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Abstract—The amplitude of the separatrix map and the size of a pendulum chaotic layer are studied numeri-
cally and analytically as functions of the adiabaticity parameter at low and medium perturbation frequencies.
Good agreement between the theory and numerical experiment is found at low frequencies. In the medium-fre-
quency range, the efficiency of using resonance invariants of separatrix mapping is high. Taken together with
the known high-frequency asymptotics, the results obtained in this work reconstruct the chaotic layer pattern
throughout the perturbation frequency range. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Interaction between nonlinear resonances with the
formation of dynamic chaos in Hamiltonian systems is
a complex problem, which is far from being solved. In
a number of cases, this problem may be reduced to
studying a pendulum (a fundamental resonance near
which initial conditions are chosen) subjected to a
quasi-periodic perturbation

(1)

(2)

where harmonic amplitudes ε1 and ε2 are assumed to be
small (ε1, ε2 ! 1). Note that either of the harmonics is
also of resonant nature and, hence, may be a fundamen-
tal resonance in a related region of the phase space.

The set of equations (1) and (2) has been the subject
of intensive research (see, e.g., [1–3]). The situation in
the vicinity of the separatrices of the fundamental reso-
nance and the formation of a chaotic layer have been
studied most frequently. Our goal is to investigate the
fundamental chaotic layer throughout the range of per-
turbation frequencies (it is appropriate here to recall the
mechanism of its formation [1]). We will start with
describing unperturbed separatrices.

First of all, they always have a saddle, a fixed point,
which should be treated as an independent trajectory
(an unperturbed pendulum may follow this trajectory
for an infinite time). Two trajectories (separatrices)
originate from the saddle point and then asymptotically
approach it. Either is the boundary between the off-res-
onance phase rotation and resonant phase oscillation. In
the neighborhood of the saddle point in the phase plane,
there appears a characteristic cross with two outgoing
and two incoming trajectories (Fig. 2.1 in [1]). It is
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important that actually both unperturbed separatrices
consist of two spatially coincident trajectories for for-
ward and backward time, respectively.

In the case of an analytical potential (as in (1)), the
presence of at least one (!) perturbing resonance always
results in splitting either of the separatrices into two
branches (“whiskers” after Arnold). These branches do
not return to the saddle point and are no longer coinci-
dent with each other. They intersect at so-called
homoclinic points.1 The free ends of these branches
form an infinite number of loops with an infinitely
increasing length that fill a narrow region near the
unperturbed separatrices and create a chaotic layer.
This layer can be subdivided into three parts: the top
part (the phase x rotates at the top, p > 0), the middle
part (the phase oscillates), and the bottom part (the
phase x rotates at the bottom, p < 0). Determination of
the sizes of these parts, which may be substantially dif-
ferent for an asymmetrical perturbation like (2), is of
great importance from the practical standpoint [8–10].

The formation of a chaotic layer in the case of a
symmetrical high-frequency perturbation of the type

(3)

where Ω @ ω0 and m is an integer, was studied in detail
by Chirikov [1].

Using the properties of standard mapping and his
criterion for resonance overlapping, Chirikov showed

1 Such a splitting does not always happen in systems with a smooth
potential. Striking situations where the separatrices of both frac-
tional and integer resonances remain intact in piecewise linear
systems despite the presence of a perturbation and strong local
chaos are discussed in [4–6].
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that, in the high-frequency limit, all three parts of the
layer are of equal size:

(4)

where λ = Ω/ω0 is the so-called adiabaticity parameter

and w = H(x, p, t)/  – 1 is the relative deviation from
the unperturbed separatrix in terms of energy.

The variable W appearing in (4) is the amplitude of
the harmonic (with a frequency Ω) of the separatrix
map for the set of equations (1) and (3). This map, first
introduced in [7], approximately describes the dynam-
ics of a system near the separatrix when it passes
through the states of stable equilibrium (see also [1]).

The theoretical value W = WT is related to the
Mel’nikov–Arnold integrals Am(λ) [1] by the relationship

(5)

In this paper, these integrals are also used. Accord-
ing to [1], they are defined as

(6)

(7)

(8)

It should be stressed that expressions (6)–(8) were
derived in [1] for the general case, i.e., without any
assumptions or simplifications. Therefore, they are
valid for any λ from the range 0 < λ < ∞.

The pattern drastically and qualitatively changes
when a high-frequency perturbation becomes asym-
metric, Ω1 ≠ Ω2. Even early numerical simulations
[8, 9] showed that the separatrix map spectrum of such
a system involves (along with the frequencies Ω1 and
Ω2, appearing in perturbation (2) in explicit form)
mixed harmonics (~ε1ε2) with the frequencies ∆Ω+ =
Ω1 + Ω2 and ∆Ω– = Ω2 – Ω1. Still more surprising is the
fact that these harmonics completely determine the size
of the chaotic layer under certain conditions. The case
when the contribution of the mixed harmonic with
∆Ω+ = 3 to the separatrix map amplitude is several hun-
dred times greater than the contributions from the pri-
mary harmonics is described in [9]. The impression that
weak initial harmonics give rise to an intense secondary
harmonic and then do not contribute to the formation of
chaos has been conclusively supported by numerical
simulation performed in [9].

In Sect. 2, we will show that the specific role of
mixed harmonics disappears at low frequencies and
their influence becomes insignificant. For this reason,
we consider only the fundamental chaotic layer of sys-
tem (1) subjected to symmetric perturbation (3) at fixed

wtp wmd wbt λW , λ ∞ ,= = =

ω0
2

WT λ( ) ελ Am λ( ).=

Am λ 0>( ) = 
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4λ2
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frequencies of the perturbation, ε = 0.01, and weak
oscillations, ω0 = 1.0 (unless otherwise specified). The
high-frequency range considered above is comple-
mented by the ranges of medium and low frequencies,
which makes it possible to characterize the layer
throughout the range 0 < λ < ∞.

1. SEPARATRIX MAP AMPLITUDE

Two basic methods for calculating the sizes of the
chaotic layer are known. In the first method, the mini-
mum period T0, min of motion in a given region of the
layer is found (T0 is the time interval between two suc-
cessive intersections of the equilibrium phase x = π).
Then, the energy size of this region is determined by the
formula [1]

(9)

where T means T0, min.

The second method implies the construction of the
separatrix map of the system,

(10)

and the application of the iteration procedure.

We will briefly recall the numerical algorithm for
constructing such a map (for details, see [8]). First, a
central homoclinic point ppb as a boundary between the
oscillation and rotation of the phase is found with a
high accuracy at the line of symmetry x = π. A narrow
interval ppb + δp is chosen in the vicinity of this point at
x = π, and a random path is emitted from the interval.
This path either executes a prescribed number of cycles
of motion or is interrupted because of the transition to
another region of the layer. In both cases, a new random
path is emitted from the same region until a desired
number of cycles N is achieved. The mean energy w is
calculated for each of the cycles by formula (9). By
determining the energy variation δw =  – w for each
pair of adjacent cycles and assigning it to a time T0 that
is common for a given pair, one can construct separatrix
map (10) (δw)k with T0, k, where k = 1, 2, …, N – 1. To
be definite, we will investigate the top part of the layer,
since its size is equal to that of the bottom part, wtp =
wbp, in the case of symmetric perturbation. These outer
parts are of primary interest, since they are responsible
for overlapping adjacent resonances and generating
global chaos. As we shall see, map (10) may involve not
only one but also several harmonics (see Sect. 3).

Numerical (estimated) results for the separatrix map
amplitude WE should be compared with the theoretical
values WT calculated via the Mel’nikov–Arnold inte-

w 32 ω0T–( ),exp=

w w W ψ, ψsin+ ψ λ 32
w
------ 
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ψ ΩT0mod 2π( )=
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grals by the formula

(11)

where the sum

(12)

takes into account the influence of both harmonics of
the symmetric perturbation. From expressions (6) and
(8), it follows that, for m ≥ 3, these integrals, along with
the bracketed factor, vanish at certain λ = λ0. We use the
integrals A2 and A4 as examples. The former does not

vanish; the latter vanishes at λ0 = .

2. LOW-FREQUENCY ASYMPTOTICS

Figure 1 compares the normalized separatrix map
amplitudes for the top part of the chaotic layer that are
found numerically,  = |WE|/ε, and calculated using

formula (11),  = |WT|/ε, for symmetric perturbation
(3) as functions of the adiabaticity parameter for m = 2
and m = 4. As is seen, the theoretical curve  is in
fairly good agreement not only with the high-frequency
range λ * 5, which was thoroughly studied by Chir-
ikov, but also with the low-frequency range λ & 0.1,
where the amplitude is proportional to the adiabaticity
parameter: WT ~ λ.

This fact is consistent with the theory, since the sum
of the integrals appearing in (12) tends to a λ-indepen-
dent constant Sm(λ)  sm = const,

(13)

in the low-frequency limit λ  0, while amplitude
(11) approaches WT  εsmλ. Map (10) takes the form

where c = εsm = const.

If λ ! 1, the difference equations can be replaced by
the differential equations [1]

where Tm is the mapping period.

This yields

and we see that w(ψ) is independent of the adiabaticity
parameter λ. This takes place if the layer size wtp and

WT λ( ) ελSm λ( ),=
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2
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separatrix map amplitude W are assumed to be related
as

(14)

at low perturbation frequencies. Here, sm is the limit of
(3) and b ≈ 0.22 is an empirical factor.

Dependence (14) is supported by numerical simula-
tions (the horizontal portions in Fig. 3).

Thus, in the low-frequency limit, the size of the cha-
otic layer is independent of the frequency, unlike the
high-frequency case, where this dependence is expo-
nential (see (5) and (6)). Above, we noted the special
role of mixed (secondary) perturbation harmonics (with
frequencies that are combinations of high frequencies
of the primary harmonics) in the formation of chaos.
The exponential dependence constitutes the basis for
this phenomenon, since it allows even very weak but
low-frequency harmonics to contribute to chaotic layer
formation. In the low-frequency limit, the situation
changes drastically: the secondary harmonics turn into
small corrections on the order of ε1ε2, and their influ-
ence is negligible.

3. MEDIUM-FREQUENCY PERTURBATIONS

The most interesting dynamic effects are observed
in the medium-frequency range 0.1 * λ * 5, where the
adiabaticity parameter can be considered neither small
nor large. This range is hard to describe theoretically,

especially in the vicinity of the zero λ0 =  of the inte-
gral A4(λ0) = 0) (the vertical line in Fig. 1), where WT =
0, whereas the experimental value is finite:  ≈

wtp b
W
λ
----- 0.22sm≈≈ const, λ 0,=

2

Wexp*
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Fig. 1. Symmetric system given by (1) and (3). The normal-
ized separatrix map amplitudes found numerically, 

(symbols), and those calculated by (11),  (curves), are

shown as functions of the adiabaticity parameter λ. The cir-
cles and dashed curve correspond to m = 2; the crosses and
solid curve, to m = 4.
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0.103. For this reason, the results discussed below were
found numerically.

Systems analysis shows that, in this frequency
range, the separatrix map of the system stated by (1)
and (3) contains the harmonic at the fundamental fre-
quency Ω and also the harmonic at the doubled fre-
quency 2Ω . Moreover, for m = 4, the amplitude W(Ω)
of the fundamental harmonic vanishes at λ = λ1 =
1.4175 … > λ0 and then appears again but with opposite
sign. The value of λ1 varies with the perturbation ε. As
λ becomes smaller or larger than λ1, the influence of the
double-frequency harmonics weakens and almost dis-
appears at the boundaries of both asymptotic regions.
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Fig. 2. System given by (1) and (3) with m = 4. The inter-
section of the branches of the fundamental resonance sepa-
ratrix at λ = 1.3986685… is shown. The solid curve shows
the relative values of ; the dashed curve, .P f* Pb*
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Fig. 3. Symmetric system given by (1) and (3). The numer-
ically found dependence of the normalized size  of the

chaotic layer on the adiabaticity parameter λ. The dashed
curves and circles correspond to m = 2; the solid curves and
crosses, to m = 4.

W tp*

P f* Pb*,
 The double-frequency harmonic is a secondary one.
Its amplitude is proportional to the perturbation
squared, ~ε2, which is confirmed by the results of
numerical experiment, and can be found by the method
used in [8] to calculate the amplitudes of secondary har-
monics at combined primary frequencies. This method
uses variables similar to the coordinate and momentum
on an unperturbed separatrix. The expression for this
amplitude is omitted here because of its awkwardness;
however, it is worth noting that it involves the
Mel’nikov–Arnold integrals in the form Am – 2(2λ) and
Am + 2(2λ).

As is known, valuable information on the behavior
of separatrix branches for both integer and fractional
resonances can be found by measuring the angle these
branches make at the central homoclinic point (see
Introduction). This angle is one of a few chaos parame-
ters that can be measured as accurately as desired (for
details, see [10]), and its nonzero value is a reliable
indication that the separatrices are split. In what fol-
lows, we will show that the reverse statement is incor-
rect.

In the case of perturbation (3) with m = 2, the angle
between the separatrix branches in the medium-fre-
quency range retains its sign. For m = 4, it passes
through zero at λ = λ2 = 1.3986685… < λ0 and then
changes sign. The value of λ2 varies with ε.

In studies of smooth piecewise linear maps, it was
assumed that the zero value of this angle always means
the retention of the separatrix and the absence of the
chaotic layer (see, e.g., [5]). This was also supported by
numerical experiments. However, the phase portrait of
the system stated by (1) and (3) at λ = λ2 showed that
the separatrix of fundamental resonance is broken mak-
ing room for an intense chaotic layer. In order to gain
insight into this fact, we studied the intersection of the
separatrix branches in this case in greater detail.

Let  = pf/ps, 0 – 1 be the relative deviation of the
separatrix branch from its unperturbed value ps, 0 =

2ω0sin(xs/2) [1] for forward time and  be the same
for backward time. Figure 2 shows the intersection of
the branches of the upper separatrix at λ = λ2 =
1.3986685… in the neighborhood of the central
homoclinic point x = π, which turns out to be an inflec-
tion point. That is, the angle between the branches and
the slope of the tangent pass through zero simulta-
neously and then the branches diverge from each other.
This example demonstrates that the zero value of the
angle between the separatrix branches at the central
homoclinic point (and, hence, at any homoclinic point)
is not a sufficient condition for separatrix retention,
which is contrary to the statement put forward in [5].
Another example of such behavior of the separatrix
branches can be found elsewhere [11].

P f*

Pb*
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4. CHAOTIC LAYER

Figure 3 shows the normalized sizes  = wtp/ε of
the top part of the fundamental chaotic layer that were
found numerically from the minimum period of motion
(see (9)) (each point was calculated for 5 × 106 periods
of motion).

The horizontal portions on the left of the plot, which
were calculated by (14), correspond to the asymptotic
values in the low-frequency limit λ  0. The curved
portions on the right of the plot, which were calculated
by formulas (4) and (5), show the degree of agreement
between the theory and experiment for high-frequency
perturbations. However, the theory fails in the medium-
frequency range, and one has to employ approximate
and numerical methods of analysis.

A characteristic feature of the λ dependence of the
layer size  is its discontinuity (although the separa-
trix map amplitude is smooth, see Fig. 1), which greatly
complicates the elaboration of a theory in this fre-
quency range. A number of discontinuities are well
seen in Fig. 3 (m = 2), and others are observed on an
enlarged scale. Such a structure is quite natural and is
explained in terms of modern dynamics concepts in the
following way. As λ decreases, the invariant curves
with irrational rotational numbers give way to so-called
Cantori [12]. If such a curve is a boundary between the
fundamental chaotic layer and a nearby resonance of
separatrix mapping, these objects merge together and
the layer size increases stepwise by a finite value, i.e.,
by the phase volume of the resonance attached. As was
noted in [1], the step is maximal when the chaotic layer
merges with an integer resonance. The main difficulty
here is the need for constructing the pattern of reso-
nances in the vicinity of the chaotic layer boundary and
also for finding the separatrix map amplitude corre-
sponding to resonance overlapping.

An efficient method for solving this problem seems
to be the one based on so-called resonance invariants,
which make it possible to obtain such a pattern without
numerically constructing the paths. Invariants of first
three orders (resonances 1 : 1, 1 : 2, and 1 : 3) for sepa-
ratrix mapping have been recently proposed in [13, 14].
In those works, these invariants, along with the well-
known Chirikov criterion for resonance overlapping,
are used to study the chaotic layer dynamics and calcu-
late stepwise changes in its size in the medium-fre-
quency range at λ = 3.

Like any analytical algorithm, these invariants are
unable to catch a chaotic component of motion; there-
fore, they “draw” pure separatrices of resonances
instead of real chaotic layers [14, Figs. 2–4]. This fact
substantially simplifies the estimation of the resonance
arrangement.

In [13, 14], good agreement between the resonance
patterns constructed from invariant level curves and found
by direct numerical iteration of separatrix maps is demon-
strated and some technical details are discussed.

W tp*

wtp*
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CONCLUSIONS

The model of a perturbed pendulum is widely used
for studying many real dynamic systems, so that the
construction a chaotic layer for such a model through-
out the range of perturbation frequencies seems to be
necessary. The known results for the high-frequency
asymptotics are complemented by those for the low-
frequency range; however, the medium-frequency
range of perturbation frequencies calls for further
investigation.
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Abstract—Computer models of gradient-controlled growth are studied. Algorithms used in this class of models
allow for the formation of a variety of clusters that have different, including fractal, structures. The problem of
formation of nonbranching isolated vertical clusters is solved by using an algorithm that corresponds to a high-
gradient long-range potential concentrated in a narrow interval. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Investigations into coherent phenomena in stochas-
tic systems are of interest, since their results may find
application in various areas of physics. These phenom-
ena are characterized by clustering in stochastic sys-
tems under certain conditions. Clustering arises in the
frameworks of various models that are in many respects
similar to those that describe coherence in dynamic sys-
tems. One problem associated with this class of phe-
nomena is impurity clustering in random velocity
fields. The basic feature of this problem is the cluster
structure of the impurity concentration field. This fea-
ture shows up as causticity resulting from focusing and
defocusing in a random medium [1].

The problem studied in this work may be stated as
follows. In the simplest case, a particle ensemble mov-
ing in the random velocity field is described by a set of
ordinary first-order differential equations [1]

(1)

where U(r, t) = u0(r, t) + u(r, t), u0(r, t) is the determi-
nate component of the velocity field, and u(r, t) is the
random component.

Formally, Eq. (1) means that each of the particles
moves independently. However, if the random field u(r,
t) has a finite correlation length lcor, all particles at a dis-
tance of less than lcor from each other are under the
influence of the random field u(r, t) and the dynamics
of such an ensemble may exhibit new collective fea-
tures. For example, in the case of the potential velocity
field (u(r, t) = ∇ψ (r, t)), particles regularly arranged
within a square at zero time form clusters during evolu-
tion [1].

The problem of clustering is also related to the for-
mation of voids in semiconductor crystals, such as
porous silicon [2], and in materials prepared by sinter-
ing fine-grain powders [3]. Thus, the problem under

dr
dt
------ U r t,( ), r t0( ) r0,= =
1063-7842/04/4905- $26.00 © 0526
study is of interest in various fields of contemporary
physics.

Computer simulation can solve a wide variety of
algorithmic problems whose asymptotic behavior
sometimes cannot be derived by any other means.
Attempts to study void formation with computer mod-
els have been made repeatedly [4]. However, an
exhaustive model of void formation has not yet been
developed. So, further efforts in this direction are nec-
essary.

PROBLEM DEFINITION 
AND BASIC RESULTS

In this work, we study clustering on one of the flat
sides of a rectangular domain (slab) covered by a
square grid. A potential is applied between opposing
flat sides. Unlike the problem touched upon in [1], we
consider the random walk of particles in a constant
potential field of several seeds, while in [1] the dynam-
ics of the system is governed by a stochastic time-
dependent field with a certain correlation length. In
simulation, we use three specially shaped seeds whose
positions are fixed.

Our goal is to find the position of a cluster on the
seeds under the action of the seed-induced potential
field and the self-field of the cluster. We also seek the
conditions under which vertical, weakly branching, and
isolated clusters form.

According to Eq. (1), the motion of a particle
depends on the determinate, u0(r, t), and stochastic,
u(r, t), components. The former is defined by the field
of needlelike seeds, while the latter, which causes ran-
dom walk over the square mesh, is described by the
Metropolis walk algorithm [5]. The probability of dis-
placement to an adjacent position is specified by a
potential gradient in nearby sites so that the probability
of a jump to a higher potential state is higher.
2004 MAIK “Nauka/Interperiodica”
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The simulation of the field distribution is based on
the following assumptions. For simplicity, the initial
shape of the seeds on the upper side of the slab is
approximated by a hyperboloid of revolution [6]. A
potential is applied between the upper and lower sides
(boundaries) of the slab. The potential is calculated by
the Lamé method (for details, see [6]). Calculations [6]
show that the field potential ϕ in this case is a function
of a parameter λ and is given by

(2)

if the potential difference between the needle and the
lower boundary is ϕr = εSiϕ0, where εSi is the permittiv-
ity of silicon and ϕ0 is the potential difference dimen-
sion parameter used in simulation. The quantity
(b2(λ) – λ2)1/2 was approximated by the linear function
(b2(λ) – λ2)1/2 = pλ + q [6]. Then, b(λ) = (λ2(1 + p2) +
2pqλ + q2)1/2 [6], p = (dmin – dmax + 2D)/(λmax – λmin),
D = α(λmax – λmin) is the seed spacing, q = [λmax(dmax +
2D) – λmindmin]/(λmax – λmin) is the thickness of the slab,
bmax = b(λmax), dmin is the size of the seed, α is a variate,
and dmax is the parameter corresponding to the value
λmin at which equipotential curves degenerate into a
straight line.

In the 2D case with a single needlelike seed, equipo-
tentials are described by the equation of a parabola with
the parameters λ2 and (b2 – λ2) [6]. By variously
approximating the quantity (b2 – λ2)1/2, we could vary
the rate of expansion of the parabola with distance from
the boundary and thereby simulate both short- and
long-range potentials (see below).

A computer algorithm was constructed so as to sim-
ulate the formation of a 2D cluster under the action of
the potential of three needlelike seeds. Simulation was
carried out in the 2(D + dmax)(λmax – λmin) rectangular
domain, which was split into squares with sides ∆x. To
obtain the net (three-seed) potential distribution, we
calculated the right-hand side of the field induced by
one seed placed in the extreme position. Then, by
applying the principle of superposition to the fields and
using the symmetry of the problem, the net field of the
three equidistant seeds was constructed. Each mesh
was assigned a calculated value of the field. Eventually,
we obtained the discrete distribution of the potential φij

of the seeds (Fig. 1).
A cluster grew when particles walked over the

square grid from the lower to the upper flat boundary,
where the three needlelike seeds were located. The ran-
dom walk algorithm was based on the Metropolis algo-
rithm [5]. The path of a particle that is in a mesh (i, j)
was simulated in the vicinity of the four nearest neigh-
bors that have mutual boundaries with the mesh (i, j).
Then, the probability of transition from the mesh (i, j)

ϕ λ( ) ϕ0

b λ( ) λ+
b λ( ) λ–
--------------------- 

 ln

bmax λmax+
bmax λmax–
-------------------------- 

 ln

-------------------------------------,=
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into a mesh (i', j') in this vicinity was calculated by the
formula

(3)

where

(4)

ϕij and ϕi'j' are the potentials in the meshes (i, j) and
(i', j'), respectively; n ≤ 4 is the number of meshes
accessible for the transition; and Π is the vicinity of the
mesh (i, j).

The transition of the particle from the state (i, j) to
the state (i', j') occurs with related (calculated) probabil-
ity. The process lasts until the particle reaches the upper
boundary or is attached to a forming cluster. For the
particle to be attached to the cluster, the ratio of the
number of cluster-constituting points within a domain
of characteristic radius Rchar to the number of nearest
meshes that have mutual vertices must be larger than a
certain value η (the sticking coefficient). This coeffi-
cient defines the depth of penetration of a particle into
a cluster and, as will be shown later, the inner structure
of the cluster. The stopped particle forms the cluster
structure. The distance over which a growing cluster
influences a particle depends on the radius Rchar . All
points of the cluster falling into the circle of radius Rchar

contribute to the static potential induced in each of the
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Fig. 1. Distribution of the electric potential from three equi-
distant seeds. Data shown in the figure are obtained for
(b2(λ) – λ2)1/2 = pλ + q, ϕ0 = 1, and α = 1.
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Fig. 2. Results of computer simulation with the standard algorithm of irreversible gradient-controlled growth for α = 1, ϕ0 = 1, σ =
0.1, β = 1.3 × 10–5. (a) The sticking coefficient η was calculated by taking into account eight nearest neighbors, the fractal dimension
is Df = 1.719–1.802, and the number of points in a cluster is N = 1100; (b) the sticking coefficient η was calculated by taking into
account 12 nearest neighbors, Df = 1.612–1.682, and N = 500.
meshes by its neighborhood according to the formula
[7]

(5)

so that

(6)

where σij = σ is the charge of a mesh, β = 1/r0 is the
screening constant, and r0 is the screening length.

The potential ψ is added to the potential ϕ induced
by the seeds (see formula (2)). The contribution to the
net field is calculated only for outer points of the clus-
ter, since they screen inner ones.

The application of this algorithm results in the for-
mation of branching clusters with a mutual base (i.e.,
nonisolated). As the potential decreases, clusters
become more extended and more isolated, as well as
closer related to the initial seeds. Similar effects were
observed in experiments [8, 9]. Our algorithm does not
lead to the formations of isolated nonbranching verti-
cally growing clusters (Fig. 2).

The structures shown in Figs. 2a and 2b differ in
particle attachment conditions. The structure in Fig. 2a
takes into account eight nearest neighbors, while that in
Fig. 2b includes 12 neighbors. The fractal dimension
was found by plotting the weight of a cluster against the
radius of the circumscribed circle in the log–log coor-
dinates [10]. For the clusters in Fig. 2a, the fractal
dimension is Df = 1.719–1.802. Similarly, for the clus-
ters in Fig. 2b, Df = 1.612–1.682. It should be noted
that, for random walk over a triangular grid, the number
of nearest neighbors is 12. As is distinctly seen in
Fig. 2b, the structures being formed on the square grid

ψij i' j' rij ri' j'–( )
σi' j'

rij ri' j'–
--------------------e

β rij ri' j'–( )–
,=

ψij

σi' j'

rij ri' j'–
--------------------e

β rij ri' j'–( )–
,

rij ri' j'– Rchar<
∑=
have triangular elements. This is because the number of
neighbors taking part at the final stage of clustering is
12. Thus, triangular elements may also form on a
square grid under certain conditions. Similar effects
were observed when silicon was anodized in a solution
of hydrofluoric acid. For example, fractal structures
like Serpinsky gaskets were discovered in [11].

It was shown [12] that fractal dimension is not uni-
versal; that is, it depends not only on the dimensionality
of a grid used in numerical simulation but also on its
structure. For example, the fractal dimension is pre-
dicted to be 5/3 for a 2D square grid and 7/4 for 2D hex-
agonal and triangular grids [12]. The results shown in
Fig. 2 suggest that the fractal dimension also to a great
extent depends on other simulation parameters, such as
the growth-controlling sticking coefficient gradient,
etc.

To simulate the growth of nonbranching isolated
vertical clusters, we applied an algorithm including the
statements mentioned above and an algorithm with a
moving lower boundary that is similar to that used in
[13]. Such a combined algorithm leads to the formation
of more extended and less branching clusters, since the
initial coordinates of most particles are generated near
fast-growing branches of a cluster, favoring their
growth. However, the combined algorithm, too, failed
to provide the growth of nonbranching isolated vertical
clusters (Fig. 3).

To simulate potentials slowly descending at large
distances, the parameter (b2(λ) – λ2)1/2 was approxi-
mated by logarithmic and inversely proportional depen-
dences: (b2(λ) – λ2)1/2 = pln(λ) + q and p/λ + q. In this
case, the hyperbola’s branches expand appreciably far-
ther from the upper boundary (Fig. 4), and clusters
being formed become more extended. In formula (2),
the parameter b may be independent of λ. Qualitatively,
TECHNICAL PHYSICS      Vol. 49      No. 5      2004
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the picture is similar to that observed when (b2(λ) –
λ2)1/2 is approximated by the linear function.

Careful examination of the resulting potential and
calculated transition probabilities reveals the following
effect. On vertical lines strictly under the seeds, the
probability of a sideward jump is higher than that of a
jump in the vertical direction. These vertical lines are
not lines of strong attraction, as was expected from
qualitative considerations in view of the fact that the
electric field along them is the highest; instead, they
behave as lines of local scattering, for which the staying
probability is lower than the escape probability. It
appears that the potential on the vertical lines is high
but varies slowly from mesh to mesh along them. At the
same time, in going from the vertical line to a sideward
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Fig. 3. Typical cluster obtained in terms of the moving-
boundary model for α = 1, ϕ0 = 1, σ = 0.1, β = 1.3 × 10–5,
and N = 350. The sticking coefficient was calculated by tak-
ing into account 12 nearest neighbors, and the fractal
dimension is Df = 1.628.
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mesh, the potential changes more appreciably. Because
of this effect, a walking particle leaves the vertical line,
although the potentials vary in a narrow range, and
growing clusters are more branched (Fig. 4) than when
this effect is suppressed (Fig. 5).

In order to suppress this effect and find conditions
for the growth of nonbranching isolated vertical clus-
ters, we proceeded as follows. The probability of jumps
from a given mesh was modulated (by introducing a
special correction) so as to raise the probability of
jumps in the vertical direction; in other words, the
anisotropy of the system was increased. Let the proba-
bilities (calculated by the basic algorithm) that a parti-
cle jumps leftward, rightward, downward, and upward
be pl, pr, pd, and pu, respectively. Then, the modulated
probabilities for leftward, rightward, downward, and

upward jumps are expressed as  = pl – kp,  = pr –

kp,  = pd – 2kp, and  = pu + 4kp, where kp is the
modulating parameter.

This procedure was applied in two versions. In the
first version, the jump probability was modulated irre-
spective of the particle’s position; in the second, the
probability modulation was carried out only for parti-
cles opposite to the seed. In the second case, the prob-
lem of nonbranching isolated vertical clusters was
solved (Fig. 5): the clusters grew stably and almost
without branches. This procedure takes into account the
second term in the potential expansion (see expression
(7) and relevant comments). In most cases, anisotropy
prevents the formation of fractal structures [14].

Note that numerical simulation performed in this
work was based on six algorithms.
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Fig. 4. (a) Distribution of the electric potential from three equidistant seeds. Data shown in the figure are obtained for (b2(λ) –
λ2)1/2 = p/λ + q, ϕ0 = 1, and α = 1. (b) Typical cluster obtained in terms of the moving-boundary model for σ = 0.1, β = 1.3 × 10–5,
and N = 500. The sticking coefficient was calculated by taking into account 12 nearest neighbors.
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PHYSICAL INTERPRETATION

The problem under study is closely related to void
formation in semiconductor crystals, for example, dur-
ing anodizing of silicon in a solution of hydrofluoric
acid. It is known that voids forming during this process
contain quantum-size objects. It is expected that the
solution of the problem stated will elucidate reasons for
sharp anisotropy in void formation, specifically, for the
formation of strictly vertical branching pores
(trenches).

Let the thickness of a silicon wafer where anodizing
causes voids be 500 µm. This corresponds to 50 meshes
in the vertical direction. Thus, the size of a square mesh
is 10–3 × 10–3 cm.

For T = 300 K, the impurity concentration n =
1015 cm–3, the permittivity of silicon εSi = 11.8, and the
screening length is β = 1.3 × 10–5 cm [7].

The parameter σ corresponds to the number of holes
in a unit volume ∆V = (∆x)3 = 10–9 cm3 (∆x = 10–3 cm).
Estimates show that the excess hole concentration at the
surface of n-Si due to band bending is much lower than
the concentration of holes generated by illumination.
For typical light fluxes used in our experiment, J =
1019 photons/cm2, the value of σ is no greater than
0.1 absolute electrostatic units. The applied potential
was, as a rule, in the range 0 ≤ ϕr ≤ 120 V (ϕr = ϕ0εSi).

DISCUSSION

We studied computer models of gradient-controlled
growth. As follows from the results of computer simu-
lation, taking into account the determinate and stochas-
tic components of the velocity of a particle walking
over a square grid generates a wide class of cluster
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Fig. 5. Typical cluster obtained in terms of the second ver-
sion of the moving-boundary model for α = 1, ϕ0 = 1, σ =
0.1, β = 1.3 × 10–5, and N = 394. The sticking coefficient
was calculated by taking into account eight nearest neigh-
bors. The probability was modulated in an interval of thick-
ness 3 with a coefficient kp = 0.1.
structures. These structures have a wide range of fractal
dimensions depending on model parameters.

It was found that isolated nonbranching vertical
clusters grow if the electric potential gradient exceeds
the normal gradient over the wafer. Formula (4) for the
transition probability involves the first term in the
expansion of the potential

(7)

The second term contains the potential gradient and
can also contribute to the total probability. If the poten-
tial is a slowly varying function, the zeroth-order
approximation is valid. Such is long-range potential
(2), which is used in our problem (Fig. 1). For poten-
tials of another type, higher order corrections must be
considered. Taking into account the second term makes
it possible to eliminate the algorithmic effect that
imparts scattering properties to the vertical line under
the seed. The first term in formula (7) relates the prob-
abilities of the transition between the states to equipo-
tential lines, while the second term relates the probabil-
ities to field lines.

Of special interest are the long-range potentials sim-
ulating elastic stresses in the wafer and the strain field
of dislocations. The long-range potential simulating
elastic stresses is shown in Fig. 4. It is seen that the
potential is concentrated in a narrow range. Pore
branching is associated to a great extent with the scat-
tering algorithmic effect mentioned above. Suppression
of this effect within the range of this potential concen-
trated in the narrow interval eliminates branching
almost completely (Fig. 5). Effects arising when chem-
ical reactions accompanying pore formation proceed
only at lattice imperfections also merit attention [16].

It was also discovered in this work that, under cer-
tain conditions, triangular elements may form on a
square grid. In practice, such effects were observed
upon anodizing silicon in dilute hydrofluoric acid. An
example is fractal structures like Serpinsky gaskets
observed in [11].

The somewhat uncertain relationship between a
growing cluster and its generating seed is due to noise
inherent in the model [14]. At the initial stage of simu-
lation, the random walk algorithm gives rise to noise-
induced instabilities (fluctuation noise), which are
comparable to the cluster scale and serve as a specific
initial condition for subsequent stages. If any unstable
mode starts building up, its growth is of determinate
character, although the dependence on the initial condi-
tions can by no means be excluded [14].

Thus, we studied computer models of gradient-con-
trolled growth. Algorithms used in this class of models
allow for the formation of a variety of clusters that have
different, including fractal, structures. The potential
simulating the normal electric field distribution in a sil-
icon wafer generates branching clusters. The problem
of growing nonbranching isolated vertical clusters was

ϕ r( ) ϕ r0( )
∂ϕ r0( )

∂r
---------------- r r0–( ) ….+ +≈
TECHNICAL PHYSICS      Vol. 49      No. 5      2004



CLUSTERING IN DETERMINATE AND STOCHASTIC FIELDS 531
solved by using an algorithm that corresponds to a
long-range high-gradient potential concentrated in a
narrow interval. An example of such potentials is the
deformation potential, whose properties were also sim-
ulated in this work. Associated results will be reported
in subsequent publications.

Our findings may be helpful in analyzing the pro-
cess of anisotropic etching, which provides vertical
walls. Similar effects are observed in anodizing [17]
and plasma-chemical etching of silicon [18].
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Abstract—Multiple scattering of particles by a stochastic fractal, a set of point targets (atoms) randomly dis-
tributed in a space with a power correlation function, is considered. The energy and angular distributions that
generalize the known Landau, Fermi, and Molière distributions are found in the low-angle approximation. The
analytical results are checked by Monte Carlo numerical simulation. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In many cases, electromagnetic and corpuscular
radiation represents the only source of information
about the structure of a material. To interpret informa-
tion of such a type, one must generally consider radia-
tion–material interaction, which is characterized by
angular deviation due to scattering, energy losses dur-
ing inelastic collisions, etc. Long-range power correla-
tions, showing up in the grouping of atoms to produce
bunches and superbunches like the distribution of gal-
axies in the Universe, are the most important parameter
governing interaction with a fractal medium [1, 2].
Under certain conditions, such correlations are also
observed in condensed media, the systematic investiga-
tion of which has culminated in the emergence of a new
field of science, fractal materials science [3]. Single
scattering by fractals was considered in [4, 5]; multiple
scattering was considered, in [6], where the void distri-
bution in an initially homogeneous medium was
assumed to be fractal.

In this work, we are dealing with multiple scattering
of particles by point centers (“atoms”) whose distribu-
tion is characterized by fractal correlations. As in [6],
the problem is solved in the low-angle approximation,
which is valid both for fast particles and for waves in
the absence of interference effects (the wavelength λ is
much shorter than the typical spacing between scatter-
ing centers) [7]. This work elaborates on studies
reported in [8–15].

1. PROBLEM DEFINITION

In the case of multiple scattering of particles, the
problem is stated as follows. Let X(t) be a random quan-
tity that characterizes a particle at a depth t. We assume
that (i) X(0) = 0 at the origin; (ii) in the intervals 0 <
T1 < T2 < … < TN < t between collisions, X(t) remains
constant but discretely changes by a random value Xi

after collisions; that is, X(t) = ; (iii) the
changes (jumps) Xi at collisions are random, mutually

Xii 1=
N t( )∑
1063-7842/04/4905- $26.00 © 20532
independent, and are distributed with the same density
σ(x).

The distribution X(N) for a particle having experi-
enced N acts of scattering is described by the multiple
convolution of the distributions σ(x):

(1)

where σ(1)(x) = σ(x).
Formula (1) is conveniently generalized to the case

N = 0 by putting σ(0)(x) = δ(x), where δ(x) is the Dirac
function. The distribution over x of the particles travel-
ing a distance t has the form

(2)

where p(N, t) is the probability that a particle will expe-
rience N scattering events over a distance t.

Distribution (2), which characterizes the medium, is
related to the density q(t) of the free path distribution as

(3)

where

is the probability that a random path exceeds t and
q(N)(t) is the multiple convolution of the densities q(t),
which describes the distribution of the coordinate of an
Nth scattering event.

As a random quantity X (a random m-dimensional
vector), one may take both energy losses ε (m = 1) and
the deviation of a particle from the initial direction. The
latter, in the low-angle approximation, is described by
a two-dimensional vector q (m = 2) (see, e.g., [16]). To
solve this problem, it is necessary to find the multiple

σ N( ) x( ) σ N 1–( ) x ξ–( )σ ξ( ) ξ ,d∫=

Ψ x t,( ) p N , t( )σ N( ) x( ),
N 0=

∞

∑=

p N , t( ) Q t t'–( )q N( ) t'( ) t',d
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t

∫=

Q t( ) q t'( ) t'd

t

∞

∫=
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convolutions q(N)(t) of the spatial distributions of atoms
and the convolutions σ(N)(x) of distributions that char-
acterize interaction of moving particles with atoms of
the media.

2. SELF-AVERAGING IN A REGULAR MEDIUM

In a regular medium, scattering centers (atoms) are
assumed to be arranged independent of each other with
a constant (if the medium is homogeneous) average
density. The free path distribution in this case takes the
form

(4)

where µ is the linear scattering coefficient, which is the
reciprocal of the mean path.

The probability density that a particle will experi-
ence N collisions over a path t is then expressed as

and distribution (2) becomes the generalized Poisson
distribution [17]

(5)

At t  ∞, the mean value of the random number
of terms grows as µt and its relative fluctuations
decreases as (µt)–1/2, so that

(6)

where n(t) is the integer part of µt.
In terms of [18], the transition from (5) to (6) means

the presence of the self-averaging property: a randomly
inhomogeneous medium appears as a determinate
homogeneous on small scales. In terms of probability
theory, this fact is embodied in the law of large num-
bers, which is valid if q(t) has a mathematical expecta-
tion. This, in turn, means that result (6) remains valid
for any distribution with a finite mean value:

3. RANDOM PATHS IN A FRACTAL MEDIUM

The statistics of point fractal models was carefully
studied in [15, 19–22]. It was shown [15] that, when a
particle moves along a straight line that accommodates
a fractal set of atoms, the distribution of the particle’s
free paths has an asymptotic power tail with an expo-
nent α < 1. To develop a model of radiation passing
through a fractal placed in a 3D space, it is necessary to
find the desired path distribution and make sure that
sequential random paths are mutually independent.

q0 t( ) µ µt–( ),exp=

p N , t( ) µt( )N

N!
------------- µt–( ),exp=

Ψ0 x t,( ) µt–( ) µt( )N

N!
-------------σ N( ) x( ).

N 0=

∞

∑exp=

Ψ0 x t,( ) σ n t( )( ) x( ), t ∞,≅

q t( )t td

0

∞

∫ 1/µ ∞.<=
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To this end, realizations of a stochastic fractal of
given dimensionality were simulated by the Levi–Man-
delbrot method of random walk [19–22]. A small-
radius sphere was described around each of the points.
An arbitrarily directed ray originating at the center of
one point was extended until it intersected two spheres.
The distance between the origin of the ray and the first
sphere was treated as the first path; the distance
between the first and second spheres, as the second
path. The results of this simulation (Fig. 1) count in
favor of the assumption that sequential paths are mutu-
ally independent (at least, in the low-angle approxima-
tion) and support the power variation of their distribu-
tion density:

(7)

The exponent α depends on the dimensionality of
the point fractal structure.

4. MESOSCOPIC EFFECT

When α < 1, the mean value of the path with the dis-
tribution density given by (7) is infinite. In this case,
one should use the limiting theorem in its generalized
form to obtain stable distributions [23, 24]. In summing
independent random quantities with infinite variances,
these distributions play the same role as the Gaussian
law in the case of finite variances. In particular, if the
distribution densities of independent random quantities

q t( ) t–α 1– .∝

0.01

101

q(t)

0.001
t

Fig. 1. Simulation of the path distribution in a fractal
medium with D = 1.5. The continuous curve shows the dis-
tribution of the first path length, q(t) ~ t–α – 1 (α = 0.65). The
symbols show the distribution of the second path length for
different lengths of the first path: (s) first path l < lµ (lµ is
the median path, p{l < lµ} = 1/2), (h) lµ < l < 2lµ, and (e)
2lµ < l < 3lµ.
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Ti have power tails q(t) ≅  αBt–α – 1, the normalized sum

is distributed with a one-sided stable density g(α)(t). In

other words, the density q(N)(t) of the sum  in

large-N asymptotics has the form

(8)

Using the generalized limiting theorem, one can find
the distribution of the probability that a particle will
experience N collision over a path t:

where

is the stable distribution function.
Straightforward transformations yield

(9)

Employing the well-known expression for negative-
order moments of distribution g(α)(t) [23],

(10)

we find the moments of a random number of collisions
in the interval (0, t):

It is easy to see that the mean value 〈N(t)〉  ∝  tα and
the moments (hence, the distribution) of the normalized
random quantity Z = N/〈N(t)〉  are independent of the
layer thickness t. Because of these properties, which
characterize the self-similarity of a stochastic fractal,
fluctuations in the medium cannot be neglected at any
thickness: self-averaging does not take place. Such a
situation was named the mesoscopic effect [25].

5. GENERALIZATION OF THE TRANSPORT 
THEORY

In this section, we will generalize the known results
of the transport theory for media with a fractal distribu-
tion of fractal centers. Using (9) and passing from sum-

SN Ti/ NBΓ 1 α–( )[ ] 1/α

i 1=

N

∑=

Ti
i 1=

N

∑

q N( ) t( ) NBΓ 1 α–( )[ ] 1/α– g α( ) NBΓ 1 α–( )[ ] 1/α– t( ).∼

p N , t( ) G α( ) NBΓ 1 α–( )[ ] 1/α– t( )≅

– G α( ) N 1+( )BΓ 1 α–( )[ ] 1/α– t( ),

G α( ) t( ) g α( ) t'( ) t'd

0

t

∫=

p N , t( ) t
αN
-------- NBΓ 1 α–( )[ ] 1/α– g α( )≅

× NBΓ 1 α–( )[ ] 1/α– t( ), t ∞.

g α( ) t( )t ν– td

0

∞

∫ Γ 1 ν/α+( )
Γ 1 ν+( )

---------------------------, α 1,<=

Nk t( )〈 〉 k!tkα

BΓ 1 α–( )[ ] kΓ 1 kα+( )
---------------------------------------------------------, α 1.<=
mation over N in expression (2) to integration over the
variable τ = [NBΓ(1 – α)]–1/αt, we arrive at the distribu-
tion

(11)

where n(τ) is the integer part of the expression
(t/τ)α/[BΓ(1 – α)].

Comparing (11) with (6), we note that the limiting
form of the distribution for a path with an infinite mean
changes. At α  1, the one-sided stable density
g(α)(τ)  δ(τ – 1) and distribution (11) passes into
distribution (6), which characterizes a medium with
self-averaging. If the mean square of Xi is finite,

the distribution of σ(N)(x) at N  ∞ tends to the Gaus-
sian distribution (which is two-dimensional for the
angular distribution and one-dimensional for the
energy loss distribution):

(12)

In the fractal case (α < 1), the distribution over the
deviation angle θ we obtain

(13)

where

(14)

The coefficient ∆ and the mean square of the devia-
tion angle over a path t, 〈θ2〉 , are related as

(15)

Here, 〈θ2〉 has the meaning of the mean square of the
angle of single scattering. This is the generalization of
the Fermi distribution for scatterers distributed in a
fractal manner. For the energy loss (ε) distribution, we
get

Ψ x t,( ) τg α( ) τ( )σn τ( ) x( ), α 1,<d

0

∞

∫=

Xi
2〈 〉 x2σ x( ) xd

0

∞

∫ ∞,<=

σ N( ) x( ) 1

2πND( )m/2
---------------------------≅

× x N X〈 〉 t–( )2

2ND
--------------------------------– 

  ; t ∞; mexp 1 2,,=

D X2〈 〉 X〈 〉 2.–=

Ψ θ t,( ) ψ α( ) θ/ ∆( )
∆

----------------------------,=

ψ α( ) x( ) π 1– τ x2τα–( )ταg α( ) τ( ), α 1.<expd

0

∞

∫=

θ2〈 〉 ∆
Γ 1 α+( )
---------------------

2 θ2〈 〉 tα

BΓ 1 α–( )Γ 1 α+( )
------------------------------------------------.= =

Ψ ε t,( ) 2πD( ) 1/2– τd

0

∞

∫=
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(16)

where 〈ε〉 and 〈ε2〉  are the mean energy losses and the
mean square of the energy losses, respectively, at single
scattering.

In the continuous slowing-down approximation
(without energy loss fluctuations), expression (16)
takes the form

Using expressions (10) for the moments of the one-
sided stable distributions, one can calculate the mean
energy losses over a path t:

(17)

In both cases (expressions (15) and (17)), we
observe the subdiffusion dependence (∝ tα) rather than
linear (∝ t).

The distributions g(α)(x) and ψ(α)(x) can be
expressed via the Fox generalized hypergeometric
function [26, 27]. In terms of this function, the one-
sided stable density takes the form [28]

× ε N / t/τ( ) ε〈 〉 2–( )
2N t/τ( )D

------------------------------------------– 
  g α( ) τ( )

N t/τ( )
--------------------,exp

D ε2〈 〉 ε〈 〉 2, N t/τ( )– t/τ( )α / BΓ 1 α–( )[ ] ,= =

Ψ ε t,( ) αε( ) 1– Atα

ε
--------

1/α

g α( ) Atα

ε
--------

1/α

 
  ,=

A ε〈 〉 /BΓ 1 α–( ).=

E〈 〉 ε〈 〉 tα

BΓ 1 α–( )Γ 1 α+( )
------------------------------------------------.=

g α( ) x( ) 1

α x2
---------H11

10 x 1– 1– 1,( )
1/α– 1/α,( ) 

  .=

0 2 4 x

0.40

g(α)(x)

α = 0.25

α = 0.50

α = 0.75

Fig. 2. Densities g(α)(x) of the one-sided stable distributions
for α = 0.25, 0.50, and 0.75.
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With formula (2.25.2.3) from [29], we obtain

The distributions g(α)(x) and ψ(α)(x) for different α
are plotted in Figs. 2 and 3. In Fig. 3, the limiting dis-
tribution at α = 1 corresponds to the Gaussian distribu-
tion, i.e., to finite-mean-path scattering. The basic dis-
tinction between the distribution ψ(α)(x) and Gaussian
distribution is a higher probability density at small and
large angles.

Expression (11) is applicable to an arbitrary cross
section σ(x) of single scattering, including the case of
an infinite variance of X. This problem arises when
charged particle scattering is described by the Ruther-
ford formula unless the parameter of maximal energy
losses or maximal deviation angle is introduced into the
theory. With these parameters, σ(N)(x) is described by
the Landau distribution (for the energy losses),

(18)

or the Molière distribution (for the deviation angle),

ψ α( ) x( ) 1

πx2
--------H12

20 x
1 1,( )

1 1/α,( ) 1 1/α,( ) 
  .=

σ N( ) ε( ) 1
2πi
-------- pε NA p( )–( )exp p,d

γ
∫=

A p( ) 1 pε–( )exp–( )σ ε( ) ε, σ ε( )d ε 2– ,≅
ε0

∞

∫=

A p( ) pε0b≅ pε0 pε0, bln– 1 Ce–=

σ N( ) θ( ) 1
2π
------ NA p( )–( )J0 pθ( )exp p,d

0

∞

∫=

0.01

0.5

Ψ(α)(x)

x1

0.1

α = 1/3

α = 1

Fig. 3. Distributions ψ(α)(x) for α = 1/3, 1/2, 2/3, 5/6, and 1.
The case α = 1 corresponds to the Gaussian distribution.
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(19)

The parameters ε0 and θ0 specify the least energy
losses (binding energy) and the screening angle, i.e.,
the applicability domain for the Rutherford formula. In
any case, substituting (18) or (19) into (11) yields an
expression for the related distributions in a fractal
medium that is convenient for numerical calculation.

6. TRANSPORT EQUATION FOR A FRACTAL 
MEDIUM

Let us derive transport equations in media with
exponential and power path distributions. It has been
shown above that, in the former case, generalized Pois-
son distribution (5) describes multiple scattering. By
differentiating with respect to t, it is easy to check that
it satisfies the kinetic equation

(20)

with the initial condition Ψ(x, 0) = δ(x).
In the limit t  ∞, Eq. (20) takes diffusion form

(known as the Fokker–Planck approximation)

(21)

here, the operator ∂/∂θ for the deviation angle is two-
dimensional. By virtue of Gaussian asymptotics (12),
this asymptotic equation also remains valid for a power
path distribution with a finite mean (α > 1).

