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An explanation is given within a previously proposed theory of gravitation with broken

conjugation and parity symmetiqC and P violation) for the recently detected effect of non-
Faraday rotation of the polarization plane in the propagation of electromagnetic radiation
over cosmological distances. @998 American Institute of Physid$$1063-776(98)00106-]

1. INTRODUCTION in our Metagalaxy—too presumptuous a conclusion not to

. . expect objections. And such objections soon appeared in a
An extensive body of experimental facts has been accuﬁaper by Carrol and FieltRef. 3. In contrast to Nodland

mulated(see Ref. 1on the rotation of the plane of polariza- ;4 Raistor, Carrol and Field assumed that the non-
tion of the electromagnetic radiation emitted by distant rad'oFaraday rotation of the polarization plane of the electromag-

ga.\IaX|es(data haye been obtained on 160 ggla)(lfsom netic radiation from all galaxies is of the same type and does
this body of data it clearly follows that the polarization plane ot appear as right and left-handed rotation in different

undergoes not only Faraday rotation, but also an additionar?rou s of galaxies. Such an hvbothesis at once excludes the
rotation. In contrast to Faraday rotation, this other rotatiord 1P 9 ' yp

does not depend on the emission wavelength. The absolu%0 ssdzllttr)]/ Oftlr? troduc!glglj-tan ?symr?(etFr|cal fatﬂsart]z of the t;{[;)e
value of the additional rotation angflies in the range from ) and thus the possibility of a violation of the homogeneity

0 to = (if we disregard the possible addition of multiples of and isotropy of space. According to this hypothesis, the ro-

7 to the valug. Recently Nodland and Ralstérafter math- tation angleg (if we disregard its L_mc_ertainty, wh_ich is_ now
ematically processing these dat@ame to a quite unex- €dual only to-+nw) for the majority of galaxies(with
pected conclusion. According to them, the experimentaF>0'3) is scattered aboutr/2, and the values op= /2

points are most densely grouped about an ansatg &meci- +|ApB| correspond to a smaller number of galaxies, the
fied by the expression larger is the value ofAg| (this is reflected in histograrin

Ref. 3. Carrol and Fieldlassert that the experimental points
1) B (with consideration of the hypothesis of a single type of
rotationg are grouped about the ans@z 7/2 more densely
than around the ansat?). It is impossible to verify this due

the measurement scale of and y is the angle between the 1© the absence of details. However, if we judge from Fig. 2 in
propagation direction of the ray and some unit vectoin Ref. 3 and Fig. 1d_|n R_ef. 2, Wh|ch_ plot dlstnbuthns of the
the case of a sampling of 71 galaxies with a redshiftfumbers of galaxiegwith z>0.3) in g as functions of
z>0.3, the best agreement between form@gand the ob- [ COSY, Itis hard to come to th!s conclusmn.—on a purely
servations is obtained ifis characterized by declination and Visual level they seem to be saying the oppoifecourse, a
right ascension equal to 6°20° and 21 H2h, respec- visual estimate is not always valid, since it depends, for ex-
tively. ample, on the scalgsAt the same time, the question of
A comparison of formula(l) with the observations around which ansatz for thg values are the experimental
shows that most of the galaxies with cgs0 haveg~ /2 points more densely grouped is decisive here. An additional
and that the number of galaxies decreaseg aeviates to independent mathematical treatment of the observatiort data
either side ofr/2. Similarly, the galaxies with cog <0 are is clearly necessary in order to decide if it is at all possible to
scattered irnB about the valug~ — /2. The value of3, for ~ answer this question on the basis of the available data. At the
all galaxies turns out to be near 1°—8%ith a typical value ~current moment, an unequivocal decision in favor of Ref. 2

ﬂzﬁl’ CoS y+ o,

wherer is the distance from the source to the observeis

of 1°). or Ref. 3 would seem premature, although the hypothesis in
In essence, the ansat¥) introduces two types of non- Ref. 3 is preferable from the physical standpoint.
Faraday rotation: right-handed rotation for one group of gal- It should be recalled that the experimental non-Faraday

axies and left-handed rotation for the oth#erefore, the values of$3 were obtained from 160 galaxies, while the main
uncertainty in the determination ¢f for the two groups of conclusions in Refs. 2 and 3 were based on data from the 71
galaxies will be equal to-nw and —n). If we agree that galaxies withz>0.3. What may be expected in the interpre-
the ansatZ1) corresponds more accurately to the observatations in Refs. 2 and 3 from the remaining 89 galaxies with
tions than any other ansatz, then this would be evidence of 2<0.3?

violation of the homogeneity and isotropy of space, at least If the ansat41) is a reflection of an actual law of nature,
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then it should also apply to nearliwith z<<0.3) galaxies. and the structure d1(f) is taken into account, the constabit
This, however, is not observed—it is enough to look at Fig.will always appear in the equation together with the factor
1c from Ref. 2, and even Nodland and Ralétooted the  G/c?).

poor correlation of1) with the observed distribution oved The presence of the last term in E§) at once leads to
for the nearby galaxies. Such a result places the afi$piz  birefringence effects in a gravitational field: an integrated
serious doubt as a universal law. effect of gravitational rotation of the polarization plane and a

If the ansatzB3= /2 proposed in Ref. 3 reflects a law of local effect of visible angular splitting of the rays with right
nature, then the experimeni@lpoints of the nearby galaxies and left circular polarization.
should reproduce histograinin Ref. 3. This, however, they On the path from the source to the observer the polar-
do not do. Therefore, it is still impossible to make a solidization plane is rotated according to E8) by the angle(in
judgment about the universality of the ansatz introduced irradiang
Ref. 3.

If an additional analysis of the data from all 160 radio ,8=C[h(11)(r2)—h<11)(r1)], )
galaxies reveals that the distribution of the obserge@lues  \here h{}(r,) andh{¥(r,) are the values of the tetrads at

on the interva[0,7] correlates very weakly with some ansatz the signal reception and emission points, respectively. It also
or does not correlate with any, then this would indicate thato|iows from Eq.(2) that for the same frequeney pulses of
theﬁ values are distributed_not on the intery@ls], but on photons with right {=1) and left circular {=—1) polar-

the interval[O,nw], wheren is large. From a general stand- jzation will be different from the observation point. Within

point, such a picture seems more likely. However, the decidthe approximation chosen of a weak gravitational field
ing word must wait for an additional mathematical treatment

of all the observation data. p,=Po— {ACVh{(ry). (4)

An explanation for non-Faradaygravitational birefrin- i means that in right- and left-circularly polarized rays
gence based on the theory of gravitation with broken conjughe goyrce will be seen at different angles from the observa-

gation and parity symmetr{C andP violation) proposed in  yion noint. The visible angular splitting will lie in the plane
Ref. 4 is presented below. Additional consequences of thtzgo Vh{!(r,)) and will be equal to

treatments in Refs. 2 and 3 are analyzed. Some of thes

consequences can be interpreted as evidence in favor of the

explanation of Ref. 3, although it is not theoretically possible

to categorically reject the explanation of Ref. 2. The possi- ) . i )
bility of an uncorrelated distribution over the gravitational WhereX is the emission wavelength and is a unit vector
rotation angles3 is also discussed. pointing from the source to the 'observe.r. . ' .

Imagine that a plane-polarized radio signal is emitted

from a satellite traveling along a given elliptical trajectory

CA
a=— |[K°Vhi"(r2)]

: ®)

2. COSMOLOGICAL EFFECTS OF GRAVITATIONAL about the Sun and is received on the Earth. Then
BIREFRINGENCE AS A CONSEQUENCE OF THE THEORY M M

OF GRAVITATION WITH C and P VIOLATION AND h&lJ(r)zl_ Yo _ — (6)
THE POSSIBILITY OF PRESERVING THE MODEL OF A r [r—rgl

HOMOGENEOUS, ISOTROPIC UNIVERSE wherer, is the radius vector of the center of the Earth rela-

In Ref. 4 | constructed a theory of gravitation satisfying tive to the center of the Sun. Consequently,
the _prlnc_lple of the unlve_rsallty of the law of the V|olat|(_)n of CAM., Mo Mo M.
conjugation C) and parity P) symmetry(CP=cons} in a= —siny, B=Cl— —7——= ——1. (V)
nature. By virtue of a number of requirements, the structure R i Ire=R R
of the Lagrangian of spinor particles and the structure of thedere R is the radius vector of the observer relative to the
Lagrangian of polarized photons in a gravitational field turncenter of the Earth, ang is the angle betweep, andR. It
out to be uniquely defined. In the quasiclassical limit bothhas been taken into account in the expressiomfthrat at the
Lagrangians lead to identical dynamical equations of polargarth’s surface the gradient of the Sun’s potential can be
ized particles in a gravitational field. In particular, in the neglected in comparison with the gradient of the Earth’s po-
weak-field approximation the equation describing the propatential and the Earth’s potential in the vicinity of the satellite
gation of circularly polarized photons in space with a statichas been dropped in the expression for
Riemannian metrig,,,(x) has the forn?) If the conditions of the experiment are such that before

2 00, 211 (1 _ the start of the experiment the polarization plane of the

B9+ pigm+2Zh C(pV)hy " =0. @ source on the satellite is set at a certain ariglg., 909 to
HereE=7 w is the photon energy is its canonical momen- the ecliptic plane at the antenfand the orientation of the
tum, {==1 corresponds to right circuldupper sign and  antenna is subsequently held fixed by gyroschpiden by
left circular (lower sign polarization of the photorh® are  determining the orientation of the polarization plane at the
the associated tetratﬂb(va)=g”“h(am, h(b)v=h(f‘) Nap. €IC.,  observer, it is possible to determine the rotation amg)lé,
where 7, is the Minkowski metric tensgrandC is a di-  however, before the start of the experiment the antenna is
mensionless real constant of gravitational interactions violateriented so that the polarization plane at the observer would
ing C and P symmetry(if the units of measure are restored form a certain anglée.g., 909 with the ecliptic plane and




JETP 86 (6), June 1998 Yu. M. Loskutov 1051

the variation of this angle would subsequently be measuredariany. The authors did not observe any noticeable change
as the ray approaches the Sun, then the quantity in the orientation of the polarization plane of the rays at
distances from the Sun greater than six solar radii. On the
1 1 1 :
_ _ — one hand, this means that the magnetoplasma effects are neg-
r(t)  ri(0)] [re(t)  re(0) ligibly small at such distances. On the other hand, if the
R(Dr(t)  R(O)rg(t) ] experiment went according to the first variant, it means that

=Ty 3(0) (8) B, is small, as in the cadefor C<10° (in the second variant
e e this restriction is liftedl. As the ray further approaches the
should be compared with the observations. Sun, quite rapid growth of the rotation angle is observed, but
Gravitational birefringence effects must be comparedt is associated with Faraday rotation rather than gravitational
with the analogous effects of a magnetoplasma origin. Torotation. Consequently, in the second vari@st 10'2.
ward this end, we make use of the dispersion relation linking It would be appropriate here to mention the experiments
the frequency of a photon with its wave vector in a magne-in Ref. 7, which have a bearing on the possibility of estimat-
tized plasma. Under conditions in which the cyclotron fre-ing the value ofC. Harwit et al.” state(in Sec. 2 of their
quencyQ=e Z/mc (here.77 is the intensity of the external papej that quasar 3C273 is seen at different angles in right-
magnetic field, ané andm are the charge and mass of the and left-circularly polarized rays. The upper value of the
electron is much smaller than the photon frequengythe  angle of visible splitting amounts to “roughly 0.002 arc sec
dispersion relation for right- and left-circularly polarized in the direction perpendicular to the radius vector to the

photons can be represented in the form Sun” and “roughly 0.0035 arc sec in the direction of the
AmNE2 47N radius vector”(the angular resolution was 16 arc seg. As
E2=——— +c?p?+ { —5—— (p.77), (99  can be seen, the plane of the observed splitting forms an
m-w angle of about 30° with the source-Sun-observer plane. Sym-

whereN is the electron density. Hence, for the visible angu-Metry arguments cast grave doubts on the explanation of the
lar splitting «; of the right-and left-circularly polarized rays splitting effect as a result of the influence of the Sun and the
at the observation point and the Faraday rotation aggle Ccircumsolar plasméon the days of the measurements 3C273
after the ray has traveled from the source to the observer w&as 5.0° and 7.8° from the SurHarwit et al.” clearly ob-
obtain, respectively, served a local effect of the splitting given by the valuesvof
and a4 from formulas(7) and (10).

. eNN(rp) 7(r2) sin A comparison of formulag7) and (10) with the obser-
! 2m*mec? b vations requires knowledge of the diurnal time of the mea-
63)2 . surementgwhich is lacking in Ref. ¥, since both the orien-
B1=5—>2 f 2N(s)l%'(s)ds. (100  tation of the splitting plane and the values of the angles
2mmec” Jr, andy, depend on it. However, the order of magnitude of the

corresponding quantities can be estimated. To reconcile the
observed data witl, it is necessary to assume a valueQof

of the order of 1¢°. However, if these data are attributed to
an interaction of the radiation with electrons of the radio

trast to Faraday rotation, the gravitational rotation of the pointérferometer itself in the Earth’s magnetic field, then the
larization plane does not depend on the emission wavelengtRUmber densigN of such <3I3ectr0|js in formulél0) should
which simplifies the problem of its identification. In addition, P& Of the order of 1bcm?, which is entirely possible.
to measureB or Ag it is not necessary that the ray approaChThus, to arrive at any final conclusions would require a re-
the Sun, since the values gfand AB depend only on the fmement of the.experlmer?tal _data, or better yet, a specially
gravitational potentials at the signal emission and receptiof€Signed experiment. Taking into account the local character
points. Conversely, in order to mark off the Faraday rotationOf the angular splitting effect, we could set up the experiment
it is better to make the measurements where the contributioWith any sufficiently distant object emitting in the radio-
of magnetoplasma effects is very small. As for the visiblefrequency ranggin the case of very short waves the effect
splitting angle, the functional structure afand «; is also ~ becomes smalland at any time of day.
very different, and the splitting planes do not coincide. L€t us turn our attention now to the effect of cosmologi-
Therefore, distinguishing them experimentally does notcal gravitational rotation of the polarization plane. We, first
present any great difficulty. of all, estimate the contribution of the gravitational potentials
Rotation of the polarization plane upon the passage off the galaxies to the rotation ange By virtue of the great
rays near the Sun was studied experimentally in Refs. 5 andistance between the radiation sources and the observer and
6. The Pioneer-6, 7, and 8 spacecraft served as platforms flpetween different sources, this contribution is governed by
sources of plane-polarized 2292-MHz radio emission. Théhe values of the potential of our Galagthe small potentials
orientation of the antennas was rigidly maintained by gyro-of the Earth and the Sun can be neglegtidthe observation
scopes, although it cannot be gathered from these papep®int and the potential of the respective galaxy in the region
whether the initial orientation of the polarization plane wasof formation of the radio emission. The contribution of these
fixed at the satellitéfirst varianj or at the observefsecond potentials tog is given by Eq.(3):

Here x, is the angle betweep and.7Z, N(s) is the electron
density on the path of the ray, and(s) is the magnetic field
component tangent to the ray.

A comparison of Eqs(7) and (10) shows that, in con-
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Bi=C[Di(r1) —Po(ra)], 11 B=—2mCpar cosy. (13

where®;(r,) is the gravitational potential of thgh radio _Herer is the distance from the gal_axy t_o th? observer gnd
galaxy in the region of formation of the emission, and IS the_ angle betwee_n the propag_ahon dlrectl_on_ Of the ray and
dy(r,) is the gravitational potential of our Galaxy at the the direction to the mhon_"n_)gene_lty layer. This is in _complete
observation point{6x 10" 7). As can be seen, this expres- agreeme nt with the em.p|r|cally. introduced express{@nA

sion does not contain any asymmetry. Therefore, within th&CMParison of expressiod3) with the numerical results of

model of Ref. 2 all the3; should be assigned to the second ef. 2 gives
term in Eq.(1), i.e., toBy~1°. The polarized component of 27Calp|=6.7 glent. (14
the radio emission of galaxies is usually linked with mag-
. . - In the second case
netic braking(synchrotron radiation near neutron stars. In ~
the region of formation of the emission the potentials of M

. 1) __
neutron stars can be estimated as (1x&) 2. For all the hiP=1- rE (15
B;i as given by formula1l) to agree with the explanation _
given in Ref. 2, it is necessary to S8t~ 1. where M is the excesgpositive or negativemass concen-

If Carrol and Field are closer to the truth, then trated in a sphere with an effective radiyg<r andr is the
C~10; in this case the spread of th& should mirror the distance from the center of the sphere to the chosen point in
spread of the regions of formation of the emissions near netthe Metagalaxy. This leads to
tron stars. If, on the other hand, there are no correlations in 11 Y
the distribution of thes;, thenC>10%. _ B=CM|—— —|=——5r cosy. (16)

For an asymmetrical term to appear in the expression for rv 2 ra

the gravitational rotation anglg, as in Eq.(1), it is neces-  Herer, is the distance from the center of the sphere to the
sary to assume the existence of a gravitational field with &pservery is the distance from the galaxy to the observer,
preferred directionality in the Metagalaxy, as can be seegpqg y is the angle between the propagation direction of the
from Eq.(3). Since matter is distributed uniformly inside the gy and the direction to the center of the inhomogeneity

Metagalaxy, according to the observations, internal sourceégphere. A comparison dfL6) with the numerical results of
cannot create a directed field. Consequently, we are left tRef, 2 gives

assume the existence in the Universe of large-scale inhomo- ~
geneities outside the Metagalaxy. The homogeneity and isot- CIM|

ropy of the Universe will not be lost if we average not only r§ =6.7 glent. (17)
over the small-scale, but also over the large-scale inhomoge- . . .
neities g 9 Above we showed tha€~1 in the variant argued in

Ref. 2. However, for such values @f the conditions on the
ities are permissible.)During several billion years a certain ]E)aranimzeterslff thde 1Iargbe-scale mhorrllotg(lanemes foltlol\;\I/mg
excess(positive or negative of matter density above its rom Egs. (14) and ( 7) ecome complelely unacceptable.
mean formed in a layer of large radi(@milar to a disk are _F_or e.xample, the gravnat_lonal potentials of the inhomogene-
far from the Metagalaxy. This excess created a gravitationa'fIes in the Metagglaxy in such a case am.ount to at least
field in the Metagalaxy almost orthogonal to the lagiéthe several tens of_unlts, and the relative velloc.lty of the Meta-
edges of the inhomogeneity disk are far from the Metr:lgal—g"’“""xy and an inhomogeneity QUe o their mteracyon wrns
axy). 2) A density excess could have formed in a sphere oPutto be close_to the speed of light at the present time. If we
any radius far from the Metagalaxy. A gravitational field require that ~th|s 2ve|o<:|ty not exceed, say, 100 km/s, then
then appears in the Metagalaxy from this centrosymmetri@ﬁa3|l’| and|M|/r2_shouId not exceed a value of the order of
source. If only the first or second field shows up in the Meta-10 ~- For C~1 this would lead only to a very weak asym-
galaxy, this means that other inhomogeneities are located &€ty in the distribution of the values. .
significantly greater distances from it. Thus, from the theoretical standpoint outlined above two
In the first case the inhomogeneity can be approximatederSiO”S remain tenablé the plane-polarized component of
by a layer with an effective widtk, an effective radiup galactic radio emission is formed largely in the vicinity of

much greater than the radius of the Metagalaxy, and a corfieutron stars Either almost all of thgs values are distrib-
stant excess densify. Then uted on the interval0,7] about 3~ 7/2 (and thusC~ 107),

or all the B values are distributed on an intery@n] with

hiD~1+27paz, 12 n>1, which maps them onto a practically random distribu-
! p (12 tion on the interval0,7] (and thusC>10?). Granted, the

wherez is the distance from the middle of the layer to someP0ssibility of the asyr.nmetr'ical _contributic(@:s), (16) cannot

chosen point in the Metagalaxy. We note in passing that thge exclqc_ied theoretically in either case if large-scale inho-

excess(positive or negativemass of the layeM = 7wpab? mogeneities are present.

can be much less than the mass of the Metagalaxy. Accor%— CONCLUSION

ing to Eq.(3), the anglep of gravitational rotation of the ™

plane of polarization on the path from a radio galaxy to an  In summation, it can be said that the theory of gravita-

observer is equal to tion with C and P violation proposed in Ref. 4the corre-

For example, the following two forms of inhomogene-
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sponding interaction could be called “graviwegkaffords correlated with some ansatz or completely uncorrelated with
an explanation for the non-Farad@yravitationa) rotation of  any ansatz. If the picture turns out to be such, then from the
the plane of polarization of electromagnetic radiation propastandpoint of the proposed theory this will mean that
gating over cosmological distances. The reason for gravitac>10?.
tional rotation of the polarization plane is a postulated gravi- In any case there is an urgent need for experiments to
tational interaction, which depends on the spin states of theerify the gravitational birefringence effects predicted in Ref.
propagating photons—see Ref. 4 and E. 4 [see Eqs(7) and(11)]. The identification of such gravita-
If the plane-polarized component of the emission of ra-tional effects would be assisted by their qualitative differen-
dio galaxies is formed mainly in the vicinity of neutron stars, tiation from magnetoplasma effecfsompare Eqs(7) and
i.e., in regions with relatively largéof the order of 0.01-0)1  (10)]. The setting up of such experiments would be of tre-
gravitational potentials, then it is not possible to reconcilemendous significance, since they would provide answers to
the proposed theory with the ansath. It is possible to fundamental questions.
obtain satisfactory agreement between the theory and the an-
satz(1) only in the case in which practically the entire po- _
larized component of the radiation is formed in regions withy, .2 loSkutov@moldyn.phys.msu.su
p 4 e ; g "1 am grateful to the reviewer for directing my attention to Ref. 3, about
small (less than 10%) gravitational potentials. In this case it which | was previously unaware. It totally changed the tone of the present
is also necessary to postulate the existence in the Metagala>2<)y!0rk. _
of a gravitational field with a preferred directionality, which 3>|TheR sf)/sieén of unlt?=(;t =d1 hatshbeben _chofs?n. t N
can arise due to, for example, large-scale cosmological™ Ref 4C was estimated on the basis of fragmentary excefyes the
. . clarification in Ref. 4 from Ref. 7, which was lost at that time and found
|nh0m_ogene't|_95—see Eq4)), (13)_1 and(16). only recently. In these excerpts, the results of Ref. 7 turned out, as has now
If it is confirmed that the experimentglvalues are more  become clear, to be mixed together with the work in Ref. 6, to which
densely grouped about the ansg@z /2, as Carrol and considerable space was allotted in Ref. 7. For this reason, the estin@te of
Field® maintain, then in the case when the plane-polarized 20tained in Ref. 4 tums out to be greatly overestimaRaf. 4 draws
fth lacti di . is f d inl attention to the necessity of refining.iNevertheless, all of the fundamen-
.compor?e.nt. of the galactic ra Io.emI.SSIOnS' IS tormed mainly 5 ang qualitative conclusions in Ref. 4 drawn from the valu€ sémain
in the vicinity of neutron stars this will requit@~ 10? from in force (only the quantitative estimates vary
the proposed theory—see Ed.1). If the polarized compo-
nent of the radiation is formed in regions with lower gravi- 'E E Gard 4 3. B. Whiteoak, Nate7, 1162(1963: A R

. . . . F. Gardner an . b. Iteoak, Nai f , ANNuU. Rev.
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Thgre IS _then no need to hypothgsme .the _eX|Stence of a graviphys. J., Suppk0, 583(1979; H. Spinradet al, Publ. Astron. Soc. Pac.
tational field with a preferred orientation in the Metagalaxy. 97, 932(1985; J. N. Clarke, P. P. Kronberg, and M. Simard-Normandin,
In this case the result in Ref. 3 is clearly preferable to the Mon. Not. R. Astron. Soc190, 205(1980; H. Alfven and K. Herlofson,
result in Ref. 2. However, such arguments in favor of one,""S: Rev78 616(1950.

. e e ! g o . 2B. Nodland and J. P. Ralston, Phys. Rev. L&8&, 3043(1997.
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We develop the color dipole gBFKL phenomenology of a diffraction cone for photo- and
electroproductiony* N— VN of heavy vector mesongharmonium & bottomoniumat HERA and
in fixed target experiments. We predict a substantial shrinkage of the diffraction cone from
the CERN/FNAL to the HERA range of c.m.s. eneiyy The Q?-controlled sensitivity to the color
dipole size(scanning phenomenpis shown to lead to a decrease of the diffraction slope
with Q? (which is supported by the available experimental datée predict an approximate flavor
independence of the diffraction slope in the scaling vari&ie-m2. For diffractive

production of the radially excited2states ¥',Y '), a counterintuitive inequality of diffraction
slopesB(2S)<B(19) is predicted, which defies the common wisdom that diffraction

slopes are larger for reactions with larger size particles.1998 American Institute of Physics.
[S1063-776(98/00206-9

1. INTRODUCTION developed*®® in terms of the color dipole cross section

. . . . o(&,r) (hereafterr is the color dipole momente=(m3

t tD\l/ffrlaé:tlve dreald_ar|1|d V|rt§iald/p’hgt§prodltjctlon of ground +OA/(WA+Q?) and £=log(1key) is the rapidity variablg
stateV(1S) and radially excited/’(2S) vector mesons, The color dipole approach, to be referred to as the running
v*p—V(1S)p, V'(2S)p, (1) gBFKL approach, is favored because it incorporates consis-

tently the two crucial properties of QCD) asymptotic free-

at high c.m.s. energyV= s is an ideal testing ground of . _ .
ideas on QCD pomeron exchange. New experimental data O%om (AF), i.e., the running QCD couplings(r) and, 2 the

vector meson production coming from HERA and fixed tar-finite propagation raQiuRC of perturba_tiV(_a gluons.
get experiments provide unique insight into how the AF and the runningxs(r) are an indispensable feature

pomeron exchange evolves from the nonperturbative t&f the modern theory of deep inelastic scattefid¢s); with-
semiperturbative and perturbative regimes with increasin(]?Ut rgnnmg gfs(.r)_ it is impossible to match the leading
virtuality of the photonQ? and/or increasing massy of the ~ 109 Q" (LLQ) limit of the gBFKL equation with the con-
produced vector meson, and have prompted intense theordentional GLDAP equatiotf? in the overlapping applicability
ical discussiond=11 region of the moderately small'*!” see also Refs. 13, 18
The usual approach to the perturbative QQERCD) and 19. The finiteR, is of great importance since the non-
pomeron is based on the BFKL equatitffor the leading- perturbative fluctuations in the QCD vacuum restrict the
logs (LLs) evolution of the gluon distribution, formulated Phase space for the soft perturbativeal and virtual gluons,
in the scaling approximation of fixed QCD coupling and there is strong evidence for finik, from the lattice
as=const and of infinite gluon correlaticipropagationra-  QCD studies(for the review see Ref. 20 and references
dius R, (massless gluosit sums the ladder diagrams with therein and hadronic interactior’3:?? In the infrared, one
reggeized-channel gluon exchanges. More recently, a novelklso needs to freezeg(r) in order not to run into the Landau
s-channel approach to the LLs BFKL equation has beemole, ag(r)<al". Of course, if in our running gBFKL
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equatiod*5 one putsR,== and as=const, then the origi- the running gBFKL pomerdi¥?’ (for early semiclassical
nal scaling BFKL equatior?*®is recovered”* analysis see also Ref. 13As a result, in the running gBFKL
Being formulated in terms of retather than reggeized a_pproa_ch one pr_edicts a substantial Regge _shrinkage of the
gluon exchanges, the color dipole running gBFKL diffraction slope in the vector meson production, Wh!Ch can
equatiod**° readily incorporates the runningg(r). The ef- be test.ed at HER_A. In this paper we present for the first time
fect of finite R, can be included by modifying the gluon @ detailed analysis of th@* dependence and of the Regge
propagator in the infrared, for instance, by introducing the9rowth of the diffraction slope for the production of charmo-
effective gluon masg,~1/R.. Remarkably, in the LLs ap- Nium and bottomonium states. _
proximation, a finiteR; is consistent with QCD gauge invari-  Diffractive production of radially excited/’(2S) me-
ance. The freezing afs(r) and the gluon correlation radius SONS provides Qdd|t|qnal insight into the dipole size d_epen—
R. are the nonperturbative parameters which describe th@énce of the diffraction slope. Because of the node in the
transition from the soft, infrared region, to the perturbative,’adial wave function of the/’(2S) states, there is strong
hard region. cancellation among contributions to the production ampli-
Purely perturbative pomeron exchange does not exhauf¢de from dipolesr larger than or smaller than the node
the scattering amplitude, and in the practical phenomenologfosition (th'e nOQe effea“ta’g()- The resulting strong sup-
of deep inelastic scattering one must add a certain soft norression of diffractive production 6f'(2S) vs. V(1S) has
perturbative exchange. It is significant that the color dipole®@en confirmed experimentally I and¥’ photoproduc-
picture and color dipole factorization for the proton structuretion at HERA and in fixed target experimerits*t also has
function and for exclusive diffractive amplitudes do not re-interesting manifestations in the differential cross sections,
quire the validity of pQCD, and are also viable for soft which we discuss in_the present paper fqr the first time.
pomeron exchange. Soft pomeron exchange is important Because the radius of the (2S) state is larger than the
only for sufficiently large color dipolest>R,, and can radius of the gr_ound staté(1S), for.the d|ffract|on slopes
readily be extracted from the experimental data on hadroni@n€ would naively expect the inequalit(y* —"')
cross sectiorfé and diffractive leptoproduction of light vec- > B(¥*—J/¥). However, in this paper we demonstrate that
tor mesons. On the other hand, pQCIor hard pomeron the node effect in conjunction with the color dipole factor-

exchange can be related to the perturbative gluon structufgation predicts the counterintuitive inequalig(y* —')
function of the protort*2° <B(y*—J/¥), which can be tested at HERA. Because the

Diffractive production ofV(1S) mesons is particularly node effectis sensitive to the form of the dipole cross section

interesting because of the so-called scanning phenomenofd its variation with energy, we predict the specific energy
whereby the production amplitude probes the color dipoledeépendence of th¥’(2S)/V(1S) production ratios, which

cross section at the dipole size-rg, where can also be tested at HERA. .
The presentation is organized as follows. The subject of
A @ the introductory Sec. 2 is color dipole factorization and the
ro~ ———— inati izati i -
s JQrime determination of the pQCD factorization scales for diffrac
tive production. The running gBFKL formalism for the cal-
is the scanning radius?>® culation of the color dipole scattering matrix and of the dif-

This Scanning property follows from the color d|p0|e fraction slope is presented in Sec. 3. The decomposition of
factorization for production amplitudes and the shrinkage othe diffraction slope into perturbative and nonperturbative
the transverse size of the virtual photon w@i, and holds components, and the physics that controls thé,
beyond the pQCD domafif.By varying Q?, one can study flavor, and Q? dependence of the diffraction slope is ex-
the transition from large nonperturbative and semiperturbapounded in Sec. 4. In Sec. 5 we discuss in more detail the

tive dipole sizers to the perturbative region of very short properties of soft pomeron exchange in the color dipole rep-
rs<R. in a very well-controlled fashioft° Furthermore, the resentation. In Sec. 6 we present the salient features of soft

scanning radius 5 defines the transverse size of th&v  and hard exchange forN total cross sections. Predictions

transition vertex, which contributes to the total interactionfrom the running gBFKL dynamics for forward ant

radius and to the diffraction slop@(y* — V). integrated vector meson production cross sections are re-
Motivated by the remarkable phenomenological succesgorted in Sec. 7. We find good agreement with the low-

of such a unified color dipole picture of hard and soft pomer-€nergy data and data from the HERA collider experiments.

ons in application to the proton structure functi®® and  The subject of Sec. 8 is predictions for the forward cone in

vector meson productioh'® in this communication we de- diffractive production oV (1S) states, with special emphasis

velop the color dipole description of the forward diffraction on flavor symmetry. Section 9 is concerned with the node

cone B(y* —V) in exclusive diffractive DIS. We use our €ffect in forward production o¥/(2S) states. A summary

previous results for the energy dependence of the forwar@nd conclusions are presented in Sec. 10.

cone in color dipole scatterirf§,obtained from the solution

of the running gBFKL equation for the diffraction slofe. 2- INTRODUCTION TO COLOR DIPOLE FACTORIZATION

Here the crucial point is that breaking of the scale invariancé'ND PQCD FACTORIZATION SCALES FOR

by AF, i.e., by runningag(r), and finiteR;, dramatically DIFFRACTIVE AMPLITUDES

alters the very nature of the BFKL pomeron from a fixed cut ~ The Fock state expansion for the light-cone meson starts

in the scaling approximation to a series of moving poles forwith theqq state, a snapshot of the relativistic meson agja
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color dipole. The probability amplitude of finding theq
color dipole of sizer is precisely theqq wave function,
W (r,z), wherez is the fraction of the meson’s light-cone
momentum carried by a quatkhe Sudakov light-cone vari-
able. The interaction of the relativistic color dipole of the
dipole moment with the target nucleon is quantified by the
energy-dependent color dipole cross sectidi,r). The ef-
fect of higher Fock stategqg... is very important at high
energywv. In the LLs and/or LL1x approximation it can be
reabsorbed into the ener@rapidity) dependence aof(¢,r),
which is described by the running gBFKL equati@rt® The
dipole cross section is flavor independent, and provides
unified description of various diffractive processes.

In the limit of high photon energy, the qg-nucleon
scattering matrix.# becomes diagonal in the mixed,¢)
representation. Thisr(z) diagonalization derives from the
large longitudinal coherence length,

2v
Q%+ m’

)

I coh™

and holds ifl .,,> R, , whereR,, is a size of the target proton.
Because the coherence Iength is a purely kinematic §6a|e
(r,z) diagonalization does not require the applicability of

pQCD and must hold also for soft pomeron exchange, i.e.,

even if the dipole size is large. A necessary condition is
that the longitudinal scalk, for soft pomeron exchange be
small, | ;o;x<<l.0n, Which is the case, for instance, in the dual
parton string modé? or various models of exchange by non-
perturbative gluons!*%3"For the phenomenological success

of a unified color dipole picture of vector meson production,

see Refs. 9 and 10.
Taking advantage of ther(z) diagonalization of the

scattering matriw;z, the amplitude for realvirtual) photo-
production of vector mesons with momentum transfexan
be represented in the color dipole factorized form

YV, E,Q2,6) = (V] 7] y*)

1
=f dzJ d?r w¥(r,2)
0

X (E,2,0)W (T,2). 4
Our normalization is such thatd¢/dt),_o=|.#|?/167. In

Eq.(4), ¥ «(r,z) and¥(r,z) represent the probability am-
plitudes to find a color dipole of size in the photon and
guarkonium (vector meso)) respectively(for the sake of
brevity we suppress spin indigesand . 7Z(&,r,z,q) is the

Nemchik et al.

whenever convenierik is the Bjorken variable for inclusive
DIS; straightforward analysis of the relevant Sudakov vari-
ables yields<g4~2x).

We focus on calculating the imaginary part of the scat-
tering amplitude, for which there is a simple representation
in terms of the gluon density matrigsee below. The small
real part can easily be reconstructed from analyticity
consideration¥:

Re Z(&,x,q)= Im _Z(&,r,Q). (5)

2 ag
Ve forgo discussion of Re#, which is consistently in-
cluded in all numerical results.

The details of calculation of the diffractive amplitude
have been presented elsewheteFor theVqq vertex func-
tion we assume the Lorentz structurdy, WV, . For the
s-channel helicity conservation at smaj transversely(T)
polarized photons produce transversely polarized vector me-
sons and longitudinallyL) polarized photongto be more
precise, scalar photongroduce longitudinally polarized
vector mesons. One finds

N.CyVa4maegn

./%T(Xeﬁle'ﬁ): (27T)2

f der(Xeﬁaraa)

1
<J oz
0

—[Z2+(1-2)*]eKy(e1) 3, $(T,2)},

Z(l Z){m KO(sr)¢(r Z)

(6)
Im . % (x QZ (_:i): NcCV 47Taem2,/Q2
O\ Neffs y (277)2 mv

xf dzra(xeﬁ,r,d)fldz Ko(er)
0

X{[mz+2z(1-2)m{] (T, 2)

—32¢(F,2)}, @)

where

e?=mi+2(1-2)Q%, )

aem IS the fine structure constant, aihg=3 is the number

of colors. Cy=1N2, 1/3f 1/3, 2/3, 1/3 are the charge-
isospin factors fop®, »°, ¢° J/¥, andY production, re-
spectively, andq 4(x) are modified Bessel functions. A de-
tailed discussion and parametrization of the light-cone radial

wave function¢(r,z) of the qq Fock state of the vector

meson are given in Ref. 10. For heavy quarkonia one can

amplitude for elastic scattering of the color dipole on thegafely identify the current and constituent quarks. The terms

target nucleon. The color dipole distribution(wirtual) pho-
tons was derived in Refs. 24 and 14.

The color dipole cross sectian(¢,r) depends only on
the dipole sizer, and not on they-q relative momentunz.
Becausa~1/2 in nonrelativistic heavy quarkonium, at small
g in the diffraction cone one can safely neglect the

dependence of7Z and setz=1/2. Hereafter we will sup-
press the argumert, and eitheré, X, or X will be used

xKo(er)¢(r,z) andceK, (er)d, ¢(r,z) for T polarization,
and Ko(er)d?¢(r,z) for L polarization, correspond to the
helicity conserving and helicity-flip transitions in the
y* —qq andV—qq vertices, respectively. In nonrelativistic
heavy quarkonia, the helicity flip transitions are the relativ-
istic corrections, which become important only at la@e
Equation(7) corrects a slight mistake in the relativistic cor-
rection to the amplitude for production of longitudinally po-
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Y' N\NOWV\
k+l/2q —-k+l/2q ,

FIG. 1. The perturbative QCD diagrams for vector meson per-
turbation.

R

larized photons made in Ref. 5. The numerical results of RefK, ;(er). Because of the behaviar(x,r)or? in (11), the
5 for the /¥ are only marginally different from those to be amplitudes(6) and (7) are dominated by the contribution

reported in this paper. from the dipole sizer ~rg given by Eq.(2)—the scanning
The representation fos(x,r,q) in terms of the gluon phenomenor:® The scanning property is best quantified in
density matrix(see Fig. 1is terms of the weight functionWT,L(Qz,rz) defined by
47T d?k ) 1 - ) - Cy
U(eraQ) KE as(«%)| Jo 2 qr M1 (Xeff, Q ,Q)Zm
1
~3y(kr) |7 ’(x k+5d-k+5d], @ Xf d_rww@z ),
r? r
whereJy(x) is the usual Bessel function. AF dictates that at (13
the gluon-color dipole vertex, the QCD running coupling
must be taken at the largest relevant virtuality? P ,._ Cy 2@
=(maxk?C?%~2), where C~1.5 (Ref. 24, ensuring nu- A (Xer, Q%,0) = (MmZ+Q?)2 my
merically similar results of calculations in both the mixed 5 .
(r,z) and momentum representations. The gluon density ma- Xf d_f T (Xett,F,0) W, (Q%r2)
trix .7(x,k+G/2,—k+G/2) is proportional to the imaginary re re Ll b
part of the nonforward gluon—nucleon scattering amplitude; (14)

atg=0 it equals the unintegrated gluon structure function of
the nucleon7(x, K,— k) 9G(x,k?)/d log k% Equation(9)  Where in a somewhat abbreviated form=(T,L; for the ex-
generalizes to the nonforward cage 0 the formuld®!4for ~ act integrands see Eq&) and (7))
the dipole cross section
2,227 4
72r2 Wi(Q%r9) =& r4(mg+Q?)?

o (Xerr.T,G=0)= 0 (Xer 1) = 5

1
xfodZ\P(‘,i(r,z)‘Pyr(r,z). (15)

2 _ 2
xfas(,é dk2 41— Jo(Kr)] IG(Xeg,K?)

rd kr)? d log k?
(kr) g For 1S mesons, to a good approximation tié , (Q2,r?)

(10 thus defined are sharply peaked functions of the natural vari-
Because the functiofi(y) =4[ 1—Jo(y)]/y? can be qualita- abley= |09[r2(_Q2+ m;)]. The height and width of the peak in
tively approximated by the Heaviside step functidiy) the y-distribution vary only weakly withQ? and the flavor,
~0(A,—y), whereA,~10 (Ref. 39 for smallr<R, one and the peak position defines the scanning radius

readily finds rs~AT,,_/\/Q2+ mVZ. Consequently, the leading twist terms
2 in the expansion over the relevant short-distance parameter
m >
o(X,r)= 3 r2aq(r)G(x,q2), (11) r21/(Q?+mZ) are of the form(here we assumg=0)

where the gluon structure function enters at the pQCD fac-  Im .7«

1 1
2 2 O'(Xeffyrs) T2, o\2 G(Xeff s qT)
torization scaley®~A, /r2.14%3%For large dipolest =R¢, Q™ +my (Q%+my)

one can negleciy(kr) in the integrand, and the dipole cross (16)
section saturates, | \/— \/— i
A2 , dk? C7G(Xeff,k2) Im 7, ~ Mo (Q2+m )2 G(Xeff, 0p)-
U(Xeﬂyrch):?faS(k )sz—- (12 17

Next, notice that the integrands in Ed§) and (7) are By virtue of (11), here the pQCD scal«qT,_ L, (Q?
smooth at small and vanish exponentially at>1/e due to +mV) where the scale parametef, can be estimated as
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As

7"|'Y |_~ K?I: . (18)

Nemchik et al.

Consequently, the moderate values Qf attainable at
HERA do, at best, correspond to the nonperturbative and
semiperturbative values cnﬁ,_, the soft contribution to the

For the more direct evaluation of the pQCD factorizationvector meson production must be substantial, and one must

scalesq%L, it is convenient to substitute ELO) into (13
and (14), which then take a form reminiscent of the

factorization formulas fof ,(x,Q?)%+*%
R Cyag(Q*+md)
Y 20=0)=————>—>—
Im . 7Z(Xet, Q%,0=0) (M2+ Q2)2
dk? 9G(Xegr,k?)
| & S ex(@),
(19
. Cyas(Q?+mf) 21Q?
VA 2,q=0)=
Im 7\, (Xet,Q%,q=0) (M3+ Q2 my
dk? 9G(Xegr,K2))
| & e oua
(20)
where
® ) k2 _ 77'2 dl‘2 as(Kz) 4[1—J0(kl‘)]
T,.L(Q% )—? 7 ag(QZr ) (kr)2
X Wi, (Q?r?). (21)

Because of properties of(y) and the sharp peaking of

W (Q%r?) at r=rg, the weight functions® (Q?k?)
are similar to the step function,

01 (Q%k?)x0(q2 | —k?), (22)
and
dk? 9G(Xes,k?))
| T e 0@k
dk?
~ GOt | S 0@
=G (Xetr, D) 11(Q), (23

where the factors

2
|T,L(Q2):% f

exhibit only a marginal dependence Q.

For smallQ? the scale parameters; | are close to the
nonrelativistic estimateA~ 6, which follows fromrg=3/e
with the nonrelativistic choicg=1/2. In generalAt =6,
and they increase slowly with? (Ref. 5; for heavy quarko-
nia Ar (Y)=6 at Q?<100 GeV, A; (J/¥)~6 at Q?
=0, andAr, (J/¥)=7 atQ?=100 GeV, which shows that

d_rz as(Kz)

7 ag Qi ml) Wi L(Q%r%) (29)

the relativistic corrections in the charmonium and bottomo
nium electroproduction are small. The corollary of the large

scanning radiuss and large values of\; | is a very small
scale factor 7+, in the pQCD factorization scate
71.L(3/¥)~0.20, 7, (p°) ~0.15, andr(p®)~0.07-0.10 for

Q?~10-100 GeV, which are substantially smaller than
7~0.25 suggested in Ref. 2 and=1 suggested in Ref. 6.

be careful with the interpretation of the vector meson pro-
duction data in terms of the gluon structure function. The
point that atQ?< mg,q, the scanning radiuss is comparable

to the radius of the)/¥ is overlooked in Ref. 2, and the
formulas of Ref. 2 for thel/W production amplitudes in
terms of theJ/¥ wave function at the origin are too crude.
Strictly speaking, Eq919), (20), and(23) were derived for
hard pQCD exchange wher=< R, and/or for perturbatively
large q%,_. However, because the color dipole factorization
is true beyond pQCD, one can extend Ef0) to the soft
pomeron and regard this relationship as an operational defi-
nition of the nonperturbative gluon distribution in the proton.
To the same extent, EqL9), (20), and(23) can serve as a
unigue basis for extracting the whole gluon distribution, per-
turbative plus nonperturbative, at smallfrom the experi-
mental data on diffractive vector meson electroproduction at
HERA.

The dominance of the longitudinal amplitud&?7) at
Q%=m? follows, as a matter of fact, from electromagnetic
gauge invariance, and as such it is true in any reasonable
model of vector meson production, the familiar vector domi-
nance mode{VDM) included. TheQ? dependence of/Zr
differs drastically from the VDM prediction

1
////T(VDM)“W ool pPN);

instead of o(pN) in (16) one has o (Xeg, rQ)*rax1/(Q?
+md).

3. DIFFRACTION CONE IN THE COLOR DIPOLE gBFKL
APPROACH

In the familiar impact-parameter representation for am-
plitude of elastic scattering of the color dipole

Im .//z(g,r,ﬁ)zzf d2b exp(—igb)T(&,7,b), (25)

the diffraction slopeB=—2(d log Im.//Z/dqz)q:O equals

1 - A&T)

B(f,r)=§(b2>=o(§,r), (26)
where

)\(f,r)=f d2bb2T' (&,7b). (27)

Then, the generalization of the color dipole factorization for-

mula (4) to the diffraction slope of the reactiop* p—Vp
reads

B(y*—V,£Q3)Im .Z(y* —V,£Q%,G=0)

=fldzf d?rN(EN)W(r,2)W 4 (1,2). (29
0
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We sketch here the running gBFKL equatidrfor subleading pomeron singularities is reported in Ref. 27; the
N(&,r). The running gBFKL equation for the energy depen-emerging successful description of the proton structure func-

dence of the color dipole cross section ré&ds tion at smallx is published in Refs. 26 and 27.
P N 3 In Ref. 29 the gBFKL equatio(R9) is generalized to the
olé, = HQa(E1)= o3 j d2piul profile functionT'(§ T, b), where the impact parametéris
43 8 defined with respect to the center of the dipole:
p1 P2 aT(£,F,b) X
X Ry)K ——0s(RyK — ) o =
gs(R1)K1(ucp1) o1 gs(R2)K1(ucp2) 0 a—g_'%@)r(&r,b)
X[o(§,p1)+a(é,p2)—0(&r)]. (29) 3 . A
Here the kernel” is related to the squared wave function of T8 f dp1116|9s(RIK1(1apy) p1
the color-singletqqg state with the Weizsker—Williams -
(WW) soft gluon, in whichr is theg-q separation ang; , — 9s(R)K (P P2 [F(g 5ub
are theg-g andqg-g separations in the two-dimensional im- P2 o
pact parameter plane. The quantity 1 o1 )
: +3 o)+ T £+ 3 i) -rien)|

2(5)= 1os(p)K(1ep) = =—dp)V Kol cp),
; (32

whereK ,(x) is the modified Bessel function, describes theThe calculation of the impact parameter intede8) reduces
Yukawa screened transverse chromoelectric field of the reIaEq_ (32) to Eq. (29). The calculation of the momer(27)

tivistic quark, and leads to the integral equation fai£,r). It is convenient to
) p1 o2 separate from the diffraction slog&(&,r) the purely geo-
p|9s(R)K1(rgp1) — —9s(Ro)Ki(mgp2) — metrical termr?/8 related to the elastic form factor of the
P1 P2 color dipole of the dipole momemt and to discuss instead of
=|Z(p1) — “(po)|? (300  M(&r) the function

describes the fluxthe modulus of the Poynting vecjoof 1,

1 T 1 n(gvr):)\(gar)__r O-(é:!r)a
WW gluons in theqqgg state. The asymptotic freedom of 8
QCD uniquely prescribes that the chromoelectric field be

computed with the running QCD chargg(r) = J4mas(r) which satisfies the inhomogeneous integral equation

taken at the shortest relevant distanBes min{r,p;} in the an(&r) 3 ,
qqg system. The particular combination of the three color & 8 f d°p1ug|9s(R)K1(mgp1)
dipole cross sections,
9 51 52 2

Ao(pypan)= g [o(£p) +0(£.pp) —o(ED)], (3D Xpr stReKalmepa) o
which emerges on the right-hand side of the gBFKL equa- x{ (&, p1)+ (& po)— (&) + E
tion, is precisely the change in the color dipole cross section 8
in the presence of the WW gluthin the qqg state.

At short distancesy,p; ;<R.=1/ug, the kernel. 7% ><(p§+p§—r2)[o(§,p2)+o(f,pl)]]
does not depend on the infrared cuté®f. The Yukawa
cutoff of the long-range chromoelectric field, which was =W n(&Er)+B&T), (33

used in Egs(29) and(30), is the simplest phenomenological ) .
option. In the LL(1) approximation, this cutoff is consis- Where the inhomogeneous term is

tent with gauge invariance. If one sacrifices AF, puttgg B(EX)=Z@a(&T)

=const, and lifts the infrared cutoff by letting.—o, one .
recovers the scale-invariant kernél. Both the finiteR. and 3 2 2 P1
running as break the scale invariance; a detailed discussion " 64m° f dp1uG|9s(RuK1(1epa) p1
of the consequences is found in Refs. 15, 17, 27, and 29. The -

principal phenomenon is that because of the lack of strong
log r? ordering in the BFKL equation, there is an intrusion
from hard scattering to the regime of soft interactions and
vice versa, and the effect of the soft region is especially XLo(&p2) T o(€,p1)]. (34)
enhanced by AF. In the numerical analysign infrared Because the homogeneous part of E83) coincides
freezing ag(g?)<al”=0.82 has been imposed on the with the gBFKL equation(29), asymptotically the dipole
three-flavor, one-loop as(q?) =4m/9logk¥A? with  cross sectionr(&,r) and the solutionp(&,r) of homoge-
A=0.3GeV. With R;=0.27 fm, i.e., uc=0.75GeV, we neous Eq.(33) have identical energy dependence. Conse-
found Ap=0.41° The calculation of Regge trajectories of quently, the solutions of the homogeneous &) give the

P2
—09s(Ry)K1(gp2) 0 (p3+p5—12)
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asymptotically constant contribution to the diffraction cone

and if o,(&,r) is a solution of Eq.(29 and 7,(&,r) is a
solution of Eq.(33) with the diffraction slopeB,(&,r), then
Mo(&,1)=7n.(&r)+Ab-o4(&,r), whereAb=const, is also
a solution of Eqg.(33) with the diffraction slopeB(&,r)
=B,(&r)+Ab. It is the inhomogeneous termB(&,r),
which gives rise top(&,r)<éa(é,r), i.e., to the asymptotic
Regge growth of the diffraction slopdB(&,r)=B(é&g,r)
+2ap¢, and the Regge termdZ.¢ does not depend on the
sizer of the dipole. Parametricallyy= as(R.)R? times a

Nemchik et al.

1. - 1. 4m ( d’k
+§q*—k+§‘”?f K aste)

_o1. - 1.
><[Jo<kr>—1].7(x,k+§q,—k+§q) (37

Because of the property defined by Et4), the second term
has the typical logarithmi&? integration. It comprises the
contributions to theq dependence from the target and ex-

small numerical factor. With the infrared parameters specichanged gluons. In contrast, such a logarithiidntegra-

fied above,a;~0.072 GeV'2 was found in Ref. 28; for
slopes of subleading trajectories see Ref. 29.

4. BEAM, TARGET AND EXCHANGE DECOMPOSITION OF
THE DIFFRACTION SLOPE

To obtain more insight into the dipole-size dependence
of the diffraction slope, it is useful to look at the scattering

amplitudes(£,r,q) in terms of the gluon density matrix. For

our purposes, it is sufficient to treat the color structure of the

proton in terms of the three valenceonstituenk quarks.

Then, as illustrated graphically in Fig. 1b, the unintegrated

density matrix of gluons can be written

T\ X, +§q,— +§q

2 [ A eke 6 —ke Sk
_;f 1*/ gv +§q1_ +§Q: 1

1. - 1. 2 2
+50,—ki+ 5 g|as(k))| G1(q9)

2 2

Gyl Kot = G~ kot =6 35
-G, 1+§q,— 1+§q , (39

whereG,(g?) andG,(«1,k,) are the single- and two-quark
form factors of the proton probed by gluons and¢k

+q,—k+0a/2k,+q,—k;+0/2) denotes the propagation
function of twot-channel gluons. In the Born approximation,

1.
2q

/§|2+1* K LGkt S G — ket
- 3 2 q, 2 q! 1 2 q’ 1
~ S(k—ky)
[(k+3G/2)2+ ul[(K—G/2)2+ ud]

Splitting the color dipole vertex function into two pieces,

(36)

1
vd<q,r>=[Jo(§ qr)—%(kr)

+[1=Jo(kr)],

1
Jo Eqr -1

we obtain the useful decomposition

. Am 1 d%k ) -
o(ér.6)=—5| o Eqr)—l f FaS(K)y‘(x,k

tion is absent from the first term; here thé integration
converges at finité>~R_ 2.
The resulting representation

. Am 1 d?k )
(T(é,r,Q):? Jo| 7 ar|—1 Was(K)
Ainte eile 16Jd2k )
X7\ xkt5 -kt q|+5 Fas(K)

N -1 R
><[1—J0(kr)]f d2k1.7( §,k+ﬁ,—k+§ﬁ,k1

1. - 1. 2 2
+5 0~ kit 5 g as(ky)| G1(a°)
ol kit = G-kt S 38
-G 1+§q1_ 1+§q (38

nicely illustrates how the three relevant size parameters in
the problem give rise to the three major components of the
diffraction slope. They dependence coming from the proton
vertex  function  V,(Ky,q)=G1(9?) — Ga(ky+0/2,—kq
+q/2) is controlled by the proton size. Theedependence
coming from the color dipole vertex functiovy=Jy(qr/2)

—1 is controlled by the color dipole size The q depen-
dence coming from .7(&k+q/2,—k+q/2k,+q/2,—k;
+q/2) depends on the effectiv€ andk?, which contribute

to the scattering amplitude, and on the gluon propagation
radiusR. . The latter scale remains important even at ldcge
because the properties of the running gBFKL pomeron are
controlled by interactions at~R. . In the asymptotic BFKL
regime, at smalk, thek,; andk become azimuthally uncor-
related.

To proceed further, one needs a model @&(qg?) and
G,(k1,&5). The radiusRy of the proton probed by the gluon
can be different from the charge radiBg;; still R, serves
as_a useful scale. The two-quark form fac®p(k+ /2,
—k+g/2) is a steep function df? and a smoother function
of g%.*! For instance, for the oscillator wave function of the
3-quark proton one readily finds

Gkt Sa —k+ta 39
2| kKt 50, —k+ 50 (39

:Gl(% qz)G1(3k2)-

A straightforward differentiation yields the following
transparent decomposition oflo(&,r,q)/dg? into four
terms:
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do(&1,)
doter.a)
dq q2:0
4 ; >
daV(&,r,q) 16 [ d’k
=2 Tl =—gf @ as(x?)
= dqg o
1 > -
x{m fd k7€ K, — K ko, —Kp) as(K)

><[1—Gz(El,Em—[l—Jo(kr)]f d%k,ag(K2)

X[1-Gy(Ky k)]

Xaf(g,li#d/z,—E+a/2,|21+d/2,—|21+a/2)\
ﬁqz |q2:0

1 2 2, el L L . 2

+6RN[1_Jo(kr)] d°k, 7(&,k,—k,ky, —ky) as(k?)

>

—iRZ[l Jo kr)]szkJ(f —k.Ky,—Ky)

X ars(k§) Gl l21,|21)J . (40)
The following properties Of7 (&, k+GI2,— K+ G/2.k, + G/2,
—k,+q/2) are important in(40). First, in the infrared-
regulated QCD it is nonsingular &€=0; cf. Eq.(36). Sec-
ond (modulo logarithmic scaling violations its largek?
asymptotic behavior is similar to that of the Born te(@),
TE, k+ q/2,— k+ q/2, k1+ q/2,— k1+ G/2)<1/k~*. Third, in
the Born approximatioitafter azimuthal averag|r)g
7€ K+ 12, K+ G2 K, + G2~ Ky +G/2)]
2

aq |q2=0

= R; Kt S G —k+ =6 -k

W-/ g, 50 50k
+1” |Z+1* 41
>0kt 50a]. (41

Fourth, finding the asymptotic Regge growth of the diffrac-
tion slope in Ref. 28 implies that in the high-energy limit
&—o0 and for allk and kl,

OTE K+ GI2,~ K+ G2 Ky + 612, Ky +G/2)|
g

|q2:0
’ 2 - 1 S -1 >
z_[ar(g_fo)"‘o(Rc)]-/ é!k+§q1_k+§qikl

1

1. - -
+Eq,—k1+§q . (42
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a(§,r)=4§ f d2kad(K2).7(£,k,K).

The first term in the expansidd0) can then be evaluated as

da'V(&,r,q) 1
e 2:O=——Ablo(§ T 20(&,r).
’ 43
Similarly,
do®(&r,0) 1 1,
d—qzqzzo —5 Abgo(£1)=— = Rio(£1).

(44)

The integrand of the fourth term ¥i0) contains the steeply
decreasing two-body form fact@z(k k) which cuts off
the integration ak’< RN Consequently, one must distin-
guish between the casessRy andr=Ry. A simple esti-
mate, which interpolates between these limiting cases, is

do(&,r,q)

1
dq? :_EAb4¢T(§.Y)

q2=0
__ 2 R? r* 45
=" cU(g,r)m- (45)
The bottom line is tha\b,<Abs. Finally, making use of
(42), the second term if40) can be estimated as

do'®(&r,q)

1
dq2 :_EAbzo'(g:r):

_[a\f>(§_§o)

q2=0

+O(RY)]a(&,1). (46)

At low energy, in the Born approximation, E1) gives
Ab,=2R2. The salient feature of the resulting diffraction
slope

B(&r)=2, Abizé r+ :

3 R+ 2a(é- &) +O(RY),

(47

is the presence of the geometrical contributidxis, =r?/8
andAby=RZ/3.

For large dipolest =R, one recovers a sort of additive
quark model, in which uncorrelated gluonic clouds build up

around the beam and target quarks and antiquarks, and the

terms O(Rg) and 2op(¢— ¢&g) describe the familiar Regge
growth of diffraction slope for quark—quark scattering. The
opposite limit of small dipolest<R;, is somewhat more
tricky. In the second and third term {40), thek? integration

is cut off by 1—Jy(kr) and extends up té,/r?, precisely

as in the dipole cross secti@0). Consequently, their con-
tributions to the derivativé40) are still given by Eqs(46)

and (44), respectively, so that the Regge term and the con-

Consider first the decomposition of the diffraction slopetribution from the target proton size to expansi@y) are

for large dipolesr =R; . In this limit, the cross sectio(B88)

is dominated by the contribution fromk?~ u2=R;?
>R§2, so thatJy(kr),G;(3k?)<1; they can be neglected,
and (cf. Eq. (9))

retained. The contribution from the first term {40), i.e.,
from the size of the color dipole, changes dramatically and
will no longer have the geometric form?/8. Indeed, as we
discussed following Eq(37), the k? integration in the first
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term in(40) converges ak’< Rg. Consequently, in this limit  starts with the Born dipole cross sectieg(r) as a boundary
=C?/r?, and one can factor ouig(«?)=ag(r) from the  condition for the gBFKL evolution ak,=0.032%?" How-

integrand. This leads to the estimate ever, such arg(r) falls short of the interaction strength at

r=R.; roughly speaking, for the phenomenological value

(1) > 2
m'_d(iﬂ . as(r) d(&RY) R.=0.27 fm one findsrg(r =1 fm)~5 mb, whereas for the
aq 92=0 16 as(Rc) description of soft processes one rather needs the dipole
(2 o2 cross section-50 mb atr =2 fm. Therefore, at=R;, the

~~163 ag(r)R2 G(g, %) (48) pert_urbative gBFKL dipole cross sectior_l d“esi:’ribed above
(which hereafter we denote by the subscript “ptép(&,r),
and, after making use @fL1), to must be complemented by the contribution from the nonper-
5 5 turbative soft pomerong,,{£,r). Because in all the cases
R: G(£,A./R?) studied the contribution fronor,(&,r) exhausts the rise of
8 G(&A, %) the total cross sections and/or of the proton structure func-
Similar considerations yield an estimate for the contribu—gon.’ in Refs. 26 ang 5 Wr? have mod_elgd thedsoft nonpertur-
tion to the diffraction slope from the fourth term i#0), ative - pomeron by the energy-indepen ent]pt(g,r)
which is a negligible correction tab,: _=a'npt(r)_. For the lack o_f bet_te_r theoretical and e_xperlmental
information as well as simplicity, we make the simplest pos-
RZ RZ G(¢,A,/R?) sible assumption that the eikonals for the perturbative and
4712 R_ﬁ G(&,A,Ir2) " (50 soft interactions are additive, which to lowest order amounts

. . to additivity of the dipole cross sections(¢,r) = op(,r)
More comments oAb, are in order. At asymptotically + )

large £ and/or asymptotically smak, the running gBFKL The direct determination of the total dipole cross section
approach prec!ict7s the universaldependence of the gluon (¢ r) from the experimental data on photo- and leptopro-
structure functioh duction of vector mesons is reported in Ref. 9, and supports
1 17/1)\2 the flavor independence af(¢,r). Other constraints for
G(x,Q%) PEGR) ) , (51)  oy(r) include real photoproductiot, hadronic diffractive

scattering* nuclear shadowing in deep inelastic scattefihg,
where y=12A;/B, and Bo=11-2n:/3. Consequently, in diffractive deep inelastic scattering at HERA nuclear at-
the well-developed BFKL regime)b; will not depend on  tenuation in photoproduction of light vector mesons and the
energy: onset of color transparency in leptoproduction of vector
R2 aq(r) meson$ and the proton structure function at moderate and
Abj=— | ——= (52 smallQ?.?5%" All the results are consistent with the form of
8 las(Re) the dipole cross section suggested in Refs. 24, 26, and 5, a
However, at moderately smallvalues, thex dependence of convenient parameterization for which is
the gluon structure function exhibits strong dependence on 2 )
the factorization scale, the rati@(g,Al,/Rg)/G(g,A,,/rz) S A ex;{ -
has substantiak dependence, andb; contributes to the = aiz
energy dependence of the diffraction cone. Specifically, it (r—b;)2
+> D, exp( -
=1 Ci

U'np[(r):(fo 1—

makes the slope of the effective Regge trajectafy sub-
stantially larger than the true slope of the leading Pomeron

trajectory ar}, .? B _
To summarize, the geometrical contribution to the dif- ngh7(;°fm4l 2Dmb0Aé0 L 43 AZO 360'43 ilo ggi?nfm 32
. y 1= V. y 2=V, y 1= VU. y 2

fraction slope from the target proton siz&bs=(1/3)R2, —2.08fm, c,=0.53 fm. andc,=1.14 fm. For a somewhat
persists for all dipole sizegthe termAb,, which is also cruder fit vslth D=0 we f;\d o0=51.6 mb, A,=1.82,
associated with the proton size, is negligible in all cases A,=—0.82, a,=1.05 fm, anda,= %72 fm. Eor émall di

. . - . y l_ . 5 — V. . -
AIthough th(_a n_onpert.urbatlvg pa_ramequ IS n.ot callculable poles,r<R;, this cross section is poorly known because it is
from first principles, its contribution to the diffraction slope swamped by (£.1).
varies neither with energy nor with dipole size and can even- There is npct)thmg unusual in the concept of a nonpertur-

twally be fixed using accurate experimental data. bative cross section. The conventional gluon structure func-
tion of the photon,

} (53

5. SOFT POMERON AND DIFFRACTIVE SCATTERING OF

LARGE COLOR DIPOLES Q2 dk?
G(X!Qz):f k2

F(X, k k)

The need for a soft pomeron contribution in addition to
the gBFKL dipole cross section described previously isalways contains a contribution from gluons with soft trans-
brought about by phenomenological considerations. A viableerse momentzk2<QSsl GeV?, which persists at alQ?
gBFKL phenomenology of the rising component of the pro-and equals precise@(x,Qg), the familiar input to the con-
ton structure function over the whole range@f studied at  ventional GLDAP analysis of th&? evolution of parton
HERA (real photoabsorption includgds obtained if one densities. One is perfectly content with the strong sensitivity
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of GLDAP evolution to this unknown soft ian(E(x,Qé), contribution of the pion size to the diffraction slope for the
which is routinely fixed from fits to the experimental data. In purely geometrical forn{43) of By4(r) yields the unaccept-
the color dipole approach to DIS, our soft dipole cross secably large value

tion o (1) plays exactly the same role as the glignmark 2

structu?e functions at a soft scal@s. Furthermore, it is ABW:E(ﬂ(r /8)[Up‘(xo’r)+0“p‘(r)]|w>~9_7 GeV2
tempting to reinterpret this soft dipole cross sectigp(r) 8  (ml[op(Xo,r)+onp(r)]|m)

in terms of the nonperturbative gluon distribution in the spirit Taking for the contribution of the proton sizeBy the esti-

of Eq. (10). Models of soft scattering via polarization of the mate (54) we end up withB \~15 GeV 2, which substan-
nonperturbative QCD vacuuth'! belong to this category tially exceeds the experimental resiBt y(»=200 GeV)
and yield aon,(r) very similar to our parameterizatid63).  =9.9+0.1 GeV 2*® The discrepancy increases further if
In the interesting region af<1-1.5fm, a conservative es- one adds to the above theoretical estimate the Regge term
timate of uncertainties inr(r) is 10-20%, the major 2q/ (£—&)~1 GeV  evaluated using the relationship be-
source of uncertainty being due to absorption correctionsiweenx.4 and the pion energweﬁ%nﬁlzl/mp_

For heavy quarkonia the absorption corrections are What is the origin of this discrepancy?df&,r) werer-

negligible® _ _ . independent and if the gluon-probed and charge radii of the
We assume the conventional Regge rise of the diffracpion were identical, then one would find frofB) the famil-
tion slope for the soft pomeron, iar

Bpl( §,1)=AB4(r) +ABy+2aq,( €~ £0),

whereAB4(r) andABy denote the contribution of the beam
dipole and target nucleon size, afig=1og(1/kp). As guid-  With our parametrizatior{53), the soft dipole cross section
ance we take the experimental data on pion—nucleoikeeps rising at ~1 fm, and for this reason the matrix ele-
scattering’® which suggestr,,=0.15 GeV 2 (for smallay,  ment(5) is dominated by arr? larger than in the charge
descriptions of nucleon—nucleon scattering see Ref. A6 radius of the pion, and we end up wittB , larger than the

1 2 2
AB,(£0)=5 (Ré),~4 GeV > (56)

plausible guess for the proton size contribution is expectation56) based on the charge radius of the pion. The
1 matrix element5) can be made smaller and compatible with
ABN:Ab3=§ R2. (54)  the experiment at the expense of rapid saturation of the soft

cross section for large dipolesr,,(r=1fm)=~o(mN),
In energy-independent soft exchange for small dipolesWhereupon one recovers the estima&®). This solution
ABy(r) is likely to follow the geometric lawABq(r) must be rejected, because it would lead to negligible fluctua-

~r2/8, as in Eq(43). Extension of this law to large dipoles tions of the soft dipole cross section, in conflict with experi-

is questionable. The largesaturation ofo,(r) as param- me_ntal data on diffraction dissociation of pions, which re-
etrized by(53) is a simplifying assumption; what happens at 4U'"®

r>1 fm is immaterial, because even in hadrons the probabil- <7T|0'2(1/0,r)|77>—<77|0'( Vo,f)|77>2

ity of finding large dipolesy>1 fm, is negligible. However,
the diffraction slope is more sensitive to the large dipole
contribution. For instance, if scattering of large dipoles ofAn attempt to retain the geometrical law and still agree with
sizer =Ry, is modeled by scattering of thin classical strings€xperiment at the expense of takidg3y~0 must be re-

by a strongly absorbing target nucleon of radRg, then for jected as well. We believe that the string-model suggested
large dipoles(strings, r =2Ry, one readily finds the profile taming of By(r) Eq. (55 is a more acceptable solution.

~0.5. (57)

<7T|0-(V01r)|77>2

function Hereafter we take\By=Ab;=4.8 GeV 2. Then the pion—
nucleon diffraction slope is reproduced with reasonable val-
I'(b,r)~6(R—b) ues of the parametem in Eq. (55): a=1.2 for a)y,
5 1 R =0.1GeV? and a=0.9 for a/,=0.15GeV > Hereafter
+ p 0(b—R)6| R+ > r—b)sin‘1 b we use the latter set of parameters.

which yields the large- behavior op(r)~2Ryr and the g SOFT-HARD DECOMPOSITION OF TOTAL CROSS
tamed rise of the diffraction slopABy(r>1fm)~r?/24.  SECTIONS FOR VN SCATTERING

This consideration suggests an interpolation formula of the ) ] ]
form We present our results starting with an evaluation of the

vector meson—nucleon total cross section
r2 r’+aR3

S —— 55 N 1 dz
8 37T aR; =57 || gy | drimte 2

By(r)=

wherea is a phenomenological parametar;- 1.
Such a taming of the growth d4(r) is supported by +[Z2+(1-2)][d, (1, D)} o(Xert ). (B8
the phenomenology ofrN scattering. Let us take for the For the parametrization of light-cone wave functiah@ ,z)
pion the oscillator wave function, and assume that the gluonef vector mesons, see Ref. 10. The results %gp=<X,
probed radius of the pion equals the charge radius. Then, the0.03 are shown in Fig. deft box). The smaller the radius
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o;or(VN)’ mb

I i A,
9 v ‘A¢o?3° i

W FIG. 2. The left box corresponds to the color dipole model

10F JL—’/E A predictions for the total cross sectian,(VN) for the inter-

/ Ny action of the heavy vector mesods¥, ¥', Y, andY ' with

T r A , the nucleon target as a function of c.m.s. enewly The

T T dashed curve represents the soft pomeron contribution. The

r i right box shows the color dipole model predictions for the
Ik L AT total cross sectiomr,(VN) vs. radiusRy of vector mesons
3 3 p% p's ¢° ', IV, WY, andY .

r I W = 100 GeV
0.3 N e | N A }P N IR |
10 100 0.1 1
W, GeV Ry fm

of the vector mesorv, the smaller the total cross section ¢, (¢N). For smallW, o(¥'N) of the present paper is in-
ou(VN); to a crude approximationg(VN)=RS, excepting  deed numerically very close 0,,(¢°N) calculated in Ref.
the radial excitationg’,p". 10, but the rise obr(¥'N) by ~50% fromW~10 GeV to

In Fig. 2 (left box) we show separately the soft pomeron W~ 500 GeV is much weaker than the rise @f(¢N) by
contribution to o,(VN). For the J/¥ the radius is large, almost a factor 2 over the same energy range. With our
Ryw~0.4fm>R;=0.27 fm, and the soft contribution is energy-independent,(r), the rise ofo,(¥'N) is entirely
substantial; for thé&/' the soft contribution is a small correc- due to the perturbative gBFKL cross sectiop(£,r), which
tion to the dominant perturbative contribution. At subasymp-rises with energy more steeply at smallAlthough theWw’
totic energies, the gBFKL approach predicts a steeper risgnd the#® have similar mean square radii, because of the
with energy for smaller dipole&f. Eq.(11)), a trend thatis node effect the relative contribution of smaffor the case of
clearly visible in Fig. Zleft box). At asymptotic energies the ¥'N is smaller than for the case @N, and this explains
contribution from the rising gBFKL cross section takes overthe counterintuitive difference of the energy dependence of
for all channels. In Ref. 47 it is observed that for thethe two cross sections.
“magic” radius r ,~0.15 fm~R./2 the gBFKL color dipole
cross section exhibits the precocious asymptotic energy de-
pendenceapt(x,rA)ocx‘Ap. BecauseRy~0.18 fm is very I'SDéFT':AF;';CSTD//ET:\l%D$CTION CROSS SECTIONS FOR THE
close to the “magic” radius , , the predicted energy depen-
dence of the perturbative contribution tg,(YN) is very We now turn to vector meson production. The strong
close toocW?2p= W08, point about color dipole factorization equatio(s3), (14),

The case of thel’ is interesting for its large radius (19), and (20) is that apart from the trivial factor€,, and
Rg~0.8 fm and large soft contribution. Because il Cy/m,, the production amplitudes are flavor-independent
and ¢° have very similar radii, a useful comparison is with when considered as a function of the scanning radiys

10f [
b pO [ ¢0
o~
R \\
¢
*‘E ~o | N FIG. 3. Decomposition of production amplitude for
~ > ™ . longitudinally polarized vector mesons into soft
E 0 l asd aisasaal sl i ataaaal adssnl L aassssal . .
N : (dashed curvesand perturbative soft (solid curveg
S Iy i contribution as a function d®?+ m2. The nonmono-
= tonic Q? dependence is due to an increasexjp at
>| 10k \ T RN fixed W=150 GeV.
N - E
§- \\\\\\ e
1k \“~<;
[ [
0.11 ) " " s L " " s

0.1 1. 10 100 0.1 1 10 100
Q°, GeVv? Q?, GeV?
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and/or Q2+ m32.%3528107¢ this end, Eqs(13), (14), (19), o(y'N —VN), nb

and (20) represent the leading twist terms and the correct

twist expansion goes in powers of @¢+m?) rather than in A HI 94495 prel. +

powers of 1Q2. For instance, in Ref. 10 we have shown how ® ZEUS 93 ++

the ratio of thel/¥ andp production cross sections becomes 5o ® ZEUS 94

remarkably constant when the two cross sections are takené [ O EMC

equalQ?+ m\z,, in contrast to a variation by about three or- A E516

ders of magnitude when the two cross sections are compare: O E401

at equalQ?. For this reason we strongly advocate the pre- | R E687

sentation of the experimental data as a function of the flavor-

symmetry restoring variabl®?+m? rather thanQ?, and

whenever appropriate we present our results in terms of this

scaling variable. 10k ¥
The soft/hard decomposition of production amplitudes

depends on the relationship betweenand R;. The hard o o .

contribution dominates ats<R., i.e., if 10 100 W, GeV

A2 FIG. 4. The cplor dipole mo_del piedictions for tWedepen_dence of the real

Q*+mi= gz ~30 GeV, (59 Sroroy EMCH E516% £40L% E6871 and high-onergy ZEUS™ and

H154-%6 data.

which holds better for the heavier vector mesons and the

largerQ2. Our phenomenological soft interaction, as well as ) ] .

other models for the soft pomerdh!! extends well into  ance, and for more direct comparison with the presently
r<R.. Arguably, with better understanding of the perturba_available experimental data, instead of the directly calculated
tive gBFKL amplitude, one can eventually use vector mesorB(t=0), in all cases we report

producFion to better assess the effect of soft intgr_actions at B=B(t=0)—-1 GeV?4 (60)
short distances. In Fig. 3 we show our decomposition of the ) ]
production amplitudes into a hargerturbativé and soft which we also use to evaluate théntegrated production

contribution as a function dd? for various vector mesons at €'0SS section from the theoretically calculatetir(dt);-o:

the typical HERA energyW= 150 GeV. Because the pQCD 1 do(y*—=V)

scale parameter is smaller for the lighter mesongp) U(Y*HV)ZET : (62)
<7 (I/V)<7.(Y), the soft contribution is somewhat larger t=0

for the lighter quarkonia. The uncertainties in the value & and with the evaluation

For comparison with experimental data, the most(61) presumably do not exceed 10%, and can be reduced
straightforward theoretical predictions are for forward pro-when more accurate data become available.
duction, and we calculated¢g/dt),—, andB(t=0). The ex- We begin by presenting our results and comparing them
perimental determination of these quantities requires exwith the available experimental data on real photoproduction
trapolation ofdo/dt to t=0, which is not always possible, of the J/¥ in Fig. 4. The agreement with experimental data
and one often reports theintegrated production cross sec- from the fixed target experiment&EMC;*® E5164° E401>°
tions. The principal lesson from high precisiart N scatter- E687Y) and from the HERA experiment§ZEUS?253
ing experiments is that the diffraction sloft) depends H1%*%9 is good with regard to both the magnitude and en-
strongly on the region oft, and for the averag€t) ergy dependence of the cross section. Fordhe and Q?
~0.1-0.2 GeV which dominate the integrated total cross =0 the scanning radius is still large,~0.4 fm, and at
section, the diffraction slope is less than &0 by lower energiedN=15 GeV the soft contribution comprises
~1 GeV 2% We take theserN scattering data for guid- ~50% of the photoproduction amplitude. Still, it is smaller

FIG. 5. The color dipole model predictions for the
Q? andW dependence of the ratio of the longitudi-
nal and transverse differential cross sections in the
form given by Eq.(62) for W=500 GeV(curvel),

150 GeV(curve?2), 50 GeV(curve3), and 15 GeV
(curve4).
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FIG. 6. The color dipole model predic-
tions for the polarization-unseparated for-
ward differential cross sectiofitop boxe$
[do(y* = V)/dt],_o=[dor(y* = V)/dt];—o
+[do (y*—V)/dt]-, for J/¥ andY pro-

duction as a function of the c.m.s. eneijat
various values ofQ2. The bottom boxes are
predictions for the polarization-unseparated
integrated cross sectioor(y* —V)=o(y*
—=V)+o (y*—=V).
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than in oo (J¥N) and o(y—J/ V) rises much faster that ratio_ R measured experimentally for trteintegrateq Cross
(thot(J/‘I’N), which is one example of the failure of the vector Sections can be §omewhat smaller than our predmyons for
dominance model for processes with heavy quarkonia. Re= 0. The calculation of th¢ dependence oR, 1 is an inter-

call that VDM predictso(y— /W)= a2 (JTN).

The relationship(14) (and also(7)) is to a large extent
model independent, and predicts the dominancerpofat

large Q2. It is convenient to present the results for ization parameter e~1,

R= o /ot in the form of the ratio

mé doy (y* —V)

Rir=

Q% dor(v* = V)| _,

(62

shown in Fig. 5 fny is the mass of the vector megoThe
point made in Refs. 4 and 5 and repeated in Ref. 6 in somdn terms of the exponent of the energy dependence of the
what different form is that compared te7, the transverse t-integratedo(y* —V)xW°=W4*e and/or do/dt|,_ o W?
amplitude .Z; receives a larger contribution from large-
asymmetric end-point configurations wifl—2z)<1. For
this reasorR <1, and it decreases steadily wi?. The
steeper rise ofoy(x,r) at smallerr makes the end-point
contributions less important at higher energies, Bpgrises
with energy, although very weakly. The above predictionsW=100 GeV. For the sake of completeness, we shgwin

esting subject in its own right, but it lies outside the scope of
the present analysis.

In the typical HERA kinematics the longitudinal polar-
and as our prediction for
polarization-unseparated production cross section we have

o(y*—=V)=o1(y* =V)+ o (y*—=V).

In Fig. 6 we show our predictions fa/ ¥ andY pro-
duction. The shorthand representation of the same results is

=W%*. The exponens for the t-integrated cross section is
slightly smaller because of the shrinkage of the diffraction
cone. The effective intercept.+ depends on the range @&f
covered by the fita more detailed discussion of this issue is
found in Ref. 5; in Fig. 7 we present our evaluations for

for R=do /dor must be tested dat=0, the present experi- the same plot for light vector mesons evaluated from cross
mental data orR are for thet-integrated cross sections. In sections calculated in Ref. 10. Slight departures from exact
Ref. 8 it is argued that at largeo> o instead, so that the flavor symmetry are due to slight differences in the pQCD

2
A4@)

04

FIG. 7. TheQ? dependence of the effective intercept
A#(Q?) for the forward production op®, ¢°, J/VP,
andY at W=100 GeV.
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- 10 FIG. 8. The color dipole model predictions for the
n dependence on the scaling variabl@®+ m\z, of
§ the polarization-unseparated [do(y* —V)/dt];,—¢
L a =[dor(y*—=V)/dt]—ot+[do (y*—V)/dt],-, at the
~ . HERA energyW=100 GeV.
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scale factors(V) for different vector mesons. The predicted ~3.2 for 15=Q?<100 Ge\%.'° The results for theY are
downward turn ofA o at very largeQ? is due to the increase  sjmjlar to the largeQ? result for thed/¥. The departures
in X at fixed W. _ from exact flavor symmetry due tB t#1 and the slight
The real photoproduction of offers one of the best f5y0r dependence of the pQCD scafg/) are marginal for
determinations of the intercept, of the gBFKL pomeron, g practical purposes.
because in this case one has the magic scanning ragius  The experimental data on virtual photoproduction of
~Rc/2, and we indeed find;~A,=0.4. The usual fits 10 charmonium states are still sparse, and there are as yet no
the fxperlmental data are of the fora(y*p—Vp)*W®  gata on the photoproduction of bottomonium. In Fig. 9 we
=W"e. The evaluated value ai=0.9 from Fig. 4 in the present a summary of the experimental data onJtHe pro-
range 46<W< 140 GeV is in good agreement with the value §,,ction from the fixed target EMC experiméhtand the
6=0.92+0.14stat)=0.1Q'syst) extracted from the data on zgy<257 3 HP*5658experiments at HERA. The theoret-
elastic J/¥ photoproductior?® Analogous estimation of ical results are folW=15 GeV, appropriate for the EMC
~0.82 from Fig. 4 in the range 30W <240 GeV isin good  experiment(dashed curve and forW=100 GeV, appropri-
agreement with the valug=0.77+0.13 presented in Ref. 56. 4te for the HERA experiments; theory and experiment are in
The recent H1 data on elastic virtual photoproduction ofressonable agreement.
1w reported the values=1.07+0.57 atQ’=3.7 GeV* One of the outstanding experimental problems at large
and 1.22:0.52 atQ?=16 GeV* in the energy range 40W (32 is a separation of elastic reactigif p—V+p from the
<150 GeV, whi_ch correspond to our resul#s=0.98 and jnelastic backgroundy* p—V+X; the low-energy EMC
6=1.15, respectively. data are well known to have been plagued by the inelastic
The salient features of th@* dependence are best seenpackground. The contribution of the inelastic background to
when cross sections are plotted as a function of the flavoge experimental cross section may be the reason why we
symmetry restoring variabl@’+m{, whereupon the)/'¥  ynderestimate the experimental data. One more argument in
andY production cross sections exhibit very similar behav-tayor of this point will be presented in the discussion of the
ior (Fig. 8. For R =1, the theory predicts diffraction slope below.

do Gk r(V)(Q+ ). (69
—_— Il a— v e , T .
dt| _, (Q2+md)3 ff v

o(y'N — VN), nb

If one fits (63) to the behavior @2+ m?2) ~" and neglects the 100f A H193
Q? dependence coming from the gluon structure function, & H1 94495 prel.
thenn~3. The effect of the gluon structure function is two- ® ZEUS 93
foId.lAt fixeo; Xeffs iz.e., \/2vhen the energy varies witQ? ac- X ZEUS 94495 prel.
cording toW*=(Q~“+my)/Xe, the gluon structure function o g EMC
rises withQ?, which reduces the fitted exponentn=<3. On 108 ‘.
the other hand, experimentally one usually studies @e r S
dependence at fixed enerdly, when Xeq=(Q*+m)/W? in- [ ‘.
creases withQ?. Because the gluon structure function de- I ~.
creases toward large this inducedQ? dependence increases 1 S~ \_+—
the exponent. o Tse

The exponenn depends on the range @ the fit is 0 10 20 30 40
performed in. For instance, i&/'V production at a typical Q% Gev?

