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Cosmological effects of gravitational birefringence in a theory of gravitation
with C and P violation
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Zh. Éksp. Teor. Fiz.113, 1921–1929~June 1998!

An explanation is given within a previously proposed theory of gravitation with broken
conjugation and parity symmetry~C andP violation! for the recently detected effect of non-
Faraday rotation of the polarization plane in the propagation of electromagnetic radiation
over cosmological distances. ©1998 American Institute of Physics.@S1063-7761~98!00106-1#
c
-
di

ne
n

io
lu

of

-
ta

e

hif

d

-
a

va
o
a

to
in a

-
ag-
oes
nt
the

pe
ity
ro-

he

ts
of

in
e

ly

ex-
f
l
nal
ata
to
the

. 2
s in

day
in
71

e-
ith

,

1. INTRODUCTION

An extensive body of experimental facts has been ac
mulated~see Ref. 1! on the rotation of the plane of polariza
tion of the electromagnetic radiation emitted by distant ra
galaxies~data have been obtained on 160 galaxies!. From
this body of data it clearly follows that the polarization pla
undergoes not only Faraday rotation, but also an additio
rotation. In contrast to Faraday rotation, this other rotat
does not depend on the emission wavelength. The abso
value of the additional rotation angleb lies in the range from
0 to p ~if we disregard the possible addition of multiples
p to the value!. Recently Nodland and Ralston,2 after math-
ematically processing these data,1 came to a quite unex
pected conclusion. According to them, the experimen
points are most densely grouped about an ansatz forb speci-
fied by the expression

b5
1

2L
r cosg1b0 , ~1!

wherer is the distance from the source to the observer,L is
the measurement scale ofr , andg is the angle between th
propagation direction of the ray and some unit vectors. In
the case of a sampling of 71 galaxies with a reds
z.0.3, the best agreement between formula~1! and the ob-
servations is obtained ifs is characterized by declination an
right ascension equal to 0°620° and 21 h62 h, respec-
tively.

A comparison of formula~1! with the observations
shows that most of the galaxies with cosg.0 haveb;p/2
and that the number of galaxies decreases asb deviates to
either side ofp/2. Similarly, the galaxies with cosg ,0 are
scattered inb about the valueb;2p/2. The value ofb0 for
all galaxies turns out to be near 1° – 2°~with a typical value
of 1°!.

In essence, the ansatz~1! introduces two types of non
Faraday rotation: right-handed rotation for one group of g
axies and left-handed rotation for the other~therefore, the
uncertainty in the determination ofb for the two groups of
galaxies will be equal to1np and2np!. If we agree that
the ansatz~1! corresponds more accurately to the obser
tions than any other ansatz, then this would be evidence
violation of the homogeneity and isotropy of space, at le
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in our Metagalaxy—too presumptuous a conclusion not
expect objections. And such objections soon appeared
paper by Carrol and Field~Ref. 3!.1! In contrast to Nodland
and Ralston,2 Carrol and Field3 assumed that the non
Faraday rotation of the polarization plane of the electrom
netic radiation from all galaxies is of the same type and d
not appear as right and left-handed rotation in differe
groups of galaxies. Such an hypothesis at once excludes
possibility of introducing an asymmetrical ansatz of the ty
~1! and thus the possibility of a violation of the homogene
and isotropy of space. According to this hypothesis, the
tation angleb ~if we disregard its uncertainty, which is now
equal only to 1np! for the majority of galaxies~with
z.0.3! is scattered aboutp/2, and the values ofb5p/2
1uDbu correspond to a smaller number of galaxies, t
larger is the value ofuDbu ~this is reflected in histogram1 in
Ref. 3!. Carrol and Field3 assert that the experimental poin
b ~with consideration of the hypothesis of a single type
rotations! are grouped about the ansatzb.p/2 more densely
than around the ansatz~1!. It is impossible to verify this due
to the absence of details. However, if we judge from Fig. 2
Ref. 3 and Fig. 1d in Ref. 2, which plot distributions of th
numbers of galaxies~with z.0.3! in b as functions of
r cosg, it is hard to come to this conclusion—on a pure
visual level they seem to be saying the opposite~of course, a
visual estimate is not always valid, since it depends, for
ample, on the scales!. At the same time, the question o
around which ansatz for theb values are the experimenta
points more densely grouped is decisive here. An additio
independent mathematical treatment of the observation d1

is clearly necessary in order to decide if it is at all possible
answer this question on the basis of the available data. At
current moment, an unequivocal decision in favor of Ref
or Ref. 3 would seem premature, although the hypothesi
Ref. 3 is preferable from the physical standpoint.

It should be recalled that the experimental non-Fara
values ofb were obtained from 160 galaxies, while the ma
conclusions in Refs. 2 and 3 were based on data from the
galaxies withz.0.3. What may be expected in the interpr
tations in Refs. 2 and 3 from the remaining 89 galaxies w
z,0.3?

If the ansatz~1! is a reflection of an actual law of nature
9 © 1998 American Institute of Physics
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1050 JETP 86 (6), June 1998 Yu. M. Loskutov
then it should also apply to nearby~with z,0.3! galaxies.
This, however, is not observed—it is enough to look at F
1c from Ref. 2, and even Nodland and Ralston2 noted the
poor correlation of~1! with the observed distribution overb
for the nearby galaxies. Such a result places the ansatz~1! in
serious doubt as a universal law.

If the ansatzb.p/2 proposed in Ref. 3 reflects a law o
nature, then the experimentalb points of the nearby galaxie
should reproduce histogram1 in Ref. 3. This, however, they
do not do. Therefore, it is still impossible to make a so
judgment about the universality of the ansatz introduced
Ref. 3.

If an additional analysis of the data from all 160 rad
galaxies reveals that the distribution of the observedb values
on the interval@0,p# correlates very weakly with some ansa
or does not correlate with any, then this would indicate t
the b values are distributed not on the interval@0,p#, but on
the interval@0,np#, wheren is large. From a general stand
point, such a picture seems more likely. However, the de
ing word must wait for an additional mathematical treatm
of all the observation data.

An explanation for non-Faraday~gravitational! birefrin-
gence based on the theory of gravitation with broken con
gation and parity symmetry~C andP violation! proposed in
Ref. 4 is presented below. Additional consequences of
treatments in Refs. 2 and 3 are analyzed. Some of th
consequences can be interpreted as evidence in favor o
explanation of Ref. 3, although it is not theoretically possi
to categorically reject the explanation of Ref. 2. The pos
bility of an uncorrelated distribution over the gravitation
rotation anglesb is also discussed.

2. COSMOLOGICAL EFFECTS OF GRAVITATIONAL
BIREFRINGENCE AS A CONSEQUENCE OF THE THEORY
OF GRAVITATION WITH C and P VIOLATION AND
THE POSSIBILITY OF PRESERVING THE MODEL OF A
HOMOGENEOUS, ISOTROPIC UNIVERSE

In Ref. 4 I constructed a theory of gravitation satisfyin
the principle of the universality of the law of the violation o
conjugation (C) and parity (P) symmetry ~CP5const! in
nature. By virtue of a number of requirements, the struct
of the Lagrangian of spinor particles and the structure of
Lagrangian of polarized photons in a gravitational field tu
out to be uniquely defined. In the quasiclassical limit bo
Lagrangians lead to identical dynamical equations of po
ized particles in a gravitational field. In particular, in th
weak-field approximation the equation describing the pro
gation of circularly polarized photons in space with a sta
Riemannian metricgmn(x) has the form:2!

E2g001p2g1112zhC~p“ !h1
~1!50. ~2!

HereE[\v is the photon energy,p is its canonical momen
tum, z561 corresponds to right circular~upper sign! and
left circular ~lower sign! polarization of the photon,hn

(a) are
the associated tetrads~h(a)

n 5gnmh(a)m , h(b)n5hn
(a)hab , etc.,

wherehab is the Minkowski metric tensor!, andC is a di-
mensionless real constant of gravitational interactions vio
ing C andP symmetry~if the units of measure are restore
.
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and the structure ofhn
(a) is taken into account, the constantC

will always appear in the equation together with the fac
G/c2!.

The presence of the last term in Eq.~2! at once leads to
birefringence effects in a gravitational field: an integrat
effect of gravitational rotation of the polarization plane and
local effect of visible angular splitting of the rays with righ
and left circular polarization.

On the path from the source to the observer the po
ization plane is rotated according to Eq.~2! by the angle~in
radians!

b5C@h1
~1!~r2!2h1

~1!~r1!#, ~3!

whereh1
(1)(r2) and h1

(1)(r1) are the values of the tetrads
the signal reception and emission points, respectively. It a
follows from Eq.~2! that for the same frequencyv pulses of
photons with right (z51) and left circular (z521) polar-
ization will be different from the observation point. Withi
the approximation chosen of a weak gravitational field

pz.p02z\C¹h1
~1!~r2!. ~4!

This means that in right- and left-circularly polarized ra
the source will be seen at different angles from the obse
tion point. The visible angular splitting will lie in the plan
(p0 ,¹h1

(1)(r2)) and will be equal to

a.
Cl

p
u@k0¹h1

~1!~r2!#u, ~5!

wherel is the emission wavelength andk0 is a unit vector
pointing from the source to the observer.

Imagine that a plane-polarized radio signal is emitt
from a satellite traveling along a given elliptical trajecto
about the Sun and is received on the Earth. Then

h1
~1!~r !.12

M (

r
2

M %

ur2reu
, ~6!

wherere is the radius vector of the center of the Earth re
tive to the center of the Sun. Consequently,

a.
ClM %

pR2 sin x, b.CFM (

r 1
2

M (

ure2Ru
2

M %

R G . ~7!

Here R is the radius vector of the observer relative to t
center of the Earth, andx is the angle betweenp0 andR. It
has been taken into account in the expression fora that at the
Earth’s surface the gradient of the Sun’s potential can
neglected in comparison with the gradient of the Earth’s
tential and the Earth’s potential in the vicinity of the satell
has been dropped in the expression forb.

If the conditions of the experiment are such that befo
the start of the experiment the polarization plane of
source on the satellite is set at a certain angle~e.g., 90°! to
the ecliptic plane at the antenna~and the orientation of the
antenna is subsequently held fixed by gyroscopes!, then by
determining the orientation of the polarization plane at
observer, it is possible to determine the rotation angleb. If,
however, before the start of the experiment the antenn
oriented so that the polarization plane at the observer wo
form a certain angle~e.g., 90°! with the ecliptic plane and
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the variation of this angle would subsequently be measu
as the ray approaches the Sun, then the quantity

Db.CM(H F 1

r 1~ t !
2

1

r 1~0!G2F 1

r e~ t !
2

1

r e~0!G
1FR~ t !re~ t !

r e
3~ t !

2
R~0!re~ t !

r e
3~0! G J ~8!

should be compared with the observations.
Gravitational birefringence effects must be compa

with the analogous effects of a magnetoplasma origin.
ward this end, we make use of the dispersion relation link
the frequency of a photon with its wave vector in a mag
tized plasma. Under conditions in which the cyclotron fr
quencyṼ[eH/mc ~hereH is the intensity of the externa
magnetic field, ande andm are the charge and mass of th
electron! is much smaller than the photon frequencyv, the
dispersion relation for right- and left-circularly polarize
photons can be represented in the form

E25
4pNe2\2

m
1c2p21z

4pNe3\

m2v2 ~pH!, ~9!

whereN is the electron density. Hence, for the visible ang
lar splitting a1 of the right-and left-circularly polarized ray
at the observation point and the Faraday rotation angleb1

after the ray has traveled from the source to the observe
obtain, respectively,

a1.
e3l3N~r2!H~r2!

2p2m2c4 sin x1 ,

b1.
e3l2

2pm2c4 E
r1

r2
N~s!K ~s!ds. ~10!

Herex1 is the angle betweenp andH, N(s) is the electron
density on the path of the ray, andH(s) is the magnetic field
component tangent to the ray.

A comparison of Eqs.~7! and ~10! shows that, in con-
trast to Faraday rotation, the gravitational rotation of the
larization plane does not depend on the emission wavelen
which simplifies the problem of its identification. In additio
to measureb or Db it is not necessary that the ray approa
the Sun, since the values ofb and Db depend only on the
gravitational potentials at the signal emission and recep
points. Conversely, in order to mark off the Faraday rotati
it is better to make the measurements where the contribu
of magnetoplasma effects is very small. As for the visib
splitting angle, the functional structure ofa and a1 is also
very different, and the splitting planes do not coincid
Therefore, distinguishing them experimentally does
present any great difficulty.

Rotation of the polarization plane upon the passage
rays near the Sun was studied experimentally in Refs. 5
6. The Pioneer-6, 7, and 8 spacecraft served as platform
sources of plane-polarized 2292-MHz radio emission. T
orientation of the antennas was rigidly maintained by gy
scopes, although it cannot be gathered from these pa
whether the initial orientation of the polarization plane w
fixed at the satellite~first variant! or at the observer~second
d
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variant!. The authors did not observe any noticeable cha
in the orientation of the polarization plane of the rays
distances from the Sun greater than six solar radii. On
one hand, this means that the magnetoplasma effects are
ligibly small at such distances. On the other hand, if t
experiment went according to the first variant, it means t
b, is small, as in the case3! for C!108 ~in the second varian
this restriction is lifted!. As the ray further approaches th
Sun, quite rapid growth of the rotation angle is observed,
it is associated with Faraday rotation rather than gravitatio
rotation. Consequently, in the second variantC,1012.

It would be appropriate here to mention the experime
in Ref. 7, which have a bearing on the possibility of estim
ing the value ofC. Harwit et al.7 state~in Sec. 2 of their
paper! that quasar 3C273 is seen at different angles in rig
and left-circularly polarized rays. The upper value of t
angle of visible splitting amounts to ‘‘roughly 0.002 arc s
in the direction perpendicular to the radius vector to t
Sun’’ and ‘‘roughly 0.0035 arc sec in the direction of th
radius vector’’~the angular resolution was 1024 arc sec!. As
can be seen, the plane of the observed splitting forms
angle of about 30° with the source-Sun-observer plane. S
metry arguments cast grave doubts on the explanation of
splitting effect as a result of the influence of the Sun and
circumsolar plasma~on the days of the measurements 3C2
was 5.0° and 7.8° from the Sun!. Harwit et al.7 clearly ob-
served a local effect of the splitting given by the values oa
anda1 from formulas~7! and ~10!.

A comparison of formulas~7! and ~10! with the obser-
vations requires knowledge of the diurnal time of the me
surements~which is lacking in Ref. 7!, since both the orien-
tation of the splitting plane and the values of the anglex
andx1 depend on it. However, the order of magnitude of t
corresponding quantities can be estimated. To reconcile
observed data witha, it is necessary to assume a value ofC
of the order of 1010. However, if these data are attributed
an interaction of the radiation with electrons of the rad
interferometer itself in the Earth’s magnetic field, then t
number densityN of such electrons in formula~10! should
be of the order of 108 cm23, which is entirely possible.
Thus, to arrive at any final conclusions would require a
finement of the experimental data, or better yet, a speci
designed experiment. Taking into account the local chara
of the angular splitting effect, we could set up the experim
with any sufficiently distant object emitting in the radio
frequency range~in the case of very short waves the effe
becomes small! and at any time of day.

Let us turn our attention now to the effect of cosmolog
cal gravitational rotation of the polarization plane. We, fi
of all, estimate the contribution of the gravitational potentia
of the galaxies to the rotation angleb. By virtue of the great
distance between the radiation sources and the observe
between different sources, this contribution is governed
the values of the potential of our Galaxy~the small potentials
of the Earth and the Sun can be neglected! at the observation
point and the potential of the respective galaxy in the reg
of formation of the radio emission. The contribution of the
potentials tob is given by Eq.~3!:
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b i.C@F i~r1!2F0~r2!#, ~11!

whereF i(r1) is the gravitational potential of thei th radio
galaxy in the region of formation of the emission, a
F0(r2) is the gravitational potential of our Galaxy at th
observation point (;631027). As can be seen, this expre
sion does not contain any asymmetry. Therefore, within
model of Ref. 2 all theb i should be assigned to the seco
term in Eq.~1!, i.e., tob0;1°. The polarized component o
the radio emission of galaxies is usually linked with ma
netic braking~synchrotron! radiation near neutron stars. I
the region of formation of the emission the potentials
neutron stars can be estimated as (1 – 5)31022. For all the
b i as given by formula~11! to agree with the explanatio
given in Ref. 2, it is necessary to setC;1.

If Carrol and Field3 are closer to the truth, the
C;102; in this case the spread of theb i should mirror the
spread of the regions of formation of the emissions near n
tron stars. If, on the other hand, there are no correlation
the distribution of theb i , thenC@102.

For an asymmetrical term to appear in the expression
the gravitational rotation angleb, as in Eq.~1!, it is neces-
sary to assume the existence of a gravitational field wit
preferred directionality in the Metagalaxy, as can be s
from Eq.~3!. Since matter is distributed uniformly inside th
Metagalaxy, according to the observations, internal sou
cannot create a directed field. Consequently, we are le
assume the existence in the Universe of large-scale inho
geneities outside the Metagalaxy. The homogeneity and i
ropy of the Universe will not be lost if we average not on
over the small-scale, but also over the large-scale inhomo
neities.

For example, the following two forms of inhomogen
ities are permissible. 1! During several billion years a certai
excess~positive or negative! of matter density above its
mean formed in a layer of large radius~similar to a disk! are
far from the Metagalaxy. This excess created a gravitatio
field in the Metagalaxy almost orthogonal to the layer~if the
edges of the inhomogeneity disk are far from the Metag
axy!. 2! A density excess could have formed in a sphere
any radius far from the Metagalaxy. A gravitational fie
then appears in the Metagalaxy from this centrosymme
source. If only the first or second field shows up in the Me
galaxy, this means that other inhomogeneities are locate
significantly greater distances from it.

In the first case the inhomogeneity can be approxima
by a layer with an effective widtha, an effective radiusb
much greater than the radius of the Metagalaxy, and a c
stant excess densityr̃. Then,

h1
~1!.112pr̃az, ~12!

wherez is the distance from the middle of the layer to som
chosen point in the Metagalaxy. We note in passing that
excess~positive or negative! mass of the layerM̃5pr̃ab2

can be much less than the mass of the Metagalaxy. Acc
ing to Eq. ~3!, the angleb of gravitational rotation of the
plane of polarization on the path from a radio galaxy to
observer is equal to
e
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b522pCr̃ar cosg. ~13!

Herer is the distance from the galaxy to the observer ang
is the angle between the propagation direction of the ray
the direction to the inhomogeneity layer. This is in comple
agreement with the empirically introduced expression~1!. A
comparison of expression~13! with the numerical results o
Ref. 2 gives

2pCaur̃u.6.7 g/cm2. ~14!

In the second case

h1
~1!.12

M̃

r
, ~15!

whereM̃ is the excess~positive or negative! mass concen-
trated in a sphere with an effective radiusr 0!r andr is the
distance from the center of the sphere to the chosen poin
the Metagalaxy. This leads to

b5CM̃S 1

r 1
2

1

r 2
D.2

CM̃

r 2
2 r cosg. ~16!

Here r 2 is the distance from the center of the sphere to
observer,r is the distance from the galaxy to the observ
andg is the angle between the propagation direction of
ray and the direction to the center of the inhomogene
sphere. A comparison of~16! with the numerical results o
Ref. 2 gives

CuM̃ u
r 2

2 .6.7 g/cm2. ~17!

Above we showed thatC;1 in the variant argued in
Ref. 2. However, for such values ofC the conditions on the
parameters of the large-scale inhomogeneities follow
from Eqs. ~14! and ~17! become completely unacceptabl
For example, the gravitational potentials of the inhomoge
ities in the Metagalaxy in such a case amount to at le
several tens of units, and the relative velocity of the Me
galaxy and an inhomogeneity due to their interaction tu
out to be close to the speed of light at the present time. If
require that this velocity not exceed, say, 100 km/s, th
2paur̃u anduM̃ u/r 2

2 should not exceed a value of the order
1023. For C;1 this would lead only to a very weak asym
metry in the distribution of theb values.

Thus, from the theoretical standpoint outlined above t
versions remain tenable~if the plane-polarized component o
galactic radio emission is formed largely in the vicinity
neutron stars!. Either almost all of theb values are distrib-
uted on the interval@0,p# aboutb;p/2 ~and thusC;102!,
or all theb values are distributed on an interval@0,np# with
n@1, which maps them onto a practically random distrib
tion on the interval@0,p# ~and thusC@102!. Granted, the
possibility of the asymmetrical contribution~13!, ~16! cannot
be excluded theoretically in either case if large-scale in
mogeneities are present.

3. CONCLUSION

In summation, it can be said that the theory of gravi
tion with C and P violation proposed in Ref. 4~the corre-
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sponding interaction could be called ‘‘graviweak’’! affords
an explanation for the non-Faraday~gravitational! rotation of
the plane of polarization of electromagnetic radiation pro
gating over cosmological distances. The reason for grav
tional rotation of the polarization plane is a postulated gra
tational interaction, which depends on the spin states of
propagating photons—see Ref. 4 and Eq.~2!.

If the plane-polarized component of the emission of
dio galaxies is formed mainly in the vicinity of neutron sta
i.e., in regions with relatively large~of the order of 0.01–0.1!
gravitational potentials, then it is not possible to reconc
the proposed theory with the ansatz~1!. It is possible to
obtain satisfactory agreement between the theory and the
satz~1! only in the case in which practically the entire p
larized component of the radiation is formed in regions w
small ~less than 1024! gravitational potentials. In this case
is also necessary to postulate the existence in the Metaga
of a gravitational field with a preferred directionality, whic
can arise due to, for example, large-scale cosmolog
inhomogeneities—see Eqs.~11!, ~13!, and~16!.

If it is confirmed that the experimentalb values are more
densely grouped about the ansatzb;p/2, as Carrol and
Field3 maintain, then in the case when the plane-polariz
component of the galactic radio emissions is formed ma
in the vicinity of neutron stars this will requireC;102 from
the proposed theory—see Eq.~11!. If the polarized compo-
nent of the radiation is formed in regions with lower grav
tational potentials, then the value ofC should be higher.
There is then no need to hypothesize the existence of a g
tational field with a preferred orientation in the Metagalax
In this case the result in Ref. 3 is clearly preferable to
result in Ref. 2. However, such arguments in favor of o
interpretation cannot be taken as decisive—only experim
can decide the issue.

Since it is still too early to speak of 100% confidence
the results of either Ref. 2 or Ref. 3, there is reason, in
opinion, to propose a third kind of experimental test: asse
bling the data from all 160 galaxies and then verifyi
whether the spread inb on the interval@0,p# or the intervals
@2p,0# and @0,p# is nearly random, i.e., either very weak
-
a-
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e
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e
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xy

al
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vi-
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e
e
ts
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correlated with some ansatz or completely uncorrelated w
any ansatz. If the picture turns out to be such, then from
standpoint of the proposed theory this will mean th
C@102.

In any case there is an urgent need for experiment
verify the gravitational birefringence effects predicted in R
4 @see Eqs.~7! and ~11!#. The identification of such gravita
tional effects would be assisted by their qualitative differe
tiation from magnetoplasma effects@compare Eqs.~7! and
~10!#. The setting up of such experiments would be of t
mendous significance, since they would provide answer
fundamental questions.

* !E-mail: loskutov@moldyn.phys.msu.su
1!I am grateful to the reviewer for directing my attention to Ref. 3, abo

which I was previously unaware. It totally changed the tone of the pres
work.

2!The system of unitsc5G51 has been chosen.
3!In Ref. 4 C was estimated on the basis of fragmentary excerpts~see the

clarification in Ref. 4! from Ref. 7, which was lost at that time and foun
only recently. In these excerpts, the results of Ref. 7 turned out, as has
become clear, to be mixed together with the work in Ref. 6, to wh
considerable space was allotted in Ref. 7. For this reason, the estimateC
obtained in Ref. 4 turns out to be greatly overestimated~Ref. 4 draws
attention to the necessity of refining it!. Nevertheless, all of the fundamen
tal and qualitative conclusions in Ref. 4 drawn from the value ofC remain
in force ~only the quantitative estimates vary!.
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We develop the color dipole gBFKL phenomenology of a diffraction cone for photo- and
electroproductiong* N2VN of heavy vector mesons~charmonium & bottomonium! at HERA and
in fixed target experiments. We predict a substantial shrinkage of the diffraction cone from
the CERN/FNAL to the HERA range of c.m.s. energyW. TheQ2-controlled sensitivity to the color
dipole size~scanning phenomenon! is shown to lead to a decrease of the diffraction slope
with Q2 ~which is supported by the available experimental data!. We predict an approximate flavor
independence of the diffraction slope in the scaling variableQ21mV

2. For diffractive
production of the radially excited 2S states (C8,Y8), a counterintuitive inequality of diffraction
slopesB(2S)&B(1S) is predicted, which defies the common wisdom that diffraction
slopes are larger for reactions with larger size particles. ©1998 American Institute of Physics.
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1. INTRODUCTION

Diffractive real and virtual photoproduction of groun
stateV(1S) and radially excitedV8(2S) vector mesons,

g* p→V~1S!p, V8~2S!p, ~1!

at high c.m.s. energyW5As is an ideal testing ground o
ideas on QCD pomeron exchange. New experimental dat
vector meson production coming from HERA and fixed t
get experiments provide unique insight into how t
pomeron exchange evolves from the nonperturbative
semiperturbative and perturbative regimes with increas
virtuality of the photonQ2 and/or increasing massmV of the
produced vector meson, and have prompted intense the
ical discussions.1–11

The usual approach to the perturbative QCD~pQCD!
pomeron is based on the BFKL equation12,13 for the leading-
logs ~LLs! evolution of the gluon distribution, formulate
in the scaling approximation of fixed QCD couplin
aS5const and of infinite gluon correlation~propagation! ra-
dius Rc ~massless gluons!; it sums the ladder diagrams wit
reggeizedt-channel gluon exchanges. More recently, a no
s-channel approach to the LLs BFKL equation has be
1051063-7761/98/86(6)/20/$15.00
on
-

to
g

et-
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n

developed14,15 in terms of the color dipole cross sectio
s(j,r ) ~hereafterr is the color dipole moment,xeff5(mV

2

1Q2)/(W21Q2) and j5 log(1/xeff) is the rapidity variable!.
The color dipole approach, to be referred to as the runn
gBFKL approach, is favored because it incorporates con
tently the two crucial properties of QCD: 1! asymptotic free-
dom ~AF!, i.e., the running QCD couplingaS(r ) and, 2! the
finite propagation radiusRc of perturbative gluons.

AF and the runningaS(r ) are an indispensable featur
of the modern theory of deep inelastic scattering~DIS!; with-
out running aS(r ) it is impossible to match the leadin
log Q2 (LLQ2) limit of the gBFKL equation with the con-
ventional GLDAP equation16 in the overlapping applicability
region of the moderately smallx,14,17 see also Refs. 13, 18
and 19. The finiteRc is of great importance since the non
perturbative fluctuations in the QCD vacuum restrict t
phase space for the soft perturbative~real and virtual! gluons,
and there is strong evidence for finiteRc from the lattice
QCD studies~for the review see Ref. 20 and referenc
therein! and hadronic interactions.21,22 In the infrared, one
also needs to freezeaS(r ) in order not to run into the Landau
pole, aS(r )<aS

( f r ) . Of course, if in our running gBFKL
4 © 1998 American Institute of Physics
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equation14,15 one putsRc5` andaS5const, then the origi-
nal scaling BFKL equation12,13 is recovered.17,23

Being formulated in terms of real~rather than reggeized!
gluon exchanges, the color dipole running gBFK
equation14,15 readily incorporates the runningaS(r ). The ef-
fect of finite Rc can be included by modifying the gluo
propagator in the infrared, for instance, by introducing
effective gluon massmg'1/Rc . Remarkably, in the LLs ap
proximation, a finiteRc is consistent with QCD gauge invar
ance. The freezing ofaS(r ) and the gluon correlation radiu
Rc are the nonperturbative parameters which describe
transition from the soft, infrared region, to the perturbativ
hard region.

Purely perturbative pomeron exchange does not exh
the scattering amplitude, and in the practical phenomenol
of deep inelastic scattering one must add a certain soft n
perturbative exchange. It is significant that the color dip
picture and color dipole factorization for the proton structu
function and for exclusive diffractive amplitudes do not r
quire the validity of pQCD, and are also viable for so
pomeron exchange. Soft pomeron exchange is impor
only for sufficiently large color dipoles,r .Rc , and can
readily be extracted from the experimental data on hadro
cross sections24 and diffractive leptoproduction of light vec
tor mesons.9 On the other hand, pQCD~or hard! pomeron
exchange can be related to the perturbative gluon struc
function of the proton.14,25

Diffractive production ofV(1S) mesons is particularly
interesting because of the so-called scanning phenome
whereby the production amplitude probes the color dip
cross section at the dipole sizer;r S , where

r S'
A

AQ21mV
2

~2!

is the scanning radius.3–5

This scanning property follows from the color dipo
factorization for production amplitudes and the shrinkage
the transverse size of the virtual photon withQ2, and holds
beyond the pQCD domain.24 By varying Q2, one can study
the transition from large nonperturbative and semipertur
tive dipole sizer S to the perturbative region of very sho
r S!Rc in a very well-controlled fashion.9,10Furthermore, the
scanning radiusr S defines the transverse size of theg* V
transition vertex, which contributes to the total interacti
radius and to the diffraction slopeB(g*→V).

Motivated by the remarkable phenomenological succ
of such a unified color dipole picture of hard and soft pom
ons in application to the proton structure function26,27 and
vector meson production,5,10 in this communication we de
velop the color dipole description of the forward diffractio
cone B(g*→V) in exclusive diffractive DIS. We use ou
previous results for the energy dependence of the forw
cone in color dipole scattering,28 obtained from the solution
of the running gBFKL equation for the diffraction slope.29

Here the crucial point is that breaking of the scale invaria
by AF, i.e., by runningaS(r ), and finiteRc , dramatically
alters the very nature of the BFKL pomeron from a fixed c
in the scaling approximation to a series of moving poles
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the running gBFKL pomeron29,27 ~for early semiclassica
analysis see also Ref. 13!. As a result, in the running gBFKL
approach one predicts a substantial Regge shrinkage o
diffraction slope in the vector meson production, which c
be tested at HERA. In this paper we present for the first ti
a detailed analysis of theQ2 dependence and of the Regg
growth of the diffraction slope for the production of charm
nium and bottomonium states.

Diffractive production of radially excitedV8(2S) me-
sons provides additional insight into the dipole size dep
dence of the diffraction slope. Because of the node in
radial wave function of theV8(2S) states, there is strong
cancellation among contributions to the production amp
tude from dipolesr larger than or smaller than the nod
position r n ~the node effect1,3,30!. The resulting strong sup
pression of diffractive production ofV8(2S) vs. V(1S) has
been confirmed experimentally inJ/C andC8 photoproduc-
tion at HERA and in fixed target experiments.31–33It also has
interesting manifestations in the differential cross sectio
which we discuss in the present paper for the first time.

Because the radius of theV8(2S) state is larger than the
radius of the ground stateV(1S), for the diffraction slopes
one would naively expect the inequalityB(g*→C8)
.B(g*→J/C). However, in this paper we demonstrate th
the node effect in conjunction with the color dipole facto
ization predicts the counterintuitive inequalityB(g*→C8)
&B(g*→J/C), which can be tested at HERA. Because t
node effect is sensitive to the form of the dipole cross sec
and its variation with energy, we predict the specific ene
dependence of theV8(2S)/V(1S) production ratios, which
can also be tested at HERA.

The presentation is organized as follows. The subjec
the introductory Sec. 2 is color dipole factorization and t
determination of the pQCD factorization scales for diffra
tive production. The running gBFKL formalism for the ca
culation of the color dipole scattering matrix and of the d
fraction slope is presented in Sec. 3. The decomposition
the diffraction slope into perturbative and nonperturbat
components, and the physics that controls theW2,
flavor, andQ2 dependence of the diffraction slope is e
pounded in Sec. 4. In Sec. 5 we discuss in more detail
properties of soft pomeron exchange in the color dipole r
resentation. In Sec. 6 we present the salient features of
and hard exchange forVN total cross sections. Prediction
from the running gBFKL dynamics for forward andt-
integrated vector meson production cross sections are
ported in Sec. 7. We find good agreement with the lo
energy data and data from the HERA collider experimen
The subject of Sec. 8 is predictions for the forward cone
diffractive production ofV(1S) states, with special emphas
on flavor symmetry. Section 9 is concerned with the no
effect in forward production ofV(2S) states. A summary
and conclusions are presented in Sec. 10.

2. INTRODUCTION TO COLOR DIPOLE FACTORIZATION
AND pQCD FACTORIZATION SCALES FOR
DIFFRACTIVE AMPLITUDES

The Fock state expansion for the light-cone meson st
with theqq̄ state, a snapshot of the relativistic meson as aqq̄
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color dipole. The probability amplitude of finding theqq̄
color dipole of sizerW is precisely theqq̄ wave function,
C(rW,z), wherez is the fraction of the meson’s light-con
momentum carried by a quark~the Sudakov light-cone vari
able!. The interaction of the relativistic color dipole of th
dipole momentrW with the target nucleon is quantified by th
energy-dependent color dipole cross sections(j,r ). The ef-
fect of higher Fock statesqq̄g... is very important at high
energyn. In the LLs and/or LL1/x approximation it can be
reabsorbed into the energy~rapidity! dependence ofs(j,r ),
which is described by the running gBFKL equation.14,15 The
dipole cross section is flavor independent, and provide
unified description of various diffractive processes.

In the limit of high photon energyn, the qq̄-nucleon
scattering matrixM̃ becomes diagonal in the mixed (rW,z)
representation. This (rW,z) diagonalization derives from th
large longitudinal coherence length,

l coh;
2n

Q21mV
2 , ~3!

and holds ifl coh@Rp , whereRp is a size of the target proton
Because the coherence length is a purely kinematic sca34

(rW,z) diagonalization does not require the applicability
pQCD and must hold also for soft pomeron exchange,
even if the dipole sizerW is large. A necessary condition i
that the longitudinal scalel soft for soft pomeron exchange b
small, l soft! l coh, which is the case, for instance, in the du
parton string model35 or various models of exchange by no
perturbative gluons.11,36,37For the phenomenological succe
of a unified color dipole picture of vector meson productio
see Refs. 9 and 10.

Taking advantage of the (rW,z) diagonalization of the

scattering matrixM̃ , the amplitude for real~virtual! photo-
production of vector mesons with momentum transferqW can
be represented in the color dipole factorized form

M~g*→V,j,Q2,qW !5^VuM̃ug* &

5E
0

1

dzE d2r CV* ~rW,z!

3M~j,r ,z,qW !Cg* ~rW,z!. ~4!

Our normalization is such that (ds/dt) t505uMu2/16p. In
Eq. ~4!, Cg* (rW,z) andCV(rW,z) represent the probability am
plitudes to find a color dipole of sizerW in the photon and
quarkonium ~vector meson!, respectively~for the sake of
brevity we suppress spin indices!, and M(j,r ,z,qW ) is the
amplitude for elastic scattering of the color dipole on t
target nucleon. The color dipole distribution in~virtual! pho-
tons was derived in Refs. 24 and 14.

The color dipole cross sections(j,r ) depends only on
the dipole sizer, and not on theq-q̄ relative momentumz.
Becausez'1/2 in nonrelativistic heavy quarkonium, at sma
qW in the diffraction cone one can safely neglect thez-

dependence ofM̃ and setz51/2. Hereafter we will sup-
press the argumentz, and eitherj, xeff, or x will be used
a

,

.,

l

,

whenever convenient~x is the Bjorken variable for inclusive
DIS; straightforward analysis of the relevant Sudakov va
ables yieldsxeff'2x!.

We focus on calculating the imaginary part of the sc
tering amplitude, for which there is a simple representat
in terms of the gluon density matrix~see below!. The small
real part can easily be reconstructed from analytic
considerations38:

Re M~j,r ,qW !5
p

2

]

]j
Im M~j,r ,qW !. ~5!

We forgo discussion of ReM, which is consistently in-
cluded in all numerical results.

The details of calculation of the diffractive amplitud
have been presented elsewhere.5,10 For theVqq̄ vertex func-
tion we assume the Lorentz structureGC̃gmCVm . For the
s-channel helicity conservation at smallqW, transversely~T!
polarized photons produce transversely polarized vector
sons and longitudinally~L! polarized photons~to be more
precise, scalar photons! produce longitudinally polarized
vector mesons. One finds

Im MT~xeff ,Q
2,qW !5

NcCVA4paem

~2p!2 E d2rs~xeff ,r ,qW !

3E
0

1 dz

z~12z!
$mq

2K0~«r !f~rW,z!

2@z21~12z!2#«K1~«r !] rf~rW,z!%,

~6!

Im ML~xeff ,Q
2,qW !5

NcCVA4paem

~2p!2

2AQ2

mV

3E d2rs~xeff ,r ,qW !E
0

1

dz K0~«r !

3$@mq
21z~12z!mV

2 #f~rW,z!

2] r
2f~rW,z!%, ~7!

where

«25mq
21z~12z!Q2, ~8!

aem is the fine structure constant, andNc53 is the number
of colors. CV51/&, 1/3&, 1/3, 2/3, 1/3 are the charge
isospin factors forr0, v0, f0, J/C, andY production, re-
spectively, andK0,1(x) are modified Bessel functions. A de
tailed discussion and parametrization of the light-cone ra
wave functionf(r ,z) of the qq̄ Fock state of the vecto
meson are given in Ref. 10. For heavy quarkonia one
safely identify the current and constituent quarks. The ter
}K0(«r )f(rW,z) and}«K1(«r )] rf(rW,z) for T polarization,
and K0(«r )] r

2f(rW,z) for L polarization, correspond to th
helicity conserving and helicity-flip transitions in th
g*→qq̄ andV→qq̄ vertices, respectively. In nonrelativisti
heavy quarkonia, the helicity flip transitions are the relat
istic corrections, which become important only at largeQ2.
Equation~7! corrects a slight mistake in the relativistic co
rection to the amplitude for production of longitudinally po



er-

1057JETP 86 (6), June 1998 Nemchik et al.
FIG. 1. The perturbative QCD diagrams for vector meson p
turbation.
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larized photons made in Ref. 5. The numerical results of R
5 for theJ/C are only marginally different from those to b
reported in this paper.

The representation fors(x,r ,qW ) in terms of the gluon
density matrix~see Fig. 1! is

s~x,r ,qW !5
4p

3 E d2k

k4 aS~k2!FJ0S 1

2
qr D

2J0~kr !GF S x,kW1
1

2
qW ,2kW1

1

2
qW D , ~9!

whereJ0(x) is the usual Bessel function. AF dictates that
the gluon-color dipole vertex, the QCD running couplin
must be taken at the largest relevant virtuality,k2

5(max$kW2,C2r22%), where C'1.5 ~Ref. 24!, ensuring nu-
merically similar results of calculations in both the mixe
(r ,z) and momentum representations. The gluon density
trix F (x,kW1qW /2,2kW1qW /2) is proportional to the imaginary
part of the nonforward gluon–nucleon scattering amplitu
at qW 50 it equals the unintegrated gluon structure function
the nucleonF (x,kW ,2kW )5]G(x,k2)/] log k2. Equation ~9!
generalizes to the nonforward caseqW Þ0 the formula25,14 for
the dipole cross section

s~xeff ,r ,qW 50!5s~xeff ,r !5
p2r 2

3

3E aS~k2!
dk2

k2

4@12J0~kr !#

~kr !2

]G~xeff ,k
2!

] log k2 .

~10!

Because the functionf (y)54@12J0(y)#/y2 can be qualita-
tively approximated by the Heaviside step function,f (y)
'u(As2y), whereAs'10 ~Ref. 39! for small r !Rc one
readily finds

s~x,r !5
p2

3
r 2as~r !G~x,qs

2 !, ~11!

where the gluon structure function enters at the pQCD f
torization scaleqs

2;As /r 2.14,25,39For large dipoles,r *Rc ,
one can neglectJ0(kr) in the integrand, and the dipole cros
section saturates,

s~xeff ,r *Rc!5
4p2

3 E aS~k2!
dk2

k4

]G~xeff ,k
2!

] log k2 . ~12!

Next, notice that the integrands in Eqs.~6! and ~7! are
smooth at smallr and vanish exponentially atr .1/« due to
f.

t

a-

;
f

-

K0,1(«r ). Because of the behaviors(x,r )}r 2 in ~11!, the
amplitudes~6! and ~7! are dominated by the contributio
from the dipole sizer'r S given by Eq.~2!—the scanning
phenomenon.3–5 The scanning property is best quantified
terms of the weight functionsWT,L(Q2,r 2) defined by

MT~xeff ,Q
2,qW !5

CV

~mV
21Q2!2

3E dr2

r 2

s~xeff ,r ,qW !

r 2 WT~Q2,r 2!,

~13!

ML~xeff ,Q
2,qW !5

CV

~mV
21Q2!2

2AQ2

mV

3E dr2

r 2

s~xeff ,r ,qW !

r 2 WL~Q2,r 2!,

~14!

where in a somewhat abbreviated form (i 5T,L; for the ex-
act integrands see Eqs.~6! and ~7!!

Wi~Q2,r 2!5
p

CV
r 4~mV

21Q2!2

3E
0

1

dzCVi
* ~r ,z!Cg

i*
~r ,z!. ~15!

For 1S mesons, to a good approximation theWT,L(Q2,r 2)
thus defined are sharply peaked functions of the natural v
abley5 log@r2(Q21mV

2)#. The height and width of the peak i
the y-distribution vary only weakly withQ2 and the flavor,
and the peak position defines the scanning rad
r S'AT,L /AQ21mV

2. Consequently, the leading twist term
in the expansion over the relevant short-distance param
r S

2}1/(Q21mV
2) are of the form~here we assumeqW 50!

Im MT}
1

Q21mV
2 s~xeff ,r S!}

1

~Q21mV
2 !2 G~xeff ,qT

2!,

~16!

Im ML'
AQ2

mV
MT}

AQ2

mV

1

~Q21mV
2 !2 G~xeff ,qL

2!.

~17!

By virtue of ~11!, here the pQCD scaleqT,L
2 5tL,T(Q2

1mV
2), where the scale parametertT,L can be estimated as
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tT,L'
As

AT,L
2 . ~18!

For the more direct evaluation of the pQCD factorizati
scalesqT,L

2 , it is convenient to substitute Eq.~10! into ~13!
and ~14!, which then take a form reminiscent of thek-
factorization formulas forF2(x,Q2)24,40:

Im MT~xeff ,Q
2,qW 50!5

CVaS~Q21mV
2 !

~mV
21Q2!2

3E dk2

k2

]G~xeff ,k
2!

] log k2 QT~Q2,k2!,

~19!

Im ML~xeff ,Q
2,qW 50!5

CVaS~Q21mV
2 !

~mV
21Q2!2

2AQ2

mV

3E dk2

k2

]G~xeff ,k
2!)

] log k2 QL~Q2,k2!,

~20!

where

QT,L~Q2,k2!5
p2

3 E dr2

r 2

aS~k2!

aS~Q21mV
2 !

4@12J0~kr !#

~kr !2

3WT,L~Q2,r 2!. ~21!

Because of properties off (y) and the sharp peaking o
WT,L(Q2,r 2) at r'r S , the weight functionsQT,L(Q2,k2)
are similar to the step function,

QT,L~Q2,k2!}u~qT,L
2 2k2!, ~22!

and

E dk2

k2

]G~xeff ,k
2!)

] log k2 Q i~Q2,k2!

5G~xeff ,qi
2!E dk2

k2 Q i~Q2,k2!)

5G~xeff ,qi
2!I i~Q2!, ~23!

where the factors

I T,L~Q2!5
p2

3 E dr2

r 2

aS~k2!

aS~Q21mV
2 !

WT,L~Q2,r 2! ~24!

exhibit only a marginal dependence onQ2.
For smallQ2 the scale parametersAT,L are close to the

nonrelativistic estimateA;6, which follows from r S53/«
with the nonrelativistic choicez51/2. In generalAT,L>6,
and they increase slowly withQ2 ~Ref. 5!; for heavy quarko-
nia AT,L(Y).6 at Q2<100 GeV2, AT,L(J/C);6 at Q2

50, andAT,L(J/C).7 atQ25100 GeV2, which shows that
the relativistic corrections in the charmonium and bottom
nium electroproduction are small. The corollary of the lar
scanning radiusr S and large values ofAT,L is a very small
scale factor tT,L in the pQCD factorization scale5:
tT,L(J/C)'0.20,tL(r0)'0.15, andtT(r0)'0.07– 0.10 for
Q2;10– 100 GeV2, which are substantially smaller tha
t '0.25 suggested in Ref. 2 andt '1 suggested in Ref. 6
-
e

Consequently, the moderate values ofQ2 attainable at
HERA do, at best, correspond to the nonperturbative
semiperturbative values ofqT,L

2 , the soft contribution to the
vector meson production must be substantial, and one m
be careful with the interpretation of the vector meson p
duction data in terms of the gluon structure function. T
point that atQ2&mJ/C

2 the scanning radiusr S is comparable
to the radius of theJ/C is overlooked in Ref. 2, and the
formulas of Ref. 2 for theJ/C production amplitudes in
terms of theJ/C wave function at the origin are too crude
Strictly speaking, Eqs.~19!, ~20!, and~23! were derived for
hard pQCD exchange whenr S&Rc and/or for perturbatively
large qT,L

2 . However, because the color dipole factorizati
is true beyond pQCD, one can extend Eq.~10! to the soft
pomeron and regard this relationship as an operational d
nition of the nonperturbative gluon distribution in the proto
To the same extent, Eqs.~19!, ~20!, and~23! can serve as a
unique basis for extracting the whole gluon distribution, p
turbative plus nonperturbative, at smallx from the experi-
mental data on diffractive vector meson electroproduction
HERA.

The dominance of the longitudinal amplitude~17! at
Q2*mV

2 follows, as a matter of fact, from electromagne
gauge invariance, and as such it is true in any reason
model of vector meson production, the familiar vector dom
nance model~VDM ! included. TheQ2 dependence ofMT,L

differs drastically from the VDM prediction

MT~VDM !}
1

mV
21Q2 s tot~rN!;

instead of s tot(rN) in ~16! one hass(xeff,rS)}rS
2}1/(Q2

1mV
2).

3. DIFFRACTION CONE IN THE COLOR DIPOLE gBFKL
APPROACH

In the familiar impact-parameter representation for a
plitude of elastic scattering of the color dipole

Im M~j,r ,qW !52E d2b exp~2 iqW bW !G~j,rW,bW !, ~25!

the diffraction slopeB522(d log Im M/dq2)q50 equals

B~j,r !5
1

2
^bW 2&5

l~j,r !

s~j,r !
, ~26!

where

l~j,r !5E d2bbW 2G~j,rWbW !. ~27!

Then, the generalization of the color dipole factorization fo
mula ~4! to the diffraction slope of the reactiong* p→Vp
reads

B~g*→V,j,Q2!Im M~g*→V,j,Q2,qW 50!

5E
0

1

dzE d2rl~j,r !CV* ~r ,z!Cg* ~r ,z!. ~28!



n

of

-

he
el

f
b

lo

ua
tio

as
al
-

io
T
on
n
n
ll

e

of

the
nc-

e
f

se-

1059JETP 86 (6), June 1998 Nemchik et al.
We sketch here the running gBFKL equation28 for
l(j,r ). The running gBFKL equation for the energy depe
dence of the color dipole cross section reads14,15

]s~j,r !

]j
5K ^ s~j,r !5

3

8p3 E d2r1mG
2

3UgS~R1!K1~mGr1!
rW 1

r1
2gS~R2!K1~mGr2!

rW 2

r2
U2

3@s~j,r1!1s~j,r2!2s~j,r !#. ~29!

Here the kernelK is related to the squared wave function
the color-singletqq̄g state with the Weizsa¨cker–Williams
~WW! soft gluon, in whichrW is the q̄-q separation andrW 1,2

are theq-g and q̄-g separations in the two-dimensional im
pact parameter plane. The quantity

EW ~rW !5mGgS~r!K1~mGr!
rW

r
52gS~r!¹rK0~mGr!,

whereKn(x) is the modified Bessel function, describes t
Yukawa screened transverse chromoelectric field of the r
tivistic quark, and

mG
2 UgS~R1!K1~mGr1!

rW 1

r1
2gS~R2!K1~mGr2!

rW 2

r2
U2

5uEW ~rW 1!2EW ~rW 2!u2 ~30!

describes the flux~the modulus of the Poynting vector! of
WW gluons in theqq̄g state. The asymptotic freedom o
QCD uniquely prescribes that the chromoelectric field
computed with the running QCD chargegS(r )5A4paS(r )
taken at the shortest relevant distance,Ri5min$r,ri% in the
qq̄g system. The particular combination of the three co
dipole cross sections,

Ds~r1 ,r2 ,r !5
9

8
@s~j,r1!1s~j,r2!2s~j,r !#, ~31!

which emerges on the right-hand side of the gBFKL eq
tion, is precisely the change in the color dipole cross sec
in the presence of the WW gluon14 in the qq̄g state.

At short distances,r ,r1,2!Rc51/mG , the kernel K

does not depend on the infrared cutoffRc . The Yukawa
cutoff of the long-range chromoelectric field, which w
used in Eqs.~29! and~30!, is the simplest phenomenologic
option. In the LL(1/x) approximation, this cutoff is consis
tent with gauge invariance. If one sacrifices AF, puttinggS

5const, and lifts the infrared cutoff by lettingRc→`, one
recovers the scale-invariant kernelK . Both the finiteRc and
runningaS break the scale invariance; a detailed discuss
of the consequences is found in Refs. 15, 17, 27, and 29.
principal phenomenon is that because of the lack of str
log r2 ordering in the BFKL equation, there is an intrusio
from hard scattering to the regime of soft interactions a
vice versa, and the effect of the soft region is especia
enhanced by AF. In the numerical analysis15 an infrared
freezing aS(q2)<aS

( f r )50.82 has been imposed on th
three-flavor, one-loop aS(q2)54p/9 log(k2/L2) with
L50.3 GeV. With Rc50.27 fm, i.e., mG50.75 GeV, we
found DP50.4.15 The calculation of Regge trajectories
-
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e
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-
n

n
he
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d
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subleading pomeron singularities is reported in Ref. 27;
emerging successful description of the proton structure fu
tion at smallx is published in Refs. 26 and 27.

In Ref. 29 the gBFKL equation~29! is generalized to the
profile functionG~j, rW, bW!, where the impact parameterbW is
defined with respect to the center of the dipole:

]G~j,rW,bW !

]j
5K ^ G~j,rW,bW !

5
3

8p3 E d2r1mG
2 UgS~R1!K1~mGr1!

rW 1

r1

2gS~R2!K1~mGr2!
rW 2

r2
U2FGS j,rW 1 ,bW

1
1

2
rW 2D1GS j,rW 2 ,bW 1

1

2
rW 1D2G~j,rW,bW !G .

~32!

The calculation of the impact parameter integral~25! reduces
Eq. ~32! to Eq. ~29!. The calculation of the moment~27!
leads to the integral equation forl(j,r ). It is convenient to
separate from the diffraction slopeB(j,r ) the purely geo-
metrical termr 2/8 related to the elastic form factor of th
color dipole of the dipole momentr, and to discuss instead o
l(j,r ) the function

h~j,r !5l~j,r !2
1

8
r 2s~j,r !,

which satisfies the inhomogeneous integral equation

]h~j,r !

]j
5

3

8p3 E d2r1mG
2 UgS~R1!K1~mGr1!

3
rW 1

r1
2gS~R2!K1~mGr2!

rW 2

r2
U2

3H h~j,r1!1h~j,r2!2h~j,r !1
1

8

3~r1
21r2

22r 2!@s~j,r2!1s~j,r1!#J
5K ^ h~j,r !1b~j,r !, ~33!

where the inhomogeneous term is

b~j,r !5L ^ s~j,r !

5
3

64p3 E d2r1mG
2 UgS~R1!K1~mGr1!

rW 1

r1

2gS~R2!K1~mGr2!
rW 2

r2
U2

~r2
11r2

22r 2!

3@s~j,r2!1s~j,r1!#. ~34!

Because the homogeneous part of Eq.~33! coincides
with the gBFKL equation~29!, asymptotically the dipole
cross sections(j,r ) and the solutionh(j,r ) of homoge-
neous Eq.~33! have identical energy dependence. Con
quently, the solutions of the homogeneous Eq.~33! give the
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asymptotically constant contribution to the diffraction co
and if sa(j,r ) is a solution of Eq.~29! and ha(j,r ) is a
solution of Eq.~33! with the diffraction slopeBa(j,r ), then
hb(j,r )5ha(j,r )1Db•sa(j,r ), whereDb5const, is also
a solution of Eq.~33! with the diffraction slopeBb(j,r )
5Ba(j,r )1Db. It is the inhomogeneous term,b(j,r ),
which gives rise toh(j,r )}js(j,r ), i.e., to the asymptotic
Regge growth of the diffraction slope,B(j,r )5B(j0 ,r )
12aP8j, and the Regge term 2aP8j does not depend on th
size r of the dipole. Parametrically,aP8}aS(Rc)Rc

2 times a
small numerical factor. With the infrared parameters spe
fied above,aP8'0.072 GeV22 was found in Ref. 28; for
slopes of subleading trajectories see Ref. 29.

4. BEAM, TARGET AND EXCHANGE DECOMPOSITION OF
THE DIFFRACTION SLOPE

To obtain more insight into the dipole-size dependen
of the diffraction slope, it is useful to look at the scatteri
amplitudes(j,r ,qW ) in terms of the gluon density matrix. Fo
our purposes, it is sufficient to treat the color structure of
proton in terms of the three valence~constituent! quarks.
Then, as illustrated graphically in Fig. 1b, the unintegra
density matrix of gluons can be written

F S x,kW1
1

2
qW ,2kW1

1

2
qW D

5
4

p E d2k1T S j,kW1
1

2
qW ,2kW1

1

2
qW ,kW1

1
1

2
qW ,2kW11

1

2
qW DaS~k1

2!FG1~q2!

2G2S kW11
1

2
qW ,2kW11

1

2
qW D G , ~35!

whereG1(q2) andG2(kW 1 ,kW 2) are the single- and two-quar
form factors of the proton probed by gluons andT (j,kW

1qW ,2kW1qW /2,kW11qW ,2kW11qW /2) denotes the propagatio
function of twot-channel gluons. In the Born approximatio

T S j,kW1
1

2
qW ,2kW1

1

2
qW ,kW11

1

2
qW ,2kW11

1

2
qW D

5
d~kW2kW1!

@~kW1qW /2!21mG
2 #@~kW2qW /2!21mG

2 #
. ~36!

Splitting the color dipole vertex function into two piece

Vd~q,r !5FJ0S 1

2
qr D2J0~kr !G

5FJ0S 1

2
qr D21G1@12J0~kr !#,

we obtain the useful decomposition

s~j,r ,qW !5
4p

3 FJ0S 1

2
qr D21G E d2k

k4 aS~k2!F ~ x,kW
i-

e

e

d

1
1

2
qW ,2kW1

1

2
qW 1

4p

3 E d2k

k4 aS~k2!

3@J0~kr !21#F S x,kW1
1

2
qW ,2kW1

1

2
qW D . ~37!

Because of the property defined by Eq.~14!, the second term
has the typical logarithmick2 integration. It comprises the
contributions to theq dependence from the target and e
changed gluons. In contrast, such a logarithmick2 integra-
tion is absent from the first term; here thek2 integration
converges at finitek2;Rc

22.
The resulting representation

s~j,r ,qW !5
4p

3 FJ0S 1

2
qr D21G E d2k

k4 aS~k2!

3F S x,kW1
1

2
qW ,2kW1

1

2
qW D1

16

9 E d2k

k4 aS~k2!

3@12J0~kr !#E d2k1T S j,kW1qW ,2kW1
1

2
qW ,kW1

1
1

2
qW ,2kW11

1

2
qW DaS~k1

2!FG1~q2!

2G2S kW11
1

2
qW ,2kW11

1

2
qW D G ~38!

nicely illustrates how the three relevant size parameters
the problem give rise to the three major components of
diffraction slope. Theq dependence coming from the proto
vertex function Vp(kW1 ,qW )5G1(q2)2G2(kW11qW /2,2kW1

1qW /2) is controlled by the proton size. Theq dependence
coming from the color dipole vertex functionVd5J0(qr/2)
21 is controlled by the color dipole sizer. The q depen-
dence coming from T (j,kW1qW /2,2kW1qW /2,kW11qW /2,2kW1

1qW /2) depends on the effectivek2 andk1
2, which contribute

to the scattering amplitude, and on the gluon propaga
radiusRc . The latter scale remains important even at largek,
because the properties of the running gBFKL pomeron
controlled by interactions atr;Rc . In the asymptotic BFKL
regime, at smallx, the kW1 andkW become azimuthally uncor
related.

To proceed further, one needs a model forG1(q2) and
G2(kW 1 ,kW 2). The radiusRN of the proton probed by the gluo
can be different from the charge radiusRch ; still Rch serves
as a useful scale. The two-quark form factorG2(kW1qW /2,
2kW1qW /2) is a steep function ofk2 and a smoother function
of q2.41 For instance, for the oscillator wave function of th
3-quark proton one readily finds

G2S kW1
1

2
qW ,2kW1

1

2
qW D5G1S 1

4
q2DG1~3k2!. ~39!

A straightforward differentiation yields the following
transparent decomposition ofds(j,r ,qW )/dq2 into four
terms:
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ds~j,r ,qW !

dq2 U
q250

5(
i 51

4
ds~ i !~j,r ,qW !

dq2 U
q250

52
16

3 E d2k

k4 aS~k2!

3H 1

16
r 2E d2k1T ~j,kW ,2kW ,kW1 ,2kW1!aS~k1

2!

3@12G2~kW1 ,kW1!#2@12J0~kr !#E d2k1aS~k1
2!

3@12G2~kW1 ,kW1!#

3
]T ~j,kW1qW /2,2kW1qW /2,kW11qW /2,2kW11qW /2!

]q2 U
q250

1
1

6
RN

2 @12J0~kr !#E d2k1T ~j,kW ,2kW ,kW1 ,2kW1!aS~k1
2!

2
1

24
RN

2 @12J0~kr !#E d2k1T ~j,kW ,2kW ,kW1 ,2kW1!

3aS~k1
2!G2~kW1 ,kW1!J . ~40!

The following properties ofT (j,kW1qW /2,2kW1qW /2,kW11qW /2,
2kW11qW /2) are important in~40!. First, in the infrared-
regulated QCD it is nonsingular atk250; cf. Eq. ~36!. Sec-
ond ~modulo logarithmic scaling violations!, its large-k2

asymptotic behavior is similar to that of the Born term~36!,
T (j,kW1qW /2,2kW1qW /2,kW11qW /2,2kW11qW /2)}1/k24. Third, in
the Born approximation~after azimuthal averaging!

]T ~j,kW1qW /2,2kW1qW /2,kW11qW /2,2kW11qW /2!

]q2 U
q250

52
Rc

2

~11Rc
2k2!2 T S j,kW1

1

2
qW ,2kW1

1

2
qW ,2kW1

1
1

2
qW ,2kW11

1

2
qW D . ~41!

Fourth, finding the asymptotic Regge growth of the diffra
tion slope in Ref. 28 implies that in the high-energy lim
j→` and for allkW andkW1,

]T ~j,kW1qW /2,2kW1qW /2,kW11qW /2,2kW11qW /2!

]q2 U
q250

52@aP8~j2j0!1O~Rc
2!#T S j,kW1

1

2
qW ,2kW1

1

2
qW ,kW1

1
1

2
qW ,2kW11

1

2
qW D . ~42!

Consider first the decomposition of the diffraction slo
for large dipoles,r *Rc . In this limit, the cross section~38!
is dominated by the contribution fromk2;mG

2 5Rc
22

@RN
22, so thatJ0(kr),G1(3k2)!1; they can be neglected

and ~cf. Eq. ~9!!
-

s~j,r !5
4p

3 E d2kaS
2~k2!F ~j,kW ,kW !.

The first term in the expansion~40! can then be evaluated a

ds~1!~j,r ,qW !

dq2 U
q250

52
1

2
Db1s~j,r !52

1

16
r 2s~j,r !.

~43!

Similarly,

ds~3!~j,r ,qW !

dq2 U
q250

52
1

2
Db3s~j,r !52

1

6
RN

2 s~j,r !.

~44!

The integrand of the fourth term in~40! contains the steeply
decreasing two-body form factorG2(kW ,2kW ), which cuts off
the integration atk2&RN

2 . Consequently, one must distin
guish between the casesr &RN and r *RN . A simple esti-
mate, which interpolates between these limiting cases, is

ds~4!~j,r ,qW !

dq2 U
q250

52
1

2
Db4s~j,r !

52
1

24
Rc

2s~j,r !
r 2

r 21RN
2 . ~45!

The bottom line is thatDb4!Db3 . Finally, making use of
~42!, the second term in~40! can be estimated as

ds~2!~j,r ,qW !

dq2 U
q250

52
1

2
Db2s~j,r !52@aP8~j2j0!

1O~Rc
2!#s~j,r !. ~46!

At low energy, in the Born approximation, Eq.~41! gives
Db252Rc

2. The salient feature of the resulting diffractio
slope

B~j,r !5(
i

Dbi5
1

8
r 21

1

3
RN

2 12aP8~j2j0!1O~Rc
2!,

~47!

is the presence of the geometrical contributionsDb15r 2/8
andDb35RN

2 /3.
For large dipoles,r *Rc , one recovers a sort of additiv

quark model, in which uncorrelated gluonic clouds build
around the beam and target quarks and antiquarks, and
terms O(Rc

2) and 2aP8(j2j0) describe the familiar Regge
growth of diffraction slope for quark–quark scattering. T
opposite limit of small dipoles,r !Rc , is somewhat more
tricky. In the second and third term in~40!, thek2 integration
is cut off by 12J0(kr) and extends up toAs /r 2, precisely
as in the dipole cross section~10!. Consequently, their con
tributions to the derivative~40! are still given by Eqs.~46!
and ~44!, respectively, so that the Regge term and the c
tribution from the target proton size to expansion~47! are
retained. The contribution from the first term in~40!, i.e.,
from the size of the color dipole, changes dramatically a
will no longer have the geometric formr 2/8. Indeed, as we
discussed following Eq.~37!, the k2 integration in the first
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term in ~40! converges atk2&Rc
2. Consequently, in this limit

k25C2/r 2, and one can factor outaS(k2)5aS(r ) from the
integrand. This leads to the estimate

ds~1!~j,r ,qW !

dq2 U
q250

'2
r 2

16

aS~r !

aS~Rc!
s~j,Rc!

'2
r 2

16

p2

3
aS~r !Rc

2GS j,
As

Rc
2D ~48!

and, after making use of~11!, to

Db15
Rc

2

8

G~j,As /Rc
2!

G~j,As /r 2!
. ~49!

Similar considerations yield an estimate for the contrib
tion to the diffraction slope from the fourth term in~40!,
which is a negligible correction toDb1 :

Db45
Rc

2

12

Rc
2

RN
2

G~j,As /Rc
2!

G~j,As /r 2!
. ~50!

More comments onDb1 are in order. At asymptotically
large j and/or asymptotically smallx, the running gBFKL
approach predicts the universalx dependence of the gluo
structure function17

G~x,Q2!}F 1

aS~Q2!G
gS 1

xD DP

, ~51!

where g512DP /b0 and b051122nf /3. Consequently, in
the well-developed BFKL regime,Db1 will not depend on
energy:

Db15
Rc

2

8 F aS~r !

aS~Rc!
Gg

. ~52!

However, at moderately smallx values, thex dependence o
the gluon structure function exhibits strong dependence
the factorization scale, the ratioG(j,As /Rc

2)/G(j,As /r 2)
has substantialx dependence, andDb1 contributes to the
energy dependence of the diffraction cone. Specifically
makes the slope of the effective Regge trajectoryaeff8 sub-
stantially larger than the true slope of the leading Pome
trajectoryaP8 .28

To summarize, the geometrical contribution to the d
fraction slope from the target proton size,Db35(1/3)RN

2 ,
persists for all dipole sizes~the term Db4, which is also
associated with the proton size, is negligible in all case!.
Although the nonperturbative parameterRN

2 is not calculable
from first principles, its contribution to the diffraction slop
varies neither with energy nor with dipole size and can ev
tually be fixed using accurate experimental data.

5. SOFT POMERON AND DIFFRACTIVE SCATTERING OF
LARGE COLOR DIPOLES

The need for a soft pomeron contribution in addition
the gBFKL dipole cross section described previously
brought about by phenomenological considerations. A via
gBFKL phenomenology of the rising component of the p
ton structure function over the whole range ofQ2 studied at
HERA ~real photoabsorption included! is obtained if one
-

n

it

n

-

-

s
le
-

starts with the Born dipole cross sectionsB(r ) as a boundary
condition for the gBFKL evolution atx050.03.26,27 How-
ever, such asB(r ) falls short of the interaction strength a
r *Rc ; roughly speaking, for the phenomenological val
Rc50.27 fm one findssB(r *1 fm);5 mb, whereas for the
description of soft processes one rather needs the di
cross section;50 mb atr *2 fm. Therefore, atr *Rc , the
perturbative gBFKL dipole cross section described abo
~which hereafter we denote by the subscript ‘‘pt’’!, spt(j,r ),
must be complemented by the contribution from the nonp
turbative soft pomeron,snpt(j,r ). Because in all the case
studied the contribution fromspt(j,r ) exhausts the rise o
the total cross sections and/or of the proton structure fu
tion, in Refs. 26 and 5 we have modeled the soft nonper
bative pomeron by the energy-independentsnpt(j,r )
5snpt(r ). For the lack of better theoretical and experimen
information as well as simplicity, we make the simplest po
sible assumption that the eikonals for the perturbative
soft interactions are additive, which to lowest order amou
to additivity of the dipole cross sectionss(j,r )5spt(j,r )
1snpt(r ).

The direct determination of the total dipole cross sect
s(j,r ) from the experimental data on photo- and leptop
duction of vector mesons is reported in Ref. 9, and supp
the flavor independence ofs(j,r ). Other constraints for
snpt(r ) include real photoproduction,5,10 hadronic diffractive
scattering,24 nuclear shadowing in deep inelastic scattering42

diffractive deep inelastic scattering at HERA,43,44nuclear at-
tenuation in photoproduction of light vector mesons and
onset of color transparency in leptoproduction of vec
mesons4 and the proton structure function at moderate a
small Q2.26,27 All the results are consistent with the form o
the dipole cross section suggested in Refs. 24, 26, and
convenient parameterization for which is

snpt~r !5s0F12(
i 51

2

Ai expS 2
r 2

ai
2D G

3F11(
i 51

Di expS 2
~r 2bi !

2

ci
2 D G ~53!

with s0541.2 mb,A151.45, A2520.45, a151.30 fm, a2

50.75 fm, D150.80, D250.36, b150.88 fm, b2

52.08 fm, c150.53 fm, andc251.14 fm. For a somewha
cruder fit with Di50 we find s0551.6 mb, A151.82,
A2520.82, a151.05 fm, anda250.72 fm. For small di-
poles,r !Rc , this cross section is poorly known because it
swamped byspt(j,r ).

There is nothing unusual in the concept of a nonpert
bative cross section. The conventional gluon structure fu
tion of the photon,

G~x,Q2!5E
0

Q2 dk2

k2 F ~x,kW ,2kW !,

always contains a contribution from gluons with soft tran
verse momentak2,Q0

2&1 GeV2, which persists at allQ2

and equals preciselyG(x,Q0
2), the familiar input to the con-

ventional GLDAP analysis of theQ2 evolution of parton
densities. One is perfectly content with the strong sensitiv
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of GLDAP evolution to this unknown soft inputG(x,Q0
2),

which is routinely fixed from fits to the experimental data.
the color dipole approach to DIS, our soft dipole cross s
tion snpt(r ) plays exactly the same role as the gluon~quark!
structure functions at a soft scaleQ0

2. Furthermore, it is
tempting to reinterpret this soft dipole cross sectionsnpt(r )
in terms of the nonperturbative gluon distribution in the sp
of Eq. ~10!. Models of soft scattering via polarization of th
nonperturbative QCD vacuum36,11 belong to this category
and yield asnpt(r ) very similar to our parameterization~53!.
In the interesting region ofr &1 – 1.5 fm, a conservative es
timate of uncertainties insnpt(r ) is 10–20%, the major
source of uncertainty being due to absorption correctio
For heavy quarkonia the absorption corrections
negligible.5

We assume the conventional Regge rise of the diffr
tion slope for the soft pomeron,

Bnpt~j,r !5DBd~r !1DBN12anpt8 ~j2j0!,

whereDBd(r ) andDBN denote the contribution of the bea
dipole and target nucleon size, andj05 log(1/x0). As guid-
ance we take the experimental data on pion–nucl
scattering,45 which suggestanpt8 50.15 GeV22 ~for smallanpt8
descriptions of nucleon–nucleon scattering see Ref. 46!. A
plausible guess for the proton size contribution is

DBN5Db35
1

3
RN

2 . ~54!

In energy-independent soft exchange for small dipo
DBd(r ) is likely to follow the geometric lawDBd(r )
'r 2/8, as in Eq.~43!. Extension of this law to large dipole
is questionable. The large-r saturation ofsnpt(r ) as param-
etrized by~53! is a simplifying assumption; what happens
r @1 fm is immaterial, because even in hadrons the proba
ity of finding large dipoles,r @1 fm, is negligible. However,
the diffraction slope is more sensitive to the large dip
contribution. For instance, if scattering of large dipoles
size r *RN is modeled by scattering of thin classical strin
by a strongly absorbing target nucleon of radiusRN , then for
large dipoles~strings!, r *2RN , one readily finds the profile
function

G~b,r !'u~R2b!

1
2

p
u~b2R!uS R1

1

2
r 2bD sin21

R

b
,

which yields the large-r behavior snpt(r )'2RNr and the
tamed rise of the diffraction slopeDBd(r @1 fm);r 2/24.
This consideration suggests an interpolation formula of
form

Bd~r !5
r 2

8

r 21aRN
2

3r 21aRN
2 , ~55!

wherea is a phenomenological parameter,a;1.
Such a taming of the growth ofBd(r ) is supported by

the phenomenology ofpN scattering. Let us take for th
pion the oscillator wave function, and assume that the glu
probed radius of the pion equals the charge radius. Then
-

t

s.
e

-

n

s,

t
il-

f

e

n-
he

contribution of the pion size to the diffraction slope for th
purely geometrical form~43! of Bd(r ) yields the unaccept-
ably large value

DBp5
1

8

^pu~r 2/8!@spt~x0 ,r !1snpt~r !#up&

^pu@spt~x0 ,r !1snpt~r !#up&
'9.7 GeV22.

Taking for the contribution of the proton sizeDBN the esti-
mate~54! we end up withBpN'15 GeV22, which substan-
tially exceeds the experimental resultBpN(n5200 GeV)
59.960.1 GeV22.45 The discrepancy increases further
one adds to the above theoretical estimate the Regge
2anpt8 (j2j0)'1 GeV22 evaluated using the relationship b
tweenxeff and the pion energy,xeff'mV

2/2nmp .
What is the origin of this discrepancy? Ifs(j,r ) werer-

independent and if the gluon-probed and charge radii of
pion were identical, then one would find from~5! the famil-
iar

DBp~j0!5
1

3
^Rch

2 &p'4 GeV22. ~56!

With our parametrization~53!, the soft dipole cross sectio
keeps rising atr;1 fm, and for this reason the matrix ele
ment ~5! is dominated by anr 2 larger than in the charge
radius of the pion, and we end up withDBp larger than the
expectation~56! based on the charge radius of the pion. T
matrix element~5! can be made smaller and compatible w
the experiment at the expense of rapid saturation of the
cross section for large dipoles,snpt(r *1 fm)'s tot(pN),
whereupon one recovers the estimate~56!. This solution
must be rejected, because it would lead to negligible fluct
tions of the soft dipole cross section, in conflict with expe
mental data on diffraction dissociation of pions, which r
quire

^pus2~n0 ,r !up&2^pus~n0 ,r !up&2

^pus~n0 ,r !up&2 '0.5. ~57!

An attempt to retain the geometrical law and still agree w
experiment at the expense of takingDBN;0 must be re-
jected as well. We believe that the string-model sugges
taming of Bd(r ) Eq. ~55! is a more acceptable solution
Hereafter we takeDBN5Db354.8 GeV22. Then the pion–
nucleon diffraction slope is reproduced with reasonable v
ues of the parametera in Eq. ~55!: a51.2 for anpt8
50.1 GeV22 and a50.9 for anpt8 50.15 GeV22. Hereafter
we use the latter set of parameters.

6. SOFT–HARD DECOMPOSITION OF TOTAL CROSS
SECTIONS FOR VN SCATTERING

We present our results starting with an evaluation of
vector meson–nucleon total cross section

s tot~VN!5
Nc

2p E
0

1 dz

z2~12z!2 E d2r $mq
2f~r ,z!2

1@z21~12z!2#@] rf~r ,z!#2%s~xeff ,r !. ~58!

For the parametrization of light-cone wave functionsf(r ,z)
of vector mesons, see Ref. 10. The results forxeff<x0

50.03 are shown in Fig. 2~left box!. The smaller the radius
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FIG. 2. The left box corresponds to the color dipole mod
predictions for the total cross sections tot(VN) for the inter-
action of the heavy vector mesonsJ/C, C8, Y, andY8 with
the nucleon target as a function of c.m.s. energyW. The
dashed curve represents the soft pomeron contribution.
right box shows the color dipole model predictions for th
total cross sections tot(VN) vs. radiusRV of vector mesons
r0, r8, f0, f8, J/C, C8, Y, andY8.
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of the vector mesonV, the smaller the total cross sectio
s tot(VN); to a crude approximation,s tot(VN)}RV

2, excepting
the radial excitationsf8,r8.

In Fig. 2 ~left box! we show separately the soft pomero
contribution to s tot(VN). For the J/C the radius is large,
RJ/C'0.4 fm.Rc50.27 fm, and the soft contribution i
substantial; for theY the soft contribution is a small correc
tion to the dominant perturbative contribution. At subasym
totic energies, the gBFKL approach predicts a steeper
with energy for smaller dipoles~cf. Eq. ~11!!, a trend that is
clearly visible in Fig. 2~left box!. At asymptotic energies the
contribution from the rising gBFKL cross section takes ov
for all channels. In Ref. 47 it is observed that for t
‘‘magic’’ radius r D;0.15 fm;Rc/2 the gBFKL color dipole
cross section exhibits the precocious asymptotic energy
pendencespt(x,r D)}x2Dp. BecauseRY'0.18 fm is very
close to the ‘‘magic’’ radiusr D , the predicted energy depen
dence of the perturbative contribution tos tot(YN) is very
close to}W2Dp5W0.8.

The case of theC8 is interesting for its large radiu
RC8'0.8 fm and large soft contribution. Because theC8
andf0 have very similar radii, a useful comparison is wi
-
se

r

e-

s tot(fN). For smallW, s tot(C8N) of the present paper is in
deed numerically very close tos tot(f

0N) calculated in Ref.
10, but the rise ofs tot(C8N) by ;50% fromW;10 GeV to
W;500 GeV is much weaker than the rise ofs tot(fN) by
almost a factor 2 over the same energy range. With
energy-independentsnpt(r ), the rise ofs tot(C8N) is entirely
due to the perturbative gBFKL cross sectionspt(j,r ), which
rises with energy more steeply at smallr. Although theC8
and thef0 have similar mean square radii, because of
node effect the relative contribution of smallr for the case of
C8N is smaller than for the case offN, and this explains
the counterintuitive difference of the energy dependence
the two cross sections.

7. DIFFRACTIVE PRODUCTION CROSS SECTIONS FOR THE
1S STATES J /C AND Y

We now turn to vector meson production. The stro
point about color dipole factorization equations~13!, ~14!,
~19!, and ~20! is that apart from the trivial factorsCV and
CV /mV, the production amplitudes are flavor-independe
when considered as a function of the scanning radiusr S
r
ft
FIG. 3. Decomposition of production amplitude fo
longitudinally polarized vector mesons into so
~dashed curves! and perturbative1soft ~solid curves!
contribution as a function ofQ21mV

2. The nonmono-
tonic Q2 dependence is due to an increase inxeff at
fixed W5150 GeV.
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and/or Q21mV
2.3–5,28,10 To this end, Eqs.~13!, ~14!, ~19!,

and ~20! represent the leading twist terms and the corr
twist expansion goes in powers of 1/(Q21mV

2) rather than in
powers of 1/Q2. For instance, in Ref. 10 we have shown ho
the ratio of theJ/C andr production cross sections becom
remarkably constant when the two cross sections are take
equalQ21mV

2, in contrast to a variation by about three o
ders of magnitude when the two cross sections are comp
at equalQ2. For this reason we strongly advocate the p
sentation of the experimental data as a function of the flav
symmetry restoring variableQ21mV

2 rather thanQ2, and
whenever appropriate we present our results in terms of
scaling variable.

The soft/hard decomposition of production amplitud
depends on the relationship betweenr S and Rc . The hard
contribution dominates atr S&Rc , i.e., if

Q21mV
2*

A2

Rc2 ;30 GeV2, ~59!

which holds better for the heavier vector mesons and
largerQ2. Our phenomenological soft interaction, as well
other models for the soft pomeron,36,11 extends well into
r &Rc . Arguably, with better understanding of the perturb
tive gBFKL amplitude, one can eventually use vector mes
production to better assess the effect of soft interaction
short distances. In Fig. 3 we show our decomposition of
production amplitudes into a hard~perturbative! and soft
contribution as a function ofQ2 for various vector mesons a
the typical HERA energyW5150 GeV. Because the pQCD
scale parameter is smaller for the lighter mesons,tL(r)
,tL(J/C),tL(Y), the soft contribution is somewhat large
for the lighter quarkonia.

For comparison with experimental data, the mo
straightforward theoretical predictions are for forward p
duction, and we calculate (ds/dt) t50 andB(t50). The ex-
perimental determination of these quantities requires
trapolation ofds/dt to t50, which is not always possible
and one often reports thet-integrated production cross se
tions. The principal lesson from high precisionp6N scatter-
ing experiments is that the diffraction slopeB(t) depends
strongly on the region oft, and for the averagê t&
;0.1– 0.2 GeV2 which dominate the integrated total cro
section, the diffraction slope is less than att50 by
;1 GeV22.45 We take thesepN scattering data for guid
t

at

ed
-
r-

is

s

e

-
n
at
e

t
-

x-

ance, and for more direct comparison with the presen
available experimental data, instead of the directly calcula
B(t50), in all cases we report

B5B~ t50!21 GeV22, ~60!

which we also use to evaluate thet-integrated production
cross section from the theoretically calculated (ds/dt) t50 :

s~g*→V!5
1

B

ds~g*→V!

dt U
t50

. ~61!

The uncertainties in the value ofB and with the evaluation
~61! presumably do not exceed 10%, and can be redu
when more accurate data become available.

We begin by presenting our results and comparing th
with the available experimental data on real photoproduct
of the J/C in Fig. 4. The agreement with experimental da
from the fixed target experiments~EMC;48 E516;49 E401;50

E68751! and from the HERA experiments~ZEUS;52,53

H154–56! is good with regard to both the magnitude and e
ergy dependence of the cross section. For theJ/C and Q2

50 the scanning radius is still large,r s'0.4 fm, and at
lower energiesW.15 GeV the soft contribution comprise
;50% of the photoproduction amplitude. Still, it is small

FIG. 4. The color dipole model predictions for theW dependence of the rea
photoproduction cross sections(g*→V) for J/C production vs. the low-
energy EMC,48 E516,49 E401,50 E68751 and high-energy ZEUS52,53 and
H154–56 data.
e
i-
he
FIG. 5. The color dipole model predictions for th
Q2 andW dependence of the ratio of the longitud
nal and transverse differential cross sections in t
form given by Eq.~62! for W5500 GeV~curve1!,
150 GeV~curve2!, 50 GeV~curve3!, and 15 GeV
~curve4!.
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FIG. 6. The color dipole model predic
tions for the polarization-unseparated fo
ward differential cross section~top boxes!
@ds(g*→V)/dt# t505@dsT(g*→V)/dt# t50

1@dsL(g*→V)/dt] t50 for J/C and Y pro-
duction as a function of the c.m.s. energyW at
various values ofQ2. The bottom boxes are
predictions for the polarization-unseparatedt-
integrated cross sections(g*→V)5sT(g*
→V)1sL(g*→V).
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than in s tot(J/CN) and s(g→J/C) rises much faster tha
s tot

2 (J/CN), which is one example of the failure of the vect
dominance model for processes with heavy quarkonia.
call that VDM predictss(g→J/C)}s tot

2 (J/CN).
The relationship~14! ~and also~7!! is to a large extent

model independent, and predicts the dominance ofsL at
large Q2. It is convenient to present the results f
R5sL /sT in the form of the ratio

RLT5
mV

2

Q2

dsL~g*→V!

dsT~g*→V!
U

t50

~62!

shown in Fig. 5 (mV is the mass of the vector meson!. The
point made in Refs. 4 and 5 and repeated in Ref. 6 in so
what different form is that compared toML the transverse
amplitude MT receives a larger contribution from larger
asymmetric end-point configurations withz(12z)!1. For
this reasonRLT,1, and it decreases steadily withQ2. The
steeper rise ofspt(x,r ) at smaller r makes the end-poin
contributions less important at higher energies, andRLT rises
with energy, although very weakly. The above predictio
for R5dsL /dsT must be tested att50, the present experi
mental data onR are for thet-integrated cross sections. I
Ref. 8 it is argued that at larget sT@sL instead, so that the
e-

e-

s

ratio R measured experimentally for thet-integrated cross
sections can be somewhat smaller than our predictions ft
50. The calculation of thet dependence ofRLT is an inter-
esting subject in its own right, but it lies outside the scope
the present analysis.

In the typical HERA kinematics the longitudinal pola
ization parameter e'1, and as our prediction fo
polarization-unseparated production cross section we ha

s~g*→V!5sT~g*→V!1sL~g*→V!.

In Fig. 6 we show our predictions forJ/C and Y pro-
duction. The shorthand representation of the same resul
in terms of the exponent of the energy dependence of
t-integrateds(g*→V)}Wd5W4Deff and/or ds/dtu t50}Wd

5W4Deff. The exponentd for the t-integrated cross section i
slightly smaller because of the shrinkage of the diffracti
cone. The effective interceptDeff depends on the range ofW
covered by the fit~a more detailed discussion of this issue
found in Ref. 5!; in Fig. 7 we present our evaluations fo
W5100 GeV. For the sake of completeness, we showDeff in
the same plot for light vector mesons evaluated from cr
sections calculated in Ref. 10. Slight departures from ex
flavor symmetry are due to slight differences in the pQC
t
FIG. 7. TheQ2 dependence of the effective intercep
Deff(Q

2) for the forward production ofr0, f0, J/C,
andY at W5100 GeV.
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FIG. 8. The color dipole model predictions for th
dependence on the scaling variableQ21mV

2 of
the polarization-unseparated @ds(g*→V)/dt# t50

5@dsT(g*→V)/dt# t501@dsL(g*→V)/dt# t50 at the
HERA energyW5100 GeV.
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scale factorst(V) for different vector mesons. The predicte
downward turn ofDeff at very largeQ2 is due to the increase
in xeff at fixedW.

The real photoproduction ofY offers one of the bes
determinations of the interceptDp of the gBFKL pomeron,
because in this case one has the magic scanning radiur S

;Rc/2, and we indeed findDeff'Dp50.4. The usual fits to
the experimental data are of the forms(g* p→Vp)}Wd

5W4Deff. The evaluated value ofd.0.9 from Fig. 4 in the
range 40,W,140 GeV is in good agreement with the valu
d50.9260.14~stat.!60.10~syst.! extracted from the data o
elastic J/C photoproduction.53 Analogous estimation ofd
;0.82 from Fig. 4 in the range 30,W,240 GeV is in good
agreement with the valued50.7760.13 presented in Ref. 56
The recent H1 data on elastic virtual photoproduction
J/C56 reported the valuesd51.0760.57 atQ253.7 GeV2

and 1.2260.52 atQ2516 GeV2 in the energy range 40,W
,150 GeV, which correspond to our resultsd50.98 and
d51.15, respectively.

The salient features of theQ2 dependence are best se
when cross sections are plotted as a function of the fla
symmetry restoring variableQ21mV

2, whereupon theJ/C
andY production cross sections exhibit very similar beha
ior ~Fig. 8!. For RLT'1, the theory predicts

ds

dt U
t50

;
1

~Q21mV
2 !3 G2~xeff ,t~V!~Q21mV

2 !!. ~63!

If one fits ~63! to the behavior (Q21mV
2)2n and neglects the

Q2 dependence coming from the gluon structure functi
thenn'3. The effect of the gluon structure function is tw
fold. At fixed xeff, i.e., when the energy varies withQ2 ac-
cording toW25(Q21mV

2)/xeff , the gluon structure function
rises withQ2, which reduces the fitted exponentn: n&3. On
the other hand, experimentally one usually studies theQ2

dependence at fixed energyW, when xeff5(Q21mV
2)/W2 in-

creases withQ2. Because the gluon structure function d
creases toward largex, this inducedQ2 dependence increase
the exponentn.

The exponentn depends on the range ofQ2 the fit is
performed in. For instance, inJ/C production at a typical
HERA energyW5100 GeV, we predictn'2.8 for the semi-
perturbative region ofQ2&10 GeV2 andn'3.2 if the fit is
performed over the range 15&Q2&100 GeV2. We recall that
for r0 production we foundn'2.4 for Q2&10 GeV2 andn
f

or

-

,

-

'3.2 for 15&Q2&100 GeV2.10 The results for theY are
similar to the large-Q2 result for theJ/C. The departures
from exact flavor symmetry due toRLTÞ1 and the slight
flavor dependence of the pQCD scalet(V) are marginal for
all practical purposes.

The experimental data on virtual photoproduction
charmonium states are still sparse, and there are as ye
data on the photoproduction of bottomonium. In Fig. 9 w
present a summary of the experimental data on theJ/C pro-
duction from the fixed target EMC experiment48 and the
ZEUS52,57 and H154,56,58experiments at HERA. The theore
ical results are forW515 GeV, appropriate for the EMC
experiment~dashed curve!, and forW5100 GeV, appropri-
ate for the HERA experiments; theory and experiment are
reasonable agreement.

One of the outstanding experimental problems at la
Q2 is a separation of elastic reactiong* p→V1p from the
inelastic backgroundg* p→V1X; the low-energy EMC
data are well known to have been plagued by the inela
background. The contribution of the inelastic background
the experimental cross section may be the reason why
underestimate the experimental data. One more argume
favor of this point will be presented in the discussion of t
diffraction slope below.