To derive transport equations in a fractal medium,
consider relationship (2) for a distribution of paths q(t)
that is other than exponential. To do this, it is conve-
nient to use the scattering density f(x, t), which is
related to Ψ(x, t) as

(22)

The distribution

(23)

satisfies the integral equation

(24)

which, together with (22), generalizes kinetic equation
(20) for a medium with a given distribution of free
paths q(t).

A p( ) 1 J0 pθ–( )–( )σ θ( )θ θ, σ θ( )d θ 2– ,≅
θ0

∞

∫=

A p( ) p2θ0b≅ p2θ0 p2θ0, bln– 2 1 Ce–( ).=

∂Ψ
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-------- µΨ+ µ σ y x–( )Ψ t y,( ) yd∫=

∂Ψ
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∂x
--------–

µ X〈 〉 2

2
---------------∂2Ψ

∂x2
----------;+=

Ψ x t,( ) Q t t'–( ) f x t',( ) t'.d

0

t
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f x t,( ) q N( ) t( )σ N( ) x( )
N 0=

∞

∑=

f x t,( ) = t'q t'( ) yσ y( ) f x y– t t'–,( )d∫d

0

t

∫ δ t( )δ x( ),+
In the case of scattering with a finite variance,
σ(N)(x) is automatically described by Gaussian distribu-
tion (12) at N  ∞ and satisfies the diffusion equation

Substituting this equation into (23) and integrating
by parts yields the equation

Passing on to a power distribution of paths q(t) (α <
1), it is necessary to take into account that q(N)(t)
behaves according to (8) in the limit N  ∞. To cut
the notation, we introduce the Riemann–Liouville
operator of fractional differentiation [30]

Using the properties of stable densities, one can
show that distributions (8) satisfy the relationship

Thus, we arrive at a fractional differential equation
for the scattering density f(x, t) in the form

(25)

By convolving Eq. (25) with Q(t) = Bt–α and chang-
ing the order of integration in the term with the frac-
tional derivative by the Dirichlet rule, we arrive at an
equation for the distribution function Ψ(x, t):

(26)

For α  1, this equation turns into Eq. (21) for
normal diffusion. Equations like Eq. (26) appear in
[31, 32], where the phenomenon of slow diffusion (sub-
diffusion) is studied. In these equations, the variable t
plays the role of time and the variable x, the role of
coordinate (between scattering events, x remains con-
stant; that is, a particle is “trapped”).
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Fig. 4. Distributions p(N, t) over number of interactions at depths t corresponding, on average, to 5, 50, and 500 interactions of a
particle scattered by the medium. On the left, results for the fractal medium (the power path distribution: q(t) ~ t–α – 1, α = 1/2); on
the right, results for the regular medium (the exponential path distribution).
7. MONTE CARLO SIMULATION OF MULTIPLE 
SCATTERING IN FRACTAL STRUCTURES
The results obtained above may be checked numer-

ically by applying analog simulation of multiple scat-
tering. In this case, the one-dimensional motion of a
particle with a given distribution of paths between
interactions is considered. In the initial series of model
experiments, the numbers of interactions in the distri-
butions are compared at depths corresponding to equal
average numbers 〈N(t)〉 of interactions. Two path distri-
butions are compared: distribution (4), which corre-
sponds to a homogeneous medium with a linear density
TECHNICAL PHYSICS      Vol. 49      No. 5      2004
µ, and distribution (7) with an exponent α = 1/2, which
corresponds to a fractal medium. The results of com-
parison are demonstrated in Fig. 4. The continuous
curves show probability distributions (9) for power-law
path distribution (7) and the probability distribution
that is limiting for the Poisson distribution,

for exponential path distribution (4) (〈N〉  = µt).

pN t( )

N N〈 〉–( )2

2 N〈 〉
---------------------------– 

 exp

2π N〈 〉
---------------------------------------------,=
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Fig. 5. Distributions Ψ(θ, t) over multiple scattering angle at depths t corresponding, on average, to 5, 50, and 500 interactions of a
particle scattered by the medium. 〈Θ2〉  = 4 × 10–4 rad2. On the left, results for the fractal medium (the power path distribution:
q(t) ~ t–α – 1, α = 1/2); on the right, results for the regular medium (the exponential path distribution).
Then, the multiple scattering angle distribution is
considered. A particle that experienced an ith interac-
tion is assigned a random two-dimensional vector Θi .
Its direction is taken to be azimuth-symmetric, and its
magnitude corresponds to the Rutherford distribution
p(Θ) ~ Θ–4 (where the minimal and maximal scattering
angles Θmin and Θmax are introduced to avoid the diver-
gence of 〈Θ2〉). For comparison (Fig. 5), for depths cor-
responding to equal mean values 〈N(t)〉 of the number
of interactions, the multiple scattering angle distribu-
tions are shown versus asymptotic solutions (13) and
(11). Similar numerical experiments may be carried out
for the energy loss distribution.

CONCLUSIONS

We studied the motion of particles through point
fractal-like systems [19–22] that simulate a fractal
medium. Particles propagating in such media are shown
to have a power free path distribution with an exponent
α (see (7)). For α > 1, the distribution Ψ(t, x) of a mul-
tiple scattering random parameter at a depth t depends
asymptotically (at t  ∞) only on the mean free path
TECHNICAL PHYSICS      Vol. 49      No. 5      2004
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〈τ〉 and does not depend on whether the distribution of
τ is exponential or power. In the case α < 1, when the
mean free path is infinite, we derived expression (9) for
the probability distribution of the number of interac-
tions at a depth t and deduced universal rule of transfor-
mation (11), which allows one to find the distribution of
a multiple scattering random parameter X for any scat-
tering cross section σ(x). For a finite variance of X,
deviation angle distribution (13) and energy loss distri-
bution (14) are found. The expressions for the mean
energy losses and for the mean-square angle of multiple
scattering at a depth t exhibit the subdiffusion depen-
dence, ∝ tα (α < 1), which increases slower than the nor-
mal dependence, ∝ t. The distributions Ψ(t, x) satisfy
fractional differential equations (26) of subdiffusion
type when the mean free path is infinite. Numerical
simulation of multiple scattering with a power free path
distribution confirms analytical results.
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Abstract—An analytical solution to the axisymmetric electrostatic problem for a torus placed in an infinite cir-
cular cylinder is derived. The capacitance of the torus is calculated for different conductor geometries. © 2004
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In designing various devices, one sometimes runs
into the need for analyzing the electrostatic field gener-
ated by a set of conductors of different configuration
[1, 2]. The solution of the problem stated is reduced to
the solution of an infinite set of algebraic equations
using formulas that relate cylindrical and toroidal har-
monic functions. The capacitance of the torus is calcu-
lated for a number of conductor geometries (see Table 2).
Earlier, a similar problem was solved by approximate
methods alone [3, 4].

STATEMENT AND SOLUTION 
OF THE PROBLEM

Consider the axisymmetric electrostatic problem for
a torus T with a minor radius r and major radius R that
is placed in an infinitely long circular cylinder Γ of
radius b (see figure). To analytically solve the problem,
we take the point 0 as the origin of the cylindrical coor-
dinates {ρ, z, ϕ} [5, 6],

and of the toroidal coordinates {α, β, ϕ} [5, 6],

Then, the conductors are described as follows:
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Our goal is to find the electrostatic potential U that
satisfies (i) the Laplace equation ∆U = 0 (∆ is the Lapla-
cian) everywhere inside the cylinder except for the
torus surface; (ii) the boundary conditions on the torus
and cylinder surfaces,

(1)

(2)

and (iii) the condition at infinity

(3)

where M is an arbitrary point in the space.

Applying the method of separation of variables
[5, 6], we represent the electrostatic potential U as the
superposition of cylindrical and toroidal harmonics so
that condition at infinity (3) is fulfilled automatically:

Γ ρ b= , 0 ϕ 2π, ∞– z ∞< <≤ ≤{ } .=

U T V t = const,=

U Γ 0;=

U M( ) 0 for M ∞,
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where

(4)

(5)

( ) is the Legendre function of the first kind

or the torus function, I0(λρ) is the zeroth-order Bessel
function of the first kind [5–8], and  = R/r.

The unknown coefficients xn and the function Z(λ)
are determined from boundary conditions (1) and (2).

FULFILLMENT OF THE BOUNDARY 
CONDITIONS

To satisfy boundary condition (1) on the torus sur-
face, we represent the function U2(ρ, z) via the toroidal
harmonics using the formula [9]

where
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kind or the torus function [5–8].
Then,
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satisfying boundary condition (1), we come to

(9)

Dividing both sides of (9) into 
and using the representation [5]

we find from (9)

or, by virtue of the uniqueness of expansion in Fourier
series,

(10)

To satisfy boundary condition (2) on the cylinder
surface, we represent the function U1(α, β) via the
cylindrical harmonics using the integral formula [9]

where K0(x) is the Macdonald function [5–8].
Then,

(11)
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According to representations (5) and (11), boundary
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or 

(13)

Substituting Z(λ) from (13) into (8) and taking into
account representation (12) yields a relationship
between the function Rn(λc) and coefficients xk:

(14)

Now, using representation (14), we exclude the
function Rn(λc) from (10) to arrive at an infinite set of
linear algebraic equations in the unknown coefficients
xk, which enter into the initial representation of the
potential:

(15)

where

(16)

Let us transform improper integral (16) to a form
suitable for computer calculation.
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Table 1

n Ci

1 –0.5

2 0.0625

3 –0.177083333333

4 0.021809895833

5 –0.12858072917

6 0.01009792752

7 –0.0835903592

8 0.00555534

9 –0.06640809

10 0.0034603

11 –0.055046

12 0.00236

13 –0.047
In [10], the first 50 values of the improper integral
are given:

The remaining values of the integral Lk (k > 49) can
be calculated with an accuracy of 10–12 by the formula
[10]

where

are binomial coefficients.

The values of the coefficients Ci are listed in Table 1.

Using the expansion of the product of the Bessel
functions in a power series [11],

we can show that the integral

(17)

is calculated via tabulated integrals Lk by the formula
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where a = c/b < 1.

CAPACITANCE OF THE TORUS

The charge Qt of the torus T is calculated through
the coefficients xn by the formula [12]

where ε is the permittivity of the medium.
Table 2 lists the normalized capacitance Knorm =

Qt/4πεbVt of the torus, which was calculated for differ-
ent geometries of the conductors. The extreme right
column of Table 2 shows the capacitance K of an iso-
lated torus according to [1].

The infinite set of linear algebraic equations (15)
was solved by the truncation method [13]. As follows
from the computational experiment, a truncation order
of 20 will suffice to numerically solve set (15) with an
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accuracy of 0.001 for the geometrical parameters con-

sidered. The coefficients (a), which are conver-
gent series (18), were calculated accurate to 10–5.

The Legendre (torus) functions ( ) and

( ) were calculated by the formulas [5, 7]

The calculations were carried out with the Math-
CAD 2000 integrated software system [14].
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Abstract—A crossed-field cold-hollow-cathode arc is stable at low working gas pressures of 10–2–10–1 Pa,
magnetic-field- and gas-dependent arcing voltages of 20–50 V, and discharge currents of 20–200 A. This is
because electrons come from a cathode spot produced on the inner cathode surface by a discharge over the
dielectric surface. The magnetic field influences the arcing voltage and discharge current most significantly.
When the plasma conductivity in the cathode region decreases in the electric field direction, the magnetic field
increases, causing the discharge current to decline and the discharge voltage to rise. The discharge is quenched
when a critical magnetic field depending on the type of gas is reached. Because of the absence of heated ele-
ments, the hollow cathode remains efficient for long when an arc is initiated in both inert and chemically active
gases. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

A low-pressure arc finds wide application in various
gas-discharge devices owing to low arcing voltages,
high discharge currents, and a wide range of pressures
at which the arc is initiated and maintained. In ion
sources, an arc discharge generates both gas ions and
ions of almost all conducting materials [1, 3]. In
plasma-assisted processes of surface modification of
condensed media, vacuum and gas arcs ensure high
energy efficiency of technological equipment, which is
otherwise a challenge. A glow discharge, which is
today commonly used for ion nitridation, has a high
ignition voltage (hundreds of volts) and a high nitrogen
pressure (~104 Pa) at which the discharge is initiated
and maintained. Therefore, it is necessary to introduce
hydrogen into this discharge, which binds to oxygen
present in the residual atmosphere. The lifetime of an
incandescent-cathode arc discharge [4] is limited,
because the cathode is damaged by ion bombardment
and poisoned in chemically active media. A vacuum arc
is sometimes inapplicable because of a large amount of
droplets and atoms of the cathode material in the
plasma flow, although, as was shown in [5], the percent-
age of gas ions in a vacuum arc may be increased con-
siderably by modifying the design of related devices.
Finally, it was reported [6] that surface nitridation in the
ammonia plasma flow generated by a vacuum discharge
can be carried out without heating to high temperatures.

A cold-hollow-cathode arc discharge with a cathode
spot produced on the inner surface of the hollow cath-
ode [7, 8] makes it possible to reduce or even prevent
penetration of the cathode material into the anode
region, i.e., into the process chamber, and makes it pos-
1063-7842/04/4905- $26.00 © 0545
sible to maintain the arc for a long time in chemically
active gases with all the advantages of an arc retained.

DISCHARGE SYSTEM

In the discharge system schematically shown in
Fig. 1, an arc initiated by a discharge over the dielectric
surface arises between a hollow water-cooled cathode
(the diameter D = 110 mm and the length L = 200 mm)
and a hollow anode (i.e., a vacuum chamber measuring
600 × 600 × 600 mm). The discharge is maintained

– +
Ud

dD

Ut

Gas

Water

1 2 3 4 5

6

7

Fig. 1. Schematic view of the hollow-cathode arc discharge
system: (1) hollow cathode, (2) magnetic coil, (3) arc
arrester, (4) insulator, (5) vacuum chamber, (6) igniter, and
(7) gas inlet.
2004 MAIK “Nauka/Interperiodica”
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through a diaphragm of diameter d = 15–50 mm in a
floating-potential arc arrester mounted on the end face
of the hollow cathode.

The arc arrester with the diaphragm prevents the
cathode spot from reaching the end face of the hollow
cathode. Also, it prevents the transition of the diffusive
discharge in the anode region to the pinching discharge
with the formation of an anode spot on a nearby part of
the anode.

A short magnetic coil wound on the hollow cathode
generates an axial magnetic field in the cathode region.
According to [8], the cathode spot in crossed fields cir-
cles on the inner surface of the hollow cathode, remain-
ing in the maximum of the nonuniform magnetic field,
with the spot velocity increasing with increasing mag-
netic field. The products of cathode sputtering (drop-
lets, atoms, and ions) accumulate mainly on the hollow
cathode surface opposite to the cathode spot, thereby
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Fig. 2. I–V characteristics of the discharge in (1) nitrogen,
(2) oxygen, and (3) argon filling the discharge space with
the hollow copper cathode. (4) Discharge in argon in the
case of the stainless steel cathode. The gas pressure is p =
0.44 Pa; B = 3 mT.
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Fig. 3. I–V characteristics of the discharge for (1) graphite,
(2) copper, (3) aluminum, and (4) stainless steel cathodes.
The working gas is argon at p = 0.44 Pa; B = 3 mT.
reducing the erosion of the cathode and raising its life-
time. A part of the sputtered cathode material that
depends on the diameter of the diaphragm in the arc
arrester may reach the anode region of the discharge
(hereafter, the anode region) in the form of ions, atoms,
and droplets.

There are different ways to remove the droplets
[9−11]. In this work, we narrowed the diaphragm in the
arrester in order to prevent the cathode material from
penetrating into the anode region. However, a decrease
in the diameter d changes the discharge conditions and,
accordingly, the plasma parameters in the anode region.

RESULTS AND DISCUSSION

We experimented with three gases and several hol-
low cathodes made from stainless steel, copper, alumi-
num, and graphite. The diameter d = 50 mm of the dia-
phragm in the arc arrester was fixed, d = 50 mm.

At a constant gas pressure p = 0.44 Pa and a mag-
netic field B = 0.6–14 mT, the arcing voltage is indepen-
dent of the discharge current in a wide current range for
all the gases. The arcing voltage was the lowest in an
argon atmosphere. In the working pressure range p =
(8–80) × 10–2 Pa, the arcing voltage varies by no more
than 10% for all the gases (Fig. 2).

Since the cathode drops for various materials are
close to each other (15–21 V for Cu, 16–20 V for Al,
and 17–18 V for Fe [12]), the arcing voltages for the
stainless steel and copper cathodes are close to each
other (Fig. 3). Surprisingly, the arcing voltage for the
graphite cathode is 35–50% higher, although, accord-
ing to the known data for graphite [13], it was expected
to be minimal.

Another intriguing feature of the graphite-cathode
arc discharge is an extremely low velocity of the cath-
ode spot on the inner cathode surface: 3 mm/s versus
15 m/s for cathodes made from pure metals in the same
magnetic field.

The magnetic field affects the arcing voltage and
discharge current most significantly. After the dis-
charge has been ignited in an initial magnetic field, an
increase in the field increases the arcing voltage and
decreases the discharge current (Fig. 4).

The decrease in the discharge current and arc
quenching upon reaching a critical magnetic field are
associated with a decrease in the longitudinal plasma
conductivity (i.e., the conductivity in the electric field
direction) given by

(1)

where σe = e2ne/mνcol is the conductivity in the zero
magnetic field, ωH = eB/m is the cyclotron frequency,
νcol = nnvσ is the electron–electron collision frequency,
v  is the electron velocity, ne is the electron concentra-
tion, nn is the concentration of neutrals, and σ is the

σ''
σe

1 ωH
2 /νcol

2+
---------------------------,=
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transport elastic-collision cross section. According to
Eq. (1), as the magnetic field (and, accordingly, the
cyclotron frequency) increases, the longitudinal con-
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Fig. 4. (a) Discharge current and (b) arcing voltage vs. the
magnetic field with (1) oxygen, (2) nitrogen, and (3) argon
in the discharge space for the case of the hollow copper
cathode and (4) with argon for the case of the stainless steel
cathode. The gas pressure p = 0.44 Pa.
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Fig. 5. Discharge current and arcing voltage vs. the argon
pressure. The magnetic field is B = 3 mT.
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ductivity decreases and the current discharge declines.
In the magnetic field range studied, the cyclotron fre-
quency varied from 9.0 × 107 to 9.0 × 108 s–1. At an
argon pressure p = 4.4 × 10–1 Pa and an average energy
electron near the cathode ε =10–20 eV, the collision fre-
quency νcol = 1.5 × 108 s–1. The decrease in the dis-
charge current with increasing magnetic field correlates
(at least qualitatively) with the magnetic field depen-
dence of the conductivity. The fact that the rate of vari-
ation of the discharge current depends on the magnetic
field and the type of gas may be accounted for by dif-
ferent electron–electron collision frequencies. In the
range of electron energies near the cathode considered
in this work (10–20 eV), the electron–electron collision
frequency in argon is about twice as high as that in
nitrogen and oxygen. Accordingly, the discharge cur-
rent in the argon plasma decreases more slowly and the
arc is quenched in a magnetic field exceeding that in
nitrogen by a factor of 1.5–2.

The effect of magnetic field on the arcing voltage
and discharge current depends on the gas pressure. At a
lower magnetic field (B = 3 mT), the discharge current
does not depend on the pressure in the range 0.25–
1.4 Pa (Fig. 5). At a higher magnetic field (B = 9 mT),
the arc is initiated and remains stable at higher pres-
sures. As the pressure increases further, the voltage lin-
early decreases, while the current linearly rises (Fig. 6).
The rise in the initial pressure of the stable discharge in
the higher magnetic field is associated with the need for
increasing the electron–electron collision frequency in
order that the longitudinal conductivity of the plasma
remain constant (see (1)).

PLASMA PARAMETERS IN THE HOLLOW 
ANODE

A change in the diameter d of the diaphragm may
change the discharge regime and, correspondingly, the
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Fig. 6. The same as in Fig. 5 for B = 9 mT.
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plasma parameters in the anode region. For d = 5, 2, and
1.5 cm; a discharge current of 50 A; and an argon pres-
sure p = 4.4 × 10–1 Pa, the Ar plasma parameters were
measured at a distance of 30 cm from the outer end face
of the arc arrester using a plane probe with a guard ring.
The results are listed in Table 1.

It is seen from Table 1 that, as the diaphragm nar-
rows, the plasma density n and plasma potential ϕp
decrease, while the electron temperature Te grows pro-
vided that the discharge voltage Ud is constant. The
floating potential ϕf remains unchanged and is distinct
from the value calculated by the formula

(2)

where Te is the electron temperature in volts, M is the
ionic mass, and m is the mass of an electron.

As follows from visual observations, the narrowing
of the diaphragm not only affects the plasma parame-
ters in the anode region but also induces modifications
of the discharge structure. At small diameters of the
diaphragm, its center glows more brightly. This effect is
most probably due to fast electrons present in the dia-
phragm with the concentration varying as ne(r) ∼  1/r [4]
and also due to the higher plasma density. At an elastic
electron–electron scattering cross section in argon σ =
1.2 × 10–15 cm–2, pressure p = 4.4 × 10–1 Pa, and mean
free path λ ≈ 10 cm, there appears the probability that
electrons will oscillate in the hollow cathode plasma
and unrelaxed fast electrons will escape into the anode
region and ionize the gas.

Table 2 lists the plasma parameters measured in the
anode region at a discharge current Id = 50 A and a mag-
netic field B = 3 mT. As the argon pressure changes

ϕ f Te
M

2πm
----------- 

 
1/2

,ln=

Table 1.  Plasma parameters as a function of the diaphragm
diameter

Diameter 
d, mm Ud, V ϕp, V n × 109, 

cm–3 Te, eV ϕf, V
ϕf (calcu-
lation), V

50 26.5 4.0 5.3 3.4 –11.5 (–16.2)

20 27.0 3.8 5.2 3.6 –11.5 (–17.1)

15 27.0 3.2 3.9 4.0 –11.5 (–18.6)

Table 2.  Plasma parameters versus pressure

Pressure, Pa n × 109, cm–3 ϕf, V ϕp, V Te, eV

0.05 4.4 –16.5 7.2 3.6

0.33 9.2 –13.5 4.4 2.0

0.44 6.8 –12.5 3.6 3.1

0.9 4.0 –11.5 2.7 4.2
from 3 × 10–1 to 9 × 10–1 Pa, the electron temperature
increases, while the plasma density, the plasma poten-
tial relative to the anode, and the floating potential
decrease. However, at a low pressure of 5 × 10–2 Pa, the
plasma density and temperature behave in a manner
other than at high pressures. It is visually observed that
the discharge undergoes structural transformation at
this pressure: the diffusive discharge turns into the
pinching discharge, the pinch being related to the cath-
ode spot rotating in the hollow cathode. This fact is
probably associated with the escape of fast electrons
from the hollow cathode, which excite and ionize gas
molecules in the anode region.

In the case of the graphite-cathode discharge, the
plasma parameters in the anode region are, as expected,
much different from those considered above. At the dis-
charge current Id = 50 A, arcing voltage Ud = 40.5 V, and
magnetic field B = 12 mT in argon, the plasma potential
becomes negative relative to the anode (ϕp = –3.2 V),
the negative floating potential rises to ϕf = –20.5 V, and
the electron temperature increases to Te = 8 eV.

PENETRATION OF THE CATHODE MATERIAL 
INTO THE ANODE REGION

An arc discharge with a cathode spot causes cathode
erosion, which depends on the discharge current. At a
discharge current of 60–80 A, the specific erosion (the
material lost per unit charge) may be as high as 0.5–
1.2 × 10–4 g/C depending on the cathode material [15].
As was mentioned above, the cathode material may
enter into the anode region as ions, atoms, or droplets.
For the electrode configuration considered, the amount
of the material falling into the anode region will depend
on the diameter of the diaphragm in the arc arrester, as
well as on the ion and atom distribution in the hollow
cathode. Let us estimate the distribution of the cathode
material particles taking into account elastic collisions
between the particles and gas atoms. We suppose that
the atoms and ions leave the cathode normally to its sur-
face. Then, the number of the particles traveling a dis-
tance x and changing their initial direction as a result of
elastic collisions and loss of momentum is described by
the expression

(3)

where Nc is the number of particles leaving the cathode
and λ = 1/nnσ is the mean free path of the particles.

Let the elastic collision cross sections for cathode
material atoms (Fe, Al, and Cu) be close to that for Ar
atoms. Then, at p = 0.44 Pa and λ = 1.5 cm, almost all
the atoms will undergo collisions and change their
direction over the distance to the axis of the hollow
cathode (x = D/2 = 5 cm). Due to the effects of charge
exchange and polarization of neutrals, ion scattering
will be more intense than atom scattering. Therefore,

∆N Nc 1 x
λ
---– 

 exp– ,=
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10 µm10 µm (b)(a)

Fig. 7. Image of the target surface exposed to the arc discharge with the hollow copper cathode in the argon atmosphere. The diam-
eter of the diaphragm is (a) 5 and (b) 1.5 cm.
the particle distribution in the hollow cathode may be
considered isotropic, in a first approximation. Let us
estimate roughly the arrival of ions and atoms at the
anode region. If their distribution in the hollow cathode
is isotropic, the yield f of cathode material particles is
given by the ratio of the diaphragm surface area S to the
cathode total surface area Sc, f = S/Sc. For example, with
a hole diameter d = 5 cm, the number Na of the particles
falling into the anode region is Na = fN0 = 1 × 10−2N0;
for d = 1.5 cm, Na = 0.001N0 (here, N0 is the number of
particles in the hollow cathode). Note that, in a standard
film evaporator, a layer 3 µm thick is applied for 2 h. In
our discharge system, the thickness of an impurity layer
under similar operating conditions will be within sev-
eral tens of monolayers when the erosion products con-
tain 80% of ionized and vapor phases.

For experimental detection of droplets entering the
anode region, glass and metallic targets were arranged
at a distance of 30 cm from the intermediate electrode.
For an arc duration of 1 h, droplets from 0.5 to 4 µm in
size were revealed. Their concentration varied between
100 and 120 mm–2 at a diaphragm diameter of 5 cm and
between 10 and 20 mm–2 at a diaphragm diameter of
1.5 cm (Fig. 7).

For the stainless steal cathode and the same dis-
charge current, the number of droplets is one order of
magnitude smaller. They almost disappear on the
TECHNICAL PHYSICS      Vol. 49      No. 5      2004
metallic target if a negative bias of 100 V is applied to
it. This well-known effect [16–18] arises when droplets
negatively charged to the floating potential in the dis-
charge plasma are reflected from a negatively biased
object.

CONCLUSIONS

In a cold-hollow-cathode crossed-field arc dis-
charge, the cathode spot initiated by a discharge over
the dielectric surface moves on the cathode inner sur-
face, remaining in the maximum of the magnetic field.
For currents of 20–200 A, a low-pressure gas arc is sta-
ble in a narrow range of magnetic fields. At a constant
pressure and magnetic field, the arcing voltage is inde-
pendent of the discharge current (flat I–V characteristic)
and amounts to 20–50 V depending on the sort of the
working gas and cathode material. Since droplets and
atoms of the sputtered cathode material deposit on the
surface opposite to the cathode spot, the cathode life-
time increases. Under certain conditions, penetration of
the cathode material into the anode region can be pre-
vented. By moving the maximum of the magnetic field
produced by a short coil over the hollow cathode, i.e.,
displacing the cathode spot, one can ensure uniform
cathode wear and utilize most of its working surface. To
prevent the droplets reflected by the cathode inner sur-
face from penetrating into the anode region, the surface



550 SCHANIN et al.
area of the diaphragm between the cathode and anode
regions must be decreased appropriately. Stainless steel
is the most promising cathode material for generating a
gas plasma. In this case, the fraction of droplets is the
lowest among the materials investigated.

A plasma produced by the discharge studied in this
work was used for surface modification of steel and
alloys.
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Abstract—The influence of low electric fields on the average electron energy in an afterglow krypton plasma
is studied by means of probe diagnostics and theoretical analysis. It is shown that, when the average electron
energy is lower than the energy corresponding to the minimum scattering transport cross section, the degree of
plasma ionization substantially affects the shape of the electron energy distribution function (EEDF). The non-
equlibrium character of the EEDF results in the density dependence of the coefficient of ambipolar diffusion,
which leads to a change in the radial profile of the charged particle density, an increase in the drop in the ambi-
polar potential across the plasma, and an increase in the rate of diffusive plasma decay. These effects substan-
tially enhance the diffusive cooling of electrons, which is probably a decisive factor influencing the electron
energy balance in high-Z noble gases. © 2004 MAIK “Nauka/Interperiodica”.
† INTRODUCTION
The presence of a deep minimum in the energy

dependence of the cross sections for electron elastic
scattering in high-Z noble gases (Ar, Kr, Xe) substan-
tially influences the transport features of the electron
gas [1]. This influence is especially pronounced in non-
self-sustained discharges at low electric fields when the
average electron energy is close to the energy corre-
sponding to the Ramsauer minimum, 〈ε〉 ≈ 0.2–0.6 eV.
The shape of the electron energy distribution function
(EEDF) and, accordingly, the average energy and drift
velocity of electrons depend on the degree of ionization
[2]. In a number of theoretical studies, the existence of
hysteretic effects [3, 4] and bistable states [5] was pre-
dicted. An analysis was made of the possibility of the
existence of a negative differential conductivity [6] and
the absolute negative conductivity in mixtures of high-
Z noble gases with electronegative gases [7] or in a pho-
toplasma [8]. It should be noted that the EEDF has not
yet been studied experimentally under conditions con-
sidered in [2–8].

In [2–8], the EEDF and the kinetic coefficients were
calculated parametrically for an unbounded plasma,
without considering boundary conditions imposed by
the electrodes and the wall of a gas-discharge tube. The
boundary conditions can substantially influence the
domain of existence of the predicted effects. Thus, a
transition from one bistable state to another is bound to
be accompanied an abrupt change in the current flow-
ing through the plasma, because the electron drift
velocity changes jumpwise in the positive column of a
discharge. To predict the experimental conditions under
which the above effects will occur, it is also necessary

† Deceased.
1063-7842/04/4905- $26.00 © 20551
to analyze the possibility of jumpwise current density
variation in the cathode sheath; such analysis, however,
has not yet been performed.

The presence of the wall of a gas-discharge device
causes a diffusive cooling of the electron gas [9]. The
electrons spend their energy on maintaining the ambi-
polar field in both the plasma volume and the wall
sheath. The rate of diffusive losses depends on the
shape of the EEDF. It was shown that depletion of the
high-energy part of the EEDF (in comparison to a Max-
wellian distribution) due to the diffusive loss of fast
electrons escaping to the wall leads to a decrease in the
potential jump at the wall [10].

The presence of a heating electric field can lead to
an inverse effect, i.e., to an increase in the population of
high-energy electrons in comparison to the equilibrium
distribution when the value of the average electron
energy is below the energy corresponding to the Ram-
sauer minimum, 〈ε〉  < εR. The reason is that the elec-
trons gain energy more rapidly when their energy cor-
respond to the minimum frequency of transport colli-
sions with noble-gas atoms. The excess population of
electrons that have a high diffusion coefficient
increases the electron flux toward the tube wall. To
maintain plasma quasineutrality, the ambipolar electric
field should increase, since this field suppresses the
electron flux toward the wall. This effect should be
most pronounced at large distances from the axis of the
discharge tube, where the electron density is low. Due
to radial variations in the EEDF, the ambipolar diffu-
sion coefficient depends on the charged particle density.
The effect of density-dependent diffusion was analyzed
in studying the diffusion of ionized impurities in semi-
conductors [11]. Under the conditions of a low-temper-
004 MAIK “Nauka/Interperiodica”
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ature plasma of high-Z noble gases, such analysis has
not yet been performed.

The objective of this paper is an experimental study
and theoretical analysis of the formation of the EEDF
in the afterglow of a krypton plasma in the presence of
low electric field.

EXPERIMENTAL SETUP

The experiments were carried out in a cylindrical
glass tube with an inner diameter of R = 0.6 cm and a
length of L = 20 cm. The gas pressure in the tube was
p = 2.2 torr. A repetitive discharge in the tube was
excited with the help of a pulsed power source (PPS).
The discharge-pulse duration was τ = 5 µs, the repeti-
tion rate was f = 620 Hz, the discharge current was i =
150 mA, and the reduced electric field at the instants of
current measurements was E/N = 50 Td. A low electric
field was created at a given instant of time by the second
PPS. The EEDF and the electric field were measured by
cylindrical probes (with a radius of a = 0.045 mm and
length of l = 2.5 mm) located at the axis of the discharge
tube. To measure the current–voltage (I–V) characteris-
tics of the probes, we used an electronic circuit con-
nected to a PC. The probe biasing was performed with
the help of a 12-bit digital-to-analog converter con-
trolled by the PC. The I–V characteristics were
recorded using an expansion board incorporating a
12 bit analog-to-digital converter. The time resolution
of the circuit was 10 µs, and the current sensitivity was
1 nA. The EEDFs were determined by numerically dif-
ferentiating the I–V characteristics of the probes.

The systematic error of the electron-temperature
measurements by the method of doubly differentiating
the I–V probe characteristic was determined by solving
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Fig. 1. Relaxation of the electron temperature Te after the
end of the heating pulse: (1) experimental results, (2) calcu-
lation taking into account diffusive losses, and (3) calcula-
tion assuming Hdif = 0.
model problems. The method for calculating the error
related to the finite ratio of the probe radius to the elec-
tron mean free path is described in [12]. The calcula-
tions showed that the error in determining the tempera-
ture using the energy range Te ≤ ε ≤ 6Te did not exceed
10% at Te ≤ εR.

The density of excited Kr atoms (3P0, 3P1, 3P2, and
1P1) at the discharge axis was measured by the absorp-
tion method. As an irradiation source, we used a branch
pipe of the discharge tube in which a low-power high-
frequency discharge was excited. The presence of this
discharge had no effect on the plasma parameters in the
tube. Optical signals were measured by a photon-count-
ing system controlled by a PC.

RELAXATION OF THE ELECTRON 
TEMPERATURE IN THE AFTERGLOW PLASMA

First, we consider the relaxation of the electron tem-
perature in the absence of a heating electric field. Typi-
cal measurement results are presented in Fig. 1
(curve 1). These data were obtained after the end of a
100-µs heating pulse, which provided an initial electron
temperature of Te . 0.36 eV. The electron density aver-
aged over the cross section of the discharge tube was
determined from the plasma conductivity and
amounted to ne . 1011 cm–3. At this ne value, the elec-
tron–electron collisions in the absence of an electric
field form a Maxwellian EEDF of the bulk electrons.
The fast electrons produced in reactions of chemoion-
ization of two excited (primarily, metastable) krypton
atoms and superelasic collisions between electrons and
excited atoms determine the high-energy (ε > 6 eV) part
of the EEDF. Fast electrons result in an additional heat-
ing of the bulk electrons. This is why, under the condi-
tions of quasisteady relaxation of Te (at t > 500 µs), Te

is much higher than the temperature of the neutral com-
ponent.

Figure 1 also shows the results of calculations of Te

relaxation. The calculations were performed using the
balance equation for the average electron energy

(1)

where Hea and Hdif describe the electron energy losses
by elastic electron–atom collisions and by diffusive
cooling. The electron heating is produced by the elec-
tric field HeE and inelastic collisions of electrons with
excited krypton atoms Hin.

Under afterglow conditions, we have HeE = 0 and,
for a Maxwellian electron distribution, the electron
temperature is Te = 2〈ε〉 /3. The terms Hea and Hdif are
written as follows:

(2)

∂ ε〈 〉
∂t

----------- Hea–= Hdif HeE H in,+ +–

Hea δνea Te( ) Te Ta–( ),=
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(3)

where δ = 2m/M is the fraction of energy transferred
from an electron to an atom in an elastic collision event
(here, m and M are the masses of an electron and atom,
respectively), νea(Te) is frequency of elastic electron–
atom collisions (in calculating νea(Te), we used the data
on the cross sections for elastic electron–atom colli-
sions from [13]), τd = Λ2/Da is the characteristic time of
ambipolar diffusion, Λ is the diffusion length, Da is the
ambipolar diffusion coefficient, Φpl is the potential drop
across the plasma, and Φsh is the potential drop across
the wall sheath.

A separate analysis showed that the inelastic pro-
cesses related to the excitation from the ground and
metastable states (including a transition from a meta-
stable level to a resonance level [14] and to configura-
tions lying higher this level [15]) are of less importance
in comparison to energy losses due to elastic collisions
at the measured density of excited atoms [3P2] . 2 ×
1010 cm–3.

Calculation of the heating of the Maxwellian por-
tion of the EEDF by fast electrons is a rather compli-
cated problem. The main difficulty is to find the relation
between the flux of fast electrons escaping onto the wall
in the free-diffusion regime and the rate of collisional
energy losses of electrons in the plasma volume. This
relation depends on the potential of the tube wall. The
effective energy transferred to the bulk of the electrons
can vary by several orders of magnitude, depending on
the relaxation mechanism of fast electrons [16]. This
problem was analyzed in detail in [17] using neon after-
glow as an example. In our case, we used the energy
balance equation to find Hin under the conditions of
quasi-steady relaxation of the electron temperature
(∂Te/∂t = 0). Such conditions occur at relatively long
times after the end of the discharge current pulse. To
calculate Hin, we used the measured quasi-steady value
of the electron temperature, Te = 0.05 eV. Since at times
of 400 ≤ t ≤ 550 µs, at which the measurements of Te

were performed, the relative change in the metastable-
atom density was small (less than 10%), we assumed
Hin to be time-independent.

In calculating Hdif, we used the following expres-
sions, which are valid when the electron distribution is
Maxwellian [10]: Da = Di(1 + Te/Ti), where Di is the ion
diffusion coefficient and Ti = 0.026 eV is the ion tem-
perature; Λ = R/µ0, where µ0 = 2.405 is the first root of
the zeroth-order Bessel function J0; Φpl = Teln(Λ/λi),
where λi . 10–3 cm is the ion mean free path; and Φsh =

Teln .

Under our experimental conditions, the following

inequality holds: λε(ε) @ Λ, where λε(ε) = λ(ε)/  is
the electron energy relaxation length. This length is

Hdif
1
τd

---- eΦpl eΦsh+( ),=

MTe( )/ mTi( )

δ
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determined by the electron mean free path λ(ε) in elas-
tic collisions of electrons with krypton atoms. Thus, we
have λε(εR) . 400 cm. Under these conditions, the elec-
tron heat conduction equalizes the Te distribution over
the cross section of the tube, so that in calculating the
ambipolar flux velocity, thermal diffusion can be
ignored [18].

The Te relaxation was calculated using two approxi-
mations. In the first approximation, we took into
account energy losses due to elastic collisions and dif-
fusive cooling (Fig. 1, curve 2). It can be seen that the
calculations agree satisfactorily with the experiment. In
the second approximation, diffusive cooling was
ignored (Hdif = 0). It follows from Fig. 1 (curve 3) that
energy losses due to elastic electron–atom collisions
cannot provide the experimentally observed decrease in
Te. This result indicates a significant contribution of dif-
fusion processes to the electron energy balance in our
case.

ELECTRON TEMPERATURE IN THE HEATING 
PULSE

Figure 2 shows the results of measurements of the
longitudinal reduced electric field E/N (curve 1) and the
electron temperature Te (curve 2) in a heating electric-
field pulse.

The measured value of Te at the end of the heating
pulse is Te = 0.25 ± 0.05 eV. The electric field varies
only slightly during the second half of the heating
pulse. For this reason, when calculating electron heat-
ing in the electric field HeE(Te) = µeE2, where µe is the
electron mobility), the experimental value of the
reduced field was approximated by a constant value
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Fig. 2. Time evolution of the electron temperature Te during
the heating pulse: (1) longitudinal reduced electric field
E/N, (2) electron temperature, (3) approximation of the
reduced electric field E/N used in calculations, and (4) Te
calculated assuming a Maxwellian EEDF.
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E/N = 0.1 Td. Figure 2 shows the results of calculations
of Te under the assumption that the EEDF is Max-
wellian (curve 4). A comparison of the calculated
results with the experiment reveals two specific fea-
tures. First, both the experiment and calculations dem-
onstrate the weak dependence of Te on time during the
second half of the heating pulse (340 ≤ t ≤ 390 µs). This
fact means that, for an analysis in this time interval, we
can use a quasi-steady approximation of the energy bal-
ance equation, ∂Te/∂t = 0. Second, the calculated value
of the electron temperature during the second half of
the heating pulse is almost three times the experimental
value. If the experimental value is substituted into the
energy balance equation, then the heating power turns
out to be more than one order of magnitude higher than
total energy losses due to elastic collisions and diffu-
sive cooling.

In our opinion, the discrepancy between the calcula-
tions and experiment can be attributed to the radial non-
locality of the EEDF. Let us consider a model of the for-
mation of the EEDF. The main processes determining
the shape of the EEDF under these conditions are the
electron–electron and electron–atom collisions, the
longitudinal electric field, and the electron diffusion
toward the tube wall. Taking into account these pro-
cesses, the analytical expression for the EEDF has the
form [19, 20]

(4)

where the factor Cn is determined by the EEDF normal-

f ε( ) Cn
εd

T ε( )
-----------

0

ε

∫–
 
 
 

,exp=
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Fig. 3. EEDF calculated by formula (4) at Te = 0.2 eV, E/N =

0.1 Td, and different degrees of ionization: ξ = (1) 10–6,
(2) 10–7, (3) 10–8, and (4) 10–10.
ization condition

(5)

and the characteristic scale of EEDF decay, T(ε), is
defined as follows:

(6)

Here, νee(ε) = πe4ne Ln/ ε3/2 is the electron–elec-
tron collision frequency, Ln is the Coulomb logarithm,
A0(ε/Te) = 0.385ε/Te at ε/Te ≤ 2.6, and A0(ε/Te) = 1 at
ε/Te ≥ 2.6.

It follows from this expression that T(ε) depends
substantially on the energy range and the degree of ion-
ization. In the thermal energy range (ε ! εR), for the
degree of ionization ξ ≡ ne/[Kr] ≥ 10–6, and at E/N ≤
0.1 Td, the dominant process is electron–electron colli-
sions, so that T(ε) = Te. As the energy increases, the role
of electron–electron collisions progressively decreases.
In the energy range corresponding to the Ramsauer
minimum, the influence of the field term increases and
the EEDF can differ markedly from Maxwellian. In cal-
culating the EEDF by formulas (4)–(6), it is necessary
to know Te, which can be calculated using the balance
equation for the mean energy or can be determined
experimentally. Because of the presence of diffusive
losses (the term Hdif in Eq. (1)), the value of Te is always

lower than the  value determined by the local energy
balance with allowance for Hea and HeE only. The most
pronounced effect of Hdif on the Te in the case of kryp-
ton is expected in the range 0.2 < Te < 0.8 eV, where the
ratio Hdif/Hea reaches its maximum value [21].

Figure 3 shows EEDFs calculated by formula (4)
with Te = 0.2 eV and E/N = 0.1 Td for different degrees
of ionization ξ. It can be seen from Fig. 3 that, at ξ ≥
10−6, the EEDF is Maxwellian. As ξ decreases, the
average electron energy increases sharply. This is
because electron–electron collisions fail to retain elec-
trons near the Ramsauer minimum and they are accel-
erated by the electric field to higher energies, ε > εR.

Under our experimental conditions, the degree of
ionization at the tube axis, ξ0 ≈ 10–6, was sufficient for
a Maxwellian EEDF to be formed. The ratio between
the charged particle densities at the plasma edge and in
the center of the tube is described by the formula

nb/n0 ≈ λi /Λ  [9], which, in our case, is equal to
≈10–3. Hence, the electron energy distribution at the
periphery of the discharge can be nonequilibrium. Let
us consider possible consequences of the radial nonuni-
formity of the EEDF.

f ε( ) ε εd

0

∞

∫ 1=

T ε( )

3e2E2

3mνea ε( )
---------------------- Taδνea ε( ) Teνee ε( )A0+ +

δνea ε( ) νee ε( )A0+
--------------------------------------------------------------------------------------.=

2m

T̂e
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The ambipolar electric field Ea that is established in
the plasma to equalize the radial fluxes of oppositely
charged particles with the density n is [9]

(7)

where De is the electron diffusion coefficient, µi is the
ion mobility, and εT = De/µe is the Townsend energy.

It follows from Eq. (7) that Ea depends on the value
of εT and on the radial profile of the charged particle
density in the plasma. For the conditions of Fig. 3, we
calculated εT as a function of the degree of ionization.
The result is presented in Fig. 4a (curve 1). It can be see
that, when the EEDF is Maxwellian and ξ ≥ 10–6, the
Einstein relation εT = Te holds. As ξ decreases, the value
of εT in the range 10–9 ≤ ξ ≤ 10–7 substantially increases,
which is related to the increase in 〈ε〉 .

Let us examine how diffusive depletion of the EEDF
influences the dependence of ε on ξ. For this purpose,

we will use the “black-wall” approximation: (ε) =

f(ε) + C(eϕwall), assuming  to be zero at kinetic ener-
gies higher than the wall potential of the gas-discharge
tube eϕwall. Here, f(ε) is given by expression (4) at ε ≤
ϕwall, whereas the constant C(eϕwall) satisfies the condi-
tion C(eϕwall) = –f(eϕwall). Figure 4a shows the results of
calculations of εT(ξ) for different values of eϕwall. These
results demonstrate that diffusive cooling leads to flat-
ter dependences εT(ξ), which, however, remain qualita-
tively the same. Thus, a specific feature of the condi-
tions under consideration is that the average electron
kinetic energy increases away from the center toward
the wall of the gas-discharge tube. When the degree of
ionization is low and the effect of electron–electron col-
lisions on the EEDF is negligible, the value of 〈ε〉 tends
to decrease away from the center of the tube toward the
periphery [16, 22–25].

When analyzing the radial profile of the charged
particle density, it is necessary to consider the motion
of positive ions, because the total plasma diffusion
toward the wall is primarily determined by the less
mobile component. In the case of a nonlocal EEDF
(λε @ Λ), the equation describing the ion motion is
essentially nonlinear [26]. In constructing a kinetic
model for the bulk electrons in a weakly ionized
plasma, many authors use a simplified approach con-
sisting in the transition to the total electron energy w =
ε + eϕ(r), where ϕ(r) is the radial profile of the plasma
potential [16, 22, 23, 25]. When an electric field is
present in the plasma and, at the same time, electron–
electron collisions have a strong effect on the distribu-
tion of the bulk electrons, the applicability of this
approach should be examined separately. In this paper,
we consider the diffusion equation, which, in the
absence of volumetric ionization and recombination,

Ea

Di De–
µe µi+
------------------ ∇ n

n
-------

εT

e
----- ∇ n

n
-------,–≈=

f̃

f̃
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takes the form [18]

(8)

where Da = Di(1 + εT/Ti) is the coefficient of ambipolar
diffusion.

Exact analytic methods for solving this equation are
available only for particular dependences Da(n) [11]. At
Da = const, the solution is solved by the variable sepa-
ration method [9]. For a cylindrically symmetric
plasma and the zero boundary conditions

(9)
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Fig. 4. (a) Dependence εT on ξ for Te = 0.2 eV, E/N = 0.1 Td,
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(4) 10Te. (b) Dependence of the ratio /τd on the degree of

ionization ξ0 at the axis of the discharge tube.
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the solution can be represented as a linear combination
of the zeroth-order Bessel functions. The profile of the
fundamental diffusion mode has the form n(r) =
n0J0(r/Λ), where n0 is the charged particle density at the

tube axis and the diffusive loss frequency is νd = . If
the coefficient of ambipolar diffusion depends on the
density, Da = Da(n), then the time variations n(t) cause
variations in νd and in the characteristic diffusion length
of the fundamental mode Λd. As a result, the radial den-
sity profile varies. In this case, the variable separation
method can be used to find an approximate solution to
Eq. (8) if variations in Da(n) are relatively small in com-
parison to variations in n0(t). The corresponding crite-
rion may be written as n0(∂νd/∂n0) ! νd. The maximum
ratio or the left-hand side of this inequality to the right-

τd
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Fig. 5. Radial profiles of the (a) electron density ne(r) and
(b) ambipolar difference of potentials Φpl: (1) for a non-
equilibrium EEDF, and (2) for a Maxwellian EEDF.
hand side is attained at ξ ≈ 10–6 and does not exceed
30%. This estimate shows that, under these conditions,
the variable separation method can be applied to ana-
lyze Eq. (8). Using this method, we can qualitatively
demonstrate the difference of the density-dependent
diffusion from the commonly used approximation Da =
const.

The time-independent equation for the radial profile
of charged particles n(r) takes the form

(10)

where  are the eigenvalues of boundary problem
(10).

The main difference from the case Da = const is the
presence of the second term in Eq. (10) because of the
density dependence of the diffusion coefficient. Equa-
tion (10) was solved numerically by using the depen-
dence ∂Da/∂n specified by curve 1 in Fig. 4a and ignor-
ing the effect of the diffusive depletion of the EEDF.
This calculation provides an upper estimate for the
influence of the density dependence of the diffusion
coefficient Da(n) on the radial profiles of the plasma
parameters. In solving nonlinear equation (10), the
parameter is the degree of ionization at the axis, ξ0.

Figure 5a (curve 1) shows as an example the results
of calculations of Eq. (10) at ξ0 = 10–6, which corre-
sponds to our experimental conditions. This figure also
shows the radial density profile n(r) = n0J0(r/Λ)
(curve 2). In both cases, the values of the coefficients of
ambipolar diffusion at the axis are same. It can be seen
in the figure that, if the diffusion coefficient depends on
the density, then the profile of the charged particle den-
sity turns out to be narrower as compared to the profile
corresponding to the fundamental diffusion mode in the
case of Da = const. The calculated profile n(r) makes it
possible to find the Ea(r) profile from Eq. (7) and the
profile of the ambipolar potential

(11)

Figure 5b (curve 1) shows the Φpl(r) profile calcu-
lated using nonlinear equation (10). Curve 2 describes
the potential corresponding to the radial electron den-
sity profile defined by a Bessel function. It can be seen
from Fig. 5b that, for a nonequilibrium distribution, the
ambipolar field increases substantially. This is because
εT increases away from the center of the gas-discharge
tube. The ambipolar potential drop increases more than
tenfold as compared to a Maxwellian distribution. The
increased radial field increases the drift component of
the electron flux toward the wall so that to compensate
for the increase in the diffusive electron flux toward the
wall. At the same time, the increased electric field
enhances the ion motion toward the wall. Figure 4b
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shows the results of calculations of the ratio /τd (the
ratio of the diffusion time for the fundamental mode of
nonlinear equation (10) to the diffusion time) for the
distribution n(r) = n0J0(r/Λ) at different values of the
degree of ionization at the axis. It can be seen that, in
the range where the density dependence is most pro-
nounced (ξ0 ≈ 10–7), the regime of enhanced ambipolar
diffusion is realized. At the same values of Da at the
axis, the characteristic diffusion time corresponding to
nonlinear diffusion halves as compared to a Bessel dis-
tribution.