HERA energyWW= 100 GeV, we predich~ 2.8 for the semi- he color dinol | ctions £ i
perturbative region 0f?<10 Ge\? andn~3.2 if the fit is FLG' 9- J e color d'tpoe TOd\? EFEd'Ct,'f’”S{/ o e dfpe(‘/de”fce °|t e

22100 Ge\2. W Il that observed cross sec iom(y* —V)=o(v*—>V)+eo (v*— )_o exclu-
performed over the range ¥°=< ev. vvereca sive J/¥ production vs. the low-energyEMC*) and high-energy
for p° production we founch~2.4 for Q<10 Ge\? andn  (ZEUS5257 H154565§ (ata.
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FIG. 10. The color dipole model predictions for the diffraction
slope in production of different vector mesons as a function of
the scaling variable?+ m\z, (left box) and scanning radiusg
(right box) at fixed c.m.s. energw/=100 GeV. The scales @?

on the top of the right box show the values®f that correspond

to the scanning radii shown on the bottom axis.

1 0 1022 10?107 , 102“ 1
Q" +m,, GeV r» fm
8. DIFFRACTION CONE FOR THE V(1S) STATES can be attributed to a difference in the pQCD scale factors

7(V) for light and heavy vector mesons. At fixadf, the

Evidently, the contribution to the diffraction slope from calculatedQ? dependence is an interplay of the changin
the y* —V ftransition vertex decreases with decreasing scan- P piay ging

ning radiusr g, i.e., with risingQ?.?8 At fixed energyWw the jv?te;\nri]rlc:?eiaasdilr]ugs; ande)hretggclriZﬁfevg]c:g? Eiggﬁscc;nrgg nent
value of ¢ rises and the rapidity decreases, which also =10 Ge\2. the esﬁc;ft omeron is substantial and hiah
reduces the diffraction slope because the Regge term bé-"" =~ "'’ . P 0 s Zg
comes smaller, which is an important component of @fe precision experimental data gfl and ¢° in this range ol

L . : . are indispensable to a better understanding of the soft
dependence at fixed. In this section we report evaluations

. ) pomeron. In Fig. 10Qright box the same results are pre-
of the diffraction slope based on E@8). We use the results ented as a function of the scanning radigsss defined by

of Ref. 28 for the energy and dipole size dependence oEq.(Z) with A= 6. Crude estimates for th@? dependence of

B(&,r) for gBI_:KL_ color dipole amphtude._ qu the soft B(y*—V) reported in Ref. 28 are close to the present re-
pomeron contribution, we use the parametrizati(8® and sults

(55). According to Fig. 3, the nonperturbative contribution to - o
) . . We can suggest useful empirical parametrizations for the
the J/¥ andY production amplitudes is small, and our re- . . . .
diffraction slope. For production of heavy quarkonia,

o STecn o o o vt ot oo IV, Y. he G dependence of th ifacion soe
P ' P 92t W=100Gev and in the considered range of

(60) in Sec. 7, and is meant to correspond to the experimen=, .
tally measured slopB(t) att=0.1-0.15 GeV?2. Q*<500 GeV* can be approximated by

As shown in Ref. 28, at subasymptotic energies the dif- Q2+m\2,
fraction slope for the gBFKL amplitude grows rather rapidly, B(y*—V)~By— 61 log — (64
by =1.4 GeV 2 whenW grows by one order of magnitude Moy

from the fixed-target energf=15 GeV to the HERA en- ith slope B8;~1.1 GeV 2 and interceptB,~5.8 GeV 2.
ergy W=150 GeV. This corresponds to an effective shrink- jthough (64) must be regarded as only a purely empirical
age ratea;~0.15 GeV % only at very high energies be- cryde parametrization, the logarithmic te(¥) is sugges-
yond the HERA range will the shrinkage follow the true e of a substantial role of the terg®0) in the diffraction
slope of the Regge trajectory for the rightmost gBFKL Si”'slope at high energy. We recall that the consjégis subject
gularity @, =0.07 GeV2 The values ofrj, andagy are Very g the choice of the range; it is the slopgs, that is more
sensitive to the gluon propagation radi@s, and can even-  cjosely related to gBFKL dynamics. For the light vector me-

tually be used to fix this poorly known parameter. For now,sons, a somewhat better approximation to the results shown
we explore the major properties of the solution fB¢ iy Fig. 10 is

=0.27 fm.

One interesting prediction from color dipole phenom- 24+ mg B>
enology of a diffraction cone is that the diffraction slope for B(y*—=V)=~Bo—B1 '09( m2 ) + Q2+m3 (65)
J/¥ production atQ?= 100 GeV nearly coincides with that I v
for real photoproduction of th’. This is still another ex- with the same;=1.1GeV 2 as above and withg,
ample of flavor symmetry restoration, because the scanning 7.1 GeV?, B,=1.6 for p° production and g,
radii r 5 for the two reactions are very similar. =7.0GeV?, B,=1.1 for ¢° production.

The flavor symmetry properties of the diffraction cone Experimental studies of both th@? and energy depen-
can be seen in Fig. 1Qleft box). The curves for dence of the diffraction slope are in the formative stage. In
B(y*—V) of all the vector mesons converge as a functionthe heavy quarkonium sector, only photoproduction of the

of Q%+ m\z,; slight departures from exact flavor symmetry J/¥ has been studied to any extent. The experimental situa-
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B, GeV™? The end-point contribution from asymmetric large-size
13 AE6s7 W HI dipoles withz(1—z) <1 is different for the production of the

ONMC © ZEUS T and_L pola_rized vector mesons, and makes the average
11+ T E401 A HI scanning radius somewhat larger in the casé gblariza-

tion. Consequently, one would expect inequality of the dif-

fraction slopesB+>B,, for the polarization states. But the

numerical difference between them is negligible even for the

charmonium states, because in nonrelativistic quarkonium

LS ’ the end-point effects are strongly suppressed. For bottomo-
+ nium statesBr— B, is absolutely negligible.

3 ) ) | 9. WHAT IS SPECIAL ABOUT DIFFRACTIVE PRODUCTION
10 100 200 OF THE RADIALLY EXCITED STATES V(2S5)?
W, GeV

In diffractive production of radially excited  states

FIG. 11. Comparison of the c_olor dipole model predictiqn for cm.s. energy(¥’ Y') the watchword is the node effect. The radial wave
:’:edgﬂ%@g’fg‘;ﬁc‘fgg*“E%g';;'f;tl"gfsgfrf’;gggg;gg;ft’gfég'g”o?fm with  function of the B state changes sign at-Ry(1S), and

there are cancellations of contributions to the production am-

plitude from large dipolest=Ry(1S), and small dipoles,

r<Ry(1S), which were noted for the first time in Refs. 1
tion is summarized in Fig. 11, at both fixed-tatjéf*®and  and 3. Manifestations of the node effect for diffractive pro-
HERA energie¥>° the error bars are too large for defini- duction of light vector mesons off nuclei have been dis-
tive conclusions about the presence or lack of shrinkage ofussed in Refs. 30 and 60. A detailed analysis of the forward
the diffraction cone to be drawn. On the experimental sidereal and virtual photoproduction of lightS>states p’,¢') at
determinations of the diffraction slope are very sensitive tchigh energies is presented in Ref. 10. The major subject of
cancellation of the inelastic background. Only the E401the present discussion is new manifestations of the node for
experimert’ used a technique that allowed direct selectionthe diffraction cone.
of purely elastic events. The E401 resulB(W The cancellation pattern obviously depends on the rela-
=15 GeV, Q?=0)=5.6+1.2 GeV 2 is consistent with the tionship betweemg and the position of the node, which is
NMC result B(W=15GeV, Q?°=0)=5.0+1.1GeV 2% close to the radius of the Sl state, r,~Ry(1S). If rg
The recent high-statistics Fermilab E687 experirffamsed a  <R,(1S), then the wrong-sign contribution to the produc-
nuclear target, and its determination of the diffraction slopetion amplitudes from dipoles with=r, is small and cancel-
for quasielastic scatteringB(W=20 GeV, Q?=0)=7.99 lations are weakthe undercompensation scenario of Ref.
+0.23 GeV'?, is subject to the model-dependent separatior80). If r¢=R\(1S), then the production amplitude can even
of the coherent and quasielastic production on nuclei. Abe dominated by the wrong-sign contribution franabove
HERA, the first H1 data gaveB(W=90 GeV, Q?=0) the node position(the overcompensation scenaridFor
=4.7+1.9GeV 2% and the first ZEUS data gave heavy quarkonia the scanning radiusis sufficiently small
B(W=90 GeV, Q°=0)=4.5+1.4 GeV 2°? updated with even atQ?=0, and the undercompensation scenario is real-
higher  statistics to B(W=90GeV, Q?=0)=4.6 ized.
+0.6 GeV 2.5 In 1996 the H1 collaboration found weak At fixed target energies, the node effect is sufficiently
evidence for shrinkage of the diffraction con®&(W  strong and suppresses the ratio R,,(t=0)
~60 GeV, Q>=0)=3.70.2-0.2GeV? and B(W =[do(¥')/do(J/¥)],—, by almost an order of magnitude

~120 GeV, Q?=0)=4.6+0.3+0.3 GeV 2 (Fig. 12. Evidently, the smaller the scanning radius, the
For virtual production ofl/¥ the H1 collaboratio®f re-  smaller the large-contribution and the weaker the node ef-
ported in 1996 the first data: fect, so that the ratipdo (¥ ')/do (/W) ];—, rises withQ?
as shown in Fig. 12. When the node effect is strong, which is
B(W=90 GeV{Q? =18 GeV) the case for thal’ at Q>=0, then even slight variations of

the scanning radiusg can change the strength of the node
effect substantially. For this reason one must not be surprised
that at fixed target energies the ratio(V')/da(I/WV) |0
changes withQ? quite rapidly, on a scale @2 smaller than
the natural scalen\z,. The predicted energy dependence of
[do(¥")/do(I/¥)]i= derives from the faster growth with
energy of the dipole cross section for smaller dipoles, which

=4.5+0.8stat)=1.0(syst) GeV 2. also diminishes the node effect. In Fig. d&ft box) we show

in more detail for the HERA energWW=100 GeV theQ?

We predict a decrease in the diffraction slope fr@f=0to  dependence of the ratio of theintegrated cross sections
Q?=18 Ge\? by a mere~0.5 GeV ?, too small an effectto  ¢(2S)/a(1S), evaluated using the diffraction slofB{2S)
be seen at the present experimental accuracy. described below. The predicte@? and W dependences of

=3.8+1.2stat) 3 Ysyst) GeV 2.

Recently the ZEUS collaboratidhpublished a value of the
diffraction slope alQ?=6 Ge\~:

B(W=90 GeV(Q?=6 Ge\?)
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g FIG. 12. The color dipole model predictions for 98 and
= W dependence of the ratiodo(y* —W¥’'(29))/da(y*
> —JI¥) and do(y*—Y'(29))/do(y*—Y) for the
,T polarization-unseparated forward differential cross sec-
%‘0‘1 tions.
WY /T
10 100 W, GeV 0%0 100 W, Gev
the node effect are both sufficiently strong to be observed at B..7%_-—B<. 7%~
HERA. Because the scanning radius is substantially less than B(2S)= y
Ry(1S) for the heavierb quarks than for the charmed B
quarks, the node effect in bottomonium production is much M
weaker, and the ratipdo(Y')/do(Y)];=, is larger and ex- =B<=(B>—BJ) M= (68)
hibits much weake®? andW dependences than for the char-
monium statesFig. 12. which yields the estimate
The node effect is slightly different for thE andL po-
larizations. This is best seen in Fig. 5, which shows the ratio e
R, 1(29) for V'(2S) production, which is different from B(2S)—-B(1S)~—(B-—B.) W<O' (69
N < 0>

R_1(1S) both in magnitude an®?,W dependence.
The new effect that we focus on here is a nontrivial

impact of the node effect on the diffraction cone. In the . X i :
conventional situation, the larger the radii of the participatingdifiraction slopesB(2S) —B(1S). The typical color dipole
sizesr that enterM . and M .. differ by ~R\(1S), and the

particles, the larger the diffraction slope, and for real photo->' o
production we have the clear hierarchy difference of slope8. —B_ can be evaluated as a variation

of the diffraction slopeB(1S) when the scanning radiug

The weaker the node effect, the smaller the difference of

B(y—p°)>B(y—¢°)>B(y—J¥)>B(y—Y), changes by a factor-2 from its value atQ?=0. Then the
(66 parametrization yields an estimatB.—-B_~(1—2)8;
which follows the hierarchy of radiR ,0>R 4,0>R;4>Ry . ~1 GeV 2 for heavier quarkonia. Equatici®9) shows that

Although the rms radius of th#’ is about twiceR;,y , the  the splittingB(2S) —B(1S) is further suppressed if the node
color dipole approach uniquely predicB{y—W¥')<B(y  effectis weak, i.e., tZ. <. Z_ .
—J/¥) in striking disagreement with the hierarchi§6), The results foiB(1S) —B(2S) are presented in Fig. 14.
which has the following origin. Let#Z_ and.#- be the For the bottomonium family the node effect is negligibly
moduli of contributions to thé&/(2S) production amplitude weak, cf. Fig. 12, whereas for the charmonium family the
from color dipoles with size below and above the position chances of the experimental observation of the inequality
of the node in the 3 radial wave function, and leB. and B(2S)<B(1S) are nonzero, at least in real photoproduction
B. be the diffraction slopes for the corresponding contribu-and in the fixed-target experiments. The difference of dif-
tions. Because of the hierarcli§6), we have the strong in- fraction slopesB(1S)—B(2S) is larger forL polarization,
equality consistent with a stronger node effect fopolarization. As
B.>B 67) discussed above and shown in Fig. 12, the node effect dimin-
T o ishes with energy, and the difference of diffraction slopes
For production of theV(1S) stateB(1S)~B_. Now, the B(1S)—B(2S) drops by a factor~2 from the fixed-target
total V(2S) production amplitude is#Z(2S)=.%_— 7., energy to HERA energy. It vanishes at lar@é following
and for the diffraction slope we find the demise of the node effect in Fig. 12; the remarks on the

<o
=

; @ SLAC A H1 95 prel.

> v _L.e- .- ' A NAl4 O E401 FIG. 13. The left box shows the color dipole
T04 sgmmemmoTT | O NMC Y E687 model predictions for theQ? dependence of the
'3? ' ;Q =0 ratio of the t-integrated polarization-unseparated
5 | WHIIY) L cross sectionso(y* —W¥'(29))/a(y*—JI/¥) and
§ | W) o‘(y*ﬂY’(ZS))/a'(.y*HY) at c.m.s. energyW
T0.28 2 L +k =100 GeV. The right box shows comparison of the
. 1Q=0 color dipole model prediction for c.m.s. energy de-

5 L L pendence of the ratio(y—¥')/a(y—J/¥) at Q?

| =0 with the E401° NMC ! E68732 NA14 52 SLACS?
)| TP S SN RN N and HF2 data.
1 10 100 10 100

Q7% GeV? W, GeV
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FIG. 14. The color dipole model predictions
for the difference of diffraction slopes
B(1S)—B(2S) vs. Q? at c.m.s. energyW
=15 GeV (dashed lines and W=100 GeV
(solid lineg for T andL polarization.

rapid variation of the node effect on a scale@f smaller
than m\z, at fixed-target energie¥/~ 15 GeV are fully rel-
evant toB(1S) —B(2S) as well.

Another demonstration of the node effect leading to the

inequalityB(2S)<B(1S) is presented in Fig. 15 in the form
of thet dependence of the differential cross section ratio

do(y—V')/dt

Ryv(t)= do(y=Vyidt (70

for real photoproduction. The ratRyv)(t) rises witht

100

get, and the SLAC result 0.22.08 for a Be target awv
=6.5 GeV® corresponds tdR,;(SLAC;N)=0.18+0.07 for

a free nucleon target.

In Fig. 13 (right box we compare our prediction for
R,1(N)=o(y—W¥')/ o(y—Jdly) for real photoproduction
on protons with the H1 and E401 data for a proton target and
the above evaluations d®,4(N) from nuclear-target data.
The overall agreement between theory and experiment is sat-
isfactory. In view of the steady collection of data at HERA,
higher precision fixed-target data on a hydrogen target are
highly desirable to check unambiguously the predicted rise
of Ry4(N) with energy.

atW=15 GeV as a consequence of the node effect, whereas

at W=100 GeV Fig. 15 shows an essentially constade-
pendence oRy/yy)(t) andRy,y(t), corresponding to a

weaker node effect at higher energy and for heavier vector

mesons, respectively; see also Fig. 14.

10. SUMMARY AND CONCLUSIONS

The major focus of this work has been on the forward
cone for diffractive real and virtual photoproduction of

There is solid experimental evidence for the node effecgound (15) and radially excited (3) states of heavy

in real photoproduction of th&’. In 1996 the H1 collabo-

quarkonia in the framework of the color dipole running

ration reported the first observation of real photoproductior§BFKL approach. We presented a detailed discussion of the

of the W' at HERA, with the resulRy;=a(y—W¥')/o(y
—J/)=0.15+0.05 In fixed target experiments, only
E401 used a hydrogen target, with the resuhy
—W¥")/o(y—JIly)=0.20+0.05 at W=17 GeV. Nuclear

targets were used in all other experiments. Evaluation of th€quations

color dipole factorization for diffractive amplitudes, and of
the relevant pQCD factorization scales, with strong emphasis
on restoration of the flavor symmetry in the varial#
+m\2,. We based our analysis on solutions of the gBFKL
for the dipole cross secfidhand for the diffrac-

cross section ratio for the hydrogen target from these datton slope for the color dipole scattering amplitufiestart-

requires corrections for nuclear shadowingJiW produc-
tion and nuclear antishadowing #' production; there are

also systematic uncertainties in the separation of coherent R
and incoherent production. Specifically, for the same color

dipole model as used in this paper, it has been sfdaat
the ratioR,;= o (y—V ")/ o(y—J/¢) is enhanced in inco-

ing from the same dipole cross section that provides a good

viv
1.0

@ =0

herent production off nuclei by the factor 1.26, 1.55, and
2.16 for Be, Fe, and Pb nuclei, respectively. For a relatively
dilute 8Li target, the enhancement factor can be estimated to
be ~1.1. The E687 resulR,,(E687)=0.21+0.02 for a Be

| W= 100 GeV TIY

target atW=19 Ge\?? then corresponds t®,,(E687N)
=0.17+0.02 for a free nucleon target; the NMC resil;
=0.20+0.05stat) +0.07syst)*! after correction for the last
valué' of the branching ratioBR(J/W —u* u~)=5.97
+0.25% givesR,,=0.17+0.04(stat)+=0.04(syst) for a pas-

W=15 "

i L !

W)

W)

il

0.2

04

sive concrete absorber t=15 GeV, which corresponds to
R,1(NMC;N)=0.13+0.05 for a free nucleon target. The
NA14 result 0.22-0.05 for a Li target aW= 14 Ge\f? cor-
responds tdR,;(NA14;N)=0.2+0.05 for a free nucleon tar-

2
t, GeV

FIG. 15. The color dipole model predictions fodependence of the ratio
differential cross sectiorRy/(t) given by (70) for the ¥'/(J/V¥) and
Y'/Y real photoproduction.
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The result of a new run of measurements of the antineutrino escape asymmetry with respect to
the spin of the decaying neutron is presented. The asymmetry coefficient is
B=0.9821+0.0040, which is consistent with the prediction of the standard model of weak
interactions. The prospects for increasing the accuracy of the measurements are discussed.
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1. INTRODUCTION makes such a calculation very accurate, so that although the

) ) ) spread in\ in the experiments in Refs. 2—8 amounts to 40
The measurement of the antineutrino spin asymmetr;fhey giveBy_ »=0.988 to within 10°.

coefficient B in neutron 8 decay is a test for left-right-
symmetric models of the weak interactibhe value ofB
within a simple left-right-symmetric model with light right-
handed neutrinosB; g) should differ from the value of
By_ obtained within the standar—A variant of the
theory:

Thus, examining the contribution of right-handed cur-
rents to the decay probability is useful to the $0evel, and
with respect to the mass of the right-handed vector b&¥gn
it is useful to the 540 Ge\¢? level for a zero mixing angle
or to {<3X10 2 when §=0. The mass limit folWg from
muon decay is 406 Ge¥?,° and the limit obtained for the
mass of the additional vector bost from direct collider
experiments recently reached the 652 G&\evelX° How-
ever, more complicated variants of the theoretical models
with heavy right-handed neutrinos, nonidentical coupling
constants gg#9,), and inequivalent left- and right-handed
Kobayashi—Maskawa matrices make improving the accuracy

and We of measurements of the antineutrino spin asymmetry in neu-
The value oB expected within the puré—A theory can . P y y
tron B decay a timely problem.

be calculated on the basis of the values of the ratio between o .
. . Of course, achieving the 16 accuracy level is a very
the axial and vector weak coupling constantknown from . . .
.complex experimental task involving measurement of the ex-

measurements of the neutron lifetime and electron-spirn ~ .
2.8 perimental asymmetry and measurement of the neutron beam

BLr=By_a(1—26%—1.210%2—2.4257), (1)

where § is the ratio between the squares of the maddés
and M% for the mass state®V,=W, cos{—Wgsin{ and
W, =Wk cos{+W, sin¢, and ¢ is the mixing angle ofw,

correlation? - . . .
polarization to appropriate accuracy. However, it is possible
N to approach this accuracy level. Recent measurertgues-
By_a= ' 2) formed_ at the St. Pet_ersburg Nuclear Physics Institute
1+3\? (Gatchina on the polarized cold neutron source of the
VVR-M reactor achieved an accuracy ofx@0 3. They
The very weak dependence Bfon A, were discontinued because of the breakdown of the cold neu-
tron source, and the accuracy of the measurements was lim-
dB/oN=0.075, 3 ited by the statistics of a 94-h series of measurements.

1063-7761/98/86(6)/9/$15.00 1074 © 1998 American Institute of Physics
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FIG. 1. Overall diagram of the experimental devices and their
arrangement in the beafwiewed from abovg a) Experimental
apparatus for measuring asymmetty:— electron detector2

— proton detector3 — time-of-flight electrode4 — spherical
electrode,5 — spherical grid,6 — exit neutron guidey —
shielding grid. B Setup of the in-beam experimental equip-
ment: 1 — additional neutron guide sectio@,— polarizer,3

— neutron guide with nonmagnetic coatirg— flipper F4, 5

— flipper F;, 6 — experimental apparatus for measuring
asymmetry,7 — apparatus for measuring polarization.Ap-
paratus for measuring polarizatioh:— beam shutter2 ana-
lyzer A;, 3— flipper F,, 4 — flipper F;, 5 — analyzerA,, 6

— neutron detector.

c 6 N 5 4 o 3 N 2 1
d 23
—n
#773) st
N S
o'

In this paper, we present the results of measurement® bring the polarizer closer to the site of the apparatus. Neu-
continued at the reactor of the Institut Laue—Lange¥ih.)  tron guide 3 with a nonmagnetic®®NiMo coating (Vim
in Grenoble, where an accuracy ok40 3 was achieved, =7.8 m/9 is designed to transport the polarized beam to the
and we discuss the prospects for increasing that accuracy.apparatus and to accommodate the spin flippers. It had a

length ¢ 1 m and the same cross secti¢®x5 cnf) as

2. GENERAL EXPERIMENTAL SETUP. POLARIZED BEAM multislit supermirror polarize. The system of the two flip-
PRODUCTION pers4 and 5 permitted reversal of the sign of the neutron
beam polarization by either of the flippers and variation of
fhe spin-flip efficiency. The resulting beam of polarized cold
neutrons had a flux density of>210° n/cn?-s at the en-
§rance to the apparatus, which corresponds to a flux density
of thermal neutrons equal to 68.C° n/cn?-s.

Although the resulting flux density of polarized cold

The general setup of the experiment performed at th
reactor of the Institut Laue—Langevi{&renoble, Frangeis
shown in Fig. 1. It includes an apparatus for measuring th
experimental asymmetrifFig. 18 and an apparatus for mea-
suring the neutron beam polarizatidkig. 19. Measure-
ments of the neutron beam polanze_ltlon were performed durﬁeutrons was one-third the density in the VVR-M reactor at
Ny t.h.e measuremepts (.Jf the expenme.ntal asymmetry_, or théatchina, the statistical accuracy of the measurements at the
stability of the polarization and the efficiency of the flipper ILL reactor in Grenoble was 2.5 times greater, owing to a
were monitored. The flipper provided for periodic reversal Ofbetter signal-to-background ratio, higher degreé of polariza-

the sign Qf the neutron beam poIanzatlon.. tion of the beam, and successful collection of statistics over
The first task was to produce a polarized neutron bearrt‘nhe course of 13 days

of maximum possible intensity. For this purpose, a neutron
guide system consisting of an additional neutron guide S€c; |\ eV iENT OF NEUTRON BEAM POLARIZATION
tion, a multislit supermirror polarizer, and a nonmagnetic

neutron guide with two radio-frequency flippers was as-  The required polarization measurement accuracy in this
sembled in the PF1 beam from the cold-neutron source of thendeavor is 0.1-0.2%. Determining the properties of the ana-
reactor(see Fig. 1 Additional neutron guide sectidhwith lyzer in measurements of the polarization from the secondary
alength 62 m and cross section8L2 cn? made it possible reflectiort? calls for a special approach, which takes into
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account a very subtle effect, viz., the depolarization accombackward positions of the analyzing device. The tilde corre-
panying the interaction of neutrons with analyzing devicessponds to the backward position. The indiced\oreflect the

In the general case, an analyzing device can be described lsyates of flippeF; and flipperF,, respectively. Formula®)

a transmission matrix. The off-diagonal elements of such are written in the simplified form for flippers with an effi-

matrix correspond to depolarization processes: ciency equal to unity. In the general case, the flipper efficien-
A | B I—C cies appear as correction factors(# without altering their
A= ( ) ., A= —— (4) structure.
B C I+2B+C The condition of equality of the analyzer efficiencies af-
AR 3-, ter reversal of the analyzing device is reflected@nand(7).
p:( ) = , (55  The physical properties of the analyzers remain absolutely
J2 JitJ unchanged, but their analyzing power depends on the angle

whereA is the analyzer matrixA is the analyzing powet of incidence of the neutron beam. Therefore, in the present

and C are the transmission coefficients of the different spinProPlem the necessary condition is satisfied if the beam di-

components of the neutron beam without no change in po\_/ergence remains unchanged along the entire analyzing de-

larization, B is the transmission coefficient with a change in Vic&: i-€., when the analyzers and the neutron guide form a
. A o system of parallel planes without breaks and bends. Unfor-
sign of the polarizationP is the polarization vector of the o - :
. o tunately, to obtain high efficiency, the analyzer assemblies
neutron beamP is the value of the polarization, anld and

) - . must be bent to avoid direct flight without interaction with
J, are the intensities of the spin components of the neutronh ; . .
beam. the mirrors. Bent systems quickly alter the beam divergence

A method for measuring the polarization with consider—and cause a spurious effect in the measurements. The spuri-

. L . . _ous effect appearing in a polarization measurement has the
ation of depolarization effects was proposed in our precedin : . Lo
. ; . . form of sinusoidal dependence on the inclination of the de-
paper (Ref. 13, which was devoted to this question. This

method was carefully studied during the measurements pe\r/-iCe re_lative to the beam, . .
This effect was detected in the experiment and con-

formed. . . .
The method is based on a design for an analyzing devicgrmEd in Monte Carlo calculations. The geometry of the

consisting of two analyzers with a flipper between thig. appargtus and.the previously mea;ured dependenges of the
. . reflection coefficients of the supermirrors for both spin com-
1¢) (a double flipper system was used to measure the flipper . .
onents of the neutron beams were incorporated into the cal-

efficiency). Rotating the analyzing device by 180° about the”

horizontal axisD—0’ enables us to obtain the required num- culations. The calculated and experimental results are pre-

ber of independent measurements and to determine the beas’r%nteOl in Fig. 2. Spurious variation of the neutron beam

o . olarization is observed. The effect has a sinusoidal charac-
polarization, as well as the efficiency of both analyzers undeF

. . . . er with an amplitude of 0.5%. When the apparatus is rotated
the assumption that their efficiency is conserved after the . )

. about the beam axisee Fig. 2a the P(¢) curve takes the
reversal operation.

o form of its mirror image. This attests to the appearance of the
The neutron beam polarization can be calculated from__ " . ; ;
the formuld3 spurious dependence under consideration as a consequence

of the asymmetric geometry of the apparatus. Fortunately,

5 N_,N_, A, the spurious effect has an alternating sign, and is compen-
Pi=———=P°—, (6)  sated to a considerable extent when the mean value of the
Ny s N A1 beam polarization is measured, i.e., when integration is car-
N_.N_ A ried out over the angles. As the Monte Carlo calculations
P’§E~+—+=P2A—2, (7) show, the compensation is not complete. In the integrated
++ Ny 2 value of the polarization the spurious effect causes underes-
P,= \/W ) timation of the mean value by 0.1%; therefore, an appropri-

ate correction must be introduced. In our measurements the
whereN,,, N;_, N_,, andN__ are linear combinations statistical accuracy for the mean beam polarization was very
of the measurement results for the forward position of thehigh (0.01%. However, we estimate the final accuracy of the
analyzing deviceA,A,): polarization measurements to be at the 0.25% level, fearing
that the asymmetric angular distribution of the beam can
N, =(Ngot Njg) +(Ngi+Nqq), . . .
++=(Noot N1g) +(Nor N1y cause a deviation from the results obtained in the Monte

N, _=(Ngo+ Ny —(Ngi+ N1y, (9)  Carlo model.

We noted during these investigations that depolarization
N— = (Noo=N10) +(Nor=Nsy), takes place when the neutron beam interacts with the analyz-
N__=(Ngo— N30 — (Ngz— Nyy). ing devices. The off-diagonal elements of the matrix describ-

o ) ) ) _ing the analyzing devices were equal to 20 3. This is
Similar expressions can be written for the linear combinayne gpin-flip probability. This finding is important, since the
tionsN, ., N._, N_,, andN__ for the backward posi- assumption that there are no depolarization effects and the
tion of the analyzing deviceA>,A;). HereNgo, Nio, No1,  use of a simplified measurement schefwithout rotation of
N1, Noo» Nig, Noi, andNy; are the detector counting rates the analyzing device about axigwould lead to a 0.5% error
for different states of the flippers in both the forward andin the polarization measurements. One possible reason for



JETP 86 (6), June 1998 Serebrov et al. 1077

TABLE I.
Detector - I
1. Results of polarization measurements
with consideration of the spectral, angular, and
spatial distributions of the beam 97:5.01%
2. Correction for systematic measurement
errors 0.16:0.25%
3. Spectral correction for absorption and
A (A') u scattering in foils and in air —0.13+0.01%
1+ 2 4. Correction for counting errors in the
-~ h = — .. .
Detector Ax(A;) ' ‘ ’ - n electronic instrumentation 0.69.02%
?, — Axis 2 Final result 97.52.0.25%
K2

measured, the analyzing system was oriented in the vertical
position, and the beam passed through the gap between the

Py ! neutron guides in the region of the rotation axis of the ana-
11 : : : . .
—_ -l J2000 lyzing system without interacting with the latter. The spec-
0.975¢ = o - trum was measured by a detector with an efficiency which
! 41600 depends on the velocity according to @ 1dw. The changes
0.950f in the form of the spectrum as a result of the spectrally de-
11200 pendent absorption and scattering in the air, in the aluminum
0.925F exit window of the chamber, and in the aluminum entrance
4800 window of the detector, were measured experimentally. For
this purpose, aluminum foils were placed in the beam, and
0.900F N\ 4400 relative measurements of the spectrum were made when the
0875 chamber of the apparatus was filled with air and when it was

2002 ool 0 00l 002 evacuated. The measyred spectral cqrrectlons were usgd to
@, rad correct the result obtained by measuring the mean polariza-
o _ _ tion. This correction was insignificant because of the weak
FIG. 2. 3 Polarization measurement schemes in two geometries: néfmal - gactrg| dependence of the polarization. The correction for
and mirror-image(ll) (lateral view. In each of the geometries measure- . .. .
ments were performed for the forward position of the analyzing devicetn€ counting errors of the electronic instrumentation was also
(A,A,) and for the backward position of the analyzing devide @&,), Mmeasured experimentally. The results of the measurements

The position was changed from forward to backward and vice versa byof the polarization and the corrections are presented in Table
rotation about axid. The angular dependence of the polarization was mea-|

sured by rotating the entire device about afisb) Dependence of the . . .
polarization P(¢) and the intensityl on the angle of inclination of the The most important elements in the setup for measuring

analyzing device relative to the beam. The polarization was calculated froN€ Neutron beam polarization are flipgég, which is in-

Egs.(9)—(12) under the assumption that the analyzing power of the analyztended to reverse the sign of the polarization, and fligpgr

ers remains unchanged after rotation of the deviges A;, A,=A,. Points  which is located between the analyzers.

— results of measurements i_n geometryd) and gepmetry |i(m). Solid The operation of the flippers was based on the occur-

lines — Monte Carlo calculation for these geometries. rence of neutron spin flip in a variable magnetic field when
the neutron spin precession frequency coincides with the fre-

the depolarization accompanying the interaction with an anaquency of the variable magnetic fielheutron magnetic

lyzing device is the inhomogeneity of the magnetic field. If resonance However, the probability of transitions between

the magnetic field is not parallel to the supermirror surfacethe Zeeman sublevels depends on the dwell time of the neu-

an abrupt change in the direction of the force lines occurs dfon in the field, i.e., such a spin-flip method is spectrally

the vacuum—material boundary because of magnetic induglependent. This problem has been eliminated in our flipper.

tion in the material. For example, if the angle between theThe magnetic field gradient created in the region of the

magnetic field and the surface is 4°, the beam depolarizatioradio-frequency coil ensures a spin flip for all neutron veloci-

effect equals 0.5%. ties in the beam when the amplitude of the variable field is
In measurements of the mean polarization, angular scarl@rge and the following adiabaticity condition holds:

were carried out both in the vertical plane and with the ana-

lyzer slit inclined to the vertical. The horizontal dimensions VZE<27WH2’ (10

of the neutron guide system of the analyzing device were

sufficient to completely cover the angular distribution of thewhereV, is the velocity of neutrons along the beam axis,

beam in the horizontal plane. is a constant magnetic field with gradietiti/dz, H, is the
The spectral dependence of the polarizaffoon neutron  amplitude of the variable magnetic field, ands the gyro-

wavelength\ , was measured at each point using a time-of-magnetic ratio of the neutron. If this condition is satisfied for

flight technique. This dependence was then averaged witthe fastest neutrons in the beam, the flipper efficiency can

the spectrund(\,). When the neutron spectrudf\,) was reach 99%. Such a flipper was first employed for ultracold
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TABLE II. F;,
P
Geometry f1, % fl, % fo, % 5, % N - ¢
—
Forward A;,A;) 98.01+0.05 96.82-0.05 98.3¢:0.05 99.510.05 o \ e
Backward @,,A;) 97.96-0.05 96.75:0.05 98.43-0.05 99.3%-0.05

neutrons in Ref. 14, and was subsequently employed for ,
heavy and cold neutrons. The PF1 beam was recently outfiE—'G' 3 Diagram of the momenta of the neutron decay prodids:P, ,

g ; . ) ndP, are the momenta of the electron, antineutrino, and recoil proton, and
ted with such flippers. The important advantages include th@’; is the projection of the proton momentum onto thaxis.
absence of matter in the beam path and the simplicity of
control (by turning the variable field on and ¢ff

A polarization analyzer with a double flipper system

makes it possible to easily measure the efficiency of a flip£oincidence matrices with electron enerfy and proton
per. Therefore, besides flippefs andF, there are auxiliary time of flightt, as coordinates. Complete information on th_e
flippers F} and F} for measuring the efficiency of the flip- Neutron decay process can be represented by two matrices
pers. For each pair of flippers it is possible to perform fourcorresponding to two directions of the neutron beam polar-
different measurementour combinations of the states of ization relative to thex axis of the apparatus, i.e., the axis
two flippers, which suffice to determine the efficiency of J0ining the two detectors. .
both flippers. The efficiency of the flippers is determined ~ The number of events in each cell of such a matrix can

from the relations be written in the form
N3+ Ni—3NJ+ N3 NI+ N —3N2+NO Nix="f(E))[1+a(v;/c)(cOS b, )i
S 3NO-NI-NO-NDT T 3NO-NI-NI-NO +PA(v,/¢) (oS f,0)1 = PB(cos 8,,)i], (12
(11

wherea, A, andB are the electron—antineutrino, electron—
Here NS, N3, N7, andN§ are the detector counting rates, spin, and antineutrino—spin angular correlation coefficients,
where the subscripts correspond to the main flipper, and the is the neutron beam polarization,/c is the electron ve-
superscripts correspond to the auxiliary flipper. The resultocity expressed in units of the velocity of ligHt(E;) is the
of the measurements of the flipper efficiencies are presentdeermi function with allowance for radiative corrections, and
in Table Il. The measurements of the efficiencigsandf,  the cosé, are the cosines of the angles between the respec-
were performed for two positions of the analyzing devicetive vectors. The labels and k specify finite intervals of
(the forward and backward geometjiesvith no changes electron energiesE;) and proton times of flightt(). Ac-
noted in efficiency. The values df, andf, were obtained cordingly, all quantities with these labels should be averaged
automatically. As is seen from Table Il, there is fairly good over the respective interval.
reproducibility of the measurement results. In the absence of correlations the density of events on
The stability of the operation of the flippers was regu-the neutrino spherésee Fig. 3 is constant. Owing to the
larly monitored during the measurements, and no variationsoefficienta, asymmetry appears between the event counts in
in their efficiency were noted to within 0.05%. the left- and right-hand hemispheres, even for an unpolarized
It is noteworthy that a radio-frequency flipper is asym- beam. The coefficiend specifies the asymmetry in the total
metric, since the beam polarizationisP when the variable number of events on the sphere when the direction of the
magnetic field is turned off ane P f when the variable mag- neutron spin is reversed. Finally, the coeffici@teads to

netic field is turned on. asymmetry between event counts in the right- and left-hand
hemispheres, which changes sign when the sign of the polar-
4, MEASUREMENT OF THE EXPERIMENTAL ASYMMETRY ization changes. Thus, it is difficult to directly measure he

asymmetry. However, the experimental asymmaetryvhich
gepends on all three coefficierdsA, andB simultaneously,

can be measured. It is defined as the asymmetry in the num-
'ber of eventgcoincidence of the signals in the electron and

decay products is pr(_asented.m F|g. 3. For g|ven.electron roton detectofsupon reversal of the sign of the polariza-
momentum, all possible antineutrino momenta lie on atpion'

sphere of radiusP,=(Ey—E.)/c, where P, is the an-

tineutrino momentumE, the kinetic energy of the decay, Nt — N
andE, the electron energy. Thus, knowing the electron en-  Xy=———
ergy and measuring the projection of the proton momentum Nike+ Nig

onto thex axis by the time-of-flight method, we can deter- PB(coS 8,,)i+PA(v; /C)(COS 0,0) i
mine the antineutrino escape angle and reconstruct the kine- =
matics of the decay process. Since the ratios betend

P, for different electron momenta are different, the eventsThus, if we measure the experimental asymme{py, we
detected in an experiment should be recorded in the form afan calculate P B);, using the relation

The escape direction of the undetected antineutrino ca
be determined from the measured proton momentum an

1+a(v;/c)(cosb,,) (13
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Xil[1+a(vi/c)(cos bg,)ik] — PA(v; /c)(COS 0,,6)ik electrons backscattered from the detector then amounts to
(cos b,,)ik 19 6%,
A diaphragm was positioned in front of the electron de-
tector to determine the solid angle for detecting electrons and
Equations(13) and (14) are valid if the absolute values to isolate the decay region detected, as was a collimator of
of the polarization during measurementshof andN~ are  special design, which suppressed the scattering of electrons
identical. Consideration of flipper asymmetry would requirethat did not enter the detector.
making these formulas more complicated. On the other hand, The proton detector was a striped assembly of two mi-
the sum of two measurements with guiding magnetic fieldsrochannel plates. The diameter of the working region of the
of opposite sign permits symmetrization of the values of thedetector was 60 mm. The temporal resolution of the proton
polarization forN™ and N~ and the use of Eqg13) and detector and the electronics was determined directly during
(14). The effective value of the polarization then equalsthe experiment from the form of the instantaneous coinci-
Pe=P(1+f,)/2. dence peak. The width of the instantaneous coincidence peak
Determination ofB requires knowledge of the neutron was 15 ns. The main contribution to the instantaneous coin-
beam polarization and calculation of the values of/€)  cidence peak was made by the background processes from
X (C0Sbs)i, (vi/c)(cosh,o)i, and (codh,,)i. The values cascadey quanta and rescattered electrons.
of a andA are known from the preceding experimeti§;® The focusing of the protons onto the sensitive region of
and since they are small compared wightheir error does the detector was verified by a calculation and experimentally.
not make a significant contribution to the total error in theCalculations of a map of the electric field followed by cal-
measurement oB. culations of the proton trajectories and the acceleration dy-
The equipment diagram is shown in Fig. 1a. The appahamics were performed on a computer. It was shown that
ratus consists of an electron detector, a system of electrode®jgnment of the detector in the working position relative to
which creates the required configuration of electrostati¢he electrodes to within 1 cm ensures the collection of all
fields, and a proton detector. The method based on the coifprotons to within 0.1%. This was confirmed in direct experi-
cidence of the electron and proton signals was employed tBents on decay protons. For this purpose the sensitive region
measure the proton momentum by the time-of-flight tech-of the detector was covered by a screen with a diameter of 50
nique. The recoil proton passed through the free-flight pedmm so that only the peripheral region with a width of 5 mm
estal3, where there is no electric field, and was then accelwould remain open. The count of decay protons in such a
erated in the field of the spherical capacithr A proton  detector amounted to 0.1% of the count in a completely open
accelerated to an energy of 25 keV was detected by the dé&etector.
tector. The acceleration time, which is appreciably shorter ~The entire chamber was surrounded by three pairs of
than the time of flight in regio, was taken into account in current-carrying loops to create the guiding magnetic field
simulating the process of recording decay events. and to cancel the earth’s magnetic field. The amplitude of the
The signals from the electron detector acted as “start’guiding magnetic field was 5 Oe, and the earth’s magnetic
commands for the temporal encoder and permitted measuréeld was cancelled to better than 0.02 Oe. The guiding mag-
ment of the electron energy. Pulses from the proton signanetic field provided for polarization paralléntiparalle) to
served as the “stop” command for the temporal encoderthe axis of the apparatus. The initial magnetic field near the
providing for time measurements. The background of accipolarizer was vertical, but in front of the apparatus it was
dental coincidences was measured simultaneously by th®tated by +90° (—90°), i.e., parallel(antiparalle] to the
shifted coincidence technique using the same electronic&xis of the apparatus. The sign of the polarization was varied
The information obtained was accumulated in the form ofduring the asymmetry measurements by flippgrwithout
valid and randontbackground coincidence matrices for the altering the configuration of the magnetic fields. However,
two spin directions in computer memory for subsequengbout once a day the direction of the guiding magnetic field
offline processing. of the apparatus was reversed to eliminate the effect of the
The electron detector consisted of a 75-mm diameteRSymmetry in the operation of the flipper.
plastic scintillator with a photomultiplier. The energy resolu-
tion gnd response function of_ the electron detgctor were des—' MEASUREMENT RESULTS
termined in a separate experiment. A magngispectrom-
eter with a working detector placed at its exit was employed  The counting rate of the decay events was 0.6 events/s,
for this purpose. The data from these measurements wewnd 719 456 decay events were detected during the 13-day
used to determine the width of the response function of theneasurement period. The signal-to-background ratio under
electron detector in different parts of the energy range. Fothe time-of-flight coincidence peak was 2.7. The same ratio
example, the full width of the line at half-maximum is equal at the maximum was equal to 15.
to 81 keV at an energy of 357 keV and to 108 keV at 616  Figure 4 presents experimental proton time-of-flight
keV. This is in good agreement with the known dependencgpectra and electron energy spectra for one of the series of
for scintillation detectorsAEx\E, i.e., the energy resolu- measurements.
tion is proportional to the square root of the energy. As a In order to calculate the mean values obf;Ac)
result, the value\E=0.227/E keV was taken for the energy X (cosbe,)i, (vi/c)(cosb, o, and (cosd,,)i appearing in
resolution of the detector in the calculations. The “tail” of (5), we wrote a program to simulate th& decay process

(PB)ik=
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FIG. 5. Dependence &¥B on cosé,, for one of the series of measurements.
N
20000
15000k by the Monte Carlo method for the unpolarized beam were
divided into a certain number of parts with equal intensities.
Each such part corresponded uniquely to certain mean values
10000r of the calculated cosines. Matching the fits of the corre-
sponding parts of the spectra from the experiment and the
calculation permitted us to solve for the accuracy of the cali-
5000t . . : .
bration and the relative displacement of the time scales.
The energy scale was calibrated usitgsn and**'Cs
Ein= 130 k3B ) : oo
0 . s . . - conversion electron sources. The calibration procedure was
150 280 410 540 670 800 performed during the measurements every 24 h. However,
E, kev the calibration accuracy was not very high because of the
FIG. 4. Experimental and calculated spectra for two beam polarization didiffuseness of the peaks, which is associated with the reso-
rections. & Proton time-of-flight spectréhe channel width is 10 ps1 — lution of the detector. This required a series of calculations

correlated peakthe intensity is diminished by a factor of 1® — polar-  yith varying energy parameters, i.e., the channel width, and
ization directed toward the electron detect®r— polarization directed to- . L . . .
ward the proton detector) fElectron energy spectighe channel width is 13 adjustment of the zero within the C?‘I'brat'on uncertainty
keV): 1 — polarization directed toward the electron deteclor- polariza- ~ fange. Agreement between the experimental and calculated
tion directed toward the proton detector. Solid lines — Monte Carlo calcu-energy and time spectra served as a preliminary criterion for
lation, points — experimental data. selecting the best variant.
The final criterion of the accuracy of the matching of the
energy and time scales was the lack of a dependen&Bof
under the real conditions of the experimental apparatus bgn any of the variables. After removing the results for iden-
the Monte Carlo method. The model took into account all thetical values of co9,,, from the event matrix, we constructed
necessary geometric parameters, the spectrum of decay elqgots of the dependence &B on cosé,,. One example of
trons in the form of a Fermi function, the response functionssuch an analysis for the constancyRB using they? crite-
of the electron and proton detectors, the characteristics of théon is presented in Fig. 5. It was found that the criterion for
analog-to-digital convertgtADC) and the time-to-code con- the constancy oPB near zeroes of co,, is fairly sensitive
verter, the neutron density distribution in the beam, and the¢o the calibration accuracy of the energy scale and essentially
calculated map of the electric field between the electrodes.replaces the direct calibration relative to the energy of the
The program yields four matrices with the same coordi-conversion sources. The results of a comparison of the mea-
nates andk as the experimental coincidence matrices. Threessurements and the Monte Carlo calculations are presented in
of these matrices are matrices of corresponding cosines, ardg. 4, which shows projections of the density of the event
the fourth matrix is the calculated two-dimensional spectrunmatrices onto the time and energy axes. The proton time-of-
for an unpolarized beanN;,. The subtlest procedure for flight spectra most graphically demonstrate how the experi-
processing the results is to match the matrices obtained fromental asymmetry appears when the sign of the beam polar-
the experiment and the cosine matrix calculated by thézation is reversed. The values gf indicate the degree of
Monte Carlo method. A shift in the time and energy scalesagreement between the calculations and experimental results.
can lead to appreciable errors in the calculations, especially For final processing on the basis of the energy calibra-
near zeroes of co&,,. The inaccuracy in the calibration of tions, all the statistics compiled were divided into three
the energy and time scales and their possible nonlinearitiegroups. In each of them the corresponding experimental ma-
also cause difficulties in accurately matching the matricestrices, which were compiled for opposite directions of the
Therefore, we employed the following simple and effectiveguiding magnetic field, were added. The calculationP&f
procedure. The experimental time-of-flight spectrumwas performed on the basis of these summed matrices for
summed over both polarizations and the spectrum calculateghch group. The results of the calculations are presented in
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TABLE III. 5= (M /M,)? M, . GeVic?
12 W,

Group No. Number of events PB Error 0.15¢
1 219650 0.9485 0.0046
2 347785 0.9442 0.0037
3 152021 0.9479 0.0061 o108 £250
Table Ill. The weighted mean d?B for the three groups is 0.05 r350
0.9463+0.0025.

Possible systematic experimental errors were analyzed / 500
by varying the model parameters in the Monte Carlo calcu- A
lations within their uncertainty ranges. Table IV lists the pos- Y o 0.04 /C
sible errors. .

The largest errors are the statistical uncertainty ofFIG. 6. Bounds on the parameters of the left-right-symmetric model from
0.0025, the 0.0020 error due to the poor energy resolution di“ge ”e(‘jN daéalon th& tasymmtrygg; 0-98f_2d1i 0-0C|)40)|- 'Thhe triglgn of
the detector, and the 0.0025 error due to the systematic errofsC/e¢ Mode! parameters at tne 5L confidence fevel s hatched.
in the measurements of the neutron beam polarization. The
total uncertainty in the measurements of the antineutrino spin ]
asymmetry was 0.0044, i.e., the result is approximately twghe parameters of the right-handed currents can be estab-
times better than the result of the first run of measurementéshed in accordance with Eql):
performed in 1994. The results obtained @g;B=0.9463 26%4+1.217%+2.425{<0.012790%C.L). (15
+0.0025, a neutron beam polarizatidh=97.52+ 0.25%, ) . L
and a flipper efficiency equal to 97.29.05% were used to These bounds are graphically displayed in Fig. 6. When
calculate the antineutrino spin asymmetry coefficient withth® MiXing angle equals zero, it is seen that the mass of the
consideration of the fact that the effective polarizatieg, ~ 9ht-handedW boson is
=P(1+fy)/2. My, =284.3 GeVE?.

Thus, the value obtained in the present experiment for _
the antineutrino escape asymmetry coefficient with respectto  On the other hand, whes=0, the resulting value oB
the spin of the decaying neutronBs=0.9801+ 0.0046. The makes it possible to obtain a bound on the helicity of the
weighted mean with consideration of the result obtained irdntineutrino. The helicity of the antineutrirt, can be ex-
1994 (B=0.9894+0.0083) isB=0.9821+0.0040. pressed ab,=1— 2. It then follows from relatior(15) that

The difference between the value obtained and the Va'uH-]e Strength Of the antineutrino—spin Correlation in neutron
expected according to the standard model of the weak inted€cay permits estimation of the deviation of the helicity from
action is 0.005%:0.0040, i.e., it is 1.5 times the error. It is Unity:
noteworthy that such accuracy, 0.4%, in measurements of the A (h )<0.0105(90%C.L).
angular correlation coefficients in neutron decay was ob-
tained for the first time and approaches the accuracy of the

neutrO_n !ifetime determination- . 6. PROSPECTS FOR INCREASING THE ACCURACY OF THE
Within the left-right-symmetric models, the bound on MEASUREMENTS

As follows from an analysis of Table IV, progress in

TABLE IV. improving the accuracy of the measurements is needed in
three main areas:)lincreasing the statistical accuracy), 2
Source of error Error ErroriB  improving the energy resolution of the electron detector; and
Accuracy of the calculation of mean cosines _ 00010 9 eliminating systematic effects in the polarization measure-
(accuracy of the Monte Carlo model ments.
Energy resolution of the Concrete steps can be proposed in each of these areas.
electron detector, keV 17 0.0020 1. To increase the statistical accuracy there is a plan to
Fraction of backscattered electrons 0.02 0.0012 4 crease the total flux of polarized neutrons in the PF1 beam.
Radius of the proton diaphragm, mm 0.25 0.0004 . . . . .
Radius of the electron detector, mm 025 0ooo1 A focusing multislit supermirror polarizer with a cross-
Radius of the electron diaphragm, mm 0.25 0.0006 sectional area equal to@l2 CrT?, i.e., 4.8 times the EXiSting
The coefficienia 0.0051 0.0010  value, is being developed for this purpose. Another way to
The coefficientA 0.0011 0.0005  significantly increase the size of the data set of the events is
Total systematic error _ 0.0029 to increase the free-flight pedestal from which the decay
Polarization measurement error - 0.0025 products are collected, and to increase the number of detect-
Statistical error - 0.0025  ing systems by a factor of 5—10. However, this procedure
Total absolute error _ 0.0046 Should be regarded as a separate approach requiring consid-

erable capital investments.
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The probabilities of the associated production of a Higgs boson wittbason by a charged

lepton in the field of a plane electromagnetic wave of arbitrary intensity and in a constant
crossed field are obtained. The behavior of the cross section of the process as a function of the
particle energies and the external field intensity is investigated for various values of the

Higgs boson mass. It is shown that there is a logarithmic increase in the photoproduction cross
section at superhigh energies up to a value significantly exceeding the cross section of the
reactione” +e~—Z+H, which is presently regarded as the most probable channel for the
production of Higgs bosons. @998 American Institute of Physid$§1063-776(98)00406-5

1. INTRODUCTION the Higgs boson are selected, and it has been a subject of

) ) ) ongoing theoretical and experimental research.
Along with gauge invariance, one of the key elements of ™, gjectron—positron collisions, Higgs bosons should be
the standard model of electroweak interactions is the H'ggﬁroduced mainly as a result of the processes

mechanism for the appearance of gauge boson masses and
for the cancellation of divergences on the basis of spontane® +e™ W W™ vere—H+ v+ ve,
ous symmetry breaking.

The fundamental massive Higgs boson, whose existen
underlies the Weinberg—Salam—Glash@WSG) theory, has  (see Refs. 3-% among whiche" +e~—Z+H is the most
yet to be found. The experimental detection of scalar Higgprobable process wheils<500 GeV’ where |s is the en-
bosons would be a decisive verification of the standarcgy of the colliding particles in the center-of-mass system.
model and, in a broader sense, of the very idea that the Higgsxperiments devised to detect the procedsre™—Z+H
mechanism of spontaneous symmetry breaking operates i LEP2 place a lower bound on the Higgs boson mass of
the physics of elementary particles. M,>75 GeV! The reaction cross section is at most 0.3

In the WSG theory the masses &~ andZ bosons, as  picobarn wherM , e (50, 350) GeV, and it decreases as the
well as the vacuum mean of the Higgs field, can be ex- Higgs boson mass increasks.

C%++e‘HZ—>Z+H, et+e —sete ZZ—et+e +H

pressed in terms of the fine-structure constanthe Fermi Taking into account the results of Tevatron experiments
constantGe, and the Weinberg angley, - that directly measure th&/ boson and quark masses, we
112 assume that the Higgs particle mass is ‘1227 GeV, and that

My=| | —— =80.37+0.19 GeV, the Higgs boson mass is at most 465 GeV with 95%

J2Gg/  sin Oy probability :

M As for the upper bound on thd boson mass, it is not

M,= W —91186.3+1.9 MeV, given, in principle, by the standard model and can be esti-

Cosyy mated only on the basis of “common sense” assumptions.

_ —12 For example, if it is taken into account that the constant
U_(\/EGF) =246 GeV, describes both the self-action of Higgs bosons and the inter-
while the Higgs particle masl, is a free parameter of the action of W= and Z bosons with one another and witth
model and is related to the unknown dimensionless paranbosons, a strong interaction between the particles appears,
eter\, which characterizes the self-action of Higgs scalars:which cannot be described by perturbation theoryMif,

Mo ) >M;,,My,. A detailed analysis shows that theboson mass

HT AU should be at most 700 GeV in this cdsé’

Since the interaction constants of Higgs bosons with  Another possible channel for the production of Higgs
other particles in the WSG theory are determined by theparticles is provided by electron—photon collisions. For ex-
masses of these particles, the coupling of Higgs bosons tample, Hagiroarat al.** studied the dependence of the cross
gauge bosons and heavy quarks is far stronger than theection of the processt y— W+ H+ v, on the Higgs boson
coupling to electrons and other light particles. Therefore, thenass in the energy ranggs=200—2000 GeV, and Eboli
combined production of a Higgs boson with® andZ gauge et al!? examined the reactioa+ y—eyy—e-+H, in which
bosons inete” and hadronic collisions is believed to be the production of Higgs bosons with a madg,>140 GeV
most promising when various mechanisms for production obecomes possible provideds>500 GeV. In this case it is

1063-7761/98/86(6)/7/$15.00 1083 © 1998 American Institute of Physics
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proposed that the hard photons be obtained by utilizing théinal-state Higgs and bosonsp is the 4-momentum of the
inverse Compton effect, under which the spectrum of scatintermediateZ boson, and* is the electroweak current:
tered radiation fory=2wE/m?>1 becomes nearly mono-

chromatic and has a sharp maximunmwét-E (0, o', andE Jﬂ:J d4x%,(x) Y(gy+9ary®) Pq(X) exp (ipx),
are the energies of the incident and scattered photons and the
relativistic electron, respectively wherega= —1/4, gy= — 1/4+sir? 6y, and yi4(X) is the ex-

Among the possible mechanisms for the production andact solution of the Dirac equation for an electron moving in
decay ofH bosons, the processes which take place in exterthe given external field. The wave function of an electron in
nal electromagnetic fields should be singled out. an arbitrary plane-wave field specified by the 4-potential

Such investigations are important, because, on the ong~=A#(e), which depends only on the phage=nx (n is
hand, the probabilities of processes that are forbidden in thghe wave vector anch?=0), can be represented in the

free case by the 4-momentum conservation law achieve aggrmt418

preciable values in an intense external field, and, on the other

hand, an external field can be a powerful catalyst and catfq(X)=(2q0V

dramatically increase the amount of information provided by e

processes that are capable of occurring without a tsttp. X| 14+ Z—(yn)(yA) u(q) exp (iSy(x)), (1)
The possibility of the associated production of a Higgs (ng)

boson and & boson by a charged lepton in external electro-whereV is the normalization volumey(q) is the bispinor

magnetic fields of various configuration is studied in theamplitude of the free plane wave, which is the solution of the

present work. The probabilities of the processes are calcudree Dirac equation

lated by finding exact solutions of the relativistic wave equa- B P

tions with exact consideration of the interaction of the (ya=mju(e)=0, g7=m",

charged particles with the external electromagnetic figl?  and S (x) coincides with the classical action function for a
An expression for the probability of the process-e particle moving in the field of a wave:

+Z+H in the field of a plane electromagnetic field of arbi-

trary intensity is obtained in the second section. S,(X)=—qx— J‘qu)
The third section is devoted to the calculation of the a

probability of the procese—e+Z+H in a constant crossed

field. At ultrarelativistic electron energies and relatively

weak fields E,H<H,=m?e=4.41x 10" G) the results of

this section are also applicable to the description of the pro-  A#(x)=a4 cos¢+aj sin ¢,

cess in an arbitrary constant field. s o s
In the fourth section asymptotic formulas for the prob- aj=a;=a’, a;a,=0, ajn=a,n=0, ¢=nx,

ability of the process in a con_stant cr_ossed field and for thgzt follows from Egs. (1) and (2) that

cross section of the process in the field of a plane electro-

magnetic wave in the applicability region of perturbation

theory with respect to a wave intensity parameter are found Pq(x) =

in several limiting cases.

)—1/2

e . e2A2
g "9 20|

@

In the case of interest to us here of a circularly polarized
wave specified by the vector potential

e .. na
1+ ——(na; cose+na, sin
2(nq)( 1 (% 2 QD)

It is shown that at high energies the cross section of the u(q) Coaq .

photoprocess+ y—e+Z+H, which we have investigated, X \/ﬁexp '€ "¢

. - . . 0
can significantly surpass the cross section of the reaction
e +e"—Z+H, with which definite prospects for detecting . axqg _
the Higgs boson have been titd* +|e(nq) cos@—IQX .

Here we have introduced the quasimomentum of an electron

2. THE PROCESS e— e+ Z+ H IN THE FIELD OF AN in a wave field:
ELECTROMAGNETIC PLANE WAVE 2

. . QM:q,u_eZ ne.
In the standard model of electroweak interactions the 2(nQ)

matrix element of the process under study has the followin
. y gfts square plays the role of the electron effective mass in the

form:’
field:
iq2
. ig°Mz 22 2 2

f1S?|jy = —————= Q°=m; =m(1+¢°),

(ST coS By 4Kok) ¥ _ . _ _
whereé= \/—e%a?/m? is the classical wave intensity param-

PP, eM* (k') eter, which is equal to the ratio of the work performed by the
XJIH g,,— . i
9 M2 |p2—M2+iT,M, field to the wavelength to the electron rest energy.

We average the square of the modulus of the matrix
Herel';=2494.7-2.6 MeV is the decay width of th& bo-  element of the process over the spin states of the initial elec-
son, k= (ko,k) andk’=(ky,k’) are the 4-momenta of the tron and sum over the polarizations of the final electron ac-
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cording to the conventional rules, and we perform the sum- (sn+q)?u )
mation over the polarizations of th& boson using the r(u)+W—m*u.
formula
o The argument of the Bessel functiod&) in (4) is de-
Ny oMl KK, fined by the formula
> eVk)eNK)=—| g 5,
A=12,3 M2
o ) 3 u 1 u 7(1+u
wheree!V (k') is the polarization 4-vector of thé boson. Z=2S —|1l=—- > |-
v N 2 Vu u
Next, performing the integration over the phase volume 1+¢ S s uusm,

of the Higgs and finakZ bosons in tensor form, for the total
probability of the process per unit time and unit volume we
obtain

We note that the result in the form 3) and(4) which
we have obtained is exact. It is valid for any value of the
classical wave nonlinearity parameter, includiggl, at
which the interaction of the electron with the field of the
- intense electromagnetic wave leads to effects which are non-
up (1+u)? linearly dependent on the energy density of the wave.

Further integration, however, cannot be performed ana-
Iytically, but under the conditiog<1, which corresponds to

6

B G,Z: M m?2 Juz du
(2m)% “Qo 5%

fr(u) dry(r—M2—MZ)?—4M3M?
X

M2 ((7— M§)2+ (I';M5)?) the condition for the applicability of perturbation theory with
respect to the external field, where the processes with the
) m? (r— l\/lﬁ)2 T absorption of the minimum possible number of quanta from
X AE_49AWF B ;A Z_W , the field are most probable, it is possible to perform the
z ‘ z expansion of3) and(4) in powers ofé? (for further details,
(3 see Ref. 1%
24 oyt 2 Along with the conditioné?<1, we also require that
u u
m2 0 w2\ g2 2 2 512
E_(gA+gV) 25 u+1 (Js+1+‘]sfl 2‘Js) 2(nq)>(M+m*)2—mi , (5)
r whereupon the process resulting from the absorption of one
—8J§ 1-— +16(g\2,—g,2_\)J§ photon from the field becomes possible.
2m2 sy ™ .
As a result, after dividing the probabilit§3) by the in-
u+2 (np) cident flux densityj = m?«/2wEV (w is the photon energ§g
+29a0v 7 s 17 Jsr 1)~ is the electron energy, and&=2(ng)/m?) and setting
m E=4malm’wV (ais the fine-structure constantve obtain
282y 25(np) the cross section of the process y—e+Z+H in the form
><4z( 1-—— —2) s (4) 22
1+¢° ugz my (eGFm)Z M2
o= _Z
2 ™ KkmM?
F=—2-_22+ u—§2(32+1+ J2 ,—273%),
m2 S u+1° s s s jl_a d\(1—M% kAm?)Y2(1—M% kA m?) 12
X
_nm2 2\2
87MZ+ (7+M2—M2)2 b (A=MzZ/kM?)
M= Mz+ M H» A= 2 ’ 2 4 2 2\2
127M2 , M m”k Mz
X1 2AC—4g3—D|B—| A= —
(T+MZ=M{)?—7M3
- 2 ) KAm?
3T +A| 2- ) ] , ©6)
z

Each term in(3) corresponds to the production of a
Higgs boson and Z boson as a result of the absorptionsof |\ here\ = 7Im2k,
photons from the field, whose minimum number equals

2_ 2 2 2 1-A
(M+m,)“—mj C=(gy+ a2 (1—=N)—1] In ——
Sg=——F——— a
2(nq)
1
In formulas(3) and(4) we have introduced the invariant — 2N (g3+ gf\)(l—)\—a)+4gng(§—)\)

integration variablesu=—1+(nq)/(nq’) and 7=(sn+q
—q’)?. In addition, 1-\
XInT—4ngA(1—)\—a),

(sn+@)2—M2—mZ = {/((sn+q)?— M2—m?2)2—4mZ M2
Uy 2= )
mi Ml:MZ_MH!
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1—\ Exchanging the order of summation and integration in
D=[1-2A(1-M]In——+2\(1-r~-a), Eq (3), we obtain the following expression for the probabil-
ity:

1 M2 2m (e (e
b:Ka:EF’ WZE f d(pf duf d7W(u,7,s,¢)
s>sq JO 0 M2

andA andB are defined by4). o0 " "
:f d(pf duf da 2 m’W(u,a,s,¢),
0 0 (M/m?2 s

= Smin
3. THE PROCESS e—e+Z+H IN A CONSTANT CROSSED where
FIELD
T &u 1 u+1 (nQ)
In this section we examine the procegsse+Z+Hina @~ 5, Smin~ %5~ I+ Sl 1ta—07r/ |, x=—F5¢&
m X & u m

constant crossed fielthe intensities of the magnetic and
electric fields are equal in magnitude and orthogonal to one  Since the variables take the valuess~ £3>1 over the
another:|E|=|H|, ELH, and both field invariants are equal range ofz ands that makes a significant contribution to the
to zerg. total probability wheré?s> 1, the sum oves can be replaced

A crossed field is a special case of an electromagnetipy integration over the new variable For this purpose we
field of the plane-wave type and can be specified by thenust use the relation
potential

&u

M= qM =
At=atep, an=0, (7) =

27
1+ —

3

As a result, we obtain

=+ Shin -

and the complete wave function of an electron in a crossed
field is obtained from(1) with consideration of7):

27 o0 o0
_ e(yn)(ya) | u(q) W= de | du ,da
lzbq(x)_ 1+ 2(nq) ® \/m fo fo f(M/m)
0 2
(g L, ., ¢ Xf drg—umZW(cp,u,T,a). 9
X ex —|e2(nq)<p +ieca G(Tq)_l(qx) . -2 X

The probability of the process in a crossed field can beT We ne_xt apply t]t\e ssmptotic behavio[) of the Besgel
obtained from the general formufd) using the initial- and ~ 'Unctions, in terms of whic (¢.u,7,@) can be expresse

final-state wave functions of the electron in the crossed ﬁeld\./vhen.the;r argument and the index tend to .|nf|n|ty with in-
However, here we shall utilize another method to calculaté€asiNgs", the ratio between the latter tending to ufitty
the quantity of interest to us, which is based on the exact 1/3

result(3) for the case of a circularly polarized wave. In fact,  Js(2)= ;(g) O(y),

in a circularly polarized wave the total probability of the

process depends on the two invariant parametensd y: where®(y) is the Airy function, whose argument is
e’a® eF e (nq) s\2® 22 u |23 u+1

=)= = _[—(F28 Vo g2 2 Y N N e

3 e X m3[ (F*Pag)]7=¢ o y—(z) 1 7 (2)() 1+a = +72.

In this case the electric and magnetic field intensity vectors  |p the limit &, the integral over the angular varialte
rotate in a plane perpendicular to the wave propagation dim gq. (9) can be calculated using relations known from the
rection with a frequency equal to the frequency of the wavetheory of Airy functionst* For the total probability of the

Therefore, whenw—0 (§é—=), the total probability of processe—e+Z+H in a constant crossed field we ulti-
the process in the field of a circularly polarized wave shouldmately obtain

coincide exactly with the probability of the process in a con-

stant crossed fieltf+1°18 1 GEMS (m\2 1 dx

: _ _ W= =" ( m) f a2

lim W& x)=W(,x)=W(x). (8) V (2m)°Qg 0 (1-xM3/M?)

foe 2\ 172 - d

We again note that the result obtained on the basis of the % (1—x)1’2< 1—x—t f u G(u,x), (10)
limiting transition (8) is exact for a crossed field at any en- M? 0 (u+1)?
ergy and that in the ultrarelativistic cagghen the electron h
energys>m), as we have noted above, it describes the prob\—N ere
ability of the process in a constant external electromagnetic m2 = M2\ 2/ M\ 4
field of arbitrary form with an intensity-<H, (for more G(u,x)=4FlGl—89i—2G2 —22( 1—x—§ (—)
exact applicability conditions, see Ref.)14 Mz X M Mz
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E. [ M\2 M2 Using (13), we calculate the integral over the spectral
+ _l(M_) 2x—§—1) , variable in(10) by the saddle-point method, the saddle point
X z being the solution of the equation
2
2
G1=4(ga—g9)P1+(ga+07) ( (m) x)cbl DL N L
U u2 ' m/ x’
ut+2ut2 x)\23
21 "= , whenceug=A/2>1.
u+ u As a result, we obtain
M 2 U2 2/3
Gz=(m) xq>1+2mq>’(x) , _ GIMS 16 fec dA o M2 [V
(2m)°Qo V3" (M2 N m?A
. 2+1 Mﬁ+1(|v|)21+1 N
1”36 M2)  12\Mz) x 12 Xexp{—\@;}, (14)
M2\ % M
w|1-2H ( Mz) X, (11) where
M3 2 112 1
G(N)=|1-
. _1+2M§—Mﬁ +(M§—Mﬁ)2 , 1[Mz\2 ) m2\| (A —MZ/m?)?
273 3 M2 X VK X 3\ M X ) 4
) _ ) 2., 42 202 m m
Equation(11) employs not only the Airy functiod(z), X1 (gy+ga)F1+20; M, FZW
but also the related function z
2\ 2 2
q)l(z):jo d(t)dt, X()\_F) +F; Z—AM—é)H.
with argument The integral in(14) over the variablex is calculated
anew by the saddle-point method.
u\?¥ - (M\21u+1 i -
z=(— 1+ (_) - _ (12) The result for the total probability of the process in the
X m/ X y2 case of relatively small values of the dynamical parameter,
< 2
We note that for a constant magnetic figtd 7z with where x<(M/m)?, has the form
intensityH <H,=m?e=4.41x 10"3 G and an ultrarelativis- 8GZMS 27 (M M2
tic electron with zero longitudinal momentufthe energy s &3 (—) —2) expl— i),
E>m, andp,=0), the spectral variable and the dynamical (27") Qo ¥ m
parameter in Eq910)—(12) are defined to be M\ 21
= 3 — —_
b n _Hp, =3 m) X
u=—-1=\/—=-1, x=-0—,
P! n Ho m

In accordance with the saddle-point method, the function
wherep, = \2eHn is the transverse momentum of the elec-G(\) in the last formula is taken at the saddle pokt
tron in the magnetic field and is the principal quantum =(M/m)?.
number. The energy levels of the electron in the magnetic It is noteworthy that the exponential dependence of the

field are given bjf probability of the process at relatively small values of the
T dynamical parametey is characteristic of processes that are
E=v2eHn+m"+p;. forbidden in the absence of an external field.

We next find the probability of the process in the highly
interesting case of large values of the dynamical parameter,
4. LIMITING CASES AND DISCUSSION OF RESULTS where)>(M/m)?. _ _
In the limiting case under consideration, the argument of
We first discuss several results following from the pro-the Airy function(12) in the real region can be set equal to
cess of the associated production of a Higgs boson afid a )
boson by an electron in a constant crossed field investigated ZZ(M) 1
in Sec. 3. YRl
In the regiony<(M/m)? the main contribution t¢10)

is made by the regiom>1, where the Airy function has the We note that while the main contribution to the integral
asymptotic behavior over the spectral variable is made by the vicinity of the

saddle pointuy=»\/2=(1/2)(M/m)?>1 when y<(M/m)?,
1 2 the dominant contribution comes from the relatively broad
14 I 17) y broa
®(2)=32 exp( 3¢ ) (13 range ku<(M/m)? when y=>(M/m)?.

(15
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When(15) is taken into account, the integration over the o102 b
variableu is performed using the integrals 1}
S Vm 0.1t
td'(t)dt=—P,(0)=— —,
0 3
0.011
) 2 (t)dt= 261) 0
o 1(DAE=304(0). 0.001}
As a result, we find 0.0001 . . - L o
i3 14 15 16 7 logk
2pn6
B 16GgEM; m 6 5 [t x2dx FIG. 1. Dependence of the cross section of the proegsg—e-+Z+H on
= —3(277)3Q0 M 0 (1—XM§/M 2)2 « for various values of the Higgs boson mabs; =100 (1), 200 (2), 300

(3), and 400(4) GeV.
2

1/2
T IR 2 2
X(1=x) (1 XMZ) |(9v+9A)F1 »

2 2\? 4 (e"+e"—Z+H)= Mz
2 P2 Mz) [ M 7 - ~ 48rws
T290m5) 52\ Yz Ay
z z X(1—4 sirf O+ 8 sirf 6y), (19
2 2
E(ﬂ) x&—l _ (169  While in the logarithmic approximation (IR(P/IM?)>1)
X \ Mz M? from (6) we obtain

0, k>1,
gy, k<l,

The integral ovex in (16) has been tabulated, but because of
the cumbersome nature of the result, here we present only

ole”+y—e +7Z+ H)={
the asymptote of the probabilitfl6) for My>M, and its

value atM =M : 1('\/'2)4 cm?
= —| —— n_'
1 MH 2 K\ m M2
— — My>M,,
W=C(@r ] o (17) 1 o SGM) LM wm) e
1623)37-125 o1=5(0v=0n% ——| —{ | In| 3 |in| —],
° (19
where 2 ,(eGm|? «km?
02=§gA |nm.

16 G2MS (m)6
— X2
In the case of a head-on collision of a photon with an

C_ - = | —
3 (2m)°Qy\M
. . energy equal to the energy of the electron, from formulas
The result(17) for My> M, agrees to within a numeri- (18) and(19) we find

o(e"+e —Z+H) B

4E?
In m , Co=aln

cal factor of order unity with the result in Ref. 20, where the
probability of the procese—e+Z+H in an ultrastrong o(e+y—e+Z+H) [Ci, k>1, ie, k<10
magngtlc field was calculatgd and it was shown that the |C2, k<1, ie., xk>10%
associated production of a Higgs boson with gauge boson
in an ultrastrong magnetic field can be a fairly likely process. 2E m

We now move on to a study of the limiting cases of Eq. C,=5«a In(— —) K(—)
(6), which describes the cross section of the photoproduction m M M
processe+ y—e+Z+H.

Figure 1 shows the dependence of the cross section afhere« is the fine-structure constant.
the procese+ y—e+Z+H on «, which was constructed The conditions for the applicability of Eq&L9) and(20)
from Eq. (6) for various values of the Higgs boson massare satisfied over a broad range of energy and field intensity
My . Near the reaction threshold, where, according®p  values. For example, wheR>1000 GeV, we obtainC,
k=M?/m?~10"1—10'? GeV, the reaction cross section is >10. Thus, as follows fronf20), at high energies the cross
small compared to the cross section of the reactiore™ section of the process that we investigated can significantly
—Z+H. exceed the cross section of the react®h+e —Z+H,

When ys>M, (Vs is the energy of the colliding par- which is presently regarded as the most probable channel for
ticles in the center-of-inertia systenthe cross section of the the production of Higgs bosons.
reactione” +e*—Z+H decreases proportionally te ! We thank A. V. Borisov and A. S. Vshivtsev for discuss-
and is given by’ ing the results of this work.
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1. INTRODUCTION m
efficiency on the wave-vector mismatah= X k;, wherem
Spontaneous parametric light scatteri spectros- . ) ) =1
P P g SPS sp v the number of interacting modes. For a nonlinear layer of

copy and the measurement of scattering by polaritons have K L in the ol L his d
become traditional methods for studying the dispersive propt- icknessL In the plane wave approximation this depen-

erties of crystals. The advantages of this type of spectroscop‘?ﬁnce has the form

include, first of all, its simplicity of implementation, as well . L

as the possibility of measuring a wide set of quantities: the 9(A)=sir(AL/2)/(AL/2)*=SinC(AL/2). )
real (associated with the refractive indeand imaginary(as-
sociated with absorptigrparts of the dielectric constant, and
the real and imaginary parts of components of the secon
order (x?) and third-order ) susceptibilities. These
characteristics are measured over a wide spectral range—

from the visible to the far-IR range, including the regions of o, the scattering line shape becomes Lorentzian. In this
fundamental crystal-lattice vibratiolsAmong the draw-  c;qe spontaneous parametric scattering transforms into scat-
backs of the method we should mention the limitations Ontering by polaritons and, in the limib,— Q (whereQ is the
the class of investigatable materials: spontaneous parametr(i)cbticm phonon frequen,ayinto Ramlan scatterirfy Condi-

scatterlr(12g) is observed only in noncentrosymmetric mediayg (4) means that the signal fields created at points in space
where x*<'#0. separated by an intervab> 1/a; are now out of phase, i.e.,

~ Phenomenologically, spontaneous paramagnetic scalt€fiseir intensities, rather than their amplitudes, are added.
ing is explained by the spontaneous decay of a laser pump  the interference nature of the formation of the

photon with frequencyw,, into a pair of photons—a signal reqiency-angle spectrum for spontaneous paramagnetic
photon () and an idler photond;)—due to the quadratic scattering raises two obvious questions.

sus_ceptibility)((z) (Ref. 2. By virtue of the energy conser- 1) How do the phase delays added to any of the modes
vation law, the sum of the frequencies of the signal and |dlek , ke, andk; influence the spontaneous parametric scatter-
radiation is exactly equal to the pump frequency, i.e., inpg line shapeg(A)?