FIG. 9. The color dipole model predictions for theQ2 dependence of the
observed cross sections(g*→V)5sT(g*→V)1esL(g*→V) of exclu-
sive J/C production vs. the low-energy~EMC48! and high-energy
~ZEUS,52,57 H154,56,58! data.
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FIG. 10. The color dipole model predictions for the diffractio
slope in production of different vector mesons as a function
the scaling variableQ21mV

2 ~left box! and scanning radiusr S

~right box! at fixed c.m.s. energyW5100 GeV. The scales ofQ2

on the top of the right box show the values ofQ2 that correspond
to the scanning radii shown on the bottom axis.
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8. DIFFRACTION CONE FOR THE V„1S… STATES

Evidently, the contribution to the diffraction slope from
theg*→V transition vertex decreases with decreasing sc
ning radiusr S , i.e., with risingQ2.28 At fixed energyW the
value of xeff rises and the rapidityj decreases, which als
reduces the diffraction slope because the Regge term
comes smaller, which is an important component of theQ2

dependence at fixedW. In this section we report evaluation
of the diffraction slope based on Eq.~28!. We use the results
of Ref. 28 for the energy and dipole size dependence
B(j,r ) for gBFKL color dipole amplitude. For the sof
pomeron contribution, we use the parametrizations~53! and
~55!. According to Fig. 3, the nonperturbative contribution
the J/C and Y production amplitudes is small, and our r
sults for the diffraction slope are insensitive to the s
pomeron effects. Our definition of the diffraction slope is E
~60! in Sec. 7, and is meant to correspond to the experim
tally measured slopeB(t) at t.0.1– 0.15 GeV22.

As shown in Ref. 28, at subasymptotic energies the
fraction slope for the gBFKL amplitude grows rather rapid
by .1.4 GeV22 when W grows by one order of magnitud
from the fixed-target energyW515 GeV to the HERA en-
ergy W5150 GeV. This corresponds to an effective shrin
age rateaeff8 '0.15 GeV22; only at very high energies be
yond the HERA range will the shrinkage follow the tru
slope of the Regge trajectory for the rightmost gBFKL s
gularity aP850.07 GeV22. The values ofaP8 andaeff8 are very
sensitive to the gluon propagation radiusRc, and can even-
tually be used to fix this poorly known parameter. For no
we explore the major properties of the solution forRc

50.27 fm.
One interesting prediction from color dipole phenom

enology of a diffraction cone is that the diffraction slope f
J/C production atQ25100 GeV2 nearly coincides with tha
for real photoproduction of theY. This is still another ex-
ample of flavor symmetry restoration, because the scan
radii r S for the two reactions are very similar.

The flavor symmetry properties of the diffraction co
can be seen in Fig. 10~left box!. The curves for
B(g*→V) of all the vector mesons converge as a funct
of Q21mV

2; slight departures from exact flavor symmet
n-

e-

of

t
.
n-

f-
,

-

-

,

ng

can be attributed to a difference in the pQCD scale fact
t(V) for light and heavy vector mesons. At fixedW, the
calculatedQ2 dependence is an interplay of the changi
scanning radiusr S and the decrease in the Regge compon
with increasingxeff . For the light vector mesons andQ2

&10 GeV2, the soft pomeron is substantial, and hig
precision experimental data onr0 andf0 in this range ofQ2

are indispensable to a better understanding of the
pomeron. In Fig. 10~right box! the same results are pre
sented as a function of the scanning radiusr S as defined by
Eq. ~2! with A56. Crude estimates for theQ2 dependence of
B(g*→V) reported in Ref. 28 are close to the present
sults.

We can suggest useful empirical parametrizations for
diffraction slope. For production of heavy quarkoni
V5J/C, Y, the Q2 dependence of the diffraction slop
at W5100 GeV and in the considered range
Q2&500 GeV2 can be approximated by

B~g*→V!'b02b1 log
Q21mV

2

mJ/C
2 ~64!

with slope b1'1.1 GeV22 and interceptb0'5.8 GeV22.
Although ~64! must be regarded as only a purely empiric
crude parametrization, the logarithmic term~64! is sugges-
tive of a substantial role of the term~50! in the diffraction
slope at high energy. We recall that the constantb0 is subject
to the choice of thet range; it is the slopeb1 that is more
closely related to gBFKL dynamics. For the light vector m
sons, a somewhat better approximation to the results sh
in Fig. 10 is

B~g*→V!'b02b1 logS Q21mV
2

mJ/C
2 D 1

b2

Q21mV
2 ~65!

with the same b151.1 GeV22 as above and withb0

57.1 GeV22, b251.6 for r0 production and b0

57.0 GeV22, b251.1 for f0 production.
Experimental studies of both theQ2 and energy depen

dence of the diffraction slope are in the formative stage.
the heavy quarkonium sector, only photoproduction of
J/C has been studied to any extent. The experimental si
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tion is summarized in Fig. 11, at both fixed-target32,50,59and
HERA energies52–55; the error bars are too large for defin
tive conclusions about the presence or lack of shrinkage
the diffraction cone to be drawn. On the experimental si
determinations of the diffraction slope are very sensitive
cancellation of the inelastic background. Only the E4
experiment50 used a technique that allowed direct select
of purely elastic events. The E401 resultB(W
515 GeV, Q250)55.661.2 GeV22 is consistent with the
NMC result B(W515 GeV, Q250)55.061.1 GeV22.59

The recent high-statistics Fermilab E687 experiment32 used a
nuclear target, and its determination of the diffraction slo
for quasielastic scattering,B(W520 GeV, Q250)57.99
60.23 GeV22, is subject to the model-dependent separat
of the coherent and quasielastic production on nuclei.
HERA, the first H1 data gaveB(W590 GeV, Q250)
54.761.9 GeV22 54 and the first ZEUS data gav
B(W590 GeV, Q250)54.561.4 GeV22,52 updated with
higher statistics to B(W590 GeV, Q250)54.6
60.6 GeV22.53 In 1996 the H1 collaboration55 found weak
evidence for shrinkage of the diffraction cone:B(W
;60 GeV, Q250)53.760.260.2 GeV22 and B(W
;120 GeV, Q250)54.660.360.3 GeV22.

For virtual production ofJ/C the H1 collaboration58 re-
ported in 1996 the first data:

B~W590 GeV,̂ Q2&518 GeV2!

53.861.2~stat.!21.6
12.0~syst.! GeV22 .

Recently the ZEUS collaboration57 published a value of the
diffraction slope atQ256 GeV2:

B~W590 GeV,̂ Q2&56 GeV2!

54.560.8~stat.!61.0~syst.! GeV22 .

We predict a decrease in the diffraction slope fromQ250 to
Q2518 GeV2 by a mere'0.5 GeV22, too small an effect to
be seen at the present experimental accuracy.

FIG. 11. Comparison of the color dipole model prediction for c.m.s. ene
W dependence of the diffraction slope for photoproduction of theJ/C with
the E401,50 NMC,59 E687,32 H154,55 and ZEUS52,53 data;Q250.
of
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The end-point contribution from asymmetric large-si
dipoles withz(12z)!1 is different for the production of the
T and L polarized vector mesons, and makes the aver
scanning radius somewhat larger in the case ofT polariza-
tion. Consequently, one would expect inequality of the d
fraction slopes,BT.BL , for the polarization states. But th
numerical difference between them is negligible even for
charmonium states, because in nonrelativistic quarkon
the end-point effects are strongly suppressed. For botto
nium states,BT2BL is absolutely negligible.

9. WHAT IS SPECIAL ABOUT DIFFRACTIVE PRODUCTION
OF THE RADIALLY EXCITED STATES V„2S…?

In diffractive production of radially excited 2S states
(C8,Y8) the watchword is the node effect. The radial wa
function of the 2S state changes sign atr;RV(1S), and
there are cancellations of contributions to the production a
plitude from large dipoles,r *RV(1S), and small dipoles,
r &RV(1S), which were noted for the first time in Refs.
and 3. Manifestations of the node effect for diffractive pr
duction of light vector mesons off nuclei have been d
cussed in Refs. 30 and 60. A detailed analysis of the forw
real and virtual photoproduction of light 2S states (r8,f8) at
high energies is presented in Ref. 10. The major subjec
the present discussion is new manifestations of the node
the diffraction cone.

The cancellation pattern obviously depends on the re
tionship betweenr S and the position of the noder n, which is
close to the radius of the 1S state, r n;RV(1S). If r S

!RV(1S), then the wrong-sign contribution to the produ
tion amplitudes from dipoles withr *r n is small and cancel-
lations are weak~the undercompensation scenario of R
30!. If r S*RV(1S), then the production amplitude can eve
be dominated by the wrong-sign contribution fromr above
the node position~the overcompensation scenario!. For
heavy quarkonia the scanning radiusr S is sufficiently small
even atQ250, and the undercompensation scenario is re
ized.

At fixed target energies, the node effect is sufficien
strong and suppresses the ratio R21(t50)
5@ds(C8)/ds(J/C)# t50 by almost an order of magnitud
~Fig. 12!. Evidently, the smaller the scanning radius, t
smaller the large-r contribution and the weaker the node e
fect, so that the ratio@ds(C8)/ds(J/C)# t50 rises withQ2

as shown in Fig. 12. When the node effect is strong, whic
the case for theC8 at Q250, then even slight variations o
the scanning radiusr S can change the strength of the no
effect substantially. For this reason one must not be surpr
that at fixed target energies the ratio@ds(C8)/ds(J/C)# t50

changes withQ2 quite rapidly, on a scale ofQ2 smaller than
the natural scalemV

2. The predicted energy dependence
@ds(C8)/ds(J/C)# t50 derives from the faster growth with
energy of the dipole cross section for smaller dipoles, wh
also diminishes the node effect. In Fig. 13~left box! we show
in more detail for the HERA energyW5100 GeV theQ2

dependence of the ratio of thet-integrated cross section
s(2S)/s(1S), evaluated using the diffraction slopeB(2S)
described below. The predictedQ2 and W dependences o

y
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FIG. 12. The color dipole model predictions for theQ2 and
W dependence of the ratiosds(g*→C8(2S))/ds(g*
→J/C) and ds(g*→Y8(2S))/ds(g*→Y) for the
polarization-unseparated forward differential cross se
tions.
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the node effect are both sufficiently strong to be observe
HERA. Because the scanning radius is substantially less
RV(1S) for the heavierb quarks than for the charme
quarks, the node effect in bottomonium production is mu
weaker, and the ratio@ds(Y8)/ds(Y)# t50 is larger and ex-
hibits much weakerQ2 andW dependences than for the cha
monium states~Fig. 12!.

The node effect is slightly different for theT andL po-
larizations. This is best seen in Fig. 5, which shows the ra
RLT(2S) for V8(2S) production, which is different from
RLT(1S) both in magnitude andQ2,W dependence.

The new effect that we focus on here is a nontriv
impact of the node effect on the diffraction cone. In t
conventional situation, the larger the radii of the participat
particles, the larger the diffraction slope, and for real pho
production we have the clear hierarchy

B~g→r0!.B~g←f0!.B~g→J/C!.B~g→Y!,
~66!

which follows the hierarchy of radiiRr0.Rf0.RJ/C.RY .
Although the rms radius of theC8 is about twiceRJ/C , the
color dipole approach uniquely predictsB(g→C8),B(g
→J/C) in striking disagreement with the hierarchy~66!,
which has the following origin. LetM, and M. be the
moduli of contributions to theV(2S) production amplitude
from color dipoles with sizer below and above the positio
of the node in the 2S radial wave function, and letB, and
B. be the diffraction slopes for the corresponding contrib
tions. Because of the hierarchy~66!, we have the strong in
equality

B..B, . ~67!

For production of theV(1S) stateB(1S)'B, . Now, the
total V(2S) production amplitude isM(2S)5M,2M. ,
and for the diffraction slope we find
at
an

h

io

l

g
-

-

B~2S!5
B,M,2B.M.

M,2M.

5B,2~B.2B,!
M.

M,2M.
, ~68!

which yields the estimate

B~2S!2B~1S!'2~B.2B,!
M.

M,2M.
,0. ~69!

The weaker the node effect, the smaller the difference
diffraction slopesB(2S)2B(1S). The typical color dipole
sizesr that enterM , andM . differ by ;RV(1S), and the
difference of slopesB.2B, can be evaluated as a variatio
of the diffraction slopeB(1S) when the scanning radiusr S

changes by a factor;2 from its value atQ250. Then the
parametrization yields an estimateB.2B,;(122)b1

;1 GeV22 for heavier quarkonia. Equation~69! shows that
the splittingB(2S)2B(1S) is further suppressed if the nod
effect is weak, i.e., ifM.!M, .

The results forB(1S)2B(2S) are presented in Fig. 14
For the bottomonium family the node effect is negligib
weak, cf. Fig. 12, whereas for the charmonium family t
chances of the experimental observation of the inequa
B(2S),B(1S) are nonzero, at least in real photoproducti
and in the fixed-target experiments. The difference of d
fraction slopesB(1S)2B(2S) is larger for L polarization,
consistent with a stronger node effect forL polarization. As
discussed above and shown in Fig. 12, the node effect dim
ishes with energy, and the difference of diffraction slop
B(1S)2B(2S) drops by a factor;2 from the fixed-target
energy to HERA energy. It vanishes at largeQ2 following
the demise of the node effect in Fig. 12; the remarks on
e

d

e

FIG. 13. The left box shows the color dipol
model predictions for theQ2 dependence of the
ratio of the t-integrated polarization-unseparate
cross sectionss(g*→C8(2S))/s(g*→J/C) and
s(g*→Y8(2S))/s(g*→Y) at c.m.s. energy W
5100 GeV. The right box shows comparison of th
color dipole model prediction for c.m.s. energyW de-
pendence of the ratios(g→C8)/s(g→J/C) at Q2

50 with the E401,50 NMC,31 E687,32 NA14,62 SLAC63

and H133 data.
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FIG. 14. The color dipole model prediction
for the difference of diffraction slopes
B(1S)2B(2S) vs. Q2 at c.m.s. energyW
515 GeV ~dashed lines! and W5100 GeV
~solid lines! for T andL polarization.
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rapid variation of the node effect on a scale ofQ2 smaller
than mV

2 at fixed-target energiesW;15 GeV are fully rel-
evant toB(1S)2B(2S) as well.

Another demonstration of the node effect leading to
inequalityB(2S),B(1S) is presented in Fig. 15 in the form
of the t dependence of the differential cross section ratio

RV8/V~ t !5
ds~g→V8!/dt

ds~g→V!/dt
~70!

for real photoproduction. The ratioRC8/(J/C)(t) rises witht
at W515 GeV as a consequence of the node effect, whe
at W5100 GeV Fig. 15 shows an essentially constantt de-
pendence ofRC8/(J/C)(t) and RY8/Y(t), corresponding to a
weaker node effect at higher energy and for heavier ve
mesons, respectively; see also Fig. 14.

There is solid experimental evidence for the node eff
in real photoproduction of theC8. In 1996 the H1 collabo-
ration reported the first observation of real photoproduct
of the C8 at HERA, with the resultR215s(g→C8)/s(g
→J/c)50.1560.05.33 In fixed target experiments, onl
E401 used a hydrogen target, with the results(g
→C8)/s(g→J/c)50.2060.05 at W517 GeV. Nuclear
targets were used in all other experiments. Evaluation of
cross section ratio for the hydrogen target from these d
requires corrections for nuclear shadowing inJ/C produc-
tion and nuclear antishadowing inC8 production; there are
also systematic uncertainties in the separation of cohe
and incoherent production. Specifically, for the same co
dipole model as used in this paper, it has been shown1 that
the ratioR215s(g→C8)/s(g→J/c) is enhanced in inco-
herent production off nuclei by the factor 1.26, 1.55, a
2.16 for Be, Fe, and Pb nuclei, respectively. For a relativ
dilute 6Li target, the enhancement factor can be estimate
be '1.1. The E687 resultR21(E687)50.2160.02 for a Be
target atW519 GeV32 then corresponds toR21(E687;N)
50.1760.02 for a free nucleon target; the NMC resultR21

50.2060.05~stat.!60.07~syst.!31 after correction for the las
value61 of the branching ratioBR(J/C→m1m2)55.97
60.25% givesR2150.1760.04~stat.!60.04~syst.! for a pas-
sive concrete absorber atW515 GeV, which corresponds t
R21(NMC;N)50.1360.05 for a free nucleon target. Th
NA14 result 0.2260.05 for a Li target atW514 GeV62 cor-
responds toR21(NA14;N)50.260.05 for a free nucleon tar
e

as

or

t

n

e
ta

nt
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y
to

get, and the SLAC result 0.2260.08 for a Be target atW
.6.5 GeV63 corresponds toR21(SLAC;N)50.1860.07 for
a free nucleon target.

In Fig. 13 ~right box! we compare our prediction fo
R21(N)5s(g→C8)/s(g→J/c) for real photoproduction
on protons with the H1 and E401 data for a proton target
the above evaluations ofR21(N) from nuclear-target data
The overall agreement between theory and experiment is
isfactory. In view of the steady collection of data at HER
higher precision fixed-target data on a hydrogen target
highly desirable to check unambiguously the predicted r
of R21(N) with energy.

10. SUMMARY AND CONCLUSIONS

The major focus of this work has been on the forwa
cone for diffractive real and virtual photoproduction
ground (1S) and radially excited (2S) states of heavy
quarkonia in the framework of the color dipole runnin
gBFKL approach. We presented a detailed discussion of
color dipole factorization for diffractive amplitudes, and
the relevant pQCD factorization scales, with strong empha
on restoration of the flavor symmetry in the variableQ2

1mV
2. We based our analysis on solutions of the gBFK

equations for the dipole cross section26,5 and for the diffrac-
tion slope for the color dipole scattering amplitude.28 Start-
ing from the same dipole cross section that provides a g

FIG. 15. The color dipole model predictions fort dependence of the ratio
differential cross sectionRV8/V(t) given by ~70! for the C8/(J/C) and
Y8/Y real photoproduction.
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quantitative description of the rise in the proton structu
function at smallx,26,27 we found encouraging agreeme
with experimental data on theQ2 and energy dependence
diffractive J/C production. There are many interesting pr
dictions to be tested forJ/C production, for instance theQ2

dependence of the effective interceptDeff .
A detailed analysis of the energy andQ2 dependence o

the diffraction slopeB(g*→V) for vector meson production
is presented here for the first time. Of primary interest is
shrinkage of the diffraction cone, which follows from th
finding28 that the gBFKL pomeron is a set of moving pole
We identified various sources of theQ2 dependence of the
diffraction slope. Based on the solution28 of the running
gBFKL equation for the diffraction slope, we presented d
tailed calculations of theQ2 and W dependence o
B(g*→V). The present experimental data onB(g*→V) for
J/C production are not yet accurate enough to rule in or r
out our predictions for shrinkage of the diffraction cone.

Diffractive production of radially 2S mesons (C8,Y8) is
a subject on its own. The key new feature of production
the 2S states is the node effect, the destructive interfere
of contributions to the production amplitude from small a
large color dipoles because of the node in the radial w
function of 2S radial excitations. The resulting strong su
pression of theC8 photoproduction agrees with the availab
experimental data.

An interesting prediction to be tested from color dipo
dynamics is a rise in the cross section ratios(g
→C8)/s(g→J/C) by a factor of 2 from the CERN–FNAL
to HERA energies. A new consequence of the node ef
that we discussed in this paper is a counterintuitive ineq
ity of diffraction slopes,B(g→C8),B(g→J/C), to be
contrasted with the familiar rise in the diffraction slope f
elastic scattering processes with increasing radius of
beam and target particles. The scanning phenomenon al
one to control the node effect by varying the scanning rad
with Q2, and we present the corresponding predictions
the Q2 dependence of the cross section ratios(g
→C8)/s(g→J/C) and the difference of diffraction slope
B(g→C8)2B(g→J/C).

The predicted effects for the charmonium family a
within reach of modern experiments. The present analysi
diffractive production of heavy mesons provides a use
benchmark for future applications to light vector meso
The experimental comparison of virtual and real photop
duction of vector mesons will shed light on the transiti
between soft pomeron exchange, which dominatesr0,v0,f0

production at small and moderateQ2, and gBKFL pomeron
exchange at higherQ2 and/or heavy vector mesons.
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0239ext. B.G.Z. and V.R.Z. thank Prof. J. Speth for hos
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The result of a new run of measurements of the antineutrino escape asymmetry with respect to
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1. INTRODUCTION

The measurement of the antineutrino spin asymme
coefficient B in neutron b decay is a test for left-right-
symmetric models of the weak interaction.1 The value ofB
within a simple left-right-symmetric model with light right
handed neutrinos (BLR) should differ from the value of
BV2A obtained within the standardV–A variant of the
theory:

BLR5BV2A~122d221.21z222.42dz!, ~1!

whered is the ratio between the squares of the massesM1
2

and M2
2 for the mass statesW15WL cosz2WR sin z and

W25WR cosz1WL sin z, and z is the mixing angle ofWL

andWR .
The value ofB expected within the pureV–A theory can

be calculated on the basis of the values of the ratio betw
the axial and vector weak coupling constantsl known from
measurements of the neutron lifetime and electron-s
correlation:2–8

BV2A52
l22l

113l2
. ~2!

The very weak dependence ofB on l,

]B/]l50.075, ~3!
1071063-7761/98/86(6)/9/$15.00
y

en
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makes such a calculation very accurate, so that although
spread inl in the experiments in Refs. 2–8 amounts to 1022,
they giveBV2A50.988 to within 1023.

Thus, examining the contribution of right-handed cu
rents to the decay probability is useful to the 1023 level, and
with respect to the mass of the right-handed vector bosonWR

it is useful to the 540 GeV/c2 level for a zero mixing angle
or to z<331022 when d50. The mass limit forWR from
muon decay is 406 GeV/c2,9 and the limit obtained for the
mass of the additional vector bosonW8 from direct collider
experiments recently reached the 652 GeV/c2 level.10 How-
ever, more complicated variants of the theoretical mod
with heavy right-handed neutrinos, nonidentical coupli
constants (gRÞgL), and inequivalent left- and right-hande
Kobayashi–Maskawa matrices make improving the accur
of measurements of the antineutrino spin asymmetry in n
tron b decay a timely problem.

Of course, achieving the 1023 accuracy level is a very
complex experimental task involving measurement of the
perimental asymmetry and measurement of the neutron b
polarization to appropriate accuracy. However, it is possi
to approach this accuracy level. Recent measurements11 per-
formed at the St. Petersburg Nuclear Physics Instit
~Gatchina! on the polarized cold neutron source of th
VVR-M reactor achieved an accuracy of 831023. They
were discontinued because of the breakdown of the cold n
tron source, and the accuracy of the measurements was
ited by the statistics of a 94-h series of measurements.
4 © 1998 American Institute of Physics



eir

-

g

1075JETP 86 (6), June 1998 Serebrov et al.
FIG. 1. Overall diagram of the experimental devices and th
arrangement in the beam~viewed from above!. a! Experimental
apparatus for measuring asymmetry:1 — electron detector,2
— proton detector,3 — time-of-flight electrode,4 — spherical
electrode,5 — spherical grid,6 — exit neutron guide,7 —
shielding grid. b! Setup of the in-beam experimental equip
ment:1 — additional neutron guide section,2 — polarizer,3
— neutron guide with nonmagnetic coating,4 — flipper F1, 5
— flipper F18 , 6 — experimental apparatus for measurin
asymmetry,7 — apparatus for measuring polarization. c! Ap-
paratus for measuring polarization:1 — beam shutter,2 ana-
lyzer A1, 3 — flipper F2, 4 — flipper F28 , 5 — analyzerA2, 6
— neutron detector.
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In this paper, we present the results of measurem
continued at the reactor of the Institut Laue–Langevin~ILL !
in Grenoble, where an accuracy of 431023 was achieved,
and we discuss the prospects for increasing that accurac

2. GENERAL EXPERIMENTAL SETUP. POLARIZED BEAM
PRODUCTION

The general setup of the experiment performed at
reactor of the Institut Laue–Langevin~Grenoble, France! is
shown in Fig. 1. It includes an apparatus for measuring
experimental asymmetry~Fig. 1a! and an apparatus for mea
suring the neutron beam polarization~Fig. 1c!. Measure-
ments of the neutron beam polarization were performed d
ing the measurements of the experimental asymmetry, or
stability of the polarization and the efficiency of the flipp
were monitored. The flipper provided for periodic reversal
the sign of the neutron beam polarization.

The first task was to produce a polarized neutron be
of maximum possible intensity. For this purpose, a neut
guide system consisting of an additional neutron guide s
tion, a multislit supermirror polarizer, and a nonmagne
neutron guide with two radio-frequency flippers was a
sembled in the PF1 beam from the cold-neutron source of
reactor~see Fig. 1b!. Additional neutron guide section1 with
a length of 2 m and cross section 6312 cm2 made it possible
ts

.

e

e

r-
he

f

m
n
c-

-
e

to bring the polarizer closer to the site of the apparatus. N
tron guide 3 with a nonmagnetic58NiMo coating (Vlim

57.8 m/s! is designed to transport the polarized beam to
apparatus and to accommodate the spin flippers. It ha
length of 1 m and the same cross section~335 cm2) as
multislit supermirror polarizer2. The system of the two flip-
pers 4 and 5 permitted reversal of the sign of the neutro
beam polarization by either of the flippers and variation
the spin-flip efficiency. The resulting beam of polarized co
neutrons had a flux density of 23108 n/cm2

•s at the en-
trance to the apparatus, which corresponds to a flux den
of thermal neutrons equal to 6.83108 n/cm2

•s.
Although the resulting flux density of polarized co

neutrons was one-third the density in the VVR-M reactor
Gatchina, the statistical accuracy of the measurements a
ILL reactor in Grenoble was 2.5 times greater, owing to
better signal-to-background ratio, higher degree of polari
tion of the beam, and successful collection of statistics o
the course of 13 days.

3. MEASUREMENT OF NEUTRON BEAM POLARIZATION

The required polarization measurement accuracy in
endeavor is 0.1–0.2%. Determining the properties of the a
lyzer in measurements of the polarization from the second
reflection12 calls for a special approach, which takes in
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account a very subtle effect, viz., the depolarization acco
panying the interaction of neutrons with analyzing devic
In the general case, an analyzing device can be describe
a transmission matrix. The off-diagonal elements of suc
matrix correspond to depolarization processes:

Â5S I B

B CD , A5
I 2C

I 12B1C
, ~4!

P̂5S J1

J2
D , P5

J12J2

J11J2
, ~5!

whereÂ is the analyzer matrix,A is the analyzing power,I
andC are the transmission coefficients of the different s
components of the neutron beam without no change in
larization,B is the transmission coefficient with a change

sign of the polarization,P̂ is the polarization vector of the
neutron beam,P is the value of the polarization, andJ1 and
J2 are the intensities of the spin components of the neu
beam.

A method for measuring the polarization with conside
ation of depolarization effects was proposed in our preced
paper ~Ref. 13!, which was devoted to this question. Th
method was carefully studied during the measurements
formed.

The method is based on a design for an analyzing de
consisting of two analyzers with a flipper between them~Fig.
1c! ~a double flipper system was used to measure the flip
efficiency!. Rotating the analyzing device by 180° about t
horizontal axisO–O8 enables us to obtain the required num
ber of independent measurements and to determine the b
polarization, as well as the efficiency of both analyzers un
the assumption that their efficiency is conserved after
reversal operation.

The neutron beam polarization can be calculated fr
the formula13

P1
2[

N21Ñ21

N11Ñ12

5P2
A1

Ã1

, ~6!

P81
2[

N21Ñ21

Ñ11N12

5P2
Ã2

A2
, ~7!

PA5AP1P18, ~8!

whereN11 , N12 , N21 , andN22 are linear combinations
of the measurement results for the forward position of
analyzing device (A1 ,A2):

N115~N001N10!1~N011N11!,

N125~N001N10!2~N011N11!, ~9!

N215~N002N10!1~N012N11!,

N225~N002N10!2~N012N11!.

Similar expressions can be written for the linear combi
tions Ñ11 , Ñ12 , Ñ21 , and Ñ22 for the backward posi-
tion of the analyzing device (A2 ,A1). HereN00, N10, N01,
N11, Ñ00, Ñ10, Ñ01, andÑ11 are the detector counting rate
for different states of the flippers in both the forward a
-
.
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e
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backward positions of the analyzing device. The tilde cor
sponds to the backward position. The indices onN reflect the
states of flipperF1 and flipperF2, respectively. Formulas~9!
are written in the simplified form for flippers with an effi
ciency equal to unity. In the general case, the flipper effici
cies appear as correction factors in~9! without altering their
structure.

The condition of equality of the analyzer efficiencies a
ter reversal of the analyzing device is reflected in~6! and~7!.
The physical properties of the analyzers remain absolu
unchanged, but their analyzing power depends on the a
of incidence of the neutron beam. Therefore, in the pres
problem the necessary condition is satisfied if the beam
vergence remains unchanged along the entire analyzing
vice, i.e., when the analyzers and the neutron guide form
system of parallel planes without breaks and bends. Un
tunately, to obtain high efficiency, the analyzer assemb
must be bent to avoid direct flight without interaction wi
the mirrors. Bent systems quickly alter the beam diverge
and cause a spurious effect in the measurements. The s
ous effect appearing in a polarization measurement has
form of sinusoidal dependence on the inclination of the
vice relative to the beam.

This effect was detected in the experiment and c
firmed in Monte Carlo calculations. The geometry of t
apparatus and the previously measured dependences o
reflection coefficients of the supermirrors for both spin co
ponents of the neutron beams were incorporated into the
culations. The calculated and experimental results are
sented in Fig. 2. Spurious variation of the neutron be
polarization is observed. The effect has a sinusoidal cha
ter with an amplitude of 0.5%. When the apparatus is rota
about the beam axis~see Fig. 2a!, the P(w) curve takes the
form of its mirror image. This attests to the appearance of
spurious dependence under consideration as a consequ
of the asymmetric geometry of the apparatus. Fortunat
the spurious effect has an alternating sign, and is comp
sated to a considerable extent when the mean value of
beam polarization is measured, i.e., when integration is
ried out over the angles. As the Monte Carlo calculatio
show, the compensation is not complete. In the integra
value of the polarization the spurious effect causes unde
timation of the mean value by 0.1%; therefore, an appro
ate correction must be introduced. In our measurements
statistical accuracy for the mean beam polarization was v
high ~0.01%!. However, we estimate the final accuracy of t
polarization measurements to be at the 0.25% level, fea
that the asymmetric angular distribution of the beam c
cause a deviation from the results obtained in the Mo
Carlo model.

We noted during these investigations that depolarizat
takes place when the neutron beam interacts with the ana
ing devices. The off-diagonal elements of the matrix desc
ing the analyzing devices were equal to 2.531023. This is
the spin-flip probability. This finding is important, since th
assumption that there are no depolarization effects and
use of a simplified measurement scheme~without rotation of
the analyzing device about axis1! would lead to a 0.5% error
in the polarization measurements. One possible reason
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the depolarization accompanying the interaction with an a
lyzing device is the inhomogeneity of the magnetic field.
the magnetic field is not parallel to the supermirror surfa
an abrupt change in the direction of the force lines occur
the vacuum–material boundary because of magnetic ind
tion in the material. For example, if the angle between
magnetic field and the surface is 4°, the beam depolariza
effect equals 0.5%.

In measurements of the mean polarization, angular sc
were carried out both in the vertical plane and with the a
lyzer slit inclined to the vertical. The horizontal dimensio
of the neutron guide system of the analyzing device w
sufficient to completely cover the angular distribution of t
beam in the horizontal plane.

The spectral dependence of the polarizationP on neutron
wavelengthln was measured at each point using a time-
flight technique. This dependence was then averaged
the spectrumJ(ln). When the neutron spectrumJ(ln) was

FIG. 2. a! Polarization measurement schemes in two geometries: norma~I!
and mirror-image~II ! ~lateral view!. In each of the geometries measur
ments were performed for the forward position of the analyzing dev

(A1 ,A2) and for the backward position of the analyzing device (Ã2 ,Ã1),
The position was changed from forward to backward and vice versa
rotation about axis1. The angular dependence of the polarization was m
sured by rotating the entire device about axis2. b! Dependence of the
polarization P(w) and the intensityI on the angle of inclination of the
analyzing device relative to the beam. The polarization was calculated
Eqs.~9!–~12! under the assumption that the analyzing power of the ana

ers remains unchanged after rotation of the device;A15Ã1, A25Ã2. Points
— results of measurements in geometry I~s! and geometry II~j!. Solid
lines — Monte Carlo calculation for these geometries.
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measured, the analyzing system was oriented in the ver
position, and the beam passed through the gap between
neutron guides in the region of the rotation axis of the a
lyzing system without interacting with the latter. The spe
trum was measured by a detector with an efficiency wh
depends on the velocity according to a 1/v law. The changes
in the form of the spectrum as a result of the spectrally
pendent absorption and scattering in the air, in the alumin
exit window of the chamber, and in the aluminum entran
window of the detector, were measured experimentally.
this purpose, aluminum foils were placed in the beam, a
relative measurements of the spectrum were made when
chamber of the apparatus was filled with air and when it w
evacuated. The measured spectral corrections were use
correct the result obtained by measuring the mean polar
tion. This correction was insignificant because of the we
spectral dependence of the polarization. The correction
the counting errors of the electronic instrumentation was a
measured experimentally. The results of the measurem
of the polarization and the corrections are presented in Ta
I.

The most important elements in the setup for measur
the neutron beam polarization are flipperF1, which is in-
tended to reverse the sign of the polarization, and flipperF2,
which is located between the analyzers.

The operation of the flippers was based on the occ
rence of neutron spin flip in a variable magnetic field wh
the neutron spin precession frequency coincides with the
quency of the variable magnetic field~neutron magnetic
resonance!. However, the probability of transitions betwee
the Zeeman sublevels depends on the dwell time of the n
tron in the field, i.e., such a spin-flip method is spectra
dependent. This problem has been eliminated in our flipp
The magnetic field gradient created in the region of
radio-frequency coil ensures a spin flip for all neutron velo
ties in the beam when the amplitude of the variable field
large and the following adiabaticity condition holds:

Vz

dH

dz
!2pgH1

2 , ~10!

whereVz is the velocity of neutrons along the beam axis,H
is a constant magnetic field with gradientdH/dz, H1 is the
amplitude of the variable magnetic field, andg is the gyro-
magnetic ratio of the neutron. If this condition is satisfied f
the fastest neutrons in the beam, the flipper efficiency
reach 99%. Such a flipper was first employed for ultrac

e

y
-

m
-

TABLE I.

1. Results of polarization measurements
with consideration of the spectral, angular, and
spatial distributions of the beam 97.560.01%

2. Correction for systematic measurement
errors 0.1060.25%

3. Spectral correction for absorption and
scattering in foils and in air 20.1360.01%

4. Correction for counting errors in the
electronic instrumentation 0.0560.02%

Final result 97.5260.25%
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neutrons in Ref. 14, and was subsequently employed
heavy and cold neutrons. The PF1 beam was recently ou
ted with such flippers. The important advantages include
absence of matter in the beam path and the simplicity
control ~by turning the variable field on and off!.

A polarization analyzer with a double flipper syste
makes it possible to easily measure the efficiency of a fl
per. Therefore, besides flippersF1 andF2 there are auxiliary
flippers F18 and F28 for measuring the efficiency of the flip
pers. For each pair of flippers it is possible to perform fo
different measurements~four combinations of the states o
two flippers!, which suffice to determine the efficiency o
both flippers. The efficiency of the flippers is determin
from the relations

f 5
N0

01N1
123N1

01N0
1

3N0
02N1

12N1
02N0

1
, f 5

N0
01N1

123N0
11N1

0

3N0
02N1

12N0
12N1

0
.

~11!

Here N0
0, N0

1, N1
1, and N1

0 are the detector counting rate
where the subscripts correspond to the main flipper, and
superscripts correspond to the auxiliary flipper. The res
of the measurements of the flipper efficiencies are prese
in Table II. The measurements of the efficienciesf 2 and f 28
were performed for two positions of the analyzing dev
~the forward and backward geometries!, with no changes
noted in efficiency. The values off 1 and f 2 were obtained
automatically. As is seen from Table II, there is fairly go
reproducibility of the measurement results.

The stability of the operation of the flippers was reg
larly monitored during the measurements, and no variati
in their efficiency were noted to within 0.05%.

It is noteworthy that a radio-frequency flipper is asym
metric, since the beam polarization is1P when the variable
magnetic field is turned off and2P f when the variable mag
netic field is turned on.

4. MEASUREMENT OF THE EXPERIMENTAL ASYMMETRY

The escape direction of the undetected antineutrino
be determined from the measured proton momentum
electron energy. A diagram of the momenta of the neut
decay products is presented in Fig. 3. For given elect
momentum, all possible antineutrino momenta lie on
sphere of radiusPn5(E02Ee)/c, where Pn is the an-
tineutrino momentum,E0 the kinetic energy of the decay
andEe the electron energy. Thus, knowing the electron
ergy and measuring the projection of the proton momen
onto thex axis by the time-of-flight method, we can dete
mine the antineutrino escape angle and reconstruct the k
matics of the decay process. Since the ratios betweenPe and
Pn for different electron momenta are different, the eve
detected in an experiment should be recorded in the form

TABLE II.

Geometry f 1, % f 18 , % f 2, % f 28 , %

Forward (A1 ,A2) 98.0160.05 96.8260.05 98.3060.05 99.5160.05
Backward (A2 ,A1) 97.9660.05 96.7560.05 98.4360.05 99.3960.05
or
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coincidence matrices with electron energyEe and proton
time of flight tp as coordinates. Complete information on t
neutron decay process can be represented by two mat
corresponding to two directions of the neutron beam po
ization relative to thex axis of the apparatus, i.e., the ax
joining the two detectors.

The number of events in each cell of such a matrix c
be written in the form

Nik
65 f ~Ei !@11a~v i /c!~cosuen! ik

6PA~v i /c!~cosuse! ik6PB~cosusn! ik#, ~12!

wherea, A, and B are the electron–antineutrino, electron
spin, and antineutrino–spin angular correlation coefficien
P is the neutron beam polarization,v i /c is the electron ve-
locity expressed in units of the velocity of light,f (Ei) is the
Fermi function with allowance for radiative corrections, a
the cosuik are the cosines of the angles between the resp
tive vectors. The labelsi and k specify finite intervals of
electron energies (Ei) and proton times of flight (tk). Ac-
cordingly, all quantities with these labels should be avera
over the respective interval.

In the absence of correlations the density of events
the neutrino sphere~see Fig. 3! is constant. Owing to the
coefficienta, asymmetry appears between the event count
the left- and right-hand hemispheres, even for an unpolari
beam. The coefficientA specifies the asymmetry in the tot
number of events on the sphere when the direction of
neutron spin is reversed. Finally, the coefficientB leads to
asymmetry between event counts in the right- and left-h
hemispheres, which changes sign when the sign of the po
ization changes. Thus, it is difficult to directly measure theB
asymmetry. However, the experimental asymmetryX, which
depends on all three coefficientsa, A, andB simultaneously,
can be measured. It is defined as the asymmetry in the n
ber of events~coincidence of the signals in the electron a
proton detectors! upon reversal of the sign of the polariza
tion:

Xik5
Nik

12Nik
2

Nik
11Nik

2

5
PB~cosusn! ik1PA~v i /c!~cosuse! ik

11a~v i /c!~cosusn! ik
. ~13!

Thus, if we measure the experimental asymmetryXik , we
can calculate (PB) ik using the relation

FIG. 3. Diagram of the momenta of the neutron decay products:Pe , Pn ,
andPp are the momenta of the electron, antineutrino, and recoil proton,
Pp8 is the projection of the proton momentum onto thex axis.
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~PB! ik5
Xik@11a~v i /c!~cosuen! ik#2PA~v i /c!~cosuse! ik

~cosusn! ik
. ~14!

Equations~13! and ~14! are valid if the absolute value
of the polarization during measurements ofN1 andN2 are
identical. Consideration of flipper asymmetry would requ
making these formulas more complicated. On the other ha
the sum of two measurements with guiding magnetic fie
of opposite sign permits symmetrization of the values of
polarization forN1 and N2 and the use of Eqs.~13! and
~14!. The effective value of the polarization then equa
Peff5P(11 f 1)/2.

Determination ofB requires knowledge of the neutro
beam polarization and calculation of the values of (v i /c)
3(cosuen)ik , (v i /c)(cosuse)ik , and (cosusn)ik . The values
of a andA are known from the preceding experiments,15,6–8

and since they are small compared withB, their error does
not make a significant contribution to the total error in t
measurement ofB.

The equipment diagram is shown in Fig. 1a. The ap
ratus consists of an electron detector, a system of electro
which creates the required configuration of electrosta
fields, and a proton detector. The method based on the c
cidence of the electron and proton signals was employe
measure the proton momentum by the time-of-flight te
nique. The recoil proton passed through the free-flight p
estal3, where there is no electric field, and was then acc
erated in the field of the spherical capacitor4. A proton
accelerated to an energy of 25 keV was detected by the
tector. The acceleration time, which is appreciably sho
than the time of flight in region3, was taken into account in
simulating the process of recording decay events.

The signals from the electron detector acted as ‘‘sta
commands for the temporal encoder and permitted meas
ment of the electron energy. Pulses from the proton sig
served as the ‘‘stop’’ command for the temporal encod
providing for time measurements. The background of ac
dental coincidences was measured simultaneously by
shifted coincidence technique using the same electron
The information obtained was accumulated in the form
valid and random~background! coincidence matrices for th
two spin directions in computer memory for subsequ
offline processing.

The electron detector consisted of a 75-mm diame
plastic scintillator with a photomultiplier. The energy resol
tion and response function of the electron detector were
termined in a separate experiment. A magneticb spectrom-
eter with a working detector placed at its exit was employ
for this purpose. The data from these measurements w
used to determine the width of the response function of
electron detector in different parts of the energy range.
example, the full width of the line at half-maximum is equ
to 81 keV at an energy of 357 keV and to 108 keV at 6
keV. This is in good agreement with the known depende
for scintillation detectors:DE}AE, i.e., the energy resolu
tion is proportional to the square root of the energy. As
result, the valueDE50.227AE keV was taken for the energ
resolution of the detector in the calculations. The ‘‘tail’’ o
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electrons backscattered from the detector then amount
6%.

A diaphragm was positioned in front of the electron d
tector to determine the solid angle for detecting electrons
to isolate the decay region detected, as was a collimato
special design, which suppressed the scattering of elect
that did not enter the detector.

The proton detector was a striped assembly of two
crochannel plates. The diameter of the working region of
detector was 60 mm. The temporal resolution of the pro
detector and the electronics was determined directly du
the experiment from the form of the instantaneous coin
dence peak. The width of the instantaneous coincidence p
was 15 ns. The main contribution to the instantaneous c
cidence peak was made by the background processes
cascadeg quanta and rescattered electrons.

The focusing of the protons onto the sensitive region
the detector was verified by a calculation and experimenta
Calculations of a map of the electric field followed by ca
culations of the proton trajectories and the acceleration
namics were performed on a computer. It was shown t
alignment of the detector in the working position relative
the electrodes to within 1 cm ensures the collection of
protons to within 0.1%. This was confirmed in direct expe
ments on decay protons. For this purpose the sensitive re
of the detector was covered by a screen with a diameter o
mm so that only the peripheral region with a width of 5 m
would remain open. The count of decay protons in suc
detector amounted to 0.1% of the count in a completely o
detector.

The entire chamber was surrounded by three pairs
current-carrying loops to create the guiding magnetic fi
and to cancel the earth’s magnetic field. The amplitude of
guiding magnetic field was 5 Oe, and the earth’s magn
field was cancelled to better than 0.02 Oe. The guiding m
netic field provided for polarization parallel~antiparallel! to
the axis of the apparatus. The initial magnetic field near
polarizer was vertical, but in front of the apparatus it w
rotated by190° ~290°!, i.e., parallel~antiparallel! to the
axis of the apparatus. The sign of the polarization was va
during the asymmetry measurements by flipperF1 without
altering the configuration of the magnetic fields. Howev
about once a day the direction of the guiding magnetic fi
of the apparatus was reversed to eliminate the effect of
asymmetry in the operation of the flipper.

5. MEASUREMENT RESULTS

The counting rate of the decay events was 0.6 even
and 719 456 decay events were detected during the 13
measurement period. The signal-to-background ratio un
the time-of-flight coincidence peak was 2.7. The same ra
at the maximum was equal to 15.

Figure 4 presents experimental proton time-of-flig
spectra and electron energy spectra for one of the serie
measurements.

In order to calculate the mean values of (v i /c)
3(cosuen)ik , (v i /c)(cosuse)ik , and (cosusn)ik appearing in
~5!, we wrote a program to simulate theb decay process
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under the real conditions of the experimental apparatus
the Monte Carlo method. The model took into account all
necessary geometric parameters, the spectrum of decay
trons in the form of a Fermi function, the response functio
of the electron and proton detectors, the characteristics o
analog-to-digital converter~ADC! and the time-to-code con
verter, the neutron density distribution in the beam, and
calculated map of the electric field between the electrode

The program yields four matrices with the same coor
natesi andk as the experimental coincidence matrices. Th
of these matrices are matrices of corresponding cosines,
the fourth matrix is the calculated two-dimensional spectr
for an unpolarized beamNik . The subtlest procedure fo
processing the results is to match the matrices obtained f
the experiment and the cosine matrix calculated by
Monte Carlo method. A shift in the time and energy sca
can lead to appreciable errors in the calculations, espec
near zeroes of cosusn . The inaccuracy in the calibration o
the energy and time scales and their possible nonlinear
also cause difficulties in accurately matching the matric
Therefore, we employed the following simple and effecti
procedure. The experimental time-of-flight spectru
summed over both polarizations and the spectrum calcul

FIG. 4. Experimental and calculated spectra for two beam polarization
rections. a! Proton time-of-flight spectra~the channel width is 10 ns!: 1 —
correlated peak~the intensity is diminished by a factor of 10!, 2 — polar-
ization directed toward the electron detector,3 — polarization directed to-
ward the proton detector. b! Electron energy spectra~the channel width is 13
keV!: 1 — polarization directed toward the electron detector,2 — polariza-
tion directed toward the proton detector. Solid lines — Monte Carlo ca
lation, points — experimental data.
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by the Monte Carlo method for the unpolarized beam w
divided into a certain number of parts with equal intensiti
Each such part corresponded uniquely to certain mean va
of the calculated cosines. Matching the fits of the cor
sponding parts of the spectra from the experiment and
calculation permitted us to solve for the accuracy of the c
bration and the relative displacement of the time scales.

The energy scale was calibrated using113Sn and137Cs
conversion electron sources. The calibration procedure
performed during the measurements every 24 h. Howe
the calibration accuracy was not very high because of
diffuseness of the peaks, which is associated with the re
lution of the detector. This required a series of calculatio
with varying energy parameters, i.e., the channel width, a
adjustment of the zero within the calibration uncertain
range. Agreement between the experimental and calcul
energy and time spectra served as a preliminary criterion
selecting the best variant.

The final criterion of the accuracy of the matching of t
energy and time scales was the lack of a dependence oPB
on any of the variables. After removing the results for ide
tical values of cosusn from the event matrix, we constructe
plots of the dependence ofPB on cosusn . One example of
such an analysis for the constancy ofPB using thex2 crite-
rion is presented in Fig. 5. It was found that the criterion
the constancy ofPB near zeroes of cosusn is fairly sensitive
to the calibration accuracy of the energy scale and essent
replaces the direct calibration relative to the energy of
conversion sources. The results of a comparison of the m
surements and the Monte Carlo calculations are presente
Fig. 4, which shows projections of the density of the eve
matrices onto the time and energy axes. The proton time
flight spectra most graphically demonstrate how the exp
mental asymmetry appears when the sign of the beam po
ization is reversed. The values ofx2 indicate the degree o
agreement between the calculations and experimental res

For final processing on the basis of the energy calib
tions, all the statistics compiled were divided into thr
groups. In each of them the corresponding experimental
trices, which were compiled for opposite directions of t
guiding magnetic field, were added. The calculation ofPB
was performed on the basis of these summed matrices
each group. The results of the calculations are presente

i-

-

FIG. 5. Dependence ofPB on cosusn for one of the series of measurement
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Table III. The weighted mean ofPB for the three groups is
0.946360.0025.

Possible systematic experimental errors were analy
by varying the model parameters in the Monte Carlo cal
lations within their uncertainty ranges. Table IV lists the po
sible errors.

The largest errors are the statistical uncertainty
0.0025, the 0.0020 error due to the poor energy resolutio
the detector, and the 0.0025 error due to the systematic e
in the measurements of the neutron beam polarization.
total uncertainty in the measurements of the antineutrino s
asymmetry was 0.0044, i.e., the result is approximately
times better than the result of the first run of measureme
performed in 1994. The results obtained forPeffB50.9463
60.0025, a neutron beam polarizationP597.5260.25%,
and a flipper efficiency equal to 97.9960.05% were used to
calculate the antineutrino spin asymmetry coefficient w
consideration of the fact that the effective polarizationPeff

5P(11 f 1)/2.
Thus, the value obtained in the present experiment

the antineutrino escape asymmetry coefficient with respec
the spin of the decaying neutron isB50.980160.0046. The
weighted mean with consideration of the result obtained
1994 (B50.989460.0083) isB50.982160.0040.

The difference between the value obtained and the va
expected according to the standard model of the weak in
action is 0.005960.0040, i.e., it is 1.5 times the error. It i
noteworthy that such accuracy, 0.4%, in measurements o
angular correlation coefficients in neutron decay was
tained for the first time and approaches the accuracy of
neutron lifetime determination.

Within the left-right-symmetric models, the bound o

TABLE III.

Group No. Number of events PB Error

1 219650 0.9485 0.0046
2 347785 0.9442 0.0037
3 152021 0.9479 0.0061

TABLE IV.

Source of error Error Error inB

Accuracy of the calculation of mean cosines – 0.001
~accuracy of the Monte Carlo model!
Energy resolution of the
electron detector, keV 1.7 0.0020
Fraction of backscattered electrons 0.02 0.001
Radius of the proton diaphragm, mm 0.25 0.0004
Radius of the electron detector, mm 0.25 0.0001
Radius of the electron diaphragm, mm 0.25 0.000
The coefficienta 0.0051 0.0010
The coefficientA 0.0011 0.0005

Total systematic error – 0.0029
Polarization measurement error – 0.0025
Statistical error – 0.0025

Total absolute error – 0.0046
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the parameters of the right-handed currents can be es
lished in accordance with Eq.~1!:

2d211.21z212.42dz<0.0127~90%C.L.!. ~15!

These bounds are graphically displayed in Fig. 6. Wh
the mixing angle equals zero, it is seen that the mass of
right-handedW boson is

MWR
>284.3 GeV/c2.

On the other hand, whend50, the resulting value ofB
makes it possible to obtain a bound on the helicity of t
antineutrino. The helicity of the antineutrinohn can be ex-
pressed ashn512z2. It then follows from relation~15! that
the strength of the antineutrino–spin correlation in neut
decay permits estimation of the deviation of the helicity fro
unity:

D~hn!<0.0105~90%C.L.!.

6. PROSPECTS FOR INCREASING THE ACCURACY OF THE
MEASUREMENTS

As follows from an analysis of Table IV, progress
improving the accuracy of the measurements is neede
three main areas: 1! increasing the statistical accuracy;!
improving the energy resolution of the electron detector; a
3! eliminating systematic effects in the polarization measu
ments.

Concrete steps can be proposed in each of these are
1. To increase the statistical accuracy there is a plan

increase the total flux of polarized neutrons in the PF1 be
A focusing multislit supermirror polarizer with a cross
sectional area equal to 6312 cm2, i.e., 4.8 times the existing
value, is being developed for this purpose. Another way
significantly increase the size of the data set of the even
to increase the free-flight pedestal from which the dec
products are collected, and to increase the number of de
ing systems by a factor of 5–10. However, this proced
should be regarded as a separate approach requiring co
erable capital investments.

FIG. 6. Bounds on the parameters of the left-right-symmetric model fr
the new data on theB asymmetry (B50.982160.0040). The region of
allowed model parameters at the 90% confidence level is hatched.
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2. The energy resolution of the electron detector can
improved by replacing the existing scintillation electron d
tector by a semiconductor Si~Li ! detector with a diameter o
70 mm, which has already been developed jointly with
Tokyo Institute of Technology and whose use in future m
surements is planned.

3. The systematic effects in the polarization measu
ments can be eliminated by going over to rectilinear ana
ing systems, as well as by diminishing the depolarizing
fects as a result of improvements in the uniformity of t
field of the magnets.

On the whole, the accuracy of the measurement of
tineutrino spin asymmetry can be brought up to t
231023 level, and this is fairly important for the left-right
symmetric models of the weak interaction.

We thank O. V. Rozhnov for his assistance in adjust
the experimental equipment; V. V. Ivanov, I. I. Marchenko
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the experiment; and N. G. Kolyvanova and V. A. Tyukav
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tion and software for the polarization measurements.
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Associated production of Higgs bosons with Z bosons by charged leptons in strong
external fields
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The probabilities of the associated production of a Higgs boson with aZ boson by a charged
lepton in the field of a plane electromagnetic wave of arbitrary intensity and in a constant
crossed field are obtained. The behavior of the cross section of the process as a function of the
particle energies and the external field intensity is investigated for various values of the
Higgs boson mass. It is shown that there is a logarithmic increase in the photoproduction cross
section at superhigh energies up to a value significantly exceeding the cross section of the
reactione11e2→Z1H, which is presently regarded as the most probable channel for the
production of Higgs bosons. ©1998 American Institute of Physics.@S1063-7761~98!00406-5#
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1. INTRODUCTION

Along with gauge invariance, one of the key elements
the standard model of electroweak interactions is the Hi
mechanism for the appearance of gauge boson masse
for the cancellation of divergences on the basis of sponta
ous symmetry breaking.

The fundamental massive Higgs boson, whose existe
underlies the Weinberg–Salam–Glashow~WSG! theory, has
yet to be found. The experimental detection of scalar Hig
bosons would be a decisive verification of the stand
model and, in a broader sense, of the very idea that the H
mechanism of spontaneous symmetry breaking operate
the physics of elementary particles.

In the WSG theory the masses ofW6 andZ bosons, as
well as the vacuum meanv of the Higgs field, can be ex
pressed in terms of the fine-structure constanta, the Fermi
constantGF , and the Weinberg angleuW

1,2:

MW5S pa

A2GF
D 1/2

1

sin uW
580.3760.19 GeV,

MZ5
MW

cosuW
591186.361.9 MeV,

v5~A2GF!21/2.246 GeV,

while the Higgs particle massMH is a free parameter of th
model and is related to the unknown dimensionless par
eterl, which characterizes the self-action of Higgs scala

MH5lv.

Since the interaction constants of Higgs bosons w
other particles in the WSG theory are determined by
masses of these particles, the coupling of Higgs boson
gauge bosons and heavy quarks is far stronger than
coupling to electrons and other light particles. Therefore,
combined production of a Higgs boson withW6 andZ gauge
bosons ine1e2 and hadronic collisions is believed to b
most promising when various mechanisms for production
1081063-7761/98/86(6)/7/$15.00
f
s

and
e-

ce

s
d
gs
in

-
:

h
e
to
eir
e

f

the Higgs boson are selected, and it has been a subje
ongoing theoretical and experimental research.

In electron–positron collisions, Higgs bosons should
produced mainly as a result of the processes

e11e2→W1W2neñe→H1ne1 ñe ,

e11e2→Z→Z1H, e11e2→e1e2ZZ→e11e21H

~see Refs. 3–6!, among whiche11e2→Z1H is the most
probable process whenAs&500 GeV,7 whereAs is the en-
ergy of the colliding particles in the center-of-mass syste
Experiments devised to detect the processe11e2→Z1H
at LEP2 place a lower bound on the Higgs boson mass
MH.75 GeV.1 The reaction cross section is at most 0
picobarn whenMHP(50, 350) GeV, and it decreases as t
Higgs boson mass increases.4,7

Taking into account the results of Tevatron experime
that directly measure theW boson andt quark masses, we
assume that the Higgs particle mass is 127272

1127 GeV, and that
the Higgs boson mass is at most 465 GeV with 95
probability.1

As for the upper bound on theH boson mass, it is no
given, in principle, by the standard model and can be e
mated only on the basis of ‘‘common sense’’ assumptio
For example, if it is taken into account that the constanl
describes both the self-action of Higgs bosons and the in
action of W6 and Z bosons with one another and withH
bosons, a strong interaction between the particles appe
which cannot be described by perturbation theory, ifMH

@MZ ,MW . A detailed analysis shows that theH boson mass
should be at most 700 GeV in this case.7–10

Another possible channel for the production of Hig
particles is provided by electron–photon collisions. For e
ample, Hagiroaraet al.11 studied the dependence of the cro
section of the processe1g→W1H1ne on the Higgs boson
mass in the energy rangeAs520022000 GeV, and Eboli
et al.12 examined the reactione1g→egg→e1H, in which
the production of Higgs bosons with a massMH.140 GeV
becomes possible providedAs.500 GeV. In this case it is
3 © 1998 American Institute of Physics
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proposed that the hard photons be obtained by utilizing
inverse Compton effect, under which the spectrum of sc
tered radiation forx52vE/m2@1 becomes nearly mono
chromatic and has a sharp maximum atv8'E ~v, v8, andE
are the energies of the incident and scattered photons an
relativistic electron, respectively!.

Among the possible mechanisms for the production a
decay ofH bosons, the processes which take place in ex
nal electromagnetic fields should be singled out.

Such investigations are important, because, on the
hand, the probabilities of processes that are forbidden in
free case by the 4-momentum conservation law achieve
preciable values in an intense external field, and, on the o
hand, an external field can be a powerful catalyst and
dramatically increase the amount of information provided
processes that are capable of occurring without a field.13–15

The possibility of the associated production of a Hig
boson and aZ boson by a charged lepton in external elect
magnetic fields of various configuration is studied in t
present work. The probabilities of the processes are ca
lated by finding exact solutions of the relativistic wave equ
tions with exact consideration of the interaction of t
charged particles with the external electromagnetic field.13–16

An expression for the probability of the processe→e
1Z1H in the field of a plane electromagnetic field of arb
trary intensity is obtained in the second section.

The third section is devoted to the calculation of t
probability of the processe→e1Z1H in a constant crosse
field. At ultrarelativistic electron energies and relative
weak fields (E,H!H05m2/e.4.4131013 G! the results of
this section are also applicable to the description of the p
cess in an arbitrary constant field.

In the fourth section asymptotic formulas for the pro
ability of the process in a constant crossed field and for
cross section of the process in the field of a plane elec
magnetic wave in the applicability region of perturbati
theory with respect to a wave intensity parameter are fo
in several limiting cases.

It is shown that at high energies the cross section of
photoprocesse1g→e1Z1H, which we have investigated
can significantly surpass the cross section of the reac
e21e1→Z1H, with which definite prospects for detectin
the Higgs boson have been tied.1,3,4

2. THE PROCESS e˜e1Z1H IN THE FIELD OF AN
ELECTROMAGNETIC PLANE WAVE

In the standard model of electroweak interactions
matrix element of the process under study has the follow
form:17

^ f uS~2!u i &5
ig2MZ

cos2 uWA4k0k08

3JmFgmn2
pmpn

MZ
2 G en

~l!* ~k8!

p22MZ
21 iGZMZ

.

HereGZ.2494.762.6 MeV is the decay width of theZ bo-
son, k5(k0 ,k) and k85(k08 ,k8) are the 4-momenta of th
e
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final-state Higgs andZ bosons,p is the 4-momentum of the
intermediateZ boson, andJm is the electroweak current:

Jm5E d4xc̄q8~x!gm~gV1gAg5!cq~x! exp ~ ipx!,

wheregA521/4, gV521/41sin2 uW, andcq(x) is the ex-
act solution of the Dirac equation for an electron moving
the given external field. The wave function of an electron
an arbitrary plane-wave field specified by the 4-poten
Am5Am(w), which depends only on the phasew5nx ~n is
the wave vector andn250), can be represented in th
form14,18

cq~x!5~2q0V!21/2

3F11
e

2~nq!
~gn!~gA!Gu~q! exp ~ iSq~x!!, ~1!

whereV is the normalization volume,u(q) is the bispinor
amplitude of the free plane wave, which is the solution of t
free Dirac equation

~gq2m!u~q!50, q25m2,

andSq(x) coincides with the classical action function for
particle moving in the field of a wave:

Sq~x!52qx2E
0

w

dwF e

~nq!
~qA!2

e2A2

2~nq!G . ~2!

In the case of interest to us here of a circularly polariz
wave specified by the vector potential

Am~x!5a1
m cosw1a2

m sin w,

a1
25a2

25a2, a1a250, a1n5a2n50, w5nx,

it follows from Eqs.~1! and ~2! that

cq~x!5F11
e

2~nq!
~ n̂â1 cosw1n̂â2 sin w!G

3
u~q!

A2Q0

exp H 2 ie
a1q

~nq!
sin w

1 ie
a2q

~nq!
cosw2 iQxJ .

Here we have introduced the quasimomentum of an elec
in a wave field:

Qm5qm2e2
a2

2~nq!
nm.

Its square plays the role of the electron effective mass in
field:

Q25m
*
2 5m2~11j2!,

wherej5A2e2a2/m2 is the classical wave intensity param
eter, which is equal to the ratio of the work performed by t
field to the wavelength to the electron rest energy.

We average the square of the modulus of the ma
element of the process over the spin states of the initial e
tron and sum over the polarizations of the final electron
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cording to the conventional rules, and we perform the su
mation over the polarizations of theZ boson using the
formula

(
l51,2,3

en
~l!~k8!em

~l!~k8!52S gmn2
km8 kn8

MZ
2 D ,

whereen
(l)(k8) is the polarization 4-vector of theZ boson.

Next, performing the integration over the phase volu
of the Higgs and finalZ bosons in tensor form, for the tota
probability of the process per unit time and unit volume
obtain

W5
GF

2

~2p!3
MZ

6 m2

Q0
(

s.s0

E
u1

u2 du

~11u!2

3E
M2

t~u! dtA~t2MZ
22MH

2 !224MZ
2MH

2

t~~t2MZ
2!21~GZMZ!2!

3H AE24gA
2 m2

MZ
2

FS B
~t2MZ

2!2

MZ
2

1AS 22
t

MZ
2D D J ,

~3!

E5~gA
21gV

2 !F22j2
u212u12

u11
~Js11

2 1Js21
2 22Js

2!

28Js
2S 12

t

2m2D G116~gV
22gA

2 !Js
2

12gAgV

u12

u11
Js~Js212Js11!

~np!

m2

34zS 12
2j2

11j2

u

usz
2D , us5

2s~np!

m
*
2

, ~4!

F522
t

m2
Js

21
u2

u11
j2~Js11

2 1Js21
2 22Js

2!,

M5MZ1MH , A5
8tMZ

21~t1MZ
22MH

2 !2

12tMZ
2

,

B5
~t1MZ

22MH
2 !22tMZ

2

3t2
.

Each term in~3! corresponds to the production of
Higgs boson and aZ boson as a result of the absorption os
photons from the field, whose minimum number equals

s05
~M1m* !22m

*
2

2~nq!
.

In formulas~3! and~4! we have introduced the invarian
integration variablesu5211(nq)/(nq8) and t5(sn1q
2q8)2. In addition,

u1,25
~sn1q!22M22m

*
2 6A~~sn1q!22M22m

*
2 !224m

*
2 M2

m
*
2

,

-

e

t~u!1
~sn1q!2u

11u
2m

*
2 u.

The argument of the Bessel functionsJ(z) in ~4! is de-
fined by the formula

z52s
j

A11j2Au

us
S 12

u

us
2

t~11u!

uusm*
2 D .

We note that the result in the form of~3! and~4! which
we have obtained is exact. It is valid for any value of t
classical wave nonlinearity parameter, includingj*1, at
which the interaction of the electron with the field of th
intense electromagnetic wave leads to effects which are n
linearly dependent on the energy density of the wave.

Further integration, however, cannot be performed a
lytically, but under the conditionj!1, which corresponds to
the condition for the applicability of perturbation theory wi
respect to the external field, where the processes with
absorption of the minimum possible number of quanta fr
the field are most probable, it is possible to perform t
expansion of~3! and~4! in powers ofj2 ~for further details,
see Ref. 14!.

Along with the conditionj2!1, we also require that

2~nq!.~M1m* !22m
*
2 , ~5!

whereupon the process resulting from the absorption of
photon from the field becomes possible.

As a result, after dividing the probability~3! by the in-
cident flux densityj 5m2k/2vEV ~v is the photon energy,E
is the electron energy, andk52(nq)/m2) and setting
j254pa/m2vV ~a is the fine-structure constant!, we obtain
the cross section of the processe1g→e1Z1H in the form

s5S eGFm

p D 2S MZ
2

km2D 2

3E
b

12a dl~12M2/klm2!1/2~12M1
2/klm2!1/2

~l2MZ
2/kM2!2

3H 2AC24gA
2 m2

MZ
2

DFB
m4k2

MZ
4 S l2

MZ
2

km2D 2

1AS 22
klm2

MZ
2 D G J , ~6!

wherel5t/m2k,

C5~gV
21gA

2 !@2l~12l!21# ln
12l

a

22l~gV
21gA

2 !~12l2a!14gVgAS 1

2
2l D

3 ln
12l

a
24gVgA~12l2a!,

M15MZ2MH ,
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D5@122l~12l!# ln
12l

a
12l~12l2a!,

b5ka5
1

k

M2

m2
,

andA andB are defined by~4!.

3. THE PROCESS e˜e1Z1H IN A CONSTANT CROSSED
FIELD

In this section we examine the processe→e1Z1H in a
constant crossed field~the intensities of the magnetic an
electric fields are equal in magnitude and orthogonal to
another:uEu5uHu, E'H, and both field invariants are equ
to zero!.

A crossed field is a special case of an electromagn
field of the plane-wave type and can be specified by
potential

Am5amw, an50, ~7!

and the complete wave function of an electron in a cros
field is obtained from~1! with consideration of~7!:

cq~x!5F11
e~gn!~ga!

2~nq!
wG u~q!

A2q0V

3expF2 ie
~aq!

2~nq!
w21 ie2a2

w3

6~nq!
2 i ~qx!G .

The probability of the process in a crossed field can
obtained from the general formula~1! using the initial- and
final-state wave functions of the electron in the crossed fi
However, here we shall utilize another method to calcul
the quantity of interest to us, which is based on the ex
result~3! for the case of a circularly polarized wave. In fac
in a circularly polarized wave the total probability of th
process depends on the two invariant parametersj andx:

j5A2
e2a2

m2
5

eF

mv
, x5

e

m3
@2~Fabqb!#1/25j

~nq!

m2
.

In this case the electric and magnetic field intensity vect
rotate in a plane perpendicular to the wave propagation
rection with a frequency equal to the frequency of the wa

Therefore, whenv→0 ~j→`!, the total probability of
the process in the field of a circularly polarized wave sho
coincide exactly with the probability of the process in a co
stant crossed field:14,15,18

lim
j→`

W~j,x![W~`,x![W~x!. ~8!

We again note that the result obtained on the basis of
limiting transition ~8! is exact for a crossed field at any e
ergy and that in the ultrarelativistic case~when the electron
energy«@m), as we have noted above, it describes the pr
ability of the process in a constant external electromagn
field of arbitrary form with an intensityF!H0 ~for more
exact applicability conditions, see Ref. 14!.
e

ic
e

d

e

d.
e
ct

s
i-
.

d
-

e

-
ic

Exchanging the order of summation and integration
Eq ~3!, we obtain the following expression for the probab
ity:

W5 (
s.s0

E
0

2p

dwE
0

`

duE
M2

`

dtW~u,t,s,w!

5E
0

2p

dwE
0

`

duE
~M /m!2

`

da (
s.smin

m2W~u,a,s,w!,

where

a5
t

m2
, smin5

j3u

2x F11
1

j2S 11a
u11

u2 D G , x5
~nq!

m2
j.

Since the variables take the valuesz;s;j3@1 over the
range ofz ands that makes a significant contribution to th
total probability whenj2@1, the sum overs can be replaced
by integration over the new variablet. For this purpose we
must use the relation

s5
j3u

2x S 11
2t

j D1smin .

As a result, we obtain

W5E
0

2p

dwE
0

`

duE
~M /m!2

`

da

3E
2j/2

`

dt
j2u

x
m2W~w,u,t,a!. ~9!

We next apply the asymptotic behavior of the Bes
functions, in terms of whichW(w,u,t,a) can be expressed
when their argument and the index tend to infinity with i
creasingj2, the ratio between the latter tending to unity19:

Js~z!.
1

pS 2

sD 1/3

F~y!,

whereF(y) is the Airy function, whose argument is

y5S s

2D 2/3S 12
z2

s2D 5S u

2x D 2/3F11a
u11

u2
1t2G .

In the limit j→`, the integral over the angular variablet
in Eq. ~9! can be calculated using relations known from t
theory of Airy functions.14 For the total probability of the
processe→e1Z1H in a constant crossed field we ult
mately obtain

W52
1

Ap

GF
2MZ

6

~2p!3Q0
S m

M D 2E
0

1 dx

~12xMZ
2/M2!2

3~12x!1/2S 12x
M1

2

M2D 1/2E
0

` du

~u11!2
G~u,x!, ~10!

where

G~u,x!54F1G128gA
2 m2

MZ
2

G2FF2

x2 S 12x
MZ

2

M2D 2S M

MZ
D 4



a

c

et

o
a

at

al
int

he
ter,

ion

the
he
re

ly
ter,

t of
to

al
he

ad

1087JETP 86 (6), June 1998 Éminov et al.
1
F1

x S M

MZ
D 2S 2x

MZ
2

M2
21D G ,

G154~gA
22gV

2 !F11~gA
21gV

2 !F S 22S M

mD 2

xDF1

22
u212u12

u11
F8S x

uD 2/3G ,
G25S M

mD 2

xF112
u2

u11
F8S x

uD 2/3

,

F15
2

3
1

1

6S 12
MH

2

MZ
2 D 1

1

12S M

MZ
D 2 1

x
1

1

12

3S 12
MH

2

MZ
2 D 2S MZ

M D 2

x, ~11!

F25
1

3
1

2

3

MZ
22MH

2

M2
x1

~MZ
22MH

2 !2

3M4
x22

1

3S MZ

M D 2

x.

Equation~11! employs not only the Airy functionF(z),
but also the related function

F1~z!5E
0

`

F~ t !dt,

with argument

z5S u

x D 2/3F11S M

mD 2 1

x

u11

u2 G . ~12!

We note that for a constant magnetic fieldH↑↑z with
intensityH!H05m2/e54.4131013 G and an ultrarelativis-
tic electron with zero longitudinal momentum~the energy
E@m, and pz50), the spectral variable and the dynamic
parameter in Eqs.~10!–~12! are defined to be

u5
p'

p'8
215A n

n8
21, x5

H

H0

p'

m
,

wherep'5A2eHn is the transverse momentum of the ele
tron in the magnetic field andn is the principal quantum
number. The energy levels of the electron in the magn
field are given by16

E5A2eHn1m21pz
2.

4. LIMITING CASES AND DISCUSSION OF RESULTS

We first discuss several results following from the pr
cess of the associated production of a Higgs boson andZ
boson by an electron in a constant crossed field investig
in Sec. 3.

In the regionx!(M /m)2 the main contribution to~10!
is made by the regionz@1, where the Airy function has the
asymptotic behavior

F~z!.
1

2
z21/4 expS 2

2

3
z3/2D . ~13!
l

-

ic

-

ed

Using ~13!, we calculate the integral over the spectr
variable in~10! by the saddle-point method, the saddle po
being the solution of the equation

22
l

u0
24

l

u0
2

50, l5S M

mD 2 1

x
,

whenceu0.l/2@1.
As a result, we obtain

W5
GF

2MZ
6

~2p!3Q0

16

A3
x ES M

m D2

` dl

l
G~l!F12

M2

m2l
G 1/2

3expF2A3
l

xG , ~14!

where

G~l!5F12
M2

m2l
G 1/2

1

~l2MZ
2/m2!2

3H ~gV
21gA

2 !F112gA
2 S m

MZ
D 2FF2

m4

MZ
4

3S l2
MZ

2

m2 D 2

1F1S 22l
m2

MZ
2D G J .

The integral in~14! over the variablel is calculated
anew by the saddle-point method.

The result for the total probability of the process in t
case of relatively small values of the dynamical parame
wherex!(M /m)2, has the form

W.
8GF

2MZ
6

~2p!3Q0

A2p

c5/2 S M

mD 2

GS M2

m2 D exp~2c!,

c5A3S M

mD 2 1

x
.

In accordance with the saddle-point method, the funct
G(l) in the last formula is taken at the saddle pointl
5(M /m)2.

It is noteworthy that the exponential dependence of
probability of the process at relatively small values of t
dynamical parameterx is characteristic of processes that a
forbidden in the absence of an external field.

We next find the probability of the process in the high
interesting case of large values of the dynamical parame
wherex@(M /m)2.

In the limiting case under consideration, the argumen
the Airy function ~12! in the real region can be set equal

z.S M

mD 2 1

x2/3u1/3x
. ~15!

We note that while the main contribution to the integr
over the spectral variable is made by the vicinity of t
saddle pointu0.l/2>(1/2)(M /m)2@1 whenx!(M /m)2,
the dominant contribution comes from the relatively bro
range 1!u!(M /m)2 whenx@(M /m)2.
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When~15! is taken into account, the integration over t
variableu is performed using the integrals

E
0

`

tF8~ t !dt52F1~0!52
Ap

3
,

E
0

`

t2F1~ t !dt5
2

3
F1~0!.

As a result, we find

W5
16GF

2MZ
6

3~2p!3Q0
S m

M D 6

x2 E
0

1 x2dx

~12xMZ
2/M2!2

3~12x!1/2S 12x
M1

2

M2D 1/2H ~gV
21gA

2 !F1

12gA
2 S m

MZ
D 2FF2

x2 S 12x
MZ

2

M2D 2S M

MZ
D 4

1
F1

x S M

MZ
D 2S 2x

MZ
2

M2
21D G J . ~16!

The integral overx in ~16! has been tabulated, but because
the cumbersome nature of the result, here we present
the asymptote of the probability~16! for MH@MZ and its
value atMH5MZ :

W5C~gV
21gA

2 !H 1

240S MH

MZ
D 2

, MH@MZ ,

16~23A3p2125!

9
, MH5MZ ,

~17!

where

C5
16

3

GF
2MZ

6

~2p!3Q0
S m

M D 6

x2.

The result~17! for MH@MZ agrees to within a numeri
cal factor of order unity with the result in Ref. 20, where t
probability of the processe→e1Z1H in an ultrastrong
magnetic field was calculated and it was shown that
associated production of a Higgs boson with aZ gauge boson
in an ultrastrong magnetic field can be a fairly likely proce

We now move on to a study of the limiting cases of E
~6!, which describes the cross section of the photoproduc
processe1g→e1Z1H.

Figure 1 shows the dependence of the cross sectio
the processe1g→e1Z1H on k, which was constructed
from Eq. ~6! for various values of the Higgs boson ma
MH . Near the reaction threshold, where, according to~5!,
k*M2/m2'101121012 GeV, the reaction cross section
small compared to the cross section of the reactione21e1

→Z1H.
When As@MH (As is the energy of the colliding par

ticles in the center-of-inertia system!, the cross section of the
reaction e21e1→Z1H decreases proportionally tos21

and is given by17
f
ly

e

.
.
n

of

s~e11e2→Z1H !5
Gf

2MZ
4

48ps

3~124 sin2 uW18 sin4 uW!, ~18!

while in the logarithmic approximation (ln(km2/M2)@1)
from ~6! we obtain

s~e21g→e21Z1H !5H s1 , k@1,

s2 , k!1,

k5
1

kS MZ

m D 4

ln
km2

M2
,

s15
1

3
~gV2gA!2S eGfm

p D 2 1

kS MZ

m D 4

lnS km

M D lnS km2

M2 D ,

~19!

s25
2

3
gA

2 S eGfm

p D 2

ln
km2

M2
.

In the case of a head-on collision of a photon with
energy equal to the energy of the electron, from formu
~18! and ~19! we find

s~e1g→e1Z1H !

s~e11e2→Z1H !
.H C1 , k@1, i.e., k!1022,

C2 , k!1, i.e., k@1023,

C155a lnS 2E

m D lnS 4E2

MmD , C25a lnS 2E

M DkS m

MZ
D ,

~20!

wherea is the fine-structure constant.
The conditions for the applicability of Eqs.~19! and~20!

are satisfied over a broad range of energy and field inten
values. For example, whenE.1000 GeV, we obtainC1

.10. Thus, as follows from~20!, at high energies the cros
section of the process that we investigated can significa
exceed the cross section of the reactione11e2→Z1H,
which is presently regarded as the most probable channe
the production of Higgs bosons.

We thank A. V. Borisov and A. S. Vshivtsev for discus
ing the results of this work.

FIG. 1. Dependence of the cross section of the processe1g→e1Z1H on
k for various values of the Higgs boson mass:MH5100 ~1!, 200 ~2!, 300
~3!, and 400~4! GeV.
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The nonlinear interference accompanying three-photon spontaneous parametric light scattering is
considered. The frequency-angle line shape of the scattering is calculated for nonlinear-
crystal/linear-dispersive-medium/nonlinear-crystal and nonlinear-crystal/nonlinear-crystal systems.
The question of the possible use of nonlinear interference in spectroscopy is discussed.
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1. INTRODUCTION

Spontaneous parametric light scattering~SPS! spectros-
copy and the measurement of scattering by polaritons h
become traditional methods for studying the dispersive pr
erties of crystals. The advantages of this type of spectrosc
include, first of all, its simplicity of implementation, as we
as the possibility of measuring a wide set of quantities:
real ~associated with the refractive index! and imaginary~as-
sociated with absorption! parts of the dielectric constant, an
the real and imaginary parts of components of the seco
order (x (2)) and third-order (x (3)) susceptibilities. These
characteristics are measured over a wide spectral ran
from the visible to the far-IR range, including the regions
fundamental crystal-lattice vibrations.1 Among the draw-
backs of the method we should mention the limitations
the class of investigatable materials: spontaneous param
scattering is observed only in noncentrosymmetric me
wherex (2)Þ0.

Phenomenologically, spontaneous paramagnetic sca
ing is explained by the spontaneous decay of a laser p
photon with frequencyvp into a pair of photons—a signa
photon (vs) and an idler photon (v i)—due to the quadratic
susceptibilityx (2) ~Ref. 2!. By virtue of the energy conser
vation law, the sum of the frequencies of the signal and id
radiation is exactly equal to the pump frequency, i.e.,

vp5vs1v i , ~1!

and the momentum conservation law

kp5ks1k i ~2!

ensures coupling of the frequencies and angles of the s
tered lightvs(us).

The condition of spatial synchronism(k i50 ~2!, which
holds for optical parametric processes, can be interpreted
result of the nonlinear interference of the interacting wav
Physically, this condition is equivalent to stationarity of t
total phase of all the modes, which ensures growth of
intensity in space in analogy to what occurs in ordinary l
ear interference. Parametric processes are characterized
specific line shape,3 i.e., by a dependence of the conversi
1091063-7761/98/86(6)/8/$15.00
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efficiency on the wave-vector mismatchD5 (
i 51

m

k i , wherem

is the number of interacting modes. For a nonlinear layer
thicknessL in the plane wave approximation this depe
dence has the form

g~D!5sin2~DL/2!/~DL/2!2[sinc2~DL/2!. ~3!

For parametric light scattering, if the absorption at o
of the frequencies1! is large

a i@1/L, ~4!

then the scattering line shape becomes Lorentzian. In
case spontaneous parametric scattering transforms into
tering by polaritons and, in the limitv i→V ~whereV is the
optical phonon frequency!, into Raman scattering.4 Condi-
tion ~4! means that the signal fields created at points in sp
separated by an intervalx@1/a i are now out of phase, i.e.
their intensities, rather than their amplitudes, are added.

The interference nature of the formation of th
frequency-angle spectrum for spontaneous paramagn
scattering raises two obvious questions.

1! How do the phase delays added to any of the mo
kp , ks , andk i influence the spontaneous parametric scat
ing line shapeg(D)?

2! Is it possible to draw any conclusions about the d
persive properties of the medium used to introduce opt
delays from the line shape?

The answer to the first question~for different parametric
processes! has been known for a long time. For example
method for measuring the relative phase between the
and second harmonics was proposed back in 1965.5 The in-
terference of second-harmonic signals from two nonlin
crystals separated by a dispersive medium underlied
technique for determining the signs of the components of
quadratic susceptibilityx i jk

(2) in Ref. 6. Similarly, nonlinear
interference has been used in coherent anti-Stokes Ra
scattering~CARS!,7 as well as for determining the compo
nents of the third-order nonresonant susceptibilityx i jkl

(3) in
gases.8 Nonlinear interference also describes quasisynch
nous processes: the additional phase shift that interac
waves undergo in periodically nonuniform nonline
0 © 1998 American Institute of Physics



a
eo
a
d

yin
o
e

m
c
i

ei
te
e

te
on
tr

de
ca
ob
gl
th
n

el
a
n

on
e

t
ty
m
ee
et

in
to
y—

n
th

et
c
m
a

la
r
o
w
ion
s
a

lu-
ub-
ven-
new

s

ch–
g
s

line

-
e

ion

here
are

the

n
nce
in-

low

ear

1091JETP 86 (6), June 1998 Burlakov et al.
media—in the generation of the second harmonic,9 as well as
sum and difference frequencies,10 and in CARS.11

The situation regarding the interpretation of nonline
interference takes a dramatic turn in the case of spontan
parametric scattering. Despite the fact that the nonline
optical aspects of the problem have not been investigate
detail either theoretically12,13or experimentally,14,15an unex-
pected surge of interest in the interference accompan
spontaneous parametric scattering took place in quantum
tics in the middle of the 1980’s. The paradoxicality of th
problem is partly caused by the fact that spontaneous e
sion, by its very nature is noisy and contributions from ma
roscopically separated regions would not be expected to
terfere. Even today different experimental schemes are b
considered, in which a modulation structure is manifes
either in the intensity of the scattered light or in coincidenc
of photon counts.16,17 The observed features are associa
with the quasimystical power of the photons to have a n
local effect on each other during spontaneous parame
scattering.18 However, it seems that the most consistent
scription of nonlinear interference accompanying such s
tering was given in Refs. 19 and 20. We note that the pr
lem of the formation of an assigned frequency-an
spectrum of a biphoton field has been considered within
context of devising principles for quantum cryptography a
a quantum computer.21

The resolution of the second question, which is clos
associated with the first, is the subject of nonline
interferometry—a spectroscopic method that has so far
found wide application. Nevertheless, different types of n
linear interferometers have been used, for example, to m
sure the phases of nonlinear susceptibilities22 ~in various ma-
terials, including thin films23! and to measure the
propagation times of photons through dispersive media
quantum optics.24

In the present work we have undertaken an attemp
answer the second question, i.e., to estimate the sensitivi
nonlinear interferometry to variation of the mediu
parameters2! which influence the phase of any of the thr
modes participating in the process of spontaneous param
scattering~three-photon interferometry!. We limit the discus-
sion to the case in which the spatial inhomogeneity caus
the phase shifts is in the direction of the pump wave vec
The scattering geometry with transverse inhomogeneit
nonlinear interference in Young’s scheme19—is not consid-
ered here.

The work consists of two parts. In the first part, we co
sider a three-photon Mach–Zehnder interferometer on
basis of general relations for the spontaneous param
scattering line shape. The frequency-angle line shape is
culated for a nonlinear-crystal/linear-dispersive-mediu
nonlinear-crystal system. The case where a thin film with
isolated dielectric-constant resonance serves as the inter
is treated separately. In the second part we obtain an exp
sion for the spontaneous parametric scattering line shape
nonlinear-crystal/nonlinear-crystal system, where the t
nonlinear crystals differ only with respect to the dispers
of their refractive indices. We analyze the possibility of u
ing three-photon interferometry to monitor the linear optic
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properties of nonlinear crystals. Obviously, a definitive so
tion for the problems treated would, on the one hand, s
stantially broaden the class of materials accessible to con
tional SPS spectroscopy and, on the other, introduce a
~and often more convenient! technique for determining the
dispersion law of noncentrosymmetric crystals.

2. NONLINEAR-CRYSTAL/LINEAR-DISPERSIVE-MEDIUM/
NONLINEAR-CRYSTAL SYSTEMS

We consider two planar nonlinear crystals of thicknesL
separated by a linear medium of thicknessL1 ~Fig. 1!. Such
a three-layer system has been termed a nonlinear Ma
Zehnder interferometer25 in analogy to the correspondin
scheme in linear optics.26 Here the linear medium introduce
phase delays proportional toL1 at all three frequencies:

F1p}n1p~vp!L1 /lp , F1s}n1s~vs!L1 cosqs /ls ,

F1i}n1i~v i !L1 cosq i /l i .

An expression for the spontaneous parametric scattering
shape for this case was obtained in Ref. 13:

g~vs!5H sin~d/2!

d/2
cosFd1d1

2 G J 2

, ~5!

where d(vs ,qs)5DL5(kp2ks2ki)L and d1(vs ,qs)
5D1L15(k1p2k1s2k1i)L1 are the wave-vector mis
matches in the nonlinear and linear media, respectively, thk
are the projections of the wave vectors onto the direct
perpendicular to the layers, andqs is the scattering angle
inside the crystals. We are interested below in the case w
the orientations of the polar axes in the nonlinear crystals
opposed, which is equivalent to a phase shift ofp/2 in the
argument of the cosine in Eq.~5!:

g~vs ,qs!5H sinc
d

2
sinFd1d1

2 G J 2

, ~6!

under the assumption that the signal photons do not leave
interaction region~defined by the thickness of the crystalL
and the diameter of the pump beamd, Ref. 19!: (2L
1L1)tanqs!d. This condition imposes a practical limit o
the angular range for observing the effect: when the dista
between the crystals is increased, the contribution to the
terference is due to small-angle scattering. Therefore, be

FIG. 1. Diagram for observation of three-photon interference: two nonlin
crystals (L) separated by a linear medium (L1).
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FIG. 2. Frequency-angle intensity distribution fo
three-photon interference: a—modulation functio
~7!, b—consideration of the envelope~spatial syn-
chronism!.
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we shall analyze the line shape for the case of collinear s
chronism. The normalization in Eq.~6! is chosen such tha
the scattering intensity at the maximum would be equa
unity for d150 and polar axes of identical direction. Expre
sion ~6! has a simple physical meaning: the first factor d
scribes ordinary parametric scattering in the layer of thi
nessL. The second factor is due to the interference of
spontaneous fields arising in the two crystals, and the ph
of the interference pattern depends on the dispersion of
linear medium. We note two peculiarities, which follow d
rectly from the form of~6!. First, this expression is reminis
cent of the intensity distribution for the ordinary~linear! dif-
fraction of a plane wave by a screen with two slits~Ref.
26!.3! Second, the optical properties of the linear mediu
n-

o

-
-
e
se
he

influence only the second factor in~6!: the role of the first
factor reduces to filtration of the frequency-angle distributi

g15H sinFd1d1

2 G J 2

~7!

by the envelopeg05$sinc(d/2)%2 in accordance with the
condition of spatial synchronism~2! in the nonlinear crystal
of thicknessL. Therefore, it would be reasonable to analy
the perceivable frequency-angle intensity distributions~7!,
which depend on the dielectric constants of the linear a
nonlinear media, and to take into account the actual sync
nism width in the final stage together with the comparis
with experiment. Here the thickness of the nonlinear cryst
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as it were, assigns the size of the ‘‘window’’ through whic
we view the modulation structure: the smaller isL, the wider
is the frequency-angle range of the observed interference
tern.