Hence, an increase in Φpl or a decrease in  can
substantially increase diffusive electron losses. From
calculations performed by the method described above
for the experimental conditions shown in Fig. 2, it fol-
lows that diffusive losses can increase by more than
twenty times as compared to a Maxwellian electron
energy distribution. The effect is partially due to
decreased mobility of the electrons, which in turn
results in a decrease in HeE. As a result, after substitut-
ing the experimentally measured axial temperature Te

in Eq. (1), diffusive losses predominate over heating.
Actually, diffusive depletion of the EEDF in the high-
energy range (at ε > eϕwall) should increase the Hdif
value; this probably makes it possible to achieve agree-
ment between calculations and experiment. To take this
effect into account correctly, we must determine ϕwall
by using an equation reflecting the equality of the elec-
tron and ion fluxes toward the wall: Γe = Γi [22]. Taking
into account the density-dependent diffusion, as well as
the diffusive depletion of the EEDF, requires the self-
consistent determination of Te, νd, and ϕwall. Solution of
the set of three equations (1), (10), and Γe = Γi is a rather
complicated computational problem and should be con-
sidered separately.

CONCLUSIONS

Experimental measurements of the electron temper-
ature Te at the axis of the discharge tube have been car-
ried out in a krypton afterglow plasma in the absence
and in the presence of a weak longitudinal electric field.
The calculation of Te on the basis of the balance equa-
tion for the average electron energy has revealed a deci-
sive role of diffusive cooling under our experimental
conditions. Simulations of the relaxation of Te in the
absence of an electric field, assuming the EEDF to be
Maxwellian, show that the theory agrees with experi-
ment. In the presence of a heating pulse, the measured
values of Te disagree with calculations based on the bal-
ance equation under the assumption of a Maxwellian
EEDF. To avoid this disagreement, it is proposed to use
a model taking into account the nonequilibrium charac-
ter of the EEDF at the periphery of the discharge. This
model takes into consideration that, when the average
electron energy corresponds to the minimum transport
cross section for the scattering of electrons by krypton

τ̃d

τ̃d
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atoms, the shape of the EEDF depends substantially on
the electron density and on the strength of the longitu-
dinal electric field. The average electron energy
increases away from the axis of the tube toward the
wall, resulting in the density dependence of the rate of
ambipolar diffusion. This leads to an increase in the dif-
ference of the ambipolar potential between the dis-
charge axis and the tube wall, as well as to a higher rate
of the diffusive plasma decay. In view of the factors
listed above, the diffusive cooling of electrons increases
markedly (by more than one order of magnitude),
which makes it possible to achieve an agreement
between the theory and experiment. To study in detail
how the density dependence of the ambipolar diffusion
velocity influences the plasma parameters, it is neces-
sary to measure the radial variations in the EEDF, the
radial profile of the ambipolar electric field, and the
potential of the wall of the gas-discharge tube.
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Abstract—Processes occurring when a metal electrode dipped in an electrolyte is heated by intense evapora-
tion of the electrolyte are considered in terms of a physically rigorous model. Based on the Onsager principle
of least energy dissipation rate in nonequilibrium processes, the fractions of thermal energy that are spent on
heating and evaporating the electrolyte and on heating the vapor are found. The energy is released within the
vapor–gas sheath when an electric current flows between the electrode and electrolyte surface. It is found that
the electrolyte vapor temperature exceeds 1300 K. Analytical expressions are derived for the vapor–gas sheath
thickness, the electrolyte vapor pressure, and the velocity of the vapor escaping the discharge zone. It is shown
that field evaporation of thermally activated negative ions from the electrolyte surface cannot provide an electric
current with densities found in experiments but is responsible for the generation of free electrons near the elec-
trolyte surface. These electrons arise when the ions decay via collisions with excited molecules. © 2004 MAIK
“Nauka/Interperiodica”.
(1) The phenomenon of strong heating (up to T =
1000 K) of an electrode in an electrolyte when a poten-
tial difference (U = 100–200 V) is applied between the
electrode and electrolyte, causing a high electric cur-
rent (j = 0.1–1.0 A/cm2) to flow in the system, has been
known since late in the 19th century and is now widely
used in various devices and instruments (see, for exam-
ple, [1–5] and Refs. therein). Nevertheless, most quali-
tative estimates are not sufficiently accurate. Until now,
the physical processes attendant on this phenomenon
have not been understood in detail and no correct theo-
retical models of them have been elaborated. In partic-
ular, the physical mechanism behind the formation of
an electric current between the electrode and electro-
lyte remains unclear (below, we will consider aqueous
solutions of electrolytes for definiteness).

According to the existing concepts [1–4], a vapor–
gas sheath between the electrode being heated and the
electrolyte is thin (h ≤ 100 µm) and the vapor pressure
p exceeds the atmospheric pressure ∆p only slightly (by
~0.1p∗ ). So, the possibility of initiating a steady dis-
charge at potential differences U employed is not obvi-
ous. Indeed, from experiments with discharges between
metal electrodes, it is known [6, 7] that, if the product
ph equals several unities (when p is measured in milli-
meters of mercury and h, in centimeters), as in the case
of electrolyte heating, the potential difference U initiat-
ing a steady discharge appreciably exceeds 200 V in air
and in pure gases of which air consists (for water vapor,
relevant data are lacking). However, the phenomenon
considered is observed at U ≤ 200 V. A high work func-
1063-7842/04/4905- $26.00 © 20559
tion of an electron on the water surface (≈6.2 eV [8])
(which means a low probability of free electrons
appearing at the negatively charged electrolyte surface
via field emission) casts still more doubt upon the pos-
sibility of discharge initiating. These circumstances do
not allow one to perform correct calculations of the
temperature of the vapor–gas sheath and electrode
being heated, although much attention has been given
to this issue [2, 9, 10].

Below, we will consider mechanisms behind the for-
mation of an electric current flowing in the system
under steady-state conditions and the distribution of the
evolving Joule heat. For definiteness, we assume that
the electrode being heated and the aqueous electrolyte
solution are kept under positive and negative potentials,
respectively.

(2) Let a current flowing in the system under steady-
state conditions due to the action of a potential differ-
ence U have a density j. Negatively charged carriers
(electrons and negative ions) that are emitted by the
charged electrolyte surface lose the electric field energy
eU (e is the electron charge) in the vapor–gas sheath
between the electrodes upon colliding with neutral
molecules and positively charged ions. As a result, a
thermal energy W = Uj per second being released in the
volume V = h · 1 cm2 is spent on heating and evaporat-
ing the electrolyte and on heating the vapor (we neglect
heat removal through the contacts to the metallic elec-
trode). A natural question arises: in what proportion is
this thermal energy distributed among the processes
mentioned.
004 MAIK “Nauka/Interperiodica”
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Let a one-αth portion of the thermal energy be spent
on heating and evaporating an electrolyte and a one-βth
portion of α be spent on evaporation. We also assume
that β is a function of α, β = β(α), which seems obvious
from physical considerations. Indeed, at small α, most
of the energy coming to the volume of the electrolyte is
derived from the surface by heat conduction and heats
the electrolyte. At large α, conversely, most of the
energy is spent on evaporation, since the rate of heat
removal into the electrolyte volume is limited because
of a small temperature gradient. This gradient may take
place in a liquid whose boiling temperature is lower
than the temperature of the vapor and electrode being
heated. Eventually, the mass

(1)

(where λ is the heat of vaporization) will be evaporated
from a unit surface of the electrolyte in a second.

The thermal energy spent on heating the vapor is
(1 – α)W, which is expressed as

(2)

where c(T) is the temperature-dependent specific heat
of the vapor and T0 is the initial vapor temperature,
which is reasonable to equate to the boiling point of the
electrolyte.

By substituting (1) into (2), we can express the tem-
perature T of the final state:

(3)

In the process considered, the rate of increase of the
entropy is given by 

According to the Onsager principle of entropy pro-
duction minimum in nonequilibrium processes [11],

the quantity  must have an extremum in free parame-

ter α. We equate the derivative of  with respect to α to
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Fig. 1. Temperature T of the overheated vapor as a function
of the free parameter α.
zero to find the dependence β = β(α) that meets this
equality in explicit form. Neglecting the weak temper-
ature dependence of the specific heat of the vapor (in
the temperature range 400–1400 K, the specific heat of
water vapor increases by ≈20% [12]), we obtain a dif-
ferential equation relating α and β:

with the boundary condition β(0) = 0. From this equa-
tion, it is easy to see that

Putting β < 1, one can find that α varies in the range
0 < α ≤ 1/2.

Now, from (3) one may evaluate the temperature of
the overheated vapor as a function of α, assuming that
the vapor pressure exceeds the atmospheric pressure
insignificantly (see below), λ ≈ 2.25 kJ/g, and cp ≈
2.47 J/(g K). Numerical calculations show that the
vapor temperature strongly depends on α and always
exceeds T = 1284 K (such a temperature is achieved at
α = 1/2). Physically, the value α = 1/2 is unrealistic;
consequently, the true temperature is higher but insig-
nificantly so. It is hard to expect that it may be much
higher than 1500 K. The limitation imposed on the tem-
perature limits the range of parameter α. Let us assume
that α varies in the range 0.45 ≤ α < 0.5. Figure 1 shows
the dependence of the vapor temperature on the free
parameter α (which varies in a wider range) when the
temperature dependence of the specific heat of the
vapor is neglected. In estimations that follow, we will
take the density of the overheated vapor of the electro-
lyte at a temperature T = 1500 K and at a pressure close
to the atmospheric pressure: ρ ≈ 1.5 × 10–4 g/cm–3 [12].

(3) Now let us estimate the pressure of the over-
heated vapor in the sheath and the velocity of the vapor
relative to the electrolyte surface. We assume that the
electrode being heated is a parallelepiped with a section
a × b that is dipped in an electrolyte to a depth c and that
the thickness h of the vapor sheath is constant and inde-
pendent on the coordinates of its position. Then, the
electrode’s surface area under the current is given by
the simple expression Σ = ab + 2(a + b)c. The area of
the near-electrode channel through which the over-
heated vapor escapes the discharge zone under the
action of a pressure drop is s = 2(a + b)h. If the velocity
with which the vapor leaves the discharge zone is des-
ignated by u, the vapor mass balance equation takes the
form

(4)

The right-hand side of (4) describes the vapor mass
produced in a unit time during electrolyte evaporation,
while the left-hand side defines the vapor mass leaving
the discharge zone in a unit time. From (4), one can
express the velocity u through the (unknown) vapor

dβ
dα
------- β

α α 1–( )
---------------------=

β α
1 α–
------------.=

ρsu α2WΣ/ 1 α–( )λ .=
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sheath thickness h and physical parameters that are
controlled in experiments:

(5)

Now we will relate the vapor pressure p, the sheath
thickness h, and the velocity u by means of the Ber-
noulli equation, assuming that the vapor is an ideal
incompressible liquid. Let the physical parameters of
the vapor at the center of the base of the electrode be
assigned the subscript 0 and the same parameters near
the electrolyte surface at the place where the vapor
leaves the system be assigned an asterisk. Then, we
obtain

where p0 is the vapor pressure at the center of the base
of the electrode and p∗  is the atmospheric pressure.

Below, we put u0 = 0, u∗  ≡ u, and ρ0 = ρ∗  ≡ ρ. Even-
tually, we get

(6)

where u is defined by relationship (5).
The pressure difference ∆p sustains a vapor sheath

of thickness h near the electrode and provides a dis-
placement (c + h) of the electrolyte free surface (i.e., the
one opposing the electrode) from its natural position in
the gravitational field. Consequently,

or

(7)

where ρe is the density of the electrolyte.
From (5)–(7), it is seen that the desired parameters

p0 – p∗ , h, and u depend on the configuration and depth
of immersion of the electrode.

Substituting (5) into (7) yields an expression for the
vapor sheath thickness:

(8)

For U = 150 V, j = 0.2 A/cm2, a = b = 1 cm, c =
0.5 cm, ρe ≈ 1 g/cm3, α = 19/40, and the above values
of the remaining physical parameters appearing in (5)–
(7), one finds that T = 1485.8 K, h ≈ 0.0035 cm = 35 µm,
u ≈ 8111 cm/s, and p0 – p∗  ≈ 4934 dyn/cm2.

The pressure difference ∆p thus obtained is consis-
tent with the assumption that the vapor pressure is close
to the atmospheric value. The high vapor velocity sup-

u
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ports the statement [5] that the Kelvin–Helmholtz insta-
bility may be observed at the vapor–electrolyte inter-
face. However, this issue, as well as the contribution of
the Tonks–Frenkel instability of the charged electrolyte
surface to the physical pattern observed, needs special
investigation.

Figures 2–4 plot the characteristics of the process
∆p ≡ p0 – p∗ , h, and u versus the free parameter α for
the above values of the physical quantities. It is seen
that p0 – p∗ , h, and u depend on α only slightly. The
most significant dependence is observed for the sheath
thickness h; however, even this parameter varies in a
sufficiently narrow range (between ≈30 and ≈40 µm)
when α increases from 0.45 to 0.5. This circumstance
seems to be important, because h, which cannot be
found experimentally (it is derived from rough indirect
estimates), governs the electric field strength initiating
a discharge between the electrolyte surface and the
metallic electrode. The pressure difference and the
vapor velocity vary with α insignificantly: as α changes
from 0.4 to 0.5, these parameters change by no more
than a tenth of a percent.

0.0025

0.420.40 0.44 0.46 0.48 α

0.0030

0.0035

0.0020

h, cm

Fig. 2. Thickness h of the vapor sheath between the electro-
lyte and metal electrode as a function of the free parameter α.
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0.420.40 0.44 0.46 0.48 α

5260

5265

∆p, dyn/cm2

5255

Fig. 3. Excess ∆p ≡ (p0 – p∗ ) of the overheated vapor pres-
sure over the atmospheric value as a function of the free
parameter α.
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(4) Now, using the above estimate of the vapor
sheath thickness h at α = 19/40, we will consider possi-
ble mechanisms of initiating an electric discharge
between the surface of the liquid electrolyte and the
electrode. In spite of a large body of relevant experi-
mental data, this issue has escaped the attention of the
researchers (some preliminary results have been
reported only in [4]). Therefore, we are still in the dark
about this type of discharge. At present, one may state
with assurance that (i) a discharge between the electro-
lyte surface and the electrode being heated is self-sus-
tained and is initiated in the vapor at pressures that are
much higher than the atmospheric pressure and at rela-
tively low voltages across the discharge gap and
(ii) ions emitted by the charged electrolyte surface play
a decisive role in the discharge initiation, although they
are incapable of providing electric current densities
observed in experiments (from 0.1 to 1 A/cm2).

If an electrolyte heating the electrode is at a negative
potential, it is generally assumed that the electric cur-
rent between the electrolyte surface and the electrode is
due to negative ions emitted from the electrolyte sur-
face [3, 9, 10]. Such an approach is valid, since the elec-
tron work function on the surface of aqueous solutions
of electrolytes is high. Yet, no exact calculation of a
negative-ion current density has been performed,
because the problem is very complex and only its
applied aspects have been of interest to date.

The only physically sound mechanism by which
negative ions may pass from the electrolyte surface into
the vapor phase is thermally activated field evaporation
of ions [5]. In general, the term “field evaporation”
implies a substantial contribution of an electric field to
the evaporation rate constant. This takes place when the
electric field strength near the surface from which an
ion evaporates is ≥1 V/nm. According to the estimates
obtained above, the electric field strength near the elec-
trolyte surface is e ≈ V/h ≈ 43 kV/cm. It is obvious that
such a field cannot provide efficient field evaporation of
ions, and one may speak only of thermal evaporation of
ions in a weak (in terms of the contribution to the evap-
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0.420.40 0.44 0.46 0.48 α

8375

8380

u, cm/s
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Fig. 4. Velocity u with which the vapor escapes the dis-
charge gap as a function of the free parameter α.
oration rate constant) electric field. In this situation, the
role of the field is to remove ions evaporating from the
electrolyte surface. Thermal evaporation will be effi-
cient if the activation energy of the process is not too
high; that is, it must slightly exceed the activation
energy of thermal evaporation of a solvent molecule
(for aqueous solutions of electrolytes, it is equal to
≈0.42 eV). It appears that it is this parameter that is of
crucial importance in selecting an electrolyte for elec-
trolyte heating.

For example, from data in [5, 13], the activation
energy of evaporation of a Cl– ion from a solution of
NaCl is evaluated as ≈1.5 eV. In this case, negative ions
appear near the electrolyte surface with a rate many
orders of magnitude higher than that with which elec-
trons are generated by field emission. The evaporation
of ions from an electrolyte solution may also be favored
by resonant absorption of UV radiation from the dis-
charge plasma by solvated ions at the electrolyte sur-
face [14, p. 181]. In this case, the energy of an absorbed
photon will remain in the solvate for a time on the order
of ten solvate oscillation periods, raising the nonequi-
librium effective solvate temperature (which may be
converted to the energy per atom) by several hundreds
of degrees. Such a short-term increase in the tempera-
ture near the ion may be high enough for its thermal
evaporation within the same time interval.

Summarizing the aforesaid, we may argue that neg-
atively charged ions appear near the charged electrolyte
surface mostly due to purely thermal evaporation.
However, in electric fields estimated above, thermal
evaporation cannot provide electric current densities of
j = 0.1–1.0 A/cm2, which are observed in experiments.

Indeed, the constant of thermal evaporation of ions
will be much less than unity (or close to unity with
account taken of local nonequilibrium heating due to
UV radiation absorption) even if the activation energy
of their evaporation is about 1 eV. At the same time, the
surface concentration of singly charged negative ions at
the electrolyte surface will be U/4πhe ≈ 2 × 1010 cm2.
Consequently, the ion current density will be many
orders of magnitude lower than detected in experi-
ments. In addition, it is known [7] that ions moving in
discharge plasmas at temperatures and electric field
strengths estimated are too slow to ionize neutral atoms
and vapor molecules, i.e., to generate electron ava-
lanches. Moreover, they cannot even excite neutral
atoms. This leads us to conclude that actually the elec-
tric field between the electrolyte surface and electrode
being heated is produced for the most part by electrons
and not by ions. However, it is ions emitted by the
charged electrolyte surface that play a decisive part in
discharge initiation. The fact is that a discharge of the
type considered (and, hence, metallic electrode heat-
ing) is observed not in any electrolyte but only in some
of them, and the reason for this effect is yet unknown
(accordingly, selection criteria for electrolytes are lack-
ing [2]). Most frequently, ammonium perchlorate
TECHNICAL PHYSICS      Vol. 49      No. 5      2004
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(NH4)2SO4, ammonium nitrate NH4NO3, ammonium
chloride NH4Cl, and sulfuric acid H2SO4 are used. So,
what may the role of negative ions be?

From the foregoing it follows that the vapor pressure
near the surface is sufficiently high, so that negative
ions evaporated will inevitably collide with neutral
(including excited) vapor molecules and atoms. In the
discharge with a current density of 0.1–1.0 A/cm2, the
concentration of the atoms and molecules is bound to
be very high (approximately one order of magnitude
higher than the concentration of electrons striking the
electrode being heated [12]). At the same time, colli-
sions between a negative ion and an excited molecule
may generate free electrons [15]. In particular, the fol-
lowing reactions proceed in the plasma of a gas dis-
charge in water vapor [15]:

In the reactions listed, the rate constants vary from
1 × 10–10 to (several tens) × 10–10 cm3/s and the release
of an electron is accompanied by an energy release of
about several electron-volts.

Such collisions provide free electrons near the elec-
trolyte surface, which are capable of generating elec-
tron avalanches in electric fields mentioned above. The
trace of any electron avalanche will contain a large
amount of positively charged ions, including H+ ions,
which strike the negatively charged surface of the aque-
ous solution of the electrolyte, knocking out free elec-
trons from the electrolyte surface due to the Penning
effect [7]. Indeed, the ionization energy of a hydrogen
atom equals ≈13.5 eV, whereas the electron work func-
tion on the water surface does not exceed ≈6.2 eV [8].
In other words, the necessary condition for the Penning
effect to take place is fulfilled (the ionization energy of
an atom is twice as high as the electron work function
on the electrolyte surface). This effect provides one
more source of free electrons near the electrolyte sur-
face, which, in turn, will initiate electron avalanches,
causing H+ ions and a large amount of excited atoms to
arise.

Thus, negative ions evaporating from the electrolyte
surface at a rate lower than 1010 cm2/s release electrons,
which, in turn, initiate electron avalanches, provide cur-
rent passage, and generate a large amount of positive
ions contributing to free electron generation near the
electrolyte surface due to the Penning effect.

It should be noted that such a pattern of the dis-
charge disregards the possibility of joint occurrence of

O– O+ O2 e,+=

H– H+ H2 e,+=

H– O2+ H2O e,+=

OH– H+ H2O e,+=

OH– O+ HO2 e.+=
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Kelvin–Helmholtz and Tonks–Frenkel instabilities at
the charged electrolyte surface. These effects may be
responsible for the emission of highly dispersed and
heavily charged droplets into the interelectrode space
[5, 16–18], which makes the discharge pattern still
more complicated.

The aforesaid refers to the situation when the elec-
trode being heated is kept at a positive potential and the
electrolyte is negatively charged. The effect of metal
electrode heating may also be observed under reversed
polarity; however, the processes in the discharge
plasma will be governed by elementary processes at the
electrode in this case. Such a situation is the subject of
special experimental and theoretical investigation.

CONCLUSIONS

We performed a model theoretical study of physical
mechanisms responsible for electric discharge heating
of a metal electrode dipped in an electrolyte. The thick-
ness and temperature of the vapor sheath separating the
electrolyte from the electrode, the velocity with which
the vapor escapes the discharge gap, and the vapor pres-
sure at the base of the electrode being heated are cor-
rectly estimated based on physical considerations.
Qualitative analysis of an electric discharge between
the negatively charged electrolyte surface and posi-
tively charged metal electrode revealed the crucial role
of negative ion evaporation from the electrolyte surface
in the discharge initiation (upon decay, these ions pro-
vides the delivery of free electrons to the discharge
gap).
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Abstract—A general analytical theory is developed and numerical simulations are carried out of cylindrical
plasma sources operating at an industrial frequency of f = 13.56 MHz (ω = 8.52 × 107 s–1). Purely inductive
surface exciters of electromagnetic fields (exciting antennas) are considered; the exciters are positioned either
at the side surface of the cylinder or at one of its end surfaces. In the latter case, the plasma flows out of
the source through the opposite end of the cylinder. A study is made of both elongated systems in which the
length L of the cylinder exceeds its diameter 2R and planar disk-shaped systems with L < 2R. The electromag-
netic fields excited by the antenna in the plasma of the source are determined, and the equivalent plasma resis-
tance, as well as the equivalent rf power deposited in the plasma, is calculated. © 2004 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION: DESIGN OF THE SOURCES 
AND MAIN PLASMA PARAMETERS

We begin by discussing characteristic features of the
geometry of the plasma sources under investigation. We
are dealing with elongated cylindrical sources with L >
2R and planar disk-shaped sources with L < 2R (Fig. 1).
The sources differ not only in shape but also in the
arrangement of antennas at the cylinder surface. In an
elongated plasma source, the electromagnetic field is
produced by a current-carrying antenna positioned at
the side surface of the cylinder (Fig. 1a) and, in a planar
source, the antenna is positioned at the closed end
opposite to the end through which the plasma flows out
of the cylinder (Fig. 1b).

In a planar source, the end surface through which
the plasma flows out of the cylinder is a metal grid to
which an ion-accelerating potential is applied (in this
case, the source serves as an ion implanter). For a
source with a metal grid, the boundary conditions at the
end surface through which the plasma flows out of the
cylinder can be written as

(1.1)

For an elongated plasma source with an antenna at
its side surface, the same boundary conditions are satis-
fied at the upper closed end of the cylinder. In a planar
disk-shaped source, the current-carrying antenna is
positioned at the upper end surface of the cylinder, so
that the boundary conditions at this surface are not fixed
but instead are derived from the field equations. As for
the side surface of a planar source, it is usually metal,
so that the boundary conditions at it have the form

(1.2)

Er z L= Eϕ z L= 0.= =

Eϕ r R= Ez r R= 0.= =
1063-7842/04/4905- $26.00 © 20565
In contrast, in an elongated plasma source, it is the
side surface of the cylinder on which the current-carry-
ing antenna is positioned, so that the boundary condi-
tions at this surface are not fixed but are derived from
the field equations.

Let us now discuss the design of the antennas in
question. In the most general case, the current density
in the antenna positioned at the side surface of the cyl-
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Fig. 1.
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inder can be represented as

(1.3)

where F1(ϕ, z) is an arbitrary function that can be
expanded in a Fourier series.

Below, the problem of investigating the plasma
source will be solved for an individual term of the Fou-
rier series under the assumption that the antenna current
is azimuthally symmetric and the arbitrary function has
the form

where I0 is the net antenna current and iϕ is a unit vector
in the azimuthal direction.

The current density in the antenna positioned at the
end surface of the cylinder is represented in an analo-
gous form. In the general case, the antenna current den-
sity can be written as

(1.4)

In what follows, however, we will be interested in an
azimuthally symmetric antenna current and will use the
function

where I0 is the net antenna current, J1(x) is a first-order
Bessel function, and µ ≈ 3.8 is the first root of the
Bessel function (J1(µ) = 0).

Let us now discuss the mechanisms by which the rf
energy is dissipated within the plasma of the source. We
are interested in a plasma with the following parame-
ters: the neutral gas pressure is p0 < 10–3 torr (which
corresponds to a neutral density of n0 ≈ 3 × 1013 cm–3)
and the electron density is ne ≈ 1010–1011 cm–3. In such
a plasma, two dissipation mechanisms—collisionless
dissipation due to Cherenkov absorption and collisional
field dissipation due to collisions of plasma electrons
with plasma ions and with gas atoms and molecules—
play an equally important role. In this case, the collision
frequency can be represented as

(1.5)

where Te is the electron temperature in eV, p0 is the gas
pressure in torr, and n0 is the ion density in cm–3. Note
that, in source plasmas, the electron temperature satis-
fies the condition Te @ Ti ~ T0, where Ti is the ion tem-
perature and T0 is the gas temperature (which is usually
on the order of room temperature). Such plasma param-
eters are determined by the large difference between the
mass of the electrons and the masses of heavy particles
(ions and neutrals), in which case the collisional energy
exchange between electrons and heavy particles is hin-

j r( ) δ r R–( )F1 ϕ z,( ),=

F1 ϕ z,( ) iϕ I0
πz
L
-----,sin∼

j r( ) δ z( )F2 ϕ r,( ).=

F2 ϕ r,( ) iϕ I0J1
µr
R
------ 

  ,∼

νe νen νei+ Te eV( )6 109 p0

10 4– ne

Te eV( )3/2
----------------------,+×≈=
dered. For typical experimental conditions such that
Te ~ 5 eV and VTe ≈ 9 × 107 cm/s, and for ne < 1012 cm–3

and p0 < 10–3 torr, we have νe ~ 1.5 × 107 s–1. Under
these conditions, the collisional dissipation of the rf
energy in plasma can be assumed to be weak because
ω = 8.5 × 107 s–1 @ νe ~ 1.5 × 107 s−1.

For the above plasma parameters, the mean free path
of an electron is on the order of l = VTe/νe ≈ 10 cm. It
can be shown that the maximum efficiency of a plasma
source operating in a steady mode is achieved when the
length of the system does not exceed the electron mean
free path l, i.e., when

(1.6)

In what follows, this condition will be assumed to be
always satisfied.

The second, purely collisionless, dissipation mech-
anism is governed by both the electron thermal motion
and the geometric dimensions of the system. The con-
tribution of this mechanism to the collision frequency is
determined by the parameters kVTe ≈ πVTe/L and πVTe/R.
The characteristic geometric dimensions of an elon-
gated rf plasma source are L ≥ 10 cm and R ≤ 10 cm,
while those of a planar source are L ≤ 10 cm and R ≥
10 cm. As a result, we have kVTe ≈ 1–2 × 107 s–1 ! ω, so
that the collisionless rf energy dissipation in the source
is also weak. On the other hand, we have kVTe ≈ νe,
which indicates that the collisionless dissipation is
comparable in importance to the collisional dissipation.
That is why we will assume that both of the dissipation
mechanisms operate simultaneously in the plasma.

The external magnetic field is longitudinal only,
B0 || OZ. It has an important effect on the operating
modes of the plasma sources. It is easy to show that,
even for relatively weak external magnetic fields (5 ≤
B0 ≤ 500 G), the following conditions hold:

(1.7)

These conditions will be assumed to be satisfied for
plasma sources with an external magnetic field. Such
sources are the subject of parts II and III of the present
paper. The objective of part I is to investigate plasma
sources without a magnetic field (B0 = 0).

Finally, let us discuss the question of what is the rf
power that is deposited in the plasma of the source (i.e.,
the power that ensures the operation of the source). This
power depends essentially on the mass of an ion, M,
which is assumed to be about 30–40 masses of a hydro-
gen atom (M ~ 2 × 10–24 g). In this case, the plasma
flows out of the source with a velocity on the order of
the ion acoustic speed (provided that the plasma ions

L le≤ 10 cm.≈

ωLe 1010 s 1–
 @ Ωe≥

=  
eB0

mc
-------- 109 s 1–

 @ ω 8.5 107×  s 1– .≈≤
TECHNICAL PHYSICS      Vol. 49      No. 5      2004



LOW-POWER RF PLASMA SOURCES FOR TECHNOLOGICAL APPLICATIONS 567
are not accelerated by any additional means),

For an ion density of ni ≈ 1012 cm–3, this formula
yields the following estimate for the density of the ion
current from the source:

(1.8)

Since the plasma thermal energy is determined by
the electron temperature Te, which is about 5 eV, the
density of the power flux from the source through a unit
area of the end surface of the cylinder is equal to

(1.9)

so that the net power flux from the source is

(1.10)

where the total area of the end surface of the cylinder,
S, is expressed in cm2.

For an elongated system with R < 10 cm, we have
3W < 150 W, whereas for a planar disk-shaped source
with R > 10 cm, the net power flux is 3W > 150 W.

It is also an easy matter to estimate the total power
that is deposited in the discharge plasma in order to
maintain the steady-state operation of the source. To do
this, we must take into account not only the electron
plasma heating to a temperature of Te ~ 5 eV but also
the power lost to ionize neutral gas atoms and, in the
absence of magnetic field, the power carried to the side
surface of the cylinder by the plasma. Unfortunately,
the amount of power expended on ionizing the gas
atoms in an rf discharge is very high (most of the field
energy is spent on the excitation of atoms, which is fol-
lowed by the emission of optical photons from the
excited atomic states). As a consequence, the net rf
power absorbed by the plasma in the source is higher
than the net power flowing out of the source by one or
even two orders of magnitude, i.e., 3W ≈ 103–104 W.

To conclude this section, we will say a few words on
additional power losses in the acceleration of ions in
ion implanters. The problem concerning the power of
an ion accelerator is a separate issue and is not related
to the problem of the rf power fed into a plasma source.
In what follows, we will not deal with the accelerator-
related problem, because it goes beyond the scope of
this paper, the primary goal of which is to investigate
the steady-state operation of rf plasma sources.
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2. ELONGATED CYLINDRICAL PLASMA 
SOURCE WITHOUT AN EXTERNAL 

MAGNETIC FIELD

In order to illustrate how the theory of plasma
sources is to be constructed, we consider the simplest
examples of these devices.1 We assume that, in an elon-
gated cylindrical plasma source, the electromagnetic
field is produced by an antenna that is positioned at the
side surface of the cylinder and carries a purely azi-
muthal current with the density

(2.1)

where I0 is the net azimuthal current and kz is the longi-
tudinal wavenumber. For the antenna shown in Fig. 1a,
this wavenumber is equal to kz = π/L. In such a source,
the only nonzero components of the rf electromagnetic
field are Eϕ, Br , and Bz. Assuming that these field com-

ponents depend on time and coordinates as f(r) ,
we can write Maxwell’s equations for them in the form

(2.2)

Equations (2.2) contain the plasma dielectric func-
tion ε(ω), which is to be determined for the conditions
of interest to us (those of a confined plasma and low fre-
quencies), when collisional dissipation and collision-
less Cherenkov dissipation play an equally important
role. Strictly speaking, the plasma dielectric function
should be determined from the solution to the electron
kinetic equation with the corresponding boundary con-
ditions. However, instead of doing this, we will
describe the dielectric function by a familiar relation-
ship that is valid for an unmagnetized plasma in the fre-
quency range

(2.3)

Under the conditions adopted above, the right-hand
inequality is satisfied by a large margin, while the left-
hand inequality holds for plasma densities lying in the
range ne < 2 × 1011 cm–3. In what follows, we restrict
ourselves to considering the plasma densities for which
the function ε(ω) can be written in accordance with for-
mulas (17) and (18) in [2]:

(2.4)

1 To the best of our knowledge, the plasma sources under discus-
sion have not yet been systematically analyzed in the literature.
To be specific, we can mention the collection of papers [1], which
contain review articles on plasma technologies in practically all
of the known scientific centers around the world.
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Note that expression (2.4) is valid under conditions
corresponding to the specular reflection of electrons
from the surface of a semi-infinite plasma described in
plane geometry (see Appendix),2 so strictly speaking it
can be used only to describe planar disk-shaped plasma
sources with L > c/ωLe ≤ 5 cm. Nonetheless, we will
also use expression (2.4) to describe elongated cylindri-
cal sources, because it yields qualitatively correct
results for R > c/ωLe ≤ 5 cm.

Equations (2.2) with dielectric function (2.4) are
valid not only for the plasma region (r ≤ R) but also for
the region outside the plasma (r > R). Therefore, these
equations can be solved separately for each of the
regions. The solutions obtained can then be joined at
the plasma surface with the help of the boundary condi-
tions that are derived from the same equations by inte-
grating them over the radial coordinate r across an infi-
nitely thin transition layer around the plasma surface:

(2.5)

Here, I0 is the net azimuthal current in an antenna posi-
tioned at the side surface of the cylinder of a plasma
source and {ϕ}r = R denotes the jump in the function
ϕ(r) at the cylinder surface r = R.

It is convenient to reduce Eqs. (2.2) to a single sec-
ond-order differential equation for the field component
Eϕ:

(2.6)

Equation (2.6), which is also valid both inside ((r ≤
R) and outside (r > R) the plasma, should be supple-
mented not only with boundary condition (2.5) but also
with the continuity condition for Eϕ at r = R (this con-
dition follows from the second of Eqs. (2.2)) and the
obvious finiteness condition

(2.7)

where M is an arbitrarily large number.
The general solution to field equations (2.2) that sat-

isfies all of the above conditions and, in particular,
boundary condition (2.5), can be represented in the
form

(2.8)

Here, the coefficients C1 and C2 are related by the rela-

2 In the case of diffuse reflection of electrons from the plasma sur-
face, the last term in parentheses in expression (2.4) should be
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(2.9)

where J1 and N1 are the Bessel functions, the prime
denotes the derivative with respect to the argument, and
the quantities k0 and k1 are defined as

(2.10)

The expressions for the coefficients C1 and C2 easily
follow from relationships (2.9):

(2.11)

It should be noted that, since Re  < 0 and Re  <
0, and since the imaginary parts of k0 and k1 are small,
the Bessel functions J1(k1R) and N1(k0R) are functions
of the almost purely imaginary arguments.

Let us make some estimates. First, note that, for

L ≈ 10 cm, we have  = π2/L2 ≈ 10–1 cm–2 @ ω2/c2 ≈

10–5 cm–2. As a result, we obtain  ≈ –(π2/L2) ≈

−0.1 cm–2, while  ≈ –( /c2) ≈ –0.3 cm–2 at ne =
1011 cm–3. This indicates that the electromagnetic field
excited by the antenna is localized near it, both inside
and outside the plasma. Outside the plasma, the field is
localized on a scale of |k0|–1 ≈ 3 cm. Inside a plasma
with the density ne = 1011 cm–3, the field is localized on
a scale of about |k1|–1 ≈ 2 cm; moreover, the denser the
plasma, the shorter the localization scale. Note that it is
this localization scale that determines the thickness of
the surface region in which the plasma is heated in a
cylindrical source. According to the above estimates,
this thickness should be on the order of 2–3 cm. For a
plasma with the density ne = 1011 cm–3, we have |k1|–1 <
2 cm. Therefore, in a source with R > 5 cm, almost all
of the rf power will be deposited in a thin plasma layer
near the surface of the cylinder. At the same time, it is
unlikely that elongated cylindrical plasma sources with
R ≤ 3 cm find applications in plasma technologies. As

C1J1 k1R( ) C2N1 k0R( )– 0,=

C1k1J1' k1R( ) C2k0N1' k0R( )–
2πkzω

c2
---------------I0,–=

k1
2 ω2

c2
------ε ω( ) kz

2, k0
2– ω2

c2
------ kz

2.–= =

C1

2πkzω
c2

---------------–=

× I0

N1 k0R( )
k1J1' k1R( )N1 k0R( ) k0J1 k1R( )N1' k0R( )–
-------------------------------------------------------------------------------------------------,

C2
2πiω

c2
-------------–=

× I0

J1 k1R( )
k1J1' k1R( )N1 k0R( ) k0J1 k1R( )N1' k0R( )–
-------------------------------------------------------------------------------------------------.

k1
2 k0

2

kz
2

k0
2

k1
2 ωLe

2

TECHNICAL PHYSICS      Vol. 49      No. 5      2004



LOW-POWER RF PLASMA SOURCES FOR TECHNOLOGICAL APPLICATIONS 569
for the sources with R ≥ 5 cm, they do not provide radi-
ally uniform parameters of the plasma flow.

Hence, the above analysis shows that, in order for an
elongated rf (f = 13.56 MHz) plasma source without a
magnetic field to be capable of operating efficiently at
a plasma density of ne = 5 × 1010 cm–3, its length and
radius should be L > 10 cm and R < 3 cm. As the plasma
density increases, the operation efficiency of the source
decreases and the plasma flow becomes nonuniform
over the cross section of the cylinder.3

3. PLANAR DISK-SHAPED PLASMA SOURCE

In a planar disk-shaped plasma source, the current-
carrying antenna is assumed to be positioned at the
upper end of the cylinder (Fig. 1b) and have the form of
an Archimedean spiral,

(3.1)

where a is the spiral radius.

In the limit a ! R, the azimuthal current density in
the antenna can be written, to a good accuracy, as

(3.2)

where I0 is the net azimuthal current in the antenna,
J1(x) is a first-order Bessel function, µ ≈ 3.8 is the first
root of the Bessel function (J1(µ) = 0), and q = µ/(1 –
J0(µ)) ≈ 2.7.

The field equations for a planar disk-shaped source
differ from Eqs. (2.2) only slightly. Assigning the
dependence fr(r)fz(z)e–iωt on time and coordinates to the
field components, we arrive at the equations

(3.3)

where the dielectric function ε(ω) is given by expres-
sion (2.4).

As for the boundary conditions for Eqs. (3.3), they
are obtained by integrating these equations across a

3 Note, however, that, when the transverse particle diffusion is
taken into account, the degree of plasma inhomogeneity is lower.
As long as R is less than the particle mean free paths (at least, up
to R ≈ 5 cm), it may be that the plasma inhomogeneity will not
have any significant effect.
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transition layer around the plasma surface in the source:

(3.4)

The right-hand side of the last of conditions (3.4)
accounts for the radial dependence of the current in the
spiral antenna. According to this dependence, the elec-
tric field component should be chosen to have the form

(3.5)

where (z) satisfies the equation

(3.6)

The general solution to this equation that
approaches zero as z  –∞ has the form

(3.7)

where we have introduced the notation

(3.8)

In deriving solution (3.7), we used approximation

(2.3), according to which we have Re  > 0.

Substituting solution (3.8) into boundary conditions
(3.4) yields the following expressions for the coeffi-
cients C1, C2, and C3:

(3.9)

Using expressions (3.9), we finally obtain

(3.10)

This indicates that the azimuthal electric field com-

ponent (z) in the plasma is sufficiently large only
under the condition

(3.11)

For the above values of the plasma parameters (i.e.,
for ne = 5 × 1010 cm–3), we arrive at the order-of-magni-
tude estimate L ≤ 3 cm. As for the radius of the plasma
source, is can be arbitrarily large.

Finally, we estimate the plasma heating power in a
planar disk-shaped source under conditions (2.3). To do

Eϕ z L= 0, Eϕ{ } z 0= 0,= =

Bz{ } z 0=
ic
ω
----

∂Eϕ

∂z
---------

 
 
 

z 0=

4πq
cR

--------- I0J1 µ r
R
--- 

  .= =

Eϕ r z,( ) Ẽϕ z( )J1 µ r
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this, we set R = 10 cm, L > 3 cm, ne = 5 × 1010 cm–3, Te =
5 eV, and p0 < 103 torr. We also use the following for-
mula for the rf power deposited in the plasma:

(3.12)

where α = (4πωq)/c2 and Reff is the equivalent plasma
resistance.

According to formula (3.12), the plasma resistance
Reff is on the order of 0.5–5 Ω , so that, for I0 ≈ 3 A, the
deposited power 3W is no higher than 5–50 W.

Figures 2 and 3 illustrate the results of numerical
calculations of the equivalent plasma resistance from
formula (3.12) for different values of both ne and R. The
curves plotted in the figures were calculated for plasma
densities of up to ne = 5 × 1010 cm–3, in accordance with
conditions (2.3), which are the conditions for applica-
bility of expression (2.4). As is seen in the figures, the
plasma resistance increases with plasma density and
with radius R. As for the dependence of Reff on L, the
plasma resistance increases with cylinder length only

on a short spatial scale on the order of c/ωLe ~ 1/  (it
is these values that are presented in the figure) and
remains constant on longer scales.

Hence, the above analysis leads to a very important
conclusion: under inertial skin effect conditions (2.3),
the equivalent resistance of a low-density plasma in a
planar disk-shaped source is too low (on the order of
1 Ω) to ensure efficient operation of the source, because
most of the rf power will be lost in the antenna (whose
resistance is higher than 1 Ω) and only a small fraction
of it will be deposited in the plasma. The most promis-
ing sources appear to be those operating at plasma den-
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Fig. 2.
sities of 0.5–1.0 × 1011 cm–3 and having a radius of no
less than 20 cm.

APPENDIX

Here, we generalize the problem formulated above
to a semi-infinite electron plasma occupying the half-
space z ≥ 0. We take into account the spatial dispersion
and restrict ourselves to considering the case of specu-
lar reflection of electrons from the surface z = 0. A sim-
ilar problem for a transverse electromagnetic field was
solved in [2], so that we can use the solution obtained
there. In accordance with formulas (17) and (18) from
that paper, we can write

(A.1)

Here,

the transverse dielectric function of an infinite isotropic
plasma, εtr(ω, k), is described by the following expres-
sion, which allows for collisions and spatial dispersion
[2]:

(A.2)
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where

The explicit limiting expressions for the function
J+(x) of the complex argument x are presented in [2]. In
deriving solution (A.1), we took into account the profile

of (z) at the boundary z = 0 and the jump in its deriv-

ative,  (see formulas (3.4)), at this boundary.

Under the conditions of weak spatial dispersion, and
under inequalities (2.3), the integrals in formula (A.1)
can be taken exactly to yield the following solution,

J+ x( ) xe
x

2

2
-----

e
τ2

2
-----

τ .d∫=

Ẽϕ

Ẽϕ'
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which passes over to solution (3.10) in the limit

(A.3)

where k1 is described by expression (3.8), with ε(ω)
given by formula (2.3).
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Abstract—A linear relationship between the critical temperatures Tmax and Tmin in the temperature depen-
dences of the resistance of La0.6Sr0.2Mn1.2O3 single-crystal films that have a mesoscopic irregularity (metallic
clusters in an insulating matrix) is found. A correlation between the atomic order and electronic structure of the
films is studied by taking X-ray diffraction patterns and optical absorption spectra. It is shown that a rise in Tmax
and a simultaneous decrease in Tmin cause correlated local changes in cluster areas of the structure. Namely, the
volume occupied by a family of Mn–O planes with large interplanar spacings (d = 2.04–2.08 Å) shrinks, while
the volume occupied by a family of closer spaced (d = 1.90–1.99 Å) planes grows. In the electronic subsystem,
the density of states at "ω = 1.5 and 2.4 eV, which are due to Mn3+ and Mn4+ ions, increases, and the contribu-
tion from Mn2+ states at "ω = 0.9 eV decreases. As the charge states associated with Mn3+ and Mn4+ ions
become dominant, the Mn–O binding energy grows. As a result, the contribution of the structural states with
smaller d increases, thereby raising the density of states in the electronic subsystem at energies between 0.5 and
2.7 eV. The effect of self-organization in the multicomponent LaSrMnO system shows up in the transition from
the heavily distorted rhombohedral to the less distorted orthorhombic structure. © 2004 MAIK “Nauka/Inter-
periodica”.
INTRODUCTION

Experimental studies of the temperature depen-
dence of the resistance in La0.6Sr0.2Mn1.2O3 magnetore-
sistive films have shown [1–3] that the curves R(T) fre-
quently run nonmonotonically and have a minimum
and maximum (see inset to Fig. 1). It has also been
noted that different samples have unequal critical tem-
peratures Tmax and Tmin that correspond to the maximal
and minimal resistance values. These temperatures
have been found to vary over wide limits. However, the
relationship between these two temperatures has been
explored inadequately. However, in spite of a large dif-
ference in the resistance, one may expect such a rela-
tionship, since the same atomic system (with specific
features for each test sample) is studied both at high and
low temperatures. The features of the atomic and elec-
tronic configurations of metallic oxides are highlighted
in clustering, which causes mesoscopic-scale nonuni-
formities in the mass and electronic density distribu-
tions [4–8].

In view of the aforesaid, we studied a correlation
between the atomic and electronic configurations for a
number of La0.6Sr0.2Mn1.2O3 films (grown on SrLaGaO4
substrates) with greatly differing Tmax and Tmin. This
difference was controlled by varying the synthesis tem-
perature Ts in the range 600–730°C when the films were
deposited by pulsed laser sputtering of the target. To
1063-7842/04/4905- $26.00 © 0572
enhance clustering, which has an effect on the electric
and magnetic properties of manganites, the target had
an excessive content of manganese. To synthesize the
films, we used a KrF excimer laser with a pulse dura-
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tion τ = 25 ns and an energy density on the target of
3.0 J/cm2. The oxygen pressure in the working cham-
ber was kept at 300 mTorr. The structure of the films
was examined by the photometry method using long-
wave CrKα radiation. This method makes it easy to
detect X rays diffusely scattered by cluster solid solu-
tions [6], which our objects are. Electrical measure-
ments were accomplished in the interval 4.2–300 K by
the standard technique. Optical absorption spectra were
taken at room temperature in the energy range "ω =
0.5–5.0 eV with an SP 700C spectrophotometer.

RESULTS AND DISCUSSION

For all the films studied in this work, the tempera-
ture dependence of the resistance had two extrema
Rmax(T) and Rmin(T) (see inset to Fig. 1). The maximal
value Rmax in the curves R(T) is related to the onset of
magnetic ordering. The temperature Tmax is usually
close to the Curie temperature. The reasons for the
occurrence of the minimum value Rmin are still unclear.
According to the results [9–11] for lightly doped lan-
thanum manganites, where the concentration of Mn4+

ions is considerably lower than that of Mn3+ ions, the
temperature Tmin is coincident with the temperature of
charge ordering. Thus, in the interval ∆T = Tmax – Tmin,
the atomic, electronic, and magnetic subsystems
intensely interact between each other and the resistance
of the film in this temperature interval drops with
increasing temperature. However, the metallic conduc-
tivity is not reached and the films remain in the dielec-
tric state throughout the interval ∆T [4].

When films of the La0.6Sr0.2Mn1.2O3 solid solution
are formed from a plasma flux at different synthesis
temperatures Ts, all other growth parameters being
equal, interaction between chemical elements in the
multicomponent system is bound to result in various
types of atomic order. A group of La0.6Sr0.2Mn1.2O3
films were deposited on SrLaGaO4 substrates at Ts =
600, 650, 670, and 700°C. They have the critical tem-
peratures Tmax = 135, 277, 285, and 300°C and Tmin =
100, 30.7, 23, and 21°C, respectively. These tempera-
tures are shown in Fig. 1 together with the critical tem-
peratures for the films grown on other substrates and
also for the film grown at 730°C and measured in a
magnetic film (730 + M). The films grown at higher
(>730°C) temperatures degraded because of interaction
between the growing film and substrate. X-ray diffrac-
tion reflections from the films grown at Ts = 600–700°C
are shown in Fig. 2. Here, the synthesis temperature
(and Tmax) rises from top to bottom, while Tmin rises in
the opposite direction.

From Fig. 1, it follows that Tmin = aTmax + b, where
a = –0.46 and b = 154.3. Such a definite relationship
between Tmin and Tmax for the La0.6Sr0.2Mn1.2O3 films is
expected to be reflected in the atomic order of the films
grown in the temperature range Ts = 600–700°C (the
TECHNICAL PHYSICS      Vol. 49      No. 5      2004
interval ∆T = Tmax – Tmin depends on the synthesis tem-
perature). The structure of the films were examined by
taking X-ray diffraction pattern. The diffraction pat-
terns shown for the angular interval 29° ≤ θCr ≤ 40° in
Fig. 2 characterize the most significant features of the
crystal structure, namely, families (clusters) of Mn–O
planes belonging to the rhombohedral and orthorhom-
bic phases. These clusters are sources of free holes and
are responsible for local metallic conduction, thereby
controlling the mean conductivity of the films. As the
synthesis temperature grows, so does Tmax, while Tmin

diminishes. As a result, the interval where the resis-
tance decreases, manifesting the transition to the mag-
netically ordered state, widens [4, 12].

