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Abstract—A global analysis of experimental data on the elastic and inelastic scattering of alpha particles
by 90,94Zr nuclei and on the total cross sections for their interaction with these nuclei is performed. The
deformation lengths and the neutron-to-proton multipole-matrix-element ratios for the 2+

1 and 3−1 states
of the 90,92,94,96Zr nuclei are obtained for various projectile species, and a comparative analysis of these
quantities is performed. With the aim of revealing the origin of the phase shifts found in the present study,
experimental data on the inelastic scattering of 35.4-, 40.0-, 50.1-, and 65.0-MeValpha particles on 90,94Zr
nuclei are analyzed on the basis of a unified approach. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The scattering of high-energy electrons on nuclei
furnishes detailed information about the distribution
of the protonic component in nuclei [1], while the
scattering of alpha particles, which strongly interact
with nuclei, makes it possible to study the distribution
of nuclear matter in nuclei. A comparison of data
from such experiments permits exploring distinctions
between the neutron and the proton distributions in
nuclei and their structure.

Experimental data on the quasielastic scattering of
composite particles are the main source of informa-
tion about the distribution of matter in nuclides and
about the properties of nucleus–nucleus interaction.

The parameters of the optical potential that is
employed to simulate alpha-particle interaction with
medium-mass nuclei at low and intermediate ener-
gies are usually determined from an analysis of the
angular distributions of elastic-scattering differential
cross sections that is performed within the optical
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model, but the results obtained in this way suffer from
ambiguities, so that reliable estimates are required
in these realms. A global analysis of the angular
distributions of differential cross sections for elastic
scattering and total reaction cross sections makes it
possible to impose constraints on the ambiguities in
the optical-potential parameters, since data on dif-
ferential and total cross sections are basic nuclear
quantities derived within the optical model. There
presently exist only a few studies where the angular
distributions of differential cross sections for scatter-
ing and total reaction cross sections are simultane-
ously analyzed within the same model. The choice of
optimum optical-potential parameters would make it
possible to extract, at the next stage, reliable infor-
mation about the structure of excited states of the
nucleus being studied.

In the present article, we report the results ob-
tained by measuring the angular distributions of
40.0- and 50.1-MeV alpha particles that under-
go elastic or inelastic scattering on 90,94Zr nuclei.
The measurements were performed at the U-150M
Kazakh isochronous cyclotron. We also quote new
data from the U-240 Kiev isochronous cyclotron
on the total cross sections for the reactions on the
90Zr isotope that are induced by alpha particles
of energy 96(1) MeV and by 3Не ions of energy
95(1) MeV. Within a unified approach, we analyze
experimental data on the quasielastic scattering of
35.4-, 40.0-, 50.1-, and 65.0-MeV alpha particles
(see [2, 3], [4], [5], and [6], respectively) on the even
2003 MAIK “Nauka/Interperiodica”



600 DUYSEBAEV et al.
Table 1. Total cross sections (in millibarn units) for the
interaction of alpha particles and 3Не ions with a 90Zr
nucleus

Projectile
type

Eα,
MeV

σR σel σaq σl

α 96 1833 ± 90 40 ± 20 130 ± 70 1923 ± 120
3Не 95 1895 ± 85 45 ± 10 280 ± 70 2130 ± 110

isotopes of Zr, as well as data on the total cross
sections for the reactions between alpha particles
of these energies and the isotopes in question. The
data are analyzed on the basis of the deformed-
optical-potential model by using the coupled-channel
and distorted-wave methods and on the basis of
the semimicroscopic folding model. A comparative
analysis is performed for the deformation-length pa-
rameters δN

2 and δN
3 characterizing low-lying states

of the nuclei being investigated and for the neutron-
to-proton multipole-matrix-element ratios Mn/Mp

as obtained in this and other studies, the analysis
being based on different methods for different pro-
jectile particles. In the angular distributions of 40.0-
and 50.1-MeV alpha particles undergoing inelastic
scattering, the phase shifts are investigated for the 2+

1

and 3−1 states of the 90,94Zr nuclei.

2. EXPERIMENTAL METHODS
AND EXPERIMENTAL CROSS SECTION

At the isochronous cyclotron installed at the In-
stitute of Nuclear Physics of the National Nuclear
Center of the Republic of Kazakhstan (Almaty), the
angular distributions of the differential cross sec-
tions for the elastic and inelastic scattering of 40.0-
and 50.1-MeV alpha particles on 90,94Zr nuclei were
measured in the angular range 12◦–75◦ (in the lab-
oratory frame) with a step varying between 0.3◦ and
1◦. The total energy resolution of the measuring ap-
paratus was 0.8% of the projectile energy. Reaction
products were recorded and identified by means of a
system that relied on the∆E–E procedure and which
employed CAMAC and РС/АТ equipment [7].

The total angular resolution of the α spectrometer
was measured by the method proposed in [8], the
result being 0.3◦. It was shown that the systematic
angular uncertainty δθ caused by the noncollinearity
of the chamber axis and the projectile-beam axis was
0.5◦, on average, and that it is necessary to measure
it in each series of experiments.

For targets, we employed zirconium foils enriched
in the 90Zr (to 95%) or in the 94Zr (to 91.2%) isotope,
P

their thickness being 2.13(8) or 2.60(8) mg/cm2, re-
spectively.

The errors in the absolute cross-section values
were between 3 and 8% for the elastic channel and
between 7 and 10% for the inelastic channel.

For the elastic scattering of 40.0- and 50.1-MeV
alpha particles on 90,94Zr nuclei and for the inelastic
scattering of such projectiles on the target nuclei in
question that is accompanied by the excitation of
the 2+

1 and 3−1 collective states of 90Zr at 2186 and
2748 keV and the excitation of the 2+

1 and 3−1 collec-
tive states of 94Zr at 920 and 2120 keV, the resulting
angular distributions of the differential cross sections
are displayed in Figs. 1 and 2 for, respectively, the first
and the second energy value.

The experiment devoted to determining the total
reaction cross sections was performed at the U-240
Kiev isochronous cyclotron at an alpha-particle en-
ergy of 96(1) MeV and at a 3Не energy of 95(1) MeV.
The total cross sections for the reactions induced
by alpha particles and 3Не ions were determined
by the charge-integration method [9]. The layout of
our experimental facility and the procedure used to
obtain total reaction cross sections were described
elsewhere [10].

The 90Zr target that was used in the experiments
aimed at measuring the total reaction cross sections
and which was manufactured by the method of press-
ing was 75 ± 3.60 mg/cm2 thick and was enriched
to 96.8%. The target was characterized by a high
mechanical strength, but it was not free from draw-
back. The porosity of the target was 26.5%, while its
inhomogeneity at the place hit by the beam ranged
between 5 to 7%.

Originally, experiments devoted to determining the
total cross sections for the reactions occurring on a
90Zr nucleus were performed at an alpha-particle en-
ergy of about 100 MeV [11]. Later on, the experiment
was repeated at an energy of 96.0 MeV. The discrep-
ancy between the results obtained in [11] and those
that are presented here is due not only to the energy
dependence but also to introducing improvements
in the experimental procedure and to more correctly
taking into account corrections.

The experimentally determined attenuation of the
beam in the target, q/Q, is related to the total reaction
cross section (σR) by the equation

σR =
1
nx

(
qm

Q

qbg
Q

)
− 2π

π−θ1∫
θ2

σel(θ) sin θdθ (1)

+ 2π

( θ1∫
0

+

π∫
π−θ1

)
Kσaq(θ) sin θdθ,
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Fig. 1. Angular distributions for the elastic and inelastic
scattering of alpha particles on 90,94Zr nuclei at Eα =
40.0 MeV: (points) experimental data, (solid curves) re-
sults of a macroscopic analysis within the distorted-wave
method (the values used for the relevant parameters are
quoted in Table 5), and (dashed curves) results of the
calculations with rv = 1.486 fm for 90Zr and with rv =
1.079 fm for 94Zr (for 94Zr, the theoretical angular dis-
tributions and experimental data were magnified in the
figure by a factor of 102).

where qm is the total charge, which is proportional to
the total number of nuclear collisions between projec-
tile particles and target nuclei over the exposure time;
qbg is the background charge; Q is the total charge
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
 

0 40 80

 

θ

 

c. m.

 

, deg

10

 

–1

 

10

 

1

 

10

 

3

94

 

Zr

 

90

 

Zr

3

 

–
1

 

10

 

–2

 

10

 

0

 

10

 

2

90

 

Zr

 

94

 

Zr 2

 

+
1

 

10

 

–4

 

10

 

–2

 

10

 

0

 

10

 

2

 

0

 

+

94

 

Zr

 

90

 

Zr

 
d

 
σ

 
/

 
d

 
Ω

 
, mb/sr

Fig. 2. As in Fig. 1, but at Eα = 50.1 MeV.

of projectile particles over the exposure time; x is the
target thickness; n is the number of nuclei per unit
volume of target substance; σel(θ) is the differential
cross section for elastic scattering at an angle θ;
σaq(θ) is the quantity that is obtained by integrating,
with respect to energy, the differential cross section
for the yield of charged particles of charge Z at an
angle θ; K is the ratio of the charge of the product
nucleus not detected by the counters used to the
projectile-particle charge; θ1 is the entrance aperture
3



602 DUYSEBAEV et al.
Table 2. Total cross sections for the interaction of an alpha
particle with a 90Zr nucleus [13] at various energy values

Eα, MeV σR, mb

40.0 1744, 1702

50.1 1856

79.5 1964

99.5 1966

104.0 [14] 2032

118.0 1982, 1979

141.7 1875

166.0 1946

of the scattering chamber (θ1 = 6◦); and θ2 is the exit
aperture (θ2 = 15◦).