2) Is it possible to draw any conclusions about the dis-

For parametric light scattering, if the absorption at one
pf the frequenciés is large

a>1L, (4)

wp= wsT W, (D) persive properties of the medium used to introduce optical
delays from the line shape?
and the momentum conservation law The answer to the first questi¢for different parametric
processeshas been known for a long time. For example, a
Kp=KstK; (2)  method for measuring the relative phase between the first

and second harmonics was proposed back in $9B%e in-

ensures coupling of the frequencies and angles of the scderference of second-harmonic signals from two nonlinear
tered lightws(6s). crystals separated by a dispersive medium underlied the

The condition of spatial synchronisEk;=0 (2), which  technique for determining the signs of the components of the
holds for optical parametric processes, can be interpreted asjwadratic susceptibility(i(jzk) in Ref. 6. Similarly, nonlinear
result of the nonlinear interference of the interacting wavesinterference has been used in coherent anti-Stokes Raman
Physically, this condition is equivalent to stationarity of the scattering(CARS),” as well as for determining the compo-
total phase of all the modes, which ensures growth of thaents of the third-order nonresonant susceptibijfjf) in
intensity in space in analogy to what occurs in ordinary lin-gase€ Nonlinear interference also describes quasisynchro-
ear interference. Parametric processes are characterized byi@us processes: the additional phase shift that interacting
specific line shap@j.e., by a dependence of the conversionwaves undergo in periodically nonuniform nonlinear

1063-7761/98/86(6)/8/$15.00 1090 © 1998 American Institute of Physics
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media—in the generation of the second harmdras,well as 'l
sum and difference frequenci¥sand in CARS! P
The situation regarding the interpretation of nonlinear M,—;é{'
interference takes a dramatic turn in the case of spontaneous k,
parametric scattering. Despite the fact that the nonlinear-
optical aspects of the problem have not been investigated in 7 |y \"p
detail either theoreticall?'or experimentally**°an unex- ' T—
pected surge of interest in the interference accompanying Ny
spontaneous parametric scattering took place in quantum op-
tics in the middle of the 1980’s. The paradoxicality of the
problem is partly caused by the fact that spontaneous emis- L L L
sion, by its very nature is noisy and contributions from mac-
roscopically separated regions would not be expected t0 inig. 1. piagram for observation of three-photon interference: two nonlinear
terfere. Even today different experimental schemes are beingystals () separated by a linear mediurh .
considered, in which a modulation structure is manifested
either in the intensity of the scattered light or in coincidences ) . ) o
of photon count$®’ The observed features are associated’roperties of nonlinear crystals. Obviously, a definitive solu-
with the quasimystical power of the photons to have a nonfion for the problems treated would, on the one hand, sub-
local effect on each other during spontaneous parametriéta”t'ally broaden the class of materials acce§5|ble to conven-
scattering® However, it seems that the most consistent deional SPS spectroscopy and, on the other, introduce a new

scription of nonlinear interference accompanying such scat@nd often more convenigntechnique for determining the
tering was given in Refs. 19 and 20. We note that the probdiSPersion law of noncentrosymmetric crystals.

lem of the formation of an assigned frequency-angle

spectrum of a biphoton field has been considered within th@ NONLINEAR-CRYSTAL/LINEAR-DISPERSIVE-MEDIUM/
context of devising principles for quantum cryptography andNONLINEAR-CRYSTAL SYSTEMS

a quantum computé. We consider two planar nonlinear crystals of thickness
The resolution of the second question, which is closelyseparated by a linear medium of thicknéss(Fig. 1). Such
associated with the first, is the subject of nonlineary three-layer system has been termed a nonlinear Mach—
interferometry—a spectroscopic method that has so far notehnder interferometét in analogy to the corresponding
found wide application. Nevertheless, different types of nonscheme in linear optic®. Here the linear medium introduces

linear interferometers have been used, for example, to meghase delays proportional to at all three frequencies:
sure the phases of nonlinear susceptibilffiém various ma-

terials, including thin film&) and to measure the @ ypxnip(wp)Li/Np,  Prsxnig(wg)ly cOSIs/As,

propagation times of photons through dispersive media in ®,cngi(w;)Ly COS; /.

quantum optic$? _ _ o
In the present work we have undertaken an attempt té\n expression for the spontaneous parametric scattering line

answer the second question, i.e., to estimate the sensitivity §ape for this case was obtained in Ref. 13:

nonlinear interferometry to variation of the medium sin( 5/2) 5+ 681]12

parameter® which influence the phase of any of the three g(ws):[ 52 f{ 5 : )

modes participating in the process of spontaneous parametric

scatteringthree-photon interferometryWe limit the discus- Where 8(wg, %) =AL=(k,—ks—k))L and &;(ws,ds)

sion to the case in which the spatial inhomogeneity causing=A1L1=(kip—Kis—kij)L; are the wave-vector mis-

the phase shifts is in the direction of the pump wave vectormatches in the nonlinear and linear media, respectivelyk the

The scattering geometry with transverse inhomogeneity—are the projections of the wave vectors onto the direction

nonlinear interference in Young's schetheis not consid- ~ perpendicular to the layers, an is the scattering angle

ered here. inside the crystals. We are interested below in the case where
The work consists of two parts. In the first part, we con-the orientations of the polar axes in the nonlinear crystals are

sider a three-photon Mach—Zehnder interferometer on th@pposed, which is equivalent to a phase shiftzg2 in the

basis of general relations for the spontaneous parametrirfgument of the cosine in E¢):

scattering line shape. The frequency-angle line shape is cal- 5 5+6,])2

culated for a nonlinear-crystal/linear-dispersive-medium/ g(ws,ﬂs)=[sinc§ sir{ 5 } , (6)

nonlinear-crystal system. The case where a thin film with an

isolated dielectric-constant resonance serves as the interlayender the assumption that the signal photons do not leave the

is treated separately. In the second part we obtain an expreisrteraction regiondefined by the thickness of the crystal

sion for the spontaneous parametric scattering line shape ofand the diameter of the pump beady Ref. 19: (2L

nonlinear-crystal/nonlinear-crystal system, where the twotL,)tand,<d. This condition imposes a practical limit on

nonlinear crystals differ only with respect to the dispersionthe angular range for observing the effect: when the distance

of their refractive indices. We analyze the possibility of us-between the crystals is increased, the contribution to the in-

ing three-photon interferometry to monitor the linear opticalterference is due to small-angle scattering. Therefore, below
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we shall analyze the line shape for the case of collinear syninfluence only the second factor 6): the role of the first
chronism. The normalization in E@6) is chosen such that factor reduces to filtration of the frequency-angle distribution
the scattering intensity at the maximum would be equal to

unity for 5;,=0 and polar axes of identical direction. Expres- |0+,
sion (6) has a simple physical meaning: the first factor de- gl:[s'r{ 2
scribes ordinary parametric scattering in the layer of thick-

nessL. The second factor is due to the interference of theby the envelopego={sinc(6/2)}? in accordance with the
spontaneous fields arising in the two crystals, and the phasmndition of spatial synchronisif®) in the nonlinear crystal

of the interference pattern depends on the dispersion of thef thicknessL. Therefore, it would be reasonable to analyze
linear medium. We note two peculiarities, which follow di- the perceivable frequency-angle intensity distributidiig
rectly from the form of(6). First, this expression is reminis- which depend on the dielectric constants of the linear and
cent of the intensity distribution for the ordinalynear dif- nonlinear media, and to take into account the actual synchro-
fraction of a plane wave by a screen with two slfRef.  nism width in the final stage together with the comparison
26).Y Second, the optical properties of the linear mediumwith experiment. Here the thickness of the nonlinear crystals,

2

)
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as it were, assigns the size of the “window” through which
we view the modulation structure: the smalleListhe wider
is the frequency-angle range of the observed interference pat-
tern.

The explicit dependences of the mismatches appearing A
in (6) on the observable parametess and 6, have the form \ Z \

A(“’S'ﬁs)zzw(”r’wp_”sws\/1_> Ne 5610 5620 5630 5640 5650 5660
Wavelength A,, A

O -
0w O

o
'S
Ty

Intensity, rel. units
o
>

(=)
[

2
w .
— N w; \/1—[ > sin 6 ) ) (8) FIG. 3. Frequency line shape of the parametric scattering for different tem-
iNg peratures of the air between the crystasllinear synchronism
Aufe0,.8)=2 ( L sin 6)?
wg,0) =27 N1ywy— Ngw - . . . . . . . .
1 s 1p%p 1% Nis tering for a LINbQ—air—LiNbO; configuration with varia-

5 tion of the refractive index of the air layer at the idler fre-
) , (9) quency.
Variations of the refractive index of the intervening me-
dium strongly influence the scattering line shape. For ex-
ample, if the thickness of both crystalslis=1 mm and the
thickness of the interlayer isL;=10cm in the
q_'iNbog—air—LiNbO3 configuration, then the interference
phase will vary bys when the refractive index varies by
crystals of identical thickness—1 mm are separated by a 0.0001. Without dwelling on the reasons for deviations of the
refractive index, we note that they can be caused not only by

vacuum gap of_thlcknesbl=10 cm, _the polar axes of the fluctuations in the temperature, pressure, and humidity, but
crystals are antiparallel, and absorption of the idler waves Nso by the presence of all kinds of impurities—gases, small
this range can be neglected;L <1 (Ref. 27. In the direc- ;

tion of collinear synchronisnif,=0 and 8= 8,=0) an in particles, etc. A quantitative analysis of the influence of these
s — o1 -

. L . . factors on the dispersion of the dielectric constayw) is
tensity minimum is observed according to E6) regardless . .
. : beyond the scope of the present work. We would simply like
of the value ofL; since the vacuum does not have disper-

sion: to underscore the fact that there is an abrupt dependence of
' the scattering line shape on the parameters just mentioned.
®pp=Pr =Dy As a unique illustration we chose the sensitivity of the line
shape to variation of the air temperature in the same configu-
As the scattering angl@, increases the wave-vector mis- ration(L=1 mm, L;=10 cm. Besides the dispersion of the
match in the gap5; grows and a two-dimensional interfer- refractive index of air at all three frequencies, we also took
ence pattern appears. Figure 2a illustrates the behavior of thieto account its dependence on the atmospheric pressure, the
modulation function(7) for the above parameters, and Fig. temperature, and the partial pressure of water vdpbigure
2b illustrates the result of taking the spatial synchronism intd displays frequency scans of the spontaneous paramagnetic
account. Let us turn our attention to the outward similarityscattering spectrum at zero scattering angle. The three curves
between the frequency-angle distribution in Fig. 2a and speaorrespond to different air temperatures in the gap: 25 °C,
tra known already at the beginning of this century that were25.5 °C, and 26 °C.
obtained by Rozhdestvens# at the exit of a similar inter- Increasing the base of the interferometerlt m raises
ferometer with illumination by white light. However, the the sensitivity of the line shape to variation of the refractive
“illumination” of a nonlinear interferometer is provided by index to 0.000 00%and to variation of the temperature to a
the wideband radiation due to spontaneous parametric scaenth of a degree Here the traditional question arises: how
tering, while that of a linear interferometer is provided by anstable is the scattering line shape toward errors in the deter-
external sourcéan incandescent lamBesides, in the linear mination of the interlayer thickneds,? In other words, how
schemes(the Mach—Zehnder interferometer or the similarstrongly is the interference structure of the line shape
Rozhdestvenski interferometer the phase difference be- smeared by fluctuations in the distance between the crystals?
tween the coherent waves shifts due to the difference bd-or linear interferometric devices the addition of a half-
tween the optical paths in the arms of the interferometer. l'wavelength to the optical length of an arm shifts the phase of
the nonlinear case the arms are spatially degenerate, but thige interference pattern by. The situation is completely
wave-vector mismatch&+ ;) appearing in(7) is always a  different for three-photon interference. Displacements of one
function of the frequency and angle. Only for exact collinearcrystal relative to the othdwithout a change in the orienta-
synchronism(6=0, 6,=0) and a vacuum gap does the total tion of the optical axis have much less of an effect on the
phase trajectorypy =®,,—®,s—P4; vanish, regardless of intensity distribution in the interference pattern. The reason
the thickness of the galp; . for this is the spatial degeneracy of the interferometer arms.
Figure 3 illustrates the frequency line shape of the scatSince the argument it¥) is a function of the three frequen-

wgh;

— Ny wj \/1— sin 6
whered, is the external scattering angle. The expressi8hs
and (9) together with(6) are inputs to the calculation of the
frequency-angle distributions of the spontaneous parama
netic scattering intensity.

Figure 2 corresponds to the case in which two LiNbO

wiMying
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FIG. 4. Diagram of three-photon interference—wideband mirror,2—
nonlinear crystal,3—Glan—Thompson prism4—converging lens,5—
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entrance slit of the spectrograph.

ciesw,, ws, andw;, the phase trajectory contains contribu-

tions at all three frequencies:

Dy =2m{N15(wp)/Np—N1g(@s)COS T/ N g

—nyi(wj)cos i/}l

(10

(we assume that the wave-vector mismadch the nonlinear

Burlakov et al.

Figure 4 depicts one variant of the scheme of a three-
photon interferometer. Here instead of two nonlinear crystals
separated by a linear medium, one crystal is used with a
wideband metallic mirror located a distantg/2 from it.
Such a scheme is equivalent to the one discussed dbaye
1) in a regime similar to collinear synchronism. Upon reflec-
tion from the mirror a phase shift af is added to all three
modes, and thus the polar axis is rotated by 180° in the
image of the crystal. A Glan—Thompson prism is used to
spatially separate the orthogonally polarized purpp &nd
signal (5). The scheme shown in Fig. 4 is convenient in that
it eliminates the need to exactly align the orientations of the
optical axes of the two crystals and significantly reduces the
parasitic illumination characteristic of the recording of small-
angle scattering. Frequency tuning is achieved by rotating
the crystal in the plane containing the polar axis.

Figure 5a displays an experimental spontaneous para-
metric scattering spectrum recorded at the exit of a three-
photon interferometer assembled according to the scheme in
Fig. 45

A lithium iodate crystal of thickness=1 mm is placed

medium is constant For small scattering angles and weak in front of an aluminum mirror. The crystal and the mirror
dispersion of the material the expression in curly brackets irire separated by an air gap of thicknes®2=5 mm. Pump-
formula (10) differs insignificantly from zero; therefore, ing is provided by a 3-W argon laser with a wavelength
large variations irL; are necessary to produce appreciable=4880 A. The frequency of the idler photons coupled with
variations in the phase. The derivatives defining the sensitivthe observed photons is 3770 th and the synchronism

ity and stability of a three-photon interferometer are equalwidth is 20 A, which substantially exceeds the frequency
respectively, to

(here cos9y~cosdi~1). Expression(1l) reflects the fact

0@2/&n1i=—27TL1/)\i, (11)
3y 1Ly =27 {35 0p) N p— Nyl @5) NNy ()}
(12

width of the laser line. Figure 5b displays the calculated
frequency-angle distribution of the intensity for the param-
eters indicated. The good agreement between the calculated
and experimental spectra justifies an optimistic assessment of
the prospects of using a three-photon interferometer.

So far we have assumed that all three frequencigs

that increasing the base; increases the accuracy of the wg, and w; fall within the transparency range of the linear

measurement of the refractive index; Efj2) implies a weak
dependence of the line shape on fluctuations.pf(e.qg.,

caused by vibrations
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medium, where the dispersion of the dielectric constant is
small. The wide spectrum of spontaneous parametric scatter-
ing, however, makes it possible to closely approach the re-
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FIG. 5. a—Photograph of a spontaneous para-
| metric scattering spectrum taken at the exit of a

three-photon interferometéFig. 4). LilO5 crys-

tal. b—Calculated frequency-angle distribution

, ‘ of the parametric scattering intensity at the exit
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gion of strong dispersion. Let us consider the behavior of thédA,/dws=0) corresponds to equality between the group
scattering line shape in the case of an isolated resonance @élocities of the signal and idler photons in the linear me-
the intervening medium. dium:

Let the frequency of the pump and signal photons lie, as
before, in the transparency range, and let the dispersion of
the medium at the idler frequencies be described in the
single-oscillator approximation:

J
5_(1)3 (Nysw) = 07_(1), (Ngjj).
It is obvious that the repetition period of the bands in the
wi— w? spectrum along the wavelength axis decreases as the reso-
— )4 T (13)  nance is approached;— wy since d®s /dwij~dn,;/dw; .

! 0 We emphasize that, according to Ef2), a decrease in the
The values of the parametesg, S (the oscillator strengdh  thickness of the linear layek,; can be compensated by
wq (the eigenfrequengy andI' (the damping constanin  strong dispersion of the dielectric constant of the linear me-
(13) were taken from Ref. 29 for the high-frequency vibra- dium. Hence we have the important result that it is possible
tion of the O—H group:sq=3.5, S=0.17, I'=150 cm '}, to use three-photon interference to investigate thin dispersive
andwy=2950 cm* (A\,=5701 A). Figures 6a and 6b show films. Thus, the value df; used in the calculatiofFig. 6) is
the frequency-angle distributions of the modulation function10 um.

(7) and the scattering intensit®), respectively. The inset in One of the conditions for observing three-photon inter-
the upper right-hand corner of Fig. 6a illustrates the fre-ference in such a scheme is weak absorption of the idler
quency dependence(w) for the above parameters. In the photons in the nonlinear crystdl$). In other words, the idler
vicinity of the resonance the behavior of the interferencephotons must leave the first crystal and enter the second.
bands (Fig. 63 is analogous to Rozhdestveriéki Absorption lowers the contrast of the interference pattern but
“hooks,” ?® which are observed near regions with anoma-has essentially no effect on the positions of the interference
lous dispersion. As follows from E@10), the frequency po- maxima. A large number of nonlinear crystals having low
sition of the “hook” for the exact synchronism direction absorption in the near-IR range are presently kndand

2
g1(wj)=¢€g+Swy —
| (wo
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1.0t Ny=
0.8 /\/ ny= n+ 0.001
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the question of which one to choose does not pose serious
difficulties for the practical implementation of a nonlinear
interferometer.

Another contrast-lowering factor arises when the charac-
teristic angular and frequency scales of the modulation line
shape are smaller than the angular divergence and frequency
width of the pump line, respectively. For example, consider-
ation of the finite width of the pump line leads to the follow-
ing restriction:

0.4
0.2f
0 o~ ~ -
7100 7150 7200 . 7250

Wavelength, A

Intensity, rel. units

1
Hugcosds u; cosdy)’

Cc
leo>2—L (14 FIG. 7. Frequency line shape for scattering in two LiNb@ystals with
N1p different values of the refractive index at the idler frequency. Herel,

wherel ., is the pump coherence lengitin,, is the speed =1 mm. and the pump wavelength is 4880 A.

of light in the linear interval at the pump frequenay, and

u; are the group velocities of the signal and idler radiation,

and 9,5 and 9,; are the corresponding scattering angles in-order of 50 cm?. If, on the other hand, the change in the

side the linear layer. refractive index at this same frequency is on the order of
104, it becomes necessary to work with a crystal 10 mm in
3. NONLINEAR-CRYSTAL/NONLINEAR-CRYSTAL SYSTEMS thickness, which corresponds to an order-of-magnitude de-

. crease in the frequency width of the spectrum. In this case
The frequency-angle line shape for the spontaneoug,e apsorption at the idler frequency can be substantial. In

parametric scattering of a_nonIinear-crystal/nonlinear-c_rysta{he presence of absorption the contrast of the interference
system was calculated using the approach developed in Re&foyarn is reduced: strictly speaking, this description is appli-
31. The quadratic susceptibilities of the crystals were asz,p|e forL, L,< 1/, wherea is the absorption coefficient at

sumed to be the same while the refractive indices differedy,q igjer frequency. Al this imposes a limit on the accuracy
Such a situation arises, for example, when samples of¢ measurements of the refractive index

LiNbO; are doped with magnesium atoms to prevent optical
damage? The Mg concentration strongly influences the  Ani~cCalw;,

value of the r3efractive.index, especially in the IR region ofj o the real part of a wave vector can be measured only to
the spectruni® If the thicknesses of the crystals are equal tOyithin the magnitude of its imaginary part. A similar prob-

L andL,, then the scattering line shape has the form lem arises in ordinary polariton scattering spectroscopy,
1 LA L-A where the real part of the dielectric constant at a given fre-
2 . 2 . 222 . . - f
9(ws,0) = (L+L,)2 L2 sin@ 5 tL2 sin¢ 2 quency is determined from the position of the maximum of
2 the angular spectréio within an order of the line width**
o LA LA, LA+L5A, Figure 7 displays a family of calculated frequency dis-
+2LL; sinc—- sinc—— cos—— ’ tributions of the spontaneous parametric scattering intensity

for collinear synchronism. Both crystals are magnesium-
(19 goped lithium niobate (=L ,=1 mm) 3 The value of the

whereA =k, —ks—k; and A, =ky,—kys—ky; are the wave-  refractive index at the idler frequency in the second crystal,
vector mismatches in the first and second crystal, respeavhich is more sensitive to variations in the magnesium con-
tively, which coincide with formuld8). The normalizationis centration, serves as a paraméteft can be seen that a
chosen such that the scattering intensity at the maximundeviation of the refractive index by 0.002 markedly distorts
would be equal to 1 foA=A,. The first two terms in the the scattering line shape. FAn;=0.005 the influence of the
square brackets ifl5) take into account the additive rein- interference term is considerably less due to the weak over-
forcement of the scattering spectra of the two crystals, anthp of the spectra of the two crystals.
the third term is the interference term. The interference phase In conclusion, we note that the three-photon interfer-
is given by the “three-photon sum” of the optical paths ence, by virtue of its high sensitivity and stability, might be
(LA+L,A5)/2. Thus, nonlinear interference is manifested inuseful in monitoring the presence of impurities in optical
the configuration under consideration only in the region ofmaterials(especially if the impurity has resonances in the
intersection of the frequency-angle spectra for the spontandransparency band of the crystals employéd the investi-
ous parametric scattering of the two crystals. We note thagation of thin dispersive films, etc.
the scattering line shape is especially sensitive to variations Also, we hope that the use of three-photon interferom-
in the refractive index at any of the three frequencies when etry will raise the accuracy of standard SPS spectroscopy in
andL, are large. In this case, however, the frequency widthdetermining the frequency dependence of the refractive in-
of the scattering line decreases. Thus, for example, in ordedex in nonlinear crystals and, in particular, in estimating
to detect a change in the refractive indén~10"2 at the  their degree of spatial homogeneity and monitoring their
idler frequency w;=5000 cm?, it is sufficient to use a twinning structure. Finally, interferometers of this kind can
sample of thickness 1 mm, and in this case the expectebe used to study induced variations in the refractive index in
frequency width of the scattering line turns out to be of thephotorefractive crystals. In one of the possible experimental
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The alignment parameters fop-subshells of Cd and Sb atoms are obtained by measuring the
degree of polarization of thie;-lines excited by proton impact in the range from 0.1 to

0.5 MeV. To compare the experimental alignment parameter with theory, either experimental or
numerical results must be corrected for Coster—Krdqig) transitions. The uncertainty in

CK transition yields makes this comparison difficult. In this work, semiempirical values of the
corrections have been derived from measurdihe intensities. The semiempirical

correction factors exceed the theoretical ones. For constant reduced velocity, the semiempirical
correction factor depends on the atomic number of the target. The semiempirical correction
factor obtained in the same experiment improves the agreement between the theoretical alignment
parameter and the experimental data. 1@98 American Institute of Physics.
[S1063-776(98/00606-4

1. INTRODUCTION avoid these uncertainties, we derive the correction factor
from measurements of thie x-ray line intensities. In this

The alignment of atomic inner shells induced by ion im-work we also study the effect of the abrupt change of the CK

pact has been the object of extensive theoretical and expetiransition probability aroun@=50 on the measured align-

mental investigations, because it provides a more sensitivéient ofL5 subshell vacancies.

test of theoretical models and atomic wave functions than the

total excitation and ionization cross sections. Alignment

leads to emission anisotropy and x-ray polarization, which

i . 2. EXPERIMENT
can influence measurements of the x-ray production cross

sections in ion—atom collisions. We have studied proton-  1pe experimental work was carried out at the 0.5 MeV
induced cadmium and antimorly; subshell alignment by  cockcroft—Walton generator at the Institute of Nuclear Phys-
measuring-; x-ray line polarization. ics of Moscow State University. A Soller typ#at crysta)

To better test theory, an effort should be made to elimi_ray spectrometer—polarimeter was used to measure the in-
nate effects that hinder comparison of theory and experitensity and polarization of the x-ray lines. The experimen-
ment. To compare the experimental alignment paramete)| setup is described in detail elsewh@rBrotons of 0.1
with theory, either experimental or numerical results must beyev to 0.5 MeV energy were used. The collimated proton
corrected for Coster—Kronig(CK) transitions. Present peam was stopped by a thick target. The target was oriented
knowledge of the CK rate;,, 13 andf,s, which describe  at 45° to the incoming beam. The incident beam intensity
the probability of vacancy transfer from, to L, andLs  \as monitored by a current integrator. The x rays emitted
subshells and from, to L; subshells, respectively, is unsat- perpendicular to the beam axis were analyzed by the spec-
isfactory, given the paucity and low accuracy of the eXpe”"trometer, which was equipped with a graphite crystadl (2
mental and numerical data. This is particularly true in the—g 71 A). The energy resolution of the spectrometer was
region of the periodic table around atomic numZer50, E/AE=600.
where the onset of the;-L,-M,s and cutoff of the A polarization experiment with the crystal spectrometer
L1-Ls-M,5 CK transitions occut. The onset and cutoff of can be carried out, due to the linear polarization dependence

CK transitions at certain atomic numbers cause sharp disCors the crystal diffraction. The polarization is defined by
tinuities in the initial-state lifetimes as functions of atomic

number. This results in a dramatic change in the associated 1(3-3J)

yields1 =3 Rosato’s resulfsshow no sharp discontinuities in TQ ) @
the range 4% Z=<53. The exact location of these cutoffs is

also somewhat uncertain. where Q is the polarization sensitivity of the crystal. The

The uncertainty in the Coster—Kronig yields makes analignment parametei,q can then be deduced from the po-
accurate comparison of experiment and theory difficult. TdarizationP,

1063-7761/98/86(6)/3/$15.00 1098 © 1998 American Institute of Physics
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wherea is a constant determined by the angular momentum 1'6:Cd *::jtm\

of the initial and final state§In our experiment we used a Lar e e,

thick target, so the experimental alignment parameter is cor- 1.21Sb P e
rected for the energy loss of protons and for the absorption of 1ol

x rays in the target.Errors in the alignment parameter are 002 004 006 008 (vAy)

mainly due to errors in the determination of the andL
y € B FIG. 1. Correction factor for CK transitions vs. reduced velocity—Cd,

yields, which arc_a Caused_ t?y statistical fluctuations, baCk'O—Sb. Dashed lines are drawn through the experimental data to guide the
ground substraction, and fitting procedures. The EWA odeeye. The solid lines are the result of the calculation.
was used to evaluate the spectra. As a rule, the statistical

error in the measurements of the degree of polarization does

not exceed 1%. As experimental data ow for elements around =50

To determine the , x-ray production cross sections, we are incomplete, we have taken the fluorescence yied
measured thé& , x-ray line yields as a function of incident from Ref. 3 and the radiative transition ratés;,I',»,.I'r
particle energy. The x-ray production cross section can bgqom Ref. 13. Here we have not used the experimental values
determined from these measurements by the method and fo& o3, because these data are found with E5).based on
mulas described by Merzbacher and LeWlisThe proton 0o rements &f,, line intensities, using the CK yields, and
stopping power was taken from Andersen and Zieffldihe 0 pasic parameterss(, f;; andI’) can strongly affect the
absorption coefficient was calculated by averaging the datg ) results. The ionization cross sectiog was calculated

2 . .
of Storm and Israel? The x-ray production cross sections in terms of the so-called ECPSSR theory of Brandt and

were determined to 15% accuracy. Lapicky**® which is a derivative of the plane wave Born

approximation with corrections for ion energy loss effects
(E), Coulomb repulsiortC), polarization and binding-energy
3. RESULTS AND DISCUSSION changes via perturbed stationary stdfeSS, and relativistic
effects(R). Obviously, the uncertainty in thes, which can
The alignment parameter can be inferred from measurechange in the course of the collision, increases the uncer-
ments of the proton-induceld; line polarization. To com-  tainty in the semiempirical correction factor. References 16
pare experimental and theoretical alignment parameters, Wgnd 17 examine the influence of line shape and the satellite
should take into account possible changes inltteubshell  contribution on the interpretation of data in the measure-
populations due to Coster—Kronig transitiofisdirect for-  ments of x-ray spectra, and show that ignoring line shape
mation of a vacancy in thé; subshell. In proton—atom  effects can lead to systematic errors. In the present work it
collisions, vacancies are also produced inltheandL, sub-  was assumed that satellite structuie particular, the CK
shells, which then decay via Coster—Kronig transitions, saatellite3 can be ignored in analyzing the spectra. It is clear
the number ofl 3 vacancies increases. The alignmentgf  that disregard of line shape effects and the fact that satellites
andL, vacancies is zero, so that this two-step process leadsontribute to polarization measurements can lead to system-
to a decrease i3 vacancy alignment. The alignment pa- atic errors in measurements of the alignment parameter and
rameter correction factdf is in the semiempirical correction factor.
Agg=FAZP, 3) Figure 1 presents the semiempir_ical corrc_action factors
Fexpfor Cd and Sb atoms obtained using E8). with the o,
values measured in this experiment. The same figure shows
the correction factors calculated with E@), using o; cal-
) o ) culated within the ECPSSR theory and the CK yields taken
wherea; is thel; subshell ionization cross section, afid  from Ref. 3. It can be seen that the semiempirical correction
are the Coster—Kronig yields. o _Fexp €xceeds its theoretical value. It is also seen that the
__The uncertainty in the Coster—Kronig yields makes it qrrection factors depend on collision velocity/¢o)? (v is
difficult to compare experiment and theory accurately. In or,q proton velocity and is the Bohr velocity ofL5 elec-

der to eliminate this uncertainty, we determine the correctioqrong and reach their minimum when the reduced velocity
factor F from our measured., x-ray production cross sec- g apout ¢/v0)2=0.1. This minimum results from a mini-
tions. This cross section is defined as mum in the ratioo; / o5 of cross sections for ionization &f;
[+T,, oy oy and L subshells of atom®¥ The minimum in theo; /o5
Oa=w3 —p | 1 Tas =+ (f1at f1of29) —]0s. ratio is due to the node of theslectron wave function. The
Rs 3 3 discrepancy betweeR,,, and the theoretical value is partly

02 01
F:1+f230_—3+(f13+f12f23)0—3, (4)

®) due to the incorrect calculated ionization cross sections. Nev-
From this equation, the correction factor is ertheless, we believe that the semiempirical correction factor
r is more accurate, as it contains more accurate basic param-

Rs  Ja eters

F (6) :

TP T 140 wz03” In Fig. 2 we compare the experimental alignment param-
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FIG. 2. L3 subshell alignment parameter vs. reduced velocity. Experimental

data: V—Cd, ®—Sb without correctionA—Cd, O—Sb with correction 1.0 ] 1 L R E— 1
for CK transitions. The curve presents the calculation in the Born approxi- 45 47 49 51 4
mation. f

13

L b
ex| . . 0.5r \
eterASy° for Cd and Sb atoms with the alignment parameters
corrected as described above, ag calculated in the Born

approximation by the method and equations of Ref. 19. It 0.3r

can be seen that when the semiempirical correction factors L

Fexp @re used, the agreement with the experimental data im- 0.1 T S S T S S
proves. 45 47 49 51 z

Based on measurements bf, x-ray production cross Fig, 3. g Correction factor for CK transitions as a function of the atomic
sections, we determined the semiempirical correction factorsumber of the target; upper part—experiment, lower part—result of the
for elements ranging fro@=45 toZ=51. The Semiempir- calcu'lations. b CK probabilities f,5 (from Ref. 3 as a function of the
ical correction factors obtained for reduced velocity 3°Mic number
(v/vy)?=0.02, together with the calculated correction fac-
tors, are presented in Fig. 3a as functions of the atomic num-
ber of the target. The decrease in the theoretical valués of
aroundZ=50 is evident, and correlates with the decrease iniy, gambynek, B. Crasemann, R. W. Fink, H. V. Freud, C. D. Swift, R. E.
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no agreement of theoretical correction factors with experi-55' Eozatto’kr':luc"E'”Z“'RMeth- 35’k591(1dg§|@k con Nucl. st Meth. B
mental ones. The experimental results do not indicate anyl(')g/'ll;3 rg ((1)‘;56: - ROMANOVSKy, and 1. ferkow, Fucl. Instr. Vet
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The evolution of two spatially separated light beams in a nonlinear Kerr medium described by a
system of coupled nonlinear Schiinger equations is studied. An analytic solution is

found for the variational problem. It is shown that when two crossed beams interact, a bound
state can develop in which the distance between the centers of the beams and their radii

vary periodically. Here the mutual curvature of the trajectories of the centers of the beams causes
the beams to bend into a helical structure whose param@titech and diameterare also

periodic functions. The threshold power for mutual trapping is determined and the period of the
oscillations is found. ©1998 American Institute of Physids$51063-776(98)00706-9

1. INTRODUCTION progress on the interaction between beams of electromag-
netic radiation.

The evolution of a light beam in a nonlinear dispersive  In this paper we examine the interacti@wing to cross-
medium is a typical problem in nonlinear optics and has beemodulation of the refractive indgwof two spatially separated
studied now for two or three decades. But interest in thidight beams in a nonlinear Kerr medium. To simplify the
problem has not flagged. An example of this continued inproblem it is assumed that although the radii of the beams
terest is research on the formation of small-scale transversgary, they remain identical all the time. As in orthogonally
structures in the electromagnetic figldiffraction autosoli-  polarized coaxial bean¥smonotonic and oscillatory propa-
tons, dislocations in the wave front, and the interaction ofgation regimes are found. In the case of crosgemhcopla-
these dislocations.* When a broadband interferometer is nan beams, the oscillatory regimieutual trappingis char-
excited by radiation of this type, the autosoliton is scatteredcterized by a spatial rotation of the beams, with the angular
on the dislocation and it is trapped, with the buildup of ro-rotation velocity which determines the pitch and diameter of
tation about the dislocation. In a semi-infinite nonlinear me-the helices being a periodic function of the propagation vari-
dium, the same effect leads to a rotation of the electromagable.
netic field structures in space as the radiation propagates into In Kerr media, beams are unstable: they either experi-
the mediunt ence collapse or they spread out. The analysis of beam

In the initial stage of these studies attention was focusegropagation considered here assumes that their power differs
on studies of a single beam, but recently, systems of twelightly, on the low side, from the threshold power required
beams have been studiegd. There are a number of for self-focusing of an isolated beam. The estimates given in
papers®~that examine bound states in which pulses withthe Conclusion show that it is possible to choose beam pa-
different polarization states propagate in the form of two-rameters such that the diffraction spread of the beams is a
componentvecto) solitons. The spacetime analogy makes itslow process compared to helix formation.
possible to transfer the results obtained for pulses to a de-
scription of a noncollinear interaction of wave bea. is
naturgl to expect that, besides the well known effects of self-z_ DERIVATION OF THE BASIC EQUATIONS
focusing and beam bending, when the self- and cross-
modulation effects are combined the interaction of two spa-  In an isotropic Kerr medium with an instantaneous re-
tially separated light beams can lead to a mutual bending ofponse, the refractive index can be assumed to depend lin-
the ray trajectories and mutual trapping. An effect of thisearly on the intensity in many cases. For an incoherent su-
sort, referred to as the “entrainment” of light beams, wasperposition of the two waves
recently predicted theoretically and studied experimentally

using second harmonic generation in a quadratic medftim. ~ Ex=@wU(x.y,2)explik cod¢;2) +ik 111~ it}
It should be noted that the interaction of noncollinear +c.c.,

light beams in a Kerffocusing and defocusingnedium has

been studied in a two-dimensional geoméfty’ where it E,=ew(X,y,z)expik cog ¢,z) +ik, 51 ,—iwt}

was assumed that the beams propagate either parallel or an-

tiparallel to one another. A case in which a beam is reflected

from a mirror and Snell’s law is violated was also examined.the permittivity for wavei can be written in the form
The many studies of spatial solitons in photorefractive

medid®2* are another example of the active research in  &i=& @+ @[E*+e2|E|?, i,j=1,2, i#].

+c.c.,

1063-7761/98/86(6)/6/$15.00 1101 © 1998 American Institute of Physics
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Herek=(w/c)\e©, g are the unit vectors of the wavaes,  easier to calculatéL ) for these trial functions. We note
are the angles of incidence of the beams at the bounda@iso that the phaseg;(x,y,z) account for the transverse
z=0, ande® ands® are nonlinear coefficients correspond- components of the wave vectors of the carrier wave in the
ing to self- and cross-modulation, respectively. In the follow-initial representation of the electric field strengths of the two
ing we assume that the directions of beam propagation devivaves.

ate little from thez axis—so little that the factors ex( ;-r) Substituting Eq(3) in Eq. (2) and calculating the varia-
can be included in the slowly varying envelopetx,y,z)  tional derivatives yields equations for the extremum of the
andv(x,y,z). We assume that the region within which the action(2) (i,j=1,2;i#]):

electric field varies in the transverse direction is much 2 2

smaller than the region within which it varies in the longitu- 2 (2)A(2)=a’(0A/(0)=E;, (43
dinal direction. Following the standard procedure for con- g a(z)

structing an evolution equation for the slowly varying enve- d——4aa(Z)B(z) (4b)
lope, one can obtain a system of coupled nonlinear
Schralinger equations:

dB
——+40B?

_ 2
2a iz

2
2>
k=1

dx
dxc Uck)

+Cy 4z

Ju
i —+0oV2u+u(u?+¢|v]?)u=0,

9z dy day u
k k
a0 D g, k) EJFZAdAE
i —+0oV2u+u(v]?+elulPv=0, (1)
9z R? R?
where +ueAIAS| 1+ ﬁ) exp( - 52| =0. (40)
_ 1 _ 1 _ ke(® , 4B ) ” ™
2k cos¢; 2K cosg,’ M 250 2| —a’| g 4B = 2 +Ci| 5o oC
(2) 2 2
_ & 2 9 J dy; daj u
S—E, Vi_mjLﬂ_yz' +2| D; E-o‘ ) EAIZ
It can be showH+?*~?’that the system of Eq$l) has the , R2
same form as the Euler equations generated by the varia- +ueA; exp( - ﬁ) =0; (4d)
tional problemsS= 0, where the action functional is defined
= W 20c,, Pio20p 5
- dz 20 gy ek (53
S= J (L)dz 2
- = (1A %) & p( il
= X1—X ex ,
with the lagrangian 172 242 2a?
o o0 dD RZ
Ly= dxf Ldy, L=Ly,+L,+Ly,, = 2
< > f—m C» y u u dZ ( 1) A (yl y2) 2a2 eXF( 2a (Sb)
where HereR(2)=|R(2)|=1r1(2) —r,(2)|.
i Ju Ju* Jul? a2 _ After some_transformatlons, Eq@ reduce to an equa-
L=—|u*——u —o|—| —o|—| += |ul* tion for the radiusa(z) of the beams:
2 Jz Jz IX ay
ol 12 d’a o
LU:LU(U_>U)! Luv:/*l’8|u| |U| : d_z_?':gﬁ 40-_/*'LW(1_5)
We seek a solution of the variational problem in the class of R? R?
trial functions of the form _Mgwg( 1— ﬁf) ex% ~5a (6)
Ir=ri2)* ,
u(x,y,z)=Aq(z)expg — T(Z)Jrld)l()(,y,z) : where W=E,+E, is the total power of the beams arti
=2E,E,(E;+E,) 2 is a dimensionless quantity character-
[r=ry(z)|? izing the ratio of the beam powers, with<@=<0.5.
v(X,Y,2)=Ax(z)exp — T(z)+ ida(x,y,2) |, (3) The self-interaction of beams in a focusing Kerr medium
is determinetf by the competition between two factors: dif-
di(X,y,2)=B(2)|r—ri(2)|>+ Ci{(2)[x—xi{(2)] fraction (first term on the right-hand side of E¢6)) and

nonlinear compressiofsecond terrm The term(proportional
D@y yi(2)]+ai(2), to &) corresponding to the interaction between beams in Eq.
wherer=gx+eyy, andr;(z) =ex;(z) +ey(z) are the ra- (6) can be regarded as a meas(s&ength of the influence
dius vectors of the beam centers. The choice of Gaussiaof one beam on the other. When the variables change in the
trial functions was justified previousl§ furthermore, it is  regionR< \/2a, this force increases the nonlinear compres-
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sion, and when they change in the regRi \/2a, it weak-  beams so that when the second and third conditions are sat-

ens it. In particular, as will be shown below, the radii canisfied, the equatiorElfl(O)Jr Ezfz(o)zo is satisfied. Then

oscillate (like the oscillations found in Ref.)9which is a  an explicit expression for the constavit can be written in
qualitative difference from the case of self-action. the form

Using the  expression R(z)=[X1(2)—X»(2)]e,
+[y1(2) —y2(2)]e,, we can reduce Eq¢5) to the form
d?R opeW R2 whereRy=dR/dz|,_ o= (tan ¢, +tan ¢,)cos B, with B being
A R —F A~ 2_a2)' (7)  the angle between the initial directions Rfand the deriva-
tive of R with respect taz. To enlarge the beam interaction
Equation(7) makes it possible to find an integral of the mo- region, it is necessary to pR;=<0, i.e., B==/2, in the

M =RgR; tan S=Ry(tan ¢;+tan ¢,)sin B, (11

tion, following.

Rxd_R: Me,, M =const. (8) 3. SOLUTION OF THE EQUATIONS OF THE VARIATIONAL
dz PROBLEM

With Eq. (8), Eq. (7) yields The system of Eqs(6) and (9) has two conservation
d2R M2 gusW R2 laws:
2 R R o) © Wa(2)+ mR¥(z) = P,2>+ P12+ Py, (12
Thus, the system of first-order equations for the param- =W da)? dR\2 oW[4o— uW(1—6)]

eters of the trial functions reduces to a system of two second- 2= "4z +m dz + a?

order equationg6) and (9) for the radiusa(z) and the dis- 5 )

tanceR(z) between the beam centers. n mM _ opeWS ex;{ -~ i (13)
Let us introduce polar coordinates in thg/ plane, R? a’ 2a°)’
Ru(2)=X1(2) —X»(z) =R(z)cos y(2), where  m=oWR2=E,Ex(E;+E;) ",  P;=2Wasay

_ +2mRyR},, ag=a(0), andPy=Wa3+mR?.

Ry(2)=y1(z) —y2(2) =R(z)sin ¥(z), Let us introduce the new variables

which then yield an equation fag(z) from Eq. (8): Wak(z)=p3(2)t(z), mMRA(2)=p3(2)(1—1(2)). (14)
dlﬂ_ M In terms of the new variables, Eg€l2) and (13) take the
Py e (10
dz R%(2) form

The polar anglas(z) amounts to the angle of rotation of the ~ p*(z)=P,z°+ P;z+ Py, (15

vector R(z) joining the beam centers. When the beams do 2 2 2
. B . dp p dt

not interact and are paralleM=0), R(2) is a constant vec- Po=| | + o [ —

tor. When the beams do not interact and are noncoplanar, dz 4t(1-t) \dz

this vector varies in d|re_ct|on and magnitude, but the overall oW 4a— uW(1— )] m2M2

angle of rotation oR(z) in thexy plane does not exceed % 21-1)

The bending of the beams owing to their interaction changes P p

the maximum value of the overall angle of rotation; for ex- oueWes t—1

ample, if this angle should exceedr2then we can speak of - o2t ex St ) (16)

helical bending of the beams.

Before proceeding to solve the system of E@.and  BY separating variables in E¢L6), we can obtain a general
(9), we can simplify the problem, without loss of generality, @nalytic solution of Eqs(6) and(9):
by making the following choice of boundary conditions:

1. Let the coordinate origin in the plare=0 on the 2] 5 dz :j dt , (17
segment joining the beam centers be chosen from the condi- 70 P2Z"TP1Z+Po VG(1)
tion E;r1(0)+E,r,(0)=0 and the direction of thg axis be t—1
chosen to be along&,=R(0); theny(0)=0. G(t)=st(to—t)+(1—t)[A(t0—t)+)\t+exr<—)

2. Choose the parallel planes in which the axes of the ot
beams incident upon the boundary O to be perpendicular t to—1
to the boundary=0; then these planes become the planes - % exp{ St ” (18

of incidence of the beams.
3. Choose the angles of incidence of the beamsand ~ Where, according to Eq¢11) and(13),

¢, to be such thaE.l tz-ir.1 ¢1=E, tang,. _ ag(Ré)z tar? B Waf)

_ The phyS|'c:-j1I' significance of thg vgctorg(O) gnd = W to=t(0)= VW
r,(0)=0 (the initial values of the derivatives af, , with
respect t@) is clear from the equatiod$1(0)| =tan¢; and _ pW(1-90)-4o B (agRH—roa})?
Ir,(0)| =tan¢,. We choose the direction of incidence of the  ueWst, 0 20meW
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and since it was assumed tHa{<O0, it is necessary to set

p-:—J, j=0,1,2. (19 a,=0, i.e., at the boundary of the medium the beams must
b Jouewss hgve positive wavefront curvature. This implies external de-
The description of the dynamics of the system becomes confocusing of the beams.
plete after integrating Eq10): Using Eq.(21), we rewrite Eq(19) for s as
aZ(Ry)? tar?
W(z)= M ™. ° f dt ' (20) s=\t, tarf B= W, (22
4 oueW (1-1)JG(1) oueWty
where we have used Eq44) and (17). so that the conditioP,=0 can be written explicitly as
Equations(17) and (20) are an exact solution of the sa3(tan ¢, +tan ¢,)?
variational problem. However, Eqél7) and(20) are unsuit- W=W, = Wcr[ 1+ 852
able for further analytic study, since the integrals on the
right-hand side with the expressiqd8) under the radical —t
sign cannot be expressed in terms of any known functions. x| 1+ & cos ,3” (23

In the next section, a qualitative analysis of E{k?)
and (20) is used to obtain the general features of the monoEquation(23) determines the threshold powdt, at which
tonic propagation regime for spatially separated light beamgnutual trapping of the beams takes place, siW¢e Wi,
with principal attention devoted to the oscillatory regime.—P,>0 and W>W,— P,<0, which correspond to the
Approximate solutions of Eqg17) and (20) are obtained cases discussed above.

that describe the bound statescillatory regimg and the Now we have to find the relationships among the param-
range of parameters over which this state is realized is detegters such thaG(t) will have three zeroes, , 3 with 0<t3
mined analytically. <t,<t;<1 andtye (t,,t;). Given Egs(21), (22), and(23),
Eq. (18) for G(t) transforms to

4. ANALYSIS OF THE SOLUTION G(t)=s(te—t)+(1—t)| Mo+ exp( %)

A study of the integrals in Eq$17) and(20) shows that
the beam dynamics are qualitatively determined by the be- _ l ex;{to_1> _ (24)
havior of the functiorp?(z) and the zeroes of the functions to oo

G(t) in Eq. (19).
If the total poweW of the beams is less than the critical
value Wy,=4o[ u(1-6)]" 1, then the parametek <0, the

An analysis of this expression shows that the desired situa-
tion occurs only for §>0.4 (which corresponds to
E,/E, (or E;/E{)<2), i.e., the beam powers must be

zeroest, andt, of G(t) lie within the limits 0<t;<to<ti  gjmilar. When this condition is satisfied, E@4) can be well
<1 and, sinceP,>0 in this case, the beams undergo MONO-5hnroximated by the polynomial

tonic diffraction spreading. Here the interaction leads to a

negligible mutual deflection of the beams. Ga()=Ato(1—t)+(to—t)[s—t3(1-1)], (25)
When the total power exceeds the critical valde;0

and one of the zeroes dB(t) becomes negative. If,

e (0t,), wheret, is a zero ofG(t), then, according to Eq.

(14), upon reaching=0 the light beams collapse to a finite

distancez., determined from the conditiot(z.) =0.

for which, as opposed to the exact expressigd), it is pos-
sible to determine the desired range of the parametdes
and B analytically.

Let the inequalities

These results are consistent with the well known self- 2 . 2 1 [t 1\
focusing behavior of light beams, so in the following we — S<%7° L=t 1 ,8>t0_t, s 1-t']
concentrate on studying the oscillatory propagation regime (26)

and on determining the spatial rotation parameters of th
beams. The above discussion implies that in princif{&)
can vary periodically only whef(t) has three zeroes in the
interval (0,1 and the initial value lies within an interval
that does not contain the point=0. If the total power is
much higher than the critical value, so tHa4<<0, then the
function p?(z) goes to zero at a finite distance, which corre-
sponds to collapse and “adhesion” of the beams. Thus, ther
is yet another condition for the existence of a periodic solu- R, 2(1-tg) 2(1—t*)
tion, p?=const. P \/ St \/ St
The conditionp?=const is equivalent to the three con- 0

Be satisfied, wher¢* is the root of the trinomiab—t?(1
—1) closest to the zero from the right, atidcorresponds to
the local minimum of the functiontg—t)[s—t?(1—t)].
Then the fourth-degree polynomi@l,(t) (25) has four real
rootst; , 3 4With t,<0<t3<t,<to<t;<1.

Note that the lower bound ar leads to an upper bound
gn the ratioRq/ay:

)

ditions P;=0, P,=0, andp?=P,. Thus, The condition for applicability of the trial function
method in problems of this type is that the beams be far from
P,=0—aj=— f & R} (22) one another. In order for the beams to be regarded as differ-

2 ag ent, it is necessary to s&,>2a,, which imposes an upper
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bound onty: to<<(1+268)~*. At the end of this section, we t,,~0.978 (,~0.968); the variables vary over the limits
present numerical estimates showing that both conditions can01=R/R,=0.18 and 0.98 a/a,<1.81 for an initial R
be satisfied. We note additionally that the last inequality in=3.3a,. The magnitude ok, for givens, to, and B is de-
Eq. (26) can always be satisfied by choosing the angl®  termined by the magnitude ad, and is ~10 cm for a,

be close enough ta/2. Equations21), (22), (23), and(26)  ~10 um. The initial divergence of the beanisxternal de-
determine the parameter domain within which the oscillatoryfocusing ay is of order 103, which corresponds to diffrac-
regime occurs. tive divergence for Gaussian beams. For estimates, we set

Replacing the exact expression in E¢E?) and(20) by  the coefficients: ands(?) equal to unity and the frequency of
the approximatiorG,(t), we obtain an approximate solution the carrier wave ta~10*° s 1,

of the problem,

1-t t
R(z)=Ro\/ 1_i2)1 a(z)=ag \/(t_z),

Vs(1—tgp)

e

5. CONCLUSION

(F((p(Z),k)-F((po,k) In this paper we have used a variational technique to
study the mutual effect of two spatially separated light beams

t,—ts owing to cross-modulation of the refractive index in a cubic
+ 1-1, [H(<P(Z),V7k)—H(<Po,V,k)]}- (27)  nonlinear medium. The interaction is attractive in nature and
causes the ray trajectories to bend. Under the conditions de-

Here termined here, crossed beams are trapped into a bound state,
to(t, —ts) — t(ty— t) s W(2) vyhich causes.them to rota}te in space. _Since the rate of rota-
t(z)= , tion is an oscillatory function, the spatial parameters of the
(t=t3) = (1= tp)SIP W(2) helical structure(pitch, diameter vary periodically.
(1,—tg)(L—ty) In our model, an oscillatory regime that is not limited by
w(z)=F(¢q,k)+ T Z, collapse will be realized for beam powers that are equal or

close in magnitude. This property is evidently a consequence
¢(z)=am(w(z)) is the amplitude and swn(z)) is the Jacobi of our assumption that the beam radii behave in the same
elliptic sine;F(¢,k) andII(¢,v,k) are the incomplete Leg- way, i.e., it is inherent only to the model chosen here. If we

endre elliptic integrals of the first and third kinds, respec-assume that the beam radii are different in the trial functions

tively; and, for the variational method, then instead of the system of two
b —to taet o 1t equations(6) and (9), we obtain a system of three second-
2t 23 41 2 2 oty =0. order equations for the radii and the distances between the
ti—tgta— 1y -tz 1-1 beam centers. No analytic solution can be found for that
ts to—t, - system of equations. _
o(tg)=@o=sin 1+ /t mra—— o(ty)= 5 We have not dwelt here on the change in phase of both
1 20 3

of the beams, although these quantities are taken into ac-
The approximate solutiof27) determines the dynamics of count in the trial functiong3) used here. The variational
the system approximately: the distance between the beafioblem yields equations for the evolution of the phaggs
centers (helix diameter varies periodically betweeR,;,, and ¢, along thez axis and in thexy plane, which are not
=Rp/(1—t,)/(1—ty) (here amm=apt;/ty) and R, coupled to the equation$4) considered here. However,
=Ro\(1—1t,)/(1—to) (amn=2aoVt»/ty), while the angle of given the solution of the system of Eq@l), it would be
rotation increases nonuniformly over a periad by an  Possible to calculateh, and ¢, by direct integration. This
amounty,, i.e., the pitch of the helix is also a periodic Problem might turn out to be extremely attractive if we are
function. For numerical estimates of the parametgrand interested in the topological properties of the wave front, as

o . ; ; e 50830
i, of the periodic structure, we can use the exact expressiorf§r example in a study of dislocations in a wave front:
The difference in phase of neighboring beams is extremely

B tmax  dt important when they propagate in quadratic médiayhere
Zp=Po tmin VGO Egs. (4) acquire additional terms that account for the para-

metric interaction of the beams.
tmax dt The interest in spatial optical structures is based on the

Pp=s(1—to) J 1060 (28)  possibility, in principle, of using them for information
tmin (1=DVG(1) processing™3? The rotation of optical beams considered
Heret. andt,,, are the zeroes oB(t) (Eq. (24)) corre- here can obviously be used in simple optical switching
sponding to the root andt, of the polynomialG,(t) (25). schemes, since it does not require the creation of special

Using the procedure with Eq&1)—(23), (26), and(28) conditions(e.g., feedbackto operate. Further studies of the
described above, we can optimize the given parameters. Takaodel developed here with differing beam radii will be use-
ing s=0.03, t,=0.3, andB=100°, we obtainy,=m, i.e., a ful from the standpoint of studying the mutual effect of
complete turn(yy=2m) occurs over a distancg ,=2z,. The  beams on collapse, or from a more general standpoint, of the
integration is over limits fromt,,,=0.288 ¢,=0.271) to  control of light by light>®
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We solve the Bethe—Salpeter equation that describes radiation transfer in highly inhomogeneous
media with an anisotropic scattering with allowance for the contributions of Legendre
polynomials of the zeroth, first, and second degrees. An analytical expression for the radiation-
transfer propagator is derived. We show that as the average value of the second-degree
Lagrange polynomial increases, the region where the diffusion approximation is valid shifts toward
large distances. Within this approach we calculate the coherent backscattering intensity and
study the effect of higher-order moments on the angular dependence of this intensity. Finally, we
show that it is possible to experimentally detect the coherent backscattering peak in the

critical region. © 1998 American Institute of Physid$S1063-776(98)00806-3

1. INTRODUCTION fusion approximation at large distances. Gorodnichev and
Rogozkirt® examined highly anisotropic indicatrices of the
During recent years extensive study, both theoretical angorm (cos6)~¢, where 6 is the scattering angle, for layers
experimental, has been in progress in the field of interferenc@hose thicknesd. was much smaller than the transport
effects in multiple scattering of lighsee the review articles length,L<I*. This corresponds to the case where the diffu-
in Refs. 1-5. A consistent theory of these effects has beersion regime is not realized.
developed for systems of point scatterers or for an inhomo-  |n the present paper we solve the Bethe—Salpeter equa-
geneous medium in which the spatial dispersion of the struction with allowance for Legendre polynomials of the zeroth,
ture factor is small compared to the wavelength of the incifirst, and second degrees. Allowing for the second and
dent radiation. However, most experiments have beehigher-order terms means going outside the scope of the dif-
conducted with systems in which the spatial dimensions ofusion approximation. We show that here the main diffusion
the inhomogeneities are comparable to the wavelength of therm in the radiation-transfer propagator of the form
radiation or are larger. (1—cosé)r—* does not change, and allowing for the second-
Allowing for the finite size of the scatterers usually order term has an effect on the form of the terms that rapidly
amounts to replacing the photon mean free pathy the  decrease with increasing distance terms that retain the
transport length’ I* =1/(cos6), wherecos@ is the average information about the anisotropy of the differential single-
cosine of the single-scattering angle. It is assumed that thecattering cross section. These rapidly decreasing terms are
results obtained in the theory of point scatterers remain valighevertheless important when the scattered radiation is
but that the parametéf, which can be much larger thdn  formed in a layer of thickness of the order of the extinction
becomes the natural scale. Such an approach is justified bgngth, say, in backscattering.
the diffusion approximation in radiation-transfer the8rjit The results are used to calculate the angular dependence
actually amounts to allowing for the anisotropy of the scat-of the coherent backscattering intensity. We show that allow-
tering indicatrix via an expansion in Legendre poly-ing for second-order terms leads to a sizable contribution to
nomials®*!and keeping only first- and second-order terms.the intensity. We also analyze the possibility of experimen-
However, in comparing theory and experiment, such anally detecting the backscattering peak near second-order
approach is also used for large scatterers, when the anisgihase transition points. The coherent backscattering intensity
ropy of the indicatrix is not small. In this case it is natural to s calculated for the Ornstein—Zernike indicatrix in the criti-
allow higher-order expansion terms in the indicatrix. In thecal region. The calculated value of the effect is large enough
research devoted to multiple scattering of light in liquid crys-to be detectible by modern experimental techniques both in
tals within the scope of the Bethe—Salpeter equatfofithe  temperature and scattering angles.
problem was solved numerically by using expansions in
spherical functions for indicatrices of the Ornstein—Zernike2- RADIATION TRANSFER IN AN INHOMOGENEOUS
type. There the asymptotic part of the coherence function, oMEPIUM
the radiation-transfer propagator, was calculated. The nu- We examine the propagation of light in an inhomoge-
merical results were found to support the validity of the dif-neous medium whose stochastic properties are described by

1063-7761/98/86(6)/7/$15.00 1107 © 1998 American Institute of Physics
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fluctuations of the dielectric constamte=¢(r)—e, where  HereG(q)=fdrG(r)exp(=iqr) is the Fourier transform of
e=¢(r). In such a medium the wave equation is the correlation function of dielectric-constant fluctuations,

(curl curl—kZ)E(r):kSAs(r)E(r), (2.2 G(r)=(4m) ?Ae(0)Ae(r), (2.6

where E(r) is the electric field in the random mediutk, A(r)=r"2 exp(-r/l), kij=kRy; /R;; is the wave vector of

=kove, and ky=2m/\ is the wave number, with the the scattered wave propagating between the pd#tand

wavelength. Rj, andR;;=R;R;. Note that the Bethe—Salpeter equation
If we ignore polarization effects, we can replace thein the form (2.5 is similar to the mixed Wigner

; L . A7
wave equatiori2.1) by a scalar one, which in integral form is representation’ _ _ _
If only ladder diagrams are considered, interference ef-

fects are not present in the picture discussed in Ref. 3. These
effects are taken into account in Sec. 4.

1
E(r)=<E(r))+EfdrlT(r—rl)As(rl)E(rl), (2.2

whereT(r)=k3 exp(kr)/r is the Green's function of the sca-
lar wave equation.

Let us define the scattering intensity at large distamges 3- ALLOWING FOR THE NONLOCAL NATURE OF
from the medium as FLUCTUATIONS

|(r)=m5r62l(ks|ki), The correlation functioris(r) is characterized by a cor-
relation radiug .. Generally, for an arbitrary value &f ., it
wherek; and ks are the wave vectors of the incident and is impossible to solve Eq(2.5 even for a homogeneous
scattered waves, andE(r)=E(r)—E(r) is the scattered medium. However, when the correlation length is small, so
field. The functionl (k¢ k;) can be written as® that G(r) can be replaced by a delta function, which in
the wave-vector space corresponds to an isotropic single-
| (kefki) =1 a(kelki) +TwaCkelki), @3 scattering indicatrix,G(q) =const and the Bethe—Salpeter
wherel , is the single-scattering intensity, which is not dis- equation can easily be solved by going over to the Fourier
cussed below, anty, is the total intensity of all multiplici- spectrum in the variablB,— R, . Ordinarily this case is used
ties of scattering beginning with the second. as a starting approximation in analyzing coherent and corre-
In the weak-scattering approximatiox/l <1, only lad- lation effects in multiple scattering.
der diagrams contribute to the principal order in the param-  To allow for the finiteness of the correlation length, i.e.,
eter M/l in the scattering-multiplicity series, i.ely(kJk;)  for the dependence &f(R,,R;|ks,k;) on the orientations of

=1,(kg/ki), where ks andk;, the radiation-transfer propagator can be expanded
in a series in Legendre polynomials with only the zeroth- and
IL(ks|ki):f dR;dR, exp(2 Im kR,— 2 Im k;R,) first-order. terms retgined. However, for indicatrices with a
strong anisotropy, higher-order moments' # may play an
XT(R,,Ry|ks,ki)|E|2, (2.4 important role. The approach based on the expansion in

spherical functions has been widely used in connection with
Im k is the imaginary part of the wave vector, 2 k|,  the equation of radiation transf€r®In particular, Apresyan
and the functionT(R,,Rq|Ks,k;) the radiation-transfer and Kravtsov' analyzed this equation in detail with first-
propagator. Both terms in the exponential(th4) describe and second-order moments taken into account.
the damping of plane waves in the medium. For instance, for ~ According to(2.5), in a homogeneous medium the func-
a medium occupying the half-spa@e=0 the exponential tion I'(R,,R;|ks,k;) depends on the relative vect®y;
factor is =R,—R; and the mutual orientation of the vectds, ks,
andR,;. Generally, this dependence can be expressed in the
exr{( R 4 ) E form of an expansion in spherical functions:
cosf; cosé;) |

where 6; is the angle of incidence, ang is the scattering I'(Rlks. ki) = 47 2 Yiam(R)
. . . k,I,|m|<min{k,1}
angle measured from the backscattering direction; for such a .
geometry we havé, , §,< 7/2. Here we consider nonabsorb- X Py(cos 65)P"(cos 6;)exd im(ps— )],
ing media, so that damping is due solely to scattering. 3.1)

The scattering-multiplicity series can be summed, and . _ _ _
the result is a Bethe—Salpeter equation for the radiationwhereP,’(cosé) is the associated Legendre polynomial,
transfer propagator: kR KR

. - COSfs=—=, COSlOi=-—,
T'(Ry,Rylks, ki) =K5G(—Ks+ kD) A (Ron) Gk + ki) kR kR
~ and ¢;— ¢; is the angle between the projections of the vec-
+kéf dR3G(ky3— k) A(Rys) torsks andk; on a plane orthogonal tB.
To simplify the analysis, we integrate E@.5) over the
XT'(R3,Rq|Ka3,K;). (2.5 orientations ofk;. The equation remains closed, since the
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unknown function in its left- and right-hand sides depends ony

the same incident wave vectkr. Introducing a new func- —— g,(q)=1"2A(q)+1 "% A1(q)yo(q)
tion Fo(R21| ks):fdQ|F(R21| k51ki)! we get 3Pl
A1 2 - 1= 2
Fo(Radks) = kol Gkt ko) ARz GG Aa(Q)gz(Q)], (36
+kéf dR3G(kgs—Ks) A (Rpa)T'o( RaglKza). 4
T 2 B S ~— _ <
62 gp, @O 2[3A5(0) ~TAo(@)]+17 [3Ax(q)

In deriving this Eq.(3.2) we used the optical theorerh,* - 5 s L
=k3[dQG(ks—k;). = Ao(a)]yo(a) +3A3(a)g1(q) —TA1(a)g1(q)

Although in going over to the equation fbp we lost the A
contribution of some terms, the equation makes it possible to +2 3 7\4(Q)92( )— lf Tr(Kz(q)ﬁz(q))
calculate exactly the isotropic part of the radiation-transfer 2 ’

propagator outside the scope of the diffusion approximation.
We allow for the orientational dependence of both vector
later, when we calculate coherent backscattering.

here the tilde indicates the Fourier transform of the corre-
sponding function. The function

Expanding the functiod o(R,/ks) in a series in Leg- 2 o
endre polynomials, An(Q)=f dr exp(—iqr) —z—A(r) 3.7
_ is a tensor of rank. Integrals of type(3.7) can easily be
FO(R“()_HZO yn(R)P“<ﬁ<>’ B3 calculated. In particular, we have
where y,(R) = ¥n.00(R) = ¥ono(R), and using the orthogo- Ao(a)=4lpo,
nality of the polynomials?,(cos#), we reduce Eq3.2) to a - -
system of equations for the expansion coefficient3i): Ay(q)=—4miqglpy, (3.9
4o o < [dd_ Po—P1 qq”
_ -2 -1 A —477I[— + [
m—ﬂ)yn(Rzo—Pn[l A(Ryp) +1 2(9) ZPt 2 2
where we have introduced the auxiliary functions
x [ dryp,| SR
370 RyaRy, (Rag) arctanw 1-pg 1 /1
DOZT, P1= w2 pz_m §—p1 )

. R31k23
x 2 ym(RsoPm(—R ”
m=0 31

(34  andw=ql is the dimensionless argument.
As a result the solution of the systg16) can be written
Here the parameterB, are defined as averages over theas
single-scattering indicatrix: _ ' Po—3p; C0S0 X 3p,—py
- kek; volQ)= lw?p, 2Alp;
fdQsG(ks_ ki)Pn( k2 )

Pn= = . (3.5 Sa=37 % ()= —
JdOG (ks ki) 9@ =3 7@, 7@

3i cos 6
lw

: (3.9

Next we solve the system of equatio(.4), keeping 2 i—f ~ ~ 1
only the first three terms in the expansi@3). Instead of %(q)= q° 72(Q), 72(q)= A’
the functionsy;(R»;) and y»(R,;) we introduce the vector

function g;(Ry1) = 71(Rag) Ryt /Ry and the tensor function  Where
2 2
- 3RyRy . _ P1 4 9 ~ WA(3p2—pa)
_ _ = | ——=—9po+6p1—po— ——— |-
92(Rzy) YZ(R2D< RZ, M 2(3p,—p1) | 5P, P1

(3.10

Formula(3.9) determines the propagatbip(R|k) when the
scattering indicatrix is described by three Legendre polyno-
- - mials.
4yo(q)=1"#Ag(q) +1~ 1[ o(@) vo(a) + A1 (q)01() The propagator of radiation transfer over large distances,
i.e., the behavior of its Fourier transforms fpr<1, plays an
important role in coherent effects of multiple scattering. In

this region the formula folyy(q) in (3.9) yields

Applying the Fourier transformation in the spatial variables
Rjj, we can write the system of equatiof&4) as follows:

1 2 PO 2
+ g[(3/\2(q)—I/\o(q))gz(q)]}7
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same order as that of ladder diagrams. Such interference cor-
. rections to the intensity of backscattering of light were first
mentioned in Refs. 19-23 and discovered in experiments of
(31D van Albada and Lagendifkand Wolf and Maref.
The first term in the square brackets corresponds to the well- We consider the case of normal incidendg=0. The
known expression in the diffusion approximatiop,(q) ~ contribution of cyclic diagrams to scattering is given by the
~3/I*w2. Within the equation of radiation transfer the form following expressior?:
of this term in the absence of absorption does not change
even if one allows forP, (Ref. 11. The second term in IC(ks,ki)ocf dR;dR, exf — (z1+2p)l "1 +ikoOs(X;— X5)]
(3.17) reflects a more detailed description of radiation trans-
fer by the Bethe—Salpeter equation. This term vanishes as X[ (IR Ryllks, ki) =T (|R;— R{™||ks k)],
P,—0. As P,=cos# increases, it is natural to expect that @.1)
for real systems the average of the second Legendre polyno- '
mial over the scattering angl®,, also increases, and the whereR{™=(x;,y;,—2z;,— 2l ) is the mirror image of point
second term becomes much more important. R, with respect to the plane=—I,,. The parametel, is
The region of applicability of the diffusion approxima- usually chosen in the forrh,=0.71* (Ref. 23. Equation
tion is determined from the condition that the first term in the(4.1) is written for the case of scattering from the half-space
square brackets i8.11) provides the main contribution, i.e., z>0 for a wave backscattered at an anglén thex,z plane.
22 We see that the scattering intensity depends on the com-
q_ _ (3.12 plete functionl' (R|ks,k;). Hence we must refine the analy-
(35/9(1/P,— 1)+l sis of Sec. 3 by including the dependence on the orientation

We see from(3.12 that range of wave vectois for which Qf both_vectors_ks z_and ki Applying to Eq.(2.5) the opera-
tion of integration in the form

the diffusion approximation is valid narrows as the anisot-
ropy of the scattering indicatrix increases, i.e., wies 6
andP, grow. f f dQd€Q;P;(cos 65) Py (cos 6))

Let us establish the limits of the approach based on al-
lowing for a finite number of terms in the expansion in theand allowing for the expansiof8.1), for a homogeneous
Legendre polynomials in the scattering indicatrix. With al- medium we have
lowance for(3.5) this expansion becomes

- @ 3 1—cose+28 1
VT T W T 27 3519 (1P, — 1)+ WP

27 -
—(1—cos6)>
28

47 cos ’°A(R,;) cos 6
G(ks—k) < _ o YudRa1)= iz 35 desA(RB)
_ s— Kj :; (2n+1)P,P,(x), (3.13
JG(ks—kj)dQ (RyRya) (RygRar) Ry T

wherex= (k;ks)/k?. HereG(ks—k;) describes the intensity RoRas  RaiRar
of scattering in the direction d; and must be nonnegative, 4.2
G(ks—k;)=0. In particular, if we limit ourselves to second-

] Inserting the expansio(8.1) into (4.1) and doing a Fourier
degree polynomials, we have

transformation in the variableR,—R; and R,—R{™, we
1+ 3P1x+5P,(3x°~ =0 (314  obtain

da,

for values ofx in the interval—1s=x<1. *
|c(ks,ki)°<J7 Ef(QZ)

Equations (3.9—(3.11) imply that the parameter®,,
with n=2 have no effect on the asymptotic behavior of the q KK
diffusion, so that for every value @s @ there exists a range = dz|~ Difts 2
of distances within which the diffusion approximation is YO(qS)JFZPZ(qS) v2(Gs)+ k? 92:(%)|.
valid. However, in calculating the correction terms, which 4.3
contain information about the higher-order moments of the
indicatrix, the restriction(3.14 and other conditions that Wheregs=(K605,04,), ds=/(kobs)*+0z, and
make it possible to describe the indicatrix by a finite number

X

of moments are important. .6]11(q3)=J dr %7110(R)9Xp(—iqSR)- (4.4
4. COHERENT BACKSCATTERING The functionf(q) depends on the choice of boundary con-
_ ditions. Takingl ,=0.71*, we gef
To illustrate the above results, we take the example of
calculating the shape of the coherent backscattering peak. As 1—w? 1.42v1*
is known, the peak appears because for scattering afgles q)= m(l—cos | )
<M/l measured from the backscattering direction, in addi-
tion to (2.3) and(2.4) there are cyclic diagrams that contrib- N 2w W sin 1-43’\"*)
ute to the scattering intensity, and the contribution is of the (1+Wz)2 | '
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The functiony;;R) can be immediately calculated 4.2 1(8)/I(0)
if we use the expression for the vectoR/R)y.(R) 1.0
=g,(R) found in Sec. 3.
Parametrizing the tens@y ,(qs) as 0.9+
2 -1 Osds -
Gu(ds) =a(ge) i + §b11<qs>(3 —;S;—l), (4.5 osl
from (4.4) we get
1 0.7t 4 5
a(Qgs)= 3 f dRyndR)exp(—igsR), (4.6) ! 3
0.6 . . . )
asR 0 0.1 0.2 03 k'8

2
b11(Qs):§deP2 qu) yudR)exp(—igsR). (4.7)

Substituting the right-hand side of EGL.2) for y,,(R) in
(4.6) and(4.7) and employing3.8) and(3.9), we obtain

FIG. 1. Backscattering intensity normalized to the peak’'s height,
1(65)/1(0), as afunction of the angular variablkl* 65 at cos#=0.5 for
different values ofP,: curve 1, P,=0.1; curve2, P_2= 0.2; and curves,
P,=0.3. Curve4 represents the function with only the first two expansion

3 cos 62 terms taken into account if8.3).
a11(Qgs) = -1
L L 1 * Py ince Eq.(4.10 describes not only the initial slope but al
x| |1+ = |arctanwg— —+2 | —dq], since Eq.(4.10 descri es not only the initial slope but also
Ws s Ws qs 9 the shape of the peak in a broad range of angles.
(4.9 Figure 1 shows how the shape of the backscattering peak
varies with the parameter
3 cos 62 .
b11(qs) = — P,=3%cog -1
for a fixed valueP,=cos#=0.5. We see that the slope in-
1 1 L= . = )
X|—— —| 1+ — | arctanws creases withP,. For instance, aP,=0.1 the slope isy
Wg  Ws Ws =1.5and atP,=0.3 it is y=1.7. This means that the slope
q cannot be correctly described by only one parameteo.
+2q;3 j qupldq} (4.9 Curve4 was obtained by allowing foyy andy, in (3.3 and
0 yields a slopey=1.35. Note that the diffusion approxima-

wherew=1q;.

tion also allows for only these two terms, but feg(q) it

As a result the angle-dependent part of the cohereniises not an exact but an approximate expression of the form

backscattering intensity can be represer{tedwithin terms
of ordercos ) as

(I*w?)~1, which leads to a slopg=2.3 (Ref. 24. Thus,
curve4 can be considered a refinement of the diffusion ap-

proximation. We used it as a reference curve to illustrate the

role of higher-order terms in the expansion of the propagator.
Figure 2 depicts the backscattering intensity, calculated

by (4.10, relative to the value of the intensity calculated

= dq, ~ z
|c(ks:ki)°<f_oo %f(qZ)[Yo(QS)JFZPz(Z_)

S

(4.10

X ¥2(Qs) —az1(ds) — b11(qs) Pz( g_z) -
In the case of backscattering the contributiommgfvanishes
due to parity considerations.

The diffusion approximation amounts to allowing for the
term yo(qs) in (4.10. Only this term yields a linear depen-
dence on the scattering anglg. The other contributions, 0.8+
responsible for anisotropy in the radiation-transfer propaga-
tor, yield a peak of Lorentzian form. Generally speaking,
their presence leads to a deviation of the dependence from
linear and at small angles manifests itself as a change in the
initial slope. In the diffusion approximation, the shape of the
peak at small angles is described by the formula 1
— vkI* 65, where the constantis the initial slope. Although 0.6 . . ' :
the presence of correction terms complicates the description 0 0.5 1.0 15 kl'g
of the shape of the peak, these terms make it possible tﬂG. 2. Ratio of the backscattering intenslt,) at P;=0.5 to the inten-

determine not iny*. but alspl, Py, andP, SeparaFel% i.e., sty Is(6s) calculated withy,=0 for n=2, as a function of the scattering
to extract detailed information about the scattering systemangle forP,=0.1 (curve 1), P,=0.2 (curve 2), andP,=0.3 (curve 3).

1(6,))/1,,(6,)
0.9

0.7
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1(6)/1(0) racy of 0.05 mrad, the backscattering peak can be detected in
1.0 the critical region and its temperature dependence can be
studied.
0.8
5. CONCLUSION
06 By examining radiation transfer in highly inhomoge-
neous media we have developed an approach that consis-
0.4¢ . :
tently takes into account the higher-order moments of the
ool 3 single-scattering indicatrix. We have obtained analytical ex-
’ > pressions for the radiation-transfer propagator that take into
X 1 _ account Legendre polynomials of the first and second de-
0 0.1 0.2 grees.

8, mrad In solving the problem of radiation transfer, one can al-
FIG. 3. Angular dependence of the backscattering intensity calculated foVays indicate a range of distance-1* in which the diffu-
the Ornstein—Zernike indicatrix at different values laf, : curve 1, kr, sion approximation is valid. There is no need to take into
=0.775, (kI=4.9x10%, P;=0.2, andP,=0.047); curve2, kr,=2.45,  account higher-order terms in the expansion in spherical
(kI=1.7x10f, P,=0.46, andP,=0.25); and curve3, kr.=256, (kI  functions. However, for specific problems of multiple scat-
=15x10, P;=0.49, andP,=0.28). The values okl, Py, andP, were  aring the boundary region of thickness of order the extinc-
calculated by formulag4.11) and(4.12. . . . —_—
tion lengthl, which is much smaller thal* ascos6—1,
becomes important. In the intermediate reglierr <I1*, the
_ _ i contribution of higher-order spherical harmonics proves to
with only two terms in the expansio(8.3. We see that e gnnreciable. In this connection the problem of explicitly
allowing for higher-order moments, first, reduces the heightaying into account the boundary conditions outside the
of the peak and, second, distorts the peak. __ scope of the mirror-image method becomes important.

W_e used the results in an ana_IyS|s of the poss@llty of  As an example of an application of the new approach,
detecting the coherent backscattering peak in the critical reye have calculated the coherent backscattering intensity and
gion. To simplify matters in describing the angular depen-,,ye studied the effect of higher-order moments on its angu-
dence of single scattering, we used the Ornstein—Zernike foljz dependence. We have demonstrated the possibility of ex-
mula perimentally detecting the coherent backscattering peak in

- the critical region.
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A theory of the propagation instability of plane, monochromatic, circularly polarized
electromagnetic waves of relativistic intensity in matter is developed for a spatially three-
dimensional geometry including arbitrary polarization of the scattered radiation. Harmonic
generation owing to striction and relativistic nonlinearity is examined, as well as scattering
owing to electron recoil, the decay instability of the harmonics with formation of scattered
electromagnetic waveStokes components of the stimulated Raman scattering and

plasmong the interaction of electromagnetic waves in the plagamistokes stimulated Raman
scattering, and the generation of a radiative continuum. The transition of the three-
dimensional theory to a one-dimensional problem in the nonrelativistic limit is discussed.
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1. INTRODUCTION first problem in detail; in particular, the temporal growth

rates are calculated. The second problem is touched upon
Experimental and theoretical studies of the scattering obnly at a qualitative level.

Ultrahigh'intenSity laser ||ght in matter have been of great Recenﬂy' there has been a tendency to construct spa-

interest in recent years'°By ultrahigh, we mean intensities tia|ly three-dimensional models of the scattering of relativis-

| =10'"8 Wicn? at which relativistic effects show up in the tically intense, plane, monochromatic, circularly polarized

electron motion. These intensities are attained at present @ectromagnetic waves in plasnf2€ The theory comprises

experiments with high-power ultrashort laser pulses? _a set of varied wave phenomena: harmonic generation,

When an ultrashort laser pulse is focussed onto a materialyim jated Raman scattering on electron plasma oscillations

the bulk of the pulse interacts with the plasma formed at itsexcited by the propagating laser pulse, the hydrodynamic

leading edge. Polarization of the material in a h'gh'powerzralog of the Compton effect, etc., as well as limiting tran-
t

laser raqllatlon field, which leads to scattering, can be cause ions to previously known cases—primarily to the nonrel-
by nonlinear free-electron currerits,deformation of the S . 4
ativistic approximation.

electronic shells of atoms and iolisand molecular vibra- . _ . .
a At the same time, describing the scattering of relativis-

tions and rotation&® In experiments with light atomic gases, tically inten lectromaanetic waves in blasmas turn it
it is possible to isolate the first component of the polarizatiorbCa y Intense electromagnetic waves in plasmas turns out to
e so complicated that various authors have restricted them-

from this list on reaching full ionization of the material. We | g ber of C Th .
consider laser light scattering in plasmas for this specific,Se ves to examining a number of approximations. These in-

reason in the following. The scattering of coherent radiatiorc'ude: 3 the one dimensional .approxmatFOnZ) the as--
in plasmas at nonrelativistic intensities has been studiegumption that a certain polarization of the scattered radiation,

previously**17-220f the papers which analyze scattering atSuch as circular, is maintainéthe approximation of a given
relativistic intensities, we note above all Refs. 8—(Hee polarization®*%, 3) searching for the growth rates assuming
Refs. 1-7 as well that one of the transverse components of the wave vector

The study of laser light scattering in matter can be arbi-eq_uaIS zerdy 4) resonance approximations, which reduce to
trarily divided into two essentially unrelated problems. TheUsing exa%t conditions for phase synchrony for several wave
first involves determining the local characteristics of the meProOCeSSes.
dium: the temporal growth ratéspatial gain coefficienjsof In this article, we propose a variant of the theory of the
the scattered radiation in an elementary volume of plasma &fattering of relativistically intense laser radiation in plasmas
functions of the components of the wave vector of the scatin which there is no need to use any of the four approxima-
tered wave and of the parameters of the reference wave. TH®ns indicated above. Numerical methods are used to de-
second, in contrast, is an integro-differential transport probscribe harmonic generation, stimulated Raman scattering on
lem and reduces to calculating the radiation field far from theplasmons, the hydrodynamic analog of Compton scattering,
scattering volume, including amplification and absorptionand continuum generation, as well as the mutual effects of
along the propagation path. In this article we examine thehese processes. This study is based on a rigorous analysis of

1063-7761/98/86(6)/8/$15.00 1114 © 1998 American Institute of Physics
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the linearized Maxwell equations and equations for the rela- The system of Eq91)—(6) is normalized as followsA

tivistic hydrodynamics of the electron component of aand¢ to mc/e, nto the unperturbed value,, the momen-

plasma in a strong electromagnetic field. A proper analysisum of the electron fluid tonc, the time tOwgl, wherew,,

of this type requires the availability of an exact referenceis the unperturbed value of the plasma frequency, and the

solution of the initial nonlinear system of equations. In thespatial coordinate te/w .

present case, that solution is a plane, monochromatic, circu- The exact solution of the system of Eq4)—(6) is a

larly polarized electromagnetic wave of arbitrary intenéity. plane, monochromatic, circularly polarized wave of arbitrary

We note that in the earlier literature, there are a number ointensity, propagating, for example, along #eaxis®3

studies of the propagation instability of linearly polarized, _ . .

monochromaticpplapnegwaves which gre not exagt solutions of Ao=(L2(ertie)A expliké)+e.c. ™

the initial relativistic equations, and therefore can only beHere é=x3—qt is the running variable and=w/k is the

used when it is assumed that their intensity is low. phase velocity of the wave. In addition, the conditian$
The problem of studying the propagation instability of a —k?= v ', o= (1+A3) n=1, =1, andy=0 are sat-

circularly polarized, monochromatic, plane reference wavasfied. In the following we use the notatidt *=e.

of arbitrary intensity reduces to solving a system of linear  Let us consider the development of small perturbations,

partial differential equations with oscillating coefficients. Af- indicated by the symbol *,” in the plasma, through which

ter introducing a running variable along the propagation axighe wave(7) propagates:

and taking the Fourier transform with respect to the spatial ~ ~ ~ ~

coordinate, we arrive at a linear system consisting of an in- 2= AotA, N=1+N, ¢=yot ¢, Y=y (8)

finite number of coupled ordinary differential equatiqosv- The linearized system of equations for the perturbations

ing to the necessity of accounting for the generation of harhas the form

monics and their interactionsAs these calculations show, a

proper approximate solution of this problem is obtained

when more than a hundred equations are included in the

OA=V b+ vy {A+ V) + 5 BA,

-3 ~ -~
analysis. The temporal growth rate of this instability is de- ~ % (Ao~ (A+Vi)]A, €)
fined as the maximum eigenvalue of the matrix for the linear VZE,:?,, (10)
system being solved. This approach, in particular, makes it ~
possible to avoid writing down and analyzing the cumber-  V-A=0, (12
some dispersion relations. Hydrodynamic studies of this type ~ ~ -1 ~
have been done with a numerical analysis of the linear stage = ¢="7v0 [Ao (R+V¢)]. (12

of the development of turbulenéé.We have tested this The continuity equation is obtained by taking the divergence
method in a linear analysis of the instability of a plane waveof Eq. (9),

in the approximation of a specified polarizatith. - . - i~ g

In this paper, therefore, for the first time we present the™t™ Yo (Ao~ VN) ==y A¢+ 7g
results of a rigorous linear analysis of the system formed by ~ =
Maxwell's equations and the equations of relativistic elec- X{Ao VIAo (A+VY) T} (13
tron hydrodynamics. The system of Eqs(9)—(13) is the same as the equations
obtained in Ref. 9 to within the normalization.

Our procedure in the following differs from that used in
Ref. 9. In the system of Eq$9)—(13) we transform to the
comoving variablesx, ,¢,t), after which the differential op-

The propagation of laser light at relativistic intensities in €rators take the following form:

a plasma is described by Maxwell's equations and the equa- - 2_ w2 2 — 9
tions of relativistic electron hydrodynamfés® Vo Vide, VimVit e D= ade,

2. INITIAL EQUATIONS

D—>DD=AL—&t2+ 2qa§t—82ygla§.

OA=V¢+y In(A+Vy), (1)

) As a result, we obtain a system of linear differential equa-
Vig=n—1, 2 tions with coefficients that depend periodically énwhich
V.A=0, (3)  We shall not write out. Given that we are studying the propa-

gation of laser light in an unbounded uniform plasma, we
h=d—, (4)  transform this system of equations into the wave vector
a1 _ space of the perturbatiorig;ito momentunk-space by tak-
Nt V-[y n(A+Vy]=0, © ing the Fourier transform with respect x9 ,¢& (k=1k,|):
y=(1+|A+Vy[3)" ® __ .
A T_ -3/2 = T

Here A and ¢ are the vector and scalar potentials of the(A’¢’n’ ) =(2m) J (A'(’b'n"ﬂ)'&é

electromagnetic fieldy is the potential for the generalized . 2

electron momentum, and is the electron density. Equation xexi((ky x)+x&)]d%, dy.