The “metallicity” of the planes in the clusters shows
up as either flat-top maxima or extended tails (portions
CD and AB in Fig. 2) in the diffraction pattern, as indi-
cated in [13, 14]. Most significant changes are observed
in the structure of metallic clusters represented by dif-
fuse peaks from {004} planes of the orthorhombic
phase. Here, not only do the maxima shift along the θ
axis, indicating that other interplanar spacings prevail
in the clusters (according to the Bragg equation
2dsinθ = nλ), but their configuration also changes
(Fig. 2). For example, in going from Ts = 650 to 670°C,
the asymmetry of the (004) diffuse maxima in Fig. 2
changes: the tail at the right (AB) at 650°C changes to
the tail + plateau (CD) at the left at 670°C.
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PLANE DISTRIBUTION IN THE CLUSTER AREA 
OF THE STRUCTURE

Let us see how the intensity of X-ray scattering from
different families of planes (in the angular range shown
in Fig. 2) varies with growing synthesis temperature Ts
(recall that a rise in Ts causes a rise in Tmax and a fall of
Tmin). We will trace the variation of the scattering inten-
sity in the angular range θCr = 29.5°–40° by taking dif-
fraction patterns in steps ∆θ = 0.5°. The related inter-
planar spacings are given by the curves in Fig. 3. It is
seen that the intensities of diffuse X-ray scattering are
redistributed among adjacent planes with close inter-
planar spacings. The variation of I(Ts) is the most pro-
nounced for two families of planes: with d ranging from
2.16 to 2.25 Å (including the (202) plane of the orthor-
hombic phase with d = 2.24 Å; the (203) plane of the
rhombohedral phase with d = 2.16 Å; and the calculated
MnO(2) bond length, d = 2.17 Å) and with d varying
from 1.92 to 2.04 Å (including the (400) plane of the
rhombohedral phase with d = 1.942 Å; the (004) plane
of the orthorhombic phase with d = 1.93 Å; and the cal-
culated MnO(2) and MnO(1) bond lengths, d = 1.97
and 1.907 Å [15]).

In the given case, the scattering intensity redistribu-
tion means the change in the fraction of planes with a
specific interplanar spacing; therefore, one can argue
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Fig. 3. Intensities of X-ray coherent scattering from differ-
ent samples in the angular interval θCr = 29°–40° (measured
in 0.5° steps). The figures at the right indicate the interpla-
nar spacings d in Å.
that, as the synthesis temperature of LaSrMnO films
rises from 600 to 700°C, the fractions of the planes with
d = 2.22–2.25 Å and those with d = 2.09–2.16 Å
change. At 650°C, this change is characterized by the
curve with a minimum for the first family of planes and
by the curve with a maximum for the other (Fig. 3).

The scattering intensities from the family of planes
with d = 1.92–2.04 Å, which is placed above the curve
with d = 2.07 Å (the run of this curve is independent of
Ts), vary in a different way (Fig. 3). Here, as the synthe-
sis temperature of LaSrMnO films rises from 600 to
700°C, first (<650°C) the fraction of planes with large
spacings (d = 1.99–2.04 Å), which form the region of
extension, increases and then (>650°C) the fraction of
planes with smaller d (d = 1.86–1.97 Å, the region of
contraction) prevails (Fig. 3). These findings allow us to
conclude that the volume occupied by smaller d planes
continuously grows in the cluster structure starting
from Ts = 650°C.

Since the interplanar spacings considered are com-
parable to Mn–O interatomic spacings, the atomic
order reconstruction observed with an increase in the
LaSrMnO synthesis temperature suggests that the
planes with d < 2 Å start dominating over the planes
with d > 2 Å. In other words, one may state that Mn–O
interatomic interaction is enhanced with increasing Ts.
Correspondingly, the overlap of the wave functions
and, hence, the density of states responsible for the
electronic and optical properties increase.

EVOLUTION OF THE ELECTRONIC 
SUBSYSTEM

The effect of atomic order on the electronic struc-
ture of LaSrMnO films is indicated by the optical
absorption spectra shown in Fig. 4. The transmission of
all the samples is low (in Fig. 4, the absorption coeffi-
cient α exceeds 2 × 104 cm–1). The absence of a distinct
optical absorption edge, which is typical of normal
semiconductors and insulators, is noteworthy. For the
film with Ts = 600°C (the rhombohedral phase), three
absorption maxima are observed: at (A) 0.9, (B) 1.5,
and (C) 2.0 eV. These maxima correlate with the max-
ima (at the same energies) of the density of electronic
states participating in optical transitions.

In the electronic structure of manganites, splitting of
d states by the crystal field plays an essential role, caus-
ing the formation of energy gaps. The energy gap ∆cf

between the eg and t2g states in the crystal field of man-
ganites depends on the charge state of manganese ions
and decreases with increasing spacing between Mn and
O ions [2]. For oxides, the typical values of ∆cf for
Mn4+, Mn3+, and Mn2+ ions are, respectively, 2.5, 1.8,
and 1.0 eV. For Mn4+ and Mn3+ ions in the spectra of
perovskite-like manganites, these values are 2.4 and
1.5 eV. These findings agree with the positions of max-
ima in the optical absorption spectra (Fig. 4). The lower
TECHNICAL PHYSICS      Vol. 49      No. 5      2004
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concentration of Mn3+ ions in the rhombohedral phase
compared with their concentration in the orthorhombic
phase is embodied in the fact that the optical absorption
coefficient α (hence, the density of states participating
in optical transitions) is one order of magnitude higher
in the films with the orthorhombic structure at "ω ≈
1.5 eV. At "ω > 2.1 eV, the difference between the
absorption coefficients for the orthorhombic and rhom-
bohedral phases is small (less than 40%).

The increase in the density of states in the orthor-
hombic phase in the energy interval 0.5–2.7 eV is con-
sistent with the increase in the fraction of more close-
packed structural features (i.e., of those with small d) in
the clusters. This shows up in the enhanced intensity of
diffuse scattering from clusters that involve Mn–O
bonds with a high charge state of manganese ions
(Mn3+ and Mn4+). In these clusters, the energy of inter-
action is higher and, accordingly, the Mn–O spacings
are smaller [2] (the curves with d = 1.92–1.99 Å in
Fig. 3). As manganese and oxygen ions in the orthor-
hombic phase approach each other, the density of states
increase noticeably, as follows from Figs. 3 and 4.

The changes in the atomic order and electronic
structure of the films have a decisive effect on the con-
ductivity. The rhombohedral films with Ts ≤ 600°C
have a high resistivity (ρ ≈ 5 × 105 Ω cm at 300 K).
However, the presence of the orthorhombic phase in a
small amount (several percent) in the film with Ts =
600°C decreases the resistivity to ρ ~ 10–2 Ω cm. In the
films with the orthorhombic structure, the resistivity is
much (by three or four orders of magnitude).

The absorption spectrum of the rhombohedral phase
(Ts = 600°C) depends not only on the split of the eg and
t2g states of Mn in the crystal field but also on the pres-
ence of metallic-conduction clusters in the insulating
matrix. Because of built-in electric fields induced by
the clusters, typical of heavily inhomogeneous optical
media [16, 17], the absorption edge has a near-Uhrbach
shape: lnα ~ "ω [18] (Fig. 4, dotted lines).

The samples with Ts > 600°C are less transparent.
The spectra taken from the films grown at 650, 670, and
700°C differ only slightly. They have a peak at "ω ≈
1.5 eV and peak C at "ω ≈ 2.0 eV. The weak feature of
the spectra at ≈2.0 eV (peak C, which is observed
almost in all the films shown in Fig. 4 except for the sto-
ichiometric films) may be associated with the off-sto-
ichiometric composition of the films and the formation
of MnO2-like clusters, which are coherently embedded
in the host crystal. If so, we are dealing with one-phase
heterogeneity.

The spectra for the orthorhombic and rhombohedral
phases differ not only in density of states but also in the
presence of additional peak A at "ω ≈ 0.9 eV in the
spectra for the rhombohedral phase. This peak is pre-
sumably related to the energy gap between the t2g and
eg states in the presence of Mn2+ ions.
TECHNICAL PHYSICS      Vol. 49      No. 5      2004
For the films with the orthorhombic structure (Ts =
650, 670, and 700°C), the approximation of the experi-
mental data by the formula α("ω) ~ ("ω – Eg0)2/"ω)
(where "ω is the photon energy and Eg0 is the optical
energy gap) [19] when [α("ω)]1/2 tends to zero yields
Eg0 ≈ 0, which the case for manganites [20]. In the
short-wave range ("ω > 3 eV), where the slope of the
curve α("ω) in Fig. 4 increases, we obtain Eg = 2.4 ±
0.05 eV by the same approximation for all the samples.
This value of Eg agrees with the split ∆cf between the t2g

and eg states of Mn4+ ions.

Figure 5 shows the correlation between the intensity
I1.92 Å of diffuse X-ray scattering from closely spaced
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(d = 1.92 Å) Mn–O planes with the extreme resistivity
values (ρmax and ρmin) of the LaSrMnO films and the
optical transmission t in the energy range where the
contribution from free charge carriers to intraband opti-
cal transitions is appreciable ("ω = 0.5 eV).

These parameters are contrasted at Ts = 600, 650,
670, and 700°C = const. The synthesis temperature
grows along the abscissa from left to right. It is seen
that both the resistivity and the optical transmission
decrease as the fraction of the closely spaced Mn–O
planes in the cluster structure grows. This supports the
experimentally found fact that the metallicity of
LaSrMnO films becomes more pronounced when man-
ganese and oxygen atoms approach each other as a
result of increasing the degree of Mn ionization. The
ionization favors the crystallographic phase transition
[4] (Mn2+ + Mn3+ + Mn4+) rhombohedral phase 
(Mn3+ + Mn4+) orthorhombic phase.

CONCLUSIONS

The results of studying La0.6Sr0.2Mn1.2O3 films dif-
fering in interval ∆T = Tmax – Tmin between the extreme
values in the temperature dependence of the resistance
may be summarized as follows.

(i) The extension of the metallicity interval (a rise in
Tmax and a simultaneous decrease in Tmin) is favored by
the redistribution of atoms within a family of correlated
planes (with the total amount of scatterers remaining
the same): the fraction of widely spaced (d = 2.02–
2.04 Å) planes drops, while that of closely spaced (d =
1.90–1.99 Å) planes grows. This enhances Mn–O inter-
atomic interaction.

(ii) Enhanced Mn–O interaction raises the density of
states responsible for optical transitions at energies
"ω = 1.5 and 2.4 eV, which are typical of Mn3+ and
Mn4+ ions. Simultaneously, the density of states at "ω =
0.9 eV associated with Mn2+ ions decreases.

Thus, the reason for the extension of the metallicity
interval ∆T = Tmax – Tmin is an increase in the density of
states as a result of enhanced Mn–O interatomic inter-
action and in the local mass density of clusters in
LaSrMnO films.
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Abstract—Magnetization reversal by high-frequency current in FeCuNbSiB/Al/FeCuNbSiB three-layer film
structures is studied. The frequency spectrum of the voltage arising in a coil wound on the sample as a function
of a permanent magnetic field (nonlinear magnetoimpedance) is taken. It is shown that the frequency spectra of
the voltage are qualitatively different for the longitudinal and transverse orientations of the field with respect to
the direction of the current. Frequency spectrum harmonics are demonstrated to be highly sensitive to a mag-
netic field. A simple electrodynamic model to describe experimental data is suggested. © 2004 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The giant magnetoimpedance effect (a drastic
increase in the complex resistance of a conductor in a
weak magnetic field) is of great interest because of its
possible applications in various fields of technology [1–
3]. To date, the giant magnetoimpedance effect has
been studied in detail in amorphous wires and cobalt
stripes (see, e.g., [4, 5]), where it was first discovered.
Subsequently, this effect was observed in multilayer
film structures consisting of magnetically soft or
nanocrystalline films separated by a high-conductivity
metallic spacer [6–12]. A potentially high sensitivity of
these multilayer structures to an external magnetic field
makes them promising for small-size detectors of weak
magnetic fields.

The giant magnetoimpedance effect is observed at
relatively low amplitudes of a time-varying current,
when the signal measured is proportional to the con-
ductor impedance. Recently, nonlinear effects in mag-
netically soft wires have attracted considerable atten-
tion [13–19]. They appear when a relationship between
the magnetization and current amplitude becomes non-
linear. In this case, magnetization reversal takes place
in a part of the sample volume and the spectrum of the
voltage across the ends of the wire or in a pickup coil
wound on the sample consists of harmonics with fre-
quencies that are multiples of the current frequency.
From the applied point of view, a nonlinear voltage
response may turn out to be even more promising than
the giant magnetoimpedance effect [13, 15, 19]. Such a
response is often called the nonlinear magnetoimped-
ance effect [15, 16, 19]. Strictly speaking, the term
“impedance” is applicable to only the linear case; how-
ever, because of apparent similarity to the giant magne-
toimpedance effect, this term is in frequent use in the
relevant literature for brevity. It should be noted that
1063-7842/04/4905- $26.00 © 0577
measurement of the magnetic field based on higher har-
monics is a well-known procedure, which is applied,
for example, in ferroprobes (see, e.g., [20, 21]). How-
ever, in magnetically soft amorphous conductors exhib-
iting the giant magnetoimpedance effect, the output
signal spectra have a number of intriguing features,
which make it possible to considerably improve the
sensitivity to low (on the order of 1 Oe) magnetic fields.

Calculations [22] showed that technologically the
nonlinear effects offer a number of advantages over the
giant magnetoimpedance effect. It is known [8, 9, 23]
that pronounced transverse (relative to the current vec-
tor in the sample) magnetic anisotropy is a necessary
condition for the impedance of a film to change consid-
erably. However, providing for uniform and stable
transverse anisotropy is a technological challenge due
to the influence of the sample shape. Obtaining a highly
sensitive response based on the nonlinear magne-
toimpedance effect does not require transverse mag-
netic anisotropy [22], which greatly simplifies the fab-
rication of the film structures. In addition, unlike the
case of magnetically soft wires, the frequency spectrum
of the nonlinear voltage signal picked up from the film
is highly sensitive to two components of an external
magnetic field [22], allowing for the design of a two-
component field detector.

In this work, we study the nonlinear magnetoimped-
ance of a three-layer film structure consisting of mag-
netically soft amorphous films separated by a high-con-
ductivity nonmagnetic spacer. The frequency spectra of
the voltage arising in a coil wound on the sample are
taken for both transverse and longitudinal orientations
(relative to the direction of the time-varying current) of
an external magnetic field. It is shown that the ampli-
tudes of odd and even harmonics depend on the trans-
verse and longitudinal field strength in a considerably
2004 MAIK “Nauka/Interperiodica”
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Fig. 2. Measured harmonic amplitudes Vk against the trans-
verse magnetic field HT (I0 = 50 mA, f = 1 MHz). (a) Odd
harmonics: k = (j) 1, (d) 3, and (m) 5; (b) even harmonics:
k = (h) 2, (s) 4, and (n) 6.
different manner. Experimental data are analyzed in
terms of a quasi-static approximation.

EXPERIMENTAL

Experiments were performed with
Fe73.5Cu1Nb3Si16.5B6/Al/Fe73.5Cu1Nb3Si16.5B6 three-
layer film structures (sandwiches). The films were pre-
pared by electron-beam vacuum evaporation. Ferro-
magnetic films were l = 5 mm long, w = 3 mm wide, and
d = 0.6 µm thick. The thickness of the aluminum layer
was 2 µm. At the ends of the aluminum layer, 3 × 3-mm
copper contact pads were formed. No special measures
to induce magnetic anisotropy were taken. Stresses at
the layer–layer and layer–substrate (Sitall) interfaces
were relieved by annealing at 250°C.

The nonlinear magnetoimpedance was measured by
passing a time-variable current along the longer side of
the sandwich. The peak amplitude of the current was
I0 = 75 mA, and its frequency f was varied between 0.1
and 2.0 MHz. The test sample was placed in a perma-
nent solenoidal magnetic field whose strength was var-
ied from –37 to 37 Oe. The magnetic field could be ori-
ented both longitudinally and transversely relative to
the longer side of the sandwich. A 45-turn pickup coil
was wound on the test sample (Fig. 1). The amplitudes
of voltage harmonics generated in the coil were mea-
sured with an HP4395A spectrum analyzer.

RESULTS AND DISCUSSION

Figure 2 plots the amplitudes of voltage harmonics
Vk (k is the harmonic number) arising in the coil against
the transverse magnetic field strength HT. The ampli-
tude V1 of the first harmonic peaks in the absence of the
field. As the field magnitude grows, V1 decreases,
exhibits a low peak at |HT| ≅  10 Oe, goes to zero at
|HT| ≅  20 Oe, and increases at |HT| > 20 Oe (Fig. 2a).
The third-harmonic amplitude is minimal in the
absence of the field, grows with increasing field magni-
tude, and reaches a maximum at |HT| ≅  10 Oe. The max-
imum of the third harmonic exceeds that of the first har-
monic at |HT| < 20 Oe. The behavior of the fifth har-
monic in low fields is qualitatively similar to that of the
first one, but the amplitude of the latter is higher.

In the transverse magnetic field, even harmonics
behave in a radically different manner (Fig. 2b). Their
amplitudes equal zero at HT ≅  –1.5 Oe and then sharply
grow with increasing magnetic field, being consider-
ably dependent on the sense of the transverse field. For
example, the second harmonic has peaks at HT ≅  –6.5
and ≅ 5 Oe and its amplitudes in these peaks differ by a
factor of more than 1.5 (Fig. 2b). As the magnitude of
the field increases, the amplitudes of even harmonics
decline. The amplitude V2 has an additional small peak
at |HT| ≅ 25 Oe. Note that V2 far exceeds V1 and is more
sensitive to the transverse magnetic field HT. In positive
TECHNICAL PHYSICS      Vol. 49      No. 5      2004



        

FREQUENCY SPECTRUM OF THE NONLINEAR MAGNETOIMPEDANCE 579

                                                     
fields, the field sensitivity of V2 is about 2 mV/Oe, as
follows from Fig. 2b.

For the coil placed in the longitudinal field HL, the
voltage harmonic amplitudes are shown in Fig. 3. The
first harmonic amplitude V1 has a maximum at |HL| ≅
1.5 Oe and remains virtually the same in high fields
(Fig. 3a). The amplitudes of other odd harmonics are
much smaller than V1 and also vary insignificantly with
the longitudinal field.

The amplitudes of odd harmonics grow with
increasing HL, reach a peak, and then slowly decrease
(Fig. 3b). From Figs. 2b and 3b, it follows that the
dependence of the even harmonic amplitudes on the
sense of the field in the case the longitudinal configura-
tion is lower. The second-harmonic amplitude V2
reaches a peak at HL ≅  ±3.5 Oe, and the peak values of
V2 differ by no more than 10%. In addition, the depen-
dence V2(HL) has no extra peaks in high fields. Figure 3
shows that the even harmonic amplitudes are much
more sensitive to the longitudinal field HL than the
amplitudes of odd harmonics. The sensitivity of the
second harmonic to the longitudinal field is roughly
4 mV/Oe. It should be noted that the behavior of even
harmonics in the longitudinal field are qualitatively
similar to that observed when the nonlinear magne-
toimpedance was studied in amorphous cobalt microw-
ires [13, 24] and in composite wires consisting of a
high-conductivity core and a magnetically soft clad-
ding [14, 17].

The field dependences of the signal spectra taken
from the pickup coil may be qualitatively explained in
terms of a simple model of a sandwich consisting of
two ferromagnetic layers separated by a nonmagnetic
spacer. We assume that the domain structure in both fer-
romagnets is absent. As was shown [22], the one-
domain approximation is valid for not too wide sand-
wiches with a low constant of induced anisotropy. In
the absence of an external magnetic field, the magneti-
zation distribution is found from the minimum condi-
tion for the sum of the induced anisotropy energy and
the energy of interaction between ferromagnetic layers
through stray fields. For simplicity, we will assume that
anisotropy in the films is uniaxial and the effective
anisotropy field is the superposition of the induced
anisotropy field and stray fields.

Let the current flow only through the middle high-
conductivity layer and its associated variable field be
uniformly distributed across the ferromagnetic films.
The variable field amplitude H0 is related to the current
amplitude I0 as

(1)

When the current I(t) = I0sin(2πft) passes through
the sandwich, its magnetic field makes the transverse
magnetization components Mxi time-dependent (here-
after, the subscripts i = 1 and 2 refer to the ferromag-
netic layers, and the x and y axes run along the shorter

H0 2πI0/cw.=
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and longer sides of the sandwich, respectively). The
time variation of the transverse magnetization compo-
nents causes the longitudinal components Myi to vary
with time. Then, according to the Faraday law, a volt-
age V arises in the coil wound on the sample. If I0 is low,
the voltage varies linearly with the current amplitude
[23]. Large current amplitudes reverse the magnetiza-
tion of the sandwich, and the voltage generated in the
coil becomes high and nonlinearly dependent on I0.
The voltage in the coil is given by

(2)V V0/M( )
dMy1

dτ
------------

dMy2

dτ
------------+ .–=
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Fig. 3. Measured harmonic amplitudes Vk against the longi-
tudinal magnetic field HL (I0 = 50 mA, f = 1 MHz). (a) Odd
harmonics: k = (j) 1, (d) 3, and (m) 5; (b) even harmonics:
k = (h) 2, (s) 4, and (n) 6.
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Here, V0 = 8π2NMfwd/c, N is the number of turns in the
pickup coil, M is the saturation magnetization, and τ =
2πft is dimensionless time. Since in experiments the
frequency of the current is not too high, the magnetiza-
tion reversal process can be described in a quasi-static
approximation. Under the assumptions made above, the
free energy U of the sandwich can be represented as the
magnetic anisotropy energy and the Zeeman energy in
the field of the current and in an external magnetic field:

(3)

Here, θi are the angles between the magnetization vec-
tor and y axis in the ferromagnetic films, Hai is the
effective anisotropy fields in the films, and ψi are the
angles the anisotropy axis makes with the y axis in the
films. Note that the anisotropy fields in the films may
differ substantially [9]. The magnetization components
in the ferromagnetic layers satisfy the minimum condi-
tion for the free energy U.

Let us consider the frequency spectrum of the volt-
age in the coil for the transverse field (HT ≠ 0, HL = 0).
The minimization of the free energy yields the follow-
ing equations for the magnetization components in the
ferromagnetic layers:

U/lwd MHa1/2( ) θ1 ψ1–( )sin
2

=

+ MHa2/2( ) θ2 ψ2–( )sin
2

MH0 τ( ) θ1sin θ2sin–( )sin–

– MHT θ1sin θ2sin+( ) MHL θ1cos θ2cos+( ).–

Hai
2 2ψi( )Myi

2 M2 Myi
2–( )cos

2

=  M2 HT 1–( )iH0 τsin–{ } MMyi[

+ Hai 2ψi( ) Myi
2 M2/2–( )sin ]2

,
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Fig. 4. Calculated harmonic amplitudes Vk against the trans-
verse magnetic field HT for H0/Ha1 = 1.1, Ha1 = Ha2, ψ1 =
0.15π, and ψ2 = 0.2π. k = (1) 1, (2) 2, (3) 3, and (4) 4.
(4)

At low amplitudes of the variable current, the curves
Mxi(τ) and Myi(τ) are smooth. If the amplitude of the
current-induced field exceeds a certain threshold value,
the magnetization components change sign stepwise,
causing irreversible magnetization switching in the
films. Near the steps, the quasi-static approximation is
inapplicable, and one would have to use the Landau–
Lifshitz equation to describe the magnetization reversal
process. However, at low frequencies (f ! 1/∆t, where
∆t is the characteristic time of step change in magneti-
zation), one need not know the behavior of the curves
Mxi(τ) and Myi(τ) near the steps in detail to analyze the
frequency spectrum of the voltage [13]. Ignoring the
steps and using Eqs. (2) and (4), we get for the voltage
in the pickup coil

(5)

where Mxi, Myi, and ∂2U/∂  satisfy Eqs. (4).

The frequency spectrum in the pickup coil can be
found by applying Fourier transformation to expression
(5). The calculated dependences of the voltage har-
monic amplitudes Vk on the transverse magnetic field
HT are shown in Fig. 4. Here, the results are given only
for positive values of the field (HT > 0), since the har-
monic amplitudes in the model considered are symmet-
ric under change of sign of the field. From Fig. 4, it fol-
lows that, for low fields, the calculation qualitatively
agrees with the measured dependences of the harmonic
amplitudes on the transverse field. However, the model
cannot account for the increase in the amplitudes of the
first and second harmonics in the high field range
(Fig. 2) because of the above assumptions. In real sand-
wiches, the anisotropy field is distributed over the fer-
romagnetic films nonuniformly. Magnetization reversal
takes place also nonuniformly, which may lead to an
increase in the amplitude of some harmonics in high
magnetic fields.

Consider now the nonlinear impedance in the longi-
tudinal magnetic field (HL ≠ 0, HT = 0). The minimiza-
tion of free energy (3) yields the following equations
for the magnetization components:

(6)

∂2U/∂θi
2 HT 1–( )iH0 τsin–{ } MMxi=

+ Hai 2ψi( ) Myi
2 Mxi

2–( )cos

+ 2Hai 2ψi( )MxiMyisin 0,>

Mxi
2 M2 Myi

2 .–=

V V0H0 τ
Mx1My1

∂2U/∂θ1
2

--------------------
Mx2My2

∂2U/∂θ2
2

--------------------– ,cos=

θi
2

M2 Myi
2–( ) HLM Hai 2ψi( )Myicos+[ ] 2

=  M2 H0MMyi τsin Hai 2ψi( ) Myi
2 M2/2–( )sin+[ ] 2

,

∂2U/∂θi
2 HLMMyi 1–( )iH0MMxi τsin–=

+ Hai 2ψi( ) Myi
2 Mxi

2–( )cos
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In Fig. 5, the voltage harmonic amplitudes Vk are
plotted against the longitudinal magnetic field. The
curves are calculated by applying Fourier transforma-
tion to expressions (5) and (6). As in the case of the
transverse field, the model assumes that the harmonic
amplitudes are symmetric with respect to sign of the
field. The measured and calculated amplitude versus
field curves are qualitatively similar to each other, but
the calculated even-harmonic amplitudes fall faster.

Thus, our simple model makes it possible to
describe the basic features of the experimental fre-
quency spectrum of the voltage arising in the pickup
coil. However, it fails in explaining the harmonic
amplitude asymmetry under change of sign of the field
and the increase in the first and second harmonic ampli-
tudes in high transverse magnetic fields. In addition, the
decrease in the even-harmonic amplitudes with increas-
ing field, which was observed in the experiment, is
slower than predicted. These discrepancies between the
theory and experiment are due to the assumptions of the
model. For a more detailed analysis of experimental
curves, it is necessary to take into account the nonuni-
form distribution of the variable magnetic field and
anisotropy field over the ferromagnetic layers and edge
effects.

CONCLUSIONS

We studied the nonlinear impedance of
Fe73.5Cu1Nb3Si16.5B6/Al/Fe73.5Cu1Nb3Si16.5B6 sand-
wiches. The frequency spectra of the voltage arising in

+ 2Hai 2ψi( )MxiMyisin 0,>

Mxi
2 M2 Myi

2 .–=

0 1 2 3 4 5

0.4

0.2
1

2

3

4

HL/Ha1

Vk/V0

0.6

0.8

Fig. 5. Calculated harmonic amplitudes Vk against the lon-
gitudinal magnetic field HL for H0/Ha1 = 1.1, Ha1 = Ha2,
ψ1 = 0.15π, and ψ2 = 0.2π. k = (1) 1, (2) 2, (3) 3, and (4) 4.
TECHNICAL PHYSICS      Vol. 49      No. 5      2004
a pickup coil were taken for external magnetic fields
oriented both transversely and longitudinally relative to
the direction of the time-varying current. The frequency
spectrum of the voltage is found to be appreciably sen-
sitive to the field orientation. In the transverse configu-
ration, the first several harmonics have high amplitudes,
and even harmonics are more sensitive to the field. In
the longitudinal configuration, odd harmonic ampli-
tudes depend on the field only slightly, and even har-
monics remain highly sensitive to the field. For both
orientations, the field sensitivity of the second har-
monic is on the order of 1 mV/Oe at a current frequency
of 1 MHz. This value is comparable in order of magni-
tude to the sensitivity obtained in [6, 8, 10], where the
giant magnetoimpedance effect in film structures was
investigated, and can be improved by optimizing the
sandwich geometry and using a variable current of
higher amplitude and frequency. Since the effect is
observed in both longitudinal and transverse magnetic
fields, it may provide a basis for designing two-compo-
nent low-magnetic-field detectors.
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Abstract—The kinetics of penetration of deformable striking rods into SiC ceramics with different void con-
tent is studied. The penetration may be viewed as a two-stage process. At the first stage, the penetration rate is
minimal and the rate of contraction of the rod is maximal. At this stage, the penetration resistance of the ceramic
is the highest. At the second (quasi-steady-state) stage, the penetration kinetics is similar to the kinetics of pen-
etration into a zero-strength medium and resistance to penetration is largely inertial. At the first stage, the pen-
etration resistance is shown to correlate with the hardness of the ceramic and depend strongly on the void con-
tent. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

It has been shown [1–3] that high-rate penetration of
deformable strikers into ceramic materials is a two-
stage process in the general case. At the first stage, the
penetration rate is minimal and the rate of contraction
of the striking rod is maximal. At this stage, the pene-
tration parameters vary significantly as the ceramic
material is crushed, turning into a zero-strength free-
flowing bulk medium. At the second stage, the penetra-
tion rate is almost constant, being equal to the rate of
penetration into a zero-strength material. This means
that the penetration resistance is specified mainly by
inertial forces at this stage.

Obviously, the ballistic efficiency of ceramic mate-
rials for the first place depends on the parameters of the
first stage, where the penetration resistance is maximal.

As was shown in [2, 3], the failure kinetics of ceram-
ics and their impact behavior depend on both the impact
intensity (the impact velocity and the density of the rod)
and the physicomechanical properties of the material. It
remains to answer the question as to which properties
of ceramic materials are responsible for their ballistic
efficiency.

The purpose of this work was to study the kinetics
of penetration into ceramics of the same composition
that have different physicomechanical properties
because of different void content, since the effect of
voidage on the ballistic efficiency of ceramics is of
great interest.
1063-7842/04/4905- $26.00 © 20583
EXPERIMENTAL

We studied the penetration of deformable striking
rods made from tungsten alloy into SiC-based ceram-
ics. The voidage of the ceramics was varied over wide
ranges. The ceramics were prepared by sintering fine-
grained (a grain size of about 0.2 µm) SiC powders with
admixtures of aluminum and yttrium oxides. Boron and
carbon were also added in small amounts (about
0.5 wt %). The sintering temperature was varied from
1920 to 2150°C. The samples were 30-mm-long cylin-
ders 40 mm in diameter.

The physicomechanical properties of five ceramic
samples (hereafter, SiC 1, SiC 2, SiC 3, SiC 4, and SiC 5)
are listed in the table. The voidage π was determined
from the formula π = 1 – ρ/ρ0, where ρ is the measured
material density and ρ0 is the calculated density of the
pore-free material. The voidage of the ceramic materi-
als under study was considered in detail elsewhere [4].

The rods (30 mm long and 3 mm in diameter) were
made from tungsten alloy with a density of 17.3 g/cm3

and a dynamic yield strength of 2 GPa. The impact
velocity was measured in each of the tests and was
equal to ≈1600 m/s.

The positions of the rod at different times were visu-
alized with a four-shot X-ray pulsed unit. A set of bench
marks and a high accuracy of measuring the time
between X-ray pulses provide high temporal and spatial
resolutions of the penetration process (±0.1 µs and
±0.2 mm, respectively).

Figure 1 shows typical X-ray images of the rod that
were taken at different times for sample SiC 1.
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Phases of penetration of the striking rod made from W alloy into SiC 1 ceramic. The impact velocity is Vi ≈ 1600 m/s.
Three to five runs with each of the samples provide
sufficient information for the process of penetration.
Figure 2 shows typical distance–time curves for the
leading and rare ends of the rod penetrating into SiC 1.
Using the X-ray images, we can directly measure P(t)
and L(t) (where P is the penetration depth of the rod, L
is the current length of the rod, and t is the time) and
calculate the basic parameters of the process: the pene-
tration rate U(t) = dP/dt, the rate of contraction of the
rod as a function of time (dL/dt), and the rate of con-
traction as a function of the penetration depth (dL/dP).

RESULTS AND DISCUSSION

Figure 3 plots the ratio between the penetration rate
U and the current rod speed V versus time at the impact

Table

Mate-
rial

ρ,
g/cm3 π, % E, 

GPa
G, 

GPa µ σR, 
MPa

HV, 
GPa

RT0, 
GPa

SiC 1 3.28 0.9 380 160 0.22 430 31 11.0

SiC 2 3.26 1.8 375 155 0.21 330 25 9.0

SiC 3 3.22 2.4 360 150 0.21 310 23 6.9

SiC 4 3.05 5.0 360 150 0.21 230 22 5.3

SiC 5 2.93 10.0 255 105 0.21 180 19 5.1

Note: ρ is the density; π, the voidage; E, Young’s modulus; G, the
shear modulus; µ, Poisson’s ratio; σR, the bending strength;
HV, the Vickers hardness; and RT0, the initial penetration
resistance (initial strength) of the ceramics.
velocity Vi = 1600 m/s for all the samples. The curves
support the earlier conclusions [1–3] that the process is
two-stage. In our case, the penetration rate at the first
stage, which specifies the ballistic efficiency of ceramic
materials, depends strongly on the material properties,
in particular, on the voidage.

As the ceramics are crushed, the penetration kinetics
become much alike. The U/V versus t curves converge,
tending toward the “hydrodynamic” value

which is obtained in terms of the model of ideal incom-
pressible liquid (here, ρT and ρR are the densities of the
target and rod, respectively) [5]. Moreover, late in the
penetration, the experimental values of U/V exceed the
hydrodynamic one. This fact can be explained by stress
relieving in the relatively small targets when stress
waves reflect from their free surfaces, which decreases
the density ρT. However, in the case of lower resistance
targets, the strength of the striker, which is ignored in
the model of ideal incompressible liquid, becomes sig-
nificant.

More information about the process can be
extracted by considering the contraction of the striking
rod. In this case, the penetration resistance of the target
can be estimated from the rate of contraction of the rod
versus time (dL/dt) or penetration depth (dL/dP). As is

U/V 1

1 ρT/ρR+
--------------------------- 0.7,= =
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seen from Fig. 4, at the early stage of penetration, the
rate of contraction significantly exceeds the value

which is obtained from the model of ideal incompress-
ible liquid.

As noted above, the effective penetration resistance
of the target can be estimated from the experimental
values of the kinematic parameters, in particular, from
the rate U and speed V. The penetration resistance is
estimated with the Alekseevskiœ–Tate equation [6, 7]

(1)

dL
dP
-------– ρR/ρT 0.42,≈=

1
2
---ρTU2 RT+

1
2
---ρR V U–( )2 RR,+=

0 5
–30

–20

10 15 20 25 30
t, µs

1

2

–10

0

10

20

30
S, mm

0 5

1

10 15 20 25 30
P, mm

SiC 1
SiC 2
SiC 3
SiC 4
SiC 5

2

–dL/dP

Fig. 2. Distance–time curves for the (1) leading and (2) rare
ends of the striker penetrating into SiC 1.

Fig. 4. Contraction of the striker as a function of the pene-
tration depth in the SiC ceramics. The value –dL/dP ≈ 0.42
(straight line) is calculated in terms of the hydrodynamic
model.
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where RT and RR characterize the strength properties of
the target and striker under experimental conditions.

Taking RR to be equal to the yield strength YR of the
rod, i.e., RR = YR = 2 GPa, we can easily calculate RT

from Eq. (1).

The time dependences of RT for all the samples are
given in Fig. 5. It is seen that RT significantly varies
with time, remaining constant only within initial 3 to
5 µs of the process in all the cases. This constant value
may be taken as the initial resistance RT0 of the target
material to high-rate penetration. In the course of pen-
etration, the resistance decreases sharply because of
failure of the ceramics. By the 30th microsecond, the

0 5

0.4

0.2

10 15 20 25 30
t, µs

SiC 1
SiC 2
SiC 3
SiC 4
SiC 5

0.6

0.8
U/V

0 5

4
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10 15 20 25 30
t, µs

SiC 1
SiC 2
SiC 3
SiC 4
SiC 5

8
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12
RT, GPa

Fig. 3. Time dependence of the relative penetration rate U/V
for the SiC ceramics with different voidage. The value
U/V ≈ 0.7 (straight line) is calculated in terms of the hydro-
dynamic model.

Fig. 5. Penetration resistance of the SiC ceramics vs. the
time of interaction with the striking rod.
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strength of the ceramics drops to an extent that they can
be considered as a zero-strength medium.

It seems that the parameter RT0 may be viewed as a
basic property of ceramics, such as strength, elastic
modulus, and hardness. As follows from the table, RT0,
like other physicomechanical properties, regularly
decreases with increasing voidage. Physically, RT0 is
very close to the Vickers hardness HV (these parame-
ters correlate, as is seen from Fig. 6). The fact that
HV/RT0 ≈ 3 can be accounted for as follows. On the one
hand, this may reflect the fact that material damage
around a 1- to 3-mm-deep crater (used in determining
RT0) is heavier than around a 10- to 30-µm-deep inden-
tation, which is characteristic of HV measurements. In
other words, the failure of the material in HV measure-
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10 15 20 25 30
HV, GPa
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6

8

12

14
RT0, GPa

35 40

10

0 2

2

4 6
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12
RT0, GPa

10
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8 12

Fig. 6. Initial penetration resistance (initial strength) vs. the
hardness for SiC ceramics.

Fig. 7. Initial penetration resistance vs. the voidage for SiC
ceramics.
ments is not as intense as in RT0 measurements. On the
other hand, the difference between RT0 and HV may be
due to the same reason as the difference in superhard
material hardness when it is determined from recovered
(HVd ≡ HV) and actual (HVh) indentations [6, 7]. In our
case, RT0 was calculated using the kinematic character-
istics of penetration and, thus, is closer to HVh, which is
measured from the actual depth of a continuously pen-
etrating indenter. As follows from [6, 7], HVd/HVh ≈ 2.

To conclude, emphasis should be placed upon the
strong voidage dependence of RT0 in the low-voidage
ceramic materials: RT0 is almost half as much in the
voidage range 1–5% (Fig. 7).

CONCLUSIONS
High-rate penetration into porous ceramics follows

the mechanism established earlier for a variety of brittle
materials. In essence, penetration into porous ceramics
can be viewed as two-stage failure.

The penetration resistance is maximal at the early
stage, where the resistance depends strongly on the
voidage. The penetration resistance drops when the
voidage increases to 5%.

At the next stage, the penetration resistance is
defined mainly by inertial forces and depends on the
voidage only slightly.

The strength of the ceramics observed at the very
beginning of the process (RT0) correlates with the hard-
ness HV. The strength RT0 can be considered as a basic
property of ceramics that specifies their penetration
resistance and, hence, ballistic efficiency.
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Abstract—Computer simulation demonstrates the feasibility of pumping a one-dimensional nonlinear photo-
nic crystal (layered one-dimensional periodic structure) by optical energy localizing in the crystal when it is
irradiated by a femtosecond pulse train. Simulation is based of the recently suggested approach to similar prob-
lems. It is shown that the pumping effect can be employed in 3D optical storages. © 2004 MAIK “Nauka/Inter-
periodica”.
INTRODUCTION

Interaction of femtosecond pulses with photonic
crystals is of great practical interest, in particular, for
data transfer through fiber-optic communication lines.
Various photonic-crystal-related nonlinear optical
effects are known (see, e.g., [1, 2]), such as soliton for-
mation, optical switching, etc., which are promising for
designing optical processors and 3D optical storages. In
view of the latter application, it is instructive to see
whether the pumping a nonlinear photonic crystal (PC)
by radiation energy localized inside the crystal is feasi-
ble. With this in mind, we performed a computer simu-
lation of this problem for a one-dimensional photonic
crystal, using the approach recently suggested [3, 4] for
problems of this class. This approach assumes that light
wave propagation is isotropic (a preferred direction is
absent) and, according to our analysis [4], yields quali-
tatively more adequate and quantitatively more accu-
rate results compared with those obtained by the con-
ventional methods. It should be noted that the same
problem was also analyzed as applied to discrete lat-
tices [5], i.e., in terms of a discrete model.

STATEMENT OF THE PROBLEM

Propagation of an electromagnetic pulse in a one-
dimensional photonic crystal with cubic nonlinearity is
described by the nonlinear wave equation

(1)

Here, E(z, t) is the electric field strength; z is the coor-
dinate along the pulse propagation direction; Lz and
n(z) are the length and refractive index of the medium,
respectively; t is time; Lt is the time interval within
which optical pulse propagation is analyzed; c is the

∂2E z t,( )
∂z2

---------------------
n2 z( )

c2
------------∂2E z t,( )

∂t2
---------------------–

4π
c2
------ ∂2

∂t2
-------Pnl,=

Pnl εnl E 2E, 0 t Lt, 0 z Lz.< < < <=
1063-7842/04/4905- $26.00 © 20587
velocity of light; and εnl is a nonlinear correction to the
permittivity.

In order to derive an equation for the complex
amplitude A(z, t), slowly varying with time, let us rep-
resent the electric field strength and the correction to
the permittivity in the form

where c.c. means the complex conjugate.

Assuming a linear relationship between the wave-
number k and frequency of light ω, as is customary for
this class of problems [2], and using the same coordi-
nate notation for convenience, we transform the wave
equation for femtosecond pulse propagation in a non-
linear periodic medium into the Schrödinger equation
[3], which in dimensionless form appears as

(2)

Here,

(3)

(4)

E z t,( ) 0.5 A z t,( )e iωt– c.c.+( ),=

Pnl 0.5εnl A 2 A z t,( )e iωt– c.c.+( ),=

ε z( )∂A
∂t
------ iD

∂2A

∂z2
--------- iβ ε z( ) α z( ) A 2+( )A+ + 0.=

D
1

4πΩ
-----------, β– πΩ, Ω–

ω
ωstr
--------, L

Lz

λ0
-----,= = = =

ε z( )

1, 0 z L0≤ ≤
ε1, L0 d1 d2+( ) j 1–( ) z L0 d1+≤ ≤+

+ d1 d2+( ) j 1–( ), 1 j Nstr 1+< <
ε2, L0 d1 d1 d2+( ) j 1–( ) z L0≤ ≤+ +

+ d1 d2+( ) j, 1 j Nstr< <
ε3, L0 d1 d2+( )Nstr d1 z L,≤ ≤+ +












=

004 MAIK “Nauka/Interperiodica”



588 TROFIMOV et al.
(5)

Thus, the first and last layers of the photonic crystal
have the same permittivity ε1. Next is the substrate with
a permittivity ε3. It should be noted that the case ε = 1
corresponds to one of two cases: either the substrate is
air or the permittivities of other layers are measured in
units of the permittivity of the substrate. Above, ωstr is
the frequency of the periodic structure: ωstr = 2πc/λ0,

where λ0 = d1  + d2 ; d1, d2 and ε1, ε2 are the
thicknesses and permittivities of the respective layers;
Nstr is the number of the layers; ε3 is the permittivity of
the substrate under the layered structure; L0 is the
dimensionless distance from a radiation source to the
PC; L is the normalized length of the region considered
(it includes the distance to the PC, the length of the lay-
ered structure, and the length of the substrate); and α1
and α2 characterize the cubic nonlinearity of the layers.

We consider a time interval that is too short for a
pulse propagating along the z axis to reach the bound-
ary of the region of interest. Therefore, the initial and
boundary conditions for Eq. (2) have the form

(6)

For a Gaussian pulse, the complex amplitude A0(z)
in the space before the PC is given by

(7)

where Lc is the position of the center of a pulse and a is
the spatial size of the beam (coincident with the pulse
length in our case).

The problem stated by (2) and (6) has invariants [3],
which were used to construct conservative difference
schemes that retain difference analogues of these
invariants during calculation. Such an approach
excludes calculation errors that may arise because of an
inappropriately chosen scheme. However, in view of
the complex character of pulse–PC interaction, one
should perform calculations on grids with successively
decreasing steps to control the results obtained. If the
pulse shape does not depend on the step, the spectral
distribution of the grid solution is valid.

To conclude this section, we note that the results that
follow were obtained for the layers with the dimension-

α z( )

0, 0 z L0≤ ≤
α1, L0 d1 d2+( ) j 1–( ) z L0 d1+≤ ≤+

+ d1 d2+( ) j 1–( ), 1 j Nstr 1+< <
α2, L0 d1 d1 d2+( ) j 1–( ) z L0≤ ≤+ +

+ d1 d2+( ) j, 1 j Nstr< <
0, L0 d1 d2+( )Nstr d1 z L.≤ ≤+ +












=

ε1 ε2

A t 0= A0 z( )ei2πΩz, A z 0= L, 0.= =

A0 z( )
z Lc–( )2

a2
--------------------–

 
 
 

,exp=
less lengths

(8)

which are close to the physical values presented in
[2, 6] for an optical radiation wavelength of 780 nm.

It should be mentioned that fixed values of d1 and d2
do not restrict the generality of the results. With these
lengths changed, the phenomena considered below will
be observed for other values of the related parameters,
as follows from the numerical simulation discussed
here. The value of L0 was chosen such that the pulse
does not reach the first layer of the PC at zero time.

REFLECTION AND TRANSMISSION BANDS 
VERSUS NONLINEARITY PARAMETER 

AND PULSE DURATION

Since many mechanisms may be responsible for the
effect of energy localization within a PC (pulse self-
focusing in a definite layer, a frequency shift of the
transmission band, etc.), let us consider the variation of
the transmission and reflection bands with the pulse
duration and the nonlinearity factor. The solid curve in
Fig. 1 shows the percentage R of the energy reflected
from a linear (α1 = α2 = 0) PC for a long (a = 20) inci-
dent pulse. It is seen that total internal reflection takes
place in the range 1.85 ≤ Ω ≤ 1.91, while the transmis-
sion band lies in the range 2.11 ≤ Ω ≤ 2.16. The param-
eters ε1 = (2.3)2, ε2 = ε3 = 1, and Nstr = 10 were fixed.
Note that the value of ε1 coincides with the permittivity
of ZnS [6]. It is important that the simulation [6] of this
curve gave the result that is totally coincident with the
experiment, indicating a high accuracy of the simula-
tion.

The dashed curve shows the same dependence for a
shorter pulse (a = 10). In the range 1.85 ≤ Ω ≤ 1.91, the
reflected energy fraction reaches only 86.9%; at the
same time, it does not drop below 3.8% in the range
2.11 ≤ Ω ≤ 2.16. Hence, neither the band of total reflec-
tion nor the band of total transmission exist in this case.
This is because the pulse begins to interact with each
layer of the PC rather than with the PC as a whole.

The dash-and-dot curve corresponds to a long (a =
20) pulse incident on a slightly nonlinear PC (α1 = 0,
α2 = 0.25). Here, the minimal fraction of the reflected
energy is even higher, 9%. This is associated with the
fact that self-focusing breaks a pulse into short sub-
pulses, for which the fraction of the energy transmitted
in the transmission band of the long pulse diminishes.
It should be emphasized that the localization effect is
absent in this case.

With an increase in the incident intensity, for exam-
ple, at α1 = 0 and α2 = 2 (triangles in Fig. 1), this curve
becomes difficult to construct because of the light
energy localization effect. Since this effect is fre-
quency-dependent, the localized energy fraction varies
with Ω . Moreover, the localized energy fraction affects

d1 0.2, d2 0.6,= =
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in various ways the reflected and transmitted fractions
of the energy at different Ω . Yet one can see that the
reflected energy fraction is appreciably lower than in
the three previous cases.

SINGLE PULSE ENERGY LOCALIZATION

To detect the phenomenon of energy localization
experimentally, we studied the light intensity localized
in the PC versus the pulse duration when either the
input intensity or the energy of the pulse is kept con-
stant. As follows from our numerical simulation per-
formed under the latter conditions, the shorter the pulse
(the higher its intensity), the higher the localization effi-
ciency. Table 1 presents the peak intensities of sub-
pulses localized in the PC as a function of the input
parameters of an incident pulse. For a short pulse (a =
25), subpulses are localized in the sixth and eighth lay-
ers (their peak intensities equal 1.4 and 1.0, respec-
tively). For a pulse of duration a = 39, localization is
observed only in the eighth layer with a subpulse peak
intensity of 0.7. Finally, for a = 100, the localization
effect is absent.

Thus, the higher the incident pulse intensity, the
higher the fraction of the energy localized in PC layers.
Another conclusion that can be drawn from Table 1 is
that, for every nonlinear layer, there exists a lower
energy threshold above which the energy localizes in
this layer. If the energy delivered to a nonlinear layer is
insufficient, localization does not occur (as in the case
with an intensity of 0.25).

Table 2 shows the calculated fraction of the energy
localized in PC layers as a function of the incident pulse
duration. These data support the conclusion that the
effect of localization depends on the amount of energy
delivered to a nonlinear layer. For example, when the
initial pulse duration equals four, the energy delivered
to the layer is insufficient for a subpulse to be localized
although the light intensity in this layer grows to 1.5.

It is significant that localization takes place even in
the transmission band of a linear PC irradiated by a
long pulse. Computer simulation performed for Ω =
2.14, α1 = 0.01, and α2 = 5 revealed the localization
effect in the second, fourth, and sixth layers. The
respective fractions of the localized energy equals 16,
11, and 4% of the initial pulse energy. The fraction θj(t)
of the localized energy was calculated as the ratio of the
energy at a given time instant to the total incident pulse
energy:

(9)θ j t( )

ε z( ) A 2 zd

L0 d1 d2+( ) j d2–+

L0 d1 d2+( ) j+

∫

I1 t( ) ε z( ) A 2 zd

0

L0

∫=

--------------------------------------------------------,=
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where j is the number of an even layer and I1(0) is the
energy of a pulse before the PC.

Note that, in the nonlinear case, 25% of the incident
energy reflect from the crystal because of a shift in the
transmission band. It is also essential that, in the non-
linear case, the energy may localize in several top lay-
ers even in the total reflection band of a linear PC.

1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6
Ω

100

90

80

70

60

50

40

30

20

10
0

R, %

Fig. 1. Percentage of the energy reflected from a linear PC
exposed to a pulse of duration a = 20 (solid curve) and 10
(dashed curve) vs. the parameter Ω . The same dependences
for slightly nonlinear (α1 = 0, α2 = 0.25) and highly nonlin-
ear (α1 = 0, α2 = 2) PCs are shown by the dot-and-dash line
and triangles, respectively.