The resulting experimental data on the total cross
sections for the reactions occurring on a 90Zr nucleus
are presented in Table 1.

The “raw” values determined experimentally for
the total reaction cross sections, σR, are given in the
third column of the table, while the corrections for
elastic scattering (recorded in the scattering cham-
ber), σel, and those for inelastic processes (not de-
tected in the scattering chamber), σaq , are quoted in
the fourth and the fifth column, respectively. In the last
column, we present values of the total reaction cross
sections σl with allowance for all corrections. Pre-
viously, the analogous total reaction cross sections
were measured for Zr targets of natural isotopic com-
position (51.46% 90Zr, 17.40% 94Zr, 17.11% 92Zr,
11.23% 91Zr, 2.8% 96Zr) at an alpha-particle energy
of 40.0 MeV [12]; for 3Не, there are presently no
similar data.

3. THEORETICAL CALCULATIONS

3.1. Macroscopic Optical Model

In order to analyze experimental data on elastic
scattering, we employed a deformed optical-model
potential in the standard Woods–Saxon form

Uopt(r) = −VRfR(r) − iWvfI(r) (2)

+ 4iaIWs(d/dr)fI(r) + 2(π/mc)2(1/r)(d/dr)
× VLSfLS(r)(L · S) + VCoul(r),

Ri = riA
1/3, fi = (1 + exp((r −Ri)/ai))−1,

i = R, I, LS,

where the first term stands for the central part of the
real potential; the second and the third term represent
PH
Table 3. Total cross sections for the interaction of a 3Не
ion with 90,92Zr nuclei at various energy values

Eα,MeV
σR, mb

90Zr 92Zr

90 [15] 2072, 2180

119 [16] 2002 2049

130 [17] 2083, 2093

217 [18] 1850

the potentials of, respectively, volume and surface
absorption, and the next term is the potential of spin–
orbit interaction. The last term in (2) is taken in
the form of the Coulomb interaction of two charged
spheres of radius RCoul = rCoulA

1/3, where rCoul =
1.25 fm.

On the basis of the potential Uopt(r), one can
determine the total reaction cross section by using
S-matrix elements; that is,

σR = (π/k2)
∑

(2l + 1)(1 − |Sl|2), (3)

where summation is performed over all reaction chan-
nels.

Expression (2) involves a great number (from 9
to 12) of parameters; therefore, calculations of σR on
the basis of the macroscopic optical model may pos-
sess a predictive power only if the optical-potential
parameters are determined from the analysis of the
corresponding angular distributions for elastic scat-
tering. As was indicated in the Introduction, only
a few measurements have been performed so far in
which both the total reaction cross sections and the
differential cross sections for elastic scattering were
determined for the particles considered here.

The total reaction cross sections were calculated
on the basis of the optical model with the optical-
potential parameters determined from an analysis of
data on elastic scattering at various energies.

At an energy of about 100 MeV, the geomet-
ric limit of the effective cross section seems to be
achieved for theα + 90Zr system. The distinction be-
tween the values calculated for σR on the basis of the
optical model and their counterparts evaluated in the
microscopic approximation proposed in [13] is within
the experimental errors. The results obtained in [13]
by calculating the total cross sections for (α, 90Zr)
reactions are quoted in Table 2. The calculations were
performed with an optical potential where the form
factors for the real and the imaginary part were chosen
in the Woods–Saxon form (the notation employed
for this potential is ОП–WS + WS). The potential
YSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003



STRUCTURE OF THE 90,94Zr NUCLEI: GLOBAL ANALYSIS OF DATA 603
parameters were taken from an analysis of data on
elastic scattering, so that no fit of the parameters was
performed.

The results of the calculations of the total cross
sections for the relevant (3Не, 90,92Zr) reactions
are given in Table 3, the relative errors in these
calculations being 3–5%. For the energy values of
90, 119, and 130 MeV, the calculation was performed
with an optical potential according to the OP–WS +
WD scheme (where WD is the form factor for the
imaginary part in the form of the derivative of the
Woods–Saxon form factor), while, for the energy
value of 217 MeV, use was made of the OP–WS +
WS scheme.

3.2. Semimicroscopic Optical Model

In the approach used here, an optical potential
U(R) is constructed within the folding model on
the basis of the total M3Y effective interaction and
nucleon densities calculated by the method of the
density-matrix functional [19]. In the first order in
the effective forces, the potential simulating the
interaction of two colliding nuclei can be represented
as the sum

U(R) = UD(R) + UE(R), (4)

where

UD(R) =
∫ ∫

ρ(1)(r1)V D(s)ρ(2)(r2)dr1dr2 (5)

is the direct potential in the form of double fold-
ing [20]. In expression (5), V D(s) is the direct com-
ponent of the effective interaction (s = r2 − r1 + R),
while ρ(i)(ri) stands for the densities of colliding
nuclei (i = 1, 2). A similar scheme for computing the
exchange potential UE(R) was formulated in [21].
The main contribution to it comes from one-nucleon-
exchange effects, which are described within the
density-matrix formalism [22]; that is,

UE(R) =
∫ ∫

ρ(1)(r1, r1 + s)VE(s)ρ(2)(r2, r2 − s)

(6)

× exp(ik(R) · s/η)dr1dr2,

where VE(s) is the exchange component of effective
nucleon–nucleon forces; ρ(i)(r, r′) (i = 1, 2) are the
density matrices for colliding nuclei having the mass
numbers of A1 and A2; s = r2 − r1 + R; and k(R) is
the local momentum of relative motion of the nuclei,
this momentum being given by the relation

k2(R) = (2mη/�2)[E − U(R) − VCoul(R)]. (7)

Here, η = A1A2/(A1 + A2), E is the c.m. collision
energy, and VCoul(R) is a Coulomb potential. Thus,
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
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Fig. 3. Distributions of the neutron, the proton, and the
nuclear-matter density in the (dotted curves) 90Zr and
(solid curves) 94Zr nuclei.

the total potential becomes energy-dependent as the
result of taking into account one-nucleon-exchange
effects. The effective nucleon–nucleon forces, to-
gether with the proton and neutron densities in col-
liding nuclei, appear to be input data for calculating
the potentials in question.

In addition to a real part, the total optical potential
must involve an imaginary part, which is responsible
for the absorption of the incident particle in inelastic
channels. In the case being considered, the absorp-
tion potentialW (R)was taken to be dependent on the
calculated real part in the form [23]

W (R) = i[NwU(R) − αwRdU(R)/dR], (8)

where U(R) is the doubly folded potential (4), while
Nw and αw are parameters that characterize, re-
spectively, the volume and the surface component of
the absorption potential. A surface term that mimics
the contribution of the dynamical polarization poten-
tial [24] was included in the real part of the potential.

Table 4. Root-mean-square radii (in femtometers) of the
distributions of the neutron, proton, and nuclear-matter
density (also given here are the values of∆rnp = 〈r2

n〉1/2 −
〈r2

p〉1/2)

Nucleus 〈r2
n〉1/2 〈r2

p〉1/2 〈r2
m〉1/2 ∆rnp

4He 1.57 1.57 1.57 0.00
90Zr 4.26 4.19 4.23 0.07
94Zr 4.37 4.24 4.31 0.13
3



604 DUYSEBAEV et al.
Table 5. Parameters of a macroscopic optical potential

Nucleus V , MeV rv , fm av,fm W , MeV rw, fm aw, fm

Eα = 40.0MeV
90Zr 173.5 1.472 0.489 23.04 1.625 0.251
94Zr 148.5 1.102 0.712 26.51 1.264 0.623

Eα = 50.1MeV
90Zr 145.7 1.245 0.762 14.62 1.570 0.578
94Zr 136.6 1.245 0.796 17.61 1.570 0.617
The total optical potential has the form

Utot(R) = U(R) − αvRdU(R)/dR (9)

+ i[NwU(R) − αwRdU(R)/dR],

where αv,Nw, and αw are adjustable parameters.
In order to calculate the cross sections for inelastic

scattering, the inelastic-transition form factor was
taken in the form αL(dUtot(R)/dR) [25].