(6) defines the relativistic mass factgr The subscript de-  In the following the symbol “-" on the small perturbations

notes a partial derivative with respect to time. will be omitted for the sake of brevity.
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The results of taking the Fourier transformg,
=aj/2y3, 9y=ay/2y,) are

~ ikl)(z klk2
DA +0; KZr 2 =01 A A,

K+ x* B .
+01 szszﬁ 92((F1 ) y—k T (F1a)y+x)

+ 2(Fra) oot (Fid 29 =0, 14

~ ikz)(z klk2
DAz t0; K2t 2 U—01 K2t o2 Ay
KE+ x? B .
+01 szszer 92((F20) y—kt+ (F21) y+k)

+gl((FZ_,Z)X—Zk+(F;,Z)X+2k):01 (15)

— (K*+x2) p=n, (16)
Dyp— b+ go((Iy +illp), o+ (T —ill5), 1) =0,

(17)

Din=(vo "x*+ (70 '~ 9K ¥+ ig1(kiAr +KoAr)
—ga((iky—ka)n, 4 (iky+ka)n, 4 )
+(91/2)[((iky— k)T = (ikp+kq) M) ok
+ ((iky+ k) I — (iky— k) 5) 4 2] (18

Here we have used the notation
A=(A1,Az,A3), II;,=Ag 5t iky o, D=d—iax.

D= — a2+ 2iqxdi+ (x% yok>— k) = ¥, %,

) Ky +ik, ky— ik,
Fl,lz(kl W—l)n, F;lz(kl K +X —-1/n,

_ ky+iks .
F1’2=— kl szXz_l (H1+IH2),

Ky — ik, _
Fi,=— ( kq szXz—l) (I, —i1Iy),

N ki+iky, ki—ik,
F2’1=(k2k2TX2—I)n, F;’12<k2k2TX2+I

nl

_ . kytiky .
Fao=|ikz K222 +1|(ill;—1IIy),

o ki—iks .
F22=(Ik2 |(2TX2_1>(|H1+H2)'

Upon shifting the argumeny in these equations by nk,

where n is an integer, we arrive at an infinite chain of
coupled, linear ordinary differential equations with respect to
time for the amplitudes of the harmonics over which the
perturbations are expanded. This latter system of equatio

can be written in the form

Y,=BY, (19

rEq. (22), as well as solving Eqs24) for a, and b

Borovskil et al.

whereY is an infinite-dimensional column vector, aBdis
an infinite-dimensional 30-diagonal matrix.

3. ONE-DIMENSIONAL PROBLEM

In the one-dimensional approximation, the components
k, andk, of the perturbation wave vector must be set equal
to zero in Eqs(14)—(18). The equations for the one dimen-
sional approximation are

I:A)|:|,1A1+ 91A1=da(Nyk+Nyig)
+(92/2) (A +iA2) okt (A1—1A2) 1 2) =0,
(20
E)D,1A2+ g1A2+iga(— Nyt N, 4 y)

+(91/2)((1IA1=A2) y—ak— (1AL +A2) 1 2) =0,
(21

6tw+x—2n+gz(<A1+iA2>X_k+<A1—iA2>X+k>=0(,2 )

Din— v, X?$=0, (23)
where
Dp=-— 9Z+ 2iqxd+ x? vok?— o 1.

The form of these equations, as well as the structure of the
matrix B, are analogous to those for the spatially three-
dimensional case.

4. APPROXIMATION WITH A GIVEN CIRCULAR
POLARIZATION

Equations(14)—(18), as well as their one-dimensional
counterparts Eq920)—(23), correspond to an arbitrary po-
larization of the perturbations in the electromagnetic field in
the plasma, and in this regard, they differ from the problems
presented in Refs. 8 and 10. In the latter, the polarization of
the perturbation in the electric field was assumed to be cir-
cular, which greatly limited the generality of the approach.

Let us consider the spatially one-dimensional case. For a
perturbation with given circular polarization,

A=(1/2)(e,+iey)a exdi(kx;— wt)]+c.c.,

which in terms of Fourier transforms means that

1 i
Alzi (ax—k+b)(+k)r AZZE (ax—k_b)(+k)v (24)

wherea, andb, are the Fourier transforms af and a*,
respectively.

Substituting these equations into E¢@0) and (21), we
obtain the following equation foa:

—ay+2iqxac+ (X yok?)a+ 2i (wa,— (i x/ yok)a)
=2g,n—gy(a+b). (29

Differentiating Eq.(23) with respect to time and using
v we
obtain the following equation for the response of plasma
electrons to the propagating laser radiation:
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((3=iqx)®+ v IN=—(ad/2yp) x*(a+b). (26) 10°G a
It is easy to confirm that Eq925) and (26) are the 16f
Fourier transforms of the equations used in Ref. 8 to describe
the corresponding instability of laser radiation in a plasma, "
under the assumption that its circular polarization is pre-
served.
8t
5. NUMERICAL STUDY OF THE MAXIMUM INSTABILITY
GROWTH RATES FOR LASER RADIATION IN A PLASMA a
In examining the linearized problem with a matixof
finite size, it is natural to take the maximum of the real part 0
in its eigenvalue spectrum as the temporal growth rate. The 1 0 1 2 3 A
linear algebra problem of finding the eigenvalues of the ma- 0.1%
trix can be solved using th@R algorithm?® The results 5
below emphasize the advantage of the approach used here 10G b
compared to the traditional methods of finding the growth 16f
rates, which involve solving the discriminafdispersion
equations. .
5.1. One-dimensional problem
Let us consider the problem of finding the maximum 8
growth rates for the system of Eq20)—(23). The results of
the corresponding calculations are shown in Figs. 1 and 2.
The size of the matriB increases aB=mxm, wherem i
=6+12j, with j=0,1,2,..,17. As the numbey increases,
the number of harmonics taken into account becomes larger, oL —_—
and this is reflected in Fig. J.=1 corresponds to the fre- -1 01 2 3 4 5016
guency of the laser radiation. The wave vector of the scat- X
tered radiation equalg. If x>0, then the scattered radiation 16
c

propagates in the positivey direction, while if y<O, then it
propagates in the negative direction. 16r

Figures 1 and 2 show the growth rates of the perturba-
tions as functions ofy. The scattered radiation is a set of
harmonics, each of which is a doublet consisting of Stokes
and antistokes stimulated Raman scattering components.
Thus, all the peaks in Figs. 1 and 2 correspond to values 8f
x= *jk=*k, of the wave vector. Weak peaks are observed
neary= =* jk, corresponding to the hydrodynamic analog of
Compton scattering.

The calculations show that as the dimensionafityof
the matrixB increases, the changes in the magnitudes of the 0
growth rates of the bulk of the harmonics become small,
except for a few at the edgésee Fig. L In other words, in
calculations using a matriB with a finite dimensionality, FIG. 1. The effect of the number of harmonics on the growth raje: 2
there is an edge effect encompassing the extreme harmonics? (@: 15 (b), 35(c) harmonicsa,=0.1, £2=7.43 10 *. The growth rate
For example, ifm=210, then the harmoniq'FO,l,Z, .14 IS shown here as a function of the_longltudmgl qomponent of the perturba-

’ ; i o tion wave vector fory>0. The plot is symmetric iry.

are given with adequate accuracy, while the harmoiics
=15, 16, and 17 are “smeared out” by the edge effect.

For the parameters of the calculations shown in Fig. 2the relativistic region withAg>1, the harmonics are resolv-
compared to the parameters corresponding to Fig. 1, the eleable, but the stimulated Raman scattering components are
tron density is lower by a factor of two; this led to a drop in not.

the plasma frequency, and ink, by a factor ofv2. The It is interesting to follow the correspondence between
stimulated Raman scattering components of the harmonics ithese calculations and those of Ref. 8, where it was assumed
Fig. 2 were closer by a factor of2. that in the framework of the one-dimensional problem the

Figure 2 shows that as the amplitude of the field of thescattered radiation is circularly polarized. Our study shows
reference wave increases, the stimulated Raman scatteritigat this leads to a significant error—an infinite sequence of
components are broadened. At fiellg=1, the two stimu- harmonics is omitted. The problem reduces to studying a
lated Raman scattering components merge into one. Thus, X6 matrix. As the computational results described above
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10%G turbation wave vectok. Only a plot of the growth rate as a
function of two variables is capable of providing a clear rep-
resentation. For example, we considered distributions of the
growth rate of the formG(k;,0,x), G(0k,,x), and
G(kq,k5,0), as well asG(k cos®,ksind,y) for a fixed
angle® and k= (kZ+k5)2. An investigation showed that
the growth rate is a quasiperiodic functionyofto within the
accuracy of the numerical calculationand is not axially
symmetric with respect to the; axis, owing to the lack of
such symmetry in the linearized equations over the period of
the reference wave. The oscillatory coefficients that appear
in the linearized equations depend on the choice of reference
system. In our case, we calculated the growth rate under
conditions such that at time=0 the vectorA, is directed
along e, at the pointx;=0. However, the choice of initial
time within a wave period is random. This means that the
growth rate must be averaged over a wave period with re-
spect to the initial time, which is equivalent in turn to aver-
aging the growth rate over the azimuthal angle. Thus, the
unaveraged computational results are intermediate and have
o the significance of “unobservables,” while the averaged re-
L sults correspond to physically observable quantities.

Figure 3 shows the average growth rate as a function of
2 k and y. The distinct feature of this solution is that, against a
continuum background, one can sgaalystem of interlock-
ing rings, 3 repeating peaks located near #eaxis, and 3

15¢

10

0 — A - an increase in the growth rate ks». Figure 3 illustrates
2 0 2 4 6 so‘léo the scattering of circularly polarized laser radiation in plas-
mas. Because of striction and the relativistic nonlinearity,
100G c harmonicsmky— 6k, with m=0,=1,£2, ... (including a
shift sk owing to electron recoil, witHdk|<|kq|) are gen-
8t erated in a medium through which laser light with wave
vectork, propagates.
6k The initial equations obey the energy and momentum
conservation law$ Since their subsequent transformations
are exact, the electron recoil effect must be included in this
4 theory. Because of the decay instability,
o mko— Sk—k/,+Ke,
Mwy— dw=(Mwy— dv— wp) + wp,
0
2 0 2 4 6 éo 1 ){0 each harmonic decays into an electromagn@tokes stimu-

lated Raman scatteringcomponent and a plasma wave.
FIG. 2. The dependence of the growth rate on the intensity of the referencSince the wave vector of plasma oscillations in a cold plasma
wave for y>0. The plot is symmetric iry. a,=0.1 (a), 0.5 (b), 5 (¢). &2 can have any value, the vectkf, is oriented arbitrarily in
=3.7210°% space. Thus, the growth rate for the Stokes stimulated Raman
scattering component ik-space has a distribution close to a
circle of radiugk/,|. Furthermore, wave interactions leading

show, for arbitrarily polarized scattered light, in the one-t the f i ¢ ttered = kot K tak
dimensional problem all the harmonics of the radiation arg? € formation of scatlered waves=nko i, can taxe
lace, wheren andm are arbitrary integers. In Fig. 3, one can

generated and they all interact. In mathematical terms, her@ace: fruct f tvoR" —=nkat k' . Ri fruct
the problem reduces to the need to solve an infinite squencseeti r||ng S ruilires 0 hyg T MKoTKy - mg tstrr?c ures
of coupled linear differential equations. Note that calcula-V'!h 'argerm vanish during averaging, but they were

tions using matrices with low dimensionalitp<<20 yield seer|1 in the qutermeqtlr?t(eltnaver?ge):icalculIat|0ns. ¢ f
results close to those of Ref. 8. n a medium without a reference plasma wave at fre-

guencyw,, the antistokes stimulated Raman scattering com-
ponents do not appear, and this is shown by the calculations.
Nevertheless, because of wave interactions between the har-
We have studied the maximum growth rate for Eqs.monicsmk, and the backscattered Stokes stimulated Raman
(14)—(18) as a function of the three components of the per-scattering components,, waves with wave vectors directed

5.2. Three-dimensional problem
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1.67
1.21
0.81
0.4

FIG. 3. Two-dimensional distribution of the growth
rate as a function of and y averaged over azimuthal
angle.a,=0.1 ands?=7.43 102,

0.65

along the propagation axis and absolute values-(Q)k, tailed study of this question will require use of the methods
+k,, appear. This creates a pattern in which antistokes stimuwef statistical mechanic® which lies beyond the scope of this
lated Raman scattering components appear in the oneaticle.
dimensional problem. In the three-dimensional case, for this  The theory discussed above allows a limiting transition
reason, scattering will be observed in the antistokes compao the nonrelativistic approximation. In mathematical terms,
nents only within narrow solid angles along the propagationt is necessary here to eliminate terms proportiona3@nd
axis of the reference wave. set yo=1 in Egs.(9)—(13). We then obtain an eigenvalue
The peaks along the; axis correspond to harmonics proplem for a matrixd which is 15-diagonal, as opposed to
with wave vectork” =mko— ok, which have been shifted as the relativistic case. Calculations in the nonrelativistic ap-
a result of electron recoil. proximation forag=0.1 agree with those shown in Figs. 1
The increase in growth rate &s- corresponds to gen- 54 24 to high accuracy.
e_ration of a continuum, i.e., to scattgred r_adiation in the con- The class of nonrelativistic problems was examined
tinuum. When an electron revolves in a cirélesynchrotron quite long ago in the literature and two different approaches

radiation is produced at an infinite set of harmonics. Whe ere used: studying the instabilities in a framework of lin-

the circular trajectories of the electrons are distorted, the _ . . L

L . : earized equations based on a resonance approximation as-
emission spectrum changes, leading to formation of a con-" " . o Py
: : X . . suming that the phase synchronism conditions are satfSfied,
tinuum. In experiments with laser plasmas, the continuum is

produced by at least three mechanismgsbfemsstrahlung and studying th? dispersi_o_n relati_or_1§ without employing the
and partial photorecombination radiation from the plasma, 2phase synchronism conditioffgan initial or boundary value
nonmonochromaticity of the laser radiation, which is espepmbler_r)' A,S the preseqt study hg; shown, the resonance
cially important for ultrashort pulses, and &nharmonicity apprOX|mat|_on is not valid fqr relativistic problems because
of the electron currents in the plasma. The latter factor iof the considerable broadening of the resonance structures.

usually related to plasma turbulence and to an anomalous There is some interest in comparing the results of this
increase in radiation from the plasrffa. paper with Ref. 9, in which dispersion relations were ob-
This theory leads to an interesting hypothesis about théained for the scattering of circularly polarized waves in a
polarization of the scattered light. Since a perturbation in théhree-dimensional geometry. That stiidyas limited to the
volume of the plasma at a given time consists of the sum ofasek,=0, assuming axial symmetry of the proble(the
perturbations arising at different times within a wave periodreal situation is more complicated and requires averaging of
(the linear probler while the asymptotic solutions for dif- the growth rate over the azimuthal angle krspacg. The
ferent initial times differ by a rotation of the-space through ~ Series of Stokes stimulated Raman scattering harmbedgrs
an azimuthal angle (the phase angleelative to thee; axis, ~ responds, in our case, to a system of rings for scattered
we should expect that the resulting vector potential wouldvaves with a wave vectdk,,. The differences are the fol-
have componentéA;)=0, (A,)=0, and(A3)#0. The rms  lowing: 1) in the unaveraged picture, as the polar argyle0,
values of all the components are, of course, nonzero, i.e., the, the growth rate approaches the nonzero values obtained
scattered radiation will be partially depolarized. A more de-by solving the one-dimensional problem, as opposed to Ref.
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9; 2) in the averaged picture, for scattering at large anglester component. It has been shown that the harmonics have a
one sees only the Stokes component at the fundamental frdoublet structure for nonrelativistic intensities, while for
quencyk; against a continuum background; anylf& scat-  relativistic intensities the components of the harmonics are
tering at small angles the theory yields Stokes and antistokdsroadened and merge into a single line.
components over the entire sequence of harmonics. The results of the multidimensional theory for polar scat-
tering angles of 0 andr transform to the corresponding re-
sults of the one-dimensional theorfnlike in Ref. 9, the
growth rates for these scattering angles do not go to gero.
A rigorous linear analysis of propagation instabilities of ~ In the numerical studies, we have, for the first time, cal-
a plane, monochromatic, circularly polarized electromagneti€ulated the maximum growth rat¢seal parts of the eigen-
wave of arbitrary intensity in a plasma has been presented iwalues for the matrixB of an infinite sequence of coupled
this article in terms of a three-dimensional geometry. Theordinary differential equations as a technique for analyzing
theory describes the following wave processes: generation dhis class of problems. This approach is more effective than
harmonics of the propagating laser radiation in a nonlineagl€riving and studying the extremely cumbersome dispersion
medium, scattering including the effect of electron recoil,relations.
decay instability of the harmonics with formation of scat-  In comparing theory with experiment, the following cir-
tered electromagnetic waves and plasmons, interactions é¢mstances must be taken into account. First, the calcula-
electromagnetic waves in the plasma, and generation of #ons do not account for absorption of the radiation in the
continuum during scattering of the laser radiation. This set oplasma. The theoretical predictions may be somewhat differ-
wave processes has been studied in both the relativistic arfit if absorption is included. Second, questions relating to
nonrelativistic cases. the experimental geometry and the finite pulse duration may
The calculations demonstrate the possibility of forwardb€ important: athe minimum size of the scattering region
and backward scattering. Each of the radiation fluxes conltransverse beam diametenust exceed the wavelength, and
tains a set of harmonics. Scattering of the harmonics take@ the time for the instabilities under consideration to de-
place into a set of overlapping spatial cones. A higher harvelop must be shorter than the pulse duration.
monic propagates into a narrower spatial cone. Outside these Linearly polarized radiation is mainly used in experi-
cones the theory predicts scattering with a continuous spednents with pulses at relativistic intensities, while all the re-
trum for the change in the wave vector. This effect is domi-sults presented here apply to a circularly polarized reference
nant. wave. The group of physical effects outlined above, how-
As laser pulses propagate in a plasma, the lower-ordegver, will also show up in the case of a linearly polarized
harmonics are radiated into wider cones than the highereference wave. There are some differences. Thus, in the
order harmonics. Thus, the lower-order harmonics can leavéase of linear polarization, the scattering will not be azimuth-
the localization region of the pulse in the course of propally symmetric.
gating. At the same time, the higher-order harmonics propa-
gate along with the pulse. They can probably be detected b]y
spectral analysis of the pulse in an experiment with a speci
geometry. The backscattering intensity is low because th
interaction time for the radiation propagating in opposite di-
rections is short’ S _
In this paper, we have examined for the first time a one- =Ml borovsky@kapella.gpi.ru
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Using the imaginary time method, we study the structure of the perturbation series for the
hydrogen atom in electri¢” and magnetic7 fields. It is shown that there is a “critical” value

of the ratioy=.77/# at which the perturbation series for the ground state changes from

having a fixed sigrifor y<y.) to having a variable sigtfor y> v.). This conclusion is confirmed

by direct higher-order perturbation calculations. The change in the asymptotic regime is
explained by competition among the contributions of the various complex trajectories that describe
the subbarrier motion of the electrons. Here the paramgtelepends on the angie

between the electric and magnetic fields. 1®98 American Institute of Physics.
[S1063-776(98)01006-3

1. The problem of the hydrogen atom in external fields is sir? 6
of fundamental importance in quantum mechanics and B=1+ 18 Yo+,
atomic physics and is often encountered in applicatfoRs.

Recently®~8 a semiclassical theory has been developedvhile for y—c,
for the ionization of atoms and ions in constant and uniform

electric # and magnetic.7 fields. The imaginary time L—tar? 0y 1+0(y ?), 0=<6<m/2,
method ! was used to calculate the ionization probability ) cosé

w(&,.7), as it yields a convincing description of the subbar- B(y.0)=

rier motion of the particles using the classical equations of > (1+y72+..0), 0= /2.
motion, but with an imaginary “time.’? (3a)

The ionization probability for the atomis level with ) _ ) o
binding energyEy| = x?/2 is given by ¢;=m=e=1, natural Thus, for the functiorg, which determines the princip&x-
units) ponential factor in the ionization probability, we obtain

- 2 9(7,0)=1+0(5%), y—0,
W(&,.7)=k?R(, ) exp[ 3 a(v, 9)] , 1)

1 3 1
g(y,6)=m—§tanz 0-y *+..., y—x (3b)

which is asymptotically exact in the limit of weak fields
(e,h<1). Here e=#1«%%, and h=7%Ik? 7, are the re-
duced electric and magnetic fieldsis the angle between the
fields, ©,=m?e®#%* and .77,=m?ce’/#3 are the atomic
units for the field strengthsn is the electron massg;=h/e,

N

(for 6<m/2; for 0==/2 the asymptote has a different form;
see Eq. (16) below). The function g(y,6) increases
monotonically’ along with y (Fig. 1), so raising the mag-
netic field (at fixed #) sharply reduces the ionization prob-
ability, stabilizing the atomic levét’
. @ Using Eqgs(1)—(3) and invoking the same considerations
as beforé>% one can obtain the asymptotic behavior of the
B=1oly, To=T0(7,0) is the positive root of the equation  higher orders of perturbation theory, which is the subject of
2—sir? 6(r coth 7—1)%= 72, 3) this paper. We note that higher-order perturbatipn theory has.
been studied for use in many quantum mechanical problems:
and, finally,R is a (rather complicatedfactor introduced in  the anharmonic oscillatéf;?? the Yukawa and funnel
Ref. 7:R=227¢"2"P Q7 in the notation given there. Equa- potentials’>~*°the Stark’~*3and Zeematf > effects in the
tion (3) can be easily obtained using the imaginary timehydrogen atom, the molecular hydrogen ion, etc., as well as
method, wherer, has a simple physical significanceg=  for 1/n-expansions?~1’ The problem examined below is of
—iw ty, Wherew, =|e|.7Z/mcis the Larmor frequency and interest in that the asymptotic regime undergoes a change at
to is the “time” (purely imaginary for subbarrier motion of a certain value ofy=vy.: the perturbation series switches
the electron. Note that fop—0, from a constant sign series to an alternating series, which is

3 1
9(%0)=§,8[1— sin 9—§ﬂ cos 6

1063-7761/98/86(6)/5/$15.00 1122 © 1998 American Institute of Physics
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g(%.6) 6 =90 . turbation expansion, omitting the factpt+(—1)¥]/2. In
particular, for the Stark effect in the hydrogen atom, we
have®

6 |<3)T 107 7363
|2

Ek%—;k 1_@—’—@—}_“" a=g, B=0
(69)
(in the ground stat&y,=—1/2, k=+/—2E,=1).
- Besides the Stark expansiof), let us consider the ex-
0 5 10 15 y pansion of the ground state energy in powers of the magnetic
field:

FIG. 1. The functiong(vy,#) (smooth curves next to which the anglds

indicated as a function of the parameter The dashed curves are the values “. ~ K
of |g¢(y,8)| for N=1 and 2, corresponding to the solution of E(B0)— E= kEO Ekak, Ex=17 "Ex. (8)
(12). =

In the case of the Zeeman effdgt—), the higher orders of
this expansion also increase factoriaify*®

explained by examining a new class of complex subbarrier _ ool 2 5/2 3\ /1\kK .
trajectories besides the usual subbarrier trajectory. Ex=(—1)%*2 (; Il k+3 (; [1+0O(k™)]
The asymptotic behavior of the higher orders of pertur- (6b)

bation theory is of interest from a general standpoint, but is )
also of practical importance for calculating the shifts of (K €ven, which corresponds formally to the asymptd
atomic levels and their widthE=%w(¥,7), using special With & purely imaginary parameter=a/y=* (i) *. At
procedures for summing diverging series, such as the Bordhe same time, fory>1, by virtue of Eqgs.(3b) and(7), we
or Pade-Borel summation techniqué®;3337:38 have
2. In calculating the energy levels of atoms in an electric 3
field #, the standard approach is to expand the energy in a a=23/2yg(y, 6)%2— cos 6—0,
perturbation series, Y
o which is inconsistent with the previous result. This suggests
E(%)= 2 E Z¥. (4) j[he e>.<istence of. other solutiomise: complex subb.arrifer tra-
k=0 jectories for which the parameter does not vanish in the

According to Dyson’s argumen,the instability of the state imit of a strong magnetic fie)d We shall show that this is
is related to the divergence of the perturbation theory series. Takingr=i7 andy=ivy, we rewrite Eq(3) in the form
We_ shall study the behavior of the highelr o_rders of pertur- T2+ sir? 9(1—7 cotT)2=72. (9)
bation theory in the presence of a magnetic field. To evaluate ~

the behavior of the perturbation coefficiefigask—o, we  There are two possibilities ag—oe: either 1g— *iy/cosd

use the dispersion relatigh?®? (here cotry—Fi) or 7o— =N for integer N#0(cotr
o w T —o). The first possibility corresponds to the real solution
1 [(E® 1 (=D _ |
K=o T d&=— 27 |, 7T d& (50  considered above. In the second case we obtain

(here we have taken advantage of the familiar analytic propro=Nm+ N sin 6-5 1+ % (N)3 sin @

erties of the functiorE(#), in particular its behavior on a

large circlé? |E(#)|«(# In )% as #—x for the ground

state of hydrogen X
The asymptotic behavior of the higher orders of pertur-

bation theory is determined by the level widFti#) in an (10

arbitrarily small field, so that it is possible to use the semi-

classical Eq(1). Equation(3) is even with respect ta and

has a pair of rootst 7y, for which the values of(y,0)

differ in sign. Given this, Eqs(1) and(5) imply that

1+(—1)k
Ek%(T) klakk?

+...

2 - 1 -
1-3 sir? 0) > 3+sin 0( 1-3 sir? 0) y 4

=1,2,..), with 7%, —7, and—7% also solutions of Eq.
(9). Introducing the function

2y
G(’Y! 0): g 90(71 9)

C1
Co+ ?+... , k—oo, (6) 773
=2 =2
a=3[2x%(7,0)] * Y 3wy
(in the case of the ground state, the odd orders of the pertur- (12)

bation expansion for the ener@(#) vanish identically. In  and substituting Eq(10) into it, some simple but cumber-
the following we examine only the even orders of the per-some calculations yield

1 . - - 1
1+ = sir? 6| 1+ 3 cot To(COt ro—~—>”
2 To
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ImT, The condition|g.(y,0)|=g(y,0)=1 determines the “criti-
cal” value of y (Ref. 6):
ye=m[(1+v2)P— (1+v2) Y3~ 1=5.270495...,
N=1 (15

(see Appendix For y<w,, i.e., in sufficiently strong elec-
tric fields, the dominant contribution to the asymptdicis
from the subbarrier trajectory with rea}, corresponding to

0 02 04 06 08 'Rero the functiong(y,0), and the perturbation series has a fixed
_ _ sign. If, however, y>y., then a,=15g] '>a
FIG. 2. Solutions of Eq(9) in the complex plane fo#=30°, 60°, and 90 _ 1_5|g|71, so the signs of the higher orders of perturbation

N=1). The values of the parameter0,2,4,... are indicated on the curves. .
( ) P #r theory should alternate according to E43). Thus, aty

= v, the structure of the perturbation series changes.
We have verified this by direct calculation of the pertur-
bation series coefficients, up to k=80 (see Table)l (For
G(y,0)= N[ 1-2sing-y* k=10 our calculations agree with an earlier pdpand for
v=0, with Refs. 28—3B Some of these results are shown in
Nr)? ~ Fig. 3. It has been shown that betwegr5 and 5.5, the
3 cos 0) Y order of the signd of the coefficientsE, does indeed
change. In addition, fofy<< vy, the coefficientE,(y) are all
of the same order of magnitudsinceg(y,f8)=1 and the
asymptotic parametex= 3/2 is independent of), while for
v> v, they begin an additionalnd very rapidl growth in
1 - . . S
+(N)2 sir? 0(_ Sir? 0_1) 74 ac_corda_nce_wnh the reduction {g.(y)|, which is clearly
3 evident in Fig. 3(see also Eq(A4)).
1 2 In the case considered hef@=0), the critical value of
= sir? 0+(N7-r)2(— sin* 6 the parametety=h/e can be found analytically. It is inter-
3 15 esting to study the structure of the perturbation series in the
more general case as well, especially for mutually perpen-
: (12)  dicular fields. The value of, that determines the restructur-
ing of the perturbation series can be found from the condi-
These expansions are valid fgr-o. On the other hand, the tion g=|g.|, wheré&
value of 7, at y=0 can be determined from the equation -3
cotro—1/mo=*i/sin6. A numerical analysis of Eq(9) g( Y, E) =3 Y(1+2y 24y %+.), y—», (16
shows that ag increases, the poirvt0=i~ro(y, 0) describes
the curves shown in Fig. 2 in the complex plane. T o, 27, 2i w?
We shall mainly be interested in the case-1, where G( Y E) =l=y ey - Y
the functionG(y,#) has its minimum absolute value. The )
values oflg.|=|(37/2y)G(,6)| for N=1 and 2 are shown 1+ 31) y4
in Fig. 1 as the dotted curves. For sufficiently largevhen 20
lgc|<g, the asymptotic parametercan be found from Eq.
(7) by replacingg with g.. Because of the existence of a pair
of complex conjugate solutions and~73 , the asymptotes of
the higher-order perturbation theory now have the form

+| sir? 0—(

2
+(N)? sin 0(§ sir? 0—1) Ty

—(N)? sin 0

Y S+

1 1
_§S|n2 0+Z

2

+..., (17)

+’7T
6

_377
_2_7,

whence
2

aa
el Vs E
8
1+2y2—(%—1) y 4t O(ye)}
so that the perturbation series is alternating for sufficiently (179

largek.
g and y.~3.54. This simple estimate is in good agreement

In the limit #—0 (parallel # and .7 fields), the expan- i i i . . .
sion (12) terminates at the third term, so a solution can bewnh the numerical calculationsee the point of intersection

obtained in analytic form: of the smooth and dashetl&1) curves for=90° in Fig.

Ev~(—1)X2 Re(CAYKIKE, A=i3=3/29.(7,0)|,
(13 X

1).
G(v 0 =Nl1 (Nm)? Similarly, we can calculate, for arbitrary angles. It
(0= e would be interesting to confirm the existence of a switch in

the asymptotic regime ag= y.(6) by direct calculation of
the higher perturbation orders, as has been done above for
the case of parallel fields.

2
(N) } (14)

0 =i 3N 1
gC(71 )_I 27 + 3,y2
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TABLE |. Higher orders of perturbation theoihydrogen atom in parallel fielgls

—E(v)
k v=0 y=2 y=5 y=5.5 vy=10

0 0.500 0.500 0.500 0.500 0.5000

2 2.250 1.2500 —4.000 —5.3125 —22.750

4 55.547 40.089 1.039) 1.5782) 2.31993)

6 4.9083) 3.3513) —6.4483) —1.4374) —9.3585)

8 7.9425) 5.201%5) 1.1956) 2.9306) 6.9718)
10 1.94%8) 1.2328) —2.2328) —8.0218) -7.8111))
20 1.12122) 6.57421) 1.03322 1.01523 8.11428)
30 7.89837) 4.52937) 3.48537) —1.40539) —9.21%47)
40 1.47855) 8.38954) 5.67454) 5.01556) 2.64268)
50 3.27973) 1.85073) -3.50272) —2.05475) —8.72689)
60 5.28292) 2.96892) 9.22191) 6.02697) 2.054112
66 3.973109 2.228104) —6.181101) —6.445106) —1.217126
68 4.084108 2.289108 5.568107) 7.45Q110 5.355130
70 4.449112 2.493112 5.862110 —9.1151149 —2.497113H
72 5.13Q116) 2.873116) 6.295115 1.181119 1.233140
74 6.250120 3.499120 1.558119 —-1.614123 —6.420144
76 8.033124) 4.496124) 8.981(123 2.329127) 3.528149
78 1.088129 6.085128 3.728127) —3.563113) —2.042154)
80 1.550133 8.661132 1.598132 5.654135 1.243159

Note. The table lists the coefficients in the perturbation theory sédg$or the ground state of the hydrogen atom taken with the opposite kignthe
perturbation theory ordeg(b)=a- 10.

3. Therefore, aty= v, there is a change in the character (the Dyson phenomendt?9. In our problem,7? plays the
of the asymptotic behavior of the higher orders of perturbarole of g. Going to purely imaginary values of the magnetic
tion theory® Upon going from one asymptotic regime to the field (7#=i.7), we obtain a potential proportional to
other, the perturbation series switcagienk=kg) from an —(1/8)}/2 2 decreases without bound gs=\x2+y2
alternating series to one with a constant sign, which shows

: . ) S 2>, |t is evident that in such a potential, tunneling is pos-
up in the position of the singularities in the Borel transfor- sible both along the electric fielthe z axis) and perpendicu-
mants that are closest to zero, and therefore in the choice

an efficient method for taking the suFh%%" ¥r to it. The complex solution§10)—(12) probably corre-

) spond to an analytic continuation of “perpendicular”

The complex solutions of E¢3) found above corre- o hparrier trajectories of this sort from a region of purely
spond to complex subbarrier trajectories which, therefore’rmaginary magnetic fields into a region of rea.
can be important in determining the asymptotic behavior of
the higher orders of perturbation theory. Their physical sig- The authors thank V. M. Miaberg and V. D. Mur for
nificance can be clarified using the example of parafle@nd  discussing this paper and for useful comments. This work
7 fields. It is known that the asymptotic behavior of the was partially supported by the Russian Fund for Fundamen-
higher orders of perturbation theory is directly related to thetal Researct{Grant Nos. 95-02-05417 and 98-02-17D07
tunneling probability for a particle in a potential with the
“wrong” sign on the coupling constant, e.qg— —g in the

case of an anharmonic oscillator,

APPENDIX
1, xt _ o
V(X)= =z X°+q — The perturbation theory coefficien) for the energy of
2 4 2.
the ground state of the hydrogen atom are polynomiajg’in
logIE] E(£,.70)=2 cje?h?= 3, Ealy)e™, (A1)
1] =
1401 X
k=80 Ex(y)= ]_ZO kv, (A2)
1200 ,_19 i . :
= ; where X is the order of perturbation theoryy=h/e
i =a. 71, anda=e?/Ac is the fine structure constant. Sev-
100r k=60 ! eral of the lowest orders of perturbation theory are known
. s . . exactly, i.e., in the form of rational fractions, as
0 4 ¥ 8 Y
FIG. 3. Higher orders of perturbation thediyg. (4)) for the ground state of E.=— E E,=— E (9— ),2)
the hydrogen atom in parallel fields. 0 2’ 2 4 '



1126 JETP 86 (6), June 1998

1 ,. 53 ,
E4=— 55| 3555-318y*+ 2 ',

Ee= 2 512 779- 254 955/

6),

13012 777 803 12368 405
7 e 9 0%

-5

49195 , 5581
+ _—
3 9

E8: _212'<

(A3)

21577397
T 7540 )

and were used to monitor the numerical calculations. The

outer coefficientx,, andcg, in Eq. (A2) correspond to the

Stark’3! and Zeemaif effects, while the cross terms

(1<j=<k—1) were taken from Johnsaet al*° and Lambin
etal* Herec,_; ;=273 1), where thee) are coeffi-
cients tabulatedfor the case of parallel fielgisoy Johnson
et al*®
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We show that in dark magneto-optical lattices, effects associated with the Bose statistics of
atoms can be observed even at laser cooling temperatures'£10 °® K), which exceed
evaporative cooling temperatures in magnetic traps by several orders of magnitude.
Quasicondensation occurs, i.e., the wave function is formed over the distances on which atoms
are localized near the bottom of a separate potential well. In addition, switching off the

magnetic field adiabatically reduces the temperature significantly, as a result of which Bose
condensation in the entire volume of the gas can be observed. We propose a configuration of the
light and magnetic fields in which the shape of the three-dimensional magneto-optical

potential is independent of the phases of the emerging light wavesl998 American Institute

of Physics[S1063-776098)01106-9

1. INTRODUCTION densate, where the phase of the wave function is fixed over
distances of localization in a single wek&(\) and varies at

In 1995, the efforts of many years to achieve Bose—random from well to well. Such quasicondensation manifests
Einstein condensation in atomic gases were crowned witftself in sudden changes in the spatial distribution, heat ca-
success:> The new state of matter was created by trappingpacity, etc. The jumps and fairly smooth, as in the transition
laser-cooled spin-polarized atoms in magnetic traps followegt the critical point in a system of several particles in a single
by evaporative cooling to temperaturgsf order 10 K. potential well® Since the curvature of the magneto-optical

In the present paper we examine the possibility of usingyotential near the minimum points is much larger than the
dark magneto-optical lattices to observe effects associateghirvature of the potential in the magnetic traps, the degen-
with the quantum statistics of the particles. Such latticeseracy of the atomic gas is substantial at temperatufes (
form because of the resonant interaction of atoms with tran~-104-10 © K) that are much higher than those for mag-
sitionsFy=F—F.=F (F is an integeror Fy=F—F.=F netic traps:—3
—1 (Fg andF, are the angular momenta of the ground and  On the basis of a thermodynamic analysis we also show
excited statgsand an inhomogeneously polarized field underthat whenn\®>1, the temperature drops significantlyy
conditions of coherent trapping of populations in a staticseveral orders of magnitugeinder adiabatic switch-off of
magnetic field’ The cold atoms, which are in the dark state the magnetic field. The possible result is Bose—Einstein con-
of coherent trapping of populations, are localized near thelensation in the entire volume of the gas. In contrast to or-
points where this state is not destroyed by the magnetic fieldinary Bose condensation of free particles, a macroscopic
and hence the optical interaction is close to zero. Localizawave function|¥¢) is formed. This wave function is a
tion and cooling in such lattices for the one- and two-spatially inhomogeneous coherent superposition of the
dimensional cases were studied in Refs. 5-7. ground-state Zeeman wave functions and is annihilated by

We suggest a field configuration for stable three-dimenthe operator of the interaction with the laser field:
sional trapping of atoms with the-21 transition in a dark (. E|W\c)=0. From the practical viewpoint this method of
magneto-optical lattice. When the laser field is strong, theydiabatic switch-off of the magnetic field can be considered a
percentage modulation of the magneto-optical potential isiew, highly effective method of ultradeep cooling of atomic

determined by the Zeeman splitting of the ground ste®,  gases that uses dark magneto-optical lattices.
and the period, by the wavelengthof the light, as in the

case of a one-dimensional lattice considered by Konopleva
et al’ In the limit Q> o, (heretw,=#%k?/2M is the one-
photon recoil energy tunneling between the wells can be
ignored, and the distance between the low-lying vibrational  \We examine a gas consisting of Bose atoms resonantly
levels in a potential well is of ordefi VQ w,. Then at tem- interacting with a spatially inhomogeneous monochromatic
peratureskg T<#Qw, the quantum statistical effects be- laser field
come significant at concentrationa ®=1, when on the av- _ et

. . E(r,t)=E(r)e”'“'+c.c.
erage there is more than one atom to a well. For instance,
Bose atoms, irrespective of their number, are practically albn theF =1—F.=1 transition in the presence of a constant
in the ground state. This leads to formation of a quasiconmagnetic fieldB. As is known® for all F—F transitions(F

2. STATEMENT OF THE PROBLEM

1063-7761/98/86(6)/5/$15.00 1127 © 1998 American Institute of Physics
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is an integer there are states of coherent trapping of popu-3. THE EFFECTIVE HAMILTONIAN FOR ATOMS IN A DARK
lations, states that nullify the interaction with the field: STATE

~ _ Using the explicit form(1) for the state of coherent trap-
d-E(r)|nc(r))=0, . . ; . oot
ping of populations, we write the one-particle Hamiltonian

whered is the is the atomic dipole moment operator. In our(3) @ @ sum of four terms:

case £=1) this state has the forth ) b2

A =55 +UN+ 5 {A(m p+p- AN} +W(r).
. M

B[ ¢ 2, E'(DIGn=0), (1) “

The first term on the right-hand side of E@) is the kinetic
where E9(r) are the components of the fieE(r) in the  €nergy operator. The second is the magneto-optical potential
cyclic base{ey=¢,,e.,=+(g*+ig)/v2}. The statg1) is a iB-(E(r)XE*(r))
superposition of the ground-state Zeeman wave functions U(r)=#Q BIE2 ,
|g, ) with inhomogeneous coefficients and generally is an
eigenstate of neither the operator of interaction with the magand below we assume th@t>0. The last two corrections in
netic field, Ag=— (- B), nor the kinetic-energy operator (4) r(_aflect the spatial inhomogeneity of the dark state. The
A =p2/2M. However, the corrections introduced by trans- first is of orderkv and can be interpreted as an interaction
lational motion and the magnetic field can be considered'ith the effective vector potential

|(//nc(r >

®)

small perturbations in relation to the interaction with the la- E* J E
ser field provided that Aj(r)= lﬁ<|E| o |E|>' (6)
V(r)\G>ku,Q, (2)  The second is of order the one-photon recoil endrgy and
contributes to the potential energy of an atom:
where V(r)=|(d)E(r)|/% is the local Rabi frequencyG 52 g E|2
=V2(r)/[ y?/14+ 82+ V?(r)] is the saturation parameter with W(r) =50 2 = TEl (7)
allowance for field broadening of the levdlshere § is the !
detuning of the frequency of the light field from resonance,If the Zeeman splitting satisfies
andy is the radiative relaxation rate of the excited stadad —
o is the average velocity of the atoms. In this case the ma- 2> KV»@r 8)
jority of atoms are in a dark state,.(r)), since when the the last two terms irf4) can be ignored. In this case
condition (2) is met the relative populations of atoms in the ~y
state of coherent population,,., and in the excited state, H<1>~p—+U(r)
. eff ,
Ne, satisfy 2M
— 2 and the problem reduces to that of the motion of a structure-
(1= Ny ~Ng~ ma>{kv,Q}) 1 less particle in the magneto-optical potenii), for which
V(r)\/E the depth is determined by the magnetic field and the spatial

periodicity by the wavelength of the light.
To the same accuracy, the evolution of an individual atom
can be described by the effective one-particle Hamiltonian

i 4. FIELD CONFIGURATION FOR THREE-DIMENSIONAL
HSH = (e[ (A +Hg) [¢nc(1)). (3 TRAPPING OF ATOMS

Following the standard rules of many-particle quantum  Obviously, the potential5) can be used to create a
theory, we describe an ensemble of atoms by the followinghree-dimensional lattice of atoms if the laser fi&l¢r,t) is
Hamiltonian in the second-quantization representation: a finite set of plane waves. However, a certain problem arises
in this case: the shape of the potentil generally depends
on the phases of the emerging plane waves, and usually these
phases cannot be controlled. Changes in the phases of fields
can lead, among other things, to a violation of the condition
whereb'(r) andb(r) are the creation and annihilation op- of stable three-dimensional atom trapping, i.e., the minima of
erators for atoms in the staid) of coherent trapping of the potential form continuous lines or flat surfaces. Hence of
populations at the point. special interest from the standpoint of the experimenter are
Note that if condition(2) is met, due to the effect of such configurations of the light fields for which the shape of
coherent trapping of populations the strongest dipole—dipoléhe potential is independent of the choice of phases, so that it
interaction of atoms is strongly suppressedn(\®>1), so leads only to a shift in the spatial pattern as a whole.
that we can ignore it. We also ignore interatomic collisions,  In this paper we propose such a configuration, which is
i.e., we use the ideal-gas approximation. formed by five linearly polarized laser bearttsg. 1):

H=f6Wmﬂgumum%,
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k FIG. 2. Light-induced transitiongdenoted by arrowsat the localization
X 2 points. The dark statél) coincides with the Zeeman sublevel, = —1)
L s .
e E (denoted by an asterigk

FIG. 1. Configuration of the optical and magnetic fields in which the shape 3 ) ] o )
of the magneto-optical potentidb) is independent of the phases of the =A°/3V3. It is well-known that in a periodic potential the

emerging light waves and the choice of the origin of coordinates reduces thenergy spectrum has a band structure. However, in view of

potential to(9). (8), for the lower bands we can ignore the tunneling of par-
ticles from one well to another. Here the widths of the
lower bands are exponentially small in the parameter

E(r)=eE; expliky-r)+6,E; expliky-r) exp(—vVQ/w,), and positions of these bands can be found
] ) ) from a harmonic expansion of the potent(@l) near the bot-
+eEx{expliks 1) +expiky 1) +expliks-r)}. tom of an isolated well:
The two oppositely directed beams propagating alongzthe 9|E,|2
axis (ko= —k,=|k|e,) have the same amplitudg, and mu- Un~=-wQ|1-— k2(x2+y?)—2k2Z?|.

2
tually orthogonal linear polarizatiorighe linLlin configura- 8E,|
tion). The other three beams have equal amplitu8gsand  We see that the distance between the two lowest energy

are linearly polarized along,; their wave vectorks;, k, bands for commensurable values of the amplitUég$ and
andks lie in the xy plane and form an angle of 120° with |E,| is of orderfi\Quw, (Fig. 3. Putting|E,|=4|E,|/3, we
each other. arrive at the case of a three-dimensional isotropic harmonic

It can be shown that for any phases of the emergingscillator with a frequency) —= v8Qw,. For the sake of
waves the magneto-optical potent{&) can be reduced, via definiteness, below we examine this case.
an appropriate selection of the origin of coordinates, to the

form 5. QUASICONDENSATION
—2hQ coq2kz) At temperature&g T<# () the atoms are in finite motion
U(r)= E,l2[ . 3ky 3ky V3kx\ 2] in the magneto—(_)pFicaI potentiéd). As i§ known, the effects
2+ = sm27+ cosT+2 cosT of quantum statistics become appreciable when the de Bro-
1

9) glie wavelength becomes equal to the average interatomic
o ) ) _ distance. In our case this corresponds to the condkign

The minima of this potential are located in the plares —7 0 _(nu)Y3 wherenu is the average number of atoms
=_m)\/2_ (m=0,_i 1,...),_ Wlth each formmg a _two_- per unit cell u>1).

dimensional lattice consisting of regular triangles with sides |t e allow for the finite value of the width &, of the

equal to A/3. At these points the polarization of the field |5yer energy band, we can isolate two regions. First,
E(r) is left-hand circular, and the statg) of coherent trap-

ping of populations coincides with the Zeeman sublevel
|g,u=—1) and is not destroyed by the magnetic fied
(Fig. 2. As shown in Ref. 7, the localization of atoms near
these points leads to additional stability of the states of co-
herent trapping of populations opposed to the destructive ef-
fect of magnetic field. As a result, for localized atoms we

have a stronger estimate:
a \? /wr<1
VG Q-

which because of the factafw, /Q <1 differs substantially
from the general estimate of Sec. 1.

We_ can e_asily ShO_W t.hat th_e pOI_em(g) C‘?rreSpondS 10 FiG. 3. A rough diagram of the low-lying vibrational levels in the magneto-
three-dimensional periodic lattice with a unit-cell volume optical potential(9).

(1=npg)~Ne~
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Ago<kgT<HQyenu)*3, (100  Si(T,) (this follows from the fact that entropy is a monotonic

. . function of temperatupe According to(11), this yields the
where practically all Bose atoms are in the lower energyfollowing inequality:

band with an equiprobable distribution over the quasimo-
menta. This corresponds to quasicondensation, where the In(1+nu)
wave function of the atoms is formed over distances of lo-

calization (<)) in a single well. When we go from one well o o ) ] .
to another, the phase of this function changes at random, i_él_\{hlch is valid ifnu>1.17. Thus, adiabatic switch-off of the

there is global condensation in the entire volume of the latMmagnetic field sharply reduces the temperature, a process
tice. In the interval(10), the volume densits of the sys- that outwardly resembles magnetic cooling. However, the
tem’s entropy is weakly temperature-dependent and in thBhysics of the process implies that we are dealing with cool-
zeroth-order in fey/kgT)<1 has the value ing due to gas expansion. I_ndeed, in our case the magne_tlc
In(14n0) field creates a magneto-optical potential and a strong spatial

+In <1.28, (12

1
1+ —
nu

localization of the atoms in regions whose dimensions are
much smaller tham.. When the magnetic field is switched
off, the atoms become delocalized, which corresponds to ef-
fective expansion of the gas.
. Inc Note that to achieve a more rigorous estimate of the state
5= lim vV of the system in the absence of a magnetic field we must take
into account the last two corrections ), which are due to
wherec is the number of different arrangementsrof dif- the periodic inhomogeneity of the stat® of coherent trap-
ferent objects(atomg in V/u cells (quasimomenta of the ping of populations over distances of the order of the light
lower band when each cell can contain any number of ob-wavelength\. However, fornu>1 these corrections do not
jects (Bose statistics i.e., change the thermodynamic quantities much in comparison to
(NV+V/u—1)! a gas of fr'ee p.art.icles. For instancg, from general physical
c= AT (V=11 con§|derat|ons is it clear that even if we allow for the cor-
’ ’ rections(6) and (7), the expression for the entropy at the
Using the well-known Stirling’s asymptotic formula fer critical value T; is S(T.)=Dn, where the coefficienD
asa—x (al~a% ?/2wa), we arrive at(11). Formula reaches a saturation plateau as the paranmateincreases
(11) can also be obtained from the grand canonical distribuand is of order unity, as in the case of a gas of free particles.
tion. Here the factor fu) ! In(1+nu)+In(1+(nu)~Y) in (11
Second, if we hav&kgT<Agq, order in the quasimo- fairly rapidly decreases asu grows(actually, it decreases as
menta of the lower band sets in. Here, as expected, the sygau) "!). Thus, we see that we can always select a vélue
tem’s entropy tends to zero. However, if the conditi¢8s  such that fornu>f this factor, @u)~! In(1+nu)+In(1
are metAe, is exponentially smallas noted earligrso that ~ +(nu) %), is smaller tharD, i.e., when the temperature drops
the temperature randgT<<Ag, is of no practical interest.  below T, as the magnetic field is switched off adiabatically
and Bose condensation is possible even if one allows for the
spatial inhomogeneity of the stat&) of the coherent trap-
6. BOSE CONDENSATION WHEN THE MAGNETIC FIELD IS ping of populations.
SWITCHED OFF ADIABATICALLY At the same time, in determining the ground-state wave
function of the system one must carefully take into account
As the magnetic field gets weaker, the wave-functionthe terms(6) and(7) in (4). Most likely, the ground state of
localization distances in each well increase, the tunneling ofhe system in our case is the well-known macroscopic dark
atoms from well to well becomes more intense, and the wavetate!®
functions overlap. This may leatht least in principlg to
correlation in phase; of the gtomlc wave functions and to W ye)=RIEM)|[#hne(r)) =R E9(r)|g, u=0),
Bose condensation in the entire volume of the gas. q=0+1
Let us do a thermodynamic estimate of the possibility of . . . .
such an effect when theymagnetic field is switcEed off a}(/jiayv hich is not destroyed by translational motion:
batically. The thermodynamic condition that a process be ;2
adiabatic is the constancy of the entrof®g const. For the NI‘I’NCFﬁer‘I’Nc),
initial conditions we take the temperature rar(@®). Then
the value ofSis given by(11). To estimate the values of the whereR is the normalization constant. Indeed, the amplitude
thermodynamic parameters in a zero magnetic field, we usgE(r)| is an eigenfunction of the Hamiltonig#) atB=0, is
the approximation of an ideal gas of free structureless parreal, and has no nodes in the configuration depicted in Fig. 1.
ticles. For instance, the entropy of an ideal Bose &nsat For an example we take the transitior-1l involving
the critical pointT, is §(T.)~1.2& (see Ref. 11 Then, if  the D;-line of 8Rb (\=7947.6<10 8 cm). If we take
we want to reduce the temperature below the critical tema magnetic fieldB~4 G (0=~ 1vy/2), we readily see that
perature by switching off the magnetic field adiabatically sofor temperaturesT<10 ° K and concentrationsn=1.2
that Bose condensation will occu8, must be smaller than x 10" cm™2 the quasicondensation conditigh0) and the

S~n , (11

1
+In|l 1+ —
nu

which can be obtained from combinatorial analysis:

V—oo
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We present a theoretical study of the ultrashort nonlinear dynamics of bosonic quasiparticles in
condensed media participating in two-photon quantum transitions. In the resonance
approximation we obtain exact solutions in the form of elliptic functions. We show that allowing

for antiresonant terms in the Hamiltonian of the interaction of the electromagnetic field and

the quasiparticles leads to an entirely new phenomenon: the development of ultrashort chaos. The
dynamical stochasticity of the quasiparticles is due to the disintegration of constants of

motion of the system. Finally, we predict the effect of nonlinear tunneling from one potential

well to another. ©1998 American Institute of Physids$$1063-776(98)01206-2

1. INTRODUCTION equations? It is shown that in contrast to Lorenz chaos,
where the stochastic oscillations and the formation of a
Lately there has been an upsurge of interest in the studytrange attractor are related to jumps between the corre-
of nonlinear dynamics, especially of dynamical chaos insponding equilibrium states, in the given case stochasticity is
physical, chemical, biological, and other systems. related to the formation of a strange attractor in four-

~ The discovery of dynamical chaos in nonlinear deter-gimensional phase space, which is filled by unstable phase
ministic systems has been one of the most important angajectories in a complicated manner.

striking scientific achievements in recent tinteNumerous As for the dynamical chaos in Hamiltonian systems of

papers devoted to deterministic chaos have been publishegynerent quasiparticles in semiconductors and insulators, the
The theory of the stochastic behavior of dissipative andyy,qy of these phenomena has only begun. The possibility in
Hamiltonian dynamical systems has been studied in MONGsinciple of ultrashort dynamical chaos emerging in a system

graphs, textbooks, and reviews. of excitons and biexcitons near thé luminescence band of

h of speugl "mt.erest C;S thed stu%y 9f optical .dyna.n;:cal the crystal and in two-photon creation of biexcitons from the
chaos, especially in condensed media in connection wit Pr&round state of the crystal has been proved in Ref. 16—18.

dictions of new physical phenomena in such media and the here it was shown that at certain critical values of the pa-

use in new optoelectronic devices. Another potential field of L - -
. - . .~ rameters, stochastic instability sets in in the system due to
research is the application of these phenomena in optica . :
estruction of constants of motion.

processing of information and in designing a new generation : . . .
The present paper investigates a new cooperative nonlin-

of optical computers. ear phenomenon: ultrashort dynamical chaos in a system of
Because of the large nonlinearity values in semiconduc- b . redy . y
oherent bosons in the optical transitions between the levels.

tors at the long-wavelength fundamental absorption edge (c))g ¢ | wudv th i d S
the crystal, aspects of optical self-organization are underg 2y way of an examplé, we study the nonfinear dynamics in

ing intensive study, including dynamical chaos in a SysterTwao-photon transitions between exciton or exciton—biexciton

of coherent(in the Bogolyubov senseexcitons and biexci- levels in the course of time intervals shorter than the charac-
tons. teristic relaxation times.

A theory of dissipative dynamical chaos in a system of ~ Because these transitions are characterize_d by .gigantic
excitons and biexcitons participating in various quantumc?sc"'atof strengths, the ef_fect; of coherent nonlinear |nt-erac-
transitions was developed in Refs. 6—12. There it was derfion of light and matter in this frequency range manifest
onstrated(among other thingsthat in the region of thev ~ themselves most vividly.
luminescence band of a semiconductor, the dynamical evo- Wang and Hakefi and Moskalenket al**** have de-
lution of the quasiparticles is described by a system of Loeloped theories of a two-photon laser, respectively, for the
renz equations in four-dimensional phase space. It has be#nodel of two-level atoms and in two-photon optical conver-
proved that the transition to the chaotic mode is achieve@ion of biexcitons into excitons.
through period-doubling bifurcations accompanied by the — Moskalenkoet al**?* used the methods of the quantum
formation of strange attractors in the four-dimensional phaséheory of fluctuations and decay to obtain a master equation
space. The dynamical evolution of coherent excitons andor the density matrix of excitons, photons, and biexcitons in
photons was studied in Refs. 13 and 14 with allowance fosolids. Using Glauber'sP-representation, they derived a
exciton—exciton interaction. In this case the quasiparticle dyFokker—Plank equation for the system of coherent quasipar-
namics is described by a generalized system of Keldysticles. They found the condition needed for two-photon laser

1063-7761/98/86(6)/9/$15.00 1132 © 1998 American Institute of Physics
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] 2 X(Cl+c—k)(cl+c—k)b2k+p
—ig(aptal )(ctclyeerel oble,. (@)

ph Herea; (ap) and b;', (bp) are the creatioftannihilatior) op-
! erators for quasiparticles with a wave vectoon the first
and second levels with generation energdies, and i wy,,
o, respectively;c] (cy) is the creation(annihilation operator
for a photon with a wave vectdrand energyi wy,; andq is
0 the constant of two-photon conversion between the levels.
FIG. 1. Energy level diagram of the two-photon conversion of bosons from':rom now on we set =1 and go over to amplitude—phase

one excited state to another: 0 is the ground state of the crystal, 1 is th¥ariables:
energy level of the first bosonic level, 2 is the energy level of the second . . + . .
bosonic level,w,, is the light frequencymw, is the frequency of the first ap= \/ﬁ expl—i@atipXx), a,= \/ﬁ explip,—ipx),

bosonic transition, and,, is the frequency of the second bosonic transition. . ] ] )
c=f exp(—igetikx), cf=f expige—ikx),

generation of biexcitons in biexciton—exciton conversion. Fi-  Dak+p= UN exp(—igp+i(2k+p)x),

nally, they showed that the transition from the disordered . .

phaie to ¥he ordered one is equivalent to a first-order phase bgkﬂ’: VN expligp =i (2k+p)x), @

transition. wheren, ¢,, N, and ¢, are, respectively, the number and
The general drawback of Refs. 19-21 is that they studyhase of the quasiparticles on the first and second levels, and

only steady states of the particles and quasiparticles in twot and ¢, are, respectively, the number and phase of the pho-

photon quantum transitions. More interesting, however, igons.

the study of nonlinear dynamics in the corresponding quan-  |n terms of the new variables the system Hamiltonian is

tum transitions with and without allowance for dissipation

processes. H=Ho+H,+H,,

Hoz wan+ wa+ wphf,
2. HAMILTONIAN OF THE PROBLEM; DERIVATION OF THE .
DYNAMICAL EQUATIONS H,=2gynNf sin(ep— ¢0a—2¢.),

Let us stL_ldy the nonlinear uItrashort dynamics of coher-  H_,=2q/nN[Sin(¢p— ¢+ 2¢e) +SiN( @, — ¢,)
ent quasiparticles in condensed media in the case two-photon ) )
exciton—biexciton or exciton—exciton transitions. +8iN(@p+ @a—2¢e) +SIN(@p+ @at 2¢e)
The model we will be_ using is _dep|cted in Fig. 1. The +sin(ep+ ¢a)], 3
ground state of the quasiparticles is an exciton or the first _ _ o
exciton level, and the excited state is a biexciton or the sec¥hereHy is the free-particle Hamiltonian, ard, andH,,
ond exciton level. are the resonant and nonresongrttiresonantterms in the
As is known, the characteristic relaxation times of exci-Hamiltonian responsible for particle interaction. Here and in
tons and biexcitons in semiconductors and insulators are ¢fhat follows we discard the subscripts on the wave vectors.
order 10 11-10"1° 5. However, by means of a newly devel- If we allow for (3), we can easily derive a system of
oped method of generating and forming light pulses with anonlingar differential equation.s d(_ascribing the dynamical
length down to 10%° s, we can experimentally study coher- evolution of the coherent quasiparticles:
ent phenomena for times shorter than the relaxation time. 13n oH
particular, to observe ultrashort phenomena in a system Gf—t= - (9—=2q VNNTfcoS op— 0a— 2¢¢) + COS @p— ¢4
excitons and biexcitons under two-photon excitation, pulseéjI Pa

in the pi_cosecond and _subpicosecqnd ranges are needed. +2¢¢) +2 COS 0 — @a) — COL @p+ @~ 2¢¢)

Up till now the nonlinear dynamics of coherent excitons
and biexcitons has been studied in the resonance approxima- — COS @b+ ¢at2¢¢) =2 COSp+t @a) ], 4
tion. Below we show that allowing for nonreson&antireso- 9H
nany terms in the interaction Hamiltonian dramatically TR 20VnNf[cog ¢p— @a—2¢) +COL ¢y
changes the nonlinear dynamics of the quasiparticles and urf @b
der certain conditions results in a new cooperative phenom-  — ;4 20.)+2 cog ¢, — ¢,) + C0S ¢p+ Pa—2¢e)
enon, ultrashort two-photon dynamical chaos in exciton—
biexciton or exciton—exciton transitions. +COSL @t Pat2¢e) +2 COS @+ @a) ], )

We begin our study of two-photon nonlinear dynamics

. . o 2 df oH
by introducing the Hamiltonian of coherent quasiparticles— = — —:4q‘/an[Cogng— ©a—2¢e) — COY Pp— @
uniformly distributed over the crystal: dt IPe

H ; : P +2¢e) T COYL @+ 9= 2¢e) —COL pp+ @at20¢) ],
= 03858+ 0o P pt wpCiCrTig(apgta-y)

f (6)
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de, oH N whereB = sin ¢+ &(Sin e, +2 Sing,+Sin gz +2 Sing,+Sings),
oo watgf n [SIN(@p— @a—2¢e) +SIN(@p— ¢4 7=tck, A=100/wpp, A=(wp—wa—2wp)/wpy, and the
parametek was introduced formally and takes a value of 0
+2¢e) +SIN(@p— @a) +SIN(@p+ @a— 2¢e) +SIN( @ or 1. Fore=1, EQs.(10—(18) are equivalent to Eqg4)—
. (9). The resonance approximation amounts to ignoring the
+ @at+ 2¢e) +SiN(@p+ @,) ], D terms containingp; , i =1-5, which is equivalent te =0.
dQDb oH n . .
o INC wp+qf N [SiN(@p— @a—2¢e) +SiN(@p— @, 3. RESONANCE APPROXIMATION £=0
_ ) ) In the resonance approximation the system has three
+2¢¢) +SiN(@p— ¢a) TSIN(@p+ pa—2¢e) +SIN(@p  constants of motion for the numbers of particles:
T @at 2¢e) +siN(@pt @a) ], (8 2N+f=C, n+N=C;, 2n—f=C,. (19
de. oH ] _ Bearing this in mind and using Eq6L0)—(18), we can
di ot~ @ent 20VNN[Sin(op—¢a—2¢e) +SiN(@p—¢a  easily obtain a reduced system of equations that describes the
dynamical evolution of the coherent quasiparticles in the
+2¢¢) +siN(@p— @a) +SiN(@p+ @a—2¢e) +SiN( @y resonance approximation:
T @at 2¢e) +siN(@pt+@a)]. 9 dy P —N
a e b a l/f At — (C— ZN)
To separate the resonance phase, we introduce the following dr N 10
notation: N
—— (C—2N)—2yN(C;—N) |sin ¢,
Y=0b= Pa=20c, ®1=Pp— Pat2e, CN ) (Ca=N)jsiny
P2= @b~ Pas  P3=PpT Pat20e, (20
— ot ot oD dN P N
Pa=PpT Par, P5=PpT Pa Pe - E:—a—l//:—g(C—ZN)\/N(Cl—N) Cos ¢, (21
Then the system of equatio4)—(9) becomes
H-0,Ci—w,C
dn A\ =——+—————=AN
4.5 vynNf[cos ¢+ e(cos¢p,+2 cose, Wph
A
—COS@3—2 COSp,—COS ¢s) ], (10 +g(C—2N)\/N(Cl—N)sin U, (22
whereP an additional constant of motion acting as a Hamil-
a5 \/ Nf + ey )
[cos = (COS ¢y +COS g5~ COS ¢5) ], tonian in the space of the variablBsand .

(11) The evolution of the system varies depending on the
dN N relationship between the constants of motion and the detun-
37~ ~ & VnNflcosy+e(cos g, +2 cose, ing from resonance. i i i

T If we introduce the notatioh=\AC;, n=n/C;, N
+C0S @3+ 2 COS@,+COS ¢s) ], (12 =N/Cy, f=f/C,, andC=CIC,, go over to the variable
anddN/d, substitute(22) in (21), and drop the “hat,” we
n N i ; i .
f\/:_f \ﬁ_zm B (13) arrive at the following equation for the unperturbed case:
N n
d 2 )\2
(—) =—N(1-N)(C—2N)?>—(P—AN)2. (23
de; dr 25
—A+4+— —f +2\/ (14 ] ] o
dr The solution of this equation is
do, _ avord \[ \[ (19 _ NaNagt NiNassTF((A775) VNo N1+ F (90)i 1)
dr. N3+ NgsSIP((N 7/5) VN2aN 13+ F(0); k)

s —A+4+2—+1—0 +f +2\/ }B

e (16)

994 _\yois M| \F f\FB 1
ar ++w—ph+ﬁ Ntfvye @
n N
f\/;Jrf\[ﬁ—z\/nN}B,

(18

d¢5 a
dr AT 10

(24)

Here go=sin"! \VN13Nga/N3sNy, is the argument of the el-
liptic integral of the first kind F), «=+/N1oN34/N13N, is
the modulus of the elliptic functiorl\, is the initial number
of particles on the second level, am; =N;—N;, where
N,<N3<N,<N; are the roots of the equation

)\2

2—5N(1—N)(C—ZN)Z—(P—AN)2=0. (25)

The nonlinear oscillation frequency is
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w W]

\VE VAR
FIG. 2. Potential energW/(N) of a nonlinear

oscillator: in the general cage), for P=CA/2
andC>2 (b), for P=CA/2 andC<2 (c), and

w w for P=A=0 andC=2 (d). The horizontal line
c d corresponds to the total energy of the oscillator.
\K_ MM N \X
\/\/N \/Nj: e

70N1sNos where N,=25A%/4\%, N3=1, and Ny ,=C/2. For P=A

MP)ZW' (260 =0,N;=N,=Nz;=1, andN,=0, we have
whereK (k) is the complete elliptic integral of the first kind. N272/25

Thus, the number of quasiparticles is a periodic function N= 1+ N22/25° (28

of time with a frequency that depends on the values of the
constants of motion and the detuning from resonance.

For P/A=C/2 andC>2 we arrive at a particular solu- For P/A=C/2 andC<2 the phase trajectory of the sys-
tion of the form tems is the separatrix. As is well knoviri,any small pertur-
bation causes a dramatic disintegration of the trajectories
NANxat NaNas SIR(ON/5) VNN~ o near a s_eparatrlx and under cgrtaln conditions the quasipar-
N= 1 134 (O 7/5) V215t @o) . (27) ticle motion becomes stochastic.
N3+ Nag Sin?((A7/5) VNN 13+ @) The solution on the separatrix is

No N4N 13+ N; N34 tantf (N 7/5) VN N5+ log(tan ¢q/2) + /4))
N3+ Ngg tant? (A 7/5) VNoN1o+ log(tan( ¢g/2) + wld))

(29

HereN,=25A%/4\?, N, ;=C/2, andN,;=1. 4. DISINTEGRATION OF CONSTANTS OF MOTION AND
Note that the various solutions of ER3) are deter- STOCHASTIZATION OF PHASE TRAJECTORIES

mined by the shape of the potential cuifiég. 2 In the unperturbed case, the trajectories of motion are

closed curvedN(y) determined by the parametric equation
(22). If we allow for antiresonant terms= 1, for small val-
G ues of\ the constants of motion change and thenjda-
W(N)Z—2—5N(1—N)(C—2N)2—(P—AN)2- (30 creases, disintegrate.
The variation of the constant of motidd with time is
given by the following expression:
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dP(N.#,C,C)) P dN oPdy sPdC 4P dC,
dr TONdr  agdr oCdr  aC, dr
(3D

Allowing for (12), (13), (20), and(21), for the perturbed
equations we have

dN_ 9P [dN| dy_oP dy "
a o ar) @ N 82
where
dN A
1) ar =—§(C—2N)\/N(C1—N)(cos<pl
+2 coSs¢,+CoS o3+ 2 COS@,+COS ¢5), (33
A )M SN ooy = (c—an
dr/ 10 N ) Cl—N( )
—2yN(C1—N) [(sin ¢+ 2 sin ¢,
+5sin o3+ 2 sin g4+ Sin ¢s). (34

Substituting(32)—(34) into (31) yields

dP [ \? )
5 a)[(c—zm) (1—2N)—2(C—2N)(1—N)N]

X(sin(@1— ) + 2 sin(@,— i) +sin(@3— )
AN
+2sinpa— ) +sin(ps— )+ £ (C—2N)

X N(C;—N)(cos¢;+2 cose,+COS @3

N
. (39

TN

+2 cos¢@,+COS (,05)] /

where forN, #, ande; we took the unperturbed expressions.

Near the separatriR/A— C/2, C<2, we obtain the fol-
lowing expressions for the characteristic roots:

(P—A)2

Ni=1= o B Ccr—17—2(P— ) (36)
_C (P-AC/2)(A=(A/5)\C(2—C))
Nes= 5 = (pscie-c)-az %0
P2
Na=\Ci5)7128pP" (38

The quantityN(7) varies almost from 0 t€/2, where at

a turning point of the hyperbolic type its period tends to R(T)=<exr{i§5[9i(71)— 0,(r1+7)]

infinity. For A<<1 the dominator in(35) is of order unity,

A. Kh. Rotaru and K. B. Shura

dP_)\ZCZA _ )i
a7 50 (7)(sin 6;+2 sin 6,

+sin 3+ 2 sin 6,+sin 6g), (39
do,
—=A+4+0(N), (40)
dr
do,
——=A+2+0(N), (41
dr
d¢93 (OPY
—=A+4+2—+0(N), (42
dr Wph
d04 (0P
——=A+2+2—+0()\), (43
dr Wph
d05 (OPY
—=A+2—+0(\), (44)
dr wph

whereA(7) is a periodic function with a period2 o(P), a
height of order unity, and a width of 2wq; wq
=\y2+C/5 is the frequency of small oscillations of the
system forP—AC/2 andC< 2.

If in (39)—(44) we go over to a system of discrete trans-
formations, we get

Pri1=PmtAP, (45)
Omir= Ot — =gyt T
Lme1= Om T Sy T 0T S
47  do(Pp) . 46
N
AP~ %CZJ d7A(7)(sin 6;+ 2 sin 6,
+5sin O3+ 2 sin 6,+sin 6g). (47)

The nature of the solutiof¥5)—(47) is determined by
the value ofM (Refs. 2 and B

_ 41
- w*(P)

ap (48)

dw(P)‘

When M <1, the system of coherent particles performs
quasi-periodic oscillations. Whevi>1, the motion becomes
stochastic during the phase decorrelation time

-2

(C—2N)?(1—2N)—2(C—2N)(1-N)N~C?, and (49
—2N) \_/N(Cl— N)~_(P_—AC/2)/)\ holds far fr_om the singu- where r.= 1/w(P)In M.

lar point N=C/2 within a small temporal interval of the The change irP in one transformation step is
small-oscillation period Z/wg. In the neighborhood of the

singular point, C—2N)?(1—2N)—2(C—2N)(1—N)N _ 28 Saw

~(P—=AC/2)/\ and (C—2N)N(C;—N)~(P—AC/2)/x maxAP~EC2>w exp(—ﬁ). (50

within a large temporal interval 2 w(P), where o(P) is
the nonlinear oscillation frequency. In this case, instead ofvhere the constant is of order unity. The nonlinear oscil-
(35 we have lation frequencyw(P) near the separatrix is
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(()(P): 7T)\\ N13N24 (51) nE
- 5JC(2—C)((\425)C(2—C)—A?) of ("

NP—AC/2)
Plugging(50) and (51) into (48), we get

56C27 exp(—S5am/2\) J ' i
M= . (52) h
(P_ACIZ) \/N13N24 L t
The boundary of the stochastic layer is determined from 0‘6;- b’,

the conditionM (Py,H)~1, or ost . el
"o 40 80 120 160 T

_AC  56C?*m exp(—5am/2\)

Poy=—+ , (53
2 VN1gNos f
and the nutation decay constant is given by the following L4
expression: \
1.2
_ TN \/N13N24 |n M (54)
ve 11 5VC2=C)(A2125C(2-C)—a?)’ 10
NP—AC/2) 0.8
5. COMPUTER EXPERIMENT 0.6
The numerical analysis was done, without loss of gener- 04l .. =

ality, at A =0. Generally, the system of equatio@d$—(9) has
one constant of motion, the system enekjyand the region
of motion is a five-dimensional hypersurface defined(8y L
in a six-dimensional phase space. 1.0f
When the antiresonant terms are ignored, four additional b
constants of motion emerg€,, C;, C,, and P, of which 0.9¢
two are linearly independent. The quantitids C, and P
determine a three-parameter family of trajectories that are ‘
either closed curves on the surface or asymptotic curves. The 0.7k
temporal evolution of coherent quasiparticles in this case are o :
nonlinear periodic oscillations with a finite or infinite period. 0.6F 3&«
The period of nutation oscillations decreases with increasing . jy
\. As the separatrix is_ appr_oaché6<2 and P—0), the 0'_59"3‘ _53 _;3 _'63 _;3 “W
angles of the phase trajectories become sharper and assume a
rectangular shape. The number of quasiparticles varies frofG- 3. Temporal evolution of the number(@ coherent bosons on the first
minimum to maximum(or from maximum to minimumas excited level andb) photcins, anc_lc) t[wge prol_ectlon ofihe pEase trajectory
. on the f,4) plane atng=1, Ng=10"°, f4=1.4, ¢q0=e=1.571, ¢po
the phase remains constamgt=nm (n=0,£1,+2,..., de- _jp¢ andr=05,
pending on the initial conditions When the quasiparticle
number reaches its maximum or minimum, the phase under-
goes a jumpi; o= ;_o* . particle numbers change within the potential wells inside
Allowing for the antiresonant terms in the Hamiltonian which they begin their motion. An interesting phenomenon
leads to changes in the shape of the potential energy, so thagas detected in computer experiments @t 1.3—-1.7. At
all existing aperiodic oscillation regimes cease to exist. Insuch values, tunneling of the nonlinear motion from one well
this case, for small values afand any initial conditions the to another was observed. The tunneling was accompanied by
system performs quasiperiodic oscillatio(fSig. 3). In the  a spread of the trajectories over the phase sgkag 5.
phase space this motion is depicted by a trajectory that windBigure 5 clearly shows that there is a rapid change in the
itself around a toroidal tube. Here the fundamental harmonitower limit of the number of quasiparticles on the first level
is modulated by subharmonics, whose amplitudes increaden) and the upper limit of the number of photons ) in
with X, making the motion more complicated. comparison to Fig. 4, where the motion is only in one poten-
As \ increases, the motion of the system becomes morgal well. The phase trajectory in this case spreads out in the
complicated and the quasiperiodic oscillations begin tgphase space and occupies a greater phase volume.
change into chaotic oscillations. The constants of motion The calculations have shown that the evolution of the
completely disintegrate in the process. Figure 4 depicts thgquasiparticles may be localized to a single potential well
chaotic dynamics of quasiparticle and phonon numheasd  with A constant by changing the detuning from resonange,
f and the corresponding phase portrait. Note that the quasi-e., by moving away from the conditioR=AC/2.

0.8F
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FIG. 4. Temporal evolution of the number @ coherent bosons on the first
excited level andb) photons, andc) the projection of the phase trajectory
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This model has one distinctive feature. The condition
C<2 determines not one separatrix, as it does in Refs. 17
and 18, but a family of separatrices. Each separatrix in this
family corresponds to a set of initial quasiparticle concentra-
tions. By changing the quasiparticle concentration we can
move into the neighborhood of another separatrix. Near dif-
ferent separatrices chaos emerges at different values of
Chaos sets in most rapidly whéhis large. AsC decreases,
chaos emerges at large values\of

Depending on the specific physical situation, we may
find that only one nonresonant term (@) is finite.

Figure 6 depicts the dynamical evolution in the case of a
finite nonresonant term containing si). We see that as the
resonance phase reaches the valge— 7/2, which in the
unperturbed case corresponds to a hyperbolic turning point,
the system goes into the stochastic-motion mode, which con-
firms that points of the hyperbolic type play a special role in
the formation of a stochastic instability. We also note that
although the evolution of the numbeansand ¢ is stochastic,
the constant of motiol€=n+ N is preserved, i.e., the non-
resonant term sip, does not destroy it.

Figure 7 depicts the development of a local instability at
various values of. The distance between two initially close
trajectories is given by the following expression:

Pa1~ Pa2 2
D= <n1—n2>2+<N1—N2>2+<f1—f2>2+[u]
2
— 2 _ 271/2
" Pb1™ Pb2 n Pe1™ Pe2 (55)
2 2
The decay constant is given by the formula
D=Dg exp(y.7). (56)

When \ is small, the distance between initially close
trajectories remains small with the passage of time.NAs
increases and reaches a certain valyg the value ofD
becomes of order unity. Fox> A\, the decay constang,
rapidly increasesy,=0.008 and 0.04 at=1.025 and 1.05,
andC=1.4. Each separatrix has its own valueNgf. Cal-
culations have shown th&\ ¢ .~ const.

The predicted dynamical chaos is an example of such
chaos in Hamiltonian systems.

Generally, the dynamical equations for a system with
degrees of freedom are not completely integrable.

FIG. 5. Temporal evolution of the number @

coherent bosons on the first excited level @ond
photons atng=1, No=10% f,=1.4, ¢4

= @eo=—1.571, ¢,,,=10"8, and\=1.05.

120 160 T
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In our case the system of equations describing the dy-
namical evolution of coherent bosons consists of an inte-
grable part(at e=0) and a nonintegrable part for which
nonresonant termsE 1) are responsible. log D

For e=0 Egs. (10—(18) are completely integrable in or
terms of periodic trigonometric and elliptic functions and a
aperiodic hyperbolic functions on the separatrix.

The Kolmogorov—Arnold—Moser theoréf? answers
the question as to what extent the nature of integrable sys-
tems changes when perturbations are taken into acceunt ( -4
=1). In this case the energy hypersurface is partitioned into
two finite-volume regions. One region contains tori de-
formed by the antiresonant terms in the Hamiltonian. In the
other (smalley region, whose volume is zero at=0, the
motion is extremely complicated. The tori that exist in this -8 ' .

) ) 0 2000 4000 T
region ate=0 are destroyed and the motion becomes cha-
otic.

As is well known, when the number of degrees of free-
dom n>2 (in our casen=3), the n-dimensional unde-
stroyed tori fail to partition the 2— 1-dimensional energy
surface into nonintersecting parts and the regions of de-
stroyed resonant tori merge, forming a unique complex net,
which is known as an Arnold web. Here the phase points
may wander far from their unperturbed positions, i.e., a phe-
nomenon known as Arnold diffusiér®?’ is observed. A
characteristic feature of such diffusion is that globally the
system is unstable.

The emerging chaotic instability is not related to the ac-
tion of random forces; rather, it is due to an intrinsic property
of the system, the local instability.

In the model we have studied the expression for the per-
turbation is exact, so that the chaos is not related to poor
convergence.

The computer experiment was performed with varying
accuracy. We found that the chaotic solution is stable with
respect to the choice of the calculation step, i.e., we are not
dealing with chaos produced by the computer experiment
itself. We checked our program by reproducing the results of
Zaslavski and Sagdeévconcerning dynamical chaos and
applying it to the system of Lorentz equatiofsee p. 88 of |
Ref. 10 -9 R 1

Thus, we have proved that in principle ultrashort dy- 0 500 1000
namical chaos may occur in two—pho.ton qua,‘mum tran_smon;lG 7. Temporal dependence between initially close trajectorieg-atl,
between the energy levels of bosonic quasiparticles in Cong =108, f,=1.4, ¢,o=w="1571, ¢p=10¢, andrA=1 (a), \=1.25
densed media. We have shown that allowing for antiresonarib), andx =1.05 (c).
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terms in the Hamiltonian responsible for the interaction be4°A. Kh. Rotaru and V. A. ZalozhQOptical Self-organization of Excitons
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ticles at certain values of the parameters, makes the syste

chaotic. The valua ~1 is critical(at C=1.4) and leads to a

1990.
V. A. Zalozh, A. Kh. Rotaru, and V. Z. Tronchu, Zhk&p. Teor. Fiz103
994 (1993 [JETP76, 487 (1993].

large stochastization region. We predict the presence of tunz,, 5 Zalozh, A. Kh. Rotaru, and V. Z. Tronchu, Zhk&p. Teor. Fiz105

neling of nonlinear motion from one potential well to an-
other.
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A generalized variant of the nonequilibrium thermodynamics of rarefied gases based on the
linearized equations of Grad’'s method of moments is studied. It is shown that despite the more
complicated form of the thermodynamic forces, which include spatial derivatives of the

fluxes, entropy production remains a bilinear combination of generalized thermodynamic fluxes
and forces. Using perturbation theory in the small Knudsen number, the expressions

obtained can be reduced to the well-known results of the Chapman—Enskog method at the level
of the linearized Burnett approximation. @998 American Institute of Physics.
[S1063-776(198)01306-1

1. INTRODUCTION of a different tensor order in the linearized equations re-
mained on the sidelines. The presence of such derivatives in
The methods of the kinetic theory of gases are often useghe expressions for the heat flux and the viscous-stress tensor

to substantiate the limits of applicability of phenomenologi- 55 \ell as in other nonphysical fluxes which follow from the
cal nonequilibrium thermodynamiés.A long-standing limi- o1, ion of the moment equations, sets these expressions

tation on the application of nonequilibrium ~thermo- apart from the standard linear transport relations of classical

d.yna.mlcs that the glasswal form is compatible with t.henonequmbrlum thermodynamics. However, it can be shown
kinetic theory of rarefied gases only at the level of the first o . . .

S . that such a generalization does not result in any conflict with
approximation in the well-known Chapman—Enskog

method-®—has been removed in a recent series of warfs. thg canonical results of nonequilibrium thermodyngmics. De-

It has been shown that nonequilibrium thermodynamics iSpite the fact t_hat the new terms make the expr_essmns for the
also compatible with higher approximations of the method,thermodynamlc forces somewhat more complicated, the ex-
for example, with the results of the linearized Burnett ap_pression for entropy production remains a bilinear combina-

proximation. In the latter case additional terms, which arelion of the generalized thermodynamic forces and fluxes. At

proportional to the second derivatives of the velocity andthe same time, allowing for additional moments of the dis-

temperature, and the corresponding “nonphysical” fluxes tribution function greatly expands the system of phenomeno-
whose introduction ensures satisfaction of the Onsagdpgical equations for the fluxes and forces, while the cross

relations™® appear in the expression for the local entropycoefficients in the expressions for the fluxes with the same
production. tensor order satisfy the Onsager symmetry relations.