Table 1.  Localized subpulse intensity vs. the incident pulse
duration with the incident energy fixed. ε1 = (2.3)2, ε2 = 1, ε3 =
(1.3)2, Nstr = 7, Ω = 2.14, β = –6.73, D = –0.037, α1 = –5, and
α2 = 5

Incident pulse parameters Localized subpulse intensity 
(number of PC layer)a max |A(z, 0)|2

25 1 1.4 (sixth) and 1 (eighth)

39 0.54 0.7 (eighth)

100 0.25 No localization

Table 2.  Localized subpulse intensity vs. the incident pulse
duration for the peak input intensity |A(z, 0)|2 = 1. ε1 = (2.3)2,
ε2 = 1, ε3 = (1.3)2, Nstr = 7, Ω = 2.14, β = –6.73, D = –0.037,
α1 = –5, and α2 = 5

Incident pulse 
duration a

Localized subpulse intensity (number of PC 
layer; fraction of the initial pulse energy)

10 3 (eighth layer; 20%)

6 1.5 (eighth layer; 22%)

4 No localization
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LOCALIZATION OF THE PULSE 
TRAIN ENERGY

Computer simulation was performed for a wide
range of dimensionless parameters, specifically, for ε1 =
(2.3)2, ε2 = 1, ε3 = (1.3)2, Nstr = 7, Ω = 1.88, β = –5.92,
D = –0.042, α1 = –5, and α2 = 5. The pulse repetition
period ∆t (in our case, ∆t = 20) is taken such that the
reflected and transmitted parts of the energy of a previ-
ous pulse have traveled a considerable distance before
the next pulse arrives at the crystal. Under these condi-
tions, the influence of the previous pulse on the process
is negligible. At this time, the complex amplitude in the
regions before and behind the PC are set equal to zero
and a next pulse defined by (6) and (7) is specified. For
clearness, the inset to Fig. 2 shows the initial distribu-
tion of the pulse intensity over the region before the PC,
which was set discretely at time instants t = p∆t, where
p is an integer and 0 ≤ p ≤ 3.

The effect is demonstrated in Fig. 2, which plots the
time evolution of the fraction of the energy localized in
the second, fourth, sixth, and eighth layers. It is seen
that a part of the energy of the first pulse localizes in the
second and fourth layers (19 and 9% of its total energy,
respectively). In odd layers (with defocusing nonlinear-
ity), localization is absent and the radiation leaves them
after a time. Note that the early sign of energy localiza-
tion in a layer is the appearance of an intense subpulse
(with a peak intensity higher than 1), which propagates
in the layer via reflections from adjacent layers. Figure
2 also supports the above conclusion that there is a
threshold energy above which this subpulse may appear
and, hence, energy localization may take place. In the
fourth and sixth layers, localization starts from 9% of
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Fig. 2. Time evolution of the energy fraction localized in the
(1) second, (2) fourth, (3) sixth, and (4) eighth layers. The
inset shows the initial intensity distribution for one of four
successive pulses separated by ∆t dimensionless units.
the initial energy and one subpulse appears in the layer.
In the second layer, 19% of the first-pulse energy are
localized and two subpulses arise with their peak inten-
sities differing by a factor of five (3 and 0.6, respec-
tively).

In the case of the second pulse, which arrives at the
PC within the time ∆t, 13, 5, and 9% of its energy are
localized in the second, fourth, and sixth layers, respec-
tively. Generally speaking, the following pulses may
either increase the number of subpulses inside the lay-
ers (the subpulses usually differ in both peak intensity
and propagation velocity in the layer) or enhance the
intensity of already existing subpulses. For example,
after the second pulse has been incident on the PC, two
subpulses remain in the second layer but their ampli-
tudes become almost the same (max|A|2 ≈ 4.5); in the
forth layer, the second subpulse arises with its intensity
more than half as much as that of the first one (1.8 and
0.8, respectively); and in the sixth layer, the first sub-
pulse appears, which concentrates 9% of the initial
energy of the second incident pulse.

The third pulse incident on the PC still further
increases the peak intensity of subpulses in the second
layer (to 10 and 5, respectively) and in the fourth layer
(to 2 for both subpulses). Finally, the fourth incident
pulse gives rise to one more subpulse in the second
layer. As a result, the intensities of the three subpulses
in the second layer become equal to 11, 5, and 2.5,
respectively. The intensities of subpulses in the fourth
layer grow to 3.5 and 2, respectively, and the intensity
of the subpulse in the sixth layer rises to 2.5. Note that,
for a certain intensity of the incident pulse, the subpulse
intensity in a nonlinear layer may increase by more than
one order of magnitude, causing the “breakdown”
(fracture) of the PC. Such conditions can be realized in
experiments.

In some of the energy-localizing layers (in our case,
in the second one), two subpulses propagating with
close velocities merge into one with a higher intensity
and proportionally lower velocity. This phenomenon is
observed when the subpulses approach the next layer
almost simultaneously.

It is worth noting that the energy localization in
remote layers (in our case, the fourth, sixth, eighth, etc.)
depends not only on the incident pulse energy but also
on the time the pulse is incident on the PC. The energy
of an incident pulse reaches, e.g., the second layer if it
falls on the left-hand boundary of the second layer at
the time any subpulse localized within this layer either
approaches this boundary or has just reflected from it.
This subpulse interacts with incident radiation before it
reaches the right-hand boundary. Therefore, the inci-
dent pulse and the subpulse must propagate in the same
direction. Otherwise, when the incident pulse and the
subpulse counterpropagate, the latter will capture the
incident pulse if its energy in this layer exceeds the
threshold. In other words, the incident energy will
TECHNICAL PHYSICS      Vol. 49      No. 5      2004
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either be partially distributed among the existing sub-
pulses or give rise to a new subpulse.

CONCLUSIONS
We described the phenomenon of energy localiza-

tion in a one-dimensional nonlinear photonic crystal
irradiated by a train of femtosecond pulses and studied
energy localization conditions. It is shown that this
effect is of complex character and depends on the time
a pulse acts on a given PC layer. Localization either
gives rise to new subpulses or rises the intensity of
those already localized in the PC.

Note that difference schemes used for simulating
these effects must meet stringent demands. To obtain
conservative estimates, the mesh must not only be fine
in the spatial coordinate (in order that short high-inten-
sity subpulses in the layers be simulated correctly) but
also have small time steps. Furthermore, more stringent
requirements should be imposed upon the iteration pro-
cedure, which is also associated with high pulse inten-
sities.

Experimentally, the localization effect may be
detected several ways, e.g., by measuring the transmit-
ted and reflected energies as functions of the incident
pulse duration or intensity. From the dependences thus
obtained, one can find the localized energy fraction.
Another possibility is to detect PC fracture caused by
successively applied pulses with an intensity one order
of magnitude lower than the breakdown threshold. As
was mentioned above, the intensity of localized sub-
pulses may increase by a factor of 10 or more.

In our opinion, the effect of energy localization
within a layer (or layers) of a nonlinear photonic crystal
opens up possibilities of creating 3D optical memories.
For example, a 3D optical disk may be made of a lay-
TECHNICAL PHYSICS      Vol. 49      No. 5      2004
ered structure where layers with given optical proper-
ties (for example, linear and nonlinear layers) alternate
in the direction of pulse propagation. In the transverse
direction, the active part of the disk may contain alter-
nating nonlinear (active) pits and pits whose optical
properties are the same as those of preceding and fol-
lowing inactive layers. The resulting 3D structure will
consist of “columns” of a layered periodical structure
(one-dimensional photonic crystal). As follows from
this paper, by applying a train of pulses, one may
increase the localized energy to a desired degree, for
example, to initiate chemical reactions. However, this
issue calls for further investigation.
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Abstract—A model of a laser that uses the GaAs/AlyGa1 – yAs lattice nonlinearity to lase in the terahertz range
is proposed. The laser mixes two-frequency near-IR oscillations in a vertical (i.e., arranged across the structure
layers) Bragg cavity. The cw output at a wavelength of 10 µm may reach 0.5 to 5 µW. © 2004 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Quantum-well cascade lasers (QCLs) are today
prominent among optical oscillators operating in mid-
dle and far infrareds [1–4]. Of the most important
achievements in this field, a QCL with a peak output of
about 0.5 W at a wavelength of about 9 µm at room tem-
perature stands out [1]. In the cw mode, this laser oper-
ates at temperatures below 140 K. In [2], a QCL that,
when cooled, operates at a wavelength of 17 µm and has
a peak power on the order of 10 mW was studied.
Köhler et al. [3] penetrated deeper into the IR range
toward longer wavelengths with their QCL, which
offers a peak power of about 1 mW at 4.5 THz under
helium temperatures. Finally, a QCL with an output of
10 mW in the cw mode at room temperature was stud-
ied in [4].

Although the potentialities of the known lasing
mechanisms, which have provided a great step forward
in developing IR QCLs, have by no means been
exhausted, researchers are looking for new approaches
that would allow them to devise new sources of radia-
tion in this as yet poorly understood frequency range.
Research in this field is dictated by the need for com-
pact semiconductor sources of coherence radiation with
a wavelength from 5 to 50 µm, which may find applica-
tion in spectroscopy, astronomy, and medicine. Among
alternatives to the mechanisms underlying the QCL
operation (amplification due to intersubband transitions
and carrier tunneling under a high electric field), we
may point out nonlinear frequency conversion in semi-
conductor structures that is due to lattice [5] or electron
nonlinearity. The latter effect appears in the three-level
model of quantum well [6]. It was also suggested that
two-frequency lasing be used in devices such as a cou-
pled-cavity laser with vertical extraction of radiation [7,
8]. Such a design implies that mid- or far-IR radiation
is generated via external nonlinear conversion.
1063-7842/04/4905- $26.00 © 20592
In our opinion, a still more promising approach is
one where two-frequency lasing and nonlinear fre-
quency conversion, which provide the difference-fre-
quency harmonic, are integrated in one cavity [5, 6].
Unlike QCLs, whose quantum-well structure is very
complex in order to match the wave functions of carri-
ers in each of the cascades, nonlinear conversion
requires simple and inexpensive hardware. Since the
electric field amplitude in the cavity may be as high as
104–5 × 104 V/cm and the nonlinear susceptibility
tensor components, for example, for GaAs are ≈2 ×
10−8 cm/V, the nonlinear polarization in the cavity
becomes significant and, according to [5], sufficient for
terahertz lasing with an output feasible for applications.
Additionally [6], unlike the lasing mechanism in QCLs,
lasing due to nonlinear frequency conversion is thresh-
oldless, which is particularly important for advancing
into the long-wavelength infrared range, where Drude
free-carrier absorption makes a major contribution to
wave attenuation. This means that absorption losses
during nonlinear conversion reduce the output power
but do not quench lasing as in QCLs.

In this paper, we analyze the possibility of mid-IR
lasing in a vertical-cavity semiconductor laser via mix-
ing of two-frequency radiation on lattice nonlinearity.
To date, attempts have been made to create a vertical-
cavity laser where lattice nonlinearity was used to gen-
erate the second harmonic in the visible range (see, e.g.,
[9]). However, as far as we know, generation of the dif-
ference-frequency terahertz harmonic in such devices
has not been discussed in the literature.

LASER MODEL, EIGENVALUES, 
AND EIGENFUNCTIONS

A model of a laser cavity with vertical extraction of
the difference-frequency mode and high-frequency
modes is shown in Fig. 1. Quantum-size
004 MAIK “Nauka/Interperiodica”
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InxGa1 − xAs/GaAs active layers, which lase at wave-
lengths of about 1 µm, are separated by an AlyGa1 − yAs
spacer of thickness d3 roughly equal to λmid/4n3(λmid),
where λmid is the middle wavelength between the wave-
lengths λ1 and λ2 of high-frequency laser modes. It is
clear that each of the active layers is at the node of the
“foreign” field, i.e., the field amplified by another active
layer. Such a configuration is bound to reduce competi-
tion between the modes at wavelengths λ1 and λ2 as
much as possible. The upper and lower Bragg reflectors
(BRs) are made of alternate GaAs and AlAs layers with
thicknesses intended for operation at a mid-wavelength
λmid. An oxide window limits the pump current and
optical fields across the laser structure. The layers with
the thicknesses d1, d2, and d3 and also the Bragg reflec-
tors, which constitute the cavity and contribute mostly
to the nonlinear polarization, will be referred to as non-
linear conversion layers.

Preliminary study has shown that the output of the
difference harmonic is reasonable when the diameter of
the oxide window is much greater than the related
wavelength. Therefore, the characteristics of the laser
can be analyzed with a good accuracy in the approxi-
mation of a plane uniform wave propagating normally
to the layers of the structure; i.e., the boundedness of
optical fields in the transverse direction is ignored.

The parameters of the cavity were determined as
follows.

First, given the wavelength λ1, the geometry of the
lower and upper BRs, and the thicknesses of both active
layers and of the oxide layer, we calculated the
“eigenthickness” d1 of that nonlinear conversion layer
adjacent to the lower reflector. That is, the electromag-
netic problem was solved for eigenvalues under given
conditions at the cavity boundaries. The thickness d2 of
the nonlinear conversion layer between the second
active layer and upper BR was calculated as d2 = d1 –
(d3 + da). This condition places the lower active layer at
the geometric center of the cavity (da is the thickness of
the active layers). With these geometrical dimensions
of the structure, the mode with wavelength λ1 belongs
to the cavity eigenmode spectrum.

By solving the eigenvalue problem again for the
cavity geometry found at the previous stage, we deter-
mined the resonant wavelength  in the vicinity of the
wavelength λ2 specified initially (note that the modes
with the wavelengths λ1 and  must belong to the BR
reflection band). The cavity eigenfunction correspond-
ing to the eigenvalue  has a maximum in the plane
of the second active layer.

The eigenfunctions calculated as a function of the
longitudinal coordinate are shown in Fig. 2. Here, λ1 =
0.96 µm and  = 1.0367 µm; hence, λcav =

λ1 /(  – λ1) = 12.976 µm. The cavity length (the

λ20

λ20

λ20

λ20

λ20
λ20
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spacing between the BRs) is about 3λ1/n(λ1) or
2.5 /n( ). The material dispersion in the nonlinear
conversion layers and BRs was found from formulas
given in [10]. The upper and lower reflectors consist of
30 pairs of layers. The abscissa axis originates at the
middle of the upper active layer. As was noted above,
the maximum of the field at the wavelength l1 is roughly
coincident with the plane of the first active layer, while
the maximum of the electric field at the wavelength 
is in the middle of the second layer.

BASIC RELATIONSHIPS

It is known that the zinc blende structure is such that
films grown on its (100) crystallographic plane are

λ20
λ20

λ20
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Pout X

d 2
d 1 d 3

Fig. 1. Model of the laser structure: (1, 4) upper and lower
BRs, respectively; (2) oxide aperture; (3) nonlinear conver-
sion layers; (5) substrate; and (6) active layers.
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inappropriate for nonlinear lattice conversion when
waves propagate normally to the growth plane. Theo-
retically, the (211) plane would provide a maximum
conversion (see, e.g., [9]). However, publications are
scarce in which good vertical-cavity lasing structures
grown on the (211) substrate were reported. Generation
of the second harmonic in the visible part of the spec-
trum by vertically emitting lasers grown on the oblique
(311) substrate was studied in [9, 11]. Therefore, we
will assume that the lasing structure considered here is
grown on the (311) substrate.

It is easy to check that the nonlinear polarization
modulus for copolarized high-frequency components
in semiconductors is p = 2χε0d14E(1)E(2). Here, E(1) and
E(2) are the amplitudes of high-frequency components
(i.e., the modes with the wavelengths λ1 and ,
respectively), d14 is the element of the nonlinear sus-
ceptibility tensor (about 2 × 10–8 cm/V for GaAs), χ =

27/(11 ) ≈ 0.523, and ε0 is the permittivity. The

polarization vector  is coplanar with the polarizations
of the high-frequency optical fields.

The theory of wave-guiding structures excited by
impressed currents [12] yields the following expression
for the power density at the difference frequency:

(1)

Here, the high-frequency fields are represented as

E(1, 2) = ψ1, 2(x) are the field amplitudes in the first
and second quantum wells, respectively), n(λcav) and
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Fig. 3. Distribution of (1) the nonlinear polarization and
(2) its envelope over the length of the cavity. Curve 3 shows
the “frozen” pattern of the difference-frequency electric
field for comparing the longitudinal scales. The dotted lines
indicate the BR inner boundaries.
βcav are the cavity-averaged refractive index and propa-
gation constant at the difference frequency, ρ0 = 120π,
and Ω is the wave impedance of free space.

As follows from Eq. (1), the output depends largely
on the overlap integral of the normalized nonlinear
polarization ψ1(x)ψ2(x) and electric field intensity at the
difference frequency, which varies as exp(–jβcavx). The
variation of these functions along the longitudinal coor-
dinate is illustrated in Fig. 3. From general consider-
ations, it follows that the standing wave of nonlinear
polarization (curve 1) may excite waves both at the dif-
ference and the summary frequencies. The summary-
frequency mode is associated with the rapidly varying
component of the polarization; the difference-fre-
quency one, with the polarization envelope. The enve-
lope, derived by filtering out the rapidly oscillating
polarization component, is shown in Fig. 3 (curve 2).
For the lasing structure considered, the maxima of the
envelope lie near the BR inner boundaries (shown by
the dotted lines in Fig. 3). Curve 3 describes the inten-
sity of the difference-frequency field. Clearly, the inter-
action conditions in such a cavity are not optimal for
maximizing the overlap integral. Theoretically, this
integral reaches a maximum value when the BR spac-
ing is increased to about half the wavelength of the non-
linear polarization envelope. However, such an exten-
sion of the cavity raises total losses due to absorption
by free carriers. More detailed analysis of the contribu-
tions of these mechanisms to the lasing efficiency at the
difference frequency will be the subject of subsequent
investigation.

The field amplitudes in the active layers are related
to the laser parameters through the rate equation for
carrier concentration (see, e.g., [13]):

Here, J is the density of the pump current; e is the ele-
mentary charge; , g( ) = g0ln( /N0), and
hfi are the threshold carrier concentration, gain, and
photon energy, respectively in an ith layer; c is the
velocity of light; na is the refractive index of the layer;
τN is the lifetime at nonradiative recombination; B and
C are the coefficients of radiative and Auger recombi-
nation, respectively; and N0 is the antireflection carrier
concentration.

In the framework of our approximation, it is natural
to assume that the current is uniformly distributed over
the cross section and neglect carrier diffusion. We intro-
duce normalized quantities νth = Nth/N0 and Gth =

J
eda
--------
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-------- BN thi

2+=

+ CN thi

3 g N thi
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g(Nth)/g0 for the squared field amplitudes in the wells to
obtain

(2).

where D = 2hcN0ρ0/(g0τN), γ = BN0τN, δ = C τN, and

 is the threshold current in an ith active layer.

Expression (1) can thus be recast in the form more
convenient for calculations:

(3)

To calculate the threshold gains , we specified
radiation conditions (reflection coefficients) at the BR–
air interfaces and the damping constant in each of the
layers. In this case, a solution to an eigenvalue problem
that is similar to those discussed above takes a complex
value, with one of its parts (real or imaginary) being a
solution in the absence of losses, while the other allows
one to find the gain at the lasing threshold. We assumed
that the frequency dependence of the gain in an ith
active layer is similar to that in a Lorentzian contour:

where  is the maximum gain and ∆  is the ampli-
fication bandwidth.

Using the relationship between the electric field and
output at the upper BR–air interface, we obtain the fol-
lowing expression for the output power density at the
high-frequency modes:

(4)

In this expression, D' = hcN0/(g0τN) and  =

| |/| | is the ratio of the electric field amplitudes at
the emitting boundary and in an ith active layer.

RESULTS OF CALCULATION

The analysis of the oscillator was performed for the
parameter values listed in Table 1. Thermal effects due
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to the current passing through the structure were
neglected.

Figure 4 illustrates the dependence of the power
density at the difference-frequency mode on the pump
current. The cavity-length-averaged damping constant
for high-frequency modes, αmid ≈ α1, 2, is taken as a
parameter. From the experimentally found parameters
of the materials used in the laser structure [9, 10, 14], it
follows that the value αmid ≈ 5 cm–1 is reached when the
upper (lower) BR has an acceptor (donor) concentra-
tion of up to 1 × 1018 cm–3 and the nonlinear conversion
layers (NCLs) are doped to 3 × 1017 cm–3. When the
degree of doping in all the layers increases twofold,
αmid changes in proportion. In the mid-IR range, the
attenuation of a wave passing through a doped semi-
conductor is known to be associated mainly with losses
due to free-carrier absorption [10, 14, 15]. These losses
can be estimated using the expression for the permittiv-

Table 1.  Structure parameters

Parameter Value

Midwavelength λmid, µm 1

active layer thickness da, µm 0.03

Element d14 of nonlinear
susceptibility tensor, cm/V

1.7 × 10–8 (GaAs [9])

0.39 × 10–8 (AlAs [9])

Carrier lifetime τN, ns 5

Gain g0, cm–1 2000

“Transparent” carrier 
concentration N0, cm–3

1.5 × 1018

Radiative recombination
coefficient B, cm3/s

10–10

Auger recombination coefficient C, 
cm6/s

3.5 × 10–30

Amplification bandwidth ∆λg, µm 0.1

1

20 4 6 8 10

2

3

4

5

J, kA/cm2

(Pout/S) × 105, µW/µm2

1

2

Fig. 4. Output density at the difference frequency for the
damping constant αmid = (1) 5 and (2) 10 cm–1.
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ity (see, e.g., [14]). The wave damping constants αcav =
2Im(βcav) at the difference frequency that were calcu-
lated as a function of the carrier concentration in the
layers are summarized in Table 2.

Figure 4 shows that, at moderate losses in the cavity,
the power nonlinearly converted to the difference-fre-
quency mode ranges from 0.5 to 5 µW for a cross-sec-
tional area of the laser structure of 104–105 µm2. Note
that the attenuation affects the difference-frequency
harmonic power twofold. First, for a given laser geom-
etry, a decrease in the attenuation factor at wavelengths
λ1 and  reduces the threshold currents and thereby
enhances the electric field in the Bragg cavity. Addi-
tionally, as αcav decreases, the overlap integral for the
eigenfunctions of the cavity and the difference-fre-
quency mode grows (see expression (3)). These two

λ20

Table 2.  Damping constant for the difference-frequency
wave in the laser structure

Material Carrier concentration, 
1018 cm–3 αcav, cm–1

p-GaAs 1 100

(BR) 2 230

p-AlAs 1 120

(BR) 2 290

p-Al0.2Ga0.8As 0.3 20

(NCL) 0.6 50

n-Al0.2Ga0.8As 0.3 130

(NCL) 0.6 330

n-GaAs 1 200

(BR) 2 570

n-AlAs 1 650

(BR) 2 1400

10

20 4 6 8 10

20

30

40

50

J, kA/cm2

P1, 2/S, µW/µm2

1

2

2'

1'

Fig. 5. Effect of the distributed losses on the output density
of the high-frequency components. αmid = (1, 1') 5 and
(2, 2') 10 cm–1.
mechanisms in combination cause the power emitted at
the difference frequency to rise.

Figure 5 compares the powers of the high-frequency
modes (high-frequency sources) with the power
obtained as a result of their nonlinear mixing. The out-
put of the high-frequency modes is seen to be roughly
six orders of magnitude greater than the power of the
difference-frequency mode (the calculations were per-
formed for a cavity bounded by BRs each consisting of
30 pairs of alternating layers). The solid lines show the
power density at the wavelength λ1; the dashed lines, at
the wavelength . The difference between the curves
taken at the same damping constant results from the dif-
ference between the BR reflection coefficients for these
waves. This is because λ1 and  lie asymmetrically
about the center frequency of the reflection band.

The effect of the number of BR periods on the power
density at the difference frequency is illustrated in
Fig. 6 (αmid = 5 cm–1). The output of the difference-fre-
quency mode saturates when the BRs contain more
than 40 pairs of layers, since the losses in the cavity sat-
urate in this case. On the one hand, the external (radia-
tion) losses decline with increasing reflection coeffi-
cient. On the other hand, extra layers in the BRs
enhance the dissipation of the high-frequency mode
power inside the cavity. The net effect is the saturation
of the threshold currents, which limits the electric fields
giving rise to nonlinear polarization.

CONCLUSIONS

A model of a vertical-cavity laser that lases in the
terahertz range via mixing of two-frequency near-IR
radiation on lattice nonlinearity is proposed.

The eigenvalues and eigenfunctions of a Bragg cav-
ity for high-frequency modes are calculated under the
assumption that the structure is infinite in the transverse

λ20

λ20

1

20 4 6 8 10

2

3

4

5

J, kA/cm2

(Pout/S) × 105, µW/µm2

1

2

6

7

3

4

Fig. 6. Effect of the BR reflection coefficient (number of
periods) on the output density at the difference frequency:
(1) 20, (2) 30, (3) 40, and (4) 50 periods.
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direction. Relationships for the power density of the
modes at the frequencies being mixed and at the differ-
ence frequency are obtained.

The output at the difference frequency is studied as
a function of the number of layers (of the reflection
coefficient) constituting the BR structure. It is shown
that, as the BR reflection coefficient increases, the out-
put first grows and then saturates. When the damping
constant of the high-frequency modes is αmid = 5 cm–1,
saturation is observed for the cavity bounded by reflec-
tors consisting of about 40 pairs of layers.

The effect of losses due to free-carrier absorption
and to high-frequency radiation on the output of the
laser is analyzed. For an emitting surface area of 104–
105 µm2, it is shown that the power emitted at the dif-
ference frequency may reach 0.5–5.0 µW. According to
our estimates, this value may be significantly (several
tens of times) increased if a resonant structure for the
difference-frequency mode is provided. This is a sub-
ject of further investigation.
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Abstract—Taking into account the gyromagnetic properties of multilayer two-component structures of which
one or both components are magnetoactive materials shows that their optical properties can be controlled by an
external magnetic field. In particular, when applied to multilayer structures with a phase shift (defect), the mag-
netic field changes (decreases or increases) the width of the spectral resonance curve of the transmission coef-
ficient. The application of longitudinal and transverse (relative to the light propagation direction) magnetic
fields gives different results. Analysis shows that the effects observed may find application, for example, in fiber
optics. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Control of optical properties of various media has
attracted considerable attention in recent years. These
investigations have led to the development of materials
that suppress light propagation or transmit radiation of
a certain wavelength. One example of such materials is
the multilayer structures described in [1, 2].

Periodic structures of this type may be used as dis-
tributed Bragg gratings to produce feedback in semi-
conductor lasers [3] and also as photonic, phononic, or
magnonic crystals [2, 4–8] that have an energy band
forbidden for transmission of light with a particular
wavelength. These multilayer structures may consist of
several magnetic layers or of alternating magnetic and
nonmagnetic layers. Among the former are structures
exhibiting the giant magnetoresistance effect [9] and
magnetic reflectors based on the Kerr magnetooptic
effect [10]. The introduction of an additional magnetic
(or nonmagnetic) layer (defect) into the structure that
disturbs the layer sequence makes resonance transmis-
sion at a certain wavelength possible. The parameters of
such a transmission depend on the position, dimension,
and material of the defect [5–7].

The spectrum of radiation transmitted through these
multilayer structures is characterized by forbidden
energy bands. It should be noted that light transmission
through such materials may be accompanied by the
Faraday, Cotton–Mouton, and Kerr magnetooptic
effects [11, 12]. The multilayer structures studied and
used in practice are usually several tens of micrometers
in size; therefore, radiation damping may be disre-
garded.

It is common practice [2, 4–6] to study multilayer
structures with magnetic layers by exposing them to a
permanent magnetic field. This field switches the mag-
1063-7842/04/4905- $26.00 © 20598
netization of the magnetic layer (layers) or carries it
(them) to the state of saturation.

The aim of our study is to trace the variation of the
transmission spectrum taken from multilayer two-com-
ponent structures with a phase shift that are placed in a
variable magnetic field.

The study was performed with regard to the gyro-
magnetic properties of the magnetic component of the
structure. Such an approach is correct in a certain mate-
rial-dependent wavelength range. For example, it is
correct if iron garnet (IG) is taken as a magnetic com-
ponent of the multilayer structure and the radiation
wavelength is λ = 1.5 µm (this wavelength is at the
transmission edge of most IGs). At the transmission
edge in the near infrared, IGs are bigyrotropic media,
where the off-diagonal components of the permittivity
and permeability tensors almost equally contribute to
the rotation of plane of polarization [11, 12]. For large
λ (λ ≥ 5 µm), IGs feature purely gyromagnetic proper-
ties. When measuring the permeability of IGs at optical
frequencies [13–15], we took into consideration the
fact that the gyroelectric contribution to magnetooptic
effects may be minimized in the transmission range of
IGs, i.e., far away from the absorption line of Fe3+ or
rare-earth ions (the magnetooptic effects become
wavelength-independent in this case).

Thus, the effect of magnetic field on both the per-
mittivity and permeability tensors must be taken into
account in order to describe properly the properties of
multilayer structures with bigyrotropic magnetic lay-
ers. Changes associated with the permittivity tensor
alone do not provide the adequate pattern of what is
actually taking place. Therefore, studies [4–7], where
the forbidden bands in magnetic photonic crystals were
examined for specific materials and wavelengths, can-
not be regarded as complete, since the gyromagnetic
004 MAIK “Nauka/Interperiodica”



        

MULTILAYER STRUCTURES WITH MAGNETICALLY CONTROLLED LIGHT 599

                                                                                                                        
properties of the materials were not considered. It
seems therefore reasonable to combine the results
obtained in [4–6] and in this work (where the effect of
a magnetic field on the permeability tensor of the ferro-
magnetic components entering into the multilayer
structure is taken into account) in order to provide a bet-
ter insight into the optical performance of a multilayer
two-component structure incorporating magnetic and
nonmagnetic insulating layers when it is subjected to an
external magnetic field.

THEORY

The schematic of the structure is shown in Fig. 1a.
Because of the periodic variation of the refractive
index, radiation at a wavelength λ ≈ λ0 (λ0 is the Bragg
wavelength for a given structure) may arise if counter-
propagating waves are coupled. Therefore, further anal-
ysis will be performed based on a solution to coupled
wave equations. An important parameter in such a
description is the coupling coefficient χ. When the
refractive index varies periodically, the analytic expres-
sion for the coupling coefficient has the form

where Ey(z) is the distribution of the light wave electric
field along the 0X direction and k0 = 2π/λ0. The integral
is defined in the domain of periodic variation of the
refractive index, and the normalizing factor (radiation
intensity) is given by

Comparing the results for the coupling coefficient
obtained when the refractive index varies harmonically
and discretely (by a rectangular law), one can infer [3]
that sufficiently accurate estimates can be made under
the assumption that the refractive index varies harmon-
ically:

(1)

where

m is the grating order (we put m = 1), Λ is the period of
variation of the refractive index, and Ω is the phase of
the refractive index in the plane z = 0.

In this case, the coupling coefficient can be deter-
mined from the expression χ = π∆n/λ0. In a homoge-
neous Bragg waveguide, the reflection coefficient is
known to have a maximum at λ = λ0. In the case of
transmission, one therefore should use a Bragg
waveguide at the center of which the spatially modu-
lated refractive coefficient experiences a phase shift
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(Fig. 1b). For z < 0 and z ≥ 0, the refractive index varies
according to (1).

As was noted above, because of the periodic varia-
tion of the refractive index, forward and backward
waves of amplitudes R(z) and S(z), respectively, that
propagate in the structure become coupled at λ ≈ λ0.
These waves are described by the coupled wave equa-
tions

(2)

where χ is the coupling coefficient, α is the gain (atten-
uation), and δβ = β – β0.

Let us consider a solution to set (2) under the
assumption that radiation of amplitude R0 is incident on
the left wall of the structure, z = –L/2. If reflection on
both ends of the system is absent and the boundary con-
ditions are R(–L/2) = R0 and S(L/2) = 0, the solution to
set (2) takes the form [3]

(3)

where γ = , Γ1 = γ + α – jδβ, and Γ2 =
–γ + α – jδβ.

Now it is easy to find desired relationships for a
Bragg waveguide with a phase shift. Its properties are
described with the coupled wave equations for the left-
hand and right-hand parts in view of the boundary con-
ditions

at z = ±0.

dR
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Fig. 1. (a) Multilayer two-component structure and (b) the
refractive index profile of the structure with a phase shift.
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Then, the relative amplitude transmission coeffi-
cient for a wave passing through the multilayer struc-
ture [3] is given by

(4)

Figure 2 shows the wavelength dependence of the
intensity transmission coefficient (hereafter, the trans-
mission coefficient) or the spectral curve of transmis-
sion coefficient (hereafter, curve) |t|2 = f(λ). The depth
of modulation of the refractive index δn = (n2 –
n1)/(n2 + n1) serves as a parameter. The curve |t|2 = f(λ)
has a central peak and two side transmission bands. The
inset to Fig. 2 shows the central maximum on an
enlarged scale for several depths of modulation δn. A
small change in δn is seen to greatly change the width
δλ of the central maximum. Hence, by varying the
refractive index of one or both components of the struc-
ture, one can vary the curve |t|2 = f(λ).

It is known [11, 12] that the relative refractive index
of a magnetoactive material changes when the material
is placed in a magnetic field. In a gyromagnetic
medium, the magnetic field dependence of the refrac-
tive index depends on the diagonal, µ1, and off-diago-
nal, µa, components of the permeability tensor for a
gyrotropic medium. They obey the relationships

t
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Fig. 2. Transmission coefficient vs. the wavelength of radi-
ation incident on the multilayer structure. The depth of
modulation δn0 = (1) 0.0012, (2) 0.0010, and (3) 0.0008.
The inset shows the enlarged vicinity the central peak for
the same depths of modulation.
where ωM = γ04πM(H), ωH = γ0H, ω = 2πc/λ, γ0 =
2.8 MHz/Oe, and H is the external field strength.

To simplify the final analytical relationship, we
neglect second-order terms in an expansion in powers
of ωM, H/ω. This is valid for the optical range, where
ωM, H/ω ! 1.

In this approximation, the variation of the relative
refractive index with applied magnetic field H (the
Faraday effect geometry) can be described as [16]

nF =  ≈ 1 ± ωM/(2ω)

(the plus and minus signs refer to different senses of
rotation of polarization of incident radiation). When the
field is applied in the transverse direction (the Cotton–
Mouton geometry), for the linearly polarized compo-
nent that is normal to the field, we have

If both components of a two-component structure
are magnetoactive and characterized by the zero-field
refractive index and parameter ωM, the depth of modu-
lation of the refractive index over the layers may be
expressed as

(5)

where i = 1 or 2 for the Faraday effect and Cotton–
Mouton effect, respectively, and

is the depth of modulation of the zero-field refractive
index Hereafter, we will use the designations n1(H =
0) = n10 and n2(H = 0) = n20).

The parameter ai is a measure of interaction of the
structure with the magnetic field configured in a partic-
ular way and is determined as follows:

for the Faraday effect,

for the Cotton–Mouton effect,

(6)

Since δn depends on the applied magnetic field, mag-
netization of the layers, and incident radiation wavelength,
one can expect that the parameters of the curve |t|2 = f(λ)
(such as the amplitude, width, and the position of the
peak) will also depend on the quantities listed.

The application of a magnetic field to the multilayer
structure alters the width δλ of the narrow central peak
of the curve near λ0. This change depends on the polar-
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a2
2 H( )

ωM1n10 ωM1 ωH+( ) ωM2n20 ωM2 ωH+( )–

8π2c2 n20 n10–( )
-------------------------------------------------------------------------------------------------.=
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ization of incident radiation. The value of δλ may be found from the transcendental equation

(7)
4 λ0/λ 1–( )2 δn2–[ ] δn2 4 λ0/λ 1–( )2chγ H( )L–[ ]

δn2 4 λ0/λ 1–( )2chγ H( )L–[ ] 2
4 λ0/λ 1–( )2 δn2 4 λ0/λ 1–( )2–( )sh2γ H( )L[ ]+

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
1

2
-------.±=
The solution to Eq. (7) has two roots (λ1 and λ2),
which define the width δλ = |λ2 – λ1| of the central peak
of the curve |t|2 = f(λ). As follows from Fig. 2, the actual
value of δλ is typically much smaller than that resulting
from the calculation of the reflection coefficient for a
homogeneous Bragg waveguide (Ω = 0).

The orientation of the magnetic field relative to the
radiation propagation direction may be chosen arbi-
trarily. It is therefore reasonable to see how the param-
eters of a multilayer structure with a phase shift (Ω =
π/2) vary when the field is applied longitudinally and
transversely. Calculations were carried out for δn0 =
0.001 and 0.0012, the number of layers p = 104, and
λ0 = 1.5 µm.

LONGITUDINAL APPLICATION 
OF THE MAGNETIC FIELD

When the field is applied in the longitudinal direc-
tion, one can judge the variation of the curve |t|2 = f(λ)
using the magnetization M(H) rather than the field
strength H. This is because in this case the depth of
modulation of the relative refractive index as a function
of the wavelength and applied magnetic field has the
form of (5),

and dependence (6) for a1(H) implies that the control-
ling effect of the field on a1(H) shows up via the depen-
dence M(H) alone. It is this dependence that makes it
possible to vary ωM of the magnetoactive layer over cer-
tain limits and thus influence the parameters of the
curve |t|2 = f(λ, H).

Let us analyze the variation of the width of the curve
|t|2 = f(λ, H) with magnetization (Fig. 3) using the
numerical solution to Eq. (7). If radiation passing
through the structure has clockwise circular polariza-
tion, the resonance curve |t|2 = f(λ, H) narrows. If the
radiation is polarized counterclockwise, the width δλ of
the curve |t|2 = f(λ, H) grows with increasing magneti-
zation. It is seen that high values of M(H) are necessary
for δλ to change significantly in the optical range.

It should be noted that the change in the width δλ of
the transmission curve goes in parallel with the change
in the width of the basic band of the reflection curve
(near the central peak of the curve |t|2 = f(λ, H). For
example, in the case of radiation with clockwise circu-
lar polarization, the transmission curve narrows, while
the reflection curve widens, as the magnetization
increases and vice versa.

∆n
n0
------- H( ) δn0 1 a1 H( )λ+[ ] ,=
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Taking into account the wavelength dependence of
the relative refractive index, one could expect a change
in the position of the central peak in the curve |t|2 = f(λ,
H) when the multilayer structure is magnetized. How-
ever, since the dependence δn = f(λ) is weak, the posi-
tion of the central peak changes insignificantly in the
magnetization range studied (≤103 G). Analytic rela-
tionships and transcendental equations that prove this
statement are too awkward and are omitted here.
Related plots may be obtained by numerically analyz-
ing relationships (7).

TRANSVERSE APPLICATION 
OF THE MAGNETIC FIELD

In this case, the depth of modulation of the refractive
index varies with magnetic field as (see (5))

From (6), it follows that the variation of a2(H) is due
to the variation both of the magnetization M(H) of the
magnetoactive layer and of the external field H itself.
Suppose that the magnetization M(H) far exceeds the
field H (for ferromagnets, such a supposition is valid).
In this case, we can ignore the linear field dependence
of a2 and will consider only magnetization-related
changes in the structure parameters.

When the field is applied in the transverse direction,
the magnetization dependence of the width δλ of the
curve |t|2 = f(λ, H) (Fig. 4) obtained by numerically
solving Eq. (7) shows that δλ decreases as the magneti-

∆n
n0
------- H( ) δn0 1 a2 H( )λ[ ] 2+{ } .=
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Fig. 3. Width δλ of the curve |t|2 = f(λ, H) vs. the magneti-
zation of the multilayer structure for two depths of modula-
tion δn0 with the magnetic field applied in the longitudinal
direction. (1, 3) Clockwise and (2, 4) counterclockwise cir-
cular polarization.
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zation grows in the range M(H) ∈  [0; 103] G. For the
structure parameter values adopted in our model, δλ is
maximal at M = 0. For δn0 = 0.001 and 0.0012, the max-
imal value of δλ is 7.497071 × 10–7 and 1.86985 ×
10−7 µm, respectively. For the other extreme M =
1000 G, δλ = 7.49706 × 10–7 and 1.86984 × 10–7 µm,
respectively.

As in the case of the longitudinal field, no effect of
magnetization on the position of the central peak in the
curve |t|2 = f(λ, H) was detected when the field ranging
from 0 to 1000 G was applied in the transverse direc-
tion. However, the shift of the peak is absent due to the
above assumption (all the estimates made in this sec-
tion are based on the assumption that ai(H)λ ! 1, which
is valid for the optical wavelength range). It may be
expected that a more detailed consideration will reveal
a shift, but it is bound to be much smaller than the
change δλ in the width of the curve |t|2 = f(λ, H) Practi-
cal use of this effect seems problematic.

In the range M(H) = 0–1000 G, the transmission
coefficient in the central peak remains unchanged for
both the longitudinal and transverse configurations:

 = 1.

CONCLUSIONS

The effect of a magnetic field on the transmission
coefficient of two-component multilayer structures of
which one or both components are magnetoactive
materials shows up in a change (decrease or increase

t max
2

1.87

2500 500 750 1000

7.50

M, G

δλ, 107 µm

δn0 = 0.0010

δn0 = 0.0012

~~

Fig. 4. Width δλ of the curve |t|2 = f(λ, H) vs. the magneti-
zation of the multilayer structure for two depths of modula-
tion δn0 with the magnetic field applied in the transverse
direction. Linearly polarized radiation.
depending on the sense of circular polarization) in the
width of the curve |t|2 = f(λ). Calculations carried out
for periodic structures placed in a longitudinal and
transverse magnetic field show that the width of the
curve |t|2 = f(λ, H) varies with increasing magnetiza-
tion: it linearly increases or decreases in the longitudi-
nal configuration and decreases by a quadratic law
when the field is applied in the transverse direction.

In the magnetization range 0–1000 G used in this
study, the shift of the central peak in the curve |t|2 = f(λ,
H) is negligible. A magnetic field applied to the multi-
layer structure does not affect the transmission coeffi-
cient amplitude.
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Abstract—The effect of random frequency fluctuations due to spontaneous emission and generation–recombi-
nation noise on the shape of the emission line of a semiconductor laser with pseudorandom modulation of the
pump current is studied numerically. The roles of spontaneous emission and chirp modulation in forming the
lasing spectrum are separated out. The dependence of the output spectral characteristics of the laser on the
parameters and type of modulation is analyzed. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Optimal characteristics of long-range fiber-optic
communications (FOCs) can be achieved only if they
are fed by dynamically single-mode semiconductor
lasers, such as distributed feedback lasers or lasers with
a distributed Bragg reflector. Another candidate for
radiation sources in high-rate communications is a ver-
tical-cavity laser, which has recently been the subject of
extensive development [1]. At present, it is generally
recognized that the main factors that retard further
development of FOCs are time jitter (random variation
of the pulse length) and emission line widening due to
chirp modulation [2–11]. Much research has been
devoted to analyzing these phenomena with the aim of
removing or at least reducing their effect on lasing. In
particular, it has been found that jitter depends on the
type of a pseudorandom pulse train and on the contribu-
tion of spontaneous emission to lasing intensity fluctu-
ations [2–6].

Chirp modulation is the other basic and, presum-
ably, physically unavoidable feature of stimulated
emission from a semiconductor laser with pulse modu-
lation of the pump current [7–11]. Chirp usually arises
when current modulation causes variation of the refrac-
tive index of the lasing medium. Clearly, in a fiber with
chromatic dispersion, chirp modulation distorts the
pulse shape and, ultimately, causes transmission errors.
It should be noted that these distortions are dynamic;
i.e., they depend, in particular, on the length of a pulse
being transmitted. The effect of chirp on the FOC char-
acteristics was studied, for example, by Yamamoto
et al. [9]. However, they considered only Gaussian
pulses and linear chirp modulation. In other words, it
was assumed that the lasing frequency varies in propor-
tion to time within a pulse, which does not correspond
1063-7842/04/4905- $26.00 © 20603
to the actual situation in most cases. Moreover, Yama-
moto et al. [9] disregarded the effect of spontaneous
fluctuations on the shape of the emission line in the case
of pseudopulse frequency modulation. A more compre-
hensive analysis of the emission spectrum of a semi-
conductor laser transmitting a pseudorandom pulse
train was performed by Balle et al. [11], who solved the
well-known stochastic rate equations of semiconductor
laser dynamics with allowance for random Langevin
sources, which take into account the contribution of
spontaneous fluctuations of the carrier and photon con-
centrations to lasing. However, they did not separate
out the effects of pseudorandom chirp and spontane-
ous-emission-induced noise on the emission line shape.
At the same time, both effects are of random nature and,
consequently, produce continuous-spectrum radiation;
i.e., it is impossible to distinguish the contributions to
the shape of the emission line from spontaneous emis-
sion and from pseudorandom pulse modulation. It,
therefore, appears that numerical simulation of lasing is
the only way to analyze these two factors separately.
Also, it is known that the integral measure of the frac-
tion of spontaneous emission in the lasing mode (spon-
taneous emission coefficient β) may vary over a wide
range from 10–5 to 10–1 depending on the active region
size and the properties of the cavity [12, 13]. Therefore,
the effect of spontaneous emission on the shape of the
semiconductor laser emission line under pseudoran-
dom pulse modulation of the pump current is of great
applied interest, especially for fiber-optics communica-
tions.

In this work, we consider the role of spontaneous
emission in forming the spectral line of a semiconduc-
tor laser when the pump current is modulated by a pseu-
dorandom pulse train in the nonreturn-to-zero (NRZ)
format. The effect of modulation parameters, such as
004 MAIK “Nauka/Interperiodica”
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the bit rate and the reference bias current, on the emis-
sion line shape is analyzed. The emission spectra of a
semiconductor laser modulated by a pseudorandom and
periodic pulse train are compared. We apply a new
approach where the stochastic rate equations for semi-
conductor laser dynamics are replaced by a set of ordi-
nary differential equations. The latter are derived from
the Einstein–Fokker–Planck equations for the probabil-
ity density functions of the carrier and photon concen-
trations in the lasing region. Earlier, this approach was
successfully used to analyze the lasing intensity [14],
its spectral density [15], and its transformation in an
optical fiber [16].

MODEL AND BASIC RELATIONSHIPS

The dynamics and noise properties of a single-mode
semiconductor laser are usually analyzed in terms of
the set of stochastic differential equations [13, 17]

(1)

Here, ν = (n – nth)gτp is the normalized deviation of the
carrier concentration n in the active layer from the las-
ing threshold concentration nth; S0 = s0gτe is the dimen-
sionless photon flux density in the lasing mode; ϕ is the
phase of the complex amplitude of the emission electric
field; g is the linear component of the gain in the active
medium; τe and τp are the electron and photon lifetimes,
respectively; e is the elementary charge; d is the thick-
ness of the active region; β is the spontaneous emission
coefficient (i.e., the fraction of spontaneous emission in
the lasing mode); α is the line broadening parameter in
the cw lasing mode; Nth = nthgτp; and η = τe/τp. The
quantity C(T) = (j(T) – jth)gτeτp/ed stands for the excess
of the effective current j(T) over its threshold value jth.
The Langevin noise sources, which simulate random
processes of photon generation and generation–recom-
bination processes, are characterized by the functions
χ1, 2, 3. Differentiation in (1) is performed with respect
to dimensionless time T = t/τe, and the derivatives on
the left-hand sides of the equations are marked by over-
circles. The effect of gain saturation is taken into
account by the normalized coefficient ε = ε0/gτe. The
pump current was specified by a pseudorandom pulse
train (in the NRZ format) superimposed on the refer-
ence bias current j0.

From the Einstein–Fokker–Planck equation [14–
16], which may be written for the probability density of
the simultaneous distribution of carriers and photons
(see set (1)), we come to the following set of ordinary

ν̇ C T( ) S0 1 εS0–( )– χ1,+=

Ṡ0 η ν εS0–( )S0 βN th+[ ] χ 2,+=

ϕ̇ α
2
---ην χ 3.+=
differential equations for the statistical moments of the
random variables ν, S0, and ϕ:

(2)

Here, y1 = 〈ν〉 , y2 = 〈S0〉 , and y3 = 〈ϕ〉  are the first
moments (mathematical expectations); y4 = 〈ν 2〉  –

〈ν〉 2 = , y5 = , and y6 =  are the variances; and
y7 = 〈νS0〉  – 〈ν〉〈 S0〉 , y8 = 〈νϕ〉  – 〈ν〉〈ϕ〉 , and y9 = 〈S0ϕ〉  –
〈S0〉〈ϕ〉  are the covariances of carriers, photons, and the
slowly varying emission phase.

The expectations of the diffusion coefficients Dij can
be calculated by formulas given, for example, in [17]. It
should be emphasized that the diffusion coefficients,
being a measure of the Langevin source intensity, are
proportional to the spontaneous emission coefficient β.

Keeping in mind that, according to the Wiener–
Khinchin theorem, the energy spectrum G(Ω) shifted
toward lower frequencies is related to the correlation
function of the radiation electric field 〈U(T)U(T + τ)〉
via the Fourier transform

(3)

we will first find this correlation function, neglecting
the terms at the double carrier frequency ω0:

(4)

As before, the angular brackets mean averaging over
an ensemble; U is the instantaneous electric field of
optical radiation; A and ω0 are the amplitude and angu-
lar frequency of the carrier, respectively; and δϕ(T, τ)
and ∆ϕ(T, τ) are the nonstationary (random) phase
advances over the time τ due to chirp and spontaneous
emission, respectively (the new variables are normal-
ized so that S0 = A2). The variables indicated by the sub-

ẏ1 C T( ) y2– ε y2
2 y5+( ),+=

ẏ2 η y1y2 y7+( ) ε y2
2 y5+( )– 1.5βN th+[ ] ,=

ẏ3
α
2
---ηy1,=

ẏ4 D11 2y7 1 2εy2–( ),–=

ẏ5 D22 2η y1y5 y2y7+( ) 2εy2y5–[ ] ,+=

ẏ6 D33 αη y8,+=

ẏ7 = D12 y5 1 2εy2–( ) η y1y7 y2y4+( ) 2εy2y7–[ ] ,+–

ẏ8 D13
α
2
---ηy4 y9 1 2εy2–( ),–+=

ẏ9 D23
α
2
---ηy7 η y2y8 y1y9+( ) 2εy2y9–[ ] .+ +=

σν
2 σS0

2 σϕ
2

G Ω( ) 4
T
--- ξ U ξ( )U ξ τ+( )〈 〉

0

T ξ–

∫d

0

T

∫T ∞→
lim=

× ω0 Ω+( )τdτ ,cos

UUτ〈 〉 1
2
---AAτRe e

j ω0τ δϕ T τ,( )+[ ]
e j∆ϕ T τ,( )〈 〉[ ] .=
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script τ refer to the time instant (T + τ). Note that
Eq. (4) has been obtained under the assumption that the
effect of random amplitude fluctuations on the line
shape can be neglected. Supposing that the random
phase advance ∆ϕ obeys the Gaussian law, we have

〈ei∆ϕ〉  = , where

(5)

is the nonstationary variance of the phase advance at
times separated by intervals of τ.