For alpha particles, the nucleon densities were
computed in the Gaussian representation with the
root-mean-square radius of 1.57 fm [26], while, for
target nuclei, the corresponding densities were deter-
mined by applying the density-matrix formalism [25].
Figure 3 displays the graphs representing the distri-
butions of the neutron, proton, and nuclear-matter
densities in the 90,94Zr target nuclei. The correspond-
ing root-mean-square radii are given in Table 4. From

Table 6.Values of the semimicroscopic-potential parame-
ters and of relevant deformations

Eα, MeV αv Nw αw
δN
L , fm

2+
1 3−1

90Zr target nucleus

35.4 –0.040 0.10 0.020 0.404 0.699

40.0 –0.020 0.13 0.020 0.484 0.939

50.1 –0.010 0.20 0.010 0.395 0.699
94Zr target nucleus

35.4 –0.021 0.10 0.010 0.636 0.938

40.0 –0.020 0.13 0.020 0.754 1.056

50.1 –0.020 0.13 0.025 0.575 0.848

65.0 –0.020 0.13 0.045 0.575 1.056

Note: Here, αv is a parameter that that characterizes the dy-
namical polarization potential; Nw and αw are parameters that
characterize, respectively, the volume and surface components of
the absorption potential; and δN

L is the deformation length.
P

the data in this table, it can be seen that the difference
∆rnp of the root-mean-square radii of the neutron
and the proton component in the 94Zr nucleus ex-
ceeds its counterpart in the 90Zr nucleus by a factor
of 1.86.

4. GLOBAL ANALYSIS OF EXPERIMENTAL
DATA AND STRUCTURE OF EVEN–EVEN

ZIRCONIUM ISOTOPES

Both in the calculations based on the macroscopic
model and in the calculations based on the semimi-
croscopic model, the accuracy was chosen with al-
lowance for the experimental uncertainties, and the
relative theoretical error did not exceed 5%.

First, the experimental data were analyzed within
the model of a deformed optical potential by using
the SPI–GENOA code (F.G. Perey, NBI version,
1976) and within the distorted-wave method. For the
input values of the optical-potential parameters, we
used recommendations given in [27] for alpha-particle
scattering. The global dependences obtained in [27]
for the optical-potential parameters from data on the
scattering of alpha particles whose energy does not

Table 7. Total cross sections for alpha-particle scattering
on Zr isotopes

Eα, MeV
σR, mb

90Zr target nucleus 94Zr target nucleus

1 2 3

35.4 1693 1684

40.0 1721 1744, 1771 ± 63 [12] 1801

50.1 1765 1856 1923

65.0 2084

Note: The total cross sections obtained in the calculations with
a semimicroscopic potential are given in the first and third
columns, while the total cross sections fromTable 2 and from [12]
are given in the second column.
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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exceed 80 MeV on light and medium-mass nuclei by
using Woods–Saxon form factors were extrapolated
in the present study to the region of energies being
investigated. The Coulomb radius was taken to be
fixed at rCoul = 1.25 fm. The optimum values of the
remaining adjustable parameters are given in Table 5.

A subsequent analysis of the angular distributions
of differential cross sections for inelastic scattering
was performed on the basis of the distorted-wave
method with the collective-model form factor ac-
cording to the DWUCK4 [P.D. Kunz, computer pro-
gram DWUCK4 (unpublished)]. The results obtained
by fitting theoretical curves to experimental data are
shown in Figs. 1 and 2. Both in our study and in [2, 3,
6], the experimental data are presented with errors not
exceeding 10% (on the scale of the displayed figures,
they do not go beyond the dimensions of the symbols
representing experimental data).

Further, we have performed a semimicroscopic
analysis of experimental data on elastic and inelastic
alpha-particle scattering on 90,94Zr nuclei at energies
of 35.4, 40.0, 50.1, and 65.0MeV [2–6]. The optimum
values (see Table 6) of the parameters involved in this
semimicroscopic analysis were obtained from a global
analysis of the cross sections for elastic and inelastic
scattering (accompanied by the excitation of 2+

1 and
3−1 levels in the latter case) and of the total reaction
cross sections. Table 6 also gives the corresponding
values of the deformation lengths (δN

L ). In calculating
the cross sections, we took into account errors in
the experimental data. A fit of the calculated cross
sections to experimental data is of a rather qualita-
tive character, since it seemed important, above all,
to reveal a trend in the variation of the parameters
characterizing reaction channels other than those of
elastic and inelastic scattering versus the projectile
energy.

Figures 4–7 present the results obtained by fitting
the calculated differential cross sections to their ex-
perimental counterparts. The theoretical results are
found to agree satisfactorily with the experimental da-
ta for elastic and inelastic channels (the states excited
in the latter case are those of spin–parity 2+

1 and
3−1 ), the fitted values of the parameters Nw, αv, and
αw changing only slightly in the energy range 35.4–
65.0 MeV being considered. It is worth noting that
variations in the parameter values do not affect the
cross sections for elastic scattering at angles not ex-
ceeding 30◦. This may suggest that, at small angles,
only elastic scattering occurs in this energy range.
The theoretical total cross sections σR calculated in
the present study on the basis of the semimicroscopic
approach and the total cross sections from Table 2
that allow for the energy dependence are given in
Table 7; also quoted there are the cross sections
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
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Fig. 4. Angular distributions for the elastic and in-
elastic scattering of alpha particles on 90,94Zr at Eα =
35.4 MeV [2, 3]: (points) experimental data and (solid
curves) results of a semimicroscopic analysis (for 94Zr,
the theoretical results for the angular distributions and
the experimental data were magnified by a factor of 102).

from [12]. The agreement between the cross-section
values within the errors confirms once again that
the theoretical cross sections computed within the
semimicroscopic approach that was outlined above
are quite reliable.

Table 8 presents the values of the deformation
lengths δN

2 and δN
3 for low-lying states of the nu-
3



606 DUYSEBAEV et al.
Table 8. Comparison of data on B(EL) ↑, δN
L ,Mn/Mp, andN/Z for even isotopes of Zr

B(EL) ↑, e2 bL δN
L , fm Particle;Eα, MeV Method of calculations Mn/Mp References

2+
1 state

90Zr nucleus,N/Z = 1.25,E∗ = 2.186MeV

0.063± 0.005 0.404 ± 0.020 α; 35.4 CC, SMA 0.85 ± 0.12 Present study

0.063± 0.005 0.484 α; 40 CC, SMA 1.22 ± 0.11 Present study

0.063± 0.005 0.395 α; 50 CC, SMA 0.81 ± 0.13 Present study

0.063± 0.005 0.400 ± 0.020 α; 35.4 CC, DOMP 0.84 ± 0.12 [3]

0.063± 0.005 0.440 ± 0.022 α; 35.4 CC, FM 1.04 ± 0.13 [3]

0.063± 0.005 0.396 6Li; 70 CC, FM 0.82 ± 0.12 [3]

0.062± 0.006 0.408 ± 0.016 α; 35.4 DWBA, CC 1.22 ± 0.12 [2]

0.063± 0.005 0.389 t; 20 DWBA 0.78 ± 0.11 [28]

0.063± 0.005 0.376 p; 18.8 DWBA 0.72 ± 0.10 [28]

0.063± 0.005 0.370 3He; 43.7 DWBA 0.70 ± 0.10 [29]

0.44 ± 0.03 n; 8–24 CC 0.85 ± 0.06 [30]
92Zr nucleus,N/Z = 1.30,E∗ = 0.934MeV

0.075± 0.010 0.673 ± 0.034 α; 35.4 CC, DOMP 1.93 ± 0.24 [3]

0.080± 0.010 0.758 ± 0.038 α; 35.4 CC, FM 2.22 ± 0.26 [3]

0.083± 0.006 0.557 6Li; 70 CC, FM 1.38 ± 0.19 [3]

0.069± 0.006 0.731 ± 0.016 α; 35.4 DWBA, CC 2.91 ± 0.19 [2]

0.075± 0.010 0.616 t; 20 DWBA 1.65 ± 0.24 [31]

0.66 ± 0.03 n; 8–24 CC 1.05 ± 0.07 [30]
94Zr nucleus,N/Z = 1.35,E∗ = 0.918MeV

0.058± 0.010 0.636 ± 0.032 α; 35.4 CC, SMA 2.18 ± 0.21 Present study

0.058± 0.010 0.754 α; 40 CC, SMA 2.77 ± 0.28 Present study

0.058± 0.010 0.575 α; 50 CC, SMA 1.87 ± 0.19 Present study

0.058± 0.010 0.575 α; 65 CC, SMA 1.87 ± 0.19 Present study

0.058± 0.010 0.632 ± 0.032 α; 35.4 CC, FM 2.21 ± 0.32 [3]

0.050± 0.005 0.633 ± 0.016 α; 35.4 DWBA, CC 3.02 ± 0.22 [2]

0.058± 0.010 0.451 t; 20 DWBA 1.45 ± 0.19 [31]

0.058± 0.010 0.860 p; 18.8 DWBA 3.30 ± 0.46 [28]

0.058± 0.010 0.557 3He; 43.7 DWBA 1.78 ± 0.27 [29]

0.65 ± 0.05 n; 8–24 CC 1.50 ± 0.22 [30]
96Zr nucleus,N/Z = 1.40,E∗ = 1.751MeV

0.025± 0.005 0.589 ± 0.030 α; 35.4 CC, DOMP 3.70 ± 0.53 [3]

0.022± 0.005 0.621 ± 0.031 α; 35.4 CC, FM 4.34 ± 0.67 [3]

0.055± 0.022 0.466 6Li; 70 CC, FM 1.44 ± 0.22 [3]

0.027± 0.006 0.639 ± 0.003 α; 35.4 DWBA, CC 4.69 ± 0.64 [2]

0.027± 0.006 0.341 t; 20 DWBA 1.55 ± 0.23 [31]
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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Table 8. (Contd.)