As far back as 1948, Grad noted on the basis of his  Our aim in the present paper is to construct such a gen-
method of moments that nonequilibrium thermodynamics  eralization of nonequilibrium thermodynamics. An expres-
is applicable in more general situations where the nonequisjon for the local entropy production is derived on the basis
librium state of a gagand the nonequilibrium entropys  of an expansion of the distribution function into a series in
determined not only by the local values of the density andythogonal tensor polynomials, which, to within a normaliza-
internal energy(temperaturgof the gas, as in the standard tjon are products of Sonine polynomials and tensor spherical

classical scheme of nonequilibrium thermodynamics, buharmonics, as well as the use of the moment equations ob-
also by any number of additional state varialie®ments of

S ) o X . tained from a linearized kinetic equation. An application of
the distribution function This idea was then implemented in q PP

. . erturbation theory in the small Knudsen number to the sys-
attempts to construct a extended irreversible thermodynanf—

ics. which emplovs the heat flux and the viscous-stressem of moment equations then yields results that are virtually
tenysor”‘13 ang :ometimes even a larger number opidentical to the well-known results of the Chapman—Enskog

momentsi* 15 as additional variables. method at the level of both the first and secdBdirnet)

The specific area of application of extended irreversible?PProximations. This pertains both to the generalized expres-
thermodynamics has been the analysis of situations wher@ons for the fluxes and the corresponding representation for
the characteristic time in the problem is comparable to thdhe entropy production and to the concrete results which
relaxation time due to intermolecular collisions, which callsmake it possible to calculate all required transport coeffi-
for the use of nonstationary moment equations in the theorycients with an accuracy that corresponds to retaining an ar-
At the same time, questions concerning the problem of takbitrary number of Sonine polynomials in the expansion of
ing into account the spatial derivatives of fluxgsoments  the distribution function.

1063-7761/98/86(6)/8/$15.00 1141 © 1998 American Institute of Physics
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2. EXPANSION OF THE DISTRIBUTION FUNCTION AND THE ®
MOMENT EQUATIONS D=, > aP%r)®PPY(W), )
p=0 $=0

Let us consider a stationary state of a rarefied mon-
atomic gas described by a distribution functidiv,r), where the symbok denotes the scalar product of the ten-

wherev is the particle velocity and is the particle position, SOrS- The polynomials have the fortsee Refs. 16 and 17

Let the state of the gas dewatg slightly from equilibrium. PpS(W):,ypss(psll/Z(WZ)Rp(W)' 9)
Thenf(v,r) can be represented in the form
Here S, (W?) are Sonine polynomiafsthe RP(W) are
— £(0) (0)— 312 _ ne2 p+1/2
f=1701+@), F7=n(8/m)”" exp(— c), @ tensor spherical harmoni¢8and y,s is a normalization fac-
where f© is the local Maxwellian velocity distribution of tor:
the particles® is a small correction|(P|<1), B=m/2kT, n
is the density,T is the temperaturan is the particle mass, y :(_1)5\/
i . . . ps

c=v—u is the velocity of the particles relative to the center
of mass, andi is the macroscopic velocity of the gas.

The correctiond(v,r) satisfies the linearized Boltzmann

2P*Ssl(2p+ 1)1
p!(2p+2s+1)!°

The polynomialsPPs are normalized by the condition

equatiof*© (pDS,pp’S’)zgpp, g AP, (10)
(v-V)In {0+ (v-V)O>=L®, (20 whereA® is the unit projection tensdr.
where The first few polynomials are:

00_ 01_ 2 10_
ViIn fO=V In p+(8c?-5/2V In T+28¢(V-u). Po=1, PO=\2/3W?-3/2), PY=vaw,

3 1
Pl= 4/BW(W2-5/2), PP=v2 WW " (11

1
P30=/4/3 WWW :---

In addition,

Lq>=f f (O +D;—D—D,)fVgo(g,0)dQ dv,

(4) Hereaaa... is used to denote irreducibility of the tensor.

is the linearized collision operator for molecules with the For example,
velocitiesv andv; (the prime indicates that the distribution — 1
function depends on the postcollision velocities of the mol-  (WW );,, =W,W,— = 8, \W?,

ecules, p=nkT is the pressureg(g,(2) is the differential 3
collision cross sectiorg is the relative velocity of the col- — 1
liding molecules, and) is the scattering angle. (WWW ), =W, W, W, — 3 W2( 8 W, + 8 Wi+ g W,).
It is helpful to introduce the scalar product of functions
in a Hilbert space: We note that
1 1
(g.h)=— f f@(c)g(c)h(o)dc. aPs=— f PPsf O de= (PPS,d) (12)

The parameters of the local Maxwellian distributian§, ) fo|lows from the orthogonality of the polynomial®s with a
are defined in the same manner with respect to both the conjgaxwellian weight function. On account of the conditions
plete distribution functiorf and f(®). This leads to the con- (5) we havea®=al%=a%1=0, i.e., the expansiof8) actually
ditions starts from the polynomialB'! andP?° with the correspond-
; " 11 20
(10)=0, (c,®)=0, (c?d)=0. (50 ing coefficientsa™ anda™. N _ _
The equations for the coefficiera8® (the linearized mo-

Two well-known properties of the linearized collision ment equationscan be obtained by multiplying the kinetic
operator will be employed belofithe symmetry relation  equation(2) by f(©)PPS and integrating over the velocities.
For simplicity, below we shall consider only slow gas

(F.L®)= (LY. P) © flows, for which, along with the condition that the gradients
and the condition of the principal thermodynamic quantities,(1,T) be small,
the condition
(d,LP)=<0. (7)
lul<VKT/m (13)

The equal sign in the latter relation corresponds to the case
where® is an invariant of the particle collisions. also holds. In this case the terms of orde® In f© and

Let us expand the nonequilibrium correctidninto a  (u-V)® in Eg. (2) can be neglected. The latter means that
series in an orthonormal system of tensor polynomialghe variablec or v can be used equally well in Eg&) and
PPS(W) of the dimensionless relative velocity of the particles(3). The corresponding system of moment equations then
W=c\/B: becomes
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o

(PPS,(c- V)In £0)+ > (PPS,cPP's) @ VaP's’ > (PPSLPP'S)@aP's'=— > nApeea®s, (20)
p's’ p's’ s’'=0
=S (PPSLPP'S eab's (14 whereA s can be expressed in terms of the known integral

b brackets of Sonine polynomialé€. Allowing for the explicit
form (9) of the polynomialsP?s, we have
It is easy to see thaic{V)In f© contains a linear combina-
tion of the polynomialsP®, P, and P?°. Then, since the
polynomials satisfy the orthogonality conditiofi0), we

have
(PPS,(c- V)In £©9)=(v2/12) B~ YA In pd,1 85
+\/51487YV In T6,,66

=_ APS,PS
Apss’ 2p+1'y Y

XS5 1 WARP(W), S5 s WARP(W)].
(21)
The expression&0) and(21) take into account that the total

1 trace of the projection tensax(” equals D+ 1.
+V2VUSp2850- (15) The moment equations thus assume the following final
o . form:

It can be shown for symmetric irreducible tens®¥ that
the flux term on the left-hand side of E(L4) is a linear (PPS,(c-V) In (@)
combination of the derivatives of the coefficients of tensor w —
ordersp+1 andp—1 with respect to the coordinatéRefs. i 2 (Ag;rl,s'vap+l,s’+ngl,s’vapfl,s’)
16 and 17 =0

D (PPScPPS)eval's'= X (ARILSvaptis -

p's s'=0 I 20 nApss,apS , (22)

o=

1
p—1s’ p—1s’
+Bps T Va ) (19 where the first term on the left-hand side is defined 1).

The direct application of the moment equations in the
form (22) is of interest in cases where their right-hand side is
nonzero. It is easy to see for the polynomig®, P and
P9 that the right-hand side of the initial moment equations

17 (14) equals zero by virtue of the conditidi@), since these
g;ls’: 1 (PPSg PP~ 15'). ponnomigIs are collision invariants corresponding to the
2p+1 conservation of the mass, momentum, and energy of the par-
ticles in collisions. In this case the standard conservation

n _ :
The notationVaP~**" denotes a symmetric irreducible ten equations(the equations of hydrodynamicéor slow gas
flows follow from Eq.(14):

where the operator8 andB are given by the expressions

! 1 !
p+ls'__ =  pps +1s
Ao =op73 (PP CPP™ %),

—
e p—1s’ _ 1s’
sor. Thus, ifa is a vector p=2), thenVa™® is an V.u=0, Vp+Vam V-q=0. 23)
irreducible tensor of rank 2, ) .
Here a7 is the viscous-stress tensor, agds the heat flux.

1 (&ails' 8a1-13') 1 &l They are defined by the expressions

2 + ~39% x M

2 &XJ X 3 X a= mn(CC,(D):\/i paZO’

It is convenient to express the right-hand side of the (249
system(14), or the “moment with respect to the collision q=p((Bc?®—5/2)c,®)=(5/4)28~Y2pa',
integral,” by means of the so-called integral brackets of theH
corresponding polynomials. To this end we make use of the
relatiort’

ere (Vﬁ')i:&Wik/an.

(PPS,LPP'S") = — 5,5, n[PPS,PP'S'JAP), (18) 3. SOLUTIONS OF THE MOMENT EQUATIONS

where The equationg22) form an infinite system of coupled

. 1 L equations(on account of the presence of the flux terms on

[PPS,pPS ]:W j fOFPDAPPAPP'S' g0 dQ dc dg,. the left-hand sidefor scalar f=0), vector p=1), and
(19) tensor =2,3,...) quantities. They can be solved if the
expansion(8) is limited to a finite number of terms.

Here Let us consider an approximation where terms including

_ / "n_ _ tensor polynomials of rank no higher than 3 are retained in
AF=F(c)+F(e)—F(e)~F(cy). the expansion, i.e., let us saf*=0 for p=4. The corre-
Using Eq.(18) we find sponding systems of equatiof®2) for p=1,2,3,... become
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(5142871 In Tog+ 2, (A% Va® +BY Va®)
s'=0

)

== 2 nAgga, (25)
s'=0
,_l ” ! ! I'_l ’
V2VUsp+ >, (A¥'Va® +BL Val®)
s'=0
= — 2 nAZSSraZS,, (26)
s'=0
” /'_| 1 ” ’
> BZVa®'=— > nAgga®. (27)
s'=0 s'=0

The solution of the equations can be further simplified b

truncating the series at finite values ®Binds’. As an ex-

Yy
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first approximation(with respect to the number of Sonine
polynomials in the Chapman—Cowling expangion

Lii=[N]1, Lxo=2[7]1, Lsz=(4kT/3m)[ 7],
where

kT 75 KT

[ﬂ]FgW, [>\]1=3—2W- (33

Generally speaking, the system of equati¢dg) and
(31) for g and 7= must be solved self-consistently, since the
thermodynamic forces contain derivatives of the fluxes. This
situation is somewhat different from the conventional repre-
sentation of the phenomenological equations of nonequilib-
rium thermodynamics, where the fluxes appear on the left-
hand side and the gradients of the standard hydrodynamic
variables appear on the right-hand side. However, it is easy
to see that this system can formally be brought into a classi-

ample, we shall consider the well-known 20-moment Graacal form, but with transport coefficients represented in opera-

approximatior?'® where, along with the coefficientg! and

a?%, the coefficienta®® with the corresponding polynomial
—

P30=/4/3WWW is retained in the expansion. The coeffi
cient a®® is related to the third-order moment

N ™
S=m/Jcccfdc of the distribution function, so that

S=v38 12pa0 (29)
In this case Eqs(25)—(27) assume the form
V5/487Y2Y In T+ A2%Va?= —nA ;8
1 1
V2Vu+ A3V al+ BilVall= — nA 5@, (29

m
B30V &= —nA 308

The coefficient®A andB, as well as\ ;55 , can be calculated
on the basis of the expressiof$7) and (21). Using the

tor form. It is equally correct to use such a representation in
the canonical nonequilibrium thermodynamics along with
the standard representatibn.

The expressions foq and 7, corresponding to the
known 13-moment approximatidrollow from Egs. (30)—

(32) if we setS=0. In this case a different representation of
Egs.(30) and(31) in a form close to the canonical represen-
tation is possible. The heat fluxcan be expressed in terms
of the pressure and temperature gradi¢aee Eq.(45) be-
low]. Then only derivatives of the standard thermodynamic
variables(including the second derivatives of temperature
and pressuperemain in the expression fair on the right-
hand side.

Including a larger number of terms in the expansion
makes the structure of the solutions appreciably more com-
plicated, though the formal representation of the solutions for
the coefficientsna® reduces mainly to finding the inverse
matrix of coefficients (\psg)‘l. The solutions for the 26-
moment approximation were studied in, for example, Refs.

known expressions for the integral brackets relating them td4 and 15.

009 integrals’® as well as Eqs(24) and (28), we arrive at
the following expressions fag, 7, andS:

VT 21
a=-Lu*+g5 V7|, (30
21 1 .
N T T @
1
~ V&
SZ_L332_p’ (32
where
1 . (97TJK (97Tik (9’/'T|]
(Vﬂ-)ijk_ (9Xi (9XJ 8Xk)
2 0"7Ti| &7Tj| s +(97Tk| P
5\ ax, KT ogx, T ogx, T

The coefficientd ;;, Lo, andL gz are related to the viscosity
[ 7], and the thermal conductivity\ ];, which appear in the

4. ENTROPY BALANCE EQUATION

As is generally known, nonequilibrium thermodynamics
is based on a local entropy balance equation, which can be
obtained from the complet@ot linearized kinetic equation
for f by multiplying by Inf and integrating over the veloci-
ties. The local entropy densifys (p is the density is then
specified by the expressibt?

psS= —kJ f In fdc+kn (39
(k is Boltzmann's constant) is the particle densily while
the balance equation for the stationary case has the form

V-J=o, (35
where
JS=—kf vf In fdc+knu (36)

is the total entropy flux density and
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For the 20-moment approximation, a calculation of the
o= —kf f© In fLddc (37)  entropy production in this case gives
is the local entropy production. To= _q(l VT+ 2 Vial—ael Vu+ 21 Vg
Substitutingf in the form (1) into Egs.(34), (36), and T 5 Sp
(37) and using the conditiofb), we obtain up to terms qua- 1 . 1 . ™M
dratic in the small correctio +55 VS) T SQ V. (43
B kn s B g kn 5 The linear phenomenological relations of nonequilibrium
ps=(pS)o~ > (199, Js=psut -5 (c® ), thermodynamics corresponding to the representdinare
(38) completely consistent with the expressi@B6)—(32) follow-
o=—kn(®,LD). ing from a direct solution of the system of moment equa-

s.
We note that the complication of the form of the ther-
modynamic forces on account of the derivatives of the fluxes
in (30) and(31) did not necessitate a revision of the values of
the coefficientsL,; and L1,, which once again are deter-
kn mined by the values of the ordinary viscosity and thermal
ps=(ps)o—7p25 aP%aP®, conductivity. Moreover, just as in the standard classical
' (39  schemé,the entropy production is found to be a linear com-

Here the index O corresponds to the entropy density detertlon
mined in the state of local equilibrium.

Using the expansiof8), Egs.(34) and(36) can be rep-
resented as

g kn L bination of terms which are quadratic in the fluxes:
Jo=pSU+ =— — >, > aPS(PPS,cPP's")aP’s’,
T 2 5% ol s 1 1 1 .~ -
’ To=—qq+ — w®@ @+ — S®S. (44
L1 Lo Las

In the 20-moment approximation these expressions as-
sume the forri The condition =0 (positive entropy production
which follows from the properties of the linearized collision
integral(7), is guaranteed by the positive values of the coef-
ficientsL;; or the obvious conditiong>0 and\>0.

_ 1 m 1 m &
pS—(PS)o—mWW—qu—l—ZW ,

q 5 5 (40 We note for slow flows that the relatidhs= — Vp fol-
Jii=psu+ A= Qi — —— s T lows from the equation of motiof23). Then the expression
* ' T 5pT T 14pT TUKTK (30) for the heat flux assumes the form

We are henceforth interested mainly in the expression VT 2 Vp) 45

(38) for the local entropy productionr. We substitute the a= _Lll(T "5 F
expansion ford into it and replace the linearized collision
integralL® by the left-hand side of the kinetic equati(®).
The result is

Curiously, in the well-known monograph by Landau and Lif-
shitz (Ref. 20 the important assumption that the heat flux
can depend only on the temperature gradient is used in the
derivation of the expression for the entropy production. The
corresponding proof is as followdRef. 20, p. 27% “If q
contained a term proportional ¥p, the expression... for the
rate of change of entropy would include another term having
' 4D  the productVp- VT in the integrand. Since the latter might

To=—-KTY, naPe| (PPS,(c-V)In f(?)
p,s

+ >, (PPScPP)oVal's

P’ be either positive or negative, the time derivative of the en-
or, taking into account the definitiori84) and (16), tropy would not necessarily be positive, which is impos-
sible.”
1 1 . . }
To=— = qVT—#eVu —kTE naPs _ In fact, it fact from the expressiong@4) and (_45) ob
T D.s tained above that the part of the entropy production that cor-
" responds to the heat flux can be represented in the form

’ _ ! _
® E Agglvs Va’”l’s'JngS 1s'ygp-1s’
s'=0

. (42

VT 2Vp\?

Tl T g
The first two terms in Eq(42) correspond to the stan- i.e., it remains essentially positive despite the fact that the

dard representation of the local entropy production in thesxpression for the heat flux contains a term with a pressure
form of a bilinear combination of the fluxegandsr and the  gradient.
thermodynamic forces conjugate to them, which can be ob- The cross terms, whose coefficients ordinarily satisfy the
tained within the classical scheme of nonequilibrium thermo-Onsager relations, are absent in the system of equations
dynamics for vector and tensor phenoméranew feature  (30)—(32). This is because these equations correspond to the
is that the same fluxegal~q and pa?’~ ) appear to- minimum number of polynomials in the expansion fbrof
gether with the additional forces conjugate to them in thehe same tensor ordéfirst, second, and thiyd It is easy to
next terms in(42). show that when a larger number of expansion coefficients

(46)
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and corresponding fluxesvhich no longer have any direct equations of first-, second-, and higher-order perturbation
physical meaningare taken into account, it is possible to theory. The first approximation corresponds to a system of
obtain a set of linear phenomenological relations containingequations on whose left-hand sides the flux terms with de-
the cross terms for the fluxes. Thus, if the coefficiama8®  rivatives of the coefficienta®® (p=0,1,2,3,..) areomitted.

are chosen as the fluxd8® and the expressions For the vector and tensor coefficiemg) and a(zf) we have,
specifically, two independent systems of algebraic equations
FPS=KT| (PPS,(c- V)In f(0)+ > ABI1s'ygpris’ of the form
S!
e —5/487 12V In Ty = 2, nA s,
+Bp1* VaP te } (47) P Pt 521 o) “9)

. I -
are taken as the thermodynamic forces, then the system of —2vyy Sp2= E nAsza(le)_
linear phenomenological equations of different tensor order s=0

relating the thermodynamic fluxes and forces becomes  Thege equations can be solved with respect to the fluxes

Jis= na(lls) andJ,s= na(zf) for any finite valuep=£. Specifi-

0s_ (0) =0s’ :
J 5_2 LesF™ cally, values are obtained fora(, and naly) or the corre-
s sponding heat flux] and viscous-stress tensarto them to
JlS:E | (DELs’ any approximation iré. The latter can be represented as
ss! 1
' 1
® (48) g=—AVT, m=-27Vu. (50)
It is easy to show that these solutions are completely consis-
Ps=> LIPprs, tent with the results of the firshon-Burnett approximation
s in the Chapman—Enskog methdd.
where the cross kinetic coefficients”) satisfy the Onsager We recall that in this method the first-approximation cor-
; () _ (P rection to the distribution function is sought in the form
relations (g =Lg3).

Equations(48) have the same structure as the direct so-
lution of Egs.(22) for the coefficientsnaP®. The matrix of
phenomenological coefficients; is identical to the inverse
matrix of coefficientsA. The symmetry of the cross coeffi-

1 1
®,=®(c-V)In T+d,ccoVu, (51)

where expansions of the form

cients then follows from the symmetry of the coefficients 1> 1>

] H 1k ri 2k
Aps¢ defined by the expressiaid). cb=— kzl AP, ccdp=— go A, P, (52)
5. RELATION TO THE CHAPMAN-ENSKOG RESULTS are used forb, and® . Comparing Eqs(51) and(52) with

. _ _ . the expansior(8) for ® shows that the coefficien&* and
Itis helpful to clarify the assumptions under which the o are related by the expressions

results obtained by the method of moments agree with the

results obtained by the standard Chapman—Enskog 5, 1
method’8 The latter method is known to be based on the 317 p
application of perturbation theory with the Knudsen number. , .
as the small parametéKn=1/L<1, wherel is the mean Then it follows from the definition24) that

free path of the particles arid is the characteristic dimen- 5 Vv

sion in the problem The parameter Kit is introduced on A=— \/% kB~ YAy, p=-— - KT Ag.

the right-hand side of the kinetic equation, and the distribu-

tion function is expanded into a series in the small Knudsenn the Chapman—Enskog method a system of algebraic equa-
number. We apply this procedure not to the distributiontions for the coefficient®;, is obtained from the integral
function, but rather to the expansion coefficiealt$. Thisis  equations for®, and (Dp7’8 by multiplying the latter by
made possible, because the coefficieffsy on the right-  fOPI" and f(OP?", respectively, and then integrating over
hand side of the linearized moment equations are of the ordehe velocities. It is easily found that these equations are com-
of the reciprocal-™! of the characteristic time between par- pletely equivalent to the systefd9), if the relation(53) is

ticle collisions, wherer=1Kv)=[7]./p and(v) is the av-  substituted into the latter.

1 1
AV iInT, aflk)=H Ay Vu. (53)

erage thermal velocity of the particles. Thus, the coefficientd; andA,g, in terms of whichi
Using the formal expansion of the coefficieaf$ into a  and » are expressed, can, in fact, be fouia any approxi-
series of the form mation in ¢) in both methods from similar systems of alge-

braic equations.

We now turn to the nextBurnet) approximation in the
substituting these series into Eq25)—(27), and equating Chapman—Enskog method. The correctibg in the linear-
the terms with like powers of Kn, we arrive at systems ofized Burnett approximation in known to have the f8fm

ps_— 4PS ps 24PS
a nTKn ag)+Kn%agig) + ...,
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—
VVT — > (c( Bc?— g),Plk)Lf(}]):Aln,
D,=DE® —— + PRV Vu+ e Vau. (54) 3 (59)
. : , c? 7\ pik|;
The expression obtained for the entropy production can be Ek: <\ 5 D+ 0 P Lk =Bi1n-

written using®, (51) and®, (54) in the fornf
We now write the expressions fgrandJ? in the form

i
r VvT 5
To=-{(q-V)In T+w®Vu+JT®? q=nkT| c| Bc?— 5|
1 5
+J'®@VVu+J’-Vul, (55) =KT>, (C(Bcz— E),PlS(W) nats
S
where the additional “nonphysical” fluxes are defined as 5 '
P kT X (c( e —),PlS(W) LGP,
) s 2
M cc n (60)
JT=nkT(®,cc,®), JI'=nkT CI>p§+— c,d |, 2 g
(56) ”znkT(c(CI)ngrE),(I))
U=nkT(P gc'; D). c g
P =kT> (c(<1>p§+6 PIS(W) |nalS=kT
S
The representatiofb5) corresponds to three independent 2
systems of phenomenological equations of the form XES: > (C(q)p §+g PIS(W) L(SlS2F15’.
S!

— _ 2
q=—AnV In T=ARV4, (573 If Egs. (59) are taken into account, the relatiof@0) can be

o B ) rewritten as
J AV In T—A,VAu,

— q=kT>, A F  J=kTD By Fk (61)
— k k
VvVT
7=—NyVU—Ajp ———, (579 Using Egs(52) and(58) and the explicit form of the expres-
T
sions forFk (47) we have
I
r VvV T - ) 0)
JT:_)\ZIVU_)\ZZT, q kTn (C(Dt,(c V)ln f )
1
u I +g 2 (o ,cPZ")VaZ"},
JU=—L,,VVu, (579 K (62)
where the cross coefficients of each pair of equati@Ta) J”:an{ (c®y,(c-V)In £?)
and (57b) satisfy the Onsager relatiofd\ ;,=A,; and A,
:)\21) 1 v k 2k
We now show for the example of the vector fluxgand *t5 Ek (cPp,cP)Va* ).

J’ that expressions with completely similar structure can be

obtained from the results of the method of moments pre- Using the perturbation expansion afs, we can now
sented above. We note first that the solution of the equatioreplace the terms with the derivativ&aPs with the aid of
for %, just as ford,, can be sought in the form of an the second relation in E453), which corresponds to the first
expansion in the polynomiaB*«: approximation. The result is

1 KT (0B, (c-V)In £O)+ = (e, ,cotd) VYL
c¢g=ﬁ; ByPK. 59 t 5 (CPCCCBp

)’ 63

As we have already noted, the matrix of the coefficientsJU:ﬂkT{ (cdyz,(c-V)In f(o))+% (cdg ,CT@p)VV'_llJ]-
Lj; in the expressior8) for J’°>=naP*® is the inverse matrix
of the coefficients\ ;s¢ . Using the integral equations of the Using(3), retaining the term wittV p=»Auin V In f©, and
Chapman—Enskog methtd for ®% and®,, as well as the _ _ '_| ,
expansiong52) and (58), it is easy to obtain the following isolating the vector part in the tern¥&Vu, we arrive at the
relations: final result
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Dynamics of double membrane films is investigated in the long-wavelengthdim#1 (q is the
wave vector, andh is the thickness of the filinincluding the overdamped squeezing mode.

We demonstrate that thermal fluctuations essentially modify the character of the mode due to its
nonlinear coupling to the transverse shear hydrodynamic mode. The renormalization can be
analyzed if the conditiorg<1 is satisfied(whereg~T/«, T is the temperature, and is the
bending modulus The corresponding Green'’s function acquires as a function of the
frequencyw a cut along the imaginary semiaxis. 4h> \/g the effective length of the cut is
~Tq® 7 (where 7 is the shear viscosity of the liquidAt qh< \/g the fluctuations lead

to an increase in the attenuation of the squeezing mode: it is larger than the ‘bare’ value by a
factor 1A/g. We also present the analysis of the elastic modes1988 American

Institute of Physicg.S1063-776198)01406-1

1. INTRODUCTION to the loss of the orientation correlation of the membrane
pieces at separations larger than the so-called persistent
The most distinctive property of amphiphilic molecules length &p, which is estimated to be
is their ability to spontaneously self-assemble into aggregates
of various shapes. Typically, the molecules spontaneously &p~ @ eXP2m«/T),

self-assemble into membranes which are bilayers of a thickyhere T is the temperature, and is the thickness of the
ness of the order of a molecular length. Different lyotropic memprane. The shape fluctuations of the membrane lead to
structures consisting of these membranes have generatggh logarithmic renormalization of the bending modukys
considerable current interegssee Refs. 1-3 and review \ypich was examined first by Helfrith and later by
articled~%). Films composed of two bilayer membranes sandegrster!! The correct renormalization-groufRG) equation
wiching a thin layer of a liquid are widely used in the lyo- \yas derived by Peliti and Liebléf, Kleinert®® and

tropic systems. They play also an essential role in variouspao|yakov_14 The explicit form of the one-loop RG equation is
biological processegnote the so-called flickering phenom-

ena in erythrocytes or red blood cell$n this paper we will d_K_ B 3_T
examine the dynamic properties of such double membrane d¢ 47"
films.

The main peculiarity of a membrane is its negligible Here é=In(r/a), andr is the characteristic scale. As follows

surface tension. The membrane is immersed into a liquid anio™M the equation, the role of the dimensionless coupling

consequently its area can vary. Zero surface tension is tHePnstant is played by the quantity
equilibrium condition with respect to the variations. In this 3T
case the shape fluctuations of the membrane are determined g=-—. 2
) o . ; 4ok
by the bending elasticity; the corresponding enerdy is
Note that In€,/a)~g~. For real membraneg~10 2-
2 102 and, consequently, we can treggas a small parameter.

, (D) The smallness off means that there exists a wide range of
scalesr <§, where the thermal fluctuations can be treated in
the framework of the perturbation theory.

where the integral is taken over the membrane which is con- Below we consider a double membrane film. We assume
sidered as a two-dimensional objeRt, andR, are its local that at equilibrium the film is parallel to they plane. Cor-
curvature radii, ande is the bending rigidity modulus. Cor- rugations of the membranes in a double film can be decom-
rugations of the membrane induced by the thermal noise leaplosed into undulatiofor bending deformations and squeez-

11
Ry R,

K
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ing deformations. The bending deformations are chara- To find dynamical characteristics of the film one should
cterized by the displacemenf the film as a whole from its solve the conventional hydrodynamic equations in bulk
equilibrium position along the axis and the squeezing de- supplemented by boundary conditions on both membranes.
formation is characterized by variations of the film thicknessIn the linear approximation the problem was solved by Bro-
h (which is the separation between the membranesthe  chard and Lennof who found the dispersion relation of the

harmonic approximation we obtain frofd) the energy squeezing mode
K 346
7/=f dx dy{K(Vzu)2+— (V2h)?|, 3 i o @
4 245
whereu andh are treated as functions eaindy, andV isthe  yhere, is the frequency of the modéy is the equilibrium
two-dimensional gradient. separation between the membranes, arisl the viscosity of

In deriving (3) we disregarded the interaction between e |iquid surrounding the membranes. In deriviyit was
the membranes. First, one should remember the steric intefsgmed that at equilibrium the film is flat. The dispersion

action, which is associated with a certain restriction of ac

. ! . , Trelation
cessible configurations for one membrane in the presence of
the second membrafieThe explicit expression for the en- . PO 3
ergy is® =15, )

_%Ster:f dx dy 3772T22_ 4) of the bending mode was al_so founq in_the linear approxi-
128«h mation. Note that the dispersion relatitf) is correct only if

one neglects the direct interaction of the membranes upon

satisfaction of the conditiofb), whereas the region of appli-

cability of the dispersion relatio(8) does not depend on the

interaction of the membranes, since they move in-phase in

gqh> \/5 (5) the bending mode. The elastic modes associated with varia-

; " 18
whereq is the characteristic wave vector. Second, we shoul lons of the membrane densities are harder [@and(8).

) . . herefore the only effect of the elastic degrees of freedom
take into account the van der Waals interaction. We assume. " amination of the squeezind mode is the incompress-
that the same liquid is inside and outside the film. We can b q g P

then write the van der Waals energy%s Ibility condition
| Ha? Vav,=0. (9)
"%vdW:J‘ dx dym, (6)

Due to the interaction4) two membranes can be treated
independently only on scales smaller tignth. Therefore
(3) is the main contribution to the energy if

Here and below we believe that all variables characterizing

where H is the Hamaker constant. We can disregard thisthe film are functions ok andy and we assume that the

energy, in contrast witf3), if Greek subscripts run overandy.
9y, ' We will consider the renormalization of the dispersion
2

. H law (7) of the squeezing mode due to fluctuational effects.
(qh) < h Nonlinear dynamical equations of the film should be utilized
. o for this purpose. In the long-wavelength limithy<<1 the
Let us assume that the thickness of the film is large enoughqations can be derived phenomenologically. The reactive
to satisfy the inequality (nondissipativi part of the equations can be found by using
H/a\2 the Poisson brackets meth@ske Ref. 19 and also Ref. )18
92>; h whereas the dissipative part of the equations is expressed in

terms of the kinetic coefficients. One should know the ex-
Then (5) is the only restriction that enables us to treat thepression for the energy” of the system to write both con-
energy(3) as the main contribution to the film energy. tributions. Actually, we will need the expression for one
Poisson bracket:

U a(X1,Y1),h(X2,¥2) } =h(X1,Y1) V[ 8(X1—X2) 8(y1—Y2) 1,
2. DYNAMICS (10)

We will examine the dynamics of the double membranewherej, is the two-dimensional momentum density of the
film in the long-wavelength limitgh<1, whereq is the film. The expression(10) (which is characteristic of two-
wave vector of the eigenmodes of the film. Note that thedimensional density of any conserved scalar quantity on a
inequality gh<1 is compatible with(5) sinceg<1. In the  film!®) is motivated by the fact that the two-dimensional
limit gh<1 we should take into account the following vari- mass density of the film isph, where p is the three-
ables which describe the dynamics: the velocity of the film dimensional density of the liquid. Note thpt~phv, since
the displacement of the filrg, the film thicknes, and the  we believe that the membrane thickn@ssan be ignored in
densities of the two membranes since they are conservezbmparison with the film thickneds
quantities. We are interested mainly in the squeezing mode, The dynamic equation for the thicknelshas the stan-
which is associated with the relaxation of the thicknless dard form following from(10)
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SH 3. RENORMALIZATION OF THE SQUEEZING MODE

sh’ (1)
As can be seen froni7), in the long-wavelength limit

whered,=d/dt, and[ is the kinetic coefficient. The second the squeezing mode is very soft. This is the reason why one
power of the gradient appears 1) since the equation anticipates that fluctuational effects which are related to the
should support the conservation law of the liquid inside theMode are relevant. The effects are associated with the non-
film and therefore the right-hand side of the equation shouldn€ar terms in the dynamic equations and can be examined
be a full derivative at any. Due to(9) the second term on N terms of the diagrammatic technique of the first type
the left-hand side of11) describes the sweeping bfby the ~ Which was developed by Wy'l%f, who studied the velocity
velocity v,,. In the linear approximation we can ignore the flgctuatlons in a tu_rbulent fluid. In Ref. 23 the Wylc_i tech-
sweeping term. Substituting the harmonic expres¢®rfor ~ Nique was generalized for a broad class of dynamical sys-
the energy7 into (11) and comparing the result witff), we ~ €Ms. A textbook description of the diagram technique can

gh+V (v, h)=TV2

obtain be found in the book by M&! The diagram technique can be
formulated in terms of path integrals, as was first suggested
I'=h3/127. (12 by de Dominici€® and Jansseff. In the framework of this

approach apart from conventional dynamic variables one
should also introduce auxiliary fields conjugated to the vari-
ables. The dynamic correlation functions of the variables can
then be presented as functional integrals over both types of
fields: conventional and auxiliary. The integrals are taken

Note thatI" is inversely proportional to the shear viscosity
coefficient. The point is that the dissipation describedlby

comes from viscous motion of the liquid surrounding the
double membrane film which is excited only slightly at large

G . . : with the weight exg(?), where.7 is the effective action
The dynamic equation fof,, has the forrft which is constructed on the basis of nonlinear dynamic equa-
AP A EN (13)  tions of the system.

Since we are interested in the renormalization of the
whereJ is the momentum flow from the bulk to the film. Squeezing mode of the double membrane f||m, we will take
Since this term SUpplieS the main diSSipation of the film MO-into account 0n|y the Variab]é—sandva and the Correspond_
mentum, we ignored the internal viscosity. The Poissor]ng auxiliary conjugated fieldp and u,,. We should also
bracke{. 77, ] .} can be reduced to the divergence of the symyemember the incompressibility conditi¢®) and impose an
metric stress tensor for any energy.'® Actually, only the  analogous constraifit,u,=0 on the fieldu, . We can then

contribution associated with the Poisson brackE)) and  rite the correlation function of the film thicknessin the
created by the harmonic ener(f) is relevant for us. We can  form

then write Eq.(13) in the form

h.h =f NN DPD g, €XP(1.7)hh,, 16
ﬁtia+ghVaV4h+VaPs=Ja, (14) < 1 2> tr L PZL ey FX 7) 1112 ( )

wherePg is the two-dimensional pressure, which is related toWhere the subscript ™ implies that in the Fourier repre-

the elastic degrees of freedofaee the Appendix In the sentation we should use only the components of the fields

. e and u, which are transverse to the wave vectprThe ex-
linear approximation relevant for us we can wiite . . . :
plicit expression for the effective action {&6) can be found

J,=—275qu,, (15 by using the dynamic equatiord1) and (14). It can be

o o _ written as the sum of the reactive part and the dissipative part
whereq is the nonlocal operator, which is reduced to multi- ;,— 5

. . reac '—7diss where
plying by the absolute value of the wave vectpiin the
Fourier representation. The expressid®) implies the in-
equality w<7q%/p, which is satisfied for the squeezing -7reac:f dt dzrrpﬁtth pv,V.h
mode.

We will not present here dynamical equations for the K 4
variablesj, andu and for the densities of the membranes. thadda™ 2 maV Vo, (17)
The reason is that the equations ferandu, which describe
the bending mode, decouple in the approximation used from 1
Egs. (11) and (14). Actually, the equations describing the -7diss=f dt dzr[ 3 I'kpV°h
bending motion of the double film are the same as for a
single membrane and the corresponding nonlinear equations
can be found in Ref. 18 and also in Refs. 20 and 21. One
should remember only that the bending modulus of the
double film is Z, as follows from(3). As to the equations The detailed derivation of the effective action for the prob-
for the densities of the membranes, they need a separakem can be found in Refs. 20 and 21.
analysis, which is presented in the Appendix. The only role  We introduce the notation for the pair correlation func-
of the degrees of freedom in analyzing the squeezing modgons. Taking into account only the transverse components of
reduces to the incompressibility conditi¢®). the fieldsv and u, we can write

+iTF(Vp)2+277,ufq(v+iT,u)]. (18
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d2q _ _ whereL=In[hg ¥%r], andr ! is determined by the char-
(h(t,r)p(0,0)= 20 exp(—iwt+igr)G(w,q), acteristic external wave vector of the diagram. The expres-

sion(24) can be found fron{23) if one recalls conditior{5).

. , The presence of the logarithmic contributions implies that
<Ua(t’r)ﬂﬁ(o’o)>:f 2 exp—iwt+iqr) the main renormalization of a correlation function like
G(w,q) is produced by the degrees of freedom with the
wave vectors much smaller tham Therefore, we should
extract from the diagrammatic expressions &fw,q) only
o 2 the contributions corresponding to the interaction with the
<h(t,r)h(o,0)>:f o exp(—iwt+igrD(w,q),  degrees of freedom. o o

(2m) The program can be realized directly in using the lan-
de d2q guage of the functional integral. Let us separate the variables
<Ua(t1r)vﬁ(010)>:J' ——5 exp(—iwt+igr) h, p, v, and u into fast partqwith wave vectors larger than
(2) ), basic partgwith wave vectors of the order ofj, and slow
adp parts (with wave vectors smaller thag). In calculating
Oap™ _Q_}Dtr(qu)- (20 G(w,q) we can forget about the fast parts and keep the in-
q teraction of the basic part with the slow part. We then obtain
The correlation functiongpp) and (uu) are equal to zero the following expression fromi17) and(18):
(for the general property of the technique, see, e.g., Ref. 18
The functionsD andD;, determine the pair correlation func-
tions of the observable quantities and the functiGhand
G,, are the response functions. Therefore, the fundB¢mw)
is analytic in the uppew half-plane. VM, —T = pVeh+ 2pudvt +....  (25)
It is possible to formulate the diagram technique for cal- 2 2
culating the correlation function&l9) and (20). The har-
monic part of the effective actiotV=.7,.ct Z4iss deter-
mines the bare values of the response functions

2

X| 8ap— Gy (w,0), (19

QaQB}

X

,7=J dt dzr[pathwL PV oMyt padt] o

whereh, p, v, and 4 denote the basic parts of the fields,,

is the gradient of the slow part ¢f and the dots designate
the irrelevant terms. The actidi25) is of the second order
overh, p, v, and u and, consequently, the integrals over the

Go(w,q)=— S ITRa2" Girolw,0)=— ohot 2i7q" fields can be tak?? explicitly. Sinae varies only weakly
21) along the lengthg™*, we obtain
The values of the ‘bare’ pair correlation functions satisfy the ~ G(w,q)=—((phw+2i pg)A ™), (26)
relations 6 -1
4 Gy(w,q) _—<(w+Iqu 12)A >mr (27)
Kq 1
ImG=-=D, ImGy=57Dy, (22) A=(phw+2i7q)(w+ix[q¢/2) — kq*m2/2, (28)

which are the consequences of the fluctuation-dissipatiowhere

theorem. In addition to the harmonic part, the effective ac-

tion.7 contains terms of the third order, which determine the 1,2 — ( Sap— q“gﬁ) Mg,
third-order vertices which figure on the diagrams represent- q

ing the perturbation series for the correlation functi¢h8)
and (20). One can check the relatiori22) order by order.
Consequently, these relations are valid for the “dressed’
correlation functiong19) and(20). Note that the relation

and the notation...),, means averaging over the statistics of
m. In calculating(26) and (27) we substituted = phv. Ac-
tually, the terms withph can be and we omit them below.
In averaging(26) and (27) we can assume that the sta-
® tistics of m are Gaussian. The point is that only the simulta-
f o D(w,q)= K_q“’ (23) neous correlation functions afl enter the expressions. These
functions are described by the harmonic eng®)y The pair

which can be proved by usin@2), the analyticity ofG(w)  correlation function ofn is equal to(24). Therefore,
in the upper half-plane, and the asymptotic |a®(w)
~—w" !, which is correct for largan. Actually, (23) is a TL
direct consequence @8), since the integral over frequencies (M= 5 27k’
is just the simultaneous correlation function.

Analysis of the diagrams shows that they contain infra-
red logarithms, which are related to the lines representing the

correlation functionD in Eqg. (20). The lines produce the G(w,q):_foo Gs exp —s2/2)

and we find from(26)

factors —» 27
v.h Vh(t,0 TL5 24 'KFG'TL 32_1 29
(Vo h(t,r)Vgh(t,0)= aB (24 X w+17q+I%Qs . (29
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We see thaG as a function of the frequenay has the cut not depend on the bending elasticity. It is important to dis-
along the imaginary semiaxis, which starts from tinguish the characteristic frequency from the attenuation of
w=—iT'kq%?2 and goes to-ix. The effective length of the the membrane bending mod8), which has the samg?®

cut can be estimated as®/ , which is the new character- dependence on the wave vector. We stress that the strong
istic frequency associated with the fluctuations. Let us comfluctuation effects are observed only for dynamics. The static
pare the frequency with the position of the pole in the barecharacteristics are not influenced by fluctuations because of

expression: the smallness of the coupling const&x This is the reason
Ty why we need only the harmonic part of the ene(@y
a7 9 (30) Strong dynamic fluctuations ¢foccur for the wave vec-

T.0%  (an3
I'xg”  (gho) torsq=\/g/h. For smaller wave vectors the fluctuationshof

We conclude that the fluctuation effects dominate in the reare weak. Nevertheless, even for the wave vectors there is a
gion gY?<qghy<g'®. We can now justify the disregard of memory of the region of strong fluctuations, which is the
pho in comparison withyq in the above expressions. When renormalized value of the kinetic cogfficieﬁtin Eq. (11):
qh~1, The bare valug1?) is substituted byi'~g~YI'>T. Note

also that to analyze the dispersion relation of the squeezing
mode in the limitq< \/g/h starting from(11) we should take

and atqhy~ g into account in addition to the enerd§), the steric contri-
bution (4) and the van der Waal&) contribution to the
energy. As a result, we find

phow/ 7]q"" pK/ 772h0~a/h0< 1,

phow! nq~ prg? n?hy<1.

Performing Fourier transform aR9) over frequencies,

: ~ . [9m°T? 10Ha?
we obtain =—ilg?l ———-
e 0=-iIq (64Kh4+w-
. K
G(t,q)=i ( 1+ g q3t) exp{ -3 rqgbt. (31 Let us discuss the possibility of checking our predictions

experimentally. The membranes can be studied by a variety
The expressio31) is correct for a positive timé For nega-  of experimental techniques. Lately, laser «tweezers» have
tive timesG(t)=0 due to the causality principle sin€gis  become a useful tool for probing dynamical properties of
the response function. We see frdB1) that in the fluctua- membranes. This technique enables us to obtain direct infor-
tion region g*?<gh<g'? there appears an intermediate mation about amplitudes and characteristic times of dynami-
power asymptotics ™%, which at large times is changed cal fluctuations of different objects consisting of membranes.
by the exponential decay. This means that the squeezingor details see the monographyand recent experi-
mode is described by a dynamic equation, which is nonlocaents?®—3! We can also mention force apparatus measure-
in time. ments?® which make it possible to investigate dynamical re-
The above assertion is correct for the wave vectorgponse for two very thin lamellar systems confined between
q=\/g/hy. In the limit ghy< /g we retumn to the local equa- the walls, and the classical light-scattering experiments. Be-
tion (11) but with the renormalized kinetic coefficieht The  cause of relaxation of the membrane fluctuations, the scat-
guantity can be found by integrating the weight éxf)(over  tered light has a broadened spectral distribution compared to
the degrees of freedom with the wave vectqes \/g/hy. the incident light. Despite the small broadening, the modern
The main effect is attributed to the sweeping term in thetechnique of light beatingintensity fluctuation spectros-
effective action(17). Because of the integration over the de- copy) allows one to obtain information about eigenmodes of
grees of freedom with the wave vectars \/g/h, the term  the system.
iTI(Vp)? in (18) for the long-wavelength degrees of free- The conclusions concerning the renormalization of the
dom is renormalized. We find for the renormalized value squeezing mode, in our opinion, are interesting, both in their
1 own right and as a new test of the membrane fluctuations.
—T=— f dt d?r(v(t,r)h(t,r)v(0,00h(00)), (32 The research described in this publication was made pos-
4T sible in part by Russian Fund for Fundamental Research
where averaging is performed over the degrees of freedor@rants. One of the authofE.K.) thanks Max Planck Institute
with the wave vectorgj=./g/h,. Using the renormalized for Physics of Complex System®resden for supporting
expressions for the correlation functions, we obtain the estihis stay at this institute.
matel'~g Y>T.

=l

APPENDIX
4. CONCLUSIONS Elastic modes

We demonstrated that fluctuations essentially modify the  Here we consider the elastic modes associated with the
character of the squeezing mode due to its nonlinear couelaxation of the surface density of molecules that comprise
pling with transverse shear hydrodynamic mode. The flucthe two membranes of a double film. To find the dispersion
tuation effects lead to nonlocality of the equation for therelation for the modes we should start from the elastic energy
mode; the corresponding Green’s function(3d). The new associated with the variations of the surface density of mol-
characteristic frequency of the mode related to the fluctuaeculesng. In the harmonic approximation the elastic energy
tions isw~Tq* 7 (q is the wave vectdr remarkably, it does of a single membrane s
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result, we find a linear system for, andv,. We can then
Her=5 f dABs?. (A1) write the condition for the existence of nontrivial solutions of
the system, which for the symmetric case in the simplified
Here form is
s=(ns—no)/no, thO qho 2
2 2
whereng—ny is the deviation of the surface density of mol- v (COthT_COth 7) —| VI VES)
eculesng from its equilibrium valueny, and the coefficien
has the meaning of the inverse compressibility of the mem- x| v Cothm_coth q_h‘)”
brane. The elastic energy is the sum of ter@#$) for both 2 2
membranes that constitute the double film. qho Vahy
Let us consider the elastic modes in the linear approxi- X|V coth—— coth——
mation. We assume that at equilibrium the membranes lie in 2 2
the planez= *hgy/2. The deviations of the membranes from Vaho aho
the positions can then be characterized by their displace- +{V COthT—COIhT”=0- (A7)

mentsu, , along thez axis. To find the dispersion relations
for the modes one should solve conventional hydrodynami¢iere we introduce the notation
bulk equations supplemented by boundary conditions at the

membranes. As we will see, the frequencies of the elastic Ve = wp B=i ﬂ
modes are small compared to sound frequency. Conse- 79” nw’

uently, we can use the convential linearized equations for . . .
gn inc)(;mpressible liquid? g and suggest that in the case of elastic modes one deals with

the frequencyw> 5q?/p. For the antisymmetric case the
7, VP condition can be obtained frorfA7) by substituting coth
Vkvk=0, ; V — ot Uk:_p y (AZ) —>tanh.
] ) ) It is difficult to find the dispersion relations froit\7)
wherek=x,y,z. Since the membranes are immersed into the, 4 the analogous equation for the antisymmetric case in a

liquid, they move with the velocity of the liquid which IS ganera) situation. Below we consider two different limiting
continuous near the membranes. The boundary conditionS;qes and assume that

for Egs.(A2) for a membrane can be found in Refs. 20 and
21. In the linear approximation they are 7

2

<1, (A8)
P01+ KV U1 7= —| Py 2, (A3) Bphy
OUs =1 (Ad) which is natural sincdg is much larger than the molecular
tLe el length for real films. First, we consider the short-wavelength
psatva l,2+ Bvag 12— anZv aJl,Z’ (A5) limit
S12+ V041270, (AB) 7? \1?
ghy> Bphg| (A9)

where the “floors” designate a jump at the membrangds

the two-dimensional mass density of amphiphilic moleculesyye then obtain the same dispersion relation as for the elastic
and subscripts 1 and 2 numerate the membranes. The terfsyde of a single membrafie?

with p® in Egs.(A3) and(A5) are negligible.

Now, we will solve Eqs(A2) with the boundary condi- _ =V3—i [ B? s 3 AL
tions (A3)—(A6) under the assumption that all variables are ~ “~ "~ 2 4np q (A10)
proportional to exp{iwt+igx), where w is the frequency, . )
andq is the wave vector. This means that the thickness of layers near the membranes,

The velocity of the liquid is divided into two parts: po- Where the hydrodynamic motion occurs, is much less tian
tential and solenoidal. The potential component is related t§"d: consequently, the membranes can be assumed to be

the pressure which obeys the equation nearly independent in this case. Note that dug¢A8), the
» condition (A9) is compatible withghy<1, where the mem-
(Vz—g9)P=0. branes cannot be regarded as independent in considering,

say, the squeezing mode. Therefore, one should be careful:
under the conditiorfA9) the membranes can be treated as

—ipwo=7(Vi-q?)v. nearly independent only in examining the elastic modes. In
the opposite long-wavelength limit,

The solenoidal component is described by the equation

Thus we can explicitly write the solutions of the equations
inside and outside the film in terms of the velocity of the 7? |2

membranes. The expressions are slightly different for the qho<<B h ) , (A11)
symmetric §;=s,) and the antisymmetricsg = —s,) cases. Pl

Using the solutions in bulk, we can express the jumps in Eqswe deal with two different dispersion relations. In the sym-
(A3) and(A5) in terms ofv, andv, on the membranes. As a metric case the dispersion relation is
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+v/3—1 /B2\13 s It can then be verified that the linear coupling between the
0= 5 <%> (A12) elastic and the squeezing degrees of freedom described by
the term withx in (14) is negligible. The nonlinear terms in
This is the same dispersion relation @sl0) but with the  Eqgs.(14), (A14), and(A15) lead to the interaction of differ-
doubled membrane elasticity, which is natural for the dOUb'%nt modes. Exp||c|t ana|ysis shows that the fluctuation ef-
film. In the antisymmetric case the dispersion relation is  fects do not affect appreciably the linear dispersion relations

Bgh, (A10), (A12), and(A13) due tog<<1. The same holds for a
w=—Ii 5y (A13) nonlinear interaction with the bending degree of freedom,
K which (because of the same inequaliy<1l) does not
Thus we encounter a simple diffusion. change the results obtained in the linear approximation.

The dispersion lawgA10), (A12), and (A13) show that
the frequencies of the elastic modes are small in comparison
with the sound frequencyqg (wherec is the sound velocity
which justifies our using the incompressible hydrodynamic
equationgA2). Note also that for the mod@\13) the con-  *’E-mail: kats@landau.ac.ru
dition (A8) ensures the inequalitw> g%/ p, which was
suggested in the derivation of the relati@k7) (the inequal-
ity enables us to disregard the potential part of the velpcity
Thus, the conditiofA8) makes our scheme self-consistent. o _
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A system of self-consistent equations for determining the hydrodynamic resistance of dilute
fibrous porous media in the case of arbitrary low Reynolds numbers and arbitrary random packing
of the fibers in the media is derived on the basis of a multiple-scattering hydrodynamic

theory. The equations obtained are applied to the case of isotropic packing of the fibers and to
the anisotropic case when all the fibers are orthogonal to the direction of fluid flow.

Equations are derived and analyzed for the velocity correlation function in a random fibrous
medium. The longitudinal and transverse diffusion coefficients of a passive impurity embedded in
the fluid are calculated. €1998 American Institute of Physids$51063-776(98)01506-4

1. INTRODUCTION 2. DESCRIPTION OF THE MODEL OF A FIBROUS POROUS
MEDIUM

An extensive theoretical literature has been devoted to ) ) ] ]
various aspects of the hydrodynamics of granular media and  OU" model of a porous medium is a three-dimensional
suspensions. We call attention to recent papers and surveydace filled with randomly distributed, arbitrarily oriented,
which offer detailed bibliographies on the subj&ctin par- infinitely long, polydisperse cylindrical fibers. For a math-
ticular, the hydrodynamic resistance of a porous mediunfmatical description of such a fibrous medium it is conve-
formed by rigid spheres has been calculated by thdlent to choose an a_rbltrary plg_ne containing the average
ensemble-average approd@f! Howells® also determined vel(_)cny vggtor, wherein the pos_|t|0n of each_ﬂber of ra(_Jllus
the resistance of a porous medium consisting of randoml)% IS specm_ed by a vegtqua, \_Nh'Ch characterizes the pomt_
distributed parallel cylindrical fibers. However, very few the- of intersection of the fiber W't_h th_e plane, and_ by th? unit
oretical and computational papers have been published dfngent vectom,, as shown in Fig. 1 for a single fiber.

three-dimensional media formed by long fibers or, in particu—BeIOW the x axis is directed along the average fluid flow

lar, fibrous filters, despite the importance of this probfér? velocity, and thez axis along a normal to the plane selected.

Apart from a phenomenological stufybased on the Brink- Thr?b s(tja::strlcail en;s:mbrze cr)r:b':he mes\ﬁ:i F;]O“\)/uf rrilsdlia der—
man equatiort® only a few recent papers have reported in-Scrbed nere, 1.€., the ensemole ove ch averaging 1S per-

vestigations of three-dimensional fluid flows through porousIS;n;tei"gr;S'S defined by the combindd-particle distribution

media on the basis of the Navier—Stokes equations. The re-

si_stance of yarious three-dimensional perigdic arrays of_infi— fn=Tn(pP1,N1,81:02,N5,80; .. ;PN NNAN)-

nitely long fibers as a function of the density of the medium » o ) o

was first investigated in Ref. 16, which included a calcula- !N @ddition to the distribution functions, it is also neces-

tion of the resistances of square and hexagonal arrays, &1 0 specify in the space of straight lines a measure over

well as a review of theoretical papers on the determination of/Nich to perform averaging. If the unit vector is specified by

the resistance of two-dimensional periodic and random fi{he spherical angle@ andé¢, the uniqueto within a constant

brous media. The use of the variational principle to calculatd@CtoD measure which is invariant under a group of ’TAOt")nS

the hydrodynamic resistance of three-dimensional periodi®f the three-dimensional spaés is written in the fornt

arrays of_ fibers was discussgd in _Ref. 17_. The _influence of dy=sin 6 cos dé d¢ dx dy. 1)

the relative position and orientation of fibers in a three-

dimensional array on the hydrodynamic resistance has been All averaging will henceforth be performed over this in-

investigated analytically? variant measure. Often it is useful to express distribution
In this paper we investigate the averaged characteristicginctions in terms of correlation functiod®.In particular,

of the hydrodynamic flow of an incompressible fluid throughfor N=1,2,3 we can write

a porous medium formed by randomly distributed, randoml

ori:nted, infinitely long cyIi)r/1dricaI fib{:rs of various diam-y () =01(ty),  Ta(ty,t2) =01(t)G1(t2) +0a(ts. o),

eters. Procee_ding fr(_)m the Na_vier—Sto_kes equations, we de- fa(ty,ty,t5)=041(t1)91(t2)g1(ta) + g1 (t1)ga(ts,ta)

rive self-consistent field equations, which lead to the Brink-

man equation in the long-wavelength approximation. We +01(t2)ga(t1,t3) +91(ta)ga(ts,to)

investigate the viscosity renormalization properties, calculate +gaty ) ta)

the velocity correlation function, and determine the diffusion st

coefficients of a passive impurity in the fluid. wheret represents all the variables characterizing each fiber.

1063-7761/98/86(6)/11/$15.00 1156 © 1998 American Institute of Physics
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dk
V(z,¢)=% fvm(k3)exp(iksz+im¢)2—:. (5)

o, },\ /\\ /\ >¢ The Fourier surface harmonicg,(k;) are expressed in
n N

terms of the coefficients of the three-dimensional Fourier in-

0 Y tegral for the velocity:

. d3k
V()= [ V(i3 06 ™2 ko),
Vg X ©®
0 / \ * whereJ,, is the Bessel function of ordem, and K, ,,k3)
denotes the cylindrical components of the vedtoAssign-

ing the distribution of the surface forces in the form

FIG. 1. Model of a porous fibrous medium.

dk
F(r)z}n: fFn(k3)exp(ik3z+in¢)5(r—a)ﬁ, )

we can calculate the three-dimensional Fourier spectrum of
3. THE SINGLE-FIBER SCATTERING OPERATOR forces exerted by the fiber on the fluid:

To determine the hydrodynamic resistance of the porous _ . ing
medium investigated, we use the Navier—Stokes equations F(k)_; (—D)"2mIn(k, a)e" Fy(ks). ®
for an incompressible fluid in the Oseen approximéitton
Knowing the spectrum of surface forces, we can find the

p(Up-V)V=uV?V=Vp, divV=0, (2)  flow field V5 induced by these forces:
which is valid at the low Reynolds numbers R¥ja/v . " d3k
<1, wherep is the density of the fluidy, is the average Vs(f)=f Go(k)F(k)€' 'r(zw)sy €)

velocity, a is the radius of the fiber, angd and v are the

dynamic and kinematic viscosities, respectively. These equawhereGy(k) denotes the bare Green’s function for the free
tions must be solved with satisfaction of the boundary con{luid:

ditions. In particular, if slip can be disregarded, the velocity
at each fiber must be equal to zero. Before solving E2js.
for a random configuration of fibers, we proceed by analogy
with Refs. 22-25 and define the scattering operator for a N

solitary fiber embedded in an arbitrary external flow, whichHereIl(k) is the projection operator, which can be written in

. (k
GO(k): k2 ( )

is regular at this site. the component form
Any fluid flow can be represented by the Fourier expan- K.k
. i*
sion ILj=8ij— 1z (1D

3k

V(r):f V(k)e'kr d 3. (3) We assume here that the total velocity field is continued
(27) continuously inside the fiber, where it vanisté$3 Expand-

When a fiber is embedded in an assigned flow, forces appeg}g.the velocity field\/s(r) on the fiber surface into a Fourier
on its surface and act on the fluid in such a way as to alter th&€'i€s, we obtain

flow field and sa}tisfy the boundary conditions. The ind_uced Ver(ks) =™ "K;jmn(ks) Fjn(ks), (12)
forces depend linearly on the freestream velocity. A linear ) T )

relation for an arbitraryrth fiber can be written for the Fou- Where the matrixnn(ks) is given by the equality

rier transforms of the resulting forces and the freestream flow

feld: Kima(ko)= [ Gy ks ko) In(ki2)5(k, )
3
In papers on hydrodynamics the matiig(k’,k) is usu- Setting the total fluid velocity + V on the fiber surface

ally called the friction coefficient matris but in this paper equal to zero, we obtain a system of equations for all the
we prefer, by analogy with wave problems, to call it the grface-force harmonics:

scattering operator for theth fiber. _
To calculate the scattering operaté’r, we initially I "Kijmn(k3)Fjn=—Vim- (14
choose a coordinate system such that zhexis coincides |f we introduce the reciprocal matrix
with the axis of the fiber. We represent the freestream veloc- .
ity on the surface of a fiber of radiwsby the expansion KijmnKjknt= ik Omt. (15
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m@ FIG. 2. Multiple-scattering series for the Green’s funct®n
»

@

©
T

we can express the force harmonics in terms of thery in problems concerning the multiple scattering of waves
freestream velocity and derive an expression for the singlein randomly inhomogeneous medfato calculate the aver-

fiber scattering operator: aged characteristics of fluid flow in a porous medium. Ref-

Py ;L ) , erence 29 is probably the first paper in which attention is

Tij (K" k)= =2 (kg —ks) Tij (ks ki k. ) called to the analogy between the hydrodynamics of granular

media and the theory of the multiple scattering of waves.

= _2775(‘(3_"3)% KijnmJIn(K] 8)dm(k ) This analogy has since been used repeatedly in calculations
’ of the viscosity of polymer solutiod%and various hydrody-
Xexping' —imy). (16 namic properties of suspensions consisting of rigid spherical

particle$?-?> and rods’! For our investigation of the hydro-
dynamics in fibrous porous media, we use the diagram tech-
nique developed for multiple-scattering theory, which was
described in detail in Frisch’s revie¥.In particular, the
Green’s function of the Navier—Stokes equations for porous

In the general case where thah fiber intersects the
plane selected at the point specified by the veptpand is
directed along the vectam,, it is readily shown that the
scattering operator has the form

Tk k)=—2md[n, (k' —k)]exdi(k’ —Kk)p,] media, which specifies the flow velocity of a fluid in a me-
dium when a delta-shaped force is applied to it, can be writ-
XE Rn_l‘]n(k“jaa)‘]m(kfaa) ten as the sum of sequences of scqttering processes on vari-
n,m ous fibers. A diagram can be associated with each sequence

of scattering processes. We note that a diagram representa-

xexp(ing’ —imi), 17) tion of a sequence of interaction processes was used to cal-
wherek!" is the transverse part &f with respect to thexth  culate the friction force by “operator transfer” in Ref. 33.
fiber: The diagrams for the Green’s function prior to averaging

K=|k—n,(n,-k)| over the fiber positions.anq orientations are shown in _Fig. 2.
L e ' The total Green’s function is represented by a heavy line, the
When the conditiorkfa2<1 holds for small transverse bare Green’s function by a thin horizontal line, and the op-
harmonics, only the term with=m=0 can be retained in erator for scattering by theth fiber is represented by a circle
the sum in Eqgs(16) and (17), and the Bessel functiod,  containinga. The overhead line shown in the last diagram
can be replaced by unity. In this case the expresgiénfor  connects identically numbered fibers. All possible sequences
the scattering operator assumes the simple fornof scattering processes contribute to the Green’s function.
?=—(27r)5(k§—k3)IA<501. Neglecting term3kaa2 in the  After averaging Wit_h distrib_ution functio_ns expressed in
integral used to calculatiy,, we can also assume to the terms of the correlation functions, we obtain the Dyson equa-

same accuracy that one of the Bessel functions is equal {1 Shown in Fig. 3 for the Greens’ function. In the dia-

. . . ~ grams for the self-energy operafbrthe correlation function
unity. In this case the expression fifgo can be reduced to is denoted by a dashed line. After averaging, each indepen-

the form dent fiber introduces into the diagram a multiplierwhich
N . 2 denotes the density of the points of intersection of the fiber
Koo= f Jo(k, 2)G(k, 'k3)(gT)2 axes with an arbitrarily selected plane. The series constructed
) usually lead to divergent expressions, because the bare
:< J' ek TG (K) d°k > (18 Green’s functions are us&d? The divergence is usually re-
(2m)? a’ moved in hydrodynamic problems by segregating the class

where the angle brackets signify averaging over the surface
of the fiber forr=a. We therefore see that under the condi-

tion k?a?<1 the general equation for the scattering operator _ . @
reduces to a result that can be obtained by the Burgers
method!82627

®-0-60.- 500

Knowing the hydrodynamic scattering operator, we carFiG. 3. Dyson equation for the Green’s functiGnand series representation
use power series in the scattering multiplicity, as is customef the self-energy..

4. MULTIPLE-SCATTERING HYDRODYNAMIC THEORY
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® - 0+ 5—0—0+ 5-0—0-0

of diagrams for the self-energy operatdr and summing only on the longitudinal component &f and can be written
them®.34 We introduce the self-consistent operalbr to  in the coordinate system associated with a fiber in the form

FIG. 4. Diagrams specifying the self-consistent self-energy operator.

which contributions are made from all graphs without corre- Tii=2m8(K,— k) Ti; (Ka) (22)
lation functions and diagrams without any mutually inter- . .
secting overhead lines, which indicate identical fibers, as Trij=2775(ké—k3ﬁij(k3)- (23

shown in Fig. 4. Diagrams of the type indicated in Fig. 5 do

not appear in the definition of. If we introduce a self-
consistent Green'’s function satisfying the equation

We note that upon averaging over the fiber positions in the
plane selected, the scattering operator becomes proportional
to (k| —k,). It is evident from Eq(17) that the definition

é:GOJFGOié, (19) of the scattering operator itself contains the delta.fun.ction

) ) ~d[n-(k"—k)] of vector components which are longitudinal

and the self-consistent operator for scattering on an indirelative to the fiber. The product of these delta functions can
vidual fiberT* defined by the equation be written in the form

FJa_Ta ar~ ST 1

T=T*+T*Gy2GT?, (20 Sk, —k,) 8- (K —K)]=8(K' —k) ——

. . . = cos @’
we obtain a simple expression for the self-energy opeiator

in terms of the self-consistent scattering operator: where 6 is the spherical angle of the unit vectorin the
coordinate system which we have chosen. Averaging over
izz (T, (21) the measurdl) now reduces to ordinary spherical integra-

tion. Bearing this remark in mind, we can write the self-

where the angle brackets denote averaging over the positidiPnSistent field equations for the scattering operator and the
and orientation of each fiber. The system of self-consistenf"€€n’s function in Fig. 6 in this approximation as follows:
equations(19)—(21) specifying the scattering operator and - -

the Green'’s function is shown in graphical form in Fig. 6. Tij(k3):Tij(k3)+Til(k3)j (Gim—Goim)

All diagrams for the total self-energy operafrcan be ex-

pressed in terms of the self-consistent quantities introduced v d’k T, (ka) (24)
above, as is shown in Fig. 7. (2m)2 "MitTSh

The Bethe—Salpeter equation for the averaged two- ~ . -
particle Green’s functiol, which characterizes the velocity Gij "(K)=Ggij (k) = Zj(k), (29
correlation equatioif can be derived analogously. The ~ ~
Bethe—Salpeter equation and the series for its kernel are 2 (k) =n(Tjj(k-n)). (26)
shown in graphical form in Fig. 8. The vertical lines in the In the last equation the averaging is carried out over all
diagrams for the kernel of the Bethe—Salpeter equation corfiber orientations with the distribution functidifn). For the
nect identically numbered fibers. inverse of the scattering operator we obtain the following

equation from(24):

5. SELF-CONSISTENT THEORY OF FLUID FLOW IN
FIBROUS MEDIA

We first investigate the system of self-consistent equa- V /7
tions for a homogeneous and isotropic porous medium. The @ = @ + @ - @
distribution function with respect to the directions of the fi-

bersf(n) is a constant equal to #/in this case. We confine

the present study to the thin-fiber approximatikas<1. The @/\N

bare and self-consistent scattering operators then depen:

! ﬁ | @%(@)

_ FIG. 6. System of self-consistent equations for the Green’s function and the
FIG. 5. Example of a diagram that does not contribute to the ope¥ator  renormalized scattering operator.



1160 JETP 86 (6), June 1998 A. L. Chernyakov

J— FIG. 7. Diagram representation of the self-energy operator in
@ = % + M + + . terms of the self-consistent Green’s function and the renormalized
scattering operator.

- _ ~ d?k ya((k-n)2+ x?)12

Tij l(k3):Tijl(k3)_J (Gij_GOij)W- To:4ﬂ'[|n >

It is evident from this equation that the renormalized 1(k-n)?2 (k-n)?+«2]°?t
scattering operator is expressed in terms of the self- Tz n (k-n)2

consistent Green'’s function in the same way as the bare op-
erator is expressed in terms of the bare Green's functio®n large scales, where the conditikfi x><1 holds, we can

(18): write
- - d%k A 1 (k-n)? (k-n)?
T l(ky)=— fex ik, NG == - 2 = -z
i () < Rk, Gy (277)2>a @7 T hyan2) |1~ 2 @ in(rvani) "~ 2
Numerical methods must be used for the exact solution 1 (k-n)?
of these integral equations. We therefore consider several 2 K2 In(yax/2)|

approximations that can be used to obtain simple analytical

results. We first calculate the scattering operator, specifyinflow, averaging the tensﬁ'rij over all directions of the vec-

the self-energy in the form tor n and separating the transverse part, we obtain the self-
energy equation

3 (k)= —1I1;; (k) k4(K?). (28
If we restrict the discussion to the long-wavelength approxi- S =11, ﬂ[ E - E k—z
mation and regard the function as a constant, this form of 7 in(yaxf2) [ 6 300« In(yaxl2)
the self-energy operator corresponds to the situation of aver- 3 k% In(k?3/ k?)
aged fluid flows satisfying the Brinkman equatibhwith a - %m]- (30
tensor of Darcy friction coefficients proportional to the unit
tensor. The Green’s function then has the form Comparing this equation with E¢28), we obtain the self-
consistency condition
G =y (0 ok, w12 @9 , 5 16w
K= (31

=— N ——~.
where we have introduced the notatikp=Uy/2v. Substi- 6" In(yax/2)
tuting this expression for the Green’s function into E2i7), |t the material is polydisperse, the right-hand side of the
we obtain an integral representation for the scattering opergxier equation must still be averaged over the fiber diam-
tor. The scattering operator is calculated in the AppendiX. eters. The wavenumber-dependent part of the self-energy can
We confine the analysis of an isotropic medium to a highyg jnterpreted as the decrease in the friction coefficient in the
packing density, so that the inertial effects can be disregyinkman equation as the characteristic flow dimensions de-
garded. As is shown in the Appendix, the scattering operatog;ease. The expressidB1) for the self-energy is valid for
in an arbitrary coordinate system has the fo{®8) in this infinitely long fibers or, as shown in the Appendix, fiot
case. >1, if the finite fiber length R is taken into account. In the
large-scale domairkl<1, the expression derived in the Ap-
, pendix for the zero-angle scattering operator of a finite cyl-
inder can be used to obtain an equation for the self-energy in
where this case:

~ 1
Tij :To{ 5” - Eniﬂj

-

7

FIG. 8. 9 Bethe—Salpeter equation for the two-particle Green’s
function; b series representation of the kernel of the Bethe—
Salpeter equation.

1.2.4°.73.

b

\
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~ 4a 5 3 k?In(2«l/m) 0.30 £
it s et r T [ (32 /
ac In(yax/2) | 6 10 k° In(ykal2) 0.5l
where « denotes the volume fraction of the fibers in the
medium. The quadratic term in this equation is often inter- 0.20
preted as renormalization of the viscosity. If this interpreta- 0.15 x:al
tion is applied to the porous media under investigation, as
opposed to suspensiofis>>the viscosity decreases as the 0.10}
packing density increasés. 2ol
We now consider an anisotropic porous medium consist- 0.05 +
ing of fibers oriented perpendicularly to a specific preferred :
direction. We assume that the fluid flows in this direction on 0 001 002 003 a

the avergge_ ?uch a medium !s c')fter'1 treated_as a model ffc. 0. Longitudinal (f) and transversex() friction coefficients and their
fibrous filterst* The angular distribution function for this anisotropye versus the packing density.
model is

f(n)=

a a
5<¢— 5) +5(¢+ E) ; (33 Averaging over the angles of inclination of the fibers and
then isolating the part of the averaged scattering operator
where the angle) is measured from the preferred direction. yhich is transverse t, we obtain an expression f&rij :
For a uniaxial anisotropic medium we seek the self-energy in

the form iij = 2n1T;j (T oo+ Tg) + 201154114 [ 2T 13— (Tt Toa) 1.

2 siné

Comparing this expression with Eg4), we write equations

N__ — _TT.. 2_17. ) 2_ .2
2 (k) =~ Iy (k) L~ Iy Iy (e = K1) (34) for determiningx, and

Here we have taken into account that the porous medium in ya K| 111
our model has a preferred direction coinciding with the Kﬁz —167n|In T(Kl'f' K|)+ P E} ,
X axis and that the tens&”— must be transverse relative to LA (36)
the vectork: 5 ( ya |71
kT =—4mnj|In S KL
kiEi,:Eijkj:O. 1
, ) ya K| 1
The Green’s function now has the form +2/In (ke +K))— e 2 )
_— Iy 0T (kf = %) In the polydisperse case the right-hand sides of these equa-
Gij=| 1L (k)— K2+ 2ik- Kk, +(Kﬁ— Kf)nﬂ tions must be averaged over the fiber radii.
The solutions of these equations are shown in Fig. 9 as
x 1 (35) functions of the packing density=4mna?. Clearly, the an-
k?+2ik-k, + Kf ' isotropy of the tensor of friction coefficients in the Brinkman
i i . ) . equation
The Green’s function contains the isotropic te{28) with « .
replaced bykx, and an anisotropic term proportional to the KT Ky
difference (f—«). Substituting this expression for the €= KZH

Green'’s function into(27), we obtain an equation for the . o . . . -
renormalized scattering operator in an anisotropic mediu [ncreases slowly with increasing packing density, remaining

The scattering operator for an isotropic medium has alread ,t the levele~0.3. Figure 10 shows the results of calcula-

been calculated. We analyze the contribution of the aniso-°N> of the resistance force as a function of the packing

tropic part of the Green’s function to the scattering operat0|denSIty for an gnlsotroplc medium V\,"th and_ W'tho_Ut aII_ow-
for ks=0 and the low fluid flow velocitiek, <x, . Evalu- ance for the anisotropy of the Green’s function. It is evident
* .

ating the simple integrals, we obtain a diagonal scattering?hat disregarding the anisotropy of the Green's function, as

operator with the following matrix elements in the coordi- n Ref. 14, leads to a somewhat higher resistance force.

nate system associated with a fiber: If_ the anlsotrqpy is ignored, it is easy derlye thg self-
consistency condition for the model under consideration:

Frman]in 220 4+ — 2 va 1

11=4m| n 4 (Kl KH) KL+KH 2 ! k%= —16mn|In 7(K2+ ki)llz_ E

-1
=~ ya K| 1 2 K2\ -1
= — (K, +k))— + = K
T22 47| In 4 (Kl KH) K+ K| 2 ' + Wln 1+ K_’; ) (37)
*

T 207 |n7’_aK o and the expression for the resistance force per unit fiber

33 2t length



1162 JETP 86 (6), June 1998 A. L. Chernyakov

Fiut, o = [ =2 dQ

12 Bij=4nUyGi1Gjq | T16(n- k)f(n)ﬂ' (41)

10f where the integration is carried out over the surface of a

sl sphere. For an isotropic medium

~ yak| ! 1

6! T11:47T In T 1_ Enlnl .

4r Integrating over angles, in this case we arrive at a correlation

2t function of the form

417)?
. . . . _ 2 ( 24 ,.2\2
0 001 002 003 @ Bij = 4nUorn a2 el lia(k™+ <57 7

FIG. 10. Resistance force per unit length of fiber of the model filter versus 21\2 k4
packing densityl) Calculated with neglect of the anisotropy of the friction x| 1= L + L (42)
coefficients;2) calculated with allowance for the anisotropy; the dashed 4K? 32k

curve is plotted with allowance for the inertial effects at=R&2. ) 2 o ) ]
where kf =k?—k{. For a material in which all fibers are
oriented orthogonal to the direction of flow, similar calcula-
tions give

a 1
F=—4muUg In %(KZJF k%)Y >

(4m)? IT; 1115,
B =N G an2) 2 K (KF k22

For this model the velocity correlation function in coor-

: . N ) . dinate space is equal to
in which the inertial effects are taken into account. At high )
, (4m)? I, 00,6 ok
Bij(r)=4nU J

velocities,k? > «2, Eq.(38) goes over to the equation for the
* q q
OlIn(yax/2)1?) k, (k*+«%)? (2m)®"

2 (43

1+ —
P

-1
: (38)

L
7I’]
2K

resistance force of an isolated fit8rand in the opposite
limit the self-consistency conditiof87) coincides with the (44
result obtained in Ref. 14. The dotted curve in Fig. 10 rep¢ we introduce the function

resents the resistance force as a function of the packing den-

sity for Re=0.2. _J 1 o, A%
Bolw!)= | K@+ ® (2m)°
6. VELOCITY CORRELATION FUNCTION IN A FIBROUS 1 1
POROUS MEDIUM — e — -
4W|02K(r X) KO 2K(r+x) ,
To investigate the velocity fluctuations in a random me- ]
dium, we introduce the velocity correlation function we can represer;;(r) in the form
e K B, (=dn2—2"" |5 58
Bij(r):f Bij(k)€ 'r(zw)3:<vi(r)vj(0)>, (39 ij(r)=4n ofin(yari2) 2| 9119151
where By; (k) =(Vi(k) V[ (k)) satisfies the Bethe—Salpeter dJ dJ 9
equationi.2 In the kernel of the Bethe—Salpeter equation for a + 5‘15_xj+ 5ila_xi Ba+ X OX; Baf. (49

dilute medium it is sufficient to retain only the term corre-

sponding to the first diagram in Fig. 8. In this approximationThe B; are expressed in terms 8 as follows:

we have the following equation for the correlation function: B d 5
- - 1=~ 72 Bo»
Bij (k) =U38i18,18(K)+ Gis(K)Gjp(k)n oK
- ~ d3k1 B.— (92 1 1 4
XJ <Tsm(kvk1)Tpn(kak1)>an(kl)(2T- 27 xak? | K2 50T an N (x| )’

(40 Bs= > (B In 4
= ——| 4 By~ —In ———
We henceforth assume that the inertial effects and the ax?ar? | k* 4w y(r+x)

nonzero value o€ can be disregarded. We are also interested r24+ %2 4
in the solution in the regiok< «, where the scattering op-
erator can be considered to be independerit. diVe solve
this equation by expanding in powers of the denaitin the In the regionkx>1 the exponentially small contribution
zeroth approximation the solution corresponds to an unperef B, to theB; can be neglected. The remaining logarithmic
turbed flow. In the linear approximation with respect to theterms make the correlations decayrag at large distances.
density we obtain the correlation function in the form For small values of the longitudinal coordinate<1, it is

- 32mk? In y(r+Xx)
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necessary to add the contribution of the functi®y) which %

behaves as~! at kr>1. The correlation of the longitudinal 2D, = f f_szz(k)eXp(ikonT— kiDj ||

velocities in this region decays as . The value of the

correlation tensor at zerd;;(0), is readily determined di- d3k

rectly from Eq.,(44). The tensor is, in fact, diagonal and has —ky DJTDdTW- (48)

the components
3 5 -1 In calculating the longitudinal diffusion coefficient we

811=6822=6833=—U§<In I can ignore the terms in the exponential functi@y) that

32 yak contain

Clearly, the kinetic energy contained in the longitudinal ve-

. . . . . m
locity components is three times higher than that in the trans- Dj=r— f B11(k) 8(kq)
verse components. Uo

Knowing the velocity correlation function, we can find In calculating the transverse diffusion coefficient we must

the I_ong!tudln{:ll e transve_rse d|ffu3|on coeff|c_|ents . %retain the term in the exponential functiof8) that contains
passive impurity embedded in a fluid. For a particle that is

d3k _ n UO
273 4 kIn(yaxl2)

situated at the point=0 at the timet=0 and moves to- D d3k
gether with the fluid we have DL:f Bzz(k)_U§+kai (2m)3
t
r(t)=f V(r(t")dt". Integrating and making use of the fact tHagx<U,, we
0

obtain
For the mean-square component of the displacement relative

to the unperturbed trajectorf = (x; — Ug;t) we obtain D =-D 1
o - I'8 In(yax/2)
12\ \7 \N7* i H r_ ! ”

xi%)= fo jof VitV (k) expikaUot” —kiUot The transverse diffusion coefficient in the model under con-
sideration is found to be much smaller than the longitudinal

dk dk iffusi iCi itudi iffusi
kT () =ik - r4(t)]) Cdv dt". dlffus_pn coefficient. _We no_te that _the Io_ng|tud|nal diffusion
(27) coefficient for an anisotropic medium differs only by a nu-

merical factor from the analogous coefficient obtained in

If we assume that,(t) is described by a stochastic Wiener Ref. 37 for an isotropic fibrous medium.

proces&’ with the transition probability density function

P(r([r(t")

8D, D m(t—t")]3"? 7. CONCLUSION
% p(— [x(t) —x(t")]? In this paper the diagram technique developed in
4Dy(t—t") multiple-scattering theory to investigate wave fields in ran-
[r. (D) =1, ("] dom media has been used to study the hydrodynamics of
— ;] (46)  three-dimensional fibrous porous media. As in problems con-
4D, (t-1") cerning the hydrodynamics of suspensions, a system of self-

consistent equation$24)—(26) has been derived for the
Green'’s function in a porous medium and the renormalized
friction coefficient matrix, which is analogous to the scatter-
t t . .