The last expression contains the time-dependent fre-
quency correlation function Zff. As follows from the
third equation in set (1), Zff can be expressed via the
correlation functions of the carrier concentrations and
the correlation function χ3 of Langevin sources:

(6)

where Zνν(T, τ) = 〈ν(T)ν(T + τ)〉  – y1(T)y1(T + τ) and δ is
the Dirac function.

Introducing a new variable ξ = T '' – T ', we get the
expression for the variance

(7)

Using the approach detailed in [15], we may derive
a set of ordinary differential equations for the nonsta-
tionary correlation function Zνν of the carrier concen-
tration in the active layer:

(8)

Here, ZνS(T, τ) = 〈ν(T)S0(T + τ)〉  – y1(T)y2(T + τ) is the
mutual correlation function for the concentrations of
carriers and photons. Differentiation is performed with
respect to the variable τ. The necessary initial condi-
tions

(9)

are determined from solving the set of equations (2) for
the moments.

RESULTS OF NUMERICAL SIMULATION

The most important parameters of the lasing regions
that were used in calculations are summarized in the
table. We assumed that the modulation amplitude jm

e

α∆ϕ
2

2
---------–

σ∆ϕ
2 T τ,( ) 2π( )2 Zff T ' T '',( ) T'd T''d

T

T τ+

∫
T

T τ+

∫=

Zff T τ,( ) αη
4π
------- 

 
2

Zνν T τ,( ) 1

2π( )2
-------------D33 T( )δ τ( ),+=

σ∆ϕ
2 T τ,( )

=  v D33 v( ) αη( )2

2
-------------- Zνν v v ξ+,( ) ξd

0

T τ v–+

∫+ .d

T

T τ+

∫

Żνν T τ,( ) 1 2εy2τ–( )ZνS T τ,( ),–=

ŻνS T τ,( ) η y1τ 2εy2τ–( )ZνS y2τZνν T τ,( )+[ ] .=

Zνν T 0,( ) y4 T( ),=

ZνS T 0,( ) y7 T( )=
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always equals the threshold current density jth and that
the rise time of the current pulse to a level of 0.9jm

equals 0.1(BR)–1 (BR is the bit rate of modulation in the
NRZ format).

Theoretical curves 1 in Fig. 1 illustrate the effect of
frequency fluctuations induced by spontaneous emis-
sion on the shape of the emission line of a single-mode
semiconductor laser when the pumping current is pseu-
dorandomly modulated with a BR = 5 Gbit/s in the NRZ
format. Chirp modulation was also taken into account.
For comparison, curves 2 in Fig. 1 show the emission
spectra of the laser in the absence of spontaneous fre-

quency fluctuations (i.e., for (T, τ) = 0) and dashed
lines 3 demonstrate the spectra without chirp (i.e., at
α = 0). It is seen that chirp renders the emission line
highly asymmetric with a plateau in the high-frequency
part of the spectrum. It should be noted that such behav-
ior of the emission intensity subject to pseudorandom
modulation of the pump current has also been observed
in experiments [10]. The effect of spontaneous emis-
sion shows up, first, in smoothing out of the curves.
Also, when the spontaneous emission coefficient
reaches 4 × 10–4, random frequency fluctuations begin
to considerably affect the shape of the emission line and
the spectral density exceeds its value in the absence of
the fluctuations by roughly 3 to 5 dB. Simultaneously,
the linewidth increases and the asymmetry becomes
less pronounced (Fig. 1a). For laser diode B with a
lower spontaneous emission coefficient, the effect of
random frequency fluctuations on the emission line
shape is negligible (Fig. 1b). In this case, the shape and
width of the line are governed primarily by chirp due to
the pseudorandom modulation of the current.

Figure 2, which shows isolevel sections of the sur-
face of the nonstationary correlation function
〈U(T)U(t + τ)〉 , gives a better visualization of the mech-
anism underlying the effect of spontaneous frequency
fluctuations on the shape of the semiconductor laser
emission line (the factor exp[j(ω0τ + δϕ)], which is
responsible for the high-frequency oscillations of the
correlation function is omitted for clarity). Calculations

σ∆ϕ
2

Laser parameters

Parameter Laser structure A Laser structure B

τe, ns 2 2

τp, ps 1 2

g, cm3/s 2 × 10–6 1 × 10–6

d, cm 1 × 10–5 2 × 10–5

V, cm3 2 × 10–11 2 × 10–10

nth, cm–3 1018 1018

ε0, cm3 2 × 10–17 2 × 10–17

α 5 5

β 4 × 10–4 2 × 10–5
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were performed for the segment (0–0–1–1–1–0–1–0–
1–0–0–0–0–0–1–1–0–1) of a pseudorandom pulse train
realization for the cases when spontaneous frequency
fluctuations (a) are not and (b, c) are taken into account.
In the regions where the correlation function increases,
the isolevel lines come closer together and these
regions appear darker. In the absence of random fre-
quency fluctuations (Fig. 2a), the intensities of the opti-
cal radiation electric field correlate throughout the
pulse train segment analyzed. Random frequency fluc-
tuations violate correlation in the pulse train: as the
parameter β increases, the number of pulses adjacent to
a given pulse that show radiation field correlation
decreases. In particular, for β = 2 × 10–5, the pulse in the
interval 0.4 ≤ t ≤ 1, which consists of three consecutive
binary unities, correlates, in essence, only with its
neighbor appearing in the interval 1.2 ≤ t ≤1.4 (Fig. 2b).
For laser A with a higher β, only the radiation fields
within the same pulse remain statistically related
(Fig. 2c). Obviously, such behavior of the correlation
function is reflected in the shape of the emission line.
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Fig. 1. Effect of the parameter β on the emission spectrum
of a semiconductor laser (1, 3) with and (2) without allow-
ance for random frequency fluctuations. The current is mod-
ulated relative to j0 = jth. β = (a) 4 × 10–4 and (b) 2 × 10–5.
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Fig. 2. Isolevel lines of the correlation function 〈U(T)U(t +

τ)〉 (a) without (  = 0) and (b, c) with spontaneous fre-

quency fluctuations. β = (b) 2 × 10–5 and (c) 4 × 10–4.
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For applications, in particular, for FOCs, it is of
interest to see how the parameters and type of modula-
tion influence the emission spectrum (calculations that
follow refer to laser A, in which the effect of spontane-
ous emission on the lasing spectrum is the most notice-
able). Figure 3 demonstrates the dependence of the
emission line on format of modulation: curve 1 refers to
the current modulated by a regular pulse train and
curve 2 illustrates modulation in the NRZ format. In the
former case, the emission line is much wider than in the
case of the pseudorandomly modulated current. This
unexpected (at first sight) result may be explained as
follows. In the NRZ format, the pseudorandom pulse
train contains not only solitary binary unities (i.e., uni-
ties surrounded by binary zeros) but also many pulses
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Fig. 3. Emission spectrum of laser A modulated by (1) reg-
ular and (2) pseudorandom pulse train at the bit rate BR =
5 Gbit/s.
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Fig. 4. Effect of the bit rate of modulation on the shape of
the semiconductor laser emission line. BR = (1) 10 and
(2) 5 Gbit/s.
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consisting of several consecutive binary unities. For
such extended pulses, the process of emission is nearly
stationary, i.e., similar to the process observed at a con-
stant current. In the stationary mode, the emission line
is clearly much narrower. As a consequence, for a pseu-
dorandom pulse train in the NRZ format, the width of
the emission spectrum must be smaller than in the case
of a regular sequence of solitary binary unities.

The shape of the emission line varies significantly
with the parameters of modulation. In particular, an
increase in the bit rate of the pseudorandom pulse train
widens the emission spectrum (Fig. 4) apparently
because the average correlation interval for the pulse
train at BR = 10 Gbit/s shrinks. Indeed, as follows from
Fig. 2c, for laser A this time is no longer than the dura-
tion of a binary unity (i.e., BR–1). Therefore, the larger
the parameter BR, the shorter the correlation time and
the wider the emission line.

Figure 5 illustrates the effect of the constant compo-
nent of the pumping current (bias current) on the shape
of the emission line. At least two features here are note-
worthy. First, as the constant component increases, the
maximum of the spectrum shifts toward the blue (high-
frequency) range, since the refractive index of the
active region decreases because of an increase in the
average concentration of nonequilibrium carriers. Sec-
ond, the linewidth narrows and the asymmetry of the
line becomes less pronounced. This is because binary
zeros in the pulse train start playing a greater part in
emission (when the constant bias is set above the
threshold value, zeros of the pulse train generate a non-
zero output). These features of the emission spectrum
are qualitatively corroborated by experiments [10].
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Fig. 5. Emission spectrum of the laser for the bias current
j0 = 1.5jth and (2) jth.
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CONCLUSIONS

The dynamics of a single-mode semiconductor laser
when the pump current is modulated by a regular or
pseudorandom pulse train in the NRZ format is simu-
lated numerically. The effect of random frequency fluc-
tuations caused by spontaneous emission and genera-
tion–recombination noise, as well as the effect of the
type and parameters of modulation on the emission line
shape, is analyzed. It is found that, if the spontaneous
emission coefficient reaches 4 × 10–4, frequency fluctu-
ations to a large degree determine the width and shape
of the emission line: its spectral density becomes 3 to
5 dB higher than in the case when these fluctuations are
disregarded. When the pump current is modulated by a
regular pulse train, the emission spectrum is signifi-
cantly wider than when the train is pseudorandom. The
parameters of modulation also affect the shape of the
emission line. The higher the bit rate of modulation, the
wider the spectrum. If binary zeros in a pseudorandom
pulse train generate an above-threshold pump current,
the width and asymmetry of the emission line become
smaller and its maximum shifts towards high frequen-
cies.

The results obtained should be taken into account in
analysis of the noise characteristics of semiconductor
lasers used in FOCs with chromatic dispersion and in
evaluating fluctuations in microlasers and so-called
thresholdless lasers, where the spontaneous emission
coefficient is high [12].
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Abstract—The method of generalized eigenfunctions, which is used in the theory of diffraction, is applied to
analyze stationary and narrow-band nonstationary processes in lasers. Using this method, one can avoid diffi-
culties associated with integration of the eigenfunctions of an emitting system over the continuous spectrum,
difficulties typical of the conventional frequency method. The method employs expansion in modes that are
orthogonal inside the lasing medium. The problem of exponential growth of modes at infinity is eliminated. In
addition, the field distribution inside the lasing medium is better described using the generalized eigenfunctions
in a number of important cases. © 2004 MAIK “Nauka/Interperiodica”.
The method of generalized eigenfunctions has been
developed to solve steady-state diffraction problems
[1]. Preliminary results of applying this method in the
theory of lasers can be found in [2, 3]. The method was
also used to study dynamic processes in antennas [4, 5].
Its main advantage is the possibility of analyzing emit-
ting systems without integration over the continuous
radiation spectrum. Using the values of a certain intrin-
sic parameter of the system as eigenvalues, one can
expand the electromagnetic field in eigenfunctions that
are orthogonal inside the lasing medium. This makes it
possible to eliminate the problem of increase of eigen-
functions at infinity, which is typical of active-amplifi-
cation systems with radiation losses. Recently, we have
used this method to analyze oscillatory processes in
dielectric-resonator antennas [6]. In this work, the
method of generalized eigenfunctions is applied to find
the field distribution in the laser cavity with the active
medium in the form of a plane-parallel layer. Examples
of such systems are semiconductor lasers, active
waveguides in integrated optics, and some of solid-state
(glass and crystalline) lasers. In addition, we will deal
with the mode formation dynamics in the laser cavity.

Consider in brief the statement of the problem. (For
applications of the method of the generalized eigen-
functions in analysis of stationary and nonstationary
problems, see [1] and [2], respectively.)

We assume that the active layer of a laser has the
form of a plane-parallel plate arranged as shown in
Fig. 1. The radiation propagates along the z axis. The
coordinates of two mirrors that are perpendicular to the
z axis are z = 0 (a totally reflecting mirror) and z = L (a
mirror with an amplitude reflection coefficient Γ). The
thickness of the layer along the x axis is 2a, a ! L. In
the vertical direction (the y axis), the size of the plate is
taken to be much greater than L and a. In other words,
we assume that the vertical size equals infinity and
1063-7842/04/4905- $26.00 © 20609
actually consider a plane problem. The permittivities ε1
and ε2 of the plate and environment, respectively, can
be complex quantities. The permeability µ everywhere
is set equal to unity. In calculations, the radiation wave-
length λ in free space is taken to be equal to 1 µm.

The electromagnetic field distribution in such a system
can be characterized by TE and TM waves (see, for exam-
ple [7, 8]). We will consider only TE waves, since solu-
tions for these two types of waves are similar. In this case,
the magnetic field H has x and z components, whereas the
electric field E is directed along the y axis. Let

Equations for the field components have the form

Hx x z t, ,( ) Hx x z,( ) jωt( ),exp=

Hz x z t, ,( ) Hz x z,( ) jωt( ),exp=

Ey x z t, ,( ) Ey x z,( ) jωt( ).exp=

∂2Ey

∂x2
----------- k2 x( ) γ2–( )Ey+ 0,=

L

2a
x

y

z

Fig. 1.
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(1)

where γ is the complex propagation constant in the z
direction (to be found) and µ0 = 4π × 10–7 H/m.

Below, we follow the procedure proposed in [1–3]
and search for the electric field in the form of the sum

over modes, each satisfying Eqs. (1) and the boundary
conditions that follow. We assume that the tangential com-
ponents of the electric and magnetic fields are continuous
in the interval x = ±a. The wave propagates along the z
axis from z = 0 to z = L, varying as exp(–iγz); reflects
from the mirror with the amplitude reflection coeffi-
cient |Γ| < 1; and returns to z = 0, varying as exp(iγz). At
z = 0, the electric field is E = 0. At infinity, the fields sat-
isfy the limitedness conditions. Assume that

inside the active medium [1] and

outside the active medium, where k = 2π/λ = ω/c is the
wavenumber and εn are the eigenvalues (i.e., those val-
ues of ε1 for which Eqs. (1) and boundary conditions
are satisfied).

In the method of generalized eigenfunctions, εn is
assumed to be the complex eigenvalue for a given mode
number n and the frequency, a real quantity.

In view of the boundary conditions, the solution to the
set of equations (1) for the electric field is given by [8]

(2)

The quantities u/a and q/a are the propagation con-
stants along the x axis inside and outside the active
medium, respectively. They can be found from the con-
tinuity conditions for the electric and magnetic fields at
x = a and x = –a. It follows from [8] that the following
relationships are valid:

(3)

Representing γ as γ = β + iα, we find from the
boundary conditions that β = πn/L and α = –ln|Γ|/2L
(Γ < 0), where n is the mode number. Thus, the imped-
ance boundary condition at z = L in combination with
the mode number completely determine the complex
propagation constant γ.

Hz
1

jωµ0
------------ 

  ∂Ey

∂x
---------;–=

Hx
1

jωµ0
------------ 

  ∂Ey

∂z
---------,=

Ey bnEyn∑=

k x( ) k εn=

k x( ) k ε2,=

Ey x z,( ) AEn x( ) iγz( )exp iγz–( )exp–[ ] ,=

2iγL( )exp Γ ,–=

En x( ) ux/a( ), a– x a,< <cos=

En x( ) u( ) q x a–( )/a–[ ] , x a,>expcos=

En x( ) u( ) q x a+( )/a[ ] , x a.–<expcos=

q utgu,=

γ2 k2εn u/a( )2– k2ε2 q/a( )2.+= =
Subsequent steps are described in detail elsewhere
[2, 3], so that below we summarize the results. Repre-
senting Eqs. (3) as

(4)

we numerically solve the set of equations (4) and find the
complex quantities u and q and the complex eigenvalues

In laser systems, lasing at the amplification fre-
quency ω of the active medium is usually considered;
therefore,  ≈ ε1. This condition makes it possible to
find the number n of the longitudinal mode. Solutions
to Eqs. (4) yield the eigenvalues εn as functions of the
circular frequency ω, so that jointly solving (1) and (2)
in view of (4), one can find the eigenfunctions (i.e., the
configuration) of the mode En(x, z) (in [7], this quantity
is denoted as Un(z)).

Let us exemplify the application of the method in
the theory of lasers by evaluating a number of laser
characteristics. Figure 2a demonstrates the simulated
configuration of the mode of an active layer similar to
that of an actual semiconductor laser. We assume that
the length of the layer along the z axis is 1 mm, the
thickness along the x axis is 20 µm, and the permittivity
ε1 inside the active medium is greater than the permit-
tivity ε2 of the surrounding medium (ε2 = 3.6) by
0.02%. The amplitude reflection coefficient is 0.6
(accordingly, the intensity reflection coefficient is
0.36). On the vertical axis, we plot the envelope of the
electric field distribution for the mode in relative units. It
is seen that the area occupied by the radiation is about
three times larger than the active layer; i.e., the width of
the optical waveguide exceeds the width of the active area,
which is typical of homojunction semiconductor lasers.

The field distribution along the x axis is determined
from Eqs. (2). As for the field variation along the longi-
tudinal z axis of the cavity, Fig. 2a shows only its enve-
lope. Actually, the incident wave and the wave reflected
from the mirror interfere, causing field oscillations with
a spatial period that roughly equals half the radiation
wavelength. Figure 2b shows the field distribution
along the z axis at x = 0. Here, we consider the field of
the same laser as in the previous plot, but the oscillation
period is increased by a factor of 100 and the reflection
coefficient of the mirror is decreased from 0.6 to 0.2 for
more clarity. It is seen that the mean field increases and
the oscillation amplitude decreases with distance from
the totally reflecting mirror located at z = 0. Of interest
is the case ε1 – ε2 = 0, which means the absence of total
reflection and, hence, the unlimitedness of the radia-
tion. In this case, the conventional frequency method
does not allow one to introduce a mode. The field is
limited due to amplification alone. Figures 2c and 2d

u2 q2+ k2a2εn,=

u/a( )2 k2εn γ2,–=

q/a( )2 γ2 k2ε2,–=

εn εn' iεn''.+=

εn'
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demonstrate field distributions in an optical waveguide
1 cm long and 20 µm thick for ε1 = ε2 = 1 and different
amplifications. The results presented in Fig. 2c (2d) are
obtained for a reflection coefficient of the mirror of 0.99
(0.2) and a logarithmic increment α = 0.005 (0.8) cm–1.
When the gain is high, the propagation of the radiation
along the transverse x axis is seen to be heavily restricted.

In the theory of lasers, the method of generalized
eigenfunctions can also be used to solve dynamic prob-
lems. The generalization of the method for narrow-band
nonstationary processes is described in detail in [2, 3].
In particular, using the technique of slowly varying
amplitudes, we derived [3] a differential equation for
the complex amplitudes Bn(t) of lasing modes. Its form,

(5)

is similar to the Lamb equations used in the theory of
lasers [7].

The physical meaning of Eq. (5) readily follows
from the semiclassical theory of lasers. The quantity Bn

is virtually identical to the complex amplitude
Enexp(iϕn) of the mode, and the cyclic frequency ω = kc
of lasing is assumed to be close to the central frequency ωp
of the spectral line of the active medium. In the semiclas-
sical theory, f corresponds to the term ∂2P/∂t2, which
approximately equals –ω2P, where P is the polarization
of the medium. The volume v+ is the volume of the
active medium. This means that the integral in Eq. (5)
represents the term Pn(En), which enters into the ampli-
tude and phase equations [7]. In contrast to the real cir-
cular frequency ω, ωn are complex quantities, which are
expressed through the eigenvalues εn: (ωn/c)2 = k2εn.

Separating the real and imaginary parts in Eq. (5),
we come to the equations for the mode amplitudes and
phases that were derived in [7].

To exemplify the analysis of dynamic processes, we
numerically solved the set of differential equations (5)
for the generation of one and two longitudinal modes in
a laser with Doppler broadening of the amplification
line. The parameters of the medium are taken to be
close to the parameters of a helium–neon laser with a
wavelength of 0.63 µm [7]. The linewidth is 1.5 GHz,
and the homogeneous broadenings of the levels are γa =
γb = 50 MHz and γab = 100 MHz. We consider a plane-
parallel laser cavity with a length L = 20 cm, width 2a =
2 mm, and ε1 = ε2 = 1.0. The reflection coefficient of the
mirror is Γ = 0.99. For these parameters of the cavity,
the frequency separation of neighboring longitudinal
modes (about 750 MHz) far exceeds γa, γb, and γab. This
fact allows one to determine the polarization of the
medium using the approximate techniques of the semi-
classical laser theory. It is known [7] that the equations

dBn

dt
--------- i ωn ω–( )Bn+

=  
1

ε εn k( )–
---------------------

i ω ωn–( )
k2

----------------------- En x z,( ) f xd z,d

v +

∫
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for the amplitudes of the modes E1 and E2 are reduced
in this case to

(6)

When calculating the coefficients α, β, and θ, we
employed the formulas of the semiclassical theory [7].
It should be noted, however, that the configuration of
the mode En(x, z) that was derived from Eq. (2) and
used in these formulas differs significantly from that
used in [7]. Therein lies the difference between the
method of generalized eigenfunctions and the conven-
tional frequency method, in which the mode frequen-
cies serve as eigenvalues.

Formulas (5) and (6) were used to calculate the
mode buildup in an active medium where the gain is 1.3
times higher than the lasing threshold (Figs. 3a, 3b).
Figure 3a shows the evolution of two-mode lasing in
the case of weak mode coupling (the offset of the cen-
tral mode from the center of the amplification line
equals one-fourth of the mode separation):

Figure 3b shows the same process in the case of
strong coupling:

When coupling is strong, one mode suppresses the
other. This result is known from the theory of lasers;

dE1/dt α1E1 β1E1
3– θ12E1E2

2,–=

dE2/dt α2E2 β2E2
3– θ21E2E1

2.–=

β1β2 22θ21θ12.≈

β1β2 θ21θ12.=

15
0
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t, µs
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(a)E/E0

(b)

Fig. 3.
however, we considered a system with equal amplifica-
tions of the modes that are symmetric about the center
of the line. The conventional semiclassical theory fails
to predict which of the modes will be suppressed. In the
case under consideration, the different configurations
of the modes in the cavity lead to different losses and
the mode with higher losses is suppressed. For clarity,
the vertical axis in Figs. 3a and 3b is scaled up
100 times for the mode that is suppressed.

Thus, in analyzing dynamic processes in lasers with
the method of generalized eigenfunctions, one may
invoke the statements of the theory of lasers, for exam-
ple, the Lamb approach [7]. However, the mode config-
urations will differ from the classical ones. The depen-
dences of the fields on the coordinates x and z are closer
to the real field distributions in the laser cavity, and the
fields are limited at infinity.

Our analytical and numerical results indicate that
the method of generalized eigenfunctions can be used
for studying both stationary and slowly varying nonsta-
tionary processes in lasers. In comparison to the direct
techniques of studying the time evolution of laser radi-
ation, the method under consideration is simpler and
does not require cumbersome computation. Using var-
ious parameters of the medium as eigenvalues, one can
modify the method and tailor it to solve a variety of
problems. Expansion in modes that are orthogonal to
each other in the active medium makes it possible to
avoid tedious integration and correctly eliminate an
unlimited growth of the eigenfunctions at infinity.
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Abstract—Interaction between an rf electromagnetic field and the Fe/Cr superlattice placed in a rectangular
waveguide so that a high-frequency current passes in the plane of superlattice layers is considered. The trans-
mission coefficient versus the magnetic field strength is found at centimeter waves, and a correlation between
this dependence and the field dependence of the dc magnetoresistance is established. It is shown that a change
in the transmission coefficient may greatly exceed the giant magnetoresistance of the superlattice. The fre-
quency dependence of the microwave measurements has an oscillatory character. The oscillation frequencies
are analyzed in terms of wavelet transformation. Two types of oscillation periods are found to exist, one of
which corresponds to the resonance of waves traveling in the superlattice along the direction parallel to the nar-
row wall of the waveguide. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Magnetic metallic superlattices (film nanostructures
consisting of alternate ferromagnetic and nonmagnetic
metal layers) are viewed as promising materials for
micro- and nanoelectronics, in particular, owing to the
effect of giant magnetoresistance, i.e., a considerable
increase (by several tens of a percent) in the resistance
under a magnetic field. The physical basis for this effect
is the dependence of the conduction electron scattering
probability on the sense of the spin. The difference
between the scattering probabilities is greatest when
the magnetic moments of two adjacent ferromagnetic
layers in a superlattice are arranged parallel and anti-
parallel to each other. If the magnetic moments are anti-
parallel to each other (the antiferromagnetic configura-
tion) in the absence of a magnetic field, they become
parallel to each other under the action of the field. The
scattering probability for conduction electrons changes
considerably, and the resistance drops significantly.
This phenomenon was first observed in the Fe/Cr
superlattice in 1988 and was named “the giant magne-
toresistive (GMR) effect” [1].

A great stride forward in studying the magnetoresis-
tive properties of metallic superlattices has been made
with high-frequency (microwave) methods. Using
these methods, researchers can variously orient an rf
electric field with respect to the film plane and, accord-
ingly, apply a current both along and across the films of
the superlattices. In the latter configuration, the spin-
dependent scattering of conduction electrons (hence,
the GMR effect) shows up most vividly. It is important
here that the current is applied with contactless tech-
1063-7842/04/4905- $26.00 © 20613
niques, which is of great value in studying metallic
nanometer-sized objects.

High-frequency resonance methods were first
applied to Fe/Cr/Fe sandwiches [2, 3]. Later, a strong
correlation between the coefficient of penetration of an
rf magnetic field into the Fe/Cr superlattice and its dc
magnetoresistance was found [4] and a high-frequency
analogue of the GMR effect was discovered in the “cur-
rent-perpendicular-to-layer” geometry [5].

It should be noted that microwave investigation of
multilayer nanostructures is also of interest because
these structures may serve as a basis for producing elec-
tronic components and magnetic storages. Because of
the need for improving the speed of these devices, their
least necessary frequency spectrum constantly widens
and has already reached several gigahertz and even sev-
eral tens of gigahertz in a number of applications. Of
special scientific interest is the fact that the electrody-
namic properties of metallic superlattices differ sub-
stantially from those of thicker film structures, since the
total thickness of a metal in metallic superlattices is
much smaller than the skin depth. Therefore, the skin
effect, typical of metals, is absent in them.

In this paper, we study the GMR effect in the Fe/Cr
superlattice, using a high-frequency technique other
than that used in previous works. A sample is placed in
a rectangular waveguide in such a way that the longer
side of the sample is parallel to the waveguide axis,
while the plane of the layers is parallel to the shorter
side of the waveguide. In this configuration, high-fre-
quency currents pass in the plane of superlattice layers.
Note that the same configuration of a dielectric or fer-
004 MAIK “Nauka/Interperiodica”
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rite plate in a waveguide is used in attenuators and
phase shifters.

EXPERIMENTAL

Fe/Cr superlattices used were grown by MBE in an
ultrahigh vacuum on single-crystal MgO substrates
measuring 30 × 30 × 0.5 mm. First, a ≈80-Å-thick
buffer Cr layer was deposited. The role of this layer is
to smooth out the substrate and provide relaxation of
stresses due to a lattice mismatch between the substrate
and superlattice. The buffer Cr layer was alternately
covered by Fe and Cr layers with a deposition rate of

1 23

q
d

H

H~

J~

Fig. 1. Geometry of the experiment; 1, substrate;
2, waveguide, 3, superlattice.
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Fig. 2. Field dependence of the magnetoresistance of the
Fe/Cr superlattice. (j) Sample 1, H parallel to the plane;
(h) sample 1, H normal to the plane; (d) sample 2, H paral-
lel to the plane; and (s) sample 2, H normal to the plane.
1.5 Å/min at a substrate temperature of 180°C. The top
layer was a Cr layer, which prevented the underlying Fe
layer from oxidation in air.

We studied systems of two compositions,
[Cr(13 Å)/Fe(24 Å)]8/Cr(82 Å)/MgO (sample 1) and
[Cr(12 Å)/Fe(23 Å)]16/Cr(77 Å)/MgO (sample 2),
grown on the (001) plane of single-crystal MgO. The
figures in the parentheses are the thicknesses of the lay-
ers in angstroms; the subscripts indicate the number of
pairs of layers.

The static magnetoresistive parameters necessary to
analyze rf measurements were determined from the
field dependence of the relative magnetoresistance r =
[R(H) – R(0)]/R(0) × 100%, where R(H) is the magne-
toresistance measured by the standard four-point probe
technique in a magnetic field H.

Microwave measurements were made in the fre-
quency range 5.7–12.0 GHz by using usual rectangular
waveguides (Fig. 1). The wavevector q lay in the sam-
ple plane, and the microwave current J~ passed along
the layers. The magnitude of the transmission coeffi-
cient D of the waveguide with the sample was measured
as a function of a permanent magnetic field H, which
may be directed both parallel to the sample plane (as in
Fig. 1) and normally to it, and the relative variation of
the transmission coefficient in the magnetic field rm =
[D(H) – D(0)]/D(0) × 100% was measured.

The superlattices used in the microwave measure-
ments had the same length, 23 mm, but different
widths: 11.5 and 2–6 mm, for sample1 and sample 2,
respectively.

RESULTS

The field dependences of the relative dc magnetore-
sistance of the Fe/Cr superlattices that was measured in
a permanent magnetic field are given in Fig. 2. For
either of the samples, two curves r(H) are shown: one
for the magnetic field parallel to the plane of the super-
lattice; the other, for the field normal to the plane. The
difference in the curves r(H) that were obtained in the
normal and parallel fields of the same value is due to the
fact that demagnetizing fields in these film structures
differ in these cases [6].

Note first of all that the variation of the transmission
coefficient with permanent magnetic field is indepen-
dent of its sense (the even effect) but depends notice-
ably on its orientation relative to the plane of the layers.
The even effect is illustrated in Fig. 3a, where the
results of measurements in the magnetic field normal to
the plane at a frequency of 9.8 GHz are shown for sam-
ple 1. Figure 3b shows the field dependences of the
transmission coefficient for the same sample at the
same frequency in the field normal and parallel to the
sample plane. Comparing these curves with the field
dependences of the static magnetoresistance (Fig. 2),
one can see their qualitative agreement. The magnetic
field at which the curves saturate is also the same for the
TECHNICAL PHYSICS      Vol. 49      No. 5      2004
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microwave transmission coefficient and static magne-
toresistance. These and our previous results [4, 5, 7]
allow us to argue that the variations of the microwave
transmission coefficient that are observed in this work
are directly related to the magnetoresistive effect.

The frequency dependence of the microwave effect
(the relative variation of the transmission coefficient) is
complicated. First, unlike the static magnetoresistance
of the superlattices, which has negative sign (Fig. 2),
the change in the transmission coefficient at micro-
waves may be both negative and positive. In addition, it
turned out that the magnitude of the microwave varia-
tion may be both greater and smaller than the static
magnetoresistance according to the frequency (at cer-
tain frequencies, the variation exceeds the static magne-
toresistance severalfold). The above-said is illustrated
in Fig. 4, where the transmission coefficient is plotted
against the parallel magnetic field for sample 1 at dif-
ferent frequencies.

Figure 5 demonstrates the frequency dependences
of the relative variation of the transmission coefficient
when sample 1 was exposed to a magnetic field of
23 kOe, which is the highest achievable in our experi-
ments with the waveguide. The field was applied both
parallel and perpendicularly to the plane of the sample.
In the former case, the superlattice is magnetized to sat-
uration, while in the latter case the magnetic field
strength 23 kOe is insufficient for magnetic saturation
(the superlattice saturates in a field of 32 kOe, Fig. 2).
Hence, the dependences in Fig. 5 quantitatively dis-
agree, being nearly identical in form. The likeness of
the curves in Fig. 5 deserves special attention, since this
means that the variations of the transmission coefficient
and static magnetoresistance with magnetic field corre-
late with each other throughout the frequency range.
Surprisingly, while the transmission coefficient
remains positive and relatively low at frequencies to
≈9 GHz, at higher frequencies it oscillates more
heavily, grows, and even may become negative (as was
demonstrated above in Fig. 4).

The frequency dependence of the transmission coef-
ficient for sample 2 is qualitatively similar to that for
sample 1 with the only difference that the maximal
variation of the coefficient for sample 2 is observed at
higher frequencies.

DISCUSSION

The experimental data obtained in this work clearly
demonstrate the effect of the magnetoresistance of the
superlattice on the transmission coefficient of micro-
waves. This means that the variation of the transmission
coefficient with magnetic field is due to interaction of
the rf field with the current passing through the super-

lattice. Specifically, Joule losses Q = E~dV (E~ is

the rf electric field, and integration is over the sample
volume) in the superlattice are directly related to the

J~∫
TECHNICAL PHYSICS      Vol. 49      No. 5      2004
magnetoresistance value (the amount of the magnetore-
sistive effect).

To explain the experimentally found effect of the
magnetoresistance on the travel of the rf electromag-
netic wave, we note that the waveguide with the super-
lattice is cascaded in the microwave channel and so
may exhibit resonance properties under certain condi-
tions. Since the sample is arranged normally to the
wider side of the waveguide (Fig. 1), the plane of the
sample is parallel to the rf electric field vector; hence,
high-frequency currents pass along the layers of the
superlattice. An electrical contact between the superlat-
tice and waveguide is absent; therefore, one may
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Fig. 3. Microwave magnetoresistive effect. (a) Evenness in
magnetic field and (b) the transmission coefficient magni-
tude versus H (h) perpendicular and (j) parallel to the plane
of the superlattice.
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assume that the waveguide with the sample has the res-
onant frequency of the fundamental mode near the fre-
quency of half-wave resonance that corresponds to the
sample thickness d. An offset from the half-wave reso-
nant frequency is due to the presence of the insulating
substrate and field distortion in the space between the
sample and wider walls of the waveguide. The electro-
dynamics of similar systems was considered in [8],
where the fields near the metallic film surface were
expanded in LE and LM eigenmodes of an empty
waveguide. It was shown that the resonant wavelength
l0 = 2(le + ∆) of the fundamental mode (where le =
d(εeff)1/2 and εeff is the effective permittivity) depends on
the permittivity of the substrate and its thickness. The
correction ∆ is due to the field distortion in the space
between the superlattice and waveguide walls. The fre-
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Fig. 4. Alternating-sign microwave magnetoresistive effect.
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Fig. 5. Frequency dependence of the relative variation of the
transmission coefficient magnitude in the field H = 23 kOe
for sample 1 when the field is (d) perpendicular and (s) par-
allel to the plane of the superlattice.
quency spectrum of such a resonator, which was named
the surface wave resonator, was calculated. This name
implies that resonance generates a standing wave com-
posed of counterpropagating waves traveling in the ver-
tical direction (according to Fig. 1). It was found that
the resonant frequency of the fundamental mode
depends on the film extension along the waveguide
only slightly but varies significantly at higher modes.
The essential and practically important feature of this
resonator is that the density of the current passing
through the metal film in the vertical direction does not
depend on the film length.

The difference between our experiments with the
metallic superlattice and those carried out with super-
lattices consisting of thicker metallic and supercon-
ducting films [8] is that the total metal thickness in our
superlattice is several tens of times smaller than the
skin depth. This fact is insignificant when the resonant
frequency is estimated, especially for the fundamental
mode. However, the relationship between the tangential
components of the electric and magnetic fields, which
depends on the surface impedance, is of significance for
calculating the Q factor of the resonator. Having regard
for the high resistivity of the Fe/Cr superlattice, one
may expect the Q factor of the resonator to be moder-
ate. For example, the Q factor of the system near reso-
nance at ≈9.7 GHz estimated from the data shown in
Fig. 5 is less than 40. The frequency dependence of the
microwave measurements for sample 1 exhibits reso-
nance at 9.7 GHz and oscillations. Since the width of
sample 2 is almost half as much as that of sample 1, the
resonance condition for sample 2 is not met in the fre-
quency range used in this work.

When analyzing the experimental data shown in
Figs. 4–6, one should bear in mind that the transmission
coefficient magnitude as a function of the magnetic
field was measured for the resonator that was cascaded
in the microwave channel. The application of an exter-
nal magnetic field changes the conductivity of the sam-
ple. Accordingly, the Q factor of the resonator and the
transmission coefficient of the entire system also
change. The very fact of these changes and the depen-
dence of the related parameters on the external mag-
netic field strength indicate that the microwave GMR
effect takes place. This is confirmed by the results
shown in Fig. 4 and also by comparing the dc (Fig. 2)
and microwave (Fig. 3) magnetoresistance curves. The
amount of resonance depends on the proximity of the
frequency to any eigenfrequency of the surface wave
resonator and also on the ratio between the sample
length along the waveguide axis and the wavelength of
the H10 mode in the waveguide. The same controls the
sign of microwave variations.

The complex oscillatory dependence of the trans-
mission coefficient on the frequency (Fig. 6) was
treated in terms of wavelet analysis [9]. The coefficients
of the wavelet transform (otherwise, the wavelet spec-
TECHNICAL PHYSICS      Vol. 49      No. 5      2004
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trum or the diagram of wavelet coefficients) of a func-
tion f(t) are given by

(1)

where

is the family of wavelets or basis functions of the wave-
let transform with ||ψ|| = 1 (where ||ψ|| is the norm of the
function ψ), s is a scale factor, and Θ is the shift param-

eter. The factor 1/  is introduced for all the wavelets
of one family to have the unit norm at any t. The scale
factor s shows how many times the width of the basis
function ψ(t/s) increases (s > 1) or decreases (s < 1)
compared with the generating wavelet ψ(t). Finally, the
shift parameter Θ indicates how much the basis func-
tion is shifted relative to the zero time.

Thus, the basis of a wavelet transform is a set of
wavelets, i.e., functions defined in a finite range of the
argument t and differing from one another by scale of
argument variation and shift parameter. The basic
advantage of wavelet transformation over traditional
Fourier transformation is a finite range of definition of
the basis functions, which makes it possible to reveal
and analyze local features of transient processes. More-
over, basis functions of wavelet transformation are
mutually orthogonal at any value of the scale factor
(i.e., at any width of a wavelet) unlike Fourier transfor-
mation in windows. Finally, wavelet transformation
provides the possibility of analyzing both small-scale
and regular features of functions in terms of a single
mathematically rigorous procedure.

The diagram of the wavelet coefficients for the fre-
quency dependence of the relative variation of the
transmission coefficient magnitude when the external
field is normal to the plane of the superlattice (Fig. 5) is
shown in Fig. 6. As a generating wavelet, we used the
MHAT wavelet, which is given by [10]

The abscissa in Fig. 6 is the shift parameter, which,
in our case, can be identified with the frequency that
serves as an argument in the frequency dependence of
the relative variation of the transmission coefficient
magnitude (Fig. 5). On the vertical axis, the oscillation
frequency of the transmission coefficient magnitude is
plotted. This frequency is calculated from the scale fac-
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tor s by multiplying it by a constant [9] ( π for the
MHAT wavelet). The loops in the diagram indicate the
presence of several oscillation periods.

Of great importance is the distribution of the energy
of a signal being analyzed over scale factors, the scalo-
gram of a wavelet transform, which can be written in
the form

(2)

It is known [9] that a scalogram represents the signal
energy density |W(s,Θ)|2, which is normalized to the
absolute value of the scale factor |s| and is averaged
over all possible values of the shift parameter Θ. Max-
ima in a scalogram correspond to characteristic scales
on which a major part of the process energy is concen-
trated.

Scalogram (2) is defined throughout the length of a
realization considered. However, the energy distribu-
tion over scale factors on the length of a realization is
of special interest in transient analysis. To this end, one
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Fig. 6. Diagram of wavelet coefficients for the frequency
dependence of the relative variation of the transmission
coefficient magnitude for sample 1. f, frequency; fn, oscilla-
tion frequency.
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the transmission coefficient vs. wave frequency for sample 1.
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may use a partial scalogram in the form

(3)

where ∆Θ is the range of the shift parameter that is
reckoned from a certain fixed value Θ0.

If the shift parameter varies in the interval Θmin–
Θmax, this interval can be covered by varying Θ0 from
Θmin + ∆Θ/2 to Θmax – ∆Θ/2 and determining character-
istic scales of a process being analyzed within a win-
dow of width ∆Θ each time.

By applying formula (3) to the wavelet spectrum in
Fig. 6, one can determine dominant oscillation frequen-
cies for the relative variation of the transmission coeffi-
cient magnitude. Consider the curve obtained for sam-
ple 1 when the external field is oriented parallel to the
plane (see Fig. 7). Here, as in Fig. 6, the vertical axis
plots the oscillation frequency calculated from the scale

factor s by multiplying it by π.
From Fig. 7, it follows that the realization being ana-

lyzed has two basic ranges of oscillation frequencies. In
the diagram of wavelet coefficients (Fig. 6), these
ranges correspond to the loops centered in these ranges
of oscillation frequencies. One of the loops has a small
dispersion and may be associated with the fundamental
mode of the resonator; the other may be assigned to a
higher mode of the resonator.

CONCLUSIONS
We studied interaction between an rf electromag-

netic field and the Fe/Cr superlattice placed in a rectan-
gular waveguide so that the longer side of the superlat-
tice is parallel to the waveguide axis and the plane of
the superlattice is parallel to the narrow wall of the
waveguide. In this configuration, the high-frequency
current passes in the plane of the superlattice. The
transmission coefficient versus the magnetic field
strength is found at centimeter waves, and a correlation
between this dependence and the field dependence of
the dc magnetoresistance is established. It is shown that
the transmission coefficient and magnetoresistance
depend on the magnetic field in a similar way and that
a change in the transmission coefficient may several
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times exceed the dc giant magnetoresistance in magni-
tude. The frequency dependence of the microwave
measurements has an oscillatory character. Analysis of
this dependence in terms of wavelet transformation
revealed two types of oscillation periods.

The results obtained in this work provide a basis for
the development of magnetically controlled rf devices
based on the microwave GMR effect. Such devices will
be simple in design and offer a high performance, since
the resistance of the superlattice placed in a magnetic
field can be controlled even more effectively by apply-
ing resonant electrodynamic systems.
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Abstract—The growth of thin carbon films of various modifications is studied. The films are applied by ion-
beam sputtering of graphite, and the resulting carbon condensate is exposed to either ion or electron beams at
low temperature and pressures. The phase composition, structure, surface morphology, and emissivity of the
carbon films are examined by X-ray diffraction, Raman spectroscopy, and atomic-force microscopy. © 2004
MAIK “Nauka/Interperiodica”.
INTRODUCTION

At the current stage of thin carbon film growth tech-
nology, special emphasis is on diamond as a semicon-
ducting material for solid-state microelectronics,
acoustoelectronics, and emission electronics [1]. Also,
the extremely high hardness of diamond makes it very
promising for abrasive and cutting tools. Diamond
offers a unique combination of properties, such as the
highest thermal conductivity at 300 K on record (20–
25 W/(cm K)), a carrier drift velocity of 2.7 × 107 cm/s,
a breakdown field of 2 × 107 V/cm, and a Mohs’ hard-
ness of 10. In addition, it can withstand a fast-neutron
fluence of 2 × 1014 cm–2 and an adsorbed dose of γ radi-
ation of 5 × 105 Gy. Taken together, these properties
render diamond an indispensable material for high-
speed and radiation-resistant electronics, detectors of
high-energy particle fluxes and ionizing electromag-
netic radiation, field-emission cathodes, heat sinks,
optical windows, X-ray diaphragms, and protective
antireflection interference coatings for solar cells.
Moreover, diamond features the highest velocity of
propagation of surface acoustic waves (≈9 km/s) among
all known materials; so, it can be used to advantage in
acoustoelectronics. The feasibility of diamond-like
materials as electron sources is based on their negative
electron affinity, which allows one to decrease the emis-
sion threshold of nonincandescent cathodes in emissive
electronic devices.

Much progress toward growing thin carbon films of
various modifications (diamond, diamond-like carbon,
and carbyne) has been achieved using low-temperature
growth in vacuo. In this method, graphite is sputtered
by ion beams and the resulting carbon condensate is
then exposed to either ion or electron beams. Note that
this is today a basic trend in using gas-discharge ion
sources.
1063-7842/04/4905- $26.00 © 20619
EXPERIMENTAL

Thin carbon films are usually grown using two basic
methods: (i) ion beam sputtering of graphite followed
by exposing the resulting carbon condensate to a high-
energy electron beam and (ii) growth and subsequent
irradiation of the films with one wide ion beam. At the
first stage of process (i) [2], the films are grown on sil-
icon substrates by sputtering 99.99% pure graphite
using a mixed argon–hydrogen ion beam at a pressure
of 6.6 × 10–3 Pa and a substrate temperature below
673 K. The ion beam current and energy are 5–10 mA
and 4 keV, respectively. At the second stage, the amor-
phous (as indicated by X-ray diffraction data) thin car-
bon films are irradiated by a wide electron beam for 1
to 10 s to provide various heating conditions. The elec-
tron beam power ranges from 100 to 200 W. In case (ii),
thin diamond-like carbon films are grown and irradi-
ated with a wide argon–hydrogen ion beam at a sub-
strate temperature of 293 K. The ion beam is obliquely
incident on a graphite target (sputtering) and makes an
angle of 85°–90° with the normal to the growth surface
(irradiation under grazing incidence). In such a way, the
necessary conditions for growing thin diamond films
(such as a high supersaturation, hence, a high probabil-
ity of nucleation; prevention of the graphite structure
formation; and prevention of the diamond–graphite
transition) are provided [3]. The growth conditions are
such that scattering of incident ions by a growing film
is an essential factor. Because of this, recoil atoms can
create compressive stresses as high as ≈10 GPa at the
growth surface, which favors the formation of the dia-
mond phase. This process involves two atomic fluxes.
One is the flux of carbon atoms knocked out from the
target and impinging on the substrate, where they coa-
lesce, forming the next layer and causing the growth
surface to move with a certain flux-density-dependent
rate. The other is the flux of recoil carbon atoms, which
arise from scattering of ions in the bulk of a growing
film and move toward its surface. This flux produces a
004 MAIK “Nauka/Interperiodica”
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certain limiting concentration of interstitials, which
induce stresses in a growing layer, making the diamond
phase stable. The structure and surface morphology of
the films, as well as phase nucleation, were examined
by X-ray diffraction (Rigaku diffractometer, CuKα radi-
ation), Raman spectroscopy (Dilor-Jobin Y T6400TA
spectrometer, the 488-nm line of an argon laser), and
atomic-force microscopy (Digital Instruments Nano-
scope 3 instrument operating in the contact mode, Si3N4

tip). The electron emissivity of the carbon films was
studied by measuring the emission current versus the
applied electric field. The electric field in the electrode
gap was calculated as E = V/d, where V is the potential
difference between the electrodes and d is the width of
the electrode gap. The emission current was measured
at a pressure of ≈1.33 × 10–4 Pa by applying voltage
pulses with a width of 30 µs and a repetition rate of
50 Hz. The film thickness was ≈50 nm; the emitting
surface area, ≈0.25 cm2. An electric field up to 5.6 kV
was applied between the flat silicon substrate and flat
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Fig. 1. Raman spectrum from a thin polycrystalline dia-
mond-like carbon film (peak 1 at 1330 cm–1).
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Fig. 2. X-ray diffraction pattern taken of a thin polycrystal-
line diamond-like carbon film.
anode electrode. The length of the vacuum gap between
the film surface and anode was ≈160 µm.

RESULTS AND DISCUSSION

Thin carbon films obtained by sputtering the graph-
ite target and then irradiated by the charge-particle
beam were continuous and had a thickness from 50 nm
to 6 µm. Under the two-stage growth conditions, elec-
tron irradiation causes the film to crystallize into the
carbyne hexagonal structure. Carbyne is the linear car-
bon modification with sp-hybridized atoms, which pos-
sesses semiconducting properties (the band gap is
≈1 eV). Figure 1 shows the Raman spectrum from a
6-µm-thick polycrystalline carbon film grown by one-
stage deposition. The intense narrow diamond peak at
1330 cm–1 indicates that diamond is the basic compo-
nent of the film. The broad line at 1580 cm–1 is due to
amorphous graphite. In the Raman spectra of the films
grown under other conditions, the relative intensities,
widths, and positions of the lines change, thus indicat-
ing changes in the phase composition, the crystallite
sizes, and the degree of amorphization of the films [3].
The conclusions about the phase composition that were
drawn based on the Raman data were supported by the
X-ray diffraction and high-resolution electron micros-
copy data. The X-ray diffraction patterns have a diffrac-
tion peak at 2θ = 44.452° (d = 0.20364 nm), which cor-
responds to the diamond structure (Fig. 2). The exami-
nation of the carbon film surface (Fig. 3) shows that the
films pass through the globular growth stage, at which
globules with a surface size of 50 nm and a height of
5 nm form. The average height of surface asperities is
6.425 nm. Diamond is known to grow in several stages:
the formation of globules, the formation of {100} faces
on globules, the stage of geometrical selection, the for-
mation of the primary 〈100〉  axial texture, and the for-
mation of the secondary 〈110〉  and 〈111〉  conic textures
[4]. The occurrence of these stages depends on the
growth temperature. In the low-temperature range, only
the globular stage takes place. The thickness of a layer
of globular diamond may vary from several tens of
nanometers to several tens of micrometers according to
growth conditions. Varying the ion sputtering parame-
ters and growth conditions, one can control the content
of carbon phases in the thin films.

Carbon films of various structural modifications are
promising for efficient field-emission cathodes [5].
Field emission occurs without heating a cathode, which
makes it possible to produce a flux of slow electrons
and, hence, to simplify the design of solid-state vacuum
devices. The possibility of applying diamond materials
as electron sources is based on their negative electron
affinity, which was predicted theoretically and found
experimentally in both diamond single crystals and
polycrystalline diamond films [6]. In particular, a neg-
ative electron affinity of an emitting surface allows for
a significant decrease in a field-emission-initiating
electric field from 103–104 V/µm (the values character-
TECHNICAL PHYSICS      Vol. 49      No. 5      2004



        

THIN CARBON FILMS: II. STRUCTURE AND PROPERTIES 621

                                                     
istic of most metals and semiconductors) to 1–10 V/µm
[7]. At the same time, the conductivity of polycrystal-
line diamond films depends on various structural
defects, which produce extra levels in the band gap or
extended regions of nondiamond carbon. The emissiv-
ity of diamond films is known to improve substantially
as the density of defects rises up to amorphization. The
characteristic sign of amorphization is the diamond-
type hybridization of valence electron bonds in carbon
atoms. For field-emission cathodes, the threshold elec-
tric field at which field electron emission occurs varies
from 2 to 20 V/µm [8].