The explicit dependences of the mismatches appea
in ~6! on the observable parametersvs andus have the form

D~vs ,us!52pS npvp2nsvsA12Fsin us

ns
G2

2niv iA12F vs

v ins
sin usG2D , ~8!

D1~vs ,us!52pS n1pvp2n1svsA12Fsin us

n1s
G2

2n1iv iA12F vsni

v in1ins
sin usG2D , ~9!

whereus is the external scattering angle. The expressions~8!
and ~9! together with~6! are inputs to the calculation of th
frequency-angle distributions of the spontaneous param
netic scattering intensity.

Figure 2 corresponds to the case in which two LiNb3

crystals of identical thicknessL51 mm are separated by
vacuum gap of thicknessL1510 cm, the polar axes of th
crystals are antiparallel, and absorption of the idler wave
this range can be neglected:a iL!1 ~Ref. 27!. In the direc-
tion of collinear synchronism~us50 andd5d150! an in-
tensity minimum is observed according to Eq.~6! regardless
of the value ofL1 since the vacuum does not have disp
sion:

F1p5F1s5F1i .

As the scattering angleus increases the wave-vector mi
match in the gapd1 grows and a two-dimensional interfe
ence pattern appears. Figure 2a illustrates the behavior o
modulation function~7! for the above parameters, and Fi
2b illustrates the result of taking the spatial synchronism i
account. Let us turn our attention to the outward similar
between the frequency-angle distribution in Fig. 2a and sp
tra known already at the beginning of this century that w
obtained by Rozhdestvenski�

28 at the exit of a similar inter-
ferometer with illumination by white light.4! However, the
‘‘illumination’’ of a nonlinear interferometer is provided b
the wideband radiation due to spontaneous parametric s
tering, while that of a linear interferometer is provided by
external source~an incandescent lamp!. Besides, in the linea
schemes~the Mach–Zehnder interferometer or the simi
Rozhdestvenski� interferometer! the phase difference be
tween the coherent waves shifts due to the difference
tween the optical paths in the arms of the interferometer
the nonlinear case the arms are spatially degenerate, bu
wave-vector mismatch (d1d1) appearing in~7! is always a
function of the frequency and angle. Only for exact colline
synchronism~d50, us50! and a vacuum gap does the tot
phase trajectoryFS5F1p2F1s2F1i vanish, regardless o
the thickness of the gapL1 .

Figure 3 illustrates the frequency line shape of the sc
at-
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tering for a LiNbO3—air—LiNbO3 configuration with varia-
tion of the refractive index of the air layer at the idler fr
quency.

Variations of the refractive index of the intervening m
dium strongly influence the scattering line shape. For
ample, if the thickness of both crystals isL51 mm and the
thickness of the interlayer is L1510 cm in the
LiNbO3—air—LiNbO3 configuration, then the interferenc
phase will vary byp when the refractive index varies b
0.0001. Without dwelling on the reasons for deviations of
refractive index, we note that they can be caused not only
fluctuations in the temperature, pressure, and humidity,
also by the presence of all kinds of impurities—gases, sm
particles, etc. A quantitative analysis of the influence of th
factors on the dispersion of the dielectric constant«1(v) is
beyond the scope of the present work. We would simply l
to underscore the fact that there is an abrupt dependenc
the scattering line shape on the parameters just mentio
As a unique illustration we chose the sensitivity of the li
shape to variation of the air temperature in the same confi
ration ~L51 mm, L1510 cm!. Besides the dispersion of th
refractive index of air at all three frequencies, we also to
into account its dependence on the atmospheric pressure
temperature, and the partial pressure of water vapor.26 Figure
3 displays frequency scans of the spontaneous paramag
scattering spectrum at zero scattering angle. The three cu
correspond to different air temperatures in the gap: 25
25.5 °C, and 26 °C.

Increasing the base of the interferometer to 1 m raises
the sensitivity of the line shape to variation of the refracti
index to 0.000 001~and to variation of the temperature to
tenth of a degree!. Here the traditional question arises: ho
stable is the scattering line shape toward errors in the de
mination of the interlayer thicknessL1? In other words, how
strongly is the interference structure of the line sha
smeared by fluctuations in the distance between the crys
For linear interferometric devices the addition of a ha
wavelength to the optical length of an arm shifts the phase
the interference pattern byp. The situation is completely
different for three-photon interference. Displacements of o
crystal relative to the other~without a change in the orienta
tion of the optical axis! have much less of an effect on th
intensity distribution in the interference pattern. The reas
for this is the spatial degeneracy of the interferometer ar
Since the argument in~7! is a function of the three frequen

FIG. 3. Frequency line shape of the parametric scattering for different t
peratures of the air between the crystals~collinear synchronism!.
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ciesvp , vs , andv i , the phase trajectory contains contrib
tions at all three frequencies:

FS52p$n1p~vp!/lp2n1s~vs!cosqs /ls

2n1i~v i !cosq i /l i%L1 ~10!

~we assume that the wave-vector mismatchd in the nonlinear
medium is constant!. For small scattering angles and we
dispersion of the material the expression in curly bracket
formula ~10! differs insignificantly from zero; therefore
large variations inL1 are necessary to produce apprecia
variations in the phase. The derivatives defining the sens
ity and stability of a three-photon interferometer are equ
respectively, to

]FS /]n1i522pL1 /l i , ~11!

]FS /]L152p$n1p~vp!/lp2n1s~vs!/ls2n1i~v i !/l i%
~12!

~here cosqs'cosqi'1!. Expression~11! reflects the fact
that increasing the baseL1 increases the accuracy of th
measurement of the refractive index; Eq.~12! implies a weak
dependence of the line shape on fluctuations ofL1 ~e.g.,
caused by vibrations!.

FIG. 4. Diagram of three-photon interference:1—wideband mirror,2—
nonlinear crystal,3—Glan–Thompson prism,4—converging lens,5—
entrance slit of the spectrograph.
in

e
v-
l,

Figure 4 depicts one variant of the scheme of a thr
photon interferometer. Here instead of two nonlinear crys
separated by a linear medium, one crystal is used wit
wideband metallic mirror located a distanceL1/2 from it.
Such a scheme is equivalent to the one discussed above~Fig.
1! in a regime similar to collinear synchronism. Upon refle
tion from the mirror a phase shift ofp is added to all three
modes, and thus the polar axis is rotated by 180° in
image of the crystal. A Glan–Thompson prism is used
spatially separate the orthogonally polarized pump (p) and
signal (s). The scheme shown in Fig. 4 is convenient in th
it eliminates the need to exactly align the orientations of
optical axes of the two crystals and significantly reduces
parasitic illumination characteristic of the recording of sma
angle scattering. Frequency tuning is achieved by rota
the crystal in the plane containing the polar axis.

Figure 5a displays an experimental spontaneous p
metric scattering spectrum recorded at the exit of a thr
photon interferometer assembled according to the schem
Fig. 4.5!

A lithium iodate crystal of thicknessL51 mm is placed
in front of an aluminum mirror. The crystal and the mirro
are separated by an air gap of thicknessL1/255 mm. Pump-
ing is provided by a 3-W argon laser with a wavelengthlp

54880 Å. The frequency of the idler photons coupled w
the observed photons is 3770 cm21, and the synchronism
width is 20 Å, which substantially exceeds the frequen
width of the laser line. Figure 5b displays the calculat
frequency-angle distribution of the intensity for the para
eters indicated. The good agreement between the calcu
and experimental spectra justifies an optimistic assessme
the prospects of using a three-photon interferometer.

So far we have assumed that all three frequenciesvp ,
vs , andv i fall within the transparency range of the line
medium, where the dispersion of the dielectric constan
small. The wide spectrum of spontaneous parametric sca
ing, however, makes it possible to closely approach the
ra-
a

n
it
FIG. 5. a—Photograph of a spontaneous pa
metric scattering spectrum taken at the exit of
three-photon interferometer~Fig. 4!. LiIO3 crys-
tal. b—Calculated frequency-angle distributio
of the parametric scattering intensity at the ex
of the interferometer~Fig. 4!.
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FIG. 6. Behavior of the modulation function~a! and
the scattering line shapeg(vs ,us) ~b! in the vicinity
of a dielectric constant resonance with the para
eters «053.5, S50.17, G5150 cm21, and v0

52950 cm21. The thickness of the linear medium
L1510 mm.
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gion of strong dispersion. Let us consider the behavior of
scattering line shape in the case of an isolated resonanc
the intervening medium.

Let the frequency of the pump and signal photons lie,
before, in the transparency range, and let the dispersio
the medium at the idler frequencies be described in
single-oscillator approximation:

«1~v i !5«01Sv0
2

v0
22v i

2

~v0
22v i

2!21v0
2G2 . ~13!

The values of the parameters«0 , S ~the oscillator strength!,
v0 ~the eigenfrequency!, and G ~the damping constant! in
~13! were taken from Ref. 29 for the high-frequency vibr
tion of the O–H group:«053.5, S50.17, G5150 cm21,
andv052950 cm21 (ls55701 Å). Figures 6a and 6b sho
the frequency-angle distributions of the modulation funct
~7! and the scattering intensity~6!, respectively. The inset in
the upper right-hand corner of Fig. 6a illustrates the f
quency dependence«~v! for the above parameters. In th
vicinity of the resonance the behavior of the interferen
bands ~Fig. 6a! is analogous to Rozhdestvenski�’s
‘‘hooks,’’ 28 which are observed near regions with anom
lous dispersion. As follows from Eq.~10!, the frequency po-
sition of the ‘‘hook’’ for the exact synchronism directio
e
of

s
of
e

-

e

-

(]D1 /]vs50) corresponds to equality between the gro
velocities of the signal and idler photons in the linear m
dium:

]

]vs
~n1svs!5

]

]v i
~n1iv i !.

It is obvious that the repetition period of the bands in t
spectrum along the wavelength axis decreases as the
nance is approached:v i→v0 since ]FS /]v i']n1i /]v i .
We emphasize that, according to Eq.~12!, a decrease in the
thickness of the linear layerL1 can be compensated b
strong dispersion of the dielectric constant of the linear m
dium. Hence we have the important result that it is possi
to use three-photon interference to investigate thin disper
films. Thus, the value ofL1 used in the calculation~Fig. 6! is
10 mm.

One of the conditions for observing three-photon int
ference in such a scheme is weak absorption of the i
photons in the nonlinear crystals~4!. In other words, the idler
photons must leave the first crystal and enter the seco
Absorption lowers the contrast of the interference pattern
has essentially no effect on the positions of the interfere
maxima. A large number of nonlinear crystals having lo
absorption in the near-IR range are presently known,30 and
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the question of which one to choose does not pose ser
difficulties for the practical implementation of a nonline
interferometer.

Another contrast-lowering factor arises when the char
teristic angular and frequency scales of the modulation
shape are smaller than the angular divergence and frequ
width of the pump line, respectively. For example, consid
ation of the finite width of the pump line leads to the follow
ing restriction:

l coh@2
c

n1p
L1S 1

us cosq1s
2

1

ui cosq1i
D , ~14!

wherel coh is the pump coherence length,c/n1p is the speed
of light in the linear interval at the pump frequency,us and
ui are the group velocities of the signal and idler radiatio
andq1s andq1i are the corresponding scattering angles
side the linear layer.

3. NONLINEAR-CRYSTAL/NONLINEAR-CRYSTAL SYSTEMS

The frequency-angle line shape for the spontane
parametric scattering of a nonlinear-crystal/nonlinear-cry
system was calculated using the approach developed in
31. The quadratic susceptibilities of the crystals were
sumed to be the same while the refractive indices differ
Such a situation arises, for example, when samples
LiNbO3 are doped with magnesium atoms to prevent opt
damage.32 The Mg concentration strongly influences th
value of the refractive index, especially in the IR region
the spectrum.33 If the thicknesses of the crystals are equal
L andL2 , then the scattering line shape has the form

g~vs ,us!5
1

~L1L2!2 FL2 sinc2
LD

2
1L2

2 sinc2
L2D2

2

12LL2 sinc
LD

2
sinc

L2D2

2
cos

LD1L2D2

2 G ,
~15!

whereD5kp2ks2ki andD25k2p2k2s2k2i are the wave-
vector mismatches in the first and second crystal, resp
tively, which coincide with formula~8!. The normalization is
chosen such that the scattering intensity at the maxim
would be equal to 1 forD5D2 . The first two terms in the
square brackets in~15! take into account the additive rein
forcement of the scattering spectra of the two crystals,
the third term is the interference term. The interference ph
is given by the ‘‘three-photon sum’’ of the optical path
(LD1L2D2)/2. Thus, nonlinear interference is manifested
the configuration under consideration only in the region
intersection of the frequency-angle spectra for the sponta
ous parametric scattering of the two crystals. We note
the scattering line shape is especially sensitive to variat
in the refractive index at any of the three frequencies wheL
andL2 are large. In this case, however, the frequency wi
of the scattering line decreases. Thus, for example, in o
to detect a change in the refractive indexDn;1023 at the
idler frequencyv i55000 cm21, it is sufficient to use a
sample of thickness 1 mm, and in this case the expe
frequency width of the scattering line turns out to be of t
us
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order of 50 cm21. If, on the other hand, the change in th
refractive index at this same frequency is on the order
1024, it becomes necessary to work with a crystal 10 mm
thickness, which corresponds to an order-of-magnitude
crease in the frequency width of the spectrum. In this c
the absorption at the idler frequency can be substantial
the presence of absorption the contrast of the interfere
pattern is reduced; strictly speaking, this description is ap
cable forL, L2!1/a, wherea is the absorption coefficient a
the idler frequency. All this imposes a limit on the accura
of measurements of the refractive index

Dni;ca/v i ,

i.e., the real part of a wave vector can be measured onl
within the magnitude of its imaginary part. A similar prob
lem arises in ordinary polariton scattering spectrosco
where the real part of the dielectric constant at a given
quency is determined from the position of the maximum
the angular spectra~to within an order of the line width!.34

Figure 7 displays a family of calculated frequency d
tributions of the spontaneous parametric scattering inten
for collinear synchronism. Both crystals are magnesiu
doped lithium niobate (L5L251 mm).35 The value of the
refractive index at the idler frequency in the second crys
which is more sensitive to variations in the magnesium c
centration, serves as a parameter.33 It can be seen that a
deviation of the refractive index by 0.002 markedly disto
the scattering line shape. ForDni>0.005 the influence of the
interference term is considerably less due to the weak o
lap of the spectra of the two crystals.

In conclusion, we note that the three-photon interf
ence, by virtue of its high sensitivity and stability, might b
useful in monitoring the presence of impurities in optic
materials~especially if the impurity has resonances in t
transparency band of the crystals employed!, in the investi-
gation of thin dispersive films, etc.

Also, we hope that the use of three-photon interfero
etry will raise the accuracy of standard SPS spectroscop
determining the frequency dependence of the refractive
dex in nonlinear crystals and, in particular, in estimati
their degree of spatial homogeneity and monitoring th
twinning structure. Finally, interferometers of this kind ca
be used to study induced variations in the refractive index
photorefractive crystals. In one of the possible experimen

FIG. 7. Frequency line shape for scattering in two LiNbO3 crystals with
different values of the refractive index at the idler frequency. HereL5L2

51 mm, and the pump wavelength is 4880 Å.
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setups the crystal investigated is placed in the gap betw
two crystals of a different nonlinear material, which is inse
sitive to the radiation, and the interference pattern is
served as a function of the pump intensity. Typical values
the change in the refractive index in weakly photorefract
crystals ~such as, for example, magnesium-doped lithiu
niobate! in the transparency region can amount to 1024

21025 ~Ref. 36!, and crystals of thickness 1–10 cm a
needed to detect such changes.

We are grateful to D. N. Klyshko for helpful advice
This work was carried out with the financial support from t
Russian Fund for Fundamental Research~Grant No. 97-02-
17498!.

* !E-mail: postmast@qopt.ilc.msu.su
1!Usually the pump and signal frequencies lie in the transparency band o

crystal, while the idler frequencies fall in the IR range, including the
gions of strong lattice absorption.

2!We are actually referring here to the set of parameters to which the
quency dependence of the refractive indexn1(v) of the material under
investigation~including linear materials! is sensitive: temperature, pres
sure, humidity, doping level, presence of impurities, etc.

3!For linear diffraction the first factor, which also has the functional fo
sinc(pb/l), describes diffraction of a plane wave by one slitb, and the
second describes interference of the fields of the two sources: cos(pd/l).
The phase of the interference pattern is determined by the distance be
the slitsd.

4!Both families of spectra were obtained using crossed dispersion.28,4

5!The first photograph of a frequency-angle spectrum for spontaneous
metric scattering under the conditions of nonlinear Mach–Zehnder in
ference in two crystals is shown in Ref. 20. The signal and idler phot
belong to the visible range.
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Influence of Coster–Kronig transitions on the polarization of L-shell x rays induced
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The alignment parameters forL3-subshells of Cd and Sb atoms are obtained by measuring the
degree of polarization of theL1-lines excited by proton impact in the range from 0.1 to
0.5 MeV. To compare the experimental alignment parameter with theory, either experimental or
numerical results must be corrected for Coster–Kronig~CK! transitions. The uncertainty in
CK transition yields makes this comparison difficult. In this work, semiempirical values of the
corrections have been derived from measuredL-line intensities. The semiempirical
correction factors exceed the theoretical ones. For constant reduced velocity, the semiempirical
correction factor depends on the atomic number of the target. The semiempirical correction
factor obtained in the same experiment improves the agreement between the theoretical alignment
parameter and the experimental data. ©1998 American Institute of Physics.
@S1063-7761~98!00606-4#
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1. INTRODUCTION

The alignment of atomic inner shells induced by ion im
pact has been the object of extensive theoretical and ex
mental investigations, because it provides a more sens
test of theoretical models and atomic wave functions than
total excitation and ionization cross sections. Alignme
leads to emission anisotropy and x-ray polarization, wh
can influence measurements of the x-ray production c
sections in ion–atom collisions. We have studied prot
induced cadmium and antimonyL3 subshell alignment by
measuringL1 x-ray line polarization.

To better test theory, an effort should be made to elim
nate effects that hinder comparison of theory and exp
ment. To compare the experimental alignment param
with theory, either experimental or numerical results must
corrected for Coster–Kronig~CK! transitions. Presen
knowledge of the CK ratesf 12, f 13, and f 23, which describe
the probability of vacancy transfer fromL1 to L2 and L3

subshells and fromL2 to L3 subshells, respectively, is unsa
isfactory, given the paucity and low accuracy of the expe
mental and numerical data. This is particularly true in t
region of the periodic table around atomic numberZ550,
where the onset of theL1-L2-M4,5 and cutoff of the
L1-L3-M4,5 CK transitions occur.1 The onset and cutoff o
CK transitions at certain atomic numbers cause sharp dis
tinuities in the initial-state lifetimes as functions of atom
number. This results in a dramatic change in the associ
yields.1–3 Rosato’s results4 show no sharp discontinuities i
the range 47<Z<53. The exact location of these cutoffs
also somewhat uncertain.

The uncertainty in the Coster–Kronig yields makes
accurate comparison of experiment and theory difficult.
1091063-7761/98/86(6)/3/$15.00
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avoid these uncertainties, we derive the correction fac
from measurements of theL x-ray line intensities.5 In this
work we also study the effect of the abrupt change of the
transition probability aroundZ550 on the measured align
ment ofL3 subshell vacancies.

2. EXPERIMENT

The experimental work was carried out at the 0.5 Me
Cockcroft–Walton generator at the Institute of Nuclear Ph
ics of Moscow State University. A Soller type~flat crystal!
x-ray spectrometer–polarimeter was used to measure th
tensity and polarization of theL x-ray lines. The experimen
tal setup is described in detail elsewhere.6 Protons of 0.1
MeV to 0.5 MeV energy were used. The collimated prot
beam was stopped by a thick target. The target was orie
at 45° to the incoming beam. The incident beam intens
was monitored by a current integrator. The x rays emit
perpendicular to the beam axis were analyzed by the s
trometer, which was equipped with a graphite crystal (d
56.71 Å). The energy resolution of the spectrometer w
E/DE5600.

A polarization experiment with the crystal spectrome
can be carried out, due to the linear polarization depende
of the crystal diffraction. The polarizationP is defined by

P5
1

Q

~Ji2J'!

~Ji1J'!
, ~1!

where Q is the polarization sensitivity of the crystal. Th
alignment parameterA20 can then be deduced from the p
larizationP,
8 © 1998 American Institute of Physics
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A205
2P

a~P23!
, ~2!

wherea is a constant determined by the angular moment
of the initial and final states.7 In our experiment we used
thick target, so the experimental alignment parameter is
rected for the energy loss of protons and for the absorptio
x rays in the target.8 Errors in the alignment parameter a
mainly due to errors in the determination of theL1 and Lb

yields, which are caused by statistical fluctuations, ba
ground substraction, and fitting procedures. The EWA co9

was used to evaluate the spectra. As a rule, the statis
error in the measurements of the degree of polarization d
not exceed 1%.

To determine theLa x-ray production cross sections, w
measured theLa x-ray line yields as a function of inciden
particle energy. The x-ray production cross section can
determined from these measurements by the method and
mulas described by Merzbacher and Lewis.10 The proton
stopping power was taken from Andersen and Ziegler.11 The
absorption coefficient was calculated by averaging the d
of Storm and Israel.12 The x-ray production cross section
were determined to 15% accuracy.

3. RESULTS AND DISCUSSION

The alignment parameter can be inferred from meas
ments of the proton-inducedL1 line polarization. To com-
pare experimental and theoretical alignment parameters
should take into account possible changes in theL subshell
populations due to Coster–Kronig transitions~indirect for-
mation of a vacancy in theL3 subshell!. In proton–atom
collisions, vacancies are also produced in theL1 andL2 sub-
shells, which then decay via Coster–Kronig transitions,
the number ofL3 vacancies increases. The alignment ofL1

andL2 vacancies is zero, so that this two-step process le
to a decrease inL3 vacancy alignment. The alignment p
rameter correction factorF is

A205FA20
exp, ~3!

F511 f 23

s2

s3
1~ f 131 f 12f 23!

s1

s3
, ~4!

wheres i is theLi subshell ionization cross section, andf i j

are the Coster–Kronig yields.
The uncertainty in the Coster–Kronig yields makes

difficult to compare experiment and theory accurately. In
der to eliminate this uncertainty, we determine the correct
factor F from our measuredLa x-ray production cross sec
tions. This cross section is defined as

sa5v3

Ga11Ga2

GR3

S 11 f 23

s2

s3
1~ f 131 f 12f 23!

s1

s3
Ds3 .

~5!

From this equation, the correction factor is

Fexp5
GR3

Ga11Ga2

sa

v3s3
. ~6!
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As experimental data onv3 for elements aroundZ550
are incomplete, we have taken the fluorescence yieldv3

from Ref. 3 and the radiative transition ratesGa1 ,Ga2 ,GR3

from Ref. 13. Here we have not used the experimental va
of s3 , because these data are found with Eq.~5! based on
measurements ofLa line intensities, using the CK yields, an
the basic parameters (v i , f i j andG! can strongly affect the
final results. The ionization cross sections3 was calculated
in terms of the so-called ECPSSR theory of Brandt a
Lapicky,14,15 which is a derivative of the plane wave Bor
approximation with corrections for ion energy loss effec
~E!, Coulomb repulsion~C!, polarization and binding-energ
changes via perturbed stationary states~PSS!, and relativistic
effects~R!. Obviously, the uncertainty in thev3 , which can
change in the course of the collision, increases the un
tainty in the semiempirical correction factor. References
and 17 examine the influence of line shape and the sate
contribution on the interpretation of data in the measu
ments of x-ray spectra, and show that ignoring line sha
effects can lead to systematic errors. In the present wor
was assumed that satellite structure~in particular, the CK
satellites! can be ignored in analyzing the spectra. It is cle
that disregard of line shape effects and the fact that satel
contribute to polarization measurements can lead to syst
atic errors in measurements of the alignment parameter
in the semiempirical correction factor.

Figure 1 presents the semiempirical correction fact
Fexp for Cd and Sb atoms obtained using Eq.~6! with thesa

values measured in this experiment. The same figure sh
the correction factors calculated with Eq.~4!, usings i cal-
culated within the ECPSSR theory and the CK yields tak
from Ref. 3. It can be seen that the semiempirical correct
Fexp exceeds its theoretical value. It is also seen that
correction factors depend on collision velocity (v/v0)2 (v is
the proton velocity andv0 is the Bohr velocity ofL3 elec-
trons!, and reach their minimum when the reduced veloc
is about (v/v0)250.1. This minimum results from a mini
mum in the ratios1 /s3 of cross sections for ionization ofL1

and L3 subshells of atoms.18 The minimum in thes1 /s3

ratio is due to the node of the 2s-electron wave function. The
discrepancy betweenFexp and the theoretical value is partl
due to the incorrect calculated ionization cross sections. N
ertheless, we believe that the semiempirical correction fa
is more accurate, as it contains more accurate basic pa
eters.

In Fig. 2 we compare the experimental alignment para

FIG. 1. Correction factor for CK transitions vs. reduced velocity.n—Cd,
s—Sb. Dashed lines are drawn through the experimental data to guide
eye. The solid lines are the result of the calculation.
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eterA20
exp for Cd and Sb atoms with the alignment paramet

corrected as described above, andA20 calculated in the Born
approximation by the method and equations of Ref. 19
can be seen that when the semiempirical correction fac
Fexp are used, the agreement with the experimental data
proves.

Based on measurements ofLa x-ray production cross
sections, we determined the semiempirical correction fac
for elements ranging fromZ545 to Z551. The semiempir-
ical correction factors obtained for reduced veloc
(v/v0)250.02, together with the calculated correction fa
tors, are presented in Fig. 3a as functions of the atomic n
ber of the target. The decrease in the theoretical valuesF
aroundZ550 is evident, and correlates with the decrease
f 13 CK transition yield~see Fig. 3b!. The f 13 reduction is due
to the fact that theL1-L3-M4,5 CK transition becomes ener
getically forbidden. From this figure it is evident that there
no agreement of theoretical correction factors with exp
mental ones. The experimental results do not indicate
visible change in the correction factor aroundZ550.

Summarizing, we conclude that accurately corrected v
ues of the alignment parameter have to be introduced in
der to reach good agreement between theoretical and ex
mental alignments. As the Coster–Kronig yield can chan
in the course of the collision~post-collision interactions
multiple ionization, chemical effects!, the semiempirical cor-
rection factor obtained in the same experiment that meas
the alignment parameter is a more realistic one. But even
the uncertainty due to errors in theL3 subshell fluorescenc
yield and ionization cross sections remains. TheZ depen-
dence of the correction factor is smooth, and the experim
tal results do not show sharp discontinuities anywhere wit
the range 47<Z<51.

It is a pleasure for us to thank Dr. N. M. Kabachnik f
calculations and Dr. T. Papp for helpful discussions a
comments.

FIG. 2. L3 subshell alignment parameter vs. reduced velocity. Experime
data: ,—Cd, d—Sb without correction;n—Cd, s—Sb with correction
for CK transitions. The curve presents the calculation in the Born appr
mation.
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The evolution of two spatially separated light beams in a nonlinear Kerr medium described by a
system of coupled nonlinear Schro¨dinger equations is studied. An analytic solution is
found for the variational problem. It is shown that when two crossed beams interact, a bound
state can develop in which the distance between the centers of the beams and their radii
vary periodically. Here the mutual curvature of the trajectories of the centers of the beams causes
the beams to bend into a helical structure whose parameters~pitch and diameter! are also
periodic functions. The threshold power for mutual trapping is determined and the period of the
oscillations is found. ©1998 American Institute of Physics.@S1063-7761~98!00706-9#
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1. INTRODUCTION

The evolution of a light beam in a nonlinear dispersi
medium is a typical problem in nonlinear optics and has b
studied now for two or three decades. But interest in t
problem has not flagged. An example of this continued
terest is research on the formation of small-scale transv
structures in the electromagnetic field~diffraction autosoli-
tons!, dislocations in the wave front, and the interaction
these dislocations.1–4 When a broadband interferometer
excited by radiation of this type, the autosoliton is scatte
on the dislocation and it is trapped, with the buildup of r
tation about the dislocation. In a semi-infinite nonlinear m
dium, the same effect leads to a rotation of the electrom
netic field structures in space as the radiation propagates
the medium.3

In the initial stage of these studies attention was focu
on studies of a single beam, but recently, systems of
beams have been studied.5–9 There are a number o
papers10–14 that examine bound states in which pulses w
different polarization states propagate in the form of tw
component~vector! solitons. The spacetime analogy makes
possible to transfer the results obtained for pulses to a
scription of a noncollinear interaction of wave beams.15 It is
natural to expect that, besides the well known effects of s
focusing and beam bending, when the self- and cro
modulation effects are combined the interaction of two s
tially separated light beams can lead to a mutual bendin
the ray trajectories and mutual trapping. An effect of th
sort, referred to as the ‘‘entrainment’’ of light beams, w
recently predicted theoretically and studied experiment
using second harmonic generation in a quadratic medium7,8

It should be noted that the interaction of noncolline
light beams in a Kerr~focusing and defocusing! medium has
been studied in a two-dimensional geometry,16,17 where it
was assumed that the beams propagate either parallel o
tiparallel to one another. A case in which a beam is reflec
from a mirror and Snell’s law is violated was also examine

The many studies of spatial solitons in photorefract
media18–24 are another example of the active research
1101063-7761/98/86(6)/6/$15.00
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progress on the interaction between beams of electrom
netic radiation.

In this paper we examine the interaction~owing to cross-
modulation of the refractive index! of two spatially separated
light beams in a nonlinear Kerr medium. To simplify th
problem it is assumed that although the radii of the bea
vary, they remain identical all the time. As in orthogona
polarized coaxial beams,9 monotonic and oscillatory propa
gation regimes are found. In the case of crossed~noncopla-
nar! beams, the oscillatory regime~mutual trapping! is char-
acterized by a spatial rotation of the beams, with the ang
rotation velocity which determines the pitch and diameter
the helices being a periodic function of the propagation va
able.

In Kerr media, beams are unstable: they either exp
ence collapse or they spread out. The analysis of be
propagation considered here assumes that their power di
slightly, on the low side, from the threshold power requir
for self-focusing of an isolated beam. The estimates given
the Conclusion show that it is possible to choose beam
rameters such that the diffraction spread of the beams
slow process compared to helix formation.

2. DERIVATION OF THE BASIC EQUATIONS

In an isotropic Kerr medium with an instantaneous
sponse, the refractive index can be assumed to depend
early on the intensity in many cases. For an incoherent
perposition of the two waves

E15e1u~x,y,z!exp$ ik cos~w1z!1 ik'1•r'12 ivt%

1c.c.,

E25e2v~x,y,z!exp$ ik cos~w2z!1 ik'2•r'22 ivt%

1c.c.,

the permittivity for wavei can be written in the form15

« i5«~0!1«~2!uEi u21«c
~2!uEj u2, i , j 51,2, iÞ j .
1 © 1998 American Institute of Physics
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Herek5(v/c)A« (0), ei are the unit vectors of the waves,w i

are the angles of incidence of the beams at the boun
z50, and« (2) and«c

(2) are nonlinear coefficients correspon
ing to self- and cross-modulation, respectively. In the follo
ing we assume that the directions of beam propagation d
ate little from thez axis—so little that the factors exp(ik' i–r )
can be included in the slowly varying envelopesu(x,y,z)
and v(x,y,z). We assume that the region within which th
electric field varies in the transverse direction is mu
smaller than the region within which it varies in the longit
dinal direction. Following the standard procedure for co
structing an evolution equation for the slowly varying env
lope, one can obtain a system of coupled nonlin
Schrödinger equations:

i
]u

]z
1s¹'

2 u1m~ uuu21«uvu2!u50,

i
]v
]z

1s¹'
2 v1m~ uvu21«uuu2!v50, ~1!

where

s5
1

2k cosw1
'

1

2k cosw2
, m5

k«~2!

2«~0! ,

«5
«c

~2!

«~2! , ¹'
2 5

]2

]x2 1
]2

]y2 .

It can be shown14,25–27that the system of Eqs.~1! has the
same form as the Euler equations generated by the v
tional problemdS50, where the action functional is define
as

S5E
2`

`

^L&dz ~2!

with the lagrangian

^L&5E
2`

`

dxE
2`

`

L dy, L5Lu1Lv1Luv ,

where

Lu5
i

2 S u*
]u

]z
2u

]u*

]z D2sU]u

]xU
2

2sU]u

]yU
2

1
m

2
uuu4,

Lv5Lu~u→v !, Luv5m«uuu2uvu2.

We seek a solution of the variational problem in the class
trial functions of the form

u~x,y,z!5A1~z!expS 2
ur2r1~z!u2

2a2~z!
1 if1~x,y,z! D ,

v~x,y,z!5A2~z!expS 2
ur2r2~z!u2

2a2~z!
1 if2~x,y,z! D , ~3!

f i~x,y,z!5B~z!ur2r i~z!u21Ci~z!@x2xi~z!#

1Di~z!@y2yi~z!#1a i~z!,

wherer5exx1eyy, and r i(z)5exxi(z)1eyyi(z) are the ra-
dius vectors of the beam centers. The choice of Gaus
trial functions was justified previously26; furthermore, it is
ry

-
i-

-
-
r

ia-

f

an

easier to calculatêLuv& for these trial functions. We note
also that the phasesf i(x,y,z) account for the transvers
components of the wave vectors of the carrier wave in
initial representation of the electric field strengths of the t
waves.

Substituting Eq.~3! in Eq. ~2! and calculating the varia
tional derivatives yields equations for the extremum of t
action ~2! ~i , j 51,2; iÞ j !:

a2~z!Ai
2~z!5a2~0!Ai

2~0!5Ei , ~4a!

da~z!

dz
54aa~z!B~z!. ~4b!

2(
k51

2 F22a2S dB

dz
14sB2D1CkS dxk

dz
2sCkD

1DkS dyk

dz
2sDkD2

dak

dz
1

m

4
Ak

2GAk
2

1m«A1
2A2

2S 11
R2

2a2DexpS 2
R2

2a2D50, ~4c!

2F2a2S dB

dz
14sB2D2

s

a2 1Ci S dxi

dz
2sCi D G

12FDi S dyi

dz
2sDi D2

da i

dz
1

m

2
Ai

2G
1m«Aj

2expS 2
R2

2a2D50; ~4d!

dxi

dz
52sCi ,

dyi

dz
52sDi , ~5a!

dCi

dz
5~21! iAj

2~x12x2!
m«

2a2 expS 2
R2

2a2D ,

dDi

dz
5~21! iAj

2~y12y2!
m«

2a2 expS 2
R2

2a2D , ~5b!

HereR(z)[uR(z)u5ur1(z)2r2(z)u.
After some transformations, Eqs.~4! reduce to an equa

tion for the radiusa(z) of the beams:

d2a

dz2 5
s

a3 F4s2mW~12d!

2m«WdS 12
R2

2a2DexpS 2
R2

2a2D G , ~6!

where W5E11E2 is the total power of the beams andd
52E1E2(E11E2)22 is a dimensionless quantity characte
izing the ratio of the beam powers, with 0,d<0.5.

The self-interaction of beams in a focusing Kerr mediu
is determined15 by the competition between two factors: di
fraction ~first term on the right-hand side of Eq.~6!! and
nonlinear compression~second term!. The term~proportional
to «! corresponding to the interaction between beams in
~6! can be regarded as a measure~strength! of the influence
of one beam on the other. When the variables change in
regionR,A2a, this force increases the nonlinear compre
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sion, and when they change in the regionR.A2a, it weak-
ens it. In particular, as will be shown below, the radii c
oscillate ~like the oscillations found in Ref. 9!, which is a
qualitative difference from the case of self-action.

Using the expression R(z)5@x1(z)2x2(z)#ex

1@y1(z)2y2(z)#ey , we can reduce Eqs.~5! to the form

d2R

dz2 52R
sm«W

a4 expS 2
R2

2a2D . ~7!

Equation~7! makes it possible to find an integral of the m
tion,

R3
dR

dz
5Mez , M5const. ~8!

With Eq. ~8!, Eq. ~7! yields

d2R

dz2 5
M2

R3 2R
sm«W

a4 expS 2
R2

2a2D . ~9!

Thus, the system of first-order equations for the para
eters of the trial functions reduces to a system of two seco
order equations~6! and ~9! for the radiusa(z) and the dis-
tanceR(z) between the beam centers.

Let us introduce polar coordinates in thex,y plane,

Rx~z![x1~z!2x2~z!5R~z!cosc~z!,

Ry~z![y1~z!2y2~z!5R~z!sin c~z!,

which then yield an equation forc(z) from Eq. ~8!:

dc

dz
5

M

R2~z!
. ~10!

The polar anglec(z) amounts to the angle of rotation of th
vector R(z) joining the beam centers. When the beams
not interact and are parallel (M50), R(z) is a constant vec-
tor. When the beams do not interact and are noncopla
this vector varies in direction and magnitude, but the ove
angle of rotation ofR(z) in thexy plane does not exceedp.
The bending of the beams owing to their interaction chan
the maximum value of the overall angle of rotation; for e
ample, if this angle should exceed 2p, then we can speak o
helical bending of the beams.

Before proceeding to solve the system of Eqs.~6! and
~9!, we can simplify the problem, without loss of generalit
by making the following choice of boundary conditions:

1. Let the coordinate origin in the planez50 on the
segment joining the beam centers be chosen from the co
tion E1r1(0)1E2r2(0)50 and the direction of thex axis be
chosen to be alongR0[R(0); thenc(0)50.

2. Choose the parallel planes in which the axes of
beams incident upon the boundaryz50 to be perpendicula
to the boundaryz50; then these planes become the plan
of incidence of the beams.

3. Choose the angles of incidence of the beams,w1 and
w2 , to be such thatE1 tanw15E2 tanw2.

The physical significance of the vectorsṙ1(0) and
ṙ2(0)50 ~the initial values of the derivatives ofr1,2 with
respect toz! is clear from the equationsu ṙ1(0)u5tanw1 and
u ṙ2(0)u5tanw2. We choose the direction of incidence of th
-
d-

o

r,
ll

s

di-

e

s

beams so that when the second and third conditions are
isfied, the equationE1ṙ1(0)1E2ṙ2(0)50 is satisfied. Then
an explicit expression for the constantM can be written in
the form

M5R0R08 tan b5R0~ tan w11tan w2!sin b, ~11!

whereR08[dR/dzuz505(tanw11tanw2)cosb, with b being
the angle between the initial directions ofR and the deriva-
tive of R with respect toz. To enlarge the beam interactio
region, it is necessary to putR08<0, i.e., b>p/2, in the
following.

3. SOLUTION OF THE EQUATIONS OF THE VARIATIONAL
PROBLEM

The system of Eqs.~6! and ~9! has two conservation
laws:

Wa2~z!1mR2~z!5P2z21P1z1P0 , ~12!

P25WS da

dzD
2

1mS dR

dzD 2

1
sW@4s2mW~12d!#

a2

1
mM2

R2 2
sm«W2d

a2 expS 2
R

2a2D , ~13!

where m5dW/25E1E2(E11E2)21, P152Wa0a08
12mR0R08 , a05a(0), andP05Wa0

21mR0
2.

Let us introduce the new variables

Wa2~z!5r2~z!t~z!, mR2~z!5r2~z!~12t~z!!. ~14!

In terms of the new variables, Eqs.~12! and ~13! take the
form

r2~z!5P2z21P1z1P0 , ~15!

P25S dr

dzD
2

1
r2

4t~12t ! S dt

dzD
2

1
sW2@4s2mW~12d!#

r2t
1

m2M2

r2~12t !

2
sm«W3d

r2t
expS t21

dt D . ~16!

By separating variables in Eq.~16!, we can obtain a genera
analytic solution of Eqs.~6! and ~9!:

2E
0

z dz

p2z21p1z1p0
5E dt

AG~ t !
, ~17!

G~ t !5st~ t02t !1~12t !FD~ t02t !1lt1expS t21

dt D
2

t

t0
expS t021

dt0
D G , ~18!

where, according to Eqs.~11! and ~13!,

s5
a0

2~R08!2 tan2 b

2sm«Wt0
, t0[t~0!5

Wa0
2

Wa0
21mR0

2 ,

D5
mW~12d!24s

m«Wdt0
, l5

~a0R082r 0a08!2

2sm«W
,
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pj5
Pj

Asm«W3d
, j 50,1,2. ~19!

The description of the dynamics of the system becomes c
plete after integrating Eq.~10!:

c~z!5
M

4
A d

sm«W E dt

~12t !AG~ t !
, ~20!

where we have used Eqs.~14! and ~17!.
Equations~17! and ~20! are an exact solution of th

variational problem. However, Eqs.~17! and~20! are unsuit-
able for further analytic study, since the integrals on
right-hand side with the expression~18! under the radical
sign cannot be expressed in terms of any known functio

In the next section, a qualitative analysis of Eqs.~17!
and ~20! is used to obtain the general features of the mo
tonic propagation regime for spatially separated light bea
with principal attention devoted to the oscillatory regim
Approximate solutions of Eqs.~17! and ~20! are obtained
that describe the bound state~oscillatory regime!, and the
range of parameters over which this state is realized is de
mined analytically.

4. ANALYSIS OF THE SOLUTION

A study of the integrals in Eqs.~17! and~20! shows that
the beam dynamics are qualitatively determined by the
havior of the functionr2(z) and the zeroes of the function
G(t) in Eq. ~18!.

If the total powerW of the beams is less than the critic
value Wcr54s@m(12d)#21, then the parameterD,0, the
zeroest1 and t2 of G(t) lie within the limits 0,t2,t0,t1

,1 and, sinceP2.0 in this case, the beams undergo mon
tonic diffraction spreading. Here the interaction leads to
negligible mutual deflection of the beams.

When the total power exceeds the critical value,D.0
and one of the zeroes ofG(t) becomes negative. Ift0

P(0,t1), wheret1 is a zero ofG(t), then, according to Eq
~14!, upon reachingt50 the light beams collapse to a finit
distancezcoll determined from the conditiont(zcoll)50.

These results are consistent with the well known s
focusing behavior of light beams, so in the following w
concentrate on studying the oscillatory propagation reg
and on determining the spatial rotation parameters of
beams. The above discussion implies that in principle,t(z)
can vary periodically only whenG(t) has three zeroes in th
interval ~0,1! and the initial valuet0 lies within an interval
that does not contain the pointt50. If the total power is
much higher than the critical value, so thatP2,0, then the
functionr2(z) goes to zero at a finite distance, which corr
sponds to collapse and ‘‘adhesion’’ of the beams. Thus, th
is yet another condition for the existence of a periodic so
tion, r25const.

The conditionr25const is equivalent to the three co
ditions P150, P250, andr25P0 . Thus,

P150→a0852
d

2

R0

a0
R08 , ~21!
-

e

.

-
s,
.

r-

e-

-
a

-

e
e

-
re
-

and since it was assumed thatR08<0, it is necessary to se
a08>0, i.e., at the boundary of the medium the beams m
have positive wavefront curvature. This implies external d
focusing of the beams.

Using Eq.~21!, we rewrite Eq.~19! for s as

s5lt0 tan2 b5
a0

2~R08!2 tan2 b

2sm«Wt0
, ~22!

so that the conditionP250 can be written explicitly as

W5Wthr[WcrF11
da0

2~ tan w11tan w2!2

8s2

3S 11
12t0

t0
cos2 b D G . ~23!

Equation~23! determines the threshold powerWthr at which
mutual trapping of the beams takes place, sinceW,Wthr

→P2.0 and W.Wthr→P2,0, which correspond to the
cases discussed above.

Now we have to find the relationships among the para
eters such thatG(t) will have three zeroest1,2,3 with 0,t3

,t2,t1,1 andt0P(t2 ,t1). Given Eqs.~21!, ~22!, and~23!,
Eq. ~18! for G(t) transforms to

G~ t !5s~ t02t !1~12t !Flt01expS t21

dt D
2

t

t0
expS t021

dt0
D G . ~24!

An analysis of this expression shows that the desired si
tion occurs only for d.0.4 ~which corresponds to
E1 /E2 (or E2 /E1),2!, i.e., the beam powers must b
similar. When this condition is satisfied, Eq.~24! can be well
approximated by the polynomial

Ga~ t !5lt0~12t !1~ t02t !@s2t2~12t !#, ~25!

for which, as opposed to the exact expression~24!, it is pos-
sible to determine the desired range of the parameterss, t0 ,
andb analytically.

Let the inequalities

s,
2

27
, t0.t* , tan2 b.

1

t02t8 S t8

s
2

1

12t8D
21

,

~26!

be satisfied, wheret* is the root of the trinomials2t2(1
2t) closest to the zero from the right, andt8 corresponds to
the local minimum of the function (t02t)@s2t2(12t)#.
Then the fourth-degree polynomialGa(t) ~25! has four real
roots t1,2,3,4with t4,0,t3,t2,t0,t1,1.

Note that the lower bound ont0 leads to an upper boun
on the ratioR0 /a0 :

R0

a0
5A2~12t0!

dt0
,A2~12t* !

dt*
.

The condition for applicability of the trial function
method in problems of this type is that the beams be far fr
one another. In order for the beams to be regarded as di
ent, it is necessary to setR0.2a0 , which imposes an uppe
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bound ont0 : t0,(112d)21. At the end of this section, we
present numerical estimates showing that both conditions
be satisfied. We note additionally that the last inequality
Eq. ~26! can always be satisfied by choosing the angleb to
be close enough top/2. Equations~21!, ~22!, ~23!, and~26!
determine the parameter domain within which the oscillat
regime occurs.

Replacing the exact expression in Eqs.~17! and ~20! by
the approximationGa(t), we obtain an approximate solutio
of the problem,

R~z!5R0A12t~z!

12t0
, a~z!5a0At~z!

t0
,

c~z!5
As~12t0!

12t3
H F~w~z!,k!2F~w0 ,k!

1
t22t3

12t2
@P~w~z!,n,k!2P~w0 ,n,k!#J . ~27!

Here

t~z!5
t2~ t12t3!2t3~ t12t2!sn2 w~z!

~ t12t3!2~ t12t2!sn2 w~z!
,

w~z!5F~w0 ,k!1
A~ t12t3!~ t22t4!

p0
z,

w(z)5am(w(z)) is the amplitude and sn(w(z)) is the Jacobi
elliptic sine;F(w,k) andP(w,n,k) are the incomplete Leg
endre elliptic integrals of the first and third kinds, respe
tively; and,

k25
t12t2

t12t3

t32t4

t22t4
, n5

t12t2

t12t3

12t3

12t2
, w~ t2!50.

w~ t0!5w0[sin21At12t3

t12t2

t02t2

t02t3
, w~ t1!5

p

2
.

The approximate solution~27! determines the dynamics o
the system approximately: the distance between the b
centers ~helix diameter! varies periodically betweenRmin

5R0A(12t1)/(12t0) ~here amax5a0At1 /t0! and Rmax

5R0A(12t2)/(12t0) (amin5a0At2 /t0), while the angle of
rotation increases nonuniformly over a periodzp by an
amount cp , i.e., the pitch of the helix is also a period
function. For numerical estimates of the parameterszp and
cp of the periodic structure, we can use the exact express

zp5p0E
tmin

tmax dt

AG~ t !
,

cp5As~12t0! E
tmin

tmax dt

~12t !AG~ t !
. ~28!

Here tmax and tmin are the zeroes ofG(t) ~Eq. ~24!! corre-
sponding to the rootst1 andt2 of the polynomialGa(t) ~25!.

Using the procedure with Eqs.~21!–~23!, ~26!, and~28!
described above, we can optimize the given parameters.
ing s.0.03, t0.0.3, andb.100°, we obtaincp.p, i.e., a
complete turn~c52p! occurs over a distancez2p.2zp . The
integration is over limits fromtmin.0.288 (t2.0.271) to
an
n

y

-

m

ns

k-

tmax.0.978 (t1.0.968); the variables vary over the limit
1.01>R/R0>0.18 and 0.98<a/a0<1.81 for an initial R0

.3.3a0 . The magnitude ofzp for given s, t0 , andb is de-
termined by the magnitude ofa0 and is ;10 cm for a0

;10 mm. The initial divergence of the beams~external de-
focusing! a08 is of order 1023, which corresponds to diffrac
tive divergence for Gaussian beams. For estimates, we
the coefficients« and« (0) equal to unity and the frequency o
the carrier wave ton'1015 s21.

5. CONCLUSION

In this paper we have used a variational technique
study the mutual effect of two spatially separated light bea
owing to cross-modulation of the refractive index in a cub
nonlinear medium. The interaction is attractive in nature a
causes the ray trajectories to bend. Under the conditions
termined here, crossed beams are trapped into a bound
which causes them to rotate in space. Since the rate of r
tion is an oscillatory function, the spatial parameters of
helical structure~pitch, diameter! vary periodically.

In our model, an oscillatory regime that is not limited b
collapse will be realized for beam powers that are equa
close in magnitude. This property is evidently a conseque
of our assumption that the beam radii behave in the sa
way, i.e., it is inherent only to the model chosen here. If
assume that the beam radii are different in the trial functio
for the variational method, then instead of the system of t
equations,~6! and ~9!, we obtain a system of three secon
order equations for the radii and the distances between
beam centers. No analytic solution can be found for t
system of equations.

We have not dwelt here on the change in phase of b
of the beams, although these quantities are taken into
count in the trial functions~3! used here. The variationa
problem yields equations for the evolution of the phasesf1

andf2 along thez axis and in thexy plane, which are not
coupled to the equations~4! considered here. Howeve
given the solution of the system of Eqs.~4!, it would be
possible to calculatef1 and f2 by direct integration. This
problem might turn out to be extremely attractive if we a
interested in the topological properties of the wave front,
for example in a study of dislocations in a wave front.4,5,28–30

The difference in phase of neighboring beams is extrem
important when they propagate in quadratic media,7,8 where
Eqs. ~4! acquire additional terms that account for the pa
metric interaction of the beams.

The interest in spatial optical structures is based on
possibility, in principle, of using them for information
processing.31,32 The rotation of optical beams considere
here can obviously be used in simple optical switchi
schemes, since it does not require the creation of spe
conditions~e.g., feedback! to operate. Further studies of th
model developed here with differing beam radii will be us
ful from the standpoint of studying the mutual effect
beams on collapse, or from a more general standpoint, of
control of light by light.33
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Influence of the nonlocal nature of fluctuations on coherent effects in multiple
scattering
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We solve the Bethe–Salpeter equation that describes radiation transfer in highly inhomogeneous
media with an anisotropic scattering with allowance for the contributions of Legendre
polynomials of the zeroth, first, and second degrees. An analytical expression for the radiation-
transfer propagator is derived. We show that as the average value of the second-degree
Lagrange polynomial increases, the region where the diffusion approximation is valid shifts toward
large distances. Within this approach we calculate the coherent backscattering intensity and
study the effect of higher-order moments on the angular dependence of this intensity. Finally, we
show that it is possible to experimentally detect the coherent backscattering peak in the
critical region. © 1998 American Institute of Physics.@S1063-7761~98!00806-3#
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1. INTRODUCTION

During recent years extensive study, both theoretical
experimental, has been in progress in the field of interfere
effects in multiple scattering of light~see the review articles
in Refs. 1–5!. A consistent theory of these effects has be
developed for systems of point scatterers or for an inhom
geneous medium in which the spatial dispersion of the st
ture factor is small compared to the wavelength of the in
dent radiation. However, most experiments have b
conducted with systems in which the spatial dimensions
the inhomogeneities are comparable to the wavelength o
radiation or are larger.

Allowing for the finite size of the scatterers usual
amounts to replacing the photon mean free pathl by the
transport length6,7 l * 5 l /(cosu), wherecosu is the average
cosine of the single-scattering angle. It is assumed that
results obtained in the theory of point scatterers remain v
but that the parameterl * , which can be much larger thanl ,
becomes the natural scale. Such an approach is justifie
the diffusion approximation in radiation-transfer theory.8,9 It
actually amounts to allowing for the anisotropy of the sc
tering indicatrix via an expansion in Legendre pol
nomials10,11 and keeping only first- and second-order term

However, in comparing theory and experiment, such
approach is also used for large scatterers, when the an
ropy of the indicatrix is not small. In this case it is natural
allow higher-order expansion terms in the indicatrix. In t
research devoted to multiple scattering of light in liquid cry
tals within the scope of the Bethe–Salpeter equation,12–15the
problem was solved numerically by using expansions
spherical functions for indicatrices of the Ornstein–Zern
type. There the asymptotic part of the coherence function
the radiation-transfer propagator, was calculated. The
merical results were found to support the validity of the d
1101063-7761/98/86(6)/7/$15.00
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fusion approximation at large distances. Gorodnichev a
Rogozkin16 examined highly anisotropic indicatrices of th
form (cosu)2a, whereu is the scattering angle, for layer
whose thicknessL was much smaller than the transpo
length,L! l * . This corresponds to the case where the dif
sion regime is not realized.

In the present paper we solve the Bethe–Salpeter e
tion with allowance for Legendre polynomials of the zero
first, and second degrees. Allowing for the second a
higher-order terms means going outside the scope of the
fusion approximation. We show that here the main diffusi
term in the radiation-transfer propagator of the for
(12cosu)r21 does not change, and allowing for the secon
order term has an effect on the form of the terms that rap
decrease with increasing distancer , terms that retain the
information about the anisotropy of the differential singl
scattering cross section. These rapidly decreasing terms
nevertheless important when the scattered radiation
formed in a layer of thickness of the order of the extincti
length, say, in backscattering.

The results are used to calculate the angular depend
of the coherent backscattering intensity. We show that allo
ing for second-order terms leads to a sizable contribution
the intensity. We also analyze the possibility of experime
tally detecting the backscattering peak near second-o
phase transition points. The coherent backscattering inten
is calculated for the Ornstein–Zernike indicatrix in the cri
cal region. The calculated value of the effect is large enou
to be detectible by modern experimental techniques both
temperature and scattering angles.

2. RADIATION TRANSFER IN AN INHOMOGENEOUS
MEDIUM

We examine the propagation of light in an inhomog
neous medium whose stochastic properties are describe
7 © 1998 American Institute of Physics
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fluctuations of the dielectric constant,D«5«(r )2«, where
«5«(r ). In such a medium the wave equation is

~curl curl2k2!E~r !5k0
2D«~r !E~r !, ~2.1!

where E(r ) is the electric field in the random medium,k
5k0A«, and k052p/l is the wave number, withl the
wavelength.

If we ignore polarization effects, we can replace t
wave equation~2.1! by a scalar one, which in integral form i

E~r !5^E~r !&1
1

4p E dr1T~r2r1!D«~r1!E~r1!, ~2.2!

whereT(r )5k0
2 exp(ikr)/r is the Green’s function of the sca

lar wave equation.
Let us define the scattering intensity at large distancer 0

from the medium as

I ~r !5dE~r !dE* ~r ![r 0
22I ~ksuk i !,

where k i and ks are the wave vectors of the incident an
scattered waves, anddE(r )5E(r )2E(r ) is the scattered
field. The functionI (ksuk i) can be written as1–5

I ~ksuk i !5I 1~ksuk i !1I M~ksuk i !, ~2.3!

whereI 1 is the single-scattering intensity, which is not di
cussed below, andI M is the total intensity of all multiplici-
ties of scattering beginning with the second.

In the weak-scattering approximation,l/ l !1, only lad-
der diagrams contribute to the principal order in the para
eter l/ l in the scattering-multiplicity series, i.e.,I M(ksuk i)
5I L(ksuk i), where

I L~ksuk i !5E dR1dR2 exp~2 Im ksR222 Im k iR1!

3G~R2 ,R1uks ,k i !uEu2, ~2.4!

Im k is the imaginary part of the wave vector, 2 Imk5l21,
and the function G(R2 ,R1uks ,k i) the radiation-transfer
propagator. Both terms in the exponential in~2.4! describe
the damping of plane waves in the medium. For instance,
a medium occupying the half-spacez>0 the exponential
factor is

expF S 2
z2

cosus
2

z1

cosu i
D 1

l G ,
whereu i is the angle of incidence, andus is the scattering
angle measured from the backscattering direction; for suc
geometry we haveu i ,us,p/2. Here we consider nonabsorb
ing media, so that damping is due solely to scattering.

The scattering-multiplicity series can be summed, a
the result is a Bethe–Salpeter equation for the radiat
transfer propagator:

G~R2 ,R1uks ,k i !5k0
8G̃~2ks1k21!L~R21!G̃~k i1k12!

1k0
4E dR3G̃~k232ks!L~R23!

3G~R3 ,R1uk23,k i !. ~2.5!
-

r

a

d
-

HereG̃(q)5*drG(r )exp(2iqr ) is the Fourier transform of
the correlation function of dielectric-constant fluctuations

G~r !5~4p!22D«~0!D«~r ! , ~2.6!

L(r )5r 22 exp(2r/l), k i j 5kRi j /Ri j is the wave vector of
the scattered wave propagating between the pointsRi and
Rj , andRi j 5RiRj . Note that the Bethe–Salpeter equati
in the form ~2.5! is similar to the mixed Wigner
representation.17

If only ladder diagrams are considered, interference
fects are not present in the picture discussed in Ref. 3. Th
effects are taken into account in Sec. 4.

3. ALLOWING FOR THE NONLOCAL NATURE OF
FLUCTUATIONS

The correlation functionG(r ) is characterized by a cor
relation radiusr c . Generally, for an arbitrary value ofkrc , it
is impossible to solve Eq.~2.5! even for a homogeneou
medium. However, when the correlation length is small,
that G(r ) can be replaced by a delta function, which
the wave-vector space corresponds to an isotropic sin
scattering indicatrix,G̃(q)5const and the Bethe–Salpet
equation can easily be solved by going over to the Fou
spectrum in the variableR22R1 . Ordinarily this case is used
as a starting approximation in analyzing coherent and co
lation effects in multiple scattering.

To allow for the finiteness of the correlation length, i.e
for the dependence ofG(R2 ,R1uks ,k i) on the orientations of
ks andk i , the radiation-transfer propagator can be expan
in a series in Legendre polynomials with only the zeroth- a
first-order terms retained. However, for indicatrices with
strong anisotropy, higher-order momentscosn u may play an
important role. The approach based on the expansion
spherical functions has been widely used in connection w
the equation of radiation transfer.11,18 In particular, Apresyan
and Kravtsov11 analyzed this equation in detail with firs
and second-order moments taken into account.

According to~2.5!, in a homogeneous medium the fun
tion G(R2 ,R1uks ,k i) depends on the relative vectorR21

5R22R1 and the mutual orientation of the vectorsk i , ks ,
andR21. Generally, this dependence can be expressed in
form of an expansion in spherical functions:

G~Ruks ,k i !5
1

4p (
k,l ,umu<min$k,l %

gklm~R!

3Pk
m~cosus!Pl

m~cosu i !exp@ im~fs2f i !#,

~3.1!

wherePk
m(cosu) is the associated Legendre polynomial,

cosus5
ksR

kR
, cosu i5

k iR

kR
,

andfs2f i is the angle between the projections of the ve
tors ks andk i on a plane orthogonal toR.

To simplify the analysis, we integrate Eq.~2.5! over the
orientations ofk i . The equation remains closed, since t
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unknown function in its left- and right-hand sides depends
the same incident wave vectork i . Introducing a new func-
tion G0(R21uks)5*dViG(R21uks ,k i), we get

G0~R21uks!5 k0
4l 21G̃~2ks1k21!L~R21!

1k0
4E dR3G̃~k232ks!L~R23!G0~R31uk23!.

~3.2!

In deriving this Eq.~3.2! we used the optical theorem,l 21

5k0
4*dVsG̃(ks2k i).
Although in going over to the equation forG0 we lost the

contribution of some terms, the equation makes it possibl
calculate exactly the isotropic part of the radiation-trans
propagator outside the scope of the diffusion approximat
We allow for the orientational dependence of both vect
later, when we calculate coherent backscattering.

Expanding the functionG0(R21uks) in a series in Leg-
endre polynomials,

G0~Ruk!5 (
n50

`

gn~R!PnS Rk

RkD , ~3.3!

wheregn(R)5gn,0,0(R)5g0,n,0(R), and using the orthogo
nality of the polynomialsPn(cosu), we reduce Eq.~3.2! to a
system of equations for the expansion coefficients in~3.3!:

4p

~2n11!
gn~R21!5PnF l 22L~R21!1 l 21

3E dR3PnS R23R21

R23R21
DL~R23!

3 (
m50

`

gm~R31!PmS R31k23

R31k
D G . ~3.4!

Here the parametersPn are defined as averages over t
single-scattering indicatrix:

Pn5

*dVsG̃~ks2k i !PnS ksk i

k2 D
*dVsG̃~ks2k i !

. ~3.5!

Next we solve the system of equations~3.4!, keeping
only the first three terms in the expansion~3.3!. Instead of
the functionsg1(R21) and g2(R21) we introduce the vecto
function g1(R21)5g1(R21)R21/R21 and the tensor function

ĝ2~R21!5g2~R21!S 3R21R21

R21
2 2 Î D .

Applying the Fourier transformation in the spatial variab
Ri j , we can write the system of equations~3.4! as follows:

4pg̃0~q!5 l 22L̃0~q!1 l 21H L̃0~q!g̃0~q!1L̃1~q!g̃1~q!

1
1

6
@~3L̂̃2~q!2 Î L̃0~q!! ĝ̃2~q!#J ,
n

to
r

n.
s

4p

3P1

g̃1~q!5 l 22L̃1~q!1 l 21H L̃1~q!g̃0~q!

1 L̂̃2~q!g̃1~q!1
1

2
L̂̃3~q! ĝ̃2~q!J , ~3.6!

4p

5P2

ĝ̃2~q!5 l 22@3L̂̃2~q!2 Î L̃0~q!#1 l 21H @3L̂̃2~q!

2 Î L̃0~q!#g̃0~q!13L̂̃3~q!g̃1~q!2 ÎL̃1~q!g̃1~q!

1
3

2
L̂̃4~q! ĝ̃2~q!2

1

2
Î Tr~ L̂̃2~q! ĝ̃2~q!!J ,

where the tilde indicates the Fourier transform of the cor
sponding function. The function

L̂̃n~q!5E dr exp~2 iqr !
rr ...r

r n L~r ! ~3.7!

is a tensor of rankn. Integrals of type~3.7! can easily be
calculated. In particular, we have

L̃0~q!54p lp0 ,

L̃1~q!524p iql 2p1 , ~3.8!

L̂̃2~q!54p l Fqq

q2 p11
p02p1

2 S Î 2
qq

q2 D G ,
where we have introduced the auxiliary functions

p05
arctanw

w
, p15

12p0

w2 , p25
1

w2 S 1

3
2p1D ,

andw5ql is the dimensionless argument.
As a result the solution of the system~3.6! can be written

as

g̃0~q!5
p023p1 cosu

lw2p1
1

3p22p1

2Alp1
,

g̃1~q!5
q

q
g̃1~q!, g̃1~q!52

3i cosu

lw
, ~3.9!

ĝ̃2~q!5S 3qq

q2 2 Î D g̃2~q!, g̃2~q!52
1

lA
,

where

A5
p1

2~3p22p1!
F 4

5P2

29p216p12p02
w2~3p22p1!2

p1
G .

~3.10!

Formula~3.9! determines the propagatorG0(Ruk) when the
scattering indicatrix is described by three Legendre poly
mials.

The propagator of radiation transfer over large distanc
i.e., the behavior of its Fourier transforms forql<1, plays an
important role in coherent effects of multiple scattering.
this region the formula forg̃0(q) in ~3.9! yields
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g̃0~q!'
3

l
F12cosu

w2
1

28

27

1

~35/9!~1/P221!1w2G .

~3.11!

The first term in the square brackets corresponds to the w
known expression in the diffusion approximationg̃0(q)
;3/l * w2. Within the equation of radiation transfer the for
of this term in the absence of absorption does not cha
even if one allows forP2 ~Ref. 11!. The second term in
~3.11! reflects a more detailed description of radiation tra
fer by the Bethe–Salpeter equation. This term vanishe
P2→0. As P15cosu increases, it is natural to expect th
for real systems the average of the second Legendre pol
mial over the scattering angle,P2, also increases, and th
second term becomes much more important.

The region of applicability of the diffusion approxima
tion is determined from the condition that the first term in t
square brackets in~3.11! provides the main contribution, i.e

27

28
~12cosu!.

q2l 2

~35/9!~1/P221!1q2l 2
. ~3.12!

We see from~3.12! that range of wave vectorsq for which
the diffusion approximation is valid narrows as the anis
ropy of the scattering indicatrix increases, i.e., whencosu
andP2 grow.

Let us establish the limits of the approach based on
lowing for a finite number of terms in the expansion in t
Legendre polynomials in the scattering indicatrix. With a
lowance for~3.5! this expansion becomes

G̃~ks2k i !

*G̃~ks2k i !dV
5(

0

`

~2n11!PnPn~x!, ~3.13!

wherex5(k iks)/k
2. HereG̃(ks2k i) describes the intensity

of scattering in the direction ofks and must be nonnegative
G̃(ks2k i)>0. In particular, if we limit ourselves to second
degree polynomials, we have

113P1x15P2~ 3
2x

22 1
2!>0 ~3.14!

for values ofx in the interval21<x<1.
Equations ~3.9!–~3.11! imply that the parametersPn

with n>2 have no effect on the asymptotic behavior of t
diffusion, so that for every value ofcosu there exists a range
of distances within which the diffusion approximation
valid. However, in calculating the correction terms, whi
contain information about the higher-order moments of
indicatrix, the restriction~3.14! and other conditions tha
make it possible to describe the indicatrix by a finite num
of moments are important.

4. COHERENT BACKSCATTERING

To illustrate the above results, we take the example
calculating the shape of the coherent backscattering peak
is known, the peak appears because for scattering angleus

!l/ l measured from the backscattering direction, in ad
tion to ~2.3! and~2.4! there are cyclic diagrams that contrib
ute to the scattering intensity, and the contribution is of
ll-

e

-
as

o-

-

l-

e

r

f
As

i-

e

same order as that of ladder diagrams. Such interference
rections to the intensity of backscattering of light were fi
mentioned in Refs. 19–23 and discovered in experiment
Van Albada and Lagendijk6 and Wolf and Maret.7

We consider the case of normal incidence,u i50. The
contribution of cyclic diagrams to scattering is given by t
following expression:8,9

I C~ks ,k i !}E dR1dR2 exp@2~z11z2!l 211 ik0us~x12x2!#

3@G~ uR22R1uuks ,k i !2G~ uR22R1
~m!uuks ,k i !#,

~4.1!

whereR1
(m)5(x1 ,y1 ,2z122l m) is the mirror image of point

R1 with respect to the planez52 l m . The parameterl m is
usually chosen in the forml m50.71l * ~Ref. 23!. Equation
~4.1! is written for the case of scattering from the half-spa
z.0 for a wave backscattered at an angleus in thex,z plane.

We see that the scattering intensity depends on the c
plete functionG(Ruks ,k i). Hence we must refine the analy
sis of Sec. 3 by including the dependence on the orienta
of both vectors,ks andk i . Applying to Eq.~2.5! the opera-
tion of integration in the form

E E dVsdVi P1~cosus!P1~cosu i !

and allowing for the expansion~3.1!, for a homogeneous
medium we have

4p

9
g110~R21!5

cosu2L~R21!

l 2 1
cosu

3l E dR3L~R23!

3
~R21R23!

R21R23

~R21R31!

R21R31
g1~R31!1O~cosu3!

~4.2!

Inserting the expansion~3.1! into ~4.1! and doing a Fourier
transformation in the variablesR22R1 and R22R1

(m) , we
obtain

I C~ks ,k i !}E
2`

` dqz

2p
f ~qz!

3F g̃0~qs!12P2S qz

qs
D g̃2~qs!1

k iks

k2 ĝ̃11~qs!G ,
~4.3!

whereqs5(k0us,0,qz), qs5A(k0us)
21qz

2, and

ĝ11~qs!5E dR
RR

R2 g110~R!exp~2 iqsR!. ~4.4!

The function f (q) depends on the choice of boundary co
ditions. Takingl m50.71l * , we get8

f ~q!5
12w2

~11w2!2 S 12cos
1.42wl*

l D
1

2w

~11w2!2 S w1sin
1.42wl*

l D .
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The functiong110(R) can be immediately calculated by~4.2!
if we use the expression for the vector (R/R)g1(R)
5g1(R) found in Sec. 3.

Parametrizing the tensorĝ̃11(qs) as

ĝ̃11~qs!5a11~qs! Î1
1

2
b11~qs!S 3

qsqs

qs
2 2 Î D , ~4.5!

from ~4.4! we get

a11~qs!5
1

3 E dRg110~R!exp~2 iqsR!, ~4.6!

b11~qs!5
2

3 E dRP2S qsR

qsR
Dg110~R!exp~2 iqsR!. ~4.7!

Substituting the right-hand side of Eq.~4.2! for g110(R) in
~4.6! and ~4.7! and employing~3.8! and ~3.9!, we obtain

a11~qs!5
3 cosu2

l

3F 1

ws
S 11

1

ws
2Darctanws2

1

ws
2 12E

qs

` p1

q
dqG ,

~4.8!

b11~qs!5
3 cosu2

l

3F 1

ws
2 2

1

ws
S 11

1

ws
2Darctanws

12qs
23 E

0

qs
q2p1dqG , ~4.9!

wherews5 lqs .
As a result the angle-dependent part of the cohe

backscattering intensity can be represented~to within terms
of ordercosu2) as

I C~ks ,k i !}E
2`

` dqz

2p
f ~qz!F g̃0~qs!12P2S qz

qs
D

3g̃2~qs!2a11~qs!2b11~qs!P2S qz

qs
D G . ~4.10!

In the case of backscattering the contribution ofg1 vanishes
due to parity considerations.

The diffusion approximation amounts to allowing for th
term g̃0(qs) in ~4.10!. Only this term yields a linear depen
dence on the scattering angleus . The other contributions
responsible for anisotropy in the radiation-transfer propa
tor, yield a peak of Lorentzian form. Generally speakin
their presence leads to a deviation of the dependence
linear and at small angles manifests itself as a change in
initial slope. In the diffusion approximation, the shape of t
peak at small angles is described by the formula
2gkl* us , where the constantg is the initial slope. Although
the presence of correction terms complicates the descrip
of the shape of the peak, these terms make it possibl
determine not onlyl * but alsol , P1, andP2 separately, i.e.,
to extract detailed information about the scattering syst
nt

a-
,
m

he

1

on
to

,

since Eq.~4.10! describes not only the initial slope but als
the shape of the peak in a broad range of angles.

Figure 1 shows how the shape of the backscattering p
varies with the parameter

P25 3
2 cos2 u2 1

2

for a fixed valueP15cosu50.5. We see that the slope in
creases withP2. For instance, atP250.1 the slope isg
51.5 and atP250.3 it is g51.7. This means that the slop
cannot be correctly described by only one parametercosu.
Curve4 was obtained by allowing forg0 andg1 in ~3.3! and
yields a slopeg51.35. Note that the diffusion approxima
tion also allows for only these two terms, but forg̃0(q) it
uses not an exact but an approximate expression of the f
( l * w2)21, which leads to a slopeg52.3 ~Ref. 24!. Thus,
curve4 can be considered a refinement of the diffusion a
proximation. We used it as a reference curve to illustrate
role of higher-order terms in the expansion of the propaga

Figure 2 depicts the backscattering intensity, calcula
by ~4.10!, relative to the value of the intensity calculate

FIG. 1. Backscattering intensity normalized to the peak’s heig
I (us)/I (0), as afunction of the angular variablekl* us at cosu50.5 for
different values ofP2: curve 1, P250.1; curve2, P250.2; and curve3,
P250.3. Curve4 represents the function with only the first two expansi
terms taken into account in~3.3!.

FIG. 2. Ratio of the backscattering intensityI (us) at P150.5 to the inten-
sity I st(us) calculated withgn50 for n>2, as a function of the scattering
angle forP250.1 ~curve1!, P250.2 ~curve2!, andP250.3 ~curve3!.
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with only two terms in the expansion~3.3!. We see that
allowing for higher-order moments, first, reduces the hei
of the peak and, second, distorts the peak.

We used the results in an analysis of the possibility
detecting the coherent backscattering peak in the critica
gion. To simplify matters in describing the angular depe
dence of single scattering, we used the Ornstein–Zernike
mula

G̃~q!}~r c
221q2!21,

wherer c is the correlation radius. For such an indicatrix,

cosu5
112x2

2x2 2
2

ln~114x2!
,

cos2 u5
112x2

2x2 cosu, ~4.11!

and the extinction length25 is given by the following expres
sion:

1

l
5

p

2
BF S 21x221

1

4
x24D ln~114x2!222x22G ,

~4.12!

wherex5krc and B5Rsc/x
2, with Rsc the scattering con-

stant.
We calculated the angular dependence of the ba

scattering peak for the range ofkrc values in which the first
two moments of the scattering indicatrix satisfy the condit
~3.4!. We selected the following values characteristic
highly opalescent systems:26,27 B51 cm21, r c5r 0t2n, n
50.63, r 053.2 Å, l56328 Å, k52np/l, andn51.3.

Figure 3 depicts the results of calculations for valu
krc50.775, 2.45, and 2.56. The curves are plotted in te
of real angular units, so that it becomes possible to estim
the possibility of experimentally detecting the coherent ba
scattering peak in the critical region. We see that to an ac

FIG. 3. Angular dependence of the backscattering intensity calculated
the Ornstein–Zernike indicatrix at different values ofkrc : curve 1, krc

50.775, ~kl54.93104, P150.2, and P250.047); curve2, krc52.45,
(kl51.73104, P150.46, and P250.25); and curve3, krc52.56, ~kl
51.53104, P150.49, andP250.28). The values ofkl, P1, andP2 were
calculated by formulas~4.11! and ~4.12!.
t
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racy of 0.05 mrad, the backscattering peak can be detecte
the critical region and its temperature dependence can
studied.

5. CONCLUSION

By examining radiation transfer in highly inhomoge
neous media we have developed an approach that co
tently takes into account the higher-order moments of
single-scattering indicatrix. We have obtained analytical
pressions for the radiation-transfer propagator that take
account Legendre polynomials of the first and second
grees.

In solving the problem of radiation transfer, one can
ways indicate a range of distancer @ l * in which the diffu-
sion approximation is valid. There is no need to take in
account higher-order terms in the expansion in spher
functions. However, for specific problems of multiple sca
tering, the boundary region of thickness of order the exti
tion length l , which is much smaller thanl * as cosu→1,
becomes important. In the intermediate regionl ,r , l * , the
contribution of higher-order spherical harmonics proves
be appreciable. In this connection the problem of explici
taking into account the boundary conditions outside
scope of the mirror-image method becomes important.

As an example of an application of the new approa
we have calculated the coherent backscattering intensity
have studied the effect of higher-order moments on its an
lar dependence. We have demonstrated the possibility of
perimentally detecting the coherent backscattering pea
the critical region.

This work was partially supported by the Russian Fu
for Fundamental Research~Project 92-02-18201!.
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Generation of a continuum and stimulated Raman scattering harmonics during
scattering of electromagnetic radiation of relativistic intensity

A. V. Borovski ,* ) V. V. Korobkin, O. B. Shiryaev
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A theory of the propagation instability of plane, monochromatic, circularly polarized
electromagnetic waves of relativistic intensity in matter is developed for a spatially three-
dimensional geometry including arbitrary polarization of the scattered radiation. Harmonic
generation owing to striction and relativistic nonlinearity is examined, as well as scattering
owing to electron recoil, the decay instability of the harmonics with formation of scattered
electromagnetic waves~Stokes components of the stimulated Raman scattering and
plasmons!, the interaction of electromagnetic waves in the plasma~antistokes stimulated Raman
scattering!, and the generation of a radiative continuum. The transition of the three-
dimensional theory to a one-dimensional problem in the nonrelativistic limit is discussed.
© 1998 American Institute of Physics.@S1063-7761~98!00906-8#
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1. INTRODUCTION

Experimental and theoretical studies of the scattering
ultrahigh-intensity laser light in matter have been of gr
interest in recent years.1–10By ultrahigh, we mean intensitie
I>1018 W/cm2 at which relativistic effects show up in th
electron motion. These intensities are attained at presen
experiments with high-power ultrashort laser pulses.11–13

When an ultrashort laser pulse is focussed onto a mate
the bulk of the pulse interacts with the plasma formed at
leading edge. Polarization of the material in a high-pow
laser radiation field, which leads to scattering, can be cau
by nonlinear free-electron currents,14 deformation of the
electronic shells of atoms and ions,15 and molecular vibra-
tions and rotations.16 In experiments with light atomic gase
it is possible to isolate the first component of the polarizat
from this list on reaching full ionization of the material. W
consider laser light scattering in plasmas for this spec
reason in the following. The scattering of coherent radiat
in plasmas at nonrelativistic intensities has been stud
previously.14,17–22Of the papers which analyze scattering
relativistic intensities, we note above all Refs. 8–10~see
Refs. 1–7 as well!.

The study of laser light scattering in matter can be ar
trarily divided into two essentially unrelated problems. T
first involves determining the local characteristics of the m
dium: the temporal growth rates~spatial gain coefficients! of
the scattered radiation in an elementary volume of plasm
functions of the components of the wave vector of the sc
tered wave and of the parameters of the reference wave.
second, in contrast, is an integro-differential transport pr
lem and reduces to calculating the radiation field far from
scattering volume, including amplification and absorpti
along the propagation path. In this article we examine
1111063-7761/98/86(6)/8/$15.00
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first problem in detail; in particular, the temporal grow
rates are calculated. The second problem is touched u
only at a qualitative level.

Recently, there has been a tendency to construct
tially three-dimensional models of the scattering of relativ
tically intense, plane, monochromatic, circularly polariz
electromagnetic waves in plasmas.9,10 The theory comprises
a set of varied wave phenomena: harmonic generat
stimulated Raman scattering on electron plasma oscillat
excited by the propagating laser pulse, the hydrodyna
analog of the Compton effect, etc., as well as limiting tra
sitions to previously known cases—primarily to the nonr
ativistic approximation.

At the same time, describing the scattering of relativ
tically intense electromagnetic waves in plasmas turns ou
be so complicated that various authors have restricted th
selves to examining a number of approximations. These
clude: 1! the one dimensional approximation8; 2! the as-
sumption that a certain polarization of the scattered radiat
such as circular, is maintained~the approximation of a given
polarization!8,10; 3! searching for the growth rates assumi
that one of the transverse components of the wave ve
equals zero9; 4! resonance approximations, which reduce
using exact conditions for phase synchrony for several w
processes.20

In this article, we propose a variant of the theory of t
scattering of relativistically intense laser radiation in plasm
in which there is no need to use any of the four approxim
tions indicated above. Numerical methods are used to
scribe harmonic generation, stimulated Raman scattering
plasmons, the hydrodynamic analog of Compton scatter
and continuum generation, as well as the mutual effects
these processes. This study is based on a rigorous analys
4 © 1998 American Institute of Physics
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the linearized Maxwell equations and equations for the re
tivistic hydrodynamics of the electron component of
plasma in a strong electromagnetic field. A proper analy
of this type requires the availability of an exact referen
solution of the initial nonlinear system of equations. In t
present case, that solution is a plane, monochromatic, ci
larly polarized electromagnetic wave of arbitrary intensity23

We note that in the earlier literature, there are a numbe
studies of the propagation instability of linearly polarize
monochromatic plane waves which are not exact solution
the initial relativistic equations, and therefore can only
used when it is assumed that their intensity is low.

The problem of studying the propagation instability of
circularly polarized, monochromatic, plane reference wa
of arbitrary intensity reduces to solving a system of line
partial differential equations with oscillating coefficients. A
ter introducing a running variable along the propagation a
and taking the Fourier transform with respect to the spa
coordinate, we arrive at a linear system consisting of an
finite number of coupled ordinary differential equations~ow-
ing to the necessity of accounting for the generation of h
monics and their interactions!. As these calculations show,
proper approximate solution of this problem is obtain
when more than a hundred equations are included in
analysis. The temporal growth rate of this instability is d
fined as the maximum eigenvalue of the matrix for the lin
system being solved. This approach, in particular, make
possible to avoid writing down and analyzing the cumb
some dispersion relations. Hydrodynamic studies of this t
have been done with a numerical analysis of the linear s
of the development of turbulence.24 We have tested this
method in a linear analysis of the instability of a plane wa
in the approximation of a specified polarization.10

In this paper, therefore, for the first time we present
results of a rigorous linear analysis of the system formed
Maxwell’s equations and the equations of relativistic ele
tron hydrodynamics.

2. INITIAL EQUATIONS

The propagation of laser light at relativistic intensities
a plasma is described by Maxwell’s equations and the eq
tions of relativistic electron hydrodynamics23,25:

hA5¹f t1g21n~A1¹c!, ~1!

¹2f5n21, ~2!

¹•A50, ~3!

c t5f2g, ~4!

nt1¹•@g21n~A1¹c!#50, ~5!

g5~11uA1¹cu2!1/2. ~6!

Here A and f are the vector and scalar potentials of t
electromagnetic field,c is the potential for the generalize
electron momentum, andn is the electron density. Equatio
~6! defines the relativistic mass factorg. The subscriptt de-
notes a partial derivative with respect to time.
-
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The system of Eqs.~1!–~6! is normalized as follows:A
andf to mc2/e, n to the unperturbed valuen0 , the momen-
tum of the electron fluid tomc, the time tovp

21 , wherevp

is the unperturbed value of the plasma frequency, and
spatial coordinate toc/vp .

The exact solution of the system of Eqs.~1!–~6! is a
plane, monochromatic, circularly polarized wave of arbitra
intensity, propagating, for example, along thee3 axis:23

A05~1/2!~e11 ie2!A0 exp~ ikj!1c.c. ~7!

Here j5x32qt is the running variable andq5v/k is the
phase velocity of the wave. In addition, the conditionsv2

2k25g0
21, g05(11A0

2)1/2, n51, f5g0 , andc50 are sat-
isfied. In the following we use the notationk215«.

Let us consider the development of small perturbatio
indicated by the symbol ‘‘;,’’ in the plasma, through which
the wave~7! propagates:

A5A01Ã, n511ñ, f5g01f̃, c5c̃. ~8!

The linearized system of equations for the perturbatio
has the form

hÃ5¹f̃ t1g0
21~Ã1¹c̃!1g0

21ñA0

2g0
23@A0•~Ã1¹c̃!#A0 , ~9!

¹2f̃5ñ, ~10!

¹•Ã50, ~11!

c̃ t2f̃52g0
21@A0•~Ã1¹c̃!#. ~12!

The continuity equation is obtained by taking the divergen
of Eq. ~9!,

ñt1g0
21~A0•¹ñ!52g0

21Dc̃1g0
23

3$A0•¹@A0•~Ã1¹c̃!#%. ~13!

The system of Eqs.~9!–~13! is the same as the equation
obtained in Ref. 9 to within the normalization.

Our procedure in the following differs from that used
Ref. 9. In the system of Eqs.~9!–~13! we transform to the
comoving variables (x' ,j,t), after which the differential op-
erators take the following form:

¹→~¹' ,]j!, ¹2→¹'
2 1]j

2, ] t→Dt5] t2q]j ,

h→Dh5D'2] t
212q]jt

2 2«2g0
21]j

2.

As a result, we obtain a system of linear differential equ
tions with coefficients that depend periodically onj, which
we shall not write out. Given that we are studying the prop
gation of laser light in an unbounded uniform plasma,
transform this system of equations into the wave vec
space of the perturbations~into momentumk-space! by tak-
ing the Fourier transform with respect tox' ,j (k5uk'u):

~Ã,f̃,ñ,c̄ !T5~2p!23/2E ~Ã,f̃,ñ,c̃ !k' ,j
T

3exp@ i ~~k' ,x'!1xj!#d2k'dx.

In the following the symbol ‘‘;’’ on the small perturbations
will be omitted for the sake of brevity.
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The results of taking the Fourier transforms~g1

5a0
2/2g0

3, g25a0 /2g0! are

D̂hA11g1

ik1x2

k21x2 c2g1

k1k2

k21x2 A2

1g1

k2
21x2

k21x2A11g2~~F1,1
2 !x2k1~F1,1

1 !x1k!

1
g1

2
~~F1,2

2 !x22k1~F1,2
2 !x12k!50, ~14!

D̂hA21g1

ik2x2

k21x2 c2g1

k1k2

k21x2 A1

1g1

k1
21x2

k21x2A21g2~~F2,1
2 !x2k1~F2,1

1 !x1k!

1g1~~F2,2
2 !x22k1~F2,2

1 !x12k!50, ~15!

2~k21x2!f5n, ~16!

D̂tc2f1g2~~P11 iP2!x2k1~P12 iP2!x1k!50,
~17!

D̂tn5~g0
21x21~g0

212g1!k2!c1 ig1~k1A11k2A2!

2g2~~ ik12k2!nx2k1~ ik11k2!nx1k!

1~g1/2!@~~ ik12k2!P12~ ik21k1!P2!x22k

1~~ ik11k2!P12~ ik22k1!P2!x12k#. ~18!

Here we have used the notation

A5~A1 ,A2 ,A3!, P1,25A1,21 ik1,2c, D̂t5] t2 iqx,

D̂h52] t
212iqx] t1~x2/g0k22k2!2g0

21,

F1,1
2 5S k1

k11 ik2

k21x2 21Dn, F1,1
1 5S k1

k12 ik2

k21x2 21Dn,

F1,2
2 52S k1

k11 ik2

k21x2 21D ~P11 iP2!,

F1,2
1 52S k1

k12 ik2

k21x2 21D ~P12 iP2!,

F2,1
2 5S k2

k11 ik2

k21x2 2 i Dn, F2,1
1 5S k2

k12 ik2

k21x2 1 i Dn,

F2,2
2 5S ik2

k11 ik2

k21x2 11D ~ iP12P2!,

F2,2
1 5S ik2

k12 ik2

k21x2 21D ~ iP11P2!.

Upon shifting the argumentx in these equations by6nk,
where n is an integer, we arrive at an infinite chain
coupled, linear ordinary differential equations with respec
time for the amplitudes of the harmonics over which t
perturbations are expanded. This latter system of equat
can be written in the form

Yt5BY, ~19!
o

ns

whereY is an infinite-dimensional column vector, andB is
an infinite-dimensional 30-diagonal matrix.

3. ONE-DIMENSIONAL PROBLEM

In the one-dimensional approximation, the compone
k1 andk2 of the perturbation wave vector must be set eq
to zero in Eqs.~14!–~18!. The equations for the one dimen
sional approximation are

D̂h,1A11g1A12g2~nx2k1nx1k!

1~g1/2!~~A11 iA2!x22k1~A12 iA2!x12k!50,

~20!

D̂h,1A21g1A21 ig2~2nx2k1nx1k!

1~g1/2!~~ iA12A2!x22k2~ iA11A2!x12k!50,

~21!

D̂tc1x22n1g2~~A11 iA2!x2k1~A12 iA2!x1k!50,
~22!

D̂tn2g0
21x2c50, ~23!

where

D̂h,152] t
212iqx] t1x2/g0k22g0

21.

The form of these equations, as well as the structure of
matrix B, are analogous to those for the spatially thre
dimensional case.