1204 T (L . ' en ing operator in wave problems. It has been shown that the
&) fo fof VitV (kD)) (exidikyUo(t" =t") series of multiple-scattering theory can be partially summed
in such a way that all the diagrams contain only renormal-
ik, - (Fy, (P =g, (1)) dk dt’dt” ized self-consistent Green'’s functions and the scattering op-
L H (2m)° ' erator. Self-consistent field theory has been used to investi-

Calculating the average of the exponential function with theqatg_ the a‘(’jefaged equation; ?L fluid ]Illow i: an isotro.pic
transition density functior{46), we find that at large times medium and in an anisotropic fibrous filter. An expression

(Uokt>1) the displacement squared obeys the diffusion IaV\pas_ been Fieri_ved for the_renormalizatior) of the viscosity in
(x'2)=2Dt with the following diffusion coefficients in the an isotropic fibrous medium as a function of the packing

longitudinal and transverse directions to the flow, respecgens'_ty and the .geometrllc dimensions of the fit&#). The
tively: velocity correlation function45) has been calculated, and

the longitudinal and transverse diffusion coefficients have
2D, = f J‘imBll(k)exliiklUOT_ kiDM N geicleur:dqetermlned for a passive impurity moving together with
| thank A. A. Vedenov, A. A. Kirsch, V. I. Roldutin, I.
B. Stechkina, and S. V. Khudyakov for some helpful discus-
sions.

and correlates weakly witl;(k), we obtain the following
expression for the displacement squared:

3

_kLDL|T|)dTW1 (47)
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APPENDIX quent averaging over the surface of a cylinder of radius

. . . r=a. As a result, we obtain expressions bfl in the thin-
In this Appendix we calculate the scattering operator for,. L ; . .
, i X - fiber approximation. In the case of a dilute medium or high
a fiber oriented perpendicularly to the direction of the aver-

age velocity. To calculate the scattering operator using E harmonics, where the conditior?<kgk, holds, the calcu-
9 - '9 op 9 S%ations yield matrix elements for the inverse operator, which
(27), we first need to evaluate the two integrals coincides with the bare operator in this case:
eiki'r d2k

[ = _ 4 1 a(k3+k2)¥2 1
1= KT 2ik Kk + <2 (2m)2 (49) Tﬂl:_ﬂ[_m%+z ,
I —J et ¢k (50 1 k k
27 ) KK+ 2ik -k, + %) (2m)2° T221=T111—E{—1+k—3arctar(k—sﬂ, (57
* *
Invoking the representation 1 ‘ ‘
w SlooTsly ] 3
X_lzJ' e T =2Tq; +47T 1+ K arctar{ k*) ,
0

. . . . i ks (K5+k2)
-1 -1 3 3 *
for the denom_lnator ity a_md then tak|_ng the Gauss integral Ta=Ty'=— 5 k_|n —z
over the Fourier harmonics, we obtain * 3

1 wda s o In the opposite cases®>ksk, , we encounter two dif-
|1=Eer'k*J' 79XD{ —(k3+«T+ky) ferent possibilities. We first disregard the inertial effects al-
0 together, assuming th&t, =0. For the matrix elements of

r2 the inverse scattering operator, which is diagonal in this case,
X| o+ ————>—>< ;
a 4a(kKC+ K2 +K) we obtain
2 2\1/2
1, T L S T B R
=578 KelrV), (5 =T =3Te = gy >
where \?=(k3+ «k? +k2), and we have used the integral +Ek_§ (K3+x?) cg
representation for the Bessel functions of an imaginary 22" K3 (58)
argument® . o
) In the case ok;=0 with allowance for the inertial terms, we
o X z ' ' in di :
J ex;{ -3 i+ s }t‘”‘ldt=22‘VKV(xz). (52 can confirm that the operator is once again diagonal:
0

1 ya(ki+xH)M?

_—
Analogously,l, can be reduced to the form Tas _ﬁln 2 '
! K 1 11 142 (K+x?
=g |, 47" "y Kalr (], (53) o ey 1)1 1«8 (K+«
e 7 U728 a2 2k K2
where\?(7) =k3+ k% 7+k2 7. Invoking the expansions of s
i e ~ 1. 1 1 1«% (ki+«x?
the Bessel functions for small values of the argunient i s o Sl * (59)
22 33 pzin——s—|.
2 4m| 2 2K K
yX 1 x yx X
Ko(X)=—=In 5, Ky(x)~> +5In=—7, (34 nverting the matrices obtained, we find the scattering opera-
_ ) o tor under the stated conditions.
wherey— 1.781 is the Euler constant, for the firstintegral we 110 expressions obtained are valid for infinitely long
obtain fibers. To assess the influence of the finite length of the fi-
1y bers, we consider a cylinder of length aligned with the
ly==5_In—-, (55  z axis. We assume that its lower base lies inzheD plane.
) Since the fiber now exerts a nonzero force on the fluid only
andl is reduced to the form at 0<z<2l, the force can be expanded into a Fourier series
1 (r2 yx o1 in this interval:
MY
4| 2 2 2
T F(z)=2 F, sink,z,
11+ (ky x— k2r?14) p—k2 y2 %12 "
fo K2+ k2p+ k2 72 d7p. (56 where kn=mn/2l. An analogous expansion can be written

for the velocity of the external fluid flow on this segment of
This integral is readily evaluated, but it is simpler to calcu-the 7 axis:

late various limiting cases directly from E(6). The matrix
elements sought are expressed in termb;adnd|, and the V(z)=2 V. sink.z
derivatives ofl , with respect to the coordinates with subse- no" "
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The coefficients of the Fourier seriEs andV,, are related to
the coefficients of the integral Fourier transform:

Fn<k3>=; £* Ky, ka) o,

3

_1
Vn_TJ f(kanS)V(k)W,

where we have introduced the function

iy SNk — ko)

21 ) )
f(|<n,k3)=JO sink,ze Zdz=ie'*d| e ko)
n

iy Sin(ks +kp)|
(k3+ kn)

The distribution of forces along a fiber must be deter-
mined from the condition of zero net velocity on its surface:

1(._ dk
vi=, | TR ke (60
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—~~

Tikk)= IO) 2 [f(kn, 07

k2~ k asz 2
2| = Ti( n)ﬁ_k§| ( n10)|'

|<.o|\.>

+ (63

Calculating the sum over, we obtain an expression for the
diagonal components of the scattering operator in the long-
wavelength limit:

T1(k,k)=To(k,k)=2T3(k,k)

k3 In(2kl/ )
«? In(ykal2)

3 8l
~In(ykal2)

. (64)

*)E-mail: tburinsk@classic.iki.rssi.ru
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We unify the method of exchange perturbation theory for multicenter systems. For the case of
exchange degeneracy in the total spin of the system we give a secular equation that is

more compact and convenient for calculations than those obtained earlier. On the basis of this
formalism we develop an algorithm for calculating the Heisenberg parameter for magnetic
materials. Finally, we calculate the characteristics of antiferromagnetic transitions for th&_high-
materials La_,MeCuQ, and YBgCu;Os. © 1998 American Institute of Physics.
[S1063-776(9801606-0

INTRODUCTION mated variationally by combinations of pair integréishich
actually means that the nonadditive part specific to multi-
Usually the microscopic description of magnetic materi-center interaction is discarded.
als is either a statistical analysis of spin systems on the basis The situation is such that a meaningful description of
of the Heisenberg equation or a calculation and analysis adpin systems requires not only effective summing over the
magnetization and magnetic susceptibility in the single-states of the possible spin configuratidgas enormous num-
electron approximations in models of the Stdnesr  ber of fine papers have been written on the subject, including
Hubbard type. But, in one way or another, the main param-those that use the renormalization methbdt also develop-
eter characterizing the spin system is still the exchange intdng an algorithm that would allow doing consistent calcula-
gral, which is chosen differently in different models; for in- tions of the fundamental parameter present in any statistical
stance, in Hubbard-type models it is the Coulomb exchang&cheme, the Heisenberg parameter.
interaction of electrons strongly localized at the centers and, ~1he discovery of anomalous magnetic effects in high-
therefore, calculated in the Wannier-function representatiorsUPerconductors is vivid proof of the necessity of developing

The Heisenberg parameter in spin models is estimated senfuch an algorithm, since these effects are caused not so much
phenomenologically, by reduction to the simplest Heitler_PY structural transformations in the crystal as by the change

London two-center problethClearly, the intercenter inter- in the nature of the exchange interaction proper. The point is
action of electrons belonging to the inner shells of ions,

that such crystals as YBA@u,Cu;Og and LaCuQ, and the
materials RBMnFg and RBCoF, isostructural to the latter, in

L : . M%he pure or stoichiometric state are antiferromagnetic insula-
spins, is much more complicated than in the models. First P g

h | f the atomi funci f the | | tors with a fairly high transition temperature. Alloying,
€ overiap of the atomic wave functions of the inner eec,'which is done by replacing the B4 ion by an atom of a

tro.ns belong?ng to different centers |s responsi?le for t_he'rmetal with valence 2 (such as Ct', B&*, and SF*, so
spin _correlat_lon; thus the use of a trunc_:ate_d Wannu_ar— that we have the alloys La,Me,CuO,, Rb,Mn; ,Mg,F,
function basis artificially rgduces t.he contribution pf thg IN-and RBCo, Mg, F,, respectively or by changing the oxy-
tercenter exchange to the interaction energy and in this Waéfen conten(La,CuO,_s and YBaCu,0g), lowers the Nel
essentially eliminates the intercenter correlation effects. SeGamperature so drastically that the antiferromagnetic state
ond, for many materials the number of “active” electrons of may pe destroyed® and replaced by a weakly fluctuating
the inner shells of atoms participating in intercenter interac3p state of a spin liquid with preferentially parallel pair ori-
tion exceeds unity, so that the wave function describing agntation of the spins.

least a two-center system is more than two-particle, and its A theoretical analysis of the behavior of these systems
spatial part is not reduced only to symmetric or antisymmetyields contradictory results. For example, according to cal-
ric form, as it is in the Heitler—London model. The use of theculations done with the one-electron band approximation, the
Slater determinant, which incorporates both coordinate antla,CuQ, compound is a nonmagnetic met&t! At the same
spin one-electron states simultaneously, makes it impossiblime, electronic-structure models used in studies of the
to analyze the spin state emerging as a result of the intera¢ieisenberg Hamiltonian for two- and three-center systems in
tion. Third, often the magnetic orientation of the spins isthe representation of the spin eigenfunctions of the operator
caused not simply by two-center exchange but by superexy(s; +s,)s; provide a fairly realistic phase diagram that de-
change, in which the electrons of three or more centerscribes the transition of the system from the 2D antiferro-
participate®® The constants of such interaction are approxi-magnetic state into the 3D state of a spin liquid and then into

1063-7761/98/86(6)/10/$15.00 1167 © 1998 American Institute of Physics
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the superconducting staté.However, in these papers the retain the hermiticity of the total Hamiltonian in the sense
numerical value of) for different spin configurations is es- that its eigenvalues are real numbers. In the same paper the
timated by analyzing experimental data. variant of exchange perturbation theory was generalized to
The Heisenberg parameter can in principle be calculatethe case where the system is degenerate in total spin. A de-
consistently by applying the formulas of exchange perturbatailed description of the variant and a broad range of appli-
tion theory, which takes into account the effects of inter-cations used in calculating specific system, including spin
center overlap of the wave function. There are many formabystem, can be found in Ref. 5. Unfortunately, the organiza-
variants of this theory, which are classified according to thdion of the material in Refs. 5 and 19 makes it impossible to
way in which the algorithm is constructe@ detailed de- explicitly analyze all the small parameters of the theory in
scription of this classification can be found in Kaplan’s which the power series expansions are done, and this makes
monograph? which also analyzes the merits and drawbackthe use of the formulas difficult. We also note that in Ref. 19
of the variants There are two problems that must be dealtthe corrections to the energy when degeneracy in total spin is
with in constructing the algorithm of exchange perturbationlifted were calculated only for the case where there is another
theory: the nonorthogonality of the base of the multicenterdegeneracy, in orbital momentum.
system wave functions, which are antisymmetric in inter-  In the present paper we use the idea of the method of
center permutation&his problem is related to what is known Symmetrizing the Hamiltonia~*® and construct a more
as the overfilling catastropheand the asymmetry of the per- compact algorithm of exchange perturbation theory. This al-
turbation operator and the unperturbed part of the Hamillowed us to estimate the smallness of the terms discarded at
tonian with respect to intercenter permutations of electronsgach iteration step, terms that emerge because of the overfill-
In other words, iffH,A]=0, whereH=H®+V is the total ing of the nonorthogonal base of antisymmetric functions.
system HamiltonianH® is its unperturbed part, andlis the ~ Due to a change in the normalization condition for the anti-
antisymmetrization operator, thefH®? A]#0 and[V,A] symmetric functions, all the projections in this variant, in-
#0. The zeroth wave function antisymmetrized in inter-cluding Ritchie-type operators, are simpler. This has made it
center permutations is not an eigenfunctionHff, and the  possible to obtain a solution of the secular equation when the
corrections calculated in the perturbatidéh contain non-  System is degenerate in total spin in a more general form,
physical contributions. more suitable for calculations. To show the possibilities of
All variants of exchange perturbation theory can be di-our version of exchange perturbation theory with degen-
vided into two groups$? The first consists of theories non- eracy, we examined the highs materials La_,Sr,CuQ,
symmetric in the Hamiltonian. The second consists of apand BaCusOs.., for which we calculated the Heisenberg
proaches that make it possible to use the common Rayleighparameter in the stoichiometric and alloyed states. We show
Schralinger perturbation theory by setting up a specialthat alloying these materials dramatically changes the mag-
zeroth symmetric Hamiltonian for which the antisymmetric nitude and sign of the exchange and superexchange integrals.
functions are eigenfunctions. The first group uses the fundalhese changes lead, in accordance with the models of Ref.
mental basis of zeroth functions nonsymmetric in intercentef2, to destruction of the 2D antiferromagnetic state and
permutations, functions that are the eigenfunctions of th@&mergence of a 3D ferromagnetic state of spin liquid.
nonsymmetric Hamiltoniai®. Antisymmetrization is done
post factumat each interpolation step, which in the final | ExcHANGE PERTURBATION THEORY
analysis requires using a variational procedure in the pertur-
bation theory formalisn(as, say, is done in Ref. 14An A system of noninteracting atoms in the adiabatic ap-
attempt to modify the Hamiltonian so that the perturbationProximation can be specified solely by the electron part of
operator becomes symmetithis is known as the Sternhe- the wave function, which is simply the product of atomic
imer procedurt’'9 leads to a non-Hermitian total Hamil- Wave functions. We write the spatial part as
tonian and actually limits the use of the method to two-
electron systems. D(ry,.r) =11 walra,.orp, (1.1
The second group of variants of exchange perturbation “
theory can be assumed to include the work of Ritéhiln ~ wherea is the number of a center, or atom, and..,j are
this paper special projection operators are employed whose numbers of the electrons belonging to an atom.
action on an antisymmetric function is reduced to selectinga The Hamiltonian describing such a system consists of
term with a specific permutation. Since the explicit form of the kinetic energy of all the electrons, the potential energy of
these operators was not given, it was assumed that they maliee interaction of electrons and the “parent” center, and the
the Hamiltonian non-Hermitian. Rumyanté&demonstrated  interaction of the electrons belonging to one center with each
the effectiveness of using such symmetrization of the Hamil-other.
tonian. Despite a conceptual difficulty, a variant of exchange  If the Hamiltonian does explicitly contain spin operators,
perturbation theory the Rayleigh—ScHiager form was con- then
structed, and on the basis of this theory the spectral charac- HOD (r F)=E%D (1 r)
teristics of the hydrogen—helium system were calculated Mot N En R LN
with high accuracy. Only in Ref. 19 were the projection op-where{Eﬂ} is the set of the eigenfunctions of the energy of
erators derived explicitly. These operators symmetrize théhe noninteracting system, anbl(r,...,ry) are the eigen-
perturbation operator and the unperturbed Hamiltonian anélunctions corresponding to this spectrum.
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The distances between the centers are such that atomic The Hamiltonian of the interacting system is always in-
wave functions may strongly overlap. Then, in accordancevariant under electron perturbations, so that the solution of
with the Pauli exclusion principle, even for a noninteractingthe Schrdinger equation can be antisymmetric under any
system the complete wave function must be antisymmeelectron permutation:
trized. So that the spin part can easily be separated later,

. ; HY=EWV. (1.9
leaving only the spatial part, Young tableaux can be used to
antisymmetrize the complete wave functf@iiThen the spa- Solving Eq.(1.9) by the method of successive approxima-
tial part of the complete wave function of the noninteractingtions, we seek the perturbative corrections to the zeroth en-

system is ergy and wave function taken frofi.8). For instance, for
0 the initial wave function and its corrections to have the
Vo, I =APK(r g, ), (12 proper symmetry, we use the perturbation operator and the

unperturbed part of the Hamiltonian in the form @f.7).

where A is the antisymmetrization operator corresponding_l_hen instead 0f1.9) we have

only to the spatial part of the Young tableau or, in greater

detail, (HO+ V)W, =E¥;, (1.10
1 P where
‘Pg(rlv---arN)zﬁgp (=1)%DR(ry,....r\), (1.3 =00V E=EO L ED 4
wherep is the number of permutationg,, is the parity of At the beginning we keep only the zeroth- and first-order
that permutationP is the total number of possible inter- terms in(1.10. Then, allowing for(1.8), we have
center permutations, ﬂﬁ’ is the normalization constant, and oq,i(1>+vq,i<0): i<1)q,(0)_|_Ei(0)q,i(1>_ (1.1

®P(rq,...,ry) is the wave function of the forrfl.1) contain-
ing the permutatiom that corresponds to the Young tableau. ~~ We impose the intermediate normalization condition
We find the normalization constafit.3) from the condition

3 (b [y = (b, [ 9), (112

(PA[WR(ry,.. Fy))=1. 14 e, (®;| ¥, —¥°)=0. This means that all corrections to the
Then wave function of the zeroth approximation lie in the sub-
space of the state vectors orthogona)¥).
Let us introduce the projector on the subspace of vectors
= 20 (—1)99(DO|DP) (1.5  parallel to|¥?)
=

_ _ =[wPN@il, (1.13
differs by a factor,/P from the same constant in the normal- 0 0 e
ization (¥° W% =1 commonly used in exchange perturba- WhereP;|¥7)=|¥7). Since

tion theory. | o>
We introduce a projection operatdr” that separates the PHO W)= Z (DYIHD|DPY(DP| W ()
term with thenth permutation in an antisymmetrized func-
tion of type (1.3): v 0>
=E° 2 DY DPY(DP| WY
Az=loy@]]. L6 o (PHPD(@IT
ThenA7| W) =(-1)"dT). = E°|\If-°)(<1>°|\If~(1)>= E'P (Y, (114

Now we can write the system Hamiltonian without a
perturbation in a form invariant under intercenter permuta-
tions:

after the operator1.13 is applied to Eq.(1.11) we get
(®;| V| ¥ T =EM| W), This leads to an expression for
the first-order correction to the energy,

S E{Y= (@ V| V). (119

1
Ho=1p Z HpAR, V=15 2 VAR, (1.7)
f 9= fn p=0 Now let us introduce the projector on the subspace of

WhereH0 andV, are the unperturbed Hamiltonian and the Vectors orthogonal tg¥?) in accordance with the property

perturbatlon correspondlng to tipeh intercenter permutation Of the double vector product:

of the electrons. _ | _ 0=1-P;, where O;|¥%=0 (116
As usual, the perturbation operator incorporates the in- -

teraction of the nuclei, the interaction of electrons with “for- or, to put it differently,

eign’ nuclei, and the interaction of the ele_ctrons bglonglng O/ W)=(d|| ><|\If)><|\lfi°>, (1.17)

to different centers. Now the zeroth antisymmetric wave

function (1.3 is the eigenfunction of the invariant unper- i.e., |¥)=|¥2N(®|¥)+ (DX |¥)x |¥?).

turbed HamiltoniarH, (1.7): From (1.13 and (1.17) we see that the antisymmetric

HOWO— EOp0 basis of zeroth wave functions is actually only weakly non-
Y=g (1.8 orthogonal,



1170 JETP 86 (6), June 1998 E. V. Orlenko and T. Yu. Latyshevskaya

P W)= TN (@7 WD) for different values of the total spin of the system. In other
o words, a multicenter system of noninteracting electrons is
o 1 0l ap o degenerate in total spin, with the degeneracy lifted by allow-
=[¥P) ? pgo (PR~ 1)%~0, (1.18 ing for ordinary intercenter interaction. Thus,
becausd®?|®%) =0, and(d?|®P)~0, since the overlap of Vo, =AD0,

the wave functions of the ground and excited belonging to P

different centers is insignificarithis resembles the situation 0170 _ =0a7,0 0_ i 0Ap
in diffraction theory for wave optigs Accordingly, Ha¥na=EnVna, H“_pgo ngpA”’ @D
(DX W)X [ WD)~ [W). (119 where{w?,} is the set of wave functions antisymmetrized

We seek, in accordance with.12), the first-order cor- by different Young tableauxx and corresponding to the

. ) . : 0
rection to the antisymmetrized function of the zeroth ap-S@me energy levek, of the system. _ _
proximation in the form of an expansion: We seek the wave function of an interacting multicenter

system of electrons in the form
vH=3 Cc,vp, (1.20 0 0
n V=2 COP%+o. (2.2)
wheren#i. Inserting the expansiofl.20 in (1.11) and ap- p
plying the operatof1.16 to the result, we get If we substitute(2.2) in the complete Schidinger equation
(1.9, we obtain
OVI¥f)= 2 Co(E7—ED)|W), (120
HY COVO+He=(El+e)> COVO+(EN+e)o.
where we have allowed fqil.18 and(1.19. B B
Using the property of completeness of the orthogonakince the total Hamiltonian is invariant under all permuta-
basis of the nonsymmetric zeroth functions, tions, it can be taken outside the summation sign in accor-
dance with the Young tableau:
> [@h)(@f=1,

HO+V,) Cowo+H
we can write the left-hand side of E€1.21) as follows: % (HptVp)CplptHe

P
1
5 pgo 2 [FN(@FOVIWT) =(E?+g)§ﬁ) CoPo+(El+e)g. 2.3
1 Using (2.1), we can shift all the terms containing to the
p P/ 0 0 .
=5 Z > |®RY(— 1)@ O v|WD) left-hand side of Eq(2.3) and all the other terms to the
=0 n right-hand side. The result is
1
_= PIarO\ /Ol \/1 10
=P 2 fRl W POV TF). (1.22 Ho—(E+g)= (8—V4)CoWY. (2.4
B

Since L
! In (2.4) we drop all terms whose order is higher than the

(D;|OV| Py =(D;|1— | ¥ D;|V|¥)=0, first. This means that in the total-energy operator acting on
we must leave only the unperturbed part symmetrized by an

we must drop the term with=i from (1.22. .
y (1.22 arbitrary Young tableay and drop the ternze. Then

Finally, Eq.(1.21) becomes

1 0_ 0y, _ 04,0

5 2 fal WX @RlOVIWP) =2 Co(EP-ED[¥Y), (HS-ED)e=2, (e~ VpICy¥}. @9
n n

(1.23 " The solution of the homogeneous analog of &%) for ¢ is
from which we find the first-order correction to the wave goz\lf‘;. But then, according to the Fredholm alternatibe,
function: the nonhomogeneous probléth5) has a solution only if the

O . . . _ . .
L1 P(‘Dg|0iV|‘I’io> . vector(\Ifyl is orthogonal to the entire right-hand side:
v ):B n " (Ef—Ep) V) (129 0[,0 0 0\ (0
_ o o 2,3“ (eS| w) —(WIV,4 W) Ch=o0. (2.6)
Higher-order corrections can be found similarly.
Thus, we have a system of equations for determining the
coefficientsC% of the regular zeroth wave function. The sys-

tem has a solution only if
The zeroth wave function for a multicenter system can

be antisymmetrized by various Young tableaux, which differ |84 ,5— (¥ V|¥§)|=0. 2.7

2. THE CASE OF DEGENERACY
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FIG. 1. Crystalline and magnetic structures obCaO,.
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copper dioxide alloyed with, say, strontium (LgSr,CuQy)

has a similar lattice: a body-centered tetragonal structure
whose space group is ITdmm NMR and muon-precession
experiment&?*have shown that the antiferromagnetic state
occurs in this material due to the interaction of?Cuions
lying in a single plane, while the interplanar magnetic inter-
action is weak. The magnetic form factor of the2Ction
measured in the antiferromagnetic sta®orresponds to the
3d° state. The & ion occupying a position between inter-
acting copper ions does not affect this interaction because the
electronic shell is filled.

The wave function of the electrons of a pair of interact-
ing CU" ions in the zeroth approximation corresponds to
states with total spirB=1 or S=0, i.e., its spatial part is
antisymmetric or symmetric, respectively. Then, from the
secular equatiori2.9), for the singlet and triplet states we
have

K=A
Esing,tr— 1+12°

where

This is the secular equation for determining the corrections

to the energy. If

P
1
Ap=(VTR= 15 2 (~ 1P| vp)
P
=p§o (= 1)%(—1)%e(D| WD)
P
1
— 9pyt9pg
fg p:o —1)%y" %ps,
1 P
(V4T =11, E: —1)9(DPYV | TY)
1 P
=57 2 (—1)%r 0OV W)
0 py=0
=0, ( DOV, WD) (2.9
the secular equation becomes
B]l (e—(DPV4TI)|A,4=0 (2.9

The correctionse to the energy have definite values,

e=(DO|V,| W), only if

|A 5 #0. (2.10

1
Wsally,ra)= Ez[¢|(r1)¢||(r2)+lﬂl(rz)lﬂu(rﬂ],

2 0
As=2, A =2, AsaZAaSZOﬁ‘O 2‘¢0,
K=(y(r) gn(r2) Vil (ro)dn(rp)),
A= (r) ()| Val(ro) gn(ra)), 3.
Ve z°e? B z¢€ B z¢€ . e?
1_|R|_Ru| Iri—=Ryl  [ro=Ry|  [ri—ry’
Ve 7€ B z€ ~ 7€ . g2
2_|R|_Ru| Iri—R| [ra=Ryl [ri—ryl’

whereR,,, are the radii of the interacting iong,stands for
the ion chargess, , are the radius vectors of the electrons,
andl is the one-electron exchange density.

The wave function of an electron belonging to theCu
ion corresponds to thedgz_yz orbital and is chosen in the
hydrogenlike form

15 27 .
W(r)= 16r 61 r’e " sir & cos 2

(3.2

Then the set of zeroth wave functions antisymmetrized byin Bohr unit9. Then the Heisenberg parameter for the lattice

Young tableaux is regular.

3. THE HEISENBERG PARAMETER FOR THE HIGH- T,
MATERIALS La ,_,Me,CuO, AND Ba,CuzOg.

The crystalline structure of the compound,CaQ, in

constantR=7.334@&g is

—0.1043278 eV. (3.3

J= &sing= €™

In the given casej is negative, which corresponds to
antiparallel orientation of the spins at the neighboring lattice

the stoichiometric state is depicted in Fig. 1. The crystal ofsites as being an energetically preferable configuration.
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Similar calculations of that use Eqs(3.1) and(3.2) for ~ ways corresponding to the following spin configurations:

the C#* ions in adjacent layersR=12.381&yg) yield the (IT”TI” T)1 (IT”TI” l)’ (IT”“” T)
value . .
The corresponding Young tableaux are given below:
Spin Coordinate
j=—9.673x10°° eV, (3.4) Young tableau Young tableau
which also corresponds to antiparallel orientation of the 2
spins, but the coupling constant is very small.
Thus, the assumption that the antiferromagnetic interac- 3

tion between the planes is small, which was made in the spin

models of Refs. 12 and 13, is justified, and we indeed are

dealing with a 2D antiferromagnetic system. B {2 113
The same experimerts2*show that alloying with, say,

strontium (La_,Sr,CuQ,), causes a rapid decrease in the 3 2

Neel temperature in proportion to the alloying degre€élhe

point is that alloying with a doubly charged ion of a metal

activates the oxygen ion %O positioned between copper

ions, which becomes a single charged ioh @vith an un- v) 113 112

paired electron. Now, in studying the interaction of two cop-

per ions, we must allow for the presence of an additional 2 3

electron belonging to the 10 ion, whose state, being highly

delocalized, strongly overlaps with the electronic states of 3.9

the C#" ions. At the beginning, the electrons with numbers 1, 2, and 3
The complete electron wave function of the ion chainbelong to the ions I, I, and Ill, respectively. In this case the

Cw'—0O'" —CU*" (for the sake of brevity we denote this coordinate parts of the wave functions corresponding to the

chain by I-1l-1ll) can be antisymmetrized in three different Young tableaux«), (8), and(y) are

I(ry)  h(ry)  (ry)
du(ry)  y(ra)  dn(ra) |,
dn(ry)  du(ra)  gy(rs)

WO(ry,rp,rg)=
A e T E T

0 1 (r) g (ra) + e (r)va(rs)  dn(ra) gn(ra) +g(ra) ga(ry)
Wp(ry,ra,rs)= 22 2 '
1-213-11- 107 i (ra) hu(rz)
0 1 (r)du(r) +ga(r) dn(ra) (o) (ra) + d(ra) h(ry)
\P'y(rlyerr3): 11 12 ' (36)
11,07 P(r2) P (ra)
|
where we have allowed for the _normalizz_;ttion condit_(dlm) 212,62 z2e? 2,2,62 z,€?
and have introduced the following notation for the integrals V=5 —F57+ 10— Tt — -
: e [Ri—Ru|  [Ri—=Ru|  [Ry=Ru| [r1—Ry|
corresponding to the exchange densities:
z,€° 2,62 z,€? 2,62
Iri=Ral [r2=R[ [r2—=Ry| [rs—R|
|1=J ‘M*(r)lﬁu(r)drzf i (1) gy (r)dr, z,e e e e 3.9

| +

- + + :
[rs—Ryl [ri—ro| [ro—rg| [ri—ry

. . Direct calculation of the parameter (8.8) yields the follow-
|2—f (1) gy (r)dr. (3.7 ing values:

For the initial distribution of the numbered electrons overthe A —A -0 A, =—"
. . . aB ay ' By 1—1 |2 '
centers, the unsymmetrized perturbation operator is 2l1
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A= A, =
- T 12151 1) - 13 A

4

RSP 02 9267 &F

The determinant conditiof2.10 has the form

A,, 0 O

0 Apg Apy| #0. (3.9 c

0 A, A, a b
Thus, condition(2.10 is met. In this case and in accordance FIG. 2. (a) Magnetic spin structure of YBEu;Og, , With x=0. Only cop-
with (2.9), the corrections to the energy are per atoms are depicted. The hatched circles stand for the nonmagnétic Cu

ions, the dark and light circles stand for the antiparallel spins in tH& Cu
0 n o . ) A ; .
81—<<I) (f1r2r3)|Va|‘1’a>, positions, and the solid straight lines denote double bonds with oxygen

atoms.(b) The second type of spin structure observed for large valuas of
The average spin in layer B is the fractierof the spin in a CuQ@layer.

82=<<D0(r1r2r3)|\75|‘1'%>,

83:<(D0(rlr2r3)|\77|\1}3>1 (3.10
where strong ferromagnetic bond in the Cu@lane destroys the
0 local antiferromagnetic order. In the case of strong localiza-
| DO(rarara))=[¢a(ro) n(ra) n(ra)). tion, the concentration sb-bonds would be equal ta. As x
Note that in contrast to the two-center case, superexdows, the localization length, of each hole increases,
change three-center integrals of the form which leads to an increase in the effective concentration of

®-bonds. Birgeneau and Schirghéound that a large value
4 d°r of J/|j| reduces the threshold valuesyoft which antiferro-
=02 magnetism in alloyed L&£uQ, disappears even ik is
(3.1) small®

contribute substantially to all the expressiong3nl0). Such The experimental data on another copper dioxide,
integrals ensure three-center correlation of the spins, sincEBa2CUs0s.+x SUggests a remarkable resemblance between

they can enter into in the general expressi@40 for the 1€ WO systemé'?7Th§a sublattice in YBgCu;Og is depicted
energy with different signs. The sign sequence of these sd? Fig- 2. Each chemical cell contains two Cuf@yers, de-
perexchange terms is determined by the Young diagram@0t€d by A and C. The copper atoms in layer B have no
used in antisymmetrizing the wave function®110. Due to ~ PONds with oxygen. X-ray absorption measurements have
this superexchange interaction, long-range order may set {€arly shown that the valence of the copper atoms in layer B

the system without the conduction electrons participating, al$ 1+ SO that the atoms are nonmagnet;c._ _
is the case in the Kondo and RKKY models. To represent the spin structure of the*Cipns in layers

Calculations of the matrix elements i3.10 for the A and C, the antipargllel spins are depicteq by dark gn_d light
given lattice constanR=3.88 A with allowance for the su- circles. The calculat|or_1 of the cgrrespondmg parameter
perexchange contributiorisee Appendix Byield done by (3.1)—(3.3) with a lattice constantR=7.22%5

=3.822 A:
e1(111)=—0.762857Fg,

KI—»||,||—>|I|:jf P (1) i (r2) (o) i (ro)

[ri—ryl

jAA “&sing” €= T 0.0935 eV

€5(711)=—-0.670509E3, (3.12
e3(111)=—0.639187E;. inside a layer, and
In the given case of Cii ion.s, the orientation of thg spins is j AC= Esing— £¢=—0.0713 eV
ferromagnetic, with the Heisenberg parameter being
J=e,—£,~0.09234& ;= 2.51288 eV. (3.13  between layers A and C. An estimate of the same parameter

) _ ) _ done by analyzing the experimental data on thelNem-
Comparison with(3.3) yields the following value of the pa- perature yieldedj ~0.086 eV. X-ray absorption measure-

rameter ratio: ments have shown that adding oxygen facilitates the transi-
3 tion of Cu'" into CU**. Now the C&" in layer B facilitates
m =25. (3.19 the destruction of the antiferromagnetic order between neigh-

boring C#* ions in layers A and C.

Thus, alloying the material, which activates the oxygen  Consider a system of three €uions, with the layers A,
ions O, does indeed reorient the electron spins ifCand B, and C each having one ion. Then, using E§s5)—(3.10),
leads to strong ferromagnetism. Hence, as Birgeneau ansle can calculate the energy corrections to the spin configu-
Schirané® pointed out by analyzing the experimental facts, aration in the Young diagram:
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e1(111)=—0.3384EF;, 4) Finally, spin—orbit coupling effects is ignored.

In conclusion we note that the analytical expressions for
e2(11])=-0.3302Eg, the energy of a three-center chain of atoms contéssthe
ea(111)=—0.34666; . leading contributiop the nonadditive contribution of the

three-center interactiofisee Appendix B The terms are
Thus, the states with ferromagnetic orientation of theKml, K 1232, Kog1, K13z, Kozra, Kiozr, Koago, andKsay.
spins in layers A and B are the most probable, the spin i5ych integrals determine the structure, since they depend not
layer B may be assumed fluctuating, and the complete ferraynjy on the intercenter distance but also on the angles be-
magnetic state has a Heisenberg parameter tween the straight lines connecting these centers. We believe
Ji=8,—8,=8.2x10 %E,=0.2230 eV, that they are responsible for exchange-correlation effects in

solids, including spin systems.
while the state of the oppositely directed spin in layer B has

a Heisenberg parameter We are grateful to V. V. Rumyantsev for his attention to
J,=16.4¢ 10 *Ex=0.446 eV. our y\(ork anq to his critical remark;, wh|ch _enabled us to
significantly improve the presentation in this paper. The
The average value of the magnetic moment per magnetisork was made possible by the financial support of the Rus-
atom is sian Academy of Sciencd¥oung Scientist Stipend of the
3t Russian Academy of Sciengeagiven to one of the coauthors.
_ 2HoT Ko _ 0.6(6)
2x3 3k~ Ho-

. . 28 .
The experiment of Birgeneaet al“° gives the same value APPENDIX A: COMPLETENESS PROPERTY OF THE

for the maximally ordered moment. NONORTHOGONAL BASIS OF ANTISYMMETRIC

FUNCTIONS
CONCLUSION

States that are antisymmetric under particle permutations
We have developed a variant of exchange perturbation i
are nonorthogonal. Nevertheless, they constitute complete
theory that allows for degeneracy in total spin, with the ap-

plicability criteria(1.18 and(2.10 added. Using it we have system. T.O verify th'.s’ we ?Ct with th'e operam|¢n><wn|
derived a procedure faab initio calculations of the Heisen- on an arbitrary function antisymmetric according to the same

berg parameter for high; materials, a procedure that is Young diagram as the statply,):

based on first principles and avoids computer simulations, so P 1
that the necessary relationships are obtained in analytical >, |® (¥, |¥)= E 2 | D W DP|W)(— 1)9p—
form. Numerical estimates of the energy values for given "

lattice parameters yield results that are in good agreement

with those of experimental and phenomenological ap-where

proagges. For instance, for §@u0, the experiment of Peters

[=7 yields the following values of the Heisenberg param- f= Z (®,|OP)(—1)%.

(A1)

et al.
eter.

For the antiferromagnetic interaction of the ions in ] )
CW*—CW?* lying in a single planelJ;|=0.116 eV; between Using the antisymmetry of the vectpP), we can write
the planes|J,|~2x10 6 ev. P P

For the ferromagnetic C?ﬁ—O*—CL?*,. interaction|J,] > > f_|q>n><q>g|q;>:2 > f—|¢n><<bn|‘1’>(—1)g”
~1 eV, our values of the corresponding parameters are" P=0 In n p=0 Tn
|J,/]=0.104 eV,|J,|~9x 10 ° eV, and|J|~2.5 eV. Py P

For YBaCus;Og, the Heisenberg energy estimated using = E — W)= —|W¥), (A2)
an analysis of the N& temperature i$J|~0.086 eV(Refs. =0 fo f
24 and 27; our values ar¢J|~0.0935 eV inside a layer and
|J|~0.07 eV between layers.

Note that the following simplifications were made in
specific calculations:

1) Intratomic interaction is incorporated only indirectly
by using one-electron states, whose parameters are taken f0
from the Gomba and Szondy tableg. E [P (Vo|= E | D) (P, (A3)

2) The effect of the mean crystalline field on the inter-
center interaction ofl-electrons is ignored; the latter, how- which is simply the completeness property of the system.
ever, incorporates the interaction with the nearest-neighbddsing (A3), we can decompose an arbitrary antisymmetrized
ions. state in the same antisymmetric states.

3) The influence of conduction electrons on the magnetic  In deriving the completeness property we assumed that
effects due to the orientation of spins dfelectrons is ig- fy/f,~1. Let us now estimate the smallness of the terms
nored. discarded. Clearly, the above ratio can be written as

where we have used the fact thdt="f,==(Dy|Pf)
(—1)% and the completeness property of an orthogonal ba-
sis of nonsymmetric functions ,|®,){®,|=1.

Thus, we have
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=]
1
f—°=1+ pEO (—1)%[(Do|DPE)— (D, |DPPY]+0O(12P), Bo=78ps(Kot Ky 5= Kz 3= Ky 259, (B4)
n =
(Ad) L
where Eszszy(KoJf Ki2= Kz 3= Ky 21-9, (BS)
P o o where
Sup % (= 1)%[(Do| D) — (| PP)] P
21Z; 4
NI - 0="r T R~ Z(B117Bss) ~23(C1y~ Cort Spot Sg9),
' 0 n
" gl (N—gp)! 1+ o+ 1, 2 (B9
lo andl, are still the one-electron exchange densities of thec, - _[(a an 12— (2,1 1Boy+2411Cp1+ 211 1Sy,
ground and excited states, ahdand gp are the respective R

total number of electrons and the number of electrons par- 2 2
T . . +1,2,Cot 74|l +172,B33)2, + K
ticipating in the intercenter permutation. 12112+ Z1[11["Sart 112283921+ Kaaon

Since the overlap integrals are, in general, the product of +Koz1d 1+ Kizod 1, (B7)
a polynomial,P(R/ag), and an exponential, expR/ag), the

discarded terms are andK,_5 can be obtained froniB7) by cyclic permutation

of the subscripts 1, 2, and 3.

N! R R Similarly, for K,_; we have
Supr =77 Pla-|exp — 5| |=consk1.
(N—gp)lgp!  \ap ag 3 7,2, )
(A5) Ki_oo-3= E‘F? 112= (251 112Bo3+211411,Csp

This constant can, in principle, be accounted fofA3). ) )
+ 2111813+ 1121C 13+ 2411155y

+111525B21) 21+ Kypail 1+ Kogid o+ Kygad 1 -
APPENDIX B: EXPRESSIONS FOR OBTAINING THE (88)

CORRECTIONS TO THE ENERGY .
Here we have used the integrals

1. The energies of a two-center interaction are

'r//| r)lr//J r) 'r//| r)l/fj
e |4 TRl O G

Esingzm ﬁ( 1+12)+22,C13—22,C 1o+ Kyt Koo,

(B1) complementary tgB1) and(B2).

e [ R

Ey= 112 ﬁ(l_ 19) =22, C11+22,C 15+ Kyp1o~ Kygos|s *)E-mail: quark@stu.neva.ru

(B2
where we have introduced the following notation: 1E. C. Stoner, Proc. R. Soc. London, Ser185, 372 (1938.

2J. Hubbard, Proc. R. Soc. London, Ser2#6, 238(1963.
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C. = lﬂ-* (r)zp-(r) 4W. Heitler and F. London, Z. Phyg4, 455 (1927). _
ij i j |r_ R| J. M. Tranquada, A. H. Moudden, A. I. Goldman, P. Zolliker, D. E. Cox,
G. Shirane, S. K. Sinha, D. Vaknin, D. C. Johnston, M. S. Alvarez, A. J.
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A theory is constructed for the current-voltage characteristic of a Josephson junction with a high
critical current density described by nonlocal vortex electrodynamics in the approximation

of small dissipation due to the single-particle conductivity of the Josephson junction. The role of
the resonant excitation of generalized short-wavelength Swihart waves is determined. New
quantitative properties of the current-voltage characteristic, which is an envelope of wave
excitation resonances, are established. 1898 American Institute of Physics.
[S1063-776(19801706-3

1. INTRODUCTION than the London deptk (0<z<2#R, wherez is the coor-
dinate along the annular tunnel junctjcemd continuing the

The theory_of th_e curr ent-voltage_ CharaCte”Sﬁ(F& s) electric and magnetic fields periodically along thaxis onto
of Josephson junctions is of great interest specifically be;

th . tal studv of IVC’ its th the entire number axis{o, +«), for the phase difference
cause Ine experimental study o S Permris the comparag ...\ een the wave functions of the Cooper pairs on different

tively simple investigation of the manifestations of vortex _. : : o
) A sides of the tunnel junction the we employ equatién
structures in such junctions. The theory of the IVC's of Jo- ] ploy €q

sephson junctions is ordinarily based on the sine-Gordon

2 ’
equation with dissipation. In Refl a theory of IVC's was ia_f ﬁz a_(PJFSm o— I_r“ (,jz &_g‘iJr y=0.
formulated for a vortex structure in the form of a traveling wj Jt°  wf dt > 2 =720z
wave put into motion by a spatially uniform current and 13

decelerated by dissipation due to the single-particle conduc-

tivity of a Josephson junction. The results of the theory of€ré y=j/jc is the normalized short-circuit current density
IVC’s needed for annular junctions, which have recently atthrough the Josephson junctiom, :(167T|e|dlc/ﬁ8)1/2_ IS
tracted the attention of experimentalists, are presented i€ Josephson plasma frequen@s4mo/e characterizes
Ref. 2. Annular junctions are of interest, because there are ri§e dissipation, and and o are the permittivity and conduc-
edge effects complicating the vortex pattern in the case olivity of the tunnel junction material. Our analysis is based
such Josephson junctions. This is the reason why the prese?ft Eq.(1.3)_. ) . .
work is devoted to annular junctions. At the same time, in __ The existing results for the IVC of a Josephson junction
contrast to Refs. 1—3, our analysis is devoted to the theory d¥ith @ high critical current density satisfying the inequality
Josephson junctions with a high critical current density,(l-z) were obtained in the resistive model, where the second
wheré derivative with respect to time in Eq(1.3 can be
neglected® The exact solution describing an infinite chain
of vortices having a period2L and moving with a constant
velocity v in accordance with the resistive model in Ref. 7

and the standard theory based on the sine-Gordon equati(gﬂakes it easier to compare the results of those works. In this

with dissipation is inapplicable. In E¢1.1) \ is the London case
penetration depth. When the inequalify1) holds, the Lon-

i>jo= he? =1.2410 S Alcm?® (1.1
Jc>Jo—W—- (N[ em]) cm® (1.1

don depth is greater than the Josephson penetration depth o(z,t)=— 0+ m+2 tar * tar[(z—ut)/ZL]), (1.4)
— )2 tant /2]
>\>>\j=>\\ﬁ>—'=|, (1.2
Jo A where
wheree is the electron charge andis the speed of light.
Josephson electrodynamics is strongly nonlocal in this  L? , il ., 17 2 2\12
limit. The annular junction geometry which we have chosen 12 cos' f=sint? ao= 2|7t
is illustrated in Fig. 1(compare Ref. B The tunnel junction ,
width 2d is assumed to be small compared to the London n E V24 '_ -1 (1.5
depth), while the latter is assumed to be much less than the 2 L? ’ '

thicknessa of the annular superconducting cylinders. As-
suming the radiuR of the tunnel junction to be much greater and the IVC is given by the expression

1063-7761/98/86(6)/7/$15.00 1177 © 1998 American Institute of Physics
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: (2= — 0+ m+2 tan Y| 22 (1.19)
a.,a QZ,1)=— T an , .
%\
f \ where 9=arcsiny, p=1/(1—y?)? and
J
v=—— . (1.12
\/ i 2
Assuming that the solution of the resistive model can be
written in an approximation in the form of a chain of peri-

odically arranged vorticed..11), Gureviclf obtained an IVC

FIG. 1. Two concentric superconducting cylinders separated by a thin wnOf the form(1.7), but without the first term on the right-hand

nel junction.

j2 |2
—- ,—2+L7 -1

4\jg
1/2
} . (1.6)

2 | 2
+
L?

1/2

2 |2

+E 34‘?—1

HereRs=2d/o is the resistance per unit area of the tunnel
contact, andV is the time-averaged potential difference
across the junction. The IVC in the for(h.6) corresponds to
the case when the potential difference is determined by
assigned current density. This formula can also be express
in a forn? in which the current is determined by an assigned

al

side. This means that the result obtained in Ref. 6 in the case
L>1 is realized, according to Eq1.7), for the low voltages
V<j.Rs, which correspond to currents much higher than the
ohmic current. At the same time, according to Egl) of

Ref. 6 the current density should be less than the critical
Josephson current densftyompare Eq(1.12]. Our discus-
sion makes it possible to see the heretofore not discussed
consistency of the results obtained in the resistive model,
especially for weak currents, which is important for what
follows. We note here that to obtain the IVC of an annular
Josephson junction with radid& from Eq. (1.7), the param-
eterL in Eq. (1.7) should be replaced bg/m, wherem is a

eﬁositive integer corresponding to the number of Abrikosov—

8sephson vortices in the rirjgee Refs. 8 and)9
In the case of small dissipation of interest to us, i.e., in
the limit opposite to that obtained in the resistive model, the

otential: R . - .

P dissipation is determined by the emission of generalized
2 jfjﬁLz . Swihart waves. The deceleration arising in the process for a
=5t m where ]rzﬁ- (1.7 single Abrikosov—Josephson vortex was studied in Ref. 10.

r Cc S

In the case when such a vortex moves with a low velocity

The latter form, in contrast to Eq1.6), corresponds less (1.13
directly to the experimental data, but it does facilitate com-

parisons with the results obtained by our predecessors. Let @ort waves with wavelengths less than the London depth are
examine Ref. 5 first. Thé—V curve obtained there as a excited, and the spectrum of generalized Swihart waves has

v<|wj

result of a numerical investigation is qualitatively similar to the form(compare Ref. 11

the plot constructed in Ref. 8 on the basis of Efj7). Fur-
ther, in Ref. 5 the relation

L

j:|—jr (1.8

is indicated for weak currents. According to Ed..7) the
relation (1.8) holds for

I
—<<—<1,
Rie L

(1.9

This corresponds to a narrower region than that indicated in
Ref. 5. The second asymptotic formula of Ref. 5 describes

convergence to Ohm’s law:
L% J
=] 1+ - ==
J J’{ 257+
This formula holds foivs>|j.Rs, as follows from Eq.(1.7)
and as was indicated in Ref. 5.

(1.10

w(K)=w?(1+K|D), (1.14

wherek is the wave vector. According to the condition for
Cherenkov radiation, the wave vector of the disturbances ex-
cited can be determined from the equation

w?(k)=k?v2. (1.19

In contrast to Ref. 10, to construct a theory for IVC’s, below
we shall employ the exact stationary solution which was ob-
tained in Ref. 12 for Eq(1.3 with y=0 and describes a
chain of Abrikosov—Josephson vortices:

tar{z/2L ]
tanH a/2]

1

o(2)=m+2tam , (1.16

sinha=(I/L). (1.17

We assume, as in Ref. 10, that the struct(rd® moves
with a low velocityv. The wave disturbance produced by
such a motion of a single vortex in a ring whér=R is
obtained in Sec. 2. The friction force acting on the moving

The IVC of Ref. 6 is based on the use of the exactvortex structure together with its disturbance field due to the
solution of the resistive model for a single vortex moving dissipation caused by the finite conductivityof the quasi-

with constant velocity:

particles passing through the tunnel junction is determined in
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Sec. 3. The balancing of the friction force by the Lorentz [ nl

force due to the current flowing through the Josephson junc- @p,=w;\/1+ R

tion is studied in Sec. 4. This makes it possible to determine

the relationship between the velocity of the vortex structurecorresponds to Eq(1.14 for the spectrum of generalized
and the current. A generalization to the case mf Swihart waves ik=n/R. The last term in Eg(2.6) is due to
Abrikosov—-Josephson vortices in an annular junction ishe contribution

given in Sec. 5. The IVC is obtained in Sec. 6. Section 7 is

(2.7)

devoted to a discussion of the results. deo v\ B 08
ds o] " Ra? 8
i

2. MOVING VORTEX STRUCTURE

In this section we assume that a single vortéx=[R)
moving with a low velocity satisfying the inequalitg.13 is
present in an annular Josephson junction with raéiugt

the same time, we assume that the dissipation is small,

to the right-hand side of Eq2.5). Here the angle brackets
denote averaging over a period. By virtue of the left-hand
inequality in Eq.(2.1) we neglect the second term in the
curly brackets in Eq(2.6) in comparison with the first term.
Since B is small, it is obvious that Eq2.6) describes a

whence it follows that the rate of such motion should not beresonance dependence on the velocity. The numpef the

very low. Thus,

RB<v<lo;. (2.2

We assume that the ring is large compared with an 2 2 Nl _
wnr—w]- 1+H ==

Abrikosov—-Josephson vortex:
R>1. (2.2

We seek the perturbed state arising during the motion of the

chain of vorticeg1.16), in the form

o(z,t)=po(z—vt) + ¢41(z,1), (2.3
where ¢, is specified by formuld1.16 and
P1<¢g. (2.9

The substitution 0f2.3) into Eq. (1.3 with y=0 followed
by linearization gives

1 ¢, B doy Ior | rw dz' de¢,

——+— COS po— — -—

o t* ol dt PLEDSPOT T 77 =2 97
_ v dz@o Bv deg 2.5
w ds? w-z ds’ '

J

wheres=z—uvt. The termg; coS¢y on the left-hand side of
Eq. (2.5 is comparatively small, and its retention is impor-
tant only for simplifying the mathematical operations. For
this reason, just as in Ref. 10, we replace itdy It is easy

to see that the following stationary solution in the form of a

structure traveling with velocity can then be written:

7

(N)%Q—Eex—ﬁ>

, N v2\2] 7202 [nBu ns
Tlen R ®| R ™R
n2y? ns\| 2Bv
+| wi- = )sin(E +%
, n%? ns\ n ns
X wn—RT co E —TSIH E
Bu
+ =, 2.6
Ro (2.6

where

resonance term in the suf@.6) and the resonance valwe
of the velocity are related as

Ny 2
) 29
Accordingly,
. _|ij2 01
= (2.10
r

and according to Eq(2.2) and the right-hand side of Eq.
(2.1 we have

R
N >1. (2.10)

The latter justifies replacing, cos¢g by ¢, when reso-
nance effects are examined. As a result, the resonance term
with v =v, can be written as

(2.12

This expression is distinguished from that arising in the
theory of the Cherenkov radiation of a single Abrikosov—
Josephson vortéX only by the preexponential factor. This
difference is due to the fact that E®.12) takes into account
the dissipation in an annular Josephson junction.

Next, we note that, owing to the left-hand inequality in
(2.1), the condition

2 2 .2\2
nBv n“v
PP

is satisfied fow~v, andn#n, . This allows us to negleg
in all the nonresonance terms in EG.6) and thereby leads
to the following nonresonance contribution ¢q(s):

(Pnr(s)_ Rz ,12_:1 | (”;) }_l

n#n,

(2.19
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The last expression can be simplified using the inequalities The energy loss by a vortex structure is often attributed
(2.17) and neglecting the contribution that is obviously smallto the friction forcefy, (see, for example, Ref. 14which is

compared with the resonance contribution. Then specified by the relation
2 < n nl ns 1dE
~ — —|sin — fo=——. (3.3
©Cnr n n§=:1 N+ (RID exr{ R)sm( R)' (2.15 LT
Here we also call attention to the relative smallness of thé‘ccordingly, it follows from Eq.(3.2) that
Qistance between r_1eighboring resonance values of the veloc- (_ vB mhi. ) |3wJ4 exp —2[l o, 1v,1%)
ity. Indeed, according to Eq2.9), we have fr wjz El 207R (BI2)2 (v —v )R]
Ayl | [ v? ) (3.9
UrTon, Ur2R 120? <vr- (218 1he friction force and relatively small energy losses by a

vortex structure can be discussed when
Br<l, (3.5

. ] o . wherer=2=wR/v is the rotation period of the vortex struc-
it can be shown that Eq2.13 is satisfied, and we can write e in the ring. This condition is satisfied according to Eq.

Then, away from resonance,

2lv—v,|<Av,<v,, (2.17

T B2+nr2(v_vr)2 -1 |2wj2 (2.2).
Qol(s)_ﬁ Z R2 — ex UI?
B ns| n(v—u,) ns 4. LORENTZ FORCE AND THE EQUILIBRIUM CONDITION
r r r . r
X{=€0§ —|— ———— — . .
r 2 S{ R ) R ( R )] To solve the problem of the IVC of a Josephson junction
we now assume that a constant spatially uniform current with
+ one(S)+ —. (2.19  densityj flows through the junction. As a result, the current
Ro)j acts on the vortex structure, exerting the following a Lorentz
3 ; .
Let us now focus on the realization of the approximation‘corcel per unit length:
(2.4). First, the right-hand inequality in Eq2.1) gives the 1
required smallness af,,,. Second, the inequality fi=gi®, 4.7
2
ex IZ“’J‘ > ﬂ 2.19 where® is the magnetic flux through the Josephson junction.
vy BR ' More specifically(see Ref. 18

ensures that the resonance contribution is small compared to
¢o- We shall also utilize this inequality below to satisfy the
condition (2.4).

Dy
®=5— [p(z=2mRt)~ ¢(2=0, 1)], 4.2)

where®,= wrfic/|e| is the magnetic flux quantum. Since ac-
cording to Eq{(2.6) the disturbance; is a periodic function,
the flux (4.2) is determined byp,. Therefore, according to
3. FRICTION FORCE Eqg. (1.16 with L=R, as was assumed in Sec. 2, we have

o , ®=d,. In this case the Lorentz force equals
Dissipation (3#0) results in energy loss. The rate of
decrease in the energy of a vortex structure in an annular f _} ‘D 4.3
Josephson junction is given by the expresdicompare, for L7 ¢ I%o- '

xample, Ref. 1 : .
example, Ref. 18 In the case of stationary motion of our vortex structure, the

dE hjc B [27R  [d¢p)? constant value of is determined from the condition that the
dat 2le| w_f fo dZ(E) (3.3) accelerating Lorentz forc@.3) is balanced by the decelerat-
ing friction force (3.4). This condition leads to the relation
HereE is the energy per unit length of the Josephson junc- 3 4 )
tion. J__,B_U IPw; expl—2[lw;/v,]%)
Using the expression obtained fpp+ ¢, in the preced- jo ofl 20°R (BI2)*+[n,(v—v,)/R]?
ing section, we can express the energy dissipation rate as

(4.9

between the current densityand the velocity of the vortex
dE v2B whij. |3wa‘ exp(—2[| w; Iv,1%) structure. We stress that, according to the conditi¢h$)
dt = W Jell | 207R (B2 +[n(v—v)IRP)" Z)ni(%.:gj, the right-hand side of Eq4.4) is small compared
3.2 » 1€ ]S e
3.2 We note that Eq(4.4) can be obtained on the basis of
The first term in curly brackets on the right-hand side correthe energy relation following from Eq1.3)
sponds to the energy loss by the moving periodic structure , )
¢o, and the second term corresponds to the energy loss by d_E: & 2mR (_ _'32 (‘9_@) —y ‘9_‘1") (4.5
the resonantly excited wawg, (s) (2.18. dt  2lel Jo o] \ dt at )’
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whereE is the energy of the Josephson junction. Equation |exp[—2(le /0)2]_exq_2(|wj/vr)2]|

(4.5) describes the variation of the energy in time due to exf — 201w 1v,)7]
dissipation(friction) and the accelerating action of the cur- T
rent (y=jl/j.). Substituting the expressid@.3) from Sec. 2 =|exd 4(lw; lv)2(v—v,)lv,]-1]

into (4.5 likewise leads to Eq(4.4) provided the energy 5 o 3
remains constantdE/dt=0). <exf2(lwj/v)"Av, fv ]~ 1=(mI/R)<1.
Thus, the relatior{5.5 can be written in the form

j B +ml%}‘ exp(—2[lw;/v]?)
jo wfl 20°R (BI2)%+[mn(v—v,)/R]?

In this section we give a generalization made before this (5.7
analysis to the case of several vortices in an annular Joseplihis relation between the current density and the velocity of
son junction. Generalization to the casenofvortices is ac- the vortex structure allows us to write down an expression
complished by replacing by R/m in Egs.(1.16 and(1.17.  for the IVC sought, which we shall do in the next section.
Since it_ was agsumed in Secs. 2—4 that R, Fhe required 6. CURRENT-VOLTAGE CHARACTERISTIC
generalization is made by replacifyby R/m in the equa- . i :
tions of these sections. It should be noted that the conditions ' © ©Ptain the IVC, we employ the definition of a static
(2.1 and(2.2) for the applicability of our analysis become potential difference

(BR/Im)<v<lw; and mI<R. (5.1 V:—%<a—¢>, (6.0

where the averaging extends over the length of the ring,
which in our case corresponds to averaging over time. In our

5. MULTIVORTEX STRUCTURE

Accordingly, the number of the Cherenkov resonance is
given by the formula

le R case onlypy(z—uvt) makes a nonzero contribution on aver-
n= mv,z >5>1 (5.2 aging. It turns out that
- V=fmv/2le|R.
The analog of the conditio2.19 has the form
) The latter formula makes it possible to rewrite the relation
ex;{ 120 J) 2mo, 5.3 (5.7) in the form of an IVC
BR ' i V R [ 2M3(Ryj1 V)2 exp(—zmzvg/VZ)]
These conditions make it possible to generalize Bg) so jc RgcIm 1+[(VIV)2(V—V,)?/(AV,)?]
as to describe the friction force acting on a chainnof (6.2

Abrikosov—Josephson vortices, whose motion also caus&ghere the notation
the excitation of generalized Swihart waves. For the friction

force we have AV, =V /2n, (6.3
w8 h] has been used for the distance between neighboring reso-
fo=— v2 7|T |J|° nance voltage valueg, on the IVC:
o |e
: L Viay 100 /de
2
o1 mPo]  exp—2[lw;/v]?) 54 LuV]= 2|e|R 2|e|)\ Rsnr NZen,’
20°R (B2)*+[mn(v—v,)/R]?]" (6.9
Since we now havé, =(m/c)j®d, for the Lorentz force, as il w; fic d jo 100 /d jO
; . . Vo[uV]= 7—= = — /=20
opposed to Eq4.3), we obtain the following generalization oLK 2lelR™ 2lelR Venj. R \e |
of the relation(4.4) from the equilibrium condition: (6 5)
i Bu ml3w]4 exp( —2[1 w; /v,]?) In the latter numerical expressioRsis measured in millime-
—=—5 + . Fi
jo ol [ 207R (,8/2)2+[mnr(v—vr)/R]2] ters. Finaly,
(5.5 ()\ j0)3’2 2mho % 658
11=] , = = : .
In this case, in analogy to E¢R.17), the following condition AR * lele 2[e[RCs
is satisfied: We note thatj,/Vy=(c/87\)Je/dR and does not depend
ml o2 on j.. In the resonance denominator of H§.2) |V—V,|
v [ .
2|v—v,|<Av,= 2r: =0 5 |_r2'<vrv (5.6) <(1/2)AV, . In accordance with Eq$5.1) and(5.3) the IVC

(6.2 holds for values ol that satisfy the inequalities

whereAv, is the distance between neighboring resonances. V <V<mV,, (6.7
Fulfillment of the conditiong5.6) and (5.2) permits the re- 2,2

placement oy, in the exponential function in E¢5.5) by v. exp{ m ; 0) >2X_ (6.8
Indeed, \ Vs
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.- 10° according to Eq(1.7), and the IVC approaches Ohm'’s law
according to Eq(1.10, which was obtained in Ref. 5.

In contrast to the resistive approximation, our analysis
leads to increasingly rapid growth of the current with in-
creasing voltage, rather than to slowing. This qualitative de-
pendence is similar to the known dependence for a Joseph-
son junction with a low critical density and small dissipation,
for which theories are being devised on the basis of the stan-
dard sine-Gordon equation with friction. We make the re-
quired comparison using the result obtained in Ref. 1 for the
IVC of a Josephson junction with small dissipation under the
condition, just as in our case, that the size of a single vortex
is much smaller than the period of the vortex structure in the
Josephson junction:

1 2 3

02 04 06 08 1 L& R Jolle (7.1
SO o mIoRs M T (VImVo)Z(jo/j0) |

FIG. 2. Current-voltage characteristic of a Josephson junction withW€ note that on the linear segment of the IVC at low volt-
m=1,2,3 and/R=10"2 (j;Rs/Vo)=10". ages this formula gives a current which differs by a factor of
(2/7)jolj. from the result obtained in the theory of Jo-
sephson junctions whose critical current density satisfies the
According to Eq.(6.2), the width 6V, of a resonance at condition (1.1). However, another property qf7.1) is ex-
half-height is given by tremely important to us. According to this property, as the

V voltage approaches the value
S

SV, =— AV, . (6.9
v V—mVovic/io 7.2

In. accordance with th.e inequalitg.?), this means that the the standard IVC describes a sharp increase in current. For
width of a resonance is much less than the distance between C . ;

. . . N our IVC (6.10 there is likewise a sharp increase in current
neighboring resonances. This suggests that individual res%'orresponding to a deviation of the curves in Fig. 2 from the
nances are distinguishable. On the other hand, according }o i

o ) . Inear segments in the low-voltage region. However, the
the definition(6.3) and the |nequal|t>(5.2), the resonances analogy between the IVC'6.10 and (7.1) ends with this
are very close together. Therefore, if the resolution accurac

AV, in the experiment is inadequate, the envelope of theéﬁualltatlve similarity. Therefore, we should now discuss the

o . differences.
curve (6.2), which is described by the formula First, the functional dependence of the upward deviation

i V R RZj2 V3 of the IVC from the continuation of the linear segment dif-
_ 3 2 .
TR Im | LTz exR 2 g (610  fers. In contrast to the comparatively smooth approach of

(7.1 to the square-root singularity, which is not observed
experimentally, because the IVC is cut off at a state with a
large number of vortices in the Josephson junction, in our
7. DISCUSSION case EQq(6.10 predicts a sharper exponential growth of the
current with increasing voltage. This qualitative difference
Figure 2 shows the IV@6.10 for several values of the an pe observed experimentallyompare Ref. 16
number of vortices in the Josephson junction=1,2,3). The second difference between E§.10 and Eq.(7.1)

This figure serves to illustrate our discussion. We begin oufs that for a Josephson junction with a high critical current
discussion with low voltages, for which the IVC's corre- gensity(1.1) rapid growth is predicted when

spond to linear segments of the curves. Such linear segments

correspond to a balance between the acceleration by the cur- v mV, mV, @3
rent and the deceleration by the dissipation of the main pe- ~ — = > .
riodic vortex structurepg, when the occurrence of resonance VIn[mREj V5l In[me(d/R)(c/Am\a)?]

losses is hardly observed. Therefore, the lower bound on thgiher than when the voltage approaches the value specified
voltage in Eq(6.7) is not important for such linear segments by (7.2). In accordance with the right-hand inequality in Eq.

of the IVC. These linear segments correspond to thgg 7) this value should be less thamV,. This is possible if
asymptotic result of Ref. 5, according to which the supercon-

ducting current through a Josephson junction /1) [ ed 4mon
times greater than the ohmic curreft=V/R, [see Eg. mﬁ>
(1.9)]. In Fig. 2 the dashed line corresponds to the ohmic

current. In the resistive approximation of Refs. 5 and 7, ashich is readily realized. On the other hand, our approach to
the voltage increases, the rate of growth of the current slowBnding the resonance correctigs requires satisfaction of

will be observed.

~4-100 Y\ [wmD (o[s™]), (7.9
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the left-hand inequality in Eq(6.7), where the expression (1.1), which is new compared with Ref. 7. Second, in Ref. 17
(7.3) should now be used instead of the voltage. The follow-the dissipation is due to the Cherenkov excitation of gener-

ing inequality then arises: alized Swihart waves, whose energy escapes to infinity from
: a vortex, i.e., it is emitted from the Josephson junction,

ma [edA J__O 1 > 477‘7)" whereas in our case a resonantly excited Cherenkov wave

R® . VIn[me (d/R)(cl4mho)?] c does not escape in any direction from the Josephson junc-

(7.5 tion, but is absorbed in the junction as a result of dissipation.
Whenm is of order unity, the left-hand side of this inequality 1S causes the preexponential factor in our V10 to
is much smaller than the left-hand side of E@.4). There- depend on the resistance of the Josephson junction, which, of
fore, the inequality(7.5) is the main constraint on the con- €OUrse, cannot happen in the approach described in Ref. 17.
ductivity of a Josephson junction. For example, for 10, Finally, we stress that no IVC was obtained in Ref. 17.

_ 76 - _ . . .
d/R=10"", andj.=>5j, the inequality(7.5) takes the form This work was supported by the Scientific Council on

myX7R.- 10t High-T. SuperconductivityProject AD No. 95008 and as
>AN[ um]o[sY], part of Project No. 96-02-17303 of the Russian Fund for
VIn[ ym- 10"Y\[ um]o s 1] Fundamental Research.
which does not place excessively severe constraints on the o
conductivity if we assume that/R~10"2—10"3. *JE-mail: silin@sci.Ipi.ac.ru
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We note that since the ring-averaged intensity of the

constant magnetic field is given by the relation
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A new technique for testing long-range order in high-absorption anisotropic crystals has been
developed using conversion of an incidgn{s-)wave to ans-(p-)wave due to optical

anisotropy. The technique yields time-resolved measurements of parameters related to phase
transformations in thin (10°—10"° cm) layers with a high resolution (16? s). Using

picosecond laser pulses and an “Agat” streak camera, the technique has been applied to an
experimental investigation of melting and recrystallization kinetics at zinc and graphite surfaces . It
was found that the process of melting takes less than 3 ps and the recrystallization time is
about 100 ps. ©1998 American Institute of Physids§1063-776098)01806-X]

1. INTRODUCTION surface, combined with pico- and femtosecond laser tech-
nigues, allows time-resolved measurements of the dynamics

The progress in picosecond and femtosecond techniques ultrafast phase transformation when one of the phases is

has afforded extraordinary possibilities for studying dynam-anisotropic, for example, when a crystal with a hexagonal

ics of ultrafast phase transformations in condensed niedia. close-packedHCP) lattice is melted. Although the effect of

The most important question in planning experiments in thisoptical anisotropy has been widely known, it has never been,

field is selection of the technique for observing the dynamicso the best of our knowledge, applied to studies of phase

of the processes of phase transformation. Various signalsansitions in solids.

generated in materials and carrying information about phase The rest of this paper is organized as follows. Section 2

transitions are used, such as optical reflection, luminescencpresents theoretical analysis of the characteristics of the po-

nonlinear optical effects, Raman spectra, etc. These teclarization effect. Section 3 describes experimental tech-

nigues, however, yield mostly information on changes in theniques. Section 4 presents an experimental investigation of

short-range order of crystal lattices, which do not change asltrafast melting of zinc and graphite exposed to picosecond

a result of melting or the transition to an amorphous tate.laser pulses. The results are discussed in Sec. 5.

Such techniques commonly used in studies of long-range

order in crystals as electronography, x-ray diffraction, etc.2. LIGHT REFLECTION FROM THE SURFACE OF AN

cannot be operated with a high time resolution, although atANISOTROPIC METAL: THEORETICAL ANALYSIS

tempts have been made to perform time-resolved measure- | ot 5 consider reflection of a monochromatic narrow

ments of this kind. For example, ultrashort laser pulses Werg?ht beam from a plane surface of an anisotropic metal. To

used to generate an electron beam for testing the dynamics gfis end. we use the impedance boundary condition
changes in the crystal structure of a metal, but the minimum ’

time resolution was about 50 ps. Eo=E&ap(HXN)g, (1)

In the present work, we have proposed and tested expeRjghereE andH are the electric and magnetic fields, respec-
mentally a new method of detecting ultrafast phase transforyely, n is the unit vector of the normal to the surface, greek
mations at metal surfaces based on the effect of optical arsybscripts in Eq(1) and the following equations take two
isotropy. The technique can be applied to metals in whichajyes corresponding to the Cartesian coordinates in the sur-
one of the phases is anisotropic, including, for example, zincgce plane, and, is the two-dimensional surface imped-
cadmium, titanium, and also graphite. The essence of thgnce tensor, which is related in nonmagnetic metals to the

technique is as follows. three-dimensional permittivity tenset, :
When a light beam incident on a surface of an isotropic o 1
medium is polarized either in the incidence plane or perpen- (69ap=(e Vap- @

dicular to this plane, the polarization of the reflected beam is  In a uniaxial crystal, which is the only object of our
the same. If the medium is an anisotropic crystal whose axianalysis, the tensar; can be expressed as

is neither in the incidence plane nor perpendicular to this

plane, a component with polarization different from that of ~ £1k~ £(Jik T SiSd), @)
the incident light is detected in the reflected beam. This efwhere & is the three-dimensional unit tensarjs the unit
fect (rotation of polarization plane due to reflection from a vector along the anisotropy axis, is the isotropic compo-

1063-7761/98/86(6)/7/$15.00 1184 © 1998 American Institute of Physics
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nent of the permittivity tensor, and is the optical anisot- A similar calculation for the ratio between the intensities
ropy constant. In what follows, we will assume that the fol-of the reflected p-polarized component and incident
lowing conditions are satisfied: s-polarized componentRs_,,) in the approximation deter-
e>1 A<l @ mined by Eq.(4) yields
Substitution of Eq.(3) in Eg. (2) with account of Eq.(4) Rs—p=Rps- (10
yields the following expression for the surface impedance Note two important implications of Eqg9) and (10).
tensor of a uniaxial metallic crystal: The first is that the intensity of the reflected component with
1 the alternative polarization as a function of the angldas
Eap=&| Sup— > Vv gASity |, (5)  four maxima and four minima as the crystal is rotated around
the surface normal through an angle af,2and the minima
where correspond to the absence of the effect. The maxima take
place when the anglé between the plane of incidence and
£=1Ne ©®  the plane of anisotropy is an odd multiple @f4, and no

i the isotropic component of the surface impedagicis, the effect is detected when the two planes either coincide or are
angle between the anisotropy axis and normal to the surfac@€"Pendicular with respect to one another.

andw is the two-dimensional unit vector along the projection ~ 1he second consequence of E¢8) and (10) is the
of the anisotropy axis on the metal surface. In a singleStrong dependence of the effect on the angle between the

crystal sample the angley and vector» are constant anisotropy axis and the reflecting surface normal described
whereas in a polycrystalline sample they are functions ofY the factor sify. When the anisotropy axis coincides with

coordinates. In our calculation of reflection characteristicdh® normal, the effect vanishes. . _
we begin with the case of a single crystal. Now let us proceed to the analysis of reflection from a

We denote byE, andE the electric field amplitudes in polycrystal'line sample of an anisotropiq metal with a p!ane
the incident beam corresponding to polarizations in the inciSUrface. Since the surface impedance is not constant in the
dence plane [f-wave) and perpendicular to this plane surfa_ce plane, the projection of the_ wave vector on the inter-
(s-wave). The respective amplitudes in the specular ref_ace is not conserved when thg anisotropic part of the r(_eflec-
flected beam will be denoted &/, andE/ . When the inci- tion occurs, so the corresponding reflection component is not
dent beam isp-polarized €=0), the tangential compo- specglqr but d|ffuse.. !_et us assume that the c_rystal grain size
nents of the electric and magnetic fields on the metal surfac@ satisfies the condition/2r<a<D, whereD is the laser

are expressed as spot size. In addition, we assume that the distribution of
grain parameters is uniform and isotropic. Denote by
Ei=(E,—Ep)l cos 0+ E¢nxl, (7 dR(p,ki—s,k{) anddR(s,k—p,k/) the ratios of the inten-

_ , , sities of the alternatively polarized component reflected into
Hi=(Ep+Ep)nXI+E,l cos o, ®  the solid angle elemert() in the direction defined by the

wherel=k,/|k;| is the unit vector directed along the crossing tangential componerk, of the reflected light wave vector

line between the light incidence plane and metal surfac&nd the incident light intensity.

plane, k,=k—n(n-k) is the tangential component of the The calculation performed in this section for single crys-

wave vectork, k=2x/\, and\ is the light wavelength. tals can be easily generalized to the case of a polycrystal
By substituting Egs(7) and (8) in the boundary condi- V\{ith a plane surface if the second terms on the right-hand

tion (1) and taking into account E@5), we obtain a system side of Egs.(7) and (8) are replaced by the corresponding

of equations for the amplitudes, andE, . By virtue of Eq. Fourier integrals with respect to the tangential component of

(4), the solution for amplitudeE;, is almost identical, to the reflected light wave vectok,. The solution of the equa-

within some corrections, to the corresponding expression i§ion system resulting from the boundary conditid yields

the Fresnel formuladThe amplitudeE, describes the effect the following expression for the relative intensities of the

under consideration, namely the change in the light polariza@lternatively polarized reflected components:

tion due to the metal anisotropy. The quantitative measure of " /

the effect is the ratio between tilsecomponent intensity in dR(P.ki—S,ki) =dR(s ki—p.kr)

the reflected beam and the intensity of the incident 1 |€2A|? cof6
p-polarized light,R,_.s. The calculation of this parameter = ——ZK(kt’—kt)dQ.
yields 4 [cos+¢|
11
1 1£?|Al? cogo
_Lleal" cosy sint i sir? 2¢. (9 Here

P74 |cos+ &2
k? co

Here ¢ is the angle between vectdrandw, in other words, K(k{ —ky)= >
the angle between the two planes perpendicular to the metal 4
surface, one of which contains the incident light wave vector ; ;

’ X (SIPy(r + m)sin 2p(r +
plane of(plane of incidenck the other the metal anisotropy (SITy(r +m)sin 26(r + )
axis (plane of anisotropy X Sirfy(r)sin 26(r)), .

| amexsi=it -k



1186 JETP 86 (6), June 1998 Agranat et al.

Control over
matching of laser spots

Digital video camera

Meters of

Laser beam parameters . Target
Polarizer

probe pump

FIG. 1. Optical diagram of the experimental fa-
cility.
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I Computer . l Optical anisotropy |+
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The angular bracket§. . .), denote averaging over coordi- device collecting and processing input data, which includes
nater in the laser spot plane. It follows from E@L1) that  several highly sensitive CCD video-camer@maiilt around
the alternatively polarized reflected beam has an additionafCD detector arraysseveral analogue inputs, a synchroni-
contribution to its divergencedd relative to the incident zation unit to control data inputs, a laser controller, and a
beam: computer loaded with instructions to make the experimental
S0~\/2mra. (12) facility follow a predetermined program, to read and process
. o . i simultaneously data fed from the electronic streak camera,
The expression for the relative intensity of alternatively 5gcijloscope, autocorrelator, pulse energy meters, light detec-
polarized reflected light gomponent mtegrqted over the So"%rs, and spectral devices.
angle, which can be derived from EQ.1), differs from Eq. The dynamics of the reflected light was measured by the
(9) by the replacement “Agat” electronic streak camera operated at time resolutions
sinty sir? 2¢p— 1/2(sin’y). (13)  of 3and 10 ps. The sample was pumped by a laser pulse with
rparameter&pl ps and\,=780 nm. The probe pulse had
parametersr,~500 ps and\,=530 nm. The pump pulse
was focused into a spot with a diameter of 100—3010, the
a<<\/2m. probe pulse into a spot of 58m. The minimal size of the

Note only that in this case the diffusely reflected light due toProbe laser spot was controlled by the sensitivity of the elec-

the optical anisotropy occupies the entire half-space correlfonic streak camera and the total pulse energy, which should
sponding to the total solid angler2 In addition to the alter- be lower than the surface damage threshold, and this condi-
native polarization, it also contains a component with thetion was checked by exposing the sample to a series of
polarization of the incident light. The total intensity of the pulses. The coincidence of the pump and probe laser spots
alternatively polarized component, in comparison with thatwas checked using the CCD camera and a microscope with a
for a large-grain crystal, has an additional small factormagnification of 7&. The probe pulse was polarized in the

Here we omit the complictaed expression for a small-grai
polycrystal satisfying the condition

~(2mal\)?. incidence planegg-wave), and its angle of incidence was less
then 15°. We fed to the input slit of the streak camera the
3. EXPERIMENTAL TECHNIQUES reflected probe pulse passing through a crossed analyzer

An optical diagram of the experimental facility is given (s-pc')larizatior),'th(.a reflected probe pulse-polarization), a
in Fig. 1. fraction of_ the incident pump pulse, and the reflected pump

The experiments were performed using a LIT-5 lasefPulse, whlch served as a t!me reference. The camera output
system. Its operation is based on the multist§BS and Was an ar_bltrgry combination of thes_e pulses or the_lr sum.
SRS time compression of initial nanosecond pulses from alN€ Polarization contrast of the optical package with the
Nd:YAG laser, and it generates four time-synchronized op£rossed polarizer and analyzer was abodt ¥hich is much
tical pulses with parameters;~200 fs, \;=1000 nm; higher than the value required for accuracy compatible with
7o~1ps, N,=780 nm; 73~20ps, A;=630nm; 7, the other measurements in our experiments. All experiments
~500 ps,\,=530 nm. The repetition rate is up to 25 Hz were performed in air.
and the pulse energfor 7, and r,) up to 1 mJ. The pulse The optical anisotropy of the tested area on the crystal
parameters are monitored using the measuring devices of tisgirface was tested without pump pulses using radiation gen-
facility, including optical pulse energy detectors , an “Agat” erated by a helium—neon laser. Photomultiplier tubes were
streak camera with a time resolution of about 3 ps, an autodsed in measurements of intensities ssfand p-polarized
correlator with a resolution of about 50 fs, and a devicecomponents of reflected light as functions of the angle
measuring pulse spectra. All measurements, including thosrough which the target was rotated around the normal to its
of monitoring devices, were fed to a multichannel digital surface. Thus, the fact®,_,s of energy transfer from thp-
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\$~+ p p / the surface inhomogeneities or error in measurements, of
since the contrast of the optical system allows more accurate
measurements.

Time-resolved measurements of light reflected from the
zinc surface were performed at= /4 (at a peak oR,_.).

The damage threshold fluenég of the pump laser pulse
was defined as the fluence producing a damaged spot with a
SN diameter of about 6@«m on the surface. The distribution of
fluence over the focal spot was approximately Gaussian,
F= Fmexp(—dzldg), whereF, is the maximum fluence at the
a spot center. When the fluence at the spot center excdegled
by a factor of two to three, the damaged spot diameter was
up to 2d,~200um and approximately constant at higher
pulse energies. The absolute value of the damage threshold
fluenceF,~0.05 J/c. Note that precise measurements of
the threshold fluence were not intended in our experiments.
Relative changes in the damage threshold were measured to
within 10%.

Time-resolved measurementsssfandp-polarized com-
ponents of reflected probe beam were performed at the pump
pulse fluence in the range,<F <10F,, and in most cases
a site on the surface was exposed to a pump pulse only once.
Statistically processed measuremefabout five hundred
streak photos which demonstrated reasonable reproducibil-
ity, have led us to the following conclusions.

1. At pumping laser fluences in the randg,<F
FIG. 2. Measurement of optical anisotroffg) beam reflection from surface <5F, the intensity of the reflectestpolarized component
of anisotropic metali(b) R, .s(¢): squares are experimental da@n);  drops to the noise level in less than 3 ps after the pump
circles represent the calculations (). pulse. After a time~100—300 ps, its intensity recovers com-
pletely or partially, depending on the fluence of the pump
pulse. The pulse shape of tipepolarized reflected compo-
nent is not affected by the pump pulse. Typical streak photos
are given in Fig. 3a. Figure 4 shows the intensity of the
s-polarized component versus time obtained by statistically
4. EXPERIMENTAL RESULTS processing our measurements with due account of the pump
pulse shape.

2. When the pump pulse fluence is three to five times

Experiments were performed with a zinc crystal whoseF, a drop in thep-polarized component with a duration of
surface was polished, then etched in a solution of nitric acid~10-50 ps, decreasing with, is observed, along with the
The probe and pump laser pulses were focused on the surfachanges in the-polarized component. The intensities of the
whose plane contained thg-axis. s- andp-waves do not recover to their initial values. Typical

In order to identify the polarization effect, we first mea- streak photos are shown in Fig. 3b.
sured changes in probe light reflected from a cold zinc 3. The optical anisotropy parameteR{_.s(¢#)) in the
sample(not exposed to a pump laser pylsEigure 2 shows region exposed to a single pump pulse with a fluence close to
the transformation coefficierR,_.s normalized to unity at the damage threshold value recovers to its initial value. After
the maximum as a function of the angfein polar coordi-  multiple exposureR, s increases to- 101 from the initial
nates. This graph also shows the theoretical dependensmlue~ 10 2, but this parameter no longer depends on angle
R,_.s(#), which is given by the function stre¢. Boththese ¢, and the numbeN of pulses needed to attain such an
functions are plotted in one quadrant. effect decreases with the fluence of the pump pulse down to

These measurements demonstrated the presence of tNe=1 atF>5F,. The surface structure after single and mul-
polarization effect in light reflection from the surface of an tiple exposures to pulses with~3F, has been studied us-
HCP crystal of Zn. It was found that, in accordance with Eq.ing the electron microscope. After exposure to a single pulse,
(9), the normal to the sample surface is a four-fold symmetrymicroscopic regions with dimensions of about4 could
axis for the transformation factoR, s, i.e., R,_s(¢ be seen, and after exposure to repeated pulses a granular
+m/4)=R,_s(). structure with a grain size of aboutudm was formed. The

One can see in Fig. 2 that the experimental and theoreintensity of the reflected probe pulgmtegrated over time
ical data are virtually identical. The coefficieRY, s of the  and measured without a pump pylsetably dropped as a
p-wave tos-wave intensity transformation is about 7at  result of this process, which is caused by the diffuse nature
¢=ml4. The minimumR,_, ;= 10 % at =0, 7/2 is due to  of reflection from the modified surface.

b

to s-wave as a function of angle between the incidence
and anisotropy planes was measured.