All carbon films grown under the conditions
described above emitted electrons at a certain potential
difference applied between the film cathode and anode.
For the nanocrystalline diamond films, the threshold
electric field of cold emission in the cathode–anode gap
was found to be 30 V/µm. The emission current density
was equal to 1.2 × 10–5 A/cm2. Figure 4 shows the
dependence of the field-emission current on the electric
field. A sharp increase in the electron current (emission
threshold) is observed at 3 × 105 V/cm, although emis-
sion becomes tangible even at ≈1.5 × 105 V/cm. Using
the experimental emission characteristic, we calculated
the work function ϕ by the Fowler–Nordheim theory,
which relates the electron emission current density to
the electric field by the expression [9]

(1)

where ϕ is the work function, eV; j is the electron emis-
sion current density, A/cm2; and E is the electric field
strength, V/cm. Substituting j = 1.2 × 10–5 A/cm2 and
E = 3 × 105 V/cm into Eq. (1), we have ϕ ≈ 0.332 eV.
Thus, the carbon films grown by charged particle

J  = 1.4 10 6– E2/ϕ( ) 104.39/ϕ1/2

10 2.82– 107 ϕ3/2/E( )× ,×××

0.2

0.4

0.6
0.8

X 0.200 µm/div
Z 50.000 nm/div

µm

Fig. 3. Surface image of a carbon film.
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beams offer a relatively high efficiency of field emis-
sion.

CONCLUSIONS

A method of growing thin carbon films of various
modifications by ion-beam sputtering was proposed. It
was shown that sputtering of graphite followed by irra-
diation of the carbon condensate by either an ion or
electron beam provides necessary conditions for the
formation of the diamond phase and can be used for
growing thin films of diamond-like carbon or carbyne
at low temperatures and pressures. The phase composi-
tion, structure, surface morphology, and field emissiv-
ity of the carbon films grown were considered. Expo-
sure of the carbon condensate to an ion or electron
beam is found to cause crystallization of the thin films.
In the low-temperature stage, growth is limited by the
globular stage and the films have a high content of the
amorphous phase. Thin carbon films of various modifi-
cations (diamond and carbyne) grown under the condi-
tions considered above may serve as efficient heat-
removing, emissive, protective, or hardening coatings.
Thin-film field-emission cathodes offering a relatively
high efficiency of field emission at an electric field of
≈3 × 105 V/cm were made on ≈50-nm-thick carbon
films with a work function of ≈0.33 eV that were grown
by the method suggested.

A charge-particle source [10] proved to be highly
efficient for growing thin carbon films with a high con-
tent of the diamond phase by ion and electron beams at
low temperatures and pressures.

0 10

2

1

20 30

3
I, µA

E, V/µm

Fig. 4. I–V characteristic of a nonincandescent cathode.
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Abstract—The energy distribution of electrons emitted from the surface of diamond-like pointed cathodes
under the action of a high electric field is reported. Diamond-like coatings are applied on thin tungsten tips by
ion-beam evaporation in an ultrahigh vacuum. The structure of the carboniferous films covering the tungsten
tips is examined by field-emission microscopy. The stability of the field-emission cathode current is considered,
and the Fowler–Nordheim I–V characteristics are presented. Based on the results obtained, a model of
field-emission cathode covered by a thin diamond-like coating that explains the energy distributions is sug-
gested. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Carboniferous films with the diamond structure are
a promising material for cathodes (tips) of field-emis-
sion vacuum devices [1]. The basic obstacle to the wide
application of cathodic tips is their unstable character-
istics due mostly to fast contamination of the emitting
surface by residual gas molecules in a medium vacuum.
Diamond eliminates this problem, since its surface is
chemically inert and weakly sensitive to adsorption [2].
Another important property of diamond is the negative
electron affinity of the (111) face of Group IIb natural
semiconducting diamond [3], which makes it possible
to substantially reduce (down to 105 V/cm) field
strengths used for cold emission of electrons [4]. Today,
the emissivity of diamond coatings on both flat surfaces
[5, 6] and very thin metallic and semiconducting tips
[7, 8] is the subject of extensive research. There exist a
number of theoretical works concerned with field emis-
sion from diamond-based structures [9–11]. Experi-
ments on field emission from diamond-like films usu-
ally boil down to taking the Fowler–Nordheim charac-
teristic and estimating the work function. Data on the
stability of the field-emission current from diamond
cathodes are also available. Energy distributions of
electrons emitted under an ultrahigh vacuum that are
taken with high-resolution analyzers are almost nil.
However, these distributions would provide valuable
information about the emission process. Moreover, at
this point in the research, it is necessary to compare
these distributions with the I−V characteristics and
field-emission images of the tips coated by diamond-
like films. Comparative analysis could support or rule
out the present-day model notions of the thin tip–dia-
mond-like film system.
1063-7842/04/4905- $26.00 © 20623
In this work, we examine diamond-like films on
tungsten tips by field-emission spectroscopy. The
energy distributions of electrons versus the electric
field strength at the cathode are obtained. Also, the I–V
characteristics of the films, field-emission microscopy
data on their structure, and the evolution of the field-
emission current with time are reported. Based on this
data, a model of an emitting tungsten tip coated by a
thin diamond film is developed.

EXPERIMENTAL
(i) Diamond-like film evaporation. Diamond-like

films were applied on tungsten tips by ion-beam evap-
oration. Positive carbon ions of energy 10–100 eV and
current 1–25 µA were directed on the tip surface by a
beam-forming system consisting of an electrostatic lens
and deflecting plates. The process was carried out at a
pressure of 10–7 Torr provided by an oil-free pump.
Prior to evaporation, the tip surface was cleaned by
heating to high temperatures (≈1500°C) and bombard-
ing with 500-eV argon ions. The source of positive car-
bon ions and the design of the ion-beam evaporator
were detailed in [12].

(ii) Field-emission characteristics. Tips on which
diamond-like films were deposited were made of poly-
crystalline tungsten wires 0.08 mm in diameter with
grains oriented largely in the [011] drawing direction.
The same wires were used to prepare an ear on which
the tips were mounted when heated by applying a cur-
rent. The wires were sharpened by electrochemically
etching in a saturated water solution of KOH. The
radius of the tips obtained was no greater than 1 µm.
The tips were then rinsed in distilled water and placed
in a high-vacuum deposition chamber. Immediately
004 MAIK “Nauka/Interperiodica”
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before deposition, the tips were heated to ≈800°C by
passing a continuous current and then to ≈1500°C by
passing a pulsed current through the ear to remove con-
tamination. Then, the emitter was bombarded with
≈500-eV Ar+ ions to provide the atomically clean sur-
face. We studied three types of diamond samples (in all
experiments, the ion energy during deposition was 65–
70 eV and the current of positive carbon ions at the sub-
strate was 1 µA): a thick film (deposition time 2 h), a

(a) (b)

Fig. 1. Typical field-emission images of the tungsten tip
coated by the (a) thin and (b) thick diamond-like film.

(a)

(c) (d)

(b)

Fig. 2. Field-emission images of sample 3: (a) as-prepared
(pure) tungsten tip, (b, c) diamond-like cluster on the (111)
face of the tungsten tip, and (d) the same tip after the
removal of the diamond-like cluster by heating. The corre-
sponding emission voltages are (a) 3.4, (b) 1.5, (c) 1.9, and
(d) 4.0 kV.
thin film (deposition time 1 h), and a carbon cluster on
the (111) face of the tungsten tip (deposition time 1 h).

The thickness of the layers deposited could not be
measured directly. Estimated from the deposition time,
it did not exceed several tens of carbon monolayers
when a continuous film formed.

The system for studying field emission from
cathodic tips is described in detail elsewhere [13]. The
residual pressure provided by oil-free magnetic-dis-
charge pumping was no higher than 10–10 Torr. Data
processing and control of the operation of the setup
were accomplished with a PC with the KAMAK stan-
dard interface. The ultrahigh-vacuum chamber of the
spectrometer is provided with a rotation-and-displace-
ment system, which makes it possible to display desired
areas of the tip on a fluorescent screen with a magnifi-
cation of 106. The distribution of the emitted electron
total energy was taken with a dispersion energy ana-
lyzer consisting of seven electrostatic lenses. The diam-
eters of the entrance and exit diaphragms were 0.50 and
0.17 mm, respectively; the resolution of the analyzer,
20 meV; and the range of measurement, 2.5 eV. The
electrons passing through the exit diaphragm fell on the
input of a VÉU-6 secondary emission electron multi-
plier operating as an electronic counter. The high
amplification of the VÉU (on the order of 107) allowed
us to display weakly emitting areas of the tip surface.

RESULTS

(a) Field-emission microscopy. A typical field-
emission image of the diamond-like film on the tung-
sten tip surface is shown in Fig. 1. The image is typical
in that emission from the central part of the film (i.e.,
from the (011) face of the tip) is absent (in all test sam-
ples). When the coating is thin (Fig. 1a), the image is
symmetric, which means that the diamond-like film has
a regular crystal structure at the initial stage of growth.
As the deposition time increases (Fig. 1b), the structure
becomes irregular with carbon clusters at the edges of
the (011) central face of the substrate (tip). These clus-
ters form microprotrusions, from which emission takes
place when the film is sufficiently thick. The clusters
decay when the temperature reaches 1000°C [14]. It
seems that the arrangement of the clusters is related to
the crystal structure of the as-prepared tip, since the
field-emission image has certain symmetry; namely,
electrons are emitted largely from the circumference of
the (011) central face of the tungsten tip.

The diamond-like film on the tip sometimes consists
of carbon atom clusters. Figure 2 shows the sequence of
field-emission images taken (Fig. 2a) from the as-pre-
pared tungsten tip, (Figs. 2b, 2c) after the deposition of
a diamond-like cluster, and (Fig. 2d) after the evapora-
tion of the cluster by heating the tip to 1500°C. The
arrows indicate the position of the entrance diaphragm
of the energy analyzer. It is seen that the final image
closely copies the initial pattern of emission.
TECHNICAL PHYSICS      Vol. 49      No. 5      2004



        

ENERGY DISTRIBUTIONS OF ELECTRONS 625

               
–5.75
0

–5.50 –5.25 –5.00 –4.75 –4.50 –4.25 –4.00–6.00
Electron energy, eV

Emission intensity, arb. units

1

2

3

4

5

6

7

Emission
voltages

2.6–3.1 eV

Fig. 3. Energy distributions of electrons emitted from the as-prepared tungsten tip at different emission voltages and corresponding
image of the tip (the inset) obtained by field-emission microscopy.
(ii) Electron energy distribution. The energy dis-
tributions of emitted electrons for different emission
voltages (a series of distributions) were taken in a sin-
gle program cycle. During the series, the field-emission
image of the tip remained unchanged. The insets dem-
onstrate the related field-emission images, where the
arrows indicate the position of the entrance diaphragm
of the energy analyzer, i.e., the areas of the tip from
which the distributions were taken.

Figure 3 shows the electron energy distributions
taken from the as-prepared tungsten tip. The related
field-emission image is characteristic of a tip that is not
smoothed out by heating (a so-called ribbed tungsten
tip [15]). The position of the peak (at –4.51 eV) is
almost independent of the emission voltage. The
FWHM of the curves is small (≈0.28 eV), which is typ-
ical of emission from metal surface. The smooth rise in
the emission intensity with increasing emission voltage
is noteworthy.

Typical spectra obtained from the tungsten tip
coated by the thick diamond-like film (sample 1) is
shown in Fig. 4. The emitting area (the inset) is the
microprotrusion (mentioned above) produced by car-
bon clusters. The sharp rise in the emission intensity
with increasing emission voltage is distinctly seen,
which is typical of many diamond-like tips studied.
Possibly, this is associated with the transition to region II
in the I–V characteristic. The position of the peaks in
these curves (–4.9 eV for the most intense curve) differs
from that observed in the spectra from the uncovered
TECHNICAL PHYSICS      Vol. 49      No. 5      2004
tungsten tip. The considerable shift in the position of
the peak with increasing voltage for three lowest curves
manifests a voltage drop across the diamond-coated tip,
i.e., the transition to region II in the I–V characteristic.
Such behavior is typical of field emission from semi-
conductor surfaces. The curves taken at low emission
voltages have the second maximum, whose position is
nearly coincident with the position of the single peak in
the spectra for the uncovered tungsten tip. This peak is
attributed to the electrons that tunnel through the thin
diamond-like film from the Fermi level of tungsten.
This follows from the fact that its position depends on
the emission voltage insignificantly.

The supposition that the electrons tunnel through
the diamond-like film is also supported by the form of
the energy distributions taken when the tungsten tip is
coated by the thin film (sample 2, Fig. 5a). The intense
peak (–4.51 eV) of the electrons tunneling from the
Fermi level of tungsten is clearly seen. The wider part
of the spectrum, which has the fine structure, is related
to the diamond-like film. The position of the basic max-
imum here varies from –5.8 to –6.2 eV. This broad peak
can be explained by the emission from the conduction
band of the film. This is possible only if the energy
bands are heavily inclined throughout the length of the
carbon layer, which may take place when the emission
voltage is very high. It also counts in favor of such a
supposition that the peak of the electrons emitted from
the tungsten substrate is fairly intense, which may be
observed if the semiconducting coating in the area from
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Fig. 4. Energy distributions of electrons emitted from the tungsten tip coated by the thick diamond-like film (sample 1) at different
emission voltages.
which the energy distributions are taken is thin. This, in
turn, favors a high inclination of the energy bands and,
accordingly, a broadening of the energy distribution.

Sample 2 was heated to a high temperature
(≈1500°C) in order to remove the carbon layer. The
results for this series of experiments are shown in
Fig. 5b. The field-emission image (the inset) suggests
that the tip acquired a ribbed shape, which is typical of
tungsten. The peak is now at –4.51 eV; i.e., it corre-
sponds to an uncovered tungsten tip. It is known that a
small amount of carbon atoms on the tip surface sup-
presses tungsten atom migration [15], which was the
case in the experiments: the field-emission image and
the form of the energy distribution remained unchanged
upon heating to a higher temperature (≈2000°C) for a
long time.

(iii) Emission current stability and Fowler–Nor-
dheim I–V characteristics. The field emission micros-
copy data in Fig. 2 suggest that the emission intensity
for sample 3 grows upon depositing the carbon cluster.
This is clearly evident from Fig. 2b, where the image
contrast is high while the emission voltage is relatively
low. The Fowler–Nordheim I–V characteristics for the
atomically clean tungsten tip and for the tip covered by
the diamond-like film are presented in Fig. 6. These
curves correspond to the field-emission images in
Figs. 2a (pure W) and 2b (W/C composition). As a rule,
Fowler–Nordheim characteristics are used for estimat-
ing the change in the work function upon film-thin dep-
osition. Such an approach is valid if the electric field at
the surface before and after deposition is the same. In
our case, however, the curvature of the tip at the place
of the carbon cluster changes significantly, as follows
from the images in Figs. 2a and 2b, causing a related
change in the local field strength. This makes direct
estimation of the work function for the surface covered
by the film impossible.

Below we report experimental data indicating that
the diamond-like film improves the long-term stability
of the field-emission current from the tip. Figure 7a
shows the time variation of the total emission current
normalized to its maximum value for the tip with and
without the film. The pressure in the vacuum chamber
was no higher than 10–8 Torr. For the uncovered tung-
sten tip, the total current irreversibly declines unlike the
film-coated tip. The decrease in the total emission cur-
rent for the pure tungsten tip is explained by severe con-
tamination of the metal surface exposed to residual gas
ions when a high voltage is applied to the tip. This is
confirmed by the emission images of the tip that were
taken before and after the measurements (Fig. 7b). It is
clearly seen that a stable adatom layer forms on the sur-
face. This layer can be removed only by heating. The
field-emission image of the tip during the measure-
ments remained unchanged (as in Fig. 2b), suggesting
that the surface of the film is fairly stable against resid-
ual gas ion bombardment. The high fluctuation of the
emission current (Fig. 7a) decays with time.
TECHNICAL PHYSICS      Vol. 49      No. 5      2004
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Fig. 5. Energy distributions of electrons emitted from the surface of sample 2: (a) the tungsten tip coated by the thin diamond-like
film and (b) the tungsten tip after the removal of the film by heating at different emission voltages.
DISCUSSION

If the diamond-like surface has a small positive (or
negative) affinity χ for electrons, the inequality

(1)

where ϕ is the work function of tungsten, is valid in a
wide range of energy gaps Eg.

Eg

2
----- χ+ ϕ ,<
TECHNICAL PHYSICS      Vol. 49      No. 5      2004
On the side of the film at the interface, a depleted
region, or a potential barrier for electrons injected from
the metal, forms. The conduction band bottom in the
semiconducting layer lies above the Fermi level except
for the case of high degeneracy, when the film contains
a high concentration of donors. The band structure for
this case in the absence of the emission voltage and tip
current is represented in Fig. 8a. The extent L of the
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Fig. 6. Fowler–Nordheim I–V characteristics for the dia-
mond-like cluster (W–C) and as-prepared tungsten tip (W).
The corresponding field-emission images are presented in
Figs. 2b and 2a, respectively.
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Fig. 7. (a) Time dependences of the emission current for the
tungsten tip coated by the diamond-like film (W–C) and for
the as-prepared tungsten emitter (W) and field-emission
images of the tungsten emitter (b) before and (c) after taking
this dependence.
depleted region at room temperature is estimated as
100 nm; that is, this region extends throughout the
thickness of the diamond-like film in our case. With
regard to the Schottky effect, this means the presence of
a potential barrier, not a threshold, even in the absence
of an external field. Probably, low-field emission is due
to this fact.

In the case of thick films (L < d), injection of elec-
trons from the Fermi level to the conduction band of the
film is impossible until a high penetrating external field
causes an additional bend of the energy bands in the
film. In this case, a potential threshold turns into a bar-
rier (even if the electrons thermally excited above the
Fermi level of the system are taken into consideration).
This explains the limitation sometimes imposed to the
maximal thickness of a diamond-like film covering the
tip [16, 17]; namely, if the penetration depth δ of an
external field is δ < d – L, electron injection to the con-
duction band is impossible and other mechanisms that
explain stable delivery of charge carriers to the emitter
surface must be invoked: the formation of conductive
channels, conduction through defect-related energy
bands, grain-boundary conduction, etc.
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Fig. 8. Energy band diagram of a tungsten tip coated by a
thin diamond-like film: (a) in the absence of an applied volt-
age and (b) in the presence of a high applied voltage and
emission current. W, tungsten substrate; DLC, diamond-
like coating.
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The application of an external field and its penetra-
tion into a thin semiconducting carbon film on the tip
causes a bend of the energy bands throughout the film.
In our case of extremely thin films and high fields, the
situation is such that the conduction band bottom in the
subsurface layer is below the Fermi level of the system;
i.e., a highly degenerate region forms. Then, the follow-
ing electrons make a major contribution to the field-
emission current (Fig. 8b).

(i) The electrons that ballistically (without an energy
loss) tunnel through the thin semiconducting film from
the Fermi level of the tungsten tip. If the electron affin-
ity of the film is low, they pass through the barrier at the
film–vacuum interface (the effective negative electron
affinity).

(ii) The electrons that escape into a vacuum from the
conduction band. The greater the bend of the bands, the
wider the peak in the energy distribution that corre-
sponds to this component of the total emission current.
Charge carriers that fall into the conduction band of the
film from the metal may be (a) the electrons of group (i)
that are scattered by phonons or structural defects when
traveling through the conduction band, (b) valence
band electrons passing into the conduction band due to
the Zener effect when the bend of the bands is high, and
(c) the electrons that fall into the conduction band via
local states or defect-induced energy bands both by the
Zener mechanism and from the tungsten substrate.

CONCLUSIONS
We studied thin tungsten tips that are covered by

diamond-like films grown by ion-beam evaporation.
Diamond-coated field-emission cathodes are examined
by the methods of field emission spectroscopy and field
emission microscopy. The I–V characteristics of the
emission show that a diamond-like coating tip makes
the emitting surface of the tungsten tip less sensitive to
residual gas adsorption, thereby extending the long-
term stability of the tip’s emissivity. A band diagram for
the tip–film system that explains qualitatively experi-
mental energy distributions of emitted electrons is con-
structed. Exact quantitative consideration requires that
various electron scattering mechanisms in the film and
TECHNICAL PHYSICS      Vol. 49      No. 5      2004
also mechanisms of their escape into a vacuum be taken
into account.
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Abstract—Thin films of tri-oligo(phenylene-vinylene) end-terminated by di-butyl-thiole (tOPV) were ther-
mally deposited in UHV on Ge(111) substrates. The surface potential and the structure of unoccupied electron
states (DOUS) located 5–20 eV above the Fermi level (EF) were monitored during the film deposition using an
incident beam of low-energy electrons according to the total current electron spectroscopy (TCS) method. The
electronic work function of the surface changed during the film deposition until it reached a stable value of 4.3 ±
0.1 eV at a tOPV film thickness of 8–10 nm. Deposition of the tOPV under 3 nm led to the formation of inter-
mediate DOUS structures that were replaced by another DOUS structure along with an increase in the tOPV
deposit thickness up to 8–10 nm. The occurrence of the intermediate DOUS structure is indicative of a substan-
tial reconfiguration of the electronic structure of the tOPV molecules due to the interaction with the Ge(111)
surface. Analysis of the TCS data allowed us to assign the unoccupied electronic bands in tOPV located at 5.5–
6.5 and 7.5–9.5 eV above the EF as π* bands and at 11–14 and 16–19 eV above EF as σ* bands. © 2004 MAIK
“Nauka/Interperiodica”.
1 INTRODUCTION

Thin films of phenylene-vinylene oligomers (OPV)
have shown promising electronic properties that can be
used in light-emitting diodes and other device applica-
tions [1, 2]. The electronic structure of the film–elec-
trode interfaces is crucial for the device performance,
and electron spectroscopy techniques have been
applied to study the interface formation [2–5]. Like for
other types of aromatic molecular films [6, 7], elec-
tronic charge transfer may affect the formation of OPV
interfaces with metals and semiconductors [3, 5] and
this would lead to a discontinuity of the vacuum level
(Evac) at the interface. Chemical interaction leading to
electronic and geometrical reconfiguration of both
OPV films and the electrode material has been reported
for a number of interfaces [4, 5]. Inorganic semicon-
ductors as contact materials to organic films provide
larger possibilities for interfacial chemistry [8, 9]. The
performance of the photovoltaic device we studied ear-
lier [10] was mostly related to the properties of the
Si/organic film interface. Si(111) and Ge(111) surfaces
could be of special interest for device fabrication as one
can deposit similar types of organic films on them in air
and in vacuo using wet chemistry methods and vacuum
sublimation, respectively [9].

Studies of unoccupied electronic states can provide
information about the interface formation complemen-
tary to the information on valence electronic states [2,
6, 7] traditionally obtained by photoelectron spectros-

1 This article was submitted by the author in English.
1063-7842/04/4905- $26.00 © 20630
copy. Unoccupied electron states are more sensitive to
modifications of the films because they have larger spa-
tial delocalization. The electronic structure of the unoc-
cupied states can be obtained by monitoring secondary
electrons backscattered from the sample surface using
very low-energy electron diffraction (VLEED) or total
(target) current spectroscopy (TCS) [11, 12]. Informa-
tion on band bending in a semiconductor substrate, the
formation of an interface charge transfer layer, and the
evolution of the work function has been obtained as a
result of the TCS studies of organic films interfacing
with solid substrates [13]. Side- and end-substitution of
OPV affects the aromatic electronic structure of the
molecule [14]. Thiole-based substituents in the tOPV
molecule under study (Fig. 1) may also be relevant for
intermolecular and film-substrate interactions. The
Ge(111) surface was chosen as a chemically reactive
substrate surface with respect to the tOPV films [9]. In
this paper, we report the results of our TCS studies of
the tOPV/Ge(111) interfaces and of the unoccupied
electronic states of thin tOPV films.

S

S

Fig. 1. Molecular structure of tri-oligo(phenylene-vinylene)
end-terminated by di-butyl-thiole (tOPV).
004 MAIK “Nauka/Interperiodica”
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EXPERIMENTAL

The experiment was performed in a UHV system
(base pressure 5 × 10–8 Pa) in which an Auger electron
spectroscopy (AES) unit and a low-energy electron dif-
fraction (LEED) unit were installed. The LEED unit
was also used as the main instrumentation in the TCS
technique, which we discussed in detail in previous
papers [11–13]. In our TCS experiment, a probing
beam of electrons with typical energies of 0–25 eV,
forming an electrical current of about 10 nA, was
directed normally to the surface under study and the
derivative of the total current in the sample circuit J(E)
was measured: S(E) = dJ(E)/dE, the total current spec-
trum. The total current spectrum consists of a primary
peak and a fine structure. The energy position of the pri-
mary peak corresponds to the condition of the equal
vacuum levels of the cathode and the sample surface.
One can therefore determine the work function of the
surface under study using TCS and taking into account
calibration of the TCS instrument on a known reference
surface, such as a freshly deposited surface of Au at
10−8 Pa with a work function of 5.2 eV [15]. The fine
structure of a total current spectrum is located in the
energy interval 0–25 eV above the vacuum level and is
determined by the energy dependence of the elastic
scattering of the incident electrons from the sample sur-
face, which is closely related to the density of the unoc-
cupied electron states (DOUS) of the sample surface
[16]. In a forbidden energy region at the surface, the
electron reflection is high and the total current J reaches
a minimum, and, when the DOUS is high, the total cur-
rent J reaches a maximum. DOUS analysis is usually
carried out using the negative second derivative –
d2J(E)/dE2 = –dS(E)/dE, and its peaks are assumed to
represent the DOUS peaks [11, 12, 16, 17].

The Ge(111) surface was pretreated with an
HF/HNO3/AgNO3 mixture prior to the substrate being
placed into the UHV chamber. After the base pressure
was achieved, the substrate surface was subjected to an
externally focused beam from a high-pressure xenon
lamp. The atomic composition of the substrate was
tested by AES and LEED, and a c(2 × 8) reconstruction
typical of the Ge(111) surface was determined [9, 15].
Tri-oligo(phenylene-vinylene) end-terminated by di-
butyl-thiole (tOPV) (Fig. 1) have been recently synthe-
sized as described in [18]. Thin films of these mole-
cules were thermally deposited at the rate 0.1 nm/min
in situ from a Rnudsen cell spaced 10 cm from the sub-
strate with the deposition beam oriented approximately
45° to the substrate surface. The films were simulta-
neously deposited onto the surface of a quartz
microbalance with the aim of controlling the deposit
thickness, to which we assign a typical uncertainty of
0.1 nm. The AES spectrum of the tOPV films had main
peaks corresponding to C (275 eV) and S (153 eV), and
their relative intensities were in good agreement with
the atomic composition of tOPV molecules (C26S2H28).
The LEED patterns of the Ge(111)-c 2 × 8 surface was
TECHNICAL PHYSICS      Vol. 49      No. 5      2004
attenuated during the tOPV deposition, and no new pat-
tern appeared manifesting the formation of a disordered
organic film.

RESULTS AND DISCUSSION

The structures of the unoccupied electronic states
and the surface potential were monitored by measuring
a series of TCS spectra during the tOPV film deposition
process. The TCS spectrum of the Ge(111) substrate
(0 nm coverage) is represented by the primary TCS
peak and the TCS fine structure in the range 5–25 eV
(Fig. 2a). The position of the primary TCS peak indi-
cates the work function value of the Ge(111) substrate
4.8 eV, which corresponds well to the literature data
[17]. The shape of the primary TCS peak did not sub-
stantially change during the film deposition, which
indicates a uniform distribution of the tOPV molecules
on the substrate. On the other hand, the energy position
of the primary TCS peak changed gradually during the
film deposition, which will be discussed later in this
section together with the discussion on the interface
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Fig. 2. (a) TCS fine structure illustrating the process of the
tOPV film deposition on the Ge(111) surface. The primary
peak scaled 0.1 is shown for the case of a zero deposit thick-
ness. Numbers to the right of each curve indicate the corre-
sponding thickness (nm)of the tOPV film. (b) Intermediate
TCS fine structure corresponding to the modified electronic
structure of the tOPV films of up to 3 nm on the Ge(111)
surface.
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formation. During the tOPV film deposition, the TCS
fine structure of the Ge (111) substrate attenuated and
the new TCS fine structure appeared (Fig. 2a). At about
10 nm of film coverage, there was a stable TCS fine
structure with main peaks at 5.5, 7.5, 12, and 17.5 eV
and no changes in the TCS fine structure on further dep-
osition were observed until charging of the sample at
about 15 nm of the tOPV deposit occurred.

In order to study the appearance of the TCS fine
structure of the molecular deposits, we analyzed the
differential curves between the TCS fine structures
measured before and after the deposition of each
adlayer. The partial contribution of the TCS fine struc-
ture from the substrate and from the underlaying film to
the differential curves was subtracted according to its
exponential attenuation [12, 13]. The evolution of the
TCS fine structure of the tOPV deposit had two main
stages. When the deposit thickness was in the range 3–
10 nm, and the TCS fine structure with peaks at 5.5, 7.5,
12, and 17.5 eV appeared from each adlayer of the
tOPV deposit, although the relative intensities of the
peaks varied to some extent within the thickness range.
This TCS fine structure corresponds well to the final
TCS fine structure of a 10- to -12-nm-thick tOPV film
(Fig. 2a). At the earlier stages of the tOPV deposition,
when the film thickness was under 3 nm, the intermedi-
ate TCS fine structure was observed (Fig. 3b), which
had a typical peak at 8.5 eV and a shoulder at 14 eV.
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Fig. 3. (1) –dS(E)/dE spectrum of the DOUS peaks of the
tOPV films. (2) DOUS of the condensed benzene molecules
obtained on the basis of the NEXAFS data [22]. π* and σ*
bands are numerated in (1) along with the increase in energy E.
According to the literature data, a decrease in the
degree of conjugation in a molecule under study would
lead to vanishing of the corresponding DOUS bands
[19]. Studies of the interfaces of perylene derivatives
[20] and phthalocyanines [13] with Si single crystals
have shown that the π electronic structure of the aro-
matic molecules becomes substantially reconfigured,
so dissociation of the molecules was assumed. Dissoci-
ation of a thiophene oligomer onto monomers (which in
turn could be considered as a decrease in conjugation)
due to interaction with Si(100) was reported in [21]. As
for the tOPV/Ge(l 11) interface under study, we suggest
that the observation of the less pronounced features in
Fig. 2b as compared to Fig. 2a indicates a lower conju-
gation within the 0- to -3-nm-thick tOPV deposit as
compared to the rest of the tOPV film (3–10 nm). Inter-
estingly, the width of the intermediate tOPV layer,
3 nm, is larger than the size of a tOPV molecule in any
direction, which indicates that the modification of the
electronic structure of the tOPV molecules occurred
within a film area broader than one monolayer.

Direct assignment of the DOUS peaks of the tOPV
films turns out to be rather complicated because of the
lack of theoretical studies devoted to calculations of the
electronic structure of these molecules in the energy
region of interest. It is worth comparing our experimen-
tal results on the DOUS of tOPV films with the results
of the DOUS studies of condensed benzene and its
derivatives [22, 23], as the aromatic component of
tOPV (Fig. 1) makes a substantial contribution to the
electronic spectrum of the whole molecule. The
−dS(E)/dE spectrum of the tOPV films is shown by
curve 1 in Fig. 3. We suggest assigning the DOUS peak
of the tOPV films as follows: the peaks in the regions
5.5–6.5 eV and 7.5–9.5 eV correspond to electronic
bands  and , and the peaks in the regions 11–14

and 16–19 eV correspond to  (C–C) and  (C=C)

bands. The , , and  bands (curve 1, Fig. 3)
correspond well to the analogous DOUS bands of con-
densed benzene (curve 2, Fig. 3) [22] determined by
means of near edge X-ray absorption spectroscopy
(NEXAFS).

We note that one should not expect a complete iden-
tity between the TCS and NEXAFS spectra because
NEXAFS measurements may introduce error to the
DOUS spectrum obtained due to the site-on depen-
dence of the core electron excitation energy [23]. The

 electronic band (curve 1, Fig. 3) is situated close to
the edge of the energy region in which we can register
the DOUS by means of TCS. The DOUS of the tOPV
in the region of the  band differs from the DOUS of
benzene (Fig. 3), and we relate this difference to the
contribution of the vinylene component to the elec-
tronic spectrum of the tOPV molecules.

Let us consider the TCS data (Fig. 2a) on the subject
of revealing the formation of an interface dipole at the

π1* π2*

σ1* σ2*

π1* σ1* σ2*

π1*

π1*
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tOPV/Ge(111) boarder. Changes in the surface poten-
tial during the tOPV deposition observed as changes of
the primary TCS peak position are shown in Fig. 4a.
The surface potential decreases until the tOPV film
thickness reaches about 3 nm and then increases to a
final value of 4.4 ± 4.5 eV. One can see that the surface
potential of the 2- to -3-nm-thick tOPV is lower than
the surface potential of the finally formed 10-nm-thick
tOPV films and that this difference corresponds well to
the difference of the TCS fine structures from the
thicker and the thinner tOPV films (Fig. 2). A similar
result was reported for side-substituted phenylene-
vinylene oligomers on polycrystalline Au in [5]. A
gradual shift of the tOPV film TCS fine structure was
observed starting from an approximately 3-nm-thick
deposit (Fig. 4b). This shift of the fine structure corre-
sponds to a transfer of the positive charge from the
films outside the intermediate region (3–10 nm)
towards the film–substrate interface. The charge trans-
fer may be related to the polarization of the tOPV mol-
ecules, so the polarization becomes weaker with the
film thickness according to the model of an extended
interface dipole suggested by us earlier [13, 24]. A spe-
cific feature of the polarization layer in the tOPV film
is that it extends approximately 10 nm away from the
geometrical interface with the Ge(l 11) substrate. Sub-

0 2
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4 6 8 10

4.6

EW, eV
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0.1

0.2

dtOPV, nm

E–EF + C, eV
4.2

4.4
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(a)

Evac–EF, eV

(b)

(c)

Fig. 4. Analysis of the tOPV deposition on the Ge(111) sur-
face, (a) changes in the surface potential, (b) energy shifts
of the TCS fine structure from the tOPV film, and
(c) changes of the tOPV film work function derived from
subtracting the curve in (b) from the curve in (a).
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tracting the interface effect (Fig. 4b) from the changes
in the surface potential (Fig. 4a) reveals the evolution of
the work function during the tOPV film deposition
(Fig. 4c), which achieves a final value of 4.3 ± 0.1 eV.
Electronic charge transfer has been observed for a large
number of interfaces between organic films and metal
surfaces [6, 7], and the formation of abrupt interface
dipoles within one molecular layer of the deposit was
attributed to this type of interfaces with some excep-
tions [5, 25]. With respect to organic film–inorganic
semiconductor interfaces, we have observed here and
earlier [13] rather extended interface dipoles.

CONCLUSIONS

The TCS technique is used in an experimental
approach to study the density of the unoccupied elec-
tronic states of the tOPV organic films and to describe
the formation of the electronic structure at the interface
between the tOPV films and Ge(111) substrate. A sub-
stantial reconfiguration of the electronic structure of the
unoccupied electronic states of the tOPV films within a
3-nm deposit layer due to the interaction with the sub-
strate was deduced. π* unoccupied electronic bands in
tOPV are located at 5.5–6.5 and 7.5–9.5 eV above the
Fermi level, and the CT* bands are located at 11–14
and 16–19 eV above the Fermi level. Electronic charge
transfer of the positive charge from the tOPV film to the
tOPV/Ge(111) interface region has been observed and
related to the polarization of the tOPV molecules in a
tOPV film layer up to 10 nm thick.
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Abstract—The time dependences of the ultrasound absorption coefficient in the H8 nematic and its solution in
a nonmesogenic solvent (benzene) under a pulsating magnetic field and varying thermodynamic parameters of
state (p, T) are studied. The ratio of the rotational viscosity to the diamagnetic susceptibility (γ1/∆χ), the
activation energy for different pressures, and the activation volume are found. © 2004 MAIK “Nauka/Interpe-
riodica”.
The dissipative properties of liquid crystals (LCs)
and their solutions in the range of existence of the
mesophase are of both scientific and applied interest.
While the molecular–kinetic, thermodynamic, hydro-
dynamic, and other physical properties of many LCs
have received much study, those of LC solutions are
poorly known.

Objects of investigation in this work are the H8
nematic, consisting of n-methoxybenzylidene-n-p-
butylaniline (MBBA) and n-ethoxybenzylidene-n-p-
butylaniline (EBBA) (for their structural formulas, see
Fig. 1), and a solution of H8 in a nonmesogenic solvent
benzene (H8 : C6H6 = 7 : 1 by weight). In this LC, the
temperature interval of existence of the mesophase is
rather wide, which makes it possible to study its dissi-
pative properties in the regular range. With a nonme-
sogenic solvent added to an LC, one can study not only
the LC properties but also their disappearance upon the
nematic–isotropic liquid transition.

It is known that the addition of a nonmesogenic sol-
vent (i.e., a solvent free of the LC phase) to H8
decreases the isotropic transition temperature Ttr. In H8
the isotropic transition temperature is Ttr = 325 K, while
in the solution studied Ttr = 306 K.

The properties of an LC as such must be studied
when the orienting effect of the wall does not disturb
parameters to be measured. In view of this requirement,
the sample volume was sufficiently large. Knowing the
parameters of a bulk LC, one can estimate those of
related thin films used in displays and other devices.

Measurements were carried out in fields of 0.1–
0.2 T. The application of a magnetic field to a nonori-
ented nematic in the mesophase range renders the ultra-
sound absorption coefficient anisotropic. In this case,
an LC may be viewed as a single crystal, whereas in the
absence of the field it is akin to a polycrystal. At the iso-
tropic transition temperature, anisotropy disappears.
Accordingly, the transition temperature may be deter-
1063-7842/04/4905- $26.00 © 20635
mined for different pressures from the point at which
the absorption coefficient becomes isotropic.

In the pressure range studied in this work, the pres-
sure dependence of the transition temperature Ttr(p) is
linear both for pure H8 and for its solution:

(1)

where dT/dp ≈ 0.29 K/MPa for H8 and 0.3 K/MPa for
the solution.

In the range where the mesophase exists, the appli-
cation of a magnetic field retards the response of the
nematic physical properties, including the ultrasound
absorption coefficient. This process has a finite relax-
ation time, which depends on the rotational viscosity.
Figure 2 shows the time dependence of the ultrasound
absorption coefficient divided by the frequency
squared, α||(t)/f 2, in a pulsating magnetic field when the
magnetic induction is parallel to the wavevector. At the
time t1 = 0, the magnetic field is switched on and the
parameter α||(t)/f 2 increases from α0/f 2 (α0 is the

absorption without the field) to /f 2 at t2 ≈ 100 s.

Below are the time dependences [1] of the ultra-
sound absorption coefficient in a pulsating magnetic field
parallel to the wavevector; these dependences include the

T tr p( ) T tr
dT
dp
------ p,+=

αm
||

C2H5O CH N C4H9

CH3O CH N C4H91:

2:

Fig. 1. Structural formulas for (1) MBBA and (2) EBBA.
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switching duration τmag of an electromagnet [1]:

(2)

where the time variation of the parameter e– is given by

(3)

Here, τn is the relaxation time of the ultrasound absorp-
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Fig. 2. Time dependence of α||(t)/f 2 for H8 at B = 0.052 T,
p = 0.1 MPa, T = 315 K, and f = 6.5 MHz.

Table 1.  Pressure dependence of the time τn at 306 K

B, T

p, MPa

0.1 30 70 110 30 70 110

H8 Solution

0.070 17 28 49 71 21 38 66

0.060 28 46 69 114 29 52 90

0.050 40 62 115 155 48 79 141

Table 2.  Temperature dependence of τn at 30 MPa

B, T

H8 Solution

T
 =

 2
98

 K

T
 =

 3
06

 K

T
 =

 3
12

 K

T
 =

 3
20

 K

T
 =

 2
93

 K

T
 =

 2
98

 K

T
 =

 3
06

 K

T
 =

 3
12

 K

0.070 43 28 19 12 45 31 21 19

0.060 58 46 30 20 68 46 29 30

0.050 87 62 47 33 96 70 48 47
tion coefficient. The switching duration of an electro-
magnet τmag is expressed as

(4)

The time τn is found by the least squares method
from expression (2) when the analytical curve fits
experimental data most closely. The parameters of a
and b, which define the slope of the absorption coeffi-
cient for pure H8 and H8 in the solution, were taken
from [2].

The pressure and temperature dependences of the
time τn for pure H8 and its solution are given in Tables 1
and 2.

From the relaxation time τn of the ultrasound
absorption coefficient, we determined the ratio γ1/∆χ =
τnB2/µ0 of the rotational viscosity to the diamagnetic
susceptibility.

Figure 3 plots γ1/∆χ versus temperature for pure H8
at pressures of 30 and 110 MPa and for its solution at
0.1, 30, 110 MPa. These dependences have the expo-
nential form

(5)

Here, A is a factor that is almost independent of the tem-
perature and pressure and characterizes a particular
nematic (for H8 and its solution, A = 7.5 and 2.8 Pa s,
respectively), E is the molar energy of activation, and
R is the universal gas constant.

The energies of activation for H8 and the solution
for different pressures are listed in Table 3.

The energy of activation can be approximated by the
linear formula E = E* + (dE/dp)p, where E* is the
energy of activation at p = 0. The quantity dE/dp has the
dimension of the molar volume. Its values at different
pressures are listed in Table 3.

From the data mentioned above, it follows that the
parameter dE/dp decreases with increasing pressure.
This corresponds to a decrease in the slope of isochores
in Fig. 4. For H8, dE/dp = 41 × 10–6 m3/mol (14% of the

e t( ) 1 t
τmag
---------– 

 exp– Bm.=

γ1

∆χ
------- Ae

E
RT
-------

.=

290 310

400

330 350 T, K

1

2
5

4

3

200

0

γ1/∆χ, GPa s

Ttr (p0) Ttr (p) Ttr
' (p)

Ttr (p) Ttr
' (p)

Fig. 3. γ1/∆χ vs. temperature for H8 at p = (1) 30 and
(2) 110 MPa and for the solution at (3) 0.1, (4) 30, and
(5) 110 MPa.
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volume) under atmospheric pressure; at 110 MPa, this
value is lower by roughly one-third. Hence, as the pres-
sure rises, the free volume between molecules shrinks
and their transition from one equilibrium state to
another becomes difficult.

The Diogo–Martins semi-phenomenological theory
of rotational viscosity [3], which is based on the Maier–
Saupe mean field approximation, yields

(6)

where q and θ are constants and T* is the temperature
at which the director stops rotating.

In the temperature interval Ttr < T < T*, the behavior
of γ1 depends largely on the probability of molecules

γ1 qQ2 εQ
kT
------- θQ2

T T*–
----------------+ ,exp=

290 310

22

330 350 T, K

1

5

43
21

20 Ttr (p0) Ttr (p) Ttr
' (p)

2
ln(γ1/∆χ), GPa s

Ttr (p) Ttr
' (p)

Fig. 4. ln(γ1/∆χ) vs. temperature for H8 at p = (1) 30 and
(2) 110 MPa and for the solution at (3) 0.1, (4) 30, and
(5) 110 MPa.

Table 3.  Values of E and dE/dp at different pressures for H8
and its solution

p, MPa E, kJ/mol dE/dp, 10–6 m3/mol

H8 0.1 35.8 41

30 36.8 37

50 37.4 34

70 38.1 32

90 38.8 31

110 39.4 30

Solution 0.1 37.4 44

30 38.6 38

50 39.3 33

70 40 30

90 40.5 29

110 41 29
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passing from the excited to the ground state because of
a change in the free volume:

(7)

The pressure has an effect on two parameters: Q and
T*. The order parameter for the first place depends on
the difference Ttr – T. For Ttr – T = const, the orienta-
tional order parameter Q is almost pressure indepen-
dent. Thus, the pressure dependence of the orientational
order parameter is reduced to its dependence on Ttr(p):

(8)

The calculated values of d(ln(γ1/∆χ))/dp for H8 at
dT*/dp ≈ 0.14 K/MPa are listed in Table 4.
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Table 4.  Values of d(ln(γ1/∆χ))/dp calculated by expression
(6) and obtained from experimental dependences

T, K dQ/dp, 
GPa–1

d(ln(γ1/∆χ))/dp, MPa

calculation by (6) experiment

300 1.78 0.014 0.0132

305 2 0.0121 0.0129

310 2.33 0.0109 0.0127

315 2.91 0.0107 0.0125

320 4.36 0.0123 0.0123

T, K
d(ln(γ1/∆χ))/dp, MPa–1

calculation by (6) experiment

300 0.0171 0.0132

305 0.0133 0.0129

310 0.0106 0.0127

315 0.0097 0.0125

320 0.0090 0.0123
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Abstract—The feasibility of an effective high-luminance light source based on an open discharge is consid-
ered. Experimental data for the light characteristics of different cathodoluminescent screens are presented.
Phosphor coatings are excited by an electron beam initiated by a planar cathode–grid injector in an inert gas
atmosphere. The feasibility of maintaining an open discharge using continuous or pulsed–periodic excitation
of the gas medium in the light emitter is discussed. The use of the specular method to excite the phosphor coat-
ing of the screen makes it possible to achieve a higher luminance and a higher luminous efficacy in comparison
with these characteristics for cathodophosphors. The design of the cathode–grid unit allows for a large surface
area of the electron injector, making it promising for wide-aperture light sources. © 2004 MAIK “Nauka/Inter-
periodica”.
INTRODUCTION
The creation of effective, simple, inexpensive, and

stable light sources for different applications is the
mainstream in contemporary lighting engineering. It is
evident that users place various requirements upon light
source characteristics (such as luminance, color scale,
luminous efficacy, service life, dimensions, directivity
diagram, etc.). These requirements are frequently
mutually contradictory and cannot be satisfied with
available light sources.

The authors suggested [1] a new gas-discharge light
source based on the so-called open discharge (OD) [2].
The basic feature of this source is the direct excitation
of a phosphor screen by an electron beam the formation
of which accounts for more than 80% of the total
energy introduced into the discharge [3]. Owing to this
feature, an open discharge was repeatedly advanta-
geously used for the excitation of the lasing medium in
gas lasers [4].

DESIGN OF THE LIGHT SOURCE
The light source proposed has a glass or cermet

body and a transparent phosphor-coated screen. The
chemical composition of the phosphor is responsible
for the color scale (red, green, blue, yellow, etc.). The
electrode system of the emitter is rather simple and con-
sists of a plane (continuous or grid) metallic cathode
and a grid (anode) with a narrow gap in between. The
light source is a gas-filled device. It should be empha-
sized that only noble gases free of mercury vapors or
other elements usually used in gas-discharge light
sources may be applied as a working medium. The
parameters of the system are selected such that most of
1063-7842/04/4905- $26.00 © 20638
the electrons in the discharge form a high-energy beam,
which, passing through the grid (anode), excites the
phosphor.

To measure the chief characteristics of the light
source (of which the electrical-to-light energy conver-
sion efficiency is of primary importance), we prepared
several prototypes differing mainly in design parame-
ters of the electrode units and in overall dimensions.
The design of an OD-based light source is schemati-
cally shown in Fig. 1.

A voltage is applied to cathode 3 from high-voltage
power supply 1, which can operate in both the continu-
ous and pulsed–periodic regimes. The cathode–grid
unit then serves as an injector of electrons with an
energy equal to the cathode voltage. These electrons
pass through the grid into the drift space (between the
grid and screen), where a part of their energy is spent on

1

2 3 4 5 6 7

e hν

Fig. 1. Light source based on an open discharge: (1) power
supply, (2) body (glass or cermet), (3) cathode, (4) grid
(anode), (5) phosphor, (6) ITO conducting layer, and
(7) screen (glass).
004 MAIK “Nauka/Interperiodica”
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the ionization of the gas. Positive ions and photons pro-
duced in the drift space pass back through the grid and
cause secondary electron emission directly from the
cathode surface, thereby maintaining the open dis-
charge. In this discharge, a major part of the electrons
are involved in a high-energy beam, which excites the
phosphor coating of the screen.

ENERGY CHARACTERISTICS AND OPERATING 
MODES OF THE LIGHT SOURCE

As was noted, the electron beam is generated when
a negative voltage is applied to the cathode. The mini-
mum voltage initiating an open discharge depends on
the discharge ignition threshold, and the maximal value
is limited by the stability range of the discharge.

We investigated continuous and pulsed–periodic
regimes of discharge maintenance.

In experiments with the continuous generation of
the electron beam, high levels of luminance were
reached (several thousand of cd/m2). Such high levels
of luminance are now achieved only in mercury-vapor,
sodium-vapor, and sulfur-vapor lamps.

Figure 2 shows the luminance measured as a func-
tion of the gas pressure and discharge voltage. The
luminance of the source is seen to correlate with the
density of the current toward the phosphor screen and
rises linearly with increasing gas pressure. However,
the increase in the gas pressure leads to the undesirable
reduction of the luminous efficacy of the source
(Fig. 3), since the electron energy losses in the gas
grow. In addition, a rise in the gas pressure renders the
discharge unstable.

Figure 4 shows that the luminance may also be
raised by increasing the electron energy (electron beam
power). In this case, the quasi-continuous regime of

50 55
0

1

60 65 70 75 80

5

4

3

2

p, Pa

I,
 m

A
5000

4000

3000

2000

1000

0

L,
 c

d
/m

2

Fig. 2. (j, d) Luminance L and (m, .) current I toward the
screen vs. the gas pressure. The screen surface area is
20 cm2. Hydrogen, ZnS : Cu phosphor. The cathode voltage
is (m, j) 3 and (., d) 4 kV.
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electron beam generation may stabilize the discharge
when an elevated voltage is applied to the cathode.

Indeed, the application of the quasi-continuous
regime for OD maintenance (exciting pulse duration
≈10 µs, repetition rate 1–10 kHz) provided stable oper-
ation of the device under elevated gas pressures and at
low beam energies. However, here we again observe the
reduction of the luminous efficacy of the source as the
gas density grows (Fig. 5).

