdMnO3 [10] and HoMnO3 [11]. As far as we know,
the HoMnO3 system with partial substitution of cobalt
for manganese has not yet been studied at all. There is
a publication dealing with the structural and magnetic
characteristics of polycrystalline RMn0.5Co0.5O3 and
RMn0.5Ni0.5O3 for a number of rare-earth elements [12].
Preparation of high-quality HoMn0.5Co0.5O3 (HMCO)
single crystals and measurement of their magnetic
characteristics will provide a firm basis for our under-
standing of the competing interactions in the Mn(Co)
and Ho sublattices. A comparative analysis of the mag-
netic properties of HMCO and LMCO single crystals
(the results of our measurements of the latter have been
published recently [7, 8]) will permit interpretation of
the specific features of these two magnetic semiconduc-
1063-7834/05/4707- $26.00 ©1310
tor systems within a model of the two-phase magnetic
state of a crystal (an AFM matrix with embedded FM
clusters) at low temperatures.

2. SAMPLES AND EXPERIMENTAL 
TECHNIQUE

HMCO single crystals with a cobalt content close to
0.5 were obtained by electrochemical deposition in
100-cm3 platinum crucibles from a melt solution of the
Cs2MnO4–MoO3 binary system in a 2.2 : 1 molar ratio.
The crystal-forming compounds were introduced into
the melt in the molar ratio Ho2O3 : Mn2O5 : Co3O4 =
1 : 0.14 : 0.31. Crystals were grown at a current density
of 5–10 mA cm–2 for 80–100 h at a temperature of
1000°C. The cation composition of a single crystal was
determined using x-ray fluorescence on an x-ray spec-
trometer, which was equipped with a Si(Li) semicon-
ductor detector with a resolution of 200 eV at the
5.9 keV line. The x-ray fluorescence analysis estab-
lished the crystal composition as HoMn0.57Co0.43O3.
The phase composition, lattice parameters, and single-
crystal orientation were determined using x-ray diffrac-
tometry. The Laue diffraction patterns confirmed that
the samples obtained were single crystals with a small
content of twins. X-ray measurements performed on
crystalline powders showed the HMCO single crystals
to be single phase and to have orthorhombic structure
with a = 5.26 Å, b = 5.57 Å, and c = 7.45 Å (space
group Pbnm). Table 1 lists the crystallographic charac-
teristics of the HMCO single crystal, including the dis-
tances m(Mn–O1) between Mn(Co) ions and an apical
oxygen ion and the short (s) and long (l) distances
between Mn(Co) and O11 ions in the MnO4 plane. The
 2005 Pleiades Publishing, Inc.
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values of m, s, and l were calculated from the expres-
sions [13]

(1)

To illustrate Jahn–Teller distortions of the structure, we
chose Rt = l/s, as was done in [14].

The magnetization of single crystals was measured
with a SQUID magnetometer (Quantum Design,
MPMS-5) in magnetic fields H of up to 50 kOe and at
temperatures from 5 to 300 K.

3. EXPERIMENTAL RESULTS

Figure 1 plots the temperature dependence of recip-
rocal susceptibility χ–1 = H/M for an HMCO single
crystal. At high temperatures, χ–1(T) obeys the Curie–
Weiss law and deviates from it at temperatures below
~80 K. The Curie constant C in the temperature region
80–300 K is 16.48 emu K Oe–1 mol–1, and the paramag-
netic (PM) Curie temperature is Θp = 10.94 K for fields
above 50 Oe. The effective PM moment of the Ho3+ ion,
peff(Ho), was calculated from the Curie constant by sub-
tracting the contributions from the Mn4+ and Co2+ ions:

(2)

where  = 3CkB/( ); g = 2; kB is the Boltzmann
constant; N is the Avogadro number; µB is the Bohr
magneton; and SMn(+4) and SCo(+2) are the spin quantum
numbers for the Mn4+ and Co2+ ions, respectively. The
experimental value of peff (Ho) is 10.7µB, which is very
close to the theoretical value of 10.6µB for the free Ho3+

ion.

Figure 2 presents temperature dependences of the
susceptibility χ = M/H for an HMCO single crystal
measured at various values of the magnetic field in the
FC and ZFC modes. For H = 0.1 kOe, the PM–FM tran-
sition occurs at Tc = 74 K. The value of Tc grows weakly
with magnetic field; indeed, for 1 kOe, we have Tc =
76 K and, for 10 kOe, Tc = 78 K. Thus, Tc increases by
4 K as the field increases from 0.1 to 10 kOe, but the
PM–FM transition becomes diffuse (Fig. 2a). At low
temperatures (T ≤ 30 K), χ(T) is seen to deviate from
the typical FM behavior (saturation at low tempera-
tures); more specifically, the susceptibility (magnetiza-
tion) of the single crystal increases, which is due to the
contribution from the PM holmium ions. The deviation
from the typical FM behavior increases with magnetic
field; indeed, the deviations of the magnetization M(T)
are ~1, ~2.7, and 25 emu/g in fields of 0.1, 1, and
10 kOe, respectively. This appears only natural,
because the ratio of the magnetization of the FM man-
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ganese and cobalt ions to that of the PM ion of holmium
decreases with increasing magnetic field.

A comparison of Figs. 2a and 2b suggests the exist-
ence of a clearly pronounced temperature irreversibility
(particularly in weak fields) between χZFC(T) and
χFC(T). The susceptibility χZFC(T) starts to deviate from
χFC(T) near Tc; as the temperature decreases, a maxi-
mum forms in the χZFC(T) curves, with its position
dependent on the applied magnetic field. As the field
increases, the maximum in χZFC(T) shifts toward lower
temperatures: from 69 K at 0.1 kOe to 60 K at 1 kOe.
In a field of 10 kOe, this maximum becomes very dif-
fuse (Fig. 2b). Below ~30 K, the susceptibility rises
steeply, with the major contribution to χ(T) being due
to the holmium PM ions. Note that, in fields H ≥
10 kOe, there is practically no thermomagnetic irre-
versibility between χZFC(T) and χFC(T) of HMCO.

Table 1.  Structural data for RMn1 – xCoxO3 single crystals
(R = Ho, La; x ≈ 0.5)

Single crystal HMCO LMCO

Space group Pbnm Pbnm

300 K a, Å 5.26 5.451

b, Å 5.57 5.509

c, Å 7.45 7.742

V/z, Å3 54.57 58.23

Structure O O

300 K m(Mn(Co)–O1), Å 1.89 1.937

s(Mn(Co)–O11), Å 1.834 1.934

l(Mn(Co)–O11), Å 2.14 1.962

Rt = l/s 1.17 1.014

rA, Å 1.072 1.216

t 0.86 0.91

1

50 100

χ–1
 ×

 1
0–3

, g
 O

e/
em

u

T, K

2

3

4

150 200 250

H = 0.1 kOe

Fig. 1. Temperature dependence of the reciprocal suscepti-
bility of an HMCO single crystal.
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Fig. 2. Temperature dependence of the susceptibility of an
HMCO single crystal measured in different magnetic fields
in (a) the FC and (b) ZFC modes.
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Fig. 3. Field dependences of the magnetization M(H) of an
HMCO single crystal measured at temperatures of (1) 65
and (2) 5 K. Inset: M(H) dependence in the range of weak
fields.
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The field dependences of magnetization M(H) of an
HMCO single crystal were measured in the tempera-
ture interval 5–100 K; for illustration, Fig. 3 plots M(H)
isotherms for 5 and 65 K in the field interval –50 ≤ H ≤
50 kOe. At 65 K, the magnetization varies with field
practically linearly, except in the low-field region
|µ0H | ≤ 1.5 kOe (inset to Fig. 3), where there is a small
hysteresis in the M(H) graph, with a loop width of
~290 Oe along the H axis. Thus, the FM component in
HMCO is observed in the low-field region for T ≤ 65 K.
At lower temperatures (T = 5 K), the hysteretic behav-
ior of M(H) persists up to fields |µ0H | ≤ 15 kOe, but the
magnetization does not saturate up to 50 kOe. The
high-field susceptibility at 5 K as derived from the
M(H) curve for the HMCO single crystal is χhf ≈ 2.4 ×
10–3 emu/(g Oe).

It should be pointed out that the hysteresis loops
measured in the FC mode shift along the H axis by ∆H.
For instance, at 5 K, the value of ∆H is 10 Oe, with the
loop width being ~290 Oe (inset to Fig. 3). The results
obtained are listed in Table 2, which also contains, for
comparison, the magnetic characteristics of the LMCO
single crystal (with similar manganese and cobalt con-
tents: Mn0.46, Co0.54) taken from our earlier publications
[7, 8]. Note that LaMn0.5Co0.5O3 features two FM
phases with different structures and different Tc, more
specifically, a rhombohedral structure with a high Tc

(220–240 K) and an orthorhombic structure with a low
Tc (150–170 K) [4, 5, 9]. The LMCO single crystals
studied in [7, 8] had an orthorhombic structure with
Tc = 170 K (Table 1).

4. DISCUSSION OF THE RESULTS: 
COMPARATIVE ANALYSIS OF THE MAGNETIC 

PROPERTIES OF HMCO AND LMCO SINGLE 
CRYSTALS

We used the values of the cation radii rA and rB and
of the anion radius r0 to calculate the tolerance factor

t = (rA + r0)/ (rB + r0) for perovskites with the general
formula ABO3, which is a measure of the deviation of a
given structure from an ideal cubic perovskite with t =
1. The values assumed for the calculation were rA =
1.072 (for Ho3+) and 1.216 Å (for La3+) and rB = 0.530
(for Mn4+) and 0.745 Å (for Co2+) [15]. For HMCO, we
have t = 0.86, and for LMCO, t = 0.91 (Table 2). The
values of Tc at which the PM–FM transition occurs dif-
fer markedly for the two crystals, which is in good
agreement with the data from [12, 16]. This difference
between the two systems under study should be
assigned to the fact that, as the largest trivalent lan-
thanide ion, La3+, is replaced by the holmium ion (hav-
ing a substantially smaller radius), the value of t
decreases. The B–O–B bond angle depends on the size
of the ion in the A position (and, hence, on the tolerance
factor t); namely, as t decreases, the distortion of the
structure increases and the bond angle decreases by

2
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Table 2.  Magnetic characteristics of HMCO and LMCO single crystals

Single 
crystal Tc, K Θp, K exp.

peff, µB

calc.
peff, µB

calc.
µs (Mn–Co),

µB

exp.
µs, µB

2Hc
(5 K)
kOe

∆H
(5 K)
Oe

χhf
emu/(g Oe) JF/kB JA/kB

HMCO 74 10.94 10.64 10.7 3.00 2.41 0.29 10 2.4 × 10–3 4.25 –6.3

LMCO 170 173 0 0 3.00 1.84 ~20 250 8 × 10–4 17.15 –0.3
deviating by a progressively greater amount from the
ideal value of 180° (for t = 1). The distortion gives rise
to increased stresses caused by the replacement of La3+

by the Ho3+ ion, which reduces Tc noticeably (Table 2).
Note that, while the PM Curie temperature Θp for
HMCO is positive (like that for LMCO [7, 8]), it is
lower by ~162 K. Interestingly, for HoMnO3 and
HoCoO3, the values of Θp are negative and equal to −17
[11] and –15.8 K [17], respectively, which indicates the
AFM character of these compounds, in contrast to
HMCO and LMCO. Note that there are common fea-
tures in the behavior of the M(T) relations for these sys-
tems: (i) thermomagnetic irreversibility between
MFC(T) and MZFC(T) which is particularly pronounced
in weak fields; (ii) the presence of a maximum in the
MZFC(T) curves, whose position depends on the field;
(iii) the absence of this maximum in strong fields; and
(iv) the persistence of thermomagnetic irreversibility
up to high fields. The observed effects suggest that
these crystals reside in a two-phase magnetic state. The
difference between these systems consists in the fact
that the irreversibility between MZFC(T) and MFC(T)of
LMCO persists even in fields as high as 50 kOe at tem-
peratures below 50 K [7, Fig. 2], whereas for HMCO
this difference is observed in substantially weaker
fields (H ~ 10 kOe). For both crystals, the temperature
dependences M(T) in high fields are described by the
Langevin function with an effective cluster magnetic
moment of 10µB (HMCO) and 15µB (LMCO) [7, 8].
These values refer to the effective magnetic moment of
clusters containing several formula units.

Extrapolating 1/H to zero in the M versus 1/H graph
yields the saturated magnetic moment in the strong
field limit to be µs, exp = 2.41µB per formula unit for
HMCO and µs, exp = 1.84 µB for LMCO (Table 2). In the
case of LMCO (where the La3+ ion has zero magnetic
moment), we associate the value of µs with the total
contribution of the Mn4+ and Co2+ ions [7, 8]. However,
the expected value of µs,  calc associated with FM order-
ing of the Mn4+ and Co2+ ions (the pure spin value
µs,  calc = gSµB, where g = 2 and S = 3/2 for both ions) is
3µB/f.u., which is substantially larger than µs, exp. This
fact also argues for the two-phase magnetic state of the
crystals. Note that the difference between µs, exp and
µs,  calc for LMCO was attributed in [18] to a decrease in
the Mn/Co ratio (for the cobalt concentration xCo ≥ 0.5)
and to enhanced Mn(Co)d–Op hybridization causing a
decrease in the magnetic moment of the manganese and
PHYSICS OF THE SOLID STATE      Vol. 47      No. 7      2005
cobalt ions. The value of µs calculated in [18] for
LMCO practically coincides with the observed value of
1.84µB. Another situation is encountered in the HMCO
system, where the Ho3+ ions possess a magnetic
moment. Assuming the average moment of the Mn–Co
sublattice to be the same in both systems (i.e., FM
ordering of the Mn4+ and Co2+ ions at T < Tc), we con-
sidered the following two possible versions for HMCO:
the (Mn4+–Co2+) and Ho3+ spins are ordered (i) ferro-
magnetically or (ii) antiferromagnetically. The pure
spin value of the Ho3+ magnetic moment is 4µB. Thus,
the total magnetic moment is 7 and 1 µB/f.u. for the first
and second versions, respectively, which is inconsistent
with the observed value of 2.41µB (Table 2).

The field dependences of M(H) of the HMCO and
LMCO crystals follow noticeably different patterns.
The hysteresis loop measured on LMCO at 5 K has
Hc ≈ 10 kOe, and the isotherms remain nonlinear up to
200 K (Tc = 170 K) [8, Fig. 4]. The high values of Hc at
low temperatures suggest a heavy contribution of
domain effects in this material. A similar pattern was
observed in LaMn0.5Co0.5O3 [9]. In the case of HMCO,
the magnetization of Ho3+ ions becomes appreciable
only at low temperatures (below ~30 K) and is superim-
posed on the magnetization of Mn4+ and Co2+. Far from
Tc, for instance, at 5 K, the magnetization of 3d ions sat-
urates in relatively low fields, whereas the magnetiza-
tion of Ho3+ is induced by the applied magnetic field; as
a result, the high-field susceptibility χhf in HMCO is
considerably higher than that in LMCO (Table 2).

The shift ∆H of the hysteresis loop along the H axis
in HMCO at 5 K is of the order of 10 Oe, which is about
~5% of the loop width, and for LMCO, ∆H ≈ 250 Oe,
i.e., ~1%. A shift of hysteresis loops was first observed
in partially oxidized cobalt [19], CuMn, and AgMn
[20]. Hysteresis shift in CoO was observed only at tem-
peratures below the Néel point TN, where the material
was in the AFM state. For CoO, TN ~ 300 K and the loop
shift increases with decreasing temperature. The shift
∆H was attributed in [19] to exchange interaction of
FM cobalt particles with their AFM CoO shells. This
new type of anisotropy is termed exchange anisotropy.
The shift ∆H was also observed in single-crystal
La0.9Sr0.1MnO3 and thin R0.6Ba0.4MnO3 epitaxial films
(R = La, Pr, Nd, Gd) [21, 22]. Knowing ∆H, one can
derive the exchange anisotropy constant Ku = ∆HMs,
where Ms is the saturated magnetization in a crystal
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[19]. For HMCO and LMCO crystals, Ku ~ 104 erg/cm3,
which is consistent with the data quoted in [21, 22].

The shift of the hysteresis loop supports the validity
of the model of the two-phase magnetic state in crys-
tals. As in [19], the exchange anisotropy constant for
our single crystals is a measure of the exchange integral
J describing the Mn(Co)–O–Mn(Co) coupling through
the interface separating the FM and AFM phases. The
estimate |J | ~ 10–6 eV obtained in [21, 22] is two orders
of magnitude smaller than the magnitude of the nega-
tive exchange integral between FM layers in LaMnO3,
which was derived from neutron diffraction measure-
ments [23]. In our study [24] of magnetic ordering in
LaMnO3 + δ single crystals with various oxygen con-
tents, we estimated the exchange constants associated
with positive interaction in the ab plane (JF) and nega-
tive interaction along the c axis (JA) [23]. For this pur-
pose, we used the measured values of Tc and Θp and the
following relations [25]:

(3)

The values of JF/kB and JA/kB calculated for HMCO and
LMCO are presented in Table 2. The observed differ-
ence between the exchange coupling constants for these
two systems can be assigned to the differences between
the LaMnO3 and HoMnO3 magnetic structures studied
in [11]. As suggested by neutron diffraction measure-
ments, in the case of a large-radius cation (i.e., La3+),
magnetic interaction between neighboring manganese
ions in the Mn–O layers perpendicular to the c axis
(space group Pbnm) is ferromagnetic, while adjacent
layers are coupled antiferromagnetically. This means
that there are four FM and two AFM bonds for each
manganese ion. In the case of a cation with a smaller
radius (Ho3+), magnetic interaction in the Mn–O layers
can be identified as AFM with two manganese ions and
FM with the other two manganese ions. Adjacent layers
along the c axis are coupled antiferromagnetically,
which implies, according to [11], two FM and four
AFM bonds for each manganese ion. The magnetic
structure of both LaMnO3 and HoMnO3 is treated in
terms of orbital ordering of εg orbitals in each Mn–O
plane. The deviation of the Mn–O–Mn bond angle from
180° in HoMnO3 is large compared to that in LaMnO3,
as already mentioned, and equals 141.1, and the tilt of
the MnO6 octahedra ω = (180 – 〈Mn–O–Mn〉)/2
increases from 24.8° for La3+ to 36.5° for Ho3+ [11].

5. CONCLUSIONS

An analysis of the totality of magnetic measure-
ments of HMCO and LMCO single crystals with cobalt
contents close to 0.5 allows one to conclude that, at low
temperatures, both systems reside in a two-phase mag-
netic state. In other words, at low enough temperatures,
these crystals can be described as an AFM matrix with

Tc 2/3S S 1+( ) 4 JF 2 JA+( )/kB,=

Θp 2/3S S 1+( ) 4JF 2JA+( )/kB.=
P

embedded FM clusters (drops) [26, 27]. This conclu-
sion is substantiated by the following experimental evi-
dence characteristic of HMCO and LMCO single crys-
tals: (i) thermomagnetic irreversibility is observed
between the MFC(T) and MZFC(T) curves; (ii) the mag-
netic moment per formula unit is noticeably below the
theoretical value for complete FM ordering; (iii) the
temperature dependences of M(T) in strong magnetic
fields are described by Langevin functions with a clus-
ter moment of 10µB and 15µB for HMCO and LMCO,
respectively; and (iv) the hysteresis loops are shifted
along the magnetic field axis. The observed differences
between the magnetic properties of the two systems
should be assigned to the specific features of the
HMCO and LMCO magnetic structures.
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Abstract—The magnetization and magnetically induced elastic strains of rare-earth Ising antiferromagnets
DyAlO3 and TbAlO3 are shown to exhibit an unusual behavior associated with low-temperature metamagnetic
phase transitions. As an external magnetic field is applied and then removed slowly, the state of the magnetic
system in these compounds follows quite different paths on the H–T diagram. Small alternating-sign variations
in the field magnitude cause the magnetic system to switch reversibly from one path to another, which is accom-
panied by sharp changes in the magnetization and elastic strains. The observed anomalies are shown to be due
to the magnetization process being quasi-adiabatic in character in the compounds under study. This fact should
be taken into account in interpreting the data on the magnetization and magnetostriction in Ising antiferromag-
nets undergoing metamagnetic transitions at low temperatures. Experimentally, quasi-adiabatic magnetization
makes it possible to determine the critical fields for metamagnetic transitions very exactly and to investigate the
H–T phase diagram at temperatures that are far below the minimum temperature of a helium bath and are unat-
tainable under strictly isothermal conditions. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Rare-earth oxides DyAlO3 and TbAlO3 are four-
sublattice antiferromagnets with a distorted perovskite
structure [1]. Below the Néel temperature (3.52 K for
DyAlO3 and 3.8 K for TbAlO3), the rare-earth ions in
these compounds become ordered in the ab plane and
form the Γ5 antiferromagnetic (AFM) structure (AFM
cross) shown in Fig. 1a [2, 3]. In this case, the Dy and
Tb ions can be treated as Ising ions, with their anisot-
ropy axis lying in the ab plane and making angles of
57° (Dy) and 35° (Tb) with the a axis and with their
magnetic moments being close in magnitude to the
maximum possible values for these ions, 10µB and 9µB,
respectively.

Our studies have shown that these compounds
behave in a qualitatively similar way under a magnetic
field to within a 90° rotation of the field. In particular,
the observed patterns of anomalies are the same for
TbAlO3 in the case of H || a and for DyAlO3 in the case
of H || b. For this reason, we consider only dysprosium
orthoaluminate (except in Fig. 3), to which all experi-
mental and theoretical results presented here are related
and for which most measurements were made. Dyspro-
sium orthoaluminate is a pure dipole model metamag-
net, for which all parameters can be calculated exactly
and varied by changing the form of the crystal [4]. This
allows us to avoid uncertainties when elucidating the
nature of the observed anomalies and interpreting them
theoretically, which is the main objective of this study.
1063-7834/05/4707- $26.00 1316
In dysprosium orthoaluminate, the total internal
magnetic field Hm acting on the magnetic moments of
Dy ions in the Γ5 structure at zero temperature is 5.6 T,
which agrees well with the Néel temperature observed
experimentally in [4], TN = 3.5 K. This field is calcu-
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Fig. 1. Magnetic structures of Dy3+ ions in dysprosium
orthoaluminate. (a) Γ5 antiferromagnetic structure in a zero
magnetic field, (b) high-field ferromagnetic structure in a
field H > Hm/cos33° applied along the b axis of the crystal,

and (c) model two-sublattice structure with  = (M1 +

M4)cos33° and  = (M2 + M3)cos33°.
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© 2005 Pleiades Publishing, Inc.
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Fig. 2. Field dependences of magnetically induced strains in DyAlO3 at various temperatures. Arrows indicate the direction of the
magnetization process (increase or decrease in the external magnetic field).
lated by directly summing the dipole fields exerted on
an ion by all magnetic ions of the crystal. The intra- and
intersublattice fields Hij (where i, j are the sublattice
indices) are calculated by summing only the dipole
fields exerted on a magnetic moment of sublattice j by
all magnetic moments of sublattice i; these fields
depend on the shape of a sample and can vary over wide
limits and even change sign for a pair of sublattices
(under the condition that the total field Hm = H11 + H12 +
H13 + H14 remain unchanged). For this reason, the H–T
phase diagram of a metamagnet can vary widely. An
external magnetic field applied in the ab plane of a
crystal induces metamagnetic (single-or two-step) tran-
sitions from the initial AFM configuration to a high-
field ferromagnetic (FM) configuration [1]. For exam-
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ple, a magnetic field H > Hm/cos33°, when applied
along the b axis of a crystal, causes a single-step mag-
netization reversal of sublattices 2 and 3 along the
respective Ising axes. As a result, a metamagnetic tran-
sition occurs to an FM configuration in which the mag-
netic moments of sublattices 1 and 2 have the same
magnitude and direction, as do the magnetic moments
of sublattices 3 and 4 (Fig. 1b).

Metamagnetic transitions in rare-earth Ising antifer-
romagnets have been studied using various methods
[4–6], and in almost all cases the changes in the mag-
netic characteristics (magnetization, torques, etc.)
caused by these transitions have been explained in
terms of the conventional models of the isothermal
magnetization reversal of two- or four-sublattice meta-
5
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magnets. For the first time, we measured the field
dependences of elastic strains in DyAlO3 and TbAlO3
that cannot be described in terms of the existing models
of the changes in the magnetostriction of rare-earth ions
associated with the transition from the AFM to the FM
structure.

2. EXPERIMENTAL

The unusual behavior of magnetically induced
strains caused by metamagnetic transitions was first
observed in the field dependence of the magnetostric-
tion of dysprosium orthoaluminate measured for vari-
ous orientations of the external magnetic field in the ab
plane of a crystal. Measurements were performed over
the temperature range 1.5–4.2 K in magnetic fields of
up to 4 T in order to determine the magnetoelastic con-
stants of rare-earth ions. Since the anomalous behavior
of strains was observed to be most pronounced for a
crystal magnetized along the b axis, we used this sym-
metrical orientation of the field, which simplifies the
interpretation of the experimental data and makes it
possible to use the two-sublattice model of the Ising
antiferromagnet. The crystal for measurements had a
special form for which the intra- and intersublattice
interactions in the two-sublattice approximation were
approximately equal in magnitude. In this case, the
mathematical description of the magnetic system and
of the effect of a magnetic field on this system is signif-
icantly simplified (see Section 3).

Magnetically induced elastic strains were measured
using a strain-gage dilatometer with a bridge circuit and
wire strain sensors fabricated from an alloy exhibiting
a low galvanomagnetic effect. An X–Y recorder was
used to record the strains induced by an external mag-
netic field, which was first increased from zero and then
decreased. A magnetic field was produced by a super-
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Fig. 3. Field dependence of magnetically induced strains in
TbAlO3.
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conducting system and was varied at rates ranging from
0.05 to 0.5 kOe/s. The maximum magnitude of the field
was 4.3 T. The strain sensitivity of the experimental
setup was better than 5 × 10–7.

Figure 2 shows field dependences of magnetically
induced strains along the b axis of a DyAlO3 crystal
measured at various temperatures in the range 1.5–
4.2 K. The following anomalies can be seen:

(i) According to theory (see Section 3), the deriva-
tive of the magnetostriction with respect to the field can
change sign only once during a metamagnetic transi-
tion driven by isothermal magnetization of a two-sub-
lattice Ising antiferromagnet. Our measurements show
that this derivative changes sign twice during a phase
transition that occurs as the external field increases
from zero or decreases to zero.

(ii) The graphs of the magnetically induced elastic
strain versus field obtained for a field increasing from
zero and for a field decreasing to zero differ radically
from each other and are, to a certain extent, mirror
images of each other in the abscissa axis. The mirror
symmetry is more pronounced for TbAlO3 (Fig. 3).

(iii) A reversal in the sign of the change in the field
magnitude at any moment during an increase or a
decrease in field causes the magnetic system to switch
rapidly from one branch of the graph of the magneti-
cally induced strain versus field to the other. In this
case, very small dynamic variations in the field magni-
tude produced by repeated reversals of the sign of the
change in the current passing through the solenoid
bring about a reversible switching of strains.

(iv) As the temperature decreases from T = TN in the
range where Dy ions are ordered, the observed anoma-
lies first increase rapidly and then, below T . 2.2 K,
decrease sharply to vanish almost completely at the
lowest temperature attained in our experiments (about
1.5 K).

Additional experiments were carried out in which
the amplitude of cyclic magnetic-field sweeping was
varied (Fig. 4). It was shown that the difference
between the elastic strains measured in the case where
the magnetic field increases from zero and in the case
where the field decreases to zero is not due to the exist-
ence of metastable states of the magnetic system. At
any (even very small) value of the maximum to which
the field increases from zero, the change in the sign of
the field variation (i.e., a decrease in the field value)
causes the system to switch to the decreasing-field
branch of the entire field-sweeping curve (i.e., the curve
that is obtained for the maximum field value attained in
our experiments, 4.3 T).

Analogous changes in the magnetic state have been
observed in hard type-II superconductors with strong
pinning [7]. For this reason, our preliminary interpreta-
tion of the observed anomalies was based on the
assumption that they are associated with the mesos-
copic structure of the AFM compound under study over
HYSICS OF THE SOLID STATE      Vol. 47      No. 7      2005
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the entire range where Ising Dy ions are ordered. The
magnetocaloric effect was taken into account at the out-
set, but the quasi-adiabatic magnetization seemed at
first to be impossible, because the rates of the increase
and decrease in the external magnetic field were far less
than those in pulsed-field experiments, where the mag-
netocaloric effect is indeed of fundamental importance.

An adequate interpretation of the observed anoma-
lies was made on the basis of the magnetization curves
(Fig. 5) and of the field dependences of the magneti-
cally induced strains measured for various rates of an
increase in the field (Fig. 6). It can be seen from Fig. 5
that the magnetization curves are also anomalous in
PHYSICS OF THE SOLID STATE      Vol. 47      No. 7      200
character; these curves are radically different in the
case where the field increases from zero and in the case
where the field decreases to zero. In both cases, there is
an elbow near which the magnetization variation
changes in character. For example, as the field increases
from zero, the magnetization values before the elbow
are similar to those measured at temperatures signifi-
cantly lower than the temperature of the liquid-helium
bath, whereas above the elbow the values of magnetiza-
tion are similar to those measured at significantly
higher temperatures (and, as a consequence, the satura-
tion occurs in fields much higher than the saturation
field calculated for isothermal magnetization of the
5
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crystal). In the case where the field decreases to zero,
the situation is reversed; a decrease in field in the satu-
ration range at first even causes a small increase in mag-
netization. What is more important, small field varia-
tions bring about switching between the increasing-
and decreasing-field branches (as is the case for strain–
field curves); namely, a small decrease in field on the
increasing-field branch causes a jumplike increase in
magnetization, whereas an increase in field on the
decreasing-field branch causes a jumplike decrease in
magnetization. Therefore, these processes are quasi-
adiabatic rather than isothermal.

Another argument for the magnetization process
being quasi-adiabatic is the effect of the rate of the
increase or decrease in field on the field dependence of
the magnetically induced elastic strains. It can be seen
from Fig. 6 that, for a higher rate of field increase from
zero (i.e., for a higher degree of adiabaticity of the mag-
netization process), the anomalies in the field depen-
dences become noticeably more pronounced (and the
same is true for a higher rate of decrease in the field to
zero).