4. APPROXIMATION WITH A GIVEN CIRCULAR
POLARIZATION

Equations~14!–~18!, as well as their one-dimensiona
counterparts Eqs.~20!–~23!, correspond to an arbitrary po
larization of the perturbations in the electromagnetic field
the plasma, and in this regard, they differ from the proble
presented in Refs. 8 and 10. In the latter, the polarization
the perturbation in the electric field was assumed to be
cular, which greatly limited the generality of the approach

Let us consider the spatially one-dimensional case. F
perturbation with given circular polarization,

A5~1/2!~e11 ie2!a exp@ i ~kx32vt !#1c.c.,

which in terms of Fourier transforms means that

A15
1

2
~ax2k1bx1k!, A25

i

2
~ax2k2bx1k!, ~24!

where ax and bx are the Fourier transforms ofa and a* ,
respectively.

Substituting these equations into Eqs.~20! and ~21!, we
obtain the following equation fora:

2att12iqxat1~x2/g0k2!a12i ~vat2~ ix/g0k!a!

52g2n2g1~a1b!. ~25!

Differentiating Eq.~23! with respect to time and using
Eq. ~22!, as well as solving Eqs.~24! for ax and bx , we
obtain the following equation for the response of plas
electrons to the propagating laser radiation:
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~~] t2 iqx!21g0
21!n52~a0/2g0

2!x2~a1b!. ~26!

It is easy to confirm that Eqs.~25! and ~26! are the
Fourier transforms of the equations used in Ref. 8 to desc
the corresponding instability of laser radiation in a plasm
under the assumption that its circular polarization is p
served.

5. NUMERICAL STUDY OF THE MAXIMUM INSTABILITY
GROWTH RATES FOR LASER RADIATION IN A PLASMA

In examining the linearized problem with a matrixB of
finite size, it is natural to take the maximum of the real p
in its eigenvalue spectrum as the temporal growth rate.
linear algebra problem of finding the eigenvalues of the m
trix can be solved using theQR algorithm.26 The results
below emphasize the advantage of the approach used
compared to the traditional methods of finding the grow
rates, which involve solving the discriminant~dispersion!
equations.

5.1. One-dimensional problem

Let us consider the problem of finding the maximu
growth rates for the system of Eqs.~20!–~23!. The results of
the corresponding calculations are shown in Figs. 1 an
The size of the matrixB increases asB5m3m, wherem
56112j , with j 50,1,2,...,17. As the numberj increases,
the number of harmonics taken into account becomes lar
and this is reflected in Fig. 1.j 51 corresponds to the fre
quency of the laser radiation. The wave vector of the sc
tered radiation equalsx. If x.0, then the scattered radiatio
propagates in the positivex3 direction, while ifx,0, then it
propagates in the negative direction.

Figures 1 and 2 show the growth rates of the pertur
tions as functions ofx. The scattered radiation is a set
harmonics, each of which is a doublet consisting of Sto
and antistokes stimulated Raman scattering compone
Thus, all the peaks in Figs. 1 and 2 correspond to val
x56 jk6kp of the wave vector. Weak peaks are observ
nearx56 jk, corresponding to the hydrodynamic analog
Compton scattering.

The calculations show that as the dimensionalitym of
the matrixB increases, the changes in the magnitudes of
growth rates of the bulk of the harmonics become sm
except for a few at the edges~see Fig. 1!. In other words, in
calculations using a matrixB with a finite dimensionality,
there is an edge effect encompassing the extreme harmo
For example, ifm5210, then the harmonicsj 50,1,2,...,14
are given with adequate accuracy, while the harmonicj
515, 16, and 17 are ‘‘smeared out’’ by the edge effect.

For the parameters of the calculations shown in Fig
compared to the parameters corresponding to Fig. 1, the e
tron density is lower by a factor of two; this led to a drop
the plasma frequencyvp and in kp by a factor of&. The
stimulated Raman scattering components of the harmonic
Fig. 2 were closer by a factor of&.

Figure 2 shows that as the amplitude of the field of
reference wave increases, the stimulated Raman scatt
components are broadened. At fieldsA0.1, the two stimu-
lated Raman scattering components merge into one. Thu
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the relativistic region withA0.1, the harmonics are resolv
able, but the stimulated Raman scattering components
not.

It is interesting to follow the correspondence betwe
these calculations and those of Ref. 8, where it was assu
that in the framework of the one-dimensional problem t
scattered radiation is circularly polarized. Our study sho
that this leads to a significant error—an infinite sequence
harmonics is omitted. The problem reduces to studyin
636 matrix. As the computational results described abo

FIG. 1. The effect of the number of harmonics on the growth rate: 2j 11
55 ~a!, 15 ~b!, 35 ~c! harmonics;a050.1, «257.43•1022. The growth rate
is shown here as a function of the longitudinal component of the pertu
tion wave vector forx.0. The plot is symmetric inx.
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show, for arbitrarily polarized scattered light, in the on
dimensional problem all the harmonics of the radiation
generated and they all interact. In mathematical terms, h
the problem reduces to the need to solve an infinite sque
of coupled linear differential equations. Note that calcu
tions using matrices with low dimensionalitym,20 yield
results close to those of Ref. 8.

5.2. Three-dimensional problem

We have studied the maximum growth rate for Eq
~14!–~18! as a function of the three components of the p

FIG. 2. The dependence of the growth rate on the intensity of the refer
wave for x.0. The plot is symmetric inx. a050.1 ~a!, 0.5 ~b!, 5 ~c!. «2

53.72•1022.
-
e
re
ce
-

.
-

turbation wave vectork. Only a plot of the growth rate as
function of two variables is capable of providing a clear re
resentation. For example, we considered distributions of
growth rate of the form G(k1 ,0,x), G(0,k2 ,x), and
G(k1 ,k2 ,0), as well asG(k cosF,k sinF,x) for a fixed
angle F and k5(k1

21k2
2)1/2. An investigation showed tha

the growth rate is a quasiperiodic function ofx ~to within the
accuracy of the numerical calculations! and is not axially
symmetric with respect to thee3 axis, owing to the lack of
such symmetry in the linearized equations over the period
the reference wave. The oscillatory coefficients that app
in the linearized equations depend on the choice of refere
system. In our case, we calculated the growth rate un
conditions such that at timet50 the vectorA0 is directed
along e1 at the pointx350. However, the choice of initia
time within a wave period is random. This means that
growth rate must be averaged over a wave period with
spect to the initial time, which is equivalent in turn to ave
aging the growth rate over the azimuthal angle. Thus,
unaveraged computational results are intermediate and
the significance of ‘‘unobservables,’’ while the averaged
sults correspond to physically observable quantities.

Figure 3 shows the average growth rate as a function
k andx. The distinct feature of this solution is that, agains
continuum background, one can see 1! a system of interlock-
ing rings, 2! repeating peaks located near thee3 axis, and 3!
an increase in the growth rate ask→`. Figure 3 illustrates
the scattering of circularly polarized laser radiation in pla
mas. Because of striction and the relativistic nonlinear
harmonicsmk02dk, with m50,61,62, . . . ~including a
shift dk owing to electron recoil, withudku!uk0u) are gen-
erated in a medium through which laser light with wa
vectork0 propagates.

The initial equations obey the energy and moment
conservation laws.25 Since their subsequent transformatio
are exact, the electron recoil effect must be included in t
theory. Because of the decay instability,

mk02dk→km8 1ke ,

mv02dv5~mv02dv2vp!1vp,

each harmonic decays into an electromagnetic~Stokes stimu-
lated Raman scattering! component and a plasma wav
Since the wave vector of plasma oscillations in a cold plas
can have any value, the vectorkm8 is oriented arbitrarily in
space. Thus, the growth rate for the Stokes stimulated Ra
scattering component ink-space has a distribution close to
circle of radiusukm8 u. Furthermore, wave interactions leadin
to the formation of scattered wavesk95nk01km8 can take
place, wheren andm are arbitrary integers. In Fig. 3, one ca
see ring structures of typek95nk01k18 . Ring structures
with larger m.1 vanish during averaging, but they we
seen in the intermediate~unaveraged! calculations.

In a medium without a reference plasma wave at f
quencyvp , the antistokes stimulated Raman scattering co
ponents do not appear, and this is shown by the calculati
Nevertheless, because of wave interactions between the
monicsmk0 and the backscattered Stokes stimulated Ram
scattering componentskn8 , waves with wave vectors directe

ce
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FIG. 3. Two-dimensional distribution of the growth
rate as a function ofk andx averaged over azimutha
angle.a050.1 and«257.43•1022.
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along the propagation axis and absolute values (m2n)k0

1kp appear. This creates a pattern in which antistokes sti
lated Raman scattering components appear in the
dimensional problem. In the three-dimensional case, for
reason, scattering will be observed in the antistokes com
nents only within narrow solid angles along the propagat
axis of the reference wave.

The peaks along thee3 axis correspond to harmonic
with wave vectorsk95mk02dk, which have been shifted a
a result of electron recoil.

The increase in growth rate ask→` corresponds to gen
eration of a continuum, i.e., to scattered radiation in the c
tinuum. When an electron revolves in a circle,27 synchrotron
radiation is produced at an infinite set of harmonics. Wh
the circular trajectories of the electrons are distorted,
emission spectrum changes, leading to formation of a c
tinuum. In experiments with laser plasmas, the continuum
produced by at least three mechanisms: 1! bremsstrahlung
and partial photorecombination radiation from the plasma!
nonmonochromaticity of the laser radiation, which is es
cially important for ultrashort pulses, and 3! anharmonicity
of the electron currents in the plasma. The latter facto
usually related to plasma turbulence and to an anoma
increase in radiation from the plasma.20

This theory leads to an interesting hypothesis about
polarization of the scattered light. Since a perturbation in
volume of the plasma at a given time consists of the sum
perturbations arising at different times within a wave per
~the linear problem!, while the asymptotic solutions for dif
ferent initial times differ by a rotation of thek-space through
an azimuthal anglew ~the phase angle! relative to thee3 axis,
we should expect that the resulting vector potential wo
have componentŝA1&50, ^A2&50, and^A3&Þ0. The rms
values of all the components are, of course, nonzero, i.e.
scattered radiation will be partially depolarized. A more d
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tailed study of this question will require use of the metho
of statistical mechanics,28 which lies beyond the scope of thi
article.

The theory discussed above allows a limiting transiti
to the nonrelativistic approximation. In mathematical term
it is necessary here to eliminate terms proportional toA0

2 and
set g051 in Eqs. ~9!–~13!. We then obtain an eigenvalu
problem for a matrixB which is 15-diagonal, as opposed
the relativistic case. Calculations in the nonrelativistic a
proximation fora050.1 agree with those shown in Figs.
and 2a to high accuracy.

The class of nonrelativistic problems was examin
quite long ago in the literature and two different approach
were used: studying the instabilities in a framework of li
earized equations based on a resonance approximation
suming that the phase synchronism conditions are satisfie20

and studying the dispersion relations without employing
phase synchronism conditions14 ~an initial or boundary value
problem!. As the present study has shown, the resona
approximation is not valid for relativistic problems becau
of the considerable broadening of the resonance structur

There is some interest in comparing the results of t
paper with Ref. 9, in which dispersion relations were o
tained for the scattering of circularly polarized waves in
three-dimensional geometry. That study9 was limited to the
casek250, assuming axial symmetry of the problem~the
real situation is more complicated and requires averaging
the growth rate over the azimuthal angle ink-space!. The
series of Stokes stimulated Raman scattering harmonics9 cor-
responds, in our case, to a system of rings for scatte
waves with a wave vectorkm8 . The differences are the fol
lowing: 1! in the unaveraged picture, as the polar angleu→0,
p, the growth rate approaches the nonzero values obta
by solving the one-dimensional problem, as opposed to R
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9; 2! in the averaged picture, for scattering at large ang
one sees only the Stokes component at the fundamenta
quencyk18 against a continuum background; and, 3! for scat-
tering at small angles the theory yields Stokes and antisto
components over the entire sequence of harmonics.

6. CONCLUSION

A rigorous linear analysis of propagation instabilities
a plane, monochromatic, circularly polarized electromagn
wave of arbitrary intensity in a plasma has been presente
this article in terms of a three-dimensional geometry. T
theory describes the following wave processes: generatio
harmonics of the propagating laser radiation in a nonlin
medium, scattering including the effect of electron reco
decay instability of the harmonics with formation of sca
tered electromagnetic waves and plasmons, interaction
electromagnetic waves in the plasma, and generation
continuum during scattering of the laser radiation. This se
wave processes has been studied in both the relativistic
nonrelativistic cases.

The calculations demonstrate the possibility of forwa
and backward scattering. Each of the radiation fluxes c
tains a set of harmonics. Scattering of the harmonics ta
place into a set of overlapping spatial cones. A higher h
monic propagates into a narrower spatial cone. Outside th
cones the theory predicts scattering with a continuous s
trum for the change in the wave vector. This effect is dom
nant.

As laser pulses propagate in a plasma, the lower-o
harmonics are radiated into wider cones than the high
order harmonics. Thus, the lower-order harmonics can le
the localization region of the pulse in the course of pro
gating. At the same time, the higher-order harmonics pro
gate along with the pulse. They can probably be detected
spectral analysis of the pulse in an experiment with a spe
geometry. The backscattering intensity is low because
interaction time for the radiation propagating in opposite
rections is short.10

In this paper, we have examined for the first time a o
dimensional theory of scattering of laser radiation in plasm
without assuming that a particular type of polarization
preserved. It has been shown that in this case scattering l
to a sequence of harmonics of the laser light, each of wh
consists of a doublet made up of the Stokes and antisto
components. The mechanisms for generation of the harm
ics of the scattered light are relativistic nonlinearity and el
tron striction.

In the framework of a multidimensional theory it ha
been established that during scattering of laser radiatio
large angles, the most important effects that might be
served experimentally are the production of a Stokes sti
lated Raman scattering component at the fundamental
quency and the generation of a scattered light continuum

For scattering into small solid angles along the propa
tion axis of the reference wave, the harmonics contain b
Stokes and antistokes stimulated Raman scattering com
nents, with the latter resulting from a combination of high
order harmonics with the Stokes stimulated Raman backs
s,
re-
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ter component. It has been shown that the harmonics ha
doublet structure for nonrelativistic intensities, while f
relativistic intensities the components of the harmonics
broadened and merge into a single line.

The results of the multidimensional theory for polar sc
tering angles of 0 andp transform to the corresponding re
sults of the one-dimensional theory.~Unlike in Ref. 9, the
growth rates for these scattering angles do not go to zer!

In the numerical studies, we have, for the first time, c
culated the maximum growth rates~real parts of the eigen
values! for the matrixB of an infinite sequence of couple
ordinary differential equations as a technique for analyz
this class of problems. This approach is more effective th
deriving and studying the extremely cumbersome dispers
relations.

In comparing theory with experiment, the following ci
cumstances must be taken into account. First, the calc
tions do not account for absorption of the radiation in t
plasma. The theoretical predictions may be somewhat dif
ent if absorption is included. Second, questions relating
the experimental geometry and the finite pulse duration m
be important: a! the minimum size of the scattering regio
~transverse beam diameter! must exceed the wavelength, an
b! the time for the instabilities under consideration to d
velop must be shorter than the pulse duration.

Linearly polarized radiation is mainly used in expe
ments with pulses at relativistic intensities, while all the r
sults presented here apply to a circularly polarized refere
wave. The group of physical effects outlined above, ho
ever, will also show up in the case of a linearly polariz
reference wave. There are some differences. Thus, in
case of linear polarization, the scattering will not be azimu
ally symmetric.
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Using the imaginary time method, we study the structure of the perturbation series for the
hydrogen atom in electricE and magneticH fields. It is shown that there is a ‘‘critical’’ value
of the ratiog5H/E at which the perturbation series for the ground state changes from
having a fixed sign~for g,gc! to having a variable sign~for g.gc!. This conclusion is confirmed
by direct higher-order perturbation calculations. The change in the asymptotic regime is
explained by competition among the contributions of the various complex trajectories that describe
the subbarrier motion of the electrons. Here the parametergc depends on the angleu
between the electric and magnetic fields. ©1998 American Institute of Physics.
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1. The problem of the hydrogen atom in external fields
of fundamental importance in quantum mechanics a
atomic physics and is often encountered in applications.1–5

Recently,6–8 a semiclassical theory has been develop
for the ionization of atoms and ions in constant and unifo
electric E and magneticH fields. The imaginary time
method9–11 was used to calculate the ionization probabil
w(E ,H), as it yields a convincing description of the subba
rier motion of the particles using the classical equations
motion, but with an imaginary ‘‘time.’’1!

The ionization probability for the atomics level with
binding energyuE0u5k2/2 is given by (\5m5e51, natural
units!

w~E ,H!5k2R~g,u! expH 2
2

3e
g~g,u!J , ~1!

which is asymptotically exact in the limit of weak field
(e,h!1). Here e5E /k3Ea and h5H/k2Ha are the re-
duced electric and magnetic fields,u is the angle between th
fields, Ea5m2e5/\4 and Ha5m2ce3/\3 are the atomic
units for the field strengths,m is the electron mass,g5h/e,

g~g,u!5
3

2
bF12

Ab221

g
sin u2

1

3
b2 cos2 uG , ~2!

b5t0 /g, t05t0(g,u) is the positive root of the equation

t22sin2 u~t coth t21!25g2, ~3!

and, finally,R is a ~rather complicated! factor introduced in
Ref. 7:R522he122nPQh in the notation given there. Equa
tion ~3! can be easily obtained using the imaginary tim
method, wheret0 has a simple physical significance:t05
2 ivLt0 , wherevL5ueuH/mc is the Larmor frequency and
t0 is the ‘‘time’’ ~purely imaginary! for subbarrier motion of
the electron. Note that forg→0,
1121063-7761/98/86(6)/5/$15.00
d

d

-
f

b511
sin2 u

18
g21...,

while for g→`,

b~g,u!5H 1

cosu
2tan2 ug211O~g22!, 0<u,p/2,

g

2
~11g221...!, u5p/2.

~3a!

Thus, for the functiong, which determines the principal~ex-
ponential! factor in the ionization probability, we obtain

g~g,u!511O~g2!, g→0,

g~g,u!5
1

cosu
2

3

2
tan2 u•g211..., g→` ~3b!

~for u,p/2; for u5p/2 the asymptote has a different form
see Eq. ~16! below!. The function g(g,u) increases
monotonically2! along with g ~Fig. 1!, so raising the mag-
netic field ~at fixed E! sharply reduces the ionization prob
ability, stabilizing the atomic level.6,7

Using Eqs.~1!–~3! and invoking the same consideration
as before,15,16 one can obtain the asymptotic behavior of t
higher orders of perturbation theory, which is the subject
this paper. We note that higher-order perturbation theory
been studied for use in many quantum mechanical proble
the anharmonic oscillator,20–22 the Yukawa and funne
potentials,23–26 the Stark27–33 and Zeeman34–36 effects in the
hydrogen atom, the molecular hydrogen ion, etc., as wel
for 1/n-expansions.14–17 The problem examined below is o
interest in that the asymptotic regime undergoes a chang
a certain value ofg5gc : the perturbation series switche
from a constant sign series to an alternating series, whic
2 © 1998 American Institute of Physics
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explained by examining a new class of complex subbar
trajectories besides the usual subbarrier trajectory.

The asymptotic behavior of the higher orders of pert
bation theory is of interest from a general standpoint, bu
also of practical importance for calculating the shifts
atomic levels and their widthsG5\v~E ,H!, using special
procedures for summing diverging series, such as the B
or Pade´–Borel summation techniques.28–33,37,38

2. In calculating the energy levels of atoms in an elect
field E , the standard approach is to expand the energy
perturbation series,

E~E !5 (
k50

`

EkEk. ~4!

According to Dyson’s argument,39 the instability of the state
~complex energyE5Er2 iG/2, whereG is the level width!
is related to the divergence of the perturbation theory ser
We shall study the behavior of the higher orders of pert
bation theory in the presence of a magnetic field. To evalu
the behavior of the perturbation coefficientsEk ask→`, we
use the dispersion relation20,28,33

Ek5
1

2p i R E~E !

Ek11 dE52
1

2p E
0

` G~E !

Ek11 dE ~5!

~here we have taken advantage of the familiar analytic pr
erties of the functionE(E), in particular its behavior on a
large circle32: uE(E)u}(E ln E)2/3 as E→` for the ground
state of hydrogen!.

The asymptotic behavior of the higher orders of pert
bation theory is determined by the level widthG~E! in an
arbitrarily small field, so that it is possible to use the sem
classical Eq.~1!. Equation~3! is even with respect tot and
has a pair of roots6t0 , for which the values ofg(g,u)
differ in sign. Given this, Eqs.~1! and ~5! imply that

Ek'
11~21!k

2
k!akkbS c01

c1

k
1...D , k→`, ~6!

a53@2k3g~g,u!#21 ~7!

~in the case of the ground state, the odd orders of the pe
bation expansion for the energyE(E) vanish identically!. In
the following we examine only the even orders of the p

FIG. 1. The functiong(g,u) ~smooth curves next to which the angleu is
indicated! as a function of the parameterg. The dashed curves are the valu
of ugc(g,u)u for N51 and 2, corresponding to the solution of Eqs.~10!–
~12!.
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turbation expansion, omitting the factor@11(21)k#/2. In
particular, for the Stark effect in the hydrogen atom, w
have28

Ek'2
6

p
k! S 3

2D kF12
107

18k
1

7363

648k2 1...G , a5
3

2
, b50

~6a!

~in the ground stateE0521/2, k5A22E051).
Besides the Stark expansion~4!, let us consider the ex

pansion of the ground state energy in powers of the magn
field:

E5 (
k50

`

ẼkHk, Ẽk5g2kEk . ~8!

In the case of the Zeeman effect~g→`!, the higher orders of
this expansion also increase factorially:35,36

Ẽk'~21!~k12!/2S 4

p D 5/2

GS k1
3

2D S 1

p D k

@11O~k21!#

~6b!

~k even!, which corresponds formally to the asymptote~6!

with a purely imaginary parameterã5a/g56(p i )21. At
the same time, forg@1, by virtue of Eqs.~3b! and ~7!, we
have

ã53/2gg~g,u!'
3

2g
cosu→0,

which is inconsistent with the previous result. This sugge
the existence of other solutions~i.e., complex subbarrier tra
jectories for which the parameterã does not vanish in the
limit of a strong magnetic field!. We shall show that this is
indeed so, by solving Eq.~3! for g→` in the complex plane.

Takingt5 i t̃ andg5 i g̃, we rewrite Eq.~3! in the form

t̃21sin2 u~12 t̃ cot t̃ !25g̃2. ~9!

There are two possibilities asg→`: either t̃0→6 ig/cosu

~here cott̃0→7i! or t̃0→6Np for integer NÞ0(cot t̃0

→`). The first possibility corresponds to the real soluti
considered above. In the second case we obtain

t̃05Np1Np sin u•g̃211
1

2
~Np!3 sin u

3F S 12
2

3
sin2 u D g̃231sin uS 12

1

3
sin2 u D g̃24G1...

~10!

(N51,2,...), with t̃0* , 2 t̃, and2 t̃0* also solutions of Eq.
~9!. Introducing the function

G~g,u!5
2g̃

3p
gc~g,u!

5
2t̃0

3

3pg̃2 H 11
1

2
sin2 uF113 cot t̃0S cot t̃02

1

t̃0
D G J
~11!

and substituting Eq.~10! into it, some simple but cumber
some calculations yield



n

e

ir
f

tl

b

ed

on

r-

in

-
the
en-
r-
di-

nt

in

for

s.

1124 JETP 86 (6), June 1998 V. S. Popov and A. V. Sergeev
G~g,u!5NH 122 sin u•g̃21

1S sin2 u2
~Np!2

3
cos2 u D g̃22

1~Np!2 sin uS 2

3
sin2 u21D •g̃23

1~Np!2 sin2 uS 1

3
sin2 u21D g̃24

2~Np!2 sin uF1

3
sin2 u1~Np!2S 2

15
sin4 u

2
1

3
sin2 u1

1

4D G g̃251...J . ~12!

These expansions are valid forg→`. On the other hand, the
value of t̃0 at g50 can be determined from the equatio
cot t̃021/t̃056 i /sinu. A numerical analysis of Eq.~9!

shows that asg increases, the pointt05 i t̃0(g,u) describes
the curves shown in Fig. 2 in the complex plane.

We shall mainly be interested in the caseN51, where
the functionG(g,u) has its minimum absolute value. Th
values ofugcu5u(3p/2g̃)G(g,u)u for N51 and 2 are shown
in Fig. 1 as the dotted curves. For sufficiently largeg, when
ugcu,g, the asymptotic parametera can be found from Eq.
~7! by replacingg with gc . Because of the existence of a pa
of complex conjugate solutionst̃0 andt̃0* , the asymptotes o
the higher-order perturbation theory now have the form

Ẽk;~21!k/2 Re~CAk!k!kb, A5 i ã53/2ugc~g,u!u,
~13!

so that the perturbation series is alternating for sufficien
largek.

In the limit u→0 ~parallel E and H fields!, the expan-
sion ~12! terminates at the third term, so a solution can
obtained in analytic form:

G~g,0!5NF12
~Np!2

3g̃2 G ,
gc~g,0!5 i

3Np

2g F11
~Np!2

3g2 G . ~14!

FIG. 2. Solutions of Eq.~9! in the complex plane foru530°, 60°, and 90°
(N51). The values of the parameterg50,2,4,... are indicated on the curve
y

e

The conditionugc(g,0)u5g(g,0)51 determines the ‘‘criti-
cal’’ value of g ~Ref. 6!:

gc5p@~11& !1/32~11& !21/3#2155.270495...,

N51 ~15!

~see Appendix!. For g,gc , i.e., in sufficiently strong elec-
tric fields, the dominant contribution to the asymptoticEk is
from the subbarrier trajectory with realt0 , corresponding to
the functiong(g,0), and the perturbation series has a fix
sign. If, however, g.gc , then ac51.5ugcu21.a
51.5ugu21, so the signs of the higher orders of perturbati
theory should alternate according to Eq.~13!. Thus, atg
5gc the structure of the perturbation series changes.

We have verified this by direct calculation of the pertu
bation series coefficientsEk up to k580 ~see Table I!. ~For
k<10 our calculations agree with an earlier paper40 and for
g50, with Refs. 28–33!. Some of these results are shown
Fig. 3. It has been shown that betweeng55 and 5.5, the
order of the signs3! of the coefficientsEk does indeed
change. In addition, forg,gc the coefficientsEk(g) are all
of the same order of magnitude~since g(g,u)[1 and the
asymptotic parametera53/2 is independent ofg!, while for
g.gc they begin an additional~and very rapid!! growth in
accordance with the reduction inugc(g)u, which is clearly
evident in Fig. 3~see also Eq.~A4!!.

In the case considered here~u50!, the critical value of
the parameterg5h/e can be found analytically. It is inter
esting to study the structure of the perturbation series in
more general case as well, especially for mutually perp
dicular fields. The value ofgc that determines the restructu
ing of the perturbation series can be found from the con
tion g5ugcu, where4!

gS g,
p

2 D5
3

8
g~112g221g241...!, g→`, ~16!

GS g,
p

2 D512g222
2p2

3
g242

2i

g F12
p2

6
g22

1
p2

6 S 11
3p2

20 Dg24G1..., ~17!

whence

UgcS g,
p

2 D U5 3p

2g

3F112g222S 8p2

3
21Dg241O~g26!G

~17a!

and gc'3.54. This simple estimate is in good agreeme
with the numerical calculations~see the point of intersection
of the smooth and dashed (N51) curves foru590° in Fig.
1!.

Similarly, we can calculategc for arbitrary anglesu. It
would be interesting to confirm the existence of a switch
the asymptotic regime atg5gc(u) by direct calculation of
the higher perturbation orders, as has been done above
the case of parallel fields.
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TABLE I. Higher orders of perturbation theory~hydrogen atom in parallel fields!.

k

2Ek(g)

g50 g52 g55 g55.5 g510

0 0.500 0.500 0.500 0.500 0.5000
2 2.250 1.2500 24.000 25.3125 222.750
4 55.547 40.089 1.039~2! 1.578~2! 2.319~3!
6 4.908~3! 3.351~3! 26.448~3! 21.437~4! 29.358~5!
8 7.942~5! 5.201~5! 1.195~6! 2.930~6! 6.971~8!

10 1.945~8! 1.232~8! 22.232~8! 28.027~8! 27.817~11!
20 1.121~22! 6.574~21! 1.033~22! 1.015~23! 8.114~28!
30 7.898~37! 4.529~37! 3.485~37! 21.405~39! 29.211~47!
40 1.478~55! 8.389~54! 5.674~54! 5.015~56! 2.642~68!
50 3.279~73! 1.850~73! 23.502~72! 22.054~75! 28.726~89!
60 5.282~92! 2.968~92! 9.221~91! 6.026~97! 2.054~112!
66 3.973~104! 2.228~104! 26.181~101! 26.445~106! 21.217~126!
68 4.084~108! 2.289~108! 5.568~107! 7.450~110! 5.355~130!
70 4.449~112! 2.493~112! 5.862~110! 29.115~114! 22.497~135!
72 5.130~116! 2.873~116! 6.295~115! 1.181~119! 1.232~140!
74 6.250~120! 3.499~120! 1.558~119! 21.614~123! 26.420~144!
76 8.033~124! 4.496~124! 8.981~123! 2.329~127! 3.528~149!
78 1.088~129! 6.085~128! 3.728~127! 23.537~131! 22.042~154!
80 1.550~133! 8.667~132! 1.598~132! 5.654~135! 1.243~159!

Note.The table lists the coefficients in the perturbation theory series~4! for the ground state of the hydrogen atom taken with the opposite sign;k is the
perturbation theory order;a(b)[a•10b.
er
ba
e

w
r-
e

re
o

ig

e
th
e

tic

o

s-

’’
ly

ork
en-

v-
wn
3. Therefore, atg5gc there is a change in the charact
of the asymptotic behavior of the higher orders of pertur
tion theory.5! Upon going from one asymptotic regime to th
other, the perturbation series switches~whenk>k0! from an
alternating series to one with a constant sign, which sho
up in the position of the singularities in the Borel transfo
mants that are closest to zero, and therefore in the choic
an efficient method for taking the sum.17,33,37

The complex solutions of Eq.~3! found above corre-
spond to complex subbarrier trajectories which, therefo
can be important in determining the asymptotic behavior
the higher orders of perturbation theory. Their physical s
nificance can be clarified using the example of parallelE and
H fields. It is known that the asymptotic behavior of th
higher orders of perturbation theory is directly related to
tunneling probability for a particle in a potential with th
‘‘wrong’’ sign on the coupling constant, e.g.,g→2g in the
case of an anharmonic oscillator,

V~x!5
1

2
x21g

x4

4

FIG. 3. Higher orders of perturbation theory~Eq. ~4!! for the ground state of
the hydrogen atom in parallel fields.
-

s

of

,
f
-

e

~the Dyson phenomenon39,20!. In our problem,H 2 plays the
role of g. Going to purely imaginary values of the magne

field (H5 i H̃), we obtain a potential proportional t

2(1/8)H̃ 2r2, decreases without bound asr5Ax21y2

→`. It is evident that in such a potential, tunneling is po
sible both along the electric field~thez axis! and perpendicu-
lar to it. The complex solutions~10!–~12! probably corre-
spond to an analytic continuation of ‘‘perpendicular
subbarrier trajectories of this sort from a region of pure
imaginary magnetic fields into a region of realH.

The authors thank V. M. Va�nberg and V. D. Mur for
discussing this paper and for useful comments. This w
was partially supported by the Russian Fund for Fundam
tal Research~Grant Nos. 95-02-05417 and 98-02-17007!.

APPENDIX

The perturbation theory coefficients~4! for the energy of
the ground state of the hydrogen atom are polynomials ing2:

E~E ,H!5(
i , j

ci j e
2ih2 j5 (

k50

`

E2k~g!e2k, ~A1!

E2k~g!5(
j 50

k

ck2 j , jg
2 j , ~A2!

where 2k is the order of perturbation theory,g5h/e
5aH/E , anda5e2/\c is the fine structure constant. Se
eral of the lowest orders of perturbation theory are kno
exactly, i.e., in the form of rational fractions, as

E052
1

2
, E252

1

4
~92g2!,
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E452
1

64 S 35552318g21
53

3
g4D ,

E652
1

512 S 2 512 7792254 955g2

1
49195

3
g42

5581

9
g6D ,

E8522212
•S 13 012 777 803

4
2...2

12 368 405

9
g6

1
21 577 397

540
g8D , ~A3!

and were used to monitor the numerical calculations. T
outer coefficientsck0 andc0k in Eq. ~A2! correspond to the
Stark27–31 and Zeeman34 effects, while the cross term
(1< j <k21) were taken from Johnsonet al.40 and Lambin
et al.41 Hereck2 j , j5223 je (k2 j , j ), where thee ( i j ) are coeffi-
cients tabulated~for the case of parallel fields! by Johnson
et al.40

The asymptotes of the higher-order perturbation the
can be written in the form

Ek~g!'2k! H 6

p
c0ak1~21!k/2S 4

p D 5/2

c1ac
kk1/2J , ~A4!

where

a5
3

2
, ac5

g

p S 11
p2

3g2D 21

, ~A5!

c05g/sinhg, and for c1 we obtained~numerically! c1'1
212.03g22 for g@1. The conditiona5ac yields a cubic
equation whose solution~according to the Cardano formula!
leads to Eq.~15!.

1!The imaginary time method was developed for the theory of multipho
ionization of atoms and ions in strong optical fields,9,10,12and has also been
used in the problem of electron–positron pair production from the vacu
in a variable electric field.11,13This method has been used14–16to study the
asymptotic behavior of the higher orders of the 1/n-expansion in multidi-
mensional quantum mechanics problems, including the two-center C
lomb problem ~another approach to this problem has appea
recently17,18!.

2!This function was first calculated by Kotovaet al.19

3!Numerical calculations show that signE2k5(21)k11 for g>5.5 and 2k
<80. On the other hand, forg<5 the coefficientsE2k,0 for sufficiently
largek>k0 , wherek0 depends ong and increases rapidly as it approach
gc . Thus, 2k050, 0, 4, and 68, respectively, forg50, 2, 4, and 5~see
Table I!.

4!The first expansion follows from Eqs.~2! and ~3!, the second, from Eq.
~12! with N51. The parameter in these expansions isg22, with gc

22

;0.08!1.
5!An analogous phenomenon occurs in the 1/n-expansion in the problem o

two Coulomb centers.14–16In this case the role of the parameterg is played
by the internuclear distanceR.
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On the possibility of using dark magneto-optical lattices to achieve Bose condensation
of atoms
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We show that in dark magneto-optical lattices, effects associated with the Bose statistics of
atoms can be observed even at laser cooling temperatures (1024– 1026 K), which exceed
evaporative cooling temperatures in magnetic traps by several orders of magnitude.
Quasicondensation occurs, i.e., the wave function is formed over the distances on which atoms
are localized near the bottom of a separate potential well. In addition, switching off the
magnetic field adiabatically reduces the temperature significantly, as a result of which Bose
condensation in the entire volume of the gas can be observed. We propose a configuration of the
light and magnetic fields in which the shape of the three-dimensional magneto-optical
potential is independent of the phases of the emerging light waves. ©1998 American Institute
of Physics.@S1063-7761~98!01106-8#
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1. INTRODUCTION

In 1995, the efforts of many years to achieve Bos
Einstein condensation in atomic gases were crowned w
success.1–3 The new state of matter was created by trapp
laser-cooled spin-polarized atoms in magnetic traps follow
by evaporative cooling to temperaturesT of order 1027 K.

In the present paper we examine the possibility of us
dark magneto-optical lattices to observe effects associ
with the quantum statistics of the particles. Such lattic
form because of the resonant interaction of atoms with tr
sitionsFg5F→Fe5F ~F is an integer! or Fg5F→Fe5F
21 ~Fg andFe are the angular momenta of the ground a
excited states! and an inhomogeneously polarized field und
conditions of coherent trapping of populations in a sta
magnetic field.4 The cold atoms, which are in the dark sta
of coherent trapping of populations, are localized near
points where this state is not destroyed by the magnetic fi
and hence the optical interaction is close to zero. Local
tion and cooling in such lattices for the one- and tw
dimensional cases were studied in Refs. 5–7.

We suggest a field configuration for stable three-dim
sional trapping of atoms with the 1→1 transition in a dark
magneto-optical lattice. When the laser field is strong,
percentage modulation of the magneto-optical potentia
determined by the Zeeman splitting of the ground state,\V,
and the period, by the wavelengthl of the light, as in the
case of a one-dimensional lattice considered by Konopl
et al.7 In the limit V@v r ~here\v r5\2k2/2M is the one-
photon recoil energy!, tunneling between the wells can b
ignored, and the distance between the low-lying vibratio
levels in a potential well is of order\AVv r . Then at tem-
peratureskBT,\AVv r the quantum statistical effects be
come significant at concentrationsnl3>1, when on the av-
erage there is more than one atom to a well. For insta
Bose atoms, irrespective of their number, are practically
in the ground state. This leads to formation of a quasic
1121063-7761/98/86(6)/5/$15.00
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densate, where the phase of the wave function is fixed o
distances of localization in a single well (!l) and varies at
random from well to well. Such quasicondensation manife
itself in sudden changes in the spatial distribution, heat
pacity, etc. The jumps and fairly smooth, as in the transit
at the critical point in a system of several particles in a sin
potential well.8 Since the curvature of the magneto-optic
potential near the minimum points is much larger than
curvature of the potential in the magnetic traps, the deg
eracy of the atomic gas is substantial at temperaturesT
;1024– 1026 K) that are much higher than those for ma
netic traps.1–3

On the basis of a thermodynamic analysis we also sh
that whennl3.1, the temperature drops significantly~by
several orders of magnitude! under adiabatic switch-off of
the magnetic field. The possible result is Bose–Einstein c
densation in the entire volume of the gas. In contrast to
dinary Bose condensation of free particles, a macrosco
wave function uCNC& is formed. This wave function is a
spatially inhomogeneous coherent superposition of
ground-state Zeeman wave functions and is annihilated
the operator of the interaction with the laser fiel
d̂•EuCNC&50. From the practical viewpoint this method o
adiabatic switch-off of the magnetic field can be considere
new, highly effective method of ultradeep cooling of atom
gases that uses dark magneto-optical lattices.

2. STATEMENT OF THE PROBLEM

We examine a gas consisting of Bose atoms resona
interacting with a spatially inhomogeneous monochroma
laser field

E~r ,t !5E~r !e2 ivt1c.c.

on theFg51→Fe51 transition in the presence of a consta
magnetic fieldB. As is known,9 for all F→F transitions~F
7 © 1998 American Institute of Physics
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is an integer! there are states of coherent trapping of pop
lations, states that nullify the interaction with the field:

d̂•E~r !ucnc~r !&50,

whered̂ is the is the atomic dipole moment operator. In o
case (F51) this state has the form10

ucnc~r !&5
1

uE~r !u (
q50,61

Eq~r !ug,m5q&, ~1!

where Eq(r ) are the components of the fieldE~r ! in the
cyclic base$e05ez ,e6157(ex6 iey)/&%. The state~1! is a
superposition of the ground-state Zeeman wave functi
ug,m& with inhomogeneous coefficients and generally is
eigenstate of neither the operator of interaction with the m
netic field, ĤB52(m̂•B), nor the kinetic-energy operato
ĤK5 p̂2/2M . However, the corrections introduced by tran
lational motion and the magnetic field can be conside
small perturbations in relation to the interaction with the
ser field provided that

V~r !AG@kv̄,V, ~2!

where V(r )5u^d̂&E(r )u/\ is the local Rabi frequency,G
5V2(r )/@g2/41d21V2(r )# is the saturation parameter wit
allowance for field broadening of the levels~whered is the
detuning of the frequency of the light field from resonan
andg is the radiative relaxation rate of the excited state!, and

v̄ is the average velocity of the atoms. In this case the m
jority of atoms are in a dark stateucnc(r )&, since when the
condition ~2! is met the relative populations of atoms in th
state of coherent population,nnc , and in the excited state
ne , satisfy

~12nnc!;ne;S max$kv̄,V%

V~r !AG
D 2

!1.

To the same accuracy, the evolution of an individual at
can be described by the effective one-particle Hamiltonia

Ĥeff
~1!5^cnc~r !u~ĤK1ĤB!ucnc~r !&. ~3!

Following the standard rules of many-particle quantu
theory, we describe an ensemble of atoms by the follow
Hamiltonian in the second-quantization representation:

Ĥ5E b̂†~r !Ĥeff
~1!~r !b̂~r !d3r ,

where b̂†(r ) and b̂(r ) are the creation and annihilation op
erators for atoms in the state~1! of coherent trapping of
populations at the pointr .

Note that if condition~2! is met, due to the effect o
coherent trapping of populations the strongest dipole–dip
interaction of atoms is strongly suppressed (nenl3@1), so
that we can ignore it. We also ignore interatomic collisio
i.e., we use the ideal-gas approximation.
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3. THE EFFECTIVE HAMILTONIAN FOR ATOMS IN A DARK
STATE

Using the explicit form~1! for the state of coherent trap
ping of populations, we write the one-particle Hamiltonia
~3! as a sum of four terms:

Ĥeff
~1!5

p̂2

2M
1U~r !1

1

2M
$A~r !•p̂1p̂•A~r !%1W~r !.

~4!

The first term on the right-hand side of Eq.~1! is the kinetic
energy operator. The second is the magneto-optical pote

U~r !5\V
iB•~E~r !3E* ~r !!

uBuuE~r !u2 , ~5!

and below we assume thatV.0. The last two corrections in
~4! reflect the spatial inhomogeneity of the dark state. T
first is of orderkv and can be interpreted as an interacti
with the effective vector potential

Aj~r !52 i\S E*

uEu
•

]

]xj

E

uEu D . ~6!

The second is of order the one-photon recoil energy\v r and
contributes to the potential energy of an atom:

W~r !5
\2

2M (
j

U ]

]xj

E

uEuU
2

. ~7!

If the Zeeman splitting satisfies

V@kv̄,v r , ~8!

the last two terms in~4! can be ignored. In this case

Ĥeff
~1!'

p̂2

2M
1U~r !,

and the problem reduces to that of the motion of a structu
less particle in the magneto-optical potential~5!, for which
the depth is determined by the magnetic field and the spa
periodicity by the wavelength of the light.

4. FIELD CONFIGURATION FOR THREE-DIMENSIONAL
TRAPPING OF ATOMS

Obviously, the potential~5! can be used to create
three-dimensional lattice of atoms if the laser fieldE(r ,t) is
a finite set of plane waves. However, a certain problem ar
in this case: the shape of the potential~5! generally depends
on the phases of the emerging plane waves, and usually t
phases cannot be controlled. Changes in the phases of fi
can lead, among other things, to a violation of the condit
of stable three-dimensional atom trapping, i.e., the minima
the potential form continuous lines or flat surfaces. Hence
special interest from the standpoint of the experimenter
such configurations of the light fields for which the shape
the potential is independent of the choice of phases, so th
leads only to a shift in the spatial pattern as a whole.

In this paper we propose such a configuration, which
formed by five linearly polarized laser beams~Fig. 1!:
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E~r !5exE1 exp~ ik1•r !1eyE1 exp~ ik2•r !

1ezE2$exp~ ik3•r !1exp~ ik4•r !1exp~ ik5•r !%.

The two oppositely directed beams propagating along thz
axis (k252k15ukuez) have the same amplitudeE1 and mu-
tually orthogonal linear polarizations~the lin'lin configura-
tion!. The other three beams have equal amplitudesE2 and
are linearly polarized alongez ; their wave vectorsk3 , k4 ,
and k5 lie in the xy plane and form an angle of 120° wit
each other.

It can be shown that for any phases of the emerg
waves the magneto-optical potential~5! can be reduced, via
an appropriate selection of the origin of coordinates, to
form

U~r !5
22\V cos~2kz!

21UE2

E1
U2H sin2

3ky

2
1S cos

3ky

2
12 cos

)kx

2 D 2J .

~9!

The minima of this potential are located in the planesz
5ml/2 (m50,61,...), with each forming a two-
dimensional lattice consisting of regular triangles with sid
equal to 2l/3. At these points the polarization of the fie
E~r ! is left-hand circular, and the state~1! of coherent trap-
ping of populations coincides with the Zeeman suble
ug,m521& and is not destroyed by the magnetic fieldB
~Fig. 2!. As shown in Ref. 7, the localization of atoms ne
these points leads to additional stability of the states of
herent trapping of populations opposed to the destructive
fect of magnetic field. As a result, for localized atoms w
have a stronger estimate:

~12nnc!;ne;S V

VAG
D 2

Av r

V
!1,

which because of the factorAv r /V!1 differs substantially
from the general estimate of Sec. 1.

We can easily show that the potential~9! corresponds to
three-dimensional periodic lattice with a unit-cell volumeu

FIG. 1. Configuration of the optical and magnetic fields in which the sh
of the magneto-optical potential~5! is independent of the phases of th
emerging light waves and the choice of the origin of coordinates reduce
potential to~9!.
g

e

s

l

r
-
f-

5l3/3). It is well-known that in a periodic potential th
energy spectrum has a band structure. However, in view
~8!, for the lower bands we can ignore the tunneling of p
ticles from one well to another. Here the widths of th
lower bands are exponentially small in the parame
exp(2AV/v r), and positions of these bands can be fou
from a harmonic expansion of the potential~9! near the bot-
tom of an isolated well:

U~r !'2\VF12
9uE2u2

8uE1u2 k2~x21y2!22k2z2G .
We see that the distance between the two lowest ene
bands for commensurable values of the amplitudesuE1u and
uE2u is of order\AVv r ~Fig. 3!. Putting uE2u54uE1u/3, we
arrive at the case of a three-dimensional isotropic harmo
oscillator with a frequencyVosc5A8Vv r . For the sake of
definiteness, below we examine this case.

5. QUASICONDENSATION

At temperatureskBT,\V the atoms are in finite motion
in the magneto-optical potential~9!. As is known, the effects
of quantum statistics become appreciable when the de B
glie wavelength becomes equal to the average interato
distance. In our case this corresponds to the conditionkBT
,\Vosc(nu)1/3, wherenu is the average number of atom
per unit cell (nu.1).

If we allow for the finite value of the widthD«0 of the
lower energy band, we can isolate two regions. First,

e

he

FIG. 2. Light-induced transitions~denoted by arrows! at the localization
points. The dark state~1! coincides with the Zeeman sublevelug,m521&
~denoted by an asterisk!.

FIG. 3. A rough diagram of the low-lying vibrational levels in the magne
optical potential~9!.
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D«0,kBT,\Vosc~nu!1/3, ~10!

where practically all Bose atoms are in the lower ene
band with an equiprobable distribution over the quasim
menta. This corresponds to quasicondensation, where
wave function of the atoms is formed over distances of
calization (!l) in a single well. When we go from one we
to another, the phase of this function changes at random,
there is global condensation in the entire volume of the
tice. In the interval~10!, the volume densityS of the sys-
tem’s entropy is weakly temperature-dependent and in
zeroth-order in (D«0 /kBT)!1 has the value

S'nF ln~11nu!

nu
1 lnS 11

1

nuD G , ~11!

which can be obtained from combinatorial analysis:

S5 lim
V→`

ln c

V
,

wherec is the number of different arrangements ofnV dif-
ferent objects~atoms! in V/u cells ~quasimomenta of the
lower band! when each cell can contain any number of o
jects ~Bose statistics!, i.e.,

c5
~nV1V/u21!!

~nV!! ~V/u21!!
.

Using the well-known Stirling’s asymptotic formula fora!
as a→` (a!'aae2aA2pa), we arrive at ~11!. Formula
~11! can also be obtained from the grand canonical distri
tion.

Second, if we havekBT,D«0 , order in the quasimo-
menta of the lower band sets in. Here, as expected, the
tem’s entropy tends to zero. However, if the conditions~8!
are met,D«0 is exponentially small~as noted earlier!, so that
the temperature rangekBT,D«0 is of no practical interest.

6. BOSE CONDENSATION WHEN THE MAGNETIC FIELD IS
SWITCHED OFF ADIABATICALLY

As the magnetic field gets weaker, the wave-funct
localization distances in each well increase, the tunneling
atoms from well to well becomes more intense, and the w
functions overlap. This may lead~at least in principle! to
correlation in phases of the atomic wave functions and
Bose condensation in the entire volume of the gas.

Let us do a thermodynamic estimate of the possibility
such an effect when the magnetic field is switched off ad
batically. The thermodynamic condition that a process
adiabatic is the constancy of the entropy,S5const. For the
initial conditions we take the temperature range~10!. Then
the value ofS is given by~11!. To estimate the values of th
thermodynamic parameters in a zero magnetic field, we
the approximation of an ideal gas of free structureless p
ticles. For instance, the entropy of an ideal Bose gas,SI , at
the critical pointTc is SI(Tc)'1.28n ~see Ref. 11!. Then, if
we want to reduce the temperature below the critical te
perature by switching off the magnetic field adiabatically
that Bose condensation will occur,S must be smaller than
y
-
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-
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SI(Tc) ~this follows from the fact that entropy is a monoton
function of temperature!. According to~11!, this yields the
following inequality:

ln~11nu!

nu
1 lnS 11

1

nuD,1.28, ~12!

which is valid if nu.1.17. Thus, adiabatic switch-off of th
magnetic field sharply reduces the temperature, a pro
that outwardly resembles magnetic cooling. However,
physics of the process implies that we are dealing with co
ing due to gas expansion. Indeed, in our case the magn
field creates a magneto-optical potential and a strong sp
localization of the atoms in regions whose dimensions
much smaller thanl. When the magnetic field is switche
off, the atoms become delocalized, which corresponds to
fective expansion of the gas.

Note that to achieve a more rigorous estimate of the s
of the system in the absence of a magnetic field we must
into account the last two corrections in~4!, which are due to
the periodic inhomogeneity of the state~1! of coherent trap-
ping of populations over distances of the order of the lig
wavelengthl. However, fornu.1 these corrections do no
change the thermodynamic quantities much in compariso
a gas of free particles. For instance, from general phys
considerations is it clear that even if we allow for the co
rections ~6! and ~7!, the expression for the entropy at th
critical value Tc is S(Tc)5Dn, where the coefficientD
reaches a saturation plateau as the parameternu increases
and is of order unity, as in the case of a gas of free partic
Here the factor (nu)21 ln(11nu)1ln(11(nu)21) in ~11!
fairly rapidly decreases asnu grows~actually, it decreases a
(nu)21). Thus, we see that we can always select a valuf
such that for nu. f this factor, (nu)21 ln(11nu)1ln(1
1(nu)21), is smaller thanD, i.e., when the temperature drop
below Tc as the magnetic field is switched off adiabatica
and Bose condensation is possible even if one allows for
spatial inhomogeneity of the state~1! of the coherent trap-
ping of populations.

At the same time, in determining the ground-state wa
function of the system one must carefully take into acco
the terms~6! and~7! in ~4!. Most likely, the ground state o
the system in our case is the well-known macroscopic d
state,10

uCNC&5RuE~r !uucnc~r !&5R (
q50,61

Eq~r !ug,m5q&,

which is not destroyed by translational motion:

p̂2

2M
uCNC&5\v r uCNC&,

whereR is the normalization constant. Indeed, the amplitu
uE(r )u is an eigenfunction of the Hamiltonian~4! at B50, is
real, and has no nodes in the configuration depicted in Fig

For an example we take the transition 1→1 involving
the D1-line of 87Rb (l57947.631028 cm). If we take
a magnetic fieldB'4 G (V'g/2), we readily see tha
for temperaturesT<1025 K and concentrationsn>1.2
31013 cm23 the quasicondensation condition~10! and the
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condition~12! are met, i.e., when Bose condensation in p
sible in the entire volume of the gas as a result of adiab
switch-off of the magnetic field~for a gas of free particles
with n51.231013 cm23 we haveTc59.731028 K). These
estimates also demonstrate the high efficiency~several orders
of magnitude! of the proposed method of adiabatic coolin
of a gas using dark magneto-optical lattices. Note that
condition ~2! to be met the light intensity must be great
than or of order 1 W cm22.

Such values of the concentrations have yet to
achieved in experiments in laser cooling and trapping of
oms. But the rapid progress in experimental techniques g
hope that in the near future the regime withnu.1 in dark
optical and magneto-optical lattices will be achieved.

The casenu,1 requires special consideration.

This work was partially supported by the Russian Fu
for Fundamental Research~Grant No. 98-02-17794! and the
Universities of Russia Program.
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Two-photon ultrashort nonlinear dynamics of coherent bosonic quasiparticles in
condensed media
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We present a theoretical study of the ultrashort nonlinear dynamics of bosonic quasiparticles in
condensed media participating in two-photon quantum transitions. In the resonance
approximation we obtain exact solutions in the form of elliptic functions. We show that allowing
for antiresonant terms in the Hamiltonian of the interaction of the electromagnetic field and
the quasiparticles leads to an entirely new phenomenon: the development of ultrashort chaos. The
dynamical stochasticity of the quasiparticles is due to the disintegration of constants of
motion of the system. Finally, we predict the effect of nonlinear tunneling from one potential
well to another. ©1998 American Institute of Physics.@S1063-7761~98!01206-2#
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1. INTRODUCTION

Lately there has been an upsurge of interest in the st
of nonlinear dynamics, especially of dynamical chaos
physical, chemical, biological, and other systems.

The discovery of dynamical chaos in nonlinear det
ministic systems has been one of the most important
striking scientific achievements in recent times.1 Numerous
papers devoted to deterministic chaos have been publis
The theory of the stochastic behavior of dissipative a
Hamiltonian dynamical systems has been studied in mo
graphs, textbooks, and reviews.1–5

Of special interest is the study of optical dynamic
chaos, especially in condensed media in connection with
dictions of new physical phenomena in such media and t
use in new optoelectronic devices. Another potential field
research is the application of these phenomena in op
processing of information and in designing a new genera
of optical computers.

Because of the large nonlinearity values in semicond
tors at the long-wavelength fundamental absorption edg
the crystal, aspects of optical self-organization are unde
ing intensive study, including dynamical chaos in a syst
of coherent~in the Bogolyubov sense! excitons and biexci-
tons.

A theory of dissipative dynamical chaos in a system
excitons and biexcitons participating in various quant
transitions was developed in Refs. 6–12. There it was d
onstrated~among other things! that in the region of theM
luminescence band of a semiconductor, the dynamical e
lution of the quasiparticles is described by a system of
renz equations in four-dimensional phase space. It has b
proved that the transition to the chaotic mode is achie
through period-doubling bifurcations accompanied by
formation of strange attractors in the four-dimensional ph
space. The dynamical evolution of coherent excitons
photons was studied in Refs. 13 and 14 with allowance
exciton–exciton interaction. In this case the quasiparticle
namics is described by a generalized system of Keld
1131063-7761/98/86(6)/9/$15.00
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equations.15 It is shown that in contrast to Lorenz chao
where the stochastic oscillations and the formation o
strange attractor are related to jumps between the co
sponding equilibrium states, in the given case stochasticit
related to the formation of a strange attractor in fou
dimensional phase space, which is filled by unstable ph
trajectories in a complicated manner.

As for the dynamical chaos in Hamiltonian systems
coherent quasiparticles in semiconductors and insulators
study of these phenomena has only begun. The possibilit
principle of ultrashort dynamical chaos emerging in a syst
of excitons and biexcitons near theM luminescence band o
the crystal and in two-photon creation of biexcitons from t
ground state of the crystal has been proved in Ref. 16–
There it was shown that at certain critical values of the
rameters, stochastic instability sets in in the system due
destruction of constants of motion.

The present paper investigates a new cooperative non
ear phenomenon: ultrashort dynamical chaos in a system
coherent bosons in the optical transitions between the lev
By way of an example, we study the nonlinear dynamics
two-photon transitions between exciton or exciton–biexci
levels in the course of time intervals shorter than the cha
teristic relaxation times.

Because these transitions are characterized by giga
oscillator strengths, the effects of coherent nonlinear inter
tion of light and matter in this frequency range manife
themselves most vividly.

Wang and Haken19 and Moskalenkoet al.20,21 have de-
veloped theories of a two-photon laser, respectively, for
model of two-level atoms and in two-photon optical conve
sion of biexcitons into excitons.

Moskalenkoet al.20,21 used the methods of the quantu
theory of fluctuations and decay to obtain a master equa
for the density matrix of excitons, photons, and biexcitons
solids. Using Glauber’sP-representation, they derived
Fokker–Plank equation for the system of coherent quasi
ticles. They found the condition needed for two-photon la
2 © 1998 American Institute of Physics
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generation of biexcitons in biexciton–exciton conversion.
nally, they showed that the transition from the disorde
phase to the ordered one is equivalent to a first-order ph
transition.

The general drawback of Refs. 19–21 is that they stu
only steady states of the particles and quasiparticles in t
photon quantum transitions. More interesting, however
the study of nonlinear dynamics in the corresponding qu
tum transitions with and without allowance for dissipati
processes.

2. HAMILTONIAN OF THE PROBLEM; DERIVATION OF THE
DYNAMICAL EQUATIONS

Let us study the nonlinear ultrashort dynamics of coh
ent quasiparticles in condensed media in the case two-ph
exciton–biexciton or exciton–exciton transitions.

The model we will be using is depicted in Fig. 1. Th
ground state of the quasiparticles is an exciton or the
exciton level, and the excited state is a biexciton or the s
ond exciton level.

As is known, the characteristic relaxation times of ex
tons and biexcitons in semiconductors and insulators ar
order 10211– 10210 s. However, by means of a newly deve
oped method of generating and forming light pulses with
length down to 10215 s, we can experimentally study cohe
ent phenomena for times shorter than the relaxation time
particular, to observe ultrashort phenomena in a system
excitons and biexcitons under two-photon excitation, pul
in the picosecond and subpicosecond ranges are neede

Up till now the nonlinear dynamics of coherent excito
and biexcitons has been studied in the resonance approx
tion. Below we show that allowing for nonresonant~antireso-
nant! terms in the interaction Hamiltonian dramatical
changes the nonlinear dynamics of the quasiparticles and
der certain conditions results in a new cooperative phen
enon, ultrashort two-photon dynamical chaos in excito
biexciton or exciton–exciton transitions.

We begin our study of two-photon nonlinear dynam
by introducing the Hamiltonian of coherent quasipartic
uniformly distributed over the crystal:

H

\
5vaap

†ap1vbb2k1p
† b2k1p1vphck

†ck1 iq~ap
†1a2p!

FIG. 1. Energy level diagram of the two-photon conversion of bosons f
one excited state to another: 0 is the ground state of the crystal, 1 is
energy level of the first bosonic level, 2 is the energy level of the sec
bosonic level,vph is the light frequency,va is the frequency of the first
bosonic transition, andvb is the frequency of the second bosonic transitio
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se
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3~ck
†1c2k!~ck

†1c2k!b2k1p

2 iq~ap1a2p
† !~ck1c2k

† !~ck1c2k
† !b2k1p

† . ~1!

Hereap
† (ap) andbp

† (bp) are the creation~annihilation! op-
erators for quasiparticles with a wave vectorp on the first
and second levels with generation energies\va and \vb ,
respectively;ck

† (ck) is the creation~annihilation! operator
for a photon with a wave vectork and energy\vph; andq is
the constant of two-photon conversion between the lev
From now on we set\51 and go over to amplitude–phas
variables:

ap5An exp~2 iwa1 ipx!, ap
†5An exp~ iwa2 ipx!,

ck5Af exp~2 iwe1 ikx!, ck
†5Af exp~ iwe2 ikx!,

b2k1p5AN exp~2 iwb1 i ~2k1p!x!,

b2k1p
† 5AN exp~ iwb2 i ~2k1p!x!, ~2!

wheren, wa , N, andwb are, respectively, the number an
phase of the quasiparticles on the first and second levels,
f andwe are, respectively, the number and phase of the p
tons.

In terms of the new variables the system Hamiltonian

H5H01Hr1Har ,

H05van1vbN1vphf ,

Hr52qAnN f sin~wb2wa22we!,

Har52qAnN f@sin~wb2wa12we!1sin~wb2wa!

1sin~wb1wa22we!1sin~wb1wa12we!

1sin~wb1wa!#, ~3!

whereH0 is the free-particle Hamiltonian, andHr and Har

are the resonant and nonresonant~antiresonant! terms in the
Hamiltonian responsible for particle interaction. Here and
what follows we discard the subscripts on the wave vecto

If we allow for ~3!, we can easily derive a system o
nonlinear differential equations describing the dynami
evolution of the coherent quasiparticles:

dn

dt
52

]H

]wa
52qAnN f@cos~wb2wa22we!1cos~wb2wa

12we!12 cos~wb2wa!2cos~wb1wa22we!

2cos~wb1wa12we!22 cos~wb1wa!#, ~4!

dN

dt
52

]H

]wb
522qAnN f@cos~wb2wa22we!1cos~wb

2wa12we!12 cos~wb2wa!1cos~wb1wa22we!

1cos~wb1wa12we!12 cos~wb1wa!#, ~5!

d f

dt
52

]H

]we
54qAnN f@cos~wb2wa22we!2cos~wb2wa

12we!1cos~wb1wa22we!2cos~wb1wa12we!#,

~6!
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dwa

dt
5

]H

]n
5va1q fAN

n
@sin~wb2wa22we!1sin~wb2wa

12we!1sin~wb2wa!1sin~wb1wa22we!1sin~wb

1wa12we!1sin~wb1wa!#, ~7!

dwb

dt
5

]H

]N
5vb1q fAn

N
@sin~wb2wa22we!1sin~wb2wa

12we!1sin~wb2wa!1sin~wb1wa22we!1sin~wb

1wa12we!1sin~wb1wa!#, ~8!

dwe

dt
5

]H

] f
5vph12qAnN@sin~wb2wa22we!1sin~wb2wa

12we!1sin~wb2wa!1sin~wb1wa22we!1sin~wb

1wa12we!1sin~wb1wa!#. ~9!

To separate the resonance phase, we introduce the follo
notation:

c5wb2wa22we , w15wb2wa12we ,

w25wb2wa , w35wb1wa12we ,

w45wb1wa , w55wb1wa22we .

Then the system of equations~4!–~9! becomes

dn

dt
5

l

5
AnN f@cosc1«~cosw112 cosw2

2cosw322 cosw42cosw5!#, ~10!

d f

dt
5

2l

5
AnN f@cosc2«~cosw11cosw32cosw5!#,

~11!

dN

dt
52

l

5
AnN f@cosc1«~cosw112 cosw2

1cosw312 cosw41cosw5!#, ~12!

dc

dt
5D1

l

10F fAn

N
2 fAN

n
22AnNGB, ~13!

dw1

dt
5D141

l

10 F fAn

N
2 fAN

n
12AnNGB, ~14!

dw2

dt
5D121

l

10 F fAn

N
2 fAN

n GB, ~15!

dw3

dt
5D1412

va

vph
1

l

10F fAn

N
1 fAN

n
12AnNGB,

~16!

dw4

dt
5D1212

va

vph
1

l

10F fAn

N
1 fAN

n GB, ~17!

dw5

dt
5D12

va

vph
1

l

10F fAn

N
1 fAN

n
22AnNGB,

~18!
ng

whereB5sinc1«(sinw112 sinw21sinw312 sinw41sinw5),
t5tck, l510q/vph, D5(vb2va22vph)/vph, and the
parameter« was introduced formally and takes a value of
or 1. For«51, Eqs.~10!–~18! are equivalent to Eqs.~4!–
~9!. The resonance approximation amounts to ignoring
terms containingw i , i 51–5, which is equivalent to«50.

3. RESONANCE APPROXIMATION «50

In the resonance approximation the system has th
constants of motion for the numbers of particles:

2N1 f 5C, n1N5C1 , 2n2 f 5C2 . ~19!

Bearing this in mind and using Eqs.~10!–~18!, we can
easily obtain a reduced system of equations that describe
dynamical evolution of the coherent quasiparticles in
resonance approximation:

dc

dt
5

]P

]N
5D1

l

10FAC12N

N
~C22N!

2A N

C12N
~C22N!22AN~C12N!Gsin c,

~20!

dN

dt
52

]P

]c
52

l

5
~C22N!AN~C12N! cosc, ~21!

P5
H2vaC12vphC

vph
5DN

1
l

5
~C22N!AN~C12N!sin c, ~22!

whereP an additional constant of motion acting as a Ham
tonian in the space of the variablesN andc.

The evolution of the system varies depending on
relationship between the constants of motion and the de
ing from resonance.

If we introduce the notationl̂5lC1 , n̂5n/C1 , N̂

5N/C1, f̂ 5 f /C1 , andĈ5C/C1 , go over to the variablesN
anddN/dt, substitute~22! in ~21!, and drop the ‘‘hat,’’ we
arrive at the following equation for the unperturbed case

S dN

dt D 2

5
l2

25
N~12N!~C22N!22~P2DN!2. ~23!

The solution of this equation is

N5
N4N131N1N34sn2~~lt/5!AN24N131F~w0!;k!

N131N34sn2~~lt/5!AN24N131F~w0!;k!
.

~24!

Here w05sin21 AN13N04/N34N10 is the argument of the el
liptic integral of the first kind (F), k5AN12N34/N13N24 is
the modulus of the elliptic function,N0 is the initial number
of particles on the second level, andNi j 5Ni2Nj , where
N4,N3,N2,N1 are the roots of the equation

l2

25
N~12N!~C22N!22~P2DN!250. ~25!

The nonlinear oscillation frequency is
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FIG. 2. Potential energyW(N) of a nonlinear
oscillator: in the general case~a!, for P5CD/2
andC.2 ~b!, for P5CD/2 andC,2 ~c!, and
for P5D50 andC52 ~d!. The horizontal line
corresponds to the total energy of the oscillato
.
io
th

- -

ries
ipar-
v~P!5
pqAN13N24

K~k!
, ~26!

whereK(k) is the complete elliptic integral of the first kind
Thus, the number of quasiparticles is a periodic funct

of time with a frequency that depends on the values of
constants of motion and the detuning from resonance.

For P/D5C/2 andC.2 we arrive at a particular solu
tion of the form

N5
N4N131N1N34 sin2~~lt/5!AN24N131w0!

N131N34 sin2~~lt/5!AN24N131w0!
, ~27!
n
e

where N4525D2/4l2, N351, and N1,25C/2. For P5D
50, N15N25N351, andN450, we have

N5
l2t2/25

11l2t2/25
. ~28!

For P/D5C/2 andC,2 the phase trajectory of the sys
tems is the separatrix. As is well known,2,3 any small pertur-
bation causes a dramatic disintegration of the trajecto
near a separatrix and under certain conditions the quas
ticle motion becomes stochastic.

The solution on the separatrix is
N5
N4N131N1N34 tanh2~~lt/5!AN24N131 log~ tan~w0/2!1p/4!!

N131N34 tanh2~~lt/5!AN24N131 log~ tan~w0/2!1p/4!!
. ~29!
are
n

HereN4525D2/4l2, N2,35C/2, andN151.
Note that the various solutions of Eq.~23! are deter-

mined by the shape of the potential curve~Fig. 2!

W~N!52
l2

25
N~12N!~C22N!22~P2DN!2. ~30!
4. DISINTEGRATION OF CONSTANTS OF MOTION AND
STOCHASTIZATION OF PHASE TRAJECTORIES

In the unperturbed case, the trajectories of motion
closed curvesN(c) determined by the parametric equatio
~22!. If we allow for antiresonant terms«51, for small val-
ues ofl the constants of motion change and then, asl in-
creases, disintegrate.

The variation of the constant of motionP with time is
given by the following expression:
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dP~N,c,C,C1!

dt
5

]P

]N

dN

dt
1

]P

]c

dc

dt
1

]P

]C

dC

dt
1

]P

]C1

dC1

dt
.

~31!

Allowing for ~12!, ~13!, ~20!, and~21!, for the perturbed
equations we have

dN

dt
52

]P

]c
1dS dN

dt D ,
dc

dt
5

]P

]N
1dS dc

dt D , ~32!

where

dS dN

dt D52
l

5
~C22N!AN~C12N!~cosw1

12 cosw21cosw312 cosw41cosw5!, ~33!

dS dc

dt D5
l

10FAC12N

N
~C22N!2A N

C12N
~C22N!

22AN~C12N!G~sin w112 sin w2

1sin w312 sin w41sin w5!. ~34!

Substituting~32!–~34! into ~31! yields

dP

dt
5H l2

50
@~C22N!2~122N!22~C22N!~12N!N#

3~sin~w12c!12 sin~w22c!1sin~w32c!

12 sin~w42c!1sin~w52c!!1
Dl

5
~C22N!

3AN~C12N!~cosw112 cosw21cosw3

12 cosw41cosw5!J Y F11
P2DN

C22N G , ~35!

where forN, c, andw i we took the unperturbed expression
Near the separatrixP/D→C/2, C,2, we obtain the fol-

lowing expressions for the characteristic roots:

N1512
~P2D!2

~2l/5!2~C/221!222~P2D!
, ~36!

N2,35
C

2
2

~P2DC/2!~D6~l/5!AC~22C!!

~l2/25!C~22C!2D2 , ~37!

N45
P2

~lC/5!212DP
. ~38!

The quantityN(t) varies almost from 0 toC/2, where at
a turning point of the hyperbolic type its period tends
infinity. For l!1 the dominator in~35! is of order unity,
(C22N)2(122N)22(C22N)(12N)N;C2, and (C
22N)AN(C12N);(P2DC/2)/l holds far from the singu-
lar point N5C/2 within a small temporal interval of the
small-oscillation period 2p/v0 . In the neighborhood of the
singular point, (C22N)2(122N)22(C22N)(12N)N
;(P2DC/2)/l and (C22N)AN(C12N);(P2DC/2)/l
within a large temporal interval 2p/v(P), wherev(P) is
the nonlinear oscillation frequency. In this case, instead
~35! we have
.

f

dP

dt
5

l2

50
C2A~t!~sin u112 sin u2

1sin u312 sin u41sin u5!, ~39!

du1

dt
5D141O~l!, ~40!

du2

dt
5D121O~l!, ~41!

du3

dt
5D1412

va

vph
1O~l!, ~42!

du4

dt
5D1212

va

vph
1O~l!, ~43!

du5

dt
5D12

va

vph
1O~l!, ~44!

whereA(t) is a periodic function with a period 2p/v(P), a
height of order unity, and a width of 2p/v0 ; v0

5lA21C/5 is the frequency of small oscillations of th
system forP→DC/2 andC,2.

If in ~39!–~44! we go over to a system of discrete tran
formations, we get

Pm115Pm1D̄P, ~45!

u i ,m115u i ,m1
4p

v~Pm11!
5u i ,m1

4p

v~Pm!

2
4p

v2~Pm!

dv~Pm!

dPm
, i 51–5, ~46!

D̄P'
l2

50
C2E dtA~t!~sin u112 sin u2

1sin u312 sin u41sin u5!. ~47!

The nature of the solution~45!–~47! is determined by
the value ofM ~Refs. 2 and 3!:

M5
4p

v2~P!
Udv~P!

dP U. ~48!

When M!1, the system of coherent particles perform
quasi-periodic oscillations. WhenM@1, the motion becomes
stochastic during the phase decorrelation time

R~t!5K expS (
i 51,5

@u i~t1!2u i~t11t!# D L ;expS 2
5t

tc
D ,

~49!

wheretc51/v(P)ln M.
The change inP in one transformation step is

max D̄P;
28

10
C2lp expS 2

5ap

2l D , ~50!

where the constanta is of order unity. The nonlinear oscil
lation frequencyv(P) near the separatrix is
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v~P!5
plAN13N24

5 ln
5AC~22C!~~l2/25!C~22C!2D2!

l~P2DC/2!

. ~51!

Plugging~50! and ~51! into ~48!, we get

M5
56C2p exp~25ap/2l!

~P2DC/2!AN13N24

. ~52!

The boundary of the stochastic layer is determined fr
the conditionM (P0 ,H);1, or

P05
DC

2
1

56C2p exp~25ap/2l!

AN13N24

, ~53!

and the nutation decay constant is given by the follow
expression:

gc5
plAN13N24 ln M

5 ln
5AC~22C!~~l2/25!C~22C!2D2!

l~P2DC/2!

. ~54!

5. COMPUTER EXPERIMENT

The numerical analysis was done, without loss of gen
ality, atD50. Generally, the system of equations~4!–~9! has
one constant of motion, the system energyH, and the region
of motion is a five-dimensional hypersurface defined by~3!
in a six-dimensional phase space.

When the antiresonant terms are ignored, four additio
constants of motion emerge,C, C1 , C2 , and P, of which
two are linearly independent. The quantitiesH, C, and P
determine a three-parameter family of trajectories that
either closed curves on the surface or asymptotic curves.
temporal evolution of coherent quasiparticles in this case
nonlinear periodic oscillations with a finite or infinite perio
The period of nutation oscillations decreases with increas
l. As the separatrix is approached~C,2 and P→0), the
angles of the phase trajectories become sharper and assu
rectangular shape. The number of quasiparticles varies f
minimum to maximum~or from maximum to minimum! as
the phase remains constant,c5np (n50,61,62,..., de-
pending on the initial conditions!. When the quasiparticle
number reaches its maximum or minimum, the phase un
goes a jump:c t105c t206p.

Allowing for the antiresonant terms in the Hamiltonia
leads to changes in the shape of the potential energy, so
all existing aperiodic oscillation regimes cease to exist.
this case, for small values ofl and any initial conditions the
system performs quasiperiodic oscillations~Fig. 3!. In the
phase space this motion is depicted by a trajectory that w
itself around a toroidal tube. Here the fundamental harmo
is modulated by subharmonics, whose amplitudes incre
with l, making the motion more complicated.

As l increases, the motion of the system becomes m
complicated and the quasiperiodic oscillations begin
change into chaotic oscillations. The constants of mot
completely disintegrate in the process. Figure 4 depicts
chaotic dynamics of quasiparticle and phonon numbersn and
f and the corresponding phase portrait. Note that the qu
g
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particle numbers change within the potential wells ins
which they begin their motion. An interesting phenomen
was detected in computer experiments forC;1.3– 1.7. At
such values, tunneling of the nonlinear motion from one w
to another was observed. The tunneling was accompanie
a spread of the trajectories over the phase space~Fig. 5!.
Figure 5 clearly shows that there is a rapid change in
lower limit of the number of quasiparticles on the first lev
(n) and the upper limit of the number of photons (f ) in
comparison to Fig. 4, where the motion is only in one pote
tial well. The phase trajectory in this case spreads out in
phase space and occupies a greater phase volume.

The calculations have shown that the evolution of t
quasiparticles may be localized to a single potential w
with l constant by changing the detuning from resonanceD,
i.e., by moving away from the conditionP5DC/2.

FIG. 3. Temporal evolution of the number of~a! coherent bosons on the firs
excited level and~b! photons, and~c! the projection of the phase trajector
on the (n,c) plane atn051, N051028, f 051.4, wa05we051.571, wb0

51028, andl50.5.
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FIG. 4. Temporal evolution of the number of~a! coherent bosons on the firs
excited level and~b! photons, and~c! the projection of the phase trajector
on the (n, f ) plane at n051, N051028, f 051.4, wa05we0521.571,
wb051028, andl51.025.
This model has one distinctive feature. The conditi
C,2 determines not one separatrix, as it does in Refs.
and 18, but a family of separatrices. Each separatrix in
family corresponds to a set of initial quasiparticle concent
tions. By changing the quasiparticle concentration we c
move into the neighborhood of another separatrix. Near
ferent separatrices chaos emerges at different values ol.
Chaos sets in most rapidly whenC is large. AsC decreases,
chaos emerges at large values ofl.

Depending on the specific physical situation, we m
find that only one nonresonant term in~6! is finite.

Figure 6 depicts the dynamical evolution in the case o
finite nonresonant term containing sinw1. We see that as the
resonance phase reaches the valuec52p/2, which in the
unperturbed case corresponds to a hyperbolic turning po
the system goes into the stochastic-motion mode, which c
firms that points of the hyperbolic type play a special role
the formation of a stochastic instability. We also note th
although the evolution of the numbersn andc is stochastic,
the constant of motionC5n1N is preserved, i.e., the non
resonant term sinw1 does not destroy it.

Figure 7 depicts the development of a local instability
various values ofl. The distance between two initially clos
trajectories is given by the following expression:

D5F ~n12n2!21~N12N2!21~ f 12 f 2!21H wa12wa2

2p J 2

1H wb12wb2

2p J 2

1H we12we2

2p J 2G1/2

. ~55!

The decay constant is given by the formula

D5D0 exp~gct!. ~56!

When l is small, the distance between initially clos
trajectories remains small with the passage of time. Asl
increases and reaches a certain valuelcr , the value ofD
becomes of order unity. Forl.lcr the decay constantgc

rapidly increases:gc50.008 and 0.04 atl51.025 and 1.05,
andC51.4. Each separatrix has its own value oflcr . Cal-
culations have shown thatClC,cr'const.

The predicted dynamical chaos is an example of s
chaos in Hamiltonian systems.

Generally, the dynamical equations for a system withn
degrees of freedom are not completely integrable.
FIG. 5. Temporal evolution of the number of~a!
coherent bosons on the first excited level and~b!
photons at n051, N051028, f 051.4, wa0

5we0521.571,wb051028, andl51.05.
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FIG. 6. Temporal evolution of the number of~a!
coherent bosons on the first excited level and
~b! the coherent phase atn051, N051028, f 0

52, c05w0151.571, andl57.5.
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In our case the system of equations describing the
namical evolution of coherent bosons consists of an in
grable part~at «50) and a nonintegrable part for whic
nonresonant terms («51) are responsible.

For «50 Eqs. ~10!–~18! are completely integrable in
terms of periodic trigonometric and elliptic functions an
aperiodic hyperbolic functions on the separatrix.

The Kolmogorov–Arnold–Moser theorem22–25 answers
the question as to what extent the nature of integrable
tems changes when perturbations are taken into accoun«
51). In this case the energy hypersurface is partitioned
two finite-volume regions. One region contains tori d
formed by the antiresonant terms in the Hamiltonian. In
other ~smaller! region, whose volume is zero at«50, the
motion is extremely complicated. The tori that exist in th
region at«50 are destroyed and the motion becomes c
otic.

As is well known, when the number of degrees of fre
dom n.2 ~in our casen53), the n-dimensional unde-
stroyed tori fail to partition the 2n21-dimensional energy
surface into nonintersecting parts and the regions of
stroyed resonant tori merge, forming a unique complex
which is known as an Arnold web. Here the phase poi
may wander far from their unperturbed positions, i.e., a p
nomenon known as Arnold diffusion2,26,27 is observed. A
characteristic feature of such diffusion is that globally t
system is unstable.

The emerging chaotic instability is not related to the a
tion of random forces; rather, it is due to an intrinsic prope
of the system, the local instability.

In the model we have studied the expression for the p
turbation is exact, so that the chaos is not related to p
convergence.

The computer experiment was performed with varyi
accuracy. We found that the chaotic solution is stable w
respect to the choice of the calculation step, i.e., we are
dealing with chaos produced by the computer experim
itself. We checked our program by reproducing the results
Zaslavski� and Sagdeev3 concerning dynamical chaos an
applying it to the system of Lorentz equations~see p. 88 of
Ref. 10!.

Thus, we have proved that in principle ultrashort d
namical chaos may occur in two-photon quantum transiti
between the energy levels of bosonic quasiparticles in c
densed media. We have shown that allowing for antireson
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FIG. 7. Temporal dependence between initially close trajectories atn051,
N051028, f 051.4, wa05we051.571, wb051028, andl51 ~a!, l51.25
~b!, andl51.05 ~c!.
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terms in the Hamiltonian responsible for the interaction
tween the electromagnetic field and the system of quasi
ticles at certain values of the parameters, makes the sy
chaotic. The valuel;1 is critical ~at C51.4) and leads to a
large stochastization region. We predict the presence of
neling of nonlinear motion from one potential well to a
other.

In conclusion we note that two-photon ultrashort d
namical chaos may also occur in the model of two-level
oms.
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A generalized variant of the nonequilibrium thermodynamics of rarefied gases based on the
linearized equations of Grad’s method of moments is studied. It is shown that despite the more
complicated form of the thermodynamic forces, which include spatial derivatives of the
fluxes, entropy production remains a bilinear combination of generalized thermodynamic fluxes
and forces. Using perturbation theory in the small Knudsen number, the expressions
obtained can be reduced to the well-known results of the Chapman–Enskog method at the level
of the linearized Burnett approximation. ©1998 American Institute of Physics.
@S1063-7761~98!01306-7#
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1. INTRODUCTION

The methods of the kinetic theory of gases are often u
to substantiate the limits of applicability of phenomenolo
cal nonequilibrium thermodynamics.1,2 A long-standing limi-
tation on the application of nonequilibrium therm
dynamics—that the classical form is compatible with t
kinetic theory of rarefied gases only at the level of the fi
approximation in the well-known Chapman–Ensk
method7,8—has been removed in a recent series of works3–6

It has been shown that nonequilibrium thermodynamics
also compatible with higher approximations of the meth
for example, with the results of the linearized Burnett a
proximation. In the latter case additional terms, which
proportional to the second derivatives of the velocity a
temperature, and the corresponding ‘‘nonphysical’’ flux
whose introduction ensures satisfaction of the Onsa
relations,5,6 appear in the expression for the local entro
production.

As far back as 1948, Grad noted on the basis of
method of moments9,10 that nonequilibrium thermodynamic
is applicable in more general situations where the none
librium state of a gas~and the nonequilibrium entropy! is
determined not only by the local values of the density a
internal energy~temperature! of the gas, as in the standar
classical scheme of nonequilibrium thermodynamics,
also by any number of additional state variables~moments of
the distribution function!. This idea was then implemented
attempts to construct a extended irreversible thermodyn
ics, which employs the heat flux and the viscous-str
tensor,11–13 and sometimes even a larger number
moments,14,15 as additional variables.

The specific area of application of extended irreversi
thermodynamics has been the analysis of situations w
the characteristic time in the problem is comparable to
relaxation time due to intermolecular collisions, which ca
for the use of nonstationary moment equations in the the
At the same time, questions concerning the problem of t
ing into account the spatial derivatives of fluxes~moments!
1141063-7761/98/86(6)/8/$15.00
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of a different tensor order in the linearized equations
mained on the sidelines. The presence of such derivative
the expressions for the heat flux and the viscous-stress te
as well as in other nonphysical fluxes which follow from th
solution of the moment equations, sets these express
apart from the standard linear transport relations of class
nonequilibrium thermodynamics. However, it can be sho
that such a generalization does not result in any conflict w
the canonical results of nonequilibrium thermodynamics. D
spite the fact that the new terms make the expressions fo
thermodynamic forces somewhat more complicated, the
pression for entropy production remains a bilinear combi
tion of the generalized thermodynamic forces and fluxes.
the same time, allowing for additional moments of the d
tribution function greatly expands the system of phenome
logical equations for the fluxes and forces, while the cro
coefficients in the expressions for the fluxes with the sa
tensor order satisfy the Onsager symmetry relations.

Our aim in the present paper is to construct such a g
eralization of nonequilibrium thermodynamics. An expre
sion for the local entropy production is derived on the ba
of an expansion of the distribution function into a series
orthogonal tensor polynomials, which, to within a normaliz
tion, are products of Sonine polynomials and tensor spher
harmonics, as well as the use of the moment equations
tained from a linearized kinetic equation. An application
perturbation theory in the small Knudsen number to the s
tem of moment equations then yields results that are virtu
identical to the well-known results of the Chapman–Ensk
method at the level of both the first and second~Burnett!
approximations. This pertains both to the generalized exp
sions for the fluxes and the corresponding representation
the entropy production and to the concrete results wh
make it possible to calculate all required transport coe
cients with an accuracy that corresponds to retaining an
bitrary number of Sonine polynomials in the expansion
the distribution function.
1 © 1998 American Institute of Physics
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2. EXPANSION OF THE DISTRIBUTION FUNCTION AND THE
MOMENT EQUATIONS

Let us consider a stationary state of a rarefied m
atomic gas described by a distribution functionf (v,r ),
wherev is the particle velocity andr is the particle position.
Let the state of the gas deviate slightly from equilibriu
Then f (v,r ) can be represented in the form

f 5 f ~0!~11F!, f ~0!5n~b/p!3/2 exp~2bc2!, ~1!

where f (0) is the local Maxwellian velocity distribution o
the particles,F is a small correction (uFu!1), b5m/2kT, n
is the density,T is the temperature,m is the particle mass
c5v2u is the velocity of the particles relative to the cent
of mass, andu is the macroscopic velocity of the gas.

The correctionF~v,r ! satisfies the linearized Boltzman
equation8,10

~v•“ !ln f ~0!1~v•“ !F5LF, ~2!

where

¹ ln f ~0!5¹ ln p1~bc225/2!¹ ln T12bc~¹•u!.
~3!

In addition,

LF5E E ~F81F182F2F1! f 1
~0!gs~g,V!dV dv1

~4!

is the linearized collision operator for molecules with t
velocitiesv andv1 ~the prime indicates that the distributio
function depends on the postcollision velocities of the m
ecules!, p5nkT is the pressure,s(g,V) is the differential
collision cross section,g is the relative velocity of the col-
liding molecules, andV is the scattering angle.

It is helpful to introduce the scalar product of functio
in a Hilbert space:

~g,h!5
1

n E f ~0!~c!g~c!h~c!dc.

The parameters of the local Maxwellian distribution (n,u,T)
are defined in the same manner with respect to both the c
plete distribution functionf and f (0). This leads to the con
ditions

~1,F!50, ~c,F!50, ~c2,F!50. ~5!

Two well-known properties of the linearized collisio
operator will be employed below:8 the symmetry relation

~C,LF!5~LC,F! ~6!

and the condition

~F,LF!<0. ~7!

The equal sign in the latter relation corresponds to the c
whereF is an invariant of the particle collisions.

Let us expand the nonequilibrium correctionF into a
series in an orthonormal system of tensor polynom
Pps(W) of the dimensionless relative velocity of the particl
W5cAb:
-

.

-

m-

se

s

F5 (
p50

`

(
s50

`

aps~r ! ^ Pps~W!, ~8!

where the symbol̂ denotes the scalar product of the te
sors. The polynomials have the form~see Refs. 16 and 17!1!

Pps~W!5gpsSp11/2
~s! ~W2!Rp~W!. ~9!

Here Sp11/2
(s) (W2) are Sonine polynomials,1 the Rp(W) are

tensor spherical harmonics,16 andgps is a normalization fac-
tor:

gps5~21!sA2p1ss! ~2p11!!!

p! ~2p12s11!!!
.

The polynomialsPps are normalized by the condition

~Pps,Pp8s8!5dpp8dss8D
~p!, ~10!

whereD (p) is the unit projection tensor.17

The first few polynomials are:

P0051, P015A2/3~W223/2!, P105&W,

P115A4/5W~W225/2!, P205& WW , ~11!

P305A4/3 WWW ,...

Here aaa... is used to denote irreducibility of the tenso

For example,

~WW ! ik5WiWk2
1

3
d ikW2,

~WWW ! ikl5WiWkWl2
1

5
W2~d ikWl1d i l Wk1dklWi !.

We note that

aps5
1

n E Ppsf ~0!Fdc5~Pps,F! ~12!

follows from the orthogonality of the polynomialsPps with a
Maxwellian weight function. On account of the condition
~5! we havea005a105a0150, i.e., the expansion~8! actually
starts from the polynomialsP11 andP20 with the correspond-
ing coefficientsa11 anda20.

The equations for the coefficientsaps ~the linearized mo-
ment equations! can be obtained by multiplying the kineti
equation~2! by f (0)Pps and integrating over the velocities.