4.1. Zinc
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with respect to the pump pulse at several fluence values of the pump pulse:
SRR 28 1  § (1) F~2F,; (2) F~4Fo; (3) F~5F,.
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A .
— J _1["':, 1 theR,_.s(¢) curve is not affected by multiple exposure, un-
— 0 B - - - like the case of zinc.
g 70 2070 4050 ns Time-resolved measurements of the intensities of re-
a flected s- and p-polarized components after a pump laser
pulse were performed similarly, but on the same surface area
at different fluences of pump pulses. Our measurements have
led us to the following conclusions.

1. The measurements are less reproducible than in the
case of zinc, probably because of inhomogeneity of the
structure and the various physical crystal parameters in the
plane containing the symmetry axis.

2. The damage threshold of the pump pulse fluence is
Fo~0.1 J/cm, which is close to the value given by Reitze
etal®

3. In the narrow range of fluences of the pump pulse,
Fo<F<2F,, the intensity of thes-polarized reflected com-
ponent drops rapidly in about 3 ps after the pump pulse and
= 3| then recovers almost to its initial value in a timel00—150

=i ps. The pulse shape of the reflecfegolarized component is

—— P L, 1] not affected. Typical streak photos are shown in Fig. 5.

=y 'u‘?,' e 4. At the pump pulse fluencé>2F,, the intensity of
e 2 ) "‘:;tl__;.'_‘ =04l the reflectedp-polarized component also drops rapidly to-

T T [ [ ) (Y gether with the drop in the probe beapolarized compo-

g 70 2030 40 50 ns nent. The typical decay time of tteepolarized component is

b again less than 3 ps, whereas theolarized component

decays more slowly, as in Refs. 3 and 4.

FIG. 3. Typical streak photos ¢1) pump pulse(2) s-, and(3) p-polarized
components of the reflected probe beam at the pump pulse flfanée

<5F, and (b) F>5F, for a zinc single crystal. 5. DISCUSSION OF EXPERIMENTAL RESULTS
The theoretical analysis of experimental results de-
scribed in the previous section is based on the model devel-
4.2. Graphite oped by Anisimov et al:'° The incident pump laser pulse is
absorbed by the degenerate electron gas, whose temperature

Experiments have been performed with a perIIth'canyduring the pulse is much higher than the lattice temperature.

manufactured quasi-single crystal of graphite. The tested SUE: . :
. . 0 estimate the spatial scale and absolute electron tempera-
face, whose plane contained the symmetry axis, underwent

o : . 7 ture, we use Eq(14) from Ref. 10:
preliminary cleaning with laser radiation, namely, by expo-
sure to multiple pump pulses with fluences higher than the 302T,\ R 18,60
Te(O1)= . o= :

damage threshold value. 20k 2T (14
Our measurements of optical anisotropy indicate that the 0

maximum R,_,s is about 3102 at p=m/4, i.e., it is whereq,(t) is the absorbed laser intensity, is the energy

higher than in the case of zinc, but the angular dependence exchange rate between electrons and the latiigeis the

weaker: R, ((¢=7/4)IR,_(¢=0)=3-4. The shape of heat conductivity of a metal in equilibrium, ant, is the
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Since the target is heated in a very short time, the mate-
4 rial density is constant during a time interval of ab&Vit,,

B PR i a0 during which a rarefaction wave passes through the heated
surface layer. Hereg is the speed of sound in the heated
material. During this timéseveral tens of picoseconds in this
SO — specific casethe heated layer is kept under a pressure that
' 3 can be estimated by the formuRe=1"(pg) E+, wherel'(pg)

is the Grneisen parameter at the initial densityandE+ is

: the laser pulse energy absorbed in unit volume. Our esti-
- I . mates yield the pressure up to 30 kbar for zinc and 150 kbar
: p;_ Hj_l_lﬁ for carbon near the damage threshold. The latter value is in

] agreement with the estimate quoted in Ref. 11. This pressure
is higher than at the graphite—diamond—liquid triple point on

TR the carbon phase diagram. It is noteworthy that electron—

; 7 lattice relaxation has little effect on the pressure, since the

I -, partial pressures due to electrons and lattice are, by defini-
] tion, proportional to the corresponding energy densities,

whereas the total energy is constant.

In order to produce changes in the reflectivity due to
melting, one should destroy the crystal lattice in the skin
layer. When the overheating is smdl|—T,<T,,, the melt-
ing front propagates from the surface into the crystal bulk.
The velocity of this front is lower than the speed of sodifd,
so the time a melting wave needs to traverse the skin layer is
at least several tens of picoseconds. Our experiments indi-
%'Lt cate, however, that the reflectesipolarized component
drops in a time shorter than 3 ps after the pump pulse. This
Y. | S - means that the melting takes place in the bulk of material as
tidé = S bl i a result of homogeneous nucleation. This process was
- studied® taking into account the activation energy caused by

Vi 20 45 b0 80ns lattice deformation around a growing nucleus. Under certain
b conditions one can expect formation of nonspherical nuclei.
This analysis, however, cannot be directly applied to carbon
FIG. 5. Typical streak photos @) s- and(3) p-polarized components of  gince the liquid phase of this material has a higher density
the reflected probe beam at tt pump pulse fluenco<F<2Fo: (@  than the solid phase in a pressure range of 70—80 Rbar.
drop in the intensity of the-polarized component in the process of graphite .
melting; (b) recovery of thes-polarized component during recrystallization The COO“ng of a metal heated by ultrashort laser pUISeS
(the measurements were processed with due account of the actual prois largely controlled by thermal conductivit§:** The contri-
pulse shape The time resolution is about 3 ps. bution of evaporation to the cooling rate is negligible. Hence
the cooling time can be estimated by the formula
~ 6%14y, wherey is the heat diffusivity. This estimate yields
initial (room) temperature. Equatiof14) applies to the case 7.~300 ps, which is in satisfactory agreement with our mea-
when the thickness of the heated layer is larger than the skisurements.
depth. Assuming thatg,~10" W/cn?, ko~1W/cmK,
a~102 W/emPK, and T,~300 K, we obtain T,~1.6
X 10* K and 6~1.8x 105 cm. The lattice of the materials & CONCLUSIONS

under consideration is heated in this layer in several picosec-  The principal results of the reported work are as follows.
onds. The maximum lattice temperature at the sample sur- \we have developed an optical technique for studying the

1) 20 40 60 ns
a

-

(A

F ||

N

face is estimated using E(5) from Ref. 10: kinetics of phase transformation at surfaces of anisotropic,
F. B highly absorbing solidgincluding polycrystals The tech-
a M . a .
Tim~To+ C_m = \/K—, (15 nigue allows one to test the presence or absence of long-
i 0

range order in microscopic regions on crystal surfaces and on
whereF, is the laser fluence absorbed,is the absorption bottoms of microcraters, where measurement using small-
coefficient, andc; is the lattice specific heat. Assuming angle x-ray radiation or electron beams have low efficiency.
w~3x10° cm !, we obtain T;,=2500 K for zinc and Time-resolved measurements of phase transformations
Tim=6100 K for carbon at the damage thresh@le assume on zinc and graphite surfaces due to picosecond laser pulses
that the reflectivities of Zn and C averaged over time are 0.based on the suggested technique clearly indicate that melt-
and 0.3, respectively Both these temperatures are notablying processes in surface layers can be investigated with pi-
higher than the melting temperatures of the correspondingosecond resolution.
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A theory of the de Haas—van Alphen effect in typgatwwave andD-wave superconductoishe

latter corresponds to th,, one-dimensional representation of graDp,) has been

developed. Solutions for the order parameter and density of quasiparticle states near the upper
critical field have been calculated. If the curve enclosing the extremal cross section of

the Fermi surface in the plane perpendicular to the external magnetic field coincides with the line
of nodes of the superconducting order parameter, the effect of the transition to the
superconducting state on the amplitude of magnetization oscillations is negligible. If the line of
nodes is oriented differently with respect to the applied magnetic field, the de Haas—van

Alphen oscillations are suppressed in a manner qualitatively similar to the case of conventional
superconductors. €1998 American Institute of Physids$$1063-776(98)01906-4

1. INTRODUCTION Equations(1) and(2) were derivedto first order in the order

. ) parameterA2~ (H.,—H)/H., under the assumption that
The amount of experimental data concerning the de_p
c-

Haas—van Alphen effect in type-Il superconductors that have

. , X s i In high-temperature superconductors, which were dis-
been published recently is quite consideraisiee the review

covered in recent years, and in heavy-fermion superconduct-

A . ; \
?yldcor%maner: al.f}. If _theh region Olf very hngh S;agnetlc ors, superconducting states with anisotropic pairing were hy-
ields where the efiect in the normal state takes plaeer- othesized. In this connection, the need in a theory of the de

Iap_s wit h the d.|c|>m.a|n ofa sypgrc%nducn_ng rgn;ed s:]ate, Mag3as—van Alphen effect in superconductors with symmetry
netization oscillations persist in the region below the transi-\ J1o ot the order parameter became obvious. Maki

tion to the mixed statei <H.,, and the frequency of the tended his theofyto superconducting states with order pa-

oscillations as a function of magnetic field remains YN ameter nodes on the equator and poles of the Fermi sphere.

changed, while the amplitude drops with decreasing MaG%e used an expression for the excitation spectrum defived

n;tlctf_leldbfasterbtlhan fl'n|§ r:jormalmrzega}:_;._' Noqrer':heleslsj, th?‘leglecting the Landau quantization and an order parameter
cfiect IS observable In nelds down t=19.9Hcq,. These ob- = ;hiained in the momentum representation.

servations indicate that the Landau quantization persists in We have developed a quantum theory of the de Haas—
the mixed s@a}te at. magnetic fields considerably below tha@an Alphen effect fop-wave states, whose order parameter
the upper critical fieldH,.,.

Attempts to interpret this phenomenon were made in has been calculated exactly for fieltls~H., and arbitrary
pts | P! 4 P . a%emperature%.A phase whose symmetry corresponds to the
set of theoretical studi€s.* A self-consistent theory of the

de Haas—van Alphen effect was developed in our previou%ne—d|_rnen3|pnal representau_mg_of group Dy has also
5 S . . een investigated. For brevity, it will be denoted as the
work.” It was found that, at a finite impurity concentration

notwithstanding the high-purity conditionT < e, which D-phase. The theory of magnetization oscillations in the

2 o0 .._D-phase is of special interest because recent experimental
should be satisfied in order to detect magnetization oscilla- g : :
. ; . S data indicate that thd®,, state can occur in the highs
tions, there is a region of gapless superconductivity in the 9

9
mixed state near the upper criical sk, where the den- [ BEFRELET. TEREA L T T e sross
sity of states at the Fermi level is finite: ' 9

section in the plane perpendicular to the applied magnetic

V7ong He,—H field does not coincide with the line of nodes of the super-
N(E=0)~No| 1- Inne  He | (D conductor order parameter, the suppression of the oscillation

amplitude is qualitatively similar to the case of conventional
- ) - i superconductivity. On the contrary, if the order parameter
=plaoc, a”dS'“ is the chemical potential. The oscillating hoges are on the curve enclosing the cross section with an
componentM g, of magnetization in the mixed state is SUP- gyireme area, the transition to the superconducting state has
pressed in comparison with its amplitu¥EG;in the normal e effect on the oscillation amplitude. Thus, observation of

Here Ng is the density of states in the normal metal

state: the de Haas—van Alphen effect in the mixed state can be
M3, \/w_nF Hep—H used in |dent|fy_|ng uncqnventlonal superconducting s_tates.
- ~1- ¥ ) 2 The paper is organized as follows. The next section pre-
M F c2

osc sents equations for the Green'’s function of superconductors

1063-7761/98/86(6)/10/$15.00 1191 © 1998 American Institute of Physics
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with p and D-wave pairing. The order parameter near the  The matrix G(r,r’,w) contains the normal Green's
upper critical field for different superconducting states will function G(r,r’,w) and anomalous Green's function
be derived in Sec. 3, then the corresponding matrix elements(r,r’, »), which can be expressed in both the coordinate
of the order parameter will be calculated. Then the selfrepresentation and the representationpg(r) states:
consistency equation for the order parameter amplitude will

be solved. In Sec. 6 the density of states at the Fermi leveb(r,r’, )

and the amplitude of de Haas—van Alphen oscillations will

be calculated. G(r,r'o) F(rr',o)

TVF(re) —G(rr—w)
2. ELECTRON GREEN'S FUNCTION IN DOPED ¢,(r)G|,,(w)¢|*,(r’) d(NFy(w)d(r')
SUPERCONDUCTORS = . N . . ., (8).
i\ oy (DF (@) (') = (r')G(—w)df (r).
The Gor’kov equation for anisotropic superconductors

has the form The summation over the quantum numbers should be per-
formed by the following rule:

B * dkz mla dqX ml2a dqy
DR T

[io—Ho(R)—U(R)]G(R,R,w)

—f drA(R1G(R-1,R",0)=8R-R'). (3 T) e 27 ) mpa 27
Here The order parameter
a8 (R Ho(R) 0 i 0 A(R,r)
0( )_ 0 _HS(R) ’ (Rar)_ A*(R,r) 0 (10)
. . u(R) 0 is a function of two variables, namely the center-of-mass
u(R)=r3u(R)= 0 —u(R)/" coordinateR of a Cooper pair and the relative coordinate
) ] ] . ] of the electrons in the pair, and it is determined by the fol-
u(R) is the impurity scattering potential, and lowing self-consistency equation:
_1 . J e ? r r
HO(R)_ﬁ _IE—FEA(") - M (4) A*(R,r):V(r)TE F+(R_§!R+§vw>v (11)

is the one-particle Hamiltonian of electrons in the magnetic

field. The magnetic field is assumed to be uniform and thévhereV(r) is the attractive potential between the electrons.
same as the external magnetic field, which is justifieti at Using the same notation as in E@) in the Green’s
~H,, in superconductors with a large Ginzburg—Landau pafunction averaged over the positions of the impurities, we
rameter. Here we use eigenfunctiongR) of the operator obtain the following equatiof:

Ho(R), which form a representation of magnetic . .

sublattices® In the Landau gaugeA(R)=(0, Hx,0) the G(R,R",0)=G(R,R",0)

functions ¢,(r) have the form R R A
+f deg(R,Rl,w)E(Rl,w)G(Rl,R',w)

hi(r)= \/é exp(ik,2) > exp(—ig,am)
K +delf dr g(R.R)A(R,,1G

) m X m
XeXRI Gyt )Y enl X DN X (Ri=1,R’,0). (12
) Hereg(r,r’,w) is the Green’s function of the undoped nor-
where mal metal in a magnetic field:
(5=~ exf — 3 Hul) © g anrier 0 1
S)= ———=e6exg — s), ' w)= )
¢n 2nn!ﬁ _2_ n g(l’,r ,U)) 0 _g(rr,r,_w) ( 3)
n The Green’s functio(r, r',w) is expressed in terms of the
Hn(s)=(—1)" exp(s?) Eexp(—sz) (7)  eigenfunctions of the operatét, as follows:
are Hermite polynomials. The unit cell in the lattice of mag- g(r,r’,w)=2| SN G (@) B* (1), (14)

netic translations is a rectangle with sidag=a and a,
=2a. The quantum number in this case lis{n,k,,q},

whereﬁ is the two-dimensional vector in the first Brillouin
zone —w/a<q,<mla, —ml2a<q,<ml2a. g(w)=(w—§&) 1

where
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1 K2 an isotropic superconductorthe only difference being that
&=énk)=wcn+ = 5 + Z* — . (15  the matrix element of the order parameter is expressed by
m
r r
The expression for the impurity self-energy part in the case A,,,=f de drof| R+ > ¢,*, R— > A(R,r), (25

of anisotropic pairing has the form

G(R 0 which should be derived explicitly for states with anisotropic
S (Rw)= (Riw) o (16) pairing. In Eq.(25) the system has been shifted in the space
e 0 ~-G(R,—w)/’ of the coordinate® throughr/2.

whereG(R, ) is determined by the equation

G(R,®) =N u?G(R,R,w), (17) 3. STRUCTURE OF THE ORDER PARAMETER NEAR THE

. . . . . . .. UPPER CRITICAL FIELD
Nimp IS the impurity concentration, andis the characteristic

amplitude of the scattering potential due to impurity. In this section, we derive solutions of the linearized self-
Unlike the case of conventional superconductivity, stategonsistency equatiofill) for phases with anisotropic pair-
with anisotropic pairing satisfy ing. Let us consider superconducting states whose order pa-
r rameter in the mixed stateR(k) has the form
f dO:F| R+ = ,R— z,w) =0,

AR =2 ¢i(k)A(R). (26)

whered(); denotes an element of solid angle in the space of

unit vectorsr = r/|r|. Therefore the nondiagonal elements of
the self-energy part vanish.

To third order inA, the normal and anomalous parts of
the Green'’s function have the form

HereR is the pair center-of-mass coordinate dnek/kg is
the unit vector pointing in the direction of the relative elec-
tron momentum in a pair. Equatiai26) yields the Fourier
transform(with respect to the relative coordinatg of the

Gy ,(w):G,(ﬁ)(w)JrGflz,)(w), (18 order parameter given by E€L1); (k) are the basis func-
" - tions of the irreducible representation of the crystal symme-
Fir(w)=F, (0)+F /(). (190 try group, in which the pairing potential is expanded, and the

pair potential is nonvanishing only in a layer of wid#g

Equation(12) directly yields near the Eermi surface:

S
0 V=51.60(¢)= — " AN
G )= G ) =5 @0 ki =-1gIZ wkur k). @)
G7(0)=G{" ()G (0)G|)(w) We considem-wave states with order parametgi(k)
=/3k;, in which a Cooper pair is in states with spin projec-
+> Gfo)(w)A||l(w)F|+1|(,l)(w) (21)  tionsS,= =1 with equal probabilities and in tH8,= 0 state
1 with zero probability, and also a state corresponding to the
and for the anomalous Green'’s function one-dimensional representati@n in a crystal with tetrag-
onal symmetryD ,;, with the function
Fii(0)==G{7(~ 0)A}(0)G](w), (22
y(k)= \/1\5<R2 k)
Fir /(@)= =2 6%~ w)Af ()Gl () 4

In a uniform magnetic field, the linearized equation for

+2 GO~ w)G<2)(w)F,+1|(,l)(w). 29 the order parameter is written in the fdtm

To zeroth order mA2 the solution of the self-consistency Ai(R)ngzwl EJ: Jd“ﬁi*(r)‘/’i(r)

equation for the self-energy part is diagonal iandl’, and ~ B

has the form G{%(w)=—iTnsignw, where Ty, Xg(r,—w)g(r,e)exdir-D(R)JA|(R). (28
= TNimpU 2N,. The correction to second order in is de-

Here
rived from the equation

g 2e
D(R)==i-=+—A(R),

_|(|21)(w) NimpU Z fdrd’l(r)(ﬁp(r) JR

e is the absolute value of the electron chargés the unit

X (r)d).,(r)G(Z’ (@). (24 . . e e X ,
vector aligned withr, and g(r,w) is the electron Green’s

The system of equatiof®0)—(24) is, in fact, identical to the function in the normal state defined so that it depends only

system of equations that determines the Green'’s function ion the difference between electron coordinates:
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~ e(r
g(r—r’,w)=exp(iEJ’A(s)ds)g(r,r’,w). (29

For simplicity we do not consider the action of the magnetic, o .o thel

field on electron spins.
The solution of Eq(28) has the form of a finite or infi-
nite linear combination of functiongy(r):

Ai(R>=N§O ANFN(R). (30)

In a square lattice of Abrikosov flux ling$or simplicity we
analyze only this cagethe functionsfy(R) have the form

fWRI=427 S ex 2”“”)%(@

a

X+7TV)\
A a

(31

where thep,(S) are defined by Eq6).
There are three classes of solutions flewave phase$,

which yield maximal values dfl., in superconducting states

in the form of the polar phase:

APY(R,k) = 3Pk, fo(R), (32
A-phase:
AB L _\/§ Al il
AA(R,K) =\ 58%(k—iky) To(R), (33
and the Scharnberg—Klemm phaS8k):
. 3 .
ASKR, k)= \[EASK (ky+iky) fo(R)
1-By -~ .
e % (ky— ik Fo(R)|. (34)

The corresponding equations fblr,, are expressed as

ao(H,T)zl, (35)

Bo(H, T)=1, (36)

[1—Bo(H,T)I[1—B2(H,T)]=¥5(H,T), (37)
where

ag(H,T)=6m7|g| T, f dr rszde sing cos o
0} 0 0
r2sinf6) - -
xexp — o g(r, —w)g(r, ),
Bu(H T =3a|gTS, f dr rszdasin*”e
w 0 0

r2sinfg\ -
xXexp — N a(r,— w)

- r?sinf
Xg(rlw)LN )\2 !

yo(H,T)=—37|g|T>, f drrZJ dé sinte
%) 0 0

M. G. Vavilov and V. P. Mineev

p(_rzsin26?>~ -~ r2sirf
ex o2 a(r, “))g(r’“’)—\/z)\z'

n(s) are Laguerre polynomials. The structure of
the solution is independent of whether we select the exact or
guasiclassical expression,

(39

S m o
g(r,w)——mex ipgr agnw—x ,

for the Green’s functiog(r,w). In subsequent calculations
of the linear part of the self-consistency equation we will use
the latter form.

Finally, the linear combination in E¢30) corresponding
to the maximumH,, in a tetragonal crystal in a magnetic
field aligned with the four-fold axis contains an infinite num-
ber of terms. By retaining the first thréthe contributions of
the rest toH., and coefficientsAy with numbersN=0,1,2
are vanishing correctiofhswe obtain in the limitT—0

. 15 .. .
AP(R k)= \/;AD(kf(—kf,)[fO(R)+0.15f4(R)

+0.01F(R)+...]. (39
The fieldH,, is determined by the equation
Bo—1 Yo 0
Yo Ba—l vs | =0, (40)
0 Ya  Bs—1
where

15 o T
,BN(H,T)=ngE f drrZJ dé sinfe
%) 0 0

r2sinf\ .-
Xexp — "~ g(r,—w)

- r2sirf
Xg(r!w)LN )\2 y

15 % ™
7’N(H,T)=§7ng f drrzf dé sirto
w 0 0

r2sinf ) - -
xexp — ~ g(r,—w)g(r,w)

EN) r2sirte)' "t UNI(N+4)!
“E | T NI+H I (N=1)! "

The expressions for the order parameter in the anisotropic
phases given in this section will be used in subsequent sec-
tions for calculating the matrix elements;, .

4. MATRIX ELEMENT OF THE ORDER PARAMETER

This section describes calculation of the matrix element
(25) for various phases with anisotropic pairing.
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In this phase the order parameter as a functiom & ex- dr

pressed as
dk
APY(R,r)= 3Ap°'J’
(Rr)=13 2

A
Integration overk is performed in a layer of thicknessk —i \EA_J deo(R)f er’ dk giker
=e.m/vg near the Fermi surface, where the pairing poten- 2 ke (2m)3
*
x| ering| o R )d,(Rm

The easiest case is calculationXgf, for the polar phase.
||r \/; k f de

X|¢| R+ 5

fo(R)ke " (41) ¢w( ——” (dx—idy)e

tial is nonvanishing. Therefore we can skt~k,/ke
and takeAP(R,r) to be a rapidly decaying function of
r which is nonzero forr~k;1. Rewriting k,exp(k-r)

=—ig,exp(k-r), whered,=dldz, we obtain (hereafterl 3 AA dk
={n,k,,q} andl’={n" k; ,q’ :'\/:_ ikt
{n.kz,q} in".kz.a'}) | 22kJ deo(R)jdr(Zw)se
| Apol
APY=—iy3 J'de dr r _ r
kF X (f)|/ R_E (ax+|0y)¢| R+§
x| ¢ R+ ¢ ( _r) *a ek r\]*
! ! 2] 2 —¢| R+ )(ax iaY)¢|,(R—§”
AP dk . A
—i ik-r i 3 A
| 3 kF j deO(R)f drf (2’77)3e =— \/; Z_kI:J deO(R)|:¢|I(R)H+¢|(R)
* r *
2K R+ b R—Z —(pl(R)mgb,,(R—E
\/§ k,—k, Apo'f dRTo(R) 4 (R) A4 (R). Here the derivat!ves_ with respect to the components arfe
T2 ke replaced by derivatives with respect to tRecomponents,

and then the integration ovérandr is performed. The ex-
pressions in brackets are transformed so that the usual dif-
' ferentiation operators can be replaced by raising opefators
Y for transitions between statefs, q. We have

Here we have used the fact that integration with respect t0
the momentum/dke’'", yields a spherically symmetrical
rapidly decaying function of, which can be replaced b
5(r), and the integration ovar becomes triviat!

The remaining integral is identical to the matrix element 3 AA
of the order parameter in an isotropic superconductor. Its AR =—i \/:_( h+1
calculation is described in Appendiksee Eq.(86) for 2\/§kp)\

N=0]. Thus the only difference between the matrix element
of the order parameter in the cases of a polar phase and an Xf dRfo(R) o (R)BY, 1 a(R)
isotropic superconductor is the additional factiof3k,/ d nriiea

ke in the former case:

—~ \/n’+lJ deo(R)dfg,Hvké (R hq(R) .

A= (2m)38(q+0") (kK AP (G,k,), (42
(45
where
The integration ovelR is performed in the AppendixN
| (n+n’) =0 in Eq.(86)]. Thus, we obtain
N
A > 1 (n+n +1)!
\ Ay (@)=i(=1)" \[ \/ V2w
x>, exﬁZivqxa)<pn+n,(\/§(qy)\+ %)) nn 2keh TontnFininy
TAV
(43 XZ equdixa)ﬁonJrn’Jrl( \/E( qy)\+T>)-
Now let us analyze the case of tiiephase. The order pa- ’
rameter has the form (46)

3 dk The matrix element of the order parameter for the
ANR,r)= \ﬁAAf ———fo(R)(k,—iky)e*". (44)  Scharnberg—Klemm phase is calculated similarly to that of
2 (27T)3 y . .
the A-phase. In this case the order parameter is expressed as
We write (K—iky)expik-r)=—i(dx—idy)expfk-r) and a Iinegr combination of the functionsk(+ik,)fy(R) and
perform calculations similar to the case of the polar phase: (k iky) f2(R):



1196 JETP 86 (6), June 1998 M. G. Vavilov and V. P. Mineev

\F TABLE .

SKR k)= \/ =ASK (ko +ik + Ak, —ik )

ATARK) 2A [(kx Iky)fO(R) A(kx Iky)fZ(R)] Semiconducting phase lan (Ky) 1(6)
s-wave 1

The parameterdd and A will be derived from the self- .
consistency equations. In performing transformations similaP°lar 3k /ke 3 cogd
to those for theA-phase, one should take into account that,

. . 3n+tn'+1 3 .
electron wave functions are acted on by the lowering opera- 2 @ = sirfg
tor I1_ in the part of the order parameter matrix element F 2
Scharnberg—Klemm 3n+n’ A 2

containingfy(R) (see Footnote)2 whereas in the part con- 14 A

*\/_5) gsinzﬁ

taining f,(R) it is the raising operatofl , . Taking into ac- 2 N 2
count the properties of the raising and lowering operators,

we obtain an expression similar to E¢5). Integration over D 15(n+n’)? 15 i

R in the term withf,(R) is performed using Eq86) in the 8 kin g Sie

Appendix withN=2. Thus, the matrix element of the order
parameter for the Scharnberg—Klemm phase is

R , Jyn+n' A
SK _ i/ _a\n'— ASK
A (a)=i(—1) \[2 K I+ dq (n+n")!

S % -5
f (zw)zAnn’(Q)Annr(q)_A |”n’(k2)2n+n’+1n!nr! .

SN 50

2n+n +ln!n!!

The factorsl (k) for each phase are listed in Table I.

T\ V)) The interesting electron states are those near the Fermi
' surface, so we assume that can be derived from the

47 approximate equationsv (n+ 1/2)+ k§/2m*~,u and n’

~n. Thenl,, (k,)~1(6), where siRd=n/(ke\)?> and co36

Here we assume that ~n. =k§/k,2:. Note that the quasiclassical expression o) is
In accordance with the results of the previous sectionnothing but the square of the absolute value of the order
the order parameter in tHe-phase can be expressed as parameter averaged over the azimuthal angle on the Fermi

X 2 exp(2i v0ya) @n+nr —1( \/§< qyh +

15 sphere. In particular, for thé\-phase we havek,—ik,|?
AD(R,R)z \/:AD(RE—R)Z,)UO(RHAJL;(R) =sirfe. If the contribution due to the functiofiy(R) Wlth
4 N#0 is neglected in the expression fdrg) in the D-wave

+Agfg(R)+ ... ] phase] (6) has the form (6)sin*(6/2), which corresponds to

the expresswnl(x k )2 averaged over the azimuthal angle.

J15

=~ APL(ke=iky)2Fo(R) + (k- iky) 2Fo(R)

(ke iky)2Aaf o(R)+ (R + iR, 2A T o(R) 5. SOLUTION OF THE SELF-CONSISTENCY EQUATION FOR
THE ORDER PARAMETER

Lok 2
(kiky) Agfa(R)+ .. ]. (48) Order parameters for superconducting phases in fields

In subsequent calculations we will take into account only theébelow the upper critical field should be derived from the
first two terms on the right of Eq48). The rest of the terms  self-consistency equatiofil). In the A and polar phases,
contribute only small corrections to the physical quantitieswhere the order parameter is proportional figf R) at H

calculated below. =H,,, it is calculated similarly to the case of conventional
Next is the expression for the matrix element of the or-superconductivity,i.e., a solution proportional to that of lin-
der parameter in thB-wave phase at’ ~n: earized equatiorill) is sought. Let us calculate the coeffi-
cient, i.e., the amplitude of the order parameteifor the
- 15 _n+n’ , (n+n")! olar andA phases. The equation for the order parameter
D — 1 /Z5AD _1)n o\ p p q p
A (Q)= \/:A 2k§)\2( b \/ 2m on+n'+1nin amplitude has the form
x> efrad o ol V2l g )\+—7TV)\ ‘|
- N0’ +2 Mg =lgIT> E n )2 > A (@)
TUVN > >
+¢n+n,2<\/§(qy)\+ ! )) | 49 XFD (ko) F (.G (5D

It will be shown below that for all phases under consider-  The first term on the right of Eq(51), containing
ation the density of electron states is expressed by the foann, (k,,q,0), is calculated in the quasiclassical approxi-
mula matior? for a magnetic fieldH below the upper critical field
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H., and is identical to that given in Ref. 8. Thus, the self-

consistency equation takes the form

H
Noln /ﬁzz ATy >

® nn'mm’

X GO (k,,— ©)G P (k;,0)G 0 (k,,— w)

dk,
zlnm(kz)ln’m’(kz)

x GO (K, )Y

mm’ "

(52
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A% — yo(H)+[1- Bo(H)]A}
dk, 1
=|g|T —

o % ; fz” [(w+Fimp)2+§§(kz)]2

dq e
AP (Q)A* (q)A A* (). 58
XJ(ZW)Z (DAL DAn(DAR(D).  (59)

Here the term linear il\? is expressed using the quasiclas-

Herel,(k,) is a factor that determines the dependence Ofsical formulas of Ref. 8. We have

the order parameter on the quantum numbera’, andk,
(see Table),

' 5 q q d da
Ynm”m,=27-r)\2f Dom( @50y () B () 5
(53

WhereDnm(a) is given by
Dnm(éi)zAnm(a)/A-

Ann(Q)~A(1+A/2)

[see Eq.(47)], Al(q) is the matrix element ofA(k,
+n§y)f0(R), and AY)(q) is the matrix element ofA (k,
—iky)fo(R).

In estimating the integral with respect to the components

of the wave vectoﬁ, we derive from Eqs(57) and(58), as
in the case of conventional superconductivign algebraic

The upper critical fieldH, for p-wave states was given in system of equations fak andA:

Ref. 8.
When the condition§ <I';;,,<w, are satisfied, we can
retain in Eq.(52) only the terms witn=n’=m=m’. Fur-

ther calculations are, similar overall to those in the case of

conventional superconductivily We assume tha]n~L
and perform integration ovek, and the quantum number,

neglecting small oscillating components in the Poisson sum.
This procedure reduces to integration over the polar afigle
and quasiparticle energies,(k,) measured with respect to

the Fermi level.
In the A phase the integral over the polar angle is

f |2(9)d 2
sing 49~ 3"

Hence the order parameter amplitude in fh@hase is

167 H.,—H
[A%(H)] 3LAnFF'mp Hy

(54)

(59

3Ls(1+A/42)* [g|NoA2
327 nFI‘?

imp

1-Bo(H) = yo(H)A=

(59

3Lek(1+A/\2)% |g|NoA2

—Yo(H) +(1-Ba(H))A=

322 1%
(60)

From these two equations, we derife
A V2y0+1—Bo+|gINgInyVH, /H 61)

Y0+ V2(1— Bo+[gINgInVH /H)

Here vo=1yo(He2) =12, Bo=Bo(Hc2), B2=B2(Hc2),
1- Bo(Heo)=(1/3—1)/2, and we have used the relationship

The integral ovep is divergent at the poles in the case of the,Bo(H) — Bo(Heo) = Bo(H) = Bo(Hep) = |g|N0In\/rHC2.
polar phase. We have already encountered such a divergence

in the calculation of the order parameter amplitude as a func-

tion of magnetic field ins-wave states.After introducing a
cut-off at 6.~ 1/kg\, we have

16w nelf, Heo—H
9L, INNg He

[API(H) ]2~ (56)

By substituting the calculatel in Eq. (59) and retaining
terms linear in Inf/H), we obtain

| Heo 3BLs(1+A/V2)° A2
“MNH - 32m '

2
nFrimp

(62

The order parameter in the Scharnberg—Klemm phase .\?/hereawl 007

a linear combination of the functionsk(+ik,)fo(R) and

(Rx—ilzy)fz(R). Therefore the self-consistency equation for

T<I'imp<w transforms to the system of equations
AP[1—Bo(H) = yo(H)A]

TS S [ 5 ;

27 [(@+Timp) 2+ E2(k) 12

dq . - - .
——— AD(@AE (D A(QAE(Q), 5
XJ(ZW)Z nn (DAL Ann(A)ARL(Q) (57)

For the Scharnberg—Klemm phase, we finally obtain

-3
16m A Ho—
SK 2 14+ — 2 ¢
[A (H)] 3LSK 1 \/E nFl—‘|mp HC2 (63)
In the remaining calculations, we will takeA=(1

— Bo)! v, since expressing as a function oH would ex-
ceed the accuracy of the present calculation.

As in the case of the Scharnberg—Klemm phase, the am-
plitude of the order parameter and its form f@rwave su-
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perconductors are derived from an algebraic system of equa- 3r (AM)?2
tions. Suppose that the order parameter has the form NAE=0)=No| 1— —= — (70
32 \/Erimp
- 5 . .
AP(R,k)= \/;AD(ki—kg)[fo(R)+A4f4(R)+ . in the A-phase,
~ 2
o NSK(E=0)=No| 1 37T/1+ 1_'30) (a7
D . . . = = O J—
whereA® is derived from the equation 32|77 2y, Jnel'Z,
152 ., dk, n* 7D
1=Bo(H)=| 5| (A7) 9T ; fﬁ N in the Scharnberg—Klemm phase, and
@ F
2 45w (AP)?
(2n)! Lo(n) NP(E=0)=N, BN (72)
2204 I12] [(0F i) 2+ £2(K,) 12 e imp
(65) in the D-wave phase.

We will useA? for all these phases given by Ed§5),
(56), (63), and(66), and determine the regions of applicabil-
ity of expansions to first order inn?, which are derived from
the conditionN(E=0)>0. We have for the polar phase

resulting from Eq.(11) after multiplication by AP(k2
—k2)fo(R) and integration oveR and k. The function
Lp(n) is determined by an expression similar to E&g) and
is a function of the integer parameterHence in the remain-

ing calculations we will neglect the dependence romnd Hea—H _3Lpoln ne

: . . . , 73
consider_ to be a numerical constant equal to this function Heo 773’2\/n—F 73
averaged oven. By retaining terms up to the first order in
Hc,—H in Eq. (65), we obtain the order parameter amplitude for the A-phase
for the D-wave phase:

P i Ho—H 2L, 7a
(AD)2=77T'2 2 Heo—H 66) Heo 3773/2\/”7’
45L, Fime 4,
for the Scharnberg—Klemm phase
6. DENSITY OF STATES AND AMPLITUDE OF _ _
Heo—H 2Lk 1-Bo
MAGNETIZATION OSCILLATIONS < 1+ (75
Hoo  #2nc |7 2y,
Now we will find the density of states and amplitudes of
magnetization oscillations ip-wave andD-wave supercon- and for theD-wave phase
ductors. Note that the procedure for calculating these char- H.—H aL
acteristics is quite similar to that in the casessfvave su- c2 < b (76)
perconductors. The only difference is in the integration over Hea 7773’2\/n_F

the polar angle.
The density of stateN(E) is expressed through the elec-
tron Green'’s function:

Now let us consider oscillating components in the den-
sity of states. Instead of integrating overwe integrate over
&n(ky) = £. Integrations over and k, are performed inde-

pendently, and
r|= expg —i—|.
27T)\\/F 4

dk k2
—Zexp< Y p—
The sum over the Landau level numbers is calculated usinghe principal contribution to this integral comes from the

2w 2Mmo,
the Poisson formula: energy band near the equatorial band of the Fermi sphere of
calculating the integral oveg,, and its value on the equato-
unconventional superconductors is determined by the term

1
N(E)=——1m > Gy(E),
(67)

G|| /(E):Gfo)(S”/‘f‘Gl(lz,) .

(68)

almost constant, its dependence lkoncan be neglected in
The nonoscillating component of the density of states inPoisson sum component with numbe(r #0) we have

width A “1<kg. Since the order parameter in this region is
S =3 [dnem
n r
rial band of the Fermi spher&k{=0) can be used. For the
with r=0 and is similar to the expressidf) for the corre-

\/mswc (1)
w? o

sponding parameter for isotropgewave superconductors: N(E)= 5 o (A)
3\ (APY)?
NpOI(EZO):N()(l_ (69) .27T|' __z _27Trrimp
16 \/n—Frﬁnp X1m exp i o (E+pw) P |ex T |

in the polar phase,

(77
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which determines oscillating components of the density ophase is the same as in a normal metal because electron
states with differentA,(A) in different superconducting states near the equator, which are the main contributors to

phases.

the oscillating component of magnetization, are not affected

In the polar phase the matrix element of the order paby Cooper pairing. This result, naturally, also applies to all
rameter is zero in the equatorial plane, so in the approximasuperconducting states in which the order parameter line
tion I'jnp<w, the value ofA(A) is close to unity through- node coincides with the line defining the extremal cross sec-
out the region where the expansion to the first ordeAfn  tion of the Fermi surface. Thus, measurements of the de
applied[i.e., in fieldsH determined by conditiofi73)]. Thus, = Haas—van Alphen effect can be used in identification of un-
the oscillating component of the density of states in the polaconventional superconducting states.
phase is the same as in the normal metal. In the axial phases the de Haas—van Alphen effect is

For other phases under consideration, the valuk, () suppressed more strongly than in teevave phase. The
coincides qualitatively withA,(A) for conventional super- faster growth in the order parameter amplitude as a function
conductors: of 1-H/H,, in the axial phases is due to the absence of a
3 AAY2 divergence in the integral with respect to the polar angle

(A7) (79) calculated in solving the self-consistency equation. The
16\/_ \/_Flmp D-wave phase has, in general, the same properties as the
axial p-wave phases.
Finally, we emphasize once again that all calculations of

ANAM=1—

for the A-phase,

S 3 1 Bo (ASK)2 this work were performed in the limif<I'<w, in the ap-

A(ASK) =1- 16\/_ \/— ez (79 proximation linear in H,—H)/H,,.
™ 270 imp The work was supported by the Ministry of Science and
15  (AP)2 Technology of Russian Federati@Btatistical Physics pro-

D Dy_—_1_ i

AP(AP)=1 —= 5 (80) gram and the Russian Fund of Fundamental Research
28\m \/n—FFimp (Grant No. 96-15-96632 within the program in support of
for the Scharnberg—Klemm arid-wave phases. leading scientific schools

Using Egs.(55), (63), and (66), we expressA,(A) as
functions of magnetic field:

APPENDIX

Vang Heo—H

AMH)=1- —— —2—, (81) | . _ _
La  He In this Appendix we perform the integration over the
1 component of vectoR=(X,Y,Z) in the equation
SK V 1-Bo Heo—
ASK(H)=1— 1+ 5 o (:7)
N
2%o . D||':f fn(R) B (R) ¢ (R)dR. (85)

14\ 7Tn|: H 2 H

AP(H)=1- T LCZ : (83 It is clear that the integral can be separated into integrals

o S over each coordinate. We have
The oscillating component of the magnetization is given by

the equation

Q" 1 (e r
F

M(r)_ B 3/2\/_ )
T TH ¢) VHe— AH)

f dZ exf —i(k,+k.)Z]=2m8(K,+K)),

2milY .
deex O Rl Y
27w N 77) 27T/ w,

. m!
4/ sin27%Tr/ w) xex;{—i dy+ %)Y}sz&z,'mm,&(qﬁq)’,).
27T,
><exp( - M) (84)

We

mm
4+ —
A3

We have used the fact thatis the two-dimensional vector in

: . the first Brillouin zone— w/2a<q,, q)’,< m/2a, wherea is
The factorA(H) is determined by Eq481)—(83) for the A, the Abrikosov lattice constant. In integrating over Keo-

SK, and D-wave phases, and equals unity for the pOIarordinate we perform the change of variables= (X

phase. —mIN?/a)/\. By introducing the variablep=[q,+ m(m
—m’)N2a]\ and noting thaty,= —q,, we express the in-
7. CONCLUSIONS tegral overX as

Three types of superconducting stategpiwave super- N
conductors have been analyzed: one state with an order pa- Inn’:J' déen(V28) @n( £+ m) enr (6= 7).
rameter having a line of nodes on the Fermi sphere equator
and two axial states whose order parameter have nodes at the calculating this integral, we use the generating function
Fermi sphere poles. The oscillation amplitude in the polafor Hermite polynomials and integrate ovér We obtain
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©

S u" o™ WN_\/; (u—v)?
T T i

'

x exp(— p?)ex V2w(u+v)].

By expressing the first exponential function on the right-

M. G. Vavilov and V. P. Mineev

provided that— w/a<q,, g,<w/a. Finally, we have

Dy =(2m)38(ky+ k) 8(G+q")

(n+n’"—N)! n'n'!

X \/\/277 5
2" Inn IND (n+n’—N)!

N
X3, (-1 ihelel)
=0

n+n’—N

hand side of this equation in terms of the generating function

for Hermite polynomials as functions qf27, we obtain the
equation
- _ 2 (U_U)I
e THI(V29) —m—
0 2'1

n_ n" N
2 N ( )U_U_VV_:
U1 N

n,n’,N

o
|=

X ex V2w(u+v)].

XE eZdixa(PnJrn’fN( \/E(Qy+ mvl/a)\). (86)

*)E-mail: mineev@landau.ac.ru

Ywe recall that the de Haas—van Alphen effect in the normal state occurs
when the temperature and sample purity satisfy>272T and o
>27%Tp . Herew,=eH/m*c is the cyclotron frequency. The parameter
Tp=1277=T/27 is traditionally called the Dingle temperature, where

Expanding expy2w(u+wv)] in a power series and equating s the electron mean free time atis the corresponding level width.

the coefficients in front of terms with equal powersvaf u,
andv, we find

2Nnin'!

n+n'+1(n+n/_N)!

l?n,w):ﬁe*”anM,_N(ﬁn)ﬁ

N

N

where theCK are binomial coefficients.
We note that exXga(mg+m'qgy)]=exdi(m+m’)

X (qy+ay)/2]exdi(m—m")(q,—ay)/2] and replace summation
overm andm’ by summation ovem+m’ andm—m’. The
summation ovem+m’ is trivial due to the Kronecker delta
d21,m+m’ » @nd since we havg=n(m—m’,q,) the summa-
tion overl reduces to

>

. ’ 2m ’
| exdila(ay+qy)]= ?5(QX+ ax)

Planck’s constant is hereafter assumed to be unity.

IThe raising and lowering operators are definedllas= (I, FiI1,), where
[I=(—idy,—id,+elcA,,—id,), and have the propertyl, ¢, (R)
=N N2(0+ 1) o 146(R), T1- rig(R)=N"2n 6, 14 4(R).
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We construct an asymptotic theory that describes the kinetics of first-order phase transitions. The
theory is a considerable refinement of the well-known Lifshits—Slezov theory. The main
difference between the two is that the Lifshits—Slezov theory uses for the first integral of the
kinetic equation an approximate solution of the characteristic equation, which is valid

in the entire range of sizes except for the blocking point, i.e., it uses a nonuniformly applicable
approximation. At the same time, the behavior of the characteristic solution near the

blocking point determines the asymptotic behavior of the size distribution function of the nuclei
for the new phase. Our theory uses a uniformly applicable solution of the characteristic
equation, a solution valid at long times over the entire range of sizes. This solution is used to
find the asymptotic behavior of all basic properties of first-order phase transitions: the

size distribution function, the average nucleus size, and the nucleus densiti99&®American
Institute of Physicg.S1063-776(98)02006-X

1. INTRODUCTION which large nuclei grow at the expense of decay of small
nuclei?’ The processes in each stage are essentially
The study of processes taking place in first-order phasaonlinear’®?° and, besides, each stage has its own features,
transitions has prompted unflagging interéste, e.g., the which makes a unified description of the stages impossible
recent review articles in Refs. 1-4, a monogra@nd the  (roughly speaking, each stage has its own small parajeter
references cited therginThere are several reasons for this. The first two stages were described theoretically in Ref. 13
First, the physical phenomena that accompany the growth ofithin the scope of the theory of perturbations in.1Avhere
the new phase are of a universal nature, since the evolutian is the number of particles in a critical nucleus under maxi-
of a system undergoing a first-order phase transition obeysum supersaturation. In particular, the overall number of the
unified laws, which usually depend only on the mechanismgrowing nuclei and their size distribution were calculated.
of new-phase growth rather than on the specific properties dBut it proved impossible in principle to incorporate the
the system, whether it is the early Universe, supersaturate@stwald ripening stage into this theory. Actually, this is not
vapor, an electron—hole liquid, or a biological system. Secrequired, since in the Ostwald ripening phase the system
ond, a first-order phase transition is a process consisting offorgets” its initial state and, irrespective of this state, finds
several loosely linked stages, and almost every stage exhibiiself in a certain asymptotic reginfé.
interesting nonlinear phenomefd? (in particular, nonlinear Many researchers have studied the Ostwald ripening
waves are generatéd’). Third, in view of the important stage>*°~*but undoubtedly the contribution of I. M. Lif-
role that first-order phase transitions play in engineering anghits and V. V. Slezov to the development of this theory was
various technologies, today we have a vast body of experithe greatest. They were the first to calcutatbe asymptotic
mental data extracted from observations of the processes bkhavior of the basic characteristics of the first-order phase
formation, growth, and evolution of new-phase nuclei intransition, the supersaturation, the critical size, and the con-
various systems. centration of the nuclei of the new phase, and proved that for
Theoretical studies of first-order phase transitions havéong times the nucleus-size distribution function has a self-
been actively carried out for more than 16 years. Importansimilar form, independent of the initial conditions. They also
results have been achieved during that period, which are babtained an estimate for this function in what became known
sic to thermodynamics and the general theory of first-ordeas the zeroth approximatiafhis term was used in several
phase transition¥2° Unresolved problems abound, how- later papers The essence of the Lifshits—Slez6vS) ap-
ever. One is linked to the description of the kinetics of first-proximation is as follows. The time-dependent term in the
order phase transitions. The main difficulty here is that acharacteristic equation, whose solution yields the first inte-
typical first-order phase transition consists of at least thregral of the kinetic equation, is ignordéqg. (15) in Ref. 31,
stages(without accounting for the symmetry changes in asince with the passage of time this term tends to zero. In this
first-order phase transition, the development of instabilitiesconnection Lifshits and Slezov noted that such a simplifying
and the interaction of new-phase nugldihese are the stage assumption is possible only far from the blocking point,
in which nuclei of the new phase are formed, the stage o§ince at the blocking point the other terms tend to zero at the
separate nucleus growth, and the Ostwald ripening stage, same rate. From the viewpoint of rigorous perturbation

1063-7761/98/86(6)/8/$15.00 1201 © 1998 American Institute of Physics
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theory? the LS approximation corresponds to the first term
of the nonuniformly admissible series in powers po that Hnﬁ WJ
the solution found cannot be the asymptotic dte block-
ing point is the source of nonuniformjtyThe fact that the wherew is the volume occupied by a single atom in the new
size distribution function in the Lifshits—Slezov theory is not phaseh is the disk heightZ the extent to which the adsor-
asymptotic has been mentioned in several papers. Kahlweitlsate fills the substratén the given modeL is assumed to be
paper* is the best-known. However, Kahlweit was con- constant and, to simplify matters, much larger tham./h
vinced that the source of nonuniformity is not the blockingin the Ostwald ripening stagelLet £=n,/n;,—1 be the de-
point, and for this he was rightly criticized by Slez&Wlar-  gree of supersaturation in the system andhe interphase
qusee and Ro3¥proposed seeking the solution of the kinetic energy per unit length of the periphery of a disk. Then the
equation immediately as a power serieg:in radiusR, of a critical nucleus in the Ostwald ripening stage
_ _ _ is equal toow/kgT:hé, wherekg is Boltzmann's constant.
9(r. ) =t77[go(2) +17192() +1772g2(2) +--], (1) WeqintroduceR*B, the charact:ristic radius in the system,
wherez=r/t#, g is the distribution of the nuclei of the new equal toow?n,¢/kgT:h?Z. In this case Eq(2) becomes
phase over the radius t is the time variable, ang8 and

mRzg(R,t)dR=Z, (]
0

R o0
Yo.Y1,... are positive constants. Applying an ingenious LA 7 f R%g(R,t)dR=1. ©)]
method, they were able to decouple the equationgfand Re Z Jo
9: and find their solution. It was established tligt coin- | turn, the nucleus-size distribution function obeys the con-

cides with the result of the LS theory, from which Marquesetjnyity equation in the size spaéé:
and Ross concluded that this solution was the asymptotic
one. Actually, this is not the asymptotic solution but the 99 J(vrg) _

solution corresponding to the zeroth approximation, since the  dt dR 0 @)
series(1) is divergent, at least at the blocking point. Mar- .
quese and Ro8%did not study the convergence (i), and 9(R,0)=Nygo(R), J go(R)dR=1. (5)
the blocking point makes the seri€§ nonuniformly admis- 0

sible even in the next order, i.89:(2)/go(z) ~ asz tends a0 e have allowed for the fact that in the Ostwald ripen-

FO the blocking pm?t. As is well k_novr\:n, this is the g‘O_St ing stage the nucleation process has already been completed
Important aspect of any asymptotic theory or perturbation, 4 yha; there arBly nuclei, whose size distribution is given

theory** The same error was also made in some other workls_,y the normalized functiom,(R). Both Ny and go(R) are
on the asymptotic theory qf fi_rst-order phase _transitic_ms. calculated by perturbation-theory expansions én 1/
Thus, the problem of finding an asymptotic solution forwRﬁhw (Ref. 13. Our goal is to describe the evolution of

the nucleus-size distribution function in first-order phaseLhe existing nuclei at a later stage. When the so-called

transitions has yet to be solved. The present paper treats trﬁ%undary-kinetics mechanidnis realized, the rate of sepa-
problem. The plan is as follows. We start by examining the

evolution of the nuclei of the new phase in the Iayeredrate nucleus growth is
growth of a thin film on a substrate from supersaturated va- Ri 1 1

por subjected to sudden supersaturation. We have chosen this UR:: (R_c - ﬁ) '
example because it is a simple and yet realistic first-order . o o
phase transition with the simplest new phase growth mechd?neret, =loR, /aZD is the characteristic growth tim, is

nism possible. The essence of the proposed theory is illudh lattice parameter of the substratds the probability that
trated by this example of layered film growth most vividly. @0 @datom attaches itself to a nucléus<1 in the given

Then we briefly analyze the general case of a first-ordeProwWth mechanism andD is the coefficient of diffusion of
phase transition. adatoms over the substrate. At this point we introduce the

dimensionless variables

(6)

Tt R Re  p_9R
= —, r = -, r :—, = —
2. ASYMPTOTIC THEORY OF FIRST-ORDER PHASE t R, ¢ R, No

TRANSITIONS IN THE CASE OF LAYERED FILM GROWTH

)

and a dimensionless constafit= TNgRZ @~ 1<1. The ki-
Suppose that initiallyn; atoms are adsorbed on a unit Netic equation and the law of adatom conservation then be-
area of a solid substrate, with greater tham,,, the equi- come

librium concentration of adsorbed atortedatom$ Then a 9 9 1 1
phase transition begins in the system, and in the case of ﬁ+ a—[( T ——)F}:O, (8)
layered growth disklike nuclei of the new phase grow on the FATe(T)

surface. Byg(R,t) we denote the nucleus distribution func- % -1
tion over the disk radiuR at timet. Then, if the atoms do fc(T)=[1—5f r2F(r,T)dr
not leave the substrate, which is the case if the temperature 0

T, of the supersaturated vapor of adatoms and the substraRugging(9) into (8) yields a master equation for the kinetics
is low, the conservation of matter on the substrate is exef first-order phase transitions in the Ostwald ripening stage

pressed by the following law: (for the given type of phase transitionThis equation de-

€)
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scribes the following physical processes. Initially, due to the b
smallness o5, the critical radiug . remains essentially un- 0 Y A —
changed (.~1) and the size of most nuclei is greater than

r., so that they grow. The distribution functidh moves in

the size space as an integral whole at a rate~d1, i.e.,
F(r,T)=Fq(r—T). This stage is described by nucleation

theory®® The integral on the right-hand side of E@) in-

creases withT, and so does., which gradually catches up _1
with the main part of the size spectrum. The nuclei smaller T T
than the critical size begin to be evaporated, adding to the ’

supply of adatoms. After tim&, of approximately 1J/6 has ~ FIG. 1. A schematic of they vs. = dependence.
elapsed, the critical size catches up completely with the main

part of the size spectrum, i.e.,

kinetics of a first-order phase transition in the stage of sepa-

o rate growth of new-phase nuclei and in the Ostwald ripening
5f r’Fdr~1. stage.

0 The general solution of Eqd11) has the form

This means that the supply of adatoms that were initially on aC

the substrate has been exhausted. Now supercritical-size nu- f(u,7)=fy(C(u, ¥( T))) — (15)

clei grow at the expense of subcritical-size nuclei. The in-

crease in the critical size is limited by the average size of thevhereC(u, y) is an integral of the kinetic equation, which is

nuclei, i.e., the system evolves in a self-consistent mannefound by solving the characteristic equation

This is the Ostwald ripening stage.

_1)\2
To describe this stage analytically, it is convenient to d_u: D) — (1)U, (16)
change variables, so that the blocking point on the size axis dr u
can be isolated explicitly. There are several ways of doing u(7o)=C. (17)

this, one of which was suggested by Lifshits and SleZov.

Below we use another change of variables, which we believél is Eg. (16) that is responsible for the evolution of the
has more physica] meaning and is Simp|er: SyStem in the final Stage of the first-order phase transition.

Applying the Lifshits—Slezov methddto the given case, we

feor E ue—— = 1 fTr‘Z(T’)dT’ (10 can find the asymptotic behavior of the function as
¢ 2r’ 4 Jo ° ' T— 0!
1
Then Egs(8) and(9) take the form % T)_)ﬁ_ (18)
of (u—1)>2
P ﬁ[ +y(7)u f} =0, (1) if this condition is not met, the law of conservation of matter
(12) is violated. Figure 1 depicts a schematic of the function
1-1/r, v(7) for the given case. At time=0 the value ofyis —1,
ro(7)= , (120  theny increases, and at a certain timgreaches the value
45[ u?f(u,r)du v=0. After y reaches its maximum valug,,,,>0, it de-
creases and finally reaches its asymptotic vajuel/472.
dinr Figure 2 depicts the solution of the characteristic equation
y(7)= c_1. (13) (16 for different initial conditions for the simple model
dr function
From Eq.(11) we see that hera=1 is the blocking point. —1
Note that forr .>1 the expression foy simplifies, ()= 1143
1dIn [gu?f(u,7)du
YD==35 e , (14 )
and becomes independent of the single paramétef the 3
first-order phase transition. This explains why all systems
undergoing a first-order phase transition with the same new- 2
phase growth mechanism evolve in the same way. The gen-
eral approach to solving the systdii)—(13) can be as fol- 1B~
lows. First the kinetic equatiorill) with a given initial
condition is solved. Then the solution is substituted1g). . . .
If we then substitute the resulting expression(ir8), we 0 2 4 T

arrive a_t an equation for th(_? funCtiQ!’ﬁT)- By finding at |e_aSt FIG. 2. Solution of the characteristic equatidr®) for different initial con-
an arbitrary solution of this equation we can describe theiitions.
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The initial increase i in Fig. 2 corresponds to the stage of

S. A. Kukushkin and A. V. Osipov

Only in this case will the “initial condition” for the linear

separate nucleus growth by attaching new adatoms that apquation,y|,_..—0 (the law of conservation of matigerbe
pear on the substrate at the moment when supersaturationet. Thus, the size distribution function is given by the fol-

emergegat this stage .~1). A further increase in the criti-
cal radiusr. slows down the rate at which increases, and

later reduceas. This reduction gradually reaches the self-
consistent asymptotic regime, corresponding to the Ostwald

ripening regime. In this stageslowly approaches the block-

ing pointu= 1. In the final analysis, the rate of this approach
determines the nucleus-size distribution function in terms o

the integralC(u,vy). To study this dependence analytically,
it is convenient to make the following change of variables:

v=aj1—mw—ﬂ.
Then
dv _ 5
a—1+y(r)[l+¢(v)] : (19

where ¢ is the solution of the transcendental equation

y+In|y|=v.

For long times {>50) we can assume (1y)?=v?, i.e., in
this approximation

(20

2
e 1+ y(7)v°.

(21)

lowing expression:

e %"p(u),
O!

O=su<l,

u=1.

f(u,7)=[

As (24) implies, the functione in the Lifshits—Slezov ap-

proximation id
2u
es(u)= m@m( )

(the value of the constant is usually selected in such a way
that ¢ is normalized to unity The same result can be ob-
tained by using the Marquese—Ross apprdddHowever,

the result is in no way asymptotic since the starting equation
yis=A7+B is invalid for long times. Indeed, for the given
rate at whichy tends to zero we hawe—const /7 In 7, i.e.,

the point7= is the source of nonuniformit{f*

For most first-order phase transitionsr) is a slowly
varying function. The main thing is that the characteristic
time of variation of the dimensions of an individual nucleus
is usually much shorter than the characteristic time of varia-
tion of the critical nucleus(the so-called time-scale
hierarchy®). For this reason it is convenient to represent the
function y in (22) in the formy(e7) and seek the solution of
Eqg. (22) in the form of a uniformly applicable series in
(Ref. 44. This equation has been analyzed by a number of

2u

- (25)

7-49 ;
To reduce this Riccati equation to a linear one, we do antesearcher8**who found that the functional dependence

other change of variables,=y/y’. The equation becomes

y"+y(1)y=0. (22)

of y on vy is determined entirely by the points on thaxis at
which y vanishedthe so-called regression poiptnd by the
behavior ofy at these points. For the given type of first-order
phase transitiony has two singular pointst= 7, and 7=«

pendence of on y and hence o€ on y at long times. This

the entire range of: for 0<7<r7,,7, <7<, in the vicinity

means it controls the size distribution function for the new-of ;  and asr—. The four functions could, in principle,

phase nuclei.
Now let us turn to methods of solving ER2). The

give a complete description of the kinetics of the first-order
phase transition together with Eg4.2) and (13) since, in

simplest one was proposed by Lifshits and Slezov. They sugsontrast to the Lifshits—Slezov solution, they are uniformly

gested ignoring the second term(2®) entirely, since at long
times y tends to zerd? In this casey, s(7)=Ar+B, where
A andB are integration constants, angds= 7+ B/A. Hence

—7—In|1—u| (23

V—T=— ——

1—-u

is the desired integral in the zeroth Lifshits—Slezov approxi
mation. It is convenient to write this integral in the form

p(

By inserting(24) in the general solutiofl5) and the result
into the conservation layl4) we arrive at an expression for
fo:

1
CLS:meX

1

-5 - T

1—u (24)

const C?,
01

C>0,

fOLS(C):{ C=<0

applicable** However, this approach is impractical, if only
because the value of is not known beforehand. The right-
hand side of Eq(13), after (12) and(15) have been substi-
tuted in it, becomes an extremely complicated functiory of
with 7, unknown. For this reason we are forced to limit
ourselves to studying the asymptotic behavior of first-order
Pphase transitions. The fact that there is a regression point
leads to a situation in which the system “forgets” its initial
state and reaches a certain asymptotic regimadels with a
strictly negative v are known to generate nonphysical
divergence®).

Thus, combining the Langer method with8) makes it
possible to use Eq(22) to find the long-time asymptotic
behavior ofy:

j Vy(7n)dr
Yy(r)

y—const (26)
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v—— 4—),/—>27'. (27 ¢

’y ’_Q\\
The fact thaty does not tend teras r—x (as it does in the Lor 4 )
Lifshits—Slezov theorybut to 2r also follows directly from Y, ‘\
Eq. (21) combined with(18). We also see that the difference 0.5k
of the given behavior from that predicted by the Lifshits—
Slezov theory is that as—« (i.e., in the vicinity of the ‘\\
blocking poiny, the term that Lifshits and Slezov discards in 0 05 Lo s

not small and provides a contribution equal to that of the

term taken into account. A numerical solution of E(qﬁ) FIG. 3. The asymptotic nucleus distribution function oxerR/R (the solid

(see Fig. 2 also implies thatl tends to 1 1/27 rather than  curve corresponds to the results obtained in the present theory, and the
. . . dashed curve corresponds to the results obtained by the Lifshits—Slezov

to 1—1/7. Thus, the asymptotic behavior of the integral of theory).

the kinetic equation is given by the following expression:

1 1
C= exp{ - —27), (28 To be precise, the asymptotic formu29) is valid only
1-u 1-u - . T L .

for finite or rapidly decreasing initial distribution functions.

so that forC positive we have ,(C) =constC, and the de- As shown in Ref. 45, the “tails” of the very slowly decreas-
sired asymptotic size distribution function is ing initial distribution functions may change the asymptotic
behavior (18) of v, with the same being true for the size
o(U)= u exp(— u ) (29) distribution functions. However, according to the general
(1-u)’ 1-u)’ nucleation theory? finite nucleation time leads to the finite-

ness of the initial distribution function.
The above results make it possibly to easily establish the
asymptotic behavior of other important characteristics of a

What sets this function apart from the Lifshits—Slezov func-
tion is the difference in the average nucleus size:

o 1 first-order phase transition: the average size and the concen-
fo Ugp g(u)du= 5 tration of the new-phase nuclei. Indeed, fréb®) and(13) it
follows that
(= — 1
u=f0 up(u)du~0.5963, (u?~0.3859. reoe’, Toe?, 71— 3 Int (32)

In other words, while in the Lifshits—Slezov theory the av- asrt—o. This readily leads to the desired asymptotic behav-
erage nucleus size coincides with the critical size, in ouior:
theory the average size is shifted toward larger values by

approximately 20%. To make the comparison of the results R(t)=const f, (33
with the experimental data more convenient, it is advisable const

to introduce a new variables=u/u=R/R (in the Lifshits— Nt =—— (34)
Slezov theoryx=2u), and recalculate the distribution func-

tions: In this asymptotic theory it is impossible to find the constants

in (33) and (34), since this requires information about the

8x 2x regression pointr,. Hence it is easier to find them from
PLs(X)= (2—x)48Xp( B ﬂ) (30 experiment by calculating the points of intersection of the
straight lines IR and InN with the ordinate Irt=0.
o(X) = XoX exp( X ) (31) Now let us describe the asymptotic stage of Ostwald
(Xo—X)° Xo—X/’ ripening for a general first-order phase transition.

wherexy,=1/u~1.677. These functions are depicted in Fig.

3. We see that our asymptotic distribution function is highers. ASYMPTOTIC THEORY OF FIRST-ORDER PHASE
and narrower than the Lifshits—Slezov function. As predictedTRANSITIONS FOR AN ARBITRARY NEW-PHASE GROWTH
by Lifshits and Slezov, the region where the two functionsMECHANISM

d|ﬁer most s_trongly lies near the blocking pomtf Xo (apT The continuity equation in the size space and the law of
proxmately.m the interval from 1.4 10)2In all falrn_ess, I conservation of matter for arbitrargbut rea) first-order
must. be'sald that the absolute error of the L'fSh'tS_,SleZO;iffhase transitions can be written as follows:

function is moderate and often smaller than the experiment

error. Nevertheless, experimenters have repeatedly pointed J9 d(vrg)

out that the experimental size distribution function actually ot JR ! (39)
passes above the Lifshits—Slezov functiom fact, this

served as the impetus for improving the theories of Ostwald RO=N R " RYdR=1 36
i i 34,3740 9(R,0) 090(R), go(R) ) (36)
ripening>* 0
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RERTYL_L a7
YR IR R. R/’
R, oc t\"
—+3df RY(R,t)dR= —) . (39
RC 0 t*

S. A. Kukushkin and A. V. Osipov

&F+z9 1 1 1F
ot o P T

rC(T)z[T“— 5fmrdF(r,T)dr
0

=0, (40)

-1
(41)

HereR, , t, , andB, are the constants characterizing a first-Next, following the general scheme described above, we in-
order phase transitiorp is the new-phase nucleus growth troduce the variables

index (the casep=1, 2, 3 correspond to all known growth
mechanism9, d is the dimensionality of the nucled
=1, 2, 3; see Ref.5n=0 is the growth index for the total

mass of mattefit is assumed that at least at long times this

mass increases according to a power°l&v We introduce
the dimensionless variables

_ p r _p+1 F

u=priny 1T

_ptl (T p p+i ,

=3 fo (prirmy] 97 42

t R R. gR, and write(40) and (41) in the following form:
T=—, 1=, r,=c-, F="- (39
L R, Ry No of 9 2 -
and the dimensionless constadt= 8;NoRY . Then Egs. a_r_ﬁ{ p(p+1)up(p_(p+l)u+u )+y(7-)uH=O,
(35—(38) become (43
|
2 n +1 n(p+1)+d d 1 1id
_ p_ (f6r2+1(7/)d7,)n_ L -
[ \pt1l p p+1) rg ”
e(7)= 5fzulf(u,7)du ’ (44
|
_dinr, 2 A5 -
A T ST @ v (50

Equations(44) and(45) imply that for large values of; the
function y ceases to depend ahand the dependence an
gets simpler:

ndlin f3r2*i(+)d7s’

N7=3 dr
1dIn [gudf(u,7)du 2
1dInfeult(undu C w
d dr p(p+1)
The general solution of Eq43) has the form
aC
Fu, 1) =To(C(u, ¥(7))) 71 (47)

whereC(u, ) is an integral of the kinetic equation, which is
found by solving the characteristic equation

du_ 2

&~ pprowel (48

—(p+1)u+p]—yu.

In the neighborhood of the blocking point=1 Eg. (48)
becomes independent pf

du

—(11—1)2—
ar (u=1)—y.

(49

The Lifshits—Slezov methdd makes it possible to use Eq.
(49) to find the functiony as 7—

If this condition is not met, the law of conservation of matter
is violated. This leads to the following asymptotic behavior
of roandT:

27 51
re—exp————,
Pt
2T

T—>epr. (52
Now from (52) we find that

— gm () (53
and hence

R(t)—const t¥(P* 1), (54)

N(t)—T"r9—constt = (¢ (P+1=m (55)

Of course, ad= 3 formulas(54) and(55) coincide with the
corresponding results of the Lifshits—Slezov thediyote
that the Ostwald ripening stage is realized only in the case of
so-called weak sources,

d

<_
n p+1’

(56)
when the critical size catches up with the main part of the
nucleus size spectrum. Otherwise, new patrticles enter the
system so fast that supersaturation increases instead of de-
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creasing, the nucleation stage is not terminated, and Ostwald o
ripening does not begin. The same condition follows from r 3
the analysis of the nucleation stalfe. b
Now let us establish the asymptotic behavior of the dis- 6 2
tribution  function. We perform the transformation af
u—uwp(u), which maps the blocking point to infinity: ]
p(p+1) (u xPdx 2r
T T2 fo xPH—(p+1)x+p° 67 L
0 0.5 1.0

Then the characteristic equatiof8) becomes “

FIG. 4. The asymptotic function of nuclei distribution fdr=3 andp=2:

% =1+ y(7) p(p+1) up+1(vp) curvel, n=0; curve2, n=0.55; and curves, n=0.8.
dr —— T2 WP () = (pr D)u(up) +p.
(58)
At long times the characteristic equation becomes the Riccatialues ofn. We see that the closer is to its limit n
equation =d/(p+1), the sharper the pedkhich moves toward the
2 blocking poin} in the ¢ (u) curve. Hence by changingwe
%=1+ Yp (59  can control the structure of the new phasat n=n, the
dr a7’ Ostwald ripening does not even start, so that the distribution
whose general solution is function in this case evolves in accordance with the predic-
tions of nucleation theor}?
vo=27 1+ 1 (60) Thus, the use of a uniformly admissible approximation
P In 7+Ap)’ for the solution of the characteristic equation makes it pos-

sible to find the asymptotic behavior of the basic character-
istics of first-order phase transitions: the new-phase nucleus
concentration, the average size of the nuclei, and the size
vp(U)—27 distribution function.

(61)

P The authors would like to express their deep gratitude to
is the asymptotic value of the integral of the kinetic equationV. V. Slezov for his critical analysis and useful results. The
Plugging(61) into the general solutiofd7), from the initial ~ work was made possible by grants from the Russian Fund for
condition (the law of mass conservatipwe find that Fundamental Resear¢Grants Nos. 96-03-32396 and 98-03-
3279) and the Integration Fun@Grant No. 589.

whereA is the integration constant. At long timegends to
27 (the Lifshits—Slezov theory yields,— 7), so that

C(u,7)=exp

const C¥(PTL=n " C>0,
folC)=] o, c=o.
Hence the asymptotic behavior of the new-phase nucleus di§PPENDIX
tribution function has the following form: To find the distribution functionp,, we must calculate
271 d the integral in(62) (or (57)):
exg——|=—=—n u), u<l,
flun= F{ PPt ) Pl ! =f i (A1)
0, u=1, P XPTE—(p+1)x+p’
where Note that for positive integral values pfwe have
uP d—n(p+1) P _
= XPHI_(p+1)x+p=(x—1)2>, nxP~", A2
@p(U) upﬂ_(pﬂ)wpexp[ > (p+1x+p=(x-1)"% (A2)
Up Xpdx SO that
X .
Ju xPTI—(p+1)x+p (62) xdx 1
|1=f TZF‘HHH—XL (A3)
The constanb , in (62) is usually found from the normaliza- (x=1) X
tion condition x2dx 1 4 5
) |2=f P32l i,
fo pp(u)du=1. (A4)
x3dx 1 7

As expected, ap=1,d=2,n=0, andu,=0 the expression |3:J ,
(62) becomeg29). An analysis of thep, vs. u dependence (x=1)
for p=1,2,3, which correspond to real new-phase growth

mechanisms, is given in the Appendix. Figure 4 depicts the XIn|1—x]| + 1—1In(x2+ 2x+3)+ Q arctanﬂ (A5)
size distribution functions fop=2 andd=3 and different 36 36 '

X2+ 2x+3) 6(1—x) 18
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etc. This sequence can be continued, bupfer4 the growth

S. A. Kukushkin and A. V. Osipov

133, A. Kukushkin and A. V. Osipov, J. Chem. Phyi€)7, 3247(1997.

mechanism becomes too exotic, and, besides, the real roof$- A. Kukushkin and A. V. Osipov, J. Phys. Chem. Solfi 1115

of the equatior®nxP~"=0 do not obey simple relationships.
Plugging(A3)—(A5) into (62), we get

_ (d2=n)u d u A6
@1(“)—mﬂﬂe)(p_ PR (A6)
4(d—3n)/9(d_3n)u2
eo(u)= 2(1_u)z+5(d—3n)/1s(2+u)1+2(d—3n)/9
d/3—n u
xXexp — 2 m, (A7)
Cal® v2[d u+1
3u” ex 1_8 Z—n arctanf

‘P3(U):(1_u)27(7/9)(d/47n)(u2+2u+3)1+(11/18)(d/47n)
d/4—n u

with C; the normalization constant.

(A8)

*)E-mail: ksa@math.ipme.ru
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We study the process of magnetic ordering in planar antiferromagnetic systems with a ' Kagome
lattice. It is found that if the interaction between next-nearest-neighbor spins is taken into
account, the heat capacity of such systems has a singularity at a finite temp&ra@mehe basis

of a scaling analysis of finite-size systems we study the behavior of thermodynamic

quantities in the neighborhood of a phase transition. We find that the phase transition at the
critical point is due to discrete- and continuous-symmetry breaking, in which the long-range chiral
order and the power-law translational spin order emerge simultaneously. Finally, we

calculate the temperatures of the transition to diffefgnth three and nine spins per unit cell
ordered states. €998 American Institute of Physids$S1063-776(98)02106-4

1. INTRODUCTION Heisenberg systems diverges in the zero-temperature?fhnit.
In the MFg(OH)s(SQ,), family of compounds

Lately there has been an upsurge of interest in phasgM=H;O, Na, K, Rb, Ag, NH, Tl, Pb, and Hy called

transitions in the low-temperature range in compounds witharosites(the name has its origin in mineraloggnd in their

a Kagomelattice. Because of the special geometry of thechromium analog KFgOH)s(CrQ,),, the magnetic iron ions

lattice (triangles in a layer alternate with hexagirtbe spin - Fe** form a Kagomdattice in thec plane®~*! The crystal-

systems are highly frustrated. As the temperature drops, thme structure of such compounds is hexagottak space

ordering proceeds much more slowly in comparison to ordigroup isR3m). According to the experimental data, the in-

nary frustrated systems. It is knowhthat this situation oc- teractions between nearest-neighbor spins inside a layer and

curs because in systems with a coordination number muchetween layers is antiferromagnetfcNeutron-diffraction,

smaller than, say, in triangular antiferromagnets, at large valyossbauer, and other measurements involving jarosites

ues ofS in addition to states with nontrivial global degen- show that in jarosites at low temperatures magnetic ordering

eracy there can be local degenerate states. As a result, wheain be accompanied by formation of triangular structures in

there is interaction between the nearest-neighbor spins, thegge x plane!!~13

is no single finite temperature at which a phase transition to  |n our work we studied the phase transitions in com-

a magnetically ordered state can occur. The additional intefpounds of the jarosite type. Since in such compounds the

action between next-nearest-neighbor spins partially lifts th@eighboring layers with Fé are separated by nonmagnetic

degeneracy and may lead to a phase transition at finiteyns of S, O, K, and OH, layer-to-layer exchange is much

temperatured.Nevertheless, since the frustration effects aresmaller than the intraplanar exchangg It has also been

still present, the process of ordering and stabilization ofestablished that in some substances, e.g., withKy the

structure is slower than in nonfrustrated systems. spins in a layer are perpendicular to thewxis as a result of
Ising systems with a Kagomlattice have been studied magnetic ordering? Below we allow for the interaction be-

fairly recently. As in Ising systems with a triangular lattice, tween nearest-neighbor and next-nearest-neighbor spins on a

in the classical ground state the entropy per spin is finit.kagomelattice separated by distancds and A,, respec-

(interaction of nearest neighbordut the decrease in the tively,

spin—spin correlation functions at=0 follows an exponen-

tial law rather than a power lasuperfrustrated systefis.

Heisenberg systems with a Kagotagtice were under inten- H=J; > S-Sia+Js > S-Sin., @

sive study at the beginning of the 1990s. The excitations of 141 ' 142 ?

such systems have a null spectrum in the entire magnetic

Brillouin zone® Quantunf and therma® fluctuations lift the  and limit our study to systems wittXY-like spins: S

degeneracy and select states with a planar spin configuratiors: S(cosé ,sin ).

XY systems have not been studied so thoroughly. Itis known As for Ising systems with a Kagonattice, it is knowrt*

that asT— 0, the spins in such systems are less ordered thathat phase transitions are possible only when next-nearest-

in Heisenberg systems. Here the correlation function of ameighbors interact antiferromagnetically,&0), but com-

XY system is similar to the correlation function of the three-pounds with Ising spins have yet to be found. In contrast to

state Potts mod®|(T—0), while the correlation length of such compoundsXY systems have continuous symmetry in

1063-7761/98/86(6)/7/$15.00 1209 © 1998 American Institute of Physics
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FIG. 1. Degenerate ground states forO (a and b and
\ \ N N\ j<0 (c and d; the “plus” and “minus” indicate the

\
+ + " sign of the parametdr on the elementary triangles. The
heavy lines depict the unit magnetic cells with thtae
A\A _ A _ and nine(c) spins.
JAY!

JAY
SR
5

AN~

the plane. Further, in contrast to Heisenberg systems, they (¢4, o, ¥a) (herey,, are the Fourier transforms of the
also have discrete symmetry, sincelat0 the chiral param- deviation of the sublatticer from the equilibrium structupe
eter specified for each elementary triantjle, can be written as

k=i((3132)+(5253)+(5331)) (2 H=—(31+Jz)SZN+3522 WMy, ©)
3v3 2%

(the spins are numbered clockwjiséakes a value ofr1 or ~ where the elements of thexd@ matrix M, are
— 1. The situation resembles triangular antiferromagnets with M 1= My M o= 2(J 1+ J,)
planar spins®’but here, first, the chiral parameter does not e s L2k

change sign forJ,>0 and, second, the unit cell on a < V3
Kagomelattice has nine spins instead of three Jgr 0. We M1=Mp=—J; COS( >+ 7ky>
find that although for next-nearest-neighbor antiferromag-

netic interaction J,>0) the ordering process is slower than 3 V3

that for ferromagnetic interactionJ{<0), in both cases —J COS(EkX_Ek )

there exists a finite critical temperature at which translational

spin and chiral orders emerge simultaneously. ke V3
M23=M32=_J1 CcO EX_7ky
2. THE LOW-TEMPERATURE RANGE -3, Co{ﬁkﬁ ﬁky)
2 2 '

The ground state on a Kagonfagtice strongly depends
on the sign of the exchange interactidn between next- M3;=M 3= —J; cosk,—J, cosv3k,. (4)
nearest-neighbors. For antiferromagnetic exchardge;0,
this state has a structure with three spins per unit (E&d).
1a), while for J,<0 the structure consists of nine spiifsg.
10). In both cases the spin configurations are continuously
degenerate with respect to rotations in the plane and are two-
fold symmetric. ForJ,>0 the discrete degeneracy is char-
acterized by & of fixed sign(Figs. 1a and 1p while for ~ (A2=A3=3(J1+J5)). In the low-temperature range we
J,<0 the value ok changes sign in neighboring elementary have the following expressions for the enefgy-(H), the
triangles(Figs. 1c and 1d A transition between two equiva- spin—spin correlation function, and the chiral parameter
lent states amounts to surmounting an energy barrier propoK(T):

Whenk is small, for the smallest eigenvalue of the matrix
M, we obtain

1 2

tional to |J,|. We expect that in the low-temperature range

the related excitations are suppressed and the system can be E= —(J1+J2)SZN[1— CTRRESAEAL (6)
described in the harmonic approximation. Let us examine the (Ji+J)

properties of the phases at low temperatures for states with (o= )2

three and nine spins per unit magnetic cell. (SO-S,>=exr{ - ~r 0, (7)

In the state with three spins per unit cel,>0, the
Hamiltonian in the quadratic approximation iny,  whereo andr belong to the same sublattice,
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1 T (N,=3 for J,>0 andN_,=9 for J,<0; M, is the sublattice
k(M=y <; k( R)> =1- 200,733, F €) magnetizatiopy the parametek(T), and the corresponding
susceptibility yy .

(R stands for the coordinates of the points of the dual Iattice The temperature dependence of the thermodynamic
In the states with nine spins per unit cel, <0, the quantities forj=*=0.5 (j=J,/J;) is depicted in Fig. 2. At
smallest eigenvalue d¥1,, the spin—spin correlation func- low temperatures the behavior of the energy can be described

tion, and the chiral parameté(T) in the low-temperature by the harmonic approximatiof6) for j=0.5 and by the
range are given by the same expressitB)s-(9) but with  same expression with-2J, substituted forJ, in (6) for
—2J, substituted foid,. j=—0.5. Deviations from the linear dependence emerge for
The process of ordering of planar spins on a Kagomél/J;S?>0.3 in Fig. 2a and foif/J;S*>0.5 in Fig. 2b. The
lattice was studied for arbitraryf by the Monte Carlo parametek(T) behaves in the linear region in a similar way,
method. In comparison to a triangular lattice, the number ofn accordance with the expected relationships of @e
spins on a Kagomdattice is smaller by 1/4, oN=3L?/4, The exponenty(T) for the spin—spin correlation func-
whereL in our calculations varied from 12 to 48. The heattion can be determined from the dimensional relationship
capacity and the magnetic susceptibility were found by nu- M2~ -~ 7T (11)
merical calculations from the fluctuations of the energy and '
magnetization, respectively. We also calculated the meaWe calculated the parametef(T) from the slope of the
square of the sublattice magnetization: asymptotic straight lines forIn m? as a function of IrL.
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FIG. 3. Temperature dependencezpfThe symbolsD and® correspondto  FIG. 4. The maximum in heat capacity as a function df IiThe symbolsD
diagrams withj =0.5 andj = —0.5, respectively. and @ correspond to the same valuesjadis in Fig. 3.