3. THEORY

Our interpretation of the observed magnetization
anomalies associated with the AFM–FM metamagnetic
transition occurring in the DyAlO3 Ising antiferromag-
net takes into account the geometry of the experiment
and the results obtained and is based on the following
assumptions:

(i) The Ising two-sublattice model of an antiferro-
magnet can be used in which one sublattice replaces
sublattices 1 and 4 and the other replaces sublattices 2
and 3 (Fig. 1c). In fact, this approximation is equivalent
to the assumption that an external magnetic field is
directed exactly along the b axis of the crystal, because
in this case the four-sublattice model of dysprosium
orthoaluminate reduces to the two-sublattice model (for
the actual values of the intersublattice interactions dic-
tated by the sample geometry chosen). Obviously, in
the two-sublattice model, the Ising axis of the antiferro-
magnet is the b axis of the crystal.

(ii) At low temperatures, the magnetic Dy3+ ions in
dysprosium orthoaluminate can be considered two-
level quantum-mechanical systems, because the energy
separation between the ground-state Kramers doublet
and the excited levels is large (of the order of 50 cm–1).

(iii) Due to the still unclear slowing of the heat
transfer from the spin system of the crystal to the liq-
uid-helium bath (thermostat), the magnetization of the
Ising antiferromagnet is quasi-adiabatic even in very
slowly varying magnetic fields.

(iv) The temperature of the spin system has a ten-
dency to approach the temperature of the liquid-helium
bath, which is characterized by a single parameter, the
heat-transfer coefficient between the spin system and
the thermostat.
HYSICS OF THE SOLID STATE      Vol. 47      No. 7      2005



LOW-TEMPERATURE QUASI-ADIABATIC MAGNETIZATION REVERSAL 1321
(v) The conventional quantum-mechanical (phe-
nomenological) model of magnetostriction of rare-
earth ions can be used (see, e.g., [1, Chap. 12]).

Based on assumptions (i, ii), the nonequilibrium
thermodynamic potential (per ion) of dysprosium
orthoaluminate in an external magnetic field H || b can
be written as [1]

(1)

where Φ0 is the nonmagnetic part of the potential;
m1, 2 =  are the reduced magnetic moments of
the sublattices of the model two-sublattice system;

 are defined in the capture to Fig. 1;  =

(T = 0); λ11 and λ12 are the intra- and intersublat-
tice interaction parameters, respectively, which can be
calculated exactly and are considered positive (the FM
character of interactions within sublattices 1 and 2 and
the AFM character of the intersublattice interaction are
taken into account in the thermodynamic potential
itself); and S(m) is the entropy of the two-level system,
which is given by the well-known formula

(2)

We introduce the following dimensionless quanti-
ties: the FM moment m = (m1 + m2)/2, the AFM
moment l = (m1 – m2)/2, the magnetic field h = H/Hm,
the temperature t = T/TN, and the parameter τc =
λ11/(λ11 + λ12), which characterizes the relationship
between the intra- and intersublattice interactions. In
our case, as mentioned above, Hm = 5.6 T and TN = 3.5 K.

Since TN = Hm = (λ11 + λ12), the magnetic part
of the potential in Eq. (1) can be rewritten as

(3)

For the samples used in our experiments, we have
τc = 0.5–0.7. Over this range of τc values, the H–T
phase diagram does not change qualitatively. There-
fore, for the sake of simplicity, we present analytical
expressions only for the simpler case of τc = 0.5 in what
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follows. In this case, the second term in Eq. (3) for the
thermodynamic potential is equal to zero. Computa-
tions for specific samples are performed using numeri-
cal methods.

Minimizing thermodynamic potential (3) with
respect to m and l at τc = 0.5 gives the following equa-
tions for the equilibrium values of these parameters:

(4)

These equations can be rewritten in a simpler form,

where h1 and h2 are the effective internal magnetic
fields acting on sublattices 1 and 2, respectively:

In addition, the following condition of stability
should be satisfied:

(5)

The corresponding H–T phase diagram of the Ising
antiferromagnet is shown in Fig. 7. From Eqs. (4) and
(5), the equilibrium value of m and the hFM = HFM(t) line
along which stability of the FM phase is lost can be
found in explicit form to be

(6)

Above the curve corresponding to the loss of stability
(curve 1 in Fig. 7), the system is in a paramagnetic state,
which is the consequence of the condition τc = 0.5.
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Fig. 7. H–T phase diagram of the DyAlO3 sample under
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(1) Line of a second-order phase transition; (2) line of a
first-order phase transition; (3, 4) lines of the loss of stabil-
ity of the AFM and FM phases, respectively; iλ and i1, 2 are
isotherms; a1, 2 are isentropic curves (adiabats); O is the tri-
critical point; t0 is the temperature of the liquid-helium
bath; and tλ is the λ point of helium.
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Under this condition, the intra- and intersublattice
interactions are equal in magnitude in the FM phase
and, therefore, the total internal dipole field acting on
the magnetic moments is equal to zero.

For the AFM phase (l ≠ 0), Eqs. (4) can be written in
the form

(7)

In this case, the equilibrium values of m and l can be
found in a “semiexplicit” form as follows: at given val-
ues of l and t, the value of h is determined from the first
of equations (7) and then the value of m can be found
from the second equation.

The phase diagram has a tricritical point with coor-

dinates tc = 2/3 and hc = (2/3)  = 0.44. At
t > tc, the AFM–FM metamagnetic transition driven by
an external field is a second-order phase transition. The
line of these phase transitions is described by the sec-
ond of equations (6). At t < tc, the AFM–FM metamag-
netic transition is first-order. The line of first-order
phase transitions (curve 2 in Fig. 7) is almost parallel to
the temperature axis. Note that, as the parameter τc

increases, the tricritical point shifts to higher tempera-
tures and to lower fields and the line corresponding to
the loss of stability of the FM phase crosses the temper-
ature axis; so, at very low temperatures, the FM phase
becomes stable (metastable) even in a zero field.

In systems similar to that considered here, in the
region of the H–T phase diagram bounded by the lines
corresponding to the loss of stability of the AFM and
FM phases at t < tc (curves 3, 4 in Fig. 7, respectively),
an intermediate state generally occurs in which the
crystal is broken into domains of the coexisting AFM
and FM phases. This state corresponds to a minimum of
the magnetostatic energy, which is usually not included
in the initial thermodynamic potential. In the case of a
pure dipole antiferromagnet considered here, this
energy is included automatically; the shape of the H–T
phase diagram is determined only by the dipole–dipole
interaction, which depends on the specific form of sam-
ples. Clearly, the dipole fields acting on the Dy ions
include the demagnetizing field. Nonetheless, there is
good reason to believe that, in the intermediate region
mentioned above, the transition from the low-field
AFM configuration to the high-field FM configuration
can occur via an intermediate state consisting of lay-
ered many-sublattice (in fact, micromagnetic) struc-
tures, which are mesoscopic in the direction perpendic-
ular to the layers (i.e., along the c axis of the crystal).
This inhomogeneous state proves to be energetically
favorable. However, in order to analyze this state theo-
retically, we have to go beyond the Ising two-sublattice
model of a ferromagnet and even beyond the model of
a ferromagnet with a finite number of sublattices. This
is a separate, very complicated problem. Since it is

h t
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planned for the near future to compare our theoretical
results with experimental magnetic neutron scattering
data, we will use the statement made above as a hypoth-
esis, which does not contradict the observed anomalies
in magnetically induced strains but, of course, is not
necessary for explaining these anomalies (see below).

Based on assumption (iii) concerning the quasi-adi-
abatic magnetization of the system under study, we
constructed S(h, t) = const isentropic curves calculated
from the equations presented above and isotherms t =
const on the H–T diagram in Fig. 7. As might be
expected for the Ising antiferromagnet magnetized adi-
abatically at a fixed liquid-helium bath temperature, the
isentropic curve in the H–T plane first deviates sharply
to very low temperatures (far less than the liquid-
helium temperature) and then, at fields above the criti-
cal field for the phase transition, goes to higher temper-
atures (above the liquid-helium temperature). This
behavior can be explained as follows. Isothermal mag-
netization of the AFM phase is accompanied by a
decrease in the magnetization of one of the sublattices
(m2) and an increase in entropy. Therefore, for the
entropy to remain unchanged during adiabatic magne-
tization, the temperature of the spin system has to
decrease (adiabatic demagnetization). Isothermal mag-
netization of the FM phase is accompanied by a
decrease in entropy; therefore, during adiabatic magne-
tization, the temperature of the spin system has to
increase. The change in the sign of entropy variations
for an isotherm or in the sign of variations in the tem-
perature of the spin system for an isentropic curve
occurs at the AFM–FM phase transition point. In the
latter case, the phase transition temperature is signifi-
cantly lower than the temperature of the liquid-helium
bath.

Note also the following important fact. From
Eq. (2), it follows that, if the total entropy S(m, l) =
[S(m + l) + S(m – l)]/2 is constant, then the quantity
m2 + l2 is approximately constant. For isentropic curves
in the FM phase, we have the exact equality m = const;
hence, it follows from Eqs. (6) that these curves are
straight lines, h = const t (Fig. 7). For isentropic curves
in the AFM phase, the condition

(8)

[which replaces the exact condition S(m, l) = S(0, l0) is
satisfied to within approximately 5%. In Eq. (8), l0 =
l(0, t0), where t0 is the temperature of the liquid-helium
bath.

According to assumption (iv) made above, the tem-
perature of the spin system always has a tendency to
approach the temperature of the liquid-helium bath. As
a consequence, the actual paths followed by the magne-
tization process differ from ideal isentropic curves.
This tendency is formally taken into account by intro-
ducing a single empirical parameter, the heat-transfer
coefficient α between the spin system and the liquid-
helium bath. With this parameter, the dependence of the
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temperature on the magnetic field during a quasi-adia-
batic process is described by the equation

(9)

where vH is the rate of change of the magnetic field,
α' = (α/vH), and t0 is the temperature of the liquid-
helium bath. The minus and plus signs of the second
term in Eq. (9) correspond to an increase and a decrease
in the magnetic field, respectively.

For the FM phase, the magnetization does not
change along isentropic curves and Eq. (9) reduces to
the simple linear equation

(10)

For the AFM phase, an approximate differential
equation for quasi-adiabats can be derived in explicit
form only for temperatures close to the Néel tempera-
ture (where the quantities m, l, h, 1 – t are small). In this
case, as follows from Eqs. (7), isentropic curves can be
approximated by the equation t = t0 – (2/3)h2 and
Eq. (9) reduces to

(11)

Figure 8 shows typical phase trajectories in the H–T
plane, which are calculated using Eq. (10) and more
accurate analogs of Eq. (11) and along which the mag-
netic state of the system varies as the magnetic field is
varied in different regimes.

The first feature to note is that the theoretically cal-
culated changes in the temperature of the spin system
relative to the liquid-helium bath temperature repro-
duce (to within the sign) almost all experimentally
observed anomalies in the field dependences of mag-
netically induced strains. These anomalous features are
as follows: (i) a radical difference between the increas-
ing- and decreasing-field dependences of strains and
their approximate mirror symmetry; (ii) the existence
of sharp peaks in these dependences and an abrupt
switching of strains between the increasing- and
decreasing-field branches caused by a change in the
sign of field variation [this switching is a consequence
of the jumplike transition from the situation where the
changes in temperature in the processes of adiabatic
heat generation and heat transfer (described by the first
and second terms in Eq. (9), respectively) differ in sign
to the situation where these changes are of the same
sign]; (iii) an increase of the anomalies in magnitude
with an increase in the rate of field variation; and (iv) a
decrease of anomalies at very low temperatures due to
the “cutoff” of quasi-adiabats.

The last statement requires clarification. The fact is
that a manyfold increase in the helium heat conductiv-
ity at temperatures below the λ point of helium (2.18 K)
causes a sharp increase in the heat-transfer coefficient
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α and the transition from a quasi-adiabat to a quasi-iso-
therm at this point, as indicated by arrows in Fig. 7 for
adiabat a1 and isotherm iλ (see also Fig. 8). Figuratively
speaking, as the magnetic field increases (or decreases),
a quasi-adiabatic path followed by the magnetic state of
the system turns along an almost impenetrable wall
(behind which helium becomes a superfluid) and then
moves along this wall. As a result, as the initial temper-
ature of the liquid-helium bath decreases below the
Néel temperature, the quasi-adiabatic changes in the
temperature of the spin system (and the magnetoelas-
tic-strain anomalies associated with this change) first
decrease and then (after the onset of the cutoff of quasi-
adiabats at the helium λ point) decrease to vanish
almost completely at very low temperatures. The cutoff
effect also accounts for the noticeable separation
between the strain peaks in the increasing- and decreas-
ing-field dependences of magnetically induced strains
(see, e.g., curves in Fig. 2 for T = 3.37 K) corresponding
to the breakpoint of the phase path at t = tλ.

Note that the cutoff of quasi-adiabats at low (differ-
ent) temperatures could also occur at the boundary of
the region of intermediate states mentioned above (this
boundary is similar to the lines corresponding to the
loss of stability of the AFM and FM phases on the H–T
diagram in Fig. 7). However, first, this assumption
needs direct experimental verification and, second, the
simple and obvious assumption of a sharp change in the
heat-transfer coefficient α at the λ point makes it possi-
ble to adequately describe the observed anomalies.

Since the coefficient of thermal expansion of dys-
prosium orthoaluminate is negative at low tempera-
tures, it is natural to assume (taking into account the
calculated phase paths) that the observed strains are due
to thermal expansion of the crystal during quasi-adia-
batic or quasi-isothermal magnetization, whereas the
contribution from magnetostriction is small. The small-
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ness of this contribution is clearly demonstrated by the
strain–field curve at the lowest temperature in Fig. 2. In
this case, temperature variations are suppressed due to
the cutoff effect and the strains are very small, although
the system certainly undergoes a transition from the
AFM to the FM phase. The smallness of magnetostric-
tion along the b axis for H || b is a confirmed experi-
mental fact. For example, at H || a, the four-sublattice
magnetic system of Dy ions undergoes a radically dif-
ferent metamagnetic transition and the strains are at
least one order of magnitude greater.

However, it is more important that, in this case, an
additional, adiabatic mechanism of suppression of
magnetostriction is operative and, as a result, nonmag-
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PH
netic thermal expansion manifests itself to the maxi-
mum possible degree and is accompanied by anoma-
lies. This statement can be illustrated by the following
simple calculations.

According to [1], the field dependence of the mag-
netostriction strain due to rare-earth ions in the Ising
antiferromagnet under study (for the geometry of mag-
netization used) is given by

(12)

where A is the corresponding magnetostriction con-
stant; h1, 2 are the effective magnetic fields acting on
sublattices 1 and 2, respectively; and m1, 2 are the mag-
netic moments of these sublattices.

From Eqs. (4) for the low-field AFM phase, we
obtain

(13)

and, therefore,

(14)

From the first of equations (7), it is easy to find the l =
l(h) and m = m(h) dependences for isothermic (t = t0)

and isentropic (m2 + l2 = ) processes near the Néel
temperature. The result is

, (15)

for an isotherm and

, (16)

for an isentropic curve. Substituting these expressions
into Eq. (14) gives the strains (measured from the initial

strain 2A  in a zero field) to be

(17)

for an isotherm and

(18)

for an isentropic curve. Thus, in the AFM phase, mag-
netostriction is completely suppressed during an isen-
tropic process and only magnetically induced thermal
expansion of the crystal is observed.

In the FM phase (at l = 0), the suppression of mag-
netostriction during an adiabatic magnetization process
manifests itself in the fact that the magnetostriction var-
ies in proportion to the field (because the magnetization
is constant along an isentropic curve), whereas during
an isothermal magnetization the magnetostriction
increases as the square of the field (until saturation).
These features are illustrated in Fig. 9.

Note also that the character of the field dependence
of magnetization is adequately described in terms of the
model of quasi-adiabatic magnetization of the Ising
antiferromagnet, as can be seen from Fig. 10, which
shows the variations in the magnetization along calcu-

∆l/l A m2h1 m2h2+( ),=

h1 l h, h2+ –l h,+= =

∆l/l 2A l
2

mh+( ).=

l0
2

l l0
2

3h
2

– , m h= =

l l0
2

h
2

– , m h= =

l0
2

∆l/l 4h
2

–=

∆l/l 0=
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lated paths in the H–T phase plane. In particular, the
experimentally observed (and, at first glance, unex-
plained) increase in the saturated magnetization with a
decrease in field is explained by the fact that, in actual-
ity, the magnetization is not saturated (Fig. 10). It is
also important that, along a purely isentropic curve,
“saturation” of magnetization (m = const) occurs in
very low fields immediately after the transition to the
FM phase, which should be taken into account when
interpreting experimentally observed effects and the
results of measurements.

4. CONCLUSIONS
Based on an adequate model and the intersublattice

interaction constants (which can be calculated exactly),
we have described almost all anomalies in the elastic
strains and magnetization observed in the model Ising
antiferromagnet DyAlO3. It has been shown that the
anomalies are mainly due to the fact that the magneti-
zation process occurring in the magnetic system under
study is quasi-adiabatic. The results obtained indicate
that the magnetocaloric effect in such magnetic systems
has to be taken into account exactly even if the external
field varies slowly and that the observed effects and the
results of measurements should be interpreted with due
regard for the adiabaticity of the magnetization process.
The high degree of adiabaticity of this process makes it
possible, in principle, to study the H–T phase diagram
PHYSICS OF THE SOLID STATE      Vol. 47      No. 7      2005
at very low temperatures that are experimentally unat-
tainable under isothermal conditions.
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Abstract—Anisotropy of the nonlinear magnetoelectric effect in a single-crystal, single-domain sample of the
β' metastable ferroelectric paramagnetic phase of terbium molybdate Tb2(MoO4)3 was studied experimentally
in dc magnetic fields of up to 6 T at temperatures of 4.2 and 1.8 K. It was shown that the existing models of the
magnetoelectric effect cannot explain the experimental dependences of magnetic field–induced electric polar-
ization on the direction of the applied magnetic field. A model of the magnetoelectric effect is proposed that
qualitatively describes the observed angular dependence of the magnetic field–induced electric polarization.
© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The metastable orthorhombic ferroelectric–fer-
roelastic paramagnetic phase of terbium molybdate β'-
Tb2(MoO4)3 (TMO) exists at temperatures below
160°C [1]. The first measurements of the nonlinear
magnetoelectric effect (MEE) in paramagnetic TMO
were reported in [2]. It was shown in [3] that the MEE
in TMO can be accounted for in terms of a magneto-
striction model proposed in [3]. In [4], the first observa-
tion of the MEE in gadolinium molybdate Gd2(MoO4)3
(GMO) was described and it was found that the MEE in
GMO is about two orders of magnitude smaller than
that in TMO.

The anisotropy of the MEE in GMO was measured
in [5] at 4.2 and 0.4 K. It was shown that the angular
dependences of MEE in GMO are described well by the
model of the paramagnetoelectric effect proposed in
[6]. It was also found that, at magnetization values not
very close to the saturation level, the field dependences
of the MEE in GMO are satisfactorily described by a
single-ion magnetostriction model put forward in [7].

In this paper, we report on a study of the dependence
of the MEE in TMO on the direction of a magnetic field
applied in the basal plane of the crystal for magnetic
fields of up to 6 T at temperatures of 4.2 and 1.8 K. It is
demonstrated that, unlike GMO, the behavior of the
MEE in TMO defies description within the present the-
ories. A theory is advanced capable of accounting qual-
itatively for the specific features of the MEE in TMO.
1063-7834/05/4707- $26.00 1326
2. SAMPLES AND EXPERIMENT

A TMO single crystal was Czochralski-grown [8].
The sample was a rectangular parallelepiped measuring
7 × 7 × 1 mm. The major face was parallel to the (001)
plane. Prior to measurements, the sample was made
single-domain. The methods involved and the MEE
measurements made in a dc magnetic field at the above
temperatures are described in [9–12]. The measurement
error was 5%. The random scatter of points for one iso-
therm did not exceed 2%. The magnetic field–induced
electric polarization (MEP) P(H) was measured along
the [001] axis. A magnetic field was applied in the (001)
plane. The angle ϕ between the [010] axis and the field
could be varied from 0 to 90°.

3. RESULTS

Figure 1 displays some of the experimental P(H)
isotherms measured by us in TMO at temperatures T =
4.2 K (curves 1–6) and 1.8 K (curves 7, 8) and for var-
ious values of the angle ϕ between the [010] axis and
the magnetic field, with the latter varied up to 6 T. The
P(H) dependences are nonlinear. The magnetic field
directed along the [010] axis induces positive changes
in the electric polarization along the [001] axis (a posi-
tive paraelectric process in the ferroelectric subsystem).
A field directed along the [100] axis induces negative
changes in the electric polarization along the [001]
axis, i.e., a negative paraelectric process. The sign of
P(H) was determined by comparing it with the sign of
© 2005 Pleiades Publishing, Inc.



        

ANISOTROPY OF THE MAGNETOELECTRIC EFFECT 1327

                                                                                                                                               
the jump in electric polarization occurring when the
spontaneous polarization switches in a critical mag-
netic field directed along the [100] axis [13]. We readily
see that the P(H) dependences follow essentially differ-
ent patterns for magnetic fields directed along [010]
(curves 1, 7) and [100] (curves 6, 8). In a field parallel
to the [010] axis, the P(H) graphs obtained for H > 1 T
are close to linear. In a field parallel to [100], the P(H)
relations are noticeably nonlinear up to H = 6 T. An
essential feature of the magnetoelectric effect in TMO
is the difference between the absolute values of MEP in
fields directed along the [010] and [100] crystallo-
graphic axes. At T = 4.2 K, a field H = 6 T directed
along the [010] axis (ϕ = 0) induces a change in electric
polarization P(ϕ = 0) = 24.3 × 10–9 C/cm2. In a field
H = 6 T along the [100] axis (ϕ = 90°), P(ϕ = 90°) = –
26 × 10–9 C/cm2. The difference between the absolute
values of P(ϕ = 0) and P(ϕ = 90°) exceeds the experi-
mental error. This difference is even larger at T = 1.8 K:
P(ϕ = 0) = 25.7 × 10–9 C/cm2 (curve 7) and P(ϕ = 90°) =
–31.3 × 10–9 C/cm2 (curve 8). In a field parallel to the
bisectrix of the angle between the [010] and [100] axes
(curve 3 in Fig. 1, ϕ = 45°), the MEP is nonzero
throughout the field range covered. The MEP consti-
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Fig. 1. Electric polarization in TMO induced along the
[001] axis by a magnetic field in the (001) plane for various
values of the angle ϕ between the field and the [010] axis at
T = 4.2 K (curves 1–6) and T = 1.8 K (curves 7, 8): (1) ϕ =
0°, (2) 35.5°, (3) 45°, (4) 55.3°, (5) 66.6°, (6) 90°, (7) 0°,
and (8) 90°.
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tutes a sizable part of the spontaneous electric polariza-
tion (PS(T = 20°C) = 180 × 10–9 C/cm2 [1]).

Figure 2 presents P(ϕ) graphs obtained at T = 4.2 K
for various values of the applied magnetic field. The
points refer to experimental values of P(ϕ). Their
arrangement is not symmetric relative to ϕ = 45°. The
absolute values of P(ϕ = 0) and P(ϕ = 90°) are different
throughout the magnetic field range covered. The value
of P(ϕ = 45°) is nonzero. P(ϕ) reverses sign at ϕ ≈ 56°.
The solid curves are calculated using the model
advanced by us here and will be discussed in a subse-
quent section.

Figure 3 plots P(ϕ) relations obtained at T = 1.8 K
for various values of the magnetic field. Points refer to
experimental values. Qualitatively, these graphs are
similar to the P(ϕ) relations in Fig. 2, but their asymme-
try with respect to the ϕ = 45° and P = 0 axes is more
pronounced than in Fig. 2. P(ϕ) reverses sign at ϕ ≈
60°. The solid curves are calculated with our model.
Thus, the experimental P(ϕ) relations obtained for
TMO at T = 4.2 and 1.8 K in fields of up to 6 T are not
harmonic functions.
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Fig. 2. Experimental (points) and calculated (solid lines)
dependences of MEP in TMO on magnetic field orientation
in the (001) plane at T = 4.2 K for various values of the mag-
netic field: (1) 2, (2) 4, and (3) 6 T. The angle ϕ is reckoned
from the [010] axis.
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4. DISCUSSION

The theory of the MEE in paramagnets [6] yields for
the P(ϕ) angular dependence an expression which can
be written (for an appropriately chosen reference direc-
tion for measuring the angle ϕ) in the form

(1)

The experimental results obtained are inconsistent with
the predictions from the theory developed in [6].

(i) Following this theory, the absolute values of
pred(ϕ) = P(ϕ)/P(0) should be the same for ϕ = 0 and π/2
and should be field-independent. This prediction from
the theory fails in the case of TMO.

(ii) As seen from Eq. (1), the effect has to reverse sign
at ϕ = 45°. In TMO, the angle of sign reversal differs
from 45° and depends on temperature (cf. Figs. 2, 3).

(iii) The pattern of the experimental pred(ϕ) relation
differs noticeably from a sine curve. Obviously enough,
a new approach is needed for description of the MEE in
TMO. Such an approach was developed in [14, 15].

The magnetic field–induced electric polarization in
crystals is, like the magnetostriction and magnetic lin-
ear birefringence, an even-parity magnetic effect. The
classical theory of even effects was treated in [16, 17].
This theory describes well the properties of weakly
anisotropic compounds, in particular, of those having d
ions. The situation with f ions is, however, more com-
plex. According to [14, 15], even magnetic effects in
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Fig. 3. Same as in Fig. 2 but for T = 1.8 K.
P

rare-earth compounds are governed by magnetic sus-
ceptibilities of the mean multipole moments of the rare-
earth ion f shell. Their calculation requires knowledge
of the energy level and wave functions of these ions.
The energy spectrum of a rare-earth ion in crystals is
dominated by the interaction with the crystal field and
by the Zeeman interaction with the external magnetic
field. The exchange coupling among Tb3+ ions in TMO
is fairly weak. The antiferromagnetic ordering temper-
ature is TN = 0.45 K [18]. Therefore, in fields H ≥ 1 T
and at temperatures T @ TN, the exchange can be disre-
garded altogether. It was established in [19] that the
ground state of Tb3+ ions in TMO is apparently a com-
bination of three close-lying singlets, which belong to
different irreducible representations of the symmetry
group of the ion environment and are separated by
2.7 cm–1 in energy. In this case, as in the case of a quasi-
doublet, the terms dominating the dependence of even
magnetic effects on the strength and orientation of the
field and on temperature are

(2)

Here, α, β, and γ are each x, y, or z; aαβγ and bαβγ are
constants of the theory; Mγ is the magnetization of the
rare-earth ions originating from the field-induced split-
ting of their ground state (quasi-triplet); and Hβ and Hγ
are the magnetic field vector components.

At low temperatures, the first term provides the
main contribution. In the case where the magnetic field
is in the xy plane, Eq. (2) can be recast in the form

(3)

Here, T is the temperature; A, B, C, D, E, F, and G are
constants of the theory, which do not depend on tem-
perature;

(4)

is the magnetic field component along the [010] axis;

(5)

where M[010] is the experimental value of magnetization
along the [010] axis;

(6)

is the magnetic field component along the [100] axis;

(7)

M[100] is the experimental value of magnetization along
the [100] axis; χVV[010] and χVV[100] are the van Fleck sus-
ceptibilities along the [010] and [100] axes, respec-
tively; and Mx and My are the magnetization compo-
nents of the Tb3+ ion quasi-triplet in the basal plane.
The values of the constants A, B, E, and G are derived

Pα aαβγHβMγ bαβγHβHγ.+=

Pz T H ϕ, ,( ) AHxMx T( ) BHyMy T( )+=

+ CHxMy T( ) DHyMx T( )+

+ EHx
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2
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Hx H 010[ ]=
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from experimental Pz(Hi) isotherms and Mi(Hi) magne-
tizations measured in fields parallel to [010] (for i = x)
and [100] (for i = y).

Experimental data on Pz(Hi) and Mi(Hi) can be used
to construct the relations

(8)

As follows from Eq. (3), the function on the right-hand
side of Eq. (8) is a linear relation of the form

(9)

for a field parallel to the [010] axis and

(10)

for a field parallel to the [100] axis. A linear approxima-
tion of experimental relation (8) performed for the
[010] axis yields the values of constants A and E. Con-
stants B and G are derived from measurements made
along the [100] axis in a similar manner.

Figure 4 plots experimental relations (8) obtained
on TMO at T = 4.2 K along the [010] (straight line 1)
and [100] (straight line 2) axes. These relations are con-
structed using the measurements of MEP (curves 1, 6 in
Fig. 1) and the magnetization from [19]. We readily see
that the plots in Fig. 4 are indeed linear with satisfac-
tory accuracy, in full agreement with Eqs. (8)–(10). The
intercepts of straight lines (1) and (2) on the vertical
axis are constants A = 1.13 and B = –0.33, and the
slopes of these lines are constants E = 0.06 and G =
−0.57. The values of the constants are given in units of
measure corresponding to the scales in Fig. 4.

The constants C, D, and F are derived from the rela-
tions

(11)

(12)

By differentiating Eq. (3) with respect to ϕ and substi-
tuting the values of A, B, E, and G already found and the
values ϕ = 0 and π/2, we obtain two equations in the
unknowns C, D, and F. A third equation is obtained by
substituting the value ϕ = 45° and the corresponding
experimental value of Pz (ϕ = 45°) into Eq. (3). Solving
this system of three equations for the unknown C, D,
and F yields C = –0.29, D = –0.25, and F = 0.71. The
solid lines in Fig. 2 plot theoretical P(ϕ) curves for
TMO calculated from Eq. (3) with the use of the above
constants. We readily see that the calculated P(ϕ)
curves reproduce all the specific features of the experi-
mental relations and agree with the latter quantitatively.
Analogous theoretical P(ϕ) curves for T = 1.8 K are
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presented in Fig. 3. The calculation made use of the
same values of constants A, B, C, D, E, F, and G as in
the case of T = 4.2 K. We do not have at our disposal
any experimental dependences of the magnetization on
field for T = 1.8 K. The Mx(Hx) and My(Hy) relations for
T = 1.8 K are calculated using the theory of singlet
magnetism and the parameters quoted in [19]. The P(ϕ)
curves calculated for T = 1.8 K are seen to agree quali-
tatively with the experimental data. Thus, the singlet
magnetism theory explains satisfactorily the MEE
anisotropy in TMO at T = 4.2 and 1.8 K.