B(EL) ↑, e2 bL δN
L , fm Particle;Eα, MeV Method of calculations Mn/Mp References

3−1 state
90Zr state, N/Z = 1.25,E∗ = 2.748 MeV

0.051 ± 0.092 0.699± 0.038 α; 35.4 CC, SMA 0.63 ± 0.06 Present study

0.051 ± 0.092 0.939 α; 40 CC, SMA 1.19 ± 0.11 Present study

0.051 ± 0.092 0.699 α; 50 CC, SMA 0.63 ± 0.11 Present study

0.051 ± 0.091 0.750± 0.038 α; 35.4 CC, DOMP 0.75 ± 0.09 [3]

0.051 ± 0.091 0.947± 0.047 α; 35.4 CC, FM 1.31 ± 0.11 [3]

0.071 0.686 6Li; 70 CC, FM 0.35 ± 0.05 [3]

0.066 ± 0.007 0.806± 0.007 α; 35.4 DWBA, CC 1.80 ± 0.31 [2]

0.051 ± 0.092 0.667 t; 20 DWBA 0.55 ± 0.08 [31]

0.86 ± 0.05 n; 8–24 CC 0.92 ± 0.13 [30]
92Zr nucleus,N/Z = 1.30,E∗ = 2.340MeV

0.047 ± 0.087 0.831± 0.042 α; 35.4 CC, DOMP 1.07 ± 0.10 [3]

0.047 ± 0.087 1.024± 0.051 α; 35.4 CC, FM 1.68 ± 0.13 [3]

0.067 0.742 6Li; 70 CC, FM 0.54 ± 0.08 [3]

0.056 ± 0.008 0.894± 0.005 α; 35.4 DWBA, CC 2.17 ± 0.45 [2]

0.056 ± 0.008 0.784 t; 20 DWBA 0.78 ± 0.12 [31]

0.88 ± 0.04 n; 8–24 CC 1.20 ± 0.13 [30]
94Zr nucleus,N/Z = 1.35,E∗ = 2.057MeV

0.067 ± 0.012 0.938± 0.047 α; 35.4 CC, SMA 0.99 ± 0.10 Present study

0.067 ± 0.012 1.056 α; 40 CC, SMA 1.24 ± 0.12 Present study

0.067 ± 0.012 0.848 α; 50 CC SMA 1.01 ± 0.12 Present study

0.067 ± 0.012 1.056 α; 65 CC, SMA 1.24 ± 0.12 Present study

0.067 ± 0.107 0.932± 0.047 α; 35.4 CC, DOMP 1.11 ± 0.11 [3]

0.067 ± 0.107 1.124± 0.056 α; 35.4 CC, FM 1.68 ± 0.13 [3]

0.079 ± 0.012 1.020± 0.006 α; 35.4 DWBA, CC 2.36 ± 0.51 [2]

0.067 ± 0.012 0.846 t; 20 DWBA 2.23 ± 0.33 [31]

0.94 ± 0.05 n; 8–24 CC 1.59 ± 0.20 [30]
96Zr nucleus,N/Z = 1.40,E∗ = 1.897MeV

0.080 ± 0.160 1.111± 0.056 α; 35.4 CC, DOMP 1.22 ± 0.11 [3]

0.060 ± 0.180 1.330± 0.067 α; 35.4 CC, FM 1.82 ± 0.12 [3]

0.104 ± 0.011 1.228± 0.011 α; 35.4 DWBA, CC 2.67 ± 0.47 [2]

0.104 ± 0.011 0.908 t; 20 DWBA 0.58 ± 0.09 [31]

Note: The following notation is used for themethods of the calculations: (CC, SMA) approach combining the coupled-channelmethod
with a semimicroscopic analysis; (CC, DOMP) macroscopic coupled-channel method used together with a deformed optical-model
potential; (CC, FM) coupled-channelmethod combined with the folding model; (DWBA) distorted-wave method implemented within
the Born approximation; and (CC) coupled-channel method.
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Fig. 5. As in Fig. 4, but forEα = 40.0 MeV [4].

clei being investigated and the values of the proton-
to-neutron multipole-matrix-element ratiosMn/Mp.
These values were obtained from the present analysis
and analyses performed in other studies by using var-
ious methods. Also given in this table is information
for different projectile species (α, 3He, p, n, t, 6Li),
which exhibit different degrees of sensitivity to the
neutronic and protonic components of the deforma-
tion lengths and of the ratios Mn/Mp. For the 2+
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Fig. 6. As in Fig. 4, but forEα = 50.1 MeV [5].

and 3−1 states of the 90,94Zr nuclei, both models, the
macroscopic and the microscopic one, yield values of
B(EL) that are in good agreement with data obtained
from measurements of Coulomb excitation [32] and
data obtained according to the procedure for deter-
mining the lifetimes of nuclear states (levels) [33]. The
values of Mn/Mp for the 2+

1 states of 92,94,96Zr are
1.1 to 3.4 times greater than the corresponding ratios
N/Z, while that for the 2+

1 state of 90Zr is, on the
YSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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contrary, 0.60 to 0.98 of the corresponding value of
N/Z. For the 3−1 state of the 90Zr nucleus, the ratio
Mn/Mp is less than the corresponding ratio N/Z by
a factor ranging between 0.28 and 0.96.

For the 3−1 states of the 90,92,94,96Zr nucleus, val-
ues were obtained in [2] for Mn/Mp that exceed the
corresponding ratios N/Z by a factor of 1.4 to 1.9; in
other studies (see the data in Table 8, including our
results),Mn/Mp is less thanN/Z by a factor ranging
between 0.4 to 0.9.

By inspecting the data in Table 8, one can see
that the values obtained within our semimicroscopic
approach for the deformation lengths δN

2 and δN
3 in

90,94Zr are nearly identical to or are 5 to 10% greater
than the corresponding values that are extracted from
experimental data (for other projectile species) by
using a deformed optical-model potential within the
coupled-channel or the distorted-wave method.

For the 2+
1 and 3−1 states of the 90,92,94,96Zr nuclei,

Horen et al. [34] present values that they found for
relevant Mn/Mp by means of a microscopic descrip-
tion (in terms of the theory of finite Fermi systems)
of experimental data from [3]. Those authors showed
that, in the 2+

1 and 3−1 states of the 92,94,96Zr nuclei,
the neutronic component is more deformed than the
protonic one, the ratios Mn/Mp being greater than
the corresponding N/Z; in the 2+

1 states of the 90Zr
nucleus, the protonic component is more deformed
than the neutronic one (Mn/Mp = 0.874), while, in
its 3−1 state, the situation is reversed (Mn/Mp =
1.047).

5. PHASE SHIFTS IN THE ANGULAR
DISTRIBUTIONS FOR DIFFRACTIVE

ALPHA-PARTICLE SCATTERING ON Zr
ISOTOPES

The experimental phase shifts between the oscil-
lations of the angular distributions of the differential
cross sections for the inelastic scattering of 50-MeV
alpha particles on 90,94Zr nuclei were investigated
in [27]. The analyses reported in [3, 35] gave new
impetus to studying phase shifts. In analyzing data
from [2], Satchler [35] found phase shifts of about 1◦

between the calculated and measured cross sections
for the 2+

1 states of the 92,96Zr nuclei, the former being
obtained on the basis of a deformed optical-model
potential and the folding model.

For the 2+
1 and 3−1 states of the 90,94Zr nuclei,

the phase shifts in the angular distributions for in-
elastic alpha-particle scattering at energies of 40.0
and 50.1 MeV were studied in [27, 36]. The data
were analyzed within the model of a deformed op-
tical potential by using the distorted-wave method
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
 

0 40 80

 

θ

 

c. m.

 

, deg

10

 

–2

 

10

 

0

 

10

 

2

 

3

 

–
1

 

10

 

–2

 

10

 

0

 

10

 

–1

 

10

 

1

 

2

 

+
1

 

10

 

–3

 

10

 

–2

 

10

 

–1

 

10

 

0

 

0

 

+

 

σ

 

/

 

σ

 

R
ut

h

 

d

 

σ

 

/

 

d

 

Ω

 

, m
b/

sr

Fig. 7. Angular distributions for the elastic and in-
elastic scattering of alpha particles on 94Zr nuclei at
Eα = 65.0MeV [6]: (points) experimental data and (solid
curves) results of a semimicroscopic analysis.

(DWUCK4 code) and the coupled-channel method
[ECIS-88 code: J. Raynal, ECIS-88 (unpublished)].
For 94Zr, the calculations that include 2+

1 and 3−1
states yield phase-shift values of 0.5◦. At 40.0 MeV, a
good description of the angular distributions of differ-
ential cross sections for the inelastic channels involv-
ing the excitation of the 2+

1 and 3−1 states in 90Zr and
94Zr (with a “compensation” of the phase shift) was
obtained in the present study by increasing the radius
3
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rv of the real part, respectively, from 1.472 to 1.486 fm
and from 1.102 to 1.079 fm (dashed curves in Fig. 1),
which is about 1 to 2%. It should be emphasized
that, in our measurements, the angular distributions
of the differential cross sections were determined at
favorable angular parameters (small step in the angle,
high angular resolution, presence of a “physical” zero,
reproducibility). At angles exceeding 40◦, the effect
of Coulomb interference on the presence of phase
shifts is insignificant at the energy values of 40.0 and
50.1 MeV.