Figures 6 and 7 show experimental data obtained
under the conditions of the pulsed–periodic regime of
electron beam generation. They clearly demonstrate the
dependence of the luminance on the gaseous medium
density and on the voltage applied to the cathode. Obvi-
ously, the luminance will be improved if faster electron
beams are applied, especially in view of the fact that the
efficiency of the source drops sharply as the gas pres-
sure increases and rises with increasing the electron
energy.
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Fig. 3. (j, d) Luminance L and (m, .) luminous efficacy η
vs. the working gas pressure. Hydrogen, ZnS : Cu phosphor.
The cathode voltage is (m, j) 3.0 and (., d) 3.5 kV.
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Fig. 4. (j, d) Luminance and (m, .) electron beam power
vs. the cathode voltage. Hydrogen, ZnS : Cu phosphor. The
gas pressure is (m, j) 60 and (., d) 80 Pa.
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In practice, the efficiency of the source is improved
by making the most use of the light-emitting surface of
the phosphor. For this purpose, the phosphor layer is, in
turn, coated by a thin Al film (on the side exposed to the
incident electron beam). In this case, the light from the
phosphor layer excited, which is emitted toward the
drift space, reflects from the Al layer and, passing
through the thin (8–10 µm) phosphor layer, makes an
additional contribution to the emission of the screen.
Here, the phosphor is excited by electrons with an
energy exceeding the energy transparency threshold of
the Al coating.

Experimental data in Fig. 8 clearly demonstrate that
the phosphor starts luminescing at a cathode voltage
exceeding 3 kV (the luminescence threshold depends
on the Al film thickness).
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Fig. 5. (j) Luminance L, (d) electron beam power P, and
(m) luminous efficacy η of the device vs. gas pressure p. The
screen surface area is 20 cm2. Helium, ZnS : Cu phosphor.
U = 1.5 kV.
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Fig. 7. (j, d, b) Luminance L and (., r, m) luminous effi-
cacy η of the light source vs. the cathode voltage U for the
gas pressure (., j) 50, (r, d) 100, and (m, b) 200 Pa.
Helium, ZnS : Cu phosphor.
The use of the specular effect described above
allowed us to achieve considerably high luminance lev-
els (≈25 000 cd/m2) at a relatively high luminous effi-
cacy (≈35 lm/W).

CONCLUSIONS

The experimental data presented in this work let us
devise a high-power light source based on an open dis-
charge in an inert gas. The simple design of the source
and the cheapness of its components make it competi-
tive on the market. The light-emitting area of an OD-
based source may be easily extended, which makes it
possible to develop intense wide-aperture emitters.

Moreover, these sources gradually lose luminance
with time (because of a finite cathode service time and
degradation of the gas medium) rather than burn out
instantly.
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Fig. 6. (j, d, m) Luminance L and (., r, b) luminous effi-
cacy η of the emitter vs. the gas pressure. Helium, ZnS : Cu
phosphor. The cathode voltage is (., j) 2.0, (r, d) 2.5, and
(b, m) 3.0 kV.
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Finally, the gaseous medium of this light emitter is
environmentally safe (unlike that in mercury-vapor
luminescent lamps).

Possible applications of OD-based light sources are
the following: traffic lights, road signs, information
boards, billboards, runway markers, aircraft and car
display panels, etc.
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Abstract—A high-power microwave oscillator (vircator) is built around an ironless induction linac. The feature
of this device is ballistic focusing of an electron beam in a diode-type system with a concentric spherical
cathode and anode. The possibility of the vircator to generate high-power microwave pulses is demonstrated.
© 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Microwave oscillators with a virtual cathode (virca-
tors) form a basic class of oscillators in ultra-high-
power relativistic high-current electronics (for the cur-
rent status of developments in this field, see review [1]).

To date, vircators have been built around high-volt-
age nanosecond oscillators that are based on single and
dual pulse-forming lines [2, 3], inductive storage
devices with plasma current interrupters [4, 5], or mag-
netic explosion generators [6, 7]. Recently [8], we have
designed and studied a vircator based on the Korvet
ironless linear induction accelerator (LIA), which has a
conventional plane-parallel diode system.

In a diode with plane parallel electrodes, the beam
usually expands in the radial direction, which causes
electron losses in the region of interaction and
decreases the charge of a virtual cathode (VC). One
way to minimize the losses is the application of a mag-
netic field in the longitudinal direction [9]. This, how-
ever, generates the need for much auxiliary equipment
(solenoids, feed circuits, and synchronization systems).
Another way is beam pinching [3], which is frequently
difficult to do, because high currents must be generated
in this case.

In view of the aforesaid, it is of interest to have
diodes with a configuration other than plane-parallel
(for example, spherical or cylindrical) where the beam
radially converges, since ballistic focusing of electrons
toward the center, to a certain extent, decreases electron
losses.

Microwave oscillators with cylindrical diodes have
been well studied [1, 10, 11], but spherical-diode virca-
tors have not been studied at all, except for [12], where
the potential of a spherical-diode vircator for collective
acceleration of ions (not electrons) have been consid-
ered theoretically.

Thus, it seems topical to see whether ballistic focus-
ing of electrons toward the center of the spherical diode
1063-7842/04/4905- $26.00 © 20642
of a vircator is possible and whether such a vircator
may generate high-power microwave radiation. The
aim of this work was to design and tentatively investi-
gate a spherical-diode vircator. Also, we measured the
spatial distribution of electrons in the drift space,
parameters of the microwave radiation, and diode cur-
rent.

SPHERICAL-DIODE VIRCATOR

A vircator with ballistic focusing of electrons was
designed based on the Korvet LIA, which can acceler-
ate an electron beam to an energy of 900 keV at a cur-
rent pulse duration of 40 ns.

The design of the vircator is depicted in Fig. 1. It
consists of a diode unit, which incorporates a concen-
tric anode and cathode; the drift space; and a horn-type
antenna for extracting radiation.

The cathode (Fig. 2b) is hollow metallic tube 1 to
which steel support 2 is welded. Electrons are emitted
from the concave spherical end face (63 mm in radius)
of graphite cylinder 3 (70 mm in radius). The central

4 1

5

2

5 3
7

6

9

8

Fig. 1. Design of a relativistic spherical-diode vircator
based on the Korvet induction linac: (1) cathode, (2) anode,
(3) grid, (4) cathodic Rogowski loop, (5) anodic Rogowski
loops, (6) drift space, (7) virtual cathode, (8) horn antenna,
and (9) mating cone.
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part of the graphite cylinder is hollow. Its diameter was
made equal to 30 mm in order to provide good ballistic
focusing of the beam and increase the electron flux den-
sity, which forms a VC in the drift space.

The anode is a hollow metallic cylinder 380 mm
long and 160 mm in diameter. It has a grid (Fig. 2a)
made of crossing wires 0.8 mm in diameter, which form
a semispherical surface of radius 50 mm. The mesh size
(spacing between the wires) is 5 mm.

The anode terminates in a horn-type antenna with an
opening angle of the horn of 10°. The diameter of the
exit window (organic glass), which separates the evac-
uated space of the vircator from the environment, is
700 mm. The residual pressure in the vircator is kept at
(3–5) × 10–5 Torr.

Depending on the aims of the experiment, grid 3
(Fig. 1) was moved along the axis of anode cylinder 2.
The position of the cathode unit was appropriately
adjusted by varying the length of tubular holder 1
(Fig. 2b) so that the cathode was at a desired distance
from the grid. The grid and the end face of the cathode
were concentric when 13 mm distant.

NUMERICAL SIMULATION 
OF THE VIRCATOR

The computer simulation of the ballistic focusing
vircator was performed with the KARAT PIC-code
[13]. We simulated the beam dynamics and microwave
radiation mechanisms, as well as compared the simula-
tion results and experimental data.

The geometry of the area simulated is shown in
Fig. 3. It covers the cathode, anode, and grid of the vir-
cator depicted in Fig. 1. The cathode is a cylinder with
a spherical working (electron-emitting) surface 63 mm
in diameter. The diameter of the cathode end face
equals 70 mm. The cathode is placed on a 270-mm-
long tubular holder. The anode is a cylinder 380 mm in
diameter with a grid (semisphere with a diameter of
100 mm). The cathode–grid spacing is varied from 10
to 15 mm in 1 mm steps. The end face of the cathode
and the grid are concentric when 13 mm apart.

A 900-kV 40-ns-long pulse was applied across the
diode gap (the pulse waveform was similar to the actual
waveform observed on the oscilloscope). The pulsed
current of the diode was as high as 40 kA and had the
same duration.

The results of numerical simulation indicate ballis-
tic focusing of the electron beam (Fig. 4). At the time
the current reaches a certain value (by this time, an
appreciable amount of charge has been accumulated in
the gap), a VC forms. For each of the diode gaps con-
sidered, its formation was observed within the early
10 ns. A typical phase portrait of the electron beam
after the VC has formed is shown in Fig. 5.

The time of VC formation (10 to 12 ns from the
beginning) corresponds to the onset of microwave gen-
eration; the time of VC collapse (37 ns from the begin-
TECHNICAL PHYSICS      Vol. 49      No. 5      2004
ning), with the termination of microwave generation
and a decrease in the density of the electron cloud,
which is responsible for the occurrence of a VC.

We calculated the time dependence of the micro-
wave power in the section z = 50 cm for a cathode–grid

(a)

(b)

3

1 2

Fig. 2. Design of the (a) grid and (b) cathode: (1) tube,
(2) support, and (3) graphite cylinder.
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Fig. 3. Geometry of the vircator simulated.

Fig. 4. Electron density simulated.
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Fig. 5. Formation of a virtual cathode (phase portrait):
(1) cathode and (2) grid.
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Fig. 6. Radiation power waveform simulated by the
KARAT PIC-code.
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Fig. 7. Spectrum of microwave output.
spacing of 13 mm (Fig. 6). The peak power is maximal
(≈220 MW) when the cathode–grid spacing is 10 and
13 mm. The radiation power spectrum is demonstrated
in Fig. 7, from which it follows that the maximal micro-
wave output is observed in the frequency range 5.0–
6.5 GHz.

By means of detectors, whose positions were coin-
cident with those of anodic Rogowski loops 5 (Fig. 1)
in the vircator, we determined the transit-time current
in the drift space. To this end, the diode unit was dis-
placed to the left. The maximal calculated value of this
current was 5 and 2 kA for the first and second detec-
tors, respectively.

EXPERIMENTAL STUDY OF GENERATION 
CHARACTERISTICS OF THE VIRCATOR 
VERSUS THE DIODE UNIT GEOMETRY

The experimental study of the energy characteristics
of the spherical vircator was carried out for the diode
geometry shown in Fig. 1. This geometry, which fea-
tures the proximity of the diode unit to the entrance
window of the horn antenna and the presence of addi-
tional mating cone 9, makes it possible to attain high
values of the cathode current.

The microwave radiation parameters were measured
as a function of the cathode–grid spacing. The spacing
was varied between 11 and 16 mm. The microwave
energy was detected with a calorimeter and measured
by hot-carrier cryogenic detectors [14], which were
arranged ≈2 m from the horn in the free space.

The signal from the cryogenic detector for the case
when the end face of the cathode and the grid are con-
centric (the cathode–grid spacing is 13 mm) is shown in
Fig. 8. The energy detected by the calorimeter is 0.8 J.
The duration of the pulse base is 30 ns. Then, the mean
power of the microwave generator is  = W/t = 26 MW.
The peak (maximal) power of the microwave signal is
Pm = 65 MW. For other gap widths (in the absence of
concentricity), this value was lower.

The peak power in the vircator of the given configu-
ration is lower than in the vircator with the plane-paral-
lel electrode configuration studied in [8]. The decrease
is associated with a longer duration of the microwave
signal. In addition, we did not optimize the design of
the diode because of the intricate shape of the elec-
trodes: our primary goal was to elucidate whether bal-
listic focusing of electrons is a possibility. Optimization
of the design to improve the peak power of microwave
radiation will be made later.

To determine the current value initiating microwave
oscillation, the signals from the cathodic loop and cryo-
genic detector were synchronized with an accuracy of
≈1 ns (Fig. 9). The initiating current was found to be
I = 6.2 kA. For the plane-parallel configuration of the
diode electrodes, this value was 19 kA [8]. Thus, ballis-
tic focusing favors the formation of a VC.

P
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The transit-time current in the drift space was mea-
sured by using anodic Rogowski loops 5 (Fig. 1). To
improve their efficiency, the diode unit was displaced
toward the left edge of the anode. The maximal values
of the transit-time current detected by the first and sec-
ond loops were found to be 5.2 and 1.3 kA, respectively
(cf. 5.0 and 2.5 kA obtained by calculation).

Analytical formulas for the frequency range of
microwave oscillation in a vircator are known only for
the plane-parallel diode configuration [3]. To a first
approximation, they may be applied to spherical elec-
trodes. Given a cathode–grid spacing of 13 mm and a
voltage across the spacing of 900 kV, we find a micro-
wave frequency of 10 GHz. Estimated by the KARAT
PIC-code, this frequency lies in the range 5.0–6.5 GHz
(Fig. 7).

BALLISTIC FOCUSING OF ELECTRONS: 
ANALYSIS OF THE BEAM AUTOGRAPH

Additional information on the behavior of the elec-
tron beam in the vicinity of the VC may be extracted
from its autograph. A glass plate of special configura-
tion (copying the geometry of the space behind the
grid) was placed in the drift space on the LIA axis. The
shape of the plate and its position in the drift space of
the electrodynamic system are shown in Fig. 10a.

Beam-induced darkening on the plate indicates
areas where the electron density and energy are the
highest. The scanned image of the plate is shown in
Fig. 10b.

In Fig. 11, the electron beam autograph obtained
with the glass plate is imposed on the electron beam
image simulated on a computer.

More intense darkening on the glass is observed
almost in the same place where the electron density cal-
culated by the KARAT PIC-code is the highest. Thus,
the feasibility of electron focusing by using spherical
electrodes has been demonstrated experimentally.
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Fig. 8. Waveform of the signal from the hot-carrier cryo-
genic detector (cathode–grid spacing is 13 mm).
TECHNICAL PHYSICS      Vol. 49      No. 5      2004
20 30
–40

–30

40 50 60 70
t, ns

–10

10

0

I, kA

–20

20

30

1 2

Fig. 9. Waveforms of the signals from the (1) cryogenic
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Fig. 10. (a) Beam autograph on glass plate 1 placed in the
drift space and (b) scanned image of the plate.

Fig. 11. Simulated electron cloud density imposed on the
beam autograph.
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CONCLUSIONS

A vircator built around the Korvet ironless LIA and
having diode electrodes of spherical shape is designed
for the first time. It is proved experimentally that the
spherical electrodes decrease electron losses in the
region of interaction and favors the formation of an VC.
The parameters of the vircator are the following: the
peak power is ≈65 MW; the duration of the microwave
pulse base, 30 ns; the transit-time currents measured by
anodic Rogowski loops, 5.2 and 1.3 kA; and the micro-
wave frequency, 10 GHz.
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Abstract—Results are presented from the studies of the electrical and emission characteristics of the low-tem-
perature plasma of a longitudinal rf (f0 = 1.76 MHz) discharge in Xe/Cl2 mixtures at pressures of 100–800 Pa.
The discharge was ignited in a cylindrical quartz tube with an inner diameter of 1.4 cm and interelectrode dis-
tance of 3.0 cm. The discharge emission within the spectral range of 190–670 nm is studied. The dynamics of
the discharge current and discharge emission at different pressures and compositions of a Xe/Cl2 mixture are
investigated. It is shown that a discharge in a Xe/Cl2 mixture acts as a wideband excimer–halogen lamp with a
cylindrical output aperture emitting in the spectral range of 220–320 nm. The broad plasma emission spectrum
is formed due to the overlap of the XeCl(D, B–X; B, C–A) bands that are broadened at low working-gas pres-
sures. The composition of the working mixture is optimized to achieve the maximum power of the wideband
UV plasma emission. Longitudinal rf discharges in low-pressure Xe/Cl2 mixtures are of interest for developing
small-size wideband (∆λ = 220–450 nm) cylindrical-aperture lamps, whose efficiency can, on average, exceed
the efficiency of conventional hydrogen lamps by more than one order of magnitude. © 2004 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

At present, efficient high-power sources of sponta-
neous UV and VUV emission operating on the vibronic
bands of argon, krypton, and xenon monohalogenides
are widely used in microelectronics, high-energy phys-
ics, ecology, biotechnology, and medicine [1, 2]. Glow,
capacitive, or barrier discharges [3–7] are usually used
to pump low- and moderate-pressure lamps. The maxi-
mum repetition rate of the emission pulses from transi-
tions in the monochlorides and monobromides of heavy
noble gases does not exceed 100–200 kHz. This limita-
tion is mainly imposed by power supply units, whose
key elements are thyratrons and tasitrons. To improve
the discharge stability and increase the repetition rate of
UV emission pulses in electronegative gases, it seems
promising to use rf sources to feed low-pressure exci-
mer halogen lamps. A xenon-chloride lamp pumped by
a low-current rf barrier discharge was described in [8].
To increase the output power of a low-size lamp with a
cylindrical output aperture, it is expedient to use a high-
current longitudinal electrode rf discharge in a Xe/Cl2
mixture.

EXPERIMENTAL SETUP

A schematic of an excimer–halogen lamp with a
cylindrical output aperture is shown in Fig. 1. A high-
current γ-type rf discharge was ignited in a cylindrical
quartz discharge tube with an inner diameter of 1.4 cm.
The distance between 1.5-cm-long and 1.4-cm-diame-
ter hollow cylindrical nickel electrodes was 3.0 cm. A
longitudinal rf discharge was supplied from an ampli-
tude-modulated (f ≤ 50 Hz) ÉN-57M rf source with an
1063-7842/04/4905- $26.00 © 20647
operating frequency of f0 = 1.76 MHz and average
power of no higher than 250 W. Voltage pulses with an
amplitude of 5–6 kV were applied to the lamp elec-
trodes via a 200-pF KVI-2 blocking capacitor. The
Xe/Cl2 mixture circulated through the discharge tube
with a flow rate of 0.1 l/min. The technique for record-
ing the characteristics of a longitudinal rf discharge was
described in our earlier papers [9–11]. The power of
spontaneous emission was measured by a Kvarts-01
power meter equipped with a UFS-5 light filter, which
cuts off visible and IR radiation. The pulses of the total
plasma emission were recorded using a Foton photo-
multiplier (equipped with a UFS-5 filter) and a S1-99
oscilloscope.

The plasma emission was observed in the axial
direction through one of the hollow electrodes. Hence,

3

C0

1

2

Fig. 1. Schematic of an excimer–halogen lamp pumped by
a low-pressure longitudinal rf discharge: (1) electrodes, (2)
discharge tube, (3) source of the modulated rf voltage, and
(C0) blocking capacitor.
004 MAIK “Nauka/Interperiodica”
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the emission from both the electrode regions and the
positive column was recorded by the photomultiplier.

DISCHARGE PLASMA EMISSION

A major fraction of the emission from a longitudinal
rf discharge in a Xe/Cl2 mixture corresponds to the

250 300 350 400 450 500
λ, nm

307 nm XeCl (B–X)

430 nm XeCl (B–A)
390 nm XeCl (C–A)

467.1 nm XeI

Fig. 2. Emission spectrum from a discharge in a Xe/Cl2
mixture at pressures of 100–500 Pa.
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Fig. 3. Emission intensity of the (1) XeCl(D–X) 236-nm,
(2) XeCl(B–X) 307-nm, and (3) XeCl(B–A) 430-nm bands
vs. (a) xenon partial pressure at P(Cl2) = 80 Pa and (b) chlo-
rine partial pressure at P(Xe) = 280 Pa.
XeCl(B–X) and XeCl(D–X) bands with maxima at 307
and 236 nm, respectively (Fig. 2). At low working-gas
pressures, the process of vibrational relaxation within
the D and B states of xenon chloride is incomplete [12].
The XeCl(B–X) and XeCl(D–X) bands are greatly
broadened; the overlap between them and the Cl2(D'–
A') band with a maximum at 257 nm results in the for-
mation of an emission continuum in the spectral range
of 220–320 nm. As compared to atmospheric-pressure
lamps [13–15], the main maxima of XeCl(B–X) emis-
sion were shifted to the shorter wavelength range and
were observed at λ = 307 and 289 nm. The decrease in
the xenon partial pressure from 500 to 50 Pa leads to a
decrease in the UV emission intensity from the plasma.
In the spectral range of 320–450 nm, there are two less
intense broad emission bands with maxima at λ = 390
and 430 nm, corresponding to the C–A and B–A transi-
tions of XeCl molecules, respectively. The width of the
XeCl(C–A) band is approximately two to three times
the width of the XeCl(B–X) band. The overlap of all the
main emission bands of XeCl molecules leads to the
formation of an emission continuum in the spectral
range of 220–450 nm. In the visible region, the plasma
emission consists mainly of the most intense lines of
Xe atoms, the most intense of which is the XeI (6s–7p)
467.1-nm line (Fig. 2).

Figure 3 illustrates the results of optimization of the
emission intensities of the XeCl(D, B–X; B–A) bands in
terms of the pressure and partial composition of the
Xe/Cl2 mixture. The optimum partial pressure of xenon
is P(Xe) = 600–800 Pa (at P(Cl2) = 80 Pa), and the opti-
mum chlorine partial pressure is P(Cl2) = 20–40 Pa (at
a fixed moderate xenon pressure of P(Xe) = 280 Pa).

Figures 4 and 5 show waveforms of the discharge
current (I) and the total emission intensity (JF) from
longitudinal rf discharges in Xe/Cl2 mixtures. In each
figure, the upper two curves illustrate the waveforms of
the rf current and the total emission intensity in the sub-
microsecond range, whereas the lower curves show the
envelopes of I and JF, whose variations are related to the
low-frequency amplitude modulation of the rf voltage
supplied from the ÉN-57M power source. In Figs. 4
and 5, only the envelopes corresponding to the high-
current stage of the rf discharge are presented. During
the low-current stage of the discharge (within the time
intervals t = 0–2 and 7–9 ms), the current was too low
to be recorded. The amplitude of the rf current half-
wave reached 1 A, and its duration was 300 ns. The
plasma emission consisted mainly of the zero-fre-
quency component. The emission intensity was modu-
lated in amplitude with a frequency twice as high as the
frequency of the pumping rf current. The percentage of
the pulsating component in the plasma emission
increased with the partial pressure of chlorine in a
Xe/Cl2 mixture. The maxima of the plasma emission
intensity (see Figs. 4 and 5) corresponded to the
descending and ascending segments of the waveform of
the rf component of the discharge current.
TECHNICAL PHYSICS      Vol. 49      No. 5      2004
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For glow, capacitive, and rf discharges in low-pres-
sure Xe/Cl2 mixtures, one of the main reactions is the
“harpoon” reaction of XeCl* molecules [7, 16, 17].
Within the electrode sheaths of an rf discharge, positive
and negative ions are also efficiently produced [18]. As
a result of recombination of these ions, XeCl* and 
molecules are produced, whose spontaneous decay is
responsible for the formation of the emission contin-
uum in the spectral range of 220–450 nm.

The harpoon reaction is of most importance for
enabling continuous operation of these channels for the
production of emitting molecules. For this reaction to
proceed, it is necessary to maintain a steady-state den-
sity of Xe and Cl metastable atoms. Such a situation can
occur in a longitudinal rf discharge, in which the den-
sity of metastable atoms is maintained at a certain non-
zero level (rather than decreasing to zero) when the rf
current changes its sign.

It can be seen from Figs. 4 and 5 that there are two
or three clearly pronounced short-duration maxima at
the leading and trailing edges of the emission enve-
lopes. The maximum duration of the emission pulses
decreases from 7 to 6 ms as the chlorine partial pressure
increases from 20 to 80 Pa. The spiking structure at the
edges of the emission envelope becomes even more
pronounced as P(Cl2) increases.

The maximum power of broadband UV emission
from the entire side aperture of the lamp reached 15–
20 W, whereas the lamp efficiency was no higher than
10%. The lamp lifetime in a static-gas regime was no
longer than 30–40 min. It significantly increased when
the working mixture circulated with a flow rate of
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Fig. 4. Waveforms of (1, 1') the rf current and (2, 2') the total
emission intensity of a longitudinal rf discharge in a
P(Xe)/P(Cl2) = 400/20-Pa mixture: (1, 2) the rf structure
and (1', 2') the envelopes of the current and the emission
intensity. The dashed line refers to the constant component
of radiation.
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≤0.1 l/min. Under forced air cooling of the discharge
tube and “hot” passivation with high-purity chlorine,
the lamp lifetime can be increased to several hundred
hours, which is equal to the lifetime of XeCl*/
lamps pumped by a dc glow discharge.

CONCLUSIONS

The results of the study of the characteristics of a
longitudinal rf discharge in Xe/Cl2 mixtures can be
summarized as follows:

(i) The discharge acts as a source of broadband
emission in the spectral range of 220–450 nm.

(ii) The main component of the emission spectrum
corresponds to the XeCl(B–X) 307-nm band.

(iii) The main physical process shifting the maxi-
mum of UV emission to the shorter wavelength range
is vibrational relaxation.

(iv) The plasma emission mainly consists of the
zero-frequency component, whereas the contribution of
the alternating component is insignificant and increases
with the partial pressure of chlorine in the mixture.

(v) Short-duration peaks of the total plasma emis-
sion are generated within the time intervals in which the
discharge current is close to its threshold value.

(vi) Optimum mixtures for achieving the maximum
UV emission power are gas mixtures with
P(Xe)/P(Cl2) = (600–800)/(20–40) Pa.
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Fig. 5. Waveforms of (1, 1') the current and (2, 2') the emis-
sion intensity of a discharge in a P(Xe)/P(Cl2) = 400/80-Pa
mixture. The dashed line shows a zero-frequency compo-
nent of the emission intensity.
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Abstract—It is shown that, when the absolute and apparent accelerations are measured simultaneously, the
problem of autonomous inertial navigation is reduced to the solvable inverse problem. Physical and geometrical
(kinematic) conditions for solvability are formulated. © 2004 MAIK “Nauka/Interperiodica”.
(1) Modern technology makes optical meters of
absolute acceleration feasible [1]. It would be therefore
of interest to test them in various applications, such as
inertial navigation, where use of apparent-acceleration
meters is common practice [2]. In this case, application
of the inertial navigation method is essentially reduced
to the solution of the direct problem using two
(dynamic and kinematic) sets of equations. A solution
to the direct problem thus stated is unstable, and
straightforward use of the method faces certain difficul-
ties [3].

The situation will change qualitatively if the abso-
lute and apparent accelerations are measured simulta-
neously. Then, one can identify the inertial navigation
method with the inverse problem provided that a model
of gravitational field is known.

In this work, we state and discuss the inverse prob-
lem.

(2) While on the subject of f, gf, and g meters (mea-
surements) of nongravitational specific forces (appar-
ent acceleration), total specific forces (absolute acceler-
ation), and gravitational specific forces or gravitational
field strength (free-fall acceleration), we will consider
3D devices, bearing in mind that a g meter is a combi-
nation of f and gf meters [4]. It is reasonable to call
these three devices f, gf, and g newtonmeters.

Let oy = oy1y2y3 be an orthogonal coordinate rectan-
gle uniquely related to a measuring platform whose
constant (in the ideal case) orientation relative to the
inertial frame of reference (oξ = oξ1ξ2ξ3) is maintained
by gyros.

Let oy physically simulate oξ (within a kinematic
error) by a β vector of a small angular perturbation of

the platform orientation, so that y = (E + )ξ, where

E is the unit matrix and ξ = β × ξ.

Note that the case at hand differs substantially from
that considered in [4], where oy physically simulated an

β̂
β̂

1063-7842/04/4905- $26.00 © 20651
attending geographically oriented coordinate trihedron.
In essence, oy is an instrumental trihedron; that is, all
vector measurements (including measurements by
newtonmeters) are made relative to its coordinates. In
view of the aforesaid, newtonmeter readings are repre-
sentable in the form

(1)

where g and f are the vectors of the gravitational field
strengths and nongravitational specific forces projected
onto the axes of the oξ coordinate system and ∆f and ∆gf
are the instrumental errors of measurement.

In view of (1), the measurements of a g newtonmeter
obviously take the form

(2)

where ∆g = ∆gf – ∆f.
Above all, the gravimetric character of measure-

ments (2) receives attention; however, no consideration
will be given to this point, since it goes beyond the
scope of this work.

(3) Integration of gf measurements on the axes of
the trihedron oy makes it possible to determine the cur-
rent values of the velocity, v, and position, r, of an
object. However, these values involve errors arising
from erroneous initial conditions of integration and the
instrumental error of a gf newtonmeter.

Later on, we will proceed from the following
assumptions (which do not limit the applied value of
our considerations): (i) the form of the gravitational
potential U(r) is known: g(r) = ∂U/∂r = U'(r); (ii) gyros
and newtonmeters do not introduce instrumental errors;
that is, errors in input (t = 0) data are the only source of
perturbations of the platform spatial orientation and at
the integrator output. Then, β = const, δv  = δv 0, δr =
δr0 + δv 0t, where δv 0 = δv(0) and δr0 = δr(0).

J f E β̂+( ) f ∆f ,+=

Jgf E β̂+( ) g f+( ) ∆gf,+=

Jg g β̂g ∆g,+ +=
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In view of assumption (i), the inverse problem men-
tioned above is stated in general form (2); in view of
both assumptions, in the form

(3)

where G(r) = (r).

Our aim is to find a phase vector s = (βT, rT, vT)T for
both (kinematic and dynamic) sets of equations that
constitute the inertial navigation method. Accordingly,
we must answer the question as to whether the problem
is solvable for the vector s.

(4) Let us return to integration of gf measurements,
i.e., to the solution of the direct problem. Taking into
account the results of integration, we may localize the
initially nonlinear problem by constructing a residual
vector and passing to the problem in the small accord-
ing to the following linear model:

(4)

where δJg is the residual vector of measurements and
g'(r) = U"(r).

Before proceeding further, we will consider a hypo-
thetical case that is similar to the case under discussion
and is of independent interest (as will be seen from the
following). Let g(r) = const or g'(r) = 0. Then, from (4),
we have

(5)

where τ = g/|g|, δ  = δJg/|g|, and β+ is the component
of the vector β that is orthogonal to the unit vector τ or,
which is the same, to the field line.

As follows from (5), a g newtonmeter shows the
properties of a “telescope”; that is, it locates the plat-
form up to rotation about the unit vector τ of the “sight-
ing” of a specific “star.”

It is known that, in the case of real telescopes, this
problem is completely solved by sighting two or more
stars or by sighting one fixed (at τ ≠ const) object whose
angular coordinates are known.

In the case of a g newtonmeter as a telescope, sight-
ing of several stars is impossible because field lines out-
side sources do not intersect. However, the case τ ≠
const seems quite realistic but requires that model (4)
be invoked.

In the general case of an arbitrary field, when g'(r) =
U''(r) ≠ 0, model (4) is representable (with regard to
assumption (ii)) in the form

(6)

Jg g r( ) ĝ r( )β– g r( ) G r( )β̂,–= =

ĝ

δJg g' r( )δr G r( )β,+=

δJ̃g G r( ) g 1– β τ̂β τ̂β+,= = =

J̃g

δJg Wδs0,=
where δs0 = (βT, δ , δ )T and W = ||G  U''  U''t||.
In the final interval of measurements, the set of

equations that is generated by model (6) can be solved
for the constant vector δs0. This statement follows from
the fact that the columns of the matrix W as functions
of time (paths) are generally linearly independent
unless the Hessian U"(r) of the field is nondegenerate.
Exceptions are cases when paths for which τ = g/|g| =
const (G = const) are realized in the time intervals of
measurements. In this case, the vector β is a “weak
point,” since its component β– = (τTβ)τ becomes non-
identifiable.

If, by way of example, we pass from the general
case to the specific case of a central field, by which the
exterior field of terrestrial gravitation is frequently sim-
ulated, the Hessian U"(r) of such a field is nondegener-
ate (its singular numbers relate as 2 : 1 : 1 [5]) and sin-
gular (for the matrix W) trajectories (on which τ =
const) are realized on central straight lines.

Thus, the inverse problem is solvable if two condi-
tions are fulfilled simultaneously. The first one,
detU''(r) ≠ 0, has the purely physical meaning; the
other, τ(r) ≠ const, is of geometric or kinematic (if it is
kept in mind that “kinematics is the geometry of
motion” [2]) character. The former condition is univer-
sal; the latter leaves room for selection.

(5) To conclude, the basic result of this study and its
applied value are as follows. Combined use of f and gf
newtonmeters allows one to reduce the inertial naviga-
tion method to the inverse problem, which is funda-
mentally solvable for the phase vector of a set of
dynamic and kinematic equations that simulate the evo-
lution of the trajectory and the frame of reference. This
offers scope for designing autonomous asymptotically
stable operating inertial navigation systems (unlike
conventional systems [3]).
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Abstract—Mechanisms are considered that complicate the dependence of the duration of transients on initial
conditions in a 2D dynamic discrete-time system (Zaslavsky mapping) when control parameters are changed
with the dynamic regime remaining unchanged. For a stable cycle, the form of this dependence is governed by
multipliers and their associated manifolds. Reasons why this dependence becomes qualitatively more compli-
cated are discussed. Results obtained may be generalized for a wide class of dynamic systems with both discrete
and continuous time. © 2004 MAIK “Nauka/Interperiodica”.
Transients in dynamic systems have recently
attracted much attention [1–4]. These investigations are
of both fundamental [5–7] and applied [8–10] interest.
As subjects of investigation, the researchers usually
take various mappings [11–13], since they are simple to
study, on the one hand, and demonstrate basic nonlinear
phenomena typical of lumped and distributed systems,
on the other.

Earlier [11, 12], it was demonstrated with Hénon
mapping that the dependence of the duration of tran-
sients on initial conditions when control parameters
change with the dynamic regime remaining invariable
may become more complicated following two scenar-
ios. The former is realized when the multipliers of a
periodic cycle become complex conjugate; the latter,
when the multipliers are equal in magnitude and oppo-
site in sign, remain real quantities. The aim of this work
is to extend the results obtained for the Hénon mapping
[11, 12] to a wider class of 2D dynamic systems in an
effort to prove their general character.

As an object of study, we take a 2D dynamic system
with discrete time known as the Zaslavsky mapping
[14–18]:

(1)

In the case of Zaslavsky mapping (1), the depen-
dence of the duration of a transient on given initial con-
ditions Tε(x0, y0) was determined as in [11, 19–21].

Here, we consider various dynamic regimes of
Zaslavsky mapping (1): stable cycles with periods of 1
and 2. From bifurcational analysis of mapping (1), it
follows that, if the values of control parameters meet

xn 1+ xn Ω k
2π
------ 2πxn( )sin dyn, mod 1,+ + +=

yn 1+ dyn
k

2π
------ 2πxn( ).sin+=
1063-7842/04/4905- $26.00 © 20653
the conditions 0 < d < 1, Ω > 0, and Ω  <

k < , there are only
one unstable, (x0, y0), and one stable, (x1, y1), point on
the plane (x, y):

(2)

The stable point (x1, y1) is characterized by the mul-
tipliers

(3)

For the unstable point (x0, y0), the multipliers are

1 2d– d2+

4 Ω2 8d 2Ω2d– 4d2 Ω2d2+ + + +

x0 Ω –1 d+( )
k

-------------------------arcsin 2π,+=

y0 Ω,–=

x1 Ω –1 d+( )
k

------------------------- π,+arcsin–=

y1 Ω.–=

µ1 0.5 1 k 1 Ω2 –1 d+( )2

k2
-----------------------------––





=

– –1 k 1 – 
Ω2 –1 d+( )2

k2
----------------------------- d––

 
 
 

2

4d– d+




,

µ2 0.5 1 k 1 Ω2 –1 d+( )2

k2
-----------------------------––





=

+ –1 k 1 Ω2 –1 d+( )2

k2
-----------------------------– d––

 
 
 

2

4d– d+




.

µ1 0.5 1 k 1 Ω2 –1 d+( )2

k2
-----------------------------–+





=
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(4)

Figure 1a shows the dependences of the multipliers
µ1 and µ2 on the control parameter k for Ω = 0.9 and d =
0.3, which correspond to the stable cycle with a period
of 1, (x1, y1). It is seen that the multiplies are in the com-
plex domain at 0.66237 < k < 2.4769, where they expe-
rience a discontinuity. At the extremes of the disconti-
nuity range, k = 0.66237 and 2.4769, the values of the
multipliers µ1 and µ2 coincide. At k < 0.66237, the mul-
tipliers µ1 and µ2 take on positive values with µ1 < µ2.
Thus, as the control parameter grows from 0.63 to
0.66237 (i.e., before the multipliers become complex),
the multiplier µ1 gradually increases, while µ2
decreases. At the boundary of the domain where the
cycle with a period of 1 is stable, the multipliers take
the values µ2 = 1 and µ1 = 0.25, and at the boundary of
the discontinuity range, they tend to the same value
0.48. At the other boundary of the discontinuity range
(k = 2.4769), both multipliers equal –0.48. At k >
2.4769, they are negative, with the multiplier µ2 being
smaller in magnitude. As k varies from 2.4769 to
2.67524, µ1 tends to –1. In the range 0.66237 < k <
2.4769, the multipliers µ1 and µ2 are complex conjugate
and |µ1| = |µ2|.

Comparing the projections of the surface Tε(x0, y0)
onto the plane of the initial conditions (x0, y0) (Figs. 1b,
1c) with the positions of stable manifolds (Figs. 1d, 1e)
for the stable cycle of period 1 (see (2)), one may notice
a distinctive feature: the minima of the durations of
transients coincide with the manifold corresponding to
the smaller modulus multiplier (the bright lines in
Figs. 1b, 1c). The maxima of the durations coincide

– –1 k 1 – 
Ω2 –1 d+( )2

k2
----------------------------- d–+

 
 
 

2

4d– d+




,

µ2 0.5 1 k 1 Ω2 –1 d+( )2

k2
-----------------------------–+





=

+ –1 k 1 Ω2 –1 d+( )2

k2
-----------------------------– d–+

 
 
 

2

4d– d+




.

with the stable manifold for the unstable point (x0, y0)
(the dark lines in Figs. 1b, 1c). It should be noted that,
after the discontinuity range (2.4769 < k < 2.6752), the
dependence of the transient process duration on the ini-
tial conditions Tε(x0, y0) becomes more complicated: an
infinite number of minima appear that accumulate at
the line of transient duration maxima.

To explain this observation, let us consider in detail
the behavior of the stable manifolds for the fixed stable
point and of the stable and unstable manifolds for the
fixed unstable point. For the control parameter values
Ω = 0.9, d = 0.3, and k < 0.66237, the fastest divergence
to the fixed stable point is observed over the manifold
where the multiplier µ1 is the smallest. Obviously, any
point of the initial conditions (x0, y0) that lies in the
neighborhood of the unstable point (x0, y0) will tend to
the attractor over the unstable manifold µ2 (see (4)) of
the unstable point (x0, y0). The behavior of the unstable
manifold of the unstable point in the vicinity of (x1, y1)
at k < 0.66237 will depend on the behavior of the stable
manifold of the stable point (x1, y1) that corresponds to
the larger magnitude multiplier µ2 (Fig. 1d). After the
range of complex values of the multipliers for the fixed
stable point (x1, y1) (at Ω = 0.9, d = 0.3, and k > 2.4769),
the behavior of the unstable manifold of the unstable
point (x0, y0) near the stable point (x1, y1) depends on the
behavior of the stable manifold corresponding to the
larger magnitude multiplier µ1 (Fig. 1e). Since the mul-
tiplier µ1 is negative at k > 2.4769, the unstable mani-
fold of the point (x0, y0) crosses the stable manifolds of
the point (x1, y1) an infinite number of times. This gen-
erates an infinite number of minima of the transient pro-
cess durations at k > 2.4769.

Similar analysis can be carried out for the more
complex dynamic regime, the cycle with a period of 2.
In the case of Zaslavsky mapping, exact analytical

expressions for the elements ( , ) and ( , )
of the cycle with a period of 2 is impossible to derive.
Therefore, expressions for the stable elements of this

cycle were obtained numerically. The elements ( ,

) and ( , ) of this cycle are characterized by
the multipliers

x2c
1 y2c

1 x2c
2 y2c

2

x2c
1

y2c
1 x2c

2 y2c
2

(5)

µ1
2c 0.5 1 d2 k x2c

1cos k x2c
2 k2 x2c

1cos x2c
2cos+cos+ + +( )=

– 0.5 4 d2 kd2 x2c
1 kd2 x2c

2cos+cos+( )– –1 d2– k x2c
1cos– k x2c

2 k2 x2c
1

x2c
2coscos–cos–( )

2
+ ,

µ2
2c 0.5 1 d2 k x2c

1cos k x2c
2 k2 x2c

1cos x2c
2cos+cos+ + +( )=

+ 0.5 4 d2 kd2 x2c
1 kd2 x2c

2cos+cos+( )– –1 d2– k x2c
1cos– k x2c

2 k2 x2c
1

x2c
2coscos–cos–( )

2
+ .
Figure 2a plots the multipliers  and  against
the control parameter k at fixed Ω = 0.9 and d = 0.3,
which correspond to the stable cycle of period 2. As in

µ1
2c µ2

2c
 the case of the fixed stable point, the multiplies here
also fall into the complex domain in the range 2.7723 <
k < 3.0641 (the discontinuity range). At the boundaries
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Fig. 1. (a) Multipliers µ1 and µ2 for the fixed stable point vs. the control parameter k at Ω = 0.9 and d = 0.3. The discontinuity range
corresponds to the complex values of the multipliers. (b) Projection of the surface of the dependence of the transient process dura-
tion on the initial conditions Tε(x0, y0) onto the plane (x, y) of possible states in Zaslavsky mapping at Ω = 0.9, k = 0.65, and d = 0.3.
Gray gradations indicate the duration of transients: white color, zero duration; black color, 70 units of discrete time. (c) The same
projection as above for Ω = 0.9, k = 2.5755, and d = 0.3. Gray gradations indicate the duration of transients: white color, zero dura-
tion; black color, 100 units of discrete time. (d) Schematic view of the manifolds for the unstable, (x0, y0), and stable, (x1, y2), points
at the fixed control parameters Ω = 0.9, k = 0.65, and d = 0.3. For these values of the parameters, the multipliers of the fixed stable
point are µ1 = 0.4122 and µ2 = 0.7278. The continuous curve, the stable manifold of the fixed unstable point (x0, y0); the dash-and-
dot curve, the unstable manifold of the same point; and the dashed line, the stable manifold of the attractor, which is characterized
by the smaller magnitude multiplier µ1. Dark circle, point of attraction; open circle, the fixed unstable point. (e) Manifolds of the
unstable, (x0, y0), and stable, (x1, y1), points at the fixed control parameters Ω = 0.9, k = 2.5755, and d = 0.3. For these values of the
parameters, the multipliers of the fixed stable point are µ1 = –0.8402 and µ2 = –0.3571. The continuous curve, the stable manifold
of the fixed unstable point (x0, y0); the dash-and-dot curve, the unstable manifold of the same point; and the dashed line, the stable
manifold of the attractor, which is characterized by the smaller magnitude multiplier µ2. Dark circle, point of attraction; open circle,
the fixed unstable point.
of the discontinuity range, the values of the multipliers

 and  coincide. At 2.67524 < k < 2.7723, the

multipliers  and  are positive with  < . At
the boundaries of the discontinuity range, the multipli-

µ1
2c µ2

2c

µ1
2c µ2

2c µ1
2c µ2

2c
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ers tend to the same value 0.29. Outside the discontinu-
ity range, at k = 3.0641, they equal 0.29. At 3.0641 < k <
3.2039, both multipliers are negative, with the multi-

plier  being smaller in magnitude: | | > | |.µ2
2c µ1

2c µ2
2c
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Fig. 2. (a) Multipliers  and  vs. the control parameter k at Ω = 0.9 and d = 0.3. The discontinuity range corresponds to the

complex values of the multipliers. (b) Projection of the surface of the dependence of the transient process duration on the initial
conditions Tε(x0, y0) onto the plane (x, y) of possible states in Zaslavsky mapping at Ω = 0.9, k = 2.70, and d = 0.3. Gray gradations
indicate the duration of transients: white color, zero duration; black color, 80 units of discrete time. (c) The same projection as above
for Ω = 0.9, k = 3.10, and d = 0.3. White color, zero duration; black color, 110 units of discrete time. (d) Schematic view of the

manifolds for the stable elements ( , ) of the cycle of period 2 at the fixed control parameters Ω = 0.9, k = 2.70, and d = 0.3.

For these values of the parameters, the multipliers of the stable 2-period cycle are  = 0.1054 and  = 0.8536. The dashed

lines depict the stable manifold of the attractor, which is characterized by the smaller magnitude multiplier . Dark circles, ele-

ments of the 2-period stable cycle. (e) Schematic view of the manifolds for the stable elements ( , ) of the 2-period stable

cycle at the fixed control parameters Ω = 0.9, k = 3.10, and d = 0.3. For these values of the parameters, the multipliers of the 2-period

stable cycle are  = –0.5720 and  = –0.1573. The dashed lines depict the stable manifold of the attractor, which is character-

ized by the smaller magnitude multiplier . Dark circles, the elements of the period-2 stable cycle.
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Similarly, comparing the projections of the surface
Tε(x0, y0) onto the plane (x0, y0) of the initial conditions
(Figs. 2b, 2c) with the positions of stable manifolds
(Figs. 2d, 2e) for the stable cycle of period 2, we see
that the change in the dependence of the transient pro-
cess duration on the initial conditions Tε(x0, y0) that was
found for the fixed stable point is also observed in the
more complex dynamic regime, i.e., for the stable cycle
of period 2. The more complicated form of the depen-
dence of the transient process duration on the initial
conditions Tε(x0, y0) is explained by the fact that the

multipliers  and  change sign when crossing the
complex plane. A similar complication of this depen-
dence is also observed for cycles of period 4, 8, etc., in
Zaslavsky mapping.

Thus, one scenario of complication of the depen-
dence of the transient process duration on the initial
conditions [11, 12] is also valid for Zaslavsky mapping.
Hence, the earlier analytical results are universal. It
should be noted that the results of our study for dis-
crete-time systems may be extended to data-flow sys-
tems, since they may be reduced to mappings by apply-
ing the Poincaré cross-section technique.
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Abstract—Mechanisms of current passage and the temperature dependence of the current–voltage character-
istics in Schottky diodes produced by vacuum evaporation of indium on p-CuInSe2 single crystals are discussed.
High values of the open-circuit voltage and short-circuit current in these surface-barrier diodes, as well as a high
reproducibility of these parameters, suggest that such an inexpensive and rather simple technology is promising
for efficient conversion of solar radiation. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

CuInSe2 and its quaternary compounds
CuInxGa1 − xSe2 are viewed as promising materials for
radiation-hard solar cells with a conversion efficiency
above 15% [1, 2]. Copper indium diselenide is a direct-
gap material (Eg ≈ 1 eV) with a high absorption factor
(α ≥ 105 cm–1). Many publications are concerned with
CuInSe2-based homo- and heterojunctions; however,
CuInSe2-based Schottky barriers have received little
attention [3, 4].

In this study, we consider the electrical and photo-
electric properties of the In/p-CuInSe2 metal–semicon-
ductor contact.

RESULTS AND DISCUSSION

Copper indium diselenide crystals were grown by
the Bridgman method. The carrier concentration and
mobility determined from Hall measurements at room
temperature ranged from 1.0 × 1017 to 3.0 × 1017 cm–3

and from 20 to 50 cm2/(V s), respectively. The wafers
were scribed into dices measuring 5 × 5 × 0.3 mm on
average, which were mechanically polished and etched.
An indium layer ≤0.5 µm thick was deposited on the
semiconductor surface by vacuum evaporation. An
ohmic contact was produced by the deposition of gold.

The illumination of the indium surface causes the
photovoltaic effect. For a photon flux with an energy
density of P = 100 mW/cm2, the open-circuit voltage of
the barriers reached V1 ≈ 0.33 V; the short-circuit cur-
rent Jsc ≈15 mA/cm2; and the fill factor FF, 0.5 or more.
Note that the built-in potential derived from the I–V char-
acteristics is in good agreement with the value of V1.
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For temperatures between 240 and 324 K, the
Schottky barriers exhibited pronounced diode proper-
ties. At room temperature and a bias voltage of 1.3 V,
the rectification factor varied between 200 and 500.

For direct biases in the range 0 < V < 0.2 V (Fig. 1a),
the slope of the I–V curve roughly equals unity. This sit-
uation corresponds to charge carrier tunneling and also
is typical of the space-charge-limited current in the
velocity-saturation mode. This current is given by [4, 5]

(1)

where ε is the permittivity, ε0 is the permittivity of free
space, v sat is the saturation velocity, A is the diode sur-
face area, and L is the thickness of a semiconductor.

The portion of the I–V curve in the range 0.2 < V <
0.5 V increases as J ≅  Jsatexp(qV/nkT), where the satu-
ration current density Jsat varies between 5.3 × 10–6 and
9.9 × 10–5 A/cm2 depending on the temperature and the
diode factor n lies in the range 1.8–3.0. At low temper-
atures, the diode factor is the highest and charge carrier
transport obeys the tunneling–recombination mecha-
nism. At T > 300 K, the current has the recombination
character (n ~ 2) and becomes overbarrier at still higher
temperatures.

At voltages in the range 0.5 < V < 1 V, the current
varies by the square law (Fig. 1a), which means that we
are dealing with the space-charge-limited current in the
mobility mode (the so-called trap-free quadratic depen-
dence) [4, 5]:

(2)

where µ is the mobility of holes.
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As follows from Fig. 1b, the inverse current grows
as J ~ Vm throughout the voltage range under study. For
–1.5 < V < 0 V, the I–V characteristic is linear in the
temperature range of interest. Therefore, the current
either is due to tunneling or is described by formula (1).

In the interval –3.0 < V < –1.5 V, the I–V curve plot-
ted in the log–log coordinates is described by the power
function J ~ V1.48–1.6; i.e., it follows the Child–Langmuir
law (the space-charge-limited current in the ballistic
mode) [4, 5]

(3)

At high inverse biases, the exponent m falls into the
range 2.6 < m < 3.5. In this case, the current–voltage
dependence can be described under the assumption of
continuous (exponential) trap energy distribution [5]:

(4)
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Fig. 1. (a) Direct and (b) inverse I–V characteristics of the
In/p-CuInSe2 Schottky barriers at different temperatures in
the log–log coordinates.
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where Nv is the effective density of states in the valence
band, N0 = Nt(E)/exp[–E/kTt], Nt(E) is the concentration
of traps per unit energy, and Tt is a temperature parameter.

It should be noted that our diode structures show the
wide-range photovoltaic effect (Fig. 2). The FWHM
δ1/2 of the conversion quantum efficiency spectrum (η)
exceeds 2 eV.

CONCLUSIONS
Experimental results obtained for In/p-CuInSe2

Schottky barriers indicate that these structures are
promising for energy converters. Optimization of the
process and electrophysical parameters may improve
substantially the key photoelectric properties, such as
V1, Jsc, and FF [6].
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Fig. 2. Spectral dependence of the relative quantum effi-
ciency of photovoltaic conversion η in the In/p-CuInSe2
Schottky barrier structures.
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