5. CONCLUSIONS

Low-temperature measurements of the angular
dependence of the magnetoelectric effect in TMO have
revealed the existence of an anisotropy different from
that observed in weakly anisotropic magnets (GMO),
where the behavior of the electric polarization with
field orientation in a crystal fits a straightforward har-
monic function of the angle setting the field direction.
The MEE anisotropy in TMO exhibits essentially dif-
ferent angular dependences. The behavior of MEE in
TMO has been theoretically analyzed. This analysis is
based on the relation of the electric polarization of
TMO with magnetic field–induced variations in the
quadrupole electric moments of terbium ions. A neces-
sary condition for the observed features in the MEE
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behavior to exist is the presence of ions with a nonzero
orbital moment, with the ground state of these ions in
the crystal being a doublet, quasi-doublet, or quasi-trip-
let well-separated from higher lying levels. It has been
demonstrated that the theoretical dependences of the
MEE on the magnitude and orientation of the applied
magnetic field fit the experimental results satisfactorily.
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Abstract—The influence of metallic electrodes on the properties of thin ferroelectric films is considered in the
framework of the Ginzburg–Landau phenomenological theory. The contribution of the electrodes with different
screening lengths ls of carriers in the electrode material is included in the free-energy functional. The critical
temperature Tcl, the critical thickness of the film, and the critical screening length of the electrode at which the
ferroelectric phase transforms into the paraelectric phase are calculated. The Euler–Lagrange equation for the
polarization P is solved by the direct variational method. The results demonstrate that the film properties can
be calculated by minimizing the free energy, which has a standard form but involves the coefficient of the term
P2. This coefficient depends not only on the temperature but also on the film thickness, the surface and corre-
lation effects, and the electrode characteristics. The calculations of the polarization, the dielectric susceptibility,
the pyroelectric coefficient, and the depolarization field show that the ferroelectric state of the film can be
destroyed using electrodes from a material whose screening length exceeds a critical value. This means that the
electrodes being in operation can induce a transition from the ferroelectric phase to the paraelectric phase. The
quantitative criteria obtained indicate that the phase state and properties of thin ferroelectric films can be con-
trolled by choosing the appropriate electrode material. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION 

The influence of electrodes on the properties of thin
ferroelectric films has attracted the unwavering atten-
tion of researchers and engineers. This is associated
both with the profound effect of the electrodes on the
depolarization field and with the necessity of choosing
the optimum (superconducting, metallic, or semicon-
ducting) electrodes for practical applications. The
depolarization field substantially affects the physical
properties of ferroelectrics, because this field tends to
suppress spontaneous electric polarization and, thus, to
destroy the ferroelectric state. It is known that internal
factors, such as the domain structure and free charge
carriers, are responsible for partial weakening of the
depolarization field. Moreover, external factors, includ-
ing the electrode effect, can also considerably decrease
the depolarization field. For example, superconducting
electrodes in bulk ferroelectrics leads to complete com-
pensation for the depolarization field. In thin ferroelec-
tric films, the polarization inhomogeneity due to the
contribution of the surface effects brings about only a
partial compensation for the depolarization field even
in the case of superconducting electrodes [1]. The
allowance made for the effect exerted by the metallic
electrodes requires inclusion of the electrode contribu-
tion in the free energy. However, the contribution of
nonsuperconducting electrodes appeared to be consid-
1063-7834/05/4707- $26.00 1331
erably more complex (see [2] and references therein).
For this reason, no calculations of the effect of nonsu-
perconducting electrodes on the properties of thin fer-
roelectric films have been performed to date.

In the present work, these calculations were carried
out within the model of a single-domain ferroelectric
material—an ideal insulator. This model is quite realis-
tic because a decrease in the film thickness results in the
formation of a single-domain film [3] and the conduc-
tivity of the majority of ferroelectrics is very low (see,
for example, [4]). The polarization, the dielectric sus-
ceptibility, and the pyroelectric coefficient were calcu-
lated in the framework of the Ginzburg–Landau phe-
nomenological theory with allowance made for the
contribution of the metallic electrodes. A comparison
with the results of calculations performed earlier for
superconducting electrodes [5, 6] showed that an
increase in the screening length of carriers in electrodes
results in a decrease in the critical temperature and an
increase in the critical thickness corresponding to a
size-driven transition from the ferroelectric phase to the
paraelectric phase.

2. BASIC EQUATIONS

Let us consider a thin ferroelectric film located
between two metallic electrodes (Fig. 1). Taking into
© 2005 Pleiades Publishing, Inc.
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account that, technologically, it is possible to fabricate
single-domain films self-polarized along the normal to
the surface [7, 8], we will analyze a film polarized
along the z axis (i.e., P = Pz ≠ 0, Px = Py = 0).

Equilibrium polarizations can be determined in the
framework of the phenomenological theory from the
condition of free-energy functional minimum [9]. The
free energy can be represented as the sum of the free
energies of the film (with allowance made for the depo-
larization field) and the electrodes. It is known that the
depolarization field is opposite to the direction of the
spontaneous polarization and, hence, tends to destroy
it. Within the model of a single-domain film without
charge carriers, only electrons in the electrodes can
contribute to a decrease in the depolarization field. This
effect is maximum for superconducting electrodes. For
nonsuperconducting metallic electrodes, the field
screening at the electrodes can be described by the
expression [10]

(1a)

where the screening length ls has the form

(1b)

Here, e is the carrier charge, m* is the effective mass of
carriers, n0 is the charge density, and εe is the permittiv-
ity of the electrode material.

It can be seen that, since the parameters εe, m*, and
n0 vary over wide ranges, the screening length ls can
change from ls = 0 (for superconductors) to several ang-
ströms or even several tens of angströms. We can expect
that, with an increase in the screening length ls, the con-
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Fig. 1. Schematic diagram illustrating the geometry of the
problem: (1) electrodes and (2) film.
P

tribution of the electrodes to the decrease in the depo-
larization field should decrease. It is not ruled out that
the ferroelectric state can be destroyed even in films
that are not very thin, provided the electrodes used are
characterized by a sufficiently large screening length.

In order to analyze quantitatively the effect of the
electrodes on the properties of the film and on the crit-
ical parameters of the size-driven phase transition from
the ferroelectric phase to the paraelectric phase, the
free-energy density for second-order phase transitions
can be written in the following form [2]:

(2)

Here, α ≈ β ≈ 1 (since L – l @ ls) are parameters; V0 is
the electric voltage applied across the electrodes; Tc and
A0 are the ferroelectric transition temperature and the
inverse Curie–Weiss constant for the bulk sample,
respectively; and δ is the extrapolation length.

The variation in functional (2) leads to the Euler–
Lagrange equation for the polarization P with the
boundary conditions
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It can be seen that, in the limit, we have the depolar-
ization field Ed  –4π(P – ), because a  1 at
ls  0 (this corresponds to the limit of superconduct-
ing electrodes, which was considered in [1]). In the
general case, the quantity a satisfies the inequality a < 1
and decreases with an increase in the screening length
ls, so that the depolarization field Ed increases as com-
pared to the depolarization field in the case of supercon-
ducting electrodes. Making allowance for the inequal-
ity ls ! l, the quantity a can be written with a high accu-
racy in the following form:

(3e)

3. EFFECT OF ELECTRODES 
ON THE CRITICAL PARAMETERS

OF THE SIZE-DRIVEN PHASE TRANSITION
Equation (3a) for the polarization P(z) is an inhomo-

geneous nonlinear integro-differential equation, for
which the exact analytical solution in the general case
has not been obtained to date. However, in the paraelec-
tric phase, the spontaneous polarization is absent and
the polarization induced by an external field, as a rule,
is insignificant; hence, the nonlinear term BP3 in
Eq. (3a) can be ignored. It should be noted that this
approximation is valid only at T ≠ Tc, because A =
A0(T – Tc) = 0 at T = Tc. The solution to the linear equa-
tion with boundary conditions (3b) can be written in the
form

(4a)

(4b)

(4c)

Here, we introduced the dimensionless parameters

(4d)

According to relationships (4a)–(4c), the average polar-
ization can be represented by the expression

(5)
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The derivative χ = , which is the linear

dielectric susceptibility of the film, is given by expres-
sion (5) with the quantity Eext omitted.

Since the numerator and the second term in the
denominator are always positive, we have χ > 0 at T >
Tc or T < Tc. In the latter case, the second term in the
denominator should be larger than the first term. The
dielectric susceptibility tends to infinity when the
denominator in formula (5) tends to zero. This situation
occurs at T  Tcl (l = const) or at l  lc (T = const).
The quantities Tcl and lc are the critical temperature and
the critical thickness that correspond to a size-driven
transition from the ferroelectric phase to the paraelec-
tric phase. In order to obtain the dependences Tcl(h, w,
ls) and lc(T, w, ls) in an explicit form, the denominator in
relationship (5) can be simplified taking into account

that h =  @ 1 (because the quantity ld, as a rule, does

not exceed a few nanometers). By transforming expres-

sion (4c) into the form Φ .  and writing rela-

tionship (3e) through the dimensionless parameters

(screening length hs = , critical thickness hc = , crit-

ical temperature τc = ), we obtain

(6)

for the parameters

(7)

As can be seen, the critical temperature satisfies the
inequality τc < 1 and decreases linearly with an increase
in the screening length hs, whereas the critical thickness
increases linearly with an increase in the screening
length hs.

Figures 2 and 3 show the dependences of the critical
temperature on the film thickness and the screening
length. For convenience, we introduced the parameter

l0 = ; hence, for standard values A0 ~ 4 × 10–5
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and Tc ~ 102–103, we have  ~ , i.e., l0 @

ld. (Hereinafter, for illustration, the dependences
depicted in the figures are calculated using the parame-

ters of the BaTiO3 compound w =  = 0.5 and  =

100 [6]). Therefore, the parameter l0 = 10ld can be of the
order of several tens of nanometers. In the figures, we
use dimensionless variables, including the quantity

Ps0 =  =  (corresponding to the polariza-

tion in the bulk sample at T = 0) and the temperature τ =

 = 0.6 in Figs. 4–8. It can be seen from Fig. 2 that the

critical thickness, which corresponds to the tempera-
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Fig. 2. Dependences of the critical temperature on the film
thickness for screening lengths ls/l0 = (1) 0, (2) 0.03, and
(3) 0.05.
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Fig. 4. Dependences of the average dielectric susceptibility
on the screening length for film thicknesses l/l0 = (1) 100,
(2) 50, and (3) 40.
P

ture Tcl = 0, increases with an increase in the screening
length. As is seen from Fig. 3, the critical temperature
Tcl decreases linearly with an increase in the screening
length. This temperature decreases more rapidly with a
decrease in the film thickness (cf. curves 1, 3 in Fig. 3).
Since curve 1 in Fig. 2 corresponds to the film with
superconducting electrodes, the use of nonsupercon-
ducting electrodes leads to a decrease in the transition
temperature and to a considerable increase in the criti-
cal thickness. Note also that Fig. 2 can be considered a
phase diagram accounting for the influence of different
metallic electrodes: the paraelectric phase (PE) exists at
T > Tcl and l < lc, and the ferroelectric (FE) phase is
observed at T < Tcl and l > lc; in this case, the quantities
Tcl and lc depend on the electrode type.
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Fig. 3. Dependences of the critical temperature on the
screening length for film thicknesses l/l0 = (1) 100, (2) 50,
and (3) 40.
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Fig. 5. Dependences of the average polarization on the film
thickness for screening lengths ls/l0 = (1) 0, (2) 0.03, and
(3) 0.05.
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4. THE FREE ENERGY OF FILMS
WITH DIFFERENT ELECTRODES

In the ferroelectric phase (T < Tcl, l > lc), the nonlin-
ear terms in Eq. (3a) cannot be disregarded. In order to
account for these terms, we use the direct variational
method. The solution to Eq. (3a) is sought in the form

(8a)

(8b)

Here, P is the variational parameter and relationships (8b)
representing the function ϕ(ξ) are obtained from
expression (4b) with allowance made for the inequality
h @ 1. Substitution of relationships (8a) and (8b) into
the free-energy functional (2) and subsequent integra-
tion give the following formula for the free energy:

(9a)

Since the average polarization is represented in the

form  = P(1 – A1), the free energy (9a) can be
rewritten as follows:

(10a)

It is easy to see that relationships (9a) and (10a) are
polynomials, which can be conveniently represented
in the form universally accepted for ferroelectric
materials:
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(10b)

It should be noted that, since the analytical form of
the trial function for the polarization in the ferroelectric
phase was chosen in the form of the solution for the
paraelectric phase, the free energies (9) and (10)
describe both the ferroelectric and paraelectric phases.
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The coefficient a0 in relationships (9b) and the coef-
ficient a1 in formulas (10b) can be expressed through
the critical temperature or the critical thickness; that is

(11a)

or

(11b)

Taking into account that, at h @ 1, the inequalities
A1 ! 1 and B1 ! 1 are satisfied, we obtain

(12a)

or

(12b)

Note that coefficients (12a) and (12b) should be
used for analyzing the dependences of the film proper-
ties on the temperature with a fixed thickness and on the
size (thickness) with a fixed temperature, respectively.
It is seen that polynomials (12a) and (12b) coincide
with the standard polynomials of the free energy for
bulk samples but with a renormalized coefficient of the
quadratic term, whereas the coefficient of the quartic
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P

terms coincides with the corresponding coefficient for
bulk samples. Since the critical temperature Tcl in for-
mula (12a) depends on the film thickness, the extrapo-
lation and correlation lengths, and the electrode charac-
teristics [see expression (6)], the coefficient a0 also
depends on these parameters. In turn, this implies that
all the physical properties of the films, which can be
determined by minimizing the free energies (9b) or
(10b), should depend on the electrode characteristics
and on the material of the film. By minimizing the free
energy (9b) with due regard for relationships (8), we
can find the distributions of physical properties across
the film of constant thickness (profiles of physical prop-
erties), whereas the minimization of the free energy
(10b) gives the averages of these properties. Now, we
turn to analysis of the physical properties of the films.

5. SPECIFIC FEATURES OF THE PHYSICAL 
PROPERTIES OF FILMS

First and foremost, we consider the temperature and
thickness dependences of the average spontaneous
polarization, the average dielectric susceptibility, and

the average pyroelectric coefficient  = . From

expressions (10b), (12a), and (12b), we obtain the fol-
lowing formulas for the above quantities in the ferro-
electric phase (T < Tcl, h > hc):

(13a)

(13b)

For the paraelectric phase (T > Tcl , h < hc), we have

 = 0 and  = 0 and the dielectric susceptibility has
the form
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dependences of the average spontaneous polarization,
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the average dielectric susceptibility, and the average
pyroelectric coefficient for thin ferroelectric films,
whereas relationships (13b) and (14b) describe the
thickness dependences of these characteristics. From
relationships (9b), (12a), (10b), (12b), and (8a), it fol-
lows that the magnitudes of the above properties are
described by formulas (13) and (14), which, after the
multiplication into the function [1 – ϕ(ξ)], gives the
profiles of these properties. Figure 4 depicts the depen-
dences of the dielectric susceptibility on the screening
length ls of carriers in the electrode material for films
with different thicknesses. It can be seen from Fig. 4
that, for each thickness there is a critical screening
length ls at which the dielectric susceptibility diverges.
This means that the film undergoes a transition from the
ferroelectric phase to the paraelectric phase. A compar-
ison of curves 1–3 in Fig. 4 shows that the critical
screening length increases with an increase in the film
thickness. This is associated with the fact that an
increase in the film thickness results in an increase in
the polarization (Fig. 5). The polarization can be sup-
pressed by a sufficiently strong depolarization field that
is enhanced as the screening length ls increases. There-
fore, we can make the inference that the phase transi-
tion is induced by the electrodes at a constant film
thickness and a constant temperature (Fig. 6). The crit-
ical screening length hsc can be determined from the

condition  = 0, which leads to T = Tcl [see relation-
ships (13a)], where T is a constant temperature. Taking
into account expression (6), we obtain

(15a)

It follows from expression (15a) that the critical
screening length satisfies the relationship hsc ~ h in
accordance with the numerical results presented in
Fig. 4. Moreover, since the critical screening length
must be positive, it exists only for films whose thick-
nesses obey the inequality

(15b)

The thickness h0 tends to infinity (h0  ∞) at
T  Tc, and the minimum thickness h0min corresponds
to zero temperature (T = 0). According to the estimates,
the minimum thickness h0min can be equal to several
tens or several hundreds of nanometers.

By comparing the thickness h0 at an arbitrary tem-
perature T with the critical thickness hc defined by
expression (7), we find that h0 < hc. Consequently, the
film with thickness h = h0 is in the paraelectric phase.
Therefore, in order to retain the ferroelectric state of the
film, it is necessary to choose film thicknesses h > h0 in
the thickness range h > hc and to use electrodes with
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screening lengths hs < hsc, which cannot induce transi-
tion from the ferroelectric phase to the paraelectric
phase. It is seen from Figs. 5 and 6 that the polarization
is maximum for superconducting electrodes (hs = 0). As
a consequence, the stability of the ferroelectric phase in
films with superconducting electrodes is higher than
that in films with other electrodes.

6. EFFECT OF ELECTRODES
ON THE DEPOLARIZATION FIELD

After substitution of PFE = P[1 – ϕ(ξ)] and  =
P[1 – A1], expression (3c) for the depolarization field
takes the form

(16)

Taking into account the inequality h @ 1, we obtain

A1 =  ! 1. Furthermore, since a ≈ 1 [see

expression (3e)], we have Ed(ξ) ≈ 4πPϕ(ξ) in the vicin-
ity of the surface. From this relationship, it follows that
Ed(ξ) > 0 near the surface. However, the exact formula
(16) indicates that the depolarization field changes sign
away from the surface. Hence, there are points at which
the depolarization field becomes zero (Ed = 0). The
coordinates of these points can be easily derived from
formula (16); that is,

(17)

Therefore, the behavior of the depolarization field
across the film of thickness h is characterized by the
following relationships:

(18)
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Figure 7 clearly illustrates this behavior of the depo-
larization field profile. As follows from a comparison of
curves 1 and 2 in Fig. 7, the superconducting electrodes
provide a larger increase in the polarization in the vicin-
ity of the surface as compared to the nonsuperconduct-
ing electrodes, whereas the decrease in the polarization
in the range zcrL < z < zcrR for the superconducting elec-
trodes is smaller than that for the nonsuperconducting
electrodes. In both cases, the polarization profile in the
film becomes more flattened, so that the polarization in
the film is more uniform and the average value of the
polarization turns out to be smaller than the average
value of the polarization for the nonsuperconducting
electrodes (Figs. 5, 6). Let us examine in more detail
the behavior of the depolarization field Ed < 0 over a
wide range in which it tends to destroy the ferroelectric
state, as is usually the case in bulk materials. Making
allowance for the wide plateau in this range, we con-
sider the behavior of the depolarization field at the cen-
ter of the film, because the approximate equality

Ed(zcrL < z < zcrR) ≈ Ed  holds true.

Although the quantity A1 is small, it makes a signif-
icant contribution (because a ≈ 1), especially in the
vicinity of the center of the film, where the relationship

 . 0 is satisfied. Consequently, according to

relationship (16), the depolarization field can be written
in the form

(19a)

or

(19b)
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Fig. 9. Temperature dependences of the depolarization field
for the film thickness l/l0 = 100 and screening lengths ls/l0 =
(1) 0, (2) 0.03, and (3) 0.05.
P

Expressions (19a) and (19b) describe the dependences
of the depolarization field on the thickness and temper-
ature, respectively. As can be seen from formulas (6)
and (7), the quantities (Tc – Tcl) and K increase with an
increase in the screening length hs, so that the depolar-
ization field at the center of the film increases in propor-
tion to the screening length.

From expressions (19a) and (19b), it follows that the

depolarization field  tends to zero at T  Tcl

and h  hc (this corresponds to the phase transitions)
or at h  ∞, as is the case with the bulk sample. The
magnitude of the depolarization field at the center of the
film reaches a maximum value Edmax = Ec0 =

−  at thickness h = hmax = . The depo-

larization field at this thickness is equal in magnitude to
the coercive field of the bulk sample. Actually, making
allowance for expression (7) relating the quantities K
and hc, it is easy to obtain the standard formula for the
temperature dependence of this field Edmax = Ec0 =

− (Tc – T) . The dependences of the

depolarization field  on the film thickness are

depicted in Fig. 8. It can be seen from this figure that,
as the screening length hs increases, the magnitude of

the depolarization field  at the maximum shifts

toward larger thicknesses h [see formula (7)]. As is eas-
ily seen, the electrodes with larger screening lengths hs

suppress the depolarization field more weakly (cf.
curves 1 and 2, 3 in Fig. 8).

Figure 9 shows the temperature dependences of the
depolarization field at the center of the film for differ-
ent screening lengths hs It is seen from Fig. 9 that, as
the screening length hs increases, the rate of change in

the depolarization field  also increases and

  0 at T  Tcl [see relationships (17)]. Dif-

ferent rates of change in the depolarization field and an
increase in the temperature of the induced phase transi-
tion with a decrease in the screening length hs (Tcl1 >
Tcl2 > Tcl3) [see formula (6)] result in the intersection of
the dependences in the low-temperature range (Fig. 9).
It is worth noting that, only far from all the critical tem-
peratures Tcli (i = 1–3) does the depolarization field sat-
isfy the inequalities |Ed(hs = 0)| < |Ed(hs = 0.03)| <
|Ed(hs = 0.05)|. At the same time, there are temperature
ranges in the vicinity of the critical temperatures Tcli

(i = 1–3) in which the depolarization field for the super-
conducting electrodes is stronger than that for the non-
superconducting electrodes. Such an unusual behavior
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is observed in the vicinity of the critical thicknesses at
which the depolarization field Ed(hs = 0) can be stronger
than the depolarization field Ed(hs ≠ 0) (Fig. 8). These
features are most likely associated with the fact that the
depolarization field tends to zero (Ed  0) at T 
Tcl or h  hc irrespective of the electrode type. There-
fore, there exist temperature ranges (at a fixed thick-
ness) or thickness ranges (at a fixed temperature) in
which the superconducting electrodes are not prefera-
ble. It can be seen from Fig. 9 that these ranges can be
of the order of (0.1–0.2)Tc below the critical tempera-
ture Tcl for the nonsuperconducting electrode.

7. CONCLUSIONS
Unlike the bulk ferroelectrics, in which the depolar-

ization field considerably decreases because of the
presence of the domain structure, thin ferroelectric
films do not have a domain structure, so that only the
fields induced by carriers at electrodes can reduce the
depolarization field and, thus, retain the ferroelectric
state. The above analysis demonstrated that, although
the superconducting electrodes are characterized by a
maximum deleterious effect of the depolarization field
on the spontaneous polarization of the ferroelectric
material, the difference between the polarizations in the
case of superconducting and metallic electrodes
decreases with an increase in the film thickness (Fig. 5).
In particular, for the BaTiO3 film with l0 = 2 nm [6], the
polarization of the sample with superconducting elec-
trodes at film thicknesses l > 70l0 is only ~20% higher
than that with nonsuperconducting metallic electrodes.

Apart from the metallic electrodes considered
above, semiconducting electrodes are also used in prac-
tice. For a quantitative analysis of these electrodes, it is
necessary to take into account the band bending and
effects associated with the space charge [11]. Qualita-
tively, it can be assumed that, since the screening length
in semiconductors, as a rule, is larger than the screening
PHYSICS OF THE SOLID STATE      Vol. 47      No. 7      200
length in normal metals, the depolarization field in a
ferroelectric film with semiconducting electrodes
should be stronger. This brings about a decrease in the
spontaneous polarization and an increase in the critical
thickness corresponding to a phase transition from the
ferroelectric phase to the paraelectric phase. In general,
the phase state and properties of thin ferroelectric films
can be controlled by choosing the appropriate electrode
material.
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Abstract—The polarization switching is experimentally investigated in hot-pressed PLZT-x/65/35 ceramics
with a lanthanum content from 5 to 12 at. %. The specific features in the temperature dependence of the polar-
ization switching in a heterophase state are interpreted by analyzing the change in the switched charge mea-
sured over wide ranges of fields and temperatures. Particular emphasis is placed on the role of depolarization
fields induced by interphase boundaries. A model of the evolution of polydomain nanostructures with a change
in the temperature and in the response to an external field is considered. It is assumed that the low-temperature
dielectric anomaly and the temperature hysteresis are associated with the loss of stability of a large-scale
domain structure and its transformation into a nanodomain state. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Relaxor ferroelectrics (with smeared phase transi-
tions) are highly inhomogeneous systems [1, 2]. These
materials are characterized by anomalies of the suscep-
tibilities over an extremely wide range of temperatures.
The unique properties of relaxor ferroelectrics offer
strong possibilities for their practical application [2].

In this work, the heterophase structure that arises in
a relaxor ferroelectric upon cooling in the temperature
range of the smeared phase transition is considered to
be a set of isolated ferroelectric (polar) nanoregions
embedded in a paraelectric (nonpolar) matrix. As the
temperature decreases, the heterophase structure under-
goes a qualitative transformation, because an increase
in the fraction of the polar phase results in the forma-
tion of finite-sized polar clusters composed of nan-
odomains [3–5]. A further decrease in the temperature
leads to the formation of an “infinite” polar cluster. In
this case, isolated regions of the nonpolar phase are
located in “windows” of the infinite polar cluster [5]. As
the temperature Tf (hereafter, Tf is the freezing temper-
ature) of the transition from the heterophase state to the
ferroelectric state is approached, the sizes and the total
volume of isolated nonpolar regions decrease [6].

The domain structure formed in the ferroelectric
phase upon cooling without an external electric field
(zero-field cooling) consists of nanodomains. The
domain sizes are determined by the spatial scale of
compositional inhomogeneities (chemical domains) [6,
7]. Spontaneous polarizations PS in different polar nan-
oregions and nanodomains are oriented in a random
1063-7834/05/4707- $26.00 1340
manner. As a result, the spontaneous polarization PS

averaged over the macrovolume is equal to zero. Note
that the spontaneous polarizations PS can be ordered
only under the action of an external electric field.

Since nanoregions and nanodomains have ultras-
mall sizes [6, 8, 9], it is impossible to use direct meth-
ods for studying the kinetics of domains under the
action of external electric fields, for example, visualiza-
tion of instantaneous domain configurations with an
optical microscope. For this reason, the polarization
switching in relaxor ferroelectrics has been studied
using indirect integrated methods based on recording
(directly in the course of switching) hysteresis loops
[10], switching currents [11], and elastic light scatter-
ing [4, 5, 12, 13]. It is obvious that, in order to obtain
reliable information on the switching kinetics in polar
regions with a nanodomain structure, it is necessary to
develop a consistent approach to the interpretation of
measured integrated characteristics.

2. SAMPLE PREPARATION
AND EXPERIMENTAL TECHNIQUE

The samples used in measurements had the form of
thin plates prepared from transparent coarse-grained lead
zirconate titanate ceramics (Pb1 – xLax)(Zr0.65Ti0.35)O3
doped with lanthanum at contents from 5 to 12 at. %
(PLZT-x/65/35, where x is the percentage of lantha-
num). The ceramics was fabricated by hot pressing. The
grain size varied from 4 to 7 µm, and the plate thickness
ranged from 90 to 300 µm. The polarization switching
© 2005 Pleiades Publishing, Inc.
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was performed either with continuous gold electrodes
applied by thermal evaporation or with transparent
indium–tin oxide electrodes produced by magnetron
reactive sputtering.

The dielectric measurements were carried out at
temperatures from –150 to 200°C in the frequency
range from 20 Hz to 200 kHz. Prior to measurements,
the sample was polarized in a dc electric field at tem-
peratures corresponding to the ferroelectric state under
cyclic changes in the temperature (heating and subse-
quent cooling).

The hysteresis loops were measured in a sinusoidal
electric field at a frequency of 0.04 Hz and at ampli-
tudes of up to 8 kV/cm. The switched charges were
determined by integrating the measured switching cur-
rent. It was assumed that the rate of the field rise is suf-
ficiently low and switching can be considered to be
quasi-static. The measurements were carried out in the
temperature range from 25 to 200°C.

3. EVOLUTION OF THE POLYDOMAIN 
STRUCTURE IN AN ELECTRIC FIELD

Figure 1 shows typical hysteresis loops of the PLZT-
8/65/35 sample in the temperature range from 25 to
50°C. It can be seen from Fig. 1 that a change in the
temperature leads to a qualitative change in the loop
shape. Below a particular temperature, the dependence
Q(E) corresponds to a classical dielectric hysteresis
loop observed in ferroelectrics. Above this temperature,
there arises a constriction in the central part and a dou-
ble hysteresis loop appears (Fig. 2a).

In order to determine the temperature of the cross-
over from the classical “ferroelectric” hysteresis loop to
the double hysteresis loop, we analyzed the field depen-
dence of the derivative of the switched charge with
respect to the field applied to the sample (dQ(E)/dE),
because this quantity is most sensitive to a change in the
shape of the hysteresis loop. It should be noted that,
upon switching in a linearly increasing field, this
dependence agrees in shape with the current hysteresis
loop. In the ferroelectric phase, the dependence
dQ(E)/dE exhibits two pronounced peaks correspond-
ing to conventional processes of macroscopic polariza-
tion switching in ferroelectrics. For the classical hyster-
esis loop, the maxima of the peaks, as a rule, are located
at fields close to the coercive fields EC determined by
the standard method [14]. For the real experimental
hysteresis loop of inhomogeneous ferroelectrics, the
fields corresponding to the maxima in the dependence
dQ(E)/dE are equal to the effective threshold fields Eth
at which the switching rate is maximum. These fields
are more adequate characteristics of polarization
switching (as compared to the classical coercive fields).