For simplicity, below we shall consider only slow ga
flows, for which, along with the condition that the gradien
of the principal thermodynamic quantities (n,u,T) be small,
the condition

uuu!AkT/m ~13!

also holds. In this case the terms of orderu•¹ ln f(0) and
(u•¹)F in Eq. ~2! can be neglected. The latter means th
the variablec or v can be used equally well in Eqs.~2! and
~3!. The corresponding system of moment equations t
becomes
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~Pps,~c•“ !ln f ~0!!1 (
p8s8

~Pps,cPp8s8! ^ ¹ap8s8

5 (
p8s8

~Pps,LPp8s8! ^ ap8s8. ~14!

It is easy to see that (c•¹)ln f(0) contains a linear combina
tion of the polynomialsP10, P11, and P20. Then, since the
polynomials satisfy the orthogonality condition~10!, we
have

~Pps,~c•“ !ln f ~0!!5~&/2!b21/2¹ ln pdp1ds0

1A5/4b21/2¹ ln Tdp1ds1

1&¹udp2ds0 . ~15!

It can be shown for symmetric irreducible tensorsPps that
the flux term on the left-hand side of Eq.~14! is a linear
combination of the derivatives of the coefficients of tens
ordersp11 andp21 with respect to the coordinates~Refs.
16 and 17!

(
p8s8

~Pps,cPp8s8! ^ ¹ap8s85 (
s850

`

~Aps
p11,s8¹ap11,s8

1Bps
p21,s8¹ap21,s8!, ~16!

where the operatorsA andB are given by the expressions

Aps
p11,s85

1

2p13
~Pps

^ cPp11,s8!,
~17!

Bps
p21,s85

1

2p11
~Pps

^ cPp21,s8!.

The notation¹ap21,s8 denotes a symmetric irreducible te-

sor. Thus, ifap21,s8 is a vector (p52), then ¹a1s8 is an

irreducible tensor of rank 2,

1

2
S ]ai

1s8

]xj
1

]aj
1s8

]xi
D 2

1

3
d i j

]al
1s8

]xl
.

It is convenient to express the right-hand side of
system~14!, or the ‘‘moment with respect to the collisio
integral,’’ by means of the so-called integral brackets of
corresponding polynomials. To this end we make use of
relation17

~Pps,LPp8s8!52dpp8n@Pps,Pp8s8#D~p!, ~18!

where

@Pps,Pp8s8#5
1

4n2 E f ~0! f 1
~0!DPpsDPp8s8gs dV dc dc1 .

~19!

Here

DF5F~c8!1F~c18!2F~c!2F~c1!.

Using Eq.~18! we find
r

e

e
e

(
p8s8

~Pps,LPp8s8! ^ ap8s852 (
s850

`

nLpss8a
ps8, ~20!

whereLpss8 can be expressed in terms of the known integ
brackets of Sonine polynomials.7,8 Allowing for the explicit
form ~9! of the polynomialsPps, we have

Lpss85
1

2p11
gpsgps8

3@Sp11/2
~s! ~W2!R~p!~W!,Sp11/2

~s8! ~W2!R~p!~W!#.

~21!

The expressions~20! and~21! take into account that the tota
trace of the projection tensorD (p) equals 2p11.

The moment equations thus assume the following fi
form:

~Pps,~c•“ ! ln f ~0!!

1 (
s850

`

~Aps
p11,s8¹ap11,s81Bps

p21,s8¹ap21,s8!

52 (
s850

`

nLpss8a
ps8, ~22!

where the first term on the left-hand side is defined by~15!.
The direct application of the moment equations in t

form ~22! is of interest in cases where their right-hand side
nonzero. It is easy to see for the polynomialsP00, P10, and
P01 that the right-hand side of the initial moment equatio
~14! equals zero by virtue of the condition~7!, since these
polynomials are collision invariants corresponding to t
conservation of the mass, momentum, and energy of the
ticles in collisions. In this case the standard conservat
equations~the equations of hydrodynamics! for slow gas
flows follow from Eq.~14!:

“•u50, ¹p1¹p, “•q50. ~23!

Here p is the viscous-stress tensor, andq is the heat flux.
They are defined by the expressions

p5mn~cc,F!5& pa20,
~24!

q5p~~bc225/2!c,F!5~5/4!1/2b21/2pa11.

Here (¹p) i5]p ik /]xk .

3. SOLUTIONS OF THE MOMENT EQUATIONS

The equations~22! form an infinite system of coupled
equations~on account of the presence of the flux terms
the left-hand side! for scalar (p50), vector (p51), and
tensor (p52,3,. . . ) quantities. They can be solved if th
expansion~8! is limited to a finite number of terms.

Let us consider an approximation where terms includ
tensor polynomials of rank no higher than 3 are retained
the expansion, i.e., let us setaps50 for p>4. The corre-
sponding systems of equations~22! for p51,2,3,... become
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~5/4!1/2b21/2¹ ln Tds11 (
s850

`

~A1s
2s8¹a2s81B1s

0s8¹a0s8!

52 (
s850

`

nL1ss8a
1s8, ~25!

&¹uds01 (
s850

`

~A2s
3s8¹a3s81B2s

1s8¹a1s8!

52 (
s850

`

nL2ss8a
2s8, ~26!

(
s850

`

B3s
2s8¹a 2s852 (

s850

`

nL3ss8a
3s8. ~27!

The solution of the equations can be further simplified
truncating the series at finite values ofs and s8. As an ex-
ample, we shall consider the well-known 20-moment G
approximation,9,10 where, along with the coefficientsa11 and
a20, the coefficienta30 with the corresponding polynomia

P305A4/3 WWW is retained in the expansion. The coef-
cient a30 is related to the third-order momen

Ŝ5m*cccf dc of the distribution function, so that

Ŝ5)b21/2pa30. ~28!

In this case Eqs.~25!–~27! assume the form

A5/4b21/2¹ ln T1A11
20¹a2052nL111a

11,

&¹u1A20
30¹a301B20

11¹a1152nL200a
20, ~29!

B30
20¹a2052nL300a

30.

The coefficientsA andB, as well asLpss8 , can be calculated
on the basis of the expressions~17! and ~21!. Using the
known expressions for the integral brackets relating them
V ( l ,s) integrals,7,8 as well as Eqs.~24! and~28!, we arrive at
the following expressions forq, p, andŜ:

q52L11F¹T

T
1

2

5

1

p
¹pG , ~30!

p52L22F¹u1
2

5

1

p
¹q1

1

2p
¹ŜG , ~31!

Ŝ52L33

¹p

2p
, ~32!

where

~¹p ! i jk5S ]p jk

]xi
1

]p ik

]xj
1

]p i j

]xk
D

2
2

5 S ]p i l

]xl
d jk1

]p j l

]xl
d ik1

]pkl

]xl
d i j D .

The coefficientsL11, L22, andL33 are related to the viscosit
@h#1 and the thermal conductivity@l#1 , which appear in the
y

d

to

first approximation~with respect to the number of Sonin
polynomials in the Chapman–Cowling expansion!:

L115@l#1 , L2252@h#1 , L335~4kT/3m!@h#1 ,

where

@h#15
5

8

kT

V~2,2! , @l#15
75

32

k2T

mV~2,2! . ~33!

Generally speaking, the system of equations~30! and
~31! for q andp must be solved self-consistently, since t
thermodynamic forces contain derivatives of the fluxes. T
situation is somewhat different from the conventional rep
sentation of the phenomenological equations of nonequ
rium thermodynamics, where the fluxes appear on the l
hand side and the gradients of the standard hydrodyna
variables appear on the right-hand side. However, it is e
to see that this system can formally be brought into a cla
cal form, but with transport coefficients represented in ope
tor form. It is equally correct to use such a representation
the canonical nonequilibrium thermodynamics along w
the standard representation.1

The expressions forq and p, corresponding to the
known 13-moment approximation9 follow from Eqs. ~30!–
~32! if we setŜ50. In this case a different representation
Eqs.~30! and~31! in a form close to the canonical represe
tation is possible. The heat fluxq can be expressed in term
of the pressure and temperature gradients@see Eq.~45! be-
low#. Then only derivatives of the standard thermodynam
variables~including the second derivatives of temperatu
and pressure! remain in the expression forp on the right-
hand side.

Including a larger number of terms in the expansi
makes the structure of the solutions appreciably more c
plicated, though the formal representation of the solutions
the coefficientsnaps reduces mainly to finding the invers
matrix of coefficients (Lpss8)

21. The solutions for the 26-
moment approximation were studied in, for example, Re
14 and 15.

4. ENTROPY BALANCE EQUATION

As is generally known, nonequilibrium thermodynami
is based on a local entropy balance equation, which can
obtained from the complete~not linearized! kinetic equation
for f by multiplying by ln f and integrating over the veloci
ties. The local entropy densityrs ~r is the density! is then
specified by the expression1,19

rs52kE f ln f dc1kn ~34!

~k is Boltzmann’s constant,n is the particle density!, while
the balance equation for the stationary case has the form

“•Js5s, ~35!

where

Js52kE vf ln f dc1knu ~36!

is the total entropy flux density and
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s52kE f ~0! ln f LFdc ~37!

is the local entropy production.
Substitutingf in the form ~1! into Eqs.~34!, ~36!, and

~37! and using the condition~5!, we obtain up to terms qua
dratic in the small correctionF

rs5~rs!02
kn

2
~1,F2!, Js5rsu1

q

T
2

kn

2
~c,F2!,

~38!
s52kn~F,LF!.

Here the index 0 corresponds to the entropy density de
mined in the state of local equilibrium.

Using the expansion~8!, Eqs.~34! and ~36! can be rep-
resented as

rs5~rs!02
kn

2 (
p,s

apsaps,

~39!

Js5rsu1
q

T
2

kn

2 (
p,s

(
p8,s8

aps~Pps,cPp8s8!ap8s8.

In the 20-moment approximation these expressions
sume the form14

rs5~rs!02
1

4pT
pp2

m

5pkT2 qq2
1

12

m

pkT2 ŜŜ,
~40!

Jsi5rsui1
qi

T
2

2

5pT
qjp i j 2

5

14pT
Ŝi jkp jk .

We are henceforth interested mainly in the express
~38! for the local entropy productions. We substitute the
expansion forF into it and replace the linearized collisio
integralLF by the left-hand side of the kinetic equation~2!.
The result is

Ts52kT(
p,s

naps
^ F ~Pps,~c•“ !ln f ~0!!

1 (
p8,s8

~Pps,cPp8s8! ^ ¹ap8s8G , ~41!

or, taking into account the definitions~24! and ~16!,

Ts52
1

T
q¹T2p^ ¹u 2kT(

p,s
naps

^ F (
s850

`

Aps
p11,s8¹ap11,s81Bps

p21,s8¹a p21,s8G . ~42!

The first two terms in Eq.~42! correspond to the stan
dard representation of the local entropy production in
form of a bilinear combination of the fluxesq andp and the
thermodynamic forces conjugate to them, which can be
tained within the classical scheme of nonequilibrium therm
dynamics for vector and tensor phenomena.1 A new feature
is that the same fluxes~pa11;q and pa20;p! appear to-
gether with the additional forces conjugate to them in
next terms in~42!.
r-

s-

n

e

b-
-

e

For the 20-moment approximation, a calculation of t
entropy production in this case gives

Ts52qS 1

T
¹T1

2

5p
¹p D2p^ S ¹u1

2

5

1

p
¹q

1
1

2p
¹ŜD2

1

2p
Ŝ^ ¹p. ~43!

The linear phenomenological relations of nonequilibriu
thermodynamics corresponding to the representation~43! are
completely consistent with the expressions~30!–~32! follow-
ing from a direct solution of the system of moment equ
tions.

We note that the complication of the form of the the
modynamic forces on account of the derivatives of the flu
in ~30! and~31! did not necessitate a revision of the values
the coefficientsL11 and L12, which once again are deter
mined by the values of the ordinary viscosity and therm
conductivity. Moreover, just as in the standard classi
scheme,1 the entropy production is found to be a linear com
bination of terms which are quadratic in the fluxes:

Ts5
1

L11
qq1

1

L22
p^ p1

1

L33
Ŝ^ Ŝ. ~44!

The condition s>0 ~positive entropy production!,
which follows from the properties of the linearized collisio
integral~7!, is guaranteed by the positive values of the co
ficientsLii or the obvious conditionsh.0 andl.0.

We note for slow flows that the relation¹p52¹p fol-
lows from the equation of motion~23!. Then the expression
~30! for the heat flux assumes the form

q52L11S ¹T

T
2

2

5

¹p

p D . ~45!

Curiously, in the well-known monograph by Landau and L
shitz ~Ref. 20! the important assumption that the heat fl
can depend only on the temperature gradient is used in
derivation of the expression for the entropy production. T
corresponding proof is as follows~Ref. 20, p. 274!: ‘‘If q
contained a term proportional to¹p, the expression... for the
rate of change of entropy would include another term hav
the product¹p•¹T in the integrand. Since the latter migh
be either positive or negative, the time derivative of the e
tropy would not necessarily be positive, which is impo
sible.’’

In fact, it fact from the expressions~44! and ~45! ob-
tained above that the part of the entropy production that c
responds to the heat flux can be represented in the form

Tsq5L11S ¹T

T
2

2

5

¹p

p D 2

, ~46!

i.e., it remains essentially positive despite the fact that
expression for the heat flux contains a term with a press
gradient.

The cross terms, whose coefficients ordinarily satisfy
Onsager relations, are absent in the system of equat
~30!–~32!. This is because these equations correspond to
minimum number of polynomials in the expansion forF of
the same tensor order~first, second, and third!. It is easy to
show that when a larger number of expansion coefficie
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and corresponding fluxes~which no longer have any direc
physical meaning! are taken into account, it is possible
obtain a set of linear phenomenological relations contain
the cross terms for the fluxes. Thus, if the coefficientsnaps

are chosen as the fluxesJps and the expressions

Fps5kTF ~Pps,~c•“ !ln f ~0!!1(
s8

Aps
p11,s8¹ap11,s8

1Bps
p21,s8¹ap21,s8G , ~47!

are taken as the thermodynamic forces, then the system
linear phenomenological equations of different tensor or
relating the thermodynamic fluxes and forces becomes

J0s5(
s8

Lss8
~0!F0s8,

J1s5(
s8

Lss8
~1!F1s8,

~48!
...................

Jps5(
s8

Lss8
~p!Fps8,

where the cross kinetic coefficientsLss8
(p) satisfy the Onsage

relations (Lss8
(p)

5Ls8s
(p)).

Equations~48! have the same structure as the direct
lution of Eqs.~22! for the coefficientsnaps. The matrix of
phenomenological coefficientsLi j is identical to the inverse
matrix of coefficientsL. The symmetry of the cross coeffi
cients then follows from the symmetry of the coefficien
Lpss8 defined by the expression~21!.

5. RELATION TO THE CHAPMAN-ENSKOG RESULTS

It is helpful to clarify the assumptions under which th
results obtained by the method of moments agree with
results obtained by the standard Chapman–Ens
method.7,8 The latter method is known to be based on t
application of perturbation theory with the Knudsen numb
as the small parameter~Kn5 l /L!1, where l is the mean
free path of the particles andL is the characteristic dimen
sion in the problem!. The parameter Kn21 is introduced on
the right-hand side of the kinetic equation, and the distri
tion function is expanded into a series in the small Knud
number. We apply this procedure not to the distributi
function, but rather to the expansion coefficientsamn. This is
made possible, because the coefficientsLpss8 on the right-
hand side of the linearized moment equations are of the o
of the reciprocalt21 of the characteristic time between pa
ticle collisions, wheret51/̂ v&5@h#1 /p and ^v& is the av-
erage thermal velocity of the particles.

Using the formal expansion of the coefficientsaps into a
series of the form

aps5a~1!
ps 1Kn a~2!

ps 1Kn2a~3!
ps 1...,

substituting these series into Eqs.~25!–~27!, and equating
the terms with like powers of Kn, we arrive at systems
g

of
r

-

e
g

r

-
n

er

f

equations of first-, second-, and higher-order perturba
theory. The first approximation corresponds to a system
equations on whose left-hand sides the flux terms with
rivatives of the coefficientsaps (p50,1,2,3,...) areomitted.
For the vector and tensor coefficientsa(1)

1k anda(1)
2k we have,

specifically, two independent systems of algebraic equati
of the form

2A5/4b21/2¹ ln Tdp15(
s51

`

nL1psa~1!
1s ,

~49!

2&¹u dp25(
s50

`

nL2psa~1!
2s .

These equations can be solved with respect to the flu
J1s5na(1)

1s andJ2s5na(1)
2s for any finite valuep5j. Specifi-

cally, values are obtained forna(1)
11 and na(1)

20 or the corre-
sponding heat fluxq and viscous-stress tensorp to them to
any approximation inj. The latter can be represented as

q52l¹T, p522h¹u. ~50!

It is easy to show that these solutions are completely con
tent with the results of the first~non-Burnett! approximation
in the Chapman–Enskog method.8

We recall that in this method the first-approximation co
rection to the distribution function is sought in the form

F15F t~c•“ !ln T1Fpcc ^ ¹u, ~51!

where expansions of the form

cF t5
1

n (
k51

`

A1kP
1k, ccFp5

1

n (
k50

`

A2kP
2k. ~52!

are used forF t andFp . Comparing Eqs.~51! and~52! with
the expansion~8! for F shows that the coefficientsaik and
Aik are related by the expressions

a~1!
1k 5

1

n
A1k¹ ln T, a~1!

2k 5
1

n
A2k¹u. ~53!

Then it follows from the definitions~24! that

l52A5

4
kb21/2A11, h52

&

2
kT A20.

In the Chapman–Enskog method a system of algebraic e
tions for the coefficientsAik is obtained from the integra
equations forF t and Fp

7,8 by multiplying the latter by
f (0)P1n and f (0)P2n, respectively, and then integrating ov
the velocities. It is easily found that these equations are c
pletely equivalent to the system~49!, if the relation~53! is
substituted into the latter.

Thus, the coefficientsA11 andA20, in terms of whichl
andh are expressed, can, in fact, be found~to any approxi-
mation in j! in both methods from similar systems of alg
braic equations.

We now turn to the next~Burnett! approximation in the
Chapman–Enskog method. The correctionF2 in the linear-
ized Burnett approximation in known to have the form5,6
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F25FB
T

^
¹¹T

T
1FB

u
^ ¹¹u1FB

v c•¹2u. ~54!

The expression obtained for the entropy production can
written usingF1 ~51! andF2 ~54! in the form6

Ts52F ~q•“ !ln T1p ^ ¹u1JT
^

¹¹T

T

1Ju
^ ¹¹u1Jv

•¹2uG , ~55!

where the additional ‘‘nonphysical’’ fluxes are defined as

JT5nkT~F tcc ,F!, Jv5nkTS S Fp

c2

5
1

h

p D c,F D ,

~56!

Ju5nkT~Fpccc,F!.

The representation~55! corresponds to three independe
systems of phenomenological equations of the form

q52L11¹ ln T2L12¹
2u, ~57a!

Jv52L21¹ ln T2L22¹
2u,

p52l11¹u2l12

¹¹T

T
, ~57b!

JT52l21¹u2l22

¹¹T

T
,

Ju52L11¹¹u , ~57c!

where the cross coefficients of each pair of equations~57a!
and ~57b! satisfy the Onsager relations~L125L21 and l12

5l21!.
We now show for the example of the vector fluxesq and

Jv that expressions with completely similar structure can
obtained from the results of the method of moments p
sented above. We note first that the solution of the equa
for FB

v , just as forF t , can be sought in the form of a
expansion in the polynomialsP1k:

cFB
v 5

1

n (
k

B1kP
1k. ~58!

As we have already noted, the matrix of the coefficie
Li j in the expression~48! for Jps5naps is the inverse matrix
of the coefficientsLpss8 . Using the integral equations of th
Chapman–Enskog method6–8 for FB

v andF t , as well as the
expansions~52! and ~58!, it is easy to obtain the following
relations:
e

t

e
-
n

s

(
k

S cS bc22
5

2D ,P1kDLkn
~1!5A1n ,

~59!

(
k

S cS c2

5
Fp1

h

p D ,P1kDLkn
~1!5B1n .

We now write the expressions forq andJv in the form

q5nkTS cS bc22
5

2D ,F D
5kT(

s
S cS bc22

5

2D ,P1s~W! Dna1s

5kT(
s

(
s8

S cS bc22
5

2D ,P1s~W! DLss8
~1!F1s8,

~60!

Jv5nkTS cS Fp

c2

5
1

h

p D ,F D
5kT(

s
S cS Fp

c2

5
1

h

p D ,P1s~W! Dna1s5kT

3(
s

(
s8

S cS Fp

c2

5
1

h

p D ,P1s~W! DLss8
~1!F1s8.

If Eqs. ~59! are taken into account, the relations~60! can be
rewritten as

q5kT(
k

A1kF
1k, Jv5kT(

k
B1kF

1k. ~61!

Using Eqs.~52! and~58! and the explicit form of the expres
sions forF1k ~47! we have

q5kTnH ~cF t ,~c–“ !ln f ~0!!

1
1

5 (
k

~cF t ,cP2k!¹a2kJ ,

~62!

Jv5kTnH ~cFB
v ,~c–“ !ln f ~0!!

1
1

5 (
k

~cFB
v ,cP2k!¹a2kJ .

Using the perturbation expansion ofaps, we can now
replace the terms with the derivatives¹aps with the aid of
the second relation in Eq.~53!, which corresponds to the firs
approximation. The result is

q5nkTH ~cF t ,~c–“ !ln f ~0!!1
1

5
~cF t ,cccFp!¹¹u J ,

~63!

Jv5nkTH ~cFB
v ,~c–“ !ln f ~0!!1

1

5
~cFB

v ,c ccFp!¹¹uJ .

Using~3!, retaining the term with¹p5hDu in ¹ ln f(0), and

isolating the vector part in the terms¹¹u , we arrive at the

final result
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q5nkF S cF t ,cS bc22
5

2D D¹T

1S cF t ,cS Fp

c2

5
1

h

p D D¹2uG ,
~64!

Jv5nkF S cFB
v ,cS bc22

5

2D D¹T

1S cF t ,cS FB
v c2

5
1

h

p D D¹2uG .
It is easy to see that the expressions obtained ar

complete agreement with Eq.~57a!. In accordance with the
definition ofl,7,8 we haveL115lT. We now prove that the
kinetic coefficients are symmetric. Indeed,

S cFB
v ,cS bc22

5

2D D5~cFB
v ,L~cF t!!.

where the known7,8 integral equation forF t was employed.
On the basis of the symmetry condition~6! we have

~cFB
v ,L~cF t!!5~cF t ,L~cFB

v !!

5S cF t ,cS Fp

c2

5
1

h

p D D .

where the integral equation forcFB
v was also used.6 It fol-

lows from the relations obtained thatL125L21.
Using transformations similar to those presented abov

is easy to show that the expressions for the tensor fluxep
and JT can also be represented in the form of the line
relations~57b!. Then, for the coefficientsl in these relations
we obtainl1152h and

l215l125
mn

5
~cc^ FB

T!5
kT

5
~F tcc^ ccFp!,

~65!

l225
kT

5
~F tcc^ FB

T!.

The results presented above completely close the sch
for obtaining the phenomenological relations of nonequil
rium thermodynamics at the level of the Chapman–Ens
method from the linearized equations of Grad’s method
moments.
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Dynamics of double membrane films is investigated in the long-wavelength limitqh!1 ~q is the
wave vector, andh is the thickness of the film! including the overdamped squeezing mode.
We demonstrate that thermal fluctuations essentially modify the character of the mode due to its
nonlinear coupling to the transverse shear hydrodynamic mode. The renormalization can be
analyzed if the conditiong!1 is satisfied~where g;T/k, T is the temperature, andk is the
bending modulus!. The corresponding Green’s function acquires as a function of the
frequencyv a cut along the imaginary semiaxis. Atqh.Ag the effective length of the cut is
;Tq3/h ~whereh is the shear viscosity of the liquid!. At qh,Ag the fluctuations lead
to an increase in the attenuation of the squeezing mode: it is larger than the ‘bare’ value by a
factor 1/Ag. We also present the analysis of the elastic modes. ©1998 American
Institute of Physics.@S1063-7761~98!01406-1#
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1. INTRODUCTION

The most distinctive property of amphiphilic molecul
is their ability to spontaneously self-assemble into aggreg
of various shapes. Typically, the molecules spontaneo
self-assemble into membranes which are bilayers of a th
ness of the order of a molecular length. Different lyotrop
structures consisting of these membranes have gene
considerable current interest~see Refs. 1–3 and review
articles4–6!. Films composed of two bilayer membranes san
wiching a thin layer of a liquid are widely used in the lyo
tropic systems. They play also an essential role in vari
biological processes~note the so-called flickering phenom
ena in erythrocytes or red blood cells!. In this paper we will
examine the dynamic properties of such double membr
films.

The main peculiarity of a membrane is its negligib
surface tension. The membrane is immersed into a liquid
consequently its area can vary. Zero surface tension is
equilibrium condition with respect to the variations. In th
case the shape fluctuations of the membrane are determ
by the bending elasticity; the corresponding energy is7,8

Hcurv5
k

2 E dAS 1

R1
1

1

R2
D 2

, ~1!

where the integral is taken over the membrane which is c
sidered as a two-dimensional object,R1 andR2 are its local
curvature radii, andk is the bending rigidity modulus. Cor
rugations of the membrane induced by the thermal noise
1141063-7761/98/86(6)/7/$15.00
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to the loss of the orientation correlation of the membra
pieces at separations larger than the so-called persis
length9 jp, which is estimated to be

jp;a exp~2pk/T!,

where T is the temperature, anda is the thickness of the
membrane. The shape fluctuations of the membrane lea
the logarithmic renormalization of the bending modulusk,
which was examined first by Helfrich10 and later by
Förster.11 The correct renormalization-group~RG! equation
was derived by Peliti and Liebler,12 Kleinert,13 and
Polyakov.14 The explicit form of the one-loop RG equation

dk

dj
52

3T

4p
.

Herej5 ln(r/a), andr is the characteristic scale. As follow
from the equation, the role of the dimensionless coupl
constant is played by the quantity

g5
3T

4pk
. ~2!

Note that ln(jp /a);g21. For real membranesg;1022–
1023 and, consequently, we can treatg as a small parameter
The smallness ofg means that there exists a wide range
scalesr ,jp where the thermal fluctuations can be treated
the framework of the perturbation theory.

Below we consider a double membrane film. We assu
that at equilibrium the film is parallel to thexy plane. Cor-
rugations of the membranes in a double film can be dec
posed into undulation~or bending! deformations and squeez
9 © 1998 American Institute of Physics
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ing deformations. The bending deformations are cha
cterized by the displacementu of the film as a whole from its
equilibrium position along thez axis and the squeezing de
formation is characterized by variations of the film thickne
h ~which is the separation between the membranes!. In the
harmonic approximation we obtain from~1! the energy

H5E dx dyFk~¹2u!21
k

4
~¹2h!2G , ~3!

whereu andh are treated as functions ofx andy, and¹ is the
two-dimensional gradient.

In deriving ~3! we disregarded the interaction betwe
the membranes. First, one should remember the steric in
action, which is associated with a certain restriction of
cessible configurations for one membrane in the presenc
the second membrane.8 The explicit expression for the en
ergy is15

Hster5E dx dy
3p2T2

128kh2 . ~4!

Due to the interaction~4! two membranes can be treate
independently only on scales smaller thang21/2h. Therefore
~3! is the main contribution to the energy if

qh.Ag, ~5!

whereq is the characteristic wave vector. Second, we sho
take into account the van der Waals interaction. We ass
that the same liquid is inside and outside the film. We c
then write the van der Waals energy as16

Hvdw5E dx dy
Ha2

2ph4 , ~6!

where H is the Hamaker constant. We can disregard t
energy, in contrast with~3!, if

~qh!4.
H

k S a

hD 2

.

Let us assume that the thickness of the film is large eno
to satisfy the inequality

g2.
H

k S a

hD 2

.

Then ~5! is the only restriction that enables us to treat t
energy~3! as the main contribution to the film energy.

2. DYNAMICS

We will examine the dynamics of the double membra
film in the long-wavelength limitqh!1, where q is the
wave vector of the eigenmodes of the film. Note that
inequality qh!1 is compatible with~5! sinceg!1. In the
limit qh!1 we should take into account the following var
ables which describe the dynamics: the velocity of the filmv,
the displacement of the filmu, the film thicknessh, and the
densities of the two membranes since they are conse
quantities. We are interested mainly in the squeezing mo
which is associated with the relaxation of the thicknessh.
-

s

r-
-
of

ld
e

n

s

h

e

e

ed
e,

To find dynamical characteristics of the film one shou
solve the conventional hydrodynamic equations in b
supplemented by boundary conditions on both membra
In the linear approximation the problem was solved by B
chard and Lennon,17 who found the dispersion relation of th
squeezing mode

v52 i
kh0

3q6

24h
, ~7!

wherev is the frequency of the mode,h0 is the equilibrium
separation between the membranes, andh is the viscosity of
the liquid surrounding the membranes. In deriving~7! it was
assumed that at equilibrium the film is flat. The dispers
relation

v52 i
kq3

2h
~8!

of the bending mode was also found in the linear appro
mation. Note that the dispersion relation~7! is correct only if
one neglects the direct interaction of the membranes u
satisfaction of the condition~5!, whereas the region of appli
cability of the dispersion relation~8! does not depend on th
interaction of the membranes, since they move in-phas
the bending mode. The elastic modes associated with va
tions of the membrane densities are harder than~7! and~8!.18

Therefore the only effect of the elastic degrees of freed
upon examination of the squeezing mode is the incompr
ibility condition

¹ava50. ~9!

Here and below we believe that all variables characteriz
the film are functions ofx and y and we assume that th
Greek subscripts run overx andy.

We will consider the renormalization of the dispersio
law ~7! of the squeezing mode due to fluctuational effec
Nonlinear dynamical equations of the film should be utiliz
for this purpose. In the long-wavelength limitqh0!1 the
equations can be derived phenomenologically. The reac
~nondissipative! part of the equations can be found by usi
the Poisson brackets method~see Ref. 19 and also Ref. 18!,
whereas the dissipative part of the equations is expresse
terms of the kinetic coefficients. One should know the e
pression for the energyH of the system to write both con
tributions. Actually, we will need the expression for on
Poisson bracket:

$ j a~x1 ,y1!,h~x2 ,y2!%5h~x1 ,y1!¹a@d~x12x2!d~y12y2!#,
~10!

where j a is the two-dimensional momentum density of th
film. The expression~10! ~which is characteristic of two-
dimensional density of any conserved scalar quantity o
film18! is motivated by the fact that the two-dimension
mass density of the film isrh, where r is the three-
dimensional density of the liquid. Note thatj a'rhva since
we believe that the membrane thicknessa can be ignored in
comparison with the film thicknessh.

The dynamic equation for the thicknessh has the stan-
dard form following from~10!
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] th1¹a~vah!5G¹2
dH

dh
, ~11!

where] t[]/]t, andG is the kinetic coefficient. The secon
power of the gradient appears in~11! since the equation
should support the conservation law of the liquid inside
film and therefore the right-hand side of the equation sho
be a full derivative at anyH. Due to~9! the second term on
the left-hand side of~11! describes the sweeping ofh by the
velocity va . In the linear approximation we can ignore th
sweeping term. Substituting the harmonic expression~3! for
the energyH into ~11! and comparing the result with~7!, we
obtain

G5h0
3/12h. ~12!

Note thatG is inversely proportional to the shear viscos
coefficient. The point is that the dissipation described byG
comes from viscous motion of the liquid surrounding t
double membrane film which is excited only slightly at lar
h.

The dynamic equation forj a has the form21

] t j a2$H, j a%5Ja , ~13!

where J is the momentum flow from the bulk to the film
Since this term supplies the main dissipation of the film m
mentum, we ignored the internal viscosity. The Poiss
bracket$H, j a% can be reduced to the divergence of the sy
metric stress tensor for any energyH.18 Actually, only the
contribution associated with the Poisson bracket~10! and
created by the harmonic energy~3! is relevant for us. We can
then write Eq.~13! in the form

] t j a1
k

2
h¹a¹4h1¹aPs5Ja , ~14!

wherePs is the two-dimensional pressure, which is related
the elastic degrees of freedom~see the Appendix!. In the
linear approximation relevant for us we can write21

Ja522hq̂va , ~15!

whereq̂ is the nonlocal operator, which is reduced to mu
plying by the absolute value of the wave vectorq in the
Fourier representation. The expression~15! implies the in-
equality v!hq2/r, which is satisfied for the squeezin
mode.

We will not present here dynamical equations for t
variables j z and u and for the densities of the membrane
The reason is that the equations forj z andu, which describe
the bending mode, decouple in the approximation used f
Eqs. ~11! and ~14!. Actually, the equations describing th
bending motion of the double film are the same as fo
single membrane and the corresponding nonlinear equa
can be found in Ref. 18 and also in Refs. 20 and 21. O
should remember only that the bending modulus of
double film is 2k, as follows from~3!. As to the equations
for the densities of the membranes, they need a sepa
analysis, which is presented in the Appendix. The only r
of the degrees of freedom in analyzing the squeezing m
reduces to the incompressibility condition~9!.
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3. RENORMALIZATION OF THE SQUEEZING MODE

As can be seen from~7!, in the long-wavelength limit
the squeezing mode is very soft. This is the reason why
anticipates that fluctuational effects which are related to
mode are relevant. The effects are associated with the n
linear terms in the dynamic equations and can be exam
in terms of the diagrammatic technique of the first ty
which was developed by Wyld,22 who studied the velocity
fluctuations in a turbulent fluid. In Ref. 23 the Wyld tec
nique was generalized for a broad class of dynamical s
tems. A textbook description of the diagram technique c
be found in the book by Ma.24 The diagram technique can b
formulated in terms of path integrals, as was first sugges
by de Dominicis25 and Janssen.26 In the framework of this
approach apart from conventional dynamic variables o
should also introduce auxiliary fields conjugated to the va
ables. The dynamic correlation functions of the variables
then be presented as functional integrals over both type
fields: conventional and auxiliary. The integrals are tak
with the weight exp(iI ), where I is the effective action
which is constructed on the basis of nonlinear dynamic eq
tions of the system.

Since we are interested in the renormalization of
squeezing mode of the double membrane film, we will ta
into account only the variablesh andva and the correspond
ing auxiliary conjugated fieldsp and ma . We should also
remember the incompressibility condition~9! and impose an
analogous constraint¹ama50 on the fieldma . We can then
write the correlation function of the film thicknessh in the
form

^h1h2&5E DhDvtrDpDm tr exp~ i I !h1h2 , ~16!

where the subscript ‘‘tr’’ implies that in the Fourier repre-
sentation we should use only the components of the fieldv
and m, which are transverse to the wave vectorq. The ex-
plicit expression for the effective action in~16! can be found
by using the dynamic equations~11! and ~14!. It can be
written as the sum of the reactive part and the dissipative
I 5I reac1I diss, where

I reac5E dt d2r H p] th1pva¹ah

1ma] t j a2
k

2
ma¹4h¹ahJ , ~17!

I diss5E dt d2r H 2
1

2
Gkp¹6h

1 iTG~¹p!212hmq̂~v1 iTm!J . ~18!

The detailed derivation of the effective action for the pro
lem can be found in Refs. 20 and 21.

We introduce the notation for the pair correlation fun
tions. Taking into account only the transverse component
the fieldsv andm, we can write
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^h~ t,r !p~0,0!&5E dv d2q

~2p!3 exp~2 ivt1 iqr !G~v,q!,

^va~ t,r !mb~0,0!&5E dv d2q

~2p!3 exp~2 ivt1 iqr !

3Fdab2
qaqb

q2 GGtr~v,q!, ~19!

^h~ t,r !h~0,0!&5E dv d2q

~2p!3 exp~2 ivt1 iqr !D~v,q!,

^va~ t,r !vb~0,0!&5E dv d2q

~2p!3 exp~2 ivt1 iqr !

3Fdab2
qaqb

q2 GDtr~v,q!. ~20!

The correlation functionŝpp& and ^mm& are equal to zero
~for the general property of the technique, see, e.g., Ref.!.
The functionsD andDtr determine the pair correlation func
tions of the observable quantities and the functionsG and
Gtr are the response functions. Therefore, the functionG(v)
is analytic in the upperv half-plane.

It is possible to formulate the diagram technique for c
culating the correlation functions~19! and ~20!. The har-
monic part of the effective actionI 5I reac1I diss deter-
mines the bare values of the response functions

G0~v,q!52
1

v1 iGkq6/2
, Gtr ,0~v,q!52

1

rhv12ihq
.

~21!

The values of the ‘bare’ pair correlation functions satisfy t
relations

Im G5
kq4

4T
D, Im Gtr5

1

2T
Dtr , ~22!

which are the consequences of the fluctuation-dissipa
theorem. In addition to the harmonic part, the effective
tion I contains terms of the third order, which determine t
third-order vertices which figure on the diagrams represe
ing the perturbation series for the correlation functions~19!
and ~20!. One can check the relations~22! order by order.
Consequently, these relations are valid for the ‘‘dresse
correlation functions~19! and ~20!. Note that the relation

E dv

2p
D~v,q!5

2T

kq4 , ~23!

which can be proved by using~22!, the analyticity ofG(v)
in the upper half-plane, and the asymptotic lawG(v)
'2v21, which is correct for largev. Actually, ~23! is a
direct consequence of~3!, since the integral over frequencie
is just the simultaneous correlation function.

Analysis of the diagrams shows that they contain inf
red logarithms, which are related to the lines representing
correlation functionD in Eq. ~20!. The lines produce the
factors

~¹ah~ t,r !¹bh~ t,0!!5
TL

2pk
dab , ~24!
-

n
-

e
t-

’’

-
e

whereL5 ln@hg21/2/r #, and r 21 is determined by the char
acteristic external wave vector of the diagram. The expr
sion ~24! can be found from~23! if one recalls condition~5!.
The presence of the logarithmic contributions implies th
the main renormalization of a correlation function lik
G(v,q) is produced by the degrees of freedom with t
wave vectors much smaller thanq. Therefore, we should
extract from the diagrammatic expressions forG(v,q) only
the contributions corresponding to the interaction with t
degrees of freedom.

The program can be realized directly in using the la
guage of the functional integral. Let us separate the varia
h, p, v, andm into fast parts~with wave vectors larger than
q!, basic parts~with wave vectors of the order ofq!, and slow
parts ~with wave vectors smaller thanq!. In calculating
G(v,q) we can forget about the fast parts and keep the
teraction of the basic part with the slow part. We then obt
the following expression from~17! and ~18!:

I 5E dt d2r H p] th1pvama1ma] t j a

2
k

2
ma¹4hma2G

k

2
p¹6h12hmq̂vJ 1..., ~25!

whereh, p, v, andm denote the basic parts of the fields,ma

is the gradient of the slow part ofh, and the dots designat
the irrelevant terms. The action~25! is of the second orde
over h, p, v, andm and, consequently, the integrals over t
fields can be taken explicitly. Sincem varies only weakly
along the lengthq21, we obtain

G~v,q!52^~rhv12ihq!D21&m , ~26!

Gtr~v,q!52^~v1 ikGq6/2!D21&m , ~27!

D5~rhv12ihq!~v1 ikGq6/2!2kq4mtr
2 /2, ~28!

where

mtr
2 5S dab2

qaqb

q2 Dmamb ,

and the notation̂...&m means averaging over the statistics
m. In calculating~26! and ~27! we substitutedj5rhv. Ac-
tually, the terms withrh can be and we omit them below.

In averaging~26! and ~27! we can assume that the st
tistics of m are Gaussian. The point is that only the simul
neous correlation functions ofm enter the expressions. Thes
functions are described by the harmonic energy~3!. The pair
correlation function ofm is equal to~24!. Therefore,

^mtr
2 &5

TL

2pk
,

and we find from~26!

G~v,q!52E
2`

` d§

A2p
exp~2§2/2!

3S v1 i
kG

2
q61 i

TL

8ph
q3§2D 21

. ~29!
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We see thatG as a function of the frequencyv has the cut
along the imaginary semiaxis, which starts fro
v52 iGkq6/2 and goes to2 i`. The effective length of the
cut can be estimated asTq3/h, which is the new character
istic frequency associated with the fluctuations. Let us co
pare the frequency with the position of the pole in the b
expression:

Tq3/h

Gkq6 ;
g

~qh0!3 . ~30!

We conclude that the fluctuation effects dominate in the
gion g1/2,qh0,g1/3. We can now justify the disregard o
rhv in comparison withhq in the above expressions. Whe
qh;1,

rh0v/hq;rk/h2h0;a/h0!1,

and atqh0;Ag

rh0v/hq;rkg2/h2h0!1.

Performing Fourier transform of~29! over frequencies,
we obtain

G~ t,q!5 i S 11
TL

4ph
q3t D 21/2

expH 2
k

2
Gq6t. ~31!

The expression~31! is correct for a positive timet. For nega-
tive timesG(t)50 due to the causality principle sinceG is
the response function. We see from~31! that in the fluctua-
tion region g1/2,qh,g1/3 there appears an intermedia
power asymptoticst21/2, which at large timest is changed
by the exponential decay. This means that the squee
mode is described by a dynamic equation, which is nonlo
in time.

The above assertion is correct for the wave vect
q*Ag/h0 . In the limit qh0!Ag we return to the local equa
tion ~11! but with the renormalized kinetic coefficientG̃. The
quantity can be found by integrating the weight exp(iI ) over
the degrees of freedom with the wave vectorsq*Ag/h0 .
The main effect is attributed to the sweeping term in
effective action~17!. Because of the integration over the d
grees of freedom with the wave vectorsq*Ag/h, the term
iTG(¹p)2 in ~18! for the long-wavelength degrees of fre
dom is renormalized. We find for the renormalized value

Ḡ2G5
1

4T E dt d2r ^v~ t,r !h~ t,r !v~0,0!h~0,0!&, ~32!

where averaging is performed over the degrees of freed
with the wave vectorsq*Ag/h0 . Using the renormalized
expressions for the correlation functions, we obtain the e
mateG̃;g21/2G@G.

4. CONCLUSIONS

We demonstrated that fluctuations essentially modify
character of the squeezing mode due to its nonlinear c
pling with transverse shear hydrodynamic mode. The fl
tuation effects lead to nonlocality of the equation for t
mode; the corresponding Green’s function is~31!. The new
characteristic frequency of the mode related to the fluct
tions isv;Tq3/h ~q is the wave vector!; remarkably, it does
-
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not depend on the bending elasticity. It is important to d
tinguish the characteristic frequency from the attenuation
the membrane bending mode~8!, which has the sameq3

dependence on the wave vector. We stress that the st
fluctuation effects are observed only for dynamics. The st
characteristics are not influenced by fluctuations becaus
the smallness of the coupling constant~2!. This is the reason
why we need only the harmonic part of the energy~3!.

Strong dynamic fluctuations ofh occur for the wave vec-
torsq*Ag/h. For smaller wave vectors the fluctuations ofh
are weak. Nevertheless, even for the wave vectors there
memory of the region of strong fluctuations, which is t
renormalized value of the kinetic coefficientG in Eq. ~11!:
The bare value~12! is substituted byG̃;g21/2G@G. Note
also that to analyze the dispersion relation of the squee
mode in the limitq!Ag/h starting from~11! we should take
into account in addition to the energy~5!, the steric contri-
bution ~4! and the van der Waals~6! contribution to the
energy. As a result, we find

v52 i G̃q2S 9p2T2

64kh4 1
10Ha2

ph6 D .

Let us discuss the possibility of checking our predictio
experimentally. The membranes can be studied by a var
of experimental techniques. Lately, laser «tweezers» h
become a useful tool for probing dynamical properties
membranes. This technique enables us to obtain direct in
mation about amplitudes and characteristic times of dyna
cal fluctuations of different objects consisting of membran
For details see the monography27 and recent experi-
ments.29–31 We can also mention force apparatus measu
ments,28 which make it possible to investigate dynamical r
sponse for two very thin lamellar systems confined betw
the walls, and the classical light-scattering experiments.
cause of relaxation of the membrane fluctuations, the s
tered light has a broadened spectral distribution compare
the incident light. Despite the small broadening, the mod
technique of light beating~intensity fluctuation spectros
copy! allows one to obtain information about eigenmodes
the system.

The conclusions concerning the renormalization of
squeezing mode, in our opinion, are interesting, both in th
own right and as a new test of the membrane fluctuation

The research described in this publication was made p
sible in part by Russian Fund for Fundamental Resea
grants. One of the authors~E.K.! thanks Max Planck Institute
for Physics of Complex Systems~Dresden! for supporting
his stay at this institute.

APPENDIX

Elastic modes

Here we consider the elastic modes associated with
relaxation of the surface density of molecules that comp
the two membranes of a double film. To find the dispers
relation for the modes we should start from the elastic ene
associated with the variations of the surface density of m
eculesns . In the harmonic approximation the elastic ener
of a single membrane is21
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Hel5
1

2 E dAB§2. ~A1!

Here

§5~ns2n0!/n0 ,

wherens2n0 is the deviation of the surface density of mo
eculesns from its equilibrium valuen0 , and the coefficientB
has the meaning of the inverse compressibility of the me
brane. The elastic energy is the sum of terms~A1! for both
membranes that constitute the double film.

Let us consider the elastic modes in the linear appro
mation. We assume that at equilibrium the membranes li
the planesz56h0/2. The deviations of the membranes fro
the positions can then be characterized by their displa
mentsu1,2 along thez axis. To find the dispersion relation
for the modes one should solve conventional hydrodyna
bulk equations supplemented by boundary conditions at
membranes. As we will see, the frequencies of the ela
modes are small compared to sound frequency. Co
quently, we can use the convential linearized equations
an incompressible liquid,32

¹kvk50, S h

r
¹22]t D vk5

¹kP

r
, ~A2!

wherek5x,y,z. Since the membranes are immersed into
liquid, they move with the velocity of the liquid which i
continuous near the membranes. The boundary condit
for Eqs.~A2! for a membrane can be found in Refs. 20 a
21. In the linear approximation they are

rs] tvz 1,21k¹a
4u1,252 bPc1,2, ~A3!

] tu1,25vz 1,2, ~A4!

rs] tva 1,21B¹a§1,25h b¹zvac1,2, ~A5!

] t§1,21¹ava 1,250, ~A6!

where the ‘‘floors’’ designate a jump at the membranes,rs is
the two-dimensional mass density of amphiphilic molecul
and subscripts 1 and 2 numerate the membranes. The t
with rs in Eqs.~A3! and ~A5! are negligible.

Now, we will solve Eqs.~A2! with the boundary condi-
tions ~A3!–~A6! under the assumption that all variables a
proportional to exp(2ivt1iqx), where v is the frequency,
andq is the wave vector.

The velocity of the liquid is divided into two parts: po
tential and solenoidal. The potential component is related
the pressure which obeys the equation

~¹z
22q2!P50.

The solenoidal component is described by the equation

2 irwv5h~¹z
22q2!v.

Thus we can explicitly write the solutions of the equatio
inside and outside the film in terms of the velocity of t
membranes. The expressions are slightly different for
symmetric (§15§2) and the antisymmetric (§152§2) cases.
Using the solutions in bulk, we can express the jumps in E
~A3! and~A5! in terms ofvx andvz on the membranes. As
-

i-
in

e-

ic
e

ic
e-
or

e

ns

,
ms

to

e
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result, we find a linear system forvx and vz . We can then
write the condition for the existence of nontrivial solutions
the system, which for the symmetric case in the simplifi
form is

V2S coth
Vqh0

2
2coth

qh0

2 D 2

2FV21~V1b!

3S V coth
Vqh0

2
2coth

qh0

2 D G
3FV coth

qh0

2
coth

Vqh0

2

1S V coth
Vqh0

2
2coth

qh0

2 D G50. ~A7!

Here we introduce the notation

V5A2 i
vr

hq2, b5 i
Bq

hv
,

and suggest that in the case of elastic modes one deals
the frequencyv@hq2/r. For the antisymmetric case th
condition can be obtained from~A7! by substituting coth
→tanh.

It is difficult to find the dispersion relations from~A7!
and the analogous equation for the antisymmetric case
general situation. Below we consider two different limitin
cases and assume that

h2

Bph0
!1, ~A8!

which is natural sinceh0 is much larger than the molecula
length for real films. First, we consider the short-wavelen
limit

qh0@S h2

Brh0
D 1/2

. ~A9!

We then obtain the same dispersion relation as for the ela
mode of a single membrane33,21

v5
6)2 i

2 S B2

4hr D 1/3

q4/3. ~A10!

This means that the thickness of layers near the membra
where the hydrodynamic motion occurs, is much less thanh0

and, consequently, the membranes can be assumed t
nearly independent in this case. Note that due to~A8!, the
condition ~A9! is compatible withqh0!1, where the mem-
branes cannot be regarded as independent in conside
say, the squeezing mode. Therefore, one should be car
under the condition~A9! the membranes can be treated
nearly independent only in examining the elastic modes
the opposite long-wavelength limit,

qh0!S h2

Brh0
D 1/2

, ~A11!

we deal with two different dispersion relations. In the sym
metric case the dispersion relation is
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v5
6)21

2 S B2

hr D 1/3

q4/3. ~A12!

This is the same dispersion relation as~A10! but with the
doubled membrane elasticity, which is natural for the dou
film. In the antisymmetric case the dispersion relation is

v52 i
Bq2h0

2h
. ~A13!

Thus we encounter a simple diffusion.
The dispersion laws~A10!, ~A12!, and~A13! show that

the frequencies of the elastic modes are small in compar
with the sound frequencycq ~wherec is the sound velocity!,
which justifies our using the incompressible hydrodynam
equations~A2!. Note also that for the mode~A13! the con-
dition ~A8! ensures the inequalityv@hq2/r, which was
suggested in the derivation of the relation~A7! ~the inequal-
ity enables us to disregard the potential part of the veloci!.
Thus, the condition~A8! makes our scheme self-consisten

In the long-wavelength limit the double membrane fi
can be treated as an effective single membrane. This e
tive membrane should be framed by hydrodynamic variab
which give the information about the ‘‘microscopic’’ con
struction of the double membrane film. In other words, o
should incorporate into the set of ‘‘macroscopic’’ variabl
the surface densities~described by§1 and§2) of molecules,
which comprise the two membranes, and the tw
dimensional mass densityrh of the liquid between the mem
branes. The dynamic equation for the variable has been
rived in the main text of this paper@see Eq.~11!#. The
phenomenological dynamic equations for§1 and §2 can be
derived in the same manner as the Poisson brackets fo
density of any conserved scalar quantity, the same struc
of the Poisson bracket as~10!.18 In terms of the variables
§15(§11§2)/2 and§25§12§2 the equations are

] t§152¹a@~11§1!va#1D1¹2§1 , ~A14!

] t§252¹a~§2va!1D2¹2§2 . ~A15!

Here we discarded the bending motion. The system of eq
tions ~A14! and ~A15! should be supplemented by Eq.~14!
in the main text of the paper, where

Ps52B§1 . ~A16!

In analyzing the elastic degrees of freedom we should use
following expression for the momentum flow from the bul

Ja522Aihrv̂va , ~A17!

where the velocityva is implied to be longitudinal, since jus
the longitudinal component of the velocity is involved in th
elastic motion. We stress that the expression~A17! is correct
if v@hq2/r, in contrast with the applicability condition o
~15!.

Linearizing the system of equations~14!, ~A14!, and
~A15! ~and ignoring the squeezing degrees of freedom!, we
find the dispersion relations~A12! and v52 iD 2q2. The
term with D1 in ~A14! appears to be irrelevant. Comparin
the dispersion relationv52 iD 2q2 with ~A13!, we obtain

D25Bh0/2h. ~A18!
e
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It can then be verified that the linear coupling between
elastic and the squeezing degrees of freedom describe
the term withk in ~14! is negligible. The nonlinear terms in
Eqs.~14!, ~A14!, and~A15! lead to the interaction of differ-
ent modes. Explicit analysis shows that the fluctuation
fects do not affect appreciably the linear dispersion relati
~A10!, ~A12!, and~A13! due tog!1. The same holds for a
nonlinear interaction with the bending degree of freedo
which ~because of the same inequalityg!1) does not
change the results obtained in the linear approximation.
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A system of self-consistent equations for determining the hydrodynamic resistance of dilute
fibrous porous media in the case of arbitrary low Reynolds numbers and arbitrary random packing
of the fibers in the media is derived on the basis of a multiple-scattering hydrodynamic
theory. The equations obtained are applied to the case of isotropic packing of the fibers and to
the anisotropic case when all the fibers are orthogonal to the direction of fluid flow.
Equations are derived and analyzed for the velocity correlation function in a random fibrous
medium. The longitudinal and transverse diffusion coefficients of a passive impurity embedded in
the fluid are calculated. ©1998 American Institute of Physics.@S1063-7761~98!01506-6#
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1. INTRODUCTION

An extensive theoretical literature has been devoted
various aspects of the hydrodynamics of granular media
suspensions. We call attention to recent papers and surv
which offer detailed bibliographies on the subject.1–9 In par-
ticular, the hydrodynamic resistance of a porous medi
formed by rigid spheres has been calculated by
ensemble-average approach.10,11 Howells10 also determined
the resistance of a porous medium consisting of rando
distributed parallel cylindrical fibers. However, very few th
oretical and computational papers have been published
three-dimensional media formed by long fibers or, in parti
lar, fibrous filters, despite the importance of this problem.12,13

Apart from a phenomenological study14 based on the Brink-
man equation,15 only a few recent papers have reported
vestigations of three-dimensional fluid flows through poro
media on the basis of the Navier–Stokes equations. The
sistance of various three-dimensional periodic arrays of i
nitely long fibers as a function of the density of the mediu
was first investigated in Ref. 16, which included a calcu
tion of the resistances of square and hexagonal arrays
well as a review of theoretical papers on the determination
the resistance of two-dimensional periodic and random
brous media. The use of the variational principle to calcul
the hydrodynamic resistance of three-dimensional perio
arrays of fibers was discussed in Ref. 17. The influence
the relative position and orientation of fibers in a thre
dimensional array on the hydrodynamic resistance has b
investigated analytically.18

In this paper we investigate the averaged characteris
of the hydrodynamic flow of an incompressible fluid throu
a porous medium formed by randomly distributed, random
oriented, infinitely long cylindrical fibers of various diam
eters. Proceeding from the Navier–Stokes equations, we
rive self-consistent field equations, which lead to the Brin
man equation in the long-wavelength approximation. W
investigate the viscosity renormalization properties, calcu
the velocity correlation function, and determine the diffusi
coefficients of a passive impurity in the fluid.
1151063-7761/98/86(6)/11/$15.00
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2. DESCRIPTION OF THE MODEL OF A FIBROUS POROUS
MEDIUM

Our model of a porous medium is a three-dimensio
space filled with randomly distributed, arbitrarily oriente
infinitely long, polydisperse cylindrical fibers. For a mat
ematical description of such a fibrous medium it is conv
nient to choose an arbitrary plane containing the aver
velocity vector, wherein the position of each fiber of radi
aa is specified by a vectorra , which characterizes the poin
of intersection of the fiber with the plane, and by the u
tangent vectorna , as shown in Fig. 1 for a single fiber
Below the x axis is directed along the average fluid flo
velocity, and thez axis along a normal to the plane selecte
The statistical ensemble of the model porous media
scribed here, i.e., the ensemble over which averaging is
formed, is defined by the combinedN-particle distribution
functions

f N5 f N~r1 ,n1 ,a1 ;r2 ,n2 ,a2 ; . . . ;rN ,nN ,aN!.

In addition to the distribution functions, it is also nece
sary to specify in the space of straight lines a measure o
which to perform averaging. If the unit vector is specified
the spherical anglesu andf, the unique~to within a constant
factor! measure which is invariant under a group of motio
of the three-dimensional spaceE3 is written in the form19

dx5sin u cosu du df dx dy. ~1!

All averaging will henceforth be performed over this in
variant measure. Often it is useful to express distribut
functions in terms of correlation functions.20 In particular,
for N51,2,3 we can write

f 1~ t1!5g1~ t1!, f 2~ t1 ,t2!5g1~ t1!g1~ t2!1g2~ t1 ,t2!,

f 3~ t1 ,t2 ,t3!5g1~ t1!g1~ t2!g1~ t3!1g1~ t1!g2~ t2 ,t3!

1g1~ t2!g2~ t1 ,t3!1g1~ t3!g2~ t1 ,t2!

1g3~ t1 ,t2 ,t3!,

wheret represents all the variables characterizing each fib
6 © 1998 American Institute of Physics
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3. THE SINGLE-FIBER SCATTERING OPERATOR

To determine the hydrodynamic resistance of the por
medium investigated, we use the Navier–Stokes equat
for an incompressible fluid in the Oseen approximation21:

r~U0•¹!V5m¹2V2¹p, div V50, ~2!

which is valid at the low Reynolds numbers Re5U0a/n
!1, wherer is the density of the fluid,U0 is the average
velocity, a is the radius of the fiber, andm and n are the
dynamic and kinematic viscosities, respectively. These eq
tions must be solved with satisfaction of the boundary c
ditions. In particular, if slip can be disregarded, the veloc
at each fiber must be equal to zero. Before solving Eqs.~2!
for a random configuration of fibers, we proceed by analo
with Refs. 22–25 and define the scattering operator fo
solitary fiber embedded in an arbitrary external flow, whi
is regular at this site.

Any fluid flow can be represented by the Fourier expa
sion

V~r !5E V~k!eik•r
d3k

~2p!3 . ~3!

When a fiber is embedded in an assigned flow, forces ap
on its surface and act on the fluid in such a way as to alter
flow field and satisfy the boundary conditions. The induc
forces depend linearly on the freestream velocity. A line
relation for an arbitraryath fiber can be written for the Fou
rier transforms of the resulting forces and the freestream fl
field:

Fi
a~k8!5mE Ti j

a~k8,k!Vj~k!
d3k

~2p!3 . ~4!

In papers on hydrodynamics the matrixTi j
a (k8,k) is usu-

ally called the friction coefficient matrix,22 but in this paper
we prefer, by analogy with wave problems, to call it t
scattering operator for theath fiber.

To calculate the scattering operatorT̂, we initially
choose a coordinate system such that thez axis coincides
with the axis of the fiber. We represent the freestream ve
ity on the surface of a fiber of radiusa by the expansion

FIG. 1. Model of a porous fibrous medium.
s
ns

a-
-

y
a

-

ar
e

d
r

w

c-

V~z,f!5(
m

E Vm~k3!exp~ ik3z1 imf!
dk3

2p
. ~5!

The Fourier surface harmonicsVm(k3) are expressed in
terms of the coefficients of the three-dimensional Fourier
tegral for the velocity:

Vm~k38!5E V~k!i mJm~k'a!e2 imc2pd~k382k3!
d3k

~2p!3 ,

~6!

whereJm is the Bessel function of orderm, and (k' ,c,k3)
denotes the cylindrical components of the vectork. Assign-
ing the distribution of the surface forces in the form

F~r !5(
n
E Fn~k3!exp~ ik3z1 inf!d~r 2a!

dk3

2pa
, ~7!

we can calculate the three-dimensional Fourier spectrum
forces exerted by the fiber on the fluid:

F~k!5(
n

~2 i !n2pJn~k'a!einfFn~k3!. ~8!

Knowing the spectrum of surface forces, we can find
flow field Vs induced by these forces:

Vs~r !5E Ĝ0~k!F~k!eik•r
d3k

~2p!3 , ~9!

whereĜ0(k) denotes the bare Green’s function for the fr
fluid:

Ĝ0~k!5
P̂~k!

k21k•U0 /n
. ~10!

HereP̂(k) is the projection operator, which can be written
the component form

P i j 5d i j 2
kikj

k2 . ~11!

We assume here that the total velocity field is continu
continuously inside the fiber, where it vanishes.22,23 Expand-
ing the velocity fieldVs(r ) on the fiber surface into a Fourie
series, we obtain

Vsm~k3!5 i m2nKi jmn~k3!F jn~k3!, ~12!

where the matrixKi jmn(k3) is given by the equality

Ki jmn~k3!5E Gi j ~k' ,k3!Jm~k'a!Jn~k'a!

3exp@ i ~n2m!c#
k'dk'dc

~2p!2 . ~13!

Setting the total fluid velocityV1Vs on the fiber surface
equal to zero, we obtain a system of equations for all
surface-force harmonics:

i m2nKi jmn~k3!F jn52Vim . ~14!

If we introduce the reciprocal matrix

Ki jmn
21 K jknt5d ikdmt , ~15!
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FIG. 2. Multiple-scattering series for the Green’s functionĜ.
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we can express the force harmonics in terms of
freestream velocity and derive an expression for the sin
fiber scattering operator:

Ti j ~k8,k!522pd~k382k3!Ti j ~k3 ,k'8 ,k'!

522pd~k382k3!(
n,m

Ki jnm
21 Jn~k'8 a!Jm~k'a!

3exp~ inc82 imc!. ~16!

In the general case where theath fiber intersects the
plane selected at the point specified by the vectorra and is
directed along the vectorna , it is readily shown that the
scattering operator has the form

T̂a~k8,k!522pd@na•~k82k!#exp@ i ~k82k!ra#

3(
n,m

K̂nm
21Jn~k8'

aaa!Jm~k'
aaa!

3exp~ inc82 imc!, ~17!

wherek'
a is the transverse part ofk with respect to theath

fiber:

k'
a5uk2na~na•k!u.

When the conditionk'
2 a2!1 holds for small transvers

harmonics, only the term withn5m50 can be retained in
the sum in Eqs.~16! and ~17!, and the Bessel functionJ0

can be replaced by unity. In this case the expression~16! for
the scattering operator assumes the simple fo
T̂52(2p)d(k382k3)K̂00

21 . Neglecting terms;k'
2 a2 in the

integral used to calculateK̂00, we can also assume to th
same accuracy that one of the Bessel functions is equa
unity. In this case the expression forK̂00 can be reduced to
the form

K̂005E J0~k'a!Ĝ~k' ,k3!
d2k

~2p!2

5 K E eik'•rĜ~k!
d2k

~2p!2 L
a

, ~18!

where the angle brackets signify averaging over the sur
of the fiber forr 5a. We therefore see that under the con
tion k'

2 a2!1 the general equation for the scattering opera
reduces to a result that can be obtained by the Burg
method.18,26,27

4. MULTIPLE-SCATTERING HYDRODYNAMIC THEORY

Knowing the hydrodynamic scattering operator, we c
use power series in the scattering multiplicity, as is custo
e
e-

to

ce
-
r
rs

n
-

ary in problems concerning the multiple scattering of wav
in randomly inhomogeneous media,28 to calculate the aver-
aged characteristics of fluid flow in a porous medium. R
erence 29 is probably the first paper in which attention
called to the analogy between the hydrodynamics of gran
media and the theory of the multiple scattering of wav
This analogy has since been used repeatedly in calculat
of the viscosity of polymer solutions30 and various hydrody-
namic properties of suspensions consisting of rigid spher
particles22–25 and rods.31 For our investigation of the hydro
dynamics in fibrous porous media, we use the diagram te
nique developed for multiple-scattering theory, which w
described in detail in Frisch’s review.32 In particular, the
Green’s function of the Navier–Stokes equations for poro
media, which specifies the flow velocity of a fluid in a m
dium when a delta-shaped force is applied to it, can be w
ten as the sum of sequences of scattering processes on
ous fibers. A diagram can be associated with each sequ
of scattering processes. We note that a diagram represe
tion of a sequence of interaction processes was used to
culate the friction force by ‘‘operator transfer’’ in Ref. 33
The diagrams for the Green’s function prior to averagi
over the fiber positions and orientations are shown in Fig.
The total Green’s function is represented by a heavy line,
bare Green’s function by a thin horizontal line, and the o
erator for scattering by theath fiber is represented by a circl
containinga. The overhead line shown in the last diagra
connects identically numbered fibers. All possible sequen
of scattering processes contribute to the Green’s funct
After averaging with distribution functions expressed
terms of the correlation functions, we obtain the Dyson eq
tion shown in Fig. 3 for the Greens’ function. In the di
grams for the self-energy operatorS the correlation function
is denoted by a dashed line. After averaging, each indep
dent fiber introduces into the diagram a multipliern, which
denotes the density of the points of intersection of the fi
axes with an arbitrarily selected plane. The series constru
usually lead to divergent expressions, because the
Green’s functions are used.6,32 The divergence is usually re
moved in hydrodynamic problems by segregating the cl

FIG. 3. Dyson equation for the Green’s functionĜ and series representatio

of the self-energyŜ.



tor.

1159JETP 86 (6), June 1998 A. L. Chernyakov
FIG. 4. Diagrams specifying the self-consistent self-energy opera
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of diagrams for the self-energy operatorS and summing

them.31,34 We introduce the self-consistent operatorS̃, to
which contributions are made from all graphs without cor
lation functions and diagrams without any mutually inte
secting overhead lines, which indicate identical fibers,
shown in Fig. 4. Diagrams of the type indicated in Fig. 5

not appear in the definition ofS̃. If we introduce a self-
consistent Green’s function satisfying the equation

G̃5G01G0S̃G̃, ~19!

and the self-consistent operator for scattering on an in
vidual fiber T̃a defined by the equation

T̃a5Ta1TaG0S̃G̃T̃a, ~20!

we obtain a simple expression for the self-energy operatoS̃
in terms of the self-consistent scattering operator:

S̃5(
a

^T̃a&, ~21!

where the angle brackets denote averaging over the pos
and orientation of each fiber. The system of self-consis
equations~19!–~21! specifying the scattering operator an
the Green’s function is shown in graphical form in Fig.
All diagrams for the total self-energy operatorS can be ex-
pressed in terms of the self-consistent quantities introdu
above, as is shown in Fig. 7.

The Bethe–Salpeter equation for the averaged t
particle Green’s functionK̂, which characterizes the velocit
correlation equation32 can be derived analogously. Th
Bethe–Salpeter equation and the series for its kernel
shown in graphical form in Fig. 8. The vertical lines in th
diagrams for the kernel of the Bethe–Salpeter equation c
nect identically numbered fibers.

5. SELF-CONSISTENT THEORY OF FLUID FLOW IN
FIBROUS MEDIA

We first investigate the system of self-consistent eq
tions for a homogeneous and isotropic porous medium.
distribution function with respect to the directions of the
bers f (n) is a constant equal to 1/p in this case. We confine
the present study to the thin-fiber approximation,ka!1. The
bare and self-consistent scattering operators then de

FIG. 5. Example of a diagram that does not contribute to the operatorS̃.
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only on the longitudinal component ofk and can be written
in the coordinate system associated with a fiber in the fo

Ti j 52pd~k382k3!Ti j ~k3!, ~22!

T̃i j 52pd~k382k3!T̃i j ~k3!. ~23!

We note that upon averaging over the fiber positions in
plane selected, the scattering operator becomes proport
to d(k'8 2k'). It is evident from Eq.~17! that the definition
of the scattering operator itself contains the delta funct
d@n•(k82k)# of vector components which are longitudin
relative to the fiber. The product of these delta functions c
be written in the form

d~k'8 2k'!d@n•~k82k!#5d~k82k!
1

cosu
,

where u is the spherical angle of the unit vectorn in the
coordinate system which we have chosen. Averaging o
the measure~1! now reduces to ordinary spherical integr
tion. Bearing this remark in mind, we can write the se
consistent field equations for the scattering operator and
Green’s function in Fig. 6 in this approximation as follow

T̃i j ~k3!5Ti j ~k3!1Til ~k3!E ~G̃lm2G0lm!

3
d2k

~2p!2 T̃m j~k3!, ~24!

G̃i j
21~k!5G0i j

21~k!2S̃ i j ~k!, ~25!

S̃ i j ~k!5n^T̃i j ~k•n!&. ~26!

In the last equation the averaging is carried out over
fiber orientations with the distribution functionf (n). For the
inverse of the scattering operator we obtain the followi
equation from~24!:

FIG. 6. System of self-consistent equations for the Green’s function and
renormalized scattering operator.
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FIG. 7. Diagram representation of the self-energy operator
terms of the self-consistent Green’s function and the renormali
scattering operator.
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T̃i j
21~k3!5Ti j

21~k3!2E ~G̃i j 2G0i j !
d2k

~2p!2 .

It is evident from this equation that the renormaliz
scattering operator is expressed in terms of the s
consistent Green’s function in the same way as the bare
erator is expressed in terms of the bare Green’s func
~18!:

T̃i j
21~k3!52 K E exp~ ik'•r !G̃i j

d2k

~2p!2 L
a

. ~27!

Numerical methods must be used for the exact solu
of these integral equations. We therefore consider sev
approximations that can be used to obtain simple analyt
results. We first calculate the scattering operator, specify
the self-energy in the form

S̃ i j ~k!52P i j ~k!k2~k2!. ~28!

If we restrict the discussion to the long-wavelength appro
mation and regard the functionk as a constant, this form o
the self-energy operator corresponds to the situation of a
aged fluid flows satisfying the Brinkman equations15 with a
tensor of Darcy friction coefficients proportional to the un
tensor. The Green’s function then has the form

G̃i j 5P i j ~k!
1

k212ik•k* 1k2 , ~29!

where we have introduced the notationk* 5U0/2n. Substi-
tuting this expression for the Green’s function into Eq.~27!,
we obtain an integral representation for the scattering op
tor. The scattering operator is calculated in the Appendix

We confine the analysis of an isotropic medium to a h
packing density, so that the inertial effects can be dis
garded. As is shown in the Appendix, the scattering oper
in an arbitrary coordinate system has the form~58! in this
case:

T̃i j 5T0Fd i j 2
1

2
ninj G ,

where
f-
p-
n

n
al
al
g

-

r-

a-

-
r

T054pF ln
ga~~k•n!21k2!1/2

2

2
1

2

~k•n!2

k2 ln
~k•n!21k2

~k•n!2 G21

.

On large scales, where the conditionk2/k2!1 holds, we can
write

T05
4p

ln~gak/2! F12
1

2

~k•n!2

k2 ln~gak/2!
ln

~k•n!2

k2

2
1

2

~k•n!2

k2 ln~gak/2!G .
Now, averaging the tensorT̃i j over all directions of the vec-
tor n and separating the transverse part, we obtain the s
energy equation

S̃ i j 5P i j

16pn

ln~gak/2! H 5

6
2

17

300

k2

k2 ln~gak/2!

2
3

20

k2 ln~k2/k2!

k2 ln~gak/2! J . ~30!

Comparing this equation with Eq.~28!, we obtain the self-
consistency condition

k252
5

6
n

16p

ln~gak/2!
. ~31!

If the material is polydisperse, the right-hand side of t
latter equation must still be averaged over the fiber dia
eters. The wavenumber-dependent part of the self-energy
be interpreted as the decrease in the friction coefficient in
Brinkman equation as the characteristic flow dimensions
crease. The expression~31! for the self-energy is valid for
infinitely long fibers or, as shown in the Appendix, forkl
@1, if the finite fiber length 2l is taken into account. In the
large-scale domain,kl!1, the expression derived in the Ap
pendix for the zero-angle scattering operator of a finite c
inder can be used to obtain an equation for the self-energ
this case:
’s
e–
FIG. 8. a! Bethe–Salpeter equation for the two-particle Green
function; b! series representation of the kernel of the Beth
Salpeter equation.
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S̃ i j 5P i j

4a

a2 ln~gak/2! H 5

6
1

3

10

k2 ln~2k l /p!

k2 ln~gka/2! J , ~32!

where a denotes the volume fraction of the fibers in t
medium. The quadratic term in this equation is often int
preted as renormalization of the viscosity. If this interpre
tion is applied to the porous media under investigation,
opposed to suspensions,21,25,31the viscosity decreases as th
packing density increases.35

We now consider an anisotropic porous medium cons
ing of fibers oriented perpendicularly to a specific prefer
direction. We assume that the fluid flows in this direction
the average. Such a medium is often treated as a mod
fibrous filters.14 The angular distribution function for thi
model is

f ~n!5
p

2 sin u FdS f2
p

2 D1dS f1
p

2 D G , ~33!

where the anglef is measured from the preferred directio
For a uniaxial anisotropic medium we seek the self-energ
the form

S̃ i j ~k!52P i j ~k!k'
2 2P i1P1 j~k i

22k'
2 !. ~34!

Here we have taken into account that the porous medium
our model has a preferred direction coinciding with t

x axis and that the tensorS̃ i j must be transverse relative t
the vectork:

kiS̃ i j 5S̃ i j kj50.

The Green’s function now has the form

G̃i j 5FP i j ~k!2
P i1P1 j~k i

22k'
2 !

k212ik•k* 1~k i
22k'

2 !P11
G

3
1

k212ik•k* 1k'
2 . ~35!

The Green’s function contains the isotropic term~29! with k
replaced byk' and an anisotropic term proportional to th
difference (k i

22k'
2 ). Substituting this expression for th

Green’s function into~27!, we obtain an equation for th
renormalized scattering operator in an anisotropic medi
The scattering operator for an isotropic medium has alre
been calculated. We analyze the contribution of the an
tropic part of the Green’s function to the scattering opera
for k350 and the low fluid flow velocitiesk* !k' . Evalu-
ating the simple integrals, we obtain a diagonal scatter
operator with the following matrix elements in the coord
nate system associated with a fiber:

T̃1154pF ln
ga

4
~k'1k i!1

k i

k'1k i
2

1

2G21

,

T̃2254pF ln
ga

4
~k'1k i!2

k i

k'1k i
1

1

2G21

,

T̃3352pF ln
ga

2
k'G21

.

-
-
s

t-
d

of

in

in

.
y

o-
r

g

Averaging over the angles of inclination of the fibers a
then isolating the part of the averaged scattering oper

which is transverse tok, we obtain an expression forS̃ i j :

S̃ i j 52nP i j ~ T̃221T̃33!12nP i1P1 j@2T̃112~ T̃221T̃33!#.

Comparing this expression with Eq.~34!, we write equations
for determiningk' andk i :

k i
25216pnF ln

ga

4
~k'1k i!1

k i

k'1k i
2

1

2G21

,
~36!

k'
2 524pnH F ln

ga

2
k'G21

12F ln
ga

4
~k'1k i!2

k i

k'1k i
1

1

2G21J .

In the polydisperse case the right-hand sides of these e
tions must be averaged over the fiber radii.

The solutions of these equations are shown in Fig. 9
functions of the packing densitya54pna2. Clearly, the an-
isotropy of the tensor of friction coefficients in the Brinkma
equation

e5
k i

22k'
2

k i
2

increases slowly with increasing packing density, remain
at the levele;0.3. Figure 10 shows the results of calcul
tions of the resistance force as a function of the pack
density for an anisotropic medium with and without allow
ance for the anisotropy of the Green’s function. It is evide
that disregarding the anisotropy of the Green’s function,
in Ref. 14, leads to a somewhat higher resistance force.

If the anisotropy is ignored, it is easy derive the se
consistency condition for the model under consideration:

k25216pnF ln
ga

2
~k21k

*
2 !1/22

1

2

1
k2

2k
*
2 lnS 11

k
*
2

k2D G21

, ~37!

and the expression for the resistance force per unit fi
length

FIG. 9. Longitudinal (k i
2) and transverse (k'

2 ) friction coefficients and their
anisotropye versus the packing densitya.
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F524pmU0F ln
ga

2
~k21k

*
2 !1/22

1

2

1
k2

2k
*
2 lnS 11

k
*
2

k2D G21

, ~38!

in which the inertial effects are taken into account. At hi
velocities,k

*
2 @k2, Eq. ~38! goes over to the equation for th

resistance force of an isolated fiber,36 and in the opposite
limit the self-consistency condition~37! coincides with the
result obtained in Ref. 14. The dotted curve in Fig. 10 re
resents the resistance force as a function of the packing
sity for Re50.2.

6. VELOCITY CORRELATION FUNCTION IN A FIBROUS
POROUS MEDIUM

To investigate the velocity fluctuations in a random m
dium, we introduce the velocity correlation function

Bi j ~r !5E Bi j ~k!eik•r
d3k

~2p!3 5^Vi~r !Vj~0!&, ~39!

where Bi j (k)5^Vi(k)Vj* (k)& satisfies the Bethe–Salpet
equation.32 In the kernel of the Bethe–Salpeter equation fo
dilute medium it is sufficient to retain only the term corr
sponding to the first diagram in Fig. 8. In this approximati
we have the following equation for the correlation functio

Bi j ~k!5U0
2d i1d j 1d~k!1G̃is~k!G̃jp~k!n

3E ^T̃sm~k,k1!T̃pn~k,k1!&Bmn~k1!
d3k1

~2p!3 .

~40!

We henceforth assume that the inertial effects and
nonzero value ofe can be disregarded. We are also interes
in the solution in the regionk!k, where the scattering op
erator can be considered to be independent ofk. We solve
this equation by expanding in powers of the densityn. In the
zeroth approximation the solution corresponds to an un
turbed flow. In the linear approximation with respect to t
density we obtain the correlation function in the form

FIG. 10. Resistance force per unit length of fiber of the model filter ver
packing density.1! Calculated with neglect of the anisotropy of the frictio
coefficients;2! calculated with allowance for the anisotropy; the dash
curve is plotted with allowance for the inertial effects at Re50.2.
-
n-

-

:

e
d

r-

Bi j 54nU0
2G̃i1G̃j 1E T̃11

2 d~n•k! f ~n!
dV

4p
, ~41!

where the integration is carried out over the surface o
sphere. For an isotropic medium

T̃1154pF ln
gak

2 G21F12
1

2
n1n1G .

Integrating over angles, in this case we arrive at a correla
function of the form

Bi j 54nU0
2 ~4p!2

@ ln~gak/2!#2 P i1P j 1~k21k2!2
1

4k

3F S 12
k'

2

4k2D 2

1
k'

4

32k4G . ~42!

where k'
2 5k22k1

2 . For a material in which all fibers are
oriented orthogonal to the direction of flow, similar calcul
tions give

Bi j 54nU0
2 ~4p!2

@ ln~gak/2!#2

P i1P j 1

k'~k21k2!2 . ~43!

For this model the velocity correlation function in coo
dinate space is equal to

Bi j ~r !54nU0
2 ~4p!2

@ ln~gak/2!#2E P i1P j 1eik•r

k'~k21k2!2

d3k

~2p!3 .

~44!

If we introduce the function

B0~k,r !5E 1

k'~k21k2!
eik•r

d3k

~2p!3

5
1

4p
I 0F1

2
k~r 2x!GK0F1

2
k~r 1x!G ,

we can representBi j (r ) in the form

Bi j ~r !54nU0
2 ~4p!2

@ ln~gak/2!#2 H d i1d j 1B1

1S d i1

]

]xj
1d j 1

]

]xi
DB21

]2

]xi]xj
B3J . ~45!

The Bi are expressed in terms ofB0 as follows:

B152
]

]k2 B0 ,

B252
]2

]x]k2 F 1

k2S B02
1

4p
ln

4

g~r 1x! D G ,
B352

]2

]x2]k2 F 1

k4S B02
1

4p
ln

4

g~r 1x! D
2

r 21x2

32pk2 ln
4

g~r 1x!G .
In the regionkx@1 the exponentially small contribution

of B0 to theBi can be neglected. The remaining logarithm
terms make the correlations decay asr 22 at large distances
For small values of the longitudinal coordinate,kx<1, it is

s
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necessary to add the contribution of the functionB0, which
behaves asr 21 at kr @1. The correlation of the longitudina
velocities in this region decays asr 21. The value of the
correlation tensor at zero,Bi j (0), is readily determined di-
rectly from Eq.,~44!. The tensor is, in fact, diagonal and h
the components

B1156B2256B335
3

32
U0

2S ln
2

gak D 21

.

Clearly, the kinetic energy contained in the longitudinal v
locity components is three times higher than that in the tra
verse components.

Knowing the velocity correlation function, we can fin
the longitudinal and transverse diffusion coefficients o
passive impurity embedded in a fluid. For a particle tha
situated at the pointr50 at the timet50 and moves to-
gether with the fluid we have

r ~ t !5E
0

t

V~r ~ t8!!dt8.

For the mean-square component of the displacement rela
to the unperturbed trajectoryxi85(xi2U0i t) we obtain

^xi8
2&5E

0

tE
0

tE ^Ṽi~k!Ṽi* ~k8!exp@ ik1U0t82k18U0t9

1 ik•r1~ t8!2 ik8•r1~ t9!#&
dk dk8

~2p!6 dt8 dt9.

If we assume thatr1(t) is described by a stochastic Wien
process20 with the transition probability density function

P~r ~ t !ur ~ t8!!5
1

8D'D i
1/2@p~ t2t8!#3/2

3expH 2
@x~ t !2x~ t8!#2

4D i~ t2t8!

2
@r'~ t !2r'~ t8!#2

4D'~ t2t8! J ~46!

and correlates weakly withṼi(k), we obtain the following
expression for the displacement squared:

^xi8
2~ t !&5E

0

tE
0

tE ^Ṽi~k!Ṽi* ~k8!&^exp@ ik1U0~ t82t9!

1 ik'•~r1'~ t8!2r1'~ t9!!#&
dk

~2p!3 dt8dt9.

Calculating the average of the exponential function with
transition density function~46!, we find that at large times
(U0kt@1) the displacement squared obeys the diffusion
^xi8

2&52Dit with the following diffusion coefficients in the
longitudinal and transverse directions to the flow, resp
tively:

2D i5E E
2`

`

B11~k!exp~ ik1U0t2k1
2D iutu

2k'D'utu!dt
d3k

~2p!3 , ~47!
-
s-

s

ve

e

-

2D'5E E
2`

`

B22~k!exp~ ik1U0t2k1
2D iutu

2k'D'utu!dt
d3k

~2p!3 . ~48!

In calculating the longitudinal diffusion coefficient w
can ignore the terms in the exponential function~47! that
contain

D i5
p

U0
E B11~k!d~k1!

d3k

~2p!3 52
p

4

U0

k ln~gak/2!
.

In calculating the transverse diffusion coefficient we mu
retain the term in the exponential function~48! that contains

D'5E B22~k!
D i

U0
21D i

2k1
2

d3k

~2p!3 .

Integrating and making use of the fact thatD ik!U0, we
obtain

D'52D i
1

8 ln~gak/2!
.

The transverse diffusion coefficient in the model under c
sideration is found to be much smaller than the longitudi
diffusion coefficient. We note that the longitudinal diffusio
coefficient for an anisotropic medium differs only by a n
merical factor from the analogous coefficient obtained
Ref. 37 for an isotropic fibrous medium.

7. CONCLUSION

In this paper the diagram technique developed
multiple-scattering theory to investigate wave fields in ra
dom media has been used to study the hydrodynamic
three-dimensional fibrous porous media. As in problems c
cerning the hydrodynamics of suspensions, a system of s
consistent equations~24!–~26! has been derived for the
Green’s function in a porous medium and the renormaliz
friction coefficient matrix, which is analogous to the scatte
ing operator in wave problems. It has been shown that
series of multiple-scattering theory can be partially summ
in such a way that all the diagrams contain only renorm
ized self-consistent Green’s functions and the scattering
erator. Self-consistent field theory has been used to inve
gate the averaged equations of fluid flow in an isotro
medium and in an anisotropic fibrous filter. An expressi
has been derived for the renormalization of the viscosity
an isotropic fibrous medium as a function of the packi
density and the geometric dimensions of the fiber~32!. The
velocity correlation function~45! has been calculated, an
the longitudinal and transverse diffusion coefficients ha
been determined for a passive impurity moving together w
a fluid.

I thank A. A. Vedenov, A. A. Kirsch, V. I. Roldutin, I.
B. Stechkina, and S. V. Khudyakov for some helpful discu
sions.
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APPENDIX

In this Appendix we calculate the scattering operator
a fiber oriented perpendicularly to the direction of the av
age velocity. To calculate the scattering operator using
~27!, we first need to evaluate the two integrals

I 15E eik'•r

k212ik•k* 1k'
2

d2k

~2p!2 , ~49!

I 25E eik'•r

k2~k212ik•k* 1k'
2 !

d2k

~2p!2 . ~50!

Invoking the representation

x215E
0

`

e2axda

for the denominator inI 1 and then taking the Gauss integr
over the Fourier harmonics, we obtain

I 15
1

4p
er•k

* E
0

`da

a
expH 2~k3

21k'
2 1k

*
2 !

3Fa1
r 2

4a~k3
21k'

2 1k
*
2 !G J

5
1

2p
er•k

* K0~rl!, ~51!

where l25(k3
21k'

2 1k
*
2 ), and we have used the integr

representation for the Bessel functions of an imagin
argument38

E
0

`

expF2
x

2 S t1
z2

t D G t2n21dt52z2nKn~xz!. ~52!

Analogously,I 2 can be reduced to the form

I 25
1

4p E
0

1

dher•k
*

h
r

l~h!
K1@rl~h!#, ~53!

wherel2(h)5k3
21k'

2 h1k
*
2 h2. Invoking the expansions o

the Bessel functions for small values of the argument38

K0~x!'2 ln
gx

2
, K1~x!'

1

x
1

x

2
ln

gx

2
2

x

4
, ~54!

whereg51.781 is the Euler constant, for the first integral w
obtain

I 152
1

2p
ln

grl

2
, ~55!

and I 2 is reduced to the form

I 25
1

4p H r 2

2 S ln
grl

2
2

1

2D
1E

0

111~k* x2k2r 2/4!h2k
*
2 y2h2/2

k3
21k2h1k

*
2 h2 dhJ . ~56!

This integral is readily evaluated, but it is simpler to calc
late various limiting cases directly from Eq.~56!. The matrix
elements sought are expressed in terms ofI 1 and I 2 and the
derivatives ofI 2 with respect to the coordinates with subs
r
-
q.

y

-

-

quent averaging over the surface of a cylinder of rad
r 5a. As a result, we obtain expressions forT̃i j

21 in the thin-
fiber approximation. In the case of a dilute medium or hi
harmonics, where the conditionk2!k3k* holds, the calcu-
lations yield matrix elements for the inverse operator, wh
coincides with the bare operator in this case:

T11
2152

1

4p F2 ln
ga~k3

21k
*
2 !1/2

2
1

1

2G ,
T22

215T11
212

1

4p F211
k3

k*
arctanS k3

k*
D G , ~57!

T33
2152T11

211
1

4p F11
k3

k*
arctanS k3

k*
D G ,

T13
215T31

2152
i

2

k3

k*
ln

~k3
21k

*
2 !

k3
2 .

In the opposite case,k2@k3k* , we encounter two dif-
ferent possibilities. We first disregard the inertial effects
together, assuming thatk* 50. For the matrix elements o
the inverse scattering operator, which is diagonal in this ca
we obtain

T̃11
215T̃22

215
1

2
T̃33

2152
1

4p F2 ln
ga~k3

21k2!1/2

2

1
1

2

k3
2

k2 ln
~k3

21k2!

k3
2 G . ~58!

In the case ofk350 with allowance for the inertial terms, w
can confirm that the operator is once again diagonal:

T̃33
215

1

2p
ln

ga~k
*
2 1k2!1/2

2
,

T̃11
215

1

2
T̃33

212
1

4p F1

2
2

1

2

k2

k
*
2 ln

~k
*
2 1k2!

k2 G ,
T̃22

215
1

2
T̃33

212
1

4p F2
1

2
1

1

2

k2

k
*
2 ln

~k
*
2 1k2!

k2 G . ~59!

Inverting the matrices obtained, we find the scattering ope
tor under the stated conditions.