With the aim of revealing the origin of the phase
shifts observed between the oscillations of the angu-
lar distributions of the differential cross sections for
inelastic alpha-particle scattering and the origin of
their energy andmass dependences, we have also per-
formed a semimicroscopic analysis (see Figs. 4–7) at
the energy values of 35.4, 40.0, 50.1, and 65.0 MeV
for scattering on 90,94Zr nuclei. The occurrence of
this effect and its weak energy dependence have been
confirmed. With increasing mass number of the nu-
cleus, the phase shift in question becomes more pro-
nounced.

To explain the observed effect in an alternative way,
one can also assume, following [3], that the potential
parameters take different values in the input and in the
output channel. This assumption is valid if the density
distribution in excited states differs from its counter-
part in the ground state. According to the calculations
performed in [3] with identical density distributions
for the ground and excited states of the 90,92,94,96Zr
nuclei, whose diffuseness parameters were taken to be
different (the phase shifts for the 2+

1 and 3−1 states be-
ing concurrently matched), the diffuseness parameter
undergoes changes ranging between−10% for the 2+

1

state of 90Zr and +18% for the 2+
1 state of 96Zr.

6. CONCLUSION

For the first time, results have been presented that
were obtained by measuring the angular distribu-
tions of the differential cross sections for the elastic
and inelastic scattering of 40.0-MeV alpha particles
on nuclei of the 90,94Zr isotopes. The measurements
were performed by using the U-150M isochronous
cyclotron installed at the National Nuclear Center
of the Republic of Kazakhstan (Almaty). Also, new
experimental data have been reported that were ob-
tained at the U-240 Kiev isochronous cyclotron on
the total cross sections for reactions induced in the
90Zr isotope by alpha particles accelerated to an en-
ergy of 96(1) MeV and by 3He ions accelerated to an
energy of 95(1) MeV. A global analysis (employing
the optical model, the distorted-wave method, and the
PH
semimicroscopic model) of data on the angular dis-
tributions of the differential cross sections for alpha-
particle scattering on even zirconium isotopes at en-
ergies of 35.4MeV [2, 3], 40.0MeV [4], 50.1MeV [5],
and 65.0 MeV [6] and of the total cross sections for
reactions induced by such collisions has been per-
formed.

We have carried out a comparative analysis of
data obtained, by using various methods and various
projectile species, for the deformation lengths δN

2 and
δN
3 of low-lying states of the 90,92,94,96Zr nuclei and
for the neutron-to-proton multipole-matrix-element
ratiosMn/Mp.

In analyzing the experimental angular distribu-
tions of the differential cross sections for the inelastic
scattering of 40.0- and 50.1-MeV alpha particles, it
has been revealed that, for the channels involving the
excitation of the 2+

1 and 3−1 states of the 90,94Zr nuclei,
there is a phase shift between the experimental and
calculated oscillations. It has been shown that this
effect may be explained in terms of a change of 2%
in the radius of the real part of the optical potential.
These results supplement the data obtained in [3] by
studying the phase shifts in question at the alpha-
particle energy of 35.4 MeV.
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Thermonuclear Fusion in the Irradiation of Large Clusters of Deuterium
Iodide with a Field of a Superatomic Femtosecond Laser Pulse
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Abstract—A theory of thermonuclear fusion caused by the irradiation of deuterium-iodide clusters with the
field of a superatomic femtosecond laser pulse is developed. It is based on considering the process in which
the sequential above-barrier multiple internal ionization of atomic ions within a cluster is accompanied
by external field ionization. The theory is illustrated by taking the example of a cluster that is formed by
106 molecules of deuterium iodide and which is irradiated with a laser pulse of duration 50 fs and intensity
2 × 1018 W/cm2 at the peak. This case is dominated by I26+ atomic ions. The yield of neutrons from
thermonuclear fusion in a deuteron–deuteron collision upon the passage of a laser pulse is calculated. The
result is 105 neutrons per laser pulse. The mean kinetic energy of deuterons is estimated at 50 keV. Owing
to induced inverse bremsstrahlung in scattering on multiply charged atomic ions, the electron temperature
increases up to 28 keV. The role of the Mie resonance in the heating of the electron component is discussed.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The interaction of superintense laser pulses with
large clusters consisting of molecules differs sub-
stantially from the interaction of such pulses with
individual molecules. Upon the multiple ionization of
atoms forming molecules, there arises, in the clus-
ter, a strong internal electric field, which can itself
efficiently give rise to a further internal ionization of
atomic ions.

The problem being considered is quite involved,
since there occur simultaneously (during the passage
of a laser pulse) a sizable Coulomb expansion of the
ionized cluster and the heating of the electron com-
ponent of the cluster to a temperature of a few tens
of keV units. Moreover, there also occurs an external
ionization—that is, the emission of photoelectrons
produced within the cluster outside. This results in
that, immediately after the passage of a laser pulse,
the substance at the focus of the laser beam appears
to be quite a uniform plasma consisting of free elec-
trons and multiply charged atomic ions. However,
the exchange of energy between them is negligible
because the lifetime of the plasma at the laser-beam
focus is very short (about 100 ps).

There is an important theoretical problem of cal-
culating the spectral distribution of product atomic

1)Moscow Institute for Physics and Technology,
Dolgoprudnyi, Moscow oblast, 141980 Russia;
e-mail: krainov@online.ru

2)Institute of Molecular Physics, Russian Research Centre
Kurchatov Institute, pl. Kurchatova 1, 123182 Russia.
1063-7788/03/6604-0612$24.00 c©
ions with respect to their charge. This problem is very
involved since, as was indicated above, the stripping
of atomic ions at the forward front of a laser pulse is
due not only to the laser-pulse field but also to the
Coulomb field of the ionized cluster. At the same time,
the standard statistical approach based on the Saha
distribution [1] is inapplicable since slow recombina-
tion processes do not have time to proceed within the
laser-pulse duration, which is not longer than a few
tens of femtoseconds.

At the leading edge of a pulse, there usually occurs
a sequential above-barrier ionization of atoms [2],
which is followed by the ionization of atomic ions by
the laser field.

The external ionization of a cluster is predomi-
nantly a field (cold) ionization. The role of thermal
ionization according to the Richardson–Dashman
law is insignificant because of a large positive ionized-
cluster charge, which hinders the thermal evaporation
of electrons from the cluster surface.

The main problem to be solved in the present
study consists in determining the charge state of
atomic ions in the cluster plasma produced upon the
irradiation of clusters with a field of a superatomic
femtosecond laser pulse.

For a typical object, we consider clusters consist-
ing of deuterium iodide molecules. They are formed
in a process where gaseous deuterium iodide prelim-
inarily compressed to a pressure ranging between 3
and 8 atm escapes adiabatically through a nozzle into
a vacuum. The temperature in this case decreases
sharply. The dimensions of the product clusters grow
2003 MAIK “Nauka/Interperiodica”
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with increasing pressure. The diameter of the clusters
is measured by investigating Rayleigh scattering. We
assume that the substance in a cluster is in a liquid
state. By way of example, we indicate that, for DI, the
density in the liquid state is 2.87 g/cm3. Its boiling
temperature is −35.4◦С.

Experiments were performed with hydrogen-iodi-
de clusters [3, 4]. For purposes of thermonuclear fu-
sion, the group headed by Ditmire employed clusters
of pure deuterium [5]. The role of iodine that we
propose to add would consist in that the multiple
ionization of iodine atoms may considerably enhance
the Coulomb explosion of a cluster, thereby increas-
ing the kinetic energy of product deuterons and the
cross section for the thermonuclear-fusion reaction
d+ d = 3He + n.

The radius of of a liquid cluster (it is assumed to
be spherical, which is confirmed by experiments that
studied the Rayleigh scattering of light on clusters)
containing 106 molecules is 261 Å. As will be seen
below, the thickness of the skin layer either exceeds
this value or is on the same order of magnitude with it;
therefore, it can be assumed that the electromagnetic
field of a laser pulse penetrates freely through an indi-
vidual cluster. It goes without saying that, since there
are a great number of such clusters at the laser-beam
focus, laser radiation is strongly absorbed, which is
observed experimentally [6].

In the process of multiple ionization, the concen-
tration of free electrons within a cluster plasma is
rather high; therefore, laser radiation ceases to pene-
trate into the plasma even at the trail edge of the laser
pulse (where clusters virtually disappear, so that a
cluster plasma becomes uniform), since the frequency
of laser radiation becomes lower than the plasma fre-
quency

√
4πnee2/me (here, ne is the concentration of

free electrons in the plasma).

The above considerations illustrate a wide variety
of processes occurring in the interaction of super-
intense ultrashort laser pulses with large molecular
clusters. In order to analyze such processes, we must
therefore have at our disposal models that would
make it possible to assess, to a high degree of pre-
cision, the charge composition of atomic ions at the
forward front of a laser pulse and farther in the clus-
ter plasma (before the commencement of recombina-
tion processes). This issue is of practical importance
for pursuing further investigations of the line-shaped
electromagnetic radiation of multiply charged atomic
ions in the far x-ray range [7].
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Fig. 1. Charged and neutral components of an ionized
cluster subjected to the effect of a laser field.