As the temperature increases, the hysteresis loop
changes in shape and the dependence dQ(E)/dE exhib-
its four maxima (Fig. 2b). Taking into account that the
dependences dQ(E)/dE in increasing and decreasing
PHYSICS OF THE SOLID STATE      Vol. 47      No. 7      2005
fields almost coincide, we restricted our consideration
to the case of the dependence dQ(E)/dE in the increas-
ing field. The evolution of the dependence dQ(E)/dE
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Fig. 1. Hysteresis loops for the PLZT-8/65/35 sample mea-
sured upon heating at different temperatures.
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with an increase in the temperature is illustrated in
Fig. 3. The data on the positions of the maxima were
used to construct the temperature dependence of the
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effective threshold field Eth (Fig. 4), from which we
determined the temperature corresponding to the cross-
over of the switching mechanism (i.e., to the change in
the number of maxima). This temperature (designated
as Tf) was identified with the point of the transition
from the purely ferroelectric state to the relaxor state.
According to the experimental data presented in Fig. 4
for the PLZT-8/65/35 sample, this temperature is found
to be 38°C.

4. TEMPERATURES OF DIELECTRIC 
ANOMALIES

The typical temperature dependences of the permit-
tivity for PLZT-x/65/35 ceramic materials upon heating
and subsequent cooling of the PLZT-8/65/35 sample
are plotted in Fig. 5. It can be seen from this figure that
the dependence of the permittivity measured at a fre-
quency of 1 kHz upon heating of the polarized ceramic
sample exhibits a smeared frequency-dependent maxi-
mum at Tm = 106°C and a low-temperature dielectric
anomaly (a narrow maximum) at T1 = 46°C. When the
sample was cooled after heating to temperatures above
Tm, the low-temperature anomaly ε(T) was not
observed (Fig. 5), as was the case with heating of the
thermally depolarized sample.

It was demonstrated that, in all the samples, the
Curie–Weiss law holds at temperatures below T1 and
the quadratic temperature dependence typical of
smeared phase transitions (Fig. 6) [15, 16] is observed
in the vicinity of the temperature Tm corresponding to
the maximum of the permittivity:

where σ is the parameter of smearing of the phase tran-
sition.
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Fig. 5. Temperature dependences of the permittivity mea-
sured at a frequency of 1 kHz for the polarized PLZT-
8/65/35 sample upon heating and cooling.
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Figure 7 presents the obtained temperatures Tm and
T1 of the dielectric anomalies as functions of the lantha-
num content and the data (taken from [17]) on the tem-
perature Tm at x = 0, 2, 4, and 15 at. %. According to the
aforementioned concepts, the difference between the
temperatures of the dielectric anomalies ∆T = Tm – T1
characterizes the temperature range of existence of the
relaxor phase. It can be seen from Fig. 7 that the relaxor
phase (∆T ≠ 0) is formed only at a lanthanum content of
higher than 5 at. % and the difference ∆T(x) is saturated
at high contents (x > 10 at. %). It should be noted that
the experimentally obtained concentration depen-
dences change qualitatively with an increase in the lan-
thanum content. The dependences exhibit a linear
behavior at x < 4 at. % and an exponential behavior at
x > 5 at. % (Fig. 7).

5. DISCUSSION 
OF THE EXPERIMENTAL RESULTS

According to the classical concepts of relaxor ferro-
electrics [2, 18–20], an increase in the temperature
leads to a transition from the homogeneous ferroelec-
tric state to the heterogeneous (heterophase) state.
When analyzing the experimental data obtained in this
work, one should take into account that the “low-tem-
perature” heterophase structure formed in the vicinity
of the critical point is a ferroelectric polydomain matrix
with isolated inclusions of the nonpolar phase (nanore-
gions).

The bound charges induced as a result of polariza-
tion jumps at nanoregion boundaries (interphase
boundaries) generate depolarization fields, which stim-
ulate the decay of large-sized domains and the forma-
tion of a nanodomain structure. Unlike the depolariza-
tion fields produced by surface bound charges, whose
effect is predominantly compensated for by fast pro-
cesses of external screening (the redistribution of
charges at the electrodes), the fields under consider-
ation can only be compensated for by slow processes of
bulk screening [3, 21, 22].

The depolarization fields induced by space bound
charges bring about a partial backswitching (the forma-
tion of domains with polarization opposite in sign) in
the bulk near the nonpolar inclusions. As a conse-
quence, in the bulk, there arises a structure with
charged domain walls, which contribute substantially
to the dielectric response [23–25], because the domain
walls are characterized by an anomalously high con-
centration of steps. These steps are mobile even in the
weak fields used to measure the dielectric characteris-
tics.

In the framework of the concepts under consider-
ation, the temperature hysteresis of the permittivity (see
inset to Fig. 6) can be explained by the spontaneous
transformation of the large-scale domain structure in
the response to an inhomogeneous bias field induced by
nonpolar regions [3]. The preliminary polarization in a
PHYSICS OF THE SOLID STATE      Vol. 47      No. 7      200
strong dc field in the ferroelectric state at low tempera-
tures (T < Tf) leads to an irreversible increase in the
domain sizes. Heating at temperatures above Tf results
in the formation of nanoregions composed of the non-
polar phase. Further heating leads to an increase in the
volume of nonpolar inclusions and in the surface area
of charged domains walls. This is accompanied by a
rapid increase in the dielectric response. However, such
a polydomain heterophase state is unstable and the
large-scale domain structure at the temperature T1
begins to transform under the action of depolarization
fields. This results in the formation of a small-scale
domain structure that consists of submicrodomains and
nanodomains separated by neutral and charged domain
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approximated by the exponential functions.
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walls. Such a transformation leads to a considerable
decrease in the concentration of charged walls and,
hence, to a decrease in the dielectric response. A similar
polydomain heterophase structure is formed upon ther-
mal depolarization.

The change in the shape of the hysteresis loop and
the appearance of additional peaks in the field depen-
dence of the derivative dQ/dE (Fig. 2b) can also be
interpreted within the proposed model. The first peak
corresponds to the spontaneous backswitching (the
return to the polydomain state) under the action of the
depolarization field. The second peak is associated with
the switching from the polydomain state to the single-
domain state in the response to the external field, which
is weakened by the depolarization field. Therefore, the
depolarization field plays the role of a spatially inho-
mogeneous bias field distorting the shape of the hyster-
esis loop. Upon reversal switching, a similar effect is
observed for domains in which the spontaneous polar-
ization without field is of opposite sign. This leads to
the formation of the double hysteresis loop. An increase
in the temperature results in an increase in the mean
depolarization fields due to an increase in the volume of
nonpolar inclusions and, correspondingly, leads to an
increase in the mean bias fields.

Naturally, the double hysteresis loop and additional
peaks in the curve dQ(E)/dE arise only upon transition
to the heterophase state, in which the depolarization
fields are induced by bound charges located at the inter-
phase boundaries. Within the proposed approach, the
temperature corresponding to the appearance of the two
peaks in the dependence dQ(E)/dE is the temperature of
the transition from the purely ferroelectric state to the
relaxor (heterophase) state. This approach to analyzing
the experimental data enables us to determine the freez-
ing temperature Tf.

It should be noted that the obtained temperature Tf is
significantly lower than the temperature T1 determined
from the dielectric measurements. This situation seems
to be quite reasonable because the temperature T1 in the
framework of the proposed model corresponds to the
temperature of the loss of stability of the large-scale
domain structure and its transformation into a nan-
odomain state. In the range between the temperatures Tf

and T1, the depolarization fields have already induced
in the bulk and, hence, lead to the formation of charged
domain walls in the vicinity of nonpolar inclusions;
however, the strength of these fields is insufficient for a
radical transformation of the domain structure.

6. CONCLUSIONS

Thus, the specific features of the polarization
switching and dielectric anomalies in hot-pressed
PLZT-x/65/35 ceramics with a lanthanum content from
5 to 12 at. % were experimentally investigated in the
temperature range of existence of the smeared phase
transition. The features revealed in the hysteresis loop
P

and the temperature hysteresis of the permittivity were
explained within the proposed model, which is based
on the concept of the decisive role played by depolar-
ization fields induced by bound charges at boundaries
of nonpolar inclusions. A method was devised for
determining the temperature of the transition from a
ferroelectric state to a heterophase state. The evolution
of polydomain nanostructures with a change in the tem-
perature and in the response to an external field was
analyzed.
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Abstract—Model concepts of dual structures are developed as applied to crystals of xPbTiO3–(1 –
x)Pb(Zn1/3Nb2/3)O3 solid solutions in the range 0 ≤ x ≤ 0.08. The conditions of the formation of dual structures
upon partial and complete relaxation of internal mechanical stresses are considered. A new model of transition
regions is proposed for analyzing several variants of changing the unit cell parameters that satisfy the condition
of complete stress relaxation inside the transition regions in crystals at concentrations x = 0.045 and 0.08. The
influence of the intermediate phase P4mm and stability of its 90° domain structure on the formation of dual
structures at x ≥ 0.045 is discussed. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Crystals of xPbTiO3–(1 – x)Pb(Zn1/3Nb2/3)O3 (xPT–
PZN) solid-solution ferroelectric relaxors with a per-
ovskite-type structure in the composition region corre-
sponding to the morphotropic phase boundary (x ≈
0.08–0.09) are characterized by a combination of
unique electromechanical properties [1–4], a variety of
heterophase states [5–10], and different (frequently,
rather complex) domain and twin structures [6, 11] of
the coexisting phases. The dual structures recently
revealed in crystals of the xPT–PZN solid solutions in
the range 0 ≤ x ≤ 0.08 at room temperature [12, 13] are
of particular interest. According to x-ray diffraction
data [12], the rhombohedral (Rh) distortions of the per-
ovskite cells in outer layers (1–5) × 10–5 m thick are
greater than those observed in the bulk of the crystal at
the same concentration x. The corresponding unit-cell
parameters inside the sample (ain) and near the sample
surface (aout) obey the inequalities

(1)

The differences between the unit cell parameters ain
and aout, for example, at x = 0.045, can be as large as
6%. Rhombohedral distortions inside the sample at x =
0 are not found. The unit cell parameters of the new
phase (X phase) satisfy the equalities ain = bin = cin and
αin = βin = γin = 90° [12] for the paraelectric cubic (C)
phase Pm3m and the relationships ain = bin ≠ cin and
αin = βin = γin = 90° [13] for the ferroelectric tetragonal
(T) phase P4mm [1, 14] in the xPT–PZN system. Xu et
al. [15] also revealed that the unit cell parameters mea-
sured in the surface layers and in the bulk of crystals in
the related system yPbTiO3–(1 – y)Pb(Mg1/3Nb2/3)O3
(0.10 ≤ y ≤ 0.27) obey relationships similar to inequal-
ities (1) and that the rhombohedral distortions of the

ain aout, α in αout.> >
1063-7834/05/4707- $26.00 ©1346
perovskite cell tend to increase with an increase in the
concentration y. However, the aforementioned data and
other experimental results do not clarify the problem of
the formation of dual structures and the elastic match-
ing of the single-domain or polydomain regions of the
crystals with particular unit-cell parameters. The aim of
this work was to analyze the specific features in the for-
mation of dual structures and the conditions of their
existence and to develop physical concepts of het-
erophase states in xPT–PZN rhombohedral crystals.

2. TWO-PHASE STATES AND INTERNAL 
MECHANICAL STRESSES

In our consideration, we use the algorithm proposed
in [16] and specify the distortion matrices ||Maf || and
||Naf || [4, 8, 10] for the rhombohedral phases inside the
crystal (Rhin) and in the surface layer (Rhout) at x > 0 (or
for the phases Xin and Rhout at x = 0). In this case, the
shape of the interphase boundary can be approximated
by a second-degree surface:

(2)

Here,

(3)

and the OXa axes of the rectangular coordinate system
(X1X2X3) are directed parallel to the translational vec-
tors of the perovskite cell. It is assumed that the spon-
taneous polarization vectors of 71° (109°) domains in
the rhombohedral phases Rhin and Rhout are parallel to
each other (PRj, in ↑↑  PRj, out, j = 1–4) and that the planar

Dabxaxb

a b, 1=

3

∑ 0.=

Dab Naf Nbf Maf Mbf–( )
f 1=

3

∑=
 2005 Pleiades Publishing, Inc.
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walls separating the domains are aligned with the faces
of the perovskite cell. The interphase boundaries (sec-
ond-degree surfaces) are classified according to the
signs of invariants of Eq. (2) [17]; that is,

(4)

The analysis of invariants (4) calculated for the het-
erophase structures under consideration demonstrates
that, in crystals of the xPT–PZN solid solutions in the
range 0 ≤ x ≤ 0.08, the condition of the existence of zero
mean strain planes [16] is not satisfied. In other words,
the elastic matching of the phases with the structural
parameters determined in [12] does not provide com-
plete relaxation of mechanical stresses at the Xin–Rhout
or Rhin–Rhout phase boundaries. The interaction of the
phase Xin with the polydomain phase Rhout at particular
volume concentrations of 71° (109°) domains in the
crystals at x = 0 favors both the formation of conical
interfaces (due to the inequalities DI < 0 and J > 0) and
a partial relaxation of mechanical stresses. According
to [18], the criterion for this relaxation is a decrease in
the quantity |D |. The inclusion of the weak tetragonal
distortion of the perovskite cell in the phase Xin
(cin /ain ≈ 1.001 [13]) leads to the inequalities DI > 0 and
J > 0. This means that, at any volume concentrations of
71° (109°) domains in the phase Rhout, the surfaces
defined by expression (2) degenerate into a point corre-
sponding to a vertex of an imaginary cone. The elastic
interaction of the rhombohedral phases Rhin and Rhout in
the crystals at x = 0.045 and 0.08 favors the degenera-
tion of surfaces (2) either into a pair of imaginary
planes (D = 0, J > 0) or into a point corresponding to a
vertex of an imaginary cone (DI > 0, J > 0). This behav-
ior of the xPT–PZN crystals is primarily governed by
the three equal (or, in the case of the tetragonal distor-
tion of the phase Xin [13], almost equal) linear unit-cell
parameters for each of the coexisting phases and also
by the relatively small differences between the angles
of shear ωin = 90° – αin and ωout = 90° – αout of their
cells [12]. The balance of distortions of the coexisting
phases with given symmetries changes upon formation
of a 71° (109°) domain structure [16]. However, this

I D11 D22 D33, D+ + det Dab ,= =

J
D11 D12

D21 D22

D22 D23

D32 D33

D33 D31

D13 D11

.+ +=
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change turns out to be insufficient for zero mean strain
planes to appear at the Xin–Rhout or Rhin–Rhout phase
boundaries in the xPT–PZN (0 ≤ x ≤ 0.08) crystals.

3. TRANSITION REGIONS 
AND THE CONDITION OF COMPLETE 

STRESS RELAXATION

The aforementioned limited possibilities for relax-
ing stresses and the experimentally revealed relation
between the unit cell parameters and the depth of x-ray
penetration [13] have given impetus to investigating the
specific features in the elastic matching of several poly-
domain crystal layers that form the so-called transition
regions with varying unit cell parameters. Transition
regions were previously observed in polydomain
(twinned) crystals of BaTiO3 [19] and KH2PO4 [20]
ferroelectrics and in the coexisting phases of
CH3NH3Al(SO4)2 · 12H2O [21], BaTiO3 [22],
Pb2CoWO6 [18], and other compounds. These regions
are characterized by a continuous change from the crys-
tallographic parameters of one domain (twinned com-
ponent, phase) to the corresponding crystallographic
parameters of another domain (adjacent twinned com-
ponent of the coexisting phase). The formation of tran-
sition regions in a number of heterogeneous crystals
leads to a partial relaxation of internal stresses. This can
be associated, for example, with the strong spontaneous
strains of the unit cell in the CH3NH3Al(SO4)2 · 12H2O
compound [21] or with the jumps in the unit cell param-
eters that do not satisfy the condition of the existence of
zero mean strain planes [8, 16] at interphase boundaries
in the Pb2CoWO6 compound [18].

Within the framework of the proposed model, the
transition region is represented by a set of polydomain
layers adjacent to each other along the {100} planes of
the perovskite cell. It is assumed that the linear unit-cell
parameters ai = bi = ci and the angles of shear ωi = 90° –
αi vary from layer to layer. The spontaneous polariza-
tion vectors of 71° (109°) domains in the rhombohedral
phases are oriented in the adjacent layers in the manner
shown in the Fig. 1. The distortion matrices of the ith
and (i + 1)st layers depicted in Fig. 1a can be written
respectively as
Mab
i( ) 1

a0
----- 

 
ai ωicos ai ωi 2mi 1–( )sin ai ωi 2mi 1–( )sin

ai ωi 2mi 1–( )sin ai ωicos ai ωisin

ai ωi 2mi 1–( )sin ai ωisin ai ωicos 
 
 
 
 

,=

Mab
i 1+( ) 1

a0
----- 

 
ai 1+ ωi 1+cos ai 1+ ωi 1+ 2mi 1+ 1–( )sin –ai 1+ ωi 1+ 2mi 1+ 1–( )sin

ai 1+ ωi 1+ 2mi 1+ 1–( )sin ai 1+ ωi 1+cos –ai 1+ ωi 1+sin

–ai 1+ ωi 1+ 2mi 1+ 1–( )sin –ai 1+ ωi 1+sin ai 1+ ωi 1+cos 
 
 
 
 

.=
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Here, a0 is the unit cell parameter extrapolated to room
temperature for the cubic phase, and ai and ωi are the
unit cell parameters of the rhombohedral phase in the
ith layer. Taking into account the alternation of the lay-
ers, the distortion matrices of the (i + 2)nd, (i + 4)th, …,
and (i + 2p)th layers can be obtained from the distortion

matrix  by replacing the index i with the indices
i + 2, i + 4, …, and i + 2p, respectively. Similarly, the
distortion matrices of the (i + 3)rd, …, and (i + 2p + 1)st
layers can be obtained from the distortion matrix

 by replacing the index i + 1 with the indices
i  + 3, …, and i + 2p + 1, respectively. The distortion
matrix  of the phase X has nonzero matrix ele-
ments MX, gg = aX/a0, where aX is the unit cell parameter
of the phase X; and g = 1, 2, and 3. For the structure
drawn in Fig. 1b, the distortion matrices of the ith, (i +
1)st, …, and (i + p)th layers are equal to the matrices

, , …, , respectively. Here,

Mab
i( )

Mab
i 1+( )

MX ab,

Mab
i( )

Mab
* i 1+( )

Mab
* i p+( )

i + 1i + 1i + 1

i + 1i + 1i + 1

iii

iii

(a)

(b)

mi + 1 1 – mi + 1

1 2

34

1 2

21

mi 1 – mi 

X1

X3

X2

mi + 1 1 – mi + 1

mi 1 – mi 

0

Fig. 1. Schematic drawing of the polydomain layers in
rhombohedral transition regions of the xPT–PZN crystals.
Designations: mi is the volume concentration of domains of
type 1 in the ith layer, and mi + 1 is the volume concentration
of domains of (a) type 4 or (b) type 1 in the (i + 1)st layer.
Arrows indicate the spontaneous polarization vectors PRj of
domains with j = 1–4. Hatched planes correspond to 71°
(109°) domain walls aligned parallel to the (100) plane of
the perovskite cell.
P

the matrix  is derived from the matrix 
by simply substituting the index i + p for the index i
(where p = 1, 2, …).

By analogy with matrix elements (3), the elements

of the matrix  for the polydomain layers
depicted in Figs. 1a and 1b are defined respectively as

(5)

These layers are matched along the zero mean strain
plane [16] under the conditions

(6)

and the orientation of the interphase boundaries
ni(hi ki li) is calculated from the formulas obtained by
Metrat [23]. The invariant J (i, i + 1) in conditions (6) is
determined from relationships (4) by replacing the

matrix elements Dab with the matrix elements 
given by formulas (5). The analysis of the conditions
providing the existence of zero mean strain planes is
substantially simplified under the assumption that the
volume concentrations of domains in all the layers
under consideration are equal to each other; i.e., mi =
1/2, where i = 1, 2, …, N for the coexistence of the
rhombohedral phases Rhin and Rhout and i = 2, 3, …, N
or i = 1, 2, …, N – 1 for the coexistence of the phase Xin
and the rhombohedral phase Rhout.

1 This implies that,
when changing over from layer to layer, the position of
the domain walls parallel to the (100) plane remains
virtually unchanged and adjacent domains 1–4 or 2–3
(Fig. 1a) and 1–1 or 2–2 (Fig. 1b) form structures with
varying unit-cell parameters. In this case, for both sys-
tems of layers (Fig. 1), we have

and only the matrix elements  differ from each

other due to the nonequality  ≠  [see for-
mulas (5)].

1 Note that, in the study of dual structures [12], the xPT–PZN crys-
tals were heated to temperatures considerably higher than the
temperature of the phase transition to the paraelectric cubic phase
and were then cooled in order to remove residual effects. These
effects were induced by the preceding action of the poling field,
without which the volume concentrations of 71° (109°) domains
of different types in the rhombohedral phases could become
almost equal.

Mab
* i p+( )

Mab
i( )

Dab
i i 1+,( )

Dab
i i 1+,( )

Maf
i 1+( )

Mbf
i 1+( )

Maf
i( )

Mbf
i( )

–( ),
f 1=

3

∑=

Dab
i i 1+,( )

Maf
* i 1+( )

Mbf
* i 1+( )

Maf
i( )

Mbf
i( )

–( ).
f 1=

3

∑=

det Dab
i i 1+,( )

0, J
i i 1+,( )

0,≤=

Dab
i i 1+,( )

det Dab
i i 1+,( )

D11
i i 1+,( )

0 0

0 D22
i i 1+,( )

D23
i i 1+,( )

0 D23
i i 1+,( )

D22
i i 1+,( )

=

D23
i i 1+,( )

Maf
i 1+( )

Maf
* i 1+( )
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The polydomain layers under consideration are sep-
arated by boundaries, i.e., zero mean strain planes,
when the following relationships for the unit cell
parameters satisfy conditions (6):

(7a)

or

(7b)

or

(7c)

for four types of domains in Fig. 1a and relationship (7a)
or

(7d)

or

(7e)

for two types of domains in Fig. 1b.
For the elastic matching of the phase Xin and the

polydomain rhombohedral phase Rhout, it is assumed
that, in relationships (7), ai = aX and ωi = 0, where i = 1
or i = N. The corresponding interfaces between the lay-
ers in the transition regions of the xPT–PZN (0 ≤ x ≤
0.08) crystals are nearly parallel to the {100} planes of
the perovskite cell and, hence, to the 71° (109°) domain
walls in the rhombohedral phases.

4. RESULTS OF CALCULATIONS 
AND DISCUSSION

The numerical estimates given in Table 1 indicate
that complete relaxation of internal stresses upon for-
mation of transition regions can occur in different
ways. This follows from relationships (7) for regular
and irregular changes in the angle of shear ωi of the unit
cell. The results obtained suggest that the elastic match-
ing involving four types of 71° (109°) domains (Fig. 1a)
in the xPT–PZN rhombohedral crystals is more proba-
ble. However, the elastic matching with the participa-
tion of two types of 71° (109°) domains (Fig. 1b) is also
of interest because the two conditions (7d) and (7e) for
the existence of zero mean strain planes are simulta-
neously satisfied over the entire transition region of the
crystal at x = 0 (see Note 3 to Table 1). In this case, the
elastic matching is achieved in layers in which the
angles of shear of the perovskite cells are related by the
expression

 (8)

irrespective of  – ωi). For comparison, we
note that relationship (8) for the crystal at x = 0.045 is
valid on limited intervals [ωi; ωi + p]. For the crystal at

ai 1+ ωi 1+cos ai ωicos=

aa 1+ ωi 1+cos ωi 1+sin+( ) ai ωicos ωisin–( )=

aa 1+ ωi 1+cos ωi 1+sin–( ) ai ωicos ωisin+( )=

aa 1+ ωi 1+cos ωi 1+sin+( ) ai ωicos ωisin+( )=

ai 1+
2 ωi 1+ ωi 1+cos 2 ωi 1+sin+( )cos

=  ai
2 ωi ωicos 2 ωisin+( )cos

ωi 1+ ωi–  = ωi 2+ ωi 1+–  = … = ωN ωN 1––  = const,

(ωi 1+sgn
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x = 0.08, such intervals are entirely absent when the
angle of shear ωi is decreased from the value corre-
sponding to the rhombohedral phase Rhout. The param-
eters of the perovskite cell ai and ωi for the crystals at
concentrations x ≥ 0.045 [12] satisfy the condition of
the existence of zero mean strain planes only when the
elastic matching involves four types of 71° (109°)
domains (Table 1).

It is interesting to note that, among the five condi-
tions given by formulas (7) for the existence of zero
mean strain planes, the four, three, and two conditions
are satisfied at x = 0, 0.045, and 0.08, respectively.
This circumstance, together with the validity of rela-
tionship (8) on limited intervals and the applicability of
only one scheme for the elastic matching (Fig. 1a),
allow us to assume that the formation of Rhin–Rhout dual
structures and transition regions in the crystals at con-
centrations x ≥ 0.045 is affected by the tetragonal
phase. It is known [14] that, at a molar concentration
xtr ≈ 0.045, the x–T phase diagram of the xPT–PZN sys-
tem is characterized by a triple point. In the vicinity of
this point, the phase diagram involves regions of ther-
modynamic stability of the cubic phase Pm3m, the
rhombohedral phase R3m, and the tetragonal phase
P4mm. The studied crystals upon cooling without an
electric field undergo the first-order phase transitions
C–Rh (0 < x < xtr) or C–T–Rh (xtr < x & 0.09) [1, 14]. As
follows from the recent results obtained by Ohwada
et al. [24], the C–T–X phase transitions are observed at
a concentration x = 0.08.

According to our estimates from the formulas
derived in [4, 8, 23], the optimum volume concentra-
tions of 90° domains in the intermediate tetragonal
phase (Table 2), which correspond to zero mean strain
planes at interphase boundaries, change only slightly
with a decrease in the temperature T in the vicinity of
the morphotropic boundary. As a consequence, the low-
temperature rhombohedral phase (x = 0.09) or the new
phase X (x = 0.08) is formed without noticeable
changes in the 90° domain structure that arises upon the
C–T first-order phase transition. For comparison, we
note that the constancy of the volume concentrations of
90° domains was also revealed in limited temperature
ranges in the vicinity of the Pm3m–R3m–P4mm triple
point of the Pb(Zr1 – zTiz)O3 system with a perovskite-
type structure [25].

As regards the xPT–PZN crystals, one of the factors
responsible for the aforementioned stability of the 90°
domain structure is associated with the temperature
dependences of the linear unit-cell parameters aC(T),
aRh(T), and aX(T) in the cubic, rhombohedral, and X
phases, respectively [1, 24]. At x = const, the relation-
ships daC/dT ≈ daRh/dT and daC/dT ≈ daX/dT hold true.
Extrapolating the dependence aC(T) to the stability
region of the rhombohedral and X phases leads to the
approximate equalities aC ≈ aRh (x = 0.09) and aC ≈ aX

(x = 0.08), respectively. Another factor responsible for
5
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Table 1.  Calculated parameters of the perovskite cell in transition regions of the xPT–PZN crystals at room temperature

x = 0, polydomain layers in Fig. 1a

ωi, deg 0 0.005 0.010 0.015 0.020 0.080
ai, 10–10 m 4.067 4.067 4.066 4.064 4.061 (4.061(1)) According

to conditions 
(7b) and (7a)

(4.067(1))

ωi, deg 0 0.01 0.02 0.03 0.08
ai, 10–10 m 4.067 4.066 4.064 4.061 (4.061(1)) According 

to conditions 
(7b) and (7a)

(4.067(1))

x = 0, polydomain layers in Fig. 1b

ωi, deg 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
ai, 10–10 m 4.067 4.066 4.066 4.065 4.064 4.064 4.063 4.062 4.061 According

to condition 
(7d) and (7e)

(4.067(1))

ωi, deg 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0
ai, 10–10 m 4.061 4.062 4.062 4.063 4.064 4.065 4.065 4.066 4.067 According 

to condition 
(7d) and (7e)

(4.061(1))

x = 0.045, polydomain layers in Fig. 1a

ωi, deg 0.070 0.075 0.080 0.100
ai, 10–10 m 4.070 4.060 4.049 (4.045(1)) According

to conditions 
(7b) and (7a)

(4.070(1))

ωi, deg 0.07 0.08 0.09 0.10
ai, 10–10 m 4.070 4.059 4.047 (4.045(1)) According 

to conditions 
(7b) and (7a)

(4.070(1))

ωi, deg 0.070 0.085 0.095 0.100
ai, 10–10 m 4.070 4.059 4.046 (4.045(1)) According

to conditions 
(7b) and (7a)

(4.070(1))

ωi, deg 0.100 0.095 0.090 0.070
ai, 10–10 m 4.045 4.059 4.072 (4.070(1)) According

to conditions 
(7c) and (7a)

ωi, deg 0.100 0.09 0.08 0.07
ai, 10–10 m 4.045 4.058 4.071 (4.070(1)) According 

to conditions 
(7c) and (7a)

x = 0.08, polydomain layers in Fig. 1a

ωi, deg 0.070 0.075 0.080 0.110
ai, 10–10 m 4.066 4.056 4.045 (4.046(1)) According

to conditions 
(7b) and (7a)

(4.066(1))

ωi, deg 0.07 0.08 0.09 0.11
ai, 10–10 m 4.066 4.055 4.043 (4.046(1)) According

to conditions 
(7b) and (7a)

(4.066(1))

Notes: 1. The experimental values of the linear unit-cell parameters ai [12] for the rhombohedral phase Rhin or the phase Xin (at the min-
imum angle of shear ωi) and the rhombohedral phase Rhout (at the maximum angle of shear ωi) are given in parentheses. 
2. Condition (7a) is satisfied for the unit cell parameters of the last two layers (see the data in the right part of the table), except for
the elastic matching of domains shown in Fig. 1b at x = 0. 
3. The differences between the linear unit-cell parameters ai calculated from formulas (7d) and (7e) at x = 0 and fixed angles ωi do
not exceed 0.5% due to the inequality sinωi ! cosωi.
PHYSICS OF THE SOLID STATE      Vol. 47      No. 7      2005
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the stability of the 90° domain structure stems from the
specific features of the jumps in the unit cell parameters
aT and cT of the tetragonal phase upon C–T and T–Rh
(or T–X) phase transitions. According to the experimen-
tal data obtained by Kuwata et al. [1], the relationship
(aT – aC)/(cT – aC) ≈ (aRh – aT)/(aRh – cT) is valid at x =
0.09. Furthermore, the results reported by Ohwada et al.
[24] indicate that a similar relationship, i.e., (aT –
aC)/(cT – aC) ≈ (aX – aT)/(aX – cT), is satisfied at x = 0.08.
Hence, we can assume that the xPT–PZN (xtr < x <
0.08) crystals are characterized by similar temperature
dependences of the unit cell parameters. Consequently,
the formation of dual structures can be assisted by the
T–X–Rh three-phase states in which 90° domains of the
tetragonal phase provide efficient relaxation of internal
mechanical stresses at the T–X and T–Rh phase bound-
aries. Upon cooling of the crystal, the domains of the
tetragonal phase disappear and the fields of internal
mechanical stresses change significantly. This favors
the formation of transition regions [18]. The coexist-
ence of the tetragonal, X, and rhombohedral phases is
confirmed by the fact that three-phase states are inher-
ent in the xPT–PZN system at room temperature.
Recently, Bertram et al. [26] revealed the coexistence
of the tetragonal, monoclinic (symmetry Pm), and
rhombohedral phases in the vicinity of the morphotro-
pic boundary with complete relaxation of internal
mechanical stresses [10]. An increase or a decrease in

Table 2.  Optimum volume concentrations of 90° domains in
the tetragonal phase according to the calculations for the
first-order phase transitions in the xPT–PZN crystals

x
Experimental tempera-
ture dependence of the 

unit cell parameters

Phase
transition

Optimum vol-
ume concen-
tration of 90° 

domains

0.08 Data taken from [24] C  T
T  X

0.642; 0.358
0.619; 0.381

0.09 Data taken from [1] C  T
T  Rh

0.636; 0.364
0.616; 0.384

Notes: 1. The tetragonal phase is assumed to be separated into 90°
domains with the spontaneous polarization vectors PT1(0; 0;
P) and PT2(P; 0; 0). The rhombohedral phase is assumed to
be separated into 71° (109°) domains with the spontaneous
polarization vectors PRj (j = 1–4, see Section 3), and the
crystal has cubic symmetry, because the volume concentra-
tions of these domains are equal to one another. According
to the experimental data obtained by Ohwada et al. [24], the
phase X also has macroscopic cubic symmetry. 
2. Any deviations from the equality of the volume concentra-
tions of 71° (109°) domains in the rhombohedral phase lead
to an insignificant change (by less than 1%) in the optimum
concentration of 90° domains in the tetragonal phase upon
transition from the tetragonal phase to the rhombohedral
phase. In particular, upon formation of the single-domain
rhombohedral phase with the spontaneous polarization vec-
tors PR1 and PR4, the optimum volume concentrations of 90°
domains in the tetragonal phase are equal to 0.620 and 0.380,
respectively [4, 8].
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the molar concentration x results in the formation of
two-phase states, namely, the monoclinic–tetragonal or
rhombohedral–monoclinic states, respectively [26].
These two states are characterized by complete stress
relaxation [8, 10].