The expressions obtained are valid for infinitely lon
fibers. To assess the influence of the finite length of the
bers, we consider a cylinder of length 2l aligned with the
z axis. We assume that its lower base lies in thez50 plane.
Since the fiber now exerts a nonzero force on the fluid o
at 0,z,2l , the force can be expanded into a Fourier ser
in this interval:

F~z!5(
n

Fn sin knz,

where kn5pn/2l . An analogous expansion can be writte
for the velocity of the external fluid flow on this segment
the z axis:

V~z!5(
n

Vn sin knz.
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The coefficients of the Fourier seriesFn andVn are related to
the coefficients of the integral Fourier transform:

Fn~k3!5(
n

f * ~kn ,k3!Fn ,

Vn5
1

l E f ~kn ,k3!V~k!
d3k

~2p!3 ,

where we have introduced the function

f ~kn ,k3!5E
0

2l

sin knze2 ik3zdz5 ieik3lF e2 iknl
sin~k32kn!l

~k32kn!

2eiknl
sin~k31kn!l

~k31kn! G .

The distribution of forces along a fiber must be det
mined from the condition of zero net velocity on its surfac

Vi~z!5
1

mE T̃i j
21F j~k3!

dk3

2p
. ~60!

Substituting the expressions for the velocity and the force
the form of Fourier series into this equation on the inter
0,z,2l , we obtain

Vin5E T̃i j
21~k3!Qn~k3 ,kn!

d3k

~2p!3

F jn

m
, ~61!

where

Qn~k3 ,kn!5Fsin~k32kn!2l

k32kn
1

sin~k31kn!2l

k31kn
G .

The scattering operator of an infinitely long fiber is diagon
for an isotropic medium at low flow velocities. In this ca
we can use Eq.~61! to express the resistance force explici
in terms of the flow field and to obtain an expression for
diagonal components of the scattering operator for a fi
cylinder:

T̃i~k,k8!5
1

l (
n

f * ~kn ,k3! f ~kn ,k38!

*T̃i
21~k39!Qn~k39 ,kn!dk39/2p

. ~62!

Under the conditionk l @ l the functionQn(k3 ,kn) can be
replaced by 2pd(k32kn). For disturbances which are sho
in comparison with the wavelength, (k3l ,k38l )@1, the main
contribution to the sum~62! is from large values ofn, at
which the sum can be replaced by the integral overkn . Mak-
ing use of the fact that the functionf (kn ,k3) is proportional
to pd(kn2k3) whenknl @1, we obtain the scattering opera
tor in this limit

T̃i~k,k8!52
sin@~k32k38!l #

~k32k38!
exp~ i ~k382k3!l !T̃i~k3!.

In the long-wavelength range, (k3l ,k38l )!1, the main contri-
bution to the sum~62! is from small values ofn. In particu-
lar, for the zero-angle scattering operator we obtain the
pression
-
:

n
l

l

e
e

x-

T̃i~k,k!5
T̃i~0!

l (
n

u f ~kn ,0!u2

1
k3

2

2l (
n

T̃i~kn!
]2

]k3
2 u f ~kn ,0!u2. ~63!

Calculating the sum overn, we obtain an expression for th
diagonal components of the scattering operator in the lo
wavelength limit:

T̃1~k,k!5T̃2~k,k!52T̃3~k,k!

5
8p l

ln~gka/2!
F11

k3
2 ln~2k l /p!

k2 ln~gka/2!
G . ~64!
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We unify the method of exchange perturbation theory for multicenter systems. For the case of
exchange degeneracy in the total spin of the system we give a secular equation that is
more compact and convenient for calculations than those obtained earlier. On the basis of this
formalism we develop an algorithm for calculating the Heisenberg parameter for magnetic
materials. Finally, we calculate the characteristics of antiferromagnetic transitions for the high-Tc

materials La22xMeCuO4 and YBa2Cu3O6. © 1998 American Institute of Physics.
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INTRODUCTION

Usually the microscopic description of magnetic mate
als is either a statistical analysis of spin systems on the b
of the Heisenberg equation or a calculation and analysi
magnetization and magnetic susceptibility in the sing
electron approximations in models of the Stoner1 or
Hubbard2 type. But, in one way or another, the main para
eter characterizing the spin system is still the exchange i
gral, which is chosen differently in different models; for in
stance, in Hubbard-type models it is the Coulomb excha
interaction of electrons strongly localized at the centers a
therefore, calculated in the Wannier-function representat
The Heisenberg parameter in spin models is estimated s
phenomenologically, by reduction to the simplest Heitle
London two-center problem.3 Clearly, the intercenter inter
action of electrons belonging to the inner shells of io
which is responsible for the spontaneous orientation of
spins, is much more complicated than in the models. F
the overlap of the atomic wave functions of the inner el
trons belonging to different centers is responsible for th
spin correlation; thus, the use of a ‘‘truncated’’ Wannie
function basis artificially reduces the contribution of the
tercenter exchange to the interaction energy and in this
essentially eliminates the intercenter correlation effects. S
ond, for many materials the number of ‘‘active’’ electrons
the inner shells of atoms participating in intercenter inter
tion exceeds unity, so that the wave function describing
least a two-center system is more than two-particle, and
spatial part is not reduced only to symmetric or antisymm
ric form, as it is in the Heitler–London model. The use of t
Slater determinant, which incorporates both coordinate
spin one-electron states simultaneously, makes it imposs
to analyze the spin state emerging as a result of the inte
tion. Third, often the magnetic orientation of the spins
caused not simply by two-center exchange but by supe
change, in which the electrons of three or more cen
participate.4,5 The constants of such interaction are appro
1161063-7761/98/86(6)/10/$15.00
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mated variationally by combinations of pair integrals,6 which
actually means that the nonadditive part specific to mu
center interaction is discarded.

The situation is such that a meaningful description
spin systems requires not only effective summing over
states of the possible spin configurations~an enormous num-
ber of fine papers have been written on the subject, includ
those that use the renormalization method! but also develop-
ing an algorithm that would allow doing consistent calcu
tions of the fundamental parameter present in any statis
scheme, the Heisenberg parameter.

The discovery of anomalous magnetic effects in high-Tc

superconductors is vivid proof of the necessity of develop
such an algorithm, since these effects are caused not so m
by structural transformations in the crystal as by the cha
in the nature of the exchange interaction proper. The poin
that such crystals as YBa2Cu3Cu3O6 and La2CuO4 and the
materials Rb2MnF6 and Rb2CoF4 isostructural to the latter, in
the pure or stoichiometric state are antiferromagnetic ins
tors with a fairly high transition temperature. Alloying
which is done by replacing the La21 ion by an atom of a
metal with valence 21 ~such as Cu21, Ba21, and Sr21, so
that we have the alloys La22xMexCuO4, Rb2Mn12xMgxF4,
and Rb2Co12xMgxF4, respectively! or by changing the oxy-
gen content~La2CuO42d and YBa2Cu3O6!, lowers the Ne´el
temperature so drastically that the antiferromagnetic s
may be destroyed7–9 and replaced by a weakly fluctuatin
3D state of a spin liquid with preferentially parallel pair or
entation of the spins.

A theoretical analysis of the behavior of these syste
yields contradictory results. For example, according to c
culations done with the one-electron band approximation,
La2CuO4 compound is a nonmagnetic metal.10,11At the same
time, electronic-structure models used in studies of
Heisenberg Hamiltonian for two- and three-center system
the representation of the spin eigenfunctions of the oper

J( ŝ11 ŝ2) ŝ3 provide a fairly realistic phase diagram that d
scribes the transition of the system from the 2D antifer
magnetic state into the 3D state of a spin liquid and then i
7 © 1998 American Institute of Physics
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the superconducting state.12 However, in these papers th
numerical value ofJ for different spin configurations is es
timated by analyzing experimental data.

The Heisenberg parameter can in principle be calcula
consistently by applying the formulas of exchange pertur
tion theory, which takes into account the effects of int
center overlap of the wave function. There are many form
variants of this theory, which are classified according to
way in which the algorithm is constructed~a detailed de-
scription of this classification can be found in Kaplan
monograph,13 which also analyzes the merits and drawba
of the variants!. There are two problems that must be de
with in constructing the algorithm of exchange perturbat
theory: the nonorthogonality of the base of the multicent
system wave functions, which are antisymmetric in int
center permutations~this problem is related to what is know
as the overfilling catastrophe!, and the asymmetry of the pe
turbation operator and the unperturbed part of the Ham
tonian with respect to intercenter permutations of electro
In other words, if@H,A#50, whereH5H01V is the total
system Hamiltonian,H0 is its unperturbed part, andA is the
antisymmetrization operator, then@H0,A#Þ0 and @V,A#
Þ0. The zeroth wave function antisymmetrized in inte
center permutations is not an eigenfunction ofH0, and the
corrections calculated in the perturbationV contain non-
physical contributions.

All variants of exchange perturbation theory can be
vided into two groups.13 The first consists of theories non
symmetric in the Hamiltonian. The second consists of
proaches that make it possible to use the common Raylei
Schrödinger perturbation theory by setting up a spec
zeroth symmetric Hamiltonian for which the antisymmet
functions are eigenfunctions. The first group uses the fun
mental basis of zeroth functions nonsymmetric in intercen
permutations, functions that are the eigenfunctions of
nonsymmetric HamiltonianH0. Antisymmetrization is done
post factumat each interpolation step, which in the fin
analysis requires using a variational procedure in the per
bation theory formalism~as, say, is done in Ref. 14!. An
attempt to modify the Hamiltonian so that the perturbat
operator becomes symmetric~this is known as the Sternhe
imer procedure15,16! leads to a non-Hermitian total Hami
tonian and actually limits the use of the method to tw
electron systems.

The second group of variants of exchange perturba
theory can be assumed to include the work of Ritchie.17 In
this paper special projection operators are employed wh
action on an antisymmetric function is reduced to selectin
term with a specific permutation. Since the explicit form
these operators was not given, it was assumed that they m
the Hamiltonian non-Hermitian. Rumyantsev18 demonstrated
the effectiveness of using such symmetrization of the Ham
tonian. Despite a conceptual difficulty, a variant of exchan
perturbation theory the Rayleigh–Schro¨dinger form was con-
structed, and on the basis of this theory the spectral cha
teristics of the hydrogen–helium system were calcula
with high accuracy. Only in Ref. 19 were the projection o
erators derived explicitly. These operators symmetrize
perturbation operator and the unperturbed Hamiltonian
d
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retain the hermiticity of the total Hamiltonian in the sen
that its eigenvalues are real numbers. In the same pape
variant of exchange perturbation theory was generalized
the case where the system is degenerate in total spin. A
tailed description of the variant and a broad range of ap
cations used in calculating specific system, including s
system, can be found in Ref. 5. Unfortunately, the organi
tion of the material in Refs. 5 and 19 makes it impossible
explicitly analyze all the small parameters of the theory
which the power series expansions are done, and this m
the use of the formulas difficult. We also note that in Ref.
the corrections to the energy when degeneracy in total sp
lifted were calculated only for the case where there is ano
degeneracy, in orbital momentum.

In the present paper we use the idea of the method
symmetrizing the Hamiltonian17–19 and construct a more
compact algorithm of exchange perturbation theory. This
lowed us to estimate the smallness of the terms discarde
each iteration step, terms that emerge because of the ove
ing of the nonorthogonal base of antisymmetric functio
Due to a change in the normalization condition for the an
symmetric functions, all the projections in this variant, i
cluding Ritchie-type operators, are simpler. This has mad
possible to obtain a solution of the secular equation when
system is degenerate in total spin in a more general fo
more suitable for calculations. To show the possibilities
our version of exchange perturbation theory with deg
eracy, we examined the high-Tc materials La22xSrxCuO4

and Ba2Cu3O61x , for which we calculated the Heisenber
parameter in the stoichiometric and alloyed states. We sh
that alloying these materials dramatically changes the m
nitude and sign of the exchange and superexchange integ
These changes lead, in accordance with the models of
12, to destruction of the 2D antiferromagnetic state a
emergence of a 3D ferromagnetic state of spin liquid.

1. EXCHANGE PERTURBATION THEORY

A system of noninteracting atoms in the adiabatic a
proximation can be specified solely by the electron part
the wave function, which is simply the product of atom
wave functions. We write the spatial part as

F~r 1 ,...,r N!5)
a

ca~r 1 ,...,r j !, ~1.1!

wherea is the number of a center, or atom, andi ,...,j are
the numbers of the electrons belonging to an atom.

The Hamiltonian describing such a system consists
the kinetic energy of all the electrons, the potential energy
the interaction of electrons and the ‘‘parent’’ center, and
interaction of the electrons belonging to one center with e
other.

If the Hamiltonian does explicitly contain spin operator
then

H0Fn~r 1 ,...,r N!5En
0Fn~r 1 ,...,r N!,

where$En
0% is the set of the eigenfunctions of the energy

the noninteracting system, andF(r 1 ,...,r N) are the eigen-
functions corresponding to this spectrum.



om
nc
ng

e
at
d

ng

ing
te

r-
d

u

l-
a-

e
c-

a
ta

he

in
r-
ng
v
r-

in-
of

ny

a-
en-

he
the

er

e
b-

tors

r

of
y

c
n-

1169JETP 86 (6), June 1998 E. V. Orlenko and T. Yu. Latyshevskaya
The distances between the centers are such that at
wave functions may strongly overlap. Then, in accorda
with the Pauli exclusion principle, even for a noninteracti
system the complete wave function must be antisymm
trized. So that the spin part can easily be separated l
leaving only the spatial part, Young tableaux can be use
antisymmetrize the complete wave function.20 Then the spa-
tial part of the complete wave function of the noninteracti
system is

Cn
0~r 1 ,...,r N!5AFn~r 1 ,...,r N!, ~1.2!

where A is the antisymmetrization operator correspond
only to the spatial part of the Young tableau or, in grea
detail,

Cn
0~r 1 ,...,r N!5

1

f n
P (

p

P

~21!gpFn
p~r 1 ,...,r N!, ~1.3!

wherep is the number of permutations,gp is the parity of
that permutation,P is the total number of possible inte
center permutations, 1/f n

p is the normalization constant, an
Fn

p(r 1 ,...,r N) is the wave function of the form~1.1! contain-
ing the permutationp that corresponds to the Young tablea
We find the normalization constant~1.3! from the condition

^Fn
0uCn

0~r 1 ,...,r N!&51. ~1.4!

Then

f n
P5 (

p50

P

~21!gp^Fn
0uFn

p& ~1.5!

differs by a factorAP from the same constant in the norma
ization ^C0uC0&51 commonly used in exchange perturb
tion theory.

We introduce a projection operatorLn
p that separates th

term with thepth permutation in an antisymmetrized fun
tion of type ~1.3!:

Ln
p5uFn

p&^Fn
pu. ~1.6!

ThenLn
puCn

0&5(21)puFn
p&.

Now we can write the system Hamiltonian without
perturbation in a form invariant under intercenter permu
tions:

H05
1

f n
P (

p50

P

Hp
0Ln

p , V5
1

f n
P (

p50

P

VpLn
p , ~1.7!

whereHp
0 and Vp are the unperturbed Hamiltonian and t

perturbation corresponding to thepth intercenter permutation
of the electrons.

As usual, the perturbation operator incorporates the
teraction of the nuclei, the interaction of electrons with ‘‘fo
eign’’ nuclei, and the interaction of the electrons belongi
to different centers. Now the zeroth antisymmetric wa
function ~1.3! is the eigenfunction of the invariant unpe
turbed HamiltonianH0 ~1.7!:

H0Cn
05En

0Cn
0 . ~1.8!
ic
e

-
er,
to

r

.

-

-

e

The Hamiltonian of the interacting system is always
variant under electron perturbations, so that the solution
the Schro¨dinger equation can be antisymmetric under a
electron permutation:

HC5EC. ~1.9!

Solving Eq. ~1.9! by the method of successive approxim
tions, we seek the perturbative corrections to the zeroth
ergy and wave function taken from~1.8!. For instance, for
the initial wave function and its corrections to have t
proper symmetry, we use the perturbation operator and
unperturbed part of the Hamiltonian in the form of~1.7!.
Then instead of~1.9! we have

~H01V!C i5EiC i , ~1.10!

where

C i5C i
~0!1C i

~1!1¯ , Ei5Ei
~0!1Ei

~1!1¯ .

At the beginning we keep only the zeroth- and first-ord
terms in~1.10!. Then, allowing for~1.8!, we have

H0C i
~1!1VC i

~0!5Ei
~1!C~0!1Ei

~0!C i
~1! . ~1.11!

We impose the intermediate normalization condition

^F i uC i&5^F i uC i
0&, ~1.12!

i.e., ^F i uC i2C i
0&50. This means that all corrections to th

wave function of the zeroth approximation lie in the su
space of the state vectors orthogonal touC i

0&.
Let us introduce the projector on the subspace of vec

parallel touC i
0&

Pi5uC i
0&^F i u, ~1.13!

wherePi uC i
0&[uC i

0&. Since

PiH
0uC i

~1!&5
uC i

0&

f i
P (

p50

P

^F i
0uHp

0uF i
p&^F i

puC i
~1!&

5Ei
0

uC i
0&

f i
P (

p50

P

^F i
0uF i

p&^F i
puC i

~1!&

5Ei
0uC i

0&^F i
0uC i

~1!&5Ei
0PiC i

~1! , ~1.14!

after the operator~1.13! is applied to Eq.~1.11! we get
^F i uVuC i

0&uC i
0&5Ei

(1)uC i
0&. This leads to an expression fo

the first-order correction to the energy,

Ei
~1!5^F i uVuC i

0&. ~1.15!

Now let us introduce the projector on the subspace
vectors orthogonal touC i

0& in accordance with the propert
of the double vector product:

Oi512Pi , where Oi uC i
0&[0 ~1.16!

or, to put it differently,

Oi uC&5^F i u3uC&3uC i
0&, ~1.17!

i.e., uC&5uC i
0&^FuC&1^F i u3uC&3uC i

0&.
From ~1.13! and ~1.17! we see that the antisymmetri

basis of zeroth wave functions is actually only weakly no
orthogonal,
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Pi uCn
~0!&5uC i

0&^F i
0uCn

0&

5uC i
0&

1

f i
P (

p50

P

^F i
0uFn

p&~21!gp'0, ~1.18!

becausêF i
0uFn

0&50, and^F i
0uF i

p&'0, since the overlap o
the wave functions of the ground and excited belonging
different centers is insignificant~this resembles the situatio
in diffraction theory for wave optics!. Accordingly,

^F i u3uCn
0&3uC i

0&'uCn
0&. ~1.19!

We seek, in accordance with~1.12!, the first-order cor-
rection to the antisymmetrized function of the zeroth a
proximation in the form of an expansion:

C i
~1!5(

n
CnCn

0 , ~1.20!

wherenÞ i . Inserting the expansion~1.20! in ~1.11! and ap-
plying the operator~1.16! to the result, we get

OiVuC i
0&5(

n
Cn~Ei

02Ei
n!uCn

0&, ~1.21!

where we have allowed for~1.18! and ~1.19!.
Using the property of completeness of the orthogo

basis of the nonsymmetric zeroth functions,

(
n

uFn
p&^Fn

pu51,

we can write the left-hand side of Eq.~1.21! as follows:

1

P (
p50

P

(
n

uFn
p&^Fn

puOiVuC i
0&

5
1

P (
p50

P

(
n

uFn
p&~21!p^Fn

0uOiVuC i
0&

5
1

P (
n

f n
PuCn

0&^Fn
0uOiVuC i

0&. ~1.22!

Since

^F i uOiVuC i
0&5^F i u12uC i&^F i uVuC i

0&[0,

we must drop the term withn5 i from ~1.22!.
Finally, Eq. ~1.21! becomes

1

P (
n

f n
PuCn

0&^Fn
0uOiVuC i

0&5(
n

Cn~Ei
02En

0!uCn
0&,

~1.23!

from which we find the first-order correction to the wa
function:

C i
~1!5

1

P (
n

f n
P ^Fn

0uOiVuC i
0&

~Ei
02En

0!
uCn

0&. ~1.24!

Higher-order corrections can be found similarly.

2. THE CASE OF DEGENERACY

The zeroth wave function for a multicenter system c
be antisymmetrized by various Young tableaux, which dif
o

-

l

n
r

for different values of the total spin of the system. In oth
words, a multicenter system of noninteracting electrons
degenerate in total spin, with the degeneracy lifted by allo
ing for ordinary intercenter interaction. Thus,

Cna
0 5AaFn

0 ,

Ha
0Cna

0 5En
0Cna

0 , Ha
05 (

p50

P
1

f n
a Hp

0Ln
p , ~2.1!

where $Cna
0 % is the set of wave functions antisymmetrize

by different Young tableauxa and corresponding to the
same energy levelEn

0 of the system.
We seek the wave function of an interacting multicen

system of electrons in the form

C i5(
b

Cb
0Cb i

0 1w. ~2.2!

If we substitute~2.2! in the complete Schro¨dinger equation
~1.9!, we obtain

H(
b

Cb
0Cb

01Hw5~Ei
01«!(

b
Cb

0Cb
01~Ei

01«!w.

Since the total Hamiltonian is invariant under all permu
tions, it can be taken outside the summation sign in acc
dance with the Young tableau:

(
b

~Hb
01Vb!Cb

0Cb
01Hw

5~Ei
01«!(

b
Cb

0Cb
01~Ei

01«!w. ~2.3!

Using ~2.1!, we can shift all the terms containingw to the
left-hand side of Eq.~2.3! and all the other terms to th
right-hand side. The result is

Hw2~Ei1«!5(
b

~«2Vb!Cb
0Cb

0 . ~2.4!

In ~2.4! we drop all terms whose order is higher than t
first. This means that in the total-energy operator acting ow
we must leave only the unperturbed part symmetrized by
arbitrary Young tableaug and drop the term«w. Then

~Hg
02Ei

0!w5(
b

~«2Vb!Cb
0Cb

0 . ~2.5!

The solution of the homogeneous analog of Eq.~2.5! for w is
w5Cg

0 . But then, according to the Fredholm alternative21

the nonhomogeneous problem~2.5! has a solution only if the
vector ^Cg

0u is orthogonal to the entire right-hand side:

(
b

~«^Cg
0uCb

0&2^Cg
0uVbuCb

0&!Cb
050. ~2.6!

Thus, we have a system of equations for determining
coefficientsCb

0 of the regular zeroth wave function. The sy
tem has a solution only if

u«Dgb2^Cg
0uVuCb

0&u50. ~2.7!
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This is the secular equation for determining the correcti
to the energy. If

Dgb5^Cg
0uCb

0&5
1

f 0
g (

p50

P

~21!gp^FpguCb
0&

5 (
p50

P

~21!gpg~21!gpb^F0uCb
0&

5
1

f 0
g (

p50

P

~21!gpg1gpb,

^Cg
0uVbuCb

0&5
1

f 0
g (

pg50

P

~21!gpg^FpguVbuCb
0&

5
1

f 0
g (

pg50

P

~21!gpg1gpb^F0uVbuCb
0&

5Dgb^F0uVbuCb
0&, ~2.8!

the secular equation becomes

)
b51

~«2^F0uVbuCb
0&!uDgbu50. ~2.9!

The corrections« to the energy have definite value
«5^F0uVauCa

0&, only if

uDabuÞ0. ~2.10!

Then the set of zeroth wave functions antisymmetrized
Young tableaux is regular.

3. THE HEISENBERG PARAMETER FOR THE HIGH- Tc

MATERIALS La 22xMexCuO4 AND Ba2Cu3O61x

The crystalline structure of the compound La2CuO4 in
the stoichiometric state is depicted in Fig. 1. The crystal

FIG. 1. Crystalline and magnetic structures of La2CuO4.
s

y

f

copper dioxide alloyed with, say, strontium (La22xSrxCuO4)
has a similar lattice: a body-centered tetragonal struc
whose space group is 14/mmm. NMR and muon-precession
experiments22–24have shown that the antiferromagnetic sta
occurs in this material due to the interaction of Cu21 ions
lying in a single plane, while the interplanar magnetic inte
action is weak. The magnetic form factor of the Cu21 ion
measured in the antiferromagnetic state25 corresponds to the
3d9 state. The O22 ion occupying a position between inte
acting copper ions does not affect this interaction because
electronic shell is filled.

The wave function of the electrons of a pair of intera
ing Cu21 ions in the zeroth approximation corresponds
states with total spinS51 or S50, i.e., its spatial part is
antisymmetric or symmetric, respectively. Then, from t
secular equation~2.9!, for the singlet and triplet states w
have

«sing,tr5
K6A

16I 2 ,

where

Cs,a~r 1 ,r 2!5
1

16I 2 @c I~r 1!c II~r 2!1c I~r 2!c II~r 1!#,

Dss52, Daa52, Dsa5Das50→U2 0

0 2
UÞ0,

K5^c I~r 1!c II~r 2!uV1uc I~r 1!c II~r 2!&,

~3.1!A5^c I~r 1!c II~r 2!uV2uc I~r 2!c II~r 1!&,

V15
z2e2

uRI2RIIu
2

ze2

ur 12RIIu
2

ze2

ur 22RIu
1

e2

ur 12r 2u
,

V25
ze2

uRI2RIIu
2

ze2

ur 12RIu
2

ze2

ur 22RIIu
1

e2

ur 12r 2u
,

whereRI,II are the radii of the interacting ions,z stands for
the ion charges,r 1,2 are the radius vectors of the electron
and I is the one-electron exchange density.

The wave function of an electron belonging to the Cu21

ion corresponds to the 3dx22y2
9 orbital and is chosen in the

hydrogenlike form

c~r !5A 15

16p

27

6!
r 2e2r sin2 q cos 2w ~3.2!

~in Bohr units!. Then the Heisenberg parameter for the latt
constantR57.3346aB is

j 5«sing2« tr520.1043278 eV. ~3.3!

In the given case,j is negative, which corresponds t
antiparallel orientation of the spins at the neighboring latt
sites as being an energetically preferable configuration.
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Similar calculations ofj that use Eqs.~3.1! and~3.2! for
the Cu21 ions in adjacent layers (R512.3818aB) yield the
value

j 529.67331025 eV, ~3.4!

which also corresponds to antiparallel orientation of
spins, but the coupling constant is very small.

Thus, the assumption that the antiferromagnetic inter
tion between the planes is small, which was made in the s
models of Refs. 12 and 13, is justified, and we indeed
dealing with a 2D antiferromagnetic system.

The same experiments22–24show that alloying with, say
strontium (La22xSrxCuO4), causes a rapid decrease in t
Néel temperature in proportion to the alloying degreex. The
point is that alloying with a doubly charged ion of a me
activates the oxygen ion O22 positioned between coppe
ions, which becomes a single charged ion O12 with an un-
paired electron. Now, in studying the interaction of two co
per ions, we must allow for the presence of an additio
electron belonging to the O12 ion, whose state, being highl
delocalized, strongly overlaps with the electronic states
the Cu21 ions.

The complete electron wave function of the ion cha
Cu21–O12–Cu21 ~for the sake of brevity we denote th
chain by I–II–III! can be antisymmetrized in three differe
al

th
e

c-
in
re

l

-
l

f

ways corresponding to the following spin configurations:

~I↑II↑III ↑!, ~I↑II↑III ↓!, ~I↑II↓III ↑!.
The corresponding Young tableaux are given below:

~3.5!

At the beginning, the electrons with numbers 1, 2, and
belong to the ions I, II, and III, respectively. In this case t
coordinate parts of the wave functions corresponding to
Young tableaux~a!, ~b!, and~g! are
Ca
0~r 1 ,r 2 ,r 3!5

1

122I 1
212I 2

2I 1
22I 2

2U c I~r 1! c I~r 2! c I~r 3!

c II~r 1! c II~r 2! c II~r 3!

c III ~r 1! c III ~r 2! c III ~r 3!
U ,

Cb
0~r 1 ,r 2 ,r 3!5

1

122I 2
22I 1

22I 2I 1
2 Uc I~r 1!c III ~r 3!1c III ~r 1!c I~r 3! c I~r 1!c II~r 2!1c II~r 2!c I~r 1!

c III ~r 3! c II~r 2!
U,

Cg
0~r 1 ,r 2 ,r 3!5

1

12I 2I 1
2 Uc I~r 1!c II~r 2!1c I~r 2!c II~r 1! c I~r 1!c III ~r 3!1c I~r 3!c III ~r 1!

c II~r 2! c III ~r 3!
U, ~3.6!
where we have allowed for the normalization condition~1.4!
and have introduced the following notation for the integr
corresponding to the exchange densities:

I 15E c I* ~r !c II~r !dr5E c II* ~r !c III ~r !dr,

I 25E c I* ~r !c III ~r !dr. ~3.7!

For the initial distribution of the numbered electrons over
centers, the unsymmetrized perturbation operator is
s

e

V5
z1z2e2

uRI2RIIu
1

z1
2e2

uRI2RIII u
1

z1z2e2

uRII2RIII u
2

z2e2

ur 12RIIu

2
z1e2

ur 12RIII u
2

z1e2

ur 22RIu
2

z1e2

ur 22RIII u
2

z1e2

ur 32RIu

2
z2e2

ur 32RIIu
1

e2

ur 12r 2u
1

e2

ur 22r 3u
1

e2

ur 12r 3u
. ~3.8!

Direct calculation of the parameter in~2.8! yields the follow-
ing values:

Dab5Dag50, Dbg5
2

12I 2I 1
2 ,
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Dgg5
4

12I 2I 1
2 , Daa5

6

122I 1
2~ I 12I 2!2I 2

2 ,

Dbb5
4

12I 1
21I 2

22I 2I 1
2 .

The determinant condition~2.10! has the form

UDaa 0 0

0 Dbb Dbg

0 Dgb Dgg

UÞ0. ~3.9!

Thus, condition~2.10! is met. In this case and in accordan
with ~2.9!, the corrections to the energy are

«15^F0~r 1r 2r 3!uV̂auCa
0&,

«25^F0~r 1r 2r 3!uV̂buCb
0&,

«35^F0~r 1r 2r 3!uV̂guCg
0&, ~3.10!

where

uF0~r 1r 2r 3!&5uc I~r 1!c II~r 2!c III ~r 3!&.

Note that in contrast to the two-center case, super
change three-center integrals of the form

K I→II,II→III 5E E c I* ~r1!c II* ~r2!c II~r1!c III ~r2!

ur12r2u
d3r 1d3r 2

~3.11!

contribute substantially to all the expressions in~3.10!. Such
integrals ensure three-center correlation of the spins, s
they can enter into in the general expressions~3.10! for the
energy with different signs. The sign sequence of these
perexchange terms is determined by the Young diagr
used in antisymmetrizing the wave function in~3.10!. Due to
this superexchange interaction, long-range order may se
the system without the conduction electrons participating
is the case in the Kondo and RKKY models.

Calculations of the matrix elements in~3.10! for the
given lattice constantR53.88 Å with allowance for the su
perexchange contributions~see Appendix B! yield

«1~↑↑↑ !520.7628577EB ,

«2~↑↓↓ !520.6705097EB , ~3.12!

«3~↑↓↑ !520.6391877EB .

In the given case of Cu21 ions, the orientation of the spins i
ferromagnetic, with the Heisenberg parameter being

J5«22«1'0.092348EB52.51288 eV. ~3.13!

Comparison with~3.3! yields the following value of the pa
rameter ratio:

J

u j u
525. ~3.14!

Thus, alloying the material, which activates the oxyg
ions O12, does indeed reorient the electron spins in Cu21 and
leads to strong ferromagnetism. Hence, as Birgeneau
Schirane25 pointed out by analyzing the experimental facts
x-

ce

u-
s

in
s

nd

strong ferromagnetic bond in the CuO2 plane destroys the
local antiferromagnetic order. In the case of strong locali
tion, the concentration ofF-bonds would be equal tox. As x
grows, the localization lengthl 0 of each hole increases
which leads to an increase in the effective concentration
F-bonds. Birgeneau and Schirane25 found that a large value
of J/u j u reduces the threshold values ofx at which antiferro-
magnetism in alloyed La2CuO4 disappears even ifx is
small.26

The experimental data on another copper dioxi
YBa2Cu3O61x suggests a remarkable resemblance betw
the two systems.4,27 The sublattice in YBa2Cu3O6 is depicted
in Fig. 2. Each chemical cell contains two CuO2 layers, de-
noted by A and C. The copper atoms in layer B have
bonds with oxygen. X-ray absorption measurements h
clearly shown that the valence of the copper atoms in laye
is 11, so that the atoms are nonmagnetic.

To represent the spin structure of the Cu21 ions in layers
A and C, the antiparallel spins are depicted by dark and li
circles. The calculation of the corresponding parameterj is
done by ~3.1!–~3.3! with a lattice constantR57.225aB

53.822 Å:

j AA5«sing2« tr520.0935 eV

inside a layer, and

j AC5«sing2« tr520.0713 eV

between layers A and C. An estimate of the same param
done by analyzing the experimental data on the Ne´el tem-
perature yieldedj '0.086 eV. X-ray absorption measure
ments have shown that adding oxygen facilitates the tra
tion of Cu11 into Cu21. Now the Cu21 in layer B facilitates
the destruction of the antiferromagnetic order between ne
boring Cu21 ions in layers A and C.

Consider a system of three Cu21 ions, with the layers A,
B, and C each having one ion. Then, using Eqs.~3.5!–~3.10!,
we can calculate the energy corrections to the spin confi
ration in the Young diagram:

FIG. 2. ~a! Magnetic spin structure of YBa2Cu3O61x with x50. Only cop-
per atoms are depicted. The hatched circles stand for the nonmagnetic11

ions, the dark and light circles stand for the antiparallel spins in the C21

positions, and the solid straight lines denote double bonds with oxy
atoms.~b! The second type of spin structure observed for large values ox.
The average spin in layer B is the fraction« of the spin in a CuO2 layer.
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«1~↑↑↑ !520.33847EB ,

«2~↑↓↓ !520.33027EB ,

«3~↑↓↑ !520.34666EB .

Thus, the states with ferromagnetic orientation of t
spins in layers A and B are the most probable, the spin
layer B may be assumed fluctuating, and the complete fe
magnetic state has a Heisenberg parameter

J15«22«158.231023Eg50.2230 eV,

while the state of the oppositely directed spin in layer B h
a Heisenberg parameter

J2516.431023EB50.446 eV.

The average value of the magnetic moment per magn
atom is

m5
3m01m0

233
5

2

3
m050.6~6!m0 .

The experiment of Birgeneauet al.28 gives the same value
for the maximally ordered moment.

CONCLUSION

We have developed a variant of exchange perturba
theory that allows for degeneracy in total spin, with the a
plicability criteria ~1.18! and~2.10! added. Using it we have
derived a procedure forab initio calculations of the Heisen
berg parameter for high-Tc materials, a procedure that
based on first principles and avoids computer simulations
that the necessary relationships are obtained in analy
form. Numerical estimates of the energy values for giv
lattice parameters yield results that are in good agreem
with those of experimental and phenomenological
proaches. For instance, for La2CuO4 the experiment of Peter
et al.29 yields the following values of the Heisenberg para
eter.

For the antiferromagnetic interaction of the ions
Cu21–Cu21 lying in a single plane,uJ1u50.116 eV; between
the planes,uJ2u'231026 eV.

For the ferromagnetic Cu21–O2–Cu21, interactionuJ1u
'1 eV; our values of the corresponding parameters
uJ1u50.104 eV,uJ2u'931025 eV, anduJu'2.5 eV.

For YBa2Cu3O6, the Heisenberg energy estimated usi
an analysis of the Ne´el temperature isuJu'0.086 eV~Refs.
24 and 27!; our values areuJu'0.0935 eV inside a layer an
uJu'0.07 eV between layers.

Note that the following simplifications were made
specific calculations:

1! Intratomic interaction is incorporated only indirect
by using one-electron states, whose parameters are t
from the Gomba´s and Szondy tables.30

2! The effect of the mean crystalline field on the inte
center interaction ofd-electrons is ignored; the latter, how
ever, incorporates the interaction with the nearest-neigh
ions.

3! The influence of conduction electrons on the magne
effects due to the orientation of spins ofd-electrons is ig-
nored.
e
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4! Finally, spin–orbit coupling effects is ignored.
In conclusion we note that the analytical expressions

the energy of a three-center chain of atoms contains~as the
leading contribution! the nonadditive contribution of the
three-center interaction~see Appendix B!. The terms are
K1321, K1232, K2321, K1323, K2313, K1231, K2312, andK1332.
Such integrals determine the structure, since they depend
only on the intercenter distance but also on the angles
tween the straight lines connecting these centers. We bel
that they are responsible for exchange-correlation effect
solids, including spin systems.

We are grateful to V. V. Rumyantsev for his attention
our work and to his critical remarks, which enabled us
significantly improve the presentation in this paper. T
work was made possible by the financial support of the R
sian Academy of Sciences~Young Scientist Stipend of the
Russian Academy of Sciences! given to one of the coauthors

APPENDIX A: COMPLETENESS PROPERTY OF THE
NONORTHOGONAL BASIS OF ANTISYMMETRIC
FUNCTIONS

States that are antisymmetric under particle permutati
are nonorthogonal. Nevertheless, they constitute comp
system. To verify this, we act with the operator(nuFn&^Cnu
on an arbitrary function antisymmetric according to the sa
Young diagram as the statesuCn&:

(
n

uFn&^CnuC&5(
n

(
p50

P

uFn&^Fn
puC&~21!gp

1

f n
,

~A1!

where

f n5 (
p50

P

^FnuFn
p&~21!gp.

Using the antisymmetry of the vectoruC&, we can write

(
n

(
p50

P
1

f n
uFn&^Fn

puC&5(
n

(
p50

P
1

f n
uFn&^FnuC&~21!gp

5 (
p50

P
1

f 0
uC&5

P

f 0
uC&, ~A2!

where we have used the fact thatf n5 f 05(^F0uF0
p&

(21)gp and the completeness property of an orthogonal
sis of nonsymmetric functions,(nuFn&^Fnu51.

Thus, we have

f 0

P (
n

uFn&^Cnu5(
n

uFn&^Fnu, ~A3!

which is simply the completeness property of the syste
Using ~A3!, we can decompose an arbitrary antisymmetriz
state in the same antisymmetric states.

In deriving the completeness property we assumed
f 0 / f n'1. Let us now estimate the smallness of the ter
discarded. Clearly, the above ratio can be written as
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f 0

f n
511 (

p50

P

~21!gp@^F0uF0
p&2^FnuFn

p&#1O~ I 2P!,

~A4!

where

SuprS (
p

P

~21!gp@^F0uF0
p&2^FnuFn

p&# D
'

N!

gP! ~N2gP!!

I 02I n

11I 01I n
,

I 0 and I n are still the one-electron exchange densities of
ground and excited states, andN and gP are the respective
total number of electrons and the number of electrons p
ticipating in the intercenter permutation.

Since the overlap integrals are, in general, the produc
a polynomial,P(R/aB), and an exponential, exp(2R/aB), the
discarded terms are

SuprF N!

~N2gP!!gP!
PS R

aB
DexpS 2

R

aB
D G5const,1.

~A5!

This constant can, in principle, be accounted for in~A3!.

APPENDIX B: EXPRESSIONS FOR OBTAINING THE
CORRECTIONS TO THE ENERGY

1. The energies of a two-center interaction are

Esing5
e2

11I 2 Fz1
2

R
~11I 2!12z1C1122z2C121K12121K1221G ,

~B1!

Etr5
e2

12I 2 Fz1
2

R
~12I 2!22z1C1112z2C121K12122K1221G ,

~B2!

where we have introduced the following notation:

Ci j 5E c i* ~r !c j~r !
d3r

ur2Ru

is the direct or exchange interaction of an electron with
‘‘foreign’’ nucleus, i and j label the nucleus,

Ki jkl 5E c i* ~r1!ck* ~r2!c j~r1!c l~r2!

ur12r2u
d3r 1d3r 2

is the exchange interaction of two electrons distributed
tween the nucleii , j ,k,l , and

Ki ji j 5E uc i~r1!u2uc j~r2!u2

ur12r2u
d3r 1d3r 2

is the direct Coulomb interaction of two electrons centered
different nucleii and j .

2. The energies of the three-center interaction are

E15
1

6
Daa~K02K2 – 32K1 – 21K1 – 2,2– 31K1 – 3,1– 22K1 – 3!,

~B3!
e

r-

of

a

-

t

E25
1

4
Dbb~K01K1 – 32K2 – 32K1 – 2,2– 3!, ~B4!

E35
1

4
Dgg~K01K1 – 22K2 – 32K1 – 2,1– 3!, ~B5!

where

K05
z1z2

R
1

z1
2

R
2z2~B112B33!2z1~C112C221S221S33!,

~B6!

K1 – 25S z1
2

R
1

z1z2

R D I 1
22~z2I 1B211z1I 1C211z1I 1S12

1I 1z1C121z1uI 1u2S331I 1
2z2B33!z11K1221

1K2313I 11K1323I 1 , ~B7!

and K2 – 3 can be obtained from~B7! by cyclic permutation
of the subscripts 1, 2, and 3.

Similarly, for K1 – 3 we have

K1 – 2,2– 35S z1
2

R
1

z1z2

R D I 1
2I 22~z2I 1I 2B231z1I 1I 2C32

1z1I 1
2S131I 1

2z1C131z1I 1I 2S21

1I 1I 2z2B21!z11K1231I 11K2312I 21K1332I 1 .

~B8!

Here we have used the integrals

Bi j 5E c i* ~r !c j~r !

ur2Ru
d3r , Si j 5E c i* ~r !c j~r !

ur u
d3r

complementary to~B1! and ~B2!.
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A theory is constructed for the current-voltage characteristic of a Josephson junction with a high
critical current density described by nonlocal vortex electrodynamics in the approximation
of small dissipation due to the single-particle conductivity of the Josephson junction. The role of
the resonant excitation of generalized short-wavelength Swihart waves is determined. New
quantitative properties of the current-voltage characteristic, which is an envelope of wave
excitation resonances, are established. ©1998 American Institute of Physics.
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1. INTRODUCTION

The theory of the current-voltage characteristics~IVC’s!
of Josephson junctions is of great interest specifically
cause the experimental study of IVC’s permits the compa
tively simple investigation of the manifestations of vort
structures in such junctions. The theory of the IVC’s of J
sephson junctions is ordinarily based on the sine-Gor
equation with dissipation. In Ref. 1 a theory of IVC’s was
formulated for a vortex structure in the form of a travelin
wave put into motion by a spatially uniform current an
decelerated by dissipation due to the single-particle cond
tivity of a Josephson junction. The results of the theory
IVC’s needed for annular junctions, which have recently
tracted the attention of experimentalists, are presente
Ref. 2. Annular junctions are of interest, because there ar
edge effects complicating the vortex pattern in the case
such Josephson junctions. This is the reason why the pre
work is devoted to annular junctions. At the same time,
contrast to Refs. 1–3, our analysis is devoted to the theor
Josephson junctions with a high critical current dens
where4

j c@ j 05
\c2

16pueul3 51.24•104~l@mm# !23 A/cm2 ~1.1!

and the standard theory based on the sine-Gordon equ
with dissipation is inapplicable. In Eq.~1.1! l is the London
penetration depth. When the inequality~1.1! holds, the Lon-
don depth is greater than the Josephson penetration dep

l@l j5lAj 0

j c
@

l j
2

l
5 l , ~1.2!

wheree is the electron charge andc is the speed of light.
Josephson electrodynamics is strongly nonlocal in

limit. The annular junction geometry which we have chos
is illustrated in Fig. 1~compare Ref. 3!. The tunnel junction
width 2d is assumed to be small compared to the Lond
depthl, while the latter is assumed to be much less than
thicknessa of the annular superconducting cylinders. A
suming the radiusR of the tunnel junction to be much great
1171063-7761/98/86(6)/7/$15.00
-
-

-
n

c-
f
-
in
no
of
ent

of
,

ion

is
n

n
e

than the London depthl ~0,z,2pR, wherez is the coor-
dinate along the annular tunnel junction! and continuing the
electric and magnetic fields periodically along thez axis onto
the entire number axis (2`,1`), for the phase differencew
between the wave functions of the Cooper pairs on differ
sides of the tunnel junction the we employ equation4–6

1

v j
2

]2w

]t2 1
b

v j
2

]w

]t
1sin w2

l

p «2`

1` dz8

z82z

]w

]z8
1g50.

~1.3!

Hereg5 j / j c is the normalized short-circuit current densi
through the Josephson junction,v j5(16pueud jc /\«)1/2 is
the Josephson plasma frequency,b54ps/« characterizes
the dissipation, and« ands are the permittivity and conduc
tivity of the tunnel junction material. Our analysis is bas
on Eq.~1.3!.

The existing results for the IVC of a Josephson juncti
with a high critical current density satisfying the inequali
~1.2! were obtained in the resistive model, where the sec
derivative with respect to time in Eq.~1.3! can be
neglected.5–9 The exact solution describing an infinite cha
of vortices having a period 2pL and moving with a constan
velocity v in accordance with the resistive model in Ref.
makes it easier to compare the results of those works. In
case

w~z,t !52u1p12 tan21S tan@~z2vt !/2L#

tanh@a0/2# D , ~1.4!

where

L2

l 2 cos2 u5sinh2 a05S 1

4 Fg21
l 2

L2 21G2

1
l 2

L2D 1/2

1
1

2 S g21
l 2

L2 21D , ~1.5!

and the IVC is given by the expression
7 © 1998 American Institute of Physics
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V

j cRs
5

bv

v j
2L

5H F1

4 S j 2

j c
2 1

l 2

L2 21D 2

1
l 2

L2G1/2

1
1

2 S j 2

j c
2 1

l 2

L2 21D J 1/2

. ~1.6!

HereRs52d/s is the resistance per unit area of the tunn
contact, andV is the time-averaged potential differenc
across the junction. The IVC in the form~1.6! corresponds to
the case when the potential difference is determined by
assigned current density. This formula can also be expre
in a form8 in which the current is determined by an assign
potential:

j 25 j r
21

j r
2 j c

2L2

L2 j r
21 l 2 j c

2 , where j r5
V

Rs
. ~1.7!

The latter form, in contrast to Eq.~1.6!, corresponds less
directly to the experimental data, but it does facilitate co
parisons with the results obtained by our predecessors. L
examine Ref. 5 first. TheI 2V curve obtained there as
result of a numerical investigation is qualitatively similar
the plot constructed in Ref. 8 on the basis of Eq.~1.7!. Fur-
ther, in Ref. 5 the relation

j 5
L

l
j r ~1.8!

is indicated for weak currents. According to Eq.~1.7! the
relation ~1.8! holds for

V

Rsj c
!

l

L
!1. ~1.9!

This corresponds to a narrower region than that indicate
Ref. 5. The second asymptotic formula of Ref. 5 descri
convergence to Ohm’s law:

j 5 j r H 11
L2 j c

2

2~L2 j r
21 l 2 j c

2!J . ~1.10!

This formula holds forV@ j cRs , as follows from Eq.~1.7!
and as was indicated in Ref. 5.

The IVC of Ref. 6 is based on the use of the exa
solution of the resistive model for a single vortex movi
with constant velocity:

FIG. 1. Two concentric superconducting cylinders separated by a thin
nel junction.
l

n
ed
d

-
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t

w~z,t !52u1p12 tan21S z2vt

r D , ~1.11!

whereu5arcsing, r5 l /(12g2)1/2, and

v5
lv j

2

b

g

A12g2
. ~1.12!

Assuming that the solution of the resistive model can
written in an approximation in the form of a chain of per
odically arranged vortices~1.11!, Gurevich6 obtained an IVC
of the form~1.7!, but without the first term on the right-han
side. This means that the result obtained in Ref. 6 in the c
L@ l is realized, according to Eq.~1.7!, for the low voltages
V! j cRs , which correspond to currents much higher than
ohmic current. At the same time, according to Eq.~31! of
Ref. 6 the current density should be less than the crit
Josephson current density@compare Eq.~1.12!#. Our discus-
sion makes it possible to see the heretofore not discus
consistency of the results obtained in the resistive mo
especially for weak currents, which is important for wh
follows. We note here that to obtain the IVC of an annu
Josephson junction with radiusR from Eq. ~1.7!, the param-
eterL in Eq. ~1.7! should be replaced byR/m, wherem is a
positive integer corresponding to the number of Abrikoso
Josephson vortices in the ring~see Refs. 8 and 9!.

In the case of small dissipation of interest to us, i.e.,
the limit opposite to that obtained in the resistive model,
dissipation is determined by the emission of generaliz
Swihart waves. The deceleration arising in the process fo
single Abrikosov–Josephson vortex was studied in Ref.
In the case when such a vortex moves with a low velocit

v! lv j ~1.13!

short waves with wavelengths less than the London depth
excited, and the spectrum of generalized Swihart waves
the form ~compare Ref. 11!

v2~k!5v j
2~11uku l !, ~1.14!

wherek is the wave vector. According to the condition fo
Cherenkov radiation, the wave vector of the disturbances
cited can be determined from the equation

v2~k!5k2v2. ~1.15!

In contrast to Ref. 10, to construct a theory for IVC’s, belo
we shall employ the exact stationary solution which was
tained in Ref. 12 for Eq.~1.3! with g50 and describes a
chain of Abrikosov–Josephson vortices:

w~z!5p12 tan21S tan@z/2L#

tanh@a/2# D , ~1.16!

sinh a5~ l /L !. ~1.17!

We assume, as in Ref. 10, that the structure~1.16! moves
with a low velocity v. The wave disturbance produced b
such a motion of a single vortex in a ring whenL5R is
obtained in Sec. 2. The friction force acting on the movi
vortex structure together with its disturbance field due to
dissipation caused by the finite conductivitys of the quasi-
particles passing through the tunnel junction is determine

n-
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Sec. 3. The balancing of the friction force by the Loren
force due to the current flowing through the Josephson ju
tion is studied in Sec. 4. This makes it possible to determ
the relationship between the velocity of the vortex struct
and the current. A generalization to the case ofm
Abrikosov–Josephson vortices in an annular junction
given in Sec. 5. The IVC is obtained in Sec. 6. Section 7
devoted to a discussion of the results.

2. MOVING VORTEX STRUCTURE

In this section we assume that a single vortex (L5R)
moving with a low velocity satisfying the inequality~1.13! is
present in an annular Josephson junction with radiusR. At
the same time, we assume that the dissipation is sm
whence it follows that the rate of such motion should not
very low. Thus,

Rb!v! lv j . ~2.1!

We assume that the ring is large compared with
Abrikosov–Josephson vortex:

R@ l . ~2.2!

We seek the perturbed state arising during the motion of
chain of vortices~1.16!, in the form

w~z,t !5w0~z2vt !1w1~z,t !, ~2.3!

wherew0 is specified by formula~1.16! and

w1!w0 . ~2.4!

The substitution of~2.3! into Eq. ~1.3! with g50 followed
by linearization gives

1

v j
2

]2w1

]t2 1
b

v j
2

]w1

]t
1w1 cosw02

l

p «2`

1` dz8

z82z

]w1

]z8

52
v2

v j
2

d2w0

ds2 1
bv

v j
2

dw0

ds
, ~2.5!

wheres5z2vt. The termw1 cosw0 on the left-hand side o
Eq. ~2.5! is comparatively small, and its retention is impo
tant only for simplifying the mathematical operations. F
this reason, just as in Ref. 10, we replace it byw1 . It is easy
to see that the following stationary solution in the form o
structure traveling with velocityv can then be written:

w1~z,t !5w1~s!5 (
n51

`

expS 2
nl

R D F S nbv
R D 2

1S vn
22

n2v2

R2 D 2G21H 2v2

R2 Fnbv
R

cosS ns

R D
1S vn

22
n2v2

R2 D sinS ns

R D G1
2bv

R

3F S vn
22

n2v2

R2 D cosS ns

R D2
nbv

R
sinS ns

R D G J
1

bv

Rv j
2 , ~2.6!

where
c-
e
e

s
s

ll,
e

n

e

r

vn5v jA11
nl

R
~2.7!

corresponds to Eq.~1.14! for the spectrum of generalize
Swihart waves ifk5n/R. The last term in Eq.~2.6! is due to
the contribution

K dw0

ds

bv

v j
2L 5

bv

Rv j
2 ~2.8!

to the right-hand side of Eq.~2.5!. Here the angle bracket
denote averaging over a period. By virtue of the left-ha
inequality in Eq. ~2.1! we neglect the second term in th
curly brackets in Eq.~2.6! in comparison with the first term

Sinceb is small, it is obvious that Eq.~2.6! describes a
resonance dependence on the velocity. The numbernr of the
resonance term in the sum~2.6! and the resonance valuev r

of the velocity are related as

vnr

2 5v j
2S 11

nr l

R D5S nrv r

R D 2

. ~2.9!

Accordingly,

nr5
lRv j

2

v r
2 ~2.10!

and according to Eq.~2.2! and the right-hand side of Eq
~2.1! we have

nr@
R

l
@1. ~2.11!

The latter justifies replacingw1 cosw0 by w1 when reso-
nance effects are examined. As a result, the resonance
with v5v r can be written as

w r~z2v r t !5
2v r

bR
expS 2

l 2v j
2

v r
2 D cosF lv j

2

v r
2 ~z2v r t !G .

~2.12!

This expression is distinguished from that arising in t
theory of the Cherenkov radiation of a single Abrikosov
Josephson vortex10 only by the preexponential factor. Thi
difference is due to the fact that Eq.~2.12! takes into account
the dissipation in an annular Josephson junction.

Next, we note that, owing to the left-hand inequality
~2.1!, the condition

S nbv
R D 2

!S vn
22

n2v2

R2 D 2

. ~2.13!

is satisfied forv'v r andnÞnr . This allows us to neglectb
in all the nonresonance terms in Eq.~2.6! and thereby leads
to the following nonresonance contribution tow1(s):

wnr~s!5
2v2

R2 (
n51
nÞnr

`

nH vn
22S nv

R D 2J 21

3expH 2
nl

R J sinS ns

R D . ~2.14!
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The last expression can be simplified using the inequali
~2.11! and neglecting the contribution that is obviously sm
compared with the resonance contribution. Then

wnr'
2

nr
(
n51

`
n

n1~R/ l !
expS 2

nl

R D sinS ns

R D . ~2.15!

Here we also call attention to the relative smallness of
distance between neighboring resonance values of the ve
ity. Indeed, according to Eq.~2.9!, we have

Dv r5
v r

2nr
5v r

l

2R S v r
2

l 2v j
2D !v r . ~2.16!

Then, away from resonance,

2uv2v r u,Dv r!v r , ~2.17!

it can be shown that Eq.~2.13! is satisfied, and we can writ

w1~s!5
v r

R Fb2

4
1

nr
2~v2v r !

2

R2 G21

expS 2
l 2v j

2

v r
2 D

3H b

2
cosS nrs

R D2
nr~v2v r !

R
sinS nrs

R D J
1wnr~s!1

bv

Rv j
2 . ~2.18!

Let us now focus on the realization of the approximati
~2.4!. First, the right-hand inequality in Eq.~2.1! gives the
required smallness ofwnr . Second, the inequality

expS l 2v j
2

v r
2 D @

2v r

bR
~2.19!

ensures that the resonance contribution is small compare
w0 . We shall also utilize this inequality below to satisfy th
condition ~2.4!.

3. FRICTION FORCE

Dissipation (bÞ0) results in energy loss. The rate
decrease in the energy of a vortex structure in an ann
Josephson junction is given by the expression~compare, for
example, Ref. 13!

dE

dt
52

\ j c

2ueu
b

v j
2 E

0

2pR

dzS ]w

]t D 2

. ~3.1!

HereE is the energy per unit length of the Josephson ju
tion.

Using the expression obtained forw01w1 in the preced-
ing section, we can express the energy dissipation rate a

dE

dt
52

v2b

v j
2

p\ j c

ueu l H 11
l 3v j

4

2v2R

exp~22@ lv j /v r #
2!

~b/2!21@nr~v2v r !/R#2J .

~3.2!

The first term in curly brackets on the right-hand side cor
sponds to the energy loss by the moving periodic struc
w0 , and the second term corresponds to the energy los
the resonantly excited wavew r(s) ~2.18!.
s
l

e
c-

to

ar

-

-
re
by

The energy loss by a vortex structure is often attribu
to the friction forcef fr ~see, for example, Ref. 14!, which is
specified by the relation

f fr5
1

v
dE

dt
. ~3.3!

Accordingly, it follows from Eq.~3.2! that

f fr52
vb

v j
2

p\ j c

ueu l H 11
l 3v j

4

2v2R

exp~22@ lv j /v r #
2!

~b/2!21@nr~v2v r !/R#2J .

~3.4!

The friction force and relatively small energy losses by
vortex structure can be discussed when

bt!1, ~3.5!

wheret52pR/v is the rotation period of the vortex struc
ture in the ring. This condition is satisfied according to E
~2.1!.

4. LORENTZ FORCE AND THE EQUILIBRIUM CONDITION

To solve the problem of the IVC of a Josephson juncti
we now assume that a constant spatially uniform current w
density j flows through the junction. As a result, the curre
acts on the vortex structure, exerting the following a Lore
force13 per unit length:

f L5
1

c
j F, ~4.1!

whereF is the magnetic flux through the Josephson juncti
More specifically~see Ref. 13!,

F5
F0

2p
@w~z52pR,t !2w~z50, t !#, ~4.2!

whereF05p\c/ueu is the magnetic flux quantum. Since a
cording to Eq.~2.6! the disturbancew1 is a periodic function,
the flux ~4.2! is determined byw0 . Therefore, according to
Eq. ~1.16! with L5R, as was assumed in Sec. 2, we ha
F5F0 . In this case the Lorentz force equals

f L5
1

c
j F0 . ~4.3!

In the case of stationary motion of our vortex structure,
constant value ofv is determined from the condition that th
accelerating Lorentz force~4.3! is balanced by the decelera
ing friction force ~3.4!. This condition leads to the relation

j

j c
5

bv

v j
2l H 11

l 3v j
4

2v2R

exp~22@ lv j /v r #
2!

~b/2!21@nr~v2v r !/R#2J ~4.4!

between the current densityj and the velocityv of the vortex
structure. We stress that, according to the conditions~2.1!
and~2.19!, the right-hand side of Eq.~4.4! is small compared
to 1, i.e., j ! j c .

We note that Eq.~4.4! can be obtained on the basis
the energy relation following from Eq.~1.3!

dE

dt
5

\ j c

2ueu E0

2pR

dzS 2
b

v j
2 S ]w

]t D 2

2g
]w

]t D , ~4.5!
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whereE is the energy of the Josephson junction. Equat
~4.5! describes the variation of the energy in time due
dissipation~friction! and the accelerating action of the cu
rent (g5 j / j c). Substituting the expression~2.3! from Sec. 2
into ~4.5! likewise leads to Eq.~4.4! provided the energy
remains constant (dE/dt50).

5. MULTIVORTEX STRUCTURE

In this section we give a generalization made before
analysis to the case of several vortices in an annular Jos
son junction. Generalization to the case ofm vortices is ac-
complished by replacingL by R/m in Eqs.~1.16! and~1.17!.
Since it was assumed in Secs. 2–4 thatL5R, the required
generalization is made by replacingR by R/m in the equa-
tions of these sections. It should be noted that the condit
~2.1! and ~2.2! for the applicability of our analysis become

~bR/m!!v! lv j and ml!R. ~5.1!

Accordingly, the number of the Cherenkov resonance
given by the formula

nr5
Rlv j

2

mv r
2 @

R

ml
@1. ~5.2!

The analog of the condition~2.19! has the form

expS l 2v j
2

v r
2 D @

2mv r

bR
. ~5.3!

These conditions make it possible to generalize Eq.~3.4! so
as to describe the friction force acting on a chain ofm
Abrikosov–Josephson vortices, whose motion also cau
the excitation of generalized Swihart waves. For the frict
force we have

f fr52
mvb

v j
2

p\ j c

ueu l

3H 11
ml3v j

4

2v2R

exp~22@ lv j /v r #
2!

~b/2!21@mnr~v2v r !/R#2J . ~5.4!

Since we now havef L5(m/c) j F0 for the Lorentz force, as
opposed to Eq.~4.3!, we obtain the following generalizatio
of the relation~4.4! from the equilibrium condition:

j

j c
5

bv

v j
2l H 11

ml3v j
4

2v2R

exp~22@ lv j /v r #
2!

~b/2!21@mnr~v2v r !/R#2J .

~5.5!

In this case, in analogy to Eq.~2.17!, the following condition
is satisfied:

2uv2v r u,Dv r5
v r

2nr
5v r

ml

2R

v r
2

l 2v j
2 !v r , ~5.6!

whereDv r is the distance between neighboring resonanc
Fulfillment of the conditions~5.6! and ~5.2! permits the re-
placement ofv r in the exponential function in Eq.~5.5! by v.
Indeed,
n

is
h-

ns

is

es
n

s.

uexp@22~ lv j /v !2#2exp@22~ lv j /v r !
2#u

exp@22~ lv j /v r !
2#

5uexp@4~ lv j /v r !
2~v2v r !/v r #21u

,exp@2~ lv j /v r !
2Dv r /v r #215~ml/R!!1.

Thus, the relation~5.5! can be written in the form

j

j c
5

bv

v j
2l H 11

ml3v j
4

2v2R

exp~22@ lv j /v#2!

~b/2!21@mnr~v2v r !/R#2J .

~5.7!

This relation between the current density and the velocity
the vortex structure allows us to write down an express
for the IVC sought, which we shall do in the next section

6. CURRENT-VOLTAGE CHARACTERISTIC

To obtain the IVC, we employ the definition of a stat
potential difference

V52
\

2ueu K ]w

]t L , ~6.1!

where the averaging extends over the length of the ri
which in our case corresponds to averaging over time. In
case onlyw0(z2vt) makes a nonzero contribution on ave
aging. It turns out that

V5\mv/2ueuR.

The latter formula makes it possible to rewrite the relati
~5.7! in the form of an IVC

j

j c
5

V

Rsj c

R

lm H 11
2m3~Rsj 1 /V!2 exp~22m2V0

2/V2!

11@~V/Vs!
2~V2Vr !

2/~DVr !
2# J ,

~6.2!

where the notation

DVr5Vr /2nr ~6.3!

has been used for the distance between neighboring r
nance voltage valuesVr on the IVC:

Vr@mV#5
\v rm

2ueuR
5

\c

2ueul A
md

R«nr
5

100

R
AmdR

l2«nr
,

~6.4!

V0@mV#5
\ lv j

2ueuR
5

\c

2ueuR A
d

«l

j 0

j c
5

100

R
A d

l«

j 0

j c
.

~6.5!

In the latter numerical expressionsR is measured in millime-
ters. Finally,

j 15 j cS l

R

j 0

j c
D 3/2

, Vs5
2p\s

ueu«
5

\

2ueuRsCs
. ~6.6!

We note thatj 1 /V05(c/8pl)A«/dR and does not depen
on j c . In the resonance denominator of Eq.~6.2! uV2Vr u
,(1/2)DVr . In accordance with Eqs.~5.1! and~5.3! the IVC
~6.2! holds for values ofV that satisfy the inequalities

Vs!V!mV0 , ~6.7!

expS m2V0
2

V2 D @2
V

Vs
. ~6.8!
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According to Eq.~6.2!, the width dVr of a resonance a
half-height is given by

dVr5
Vs

V
DVr . ~6.9!

In accordance with the inequality~6.7!, this means that the
width of a resonance is much less than the distance betw
neighboring resonances. This suggests that individual r
nances are distinguishable. On the other hand, accordin
the definition~6.3! and the inequality~5.2!, the resonances
are very close together. Therefore, if the resolution accur
DVr in the experiment is inadequate, the envelope of
curve ~6.2!, which is described by the formula

j

j c
5

V

j cRs

R

lm H 112m3
Rs

2 j 1
2

V2 expS 22m2
V0

2

V2D J , ~6.10!

will be observed.

7. DISCUSSION

Figure 2 shows the IVC~6.10! for several values of the
number of vortices in the Josephson junction (m51,2,3).
This figure serves to illustrate our discussion. We begin
discussion with low voltages, for which the IVC’s corre
spond to linear segments of the curves. Such linear segm
correspond to a balance between the acceleration by the
rent and the deceleration by the dissipation of the main
riodic vortex structurew0 , when the occurrence of resonan
losses is hardly observed. Therefore, the lower bound on
voltage in Eq.~6.7! is not important for such linear segmen
of the IVC. These linear segments correspond to
asymptotic result of Ref. 5, according to which the superc
ducting current through a Josephson junction is (R/ lm)
times greater than the ohmic currentj r5V/Rs @see Eq.
~1.8!#. In Fig. 2 the dashed line corresponds to the ohm
current. In the resistive approximation of Refs. 5 and 7,
the voltage increases, the rate of growth of the current sl

FIG. 2. Current-voltage characteristic of a Josephson junction w
m51,2,3 andl /R51022 ( j 1Rs /V0)5104.
en
o-
to

y
e
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nts
ur-
e-
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e
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c
s
s

according to Eq.~1.7!, and the IVC approaches Ohm’s la
according to Eq.~1.10!, which was obtained in Ref. 5.

In contrast to the resistive approximation, our analy
leads to increasingly rapid growth of the current with i
creasing voltage, rather than to slowing. This qualitative
pendence is similar to the known dependence for a Jos
son junction with a low critical density and small dissipatio
for which theories are being devised on the basis of the s
dard sine-Gordon equation with friction. We make the
quired comparison using the result obtained in Ref. 1 for
IVC of a Josephson junction with small dissipation under
condition, just as in our case, that the size of a single vor
is much smaller than the period of the vortex structure in
Josephson junction:

j

j c
5

4V

p j cRs

R

lm

Aj 0 / j c

A12~V/mV0!2~ j 0 / j c!
. ~7.1!

We note that on the linear segment of the IVC at low vo
ages this formula gives a current which differs by a factor
(2/p)Aj 0 / j c from the result obtained in the theory of Jo
sephson junctions whose critical current density satisfies
condition ~1.1!. However, another property of~7.1! is ex-
tremely important to us. According to this property, as t
voltage approaches the value

V→mV0Aj c / j 0 ~7.2!

the standard IVC describes a sharp increase in current.
our IVC ~6.10! there is likewise a sharp increase in curre
corresponding to a deviation of the curves in Fig. 2 from t
linear segments in the low-voltage region. However,
analogy between the IVC’s~6.10! and ~7.1! ends with this
qualitative similarity. Therefore, we should now discuss t
differences.

First, the functional dependence of the upward deviat
of the IVC from the continuation of the linear segment d
fers. In contrast to the comparatively smooth approach
~7.1! to the square-root singularity, which is not observ
experimentally, because the IVC is cut off at a state with
large number of vortices in the Josephson junction, in
case Eq.~6.10! predicts a sharper exponential growth of t
current with increasing voltage. This qualitative differen
can be observed experimentally~compare Ref. 15!.

The second difference between Eq.~6.10! and Eq.~7.1!
is that for a Josephson junction with a high critical curre
density~1.1! rapid growth is predicted when

V;
mV0

Aln@mRs
2 j 1

2/V0
2#

[
mV0

Aln@m«~d/R!~c/4pls!2#
~7.3!

rather than when the voltage approaches the value spec
by ~7.2!. In accordance with the right-hand inequality in E
~6.7!, this value should be less thanmV0 . This is possible if

Am
«d

R
@

4psl

c
;4•10214~l@mm# !~s@s21# !, ~7.4!

which is readily realized. On the other hand, our approach
finding the resonance correctionw r requires satisfaction o

h
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the left-hand inequality in Eq.~6.7!, where the expression
~7.3! should now be used instead of the voltage. The follo
ing inequality then arises:

mA«dl

R2

j 0

j c

1

Aln@m«~d/R!~c/4pls!2#
@

4psl

c
.

~7.5!

Whenm is of order unity, the left-hand side of this inequali
is much smaller than the left-hand side of Eq.~7.4!. There-
fore, the inequality~7.5! is the main constraint on the con
ductivity of a Josephson junction. For example, for«510,
d/R51026, and j c55 j 0 the inequality~7.5! takes the form

mAl/R•1011

Aln@Am•1011/l@mm#s@s21##
@4l@mm#s@s21#,

which does not place excessively severe constraints on
conductivity if we assume thatl/R;102221023.

We note that since the ring-averaged intensity of
constant magnetic field is given by the relation

H̄5mF0/4plR,

Eqs.~6.2! and~6.10! can be used to describe the depende
of the IVC on the magnetic field.

8. CONCLUSIONS

We have constructed the first theory for the IVC of
annular Josephson junction with a high critical curre
density1! ~1.1!. This theory describes the exponential volta
dependence for an envelope of segments correspondin
the excitation of resonant states, as well as the fine struc
due to such resonances.

To provide a better understanding of the importance
the material presented in this paper, we note that the ex
nential dependence of the current on the velocity of a solit
Josephson junction in the theory of Josephson junctions
a low critical current density was pointed out in Ref. 17. O
analysis leads to a substantial quantitative difference,
even the physical essence of the phenomenon is differ
First, the exponential effect described in Ref. 17 correspo
to vortex velocities close to the ordinary Swihart veloc
cs5l jv j , while the effect discussed in the present pa
corresponds to the velocitylv j , which is Aj 0 / j c times
smaller than the Swihart velocity. Accordingly, the expone
tial increase in the current in Fig. 2 corresponds to a volt
Aj 0 / j c times lower. This difference is due to our conditio
-

he

e

e

t

to
re

f
o-
y
th
r
d

nt.
s

r

-
e

~1.1!, which is new compared with Ref. 7. Second, in Ref.
the dissipation is due to the Cherenkov excitation of gen
alized Swihart waves, whose energy escapes to infinity fr
a vortex, i.e., it is emitted from the Josephson junctio
whereas in our case a resonantly excited Cherenkov w
does not escape in any direction from the Josephson ju
tion, but is absorbed in the junction as a result of dissipati
This causes the preexponential factor in our IVC~6.10! to
depend on the resistance of the Josephson junction, whic
course, cannot happen in the approach described in Ref
Finally, we stress that no IVC was obtained in Ref. 17.
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Optical anisotropy as a technique for studying ultrafast phase transformations at solid
surfaces

M. B. Agranat,* ) S. I. Anisimov, S. I. Ashitkov, A. V. Kirillin, P. S. Kondratenko,
A. V. Kostanovski , and V. E. Fortov

Research Center for the Thermophysics of Pulsed Processes, Russian Academy of Sciences, 127412
Moscow, Russia
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A new technique for testing long-range order in high-absorption anisotropic crystals has been
developed using conversion of an incidentp-(s-)wave to ans-(p-)wave due to optical
anisotropy. The technique yields time-resolved measurements of parameters related to phase
transformations in thin (1026– 1025 cm) layers with a high resolution (10212 s). Using
picosecond laser pulses and an ‘‘Agat’’ streak camera, the technique has been applied to an
experimental investigation of melting and recrystallization kinetics at zinc and graphite surfaces . It
was found that the process of melting takes less than 3 ps and the recrystallization time is
about 100 ps. ©1998 American Institute of Physics.@S1063-7761~98!01806-X#
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1. INTRODUCTION

The progress in picosecond and femtosecond techniq
has afforded extraordinary possibilities for studying dyna
ics of ultrafast phase transformations in condensed media1–5

The most important question in planning experiments in t
field is selection of the technique for observing the dynam
of the processes of phase transformation. Various sig
generated in materials and carrying information about ph
transitions are used, such as optical reflection, luminesce
nonlinear optical effects, Raman spectra, etc. These t
niques, however, yield mostly information on changes in
short-range order of crystal lattices, which do not change
a result of melting or the transition to an amorphous sta6

Such techniques commonly used in studies of long-ra
order in crystals as electronography, x-ray diffraction, e
cannot be operated with a high time resolution, although
tempts have been made to perform time-resolved meas
ments of this kind. For example, ultrashort laser pulses w
used to generate an electron beam for testing the dynami
changes in the crystal structure of a metal, but the minim
time resolution was about 50 ps.7

In the present work, we have proposed and tested exp
mentally a new method of detecting ultrafast phase trans
mations at metal surfaces based on the effect of optical
isotropy. The technique can be applied to metals in wh
one of the phases is anisotropic, including, for example, z
cadmium, titanium, and also graphite. The essence of
technique is as follows.

When a light beam incident on a surface of an isotro
medium is polarized either in the incidence plane or perp
dicular to this plane, the polarization of the reflected beam
the same. If the medium is an anisotropic crystal whose a
is neither in the incidence plane nor perpendicular to t
plane, a component with polarization different from that
the incident light is detected in the reflected beam. This
fect ~rotation of polarization plane due to reflection from
1181063-7761/98/86(6)/7/$15.00
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surface!, combined with pico- and femtosecond laser tec
niques, allows time-resolved measurements of the dynam
of ultrafast phase transformation when one of the phase
anisotropic, for example, when a crystal with a hexago
close-packed~HCP! lattice is melted. Although the effect o
optical anisotropy has been widely known, it has never be
to the best of our knowledge, applied to studies of ph
transitions in solids.

The rest of this paper is organized as follows. Sectio
presents theoretical analysis of the characteristics of the
larization effect. Section 3 describes experimental te
niques. Section 4 presents an experimental investigatio
ultrafast melting of zinc and graphite exposed to picosec
laser pulses. The results are discussed in Sec. 5.

2. LIGHT REFLECTION FROM THE SURFACE OF AN
ANISOTROPIC METAL: THEORETICAL ANALYSIS

Let us consider reflection of a monochromatic narro
light beam from a plane surface of an anisotropic metal.
this end, we use the impedance boundary condition8

Ea5jab~H3n!b , ~1!

whereE andH are the electric and magnetic fields, respe
tively, n is the unit vector of the normal to the surface, gre
subscripts in Eq.~1! and the following equations take tw
values corresponding to the Cartesian coordinates in the
face plane, andjab is the two-dimensional surface imped
ance tensor, which is related in nonmagnetic metals to
three-dimensional permittivity tensor« ik :

~j2!ab5~«21!ab . ~2!

In a uniaxial crystal, which is the only object of ou
analysis, the tensor« ik can be expressed as

« ik5«~d ik1siskD!, ~3!

whered ik is the three-dimensional unit tensor,s is the unit
vector along the anisotropy axis,« is the isotropic compo-
4 © 1998 American Institute of Physics
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nent of the permittivity tensor, andD is the optical anisot-
ropy constant. In what follows, we will assume that the f
lowing conditions are satisfied:

«@1, D!1. ~4!

Substitution of Eq.~3! in Eq. ~2! with account of Eq.~4!
yields the following expression for the surface impedan
tensor of a uniaxial metallic crystal:

jab5jS dab2
1

2
nanbDsin2c D , ~5!

where

j51/A« ~6!

is the isotropic component of the surface impedance,c is the
angle between the anisotropy axis and normal to the surf
andn is the two-dimensional unit vector along the projecti
of the anisotropy axis on the metal surface. In a sing
crystal sample the anglec and vector n are constant,
whereas in a polycrystalline sample they are functions
coordinates. In our calculation of reflection characterist
we begin with the case of a single crystal.

We denote byEp andEs the electric field amplitudes in
the incident beam corresponding to polarizations in the in
dence plane (p-wave) and perpendicular to this plan
(s-wave). The respective amplitudes in the specular
flected beam will be denoted byEp8 andEs8 . When the inci-
dent beam isp-polarized (Es50), the tangential compo
nents of the electric and magnetic fields on the metal sur
are expressed as

Et5~Ep2Ep8!l cosu1Es8n3 l, ~7!

Ht5~Ep1Ep8!n3 l1Es8l cosu, ~8!

wherel5kt /uktu is the unit vector directed along the crossi
line between the light incidence plane and metal surf
plane, kt5k2n(n–k) is the tangential component of th
wave vectork, k52p/l, andl is the light wavelength.

By substituting Eqs.~7! and ~8! in the boundary condi-
tion ~1! and taking into account Eq.~5!, we obtain a system
of equations for the amplitudesEp8 andEs8 . By virtue of Eq.
~4!, the solution for amplitudeEp8 is almost identical, to
within some corrections, to the corresponding expressio
the Fresnel formulas.8 The amplitudeEs8 describes the effec
under consideration, namely the change in the light polar
tion due to the metal anisotropy. The quantitative measur
the effect is the ratio between thes-component intensity in
the reflected beam and the intensity of the incid
p-polarized light,Rp→s . The calculation of this paramete
yields

Rp→s5
1

4

uju2uDu2 cos2u

ucosu1ju2
sin4 c sin2 2f. ~9!

Heref is the angle between vectorsl andn, in other words,
the angle between the two planes perpendicular to the m
surface, one of which contains the incident light wave vec
plane of~plane of incidence!, the other the metal anisotrop
axis ~plane of anisotropy!.
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A similar calculation for the ratio between the intensiti
of the reflected p-polarized component and inciden
s-polarized component (Rs→p) in the approximation deter
mined by Eq.~4! yields

Rs→p5Rp→s . ~10!

Note two important implications of Eqs.~9! and ~10!.
The first is that the intensity of the reflected component w
the alternative polarization as a function of the anglef has
four maxima and four minima as the crystal is rotated arou
the surface normal through an angle of 2p, and the minima
correspond to the absence of the effect. The maxima t
place when the anglef between the plane of incidence an
the plane of anisotropy is an odd multiple ofp/4, and no
effect is detected when the two planes either coincide or
perpendicular with respect to one another.

The second consequence of Eqs.~9! and ~10! is the
strong dependence of the effect on the angle between
anisotropy axis and the reflecting surface normal descri
by the factor sin4c. When the anisotropy axis coincides wit
the normal, the effect vanishes.

Now let us proceed to the analysis of reflection from
polycrystalline sample of an anisotropic metal with a pla
surface. Since the surface impedance is not constant in
surface plane, the projection of the wave vector on the in
face is not conserved when the anisotropic part of the refl
tion occurs, so the corresponding reflection component is
specular but diffuse. Let us assume that the crystal grain
a satisfies the conditionl/2p!a!D, whereD is the laser
spot size. In addition, we assume that the distribution
grain parameters is uniform and isotropic. Denote
dR(p,kt→s,kt8) anddR(s,kt→p,kt8) the ratios of the inten-
sities of the alternatively polarized component reflected i
the solid angle elementdV in the direction defined by the
tangential componentkt8 of the reflected light wave vecto
and the incident light intensity.

The calculation performed in this section for single cry
tals can be easily generalized to the case of a polycry
with a plane surface if the second terms on the right-ha
side of Eqs.~7! and ~8! are replaced by the correspondin
Fourier integrals with respect to the tangential componen
the reflected light wave vector,kt . The solution of the equa
tion system resulting from the boundary condition~1! yields
the following expression for the relative intensities of t
alternatively polarized reflected components:

dR~p,kt→s,kt8!5dR~s,kt→p,kt8!

5
1

4

uju2uDu2 cos2u

ucosu1ju2
K~kt82kt!dV.

~11!

Here

K~kt82kt!5
k2 cosu

4p2 E dh exp$2 i ~kt82kt!–h%

3^sin2c~r1h!sin 2f~r1h!

3sin2c~r !sin 2f~r !& r .
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FIG. 1. Optical diagram of the experimental fa
cility.
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The angular bracketŝ. . . & r denote averaging over coord
nater in the laser spot plane. It follows from Eq.~11! that
the alternatively polarized reflected beam has an additio
contribution to its divergencedu relative to the incident
beam:

du;l/2pa. ~12!

The expression for the relative intensity of alternative
polarized reflected light component integrated over the s
angle, which can be derived from Eq.~11!, differs from Eq.
~9! by the replacement

sin4c sin2 2f→1/2̂ sin4c&. ~13!

Here we omit the complictaed expression for a small-gr
polycrystal satisfying the condition

a!l/2p.

Note only that in this case the diffusely reflected light due
the optical anisotropy occupies the entire half-space co
sponding to the total solid angle 2p. In addition to the alter-
native polarization, it also contains a component with
polarization of the incident light. The total intensity of th
alternatively polarized component, in comparison with th
for a large-grain crystal, has an additional small fac
;(2pa/l)2.

3. EXPERIMENTAL TECHNIQUES

An optical diagram of the experimental facility is give
in Fig. 1.

The experiments were performed using a LIT-5 la
system. Its operation is based on the multistep~SBS and
SRS! time compression of initial nanosecond pulses from
Nd:YAG laser, and it generates four time-synchronized
tical pulses with parameterst1;200 fs, l151000 nm;
t2;1 ps, l25780 nm; t3;20 ps, l35630 nm; t4

;500 ps,l45530 nm. The repetition rate is up to 25 H
and the pulse energy~for t1 andt2) up to 1 mJ. The pulse
parameters are monitored using the measuring devices o
facility, including optical pulse energy detectors , an ‘‘Aga
streak camera with a time resolution of about 3 ps, an a
correlator with a resolution of about 50 fs, and a dev
measuring pulse spectra. All measurements, including th
of monitoring devices, were fed to a multichannel digi
al

id

n

e-

e
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-

he
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device collecting and processing input data, which includ
several highly sensitive CCD video-cameras~built around
CCD detector arrays!, several analogue inputs, a synchron
zation unit to control data inputs, a laser controller, and
computer loaded with instructions to make the experimen
facility follow a predetermined program, to read and proce
simultaneously data fed from the electronic streak cam
oscilloscope, autocorrelator, pulse energy meters, light de
tors, and spectral devices.

The dynamics of the reflected light was measured by
‘‘Agat’’ electronic streak camera operated at time resolutio
of 3 and 10 ps. The sample was pumped by a laser pulse
parameterst2;1 ps andl25780 nm. The probe pulse ha
parameterst4;500 ps andl45530 nm. The pump pulse
was focused into a spot with a diameter of 100–300mm, the
probe pulse into a spot of 50mm. The minimal size of the
probe laser spot was controlled by the sensitivity of the el
tronic streak camera and the total pulse energy, which sho
be lower than the surface damage threshold, and this co
tion was checked by exposing the sample to a series
pulses. The coincidence of the pump and probe laser s
was checked using the CCD camera and a microscope w
magnification of 703. The probe pulse was polarized in th
incidence plane (p-wave!, and its angle of incidence was les
then 15°. We fed to the input slit of the streak camera
reflected probe pulse passing through a crossed ana
(s-polarization!, the reflected probe pulse (p-polarization!, a
fraction of the incident pump pulse, and the reflected pu
pulse, which served as a time reference. The camera ou
was an arbitrary combination of these pulses or their su
The polarization contrast of the optical package with t
crossed polarizer and analyzer was about 105, which is much
higher than the value required for accuracy compatible w
the other measurements in our experiments. All experime
were performed in air.

The optical anisotropy of the tested area on the cry
surface was tested without pump pulses using radiation g
erated by a helium–neon laser. Photomultiplier tubes w
used in measurements of intensities ofs- and p-polarized
components of reflected light as functions of the an
through which the target was rotated around the normal to
surface. Thus, the factorRp→s of energy transfer from thep-
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to s-wave as a function of anglef between the incidence
and anisotropy planes was measured.

4. EXPERIMENTAL RESULTS

4.1. Zinc

Experiments were performed with a zinc crystal who
surface was polished, then etched in a solution of nitric a
The probe and pump laser pulses were focused on the su
whose plane contained theC-axis.

In order to identify the polarization effect, we first me
sured changes in probe light reflected from a cold z
sample~not exposed to a pump laser pulse!. Figure 2 shows
the transformation coefficientRp→s normalized to unity at
the maximum as a function of the anglef in polar coordi-
nates. This graph also shows the theoretical depend
Rp→s(f), which is given by the function sin2 2f. Both these
functions are plotted in one quadrant.

These measurements demonstrated the presence o
polarization effect in light reflection from the surface of a
HCP crystal of Zn. It was found that, in accordance with E
~9!, the normal to the sample surface is a four-fold symme
axis for the transformation factorRp→s , i.e., Rp→s(f
1p/4)5Rp→s(f).

One can see in Fig. 2 that the experimental and theo
ical data are virtually identical. The coefficientRp→s of the
p-wave tos-wave intensity transformation is about 1022 at
f5p/4. The minimumRp→s51023 at f50, p/2 is due to

FIG. 2. Measurement of optical anisotropy:~a! beam reflection from surface
of anisotropic metal;~b! Rp→s(f): squares are experimental data~Zn!;
circles represent the calculations (sin22f).
e
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the surface inhomogeneities or error in measurements of,
since the contrast of the optical system allows more accu
measurements.

Time-resolved measurements of light reflected from
zinc surface were performed atf5p/4 ~at a peak ofRp→s).
The damage threshold fluenceF0 of the pump laser pulse
was defined as the fluence producing a damaged spot w
diameter of about 60mm on the surface. The distribution o
fluence over the focal spot was approximately Gauss
F5Fmexp(2d2/d0

2), whereFm is the maximum fluence at th
spot center. When the fluence at the spot center exceedeF0

by a factor of two to three, the damaged spot diameter w
up to 2d0'200mm and approximately constant at high
pulse energies. The absolute value of the damage thres
fluenceF0'0.05 J/cm2. Note that precise measurements
the threshold fluence were not intended in our experime
Relative changes in the damage threshold were measure
within 10%.

Time-resolved measurements ofs- andp-polarized com-
ponents of reflected probe beam were performed at the p
pulse fluence in the rangeF0,F,10F0 , and in most cases
a site on the surface was exposed to a pump pulse only o
Statistically processed measurements~about five hundred
streak photos!, which demonstrated reasonable reproducib
ity, have led us to the following conclusions.

1. At pumping laser fluences in the rangeF0,F
,5F0 , the intensity of the reflecteds-polarized componen
drops to the noise level in less than 3 ps after the pu
pulse. After a time;100–300 ps, its intensity recovers com
pletely or partially, depending on the fluence of the pum
pulse. The pulse shape of thep-polarized reflected compo
nent is not affected by the pump pulse. Typical streak pho
are given in Fig. 3a. Figure 4 shows the intensity of t
s-polarized component versus time obtained by statistic
processing our measurements with due account of the p
pulse shape.

2. When the pump pulse fluence is three to five tim
F0 , a drop in thep-polarized component with a duration o
;10–50 ps, decreasing withF, is observed, along with the
changes in thes-polarized component. The intensities of th
s- andp-waves do not recover to their initial values. Typic
streak photos are shown in Fig. 3b.

3. The optical anisotropy parameter (Rp→s(f)) in the
region exposed to a single pump pulse with a fluence clos
the damage threshold value recovers to its initial value. A
multiple exposureRp→s increases to;1021 from the initial
value;1022, but this parameter no longer depends on an
f, and the numberN of pulses needed to attain such a
effect decreases with the fluence of the pump pulse dow
N51 atF.5F0 . The surface structure after single and mu
tiple exposures to pulses withF;3F0 has been studied us
ing the electron microscope. After exposure to a single pu
microscopic regions with dimensions of about 10mm could
be seen, and after exposure to repeated pulses a gra
structure with a grain size of about 1mm was formed. The
intensity of the reflected probe pulse~integrated over time
and measured without a pump pulse! notably dropped as a
result of this process, which is caused by the diffuse nat
of reflection from the modified surface.
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4.2. Graphite

Experiments have been performed with a pyrolithica
manufactured quasi-single crystal of graphite. The tested
face, whose plane contained the symmetry axis, underw
preliminary cleaning with laser radiation, namely, by exp
sure to multiple pump pulses with fluences higher than
damage threshold value.