2. MODEL OF THE ABOVE-BARRIER
MULTIPLE INTERNAL AND EXTERNAL

IONIZATION OF A CLUSTER

A molecular bond is broken long before the pas-
sage of the maximum of an superatomic laser pulse.
Our approach to the internal multiple ionization of
atoms in large clusters by a superstrong field of a laser
pulse is based on the Bethe model for above-barrier
ionization [8]. Since this model was repeatedly used
in previous studies (see [9–11]), only a brief account
of it will be given here (see also our article devoted to
xenon lasers [12]).

For an atomic ion of charge Z and ionization po-
tential EZ to be formed in a cluster at an instant t,
there must exist an electric field of strength

F (t) = E2
Z/4Z. (1)

Hereafter, we employ the atomic system of units
where the electron charge and mass and the Planck
constant are set to unity,me = e = � = 1.

However, the electric field in an ionized cluster
does not coincide with the external field of a laser
pulse. Free electrons within the cluster (there areNZ
of them, where N is the number of atoms in the clus-
ter) are displaced rather fast by the laser field against
the direction of the field (see Fig. 1). After the lapse
of a half-period, they are also easily displaced in the
opposite direction because of the absence of inertia.
In [13], it is assumed that such displacements do not
disturb the spherical shape of the electron subsystem.
This would be so if this structure had a large surface
tension, but there are no reasons to believe that it does
indeed have such a surface tension. Within the model
used here, the electrons are merely displaced against
the laser-field direction.

Thus, an ionized cluster consists of two regions:
in the neutral part, there are electrons and atomic
ions, while, in the charged part, there are only atomic
ions (see Fig. 1). We assume that these two regions
are separated by a planar boundary. Of course, this is
an approximation, since the boundary is in fact con-
vex toward the charged part (the degree of convexity
is determined by the condition requiring that, over
the entire boundary, the tangential component of the
electric field be zero, which ensures the immobility of
3
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Fig. 2. Universal dependence of the fraction of electrons
escaping from the cluster, k = Q/NZ, on the strength of
the laser-pulse field, x = FR2/NZ.

the electrons). However, our objective is to determine
the additional electric field generated by the charged
part at the cluster point that is the most remote from
it (point A in Fig. 1), but this field would undergo
only a slight change upon taking into account a small
curvature of the boundary.

One could assume that the distribution of elec-
trons is not that which is shown in Fig. 1 but that
which extends nonuniformly over the entire volume of
the cluster being considered: the number of electrons
would then be enhanced (diminished) in the left-hand
(right-hand) part, as occurs under the conditions of
volume plasma oscillations. In this case, the cluster
would have no neutral part. However, this version is
less probable than that which was specified above,
since plasmas always tend to be neutral. In a neu-
tral cluster, Mie surface plasma oscillations would
be generated (for a survey of the properties of Mie
oscillations, the interested reader is referred to [14]).

The electric-field strength generated at the point
A by the charged part of the cluster can easily be
calculated as

EA =
NZ

R2

(
1 − 3 cos2 α

2
+ 2 cos3 α

2

)
, (2)

where R is the radius of the cluster and the angle α is
shown in Fig. 1. The condition

F (t) = EA (3)

means that the force with which the laser field pulls an
electron outside is equal to the force with which this
electron is attracted by the positively charged part of
the ionized cluster.

The electric-field strength generated by the char-
ged part of the cluster at the extreme right point
B (Fig. 1) can also be calculated straightforwardly
according to the laws of electrostatics. The result is

EB =
NZ

R2

(
3 − 2 sin

α

2

)
sin2 α

2
. (4)

This field must be added to the external field F (t),
since, in accordance with the well-known ignition
P

model [15], it enhances the internal ionization of
atomic ions in the cluster.

It should be borne in mind, however, that the field
EB is not operative in the neutral part of the cluster
and that, even in the charged part, it contributes ad-
ditively only at the maximum value of the total field—
at other points of the charged part, the total field will
have a different value. Of the two factors indicated
immediately above, the former is of prime importance.
In order to take it into account, we proposeweakening
the ignition field (4) by multiplying this field by the
ratio of the volume V occupied by the charged part to
the total cluster volume 4πR3/3. The volume occu-
pied by the charged part is

V =
1
3
πR3

(
2 − 3 cosα+ cos3 α

)
, (5)

and the charge concentrated in this region is

Q =
NZ

4
(
2 − 3 cosα+ cos3 α

)
(6)

(this is of course the charge of the ionized cluster). If
the angle α is eliminated from Eqs. (2), (3), and (6),
it is possible to obtain a universal relation between
the external-field strength F (t) (in units of NZ/R2)
and the ionized-cluster charge Q (inNZ units). This
relation is illustrated in Fig. 2. It enables one to cal-
culate the degree of external ionization of any cluster
at a given strength of the electric field of the applied
laser pulse.

Thus, the effective value of the strength of the
ignition field, which enhances ionization, is given by

Feff =
NZ

4R2

(
2 − 3 cosα+ cos3 α

)
(7)

×
(
3 − 2 sin

α

2

)
sin2 α

2
.

Adding it to the applied field F (t), we obtain the
actual field that produces the internal ionization of
atomic ions in an ionized cluster and which, in accor-
dance with the Bethe condition (1), must be equated
to the quantity E2

Z/4Z. As a result, we obtain the
equation

E2
Z

4Z
=
NZ

4R2

(
2 − 3 cosα+ cos3 α

)
(8)

×
(
3 − 2 sin

α

2

)
sin2 α

2

+
NZ

R2

(
1 − 3 cos2 α

2
+ 2 cos3 α

2

)
.

Given the ionization potential EZ of a given atomic
ion and the current value of its radius R(t), which in-
creases with time because of the Coulomb explosion
of the ionized cluster, we can calculate the angle α on
the basis of this equation.
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Dynamics of the internal and external ionization of a cluster formed by 106 molecules of deuterium iodide and irradiated
with a laser pulse of duration 50 ps and intensity 2 × 1018 W/cm2 at the peak

Z EZ , eV −t, fs F , a.u. Q, 106 R, a.u. Te, eV

1, 5p5 10.4 103 0.021 0.019 261 20

2, 1s(D) 13.6 98 0.037 0.033 261 24

3, 5p4 19.1 97 0.039 0.036 261 27

4, 5p3 33 91 0.073 0.066 261 66

5, 5p2 48 87 0.110 0.100 261 212

6, 5p1 60 85 0.137 0.124 261 663

7, 5s2 90 79 0.240 0.213 263 1168

8, 5s1 103 77 0.269 0.246 265 1410

9, 4d10 170 68 0.564 0.498 270 6000

10, 4d9 200 65 0.686 0.637 273 6326

11, 4d8 230 63 0.807 0.745 275 6656

12, 4d7 260 61 0.926 0.863 278 7131

13, 4d6 290 59 1.046 0.991 281 7762

14, 4d5 320 58 1.163 1.12 283 8168

15, 4d4 350 56 1.284 1.25 287 9233

16, 4d3 390 54 1.458 1.45 291 10 508

17, 4d2 420 53 1.572 1.60 294 11 192

18, 4d1 450 52 1.690 1.75 297 12 016

19, 4p6 550 46 2.28 2.35 321 21 011

20, 4p5 580 45 2.35 2.79 326 21 400

21, 4p4 620 44 2.54 3.09 331 21 870

22, 4p3 650 43 2.63 3.29 336 22 310

23, 4p2 700 41 2.88 3.68 348 23 267

24, 4p1 740 40 3.06 4.14 354 23 800

25, 4s2 820 37 3.47 4.85 376 25 510

26, 4s1 900 33 4.00 6.01 412 27 650

27, 3d10 1400 0 8.73 13.0 1190 28 000
Upon calculating the angle α, one can find the
ionized-cluster charge Q on the basis of relation (6).
By using relations (2) and (3), one can further find the
field strength F (t). The result is

F (t) =
NZ

R2

(
1 − 3 cos2 α

2
+ 2 cos3 α

2

)
. (9)

Knowing the field strength, one can calculate the
instant t at which there occurred internal ionization
that produced atomic ions of charge Z. For this, we
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
make use of the relation

F (t) = F0exp(−t2/τ2), (10)

assuming that the amplitude of the strength of the
laser-pulse field, F0, and the laser-pulse duration, τ ,
are known.

At the last step, one calculates the increase in the
radius of the ionized cluster because of its Coulomb
expansion. This calculation was performed here on
the basis of Newton’s second law for the motion of
3
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an atomic ion at the cluster surface; that is,

d2R

dt2
=
Q(t)Z(t)
MR2(t)

, (11)

where M is the mass of the atomic ion being con-
sidered (iodine ion in our case). We solved this
equation numerically, disregarding the fact that some
deuterons escape from the cluster at a higher speed
than atomic iodine ions.