5. CONCLUSIONS

Thus, the results obtained in this work can be sum-
marized as follows.

(1) The concept of transition regions in ferroelectric
and related crystals was applied for the first time to the
description of the dual structures in crystals of xPN–
PZN solid solutions in the range 0 ≤ x ≤ 0.08. The fun-
damental difference between the new model of transi-
tion regions and the models proposed earlier in [18–20]
lies in the assumption regarding the elastic matching of
polydomain layers in which the balance of longitudinal
and shear distortions is provided by 71° (109°)
domains. The proposed schemes of the elastic matching
of 71° (109°) domains in the rhombohedral phases
(Fig. 1) along the {100} boundaries (zero mean strain
planes) and the corresponding relationships (7) for the
change in the unit cell parameters (Table 1) suggest that
the relaxation of mechanical stresses upon the forma-
tion of dual structures can occur in different ways.

(2) The formation of dual structures in crystals of
the xPN–PZN solid solutions at x ≥ 0.045 is favored by
the following circumstances: (i) the temperature depen-
dences of the unit cell parameters aC(T), aRh(T), and
aX(T) are similar to each other; and (ii) the optimum
concentrations of 90° domains in the intermediate tet-
ragonal phase remain almost unchanged (Table 2). This
leads to complete relaxation of internal mechanical
stresses in the T–X, T–Rh, and T–X–Rh heterophase
states.
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Abstract—The gas-phase condensation of nickel nanoclusters is simulated by the molecular dynamics method
with the use of tight-binding potentials. It is revealed that subsequent heating of the synthesized clusters to tem-
peratures of 400–500 K leads to a substantial improvement of their internal structure with a hexagonal close-
packed phase predominating. Upon heating of the nanoparticles above the melting point and subsequent gradual
cooling, the formation of a cluster structure depends strongly on the cooling rate. The inference is made that
heating of the nanoclusters synthesized from a gas phase can be used for the controlled formation of nickel
nanoparticles with a predicted structure. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Nanoparticles possess a great variety of interesting
physical properties that differ from those exhibited by
bulk materials due to an extremely large surface-to-vol-
ume ratio. Since these properties of nanoparticles can
be used in various technical devices, investigations into
the processes controlling the formation of nanoparticles
are of considerable interest. The general introduction to
the physics of nanoparticles and nanomaterials can be
found, for example, in [1–3].

At present, there exist numerous techniques for syn-
thesizing nanoparticles of different chemical elements.
Among these methods, gas-phase synthesis is of crucial
importance in preparing very small, chemically pure
particles with approximately equal sizes [4]. In the gas-
phase synthesis, nanoparticles are condensed from a
supersaturated metal vapor in a noble-gas atmosphere
[5–7].

Over the course of more than 30 years, the structure
of metallic clusters has been intensively investigated
using theoretical and experimental methods. Computer
simulations have demonstrated that, unlike conven-
tional bulk materials, nanoclusters are characterized by
several structural modifications. For example, nano-
clusters of metals with a face-centered cubic lattice can
exist in face-centered cubic, hexagonal close-packed,
icosahedral, and decahedral modifications [8–10].
However, it should be noted that currently available
experimental methods for determining the structure of
metallic nanoclusters have a number of disadvantages.
In particular, diffraction scattering techniques are
appropriate only in the case of cluster ensembles and,
hence, their use leads to the averaging of the properties
exhibited by individual clusters.
1063-7834/05/4707- $26.00 1353
Furthermore, considerable difficulties are encoun-
tered in interpreting diffraction data [11, 12]. For this
reason, direct examination of the structure of individual
clusters located on a substrate has often been performed
with a high-resolution electron microscope [13, 14].

However, a high-resolution electron microscope
forms only a projection image of the structure and cor-
rect interpretation of the results requires further com-
puter simulation. Moreover, the high-energy electron
beam necessary for high-resolution electron micros-
copy can heat particles and, as a consequence, they can
undergo structural transformations. This is especially
true in regard to small-sized clusters [15].

Computer simulation is the most suitable method
for studying the internal structure of nanoparticles. The
use of modern computers and realistic interatomic
potentials makes it possible to simulate nanoparticles
accurately at times of the order of several nanoseconds.
However, the majority of previously performed calcu-
lations were aimed at searching for a structure with the
lowest energy at T = 0 K and at revealing a correlation
between this energy and the cluster size.

In this work, we carried out a molecular dynamics
simulation of the influence of temperature on the trans-
formation of an internal structure of nickel nanoclusters
prepared through gas-phase condensation.

2. SIMULATION TECHNIQUE

The interatomic interactions were calculated using
the tight-binding potentials [16] with a fixed cutoff
radius. Although complex models (for example, those
based on ab initio methods) seem more realistic, we
used a simpler, more efficient computer program for
© 2005 Pleiades Publishing, Inc.
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simulating a system involving several thousands of
atoms in the time interval up to several nanoseconds. It
should be noted that, even in the current state of the art
in the development of high-performance computers, an
ab initio simulation of this system remains impossible.
On the other hand, the potentials proposed by Cleri and
Rosato [16] have already worked well in cluster studies
[17–20].

In our model, the potential energy of the system was
calculated from the relationship

where rij is the distance between the ith and jth atoms,
and α and β stand for atoms of different types. In our
calculation, the parameters of the components of the

simulated system (ξαβ, pαβ, Aαβ, qαβ, ) were taken
directly from [16]. The velocities of atomic motion in
the simulation were determined using the Verlet algo-
rithm with a time step h = 2 fs.

The computer simulation was performed with the
standard methods described in [21]. In the computer
experiment simulating the gas-phase condensation of
nanoparticles, a nickel cluster consisting of 8000 atoms
arranged in a simple cubic lattice with a lattice param-
eter equal to 15aB (where aB is the Bohr radius) was
used as the initial configuration with periodic boundary
conditions. The choice of the simple cubic lattice for
the simulation may seem somewhat unexpected. How-
ever, the distance between the atoms in this lattice
appears out to be larger than the cutoff radius rc (for the
interaction potential used in our case, rc = 11.1aB).
Moreover, the initial velocities of atomic motion are
randomly specified in accordance with the Maxwell
distribution at the initial temperature Ti = 1000 K. This
gives grounds to believe that the simulated system very
rapidly loses its memory regarding the initial distribu-
tion.

An important factor in the simulation of the conden-
sation process is the interaction of the system with a
thermal reservoir. Since the formation of clusters is
accompanied by the release of a large amount of
energy, this interaction is required to eliminate a physi-
cally incorrect considerable increase in the tempera-
ture. In the simulation experiment, we used an Ander-
son thermostat [21, 22] to cool nickel atoms to the final
condensation temperature Tf = 77 K.

Within this stochastic model, the simulated atoms
experience random collisions with virtual particles. The
effect of collisions manifests itself in the fact that the
velocity of real particles at the (n + 1)st step in the
molecular dynamics simulation experiment decreases

E ξαβ
2

e
2qαβ rij/rαβ

0
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in a random manner as compared to the velocity corre-
sponding to the Maxwell distribution at the nth step. In
our case, these collisions simulate the interaction with
a noble gas used in real experiments on the gas-phase
synthesis of nanoclusters. During the simulation exper-
iment, the temperature was determined from the mean
kinetic energy of atoms.

3. RESULTS AND DISCUSSION

In the framework of the problem under consider-
ation, our primary interest is in investigating the tem-
perature dependence of the structural properties of the
nickel nanoclusters prepared through the gas-phase
condensation. During the investigation, we first simu-
lated direct experiments on the condensation [3, 23]
and then analyzed the following situations.

(1) The nanoparticles condensed from the gas phase
are gradually heated from T = 77 K for the purpose of
forming a more perfect structure. In this simulation, we
revealed two typical tendencies.

(i) For nickel clusters with a close-packed core and
a small number of stacking faults, the long-range order
is slightly disturbed already at T = 600 K and com-
pletely destroyed at T = 1100 K.

(ii) For nickel clusters in which there is no well-
defined close-packed core, intensive kinetic processes
result in the formation of a similar core in the tempera-
ture range from 300 to 600 K (Fig. 1). A further
increase in the temperature is accompanied by the
destruction of the long-range order, and this process is
completed at T = 1100 K. Therefore, the heating of con-
densed nickel nanoparticles for several nanoseconds to
temperatures T = 400–500 K leads to a substantial
improvement of their internal structure with a hexago-
nal close-packed phase predominating.

(2) The nickel nanoclusters synthesized from the gas
phase are heated to the temperature T = 1800 K, which
is considerably higher than the melting point; then, the
nanoclusters are gradually cooled to liquid-nitrogen
temperature at different rates. For the majority of nickel
nanoclusters, this procedure results in an increase in the
size of the close-packed cluster core. When the cluster
has already had a regular structure prior to melting, the
number of atoms involved in the close packing
increases by only a few percent. If this type of structure
is absent before melting, the heating and subsequent
gradual cooling lead to the formation of a regular struc-
ture and, in a number of cases, the percentage of atoms
involved in local close packing increases by a factor
of two.

A comparison of the structures obtained by two
methods shows that gradual cooling of the clusters
from the molten state leads to a better improvement of
the cluster structure; however, the final result depends
substantially on the cooling rate. The best results are
obtained at a cooling rate U = 0.025 ps–1. For other
cooling rates (U = 0.035, 0.015, 0.005 ps–1), the fraction
HYSICS OF THE SOLID STATE      Vol. 47      No. 7      2005
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of atoms involved in local close packing in the cluster
decreases.

Moreover, the cluster structures before and after
melting differ qualitatively. In particular, upon free
condensation of nickel atoms from the gas phase, the
majority of clusters have a hexagonal close-packed
structure. When the nanoparticles are heated to temper-
atures above the melting point and then are gradually
cooled, the final structure also depends very strongly on
the cooling rate. For example, upon cooling at the rate
U = 0.025 ps–1, the cluster structure can transform
either into the face-centered cubic modification or into
the hexagonal close-packed modification in approxi-
mately equal proportions. However, cooling at other
rates (U = 0.035, 0.015, 0.005 ps–1) leads to the forma-
tion of either a hexagonal close-packed phase in most
cases or an icosahedral phase in rare cases (Fig. 2).

In order to illustrate the transformation of the cluster
structure and the change in the cluster shape with
increasing temperature, we consider two large-sized

(a)

(b)

Fig. 1. Nickel clusters (N = 340 atoms) synthesized from the
gas phase at T = (a) 200 and (b) 400 K.
PHYSICS OF THE SOLID STATE      Vol. 47      No. 7      2005
clusters (N = 1816, 2082 atoms) synthesized from the
gas phase. The first cluster is formed through the
agglomeration of two nearly spherical nanoparticles,
with the symmetry corresponding to a mixture of face-
centered cubic and hexagonal close-packed structures
(Fig. 3a) and a disordered region at their boundary.
Then, the simulated cluster is heated from 77 to 600 K
and, then, to 900 K.

During heating, the cluster components aggregate
very rapidly (for 2 ns) into a single cluster with the ini-
tial structure (a mixture of face-centered cubic and hex-
agonal close-packed structures) (Figs. 3b, 3c). Despite
the similarity of their internal structures, the clusters
formed upon heating to T = 600 K and T = 900 K differ
significantly in appearance. Specifically, the shape of
the cluster heated to T = 600 K is similar to that of the
initial cluster (T = 77 K), whereas the cluster heated to
T = 900 K “forgets” its initial shape and takes the form
of an almost regular ellipsis (Fig. 3c). This phenome-
non can be explained by the enhancement of surface
diffusion during heating and, consequently, by the

(a)

(b)

Fig. 2. Nickel cluster configurations (N = 527 atoms)
obtained upon cooling in the temperature range from 1800
to 77 K. Cooling rates, ps–1: (a) 0.015 (icosahedral phase)
and (b) 0.025 (face-centered cubic phase).
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increase in the rate of mass transfer required for a
change in the cluster shape. At both temperatures, the
transformation of the internal structure leads to com-
plete disappearance of the disordered region at the
boundary of the initial clusters.

(a)

(b)

(c)

Fig. 3. Nickel cluster configurations (N = 1816 atoms) at
T = (a) 77, (b) 600, and (c) 900 K. 
PH
The second example is provided by a nickel nano-
cluster (N = 2082 atoms) that is formed through the
agglomeration of three components, of which the com-
ponent with the largest size involves a nucleus of the
icosahedral phase (Fig. 4a). At T = 600 K, the icosahe-
dral structure is formed in the cluster within only 1 ns
after heating (Fig. 4b). The structural transformation of
the cluster is completed within 4 ns after heating
(Fig. 4c), and neither structure nor shape of the cluster
change with time (to 20 ns). As in the first case, the
cluster heated to T = 900 K becomes nearly elliptical in
shape. These two examples also demonstrate that ther-
mally induced processes substantially affect the forma-
tion of a cluster structure. For nickel nanoclusters, the
icosahedral structure is more energetically favorable at

(a)

(b)

(c)

Fig. 4. Nickel cluster configurations (N = 2082 atoms):
(a) T = 77; (b) T = 600 K, t = 1 ns; and (c) T = 600 K, t = 4 ns.
YSICS OF THE SOLID STATE      Vol. 47      No. 7      2005
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T = 0 K [24]. However, the formation of a similar struc-
ture in nickel nanoclusters at higher temperatures
occurs only in the case when there is a large-sized
nucleus of the icosahedral phase. This can be judged
from comparing Figs. 1 and 4.

4. CONCLUSIONS

Thus, the gas-phase condensation of nickel clusters
was simulated by the molecular dynamics method. The
results of this simulation should be treated as tentative
because the number of clusters formed is too small to
make any valid inferences. However, the above investi-
gations revealed a number of tendencies specific to gas-
phase synthesis of nickel nanoclusters.

It was established that subsequent heating of the
synthesized nanoclusters to temperatures of 400–500 K
for even a few nanoseconds leads to substantial
improvement of their internal structure with a hexago-
nal close-packed phase predominating. Upon heating
of the nanoclusters above the melting point and subse-
quent gradual cooling, the formation of a cluster struc-
ture depends strongly on the cooling rate. Therefore,
heat treatment of nickel nanoclusters synthesized from
a gas phase can be used for the controlled formation of
nickel nanoparticles with a predicted structure and,
hence, with specified physical properties. This could
prove indispensable for manufacturing modern techni-
cal devices, in particular, new forms of memory storage
for computers.
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Abstract—The magnetic properties of two types of nanocrystalline antiferromagnetic CuO samples, namely,
dense nanoceramics and loose powders, were studied. For nanomaterials with smaller particles, the magnetic
susceptibility χ was shown to increase with a decrease in temperature T < TN. The increase in χ in both series
of samples is related to the disordering of Cu2+ spins at the surfaces of nanoparticles. The magnetic properties
of nanopowders characterize the properties of isolated nanoparticles. In a dense nanoceramic, the size effect is
compensated for by the interaction between nanoparticles. The magnetic properties of nanoceramics are deter-
mined by elastic stresses induced by an external action. Elastic-stress relaxation results in the recovery of mag-
netic order and decreases the magnetic susceptibility. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

There has been increased interest in nanocrystalline
materials over recent years. This interest is related to
fundamental problems in the study of surface phenom-
ena and to applied aspects of the use of nanoparticles
[1–3]. A decrease in the crystallite size below a thresh-
old value d < 100 nm is known to change the physical
properties of crystallites as compared to ordinary poly-
crystals. Nanocrystalline materials are in a nonequilib-
rium metastable state. Knowledge of the processes
occurring in the nanocrystalline state of solids opens up
new opportunities for nanotechnology in designing
structural and functional materials, since a decrease in
particle size is an effective method for changing prop-
erties. Nanomaterials are used as catalysts for chemical
reactions and are applied in the production of micro-
electronic devices, photosensitive elements, gas sen-
sors, and gas and soot absorbents.

Nanocrystalline materials have small particle sizes
and long interfaces. In magnetic nanoparticles, the total
energy consists of the exchange, anisotropy, magne-
toelastic, and magnetostatic energies. A loss of three-
dimensional structural periodicity, a lower ionic coordi-
nation, and the presence of various types of defects in
the surface and interface layers of nanoparticles can
affect exchange interaction and, hence, can change the
relations between the components of the total energy. A
decrease in the particle size results in an increased con-
tribution from surface anisotropy to the total anisotropy
constant of an ensemble of nanoparticles K = Kv +
2Ks/d, where Kv and Ks are the volume and surface
anisotropy constants, respectively, and d is the particle
size. Stress-induced lattice distortions affect the contri-
bution from volume anisotropy. The coupling between
1063-7834/05/4707- $26.00 ©1358
the volume and surface of nanoparticles is very sensi-
tive to the surface morphology. Core–surface stresses
increase the magnetoelastic coupling, which also con-
tributes to the anisotropy. A change in the relations
between the exchange energy and other contributions
can change the ground state of nanoparticles and signif-
icantly modify their magnetic properties.

The main consequence of a decrease in the particle
size in magnetic materials is spin disordering in the sur-
face layer because of exchange-coupling frustrations,
which manifests itself in superparamagnetism and
superantiferromagnetism. In ferromagnetic and ferri-
magnetic nanoparticles at low temperatures (below the
blocking temperature TB), disordered surface spins
become “frozen,” and their state is similar to the spin-
glass phase. This leads to an increased coercive force,
irreversible magnetization reversal in the ZFC and FC
modes, and a shift in the hysteresis loops [1]. As the
temperature increases, the spin-glass phase transforms
into a canted spin structure. In antiferromagnetic nano-
particles, the ground state is a multisublattice state. The
decompensation of the magnetic sublattices results in
superantiferromagnetism, which is characterized by a
nonlinear field dependence of the magnetization and by
an increase in the susceptibility with decreasing tem-
perature (χ ~ 1/T) [4]. In ionic compounds, valence
electrons are spatially localized. In semiconducting 3d
oxides, the magnetic order is determined by superex-
change interaction and depends on the overlapping of
the 3d and 2p orbitals of metal and oxygen ions; there-
fore, the magnetic coupling is very sensitive to the
atomic environment. A lowered atomic density and
changes in the interatomic distances and in the
exchange interaction in the surface layers of nanoparti-
 2005 Pleiades Publishing, Inc.
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cles can cause a stronger size effect in ionic com-
pounds, as compared to metals, over a wide tempera-
ture range up to TC or TN. The properties of antiferro-
magnetic and ferrimagnetic nanocrystalline oxides are
less well understood than the properties of ferromag-
netic 3d-metal nanoparticles.

An informative method for studying the magnetic
properties of nanomaterials is measurement of the mag-
netic susceptibility. In this work, we investigate the
effect of nanoparticle size on the magnetic properties of
CuO and the stability of the nanocrystalline state. To
this end, in the temperature range 77 < T < 600 K, we
measure the magnetic susceptibility of nanocrystalline
CuO samples fabricated by different methods, because
the magnetic properties of nanocrystalline materials
can depend on the fabrication technique. We chose
CuO, since it is unique in the series of 3d monoxides.
CuO has a monoclinic lattice and is a low-dimensional
antiferromagnet with a high Néel temperature (TN =
230 K) [5, 6]; these features allow us to study the effect
of a decreased particle size over a wide temperature
range. CuO is the basis for cuprate high-temperature
superconductor (HTSC) compounds and exhibits prop-
erties similar to the properties of their semiconductor
phases. Therefore, CuO has been extensively studied
since the discovery of HTSCs [7]. It is also important
that, when the copper-to-oxygen concentration ratio
changes, the Cu–O system can contain diamagnetic
phases (Cu2O, Cu), which have no effect on the magne-
tism of bulk CuO. Other magnetically ordered phases
do not form under these conditions.

2. EXPERIMENTAL

The magnetic properties of nanopowders and nano-
layers are mainly specified by the effects related to the
nanoparticle size and the state of the surface layers. In
compacted nanomaterials, the interaction between
nanoparticles and the surface effects induced by the
microstructure of grain boundaries (e.g., the presence
of nanovoids and other free volumes, the nonequilib-
rium stressed state of interfaces) can be significant. Two
series of nanocrystalline CuO samples with nanoparti-
cle size d = 5–110 nm were prepared using different
methods to separate the size effect from other factors.
One series of samples was fabricated with polycrystal-
line CuO subjected to spherically converging isentropic
shock waves [8]. After subjection to shock waves, the
CuO ceramic was in the form of a ball of radius R =
22 cm. The density of the loaded CuO was 99%. Sam-
ples having a certain nanoparticle size (d = 5, 15, 30,
70, 110 nm) were cut from different zones of the loaded
ball. The other series of nanocrystalline CuO samples
(with average particle size d = 15, 45, 60 nm) was pro-
duced via condensation of copper vapors. A drop of
molten metal was levitated in an argon flow and heated
to 2000°C by a high-frequency magnetic field. The
evaporated metal was cooled with the inert gas and con-
densed to form a nanopowder. The nanoparticle sizes
PHYSICS OF THE SOLID STATE      Vol. 47      No. 7      2005
were controlled by the argon pressure and the argon
flow rate. The design of the device prevents the molten
metal from being contaminated by uncontrolled impu-
rities. The Cu and CuO nanopowders were then oxi-
dized in air at 90–240°C for 0.5–2 h. The samples of
this series consisted of a loose nanopowder.

Phase and structural analyses were performed with
a DRON-2.0 x-ray diffractometer. X-ray diffraction
data showed that the nanocrystalline CuO samples were
single-phase and that the broadening of the diffraction
lines was mainly caused by the small particle size. In
the dense nanoceramics, an additional contribution to
the line broadening was induced by elastic stresses due
to shock-wave loading. The nanoparticle size was con-
trolled with an STM-U1 scanning tunneling micro-
scope. For each sample, we took ten or more images at
different points and then used them to determine the
average nanoparticle size [9, 10]. The magnetic suscep-
tibility was measured on a magnetic balance. As a rule,
nanomaterials subjected to severe plastic deformation
have a high level of microstrains and a large amount of
defects. Grain boundaries in such materials are in a
nonequilibrium state and are sources of high elastic
stresses. The nanoceramic and nanopowder samples
were stored at room temperature for three years, and
then the magnetic measurements were repeated to ana-
lyze the state of nanocrystalline CuO and of the inter-
faces in it.

3. MAGNETIC SUSCEPTIBILITY
OF CuO NANOPARTICLES

The magnetic properties of CuO are specified by the
competition between the strong antiferromagnetic
superexchange interaction of Cu2+ ions through O2–

ions in the [ ] direction and a weaker ferromagnetic
superexchange interaction in all other directions. The
magnetic structure consists of zigzag antiferromagnetic

Cu–O–Cu chains along the [ ] axis. Below T =
212 K, CuO exhibits 3D collinear antiferromagnetism,
and in the range 212 < T < TN = 230 K the structure
becomes noncollinear. Above TN, the interaction
between the chains become negligible and the system
transforms into a low-dimensional antiferromagnetic
state [5, 6, 10]. Near TN, the slope of the χ(T) curve
changes, but the susceptibility maximum (typical of 3D
collinear antiferromagnets) is absent. The susceptibility
of CuO continues to increase with T up to 550 K [11].
The shape of the temperature dependence of the sus-
ceptibility is characteristic of low-dimensional (1D,
2D) antiferromagnets, which transform into a 3D state
with long-range magnetic order as the temperature
decreases [12].

Figure 1 shows the temperature dependences of the
magnetic susceptibility in a constant magnetic field H =
8.9 kOe for a Cu polycrystal with grain size d = 5–
15 µm and for dense nanoceramics with a grain size in
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the range 5 ≤ d ≤ 110 nm. The χ(T) dependence for the
nanocrystalline samples with a large grain size (d >
70 nm) coincides with that for CuO polycrystals fabri-
cated using a standard method. A decrease in the grain
size leads to increased values of χ at low temperatures.
There is a correlation between the grain size and the
magnetic susceptibility: the smaller the value of d, the
higher the value of χ. For the nanoceramics with d =
5 nm at T < 140 K, the susceptibility obeys the law χ ~
1/T. The general shape of the temperature dependence
of the magnetic susceptibility for nanoceramic CuO
samples with a small grain size is characteristic of alter-
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Fig. 1. Temperature dependences of the magnetic suscepti-
bility in a constant magnetic field H = 8.9 kOe for (1) a CuO
polycrystal with grain size d = 5–15 µm and (2–5) dense
nanoceramics with various values of the grain size d: (2) 70,
(3) 30, (4) 15, and (5) 5 nm.
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Fig. 2. Temperature dependences of the magnetic suscepti-
bility of CuO in a magnetic field H = 8.9 kOe for (1) a poly-
crystal and (2–4) nanopowders with various values of the
average grain size d: (2) 60, (3) 45, and (4) 15 nm.
P

nated chains [12], strongly frustrated antiferromagnets,
and antiferromagnetic nanoparticles [4]. Since long-
range magnetic order is unlikely to be destroyed in the
bulk of nanoparticles at temperatures well below
230 K, the most probable cause of the χ ~ 1/T depen-
dence and, accordingly, the appearance of an uncom-
pensated magnetic moment is the breakage of the anti-
ferromagnetic bonds of Cu2+ ions located in the surface
layer because of a loss of 3D periodicity. As the grain
size decreases, the number of disordered surface spins
increases; as a result, the total susceptibility of nanoc-
rystalline CuO increases. In the high-temperature range
(T > 300 K), the χ(T) dependences are identical for all
samples. This fact indicates that the decrease in the
grain size has no effect on the short-range magnetic
order, which remains unchanged up to 550 K.

The surface effects characteristic of CuO are most
pronounced in the magnetic properties of nanopowders.
Figure 2 shows the temperature dependences of the sus-
ceptibility in a field H = 8.9 kOe for single-phase CuO
nanopowders with average grain sizes d = 15, 45, and
60 nm. The susceptibility decreases with increasing
temperature in the range T < 140 K for samples with d =
45 and 60 nm and decreases over the entire temperature
range covered, 77 < T < 600 K, for samples with d =
15 nm. As in the case of nanoceramics, there is a corre-
lation between χ and d. However, at the same nanopar-
ticle size, the susceptibility of nanopowders is signifi-
cantly higher. Qualitatively similar χ ~ 1/T depen-
dences were observed for nanopowders produced using
the sol-gel method [13] or ball mills [14] and for multi-
layers of CuO films of thickness d = 2–200 nm [15].

In nanomaterials, not only the particle size but also
the particle microstructure and the state of interfaces in
particles play important roles. The effect of interfaces
on the properties is most pronounced in compacted
nanomaterials [3]. As a result of strong external actions,
the grain boundaries are in a thermodynamically non-
equilibrium stressed state with an excess energy, and
this state can be unstable even at room temperature.
High-temperature annealing or storage of samples at
room temperature for a long time leads to elastic-stress
relaxation. Grain boundaries transform into a stable
state with a relatively high degree of short-range order
in the atomic arrangement in nanoparticle boundaries;
therefore, the magnetic properties of as-produced and
aged samples are different. Figure 3 shows the temper-
ature dependences of the magnetic susceptibility for the
same nanoceramic CuO samples as in Fig. 1 but after
three-year storage at room temperature. It is seen that
the “paramagnetic” contribution χ ~ 1/T disappears for
all samples. The χ(T) dependences became similar to
those typical of ordinary CuO polycrystals, which indi-
cates a low degree of disordering of Cu2+ ion spins in
the surface layer. The recovery of the long-range anti-
ferromagnetic order in the aged nanoceramic samples
is not due to an increase in the grain size or grain-
boundary migration. Indeed, Fig. 4 shows the micro-
HYSICS OF THE SOLID STATE      Vol. 47      No. 7      2005
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structures of nanoceramics with a grain size d = 15 nm
observed with a scanning tunneling microscope imme-
diately after shock-wave treatment and after three
years. According to the scanning tunneling microscopy
data, the grain size does not change with time. It should
be noted that, in the aged nanoceramic samples, all χ(T)
dependences are below the analogous curve for poly-
crystals. The susceptibility decreases in absolute value
with decreasing grain size both above and below TN.
This behavior of the magnetic susceptibility can be
related to a change in the oxygen concentration in the
surface layers of CuO. Indeed, the degree of nonsto-
ichiometry with respect to oxygen increases with
decreasing d because of the increased length of grain
boundaries. Using positron annihilation, it was found
that local regions of oxygen vacancies are formed in
grain boundaries in our samples [16]. A deviation of the
composition toward oxygen deficiency, a decreased
nanoparticle size, and an increased bond ionicity [17]
stimulate the formation of nonmagnetic Cu3+ (3d10)
ions at interfaces. The lower values of the susceptibility
can be caused by a lower concentration of magnetic
Cu2+ ions. The nanoceramics can also exhibit explo-
sion-induced anisotropy. Since the parallel susceptibil-
ity is minimal (χ|| = 1.0 × 10–6 cm3/g [18]), the low val-
ues of χ in the annealed nanoceramics can be related to
the increased χ|| contribution to the total susceptibility.