Our measurements of optical anisotropy indicate that
maximum Rp→s is about 331022 at f5p/4, i.e., it is
higher than in the case of zinc, but the angular dependen
weaker: Rp→s(f5p/4)/Rp→s(f50)53 – 4. The shape o

FIG. 3. Typical streak photos of~1! pump pulse,~2! s-, and~3! p-polarized
components of the reflected probe beam at the pump pulse fluence~a! F
,5F0 and ~b! F.5F0 for a zinc single crystal.
r-
nt
-
e

e

is

theRp→s(f) curve is not affected by multiple exposure, u
like the case of zinc.

Time-resolved measurements of the intensities of
flected s- and p-polarized components after a pump las
pulse were performed similarly, but on the same surface a
at different fluences of pump pulses. Our measurements h
led us to the following conclusions.

1. The measurements are less reproducible than in
case of zinc, probably because of inhomogeneity of
structure and the various physical crystal parameters in
plane containing the symmetry axis.

2. The damage threshold of the pump pulse fluence
F0'0.1 J/cm2, which is close to the value given by Reitz
et al.3

3. In the narrow range of fluences of the pump pul
F0,F,2F0 , the intensity of thes-polarized reflected com
ponent drops rapidly in about 3 ps after the pump pulse
then recovers almost to its initial value in a time;100–150
ps. The pulse shape of the reflectedp-polarized component is
not affected. Typical streak photos are shown in Fig. 5.

4. At the pump pulse fluenceF.2F0 , the intensity of
the reflectedp-polarized component also drops rapidly t
gether with the drop in the probe beams-polarized compo-
nent. The typical decay time of thes-polarized component is
again less than 3 ps, whereas thep-polarized componen
decays more slowly, as in Refs. 3 and 4.

5. DISCUSSION OF EXPERIMENTAL RESULTS

The theoretical analysis of experimental results d
scribed in the previous section is based on the model de
oped by Anisimov et al.9,10 The incident pump laser pulse i
absorbed by the degenerate electron gas, whose temper
during the pulse is much higher than the lattice temperat
To estimate the spatial scale and absolute electron temp
ture, we use Eq.~14! from Ref. 10:

Te~0,t !5S 3q0
2T0

2ak0
D 1/3

, d~ t !5S 18qak0

a2T0
D 1/3

, ~14!

whereqa(t) is the absorbed laser intensity,a is the energy
exchange rate between electrons and the lattice,k0 is the
heat conductivity of a metal in equilibrium, andT0 is the

FIG. 4. Intensity of reflecteds-wave versus the delay of the probe puls
with respect to the pump pulse at several fluence values of the pump p
~1! F;2F0 ; ~2! F;4F0 ; ~3! F;5F0 .
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initial ~room! temperature. Equation~14! applies to the case
when the thickness of the heated layer is larger than the
depth. Assuming thatqa'1011 W/cm2, k0'1 W/cm K,
a'1012 W/cm3K, and T0'300 K, we obtain Te'1.6
3104 K and d'1.831025 cm. The lattice of the material
under consideration is heated in this layer in several pico
onds. The maximum lattice temperature at the sample
face is estimated using Eq.~25! from Ref. 10:

Tim'T01
Fa

ci

bm

b1m
, b5Aa

k0
, ~15!

whereFa is the laser fluence absorbed,m is the absorption
coefficient, andci is the lattice specific heat. Assumin
m'33105 cm21, we obtain Tim52500 K for zinc and
Tim56100 K for carbon at the damage threshold~we assume
that the reflectivities of Zn and C averaged over time are
and 0.3, respectively!. Both these temperatures are notab
higher than the melting temperatures of the correspond
materials.

FIG. 5. Typical streak photos of~2! s- and ~3! p-polarized components o
the reflected probe beam at the~1! pump pulse fluenceF0,F,2F0 : ~a!
drop in the intensity of thes-polarized component in the process of graph
melting; ~b! recovery of thes-polarized component during recrystallizatio
~the measurements were processed with due account of the actual
pulse shape!. The time resolution is about 3 ps.
in

c-
r-

.5

g

Since the target is heated in a very short time, the ma
rial density is constant during a time interval of aboutd/cs ,
during which a rarefaction wave passes through the he
surface layer. Herecs is the speed of sound in the heate
material. During this time~several tens of picoseconds in th
specific case! the heated layer is kept under a pressure t
can be estimated by the formulaP'G(r0)ET , whereG(r0)
is the Grüneisen parameter at the initial densityr0 andET is
the laser pulse energy absorbed in unit volume. Our e
mates yield the pressure up to 30 kbar for zinc and 150 k
for carbon near the damage threshold. The latter value i
agreement with the estimate quoted in Ref. 11. This pres
is higher than at the graphite–diamond–liquid triple point
the carbon phase diagram. It is noteworthy that electro
lattice relaxation has little effect on the pressure, since
partial pressures due to electrons and lattice are, by de
tion, proportional to the corresponding energy densiti
whereas the total energy is constant.

In order to produce changes in the reflectivity due
melting, one should destroy the crystal lattice in the s
layer. When the overheating is small,Ti2Tm!Tm , the melt-
ing front propagates from the surface into the crystal bu
The velocity of this front is lower than the speed of sound12

so the time a melting wave needs to traverse the skin laye
at least several tens of picoseconds. Our experiments i
cate, however, that the reflecteds-polarized componen
drops in a time shorter than 3 ps after the pump pulse. T
means that the melting takes place in the bulk of materia
a result of homogeneous nucleation. This process
studied13 taking into account the activation energy caused
lattice deformation around a growing nucleus. Under cert
conditions one can expect formation of nonspherical nuc
This analysis, however, cannot be directly applied to carb
since the liquid phase of this material has a higher den
than the solid phase in a pressure range of 70–80 kbar.11

The cooling of a metal heated by ultrashort laser pul
is largely controlled by thermal conductivity.10,14The contri-
bution of evaporation to the cooling rate is negligible. Hen
the cooling time can be estimated by the formulatc

;d2/4x, wherex is the heat diffusivity. This estimate yield
tc'300 ps, which is in satisfactory agreement with our me
surements.

6. CONCLUSIONS

The principal results of the reported work are as follow
We have developed an optical technique for studying

kinetics of phase transformation at surfaces of anisotro
highly absorbing solids~including polycrystals!. The tech-
nique allows one to test the presence or absence of lo
range order in microscopic regions on crystal surfaces and
bottoms of microcraters, where measurement using sm
angle x-ray radiation or electron beams have low efficien

Time-resolved measurements of phase transformat
on zinc and graphite surfaces due to picosecond laser pu
based on the suggested technique clearly indicate that m
ing processes in surface layers can be investigated with
cosecond resolution.
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De Haas–van Alphen effect in unconventional superconductors
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A theory of the de Haas–van Alphen effect in type-IIp-wave andD-wave superconductors~the
latter corresponds to theB1g one-dimensional representation of groupD4h) has been
developed. Solutions for the order parameter and density of quasiparticle states near the upper
critical field have been calculated. If the curve enclosing the extremal cross section of
the Fermi surface in the plane perpendicular to the external magnetic field coincides with the line
of nodes of the superconducting order parameter, the effect of the transition to the
superconducting state on the amplitude of magnetization oscillations is negligible. If the line of
nodes is oriented differently with respect to the applied magnetic field, the de Haas–van
Alphen oscillations are suppressed in a manner qualitatively similar to the case of conventional
superconductors. ©1998 American Institute of Physics.@S1063-7761~98!01906-4#
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1. INTRODUCTION

The amount of experimental data concerning the
Haas–van Alphen effect in type-II superconductors that h
been published recently is quite considerable~see the review
by Corcoranet al.1!. If the region of very high magnetic
fields where the effect in the normal state takes place1! over-
laps with the domain of a superconducting mixed state, m
netization oscillations persist in the region below the tran
tion to the mixed state,H,Hc2 , and the frequency of the
oscillations as a function of magnetic field remains u
changed, while the amplitude drops with decreasing m
netic field faster than in a normal metal. Nonetheless,
effect is observable in fields down toH'0.5Hc2 . These ob-
servations indicate that the Landau quantization persist
the mixed state at magnetic fields considerably below t
the upper critical fieldHc2 .

Attempts to interpret this phenomenon were made i
set of theoretical studies.224 A self-consistent theory of the
de Haas–van Alphen effect was developed in our previ
work.5 It was found that, at a finite impurity concentratio
notwithstanding the high-purity conditionpG,vc , which
should be satisfied in order to detect magnetization osc
tions, there is a region of gapless superconductivity in
mixed state near the upper critical fieldHc2 , where the den-
sity of states at the Fermi level is finite:

N~E50!'N0S 12
Ap3nF

ln nF

Hc22H

Hc2
D . ~1!

Here N0 is the density of states in the normal metal,nF

5m/vc , and m is the chemical potential. The oscillatin
componentMosc

s of magnetization in the mixed state is su
pressed in comparison with its amplitudeMosc

n in the normal
state:

Mosc
s

Mosc
n

'12
ApnF

ln nF

Hc22H

Hc2
. ~2!
1191063-7761/98/86(6)/10/$15.00
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Equations~1! and~2! were derived5 to first order in the order
parameterD2;(Hc22H)/Hc2 under the assumption thatT
,G!vc .

In high-temperature superconductors, which were d
covered in recent years, and in heavy-fermion supercond
ors, superconducting states with anisotropic pairing were
pothesized. In this connection, the need in a theory of the
Haas–van Alphen effect in superconductors with symme
nodes of the order parameter became obvious. Maki6 ex-
tended his theory2 to superconducting states with order p
rameter nodes on the equator and poles of the Fermi sph
He used an expression for the excitation spectrum deriv7

neglecting the Landau quantization and an order param
obtained in the momentum representation.

We have developed a quantum theory of the de Ha
van Alphen effect forp-wave states, whose order parame
has been calculated exactly for fieldsH'Hc2 and arbitrary
temperatures.8 A phase whose symmetry corresponds to
one-dimensional representationB1g of group D4h has also
been investigated. For brevity, it will be denoted as t
D-phase. The theory of magnetization oscillations in t
D-phase is of special interest because recent experime
data indicate that theB1g state can occur in the high-Tc

superconductor YBa2Cu3O72x.
9 Our results demonstrat

that, if the curve enclosing the extremal Fermi surface cr
section in the plane perpendicular to the applied magn
field does not coincide with the line of nodes of the sup
conductor order parameter, the suppression of the oscilla
amplitude is qualitatively similar to the case of convention
superconductivity. On the contrary, if the order parame
nodes are on the curve enclosing the cross section with
extreme area, the transition to the superconducting state
little effect on the oscillation amplitude. Thus, observation
the de Haas–van Alphen effect in the mixed state can
used in identifying unconventional superconducting state

The paper is organized as follows. The next section p
sents equations for the Green’s function of superconduc
1 © 1998 American Institute of Physics
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with p and D-wave pairing. The order parameter near t
upper critical field for different superconducting states w
be derived in Sec. 3, then the corresponding matrix elem
of the order parameter will be calculated. Then the s
consistency equation for the order parameter amplitude
be solved. In Sec. 6 the density of states at the Fermi le
and the amplitude of de Haas–van Alphen oscillations w
be calculated.

2. ELECTRON GREEN’S FUNCTION IN DOPED
SUPERCONDUCTORS

The Gor’kov equation for anisotropic superconducto
has the form

@ iv2Ĥ0~R!2û~R!#Ĝ~R,R8,v!

2E dr D̂~R,r !Ĝ~R2r ,R8,v!5d~R2R8!. ~3!

Here

Ĥ0~R!5S H0~R! 0

0 2H0* ~R!
D ,

û~R!5 t̂3u~R!5S u~R! 0

0 2u~R!
D ,

u(R) is the impurity scattering potential, and

H0~R!5
1

2m S 2 i
]

]r
1

e

c
A~r ! D 2

2m ~4!

is the one-particle Hamiltonian of electrons in the magne
field. The magnetic field is assumed to be uniform and
same as the external magnetic field, which is justified aH
;Hc2 in superconductors with a large Ginzburg–Landau
rameter. Here we use eigenfunctionsf l(R) of the operator
H0(R), which form a representation of magnet
sublattices.10 In the Landau gaugeA(R)5(0, Hx,0) the
functionsf l(r ) have the form

f l~r !5Aa

l
exp~ ikzz!(

m
exp~2 iqxam!

3expF i S qy1
pm

a D yGwnS x

l
1S qy1

pm

a Dl D ,

~5!

where

wn~s!5
1

A2nn!Ap
expS 2

s2

2 DHn~s!, ~6!

Hn~s!5~21!n exp~s2!
dn

dsn
exp ~2s2! ~7!

are Hermite polynomials. The unit cell in the lattice of ma
netic translations is a rectangle with sidesax5a and ay

52a. The quantum number in this case isl 5$n,kz ,qW %,
whereqW is the two-dimensional vector in the first Brilloui
zone2p/a,qx,p/a, 2p/2a,qy,p/2a.
l
ts

f-
ill
el
ll

s

c
e

-

-

The matrix Ĝ(r ,r 8,v) contains the normal Green’
function G(r,r 8,v) and anomalous Green’s functio
F(r,r 8,v), which can be expressed in both the coordin
representation and the representation off l(r ) states:

Ĝ~r ,r 8,v!

5S G~r ,r 8,v! F~r ,r 8,v!

F1~r ,r 8,v! 2G~r 8,r ,2v!
D

5(
l l 8

S f l~r !Gll 8~v!f l 8
* ~r 8! f l~r !Fll 8~v!f l 8~r 8!

f l* ~r !Fll 8
1

~v!f l 8
* ~r 8! 2f l 8~r 8!Gl 8 l~2v!f l* ~r !.

D .~8!

The summation over the quantum numbers should be
formed by the following rule:

(
l

5 (
n50

` E dkz

2p E
2p/a

p/a dqx

2p E
2p/2a

p/2a dqy

2p
. ~9!

The order parameter

D̂~R,r !5S 0 D~R,r !

D* ~R,r ! 0 D ~10!

is a function of two variables, namely the center-of-ma
coordinateR of a Cooper pair and the relative coordinater
of the electrons in the pair, and it is determined by the f
lowing self-consistency equation:

D* ~R,r !5V~r !T(
v

F1S R2
r

2
,R1

r

2
,v D , ~11!

whereV(r ) is the attractive potential between the electro
Using the same notation as in Eq.~8! in the Green’s

function averaged over the positions of the impurities,
obtain the following equation:11

Ĝ~R,R8,v!5Ĝ~R,R8,v!

1E dR1ĝ~R,R1 ,v!Ŝ~R1 ,v!Ĝ~R1 ,R8,v!

1E dR1E dr ĝ~R,R1!D̂~R1 ,r !Ĝ

3~R12r ,R8,v!. ~12!

Here ĝ(r,r 8,v) is the Green’s function of the undoped no
mal metal in a magnetic field:

ĝ~r ,r 8,v!5S g~r ,r 8,v! 0

0 2g~r 8,r ,2v!
D . ~13!

The Green’s functiong(r , r 8,v) is expressed in terms of th
eigenfunctions of the operatorH0 as follows:

g~r ,r 8,v!5(
l

f l~r !gl~v!f l* ~r 8!, ~14!

where

gl~v!5~ iv2j l !
21,
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j l5jn~kz!5vcS n1
1

2D1
kz

2

2m*
2m. ~15!

The expression for the impurity self-energy part in the c
of anisotropic pairing has the form

S imp~R,v!5S Ḡ~R,v! 0

0 2Ḡ~R,2v!
D , ~16!

whereḠ(R,v) is determined by the equation

Ḡ~R,v!5nimpu
2G~R,R,v!, ~17!

nimp is the impurity concentration, andu is the characteristic
amplitude of the scattering potential due to impurity.

Unlike the case of conventional superconductivity, sta
with anisotropic pairing satisfy

E dV r̂FS R1
r

2
,R2

r

2
,v D50,

wheredV r̂ denotes an element of solid angle in the space
unit vectorsr̂ 5r /ur u. Therefore the nondiagonal elements
the self-energy part vanish.

To third order inD, the normal and anomalous parts
the Green’s function have the form

Gll 8~v!5Gll 8
~0!

~v!1Gll 8
~2!

~v!, ~18!

Fll 8~v!5Fll 8
~1!

~v!1Fll 8
~3!

~v!. ~19!

Equation~12! directly yields

Gll 8
~0!

~v!5d l l 8Gl
~0!~v!5

d l l 8

gl
21~v!2Ḡl

~0!
, ~20!

Gll 8
~2!

~v!5Gl
~0!~v!Ḡl 8 l

~2!
~v!Gl 8

~0!
~v!

1(
l 1

Gl
~0!~v!D l l 1

~v!Fl 1l 8
1~1!

~v! ~21!

and for the anomalous Green’s function

Fll 8
1~1!

~v!52Gl
~0!~2v!D l l 8

* ~v!Gl 8
~0!

~v!, ~22!

Fll 8
1~3!

~v!52(
l 1

Gl
~0!~2v!D l l 1

* ~v!Gl 1l 8
~2!

~v!

1(
l 1

Gl
~0!~2v!Ḡll 1

~2!~v!Fl 1l 8
1~1!

~v!. ~23!

To zeroth order inD2 the solution of the self-consistenc
equation for the self-energy part is diagonal inl and l 8, and
has the form Ḡl

(0)(v)52 iG impsignv, where G imp

5pnimpu
2N0 . The correction to second order inD is de-

rived from the equation

Ḡll 8
~2!

~v!5nimpu
2(

pp8
E drf l~r !fp~r !

3fp8
* ~r !f l 8

* ~r !Gpp8
~2!

~v!. ~24!

The system of equations~20!–~24! is, in fact, identical to the
system of equations that determines the Green’s functio
e

s

f
f

in

an isotropic superconductor,5 the only difference being tha
the matrix element of the order parameter is expressed b

D l l 85E dRE drf l* S R1
r

2Df l 8
* S R2

r

2DD~R,r !, ~25!

which should be derived explicitly for states with anisotrop
pairing. In Eq.~25! the system has been shifted in the spa
of the coordinatesR throughr /2.

3. STRUCTURE OF THE ORDER PARAMETER NEAR THE
UPPER CRITICAL FIELD

In this section, we derive solutions of the linearized se
consistency equation~11! for phases with anisotropic pair
ing. Let us consider superconducting states whose order
rameter in the mixed state (R,k̂) has the form

D~R,k̂!5( c i~ k̂!D i~R!. ~26!

HereR is the pair center-of-mass coordinate andk̂'k/kF is
the unit vector pointing in the direction of the relative ele
tron momentum in a pair. Equation~26! yields the Fourier
transform~with respect to the relative coordinater ) of the
order parameter given by Eq.~11!; c i( k̂) are the basis func-
tions of the irreducible representation of the crystal symm
try group, in which the pairing potential is expanded, and
pair potential is nonvanishing only in a layer of widthe0

near the Fermi surface:

V~ k̂,k̂8!52ugu(
i

c i~ k̂!c i* ~ k̂8!. ~27!

We considerp-wave states with order parameterc i( k̂)
5A3k̂i , in which a Cooper pair is in states with spin proje
tionsSz561 with equal probabilities and in theSz50 state
with zero probability, and also a state corresponding to
one-dimensional representationB1g in a crystal with tetrag-
onal symmetryD4h with the function

c~ k̂!5A15

4
~ k̂x

22 k̂y
2!.

In a uniform magnetic field, the linearized equation f
the order parameter is written in the form8

D i~R!5gT(
v

(
j
E drc i* ~ r̂ !c j~ r̂ !

3g̃~r ,2v!g̃~r ,v!exp@ i r•D~R!#D j~R!. ~28!

Here

D~R!52 i
]

]R
1

2e

c
A~R!,

e is the absolute value of the electron charge,r̂ is the unit
vector aligned withr , and g̃(r ,v) is the electron Green’s
function in the normal state defined so that it depends o
on the difference between electron coordinates:
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g̃~r2r 8,v!5expS i
e

cEr8

r
A~s!dsD g~r ,r 8,v!. ~29!

For simplicity we do not consider the action of the magne
field on electron spins.

The solution of Eq.~28! has the form of a finite or infi-
nite linear combination of functionsf N(r ):

D i~R!5 (
N50

AN
i f N~R!. ~30!

In a square lattice of Abrikosov flux lines~for simplicity we
analyze only this case!, the functionsf N(R) have the form

f N~R!5A4 2p (
n

expS 2p inY

a DwNSA2S X

l
1

pnl

a D D ,

~31!

where thewn(S) are defined by Eq.~6!.
There are three classes of solutions forp-wave phases,8

which yield maximal values ofHc2 in superconducting state
in the form of the polar phase:

Dpol~R,k̂!5A3Dpolk̂zf 0~R!, ~32!

A-phase:

DA~R,k̂!5A3

2
DA~ k̂x2 i k̂y! f 0~R!, ~33!

and the Scharnberg–Klemm phase~SK!:

DSK~R,k̂!5A3

2
DSKF ~ k̂x1 i k̂y! f 0~R!

1
12b0

g0
~ k̂x2 i k̂y! f 2~R!G . ~34!

The corresponding equations forHc2 are expressed as

a0~H,T!51, ~35!

b0~H,T!51, ~36!

@12b0~H,T!#@12b2~H,T!#5g0
2~H,T!, ~37!

where

a0~H,T!56puguT(
v

E
0

`

dr r 2E
0

p

du sinu cos2u

3expS 2
r 2sin2u

2l2 D g̃~r ,2v!g̃~r ,v!,

bN~H,T!53puguT(
v

E
0

`

dr r 2E
0

p

du sin3u

3expS 2
r 2sin2u

2l2 D g̃~r ,2v!

3g̃~r ,v!LNS r 2sin2u

l2 D ,

g0~H,T!523puguT(
v

E
0

`

dr r 2E
0

p

du sin3u
c

expS 2
r 2sin2u

2l2 D g̃~r ,2v!g̃~r ,v!
r 2sin2u

A2l2
.

Here theLN(s) are Laguerre polynomials. The structure
the solution is independent of whether we select the exac
quasiclassical expression,

g̃~r ,v!52
m

2pr
expS ipFr sign v2

uvur
vF

D , ~38!

for the Green’s functiong̃(r ,v). In subsequent calculation
of the linear part of the self-consistency equation we will u
the latter form.

Finally, the linear combination in Eq.~30! corresponding
to the maximumHc2 in a tetragonal crystal in a magnet
field aligned with the four-fold axis contains an infinite num
ber of terms. By retaining the first three~the contributions of
the rest toHc2 and coefficientsAN with numbersN50,1,2
are vanishing corrections!, we obtain in the limitT→0

DD~R,k̂!5A15

4
DD~ k̂x

22 k̂y
2!@ f 0~R!10.15f 4~R!

10.013f 8~R!1 . . . #. ~39!

The fieldHc2 is determined by the equation

Ub021 g0 0

g0 b421 g4

0 g4 b821
U50, ~40!

where

bN~H,T!5
15

4
pg(

v
E

0

`

dr r 2E
0

p

du sin5u

3expS 2
r 2sin2u

2l2 D g̃~r ,2v!

3g̃~r ,v!LNS r 2sin2u

l2 D ,

gN~H,T!5
15

8
pg(

v
E

0

`

dr r 2E
0

p

du sin5u

3expS 2
r 2sin2u

2l2 D g̃~r ,2v!g̃~r ,v!

3(
l 50

N S 2
r 2sin2u

l2 D l 11 AN! ~N14!!

l ! ~ l 14!! ~N2 l !!
.

The expressions for the order parameter in the anisotro
phases given in this section will be used in subsequent
tions for calculating the matrix elementsD l l 8 .

4. MATRIX ELEMENT OF THE ORDER PARAMETER

This section describes calculation of the matrix elem
~25! for various phases with anisotropic pairing.
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The easiest case is calculation ofD l l 8 for the polar phase
In this phase the order parameter as a function ofr is ex-
pressed as

Dpol~R,r !5A3DpolE dk

~2p!3
f 0~R!k̂ze

ik•r. ~41!

Integration overk is performed in a layer of thicknessdk
5ecm /vF near the Fermi surface, where the pairing pote
tial is nonvanishing. Therefore we can setk̂z'kz /kF

and takeDpol(R,r ) to be a rapidly decaying function o
r which is nonzero forr;kF

21. Rewriting kzexp(ik•r )
52 i ]zexp(ik•r ), where ]z5]/]z, we obtain ~hereafterl
5$n,kz ,q% and l 85$n8,kz8 ,q8%)

D l l 8
pol

52 iA3
Dpol

kF
E dRf 0~R!E drE dk

~2p!3

3Ff l S R1
r

2Df l 8S R2
r

2D G* ]ze
ik•r

5 iA3
Dpol

kF
E dRf 0~R!E drE dk

~2p!3
eik•r

3]zFf l S R1
r

2Df l 8S R2
r

2D G*
5

A3

2

kz2kz8

kF
DpolE dRf 0~R!f l* ~R!f l 8

* ~R!.

Here we have used the fact that integration with respec
the momentum,*dkeik•r, yields a spherically symmetrica
rapidly decaying function ofr , which can be replaced b
d(r ), and the integration overr becomes trivial.11

The remaining integral is identical to the matrix eleme
of the order parameter in an isotropic superconductor.
calculation is described in Appendix@see Eq. ~86! for
N50]. Thus the only difference between the matrix elem
of the order parameter in the cases of a polar phase an
isotropic superconductor is the additional factoriA3kz /
kF in the former case:

D l l 8
pol

5~2p!3d~qW 1qW 8!d~kz1kz8!Dnn8
pol

~qW ,kz!, ~42!

where

Dnn8
pol

~qW !5 i ~21!n8A3
kz

kF
DpolAA2p

~n1n8!!

2n1n811n!n8!

3(
n

exp~2inqxa!wn1n8SA2S qyl1
pln

a D D .

~43!

Now let us analyze the case of theA-phase. The order pa
rameter has the form

DA~R,r !5A3

2
DAE dk

~2p!3
f 0~R!~ k̂x2 i k̂y!eik•r. ~44!

We write (kx2 iky)exp(ik•r )52 i (]x2 i ]y)exp(ik•r ) and
perform calculations similar to the case of the polar phas
-

to

t
ts

t
an

:

D l l 8
A

52 iA3

2

DA

kF
E dRf 0~R!E drE dk

~2p!3

3Ff l S R1
r

2Df l 8S R2
r

2D G* ~]x2 i ]y!eik•r

5 iA3

2

DA

kF
E dRf 0~R!E drE dk

~2p!3
eik•r

3F ~]x1 i ]y!S f l S R1
r

2Df l 8S R2
r

2D D G*
5 iA3

2

DA

2kF
E dRf 0~R!E dr

dk

~2p!3
eik•r

3Ff l 8S R2
r

2D ~]X1 i ]Y!f l S R1
r

2D
2f l S R1

r

2D ~]X1 i ]Y!f l 8S R2
r

2D G*
52 iA3

2

DA

2kF
E dRf 0~R!Ff l 8~R!P1f l~R!

2f l~R!P1f l 8S R2
r

2D G* .

Here the derivatives with respect to the components ofr are
replaced by derivatives with respect to theR components,
and then the integration overk and r is performed. The ex-
pressions in brackets are transformed so that the usual
ferentiation operators can be replaced by raising operato2!

for transitions between statesfnkzq
W . We have

D l l 8
A

52 iA3

2

DA

A2kFl
SAn11

3E dRf 0~R!fn8k
z8q8

* ~R!fn11,kz ,qW
* ~R!

2An811E dRf 0~R!fn811,k
z8 ,q8

* ~R!fnkzq
* ~R! D .

~45!

The integration overR is performed in the Appendix@N
50 in Eq. ~86!#. Thus, we obtain

Dnn8
A

~qW !5 i ~21!n811A3

2

DA

kFl
AA2p

~n1n811!!

2n1n811n!n8!

3(
n

exp~2inqxa!wn1n811SA2S qyl1
pln

a D D .

~46!

The matrix element of the order parameter for t
Scharnberg–Klemm phase is calculated similarly to that
theA-phase. In this case the order parameter is expresse
a linear combination of the functions (k̂x1 i k̂y) f 0(R) and
( k̂x2 i k̂y) f 2(R):
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DSK~R,k̂!5A3

2
DSK@~ k̂x1 i k̂y! f 0~R!1A~ k̂x2 i k̂y! f 2~R!#.

The parametersD and A will be derived from the self-
consistency equations. In performing transformations sim
to those for theA-phase, one should take into account th
electron wave functions are acted on by the lowering ope
tor P2 in the part of the order parameter matrix eleme
containingf 0(R) ~see Footnote 2!, whereas in the part con
taining f 2(R) it is the raising operatorP1 . Taking into ac-
count the properties of the raising and lowering operato
we obtain an expression similar to Eq.~45!. Integration over
R in the term withf 2(R) is performed using Eq.~86! in the
Appendix withN52. Thus, the matrix element of the ord
parameter for the Scharnberg–Klemm phase is

Dnn8
SK

~qW !5 i ~21!n821A3

2

An1n8

kFl
DSKS 11

A

A2
D

3AA2p
~n1n8!!

2n1n811n!n8!

3(
n

exp~2inqxa!wn1n821SA2S qyl1
pln

a D D .

~47!

Here we assume thatn8'n.
In accordance with the results of the previous secti

the order parameter in theD-phase can be expressed as

DD~R,k̂!5A15

4
DD~ k̂x

22 k̂y
2!@ f 0~R!1A4f 4~R!

1A8f 8~R!1 . . . #

5
A15

4
DD@~ k̂x2 i k̂y!2f 0~R!1~ k̂x1 i k̂y!2f 0~R!

1~ k̂x2 i k̂y!2A4f 4~R!1~ k̂x1 i k̂y!2A4f 4~R!

1~ k̂x2 i k̂y!2A8f 8~R!1 . . . #. ~48!

In subsequent calculations we will take into account only
first two terms on the right of Eq.~48!. The rest of the terms
contribute only small corrections to the physical quantit
calculated below.

Next is the expression for the matrix element of the
der parameter in theD-wave phase atn8'n:

Dnn8
D

~qW !5A15

4
DD

n1n8

2kF
2l2

~21!n8AA2p
~n1n8!!

2n1n811n!n8!

3(
n

e2inqxaFwn1n812SA2S qyl1
pnl

a D D
1wn1n822SA2S qyl1

pnl

a D D G . ~49!

It will be shown below that for all phases under consid
ation the density of electron states is expressed by the
mula
r
t
a-
t

s,

,

e

s

-

-
r-

E dqW

~2p!2
Dnn8~qW !Dnn8

* ~qW !5D2I nn8~kz!
~n1n8!!

2n1n811n!n8!
.

~50!

The factorsI nn8(kz) for each phase are listed in Table I.
The interesting electron states are those near the F

surface, so we assume thatn can be derived from the
approximate equationsvc(n11/2)1kz

2/2m* 'm and n8
'n. Then I nn8(kz)'I (u), where sin2u5n/(kFl)2 and cos2u
5kz

2/kF
2 . Note that the quasiclassical expression forI (u) is

nothing but the square of the absolute value of the or
parameter averaged over the azimuthal angle on the F
sphere. In particular, for theA-phase we haveuk̂x2 i k̂yu2

5sin2u. If the contribution due to the functionf N(R) with
NÞ0 is neglected in the expression forI (u) in the D-wave
phase,I (u) has the formI (u)sin4(u/2), which corresponds to
the expression (k̂x

22 k̂y
2)2 averaged over the azimuthal angl

5. SOLUTION OF THE SELF-CONSISTENCY EQUATION FOR
THE ORDER PARAMETER

Order parameters for superconducting phases in fie
below the upper critical field should be derived from t
self-consistency equation~11!. In the A and polar phases
where the order parameter is proportional tof 0(R) at H
5Hc2 , it is calculated similarly to the case of convention
superconductivity,5 i.e., a solution proportional to that of lin
earized equation~11! is sought. Let us calculate the coeffi
cient, i.e., the amplitude of the order parameterD for the
polar andA phases. The equation for the order parame
amplitude has the form

D25uguT(
v

(
nn8

E dqW

~2p!2E dkz

2p
Dnn8~qW !

3@Fnn8
~1!1

~kz ,qW ,v!1Fnn8
~3!1

~kz ,qW ,v!#. ~51!

The first term on the right of Eq.~51!, containing
Fnn8

(1)1(kz ,qW ,v), is calculated in the quasiclassical approx
mation5 for a magnetic fieldH below the upper critical field

TABLE I.

Semiconducting phase I nn8(kz) I (u)
s-wave 1 1

Polar 3kz
2/kF

2
3 cos2u

A 3
2

n1n811

kF
2l2

3

2
sin2u

Scharnberg–Klemm 3

2

n1n8

kF
2l2 S11

A

A2
D 2

3

2
sin2uS11

A

A2
D 2

D 15
8

(n1n8)2

kF
4l4

15

8
sin4u
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Hc2 and is identical to that given in Ref. 8. Thus, the se
consistency equation takes the form

N0lnAHc2

H
5D2T(

v
(

nn8mm8
E dkz

2p
I nm~kz!I n8m8~kz!

3Gn
~0!~kz ,2v!Gm

~0!~kz ,v!Gn8
~0!

~kz ,2v!

3Gm8
~0!

~kz ,v!Ymm8
nn8 . ~52!

Here I nm(kz) is a factor that determines the dependence
the order parameter on the quantum numbersn, n8, andkz

~see Table I!,

Ymm8
nn8 52pl2E Dnm~qW !Dn8m

* ~qW !Dn8m8
* ~qW !Dnm8~qW !

dqW

~2p!2
,

~53!

whereDnm(qW ) is given by

Dnm~qW !5Dnm~qW !/D.

The upper critical fieldHc2 for p-wave states was given i
Ref. 8.

When the conditionsT,G imp!vc are satisfied, we can
retain in Eq.~52! only the terms withn5n85m5m8. Fur-
ther calculations are, similar overall to those in the case
conventional superconductivity.5 We assume thatYnn

nn'L
and perform integration overkz and the quantum numbern,
neglecting small oscillating components in the Poisson s
This procedure reduces to integration over the polar angu
and quasiparticle energiesjn(kz) measured with respect t
the Fermi level.

In the A phase the integral over the polar angle is

E I 2~u!

sinu
du5

2

3
. ~54!

Hence the order parameter amplitude in theA phase is

@DA~H !#2'
16p

3LA
nFG imp

2 Hc22H

Hc2
. ~55!

The integral overu is divergent at the poles in the case of t
polar phase. We have already encountered such a diverg
in the calculation of the order parameter amplitude as a fu
tion of magnetic field ins-wave states.5 After introducing a
cut-off at uc'1/kFl, we have

@Dpol~H !#2'
16p

9Lpol

nFG imp
2

ln nF

Hc22H

Hc2
. ~56!

The order parameter in the Scharnberg–Klemm phas
a linear combination of the functions (k̂x1 i k̂y) f 0(R) and
( k̂x2 i k̂y) f 2(R). Therefore the self-consistency equation f
T,G imp!vc transforms to the system of equations

D2@12b0~H !2g0~H !A#

5uguT(
v

(
n
E dkz

2p

1

@~v1G imp!
21jn

2~kz!#
2

3E dqW

~2p!2
Dnn

~1!~qW !Dnn* ~qW !Dnn~qW !Dnn* ~qW !, ~57!
-

f

f

.

nce
c-

is

r

D2$2g0~H !1@12b2~H !#A%

5uguT(
v

(
n
E dkz

2p

1

@~v1G imp!
21jn

2~kz!#
2

3E dqW

~2p!2
Dnn

~2!~qW !Dnn* ~qW !Dnn~qW !Dnn* ~qW !. ~58!

Here the term linear inD2 is expressed using the quasicla
sical formulas of Ref. 8. We have

Dnn~qW !;D~11A/A2!

@see Eq. ~47!#, Dnn
(1)(qW ) is the matrix element ofD( k̂x

1 i k̂y) f 0(R), and Dnn
(2)(qW ) is the matrix element ofD( k̂x

2 i k̂y) f 2(R).
In estimating the integral with respect to the compone

of the wave vectorqW , we derive from Eqs.~57! and~58!, as
in the case of conventional superconductivity,5 an algebraic
system of equations forD andA:

12b0~H !2g0~H !A5
3LSK~11A/A2!3

32p

uguN0D2

nFG imp
2

,

~59!

2g0~H !1~12b2~H !!A5
3LSK~11A/A2!3

32A2p

uguN0D2

nFG imp
2

.

~60!

From these two equations, we deriveA:

A5
A2g0112b01uguN0lnAHc2 /H

g01A2~12b21uguN0lnAHc2 /H !
. ~61!

Here g05g0(Hc2)51/A2, b05b0(Hc2), b25b2(Hc2),
12b0(Hc2)5(A321)/2, and we have used the relationsh

b0~H !2b0~Hc2!5b2~H !2b2~Hc2!5uguN0lnAH/Hc2.

By substituting the calculatedA in Eq. ~59! and retaining
terms linear in ln(Hc2 /H), we obtain

a lnAHc2

H
5

3LSK~11A/A2!3

32p

D2

nFG imp
2

, ~62!

wherea'1.007.
For the Scharnberg–Klemm phase, we finally obtain

@DSK~H !#2'
16p

3LSK
S 11

A

A2
D 23

nFG imp
2 Hc22H

Hc2
. ~63!

In the remaining calculations, we will takeA5(1
2b0)/g0, since expressingA as a function ofH would ex-
ceed the accuracy of the present calculation.

As in the case of the Scharnberg–Klemm phase, the
plitude of the order parameter and its form forD-wave su-
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perconductors are derived from an algebraic system of e
tions. Suppose that the order parameter has the form

DD~R,k̂!5A15

4
DD~ k̂x

22 k̂y
2!@ f 0~R!1A4f 4~R!1 . . . #,

~64!

whereDD is derived from the equation

12b0~H !5S 15

8 D 2

~DD!2uguT(
v

(
n
E dkz

2p

n4

kF
4l4

3F ~2n!!

22n11n! 2G 2
1

@~v1G imp!
21jn

2~kz!#
2

LD~n!

~65!

resulting from Eq. ~11! after multiplication by DD( k̂x
2

2 k̂y
2) f 0(R) and integration overR and k̂. The function

LD(n) is determined by an expression similar to Eq.~53! and
is a function of the integer parametern. Hence in the remain-
ing calculations we will neglect the dependence onn and
considerLD to be a numerical constant equal to this functi
averaged overn. By retaining terms up to the first order i
Hc22H in Eq. ~65!, we obtain the order parameter amplitu
for the D-wave phase:

~DD!25
7p•29

45LD
nFG imp

2 Hc22H

Hc2
. ~66!

6. DENSITY OF STATES AND AMPLITUDE OF
MAGNETIZATION OSCILLATIONS

Now we will find the density of states and amplitudes
magnetization oscillations inp-wave andD-wave supercon-
ductors. Note that the procedure for calculating these c
acteristics is quite similar to that in the case ofs-wave su-
perconductors. The only difference is in the integration o
the polar angleu.

The density of statesN(E) is expressed through the ele
tron Green’s function:

N~E!52
1

p
Im (

l
Gll ~E!,

~67!

Gll 8~E!5Gl
~0!d l l 81Gll 8

~2! .

The sum over the Landau level numbers is calculated u
the Poisson formula:

(
n

. . . 5(
r
E dne2p irn . . . ~68!

The nonoscillating component of the density of states
unconventional superconductors is determined by the t
with r 50 and is similar to the expression~1! for the corre-
sponding parameter for isotropics-wave superconductors:

Npol~E50!5N0S 12
3Ap

16

~Dpol!2

AnFG imp
2 D ~69!

in the polar phase,
a-

f

r-

r

g

n
m

NA~E50!5N0S 12
3Ap

32

~DA!2

AnFG imp
2 D ~70!

in the A-phase,

NSK~E50!5N0S 12
A3p

32 S 11
12b0

A2g0
D 2

~DSK!2

AnFG imp
2 D

~71!

in the Scharnberg–Klemm phase, and

ND~E50!5N0S 12
45Ap

29

~DD!2

AnFG imp
2 D ~72!

in the D-wave phase.
We will useD2 for all these phases given by Eqs.~55!,

~56!, ~63!, and~66!, and determine the regions of applicab
ity of expansions to first order inD2, which are derived from
the conditionN(E50).0. We have for the polar phase

Hc22H

Hc2
,

3Lpolln nF

p3/2AnF

, ~73!

for the A-phase

Hc22H

Hc2
,

2LA

3p3/2AnF

, ~74!

for the Scharnberg–Klemm phase

Hc22H

Hc2
,

2LSK

p3/2AnF
S 11

12b0

A2g0
D ~75!

and for theD-wave phase

Hc22H

Hc2
,

4LD

7p3/2AnF

. ~76!

Now let us consider oscillating components in the de
sity of states. Instead of integrating overn, we integrate over
jn(kz)5j. Integrations overj and kz are performed inde-
pendently, and

E dkz

2p
expS 22p i

kz
2

2mvc
r D 5

1

2plAr
expS 2 i

p

4 D .

The principal contribution to this integral comes from th
energy band near the equatorial band of the Fermi spher
width l21!kF . Since the order parameter in this region
almost constant, its dependence onkz can be neglected in
calculating the integral overkz , and its value on the equato
rial band of the Fermi sphere (kz50) can be used. For the
Poisson sum component with numberr (rÞ0) we have

N~r !~E!5
Am3vc

2p2

~21!r

Ar
Ar~D!

3Im expF i
2pr

vc
~E1m!2 i

p

4 GexpS 2
2prG imp

vc
D ,

~77!
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which determines oscillating components of the density
states with differentAr(D) in different superconducting
phases.

In the polar phase the matrix element of the order
rameter is zero in the equatorial plane, so in the approxi
tion G imp!vc the value ofAr(D) is close to unity through-
out the region where the expansion to the first order inD2

applies@i.e., in fieldsH determined by condition~73!#. Thus,
the oscillating component of the density of states in the po
phase is the same as in the normal metal.

For other phases under consideration, the value ofAr(D)
coincides qualitatively withAr(D) for conventional super-
conductors:

Ar
A~DA!512

3

16Ap

~DA!2

AnFG imp
2

~78!

for the A-phase,

Ar
SK~DSK!512

3

16Ap
S 11

12b0

A2g0
D 2

~DSK!2

AnFG imp
2

, ~79!

Ar
D~DD!512

15

26Ap

~DD!2

AnFG imp
2

~80!

for the Scharnberg–Klemm andD-wave phases.
Using Eqs.~55!, ~63!, and ~66!, we expressAr(D) as

functions of magnetic field:

Ar
A~H !512

ApnF

LA

Hc22H

Hc2
, ~81!

Ar
SK~H !512

ApnF

LSK
S 11

12b0

A2g0
D 21

Hc22H

Hc2
, ~82!

Ar
D~H !512

14ApnF

3LD

Hc22H

Hc2
. ~83!

The oscillating component of the magnetization is given
the equation

M ~r !52
]V~r !

]H
5

1

2p3 S e

cD 3/2

AHm
~21!r

r 1/2
Ar~H !

3sinS 2prm

vc
1

p

4 D 2p2T/vc

sinh~2p2Tr/vc!

3expS 2
2prG imp

vc
D . ~84!

The factorAr(H) is determined by Eqs.~81!–~83! for theA,
SK, and D-wave phases, and equals unity for the po
phase.

7. CONCLUSIONS

Three types of superconducting states inp-wave super-
conductors have been analyzed: one state with an orde
rameter having a line of nodes on the Fermi sphere equ
and two axial states whose order parameter have nodes a
Fermi sphere poles. The oscillation amplitude in the po
f

-
a-

r

y

r

a-
or
the
r

phase is the same as in a normal metal because ele
states near the equator, which are the main contributor
the oscillating component of magnetization, are not affec
by Cooper pairing. This result, naturally, also applies to
superconducting states in which the order parameter
node coincides with the line defining the extremal cross s
tion of the Fermi surface. Thus, measurements of the
Haas–van Alphen effect can be used in identification of
conventional superconducting states.

In the axial phases the de Haas–van Alphen effec
suppressed more strongly than in thes-wave phase. The
faster growth in the order parameter amplitude as a func
of 12H/Hc2 in the axial phases is due to the absence o
divergence in the integral with respect to the polar an
calculated in solving the self-consistency equation. T
D-wave phase has, in general, the same properties as
axial p-wave phases.

Finally, we emphasize once again that all calculations
this work were performed in the limitT,G!vc in the ap-
proximation linear in (Hc22H)/Hc2 .

The work was supported by the Ministry of Science a
Technology of Russian Federation~Statistical Physics pro-
gram! and the Russian Fund of Fundamental Resea
~Grant No. 96-15-96632 within the program in support
leading scientific schools!.

APPENDIX

In this Appendix we perform the integration over th
component of vectorR5(X,Y,Z) in the equation

Dll 8
N

5E f N~R!f l* ~R!f l 8
* ~R!dR. ~85!

It is clear that the integral can be separated into integ
over each coordinate. We have

E dZ exp@2 i ~kz1kz8!Z#52pd~kz1kz8!,

E dYexpS 2p i lY

a DexpF2 i S qy1
pm

a DYG
3expF2 i S qy81

pm8

a DYG52pd2l ,m1m8d~qy1qy8!.

We have used the fact thatqW is the two-dimensional vector in
the first Brillouin zone2p/2a,qy , qy8,p/2a, wherea is
the Abrikosov lattice constant. In integrating over theX co-
ordinate we perform the change of variablesj5(X
2p ll2/a)/l. By introducing the variableh5@qy1p(m
2m8)l/2a#l and noting thatqy852qy , we express the in-
tegral overX as

I nn8
N

5E djwN~A2j!wn~j1h!wn8~j2h!.

In calculating this integral, we use the generating funct
for Hermite polynomials and integrate overj. We obtain
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(
n,n8,N

`

I nn8
N

~h!
un

n!

vn8

n8!

wN

N!
5Ap

2
expF2

~u2v !2

2

12A2h
u2v

A2
G

3exp~2h2!exp@A2w~u1v !#.

By expressing the first exponential function on the rig
hand side of this equation in terms of the generating func
for Hermite polynomials as functions ofA2h, we obtain the
equation

(
n,n8,N

`

I nn8
N

~h!
un

n!

vn8

n8!

wN

N!
5(

l 50

`

e2h2
Hl~A2h!

~u2v ! l

A2l l !

3exp@A2w~u1v !#.

Expanding exp@A2w(u1v)# in a power series and equatin
the coefficients in front of terms with equal powers ofw, u,
andv, we find

I nn8
N

~h!5Ape2h2
Hn1n82N~A2h!

2Nn!n8!

A2n1n811~n1n82N!!

3(
j 50

N

~21!n81 j 2NCN
j Cn1n82N

n2 j ,

where theCn
k are binomial coefficients.

We note that exp@ia(mqx1m8qx8)#5exp@i(m1m8)
3(qx1qx8)/2#exp@i(m2m8)(qx2qx8)/2# and replace summatio
overm andm8 by summation overm1m8 andm2m8. The
summation overm1m8 is trivial due to the Kronecker delta
d2l ,m1m8 , and since we haveh5h(m2m8,qy) the summa-
tion over l reduces to

(
l

exp@ i la ~qx1qx8!#5
2p

a
d~qx1qx8!
-
n

provided that2p/a,qx , qx8,p/a. Finally, we have

Dll 85~2p!3d~kz1kz8!d~qW 1qW 8!

3AA2p
~n1n82N!!

2n1n811n!n8!N!

n!n8!

~n1n82N!!

3(
j 50

N

~21!n81 j 2NCN
j Cn1n82N

n2 j

3(
n

e2inqxawn1n82N~A2~qy1pn/a!l!. ~86!

* !E-mail: mineev@landau.ac.ru
1!We recall that the de Haas–van Alphen effect in the normal state oc

when the temperature and sample purity satisfyvc.2p2T and vc

.2p2TD . Herevc5eH/m* c is the cyclotron frequency. The paramet
TD51/2pt5G/2p is traditionally called the Dingle temperature, wheret
is the electron mean free time andG is the corresponding level width
Planck’s constant\ is hereafter assumed to be unity.

2!The raising and lowering operators are defined asP65(Py7 iPx), where
P5(2 i ]x ,2 i ]y1e/cAy ,2 i ]z), and have the propertyP1fnkqW(R)
5l21A2(n11)fn11,k,qW(R), P2fnkqW(R)5l21A2nfn21,k,qW(R).
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Kinetics of first-order phase transitions in the asymptotic stage
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We construct an asymptotic theory that describes the kinetics of first-order phase transitions. The
theory is a considerable refinement of the well-known Lifshits–Slezov theory. The main
difference between the two is that the Lifshits–Slezov theory uses for the first integral of the
kinetic equation an approximate solution of the characteristic equation, which is valid
in the entire range of sizes except for the blocking point, i.e., it uses a nonuniformly applicable
approximation. At the same time, the behavior of the characteristic solution near the
blocking point determines the asymptotic behavior of the size distribution function of the nuclei
for the new phase. Our theory uses a uniformly applicable solution of the characteristic
equation, a solution valid at long times over the entire range of sizes. This solution is used to
find the asymptotic behavior of all basic properties of first-order phase transitions: the
size distribution function, the average nucleus size, and the nucleus density. ©1998 American
Institute of Physics.@S1063-7761~98!02006-X#
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1. INTRODUCTION

The study of processes taking place in first-order ph
transitions has prompted unflagging interest~see, e.g., the
recent review articles in Refs. 1–4, a monograph,5 and the
references cited therein!. There are several reasons for th
First, the physical phenomena that accompany the growt
the new phase are of a universal nature, since the evolu
of a system undergoing a first-order phase transition ob
unified laws, which usually depend only on the mechanis
of new-phase growth rather than on the specific propertie
the system, whether it is the early Universe, supersatur
vapor, an electron–hole liquid, or a biological system. S
ond, a first-order phase transition is a process consistin
several loosely linked stages, and almost every stage exh
interesting nonlinear phenomena,6–15~in particular, nonlinear
waves are generated16,17!. Third, in view of the important
role that first-order phase transitions play in engineering
various technologies, today we have a vast body of exp
mental data extracted from observations of the processe
formation, growth, and evolution of new-phase nuclei
various systems.

Theoretical studies of first-order phase transitions h
been actively carried out for more than 16 years. Import
results have been achieved during that period, which are
sic to thermodynamics and the general theory of first-or
phase transitions.18–26 Unresolved problems abound, how
ever. One is linked to the description of the kinetics of fir
order phase transitions. The main difficulty here is tha
typical first-order phase transition consists of at least th
stages~without accounting for the symmetry changes in
first-order phase transition, the development of instabilit
and the interaction of new-phase nuclei!. These are the stag
in which nuclei of the new phase are formed, the stage
separate nucleus growth, and the Ostwald ripening stag
1201063-7761/98/86(6)/8/$15.00
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which large nuclei grow at the expense of decay of sm
nuclei.27 The processes in each stage are essent
nonlinear,28,29 and, besides, each stage has its own featu
which makes a unified description of the stages imposs
~roughly speaking, each stage has its own small parame!.
The first two stages were described theoretically in Ref.
within the scope of the theory of perturbations in 1/i c , where
i c is the number of particles in a critical nucleus under ma
mum supersaturation. In particular, the overall number of
growing nuclei and their size distribution were calculate
But it proved impossible in principle to incorporate th
Ostwald ripening stage into this theory. Actually, this is n
required, since in the Ostwald ripening phase the sys
‘‘forgets’’ its initial state and, irrespective of this state, find
itself in a certain asymptotic regime.27

Many researchers have studied the Ostwald ripen
stage,5,30–43 but undoubtedly the contribution of I. M. Lif-
shits and V. V. Slezov to the development of this theory w
the greatest. They were the first to calculate31 the asymptotic
behavior of the basic characteristics of the first-order ph
transition, the supersaturation, the critical size, and the c
centration of the nuclei of the new phase, and proved that
long times the nucleus-size distribution function has a s
similar form, independent of the initial conditions. They al
obtained an estimate for this function in what became kno
as the zeroth approximation~this term was used in severa
later papers!. The essence of the Lifshits–Slezov~LS! ap-
proximation is as follows. The time-dependent term in t
characteristic equation, whose solution yields the first in
gral of the kinetic equation, is ignored~Eq. ~15! in Ref. 31!,
since with the passage of time this term tends to zero. In
connection Lifshits and Slezov noted that such a simplify
assumption is possible only far from the blocking poin
since at the blocking point the other terms tend to zero at
same rate. From the viewpoint of rigorous perturbati
1 © 1998 American Institute of Physics
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theory,44 the LS approximation corresponds to the first te
of the nonuniformly admissible series in powers oft, so that
the solution found cannot be the asymptotic one~the block-
ing point is the source of nonuniformity!. The fact that the
size distribution function in the Lifshits–Slezov theory is n
asymptotic has been mentioned in several papers. Kahlw
paper34 is the best-known. However, Kahlweit was co
vinced that the source of nonuniformity is not the blocki
point, and for this he was rightly criticized by Slezov.45 Mar-
qusee and Ross36 proposed seeking the solution of the kine
equation immediately as a power series int:

g~r ,t !5t2y0@g0~z!1t2y1g1~z!1t2y2g2~z!1¯#, ~1!

wherez5r /tb, g is the distribution of the nuclei of the new
phase over the radiusr , t is the time variable, andb and
y0 ,y1 ,... are positive constants. Applying an ingeniou
method, they were able to decouple the equations forg0 and
g1 and find their solution. It was established thatg0 coin-
cides with the result of the LS theory, from which Marque
and Ross concluded that this solution was the asympt
one. Actually, this is not the asymptotic solution but t
solution corresponding to the zeroth approximation, since
series~1! is divergent, at least at the blocking point. Ma
quese and Ross36 did not study the convergence of~1!, and
the blocking point makes the series~1! nonuniformly admis-
sible even in the next order, i.e.,g1(z)/g0(z)→` asz tends
to the blocking point. As is well known, this is the mo
important aspect of any asymptotic theory or perturbat
theory.44 The same error was also made in some other wo
on the asymptotic theory of first-order phase transitions.

Thus, the problem of finding an asymptotic solution f
the nucleus-size distribution function in first-order pha
transitions has yet to be solved. The present paper treats
problem. The plan is as follows. We start by examining
evolution of the nuclei of the new phase in the layer
growth of a thin film on a substrate from supersaturated
por subjected to sudden supersaturation. We have chose
example because it is a simple and yet realistic first-or
phase transition with the simplest new phase growth mec
nism possible. The essence of the proposed theory is i
trated by this example of layered film growth most vividl
Then we briefly analyze the general case of a first-or
phase transition.

2. ASYMPTOTIC THEORY OF FIRST-ORDER PHASE
TRANSITIONS IN THE CASE OF LAYERED FILM GROWTH

Suppose that initiallyn1 atoms are adsorbed on a un
area of a solid substrate, withn1 greater thann1e , the equi-
librium concentration of adsorbed atoms~adatoms!. Then a
phase transition begins in the system, and in the cas
layered growth1 disklike nuclei of the new phase grow on th
surface. Byg(R,t) we denote the nucleus distribution fun
tion over the disk radiusR at time t. Then, if the atoms do
not leave the substrate, which is the case if the tempera
Ts of the supersaturated vapor of adatoms and the subs
is low, the conservation of matter on the substrate is
pressed by the following law:
t’s
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R2g~R,t !dR5Z, ~2!

wherew is the volume occupied by a single atom in the ne
phase,h is the disk height,Z the extent to which the adsor
bate fills the substrate~in the given modelZ is assumed to be
constant and, to simplify matters, much larger thanwn1e /h
in the Ostwald ripening stage!. Let j5n1 /n1e21 be the de-
gree of supersaturation in the system ands the interphase
energy per unit length of the periphery of a disk. Then t
radiusRc of a critical nucleus in the Ostwald ripening stag
is equal tosw/kBTshj, wherekB is Boltzmann’s constant
We introduceR* , the characteristic radius in the system
equal tosw2n1e /kBTsh

2Z. In this case Eq.~2! becomes

R*
Rc

1
p

Z E
0

`

R2g~R,t !dR51. ~3!

In turn, the nucleus-size distribution function obeys the co
tinuity equation in the size space:31

]g

]t
1

]~vRg!

]R
50, ~4!

g~R,0!5N0g0~R!, E
0

`

g0~R!dR51. ~5!

Here we have allowed for the fact that in the Ostwald ripe
ing stage the nucleation process has already been comp
and that there areN0 nuclei, whose size distribution is give
by the normalized functiong0(R). Both N0 and g0(R) are
calculated by perturbation-theory expansions in«51/
pRc

2hw ~Ref. 13!. Our goal is to describe the evolution o
the existing nuclei at a later stage. When the so-ca
boundary-kinetics mechanism1 is realized, the rate of sepa
rate nucleus growth is

vR5
R

*
2

t*
S 1

Rc
2

1

RD , ~6!

wheret* 5 l 0R* /aZD is the characteristic growth time,l 0 is
the lattice parameter of the substrate,a is the probability that
an adatom attaches itself to a nucleus~a!1 in the given
growth mechanism!, andD is the coefficient of diffusion of
adatoms over the substrate. At this point we introduce
dimensionless variables

T5
t

t*
, r 5

R

R*
, r c5

Rc

R*
, F5

gR*
N0

~7!

and a dimensionless constantd5pN0R
*
2 a21!1. The ki-

netic equation and the law of adatom conservation then
come

]F

]T
1

]

]r F S 1

r c~T!
2

1

r DF G50, ~8!

r c~T!5F12dE
0

`

r 2F~r ,T!drG21

. ~9!

Plugging~9! into ~8! yields a master equation for the kinetic
of first-order phase transitions in the Ostwald ripening sta
~for the given type of phase transition!. This equation de-
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scribes the following physical processes. Initially, due to
smallness ofd, the critical radiusr c remains essentially un
changed (r c'1) and the size of most nuclei is greater th
r c , so that they grow. The distribution functionF moves in
the size space as an integral whole at a rate 1/r c'1, i.e.,
F(r ,T)'F0(r 2T). This stage is described by nucleatio
theory.13 The integral on the right-hand side of Eq.~9! in-
creases withT, and so doesr c , which gradually catches up
with the main part of the size spectrum. The nuclei sma
than the critical size begin to be evaporated, adding to
supply of adatoms. After timeTr of approximately 1/Ad has
elapsed, the critical size catches up completely with the m
part of the size spectrum, i.e.,

dE
0

`

r 2Fdr'1.

This means that the supply of adatoms that were initially
the substrate has been exhausted. Now supercritical-size
clei grow at the expense of subcritical-size nuclei. The
crease in the critical size is limited by the average size of
nuclei, i.e., the system evolves in a self-consistent man
This is the Ostwald ripening stage.

To describe this stage analytically, it is convenient
change variables, so that the blocking point on the size
can be isolated explicitly. There are several ways of do
this, one of which was suggested by Lifshits and Slezo31

Below we use another change of variables, which we beli
has more physical meaning and is simpler:

f 52r cF, u5
r

2r c
, t5

1

4 E
0

T

r c
22~T8!dT8. ~10!

Then Eqs.~8! and ~9! take the form

] f

]t
2

]

]u H F ~u21!2

u
1g~t!uG f J 50, ~11!

r c~t!5A 121/r c

4dE
0

`

u2f ~u,t!du

, ~12!

g~t!5
d ln r c

dt
21. ~13!

From Eq.~11! we see that hereu51 is the blocking point.
Note that forr c@1 the expression forg simplifies,

g~t!52
1

2

d ln *0
`u2f ~u,t!du

dt
21, ~14!

and becomes independent of the single parameterd of the
first-order phase transition. This explains why all syste
undergoing a first-order phase transition with the same n
phase growth mechanism evolve in the same way. The g
eral approach to solving the system~11!–~13! can be as fol-
lows. First the kinetic equation~11! with a given initial
condition is solved. Then the solution is substituted in~12!.
If we then substitute the resulting expression in~13!, we
arrive at an equation for the functiong~t!. By finding at least
an arbitrary solution of this equation we can describe
e

r
e

in

n
nu-
-
e
r.

is
g

e

s
-

n-

e

kinetics of a first-order phase transition in the stage of se
rate growth of new-phase nuclei and in the Ostwald ripen
stage.

The general solution of Eq.~11! has the form

f ~u,t!5 f 0~C~u,g~t!!!
]C

]u
, ~15!

whereC(u,g) is an integral of the kinetic equation, which
found by solving the characteristic equation

du

dt
52

~u21!2

u
2g~t!u, ~16!

u~t0!5C. ~17!

It is Eq. ~16! that is responsible for the evolution of th
system in the final stage of the first-order phase transit
Applying the Lifshits–Slezov method31 to the given case, we
can find the asymptotic behavior of the functiong as
t→`:

g~t!→
1

4t2 . ~18!

If this condition is not met, the law of conservation of matt
~12! is violated. Figure 1 depicts a schematic of the functi
g~t! for the given case. At timet50 the value ofg is 21,
then g increases, and at a certain timet r reaches the value
g50. After g reaches its maximum valuegmax.0, it de-
creases and finally reaches its asymptotic valueg51/4t2.
Figure 2 depicts the solution of the characteristic equat
~16! for different initial conditions for the simple mode
function

g~t!5
t21

114t3 .

FIG. 1. A schematic of theg vs. t dependence.

FIG. 2. Solution of the characteristic equation~16! for different initial con-
ditions.
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The initial increase inu in Fig. 2 corresponds to the stage
separate nucleus growth by attaching new adatoms tha
pear on the substrate at the moment when supersatur
emerges~at this stager c'1). A further increase in the criti-
cal radiusr c slows down the rate at whichu increases, and
later reducesu. This reduction gradually reaches the se
consistent asymptotic regime, corresponding to the Ostw
ripening regime. In this stageu slowly approaches the block
ing pointu51. In the final analysis, the rate of this approa
determines the nucleus-size distribution function in terms
the integralC(u,g). To study this dependence analyticall
it is convenient to make the following change of variable

v5
1

u21
2 lnuu21u.

Then

dv
dt

511g~t!@11c~v !#2, ~19!

wherec is the solution of the transcendental equation

c1 lnucu5v. ~20!

For long times (t.50) we can assume (11c)25v2, i.e., in
this approximation

dv
dt

511g~t!v2. ~21!

To reduce this Riccati equation to a linear one, we do
other change of variables,v5y/y8. The equation becomes

y91g~t!y50. ~22!

This second-order linear equation is the central equatio
the theory of Ostwald ripening, since it determines the
pendence ofy on g and hence ofC on g at long times. This
means it controls the size distribution function for the ne
phase nuclei.

Now let us turn to methods of solving Eq.~22!. The
simplest one was proposed by Lifshits and Slezov. They s
gested ignoring the second term in~22! entirely, since at long
timesg tends to zero.31 In this caseyLS(t)5At1B, where
A andB are integration constants, andvLS5t1B/A. Hence

v2t52
1

12u
2t2 lnu12uu ~23!

is the desired integral in the zeroth Lifshits–Slezov appro
mation. It is convenient to write this integral in the form

CLS5
1

12u
expS 2

1

12u
2t D . ~24!

By inserting~24! in the general solution~15! and the result
into the conservation law~14! we arrive at an expression fo
f 0:

f 0 LS~C!5H const•C2, C.0,

0, C<0.
p-
ion

ld

f

-

in
-

-

g-

i-

Only in this case will the ‘‘initial condition’’ for the linear
equation,gut→`→0 ~the law of conservation of matter!, be
met. Thus, the size distribution function is given by the fo
lowing expression:

f ~u,t!5H e22tw~u!, 0<u,1,

0, u>1.

As ~24! implies, the functionw in the Lifshits–Slezov ap-
proximation is1

wLS~u!5
2u

~12u!4 expS 2
2u

12uD ~25!

~the value of the constant is usually selected in such a w
that w is normalized to unity!. The same result can be ob
tained by using the Marquese–Ross approach.36 However,
the result is in no way asymptotic since the starting equa
yLS5At1B is invalid for long times. Indeed, for the give
rate at whichg tends to zero we havey→const•At ln t, i.e.,
the pointt5` is the source of nonuniformity.44

For most first-order phase transitionsg~t! is a slowly
varying function. The main thing is that the characteris
time of variation of the dimensions of an individual nucle
is usually much shorter than the characteristic time of va
tion of the critical nucleus ~the so-called time-scale
hierarchy46!. For this reason it is convenient to represent t
functiong in ~22! in the formg~«t! and seek the solution o
Eq. ~22! in the form of a uniformly applicable series in«
~Ref. 44!. This equation has been analyzed by a numbe
researchers,47–49 who found that the functional dependen
of y on g is determined entirely by the points on thet axis at
which g vanishes~the so-called regression points! and by the
behavior ofg at these points. For the given type of first-ord
phase transition,g has two singular points:t5t r andt5`
~see Fig. 1!. By applying the Langer transformation47 we can
find the dependence ofy on g in the zeroth order in« over
the entire range oft : for 0,t,t r ,t r,t,`, in the vicinity
of t r , and ast→`. The four functions could, in principle
give a complete description of the kinetics of the first-ord
phase transition together with Eqs.~12! and ~13! since, in
contrast to the Lifshits–Slezov solution, they are uniform
applicable.44 However, this approach is impractical, if onl
because the value oft r is not known beforehand. The right
hand side of Eq.~13!, after ~12! and ~15! have been substi
tuted in it, becomes an extremely complicated function og
with t r unknown. For this reason we are forced to lim
ourselves to studying the asymptotic behavior of first-or
phase transitions. The fact that there is a regression p
leads to a situation in which the system ‘‘forgets’’ its initia
state and reaches a certain asymptotic regime~models with a
strictly negative g are known to generate nonphysic
divergences30!.

Thus, combining the Langer method with~18! makes it
possible to use Eq.~22! to find the long-time asymptotic
behavior ofy:

y→const•
E Ag~t!dt

A4 g~t!
, ~26!



e
–

in
th

of

c

v-
ou

b
ul
b

-

ig
e

te
n

zo
nt
nt
lly

a

.
-

tic
e
ral
-

the
f a
cen-

av-

nts
e

he

ald

of

the
ezov

1205JETP 86 (6), June 1998 S. A. Kukushkin and A. V. Osipov
v→2
4g

g8
→2t. ~27!

The fact thatv does not tend tot ast→` ~as it does in the
Lifshits–Slezov theory! but to 2t also follows directly from
Eq. ~21! combined with~18!. We also see that the differenc
of the given behavior from that predicted by the Lifshits
Slezov theory is that ast→` ~i.e., in the vicinity of the
blocking point!, the term that Lifshits and Slezov discards
not small and provides a contribution equal to that of
term taken into account. A numerical solution of Eq.~16!
~see Fig. 2! also implies thatu tends to 121/2t rather than
to 121/t. Thus, the asymptotic behavior of the integral
the kinetic equation is given by the following expression:

C5
1

12u
expS 2

1

12u
22t D , ~28!

so that forC positive we havef 0(C)5const•C, and the de-
sired asymptotic size distribution function is

w~u!5
u

~12u!3 expS 2
u

12uD . ~29!

What sets this function apart from the Lifshits–Slezov fun
tion is the difference in the average nucleus size:

E
0

`

uwLS~u!du5
1

2
,

ū5E
0

`

uw~u!du'0.5963, ~u2'0.3854!.

In other words, while in the Lifshits–Slezov theory the a
erage nucleus size coincides with the critical size, in
theory the average size is shifted toward larger values
approximately 20%. To make the comparison of the res
with the experimental data more convenient, it is advisa
to introduce a new variable,x5u/ū5R/R̄ ~in the Lifshits–
Slezov theoryx52u), and recalculate the distribution func
tions:

wLS~x!5
8x

~22x!4 expS 2
2x

22xD , ~30!

w~x!5
x0x

~x02x!3 expS 2
x

x02xD , ~31!

wherex051/u'̄1.677. These functions are depicted in F
3. We see that our asymptotic distribution function is high
and narrower than the Lifshits–Slezov function. As predic
by Lifshits and Slezov, the region where the two functio
differ most strongly lies near the blocking pointx5x0 ~ap-
proximately in the interval from 1.4 to 2!. In all fairness, it
must be said that the absolute error of the Lifshits–Sle
function is moderate and often smaller than the experime
error. Nevertheless, experimenters have repeatedly poi
out that the experimental size distribution function actua
passes above the Lifshits–Slezov function.5 In fact, this
served as the impetus for improving the theories of Ostw
ripening.34,37–40
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To be precise, the asymptotic formula~29! is valid only
for finite or rapidly decreasing initial distribution functions
As shown in Ref. 45, the ‘‘tails’’ of the very slowly decreas
ing initial distribution functions may change the asympto
behavior ~18! of g, with the same being true for the siz
distribution functions. However, according to the gene
nucleation theory,13 finite nucleation time leads to the finite
ness of the initial distribution function.

The above results make it possibly to easily establish
asymptotic behavior of other important characteristics o
first-order phase transition: the average size and the con
tration of the new-phase nuclei. Indeed, from~10! and~13! it
follows that

r c→et, T→e2t, t→
1

2
ln t ~32!

ast→`. This readily leads to the desired asymptotic beh
ior:

R̄~ t !5const•At, ~33!

N~ t !5
const

t
. ~34!

In this asymptotic theory it is impossible to find the consta
in ~33! and ~34!, since this requires information about th
regression pointt r . Hence it is easier to find them from
experiment by calculating the points of intersection of t
straight lines lnR̄ and lnN with the ordinate lnt50.

Now let us describe the asymptotic stage of Ostw
ripening for a general first-order phase transition.

3. ASYMPTOTIC THEORY OF FIRST-ORDER PHASE
TRANSITIONS FOR AN ARBITRARY NEW-PHASE GROWTH
MECHANISM

The continuity equation in the size space and the law
conservation of matter for arbitrary~but real! first-order
phase transitions can be written as follows:

]g

]t
1

]~vRg!

]R
50, ~35!

g~R,0!5N0g0~R!, E
0

`

g0~R!dR51, ~36!

FIG. 3. The asymptotic nucleus distribution function overx5R/R̄ ~the solid
curve corresponds to the results obtained in the present theory, and
dashed curve corresponds to the results obtained by the Lifshits–Sl
theory!.
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vR5
R

*
2

t*
S R*

R D p21S 1

Rc
2

1

RD , ~37!

R*
RC

1bdE
0

`

Rdg~R,t !dR5S t

t*
D n

. ~38!

HereR* , t* , andbd are the constants characterizing a fir
order phase transition,p is the new-phase nucleus grow
index ~the casesp51, 2, 3 correspond to all known growt
mechanisms1!, d is the dimensionality of the nuclei~d
51, 2, 3; see Ref. 5!, n>0 is the growth index for the tota
mass of matter~it is assumed that at least at long times th
mass increases according to a power law5,43!. We introduce
the dimensionless variables

T5
t

t*
, r 5

R

R*
, r c5

Rc

R*
, F5

gR*
N0

~39!

and the dimensionless constantd5bdN0R
*
d . Then Eqs.

~35!–~38! become
is

.

-

]F

]T
1

]

]r F 1

r p21 S 1

r c~T!
2

1

r DF G50, ~40!

r c~T!5FTn2dE
0

`

r dF~r ,T!drG21

. ~41!

Next, following the general scheme described above, we
troduce the variables

u5
p

p11

r

r c
, f 5

p11

p
r cF,

t5
p11

2 E
0

TF p

~p11!r c~T8!G
p11

dT8 ~42!

and write~40! and ~41! in the following form:

] f

]t
2

]

]u H F 2

p~p11!up ~p2~p11!u1up11!1g~t!uG f J 50,

~43!
r c~t!5F S 2

p11D nS p11

p D n~p11!1d

~*0
tr c

p11~t8!dt8!n2S p

p11D d 1

r c

d*0
`udf ~u,t!du

G 1/d

, ~44!
er
ior

e of

the
the

f de-
g~t!5
d ln r c

dt
2

2

p~p11!
. ~45!

Equations~44! and~45! imply that for large values ofr c the
function g ceases to depend ond and the dependence ont
gets simpler:

g~t!5
n

d

d ln *0
tr c

p11~t8!dt8

dt

2
1

d

d ln *0
`udf ~u,t!du

dt
2

2

p~p11!
. ~46!

The general solution of Eq.~43! has the form

f ~u,t!5 f 0~C~u,g~t!!!
]C

]u
, ~47!

whereC(u,g) is an integral of the kinetic equation, which
found by solving the characteristic equation

du

dt
52

2

p~p11!up @up112~p11!u1p#2gu. ~48!

In the neighborhood of the blocking pointu51 Eq. ~48!
becomes independent ofp:

du

dt
52~u21!22g. ~49!

The Lifshits–Slezov method31 makes it possible to use Eq
~49! to find the functiong ast→`:
g→
1

4t2 . ~50!

If this condition is not met, the law of conservation of matt
is violated. This leads to the following asymptotic behav
of r c andT:

r c→exp
2t

p~p11!
, ~51!

T→exp
2t

p
. ~52!

Now from ~52! we find that

t→
p

2
ln t, ~53!

and hence

R̄~ t !→const•t1/~p11!, ~54!

N~ t !→Tnr c
2d→const•t2~d/~p11!2n!. ~55!

Of course, atd53 formulas~54! and~55! coincide with the
corresponding results of the Lifshits–Slezov theory.5 Note
that the Ostwald ripening stage is realized only in the cas
so-called weak sources,

n,
d

p11
, ~56!

when the critical size catches up with the main part of
nucleus size spectrum. Otherwise, new particles enter
system so fast that supersaturation increases instead o
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creasing, the nucleation stage is not terminated, and Ost
ripening does not begin. The same condition follows fro
the analysis of the nucleation stage.10

Now let us establish the asymptotic behavior of the d
tribution function. We perform the transformatio
u→vp(u), which maps the blocking point to infinity:

vp52
p~p11!

2 E
0

u xpdx

xp112~p11!x1p
. ~57!

Then the characteristic equation~48! becomes

dvp

dt
511g~t!

p~p11!

2

up11~vp!

up11~vp!2~p11!u~vp!1p
.

~58!

At long times the characteristic equation becomes the Ric
equation

dvp

dt
511

vp
2

4t
, ~59!

whose general solution is

vp52tS 11
1

ln t1A0
D , ~60!

whereA0 is the integration constant. At long timesv tends to
2t ~the Lifshits–Slezov theory yieldsvp→t), so that

C~u,t!5exp
vp~u!22t

p
~61!

is the asymptotic value of the integral of the kinetic equati
Plugging~61! into the general solution~47!, from the initial
condition ~the law of mass conservation! we find that

f 0~C!5H const•Cd/~p11!2n, C.0,

0, C<0.

Hence the asymptotic behavior of the new-phase nucleus
tribution function has the following form:

f ~u,t!5H expF2
2t

p S d

p11
2nD Gwp~u!, u,1,

0, u>1,

where

wp~u!5
up

up112~p11!u1p
expFd2n~p11!

2

3E
u

up xpdx

xp112~p11!x1pG . ~62!

The constantvp in ~62! is usually found from the normaliza
tion condition

E
0

1

wp~u!du51.

As expected, atp51, d52, n50, andup50 the expression
~62! becomes~29!. An analysis of thewp vs. u dependence
for p51,2,3, which correspond to real new-phase grow
mechanisms, is given in the Appendix. Figure 4 depicts
size distribution functions forp52 andd53 and different
ld

-

ti

.

is-

h
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values of n. We see that the closern is to its limit nc

5d/(p11), the sharper the peak~which moves toward the
blocking point! in thew (u) curve. Hence by changingn we
can control the structure of the new phase.5 At n>nc the
Ostwald ripening does not even start, so that the distribu
function in this case evolves in accordance with the pred
tions of nucleation theory.13

Thus, the use of a uniformly admissible approximati
for the solution of the characteristic equation makes it p
sible to find the asymptotic behavior of the basic charac
istics of first-order phase transitions: the new-phase nuc
concentration, the average size of the nuclei, and the
distribution function.

The authors would like to express their deep gratitude
V. V. Slezov for his critical analysis and useful results. T
work was made possible by grants from the Russian Fund
Fundamental Research~Grants Nos. 96-03-32396 and 98-0
32791! and the Integration Fund~Grant No. 589!.

APPENDIX

To find the distribution functionwp , we must calculate
the integral in~62! ~or ~57!!:

I p5E xpdx

xp112~p11!x1p
. ~A1!

Note that for positive integral values ofp we have

xp112~p11!x1p5~x21!2(
n51

p

nxp2n, ~A2!

so that

I 15E xdx

~x21!2 5
1

12x
1 lnu12xu, ~A3!

I 25E x2dx

~x21!2~x12!
5

1

3~12x!
1

4

9
lnux12u1

5

9
lnu12xu,

~A4!

I 35E x3dx

~x21!2~x212x13!
5

1

6~12x!
1

7

18

3 lnu12xu1
11

36
ln~x212x13!1

&

36
arctan

x11

&

, ~A5!

FIG. 4. The asymptotic function of nuclei distribution ford53 andp52:
curve1, n50; curve2, n50.55; and curve3, n50.8.
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etc. This sequence can be continued, but forp>4 the growth
mechanism becomes too exotic, and, besides, the real
of the equation(nxp2n50 do not obey simple relationships
Plugging~A3!–~A5! into ~62!, we get

w1~u!5
~d/22n!u

~12u!21d/22n exp2S d

2
2nD u

12u
, ~A6!

w2~u!5
4~d23n!/9~d23n!u2

2~12u!215~d23n!/18~21u!112~d23n!/9

3expS 2
d/32n

2

u

12uD , ~A7!

w3~u!5

C3u3 expF2
&

18S d

4
2nDarctan

u11

&

G
~12u!22~7/9!~d/42n!~u212u13!11~11/18!~d/42n!

3expS 2
d/42n

3

u

12uD , ~A8!

with C3 the normalization constant.
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Magnetic ordering and phase transitions in planar antiferromagnetic systems with a
Kagomé lattice
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We study the process of magnetic ordering in planar antiferromagnetic systems with a Kagome´
lattice. It is found that if the interaction between next-nearest-neighbor spins is taken into
account, the heat capacity of such systems has a singularity at a finite temperatureT. On the basis
of a scaling analysis of finite-size systems we study the behavior of thermodynamic
quantities in the neighborhood of a phase transition. We find that the phase transition at the
critical point is due to discrete- and continuous-symmetry breaking, in which the long-range chiral
order and the power-law translational spin order emerge simultaneously. Finally, we
calculate the temperatures of the transition to different~with three and nine spins per unit cell!
ordered states. ©1998 American Institute of Physics.@S1063-7761~98!02106-4#
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1. INTRODUCTION

Lately there has been an upsurge of interest in ph
transitions in the low-temperature range in compounds w
a Kagome´ lattice. Because of the special geometry of t
lattice ~triangles in a layer alternate with hexagons!, the spin
systems are highly frustrated. As the temperature drops
ordering proceeds much more slowly in comparison to o
nary frustrated systems. It is known1,2 that this situation oc-
curs because in systems with a coordination number m
smaller than, say, in triangular antiferromagnets, at large
ues ofS in addition to states with nontrivial global dege
eracy there can be local degenerate states. As a result,
there is interaction between the nearest-neighbor spins, t
is no single finite temperature at which a phase transition
a magnetically ordered state can occur. The additional in
action between next-nearest-neighbor spins partially lifts
degeneracy and may lead to a phase transition at fi
temperatures.3 Nevertheless, since the frustration effects a
still present, the process of ordering and stabilization
structure is slower than in nonfrustrated systems.

Ising systems with a Kagome´ lattice have been studie
fairly recently. As in Ising systems with a triangular lattic
in the classical ground state the entropy per spin is fin
~interaction of nearest neighbors!, but the decrease in th
spin–spin correlation functions atT50 follows an exponen-
tial law rather than a power law~superfrustrated systems4,5!.
Heisenberg systems with a Kagome´ lattice were under inten
sive study at the beginning of the 1990s. The excitations
such systems have a null spectrum in the entire magn
Brillouin zone.6 Quantum7 and thermal2,3 fluctuations lift the
degeneracy and select states with a planar spin configura
XY systems have not been studied so thoroughly. It is kno
that asT→0, the spins in such systems are less ordered t
in Heisenberg systems. Here the correlation function of
XY system is similar to the correlation function of the thre
state Potts model8 (T→0), while the correlation length o
1201063-7761/98/86(6)/7/$15.00
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Heisenberg systems diverges in the zero-temperature lim2,8

In the MFe3~OH!6~SO4!2 family of compounds
(M5H3O, Na, K, Rb, Ag, NH4, Tl, Pb, and Hg! called
jarosites~the name has its origin in mineralogy! and in their
chromium analog KFe3~OH!6~CrO4!2, the magnetic iron ions
Fe31 form a Kagome´ lattice in thec plane.9–11 The crystal-
line structure of such compounds is hexagonal~the space
group isR3̄m!. According to the experimental data, the i
teractions between nearest-neighbor spins inside a layer
between layers is antiferromagnetic.12 Neutron-diffraction,
Mössbauer, and other measurements involving jaros
show that in jarosites at low temperatures magnetic orde
can be accompanied by formation of triangular structures
the x plane.11–13

In our work we studied the phase transitions in co
pounds of the jarosite type. Since in such compounds
neighboring layers with Fe31 are separated by nonmagnet
ions of S, O, K, and OH, layer-to-layer exchange is mu
smaller than the intraplanar exchangeJ1 . It has also been
established that in some substances, e.g., with M5K, the
spins in a layer are perpendicular to thec axis as a result of
magnetic ordering.12 Below we allow for the interaction be
tween nearest-neighbor and next-nearest-neighbor spins
Kagomélattice separated by distancesD1 and D2 , respec-
tively,

H5J1 (
iD1

Si–Si 1D1
1J2 (

iD2

Si–Si 1D2
, ~1!

and limit our study to systems withXY-like spins: Si

5S(cosui ,sinui).
As for Ising systems with a Kagome´ lattice, it is known14

that phase transitions are possible only when next-nea
neighbors interact antiferromagnetically (J2,0), but com-
pounds with Ising spins have yet to be found. In contras
such compounds,XY systems have continuous symmetry
9 © 1998 American Institute of Physics
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FIG. 1. Degenerate ground states forj .0 ~a and b! and
j ,0 ~c and d!; the ‘‘plus’’ and ‘‘minus’’ indicate the
sign of the parameterk on the elementary triangles. Th
heavy lines depict the unit magnetic cells with three~a!
and nine~c! spins.
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the plane. Further, in contrast to Heisenberg systems,
also have discrete symmetry, since atT50 the chiral param-
eter specified for each elementary triangle,15

k5
2

3)
~~S1S2!1~S2S3!1~S3S1!! ~2!

~the spins are numbered clockwise!, takes a value of11 or
21. The situation resembles triangular antiferromagnets w
planar spins,16,17but here, first, the chiral parameter does n
change sign forJ2.0 and, second, the unit cell on
Kagomélattice has nine spins instead of three forJ2,0. We
find that although for next-nearest-neighbor antiferrom
netic interaction (J2.0) the ordering process is slower tha
that for ferromagnetic interaction (J2,0), in both cases
there exists a finite critical temperature at which translatio
spin and chiral orders emerge simultaneously.

2. THE LOW-TEMPERATURE RANGE

The ground state on a Kagome´ lattice strongly depends
on the sign of the exchange interactionJ2 between next-
nearest-neighbors. For antiferromagnetic exchange,J2.0,
this state has a structure with three spins per unit cell~Fig.
1a!, while for J2,0 the structure consists of nine spins~Fig.
1c!. In both cases the spin configurations are continuou
degenerate with respect to rotations in the plane and are
fold symmetric. ForJ2.0 the discrete degeneracy is cha
acterized by ak of fixed sign ~Figs. 1a and 1b!, while for
J2,0 the value ofk changes sign in neighboring elementa
triangles~Figs. 1c and 1d!. A transition between two equiva
lent states amounts to surmounting an energy barrier pro
tional to uJ2u. We expect that in the low-temperature ran
the related excitations are suppressed and the system c
described in the harmonic approximation. Let us examine
properties of the phases at low temperatures for states
three and nine spins per unit magnetic cell.

In the state with three spins per unit cell,J2.0, the
Hamiltonian in the quadratic approximation inck
ey

th
t

-

l

ly
o-

r-

be
e

ith

5(ck1, ck2, ck3) ~herecka are the Fourier transforms of th
deviation of the sublatticea from the equilibrium structure!
can be written as

H52~J11J2!S2N1
1

2
S2(

k
ckMkc2k , ~3!

where the elements of the 333 matrix Mk are

M115M225M3352~J11J2!,

M125M2152J1 cosS kx

2
1
)

2
kyD

2J2 cosS 3

2
kx2
)

2
kyD ,

M235M3252J1 cosS kx

2
2
)

2
kyD

2J2 cosS 3

2
kx1
)

2
kyD ,

M315M1352J1 coskx2J2 cos)ky . ~4!

When k is small, for the smallest eigenvalue of the matr
Mk we obtain

l15
1

2
~J113J2!k2 ~5!

(l25l3.3(J11J2)). In the low-temperature range w
have the following expressions for the energyE5^H&, the
spin–spin correlation function, and the chiral parame
k(T):

E52~J11J2!S2NF12
T

2~J11J2!S2G , ~6!

^So–Sr&5expF2
^~co2c r !

2&
2 G;r 2h~T!, ~7!

whereo and r belong to the same sublattice,



m-

1211JETP 86 (6), June 1998 R. S. Gekht and I. N. Bondarenko
FIG. 2. Energy, heat capacity, magnetization, chiral para
eter, and susceptibilitiesx and xk versus the normalized
temperaturet5T/J1S2 at j 50.5 ~a! and j 520.5 ~b!. The
symbolss, h, n, and, correspond toL512, 24, 36, and
48.
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h~T!5
T

p~J113J2!S2 , ~8!

k~T!5
1

N K (
R

k~R!L 512
T

2~J113J2!S2 ~9!

~R stands for the coordinates of the points of the dual lattic!.
In the states with nine spins per unit cell,J2,0, the

smallest eigenvalue ofMk , the spin–spin correlation func
tion, and the chiral parameterk(T) in the low-temperature
range are given by the same expressions~5!–~9! but with
22J2 substituted forJ2 .

The process of ordering of planar spins on a Kago´
lattice was studied for arbitraryT by the Monte Carlo
method. In comparison to a triangular lattice, the numbe
spins on a Kagome´ lattice is smaller by 1/4, orN53L2/4,
whereL in our calculations varied from 12 to 48. The he
capacity and the magnetic susceptibility were found by
merical calculations from the fluctuations of the energy a
magnetization, respectively. We also calculated the m
square of the sublattice magnetization:
e

f

t
-
d
n

m25
1

Na
K (

Na

Ma
2 L ~10!

~Na53 for J2.0 andNa59 for J2,0; Ma is the sublattice
magnetization!, the parameterk(T), and the corresponding
susceptibilityxk .

The temperature dependence of the thermodyna
quantities forj 560.5 (j 5J2 /J1) is depicted in Fig. 2. At
low temperatures the behavior of the energy can be descr
by the harmonic approximation~6! for j 50.5 and by the
same expression with22J2 substituted forJ2 in ~6! for
j 520.5. Deviations from the linear dependence emerge
T/J1S2.0.3 in Fig. 2a and forT/J1S2.0.5 in Fig. 2b. The
parameterk(T) behaves in the linear region in a similar wa
in accordance with the expected relationships of type~9!.

The exponenth(T) for the spin–spin correlation func
tion can be determined from the dimensional relationship

m2;L2h~T!. ~11!

We calculated the parameterh(T) from the slope of the
asymptotic straight lines for2 ln m2 as a function of lnL.
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The results for different values ofT are depicted in Fig. 3
As the temperature increases, deviations from the linear
pendence emerge at the same values ofT as for the internal
energy.