3. RESULTS OF THE CALCULATION
OF THE NEUTRON YIELD

For the interaction of a cluster containing
106 deuterium-iodide molecules with a laser pulse
of duration (FWHM for the case of a Gaussian
distribution) 50 fs and intensity 2 × 1018 W/cm2 at
the peak, the results of the calculations performed
according to the scheme outlined above are quoted in
the table. These laser-pulse parameters correspond
to typical values in the experiments reported in [3–5,
16–19]. The distribution of the envelope of the laser-
field strength then has the form

F (t) = 7.43 exp
(
−t2/τ2

)
[a.u.], (12)

where τ = 42.47 fs. The internal ionization of deu-
terium proceeds after the single ionization of iodine
atoms. There then occurs a double ionization of io-
dine atoms, which is followed by a higher multiplicity
ionization of iodine. For high multiplicities, the ion-
ization potentials of iodine atoms were chosen on the
basis of the known values for the neighboring xenon
atom [12].

From the table, it can be seen that, at first, the rate
of the external ionization is much lower than the rate
of internal ionization, so that the charge of the ionized
cluster grows slowly at this stage. At the peak of the
laser pulse, however, about half of the electrons that
escaped from iodine atoms leave the cluster; therefore,
the cluster eventually consists of positively charged
iodine ions (whose charge multiplicity Z is predomi-
nantly 26 to 27), deuterons, and some electrons.

Because of Coulomb expansion, the cluster di-
mensions increase considerably even at the leading
edge of the laser pulse. By way of example, we indicate
that, at the instant t = 0, which corresponds to the
peak value of the laser-pulse intensity, the diameter of
the cluster is four times as large as its original value. A
typical distance to the neighboring cluster is greater
than the cluster diameter by a factor ranging between
10 and 20. Thus, we can see that, even within a
laser pulse, clusters virtually disappear with the result
that the plasma becomes nearly uniform in space.
The expansion of a cluster was calculated by tracing
the motion of atomic iodine ions at the cluster sur-
face. Deuterons are lighter than iodine ions, but the
P

deuteron charge is much less than the typical charge
of atomic iodine ions; it follows that, although some
deuterons escape from the cluster earlier than iodine
ions, the majority of the deuterons expand together
with iodine ions.

Deuterons acquire kinetic energy during the Cou-
lomb explosion of the cluster. This occurs from the
instant t = 0 to the instant at which the cluster radius
reaches a value that is ten times as large as the orig-
inal one. The maximum value of the deuteron kinetic
energy is estimated as the difference of the corre-
sponding Coulomb potential energies. The average
energy was taken to be equal to half the maximum
value. The calculations lead to the average kinetic
energy of 50 keV.

The cross section for the deuteron-fusion reaction
leading to the production of a 3Не nucleus and a neu-
tron is 10−26 cm2 at this energy value. In experiments
of the type being considered, a typical volume of the
laser focus is 10−5 cm3 at a focusing-spot radius of
50 µm. Under the assumption that the concentration
of deuterons in the laser plasma after the passage of
a pulse is nd = 1019 cm−3, the yield of neutrons per
laser pulse is 105.

4. GROWTH OF THE ELECTRON
TEMPERATURE IN A CLUSTER

The electron temperature Te is also given in
the table. It increases owing to induced inverse
bremsstrahlung in elastic electron scattering on
atomic ions in the presence of a laser field. The
frequency of collisions between electrons and atomic
ions is given by the formula

νei =
4
√

2π
3

Zne

T
3/2
e

ln Λ,

which is well known in plasma theory and which
involves the Coulomb logarithm approximately equal
to 10. In the case of single ionization, the concen-
tration of free electrons within the cluster is equal to
ne = 1.3× 1022 cm−3. With increasing multiplicity of
ionization, this concentration becomes higher, but its
growth is moderated at a later stage because of the
expansion of the cluster.

The increment of the electron energy per collision
between an electron and an ion of charge multiplicity
Z under the condition that the collision frequency is
much lower than the frequency of the laser field is
given by

∆E = F 2/2ω2, (13)

where ω is the frequency of the laser field and F is its
amplitude, which is determined by the envelope of the
laser pulse.
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But if the collision frequency is higher than the
frequency of the laser field, the increment of the elec-
tron energy per collision with an atomic ion has the
different form [20]

∆E =
16
3π

F 2

νei
. (14)

From the calculations, it follows that relation (14)
holds for Z = 1–6, while relation (13) is valid for Z ≥
7. It is these relations that were used to calculate the
electron temperature (see table).

The depth at which the laser field penetrates into
a cluster decreases with increasing intensity at the
leading edge of the pulse. It was estimated as the
thickness of the skin layer according to the formula
l = c/ωp, where ωp =

√
4πne is the plasma frequency

(in atomic units). This yields l = 270 Å at Z = 1
and l = 90 Å at Z = 25. Thus, we can conclude that
the field penetrates quite deeply into a cluster despite
rather large dimensions of the clusters and despite a
large number of free electrons within a cluster.

5. CONCLUSION

From the results of the present study, it can be
concluded that, for the case of irradiation with a su-
peratomic femtosecond laser pulse, clusters of silver
iodide are a better target than clusters from pure deu-
terium, which were used previously in experiments.
The procedure employed in the present calculations
was tested earlier in [21] by applying it to clusters of
hydrogen iodide.

We have also found that, within a laser pulse,
clusters transform, through Coulomb explosion, into
quite a uniform plasma consisting of hot electrons
(their temperature ranging between 20 and 30 keV)
and multiply charged iodine atoms (and deuterons as
well). This plasma exists for about 100 ps. Monochro-
matic neutrons of energy 2.45MeV are emitted within
this period of time. Such a source of monochromatic
neutrons may be used in radiation material science. In
addition, the plasma in question serves as a source of
hard line-shaped x-ray radiation that is generated as
the result of radiative transitions in multiply charged
ions. A femtosecond laser having a superatomic in-
tensity and a contrast not lower than 108 necessary
for eliminating the effect of a precursor pulse is a
mandatory element for performing such experiments.
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Abstract—A probabilistic criterion is proposed for the scission of a fissile nucleus into fragments. The
probability of the rupture of the neck between would-be fragments is estimated by considering scission as
a fluctuation. The energy of the prescission configuration and the energy of the separated-fragment config-
uration are computed on the basis of a macroscopic model that takes into account a finite range of nuclear
forces and the diffuseness of the nuclear surface. The effect of the probabilistic criterion of nuclear scission
on fission-process observables, such as the moments of the mass–energy distribution of fission fragments,
the mean multiplicity of prescission neutrons, and mean fission times, is demonstrated. It is shown that the
Strutinsky criterion, according to which nuclear scission occurs at a finite neck radius of 0.3R0, is a rather
good approximation to the probabilistic scission criterion in Langevin dynamical calculations employing
the one-body nuclear-viscosity mechanism modified in such a way that the wall-formula contribution is
reduced, the reduction factor satisfying the condition ks < 0.5. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Any theoretical description or simulation of nu-
clear scission—that is, a process through which the
primary compound nucleus disintegrates predomi-
nantly into two fragments—inevitably has to consider
the condition under which scission occurs. By scis-
sion, one means here a transition from a continuous
nuclear configuration that becomes unstable for a
number of reasons to a configuration in which the nu-
clear system being considered consists of separated
fragments. The problem of the rupture of the neck be-
tween would-be fragments has been addressed many
times (see, for example [1–6]), but it has yet to be
solved completely. From the outset, we note that the
theory of the fission process employs most often two
criteria (conditions) of scission that are obvious lim-
iting cases with respect to each other. By way of ex-
ample, we indicate that Nix and his collaborators [7–
9], as well as some other authors [10, 11], formulate
the scission criterion as the condition requiring the
vanishing of the neck radius (the simplest condition of
geometric scission), RN = 0. Although this scission
condition is consistent with the model representing a
nucleus as a liquid drop with a sharp boundary [1, 12],
it turn out to be unsatisfactory since the description
of a nucleus within the liquid-drop model becomes
meaningless as soon as the neck radius appears to
be commensurate with the distance between nucle-
ons [2]. Defining the scission condition on the basis
of the criterion of the instability of a nucleus against
variations in the thickness of its neck [2], in which
case the ridge between the fission valley and the valley
of separated fragments disappears, is attractive from
1063-7788/03/6604-0618$24.00 c©
the physical point of view. This scission condition
corresponds to prescission configurations of a fissile
nucleus that are characterized by a neck of finite
radius, on average equal to 0.3R0 (R0 is the radius
of the primary spherical nucleus) [1, 2, 13–16]. We
note that the presence of two valleys separated by
a ridge that disappears for elongated nuclear shapes
is corroborated by microscopic calculations within
the Hartree–Fock method [17]. The nuclear-scission
criterion based on the balance between the Coulomb
repulsion of would-be fragments and the nuclear at-
traction between them [18] is also physically reason-
able and acceptable. It was shown in [18] that, in the
region of actinide nuclei, this scission criterion leads
to prescission configurations that have approximately
the same neck radius, 0.3R0. In the random-neck-
rupture model proposed by Brosa and his collabo-
rators [3], use was made of the criterion of the hy-
drodynamic instability of the neck against rupture. It
also leads to prescission nuclear configurations with
a neck radius in the range (0.2–0.3)R0.