The behavior of the magnetic properties of CuO
nanopowders with time is different. After storage for
three years, the temperature dependence of the suscep-
tibility remains virtually unchanged, which indicates
the stability of the nanoceramic composition and the
absence of any relaxation processes.
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Fig. 3. Temperature dependences of the magnetic suscepti-
bility for high-density CuO ceramics (see Fig. 1) after three-
year storage at room temperature. The grain size d is
(1) >1000, (2) 30, (3) 15, and (4) 5 nm.
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4. FACTORS AFFECTING THE MAGNETIC 
PROPERTIES OF THE NANOMATERIALS

The magnetic properties of antiferromagnetic
nanocrystalline materials depend on the nanoparticle
size, the interparticle interaction, and the grain-bound-
ary microstructure. The question of whether the transi-
tion from the polycrystalline to nanocrystalline state is
first-order remains open; that is, it is unknown whether
there exists a critical particle size below which the only
properties that are exhibited by nanomaterials are those
characteristic of nanoparticles. To answer this question,
we need data on the magnetic properties of a system of
isolated nanoparticles in order to prevent other factors,

A B

110 nm 90 nm

15 nm

(a)

(b)

A B

15 nm

105 nm
100 nm

Fig. 4. Microstructure of CuO nanoceramics with grain size
d = 15 nm (a) immediately after shock-wave treatment and
(b) after three years. The insets show A–B scanning lines.
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such as interparticle interaction, from having an effect.
Among our samples, the nanoparticle isolation condi-
tion is best satisfied by the loose CuO nanopowders,
whose susceptibility increases with decreasing d and
decreases smoothly with increasing temperature (χ ~
1/T) in the range T < 300 K. A similar behavior of the
susceptibility is observed in antiferromagnetic hematite
α-Fe3O4 [19], NiO [20], and CuO multilayers [15]. In
hematite particles with d > 100 nm, the susceptibility
remains equal to its value for bulk hematite. When the
particle size decreases within the range 100 > d >
20 nm, χ increases rapidly. The magnetic susceptibility
of nanocrystalline NiO varies in inverse proportion to
the nanoparticle size in the range 200 > d > 7 nm at T =
298 K. For CuO multilayer films of different thick-
nesses (d = 2–200 nm) sputtered on substrates of non-
magnetic phases (MgO or Al2O3), the susceptibility
varies in inverse proportion to temperature in the range
4.2 < T < 300 K. At 4.2 K, the susceptibility increases
linearly with the number of interfaces. Since the effect
of grain boundaries depends on the method of nanoma-
terial production, nanocrystalline samples having iden-
tical values of d can differ in terms of their magnetic
properties. For example, in CuO nanoparticles fabri-
cated using the sol-gel method in combination with
high-temperature annealing, an uncompensated mag-
netic moment appears at d < 9 nm [13], whereas in
nanoparticles produced in a ball mill this moment
appears at d < 21.2 nm [14]. The temperature depen-
dence of the susceptibility of compacted nanoceramics
differs from the χ(T) dependence for a CuO polycrystal
at d ≤ 60 nm (Fig. 1). The absolute values of χ of mate-
rials with identical values of d are also different. Based
on the results of an analysis of the magnetic properties
performed for the two types of nanocrystalline CuO
and on the available data, we can assume that the size
dependence of the susceptibility of copper monoxide is
smooth and that the transition from the polycrystalline
to nanocrystalline state is not first-order.

Exchange interaction in oxides is specified by both
the distance between magnetic ions and the superex-
change coupling angle between them. The violation of
3D periodicity at the surface of nanoparticles can cause
disordering of surface spins. Simulation of a spin con-
figuration in nanoparticles of antiferromagnetic oxides
has shown that a multisublattice state is preferred to a
two-sublattice state [1]. Due to disordering of the sur-
face spins and decompensation of the magnetic
moments of the sublattices, the temperature depen-
dence of the susceptibility of an ensemble of nanopar-
ticles is described by the expression [4, 20]

(1)

where χAF is the susceptibility of the antiferromagnetic
nanoparticle core, µnc is the average uncompensated
magnetic moment, 〈V 〉  is the average nanoparticles vol-
ume, and kB is the Boltzmann constant.

χ χAF
1
V〈 〉

---------
µnc T( )[ ] 2

3kBT
-----------------------,+=
P

As follows from Eq. (1), a decrease in the nanopar-
ticle volume and, hence, in the nanoparticle size should
increase the total susceptibility. The experimental data
on the magnetic susceptibility of antiferromagnetic
oxide nanoparticles support this conclusion. The differ-
ence in the χ(T) dependence between the CuO nanoce-
ramics and nanopowders is caused by the difference in
the relationship between the first and second terms in
Eq. (1) for them. Since the susceptibility of bulk CuO
is small (χ = 2 × 10–6 cm3/g), the second term in Eq. (1)
determines the χ(T) dependence of an ensemble of
nanoparticles as the particle size decreases.

In nanoparticles, the fraction of surface spins can
reach 30–50%. However, not all of the surface spins are
disordered, because nanoparticles interact with one
another. Based on magnetic and Mössbauer measure-
ments, the authors of [15] concluded that, apart from
the basic antiferromagnetic phase CuO, 2-nm-thick
multilayer films also contain 7–10% paramagnetic Cu2+

ions localized in the interface layers. Our estimation
shows that the concentration of disordered Cu2+ ions in
dense nanoceramics with d = 5 nm is 3%. The concen-
tration of paramagnetic Cu2+ ions in nanopowders is
slightly higher: 2% at d = 60 nm and 8% at d = 15 nm.
In the nanoceramics produced with shock waves, the
interparticle distance is small; therefore, the exchange
interaction between the nearest neighbor nanoparticles
results in partial ordering of the surface Cu2+ spins.
Upon strong interparticle exchange interaction, all sur-
face spins can be ordered; as a result, the magnetic
properties of nanomaterials and coarse-grained poly-
crystals are identical [21].

Apart from the nanoparticle size and interparticle
interaction, an important factor that influences the
properties of nanomaterials is the long-range stress
field induced by severe plastic deformation. This field
causes lattice strains both in the cores of nanoparticles
and near their surfaces. The strains are maximum in
grain boundaries. Annealing decreases the lattice
strains. As-produced nanoceramics have a large num-
ber of high-energy nonequilibrium grain boundaries.
One of the challenges with nanomaterials is to investi-
gate the microstructure of compacted materials, the
relaxation of grain boundaries, and the recovery of
properties upon annealing. Computer simulation was
used in [22, 23] to study different mechanisms of relax-
ation of a nonequilibrium grain-boundary structure in
metallic nanocrystals. For example, the relaxation time
of rigid translation in nonequilibrium grain boundaries
for nanocrystalline palladium with grain size d = 8 nm
was estimated to be trel = 0.3 s at an annealing tempera-
ture T = 600 K. At room temperature, the time of relax-
ation to the equilibrium state is trel = 8 × 106 days; that
is, the grain boundaries retain a nonequilibrium atomic
structure for an infinitely long time [22]. In [24], com-
pacted nanocrystalline palladium was studied using x-
ray diffraction and EXAFS methods and it was found
that, at room temperature, grain boundaries transform
HYSICS OF THE SOLID STATE      Vol. 47      No. 7      2005



ELASTIC-STRESS RELAXATION 1363
from a nonequilibrium state with weak short-range
order into a more ordered state. Simultaneously, the
crystallite size increases from 12 to 25–80 nm in 120–
150 days, which indicates that the nonequilibrium state
differs in nature from a rigid translation.

The study of the magnetic properties of nanocrystal-
line magnetic semiconductors began only recently. At
present, there are no theoretical or experimental studies
on the elastic-stress relaxation in compacted nanocrys-
talline oxides of transition metals. After shock-wave
treatment, our nanoceramic CuO samples contain a
large amount of high-energy nonequilibrium grain
boundaries. In time, high internal stresses relax and
grain boundaries acquire a quasi-equilibrium state with
a lower energy. The occurrence of elastic-stress relax-
ation is confirmed by the time dependences of the mag-
netic properties of nanoceramics. The increase in the
susceptibility with decreasing temperature in the range
T < TN in the as-produced ceramics characterizes the
degree of spin disordering and depends mainly on elas-
tic stresses. After annealing of strains without a change
in grain size (Fig. 4), the temperature dependence of the
susceptibility acquires the shape characteristic of
coarse-grained CuO polycrystals. In the nanoceramics,
the contributions of the size effect and interparticle
interaction to the disordering of Cu2+ spins are likely to
balance each other. Because of the production proce-
dure, the CuO nanopowders have a low level of
stresses; therefore, even after long-term storage, the
temperature dependence of their susceptibility remains
virtually unchanged.

Nonequilibrium interfaces are an effective channel
for diffusion relaxation of elastic stresses. Interfaces
can contain three types of defects: single vacancies,
vacancy nanovoids, and large voids at the site of absent
crystallites [3]. Dislocations located directly in inter-
faces and uncompensated disclinations in triple junc-
tions stimulate grain-boundary diffusion. The splitting
of disclinations is accompanied by a change in the
grain-boundary structure, namely, by a decrease in the
lattice strains in the grain-boundary phase. Using
positron annihilation, it has been found that small
agglomerates of oxygen vacancies are present in local
regions of interfaces in annealed CuO nanoceramics
[16]. Conceivably, the grain boundaries might still be in
a nonequilibrium state after three-year storage. A cer-
tain structural disorder can be retained due to residual
internal stress fields and the weakening of the Cu–O
covalent bond, which is responsible for the overlapping
of the 3d and 2p orbitals.

5. CONCLUSIONS

Thus, the anomalous behavior of the magnetic sus-
ceptibility below TN in CuO nanoceramics is specified
by three factors: the nanoparticle size, the interaction
between magnetic nanoparticles, and long-range inter-
nal stress fields. The size factor and elastic stresses lead
PHYSICS OF THE SOLID STATE      Vol. 47      No. 7      200
to breakage of the exchange couplings and disordering
of the surface spins. The interaction between magnetic
nanoparticles favors the conservation of long- and
short-range magnetic order in an ensemble of nanopar-
ticles. In CuO nanopowders, a large number of uncom-
pensated Cu2+ ion spins in the surface layers contribute
significantly to the magnetic susceptibility and charac-
terize the size effect in isolated nanoparticles. In com-
pacted nanoceramics, the magnetic susceptibility
depends mainly on induced elastic stresses due to the
compensation of the size effect and interparticle inter-
action. As a result of elastic-stress relaxation, the mag-
netic order and magnetic properties are recovered and
the magnetic susceptibility of the ensemble of nanopar-
ticles becomes identical to the χ(T) dependence of bulk
CuO.
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Abstract—The possibility of obtaining a Si–SiO2 nanocomposite layer by oxidation of porous silicon is dem-
onstrated. The nanocomposite thus prepared consists of silicon oxide with inclusions of crystalline silicon in
the form of rounded particles 5 to 30 nm in diameter and a filamentary cellular structure with filaments a few
nanometers thick. The I–V characteristics of these structures were measured under different sample excitation
conditions (photo- and thermal stimulation). The trap concentration and effective carrier mobility are estimated.
Carriers are found to be captured intensely by traps created in the large-area interface in the composite structure.
© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Featuring a richer variety of physical properties than
their constituent components, nanocomposite materials
enjoy broad application in various fields of technology
[1]. Oscillations in current observed in a layer of ther-
mally oxidized porous silicon [2] suggest that this mate-
rial is a nanocomposite. Porous silicon is a nanostruc-
tural material and is already employed to advantage in
the development of optoelectronic devices [3–5].

The electrophysical and optical properties of a
material change appreciably as one goes from a bulk
semiconductor to a system of isolated nanocrystallites.
A substantial qualitative transformation occurs, in par-
ticular, with the factors governing the processes of gen-
eration and recombination of carriers. First, the role
played by the surface and by the associated electronic
states of defects increases. Second, charge carriers turn
out to be confined to a limited region of space and can-
not interact freely with one another. For this reason, for
instance, the dependence of the photoluminescence
intensity of a nanocrystalline semiconductor on the
pumping level should differ from that observed in a
bulk material. Indeed, linear and sublinear dependences
are observed in nanocrystalline silicon [6], whereas in
single-crystal silicon the interband photoluminescence
intensity versus pumping level relation is a power-law
function [7].

In recent years, widespread interest has evolved in
silicon nanocomposites (silicon nanocrystals embed-
ded in a SiO2 dielectric matrix), which exhibit notice-
able room-temperature photo- and electroluminescence
1063-7834/05/4707- $26.00 1365
in the visible region as a result of quantum confinement
[3, 7–12]. The luminescence quantum yield, however,
is at present below one percent. However, the above
publications did not present any structural data that
could serve as convincing evidence that these measure-
ments were in fact carried out on nanocomposites. In
order to find ways to improve the quantum yield of the
luminescence, one needs to know the processes domi-
nating the generation and recombination of nonequilib-
rium carriers and the current-transport mechanisms
operative in a silicon nanocomposite, with due account
of its structure. In the present work, we performed an
electron-microscope study of the Si : SiO2 nanocom-
posite prepared by the oxidation of porous silicon and
an investigation into the mechanisms of current trans-
port in it.

2. PREPARATION OF THE NANOCOMPOSITE

To prepare porous layers, 350-µm-thick, [100]-ori-
ented plates of KDB-10 single-crystal silicon were
electrochemically etched in an aqueous solution of
30 vol % HF in a horizontal reactor (shown schemati-
cally in Fig. 1). The reactor was a Teflon cup with a hole
in the bottom. The hole is covered by pressing the sam-
ple to the cup bottom using a Teflon nut. The cup
assembled in this way is mounted in a cell filled with
electrolyte, which provides rear contact with the sam-
ple. The cup is filled with an aqueous solution of
hydrofluoric acid, an electrode is put in place, and a dc
voltage is applied. The bubbles forming during etching
are removed from time to time from the silicon surface
© 2005 Pleiades Publishing, Inc.
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with a Teflon stirrer. In this paper, we report on a study
of a sample etched for 5 min at a current density of
300 mA/cm2. On termination of the electrochemical
etching, the sample was rinsed in flowing deionized
water and subsequently oxidized in water vapor at
1223 K. The oxidation time was chosen such as to pro-
vide the formation of inclusions of silicon nanoparti-
cles in the grown SiO2 film. The thickness of the oxide
thus grown was about 0.15 µm. To study the electro-
physical properties of the silicon nanocomposite, the
oxide was removed from the idle side of the sample and
an In–Ga eutectic layer was deposited on it. Circular
semitransparent Al electrodes were evaporated on the
nanocomposite surface. Prior to measurement of the I–

+

–

1

2

3

4

5
6

Fig. 1. Reactor for preparation of a porous layer (sche-
matic). (1) Platinum electrodes, (2) solution of hydrofluoric
acid, (3) sample, (4) cup, (5) clamping nut, and (6) water
solution of NaCl.

0.2 µm

Fig. 2. Electron photomicrograph of the nanocomposite
before etching.
PH
V curves, deep marks were cut into the sample by scrib-
ing down to the single-crystal substrate.

3. STRUCTURE OF THE NANOCOMPOSITE

The structure of a nanocomposite layer was studied
with an ÉM-200 electron microscope at an accelerating
voltage of 100 kV. Samples for the studies were pre-
pared in the standard way; namely, wafers 3 mm in
diameter cut to match the holder were attached with a
wax, porous-layer front to a 1-mm-thick circular Teflon
substrate 10 mm in diameter. The sample was thinned
down to a thickness transparent for 100-keV electrons
by wet etching with a CP-8 solution on the side oppo-
site to the porous layer to produce a central window in
silicon down to the oxide layer. Next, the sample was
peeled off the substrate and rinsed. If the oxide layer
was so thick that the sample became charged when
viewed with an electron microscope, the layer was
additionally thinned with an ion beam (I = 4–6 µA, U =
5 kV).

Figure 2 shows a typical sample structure after oxi-
dation. In order to preserve the structure responsible for
the electrophysical properties described in the next sec-
tion, no ion beam etching was performed on this sam-
ple. The electron diffraction pattern of this sample was
a diffuse halo against which weak pointlike reflections
relating to the residual silicon layer could be barely dis-
cerned. Hence, this region of the sample consists pre-
dominantly of the oxide. The image exhibits isolated
dark rounded particles 5–30 nm in size (indicated by
arrows). Some of them are surrounded by a bright halo.
Tilting the sample in the microscope through up to 30°
did not reveal elongation of these particles in any direc-
tion, a feature to be expected if the porous layer had a
columnar structure. Dark-contrast particles stood out
clearly against the background of a slightly washed-out
cellular structure. Their surface concentration was in
excess of 109 cm–2.

After ion beam etching, silicon reflections became
visible in addition to the diffuse halo in the electron dif-
fraction pattern (Fig. 3a). The pattern suggests that the
surface layer retains, on the whole, the single-crystal
structure after the electrochemical etching. Single arc-
shaped reflections (indicated by arrows) indicate a cer-
tain misorientation between adjacent nanoparticle
regions. Figures 3b and 3c are images of the region of
which the electron diffraction pattern was obtained,
with Fig. 3c being a dark-field image in the (111) reflec-
tion from Si. Dark particles similar to those in Fig. 2 are
also present in Fig. 3b. Viewed in the dark-field mode
in Fig. 3c, they are seen as bright spots. This implies
that they are silicon particles in the reflecting position.
The bright halo surrounding them in the bright-field
image is possibly associated with their oxidation.

Viewed under high magnification, the cellular struc-
ture looks like a network formed by thin (~5-nm-thick)
dark-contrast filaments (Fig. 4). The filaments are sur-
YSICS OF THE SOLID STATE      Vol. 47      No. 7      2005
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Fig. 3. (a) Electron micrograph of a sample after ion beam thinning and (b) bright-field and (c) dark-field microscope images of the
same region. Arrows indicate silicon particles.
rounded by a coat. Because the photomicrograph was
taken in the diffraction contrast mode, one may con-
clude that the dark filaments are actually silicon
nanoinclusions encapsulated in an oxide coat. The fila-
ments are nonuniform in thickness. In some places,
they make up a sequence of single, closely located,
small particles.

Figure 5 schematically shows a model of formation
of the nanocomposite. Etching produces pores whose
walls are thinned by oxidation to form a thin network
structure of silicon filaments. The walls between the
pores left after electrochemical etching are of different
thicknesses. As a result, the silicon filaments forming
after oxidation of the porous layer (Fig. 2) are likewise
of different thicknesses. The single large particles (~5
to 30 nm in size) are apparently remnants of the thickest
regions between the pores that were left incompletely
oxidized.

4. TRANSPORT PROPERTIES
OF THE SILICON NANOCOMPOSITE

The transport properties of the nanocomposite were
studied by measuring I–V curves at different pumping
levels, with subsequent estimation of the carrier mobil-
ity and trap concentration. We used a V7-30 electrome-
ter in the current measurement mode. The rate of varia-
tion in the voltage applied to the sample did not exceed
0.01 V/s.

The characteristic measured was the current flowing
through the sample. The maximum current was 40 nA.
The nonequilibrium carriers present in the layer of ther-
mally oxidized porous silicon were either injected from
the electrodes or photoexcited from traps. To determine
the possible current-transport mechanisms, let us esti-
mate the electric fields produced in the bulk of the
nanocomposite. Because the thickness of the nanocom-
posite layer is about 0.15 µm, the maximum average
electric field strength 〈E〉  in a SiO2 layer at a sweep
voltage amplitude of 3 V does not exceed 200 kV/cm.
Next, let us estimate the maximum electric field
PHYSICS OF THE SOLID STATE      Vol. 47      No. 7      2005
strength Em at the surface of a silicon nanocluster. As
follows from our electron-microscope studies, the aver-
age size of silicon nanoscopic inclusions, nanoclusters,
is ~10 nm. According to [13], the value of Em in a non-
uniform dielectric with conductive spherical inclusions
of this size is

(1)

Substituting the average 〈E〉  into Eq. (1), we find that
the electric field at the surface of a silicon nanocluster
embedded in a dielectric matrix does not exceed
320 kV/cm. Photoemission measurements and I–V
injection curves [14, 15] suggest that the Si–SiO2 bar-
rier height for electrons is more than 2.7 eV. These esti-
mates exclude the Fowler–Nordheim (because of the
small Em) and the Schottky emission (because of the

Em E〈 〉 /0.63.=

0.1 µm

Fig. 4. Filamentary cellular structure of the nanocomposite.
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Fig. 5. Illustration of the nanocomposite formation (sche-
matic). (a) Silicon plate after etching in the reactor, (b) top
view of the plate, (c) same after oxidation, (d) cross section
of the plate after etching, and (e) cross section of the plate
after etching and oxidation. (1) Silicon plate, (2) pores,
(3) cross-sectional plane involved in panels (d) and (e),
(4) silicon filament, (5) oxide, and (6) lower boundary of
the sample part studied with an electron microscope.
PH
high barrier at the Si–SiO2 interface and the absence of
short-wavelength radiation in the sample illumination)
from consideration as possible candidates for the cur-
rent-transport mechanisms operative in a dielectric
nanocomposite layer. Because the silicon dioxide is an
amorphous dielectric (as follows from the structural
studies mentioned above), it contains a large number of
electrically active defects (traps) localized close to the
midgap of the dielectric. According to [16], carrier
transport in weak electric fields can occur not over the
allowed bands of the dielectric but rather over a system
of localized states lying in the dielectric bandgap.
Therefore, the carrier transport in a nanocomposite
layer can be assumed to occur primarily via the hopping
mechanism [17, 18].

Figure 6 presents a family of I–V curves measured
in different nanocomposite excitation modes. To esti-
mate the concentration of thermally activated shallow
traps and photostimulated traps, let us consider first the
I–V curve (curve 1 in Fig. 6) for the case where the sam-
ple under study is maintained at room temperature and
is illuminated by light with a maximum photon energy
not exceeding 1.8 eV. In this case, the I–V curve con-
sists of two branches. If the bias applied to the nano-
composite layer is positive and varies from 0 to 0.68 V,
the current follows a linear relation. In this case, Ohm’s
law holds at low enough fields inside the nanocompos-
ite layer (~45 kV/cm). The nanocomposite contains
thermally activated carriers with a concentration n0 and
nonequilibrium carriers with a concentration nt. The
carriers with concentration n0 may originate from
groups of fairly shallow traps located in the near-sur-
face region of silicon nanoclusters, which are thermally
depleted at room temperature. Deep traps are filled and
are not directly involved in carrier transport at room
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Fig. 6. I–V curve of the layer of thermally oxidized porous
silicon.
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temperature. We assume that traps are actually singly
charged centers, i.e., that a trap is capable of capturing
or releasing one electron. No noticeable deviations
from Ohm’s law occur as long as the nonequilibrium
carrier concentration nt does not exceed the concentra-
tion n0. After the voltage has reached U0 = 0.68 V, the
current rises very steeply. This behavior of the current
can be attributed to traps being filled by nonequilibrium
carriers, as a result of which the injected charge starts
to exceed the charge at the traps. Let us estimate the
concentration nt of thermally activated shallow traps
using the relation [18, 19]

(2)

where U0 is the voltage at which the I–V curve switches
from Ohm’s law to a steep current rise.

Substituting the values of U0 into Eq. (2), we obtain
1.5 × 1020 cm–3 for the trap concentration. The effective
carrier mobility in the nanocomposite layer biased by a
voltage U0 can be estimated using the following rela-
tion from [18, 19]:

(3)

where ε is the relative permittivity of the dielectric
(SiO2), L is the thickness of the dielectric (in meters),
and I is the current at voltage U = U0.

In this case, the effective mobility was found to be
0.45 × 10–15 cm2/(V s). Let us estimate the concentra-
tion of thermally activated shallow traps for the case
where a negative bias is applied to the structure under
study. At low bias voltages, this branch of the I–V curve
also has a section with a linear rise in current. The volt-
age U0 at which the current starts to rise steeply is
−0.44 V. In this particular case, the trap concentration
calculated from Eq. (2) is 0.97 × 1020 cm–3. The effec-
tive carrier mobility µeff derived from Eq. (3) is 0.47 ×
10–15 cm2/(V s). An analysis of the behavior of the I–V
curves obtained under a bias with opposite signs sug-
gests that the trap concentrations and effective mobili-
ties at the U0 point in these two cases coincide in order
of magnitude. This gives us grounds to believe that the
mechanisms involved in the current transport are the
same in both cases. According to [16], the trap concen-
tration in the layer of thermally oxidized silicon lies in
the range 1019 to 1021 cm–3 and the effective mobility of
electrons does not exceed 10–11 cm2/(V s). Such a high
concentration of traps indicates that they may originate
from defects that form in silicon dioxide due to rupture
of the Si–O bonds [16]. The trap concentration in the
dielectric layer of the composite is of the same order of
magnitude as that for the thermally oxidized silicon.
This suggests that the nature of the traps can possibly
be identified with rupture of the same bonds. The fact
that the effective mobility is substantially lower (by
several orders of magnitude) may be attributed to a
more intense capture of carriers (in comparison with

nt n0 2.21 10
20

U0,×= =

µeff 8IL
3
/9εε0U0,=
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the case of thermally produced silicon dioxide) due to
the presence of traps localized near silicon nanoparti-
cles in the surface layer of the dielectric.

Curve 2 in Fig. 6 is a I–V characteristic measured at
room temperature in the dark. This curve consists of
several portions described by different functional rela-
tions. In the absence of illumination, trap depletion by
light can be neglected. As before, the nanocomposite
layer contains thermally depleted shallow traps that
create a carrier concentration n0 and nonequilibrium
carriers with a concentration nt. The nonequilibrium
carriers are injected from the electrode only. For a pos-
itive bias applied to the nanocomposite, the dependence
of current on voltage is seen to be linear in the voltage
interval 0–0.52 V.

As the voltage at the positive electrode is increased
from 0.52 to 2.8 V, the current scales as I ~ Uk, where
k ≈ 2.5. The fact that the current graph differs from
curve 1 suggests that the traps are distributed in activa-
tion energy. One has therefore to modify the approach
to evaluate the carrier concentration. As follows from
our electron-microscope studies, current transport takes
place in a disordered dielectric (silicon nanocrystallites
are embedded in the amorphous layer of silicon diox-
ide). The current transport in an amorphous dielectric is
described using a normal (Gaussian) distribution of
electrically active defects in activation energy near the
dielectric midgap [16, 18]. In the case of a normal dis-
tribution of electrically active defects in activation
energy, the energy width ∆E of the distribution can be
estimated as 1.2 eV. The choice of this value is substan-
tiated by the fact that the maximum pump photon
energy does not exceed ~1.8 eV. Therefore, photons
should deplete predominantly traps ranging within ∆E
in activation energy. According to [19], the shallow trap
concentration can be calculated from the formula

(4)

where U1 is the voltage at which the I–V curve switches
from a linear relation to a power-law relation.

From Eq. (4), the trap concentration is calculated to
be 0.94 × 1020 cm–3. The effective mobility calculated
from Eq. (3) at the point of crossover from a linear rela-
tion to a power-law relation in the I–V curves is 0.45 ×
10–16 cm2/(V s). A comparative analysis of curves 1 and
2 suggests that, for approximately equal trap concentra-
tions, the effective carrier mobility in the dark
decreases by almost one order of magnitude. We will
consider this point later.

When negative voltages ranging from 0 to –0.48 V
are applied to the nanocomposite layer, Ohm’s law also
holds and the mechanism of current transport through
the nanocomposite layer remains similar to the one dis-
cussed earlier. For reverse biases above 0.48 V, the I–V
branches can be approximated by a power-law relation
I ~ Uk with k = 3.2. In this case, the dependence of the
current on voltage can be described in terms of the same

nt 1.84 10
20

U1,×=
5
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model of distribution of electrically active defects. The
trap concentration as estimated from Eq. (4) is not less
than 0.86 × 1020 cm–3. The effective mobility in these
conditions is 0.8 × 10–16 cm2/(V s). We readily see that
both the trap concentration and the effective carrier
mobility for the negative branch are close to their
respective values obtained for a positive bias.

Carrier transport within the dielectric nanocompos-
ite layer can occur only over localized states within its
bandgap [15–17]. Assuming the traps to obey a quasi-
continuous (Gaussian) distribution in activation energy
near the dielectric midgap, the carrier transport can be
described in terms of the constant-range hopping con-
ductivity model in strong fields [17]. The hopping con-
ductivity model [16, 18] offers the following explana-
tion for the mechanism of charge buildup and transport
in a nanocomposite. Localized states are located at dif-
ferent distances from one another and have different
activation energies. The distance between localized
centers enters the exponent of the tunneling factor.
Even a slight change in the distance brings about a
marked change in the hopping probability and, hence,
in the release time from the trap. Thus, a carrier moving
over localized states to the opposite electrode some-
times becomes trapped by a “blind” center, where it
may remain a long time, and this is what accounts for
the decrease in mobility and the buildup of charge. The
mobility and accumulated charge depend on tempera-
ture, because carrier hopping is a thermally activated
process.