The results for different values af are depicted in Fig. 3.
As the temperature increases, deviations from the linear d
pendence emerge at the same value§ at for the internal
energy.

Jange. The dimensional dependence of the height of the heat-
capacity peak is depicted in Fig. 4: obviously, the logarith-
mic divergence is due to a phase transition in the parameter
K.

We expect that in the limiN—co the behavior ok is
described by the following formula:

The appreciable difference between the antiferromag-
netic systems with),=0 andJ,# 0 manifests itself in the KEN=[k(N==)]"N+ O(N). (12
behavior of the heat capacity and the susceptibiliiég. 2.  The dimensional dependence kfN on N at j=*+0.5 is
For instance, when we havg+ 0, the heat capacity and the depicted in Figs. 5a and 5b. The valuesk¢T) for an infi-
chiral susceptibility have a peak that increases with latticenite system were calculated from the slope of the asymptotic
size and becomes sharper, while the homogeneous suscediraight lines(dotted lines. On the basis of these data, we
bility x has a broad maximum in a specific temperatureconstructed(Figs. 5¢ and 5gthe dependence of In k on

3. PHASE TRANSITION

KN
1200+
800}
FIG. 5. (a,9—Dimensional dependence &fN
r at different temperatures. The slopes of the
4001 asymptotic straight linegdotted line$ yield the
: value of k? for an infinite system. The straight
| lines 1-5 correspond ta=0.36, 0.41, 0.46, 0.51,
L and 0.53 atj=0.5 (a) andt=0.52, 0.57, 0.62,
¥ 0.67, and 0.72 at=—0.5(b). (c,d—The param-
0 eterk extrapolated to an infinite system as a func-
_Ink tion of the normalized temperature (log—log
0.6 scalg atj=0.5(c) andj=—0.5(d). The symbols
c d O, @, and correspond td.=0.55, 0.54, and
0.5k c.# 0 0.5F 0.53 atj=0.5(c) andt,=0.74, 0.73, and 0.72 at
. o) o o j=—0.5 (d). The dotted lines have a slope
0.4}F ..:Q.' (=] 0.4+ o..,.g ,8=012i 0.01.
ot gets
0.3F e 3] 031 cetd
02 & 0.2
0.1 1 1 1 . 0.1 A i 1
1 2 3 4 5 1 2 4 5

3
~In(t, - 1) —In(t. - 1)
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—In(t,—t) for different trial values oft,(=T./J;S?). The

chiral parameter is a power functiok(t) ~ (t—t.)?. Figures
5c and 5d show that for any sign pfa straight line with a
slope B=0.12+0.01 emerges at,=0.54+0.01 for j=0.5

and att.,=0.73+0.01 forj=—0.5.

transition temperature the data of the numerical calculations

critical temperaturé, is found under the assumption that the deviate from a straight linéthe dotted ling because of the
finiteness ofL. In the region where the data for different

lattice sizes lie on a common straight line, the lines corre-
spond to the slop@=1/8 (as in the previous calculations
AboveT,, scaling analysis of the chiral susceptibiljzy

We also did a finite-size-scaling analysis under the aswas done on the basis of the following relationship:

sumption that
kLA =Fy([t—tJ L"),

13

whereF, is the scaling function® Below t,, the relationship
(13) reduces tk~ (t.—t)# in the limit L— o, so that forF,

we have
FkNXB

(14

as x—o0. On the other hand, abouwg the parametek is
proportional to 1{/N~1/L, so that in this case

Fi(x)~xP "

(15

asx— . The best values df., B8, andv, obtained from the

conditions that the data for different lattice sizes lie on a

single curve(Figs. 6a and 6band the limiting relation14)
and (15) are valid, are as followst.=0.535 atj=0.5 and
t.=0.726 atj=—0.5, andB=1/8 andv=1 irrespective of

the sign ofj. We see that the calculated values of the trany

sition temperatures and the critical exponents in Figs. 6a al

6b are in good agreement with the similar calculated values

in Figs. 5c and 5d.

For these values.=0.535 (=0.5) andt.=0.726 (=
—0.5) we have also found the In k vs. —In(t.—t) depen-
dence for different values df (Figs. 6¢c and 6d Near the

txl " =F ([t—t|L). (16)

Obviously, ax—, the scaling functiorf, (x) assumes the
following form:

17

since in the thermodynamic limlt—o we must have y,
~|t—t¢~?. The values ofy and v were chosen from the
conditions that the numerical data for lattices with different
Ls lie on the same curve and that the lirii7) holds. The
best coincidence at.=0.535 for the cas§=0.5 and at
t.=0.726 for the cas¢= — 0.5 was obtained withh=1 and
v=7/4 (Figs. 7a and 7b

Thus, the foregoing results show that, irrespective of the
sign ofj (and hence of the number of spins per unit);ehe
critical behavior in a phase transition is described by the
critical exponents of two-dimensional Ising systems. This
ct is not accidental and is due to the symmetry of the sys-
ms with respect to sign reversal laf

In determining the temperature of the Berezinskii—

Kosterlitz—Thouless transition it is convenient to study the
correlation function

g(r)=(cos Iho— )y ~r 27D,

F (X)) ~x"7 (t>t1),

(18
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which makes it possible to isolate the contribution of con-  In KFe;(OH)&(SQ,), the magnetic susceptibility has a

tinuous fluctuations at below the temperature of the Ising broad maximum af.=60 K (Ref. 10; the exchange inter-
transition and to correctly determine the phase transition if itactionsJ, andJ, are antiferromagnetic, with, known to be
occurs at temperature higher than that for the transition ismaller thanJ, by a factor of ten. Atj=0.1 we have
discrete variables. Figure 8 depicts the power-function bet.=0.22. Thus, the exchange interaction between the
havior ofg(r) for j=+0.5 at different temperatures. Using nearest-neighbor Bé ions with spinsS=5/2 can be ex-
the Berezinskii—Kosterlitz—Thouless  criterioy,(Tgxr) pected to be 44 K.

=1/4, we found that the phase transition with continuous-

symmetry breaking occurs #éfxr=0.542+0.003 atj=0.5
and tgxr=0.733+0.003 at j=-0.5, where tgr
=Tpgkr/JS. Within the accuracy of the calculationtsgr We have studied the magnetic properties of planar anti-
coincides witht., so that a phase transition in the system isferromagnetic systems with a Kagoniattice. We have
realized at a single temperature, irrespective of the sign dfound that with allowance for exchange interactions between
j(==0.5). Note that, to the accuracy of calculations, thenext-nearest-neighbor spins there is a phase transition in the
behavior of in (8) yields the same value dfgy. In this  system at finite temperatures. In the low-temperature phase
case forp=1/4 we havetgxt=0.537+-0.002 atj=0.5 and there is long-range order in the parameterand the corre-
tgkr=0.729-0.003 atj=—0.5. Similar calculations for lation function decreases according to a power law. Scaling
other values of that are not too close to zero show that bothanalysis of finite-size systems shows thatanishes at the
transitions occur simultaneously. The-j phase diagram is same temperature at which the chiral susceptibility diverges,
depicted in Fig. 9. The neighborhood of the pgiant0 where  and their behavior is described fairly well by the critical
the two phase transitions may be expected to occur is prolexponents of two-dimensional Ising systems. We have also
ably very small and requires more exact calculations andound that the temperature of a Berezinskii—Kosterlitz—
extensive computer time. Thouless transition and the temperature of an Ising transition

4. CONCLUSION

Ing(r)
b
-50 K .."M FIG. 8. Spatial dependence of the correlation
"°-.,.' function g(r) for L=48. The symbols\, @,
. ‘ . and correspond ta=0.519, 0.542, and 0.565
"q,‘_ "."'o. and the slope of the dotted lineg,,=0.18,
10+ o 10 =. 0.25, and 0.5(a), and t=0.664, 0.733, and
- “-\Q%‘J ) w"b\ 0.804 andz,,=0.12, 0.25, and 0.48).
-15 . : .15 N ;
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Bulk samples of carbon multilayer nanotubes with the structure of nested (wsidmone

structure suitable for transport measurements, were prepared by compressing under high pressure
(~25 kbar) a nanotube precursor synthesized through thermal decomposition of polyethylene
catalyzed by nickel. The structure of the initial nanotube material was studied using high-

resolution transmission electron microscopy. In the low-temperature (drye100 K the electric
resistance of the samples changes according to the |&w(f,/T)*3, whereT,~7 K. The

measured magnetoresistance is quadratic in the magnetic field and linear in the reciprocal
temperature. The measurements have been interpreted in terms of two-dimensional variable-
range hopping conductivity. It is suggested that the space between the inside and outside walls of
nanotubes acts as a two-dimensional conducting medium. Estimates suggest a high value of

the density of electron states at the Fermi level of abowutl&* eV 'cm 3. © 1998 American
Institute of Physicg.S1063-776(98)02206-9

Investigations of electric transport properties of carbonmostly one-layer carbon nanotubg@solated or assembled in
nanotubes has attracted great attention recently. According toundles and had a relatively high conductivity was esti-
theoretical conceptsan isolated nanotube can be either amated to beg(u)~10?* eV *cm 3. On the other hand,
metal, or semimetal, or insulator, depending on such strudilms containing multilayer carbon nanotubes were character-
tural parameters as its diameter, chirality, and the number ded by fairly large values of resistivity, which changed with
concentric layers in it. Despite enormous difficulties in mea-temperature to Mott's law, Ip=(T,/T)Y“ In this case, esti-
surements of electric parameters of isolated nanotubes onates of the density of stateg(u)~ 108 eV~ lcm™ 3, cor-
nanotube bundles, several attempts undertaken recently hakesponded ta(w) for amorphous carbon. Amorphous car-
been successfd* The latest published measureménts bon in significant quantities was detected on the outside
clearly indicate the presence of both metallic and insulatingurfaces of multilayer nanotubes in such films by electron
nanotubes in a single set of samples prepared in the sanmeicroscopy’® and it seems that the conductivity of such
conditions. The authors emphasized that each multilayefilms can be attributed to the presence of carbon.
nanotube manifested its specific conducting properties, thus It is well known that, in addition to one-layer and
indicating a strong correlation between structural and electrienultilayer nanotubes with walls made of coaxial carbon lay-
parameters. ers, there are nanotubes whose walls consist of nested trun-

In this connection, it is interesting to study, in addition to cated cones(these are the so-called fishbone-type struc-
the transport properties of isolated carbon nanotubes, theres.” Such nanocones are usually detected at the ends of
conducting properties of bulk nanotube materials, in whichcarbon nanotubes, but can also exist in the form of indepen-
contacts between nanotubes and/or their sections are radent objects among products of arc discharges in a helium
domly distributed. In our previous publicatibmwe reported atmospher& commonly used in synthesizing carbon nano-
on the conductivity temperature dependence and structuiteibes.

(see also Ref. of carbon nanotube films fabricated by In our recent work **we demonstrated that thermal de-
evaporating graphite in an electron beam. The data of thossomposition of polyethylene with nickel used as a catalyst is
experiments were interpreted in terms of a three-dimensional fairly efficient technique for fabrication of large quantities
model of hopping conductivity with a Coulomb gap about of fishbone nanotubes. This technique allows one to manu-
the Fermi level(the resistivity was described by the law facture in a relatively short time considerable quantifssy/-

In p=(To/T)¥?). The density of states at the Fermi level for eral gram of fairly homogeneous nanotube material. Ac-
films that contained, as shown by structural investigationsgording to the data of thermal analysis in oxiding atmo-

1063-7761/98/86(6)/4/$15.00 1216 © 1998 American Institute of Physics
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FIG. 1. Electron micrographs of nanotubes in the composite materia) &w, (b) intermediate, andc) high resolution.

sphere, the nickel content in this material is less then 15% bgured as a function of temperature down to the liquid-helium
mass. Nickel is present in the material in the form of nanotemperature in magnetic fields of up to 75 kOe.
particles, which can be eliminated completely by thermal In all samples under investigation, the resistance
processing of the nanocomposite in vacuum at temperaturehanged with temperature most rapidgbout one order of
of up to 2800°C-° magnitude in the temperature range between liquid helium

In this paper we present our measurements of electriand ~100 K, and the resistance followed the law
resistance versus temperature and magnetoresistance of bulk _ 1
nanocomposite sampl%s fabricated bg pressing the initial R(T)=Ro exil(To/T)*], @)
powder of carbon fishbone nanotubes. The structure of thehich is typical of variable-range hopping conductivity in
carbon phase in the initial powder was imaged by a Philipgwo dimensions. Figure 2 shows as an example two curves of
EM 430ST transmission electron microscope of high resoluin R vs. T~/ plotted for samples Nos. 14 and 15.
tion at an accelerating voltage of 200 kV. These measure- It is known'? that in this casdl, in Eq. (1) is given by
ments demonstrated that the major part of the initial carbon

: ; : 13.8

material was multilayer carbon nanotubes with lengths of 1 —_ =" )
several micrometers, outside diameter of 40-50 nm, and in- kgg* (u)a?
ternal channel diameter of 9-20 nm. The tubes consisted %hereg*(,u) is the two-dimensional density of states at the
almost rgculmear sections with Iengths of 100-300 NMcormi level anda is the localization length.
turned with respect to one another. Figure 1 shows as an
example electron micrographs of the composite nanotube

material at(a) low, (b) medium, andc) high resolution. 100 50 30 20 10 5 T.K
The analysis of micrographs indicated that the nanotub: [ T T T ' ]

walls were composed in most cases of 40—65 tapered grap 500

ite layers. The taper angle varied along the tubes in the ranc i No.15

of 16—35°. The inside diameter was also variable. The di
mensions and shapes of wider sections of the inside chann
corresponded to those of catalytic nickel nanoparticles
which were detected in most cases at the ends of the nan No. 14
tubes. We observed either so-called bamboo structwigis 100
taper angles of 20 to 25°) or, more frequently, fishbone
structures with larger taper angles.

Bulk samples that could be used in transport measure 30
ments were fabricated by cold pressing of nanotube powde [
under high 25 kbar) pressure. Samples were shaped a
bars with dimensions of-1X2X3 mm. Contacts for mea- 0 . . . NN : -
suring current and voltage across samples were made from 92 03 04 0.5 06 =~ 07
conducting epoxy paste. Note that the samples were fairly "X

Sftrong and their resistivity at room temperature was relagig, 2. Logarithmic resistance of samples Nos. 14 and 15 as a function of
tively low: p(300 K)~1 Qcm. The resistance was mea- T2

MY
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FIG. 3. Magnetoresistance of sample No. 15 versus magnetic field at

=4.2 K. The inset shows the section of negative magnetoresistance at low|G. 4. Magnetoresistance of sample No. 15 versus temperature in a mag-
magnetic fields on an extended scale. netic field of 75 kOe plotted in coordinateg R{H)/R(0)] and T~ .

To the best of our knowledge, this is the first observation
of the dependence Re(To/T)? in a system with a rela- Experiments with repeated accumulation and averaging of
tively low resistivity. Another interesting feature of our mea- the signal dedicated to testing the reproducibility of such
surements is lowT, (for example, we foundy=7.3 Kin  measurements were performétie results obtained by this
sample No. 15, and in all tested samplgswas within the  procedure are the ones plotted in the inset to Fig.aBd
interval of 6.5-7.5 K, which directly indicates, in accor- these experiments proved that the curves were reproducible,
dance with Eq.(2), that the density of states at the Fermi even after warming the samples to the room temperature. It
level is high. seems that the negative magnetoresistance of the samples

In this connection, it is of interest to measure the mag-and local minima are due to the discrete structure of the
netoresistance, especially as a function of temperature, sing®nducting network formed by nanotubes. The broadest
these measurements would allow us to estimate directly thgninimum in the magnetoresistance at 3—4 kOe is tentatively
localization lengtha and then derive the two-dimensional related to the average cell dimension in the network, and
density of stateg* (u) using Eq.(2). local minima are ascribed to some additional characteristic

It is known'® that in systems with variable-range hop- dimensions in the random network. When the applied mag-
ping conductivity, the magnetoresistance is positive @nd netic field reaches a value such that the magnetic flux

moderate magnetic fieliss given by the expression through a network cell equals the magnetic flux quantum
p(H) a4 To\3P hc/e, the amplitude of the tunneling between nanotubes in-

In ——=t| - —) =A(T)H?, (3 creases, which causes a drop in the total resistance of the
p(0) A T system. A simple estimate yields a cell dimension of the

where\ is the magnetic length,is a dimensionless factor of conducting network of about 120 nm &t,,,~3.5 kOe,
about 0.0025, ang=D+ 1 (whereD is the system dimen- which seems plausible, given the structure of the nanotube
sionality). Sincep=3 holds in the case under consideration, material shown by the electronic microscope.

it follows from Eg. (3) that the magnetoresistance at a fixed  The magnetoresistance of sample No. 15 as a function of
magnetic field should be inversely proportional to the tem-temperature under a magnetic field of 75 kOe is plotted in
perature. Fig. 4 in terms of IPR(H)/R(0)] and T~ 1. It is clear that the

An example of magnetoresistance measurements versasagnetoresistance at low temperatures is reasonably well de-
magnetic field all =4.2 K for sample No. 15 is given in Fig. scribed by a linear function 6f ~%, in accordance with Eq.

3. One can see that the magnetoresistance is adequately d8). The localization length derived from these measure-
scribed by a quadratic function &f in the range of moderate ments isa=17 nm. Thus, the two-dimensional density of
magnetic fieldsH <30 kOe, and in higher magnetic fields it states at the Fermi level estimated using these data and Eq.
tends to a linear function. (2) is g* (u)~7.5x 10" eV tcm 2.

The behavior of magnetoresistance in low magnetic  Assuming that the space between the inside and outside
fields is especially interesting. As a rule, the magnetoresiswalls of nanotubes acts as a two-dimensional medium, we
tance is negative on the section of the curve around zero archn estimate the three-dimensional density of stg{eg at
becomes positive in fields higher than 7 kOe. As a result, wehe Fermi level. Using the relatiag («) =g(x)d, whered
have a small, broad region of negative resistivity at abouts the average nanotube wall thickne€ssthis specific case it
3—-4 kOe. Moreover, several additional narrow local minimais about 15 nijy we haveg(u)~5% 107t eV~ lcm 3,

(see the inset to Fig.)3are observed superposed on this It seems also interesting to estimate the two-dimensional
broad peak. Note that the peaks in the inset to Fig. 3 are n@nd three-dimensional densities; andn,,, of current carri-
caused by noise, although their amplitudes are very smalkers. This can be done using the equation
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ns=2g* (u)eo(T), (4 The work was supported by the Russian Scientific Tech-
nological Progranilropical Issues in Physics of Condensed
Media, branchFullerenes and Atomic Clustekproject No.
96147 and International Center for Science and Technology
(project No. 079.

whereey(T) is the energy band near the Fermi level contain-
ing current carriers contributing to the hopping
conductivity!? In the two-dimensional case, this band width
is given by the equation

eo(T)=(keT)?¥[g* (n)a?]~ 2. )

. I .
At T=25K we find from Egs. (4 and (5 ng~9 E-mail: tsebro@sci.lebedev.ru
X 10* cm~?, henceny~6x 10 cm 2. -
Thus, we have interpreted the low-temperature transport1
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This paper studies theoretically how local anomalies in the Gaussian curvature of the Fermi
surface of a layered conductor affect its surface impedance at high frequency under conditions
where the surface of the conductor is parallel to conducting planes. It is shown that the

fact that the curvature vanishes or has singularities in the effective sections of the Fermi surface
can substantially change the value and frequency dependence of the impedance. A theory

of cyclotron resonance in a magnetic field normal to the conductor’s surface is constructed and
the features of this phenomenon reflecting the presence of local anomalies in the curvature

of the Fermi surface are studied. €998 American Institute of Physics.
[S1063-776(98)02306-3

1. INTRODUCTION and a is the distance between the layers. If we ignore the

Most superconducting materials with large critical pa_amsotropy of thg energy_spectrum |n_the layer plane, instead
of (1) we can write the simpler equation

rameters created in the last two decades are layered struc-
tures with metallic-type conductivity. A characteristic feature Pf o anp,

of these materials is the strong anisotropy of the conductivity EF:Z_ + En(pl)cosT, 2
in the nonsuperconducting state: the conductivity in the layer m, n=1

plane is much higher than that in the direction normal to th

Iayedrs. tlt !ts common _:co ?siumefttr;]at anlsc_)ttropy dl'n eleqtnc Iayer plane, andn, is the effective mass corresponding to
conductivity 1S a manitestation of the quasi-two-dimensionaly, o 1o of the quasiparticles in that plane. Equatin
nature of the energy spectrum of the charge carriers in lay

. “Jdescribes an axisymmetric open Fermi surface with the axis
ered conductors. The Fermi surface of such conductors is Girected along a normal to the layers
gystem of weakly rippled cyIinden(s'solated or connected by . The usual approach in theoretical papers devoted to the
links) whose axes are perpendicular to the Iz_;lyers. The _eXpe”s'tudy of the electron properties of layered conductors is to
mental data(see, e.g., Refs. 136&upport this assumption.

. keep only the first few terms in the sum owein (2). As a
However, the study of Fermi surfaces of layered conducto_r§u|e’ only the first term is taken into account, which corre-

is far from completion. Many aspects of the profiles of perl—Sporlds to results obtained in the tight-binding approxima-

odically plnchfad cyhnders h_ave yet to be |_nvest|gated. The[ion. This paper uses a different approach to describing the
local geometric characteristics of the Fermi surface strongl)électron energy spectrum of the charge carriers in layered

affect the high-frequency properties of layered COndUCtorSConductors in which the Fermi surface is given by the equa-
just as they do in ordinary metalis* The aim of the present ’

work is to study the effect of the local geometry of the Fermi

surface on the skin effect in layered conductors. The expo- 2

herep, is the projection of the quasimomentum on the

p
sure of the features of the skin effect related to the specific EF:Zm — nv0p0E<—Z>, 3)

geometric characteristics of the Fermi surface should create Po

additional possibilities for reconstructing the Fermi surfacesyherev,=(2E-/m,)*?, po=wfila, E(p,/po) is an even

of such materials from the experimental data. function periodic in its argument,/p, with a period equal

to 2, andy is a dimensionless parameter characterizing the

extent to which the Fermi surface is rippled. The quantity

— uoPoE(P,/Po) is the sum of the trigonometric series in
The Fermi surface of a conductor with a quasi-two-(2). By selecting the type of this function we can obtain a

dimensional energy spectrum can be described by the folFermi surface in the form of pinched cylinders with different

L

2. MODEL

lowing equation: profiles. This approach provides broad possibilities in ana-
% anp, lyzing the effect of the shape of the Fermi surface on the
E = 2 En(Px.Py)COS ﬁ, (1) observed characteristics of Iayer_ed conduc_tors. _
n=0 Let us assume that the functi@{p,/po) in the interval

wherep is the electron quasimomentui,(py,py) are co- Po=<P,=py is described by the expression
efficients with dimensions of energp, is the projection of D 1
o)l

1r

P @

the quasimomentum on the direction normal to the layers, 0
0

rl

Po

1063-7761/98/86(6)/8/$15.00 1220 © 1998 American Institute of Physics
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where the parametersand| take values greater than unity.
The model specified by3) and (4) makes it possible to de-
scribe a broad class of Fermi surfaces in the form of pinched
cylinders with different profiles.

The Gaussian curvature of the Fermi surfé@eand (4)

is

p
v+ =
m, ﬁpz

K(p,)=m? 21 (p2 +mfud)~2, (5)

(1€l
NP
A NN

whereu, is the projection of the quasiparticle velocity on the
symmetry axis of the Fermi surface. Atr=2 the curva-
ture of the Fermi surface in its sections by the plapes
=0 andp,= * pg takes the following values:

L\
R
_/\

N
~—"|
RN
Rl
S\
T\ |
N
\/‘

K(O oS 1 6

( )_Smax 0! ()
26S 1

K(ipO):_ﬁpo' (7)

K

=
o

where S, and S, are the maximum and minimum sec- A P
tional areas of the Fermi surfac8,,=0), Syin=X*po). :
and 8S= Spax—Snin=(72)M, yugpy. Thus, if the Fermi FiG. 1. Profiles of corrugated cylinders described(®yand (4) for differ-
surface remains a pinched cylindep=0), its curvature at ent values of the parametersand!: (a) I=r=2, (b) r=2 andl>2, (¢) r
all points of the sections with extremal diameters is finite.>2 and!>2, and(d) r=2 and I<l<2.
Similar results are obtained if the tight-binding approxima-
tion is used to describe the electron energy spectrum.
Forr#2 andl=2 the curvature of the Fermi surface
nearp,=0 remains finite andk(0) is still described by6).
However, the asymptotic behavior of the curvature of the
Fermi surface negp,= = p, is different:

makes it preferable to the tight-binding approximation,
which is commonly used to conduct specific calculations
(see, e.g., Refs. 15-19

3. CALCULATIONS AND RESULTS

2

oS 1- (&) } . (8) We assume that the conductor fills the half-spaced
Snin pO Po and its surface is parallel to the layer planes. We also assume
Thus, for 1<r<2 the curvature of the Fermi surface hasthata plane electromagnetic wave is incident normally on the
singularities in these sections. For 2 the curvatur&k(p,)  Surface. Since in layered organic metals the ratidv, is
vanishes atp,=+p,. The corresponding sections of the small, we can limit ourselves to mirror reflection of electrons
Fermi surface are lines of parabolic points. The larger thdrom the boundary. In this case the surface impedance tensor
value of the parametar, the more the Fermi surface near is diagonal:
these sections resembles a cylinder. o dq

Z 8i wJ'

K(p)=—-2(r—-1)5—

The anomalies in the curvature of the Fermi surface near
po=0 can be described by the modg) and (4) with r=2
and|+#2. Here the curvature of the Fermi surface npar where w and g are the frequency and wave vector of the

0 47Tiw0'aa(w,q)—02q2’ (10

=0 is described by the asymptotic expression wave (@=(0,09)), ando,.(w,q) are the diagonal compo-
-2 nents of the electrical conductivity tensar=X,y.
K(p)=(1-1)o— — Pz (9) In this geometry the components,, and o, of the
Smax Pg | Po conductivity tensor for an axisymmetric Fermi surface and,
For 1<1<2 the curvature of the Fermi surface has a singu- correspondingly, the components of the surface impedance
larity at p,=0; if 1>2, the Fermi surface neg,=0 re- tensor are equal to each other:
z— z

sembles a cylinder, and the larger the valué thie closer the 2ie? Po S(pyd pZ
resemblance. Finally, if#2 andl # 2, we have a surface in Oxx= Oyy= 0= (27h)3m, f b0 @—qQu, (11

the form of a pinched cylinder with curvature singularities in
all the sections with extremal diameters. The profiles of thavhere we have writterno=w+i/7 and 7 the quasiparticle
Fermi surfaces described ) and (4) are depicted sche- effective relaxation time. The maximum value of the longi-
matically in Fig. 1. tudinal component of the velocity,,, is of ordernv,. For

Thus, the proposed model makes it possible to analyzemall values ofy, where the parameter (u= w/7qug) as-
the effect of local curvature anomalies of the Fermi surfacesumes values much larger than unity, we can expaim a
on the observed characteristics of layered conductors. Thiseries in inverse powers of:
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o=0o(1+ QU 2+ QU™+ ) =0g[ 1+ P (1/u)]. 8w (w2 7}1)0)1/3 2A1 [ o \1B
12 I~——|——— 1-iv3— —| (V3-i)}.
(12 3v3c ws C [ @?(Ww) ( )]

The leading approximation far, equalsiNe?/m, w, where (20
N is the charge carrier number density, and is independent of
the specific features of the local geometry of the Fermi surThe leading approximation for the conductivity in the region
face. The dimensionless coefficier@s, are specified by of small values ofj (largeu) is independent of|. Thus, for
)2 |€]<1, the link between the electric field and current is local,
Q2n=( (:) ISOS( pv2'd pz) / (fSOS( p,dp,) , which is characteristic of the skin effect. The skin deptis
@ given by the following expression:

(13
wherev_zzvzlm;o. Their values depend on the parameters 1 o
andl, which determine the function,(p,). This, however, 5 %5 '

has no effect on the expansi¢h2).

Forq large (u<1), the conductivity can be expanded in
a power series in. If the Fermi surface given b§8) and(4)
has no curvature anomalies in the extremal sectionsl (

=2), the expansion is £ =g'= nﬂ Yo [@T

~ ~ w C

T W T w
O'ZI_; Uo(U+A1U2+A2u3+"'):T;Uo(l'f'f(u)).

whereé=¢'+i&". At low frequencies ¢ 7<1),

i.e., |é|=v2ll5wT. Herel=nqu,7 is the mean free path of

149 the charge carriers along the normal to the layer plane. The
The first expansion coefficients {i4) are inequality| £|<1 is valid under normal skin effect conditions
- - (I<d). At high frequencies ¢>1) we have |&|=¢'
A= E w Ao (g) (15) =|/éwr. Due to the presence of the large factor in the
! rw 27Oy denominator of the expression fig, the inequality| £| <1 is

valid if <8, a condition that can easily be met in layered
conductors.

The leading term in the asymptotic expression for the
impedance with|¢|>1 corresponds to an anomalous skin
gffect with a skin depth

whereb andg are dimensionless constants of order unity.

In calculating the surface impedan€®0) it is conve-
nient to integrate with respect toand divide the integration
range into regions of small and large valuesuofin each
region we can then employ the corresponding asymptoti
behavior of the conductivity.

Thus @=2,y=2), 5 27v, ( ® )1’323 cznvo)l’3
Z=27,+2,, (16) Vo \mog?] V3 \Towp
h
where When w7<1 holds, |4 takes a value of orded(8)*% wr,
_8nug (1 du while in the opposite limitw 7> 1 this parameter is of order
Z1= cZ Jo (@l ) 2031+ (u) +i (17) (I/ 8w7)®2. Since the mean free path in the direction perpen-
dicular to the conducting layers is small, for layered organic
8ingug (= du metals it is essentially impossible to meet the condition
27777 |, P14 d())+1 (18 s 5. This means that, in contrast to ordinary metals, it is

impossible to observe an anomalous skin effect in such sub-
Integration with respect ta in (17) and(18) can easily be stances in the high-frequency rangest1).
done in the limits of large and small absolute values of the  |n the limit w7<1, the skin effect is anomaloug &
anomaly parametef: |>1) for|> 6. This condition can easily be met at moderate
frequencies, since the skin depth increases with decreasing
=, frequency. The intermediate frequency range~1 is opti-
ww © mal for realizing an anomalous skin effect in layered con-

_ AAN&m i ductors. The maximum value ¢%| is reached ator=1/2
where w,= v4wNe'/m, is the plasma frequency. Fge| and is of orderpw,Tvg/c. The ratiow,tvg/c in a pure ¢

;dle;hgyr?ﬁénrg;g:%L;t:(;?géo\;;iessu:)f?;r? dlrir;pedance IS Pro°_qg-8 s) layered conductor is of order 3910*. Thus, at
moderate values ofy (5~10 2) the maximum value of¢|
- \/E & may reach 188 This means that in layered conductors both
Z~ T o <1+ EQZ)' (19  the normal skin effect|¢|<1) and the anomalous skin ef-
P fect (|¢|>1) can be present, although the latter is observed
In the opposite limit|&|>1, the principal part of the in a frequency range narrower than that in ordinary metals.
impedance is determined by the region of small values of On the other hand, at very small valuesmpfwhen the Fermi

and is surface is for all practical purposes a cylinder, the condition

wp Uo

&=n7
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|£|<1 is met over the entire frequency range. Accordingly,the dependence on the parametewhich characterizes the

we can use the asymptotic formula9) for the surface im- extent to which the Fermi surface is rippled, disappears.

pedance corresponding to a normal skin effect at all frequenthus, the presence of wide cylindrical belts on a highly

cies. pinched Fermi surface leads to the same result for the surface
The leading terms in the asymptotic expressions for thémpedance as in the case of a weakly pinched Fermi surface.

surface impedance in both limits, the normal skin effect = Equation(23) implies that, to within a complex-valued

(]€]<1) and the anomalous skin effedtt(>1), are inde- constantZ (|{|~1),

pendent of the specific characteristics of the Fermi surface

and coincide with the results obtained by Gokhfeld and ~ Z={¢|Zol(1—iw7)~#ET3)(5/1)~FIET3), (24)

Peschanski*® who used a model of the Fermi surface base . . L .
k"> who u ' su dHereZO is the leading approximation of the impedance for

on the tight-binding approximation for electrons. . ; .
9 g app &n anomalous skin effect in the case where the Fermi surface

Let us now examine a conductor whose Fermi surfac f the conductor has no curvature anomalies in the effective
has anomalies of the Gaussian curvature in the effective se&

tions. For definiteness, we assume that in the mé@eand sectiongthe fir;t term in(20)), anddis the gkin depth for the
(4) we havel=2 andr#2. This corresponds to curvature anomalous skin effect. We see that the mpedance depends
anomalies ap,=+ p,. In this case the asymptotic expan- on the mean free path of the charge carriers. Kaganov and

sion of the conductivity in the region where the parameter Contrera®’ found that such dependence exists only if there
is small contains an additional term, : are quasicylindrical sections on the Fermi surface. If there

are no such sections, the leading approximatignof the

T »|Ft impedance for an anomalous skin effect is independeht of
Ta=5rTomp| U] (21) In the limit B— — 1, the exponent 0d/I in (24) assumes
values close to 1/2. Thus, if the Fermi surface in the vicinity
where of the effective sections gt,= *p, resembles a cylinder,
o r—2 the impedance for an anomalous skin effect is proportional to
mp=(B+ 1)( 1-i tanT), —B= 1 1/ﬁ, in the same way as it is for a normal skin effect. For

w7<1l and B=-2/3 (r=4), Eq. (24) coincides with the
If the sections of the Fermi surface pf= = p, are lines of  result of Ref. 10.

parabolic points(>2), the parameteB takes negative val- At sufficiently high frequenciesg7>1), the real part
ues (—1<pB<0). The shape of the Fermi surface in the of the surface impedand@4) is

vicinity of these sections is close to cylindrical, and@s:

—1, the Fermi surface resembles a cylinder more closely. R— 8m @p Vg (BT
For 1<r <2 the parameteB assumes positive values. In the T c w(B)| 7 ® C
given case, the curvature of the Fermi surface in the vicinity
of the sections corresponding 3= *+ p, becomes anoma- @ T B i
- . X cot . (25
lously large. In the low-frequency limit, E€21) can be writ- wp B+3 B+3 T

ten as constd()?, wherey=1/(r —1). The same asymptotic .

behavior of the contribution to the conductivity of the qua- Forzzggsa)tlve values 0B not too close to—1 we haveR

sicylindrical section of the Fermi surface of ®3netal was ¢ - The real part of the impedance increases with

obtained by Kaganov and Contrelaésee also Ref. 20 frequency faster than in the case ofa conduc_:tor for v_vhlc_h the
A comparison of21) and(14) suggests that if the Fermi cgrvature of f[he_ Fermi surface in the effective section is fi-

surface of a layered conductor near the sections with an exlite: In the limit ——1 the frequency dependence Bf

tremal (in our case minimumdiameter closely resembles a disaPpears, as it does for a purely cylindrical surface.
cylinder, o, exceeds all other terms in the expansion of the ~ L€t Us assume that the paramegzmwhich characterizes

conductivity in powers ofu. Accordingly, the leading ap- the shape of the Fermi surface, takes_ positive values. This
proximation for the impedance in the event of an anomaloud€@ns that the curvature of the Fermi surfac@at = po
skin effect is determined by the contribution of the quasicy-PEComes infinite. The termr, ceases to be the leading term

lindrical section of the Fermi surface: in the asymptotic expression for the conductivity for snoall

However, for 6< 8<<1, when the singularity in the curvature
8 Voo ( o\ BTDIBETI) is not pronouncedg, is the first correction to the leading
= 3

Z= p B) o Z ' (22 approximation. Here the asymptotic behavior for an anoma-
P lous skin effect is given by
where 213
87 [ w? puo\? u(p) 1 ®
2 cog 7w BI2)| VAT ) iy 1 Z=—<—2—0) 1-iV3— —— —— | —
= RN R BI3 ]
W(B) 7B+ 1) 1+i COt,3+3 513 3v3\w, mC 2v3 (mé9) 0}
(26)
X aw
=w(B)| 1+i cotm . (23 where

In the limit B— —1, the complex-valued functioWV(g3) (1+p%) [ m(1+B) —i} 27

tends to 1/2 an@21) becomes the leading term (@8). Here U= coq 7BI2) 3
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The first correction to the leading approximation for thefor the casep~1. In particular, forr>1 andl>1, the sur-
impedance is now larger than in the absence of curvaturéace described b{3) and(4) is a steplike cylinder. The lon-
anomalies in the effective belts on the Fermi surface. Theitudinal velocityv, of the electrons on such a Fermi surface
frequency dependence of this correction also changes. The zero for an arbitrary value of the corrugation parameter
additional term is proportional t@?(*#)3 rather than to The local features of the geometry of the Fermi surface of
w*? (the latter case corresponds to a Fermi surface withoutyered conductors lead to specific singularities in their ob-
curvature anomaligs served properties in an external magnetic field. This is true,

Note that the surface impedance for an anomalous skiin particular, for cyclotron resonance, which in recent years
effect is also described by expressions of the f626) in the  has been repeatedly observed in organic métafs.
case where narrow neighborhoods of sofiioet not al) ex- Suppose that an external magnetic field is directed along
tremal sections of the Fermi surface resemble narrow cylinthe normal to the surface of a semi-infinite conductor and
drical bands. Here the anomalous additional term in the conthat this surface is parallel to the planes of the conducting

ductance is layers. When the charge carriers undergo a mirror reflection
from the boundary, the surface impedance tensor becomes
T »\ At diagonal in terms of the circular components:
Ta= 5] PKBT0 U; (28) ~ dq
Zizs""fo o (@,0)— " @9

and contains a small positive factprdescribing the relative
number of effective charge carriers related to the cylindricalyhere o.=0yx*ioy, are the circular components of the
section of the Fermi surface. The paramegdakes negative transverse conductivity.

values in the interval- 1< B< 0. For small values Of) and The asymptotic expressions fo[: for |arge and small

tmhodlera(;fe vatlues qﬁ r][ﬁt too cIosc_e t;; 1f' T IS srgaller tthﬁn coincide with the expansiond?) and (14) in which o is
e leading term in the expansida) for o and must be replaced byw. (w.=w¥Q+i/7, whereQ is the cyclotron

taken into account as the first-order correction. Here for tht? . .
. . requency of the charge carrigrsThe same is true of the
component of the surface impedance tensor we arrive at a .

result that differs from(26) in that the term describing the expression forr, . Below we examine the case where the

first correction contains an additional facterand <0 in polarization cor_responds o cyclotron resonance, .
this term. If the Fermi surface of the layered conductor has wide

. . sections resembling cylinders, the impedance for an anoma-
The above analysis can be repeated for a Fermi surface gcy P

that has anomalies in the Gaussian curvaturg,at0. Such ous skin effect is described by an expression obtained from

a surface is described by Eq®) and (4) with r=2 andl (22 by substitutingw , for . This substitution must be
£2. As a result we arrive at expressions that coincide witifrried out everywhere, including the expression for the pa-
(20)—(26) with a parametep, which characterizes the shape rameteré characterizing the extent to which the skin effect is
of the Fermi surface near’the effective section=0, ex- anomalous. The real part of the impedance in such condi-
pressed in terms df (— 8= (1—2)/(1—1)). tions Is
_ Finally, let us (_:onsider the case where the effec_tive SECR(H) 02 1\ ~AlB+3) CogY4(Q,0,7))
tions of the Fermi surface have curvature anomalies. If W: - — +(—)2 m,
>2 andl>2 hold, the neighborhood of each section of the @ @r (B (30)
Fermi surface with an extremal diameter resembles a cylin-
der. Here the asymptotic behavior of the surface impedancehere
for an anomalous skin effect retains its fo(@2). The same 1
expression(22) describes the asymptotic behavior of the sur- Y 4(Q,w,7)= 313 7+ 7RO — w)
face impedance of a layered conductor for an anomalous skin B
effect in the case where the curvature of the Fermi surface of QO

—-1<B<0. (31

the conductor is anomalously large in all sections with mini- + B arcco
mum and maximum diametefd <r<2 and 1<I<2). In
both cases the value ¢ is expressed in terms of the larger with
of the two parameters, andl.

If one of the parameters,or |, or both are much larger 0(x)=[
than unity, the asymptotic expression for the surface imped-
ance ceases to depend on the rippling paramgtand as- At a fixed frequencyw the value ofR(H) rapidly increases
sumes the forn{19). Thus, the characteristic features of the with the magnetic field strength in fields near cyclotron reso-
skin effect in layered conductors are determined not by the@ance. The discontinuity iR(H) atH=H, is no smaller in
smallness of the second term in E§) by itself but by the order of magnitude thaiR(0) at the same frequency. In
form of the functionE(p,/py), which specifies the profile of strong magnetic fieldsH>H,), wherew<(}, the value of
this surface. The fact that usually for layered conductors th&(H) increases in proportion td/w) ~#¥*2), For moder-
projection of the charge-carrier velocity onto the normal toate(in absolute valugvalues ofg, the increase ifR(H) in a
the layer plane is small in comparison to the velocity com-strong magnetic field is slow g8— — 1, when the shape of
ponents describing the motion in the layer plane is also tru¢he effective belts on the Fermi surface is essentially cylin-

1 if x=0,
0 if x<O0,
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R(H)/R(0) R(O)/R(H)

1.021
1.001
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1.02r
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T

FIG. 2. Dependence of the active part of the surface impedance of a layerddG. 3. Dependence of the active part of the surface impedance of a layered

organic metal whose Fermi surface has near-cylindrical wide bands, on therganic metal on the magnetic field near cyclotron resonance for the case

magnetic field near cyclotron resonance. The curves are described by Ewhere one of the extremal sections of the Fermi surface coincides with the

(30) and are plotted fow =10 with 8=—0.2 (curve 1), —0.4 (curve 2), line of parabolic points. The curves are described by(B).and are plotted

—0.6 (curve 3), and—0.8 (curve4). for o7=10 andp=0.05 with 8=-0.2 (curve 1), —0.3 (curve 2), —0.4
(curve 3), and—0.5 (curve4).

drical, and forH>H, we haveR(H)~ yQ/w. The field de-
pendence of the ratiB(H)/R(0) near cyclotron resonance is
depicted in Fig. 2, where the curves are described3y. . . :

If the cylindrical belts near extremal sections of the(_0'5<B<O) the above inequality holds if we have
Fermi surface are narrow, the related additional term in thé’<0'l' . . .
conductivity determines the first correction to the leading Eor,3<0 the second term iB2) describes the peak in
approximation of impedance for an anomalous skin effectthe field dependence &f(H) related to cyclotron resonance

The leading term in the impedance in this case is indepen(—Fig' 3. The height of this peak depends prFor moderate

o o~ ~ . values ofp (p<<0.1) the height may amount to 10% of the
dent of the magnetic field. Substituting, for  in (26) and . L :
allowing for the small factop, which describes the width of leading approximation of the real part of the impedance. For

th lindrical belt the Fermi surf ¢ moderate values abr the top of the peakit corresponds to
€ cylindrical belts on the Fermi surtace, we ge the minimum of the resonance term (82)) is appreciably

~10"2), we see that for a moderate curvature anomaly

R(H) S \/ 02 1 \F shifted in relation toH, :
RO) Pt o) Tlen?

, Hi—H AH cot® a4
CQS(YB(Q,w,T))’ @2 H - H  wr (34
sin(w(1+ B)/3)

where The value of® is determined by the shape of the effective
section of the Fermi surface:
o
Yp(Q,0,7)=Z(2-B)+7RI(Q— 0)
3 . B
+pB arccotwr| 1— — ||, (33
) Such field behavior near cyclotron resonance has been ob-
H= (1+8) p, F=m @p Mo served in some layered organic metals of the
2v3 cog wBI2) o C ' a-(BEDT-TTF),MHg(SCN), groug® and in the organic

) ] ] ~~_paim ] ) conductor(BEDO-TTH,ReQ,(H,0) (Ref. 26. The experi-
This result is valid forpé~2f3<1. At high frequencies the ments of Demisheet al 2528 were conducted in the 30—100

parameteré assumes values close to those of the anomalHz frequency range in magnetic fields of about 50 kOe
parameter¢ in the absence of an external magnetic field.with w7~10. The magnitude of the singularities related to
Taking for & a value on the order of the maximum é6f(¢  cyclotron resonance amounted to several percentage points
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dR/dq dR/dH

AR I

1 I
1.0 1.5 Qo 1.0 15 Qo

FIG. 4. Cyclotron-resonance induced singularities in the field dependence dflG. 5. Cyclotron-resonance induced singularities in the field dependence of
dR/dH for a layered conductor in the case where one extremal sections ol R/dH for a layered conductor whose Fermi-surface curvature has a singu-
the Fermi surface coincides with line of parabolic points. The curves ardarity in one of the extremal sections. The curves are plottedwfor 20
plotted forw =20 andp=0.05 with 3= —0.25(curvel) and— 0.75(curve with 8=0.25(curvel) and 0.5(curve2).

2).

resonance dependencedi®/dH near cyclotron resonance is
depicted in Figs. 4 and 5 for several values of the para-

of the leading impedance vald®which agrees with esti- meter 3.

mates that follow from(32). The results of Demishev
et al?>?% can serve as proof of the presence of cylindrical

; . 4, CONCLUSION
sections on the Fermi surface of the layered conductors used
in their studies. It is too early to draw any conclusions about the local

The data of Ref. 26 allows estimating the paramgter features of the geometry of the Fermi surface of the majority
which characterizes the shape of the quasicylindrical sectioof layered organic metals, since there is a lot to study in the
of the Fermi surface ofBEDO-TTH,ReQ,(H,0), via (34)  electron energy spectra of such materials. It can be assumed,
and(35). The experiment was conducted at frequencies corhowever, that here, as in ordinary metals, the Fermi surface
respond to variations imr in the interval from 10 to 20 and contains quasicylindrical bands or sections with an anoma-
to variations inAH/H, in the interval from 0.11 to 0.06. This lously large curvature. These features of the local geometry
yields B8~ —(0.25-0.35). of the Fermi surface can be creatéfithey are absentor

The resonance peak in the field dependence of the activenhanced by applying an agent that changes the shape of the
part of the impedance must be accompanied by a strongeonstant-energy surfaces, e.g., by applying external pressure
singularity in the field dependence dR/dH. If the curva- along the normal to the conducting planes.
ture of the Fermi surface rapidly increases as we move away The above analysis shows that the special features in the
from the line of parabolic points, the height of the peak in theprofile of the corrugated cylinder, which is the main part of
field dependence dR(H) corresponding to cyclotron reso- the Fermi surface of layered organic metals, can substantially
nance may prove to be too small to be observable. Howevechange the high-frequency properties of these materials. The
the resonance singularity in the derivative of the impedancenodel developed in this paper makes it possible to study in
under these conditions may clearly manifest itself. The resoeletail the observable manifestations of the local geometry of
nant singularities in the field and frequency dependence ahe Fermi surface of layered conductors. It resolves some of
dR/dH can also be observed &> 0. This corresponds to an the difficulties that emerge when one uses the model of
anomalously large curvature of the Fermi surface in the vitightly bound electrons. For instance, the characteristic fea-
cinity of sections with minimum or maximum diameter. Cy- tures of the observable properties of layered conductors, for
clotron resonance can be observed at moderate values of thdich the strong anisotropy of the electrical conductivity is
parameterB (0<B8<1). In contrast to the above case for responsible, can be described and analyzed without passing
positive B8, cyclotron resonance does not manifest itself into the limit »— 0, which corresponds to a conductor with a
the field dependence of the real part of the resonance. Thgvo-dimensional energy spectrum of the charge carriers.
field-dependent term in the expressi@R) for R(H) de- The model specified by Eq$3) and (4) makes it pos-
creases monotonically with increasing magnetic field. Thesible to do a detailed study of the frequency dependence of
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Magnetic resonance of the low-frequency spin-wave branch in theugl, antiferromagnet with

an easy-plane anisotropy has been studied. Angular, frequency, and temperature dependences
of the position and width of the antiferromagnetic resonaf@eMR) line have been measured.
Our measurements combined with earlier dddaOchta, K. Yoshida, T. Matsuya, T.

Nanba, M. Motokawa, K. Yamada, Y. Endon, and S. Hosoya, J. Phys. So®61][#2021(1992;

E. W. Ong, G. H. Kwei, R. A. Robinson, B. L. Ramakrishna, and R. B. von Dreele, Phys.

Rev. B42, 4255(1990] have allowed us to determine anisotropy constants of this material and
to account for the unusual character of its static susceptibility anisotropy. The AFMR line

shifts to the high-field side and broadens in a temperature range of 10—-15 K, and the cause of this
has remained unclear. In the low-temperature range the line shows a hysteresis corresponding
to a static field magnitude several times as large as the spin-flop field. The position and

width of the AFMR line depend sensitively on the sample preparation techniquel998
American Institute of Physic§S1063-776(98)02406-§

1. INTRODUCTION plane® The effective magnetic moment of the €uion in
. S ] _antiferromagnetic BICuQ, at 4.2 K is 0.65—-0.865.%"

Study pf materlals_contamlng ions of variable va_llence IS The electron spin resonance in the magnetically ordered
one of rapidly developing branches of modern physics. The)bhase T<T,) was studied in the submillimeter wave
attract researchers’ attention primarily in connection with theregionl From these measurements, the energy gap separating
discoveries pf high—f[emperature s_uperconductivity and gian{he exchangéhigh-frequency branch of the magnon spec-
mag(r;etoresstanc? Itr'] SUC? r:;gten?ls. . GO h trum was derived. The antiferromagnetic resonance of the
structlr}ree rbeé)lgisesnti I:/hee(; acles ﬁggsln'ié 294 fll"hewmzse lower branch of the magnon spectrum in,8u0, single
netic moment 09]1 the CGif cgtion g dui o é sinale uncgm— crystals grown from a melt was studied by Pankrats ét al.

ensated electron in thed-shell. Neutron ?jiffraction The frequency and angular dependences of the antiferromag-
Etudie%“‘e of Bi.CuO, indicate t.he presence of three netic resonance field in the microwave and submillimeter
2 4 - . . .
dimensional magnetic ordering at temperatures belgyw }[/tlj?geo?aBr';?:suV(\;ergelggrg%igggfeevr;igtlg\;lth the magnetic struc
=42 K. A ) =
The static magnetic characteristics of samples depend

The unit cell of B,CuQ, contains four copper ions. In . - ) .
the conventional notatichthe positions of these ions in the sensitively on their preparation technique. Crystals grown by

lattice are as follows: QQ), (1/4,1/4z); Cu(2), (1/4,1/4 the hydrothermal technigti@ave in the ordered state a small

2+1/2): CuB), (3/4,3/4,1/2-2); Cu(4), (3/4,3/4-2). The ferromagnetic moment in the basal plane of less than one
parameterz is the shift of the parallelepipeds formed by percent of the nominal Cii magnetic moment, which drops

Cu(l) and Cu2) ions with respect to those of C3) and @S the static magnetic field grows and vanishes for
Cu(4) ions along theC™® axis. The value of equals 0.076 H>30 kOe ('=4.2 K). Samples grown from a melt do not
of the lattice constant.* The chains of C(1), Cu2) and Mmanifest a weak ferromagnetistf.In the range of strong
Cu(3), Cu4) ions form two magnetic sublattices in the anti- Static fields, the susceptibilities of both types of samples are
ferromagnetically ordered state of BuQ,. The magnetic ~€qual. The small ferromagnetic moment in samples made by
anisotropy for C&" ions is determined by the anisotropic the hydrothermal method was attributed to the
exchange, since a one-ion anisotropy due to the electric cry&zyaloshinskii—Moria interactiof.

tal field does not affect ions with spin 1/2. The exchange In the present work, we have studied the microwave
anisotropy aligns the magnetic moments of the sublatticeglectron spin resonance of BluQ, single crystals of both
within the plane perpendicular to the four-fold a%sln the  types in the temperature range beldly,, and also in
absence of magnetic field, the antiferromagnetic vector isamples annealed after growth in an oxygen—helium atmo-
directed along a diagonal of the,p) square in the easy sphere.

1063-7761/98/86(6)/6/$15.00 1228 © 1998 American Institute of Physics
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2. SAMPLES AND EXPERIMENTAL TECHNIQUES 42K

We have studied BCuQ, samples grown both by the
flux method and hydrothermal technictfe3

The samples were tested by x-ray diffraction and x-ray
microanalyzer. x-ray diffraction measurements using a D/ - 10 K
max-3C microdiffractometer produced by Rigaku demon-
strated identical crystal structures of samples prepared by the

two techniques. Nonetheless, the quantitative analysis of the —\/—”—K
samples performed on a JXA-8600 electron microscope P ——\_/32—1—(
combined with an x-ray analyzer produced by JEOL, in 40 K
which we used the ZAF-correction program and reference

samples of copper and bismutthe oxygen content was de- \/__ﬂ
termined by subtractigrrevealed differences between com- . : .
positions of crystals made by the two different methods. 12 13 14 H, kOe

Samples grown from a melt had the compositionfFg. 1. Typical curves of microwave power transmitted through the cavity

Bi, CUO; g7, Whereas samples prepared by the hydrothermabaded with a BiCuO, sample grown from a melt versus magnetic field at

technique had the formula Bi-CuQ; g,. severafl tﬁmperatures. The garrow re;ggaane Iin(le Wh(r)\_sehp_ositior(]1 is indep}en—

H ent of the temperature Is due to a sample, whnich Is used as a reter-

The compans_on bere_en the formulas of CryStalS _gI’O\_NI’gnce for measuring the applied static magnetic field. The solid curves were

by d'ﬁeren'_[ techniques indicates that the degree of 0X|da:t|omecorded when the field was scanned in the upward direction, the dashed

of cations in crystals grown from the hydrothermal solutionlines correspond to decreasing magnetic fiele;36 GHz, H||[110].

is slightly lower than in samples grown from a melt. This

difference may be caused by the fact that it is difficult to L i o

create a high oxidation potential in an autoclave, thereforéjecreaSIng field. ,The_ hysteresis beha\{|or is more pronounced

hydrothermal crystals are deficient in oxygen, and a smal?t Iower'magnetlc fields, corresponding to lower resonant

quantity of nonmagnetic Cucations is present. requencies. . o .
Experiments were performed on both as-grown crystals The position of the absorption line is strongly aniso-

and samples annealed after growth in an atmosphere of ox ropic. Mez_isurements of angular dependence performed at

gen or nitrogen. The annealing was performed at 600°C foplfferent microwave frequencies and temperature have dem-

30 h. Note that the annealing in oxygen and nitrogen did nopns.trat.ed that. resonance conditions are c_ietermined by the
affect the positions and widths of AFMR lines in samplesStat'C field projection on the plane perpendicular to the four-

grown from a melt, but radically changed magnetic proper_fold symmetry axis. When the static field was rotated in the

ties of samples made by the hydrothermal technique. basal planer,1 the line shi? v;/aiwell de_scribeﬂ by.the _funcjtion
Typical dimensions of BICUO, samples grown from a Acos(4p). The resonant field had maxima when its direction

melt and hydrothermally were »22x0.5 and Ix1 coincided with thea_- or b-axis. ) )
X 0.1 mn?, respectively. The resonant field versus frequency is close to a linear

The electron spin resonance was measured on a trang.inction. The absorption peak is close to the ESR position of

mission microwave spectrometer. A sample was placed in 8 parangngt wit}g—flz_actor 9=2. _Note that rehsone;]nt fields
rectangular cavity whose resonant modes were in the frél€asured 'le laar ler  experiments - with the  same
quency band of 23-78 GHz. The device was designed t80nf|gurat|oﬁ' ~>*were also close to a straight line of the
allow sample rotation during an experiment. A magneticsame slope. Figure 2 shows. resonant.fields of_ samples with
field of O to 40 kOe was produced by a superconductindeSpeCt to'the resonant field of diphenylpicrylhydrazyl
solenoid. The cell with a sample was in a vacuum jacket, S(SDPPH)’ which was used as a referenge=(2 for DPPH' It

that we could perform our measurements in a temperatur clear that the curve of the frequency dependence is steeper

range of 1.2 to 110 K. Measurements at a frequency of 9. an that of the free radical at 25 K, whereas at lower tem-

GHz were performed on a commercial ESR spectrometeﬁ)eratures it has a gentler slope. i
produced by Brucker The temperature dependence of the resonant field at a

microwave frequency of 36 GHz is plotted in Fig. 3. Experi-

ments have been performed with two orientations of the
3. EXPERIMENTAL RESULTS static field in the basal plang=0° and 45°. The resonant
field shifts to higher values in the temperature range of
10-15 K.

Figure 1 shows traces of microwave power transmitted As was noted above, experiments have been performed
through the cavity versus magnetic field at various temperaen both as-grown samples and crystals annealed in the atmo-
tures. In the temperature range closeTtp, the ESR line is  sphere of oxygen or nitrogen. Within the experimental un-
considerably broadened, and a new line forms at a magnetiertainty, the annealing has no effect on the resonances in
field slightly higher than that of ESR. In the low-temperatureBi,CuQ, crystals grown from a melt. The microanalysis of
range, T<12 K, the absorption line shape depends on thechemical composition also has not revealed any changes af-
field scan direction. The solid curves in Fig. 1 were recordeder annealing.
in an increasing magnetic field, and the dashed curves in a Figure 4 shows the AFMR line width as a function of

3.1. Measurements of samples grown from melt solution



1230 JETP 86 (6), June 1998 Svistov et al.

The presence of the gapless branch in the spectrum of
magnetic excitations is in accordance with submillimeter
wave and microwave measuremehfsand with neutron dif-
fraction experiment$,but contradicts other neutronographic
measurement.

All resonance properties of BtuQ, can be easily de-
scribed considering it as a two-sublattice antiferromagnet
with an easy-plane magnetic anisotropy. A phenomenologi-
cal theory of the antiferromagnetic resonance taking into ac-
count an easy-plane anisotropy was given by Tufovhe
energy density of such an antiferromagnet is expresse&d as

T m=Al2m?+a/2 mZ+b/2 12+ £/21315—2Mg mH.

i @
ol T I T Here M, is the saturation magnetization of one sublattice,
30 v, GHz andm are the normalized vectors of antiferromagnetism and

magnetization i?+12=1, m-1=0). The first term on the

FIG. 2. AFMR field Hp measured with respect to the ESR fit} for  rjght hand side is the exchange energy, the second and third
DPPH as a function of microwave frequency. Open symbols correspond to

temperaturelT =4.2 K, filled symbols toT =23 K; filled squares and open are responsible for the crystallographic magnetic anisotropy
circles correspond tél[[110], and filled circles and triangles td|[[ 100]. of a uniaxial crystalin the case of an easy-plane anisotropy

The samples were grown from a melt. The solid lines are calculations of théy > 0)_ The fourth-order term takes into account the anisot-
AFMR field as a function of frequency by Ed2) with parameters ropy in the basal plane perpendicular to fie®1] axis. The

H{PHe=10 and 6.8 kO® and a/A=—0.02 and—0.1 at temperatures . . .
T=4.2 and 23 K, respectively. The dashed and dash-dotted lines show call‘:iSt term describes the magnetic energy due to apphed mag-

culations atp=22.5°, when the gap in the spectrum due to anisotropy in theN€tic field. _ _
plane perpendicular to the four-fold axis vanishes. The two AFMR frequencies corresponding to the acous-

tic and optic magnon branches are given by

temperature for two nonannealed samples. One can see that w;=y[H?(1+a/A)—HgHY cog4¢)]Y2, 2
the temperature-dependent parts of the AFMR line width are y o 12012
similar. The part of the line width independent of tempera- ~ @2=Y[HeHAI"11—H?/HEI', ()

ture is, most probably, due to an inhomogeneous line broaq/'vhereyz g, uelfi=18.15¢10° 5! kOe ! is the gyromag-

ening and depends sensitively on the sample quality. Th@.sic ratio (according to Ref. ig, =2.04), H is the static
most plausible factor leading to the inhomogeneous broade'?ﬁagnetic field, He=A/2M,, Hx=b/2M,, and H
y - ] - ] A

ing is variation in the alignment of the? axis over the = (y/2M)f. From the static susceptibility measured by
crystal volume. No correlation between the line width andy .- ot ot for HLC® we derive He=2M/x

. o ; , e
annealing conditions has been detected — 2000 kOe;H =12 kOe can be derived from the width of
. o Ghe gap separating the high-frequency AFMR brah&hom
power with respect to magnetic fieldt v=9.3 GHz) as a . easurements, we derivél”) and the ratioa/A. The

function of the field are.plott-ed n Fig. 5. Absqrpthn lines solid line in Fig. 4 shows calculations of the frequency de-
recorded for both scanning directions have a rich fine struc- endence of the AFMR field by Ed2) with HeH(® =10
ture, which manifests in the low-temperature range ( P y E A

e : ) .\ and 6.8 kO& and a/A=—0.02 and—0.1 at temperatures
<15 K). This fine structure is well reproducible. The fine : p(4)
. . o T=4.2 and 23 K, respectively. The curves ldEH,"”’ and
structure is seen in the range of magnetic field below the L . .
. i L . : . alA versus temperature are plotted in Fig. 3. The minus sign
antiferromagnetic resonance at all static field orientations in - . .
in front of a indicates the easy-axis anisotropy for the ferro-
the basal plane. . . :
magnetic vectom, whereas the antiferromagnetic vector
has an easy-plane anisotroply>0). Givena/A, one can
determine the ratio between the static susceptibilitiesy
The changes in the resonant absorption with temperature 1+ a/A.*® The subscripts indicate the magnetic field ori-
(Fig. 1) and the strong dependence of the resonant figld entation with respect to the four-fold ax@®. It is clear
on the static field orientation provide strong evidence in fathat, given the negativa for Bi,CuQ,, x, should be about
vor of an antiferromagnetic resonance in®u0,. Another  10% smaller thany; at T=20 K, which is in reasonable
argument in favor of the interpretation of the resonant abagreement with static magnetic measuremé&fts. is re-
sorption in terms of uniform precession of the magnetic mo-markable that the temperature dependence of the anisotropy
ment is the fine structure in absorption spectra in the fieldconstanta (Fig. 3) is strong in the temperature range of
range below the main resonan@gg. 5. In all probability, 10-20 K, which is far fronT. The AFMR line also broad-
the recorded fine structure is due to spin-wave resonances @ns considerably in this temperature intergig. 4). All
Bi,CuQ,. The presence of resonances corresponding to largiese effects may be related to a structural transition in
wave numbers allows us to rule out an interpretation ascribBi,CuQ,, because the unit cell volume also increases

ing the absorption line to impurities. abruptly in this regiorf.

3.2. Discussion
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I - M FIG. 3. (a) Resonant field versus temperature at microwave
[ frequencyr=36 GHz. Measurements were performed for
125000 1'0 * 2'0 — 3l0 * - 4'0 * 50 two orientations of the static field in the basal plage,
T K =0 and 45°. Different symbols show measurements of
! samples annealed in oxygen or nitrogen, and as-grown
@ samples. Within the experimental uncertainty, curves of
a/A HA HE, kOe Hgx(T) for all samples are identical. The samples were
0 grown from a melt(b) and(c) Temperature dependences of
a/A andH$PH¢ derived from measurements plotted in Fig.
b c 3a.
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In addition to the step on the curve of the AFMR line " &
width versus temperature in the range of 10—-1%Hg. 4), v
the width also grows rapidly as the temperature approache:!
the Neel temperature. This temperature-dependent part of the
line width is largely due to the process of three-magnon re-
laxation. The solid curve in this graph shows calculations of 40001 v 7 g
the AFMR line width caused by the above mentioned relax- v: =, ®Y
ation process using the equation given in Ref. 15 and param -
eters of B,CuQ, given in this section.
The hysteretic behavior of the absorption line up to i
fields several times larger than spin-flop fields indicates the?0%
presence of a highly developed system of antiferromagnetic
domains. Unlike the case of a ferromagnet, antiferromagnetic ‘am m®
domains are equivalent in energy terms in fields higher than } o
the spin-flop field, so even a slight pinning makes a domain 00‘7 vw ¥ %0
wall stable up to the high fields. It is probable that the shift T.K

of the resonance field, step-like growth of the line width,
hysteretic behavior of the absorption line, and the abrupf
change in the cell volume in the temperature range of 10—150

IG. 4. AFMR line widths versus temperaturerat 36 GHz. Filled squares
nd triangles show measurements of two different as-grown samples. The
lid curve shows calculations of line widths due to three-magnon relaxation

K are caused by a sharp decrease in the mobility of domaifased on formulas of Ref. 15. The samples were grown from a melt.
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dP/dH

FIG. 5. Measurements of the derivative of the
microwave power absorbed by the sample with
respect to magnetic field as a function of applied
magnetic field.r=9.3 GHz, T=10 K, ¢=0°.
The arrow indicates the AFMR position calcu-
lated by Eq(2) with the parameters correspond-
ing to the given temperature. The lower graph
shows curves on the extended magnetic field
scale.
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walls. Information about the nature of antiferromagnetic do-field H, whereas the position of resonariR2 is independent
mains in B,CuO, may be derived from measurements of of its orientation. As in the case of samples grown from a
nuclear magnetic resonance and magneto-acoustic experielt, the conditions of resonané®l are controlled by the

ments. static field projection on the plane perpendicular to the four-
fold axis. The position of the low-field resonandgl
3.3. Measurements of samples grown by the hydrothermal strongly depends on temperatufég. 7). At the same time,

technigue and discussion

In experiments with samples obtained by the hydrother-

H,, kOe
mal technique, we have detected two lines of resonance ab- {
sorption. Typical curves are given in Fig. 6. The field of
2 1Sk
resonancdRl strongly depends on the direction of the static Hy,
(-3 (- - -] -] o LR a o on o -]
42K F
f'm ‘sz 10k o
14K r o ot

P %

5—
O~
—___\/’-———_M
. - t p [1] N SR UEIYH W TP S S UNrA S S T
0 5 10 15 14 H,kOe 5 - > 5 = %

T.K
FIG. 6. Typical curves of microwave power transmitted through the cavity
loaded with a BjCuQ, sample grown by the hydrothermal technique at FIG. 7. Resonance fielddg, andHg, versus temperature at=36 GHz.
v=36 GHz and different temperatures. The samples were grown by the hydrothermal technique.
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Hy, kOe Bi, o«CuO; o1, i.€., the oxidation degree of cations increased
after the annealing, but did not reach the value characteristic
to the crystals grown from a melt. It is plausible that the
conditions of this annealing are too mild to get rid of the
oxygen deficiency in the crystal, but it is sufficient to release
local elastic strains in the crystal or make the oxygen con-
centration uniform over the crystal volume. On the other
hand, the difference between the properties of the two types
of crystals can be attributed to different ratios between the
contents of copper and bismuth.

15¢

101

The elimination of lineR1 after annealing in oxygen or
helium atmosphere under relatively mild conditions casts
doubt on the conjecture about a relationship between the

ol small ferromagnetic moment in BLuQ, samples manufac-
0 tured by the hydrothermal technique and canting of sublat-

v, GHz tices due to the Dzyaloshinskii—Moria interaction. It seems

FIG. 8. Resonant fieldslz, and Hg, versus frequency af=4.2 K. The ~ More probable tha'_[ the resonant absorption inRieand the
samples were grown by the hydrothermal technique. small ferromagnetic moment are due to the presence of do-
main walls in the samples.
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The new geometry for an oblique Josephson junction of finite thickness along the magnetic field
is considered and a nonlocal integro-differential equation describing the dynamics of the

phase difference is derived. The spectrum of low-amplitude electromagnetic excitations for lap-
joint junctions is also studied. €998 American Institute of Physid§1063-776(98)02506-2

1. So far the equations of nonlocal Josephson electrodyanalysis of the equations of the electrodynamics of an ob-
namics have been derived and studied in four cafgsa  liqgue Josephson junction in a plate with an arbitrary ratio
tunneling junction at the interface between two ultrathin su-d/A and an arbitrary angle between the junction plane and
perconducting films whose thickness is much smaller thathe normal to the plate plane. Such junctions may arise in
the London length(2) a tunnel junction between bulk super- two types of experiment. First, in granulated polycrystalline
conductors whose thickness is much larger than the Londohigh-T, ceramic materials there can be random weak links
length; (3) a tunnel junction between superconducting layerswith different values ofa, from a butt-joint junction &
of finite thickness in the direction perpendicular to the mag-=0) to a lap-joint junction &=m/2). Probably, the main
netic field; and(4) a tunnel junction at a butt-joint of super- fraction of such junctions consists of general-position junc-
conducting plates of finite thickness in the direction of thetions, i.e., obligue Josephson junctions with an arbitrary
magnetic field. value ofa. Second, experimental studies and practical appli-

For example, in Ref. 1-8 it was shown that nonlocalcations ordinarily use lap-joint junctions with a large junc-
effects can be large even in junctions with a large thickaess tion area. The method used in fabricating such junctions can
(d>\, whereX is the London penetration deptin the di- also be employed to produce oblique Josephson junctions.
rection of the magnetic fieldin the direction parallel to the For a lap-joint junction &— 7/2), not considered so far, we
vortices, i.e., in situations previously studied in the local study, in the nondissipative limit and in the absence of a
approximation. In the opposite limit of junctions involving transport current and an external field, the spectrum of low-
thin films, with d<\, nonlocality becomes a decisive factor. amplitude electromagnetic excitations propagating along the
The corresponding equations were derived and studied ijunction.

Refs. 9-12. A Josephson junction between two supercon- The problem posed above is reduced to that of an ob-
ducting layers of finite thickness in the direction perpendicu-ique Abrikosov vortex in a plane-parallel plate of finite
lar to the magnetic field of the vortices was studied in Refthickness 2 in the direction of the magnetic field. This
13. problem of calculating an oblique vortex current averaged

Nevertheless, there are still many ways in which theover the plate thickness and normal to the junction plane is a
theory can be improved. For one thing, it is necessary to gtiew one. The results refer to a general-position junction with
beyond the limits mentioned above, since experimenters ofan arbitrary anglex. For a— /2 is is possible to approxi-
ten use junctions whose size in the direction in which themately integrate the Fourier transform of the integral term
Josephson vortices are oriented is comparable. tBuch a  over the fast variablé, tan« and thus find the spectra of
geometry is realized, e.g., in single-crystal Y—-Ba—Cu-Olow-amplitude electromagnetic excitations for arbitrary val-
chips with twins and in other ceramic materials with twin ues of the wave vector and the ratit\. Itis also possible in
boundaries. this case to find the explicit form of such spectra in the short-

Such an approach was adopted in Ref. 14 for a butt-joinnd long-wavelength ranges of the spectrumditr>1 and
junction (the plane of the tunnel junction is perpendicular tod/A<1.
the plate plangfor an arbitrary ratiad/\. There it was found 2. The magnetic field of an arbitrary linear soureeg., a
that the relationship between the jump in the phase of th&ortex considered in the London approximadiom a super-
order parameter at the junction and the current density alonducting plate satisfies the equation
ways contains a nonlocal component, whose origin lies in the
long-range nature of the field in free space, and that the N2Ah—h=— (1),
amplitude of this component is only weakly dependent on
the parametek/d (the dependence is almost lingand its q) ©
shape is independent afd. _ %o _ Do

The present paper contains a derivation and preliminary wn= g, el vo=oo f S(r=R(p))dR(p), @

1063-7761/98/86(6)/4/$15.00 1234 © 1998 American Institute of Physics
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where®, is the magnetic flux quantund,is the phase of the oH,

order parameter, an®(p) is the parametrically specified 7 Tik-H=0, (7)
radius vector of the points of the vortex core. The core of the

Josephson vortex spreads out along the weak-link suSace and continuous at the edges of the plate and, second, by the
dividing the superconductor and is a two-dimensional objectpotential nature of the tangential component of the magnetic
Clearly, the corresponding souraér), smeared over this field at the boundary of the superconductahich means
surface, in Eq(1) can be expressed by the formula that the component of the current normal to the surface van-
isheg and by the potential nature of all three components of
the field in free space. The latter condition yields

H, ik
wherea andb are the arguments of the parametric represen-  H|,_.4 = |K|’
tation of S, R(a,b) is the radius vector of the points &
dS(a,b) is a vector area element & and ¢ is the phase
difference between the edges of the junction. Since we hav
div »=0, the arbitrary source of magnetic field can either be
represented by a continuous sum over linear c@edh can

be represented as a linear combination of the Abrikosov vor-  gH,
tices or, conversely, be treated as a three-dimensional vector ~5-"
field. We direct thez axis transverse to and theaxis along

the junction. Then for a general junction oriented at an arbiwhich determines the coefficienégs andb, in terms of the
trary anglea and a magnetic field directed at the angl®  source field:

><dS(a b/, 2)

v(r)—— J S(r—R(a, b))
®

which accounts for the effect of free space on the field and
urrent distributions in the superconductor. Here and below

e subscriptl denotes thex- andy-projections of vectors.
One consequence ¢7) and(8) is

:IHz|z=ida 9

z==*d

—a Eq. (2) yields
-1 aHOZ
D, J(X) a,=A 52 —kHy, (k—k)exp(— kd)
= =5 - z=—d
vy(r)=0, wy(r) o tanad(y—z tan o) Evat
dH,
@, I(X) ( 2 +kHOZ> (K+k)eXF(Kd)],
[ _ z=d
V(1) S oy—ztan @) o 3
whereg(r) is the jump in the phase of the order parameter at bz:Al[ ( 97 ) (k+k)exp(«d)
the sides of the junction, z=-d
dH,
@(r)=6(x,y cosa—z sin a=+0) —( — ) (K—k)exp(—Kd)], (10)
—6(Xx,y cosa—2z sin a=—0), 4 2

where
ggr']‘;héf"t‘hg'ivgo%ﬁ;f‘e’;daﬂ‘jzf_ac‘ that diw=0, Is indepen-  \ _ 4« sinh xd-+k coshxd)(x coshxd-+k sinh xd),
The phase jump and hence the source can be found by k=|Kk|.
solving the complete nonlinear equation for the junction.
Note that even without solving this equation, we see that du
to the linearity of Eq(1) we can write the magnetic field as
h=H,,+H, whereH,, is the seed Meissner field generated 1 )
by the given transport supercurrent and the external magnetic 3~ 2 sin(2xd) | ' E[H2|Fd exp(«d)
field and is determined by solving the homogeneous analog

By combining(8) and(10) we can write the coefficients
a‘ andb, in terms of the source field:

of Eq. (1) as if there were no weak link and the supercon- +H,|,— _q exp(—«d)]—Hgy|,=q
ductor were continuous, and the fiditlis generated by the
source (H vanishes atwv=0.) Taking a two-dimen- X exp(kd) +Hgyl = g expl— Kd)],

sional Fourier transform in the plang of a plate of thick-

ness 2, |z|<d, we find that Kk |
by=s———e——1 1 —[H,|,-
H=Hy+aexp«xz)+b exp — «2z), (5) ' 2sinh(2kd) | kA
d sinh K|Z z | ><eXF(_Kd)"FHZ|z:—d exp(«d) ]
H0=—f —— o7 vkz)dz,
- +Hojlz=q exp(— xd) —Hgy[,= g equd)]. (11)
k=(N"2+kHY2 KE=KE+ K, (6)

Formulas(5)—(11) make it possible to find the field and
wherek is a two-dimensional wave vector. The vector coef-supercurrent inside the plate for an arbitrary source.
ficientsa and b are determined, first, by the condition that Plugging(3) into (6), combining the result witk5), and
the field be divergence-free, going over to the coordinate representation, fré@h-(11)
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we arrive at the following expression for the density of thecorresponds to the limit of two bulk superconductors of
current flowing through the junction in the direction normal thicknessd>\ and is the kernel of the integral term in the
to the junction plane and averaged over the plate thicknessquation first obtained in Ref. 1 and used in Refs. 2—8. In the
100 =30 (x) +3(X) opposite limit of ultrathin films of thicknesgd<<\, the sum
m ' of both terms gives the kernel of the integral term in the
where J,, is the seed Meissner current determined by thesquation first studied in Refs. 9, 10, and 11 and equal to

e o 20 QU= [ S0 16
X)= — X
™ 14+2Khgg O
I0= o572 fQ(x X)re(xhdX (12 ° e
167312 ax IX . .
where Jg is the Bessel function of order zero, andy
is the current due to the source. Here the nonlocal source=\?/2d is the Peierls penetration depth.

current kernel is 3. A closed equation for the phase difference at the junc-
1] tion can be obtained, as usual, by equafiftg to the sum of
Q(x)= Ko( )+Q1(X) (13 the Josephson supercurrent, the normal current, and the ca-
pacitive displacement current, all regarded as internal char-
WhereKo is a modified Bessel function of order Zero, acteristics of the jUnCtionS, and in standard notation has the
dk,dk, | form
Q= | eFexslikQutkc k), N
sin g+ — H o} W
and the Fourier transform of the kerr@} (k,,k,) is
Jm(X) M J qo(x )
Qu(ks k) - 2 [ eex) )
_ 1 1 wherej. is the Josephson current densiXy, and w; are the
x coshxkd+k sinh xd « sinh xd+k coshxd Josephson length and frequency, ghid the dissipation pa-
rameter.
. The integral kernelQ(x) describes excitations in a Jo-
X [ COS“[ 20K +K2) [k cosi(2xd) + « sinh(2«d) sephson junction in a unified manner, both in a thin film and
(x Y in a sample that is thick in the direction of the magnetic field.
~ ~ In the general intermediate case with an arbitrary aaglié
—k cod2k,d) Fky sin(2kyd)] is the sum of a well-localized term and a strongly nonlocal
_ _ nonintegrable terntthe second term on the right-hand side of
- [2k;<2'Ry cosk,d sin kyd+K2 Eq. (13)), which originates in the slowly decreasing tangen-
rd( x>+ kf,) tial component of the magnetic field in free space at the
- - - surface of the plate. Here, for a near-butt-joint junction
X (k2=k3)(cost «d sir? k,d+sini? «d cos k,d) (when the value of the angle is zero or very smalland a
near-lap-joint junction(when the value of the angle is
+kr(k2—K2)coshkd sinh Kd]} close tow/2), there are two physically distinct asymptotic
Y expressions for the kern€l,(x) at large values of the argu-
ment x. For instance, whem is close to zero, the vortex
Kk Sina magnetic flux is almost perpendicular to the plate plane and
A — —tan a[cosff «d the magnetic fields on either side of the plate have opposite
d(x“+ky)® sinh xd coshxd signs. This leads to a power dependence@gfx) at large

distancegsee Ref. 1%
)\2
dix|’

On the other hand, fow close tow/2, the vortex magnetic
flux is almost parallel to the plane of the plate and the mag-
netic field in free space above and below of the plate is
><cos~kyd+ K'Ry(simnfl «d cog Fyd+cosﬁ «d almost perfectly balanced. This lowers the degree of nonlo-
cality of Q4(x), which according tq13)—(15) is character-

X sir? kyd+sini? «xd cog k,d](x coshxd

+k sinh xd)(« sinh kd+k coshxd) Q1(x)~ (18

ﬁ 2_ T2\ ai T
+ " [(k“—kj)sinh kd cos«d sink,d

~ ized by an exponential asymptotic behavior at laxge
X sir? kyd—sini? «d cosif Kd)]] ] (15) y . " i g
A X
Ql(x)“aKo dtana)’ (19

with k,=k, tane, 0O<a<w/2. If in (13)-(15 we seta
equal to zero, we arrive at the results of Ref. 14 for a buttwhere the decay length is equal to the effective thickness of
joint Josephson junction. In this case, the first tern{li)  the junctiond tana>\.
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For general junctions, i.e., oblique junctions with an ar- k coth(2xd)exp—2«d)
bitrary anglee, the difference at large distances is in the  + 2K (ZKd—l)], (24
nature of the nonlocal behavior @;(x) at large values of,
which according to Eqg14) and(15) can be calculated nu- Wherek=k,, and«x= (A ~2+k%)2 Equationg22)—(24) de-

merica”y, and approximatele()o has the fo”owing termine the SpeCtrUm of IOW-ampIitude eleCtromagnetiC ex-
asymptotic behavior: citations for an arbitrary wave vectge=k, and an arbitrary

ratiod/\. The asymptotic expressions in the short- and long-

)\2

A X
Qu(X)xA cosa——+B sin a~K, L , (20) wavelength ranges are
d|x| d “ldtana 2 2,2 112
Aj A3
whereA andB are constant factors. o(q—®)=w,| 1- Zma ’ (1+)\2q2)1’2} ; (25

4. Let us now examine the spectrum of low-amplitude

electromagnetic excitations 2

el S
0(q—0)=w;| 1+ +{1—-—|\59?
p(x,0)= g0 exfli(ax— )], ool <1, (21) (A= O= o 1 Tqtar o 9| 17 a7 M o6
for a lap-joint junction, with the excitations propagating
along the Josephson junction. for d<\ and

In the nondissipative limit and in the absence of a trans- A3 172
port current and an external field, §4.7) yields the follow- w(g—0)=w, 1+ mqﬂﬁqz} (27)
ing dispersion relation

for d>N\.
B )\qu )\3q2 1/2 -
0=y 1+ (1+)\2q2)1/2+ o @ (22) The author would like to express his gratitude to Yu. E.

Kuzovlev for suggesting the idea of studying an oblique Jo-
sephson junction and for stimulating discussions and to Yu.
V. Medvedev for his interest and support.

whereF(q)=Q;(q) and, according t@415), is given by the
following expression:

dk
Q;(k,)=cot af 2—;Q1(kx Ky ;cot aky)

*)E-mail: medvedev@host.dipt.donetsk.ua

~Q10)(Ky) +cof aQyo)(Ky) +-++ (23
which amounts to the sum of the first two terms in the ex-1yu. M. Aliev, V. P. Silin, and S. A. Uryupin, Sverkhprovodimost': Fiz.,
(1992].
1 2A. Gurevich, Phys. Rev. B6, 3187, 14 3291992.
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77, 142 (1993].
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bv. P. Silin, JETP Lett58, 701(1993.
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— —— sin? «kd[1+exp —2«d
8d«? el [I xd)] Translated by Eugene Yankovsky
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