3. PHASE TRANSITION

The appreciable difference between the antiferrom
netic systems withJ250 andJ2Þ0 manifests itself in the
behavior of the heat capacity and the susceptibilities~Fig. 2!.
For instance, when we haveJ2Þ0, the heat capacity and th
chiral susceptibility have a peak that increases with lat
size and becomes sharper, while the homogeneous susc
bility x has a broad maximum in a specific temperat

FIG. 3. Temperature dependence ofh. The symbolss andd correspond to
diagrams withj 50.5 andj 520.5, respectively.
e-

-

e
pti-
e

range. The dimensional dependence of the height of the h
capacity peak is depicted in Fig. 4: obviously, the logari
mic divergence is due to a phase transition in the param
k.

We expect that in the limitN→` the behavior ofk is
described by the following formula:

k2N5@k~N→`!#2N1O~N!. ~12!

The dimensional dependence ofk2N on N at j 560.5 is
depicted in Figs. 5a and 5b. The values ofk(T) for an infi-
nite system were calculated from the slope of the asympt
straight lines~dotted lines!. On the basis of these data, w
constructed~Figs. 5c and 5d! the dependence of2 ln k on

FIG. 4. The maximum in heat capacity as a function of lnL. The symbolss
andd correspond to the same values ofj as in Fig. 3.
e

t

c-

t
e

FIG. 5. ~a,b!—Dimensional dependence ofk2N
at different temperatures. The slopes of th
asymptotic straight lines~dotted lines! yield the
value of k2 for an infinite system. The straigh
lines1–5 correspond tot50.36, 0.41, 0.46, 0.51,
and 0.53 atj 50.5 ~a! and t50.52, 0.57, 0.62,
0.67, and 0.72 atj 520.5 ~b!. ~c,d!—The param-
eterk extrapolated to an infinite system as a fun
tion of the normalized temperaturet ~log–log
scale! at j 50.5 ~c! and j 520.5 ~d!. The symbols
s, d, and h correspond totc50.55, 0.54, and
0.53 at j 50.5 ~c! and tc50.74, 0.73, and 0.72 a
j 520.5 ~d!. The dotted lines have a slop
b50.1260.01.
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FIG. 6. ~a,b!—The scaling functions for the pa
rameterk above and belowTc ~curves1 and 2,
respectively! at j 50.5 ~a! and j 520.5 ~b!. The
symbolss, h, n, and , correspond toL512,
24, 36, and 48. The dotted straight lines have
slope n2b57/8 for T.Tc and 2b521/8 for
T,Tc . ~c,d!—The temperature dependence
the parameterk for finite-size systems~log–log
scale!; tc50.535 at j 50.5 ~c! and tc50.726 at
j 520.5 ~d!. The symbolss, h, n, and, cor-
respond toL512, 24, 36, and 48. The dotted
straight lines have a slopeb51/8.
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2 ln(tc2t) for different trial values oftc(5Tc /J1S2). The
critical temperaturetc is found under the assumption that th
chiral parameter is a power function:k(t);(t2tc)

b. Figures
5c and 5d show that for any sign ofj a straight line with a
slope b50.1260.01 emerges attc50.5460.01 for j 50.5
and attc50.7360.01 for j 520.5.

We also did a finite-size-scaling analysis under the
sumption that

kLb/n5Fk~ ut2tcuL1/n!, ~13!

whereFk is the scaling function.18 Below tc the relationship
~13! reduces tok;(tc2t)b in the limit L→`, so that forFk

we have

Fk;xb ~14!

as x→`. On the other hand, abovetc the parameterk is
proportional to 1/AN;1/L, so that in this case

Fk~x!;xb2n ~15!

asx→`. The best values oftc , b, andn, obtained from the
conditions that the data for different lattice sizes lie on
single curve~Figs. 6a and 6b! and the limiting relations~14!
and ~15! are valid, are as follows:tc50.535 at j 50.5 and
tc50.726 atj 520.5, andb51/8 andn51 irrespective of
the sign of j . We see that the calculated values of the tra
sition temperatures and the critical exponents in Figs. 6a
6b are in good agreement with the similar calculated val
in Figs. 5c and 5d.

For these valuestc50.535 (j 50.5) andtc50.726 (j 5
20.5) we have also found the2 ln k vs. 2 ln(tc2t) depen-
dence for different values ofL ~Figs. 6c and 6d!. Near the
-

a

-
nd
s

transition temperature the data of the numerical calculati
deviate from a straight line~the dotted line! because of the
finiteness ofL. In the region where the data for differen
lattice sizes lie on a common straight line, the lines cor
spond to the slopeb51/8 ~as in the previous calculations!.

AboveTc , scaling analysis of the chiral susceptibilityxk

was done on the basis of the following relationship:

txkL
2g/n5Fx~ ut2tcuL1/n!. ~16!

Obviously, asx→`, the scaling functionFx(x) assumes the
following form:

Fx~x!;x2g ~ t.tc!, ~17!

since in the thermodynamic limitL→` we must havetxk

;ut2tcu2g. The values ofg and n were chosen from the
conditions that the numerical data for lattices with differe
Ls lie on the same curve and that the limit~17! holds. The
best coincidence attc50.535 for the casej 50.5 and at
tc50.726 for the casej 520.5 was obtained withn51 and
g57/4 ~Figs. 7a and 7b!.

Thus, the foregoing results show that, irrespective of
sign of j ~and hence of the number of spins per unit cell!, the
critical behavior in a phase transition is described by
critical exponents of two-dimensional Ising systems. T
fact is not accidental and is due to the symmetry of the s
tems with respect to sign reversal ofk.

In determining the temperature of the Berezinski
Kosterlitz–Thouless transition it is convenient to study t
correlation function

g~r !5^cos 3~c02c r !&;r 29hxy~T!, ~18!
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FIG. 7. The scaling functions for the chiral sus
ceptibility aboveTc at j 50.5 ~a! and j 520.5
~b!. The symbolss, h, n, and, correspond to
L512, 24, 36, and 48. The dotted straight line
have a slope2g527/4.
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which makes it possible to isolate the contribution of co
tinuous fluctuations atT below the temperature of the Isin
transition and to correctly determine the phase transition
occurs at temperature higher than that for the transition
discrete variables. Figure 8 depicts the power-function
havior of g(r ) for j 560.5 at different temperatures. Usin
the Berezinskii–Kosterlitz–Thouless criterionhxy(TBKT)
51/4, we found that the phase transition with continuo
symmetry breaking occurs attBKT50.54260.003 at j 50.5
and tBKT50.73360.003 at j 520.5, where tBKT

5TBKT /JS2. Within the accuracy of the calculations,tBKT

coincides withtc , so that a phase transition in the system
realized at a single temperature, irrespective of the sign
j (560.5). Note that, to the accuracy of calculations, t
behavior ofh in ~8! yields the same value oftBKT . In this
case forh51/4 we havetBKT50.53760.002 atj 50.5 and
tBKT50.72960.003 at j 520.5. Similar calculations for
other values ofj that are not too close to zero show that bo
transitions occur simultaneously. Thetc– j phase diagram is
depicted in Fig. 9. The neighborhood of the pointj 50 where
the two phase transitions may be expected to occur is p
ably very small and requires more exact calculations
extensive computer time.
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In KFe3~OH!6~SO4!, the magnetic susceptibility has
broad maximum atTc560 K ~Ref. 10!; the exchange inter-
actionsJ1 andJ2 are antiferromagnetic, withJ2 known to be
smaller thanJ1 by a factor of ten. At j 50.1 we have
tc50.22. Thus, the exchange interaction between
nearest-neighbor Fe31 ions with spinsS55/2 can be ex-
pected to be 44 K.

4. CONCLUSION

We have studied the magnetic properties of planar a
ferromagnetic systems with a Kagome´ lattice. We have
found that with allowance for exchange interactions betwe
next-nearest-neighbor spins there is a phase transition in
system at finite temperatures. In the low-temperature ph
there is long-range order in the parameterk, and the corre-
lation function decreases according to a power law. Sca
analysis of finite-size systems shows thatk vanishes at the
same temperature at which the chiral susceptibility diverg
and their behavior is described fairly well by the critic
exponents of two-dimensional Ising systems. We have a
found that the temperature of a Berezinskii–Kosterlit
Thouless transition and the temperature of an Ising transi
n
FIG. 8. Spatial dependence of the correlatio
function g(r ) for L548. The symbolsn, d,
andh correspond tot50.519, 0.542, and 0.565
and the slope of the dotted lineshxy50.18,
0.25, and 0.5~a!, and t50.664, 0.733, and
0.804 andhxy50.12, 0.25, and 0.45~b!.
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coincide to within the accuracy of the calculations. We e
pect that our result can be used for a detailed experime
study of jarosite-type compounds. Note that in real syste
with weak interplanar interaction there is a narrow but fin
temperature range where the critical behavior is thr
dimensional. However, the vast body of experimental d
suggests that, say, for the layeredXY ferromagnet Rb2CrCl4
~Ref. 19!, the Ising antiferromagnet K2CoF4 ~Ref. 20!, the
triangular antiferromagnet VCl2 ~Ref. 21!, and other mag-
netic materials~Ref. 22! the behavior outside this range
two-dimensional, although there is three-dimension lo
range order in the system.

In conclusion we note that in Ising-like Heisenberg a
tiferromagnets, where due to distortions in the 120° struct
there is a finite magnetic moment on each elementary
angle of the Kagome´ lattice, a drop in temperature can lea
to a phase transition with discrete- and continuous-symm
breaking.23 Therefore, we expect that the behavior of su
systems is in many respects similar to the behavior of

FIG. 9. The phase diagram in thetc – j plane for planar antiferromagneti
systems with a Kagome´ lattice.
-
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planar (XY) antiferromagnetic systems considered in this p
per.

This work was supported by the Krasnoyarsk Regio
Scientific Fund~Project 6F0061!.

* !E-mail: theor@iph.krasnoyarsk.su

1P. Chandra, P. Coleman, and I. Ritchey, J. Phys.~Paris! 33, 591 ~1993!.
2J. T. Chalker, P. C. W. Holdsworth, and E. F. Shender, Phys. Rev. L
68, 855 ~1992!.

3A. B. Harris, C. Kallin, and A. J. Berlinsky, Phys. Rev. B45, 2899~1992!.
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Temperature dependence of electric resistance and magnetoresistance of pressed
nanocomposites of multilayer nanotubes with the structure of nested cones
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Bulk samples of carbon multilayer nanotubes with the structure of nested cones~fishbone
structure! suitable for transport measurements, were prepared by compressing under high pressure
(;25 kbar) a nanotube precursor synthesized through thermal decomposition of polyethylene
catalyzed by nickel. The structure of the initial nanotube material was studied using high-
resolution transmission electron microscopy. In the low-temperature range~4.2–100 K! the electric
resistance of the samples changes according to the law lnR}(T0 /T)1/3, whereT0;7 K. The
measured magnetoresistance is quadratic in the magnetic field and linear in the reciprocal
temperature. The measurements have been interpreted in terms of two-dimensional variable-
range hopping conductivity. It is suggested that the space between the inside and outside walls of
nanotubes acts as a two-dimensional conducting medium. Estimates suggest a high value of
the density of electron states at the Fermi level of about 531021 eV21cm23. © 1998 American
Institute of Physics.@S1063-7761~98!02206-9#
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Investigations of electric transport properties of carb
nanotubes has attracted great attention recently. Accordin
theoretical concepts,1 an isolated nanotube can be either
metal, or semimetal, or insulator, depending on such st
tural parameters as its diameter, chirality, and the numbe
concentric layers in it. Despite enormous difficulties in me
surements of electric parameters of isolated nanotube
nanotube bundles, several attempts undertaken recently
been successful.2–4 The latest published measuremen4

clearly indicate the presence of both metallic and insulat
nanotubes in a single set of samples prepared in the s
conditions. The authors emphasized that each multila
nanotube manifested its specific conducting properties,
indicating a strong correlation between structural and elec
parameters.

In this connection, it is interesting to study, in addition
the transport properties of isolated carbon nanotubes,
conducting properties of bulk nanotube materials, in wh
contacts between nanotubes and/or their sections are
domly distributed. In our previous publication5 we reported
on the conductivity temperature dependence and struc
~see also Ref. 6! of carbon nanotube films fabricated b
evaporating graphite in an electron beam. The data of th
experiments were interpreted in terms of a three-dimensio
model of hopping conductivity with a Coulomb gap abo
the Fermi level~the resistivity was described by the la
ln r}(T0 /T)1/2). The density of states at the Fermi level f
films that contained, as shown by structural investigatio
1211063-7761/98/86(6)/4/$15.00
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mostly one-layer carbon nanotubes~isolated or assembled in
bundles! and had a relatively high conductivity was es
mated to beg(m);1021 eV21cm23. On the other hand
films containing multilayer carbon nanotubes were charac
ized by fairly large values of resistivity, which changed wi
temperature to Mott’s law, lnr}(T0 /T)1/4. In this case, esti-
mates of the density of states,g(m);1018 eV21cm23, cor-
responded tog(m) for amorphous carbon. Amorphous ca
bon in significant quantities was detected on the outs
surfaces of multilayer nanotubes in such films by elect
microscopy,5,6 and it seems that the conductivity of suc
films can be attributed to the presence of carbon.

It is well known that, in addition to one-layer an
multilayer nanotubes with walls made of coaxial carbon la
ers, there are nanotubes whose walls consist of nested
cated cones~these are the so-called fishbone-type str
tures!.7 Such nanocones are usually detected at the end
carbon nanotubes, but can also exist in the form of indep
dent objects among products of arc discharges in a hel
atmosphere,8 commonly used in synthesizing carbon nan
tubes.

In our recent work9–11 we demonstrated that thermal d
composition of polyethylene with nickel used as a catalys
a fairly efficient technique for fabrication of large quantitie
of fishbone nanotubes. This technique allows one to ma
facture in a relatively short time considerable quantities~sev-
eral grams! of fairly homogeneous nanotube material. A
cording to the data of thermal analysis in oxiding atm
6 © 1998 American Institute of Physics
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FIG. 1. Electron micrographs of nanotubes in the composite material at~a! low, ~b! intermediate, and~c! high resolution.
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sphere, the nickel content in this material is less then 15%
mass. Nickel is present in the material in the form of nan
particles, which can be eliminated completely by therm
processing of the nanocomposite in vacuum at temperat
of up to 2800°C.10

In this paper we present our measurements of elec
resistance versus temperature and magnetoresistance o
nanocomposite samples fabricated by pressing the in
powder of carbon fishbone nanotubes. The structure of
carbon phase in the initial powder was imaged by a Phi
EM 430ST transmission electron microscope of high reso
tion at an accelerating voltage of 200 kV. These measu
ments demonstrated that the major part of the initial car
material was multilayer carbon nanotubes with lengths
several micrometers, outside diameter of 40–50 nm, and
ternal channel diameter of 9–20 nm. The tubes consiste
almost rectilinear sections with lengths of 100–300 n
turned with respect to one another. Figure 1 shows as
example electron micrographs of the composite nanot
material at~a! low, ~b! medium, and~c! high resolution.

The analysis of micrographs indicated that the nanot
walls were composed in most cases of 40–65 tapered gr
ite layers. The taper angle varied along the tubes in the ra
of 16–35°. The inside diameter was also variable. The
mensions and shapes of wider sections of the inside cha
corresponded to those of catalytic nickel nanopartic
which were detected in most cases at the ends of the n
tubes. We observed either so-called bamboo structures~with
taper angles of 20 to 25°) or, more frequently, fishbo
structures with larger taper angles.

Bulk samples that could be used in transport meas
ments were fabricated by cold pressing of nanotube pow
under high (;25 kbar) pressure. Samples were shaped
bars with dimensions of;13233 mm. Contacts for mea
suring current and voltage across samples were made fro
conducting epoxy paste. Note that the samples were fa
strong and their resistivity at room temperature was re
tively low: r(300 K);1 Vcm. The resistance was me
y
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sured as a function of temperature down to the liquid-heli
temperature in magnetic fields of up to 75 kOe.

In all samples under investigation, the resistan
changed with temperature most rapidly~about one order of
magnitude! in the temperature range between liquid heliu
and;100 K, and the resistance followed the law

R~T!5R0 exp@~T0 /T!1/3#, ~1!

which is typical of variable-range hopping conductivity
two dimensions. Figure 2 shows as an example two curve
ln R vs. T21/3 plotted for samples Nos. 14 and 15.

It is known12 that in this caseT0 in Eq. ~1! is given by

T05
13.8

kBg* ~m!a2
, ~2!

whereg* (m) is the two-dimensional density of states at t
Fermi level anda is the localization length.

FIG. 2. Logarithmic resistance of samples Nos. 14 and 15 as a functio
T21/3.
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To the best of our knowledge, this is the first observat
of the dependence lnR}(T0 /T)1/3 in a system with a rela-
tively low resistivity. Another interesting feature of our me
surements is lowT0 ~for example, we foundT057.3 K in
sample No. 15, and in all tested samplesT0 was within the
interval of 6.5–7.5 K!, which directly indicates, in accor
dance with Eq.~2!, that the density of states at the Ferm
level is high.

In this connection, it is of interest to measure the ma
netoresistance, especially as a function of temperature, s
these measurements would allow us to estimate directly
localization lengtha and then derive the two-dimension
density of statesg* (m) using Eq.~2!.

It is known12 that in systems with variable-range ho
ping conductivity, the magnetoresistance is positive and~in
moderate magnetic fields! is given by the expression

ln
r~H !

r~0!
5tS a

l D 4S T0

T D 3/p

[A~T!H2, ~3!

wherel is the magnetic length,t is a dimensionless factor o
about 0.0025, andp5D11 ~whereD is the system dimen
sionality!. Sincep53 holds in the case under consideratio
it follows from Eq. ~3! that the magnetoresistance at a fix
magnetic field should be inversely proportional to the te
perature.

An example of magnetoresistance measurements ve
magnetic field atT54.2 K for sample No. 15 is given in Fig
3. One can see that the magnetoresistance is adequate
scribed by a quadratic function ofH in the range of moderate
magnetic fields,H,30 kOe, and in higher magnetic fields
tends to a linear function.

The behavior of magnetoresistance in low magne
fields is especially interesting. As a rule, the magnetore
tance is negative on the section of the curve around zero
becomes positive in fields higher than 7 kOe. As a result,
have a small, broad region of negative resistivity at ab
3–4 kOe. Moreover, several additional narrow local minim
~see the inset to Fig. 3! are observed superposed on th
broad peak. Note that the peaks in the inset to Fig. 3 are
caused by noise, although their amplitudes are very sm

FIG. 3. Magnetoresistance of sample No. 15 versus magnetic fieldT
54.2 K. The inset shows the section of negative magnetoresistance a
magnetic fields on an extended scale.
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Experiments with repeated accumulation and averaging
the signal dedicated to testing the reproducibility of su
measurements were performed~the results obtained by thi
procedure are the ones plotted in the inset to Fig. 3!, and
these experiments proved that the curves were reproduc
even after warming the samples to the room temperatur
seems that the negative magnetoresistance of the sam
and local minima are due to the discrete structure of
conducting network formed by nanotubes. The broad
minimum in the magnetoresistance at 3–4 kOe is tentativ
related to the average cell dimension in the network, a
local minima are ascribed to some additional characteri
dimensions in the random network. When the applied m
netic field reaches a value such that the magnetic
through a network cell equals the magnetic flux quant
hc/e, the amplitude of the tunneling between nanotubes
creases, which causes a drop in the total resistance of
system. A simple estimate yields a cell dimension of t
conducting network of about 120 nm atHmin;3.5 kOe,
which seems plausible, given the structure of the nanot
material shown by the electronic microscope.

The magnetoresistance of sample No. 15 as a functio
temperature under a magnetic field of 75 kOe is plotted
Fig. 4 in terms of ln@R(H)/R(0)# andT21. It is clear that the
magnetoresistance at low temperatures is reasonably wel
scribed by a linear function ofT21, in accordance with Eq
~3!. The localization length derived from these measu
ments isa517 nm. Thus, the two-dimensional density
states at the Fermi level estimated using these data and
~2! is g* (m);7.531015 eV21cm22.

Assuming that the space between the inside and out
walls of nanotubes acts as a two-dimensional medium,
can estimate the three-dimensional density of statesg(m) at
the Fermi level. Using the relationg* (m)5g(m)d, whered
is the average nanotube wall thickness~in this specific case it
is about 15 nm!, we haveg(m);531021 eV21cm23.

It seems also interesting to estimate the two-dimensio
and three-dimensional densities,nS andnV , of current carri-
ers. This can be done using the equation

owFIG. 4. Magnetoresistance of sample No. 15 versus temperature in a
netic field of 75 kOe plotted in coordinates ln@R(H)/R(0)# andT21.
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nS52g* ~m!e0~T!, ~4!

wheree0(T) is the energy band near the Fermi level conta
ing current carriers contributing to the hoppin
conductivity.12 In the two-dimensional case, this band wid
is given by the equation

e0~T!5~kBT!2/3/@g* ~m!a2#21/3. ~5!

At T525 K we find from Eqs. ~4! and ~5! nS;9
31012 cm22, hencenV;631019 cm22.

Thus, we have interpreted the low-temperature trans
measurements of pressed samples of randomly distrib
carbon nanotubes with a nested-cones structure in term
the two-dimensional variable-range hopping conductiv
We have assumed that the space between the inside and
side walls on nanotubes acts as a two-dimensional med
In our previous publication5 the low-temperature propertie
of carbon nanotubes were interpreted in terms of the th
dimensional model of hopping conductivity with a Coulom
gap in the density of states near the Fermi level. In b
cases, the resistance is described at low temperatures b
law lnr}(T0 /T)1/n with small T0 , which implies that these
carbon nanotube materials, with their various morpholog
are characterized by very high densities of electron state
the Fermi level of;1021 eV21cm23, which is a value typi-
cal of metals. This result is important for understanding
fundamental electronic properties of carbon nanotubes
related materials and may also prove quite useful from
viewpoint of practical applications.
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Local geometry of the Fermi surface and the skin effect in layered conductors
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This paper studies theoretically how local anomalies in the Gaussian curvature of the Fermi
surface of a layered conductor affect its surface impedance at high frequency under conditions
where the surface of the conductor is parallel to conducting planes. It is shown that the
fact that the curvature vanishes or has singularities in the effective sections of the Fermi surface
can substantially change the value and frequency dependence of the impedance. A theory
of cyclotron resonance in a magnetic field normal to the conductor’s surface is constructed and
the features of this phenomenon reflecting the presence of local anomalies in the curvature
of the Fermi surface are studied. ©1998 American Institute of Physics.
@S1063-7761~98!02306-3#
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1. INTRODUCTION

Most superconducting materials with large critical p
rameters created in the last two decades are layered s
tures with metallic-type conductivity. A characteristic featu
of these materials is the strong anisotropy of the conducti
in the nonsuperconducting state: the conductivity in the la
plane is much higher than that in the direction normal to
layers. It is common to assume that anisotropy in electr
conductivity is a manifestation of the quasi-two-dimensio
nature of the energy spectrum of the charge carriers in
ered conductors. The Fermi surface of such conductors
system of weakly rippled cylinders~isolated or connected b
links! whose axes are perpendicular to the layers. The exp
mental data~see, e.g., Refs. 1–6! support this assumption
However, the study of Fermi surfaces of layered conduc
is far from completion. Many aspects of the profiles of pe
odically pinched cylinders have yet to be investigated. T
local geometric characteristics of the Fermi surface stron
affect the high-frequency properties of layered conducto
just as they do in ordinary metals.7–14 The aim of the presen
work is to study the effect of the local geometry of the Fer
surface on the skin effect in layered conductors. The ex
sure of the features of the skin effect related to the spec
geometric characteristics of the Fermi surface should cr
additional possibilities for reconstructing the Fermi surfac
of such materials from the experimental data.

2. MODEL

The Fermi surface of a conductor with a quasi-tw
dimensional energy spectrum can be described by the
lowing equation:

EF5 (
n50

`

En~px ,py!cos
anpz

\
, ~1!

wherep is the electron quasimomentum,En(px ,py) are co-
efficients with dimensions of energy,pz is the projection of
the quasimomentum on the direction normal to the laye
1221063-7761/98/86(6)/8/$15.00
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and a is the distance between the layers. If we ignore th
anisotropy of the energy spectrum in the layer plane, inste
of ~1! we can write the simpler equation

EF5
p'

2

2m'

1 (
n51

`

En~p'!cos
anpz

\
, ~2!

where p' is the projection of the quasimomentum on th
layer plane, andm' is the effective mass corresponding to
the motion of the quasiparticles in that plane. Equation~2!
describes an axisymmetric open Fermi surface with the a
directed along a normal to the layers.

The usual approach in theoretical papers devoted to t
study of the electron properties of layered conductors is
keep only the first few terms in the sum overn in ~2!. As a
rule, only the first term is taken into account, which corre
sponds to results obtained in the tight-binding approxim
tion. This paper uses a different approach to describing t
electron energy spectrum of the charge carriers in layer
conductors, in which the Fermi surface is given by the equ
tion

EF5
p'

2

2m'

2hv0p0ES pz

p0
D , ~3!

wherev05(2EF /m')1/2, p05p\/a, E(pz /p0) is an even
function periodic in its argumentpz /p0 with a period equal
to 2, andh is a dimensionless parameter characterizing th
extent to which the Fermi surface is rippled. The quantit
2hv0p0E(pz /p0) is the sum of the trigonometric series in
~2!. By selecting the type of this function we can obtain
Fermi surface in the form of pinched cylinders with differen
profiles. This approach provides broad possibilities in an
lyzing the effect of the shape of the Fermi surface on th
observed characteristics of layered conductors.

Let us assume that the functionE(pz /p0) in the interval
2p0<pz<p0 is described by the expression

ES pz

p0
D5

1

rl F12Upz

p0
U l G r

, ~4!
0 © 1998 American Institute of Physics
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where the parametersr and l take values greater than unity
The model specified by~3! and ~4! makes it possible to de
scribe a broad class of Fermi surfaces in the form of pinc
cylinders with different profiles.

The Gaussian curvature of the Fermi surface~3! and~4!
is

K~pz!5m'
2 S vz

21
p'

2

m'

]vz

]pz
D ~p'

2 1m'
2 vz

2!22, ~5!

wherevz is the projection of the quasiparticle velocity on th
symmetry axis of the Fermi surface. Atl 5r 52 the curva-
ture of the Fermi surface in its sections by the planespz

50 andpz56p0 takes the following values:

K~0!5
dS

Smax

1

p0
2 , ~6!

K~6p0!52
2dS

Smin

1

p0
2 , ~7!

where Smax and Smin are the maximum and minimum se
tional areas of the Fermi surface:Smax5S(0), Smin5S(6p0),
and dS5Smax2Smin5(p/2)m'hv0p0 . Thus, if the Fermi
surface remains a pinched cylinder (hÞ0), its curvature at
all points of the sections with extremal diameters is fini
Similar results are obtained if the tight-binding approxim
tion is used to describe the electron energy spectrum.

For rÞ2 and l 52 the curvature of the Fermi surfac
nearpz50 remains finite andK(0) is still described by~6!.
However, the asymptotic behavior of the curvature of
Fermi surface nearpz56p0 is different:

K~pz!522~r 21!
dS

Smin

1

p0
2 F12S pz

p0
D 2G r 22

. ~8!

Thus, for 1,r ,2 the curvature of the Fermi surface h
singularities in these sections. Forr .2 the curvatureK(pz)
vanishes atpz56p0 . The corresponding sections of th
Fermi surface are lines of parabolic points. The larger
value of the parameterr , the more the Fermi surface ne
these sections resembles a cylinder.

The anomalies in the curvature of the Fermi surface n
p050 can be described by the model~3! and ~4! with r 52
and lÞ2. Here the curvature of the Fermi surface nearpz

50 is described by the asymptotic expression

K~pz!5~ l 21!
dS

Smax

1

p0
2 Upz

p0
U l 22

. ~9!

For 1, l ,2 the curvature of the Fermi surface has a sin
larity at pz50; if l .2, the Fermi surface nearpz50 re-
sembles a cylinder, and the larger the value ofl the closer the
resemblance. Finally, ifrÞ2 andlÞ2, we have a surface in
the form of a pinched cylinder with curvature singularities
all the sections with extremal diameters. The profiles of
Fermi surfaces described by~3! and ~4! are depicted sche
matically in Fig. 1.

Thus, the proposed model makes it possible to ana
the effect of local curvature anomalies of the Fermi surfa
on the observed characteristics of layered conductors.
d

.
-

e

e

ar

-

e

e
e
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makes it preferable to the tight-binding approximatio
which is commonly used to conduct specific calculatio
~see, e.g., Refs. 15–19!.

3. CALCULATIONS AND RESULTS

We assume that the conductor fills the half-spacez.0
and its surface is parallel to the layer planes. We also ass
that a plane electromagnetic wave is incident normally on
surface. Since in layered organic metals the ratiovz /v0 is
small, we can limit ourselves to mirror reflection of electro
from the boundary. In this case the surface impedance te
is diagonal:

Zaa58ivE
0

` dq

4p ivsaa~v,q!2c2q2 , ~10!

where v and q are the frequency and wave vector of th
wave (q5(0,0,q)), andsaa(v,q) are the diagonal compo
nents of the electrical conductivity tensor,a5x,y.

In this geometry the componentssxx and syy of the
conductivity tensor for an axisymmetric Fermi surface an
correspondingly, the components of the surface impeda
tensor are equal to each other:

sxx5syy5s5
2ie2

~2p\!3m'
E

2p0

p0 S~pz!dpz

ṽ2qvz

, ~11!

where we have writtenṽ5v1 i /t and t the quasiparticle
effective relaxation time. The maximum value of the long
tudinal component of the velocity,vz , is of orderhv0 . For
small values ofq, where the parameteru (u5v/hqv0) as-
sumes values much larger than unity, we can expands in a
series in inverse powers ofu:

FIG. 1. Profiles of corrugated cylinders described by~3! and~4! for differ-
ent values of the parametersr and l : ~a! l 5r 52, ~b! r 52 and l .2, ~c! r
.2 andl .2, and~d! r 52 and 1, l ,2.
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s5s0~11Q2u221Q4u241¯ !5s0@11F~1/u!#.
~12!

The leading approximation fors0 equalsiNe2/m̃'ṽ, where
N is the charge carrier number density, and is independen
the specific features of the local geometry of the Fermi s
face. The dimensionless coefficientsQ2n are specified by

Q2n5S S v

ṽ
D 2n

*0
p0S~pz!v̄z

2ndpzD Y ~*0
p0S~pz!dpz! ,

~13!

wherev̄z5vz /hv0 . Their values depend on the parameterr
and l , which determine the functionvz(pz). This, however,
has no effect on the expansion~12!.

For q large (u!1), the conductivity can be expanded
a power series inu. If the Fermi surface given by~3! and~4!
has no curvature anomalies in the extremal sections (r 5 l
52), the expansion is

s5
p

i

ṽ

v
s0~u1L1u21L2u31¯ !5

p

i

ṽ

v
s0~11 f ~u!!.

~14!

The first expansion coefficients in~14! are

L152
ib

p

ṽ

v
, L25gS ṽ

v
D 2

, ~15!

whereb andg are dimensionless constants of order unity
In calculating the surface impedance~10! it is conve-

nient to integrate with respect tou and divide the integration
range into regions of small and large values ofu. In each
region we can then employ the corresponding asympt
behavior of the conductivity.

Thus (Zxx5Zyy5Z),

Z5Z11Z2 , ~16!

where

Z15
8hv0

c2 E
0

1 du

p~ṽ/v!j2u3~11 f ~u!!1 i
, ~17!

Z252
8ihv0

c2 E
1

` du

j2u2~11F~1/u!!11
. ~18!

Integration with respect tou in ~17! and ~18! can easily be
done in the limits of large and small absolute values of
anomaly parameterj:

j5h
vp

Avṽ

v0

c
,

where vp5A4pNe2/m' is the plasma frequency. Foruju
!1 the main contribution to the surface impedance is p
vided by the region of large values ofu and is

Z'
4p

ic

Avṽ

vp
S 11

j2

2p
Q2D . ~19!

In the opposite limituju@1, the principal part of the
impedance is determined by the region of small values ou
and is
of
r-

ic

e

-

Z'
8p

3)c
S v2

vp
2

hv0

pc D 1/3H 12 i)2
2L1

3j2/3S v

pṽ
D 1/3

~)2 i !J .

~20!

The leading approximation for the conductivity in the regi
of small values ofq ~largeu! is independent ofq. Thus, for
uju!1, the link between the electric field and current is loc
which is characteristic of the skin effect. The skin depthd is
given by the following expression:

1

d
5

v

hv0
j8,

wherej5j81 i j9. At low frequencies (vt!1),

j85j95h
vp

v

v0

c
Avt

2
,

i.e., uju5& l /dvt. Here l 5hv0t is the mean free path o
the charge carriers along the normal to the layer plane.
inequalityuju!1 is valid under normal skin effect condition
( l !d). At high frequencies (vt@1) we have uju5j8
5 l /dvt. Due to the presence of the large factorvt in the
denominator of the expression foruju, the inequalityuju!1 is
valid if l ,d, a condition that can easily be met in layere
conductors.

The leading term in the asymptotic expression for t
impedance withuju@1 corresponds to an anomalous sk
effect with a skin depth

d5
2hv0

)v
S v

pṽj2D 1/3

5
2

)

S c2hv0

pvvp
2D 1/3

.

When vt!1 holds, uju takes a value of order (l /d)3/2/vt,
while in the opposite limitvt@1 this parameter is of orde
( l /dvt)3/2. Since the mean free path in the direction perpe
dicular to the conducting layers is small, for layered orga
metals it is essentially impossible to meet the conditionl
@d. This means that, in contrast to ordinary metals, it
impossible to observe an anomalous skin effect in such s
stances in the high-frequency range (vt@1).

In the limit vt!1, the skin effect is anomalous (uj
u@1) for l .d. This condition can easily be met at modera
frequencies, since the skin depth increases with decrea
frequency. The intermediate frequency rangevt;1 is opti-
mal for realizing an anomalous skin effect in layered co
ductors. The maximum value ofuxu is reached atvt51/&
and is of orderhvptv0 /c. The ratiovptv0 /c in a pure (t
;1028 s) layered conductor is of order 103– 104. Thus, at
moderate values ofh (h;1022) the maximum value ofuju
may reach 102. This means that in layered conductors bo
the normal skin effect (uju!1) and the anomalous skin e
fect (uju@1) can be present, although the latter is observ
in a frequency range narrower than that in ordinary met
On the other hand, at very small values ofh, when the Fermi
surface is for all practical purposes a cylinder, the condit
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uju!1 is met over the entire frequency range. According
we can use the asymptotic formula~19! for the surface im-
pedance corresponding to a normal skin effect at all frequ
cies.

The leading terms in the asymptotic expressions for
surface impedance in both limits, the normal skin effe
(uju!1) and the anomalous skin effect (uju@1), are inde-
pendent of the specific characteristics of the Fermi surf
and coincide with the results obtained by Gokhfel’d a
Peschanski�,16 who used a model of the Fermi surface bas
on the tight-binding approximation for electrons.

Let us now examine a conductor whose Fermi surf
has anomalies of the Gaussian curvature in the effective
tions. For definiteness, we assume that in the model~3! and
~4! we havel 52 and rÞ2. This corresponds to curvatur
anomalies atpz56p0 . In this case the asymptotic expa
sion of the conductivity in the region where the parameteu
is small contains an additional termsa :

sa5
p

2i
s0mbS u

ṽ

v
D b11

, ~21!

where

mb5~b11!S 12 i tan
pb

2 D , 2b5
r 22

r 21
.

If the sections of the Fermi surface atpz56p0 are lines of
parabolic points (r .2), the parameterb takes negative val-
ues (21,b,0). The shape of the Fermi surface in th
vicinity of these sections is close to cylindrical, and asb→
21, the Fermi surface resembles a cylinder more clos
For 1,r ,2 the parameterb assumes positive values. In th
given case, the curvature of the Fermi surface in the vicin
of the sections corresponding topz56p0 becomes anoma
lously large. In the low-frequency limit, Eq.~21! can be writ-
ten as const/(ql)g, whereg51/(r 21). The same asymptoti
behavior of the contribution to the conductivity of the qu
sicylindrical section of the Fermi surface of a 3D-metal was
obtained by Kaganov and Contreras10 ~see also Ref. 20!.

A comparison of~21! and~14! suggests that if the Ferm
surface of a layered conductor near the sections with an
tremal ~in our case minimum! diameter closely resembles
cylinder, sa exceeds all other terms in the expansion of
conductivity in powers ofu. Accordingly, the leading ap
proximation for the impedance in the event of an anomal
skin effect is determined by the contribution of the quasi
lindrical section of the Fermi surface:

Z5
8p

c
W~b!

Avṽ

ivp
S j

v

ṽ
D ~b11!/~b13!

, ~22!

where

W~b!5F2 cos~pb/2!

p~b11! G1/~b13!S 11 i cot
p

b13D 1

b13

[w~b!S 11 i cot
p

b13D . ~23!

In the limit b→21, the complex-valued functionW(b)
tends to 1/2 and~21! becomes the leading term in~18!. Here
,

n-

e
t

e

d

e
c-

y.

y

x-

e

s
-

the dependence on the parameterh, which characterizes the
extent to which the Fermi surface is rippled, disappea
Thus, the presence of wide cylindrical belts on a high
pinched Fermi surface leads to the same result for the sur
impedance as in the case of a weakly pinched Fermi surf

Equation~23! implies that, to within a complex-valued
constantz (uzu;1),

Z5zuZ0u~12 ivt!2b/~b13!~d/ l !2b/~b13!. ~24!

Here Z0 is the leading approximation of the impedance f
an anomalous skin effect in the case where the Fermi sur
of the conductor has no curvature anomalies in the effec
sections~the first term in~20!!, andd is the skin depth for the
anomalous skin effect. We see that the impedance dep
on the mean free path of the charge carriers. Kaganov
Contreras10 found that such dependence exists only if the
are quasicylindrical sections on the Fermi surface. If th
are no such sections, the leading approximationZ0 of the
impedance for an anomalous skin effect is independent ol .

In the limit b→21, the exponent ofd/ l in ~24! assumes
values close to 1/2. Thus, if the Fermi surface in the vicin
of the effective sections atpz56p0 resembles a cylinder
the impedance for an anomalous skin effect is proportiona
1/Al , in the same way as it is for a normal skin effect. F
vt!1 and b522/3 (r 54), Eq. ~24! coincides with the
result of Ref. 10.

At sufficiently high frequencies (vt.1), the real part
of the surface impedance~24! is

R5
8p

c
w~b!S h

vp

v

v0

c D ~b11!/~b13!

3
v

vp
Fcot

p

b13
2

b

b13

1

vtG . ~25!

For negative values ofb not too close to21 we haveR
;v2/(b13). The real part of the impedance increases w
frequency faster than in the case of a conductor for which
curvature of the Fermi surface in the effective section is
nite. In the limit b→21 the frequency dependence ofR
disappears, as it does for a purely cylindrical surface.

Let us assume that the parameterb, which characterizes
the shape of the Fermi surface, takes positive values. T
means that the curvature of the Fermi surface atpz56p0

becomes infinite. The termsa ceases to be the leading ter
in the asymptotic expression for the conductivity for smallu.
However, for 0,b,1, when the singularity in the curvatur
is not pronounced,sa is the first correction to the leadin
approximation. Here the asymptotic behavior for an anom
lous skin effect is given by

Z5
8p

3)
S v2

vp
2

hv0

pc D 1/3H 12 i)2
U~b!

2)

1

~pj2!b/3 S ṽ

v
D 2b/3J ,

~26!

where

U~b!5
~11b2!

cos~pb/2! Fcot
p~11b!

3
2 i G . ~27!
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The first correction to the leading approximation for t
impedance is now larger than in the absence of curva
anomalies in the effective belts on the Fermi surface. T
frequency dependence of this correction also changes.
additional term is proportional tov2(11b)/3 rather than to
v4/3 ~the latter case corresponds to a Fermi surface with
curvature anomalies!.

Note that the surface impedance for an anomalous
effect is also described by expressions of the form~26! in the
case where narrow neighborhoods of some~but not all! ex-
tremal sections of the Fermi surface resemble narrow cy
drical bands. Here the anomalous additional term in the c
ductance is

sa5
p

2i
rmbs0S u

ṽ

v
D b11

~28!

and contains a small positive factorr describing the relative
number of effective charge carriers related to the cylindri
section of the Fermi surface. The parameterb takes negative
values in the interval21,b,0. For small values ofr and
moderate values ofb not too close to21, sa is smaller than
the leading term in the expansion~14! for s and must be
taken into account as the first-order correction. Here for
component of the surface impedance tensor we arrive
result that differs from~26! in that the term describing th
first correction contains an additional factorr and b,0 in
this term.

The above analysis can be repeated for a Fermi sur
that has anomalies in the Gaussian curvature atpz50. Such
a surface is described by Eqs.~3! and ~4! with r 52 and l
Þ2. As a result we arrive at expressions that coincide w
~20!–~26! with a parameterb, which characterizes the shap
of the Fermi surface near the effective sectionpz50, ex-
pressed in terms ofl (2b5( l 22)/(l 21)).

Finally, let us consider the case where the effective s
tions of the Fermi surface have curvature anomalies. Ir
.2 and l .2 hold, the neighborhood of each section of t
Fermi surface with an extremal diameter resembles a cy
der. Here the asymptotic behavior of the surface impeda
for an anomalous skin effect retains its form~22!. The same
expression~22! describes the asymptotic behavior of the s
face impedance of a layered conductor for an anomalous
effect in the case where the curvature of the Fermi surfac
the conductor is anomalously large in all sections with mi
mum and maximum diameters~1,r ,2 and 1, l ,2). In
both cases the value ofb is expressed in terms of the larg
of the two parameters,r and l .

If one of the parameters,r or l , or both are much large
than unity, the asymptotic expression for the surface imp
ance ceases to depend on the rippling parameterh and as-
sumes the form~19!. Thus, the characteristic features of t
skin effect in layered conductors are determined not by
smallness of the second term in Eq.~3! by itself but by the
form of the functionE(pz /p0), which specifies the profile o
this surface. The fact that usually for layered conductors
projection of the charge-carrier velocity onto the normal
the layer plane is small in comparison to the velocity co
ponents describing the motion in the layer plane is also
re
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for the caseh;1. In particular, forr @1 and l @1, the sur-
face described by~3! and~4! is a steplike cylinder. The lon-
gitudinal velocityvz of the electrons on such a Fermi surfa
is zero for an arbitrary value of the corrugation parameterh.
The local features of the geometry of the Fermi surface
layered conductors lead to specific singularities in their
served properties in an external magnetic field. This is tr
in particular, for cyclotron resonance, which in recent ye
has been repeatedly observed in organic metals.21–26

Suppose that an external magnetic field is directed al
the normal to the surface of a semi-infinite conductor a
that this surface is parallel to the planes of the conduct
layers. When the charge carriers undergo a mirror reflec
from the boundary, the surface impedance tensor beco
diagonal in terms of the circular components:

Z658ivE
0

` dq

4p ivs6~v,q!2c2q2 , ~29!

where s65sxx6 isyx are the circular components of th
transverse conductivity.

The asymptotic expressions fors6 for large and smallu
coincide with the expansions~12! and ~14! in which ṽ is
replaced byṽ6 ~ṽ65v7V1 i /t, whereV is the cyclotron
frequency of the charge carriers!. The same is true of the
expression forsa

6 . Below we examine the case where th
polarization corresponds to cyclotron resonance.

If the Fermi surface of the layered conductor has w
sections resembling cylinders, the impedance for an ano
lous skin effect is described by an expression obtained fr
~22! by substitutingṽ1 for ṽ. This substitution must be
carried out everywhere, including the expression for the
rameterj characterizing the extent to which the skin effect
anomalous. The real part of the impedance in such co
tions is

R~H !

R~0!
5SAS 12

V

v D 2

1
1

~vt!2D 2b/~b13! cos~Yb~V,v,t!!

cos~p/~b13!!
,

~30!

where

Yb~V,v,t!5
1

b13 H p1pbu~V2v!

1b arccotFvtS 12
V

v D G J ,

with

u~x!5 H1 if x>0,
0 if x,0, 21,b,0. ~31!

At a fixed frequencyv the value ofR(H) rapidly increases
with the magnetic field strength in fields near cyclotron re
nance. The discontinuity inR(H) at H5Hr is no smaller in
order of magnitude thanR(0) at the same frequency. I
strong magnetic fields (H@Hr), wherev!V, the value of
R(H) increases in proportion to (V/v)2b/(b13). For moder-
ate~in absolute value! values ofb, the increase inR(H) in a
strong magnetic field is slow asb→21, when the shape o
the effective belts on the Fermi surface is essentially cy
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drical, and forH@Hr we haveR(H);AV/v. The field de-
pendence of the ratioR(H)/R(0) near cyclotron resonance
depicted in Fig. 2, where the curves are described by~30!.

If the cylindrical belts near extremal sections of t
Fermi surface are narrow, the related additional term in
conductivity determines the first correction to the lead
approximation of impedance for an anomalous skin effe
The leading term in the impedance in this case is indep
dent of the magnetic field. Substitutingṽ1 for ṽ in ~26! and
allowing for the small factorr, which describes the width o
the cylindrical belts on the Fermi surface, we get

R~H !

R~0!
511 r̃ j̃22b/3SAS 12

V

v D 2

1
1

~vt!2D b

3
cos~Yb8 ~V,v,t!!

sin~p~11b!/3!
, ~32!

where

Yb8 ~V,v,t!5
p

3
~22b!1pbu~V2v!

1b arccotFvtS 12
V

v D G , ~33!

r̃5
~11b!2

2) cos~pb/2!
r, j̃5Ap

vp

v

hv0

c
.

This result is valid forr̃ j̃22b/3!1. At high frequencies the
parameterj̃ assumes values close to those of the anom
parameterj in the absence of an external magnetic fie
Taking for j̃ a value on the order of the maximum ofj ( j̃

FIG. 2. Dependence of the active part of the surface impedance of a lay
organic metal whose Fermi surface has near-cylindrical wide bands, on
magnetic field near cyclotron resonance. The curves are described b
~30! and are plotted forvt510 with b520.2 ~curve1!, 20.4 ~curve2!,
20.6 ~curve3!, and20.8 ~curve4!.
e

t.
n-

ly
.

;1022), we see that for a moderate curvature anoma
(20.5,b,0) the above inequality holds if we hav
r,0.1.

For b,0 the second term in~32! describes the peak in
the field dependence ofR(H) related to cyclotron resonanc
~Fig. 3!. The height of this peak depends onr. For moderate
values ofr (r,0.1) the height may amount to 10% of th
leading approximation of the real part of the impedance.
moderate values ofvt the top of the peak~it corresponds to
the minimum of the resonance term in~32!! is appreciably
shifted in relation toHr :

Hr2H

Hr
[

DH

Hr
5

cot F

vt
. ~34!

The value ofF is determined by the shape of the effecti
section of the Fermi surface:

F5
p

6 S 12
b

12b D . ~35!

Such field behavior near cyclotron resonance has been
served in some layered organic metals of t
a-~BEDT-TTF!2MHg~SCN!4 group25 and in the organic
conductor~BEDO-TTF!2ReO4~H2O! ~Ref. 26!. The experi-
ments of Demishevet al.25,26 were conducted in the 30–10
GHz frequency range in magnetic fields of about 50 k
with vt;10. The magnitude of the singularities related
cyclotron resonance amounted to several percentage p

ed
he
q.

FIG. 3. Dependence of the active part of the surface impedance of a lay
organic metal on the magnetic field near cyclotron resonance for the
where one of the extremal sections of the Fermi surface coincides with
line of parabolic points. The curves are described by Eq.~32! and are plotted
for vt510 andr50.05 with b520.2 ~curve 1!, 20.3 ~curve 2!, 20.4
~curve3!, and20.5 ~curve4!.
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of the leading impedance value,25 which agrees with esti-
mates that follow from~32!. The results of Demishev
et al.25,26 can serve as proof of the presence of cylindri
sections on the Fermi surface of the layered conductors u
in their studies.

The data of Ref. 26 allows estimating the parameterb,
which characterizes the shape of the quasicylindrical sec
of the Fermi surface of~BEDO-TTF!2ReO4~H2O!, via ~34!
and~35!. The experiment was conducted at frequencies c
respond to variations invt in the interval from 10 to 20 and
to variations inDH/Hr in the interval from 0.11 to 0.06. This
yields b'2(0.25– 0.35).

The resonance peak in the field dependence of the ac
part of the impedance must be accompanied by a stro
singularity in the field dependence ofdR/dH. If the curva-
ture of the Fermi surface rapidly increases as we move a
from the line of parabolic points, the height of the peak in t
field dependence ofR(H) corresponding to cyclotron reso
nance may prove to be too small to be observable. Howe
the resonance singularity in the derivative of the impeda
under these conditions may clearly manifest itself. The re
nant singularities in the field and frequency dependence
dR/dH can also be observed ifb.0. This corresponds to a
anomalously large curvature of the Fermi surface in the
cinity of sections with minimum or maximum diameter. C
clotron resonance can be observed at moderate values o
parameterb (0,b,1). In contrast to the above case f
positive b, cyclotron resonance does not manifest itself
the field dependence of the real part of the resonance.
field-dependent term in the expression~32! for R(H) de-
creases monotonically with increasing magnetic field. T

FIG. 4. Cyclotron-resonance induced singularities in the field dependen
dR/dH for a layered conductor in the case where one extremal section
the Fermi surface coincides with line of parabolic points. The curves
plotted forvt520 andr50.05 withb520.25~curve1! and20.75~curve
2!.
l
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resonance dependence ofdR/dH near cyclotron resonance i
depicted in Figs. 4 and 5 for several values of the pa
meterb.

4. CONCLUSION

It is too early to draw any conclusions about the loc
features of the geometry of the Fermi surface of the majo
of layered organic metals, since there is a lot to study in
electron energy spectra of such materials. It can be assu
however, that here, as in ordinary metals, the Fermi surf
contains quasicylindrical bands or sections with an anom
lously large curvature. These features of the local geom
of the Fermi surface can be created~if they are absent! or
enhanced by applying an agent that changes the shape o
constant-energy surfaces, e.g., by applying external pres
along the normal to the conducting planes.

The above analysis shows that the special features in
profile of the corrugated cylinder, which is the main part
the Fermi surface of layered organic metals, can substant
change the high-frequency properties of these materials.
model developed in this paper makes it possible to stud
detail the observable manifestations of the local geometry
the Fermi surface of layered conductors. It resolves som
the difficulties that emerge when one uses the model
tightly bound electrons. For instance, the characteristic f
tures of the observable properties of layered conductors,
which the strong anisotropy of the electrical conductivity
responsible, can be described and analyzed without pas
to the limit h→0, which corresponds to a conductor with
two-dimensional energy spectrum of the charge carriers.

The model specified by Eqs.~3! and ~4! makes it pos-
sible to do a detailed study of the frequency dependenc

of
of
e

FIG. 5. Cyclotron-resonance induced singularities in the field dependenc
dR/dH for a layered conductor whose Fermi-surface curvature has a si
larity in one of the extremal sections. The curves are plotted forvt520
with b50.25 ~curve1! and 0.5~curve2!.
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1227JETP 86 (6), June 1998 N. A. Zimbovskaya
the surface impedance of layered conductors with differ
Fermi-surface profiles; with it we can analyze on a unifi
basis all possible manifestations of cyclotron resonance
magnetic field that is perpendicular to the surface of the c
ductor. By using this model, we can investigate the quan
oscillations of the thermodynamic characteristics of laye
conductors, and the results of such research could be in
esting.

* !E-mail: drig@ugi.rcupi.e-burg.su
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Antiferromagnetic resonance in Bi 2CuO4
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Magnetic resonance of the low-frequency spin-wave branch in the Bi2CuO4 antiferromagnet with
an easy-plane anisotropy has been studied. Angular, frequency, and temperature dependences
of the position and width of the antiferromagnetic resonance~AFMR! line have been measured.
Our measurements combined with earlier data@H. Ochta, K. Yoshida, T. Matsuya, T.
Nanba, M. Motokawa, K. Yamada, Y. Endon, and S. Hosoya, J. Phys. Soc. Jpn.61, 2921~1992!;
E. W. Ong, G. H. Kwei, R. A. Robinson, B. L. Ramakrishna, and R. B. von Dreele, Phys.
Rev. B42, 4255~1990!# have allowed us to determine anisotropy constants of this material and
to account for the unusual character of its static susceptibility anisotropy. The AFMR line
shifts to the high-field side and broadens in a temperature range of 10–15 K, and the cause of this
has remained unclear. In the low-temperature range the line shows a hysteresis corresponding
to a static field magnitude several times as large as the spin-flop field. The position and
width of the AFMR line depend sensitively on the sample preparation technique. ©1998
American Institute of Physics.@S1063-7761~98!02406-8#
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1. INTRODUCTION

Study of materials containing ions of variable valence
one of rapidly developing branches of modern physics. T
attract researchers’ attention primarily in connection with
discoveries of high-temperature superconductivity and g
magnetoresistance in such materials.

One representative of this class is Bi2CuO4, whose
structure belongs to the space groupP4/ncc.2–4 The mag-
netic moment of the Cu21 cation is due to a single uncom
pensated electron in thed-shell. Neutron diffraction
studies2,4–6 of Bi2CuO4 indicate the presence of three
dimensional magnetic ordering at temperatures belowTN

.42 K.
The unit cell of Bi2CuO4 contains four copper ions. In

the conventional notation,4 the positions of these ions in th
lattice are as follows: Cu~1!, (1/4,1/4,z); Cu~2!, (1/4,1/4,
z11/2); Cu~3!, (3/4,3/4,1/22z); Cu~4!, (3/4,3/4,2z). The
parameterz is the shift of the parallelepipeds formed b
Cu~1! and Cu~2! ions with respect to those of Cu~3! and
Cu~4! ions along theC(4) axis. The value ofz equals 0.076
of the lattice constantc.4 The chains of Cu~1!, Cu~2! and
Cu~3!, Cu~4! ions form two magnetic sublattices in the an
ferromagnetically ordered state of Bi2CuO4. The magnetic
anisotropy for Cu21 ions is determined by the anisotrop
exchange, since a one-ion anisotropy due to the electric c
tal field does not affect ions with spin 1/2. The exchan
anisotropy aligns the magnetic moments of the sublatt
within the plane perpendicular to the four-fold axis.6,7 In the
absence of magnetic field, the antiferromagnetic vecto
directed along a diagonal of the (a,b) square in the easy
1221063-7761/98/86(6)/6/$15.00
s
y
e
nt

s-
e
s
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plane.8 The effective magnetic moment of the Cu21 ion in
antiferromagnetic Bi2CuO4 at 4.2 K is 0.65– 0.85mB .6,7

The electron spin resonance in the magnetically orde
phase (T,TN) was studied in the submillimeter wav
region.1 From these measurements, the energy gap separ
the exchange~high-frequency! branch of the magnon spec
trum was derived. The antiferromagnetic resonance of
lower branch of the magnon spectrum in Bi2CuO4 single
crystals grown from a melt was studied by Pankrats et8

The frequency and angular dependences of the antiferrom
netic resonance field in the microwave and submillime
wave bands were in good agreement with the magnetic st
ture of Bi2CuO4 determined previously.6,7

The static magnetic characteristics of samples dep
sensitively on their preparation technique. Crystals grown
the hydrothermal technique9 have in the ordered state a sma
ferromagnetic momentm in the basal plane of less than on
percent of the nominal Cu21 magnetic moment, which drop
as the static magnetic field grows and vanishes
H.30 kOe (T54.2 K). Samples grown from a melt do no
manifest a weak ferromagnetism.5,6 In the range of strong
static fields, the susceptibilities of both types of samples
equal. The small ferromagnetic moment in samples made
the hydrothermal method was attributed to t
Dzyaloshinskii–Moria interaction.9

In the present work, we have studied the microwa
electron spin resonance of Bi2CuO4 single crystals of both
types in the temperature range belowTN , and also in
samples annealed after growth in an oxygen–helium at
sphere.
8 © 1998 American Institute of Physics
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2. SAMPLES AND EXPERIMENTAL TECHNIQUES

We have studied Bi2CuO4 samples grown both by th
flux method and hydrothermal technique.10,11,13

The samples were tested by x-ray diffraction and x-
microanalyzer. x-ray diffraction measurements using a
max-3C microdiffractometer produced by Rigaku demo
strated identical crystal structures of samples prepared by
two techniques. Nonetheless, the quantitative analysis of
samples performed on a JXA-8600 electron microsc
combined with an x-ray analyzer produced by JEOL,
which we used the ZAF-correction program and refere
samples of copper and bismuth~the oxygen content was de
termined by subtraction! revealed differences between com
positions of crystals made by the two different metho
Samples grown from a melt had the compositi
Bi1.9CuO3.87, whereas samples prepared by the hydrother
technique had the formula Bi2.05CuO3.84.

The comparison between the formulas of crystals gro
by different techniques indicates that the degree of oxida
of cations in crystals grown from the hydrothermal soluti
is slightly lower than in samples grown from a melt. Th
difference may be caused by the fact that it is difficult
create a high oxidation potential in an autoclave, theref
hydrothermal crystals are deficient in oxygen, and a sm
quantity of nonmagnetic Cu1 cations is present.

Experiments were performed on both as-grown crys
and samples annealed after growth in an atmosphere of
gen or nitrogen. The annealing was performed at 600°C
30 h. Note that the annealing in oxygen and nitrogen did
affect the positions and widths of AFMR lines in sampl
grown from a melt, but radically changed magnetic prop
ties of samples made by the hydrothermal technique.

Typical dimensions of Bi2CuO4 samples grown from a
melt and hydrothermally were 23230.5 and 131
30.1 mm3, respectively.

The electron spin resonance was measured on a tr
mission microwave spectrometer. A sample was placed
rectangular cavity whose resonant modes were in the
quency band of 23–78 GHz. The device was designed
allow sample rotation during an experiment. A magne
field of 0 to 40 kOe was produced by a superconduct
solenoid. The cell with a sample was in a vacuum jacket
that we could perform our measurements in a tempera
range of 1.2 to 110 K. Measurements at a frequency of
GHz were performed on a commercial ESR spectrom
produced by Brucker.

3. EXPERIMENTAL RESULTS

3.1. Measurements of samples grown from melt solution

Figure 1 shows traces of microwave power transmit
through the cavity versus magnetic field at various tempe
tures. In the temperature range close toTN , the ESR line is
considerably broadened, and a new line forms at a magn
field slightly higher than that of ESR. In the low-temperatu
range,T,12 K, the absorption line shape depends on
field scan direction. The solid curves in Fig. 1 were record
in an increasing magnetic field, and the dashed curves
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decreasing field. The hysteresis behavior is more pronoun
at lower magnetic fields, corresponding to lower reson
frequencies.

The position of the absorption line is strongly anis
tropic. Measurements of angular dependence performe
different microwave frequencies and temperature have d
onstrated that resonance conditions are determined by
static field projection on the plane perpendicular to the fo
fold symmetry axis. When the static field was rotated in t
basal plane, the line shift was well described by the funct
Acos(4w). The resonant field had maxima when its directi
coincided with thea- or b-axis.

The resonant field versus frequency is close to a lin
function. The absorption peak is close to the ESR position
a paramagnet withg-factor g52. Note that resonant field
measured in earlier experiments with the sa
configuration1,8,12,14were also close to a straight line of th
same slope. Figure 2 shows resonant fields of samples
respect to the resonant field of diphenylpicrylhydraz
~DPPH!, which was used as a reference (g52 for DPPH!. It
is clear that the curve of the frequency dependence is ste
than that of the free radical at 25 K, whereas at lower te
peratures it has a gentler slope.

The temperature dependence of the resonant field
microwave frequency of 36 GHz is plotted in Fig. 3. Expe
ments have been performed with two orientations of
static field in the basal plane,w50° and 45°. The resonan
field shifts to higher values in the temperature range
10–15 K.

As was noted above, experiments have been perform
on both as-grown samples and crystals annealed in the a
sphere of oxygen or nitrogen. Within the experimental u
certainty, the annealing has no effect on the resonance
Bi2CuO4 crystals grown from a melt. The microanalysis
chemical composition also has not revealed any change
ter annealing.

Figure 4 shows the AFMR line width as a function

FIG. 1. Typical curves of microwave power transmitted through the cav
loaded with a Bi2CuO4 sample grown from a melt versus magnetic field
several temperatures. The narrow resonance line whose position is ind
dent of the temperature is due to a DPPH sample, which is used as a
ence for measuring the applied static magnetic field. The solid curves w
recorded when the field was scanned in the upward direction, the da
lines correspond to decreasing magnetic field;n536 GHz, Hi@110#.
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temperature for two nonannealed samples. One can see
the temperature-dependent parts of the AFMR line width
similar. The part of the line width independent of tempe
ture is, most probably, due to an inhomogeneous line bro
ening and depends sensitively on the sample quality.
most plausible factor leading to the inhomogeneous broad
ing is variation in the alignment of theC2 axis over the
crystal volume. No correlation between the line width a
annealing conditions has been detected.

Recordings of the derivative of the absorbed microwa
power with respect to magnetic field~at n59.3 GHz) as a
function of the field are plotted in Fig. 5. Absorption line
recorded for both scanning directions have a rich fine str
ture, which manifests in the low-temperature rangeT
,15 K). This fine structure is well reproducible. The fin
structure is seen in the range of magnetic field below
antiferromagnetic resonance at all static field orientation
the basal plane.

3.2. Discussion

The changes in the resonant absorption with tempera
~Fig. 1! and the strong dependence of the resonant fieldHR

on the static field orientation provide strong evidence in
vor of an antiferromagnetic resonance in Bi2CuO4. Another
argument in favor of the interpretation of the resonant
sorption in terms of uniform precession of the magnetic m
ment is the fine structure in absorption spectra in the fi
range below the main resonance~Fig. 5!. In all probability,
the recorded fine structure is due to spin-wave resonance
Bi2CuO4. The presence of resonances corresponding to la
wave numbers allows us to rule out an interpretation asc
ing the absorption line to impurities.

FIG. 2. AFMR field HR measured with respect to the ESR fieldH0 for
DPPH as a function of microwave frequency. Open symbols correspon
temperatureT54.2 K, filled symbols toT523 K; filled squares and open
circles correspond toHi@110#, and filled circles and triangles toHi@100#.
The samples were grown from a melt. The solid lines are calculations o
AFMR field as a function of frequency by Eq.~2! with parameters
HA

(4)HE510 and 6.8 kOe2 and a/A520.02 and20.1 at temperatures
T54.2 and 23 K, respectively. The dashed and dash-dotted lines show
culations atw522.5°, when the gap in the spectrum due to anisotropy in
plane perpendicular to the four-fold axis vanishes.
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The presence of the gapless branch in the spectrum
magnetic excitations is in accordance with submillime
wave and microwave measurements,1,8 and with neutron dif-
fraction experiments,7 but contradicts other neutronograph
measurements.12

All resonance properties of Bi2CuO4 can be easily de-
scribed considering it as a two-sublattice antiferromag
with an easy-plane magnetic anisotropy. A phenomenolo
cal theory of the antiferromagnetic resonance taking into
count an easy-plane anisotropy was given by Turov.13 The
energy density of such an antiferromagnet is expressed13

F m5A/2m21a/2 mz
21b/2 l z

21 f /2 l x
2l y

222M0 mH.
~1!

Here M0 is the saturation magnetization of one sublatticel
andm are the normalized vectors of antiferromagnetism a
magnetization (m21 l 251, m• l50). The first term on the
right-hand side is the exchange energy, the second and
are responsible for the crystallographic magnetic anisotr
of a uniaxial crystal~in the case of an easy-plane anisotro
b.0). The fourth-order term takes into account the anis
ropy in the basal plane perpendicular to the@001# axis. The
last term describes the magnetic energy due to applied m
netic field.

The two AFMR frequencies corresponding to the aco
tic and optic magnon branches are given by

v15g@H2~11a/A!2HEHA
~4! cos~4w!#1/2, ~2!

v25g@HEHA#1/2@12H2/HE
2 #1/2, ~3!

whereg5g'mB /\518.153109 s21 kOe21 is the gyromag-
netic ratio ~according to Ref. 1g'52.04), H is the static
magnetic field, HE5A/2M0 , HA5b/2M0 , and HA

(4)

5(g/2M0) f . From the static susceptibility measured b
Ochta et al.1 for H'C(4), we derive HE52M0 /x'c

52000 kOe;HA512 kOe can be derived from the width o
the gap separating the high-frequency AFMR branch.1 From
our measurements, we deriveHA

(4) and the ratioa/A. The
solid line in Fig. 4 shows calculations of the frequency d
pendence of the AFMR field by Eq.~2! with HEHA

(4)510
and 6.8 kOe2 and a/A520.02 and20.1 at temperatures
T54.2 and 23 K, respectively. The curves ofHEHA

(4) and
a/A versus temperature are plotted in Fig. 3. The minus s
in front of a indicates the easy-axis anisotropy for the ferr
magnetic vectorm, whereas the antiferromagnetic vectorl
has an easy-plane anisotropy (b.0). Given a/A, one can
determine the ratio between the static susceptibilitiesx' /x i
511a/A.13 The subscripts indicate the magnetic field o
entation with respect to the four-fold axisC(4). It is clear
that, given the negativea for Bi2CuO4, x' should be about
10% smaller thanx i at T520 K, which is in reasonable
agreement with static magnetic measurements.1,6 It is re-
markable that the temperature dependence of the anisot
constanta ~Fig. 3! is strong in the temperature range
10–20 K, which is far fromTN . The AFMR line also broad-
ens considerably in this temperature interval~Fig. 4!. All
these effects may be related to a structural transition
Bi2CuO4, because the unit cell volume also increas
abruptly in this region.4
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1231JETP 86 (6), June 1998 Svistov et al.
FIG. 3. ~a! Resonant field versus temperature at microwa
frequencyn536 GHz. Measurements were performed f
two orientations of the static field in the basal plane,w
50 and 45°. Different symbols show measurements
samples annealed in oxygen or nitrogen, and as-gro
samples. Within the experimental uncertainty, curves
HR(T) for all samples are identical. The samples we
grown from a melt.~b! and~c! Temperature dependences o
a/A andHA

(4)HE derived from measurements plotted in Fi
3a.
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In addition to the step on the curve of the AFMR lin
width versus temperature in the range of 10–15 K~Fig. 4!,
the width also grows rapidly as the temperature approac
the Néel temperature. This temperature-dependent part of
line width is largely due to the process of three-magnon
laxation. The solid curve in this graph shows calculations
the AFMR line width caused by the above mentioned rel
ation process using the equation given in Ref. 15 and par
eters of Bi2CuO4 given in this section.

The hysteretic behavior of the absorption line up
fields several times larger than spin-flop fields indicates
presence of a highly developed system of antiferromagn
domains. Unlike the case of a ferromagnet, antiferromagn
domains are equivalent in energy terms in fields higher t
the spin-flop field, so even a slight pinning makes a dom
wall stable up to the high fields. It is probable that the sh
of the resonance field, step-like growth of the line wid
hysteretic behavior of the absorption line, and the abr
change in the cell volume in the temperature range of 10
K are caused by a sharp decrease in the mobility of dom
es
e
-
f
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ic
n

in
t
,
t
5
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FIG. 4. AFMR line widths versus temperature atn536 GHz. Filled squares
and triangles show measurements of two different as-grown samples.
solid curve shows calculations of line widths due to three-magnon relaxa
based on formulas of Ref. 15. The samples were grown from a melt.
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FIG. 5. Measurements of the derivative of th
microwave power absorbed by the sample wi
respect to magnetic field as a function of applie
magnetic field.n59.3 GHz, T510 K, w50°.
The arrow indicates the AFMR position calcu
lated by Eq.~2! with the parameters correspond
ing to the given temperature. The lower grap
shows curves on the extended magnetic fie
scale.
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walls. Information about the nature of antiferromagnetic d
mains in Bi2CuO4 may be derived from measurements
nuclear magnetic resonance and magneto-acoustic ex
ments.

3.3. Measurements of samples grown by the hydrothermal
technique and discussion

In experiments with samples obtained by the hydroth
mal technique, we have detected two lines of resonance
sorption. Typical curves are given in Fig. 6. The field
resonanceR1 strongly depends on the direction of the sta

FIG. 6. Typical curves of microwave power transmitted through the ca
loaded with a Bi2CuO4 sample grown by the hydrothermal technique
n536 GHz and different temperatures.
-

ri-

r-
b-

field H, whereas the position of resonanceR2 is independent
of its orientation. As in the case of samples grown from
melt, the conditions of resonanceR1 are controlled by the
static field projection on the plane perpendicular to the fo
fold axis. The position of the low-field resonanceR1
strongly depends on temperature~Fig. 7!. At the same time,

y
FIG. 7. Resonance fieldsHR1 andHR2 versus temperature atn536 GHz.
The samples were grown by the hydrothermal technique.



re
lin
o
F

is
ts
e
a

et

-

l-

-
T

a

al

n

co
u
es
o
ha
ou
st
wa

ed
istic
he
e
se
on-
er
pes
the

r
sts
the

-
lat-
ms

do-

I.
rk
Re-

a,

B.

ez,

on-

To-
, J.

hi,

m-

gn.

e

v,

1233JETP 86 (6), June 1998 Svistov et al.
the line width and intensity in the range of 1.2–25 K a
almost independent of the temperature. The amplitude of
R2 rapidly drops with temperature. The resonant fields c
responding to these lines versus frequency are plotted in
8. At frequencies higher than 45 GHz~i.e., in fields higher
than 9–10 kOe! only line R2 can be seen in the spectra. It
highly probable that lineR2 is due to paramagnetic defec
in the sample, whereas lineR1 is caused by excitations in th
magnetically ordered crystal. If we assume that the sm
ferromagnetic moment is caused by the canting of magn
sublattices due to the Dzyaloshinskii interaction,9 the Dzy-
aloshinskii effective fieldHD can be derived from measure
ments of the resonant field as a function of frequency.13 The
solid curve in Fig. 8 plots a fitting of the resonant field ca
culated by Eq.~2!, whereH2 in the first term on the right-
hand side is replaced byH(H1HD) and the rest of the con
stants are the same as in samples grown from a melt.
best fitting was obtained atHD520 kOe. This result is a
factor of four larger than the value derived from static me
surements of magnetization.9

Annealing of crystals grown by the hydrotherm
method led to unexpected results. The absorption lineR1
vanished after annealing in atmospheres of either oxyge
helium, whereas the position and intensity of lineR2 did not
change. The annealing was performed under the same
ditions as in the case of the crystals grown by the fl
method. Given the oxygen deficiency in the initial sampl
we expected that annealing in an oxygen atmosphere sh
have led to the appearance of an AFMR line similar to t
of samples grown from a melt, but it was not detected in
experiments. X-ray microanalysis showed that the cry
composition after the annealing in oxygen atmosphere

FIG. 8. Resonant fieldsHR1 and HR2 versus frequency atT54.2 K. The
samples were grown by the hydrothermal technique.
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Bi2.05CuO3.91, i.e., the oxidation degree of cations increas
after the annealing, but did not reach the value character
to the crystals grown from a melt. It is plausible that t
conditions of this annealing are too mild to get rid of th
oxygen deficiency in the crystal, but it is sufficient to relea
local elastic strains in the crystal or make the oxygen c
centration uniform over the crystal volume. On the oth
hand, the difference between the properties of the two ty
of crystals can be attributed to different ratios between
contents of copper and bismuth.

The elimination of lineR1 after annealing in oxygen o
helium atmosphere under relatively mild conditions ca
doubt on the conjecture about a relationship between
small ferromagnetic moment in Bi2CuO4 samples manufac
tured by the hydrothermal technique and canting of sub
tices due to the Dzyaloshinskii–Moria interaction. It see
more probable that the resonant absorption in lineR1 and the
small ferromagnetic moment are due to the presence of
main walls in the samples.
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The new geometry for an oblique Josephson junction of finite thickness along the magnetic field
is considered and a nonlocal integro-differential equation describing the dynamics of the
phase difference is derived. The spectrum of low-amplitude electromagnetic excitations for lap-
joint junctions is also studied. ©1998 American Institute of Physics.@S1063-7761~98!02506-2#
d

su
ha
r-
do
er
g

r-
he

a
s

al
g
r.

d
o

cu
e

h
g
o

th

–O
in

in
to

th
a

th
th
o

a

ob-
tio
d

in
ne
ks

c-
ary
pli-
c-
can
ons.
e
f a
w-
the

ob-
e
s
ed
is a
ith

rm
f
al-

rt-
1. So far the equations of nonlocal Josephson electro
namics have been derived and studied in four cases:~1! a
tunneling junction at the interface between two ultrathin
perconducting films whose thickness is much smaller t
the London length;~2! a tunnel junction between bulk supe
conductors whose thickness is much larger than the Lon
length;~3! a tunnel junction between superconducting lay
of finite thickness in the direction perpendicular to the ma
netic field; and~4! a tunnel junction at a butt-joint of supe
conducting plates of finite thickness in the direction of t
magnetic field.

For example, in Ref. 1–8 it was shown that nonloc
effects can be large even in junctions with a large thicknesd
~d@l, wherel is the London penetration depth! in the di-
rection of the magnetic field~in the direction parallel to the
vortices!, i.e., in situations previously studied in the loc
approximation. In the opposite limit of junctions involvin
thin films, with d!l, nonlocality becomes a decisive facto
The corresponding equations were derived and studie
Refs. 9–12. A Josephson junction between two superc
ducting layers of finite thickness in the direction perpendi
lar to the magnetic field of the vortices was studied in R
13.

Nevertheless, there are still many ways in which t
theory can be improved. For one thing, it is necessary to
beyond the limits mentioned above, since experimenters
ten use junctions whose size in the direction in which
Josephson vortices are oriented is comparable tol. Such a
geometry is realized, e.g., in single-crystal Y–Ba–Cu
chips with twins and in other ceramic materials with tw
boundaries.

Such an approach was adopted in Ref. 14 for a butt-jo
junction ~the plane of the tunnel junction is perpendicular
the plate plane! for an arbitrary ratiod/l. There it was found
that the relationship between the jump in the phase of
order parameter at the junction and the current density
ways contains a nonlocal component, whose origin lies in
long-range nature of the field in free space, and that
amplitude of this component is only weakly dependent
the parameterl/d ~the dependence is almost linear! and its
shape is independent ofl/d.

The present paper contains a derivation and prelimin
1231063-7761/98/86(6)/4/$15.00
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analysis of the equations of the electrodynamics of an
lique Josephson junction in a plate with an arbitrary ra
d/l and an arbitrary anglea between the junction plane an
the normal to the plate plane. Such junctions may arise
two types of experiment. First, in granulated polycrystalli
high-Tc ceramic materials there can be random weak lin
with different values ofa, from a butt-joint junction (a
.0) to a lap-joint junction (a.p/2). Probably, the main
fraction of such junctions consists of general-position jun
tions, i.e., oblique Josephson junctions with an arbitr
value ofa. Second, experimental studies and practical ap
cations ordinarily use lap-joint junctions with a large jun
tion area. The method used in fabricating such junctions
also be employed to produce oblique Josephson juncti
For a lap-joint junction (a→p/2), not considered so far, w
study, in the nondissipative limit and in the absence o
transport current and an external field, the spectrum of lo
amplitude electromagnetic excitations propagating along
junction.

The problem posed above is reduced to that of an
lique Abrikosov vortex in a plane-parallel plate of finit
thickness 2d in the direction of the magnetic field. Thi
problem of calculating an oblique vortex current averag
over the plate thickness and normal to the junction plane
new one. The results refer to a general-position junction w
an arbitrary anglea. For a→p/2 is is possible to approxi-
mately integrate the Fourier transform of the integral te
over the fast variableky tana and thus find the spectra o
low-amplitude electromagnetic excitations for arbitrary v
ues of the wave vector and the ratiod/l. It is also possible in
this case to find the explicit form of such spectra in the sho
and long-wavelength ranges of the spectrum ford/l@1 and
d/l!1.

2. The magnetic field of an arbitrary linear source~e.g., a
vortex considered in the London approximation! in a super-
conducting plate satisfies the equation

l2Dh2h52n~r !,

n~r !5
F0

2p
curl ¹u5

F0

2p E d~r2R~p!!dR~p!, ~1!
4 © 1998 American Institute of Physics
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whereF0 is the magnetic flux quantum,u is the phase of the
order parameter, andR(p) is the parametrically specifie
radius vector of the points of the vortex core. The core of
Josephson vortex spreads out along the weak-link surfaS
dividing the superconductor and is a two-dimensional obje
Clearly, the corresponding sourcen~r !, smeared over this
surface, in Eq.~1! can be expressed by the formula

n~r !5
F0

2p E d~r2R~a,b!!S ]w

]R
3dS~a,b! D , ~2!

wherea andb are the arguments of the parametric repres
tation of S, R(a,b) is the radius vector of the points ofS,
dS(a,b) is a vector area element ofS, and w is the phase
difference between the edges of the junction. Since we h
div n50, the arbitrary source of magnetic field can either
represented by a continuous sum over linear cores~andh can
be represented as a linear combination of the Abrikosov v
tices! or, conversely, be treated as a three-dimensional ve
field. We direct thez axis transverse to and thex axis along
the junction. Then for a general junction oriented at an a
trary anglea and a magnetic field directed at the anglep/2
2a Eq. ~2! yields

nx~r !50, ny~r !5
F0

2p
tan ad~y2z tan a!

]w~x!

]x
,

nz~r !5
F0

2p
d~y2z tan a!

]w~x!

]x
, ~3!

wherew~r ! is the jump in the phase of the order paramete
the sides of the junction,

w~r !5u~x,y cosa2z sin a510!

2u~x,y cosa2z sin a520!, ~4!

which, in view of ~3! and the fact that divn50, is indepen-
dent of the coordinatesy andz.

The phase jump and hence the source can be foun
solving the complete nonlinear equation for the junctio
Note that even without solving this equation, we see that
to the linearity of Eq.~1! we can write the magnetic field a
h5Hm1H, whereHm is the seed Meissner field generat
by the given transport supercurrent and the external magn
field and is determined by solving the homogeneous ana
of Eq. ~1! as if there were no weak link and the superco
ductor were continuous, and the fieldH is generated by the
source ~H vanishes at n50.! Taking a two-dimen-
sional Fourier transform in the planexy of a plate of thick-
ness 2d, uzu,d, we find that

H5H01a exp~kz!1b exp~2kz!, ~5!

H052E
2d

d sinh kuz2z8u
2kl2 n~k,z8!dz8,

k5~l221k2!1/2, k25kx
21ky

2 , ~6!

wherek is a two-dimensional wave vector. The vector co
ficients a and b are determined, first, by the condition th
the field be divergence-free,
e
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]Hz

]z
1 ik–Hi50, ~7!

and continuous at the edges of the plate and, second, by
potential nature of the tangential component of the magn
field at the boundary of the superconductor~which means
that the component of the current normal to the surface v
ishes! and by the potential nature of all three components
the field in free space. The latter condition yields

Hi

Hzuz56d
57

ik

uku
, ~8!

which accounts for the effect of free space on the field a
current distributions in the superconductor. Here and be
the subscripti denotes thex- andy-projections of vectors.

One consequence of~7! and ~8! is

]Hz

]z U
z56d

57Hzuz56d , ~9!

which determines the coefficientsaz andbz in terms of the
source field:

az5D21H S ]H0z

]z
2kH0zD U

z52d

~k2k!exp~2kd!

2S ]H0z

]z
1kH0zD U

z5d

~k1k!exp~kd!J ,

bz5D21H S ]H0z

]z
2kH0zD U

z52d

~k1k!exp~kd!

2S ]H0z

]z
1kH0zD U

z5d

~k2k!exp~2kd!J , ~10!

where

D54~k sinh kd1k coshkd!~k coshkd1k sinh kd!,

k5uku.

By combining~8! and~10! we can write the coefficients
ai andbi in terms of the source field:

ai5
1

2 sinh~2kd! H 2 i
k

k
@Hzuz5d exp~kd!

1Hzuz52d exp~2kd!#2H0iuz5d

3exp~kd!1H0iuz52d exp~2kd!J ,

bi5
1

2 sinh~2kd! H i
k

k
@Hzuz5d

3exp~2kd!1Hzuz52d exp~kd!#

1H0iuz5d exp~2kd!2H0iuz52d exp~kd!J . ~11!

Formulas~5!–~11! make it possible to find the field an
supercurrent inside the plate for an arbitrary source.

Plugging~3! into ~6!, combining the result with~5!, and
going over to the coordinate representation, from~5!–~11!
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we arrive at the following expression for the density of t
current flowing through the junction in the direction norm
to the junction plane and averaged over the plate thickne

j ~x!5Jm~x!1J~x!,

where Jm is the seed Meissner current determined by
field Hm , and

J~x!5
cF0

16p3l2

]

]x E Q~x2x8!
]

]x8
w~x8!dx8 ~12!

is the current due to the source. Here the nonlocal sour
current kernel is

Q~x!5K0S uxu
l D1Q1~x!, ~13!

whereK0 is a modified Bessel function of order zero,

Q1~x!5E dkxdky

~2p!2 exp~ ikxx!Q1~kx ,ky!, ~14!

and the Fourier transform of the kernelQ1(kx ,ky) is

Q1~kx ,ky!

5
1

k coshkd1k sinh kd

1

k sinh kd1k coshkd

3H cosaH k

2dk~k21 k̃y
2!

@k cosh~2kd!1k sinh~2kd!

2k cos~2k̃yd!1 k̃y sin~2k̃yd!#

2
1

kd~k21 k̃y
2!2

@2kk2k̃y cos k̃yd sin k̃yd1k2

3~k22 k̃y
2!~cosh2 kd sin2 k̃yd1sinh2 kd cos2 k̃yd!

1kk~k22 k̃y
2!coshkd sinh kd#J

1
k sin a

d~k21 k̃y
2!2 sinh kd coshkd

H 2tan a@cosh2 kd

3sin2 k̃yd1sinh2 kd cos2 k̃yd#~k coshkd

1k sinh kd!~k sinh kd1k coshkd!

1
ky

k
@~k22 k̃y

2!sinh kd coskd sin k̃yd

3cos k̃yd1k k̃y~sinh4 kd cos2 k̃yd1cosh4 kd

3sin2 k̃yd2sinh2 kd cosh2 kd!#J J , ~15!

with k̃y5ky tana, 0<a<p/2. If in ~13!–~15! we set a
equal to zero, we arrive at the results of Ref. 14 for a b
joint Josephson junction. In this case, the first term in~13!
l
s:

e

–

t-

corresponds to the limit of two bulk superconductors
thicknessd@l and is the kernel of the integral term in th
equation first obtained in Ref. 1 and used in Refs. 2–8. In
opposite limit of ultrathin films of thicknessd!l, the sum
of both terms gives the kernel of the integral term in t
equation first studied in Refs. 9, 10, and 11 and equal to

Q~x!5
leff

p E
0

` dk

112kleff
J0~kx!, ~16!

where J0 is the Bessel function of order zero, andleff

5l2/2d is the Peierls penetration depth.
3. A closed equation for the phase difference at the ju

tion can be obtained, as usual, by equatingj (x) to the sum of
the Josephson supercurrent, the normal current, and the
pacitive displacement current, all regarded as internal ch
acteristics of the junctions, and in standard notation has
form

sin w1
b

vJ
2

]w

]t
1vJ

22 ]2w

]t2

5
Jm~x!

j c
1

lJ
2

pl

]

]x E Q~x2x8!
]w~x8!

]x8
dx8, ~17!

where j c is the Josephson current density,lJ andvJ are the
Josephson length and frequency, andb is the dissipation pa-
rameter.

The integral kernelQ(x) describes excitations in a Jo
sephson junction in a unified manner, both in a thin film a
in a sample that is thick in the direction of the magnetic fie
In the general intermediate case with an arbitrary anglea, it
is the sum of a well-localized term and a strongly nonlo
nonintegrable term~the second term on the right-hand side
Eq. ~13!!, which originates in the slowly decreasing tange
tial component of the magnetic field in free space at
surface of the plate. Here, for a near-butt-joint juncti
~when the value of the anglea is zero or very small! and a
near-lap-joint junction~when the value of the anglea is
close top/2), there are two physically distinct asymptot
expressions for the kernelQ1(x) at large values of the argu
ment x. For instance, whena is close to zero, the vortex
magnetic flux is almost perpendicular to the plate plane
the magnetic fields on either side of the plate have oppo
signs. This leads to a power dependence forQ1(x) at large
distances~see Ref. 14!:

Q1~x!;
l2

duxu
. ~18!

On the other hand, fora close top/2, the vortex magnetic
flux is almost parallel to the plane of the plate and the m
netic field in free space above and below of the plate
almost perfectly balanced. This lowers the degree of non
cality of Q1(x), which according to~13!–~15! is character-
ized by an exponential asymptotic behavior at largex:

Q1~x!}
l

d
K0S uxu

d tan a D , ~19!

where the decay length is equal to the effective thicknes
the junctiond tana@l.
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For general junctions, i.e., oblique junctions with an
bitrary anglea, the difference at large distances is in t
nature of the nonlocal behavior ofQ1(x) at large values ofx,
which according to Eqs.~14! and~15! can be calculated nu
merically, and approximatelyQ1(x) has the following
asymptotic behavior:

Q1~x!}A cosa
l2

duxu
1B sin a

l

d
K0S uxu

d tan a D , ~20!

whereA andB are constant factors.
4. Let us now examine the spectrum of low-amplitu

electromagnetic excitations

w~x,t !5w0 exp@ i ~qx2vt !#, uw0u!1, ~21!

for a lap-joint junction, with the excitations propagatin
along the Josephson junction.

In the nondissipative limit and in the absence of a tra
port current and an external field, Eq.~17! yields the follow-
ing dispersion relation

v5vJF11
lJ

2q2

~11l2q2!1/21
lJ

2q2

pl
F~q!G1/2

, ~22!

whereF(q)[Q1(q) and, according to~15!, is given by the
following expression:

Q1~kx!5cot aE dky

2p
Q1~kx ,ky ;cot aky!

'Q1~0!~kx!1cot2 aQ1~2!~kx!1¯ , ~23!

which amounts to the sum of the first two terms in the e
pansion ofQ1(kx) in the small parameter cot2 a!1. In ~23!,

Q1~0!~kx!52
1

4k2d sinh~2kd!

3@cosh~2kd!2~112kd!exp~22kd!#,

Q1~2!~kx!

5
1

k coshkd1k sinh kd

1

k sinh kd1k coshkd

3H sinh~2kd!

4d S 3

2
1

k

k D1
exp~22kd!

4kk

3@k~l2212k2!12kl22#1
k

4kd sinh~2kd!

2
k2

8dk2 sinh2 kd@11exp~22kd!#
-

-

-

1
k coth~2kd!exp~22kd!

4kd
~2kd21!J , ~24!

wherek[kx , andk5(l221kx
2)1/2. Equations~22!–~24! de-

termine the spectrum of low-amplitude electromagnetic
citations for an arbitrary wave vectorq[kx and an arbitrary
ratio d/l. The asymptotic expressions in the short- and lon
wavelength ranges are

v~q→`!5vJF12
lJ

2

4pld
1

lJ
2q2

~11l2q2!1/2G1/2

, ~25!

v~q→0!5vJF11
lJ

2

pd tan2 a
q1S 12

3

4p DlJ
2q2G1/2

~26!

for d!l and

v~q→0!5vJF11
lJ

2

2pd tan2 a
q1lJ

2q2G1/2

~27!

for d@l.
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