Let us consider now a I–V curve (curve 3 in Fig. 6)
for the case where the sample under study was first
cooled in the dark down to 100 K and then was illumi-
nated at this temperature with photons with a maximum
energy not exceeding 1.8 eV. We can safely assume that
all thermally activated shallow traps are frozen out and
do not contribute to the current transport processes.
Illumination will release nonequilibrium carriers from
the traps whose activation energies do not exceed the
maximum photon energy. In view of the spectral range
of the incident light, the width of the trap activation
energy interval is 1.2 eV. The positive I–V branch is
more complex in this case. Ohm’s law is satisfied
within a narrower voltage interval (from 0 to 0.16 eV),
after which (from 0.16 to 0.83 eV) the I–V branch is
sublinear with an exponent k = 1.6. The free carrier con-
centration derives in this case from nonequilibrium car-
riers only. A comparison of curves 1 and 3 shows that,
for the same applied voltage, the current through an
illuminated composite maintained at room temperature
is substantially higher. Assuming that the shallow traps
are frozen out at 100 K and are not involved in genera-
tion and recombination processes, we conclude that
illumination causes depletion of the traps in the dielec-
tric layer that lie near the midgap and have a 1.2-eV-
wide energy distribution. The concentration nt as calcu-
lated from Eq. (4) is in this case not less than 0.29 ×
P

1020 cm–2. The effective carrier mobility µeff given by
Eq. (3) is 0.96 × 10–16 cm2/(V s).

The current transport mechanism in the sublinear
region and in the voltage interval from 0.83 to 1.56 V
(where the current scales as I ≈ Uk with exponent k =
2.6) may be associated with the photostimulated ejec-
tion of carriers from shallow traps and their tunneling
transport to the electrode.

As the bias increases from 1.56 to 2.0 V, a knee
appears in the I–V curve and the dependence of current
on applied voltage becomes sublinear, I ≈ Uk, with
k = 1.2. In this case, most of the shallow traps are
already filled and do not participate directly in carrier
transport. Carrier transport occurs in these conditions
by tunneling over localized states in the bandgap of the
dielectric.

A I–V curve measured under a negative bias applied
to the nanocomposite layer consists of two parts: a lin-
ear region and a region with a power-law dependence
I ≈ U3.4. The voltage U1 is 0.32 V. The concentration nt

as calculated from Eq. (4) is 0.58 × 1020 cm–3 in this
case. The effective carrier mobility µeff obtained using
Eq. (3) is 1.6 × 10–16 cm2/(V s). The mechanisms of cur-
rent transport involved here are similar to those consid-
ered earlier for the negative I–V branches (curves 1, 2
in Fig. 6).

5. CONCLUSIONS

(1) It has been shown that the Si–SiO2 nanocompos-
ite can be obtained through the oxidation of porous sil-
icon. The nanocomposite consists of silicon dioxide
with embedded inclusions of crystalline silicon of two
types: (i) round-shaped particles 5 to 30 nm in size and
(ii) a filamentary network structure with filaments
about a few nanometers thick.

(2) The concentration of thermally activated traps in
the bulk of the nanocomposite is 0.94 × 1020 cm–3. The
effective carrier mobility µeff = 0.45 × 10–16 cm2/(V s).
The substantially lower value of the effective carrier
mobility as compared with literature data may be
assigned to strong carrier capture by the traps and to the
long time they remain trapped by the centers localized
in the large-area Si : SiO2 interface. The concentration
of optically depleted traps is not less than 0.58 ×
1020 cm–3. The effective carrier mobility in this case is
1.6 × 10–16 cm2/(V s).

(3) The strong capture by traps in the nanocompos-
ite and the photosensitivity in the visible region
revealed in the present study suggest that this nanocom-
posite is a promising material for use in functional
microelectronic devices.
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Abstract—Low-temperature (T = 4.2–77 K) absorption spectra of CuCl and CuBr nanocrystals in photochro-
mic glass matrixes are studied. A fine structure of exciton absorption bands (Z3 band for CuCl and Z12 band for
CuBr) is discovered and studied as a function of nanocrystal size. It is suggested that the high-energy part of
the absorption band is due to the high-temperature hexagonal β phase being stabilized in very small samples; a
transition to the stable cubic phase with increasing nanocrystal size is demonstrated. © 2005 Pleiades Publish-
ing, Inc.
Despite the full understanding of the quantum-con-
finement effects in optical spectra of nanocrystals
gained over recent years [1], polymorphism is still not
understood. However, it is quite evident that, when
dealing with the quantum-confinement effects, one
should take into account the possibility of very small
nanocrystals being formed of nonequilibrium phases
[2]. The present work studies the possibility of non-
equilibrium phases of copper halides being stabilized in
nanocrystals. Copper halides have been studied thor-
oughly for a long time [1], but their optical properties
are still of great interest both for fundamental and
applied research. In the present paper, it is demon-
strated, for the first time, that a copper halide nanocrys-
tal can be made from either the equilibrium cubic phase
or metastable β phase, depending on its size.

We studied low-temperature (T = 4.2–77 K) absorp-
tion spectra of CuCl nanocrystals of mean radii a = 5.2–
18.5 nm and CuBr nanocrystals of mean radii 3.5–
24.0 nm contained in a sodium alumina-borosilicate
glass matrix [3]. Because of the spin–orbital splitting,
two exciton bands (Z12, Z3) are observed in the absorp-
tion spectra of the nanocrystals, with Z3 being the lower
energy band for CuCl. We observed doubling of the
absorption bands in a certain range of nanocrystal
dimensions.

The absorption spectra taken at T = 77 K for CuCl
nanocrystals with radii ranging from 5.2 to 18.5 nm are
shown in Fig. 1. The Z3 and Z12 absorption bands, in
agreement with the quantum-confinement effect, shift
toward short wavelengths as the nanocrystal size
decreases. The Z3 band is clearly doubled in relatively
small samples (curves 1–3). As follows from Fig. 1, the
1063-7834/05/4707- $26.00 1372
relative intensity of the long-wavelength component
(A1) increases as the mean nanocrystal radius increases.

Its intensity exceeds that of the short-wavelength
component (A2) in the spectrum of 12-nm samples, and
further, for a > 12 nm, the long-wavelength part
becomes dominant.

The absorption spectra of CuCl nanocrystals of the
same dimensions taken at T = 4.2 K are shifted to lower
energies but have the same characteristic features and
are virtually identical to the spectra shown in Fig. 1. In
the inset to Fig. 1, the energies of the maxima of the A1
and A2 bands at T = 4.2 K are shown as a function of the
inverse square of the nanocrystal radius.

It is clearly seen that, as the nanocrystal size
increases, the spectral position of the A1 band
approaches the bulk exciton energy (3.04 eV at T =
4.2 K and 3.22 eV at T = 77 K).

The energy distance between the components of the
Z3 absorption band is independent of nanocrystal size
within the accuracy of our measurements and is equal
to ~12 meV.

These results are reproduced well for other families
of CuCl nanocrystals, in particular, for thulium-doped
nanocrystals. However, it is worth mentioning that the
long-wavelength component of the doubled exciton
band dominates the spectra of thulium-doped samples
starting from appreciably smaller dimensions of the
nanocrystals.

The luminescence spectra of CuCl nanocrystals at
T = 4.2 K consist of emission bands in resonance with
absorption bands and an impurity band near 3.18 eV. In
accordance with the absorption data, the resonance
emission band of a nanocrystal of appropriate dimen-
© 2005 Pleiades Publishing, Inc.
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sions is likewise doubled and the relative intensity of
the long-wavelength component increases with nanoc-
rystal size.

The absorption spectra in the region of the Z12 band
taken at T = 77 K for CuBr nanocrystals with radii rang-
ing from 4.4 to 24.0 nm are shown in Fig. 2. Only the
A2 band was observed in the absorption spectra for a ≤
6 nm. As the nanocrystal size increases, the long-wave-
length component A1 appears. For CuBr nanocrystals
with radii exceeding 7 nm, the Z12 absorption band is
doubled, as is the exciton absorption band of CuCl in
the spectra shown in Fig. 1. For nanocrystals with radii
in the range 9–11 nm, the intensities of both compo-
nents are roughly equal, and for the range 15–24 nm the
intensity of the A1 component becomes higher than that
of A2 (for the largest radius, 24 nm, the spectral position
of the long-wavelength component virtually coincides
with the position of the Z12 band in bulk CuBr [4]).
However, in contrast to the case of CuCl, the intensity
of the short-wavelength component is still appreciable.
In the inset to Fig. 2, the spectral positions of the max-
ima of both bands at T = 77 K are shown as a function
of the inverse square of the nanocrystal radius. The
energy distance between the components is about
19 meV.

Several possible reasons can be considered for the
doubling of the exciton absorption line in the nanocrys-
tals under study.

It was demonstrated in [5] that the halide phase in
sodium alumina-borosilicate glass matrices consists of
at least two components, CuCl and NaCl (CuBr and
KBr in the case of copper bromide). Therefore, after
crystallization, each region can contain CuCl crystals
and its solid solutions. In this case, the experimental
data can be explained assuming that the high-energy
component is related to the solid solution and the low-
energy component corresponds to a pure copper halide
crystal (the energy gap of alkali halides is significantly
larger than that of copper halide). It follows that small
nanocrystals consist predominantly of the solid solu-
tion and that their composition approaches that of the
pure compound as the nanocrystal size increases. How-
ever, this scenario seems unlikely because, according to
[5], the halide fluid composition (approximately
17 mol % NaCl) varies insignificantly with size. Fur-
thermore, a stronger shift to short wavelengths should
be expected for a structure consisting of a solid solution
of CuCl and NaCl because of the large difference
between their energy gaps.

The observed phenomenon (the appearance of a
short-wavelength component of the absorption band)
can be due to deformations of nanocrystals that arise
during crystallization, for example, because of com-
pression exerted by the glass matrix. The low-energy
component of the absorption band should be linked to
the absorption of undistorted nanocrystals because this
component tends to the exciton energy in a bulk crystal
for large nanocrystals. Therefore, the high-energy com-
PHYSICS OF THE SOLID STATE      Vol. 47      No. 7      2005
ponent corresponds to absorption in strained nanocrys-
tals. However, the energy distance between A1 and A2
depends on the crystal dimensions only weakly; there-
fore, we have to admit that the stresses in a nanocrystal
are independent of its size in this case, which is hard to
explain. At the very least, the size effect will be
observed for nanocrystals with a < 16 nm, in which an
inner pore is created during crystallization, whereas for
larger nanocrystals the matrix is destroyed and a free
surface appears during crystallization [5].

We believe that the most consistent assumption is
the following. It is well known [4] that copper halides
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have a cubic zinc-blende structure (γ phase) at normal
pressure and low temperatures (up to 435°C for CuCl
and up to 405°C for CuBr). At higher temperatures, up
to the melting point for CuCl and up to the temperature
of the phase transition to the α phase, (T = 485°C) for
CuBr, they are crystallized into a hexagonal wurtzite
structure (β phase).

We believe that the observed fine structure of the
exciton absorption bands is due to the high-temperature
hexagonal phase being stabilized in very small nanoc-
rystals. In optical spectra, the β phase should manifest
itself as splitting of the Z12 band caused by the trigonal
crystal field and as blue shifts of the Z3 band and Z12
doublet. However, the energy distance between the
observed A1 and A2 lines in CuBr is significantly
smaller than the expected values of Z12 doublet splitting
(50 meV) and shift (65 meV) due to the transition of
this compound from the zinc-blende structure to the
wurtzite structure [4] (we are not aware of the corre-
sponding data for CuCl). Therefore, we have to assume
that we are dealing with structures of an intermediate
type [6] consisting of hexagonally and cubically packed
layers with uneven alteration along a preferred direc-
tion (crystals with one-dimensional disorder). In this
case, the splitting of the Z12 band and shift of the Z3
band can be assumed to be linear in a parameter α (the
degree of hexagonal ordering) that is proportional to
the number of hexagonally packed layers (α < 1).

Thus, we believe that the low-energy band in the
absorption spectra of CuCl and CuBr nanocrystals,
whose position approaches the bulk exciton energy at
large nanocrystal sizes, corresponds to the stable cubic
phase. The high-energy band dominating the spectra of
smaller nanocrystals (only this band is present in the
absorption spectrum of CuBr nanocrystals with radii
less than 6 nm) can be considered an exciton absorption
band of nanocrystals containing hexagonal stacking
faults. The parameter α for CuBr nanocrystals can be
estimated as α = 0.38 in the linear approximation for
the exciton energy in crystals with structure disorder.
The character of the dependence of the relative inten-
sity of the A1 and A2 components in the absorption spec-
tra on the nanocrystal size suggests that the stable cubic
phase will arise as the nanocrystal size increases. How-
ever, it is noteworthy that we failed to observe the split-
ting of A2 in CuBr as expected for the Z12 band in a hex-
agonal crystal. Possibly, this is due to the parameter α
being small and the half-width of the bands being large.

As follows from our data, the hexagonal phase of
CuCl manifests itself for nanocrystals with radii less
than 10 nm. In CuBr, the metastable phase survives in
samples with a radius of 24 nm, though the exciton
absorption of the stable γ phase appears in spectra start-
ing from radii of >7 nm. We note that, in CuI nanocrys-
tals produced by deposition on a polymer film [7], the
hexagonal phase exists up to a radius of 57 nm, and in
silver iodide, which is isostructural to copper halides,
PH
the cubic and hexagonal phases coexist in bulk samples
and form polytypes of various orders.

Preliminary x-ray analysis data confirm that the β
phase is present in CuCl nanocrystals: hexagonal
reflections were found in a 7.4-nm sample.

Thus, the experimental data obtained suggest that
nanometer-sized CuCl and CuBr crystals can exist at
low temperatures in the nonequilibrium hexagonal β
phase. As the nanocrystal dimensions increase, the sta-
ble cubic γ phase arises.

Currently, the formation of nonequilibrium crystal
structures in metal nanoparticles is virtually a firmly
established fact [8]. For example, Nb, Ta, Mo, and W,
which have the bcc structure in bulk, crystallize into
either the fcc or the closely packed hexagonal structure
in particles 5 to 10 nm in size.

There are data implying that semiconductor nano-
particles also tend to crystallize into metastable forms.
For example, small-size CdS and CdSe crystals
(<5 nm) have a cubic structure and a stable hexagonal
structure arises only when their dimensions increase
(see, i.e., [9]). Nanocrystals tending to turn from the
wurtzite to the zinc-blende structure with decreasing
size show disordered structures containing packing
defects. Studies of the formation of the HgI2 crystal
phase on the surfaces of various matrices have shown
that a compound emerging on a matrix surface tends to
transform into nonequilibrium phases (mainly the high-
temperature yellow modification), which gradually
convert into the stable red tetragonal phase as the crys-
tals grow [10]. Analysis of the HgI2 phase composition in
various nanocomposites also showed that this semicon-
ductor is in a metastable phase in small samples [10].

The possible variation in the crystal structure of
small particles with a decrease in their size is related in
most theoretic papers to the size dependence of the sur-
face energy, whose contribution to the free energy of
small particles becomes significant. The specific sur-
face energy (the surface tension σ) as a function of the
particle radius can be described, in a first approxima-
tion, by the Tolman equation σ(R) ≈ σ∞(1 + 2δ/R)–1,
where σ∞ is the surface tension of a flat surface and δ is
the Tolman length (which is of the order of the inter-
phase boundary thickness). Thus, the surface tension
can either decrease (for δ > 0) or increase (for δ < 0) as
the particle size decreases. Thermodynamic treatment
of the surface tension as a function of the surface radius
of curvature in the limit of small radii [11] shows that it
decreases as the radius becomes smaller and vanishes
when the radius becomes zero.

However, this conclusion is made for spherical and
flat surfaces under the assumption that the surface as a
whole has the same surface tension. When dealing with
single crystals, it is necessary to attribute a specific
“linear tension” value to each face and to each edge.
The contribution of edges and corners can be neglected
for large crystals, but, as the dimensions decrease to the
YSICS OF THE SOLID STATE      Vol. 47      No. 7      2005
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point where the edge width is comparable to the sizes
of adjacent faces, it becomes compulsory to take the
edge energy into account. Calculations of the equilib-
rium shape of a single crystal with allowance for the
edge energy were performed in [11]. It was shown that
the mean surface tension increases and the edge and
corner energies become noticeable as the crystal size
decreases. In this case, it is energetically favorable for
the crystal to change its structure in such a way that the
surface tension and the total free energy do not
increase. Therefore, structures that are metastable or do
not exist at all in bulk samples of a compound can
become possible for small sample sizes.
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Abstract—Soliton pulse propagation in a periodic quantum-well structure with a period close to one-half the
light wavelength corresponding to the exciton resonance frequency was studied. The various kinds of exciton
nonlinearity characteristic of a quantum well (P3- and EP2-type nonlinearities, biexciton nonlinearity) were
included. The characteristic features of the soliton were studied in each of the cases considered. The effect of
refractive index mismatch between the barrier and quantum-well materials on the soliton parameters was ana-
lyzed. Soliton solutions to the Maxwell–Bloch nonlinear equations are compared with their plane-wave solu-
tions. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The current physics of photonic crystals has evolved
into an independent branch of solid-state optical spec-
troscopy where basic research is being actively pursued
and ways to apply technologies in practice are being
sought. There are three-, two-, and one-dimensional
photonic crystals, depending on whether the permittiv-
ity of the medium is modulated in three, two, or one
dimension. The simplest conceivable realization of a
one-dimensional photonic crystal is an …A/B/A/B…
periodic structure consisting of two materials, A and B,
with different refractive indices. Periodic structures
with semiconductor quantum wells and, in particular,
resonance Bragg structures make up a specific class of
resonance one-dimensional photonic crystals with
exciton polaritons as normal waves [1–8]. Most of the
research into resonance Bragg structures has been per-
formed in the field of linear optics. However, nonlinear
optical phenomena have also been studied in such
structures, among them degenerate four-wave mixing
[9] and suppression of the superradiant reflection signal
with increasing incident light intensity [10].

In this paper, we report on a study of the nonlinear
properties of resonance Bragg and quasi-Bragg struc-
tures with the aim of verifying whether they can sup-
port soliton pulse propagation. Speaking in a broader
vein, we have in mind the phenomena of self-induced
transparency [11], which can be observed in these
structures with quantum wells. It is for this purpose that
solutions to the Maxwell–Bloch equations are sought
and analyzed. Three different mechanisms of nonlin-
earity operative in the system are consistently included.
It is shown that inclusion of each of them gives rise to
a soliton solution similar to that considered earlier for a
bulk semiconductor [12] or for a periodic structure with
two-level systems [13–15]. In addition to the soliton
solutions, we also find plane-wave solutions to the non-
1063-7834/05/4707- $26.00 1376
linear Maxwell–Bloch equations. An analysis of these
solutions sheds light on the relation between the soliton
type and the character of the system nonlinearity.

2. MAXWELL–BLOCH EQUATIONS
FOR EXCITONS IN A BRAGG STRUCTURE

We consider the propagation of electromagnetic
radiation along the normal (z axis) to a periodic layered
structure with a period d = a + b, which is the sum of
the widths of the quantum well (a) and the barrier (b).
It is assumed that (i) the background permittivities εa

and εb of the quantum-well and barrier materials are
different but the mismatch |εa – εb | is small as compared
to the mean value  = (εaa + εbb)/d, (ii) the Bragg fre-
quency of the periodic structure

(1)

(where  = ) is close to the exciton resonance fre-
quency ω0 in a single quantum well, and (iii) the light
wave carrier frequency lies in the vicinity of the fre-
quency ω0 ≈ ωB. In these conditions, the electric induc-
tion is related to the electric field as

(2)

Here, (z, t) is the dielectric polarization induced by
an exciton excited in the jth well; j = 0, ±1, ±2, …; k =
π/d; and ∆ε1 = 2(εa – εb)a/d. In view of the weak mis-
match between the dielectric constants εa and εb, we
expanded the background permittivity in a Fourier
series and retained only the first two terms in Eq. (2).
The axial symmetry of the system permits us to assume

ε

ωB πc/ nd( )=

n ε

D z t,( ) ε ∆ε1 2kz( )cos+[ ] E z t,( )=

+ 4π P j
exc

z t,( ).
j

∑

P j
exc
© 2005 Pleiades Publishing, Inc.
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all fields to be similarly polarized and to use the scalar

quantities E, , etc., rather than vectors.

Because the well width is small as compared to the
period of the structure, we can neglect the coordinate
dependence of electric field within a quantum well and
write the exciton contribution to polarization as a sum
of δ-function contributions:

(3)

Taking into account the coherent backscattering, the
electric field E(z, t) can be written as a superposition of
two types of waves propagating in the direct (>, along
the z axis) and reverse (<) directions:

(4)

We assume that the electric-field envelopes are slowly
varying functions. Therefore, the inequalities

are met, as are the analogous inequalities for %<. Polar-
ization (3) can be rewritten in the form

(5)

where, for convenience, we wrote the common factor d
and the multiplier (–1) j under the sum sign. The func-

tion (t) is related to the amplitude of the electric
field in the jth quantum well by the equation

(6)

Here, Γ0 and Γ are the radiative and nonradiative exci-
ton damping constants in a single quantum well,
respectively; µ = /(2π2); and

where FNL(t) is the nonlinear contribution to the inho-

mogeneous term of the equation for (t).

We consider two types of exciton nonlinear polar-
ization in a quantum well: nonlinearity of the type EP2,
which is characteristic of a simple two-level system,
and nonlinearity of the type P3, as in the case of a clas-
sical anharmonic oscillator. We also take into account

P j
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the biexciton mechanism of nonlinearity. In this case,
the nonlinear contribution to Eq. (6) takes on the form

(7)

where β1 and β2 are real coefficients, B is the amplitude
of the biexciton wave function, and the coefficient γbi is
proportional to the matrix element of the induced exci-
ton-to-biexciton transition. The function Bj(t) satisfies
the equation

(8)

where "δbi ≡ εbi and Γbi are the binding energy and the
decay constant of the biexciton, respectively. In [16],
the exciton dielectric polarization  averaged over the
well width a was introduced; this polarization is d/a
times larger than the polarization  used here.
Therefore, the constants β1 and β2 introduced in [16]
differ from those in Eq. (7) by the factors (d/a)2 and d/a,
respectively. Note that the dielectric polarization Pj

associated with the excitation of an exciton and a biex-

citon in the jth well includes two terms,  and .
The former term satisfies Eq. (6), and the latter can be
written as

(9)

and is due to the biexciton decaying into an exciton and
a photon.

In this work, we study light waves whose fields %>

and %< and polarization  vary in space on a scale
larger than the period of the structure d, thus permitting

us to pass over from discrete sets of (t) and Bj(t) to
continuous functions 3(z, t), @(z, t). In this case, the
Maxwell–Bloch equations reduce to a set of equations

(10)
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where %– = %> – %< and ω1 = ∆ε1ωB/4 .

3. SOLITONS IN A RESONANCE BRAGG 
STRUCTURE

In this section, we neglect the permittivity mismatch
by assuming εa = εb ≡ n2 (or ∆ε1 = 0) and consider a res-
onance Bragg structure satisfying the condition

(11)

Furthermore, we neglect the nonradiative damping (Γ)
and retain only P3-type nonlinearity, which is
accounted for by coefficient β1 in Eq. (7). In this case,
the polarization satisfies the equation

(12)

In the absence of nonlinearity, the solutions to the
Maxwell–Bloch equations are plane waves,

(13)

with ω and K meeting the dispersion relation [3]

or

where ∆0 =  is one-half of the bandgap width
in the exciton polariton spectrum of the resonance
Bragg structure. According to Eq. (4), K is the wave
vector reckoned from the extremum point k = π/d at the
Brillouin zone edge of the periodic structure. In the
presence of nonlinearity, there are solutions like
Eq. (13) with a z- and t-independent amplitude. The
dispersion equation for these waves

(14)

depends on the square of the amplitude modulus, |3 |2.
This gives rise to the formation of an allowed miniband
inside the gap 2∆0, as is the case in a quasi-Bragg struc-
ture with ω0 ≠ ωB [5].

We will show that the inclusion of the P3 nonlinear-
ity also brings about the appearance of soliton solu-
tions. The solitons are bounded in space, i.e., decay for
z  ±∞ and propagate at a finite velocity while retain-

∂
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ing their shape. We first assume that the electric field
and dielectric polarization depend on only one variable,
x = t – (z/V), where V is the soliton velocity. From the
first of equations (10), it follows that the electric field
satisfies the equation

.

Substituting this expression into Eq. (12) differentiated
with respect to x, we arrive at a closed equation for
polarization,

(15)

where we introduced a dimensionless velocity u = Vn/c.
This equation is essentially a modified nonlinear
Schrödinger equation similar to that considered in [12]
for a bulk semiconductor. In [12], the coefficient on the
right-hand side of the equation for 3 is proportional to
the velocity V, whereas in Eq. (15) this coefficient is a
nonlinear function of V; in particular, at low velocities
this function is quadratic. This is where the resonance
Bragg structure differs from a uniform bulk semicon-
ductor. In accordance with [12], Eq. (15) has a soliton
solution

(16)

(17)

This solution describes solitons propagating either at
velocity V = uc/n or at –V = –uc/n, i.e., in the case where
x = t – (z/V) or x = t + (z/V). Solution (16) corresponds
to an electric field

which yields

(18)

The velocity of soliton propagation is related to the
maximum value of the square of the polarization mod-
ulus (at x = 0) through
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Terms of higher orders in 3 in Eq. (12) can obviously
be neglected provided " |β132 | ! εB, where εB is the
exciton binding energy. For comparable values of εB

and "∆0, this condition is met for |u | ! 1. Therefore, the
quantity 1 – u2 in the above relations can be replaced by
unity.

Note that the P3 nonlinearity considered here plays
a significant role in giant polariton–polariton scattering
in quantum microresonators, which is observed in the
case where the pumping light is incident at a “magic”
angle [17–19].

4. STRUCTURES WITH DIFFERENT 
BACKGROUND PERMITTIVITIES

Let us consider soliton solutions in structures with
different εa and εb with inclusion of the EP2-type and
the biexciton nonlinearity.

3.1. Nonlinearity of the EP2 Type

In this case, the equation for polarization has the
form

(19)

where

and it is assumed that β2 < 0. Let us introduce dimen-
sionless variables: time τ = t/τ0, coordinate ζ = /cτ0,

polarization (ζ, τ) = Q3(ζ, τ), and electric field

Σ±(ζ, τ) = –i QµΓ0τ0%±(ζ, τ), where

(20)

In contrast to the P3 nonlinearity considered above, no
exact solution to the set of equations (10) and Eq. (19)
could be found. This is not required in this case, how-
ever, because the term EP2 on the right-hand side of
Eq. (19) can be considered to be the next term in the
expansion of the external force acting on the exciton
oscillator in powers of P2; the subsequent terms of this

expansion can be neglected provided  ! 1. Within
the same approximation for the function w, we can
replace

  (21)

after which the EP2 nonlinearity for the exciton in a
quantum well coincides with the nonlinearity for a two-
level system. After replacement (21), we can find exact
soliton solutions to the Maxwell–Bloch equations,
because they reduce to similar equations for a reso-
nantly absorbing Bragg reflector [13–15]; this reflector

∂
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is specified by a periodic background permittivity
ε(z) =  + ∆ε1cos(πz/d) and includes an embedded sys-
tem of thin layers (with the same period d) that contain
atoms or quantum two-level systems with a resonance

optical-transition frequency ω0 ≈ ωB = πc/(d ). In
[13], ε0, ω12, and ωgc are used in place of , ω0, and ωB.

The set of nonlinear equations obtained after
replacement (21) has the following solution for the
electric field:

(22)

which is called a phase-modulated 2π soliton [13].
Here, α, β, and ∆ are real parameters; Σ0 is the ampli-
tude; and u =  is the dimensionless velocity of the
soliton. The specific features of the semiconductor
structure become manifest only through relation (20)
established by us here between the time τ0 and the radi-
ative-decay constant Γ0 of the exciton in a single quan-
tum well. Out of the five soliton parameters Σ0, α, β, ∆,
and u, one can be chosen to be independent. If the
velocity u is chosen as a free parameter, then the
remaining four can be expressed in terms of u, the rela-
tive detuning from resonance δ = (ω0 – ωB)τ0, and the

quantity η = ∆ε1(ωBτ0/4 ) (which is proportional to
the permittivity mismatch) in the following way [20]:

(23)

The exciton contribution to dielectric polarization is
given by

(24)

where

In this case, we have

For structures with an EP2 nonlinearity, replacement
(21) is valid and solutions (22)–(24) are applicable
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follows from Eq. (23), the dimensionless exciton veloc-
ity satisfying this condition is

For small values of η, δ, and |Σ0 |2, we have

(25)

It follows that this solution is valid only for |Σ0 |2 !
(η – δ)2.

3.2. Biexciton Nonlinearity

For a resonance Bragg structure (ω0 = ωB, εa = εb),
there is also plane-wave solution (13),

with the dispersion equation

For ∆0 @ δbi, the inclusion of nonlinearity brings about
the formation of a transparency window of width

 near the frequency ω0 – δbi /2. Exactly at
this frequency, the solution consists of phase-matched
light and biexciton waves with amplitudes satisfying

the condition µΓ0%+ + γbi@  = 0; so the polarizations
3X ≡ 3exc and 3XX ≡ 3bi are zero. W did not succeed in
finding a soliton solution of the type of Eq. (16) for this
case.

We analyzed the possible existence of a phase-mod-
ulated 2π soliton in a quasi-Bragg structure with mis-
matched permittivities εa and εb and with a frequency
detuning between ω0 and ωB. In the case of a weak non-
linearity

(26)

and if the condition
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is met, the set of three equations consisting of the first
of Eqs. (10), the equation

(28)

and the equation

(29)

is satisfied by the field Σ±(ζ, τ) ≡ –iµΓ0τ0%±(ζ, τ) in the
form of Eq. (22), the polarization 3(ζ, τ) in the form of
Eq. (24), and the biexciton envelope

(30)

Here, κ is a constant, which can be expressed in terms
of the velocity u as

(31)

the parameters α, β, and ∆ satisfy Eqs. (23) or (25); and
the amplitude Σ0 is connected with β and velocity u
through the relations

(32)

which differ in terms of the coefficient of |Σ0 |2 from
similar expressions for the case of EP2-type nonlinear-
ity [see Eqs. (23), (25)]. Condition (26) is met for

|γbiκ /µΓ0 | ! 1.

5. DISCUSSION OF THE RESULTS
In order for the structure to support a soliton, its

thickness has to exceed the linear dimensions of the
soliton. According to Eq. (16), the extent of the soliton
forming with a P3-type nonlinearity is equal, in order of
magnitude, to

and the duration of the soliton signal at any fixed point
z can be estimated as 2x0 = (∆0u)–1. In experimentally
studied Bragg multiple quantum-well (MQW) struc-
tures CdTe/CdxZn1 – xTe [21] and Ga0.96In0.04As/GaAs
[22], the radiative exciton decay constant is "Γ0 = 0.12
and 0.027 meV, respectively, which yields 11 and
5 meV for "∆0 and 5 × 10–4 and 10–3 cm for the length
c/( ), respectively. For u ~ 0.1, the soliton size is 5 ×
10–3 and 10–2 cm, respectively, thus extending over sev-
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eral hundreds of periods of the resonance Bragg struc-
ture. Therefore, a soliton will form if a structure con-
tains more than a hundred quantum wells (in [4], the
number of quantum wells in the structures under study
was as high as one hundred). A similar statement
applies to the condition of formation of the phase-mod-
ulated 2π solitons considered above. Note that esti-
mates made for real quantum-well structures show that
|η| ! 1 and |δ| < 1; therefore, the soliton pulse velocity
is indeed much smaller than the phase velocity and
depends on its amplitude only weakly.

The resonance Bragg structure in a heterosystem
with εa = εb, by definition, satisfies condition (11). In
this case, both parameters, η and δ, are zero and from
Eq. (23) it follows that β2(1 – u2)/u2 = 2, i.e., that this
quantity is not small and solution (22) is inapplicable to
a structure with EP2 nonlinearity. Thus, a phase-modu-
lated 2π soliton forms only in a quasi-Bragg structure
that, in the absence of nonlinearity, already has a nar-
row allowed miniband near the frequencies ω0 and ωB.
We attribute the difference in the manifestation of the
P3 and EP2 nonlinear terms in a resonance Bragg struc-
ture with εa = εb to their different influence on solutions
like Eq. (13) with a constant amplitude. In contrast to
the P3 nonlinearity, which gives rise to the formation of
an allowed miniband in the vicinity of the frequency ω0

[see dispersion equation (14)], the EP2 nonlinearity
does not create a transparency window for exciton
polaritons within the polariton gap but results instead in
its narrowing:

  

From the relations |u | ≈ |η – δ|/  and |Σ0 |2 ! (η – δ)2,
it follows that 2π solitons do not form for η = δ. If the
difference between na and nb is small and a ! d, then
the η = δ condition can be recast in the form

(33)

where na =  and nb = . Equation (33) is the gen-
eralized Bragg condition for a structure with mis-
matched na and nb [23, 24]. If this condition is satisfied,
the two forbidden minibands characteristic of this sys-
tem merge into one. This condition can be approxi-
mated by the expression d = πc/ω0nb. Thus, the disap-
pearance of the transparency window in the forbidden
miniband in a structure with η = δ prevents the forma-
tion of solitons of this kind.

6. CONCLUSIONS

We have shown that a P3 nonlinearity in a reso-
nance Bragg MQW structure allows the existence of
solitons (16) and that the EP2 and biexciton nonlinear-
ities in a resonance quasi-Bragg structure give rise to
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the formation of phase-modulated 2π solitons. The
main factor responsible for the appearance of soliton
solutions has been established to be the formation of a
photoinduced transparency window in the forbidden
miniband for exciton polaritons in a resonance Bragg
structure and the existence of this window in a reso-
nance quasi-Bragg structure. The results obtained can
be generalized to allow simultaneous inclusion of two
or three types of exciton nonlinearities, as well as inclu-
sion of the polarization dependence of the nonlinear
term FNL in Eqs. (7) and (10). Obviously enough, the
biexciton nonlinearity is not involved in the formation
of circularly polarized solitons by virtue of the selec-
tion rules governing two-photon excitation of the biex-
citon ground state.

The problem of excitation of the above solitons in
the case where a light pulse is incident from vacuum
onto a semi-infinite MQW structure or a structure of a
finite width is beyond the scope of the present study.

We would like to stress that the most serious prob-
lem in the experimental observation of solitons is that
of soliton stability; namely, the nonradiative exciton
damping constant Γ and the inhomogeneous broaden-
ing of the exciton resonance frequency have to be
noticeably smaller than the reciprocal length of the soli-
ton pulse ∆0u.
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Abstract—The structural and magneto-optical properties of “porous silicon–cobalt” nanocomposites prepared
through electrochemical deposition on silicon substrates of different porosities are investigated. It is revealed
that, under galvanostatic conditions, cobalt micrograins are formed only in a surface layer of porous silicon.
The greater the pores in silicon, the larger the mean size of the ferromagnetic micrograins. The nanocomposites
thus fabricated possess ferromagnetic properties and, at specified compositions, are characterized by anoma-
lously large magnitudes of the equatorial or transverse magneto-optical Kerr effect (TMOKE). The magneto-
optical properties of the nanocomposites are simulated in the Bruggeman effective-medium approximation. It
is shown that the anomalous negative transverse magneto-optical Kerr effect is associated with the oxidized
state of porous silicon in the vicinity of the ferromagnetic metal micrograins. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Low-dimensional composite materials are finding
ever-widening application in many areas of science and
engineering [1]. In particular, low-dimensional mag-
netic composites of the “dielectric–ferromagnetic
metal” type are of considerable interest from both the
scientific and practical standpoints. These materials
exhibit unusual properties, such as strong nonlinear
magneto-optical effects, a negative giant magnetoresis-
tance, an anomalous giant Hall effect, etc. [2–5]. On the
other hand, owing to the practical use of its low-dimen-
sional modifications, silicon—a basic material in mod-
ern microelectronics—has already often been referred
to as an optoelectronic material [6]; however, it has still
remained inapplicable as a magnetosensitive material.
The design of low-dimensional silicon-based magnetic
composites has opened new fields of use in silicon
micro- and optoelectronics. This paper reports on the
results of investigations into the structural and mag-
neto-optical properties of nanocomposites fabricated
from porous silicon and a ferromagnetic metal, namely,
cobalt.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

Porous silicon in the form of 1- to 20-µm-thick lay-
ers was prepared on the (100) and (111) surfaces of p-
silicon single crystals with electrical resistivities ρ =
10.0, 0.03, and 0.005 Ω cm through anodization in an
HF–ethanol (1 : 1) solution at an electric current density
ranging from 20 to 30 mA cm–2. The porosity of the lay-
1063-7834/05/4707- $26.00 1383
ers prepared was controlled using the gravimetric
method and varied in the range from 60% (low-resistiv-
ity silicon) to 80% (high-resistivity silicon) [6, 7]. The
pore diameter in the porous layer was equal to 2–4 nm
in the case of high-resistivity silicon (ρ = 10.0 Ω cm),
7–15 nm for low-resistivity silicon (ρ = 0.005 Ω cm),
and 6–10 nm for silicon with an electrical resistivity
ρ = 0.03 Ω cm [8]. Cobalt micrograins were introduced
into the layers of porous silicon through electrochemi-
cal deposition (under galvanostatic conditions) from an
alcoholic solution of cobalt chloride CoCl2. The
amount of cobalt introduced into the layers of porous
silicon was determined by measuring the electric
charge transferred through the silicon–electrolyte inter-
face. The magneto-optical properties of the “porous sil-
icon–cobalt” nanocomposites thus fabricated were
investigated using the equatorial or transverse mag-
neto-optical Kerr effect (TMOKE). The dependences of
the magnitude of the transverse magneto-optical Kerr
effect δ on the photon energy hν were measured in the
photon energy range hν = 1.3–3.8 eV with a light beam
incident at an angle of 70° in magnetic fields of up to
2.5 kOe. The structure and composition of the nano-
composites were controlled using scanning electron
microscopy and scanning Auger electron spectroscopy
on a PHI-680 scanning Auger electron microprobe sys-
tem (Physical Electronics Co.).

3. RESULTS AND DISCUSSION

Figure 1 displays a typical scanning electron micro-
scope image of the surface of a porous silicon–cobalt
nanocomposite. According to scanning Auger electron
© 2005 Pleiades Publishing, Inc.
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spectroscopy, the light spots seen in this micrograph are
identified as cobalt grains. It can also be seen from this
micrograph that cobalt grains are distributed over the
surface of the nanocomposite in a random manner and
that the cobalt grain sizes vary in the range from several
nanometers to several tens of nanometers.

The behavior and the magnitude of the transverse
magneto-optical Kerr effect δ as a function of the pho-
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Fig. 1. Scanning electron microscope image of the surface
of the porous silicon–cobalt nanocomposite and the cobalt
distribution along the specified line. The electrical resistiv-
ity of the silicon substrate is ρ = 10 Ω cm.
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Fig. 2. Dependences of the transverse magneto-optical Kerr
effect δ on the photon energy hν for (1) pure cobalt and (2–
7) porous silicon–cobalt nanocomposites with a 5-µm-thick
porous silicon layer. The electrical resistivity of the silicon
substrate is ρ = 10 Ω cm. Cobalt concentration: (2) 2.5 ×
1017, (3, 7) 5 × 1017, and (4–6) 10 × 1017 atoms/cm2.
P

ton energy hν strongly depend on the parameters of the
porous layer and on the content of the ferromagnetic
component in the nanocomposite. It can be seen from
Fig. 2 that, as a rule, the dependences of the transverse
magneto-optical Kerr effect δ on the photon energy hν
for porous silicon–cobalt nanocomposites differ sub-
stantially from the dependence δ(hν) for pure cobalt.
The sign of the transverse magneto-optical Kerr effect
was determined by the conditions used for fabricating
the nanocomposites and, in the majority of cases,
turned out to be negative (in contrast to the case of pure
cobalt). However, some samples exhibited a positive
transverse magneto-optical Kerr effect. Nanocomposite
samples at a cobalt concentration ranging from ~5 ×
1017 to 1018 atoms/cm2 are characterized by anoma-
lously large magnitudes of the transverse magneto-
optical Kerr effect δ ~ 10–2, which exceed those for pure
cobalt by several factors. All the nanocomposites at a
cobalt concentration of higher than 2 × 1017 atoms/cm2

possess ferromagnetic properties; more specifically, the
magnitude of the transverse magneto-optical Kerr
effect is nonlinear with respect to the magnetic field
amplitude and approaches saturation in a magnetic field
of ~2 kOe.

Figure 3 shows the transverse magneto-optical Kerr
effect δ as a function of the photon energy hν for nano-
composites prepared from low-resistivity silicon with
electrical resistivities ρ = 0.03 and 0.005 Ω cm. The
dependences of the transverse magneto-optical Kerr
effect on the photon energy for these nanocomposites
are qualitatively similar to those obtained for the nano-
composites based on high-resistivity silicon. However,
the maximum magnitudes of the Kerr effect in the
former case, as a rule, are considerably less than those
in the latter case. It is worth noting that there is a close
similarity between the dependences δ(hν) for the nano-
composites that differ in terms of the thickness of the
porous silicon layer by more than one order of magni-
tude but contain an identical number of cobalt atoms
per unit of the geometric surface of silicon (5 ×
1017 atoms/cm2). This finding suggests that, upon elec-
trochemical deposition (under the galvanostatic condi-
tions), the cobalt micrograins are predominantly
formed in a thin surface layer of porous silicon and no
cobalt species penetrate into the bulk of the micropores.
This assumption is confirmed by the fact that the pho-
toluminescence intensity of porous silicon weakly
depends on the concentration of the electrochemically
deposited metal (Fig. 4).

The formation of cobalt micrograins in surface lay-
ers of the porous silicon–cobalt nanocomposites fabri-
cated in this work is directly confirmed by scanning
Auger electron spectroscopy in the course of layer-by-
layer ion etching of the nanocomposites. As can be seen
from Fig. 5, cobalt is revealed only in 10- to 20-nm-
thick surface layers of the nanocomposite. The size of
cobalt micrograins on the surface of the porous silicon
layer depends on the nature of the porosity: in the case
HYSICS OF THE SOLID STATE      Vol. 47      No. 7      2005
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of nanocomposites based on microporous silicon pre-
pared on a high-resistivity substrate, the mean size of
metal micrograins and, accordingly, the mean distance
between the micrograins are significantly less than
those for nanocomposites based on mesoporous silicon
prepared on a low-resistivity substrate (Fig. 6). This
correlates with the experimental spectral dependences
of the transverse magneto-optical Kerr effect: the mag-
nitude of the transverse magneto-optical Kerr effect δ
for the nanocomposites based on microporous silicon,
as a rule, is larger than that for the mesoporous silicon–
cobalt nanocomposites (compare Figs. 2 and 3). It
seems likely that a decrease in the mean distance
between individual clusters leads to an enhancement of
the magnetic ordering of the nanocomposite due to the
dipole–dipole interaction [9], as is the case in Co–SiO2
nanocomposites [5].

In order to determine the factors responsible for the
behavior of the spectral dependences δ(hν), we per-
formed a simulation of these dependences in the
Bruggeman effective-medium approximation [10]. It
follows from the results presented in Fig. 7 that the
porous silicon–cobalt nanocomposites should exhibit a
positive transverse magneto-optical Kerr effect at any
content of the ferromagnetic component in the nano-
composite. The negative transverse magneto-optical
Kerr effect can be observed only in the regions where
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Fig. 3. Spectral dependences of the transverse magneto-
optical Kerr effect δ on the photon energy hν for porous sil-
icon–cobalt nanocomposites prepared on silicon substrates
with electrical resistivities ρ = (a) 0.005 and (b) 0.03 Ω cm.
The cobalt concentration in all samples is equal to 5 ×
1017 atoms/cm2. Porous layer thickness: (1) 20, (2) 1, (3) 20,
(4) 10, and (5) 5 µm.
PHYSICS OF THE SOLID STATE      Vol. 47      No. 7      2005
500 600 700 800 900 1000
λ, nm

0

0.2

0.4

0.6

0.8

1.0

I,
 r

el
. u

ni
ts

1

2

3

Fig. 4. Evolution of the photoluminescence spectrum of
porous silicon with a gradual increase in the cobalt concen-
tration in the porous silicon layer. The porous layer thick-
ness is equal to 5 µm. The electrical resistivity of the silicon
substrate is ρ = 10 Ω cm. Cobalt concentration: (1) 0,
(2) 1017, and (3) 1.5 × 1018 atoms/cm2.

50 10

20

40

60

80

100
 C

on
te

nt
, a

t. 
%

(a)

(b)

10

20

40

60

80

100

 C
on

te
nt

, a
t. 

%

2 3 4 5 6 7 8 9 10

O
Co
Si

Etching time, min

O
Si

Fig. 5. Concentration distribution of the elements over the
depth of (a) the porous silicon–cobalt nanocomposite and
(b) the porous silicon layer free of cobalt micrograins. The
electrical resistivity of the silicon substrate is ρ = 10 Ω cm.
The cobalt concentration is 5 × 1017 atoms/cm2.
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the cobalt micrograins are surrounded by oxidized frag-
ments of porous silicon. Indeed, according to scanning
Auger electron spectroscopy, the oxygen content is
usually increased in the vicinity of the cobalt micro-
grains on the surface of the porous silicon layer (Fig. 6).
It seems likely that the incorporation of cobalt micro-
grains into the mouths of the silicon micropores is
accompanied by deformation of the surface layer of the
porous matrix and by an increase in the number of
weakened Si–Si bonds that readily oxidize upon con-
tact with the environment. Moreover, an increase in the
rate of oxidation of porous silicon in the vicinity of the
metal micrograins can be caused by the so-called spill-
over effect [11]. This effect manifests itself in the
migration of active (apparently, atomic) oxygen local-
ized at cobalt micrograins into the nearest surface
regions of porous silicon with subsequent oxidation of
these regions. In the case when the cobalt micrograins
penetrate deep into the silicon micropores, the domi-
nant role is played by their interaction with the unoxi-
dized porous matrix and the transverse magneto-optical
Kerr effect is positive in sign. As follows from the
experimental data, this situation is favored by an
increase in the voltage (and, hence, in the electric cur-

1.0 µm

1.0 µm
(‡)

(b)

Fig. 6. Scanning electron microscope images of the surfaces of
the porous silicon–cobalt nanocomposites on silicon substrates
with electrical resistivities ρ = (a) 10.0 and (b) 0.005 Ω cm.
PH
rent) upon the electrochemical incorporation of cobalt
micrograins into the porous silicon layer.

4. CONCLUSIONS

(1) It was demonstrated that the porous silicon–
cobalt nanocomposites fabricated using the electro-
chemical method possess ferromagnetic properties and,
at specified compositions, are characterized by anoma-
lously large magnitudes of the transverse magneto-
optical Kerr effect. The maximum magnitudes of the
magneto-optical Kerr effect are observed for the nano-
composites based on microporous silicon (prepared on
high-resistivity silicon substrates).

(2) It was established that there is a correlation
between the magnitude of the transverse magneto-opti-
cal Kerr effect, the size of ferromagnetic micrograins,
and the nature of the porosity of the silicon substrate;
more specifically, a decrease in the micropore size is
accompanied by a decrease in the mean size of the
cobalt micrograins, as well as by an increase in the
transverse magneto-optical Kerr effect.

(3) The simulation of the magneto-optical properties
of porous silicon–cobalt nanocomposites demonstrated
that the negative transverse magneto-optical Kerr effect
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Fig. 7. Calculated dependences of the transverse magneto-
optical Kerr effect δ on the photon energy hν in the Brugge-
man effective-medium approximation for (a) Cox(porSi)1 – x
and (b) Cox(SiO2)1 – x at cobalt contents x = (1) 5, (2) 15, (3)
40, and (4) 80%.
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is caused by the oxidation of fragments of porous sili-
con in the vicinity of the cobalt micrograins. This con-
clusion is experimentally confirmed using scanning
Auger electron spectroscopy.

(4) It was assumed that the considerable increase in
the rate of oxidation of porous silicon in the vicinity of
the cobalt micrograins is associated with the spillover
of active oxygen from the metal micrograins to the
nearest surface regions of porous silicon, as well as
with the mechanical stresses arising in the lattice of
porous silicon in the vicinity of the cobalt micrograins.
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Abstract—By analyzing the evolution of time-resolved photoluminescence spectra, it is detected experimen-
tally for the first time that there is a correlated effect of built-in electric fields and of long-lived localized states
on the formation of emission in quantum wells based on nitrides of Group III elements. It is shown that light-
emitting diode structures can be classified for commercial applications by studying time-resolved photolumi-
nescence spectra. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Intensive studies of InGaN/GaN quantum-well het-
erostructures have culminated in the commercial devel-
opment of light-emitting diodes designed for operation
in various spectral regions [1, 2]. However, it is known
that the defect concentration in these materials remains
fairly high and that one still cannot, in particular, sub-
stantially reduce the density of dislocations caused by
stresses originating from the lattice misfit between the
substrate (as a rule, Al2O3) and GaN and by thermal
stresses between the substrate and GaN. It has also been
demonstrated that, unlike other semiconductors (GaAs,
GaP), in which dislocations act as nonradiative [1, 2]
recombination centers and, as a result, an increase in
the dislocation density (to 104 cm–3) drives the radiation
intensity to zero, the concentration of radiative recom-
bination centers in GaN does not depend on the density
of structural defects [2]. This specific feature of GaN
and of GaN-based structures offers the possibility of
designing high-efficiency devices from materials hav-
ing a lattice defect concentration higher than that in
other III–V compounds. Recent studies have revealed a
number of remarkable properties of InGaN/GaN het-
erostructures and of devices based on these structures,
which should apparently be assigned to the presence of
a spontaneous piezoelectric field [3]. To increase the
efficiency of these devices, one needs to estimate the
effect exerted by the various parameters of the struc-
tures on the mechanisms of their emission. Progress in
this area will depend, therefore, on a clear understand-
ing of how and to what extent the spontaneous piezo-
electric field and localized states contribute to emission
in such structures.

In this paper, we report on a contactless optical spec-
troscopic study of the characteristics of radiation emit-
ted by InGaN/GaN-based quantum-well structures.
This is done by analyzing a possible correlation
1063-7834/05/4707- $26.00 1388
between the localized states and built-in piezoelectric
fields, as well as the role played by this correlation in
the onset of efficient emission in these structures.
Steady-state and time-resolved photoluminescence
spectra were studied for this purpose.

2. EXPERIMENT

We studied radiation spectra of InGaN/GaN-based
quantum-well light-emitting structures. The object of
study was an array of five (~25-nm-thick) quantum
wells MOCVD-grown on a sapphire substrate and sep-
arated by 70-nm-thick GaN barriers. The photolumi-
nescence (PL) and electroluminescence spectra of the
samples were obtained under both cw and pulsed exci-
tation. Both steady-state and gated (time-resolved) PL
spectra were taken. Optical measurements were carried
out on an SDL-2 grating spectrometer with a reciprocal
linear dispersion of 1.3 nm/mm in the region of GaN
edge luminescence. Time-delayed spectra and decay
processes were studied with the use of an LGI-21
pulsed nitrogen laser operating at a wavelength λ =
3371 Å and a pulse duration (FWHM) τ ≈ 10 ns. The
delayed spectra were recorded in gated time windows
(5–10 µs wide) delayed by time td varied in the interval
td = 0–80 µs. The measurements were conducted at
temperatures T = 300, 77, and 4.2 K. To accurately
compare the emission spectra of different InGaN/GaN
structures, the variable parameters (the angle of inci-
dence of light, the pump light intensity, the tempera-
ture) were held constant.

3. EXPERIMENTAL RESULTS 
AND DISCUSSION

The PL spectrum of all samples taken under cw
pumping has a fairly strong line in the blue region
© 2005 Pleiades Publishing, Inc.
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(λ ≈ 445 nm), which is due to quantum-well emission
(Fig. 1).

Studies of time-resolved PL spectra revealed that,
for comparable emission intensities in the blue region,
the PL spectra of samples differ in terms of the shape of
the luminescence band measured at zero delay (td = 0).
Note that, in this spectral region, only one sufficiently
strong line is generally observed. This line is inhomo-
geneously broadened (the FWHM dispersion for differ-
ent samples does not exceed 10 meV) and originates
from the recombination of carriers residing in quan-
tum-well levels.

Turning now to the PL spectra, we consider the fac-
tors governing the intensity and width of an emission
line.

In general, the radiation intensity Ir produced at an
excitation level G = f(Iex) depends on the total lifetime
of nonequilibrium carriers (excitons) τ. The total life-
time, in turn, is determined by the radiative (τr) and
nonradiative (τnr) decay times of excitons (carriers):
1/τ = 1/τr + 1/τnr. Therefore, the radiation intensity can
be written as Ir = G/(1 + τr/τnr). The nonradiative decay
time τnr is determined by the trapping (with a cross sec-
tion σi) of excitons into deep states (present in a con-
centration Ni), whose existence rests on the presence of

various defects: 1/τnr =  (v  is thermal
velocity, i labels the defect type). It follows that the PL
intensity for td = 0 is determined not only by the con-
centration of nonradiative recombination centers but
also by the capability of carriers to move over the crys-
tal so as to eventually reach the nonradiative recombi-
nation centers.

Because the photoexcitation energy Eex = 3.67 eV >
Eg (Eg is the bandgap width), carriers are born free
(mobile). They relax to the energy levels in a quantum
well involved in emission in times that are, in any case,
no longer than τr. In the course of relaxation, mobile
carriers are captured by various traps with a character-
istic trapping time τtrap. The traps act as centers of both
radiative and nonradiative recombination; so, τtrap ≠ τnr.
In this case, the luminescence intensity should depend
on the ratio τr/τtrap. To find the contributions of free and
localized states to the formation of the emission line,
the PL excitation (PLE) spectra of samples of different
types were studied. Figure 2 displays typical PLE spec-
tra obtained for two energies within the emission line
profile. One energy is the position of the maximum in
the PL line (E1 = 2.715 eV), and the other (E2 =
2.565 eV) lies in the long-wavelength wing of the PL
line. As is evident from Fig. 2, the PLE spectra mea-
sured at E1 and E2 fall off in the same way on the higher
energy side (the a–b interval in Fig. 2). This falloff can
be identified with the attainment of a threshold energy
hω = Ethr at which there appear mobile carriers that can
be captured efficiently by traps [4].

v σiNi
nr

i∑
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Fig. 1. Photoluminescence spectrum of an InGaN/GaN
quantum-well heterostructure taken at T = 77 K.
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As follows from the shape of the PLE spectra, it is
the localized states that contribute heavily to the emis-
sion. One may therefore expect the shape of the PL
spectra in different samples to be intimately connected
with the specific features of the population and deple-
tion of localized states in a given sample. To reveal
these features, time-resolved PL spectra were studied
(as in [5]).

It was found that the shape of the time-resolved PL
spectra is essentially different. Figure 3 shows time-
resolved PL spectra measured with td = 0, 20, and 40 µs
at 4.2 K. Two points appear of interest: (i) increasing
the delay time still further (up to 80 µs) reduces the
intensity but does not affect the shape of the spectra
noticeably, and (ii) the overall pattern of the spectra
does not change with temperature. Note that the fact
itself of the emission persisting for long times (80 µs)
implies the existence of nonequilibrium carriers that are
trapped into long-lived localized states. One may tenta-
tively assume that such carriers are holes in an n-type
material with a sufficiently high electron concentration
(n > 1016 cm–3). The mechanism responsible for this
long line afterglow is phenomenologically similar to
that observed in n-GaAs with metastable states (NMS)
[6], where part of the photoexcited carriers are trapped
into metastable states, to be subsequently ejected from
them into the valence band. Due to the interaction
between the holes ejected into the valence band and
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Fig. 3. Time-resolved photoluminescence spectra (T =
4.2 K) obtained at different delay times td: (1) 0, (2) 20, and
(3) 40 µs.
P

electrons (free or bound in shallow levels), emission
lines form in the time-delayed spectra, with the time
scale of the gate delay td being determined by the hole
release time τs.

Another point relevant to the line shape is the role
played by the complex spatial relief of the potential Uph
experienced by the nonequilibrium carriers involved in
the formation of this radiation. This random potential is
caused both by fluctuations in the thickness of quantum
wells and barriers and by the electric field generated by
impurities in the barriers. Carriers are localized on
potential fluctuations, and the scatter in the energy
∆Erad of photons emitted in radiative recombination is
responsible for the inhomogeneous line broadening. A
doublet structure consisting of comparatively narrow
lines appears within the inhomogeneously broadened
emission line (at td = 0) as a result of a delay for td ≥
20 µs. This fact indicates that the localized states
responsible for the inhomogeneous broadening are
metastable. Therefore, as these localized states are
depleted (with a characteristic time τs), their contribu-
tion to ∆Erad decreases. As a result, the quantum-well
PL line narrows with increasing delay time td (provided
td > τs). In some cases, within the inhomogeneously
broadened emission line at td = 0, delayed spectra for
td ≥ 20 µs exhibit a doublet structure consisting of com-
paratively narrow lines (Fig. 3), which should likewise
be attributed to the existence of metastable localized

0

E
ne

rg
y,

 a
rb

. u
ni

ts

Position z, nm
2 4 6 8 10 12

(b)

(a)

Fig. 4. Energy diagram of quantum-well structures and car-
rier wave-function envelopes in the presence of (a) weak
and (b) strong internal electric fields (according to [8]).
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states. One should, however, identify the factors
accounting for such a large difference in the contribu-
tions of the localized states to the formation of the
quantum-well emission line.

A key to understanding this situation is provided by
a well-known property of nitrides of Group III ele-
ments, namely, the existence of spontaneous piezoelec-
tric fields [7]. Therefore, prior to turning to an analysis
of the spectral evolution in samples with quantum
wells, we will first address the general energy diagram
of a quantum well in the presence of a transverse elec-
tric field (perpendicular to the layers) (Fig. 4 [8]). Fig-
ure 4 shows the profile of a quantum well (the z axis is
the growth direction of the structure) for low and high
internal electric fields (Figs. 4a and 4b, respectively).
This diagram qualitatively illustrates the situation aris-
ing in the structure when the electric field is changed. If
the piezoelectric field Fpz is high enough, the wave
functions are centered close to the interfaces, thus
increasing the probability of carriers being localized in
the random interface potential Uph. In this case, the dou-
blet shape of the emission line in the time-delayed spec-
tra (Fig. 3) indicates the presence of a built-in electric
field and the spectral interval between the doublet lines
reflects the effective strength of this field. By definition,
the strength of a piezoelectric field depends on the mag-
nitude of stresses in a sample. The stress (piezoelectric
field), in turn, depends on the sample temperature. In
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Fig. 5. Effect of temperature on the spectral interval
between the doublet components: (1) 77 and (2) 4.2 K. td =
60 µs.
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this case, the variation in stress with temperature may
be expected to bring about a change in the delayed PL
spectra. Indeed, the samples exhibit an increase of the
spectral interval between the doublet components when
the temperature is changed from 77 to 4.2 K, which
implies an increase in the built-in piezoelectric field
F(pz). One may therefore maintain that at T = 77 K the
field Fpz is lower than at T = 4.2 K (Fig. 5).

In this case (T = 77 K), we studied the behavior of
the time-resolved spectra as a function of the photoex-
citation intensity and external electric field (reverse
bias Vb).

It is known that the field in a quantum well can be
varied by properly changing the excitation level Iex.
This effect is due to a change in the screening field
resulting from the concentrations of injected carriers
being different. Figure 6 plots the PL intensities
obtained at different pumping levels. We also studied
time-delayed PL spectra measured under application of
a reverse bias Vb to the quantum-well structure. Figure 7
displays delayed spectra (at td = 20 µs) of a sample
taken at a zero external field under a bias Vb = 20 V. In
both cases, as seen from Figs. 6 and 7, a change in the
effective field in a quantum-well structure brings about
quenching of the short-wavelength component in the
delayed luminescence spectra. Note that this evolution
of the spectral shape is a function of both the external
field (reverse bias Vb) and photoexcitation intensity.
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Therefore, these factors should be properly taken into
account when testing devices with these structures by
using time-delayed PL spectra.

4. CONCLUSIONS

To sum up, the presence of narrow long-lived dou-
blet components in time-delayed spectra and their
dependence on the pumping intensity and reverse bias
Vb indicate the involvement of localized metastable
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Fig. 7. Time-resolved spectra (1) in a zero external field and
(2) under an external bias Vb = 20 V. T = 77 K.
PH
states and built-in electric fields in the formation of the
emission spectrum; i.e., built-in fields favor carrier
localization or delocalization on interface fluctuations
caused by a variety of factors (internal field strength,
pumping intensity, temperature variations).
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