2. THEORY

In the cases of zero or a finite neck radius, the
conditions under which the primary compound nu-
cleus disintegrates into fragments determine, in the
space of collective coordinates, the scission line (for
two collective coordinate) or the scission surface (for
three collective coordinates), which clearly delimit
prescission (continuous) and already separated nu-
clear shapes. It is generally assumed in calculations
that, as soon as the primary nucleus reaches, in the
2003 MAIK “Nauka/Interperiodica”
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process of its evolution, this line or surface, it disinte-
grates into fragments with a probability equal to unity.

In the present study, we are going to consider
all nuclear shapes featuring a neck as prescission
shapes. As soon as a neck appears in the nuclear
shape, it becomes possible to single out would-be
fragments by cutting the primary compound nucleus
within the neck, and we assume that, in this case, the
probability for this nucleus to undergo disintegration
into fragments is nonzero in any of its configurations.
In order to estimate this probability, we propose con-
sidering the rupture of the neck connecting would-be
fragments as a fluctuation. In this case, the scission
probability is given by [19]

W = exp(−∆E/T ), (1)

where ∆E is the change in energy due to a fluctu-
ation and T is the temperature of the nucleus being
considered. A fissile nucleus undergoes scission into
fragments because of fluctuations in the region of the
neck, which is in an unstable state. It is difficult to
formulate the criterion of neck instability with respect
to rupture. In [20], the fragmentation condition was
associated with the reduction of the matter density
to some critical value, while, in [3], the scission of
a fissile nucleus was considered as a manifestation
of hydrodynamic Rayleigh instability induced by ran-
dom surface vibrations. However, the results of those
and some other studies (see [1, 2]) give no way to
make quantitatively precise predictions as to the crit-
ical neck radius at which rupture occurs. It seems
that only the study of Davies et al. [18], where the
critical neck radius at which the scission of a nucleus
into fragments occurs was determined by equating
the forces of Coulomb repulsion to nuclear-attraction
force, stands out in this respect. Thus, the approach
based on considering the energy dependence of the
scission probability according to Eq. (1) may pro-
vide a reasonable solution to this extremely involved
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
physical problem. We note that the application of for-
mula (1) assumes that the initial and final states of the
system undergoing fluctuations that lead to scission
are not separated by an energy barrier. If there is an
energy barrier between the initial and final states, the
height of this barrier must be used in (1) instead of the
quantity∆E.

The ideas of the theory of fluctuations have been
repeatedly and successfully used for a long time to
analyze the scission of a nucleus into fragments [3]
and to describe the formation of the mass and charge
distributions and many other observables of the fis-
sion process [21]. By way of example, we indicate that,
in the model of random neck rupture, Brosa and his
collaborators [3] proposed using a Boltzmann-type
formula similar to (1) in estimating the probability of
neck rupture at a point other than that which corre-
sponds to the minimum neck radius. In calculating
the energy difference ∆E as an additional surface
energy that arises upon such a rupture, they relied on
themodel of a liquid drop with a sharp nuclear edge [1,
12]. In order to calculate scission probabilities, Start-
sev [5] employed an approach that is similar to our ap-
proach in the present study and which is based on the
liquid-drop model taking into account the diffuseness
of the nuclear surface and a finite range of nuclear
forces [22]. It should be emphasized, however, that,
in calculating the quantity ∆E appearing in (1), he
chose specific initial and final states that differ from
those adopted here.

In order to describe the nuclear shape, we have
used a modified version of the well-known {c, h, α}
parametrization [2]. We have introduced the parame-
ter α′ related to α by the scaling transformation α′ =
αc3 [14, 15].

In cylindrical coordinates, the equation of the nu-
clear surface has the form [2, 14, 15]
ρ2
s(z) =

{
c−2(c2 − z2)(Asc

2 +Bz2 + α′z/c2), B ≥ 0,
c−2(c2 − z2)(Asc

2 + α′z/c2) exp(Bcz2), B < 0,
(2)

where z is the coordinate along the symmetry axis and ρs is the value of the coordinate ρ at the nuclear surface.
The quantities As and B are expressed in terms of the nuclear-shape parameters (c, h) as

B = 2h+
c− 1
2

, (3)

As =



c−3 −B/5, B ≥ 0;
−4
3

B

exp(Bc3) + (1 + 1/(2Bc3))
√
−πBc3erf(

√
−Bc3)

, B < 0.
In Eqs. (2) and (3), c is the elongation parameter,
h is a parameter that specifies the neck thickness at
a given elongation, and α′ is the mass-asymmetry
parameter. Shapes that are symmetric with re-
3
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Fig. 1. Fragment-configuration shape obtained by cut-
ting a continuous shape with a plane specified by equa-
tion z = zN . The resulting fragments are separated by
the distance s. The fragment surfaces specified by the
functionρs(z) are denoted by A and D, while the surfaces
of the planar sections formed upon cutting the continuous
shape are denoted by B and C.

spect to the z = 0 plane correspond to the case of
α′ = 0.

The emergence of a neck in the evolving nuclear
shape is associated with the instant at which the pro-
file function ρs(z), whose rotation about the symme-
try axis determines the nuclear surface, develops three
extrema, two maxima corresponding to nascent frag-
ments and a minimum between the maxima, which
specifies the minimum neck thickness. The minimum
occurs at the point

zN = 2
√
p

3
cos

(
4π
3
+
1
3
arccos

(
q
√
27

2p3/2

))
− α′

4c2B
,

(4)

where

p = − c2

4B

(
2
c3

− 12
5
B − 3α′2

4Bc6

)
, (5)

q = − α′

4B

(
α′2

8B2c6
− 2
5
− 1
2Bc3

)
. (6)

The condition of the existence of a neck in the nuclear
shape can be written in the form

q2

4
− p3

27
< 0. (7)

Before the emergence of a neck, the profile function
has only one extremum, a maximum, the correspond-
ing nuclear shapes being monoshapes. The coordi-
nates of the extrema of the profile function and the
values of ρs(z) at these extrema vary in response to
variations in the shape parameters. The equation for
the scission surface can be written in the form

ρs(zN ) = RN , (8)

where RN is the neck radius corresponding to the
prescission shape. The condition of geometric rup-
ture or of zero neck radius corresponds to the case
P

of ρs(zN ) = 0. It can be rewritten in terms of the
equations

As = 0, (9)

As −
α′2

4Bc6
= 0. (10)

Formula (9) determines the scission line in the case of
two collective coordinates, while formula (10) speci-
fies the scission surface in the case of three collective
coordinates.

2.1. Energies of Prescission Shapes of a Fissile
Nucleus and Energies of the System of Fragments

In applying formula (1) to calculating the prob-
ability of the disintegration of a compound nucleus
into fragments, it is necessary to perform a complete
characterization of prescission nuclear shapes and
of the corresponding configurations of the system of
fragments. In other words, it is necessary to formulate
a method for going over from a continuous prescis-
sion nuclear shape to a configuration of the system
of fragments. However, no unambiguous method for
describing such a transition has been developed at
the present time. It was shown in [6] that the rup-
ture of the neck occurs rather quickly, within a time
of τr � 10−23 s; this makes it possible to relate the
parameters of a continuous configuration to the pa-
rameters of the fragment configuration by requiring
that the lowest moments of the density distribution
prior to and after scission be equal. This equality has
the simple physical meaning of the conservation of
the number of particles, of the position of the center
of mass, of the dimensions of the system along the
z and ρ axes, and so on. For example, Brosa and
his collaborators [3] assumed that fragments have
ellipsoidal shapes and used, in order obtain the shape
parameters, the conditions requiring the conservation
of the number of particles and of the size of the system
along the z axis. In [23], the shapes of fragments were
also parametrized in terms of ellipsoids, but the shape
parameters of the fragments were found by using the
laws of conservation of the energy and the maxi-
mum entropy of the system of fragments. Intuitively,
a parametrization of the fragment shape by ellipsoids
does not seem quite correct; it is more probable that,
immediately after the rupture of the neck, the frag-
ments have pearlike shapes [24, 25], which are char-
acterized by the presence of quadrupole and octupole
deformations simultaneously. However, the descrip-
tion of pearlike shapes requires introducing at least
four fragment-shape parameters. Their determination
on the basis of the maximum-entropy condition [23]
or on the basis of the condition requiring the equality
of the density-distribution moments before and after
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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scission [6] leads to rather cumbersome calculations.
In our case, where all nuclear shapes featuring a
neck are used as prescission nuclear shapes, these
calculations become even more complicated. In the
present study, we therefore parametrized the fragment
shape on the basis of a continuous prescission nuclear
shape that was cut by a plane orthogonal to the z
axis at a minimal thickness of the neck. The resulting
fragments were moved apart at a distance s (see
Fig. 1). It should be noted that, in the limit s→ 0, this
parametrization of the fragment shape ensures the
equality of all density-distribution moments prior to
and after the rupture of the neck. At s values that are
much smaller than the dimensions of the continuous
shape, lower density-distribution moments are also
conserved to a high precision. On the other hand, it
is obvious from the physical point of view that, im-
mediately after scission, the fragment configurations
chosen here are energetically unfavorable because
of a large surface area and because of the presence
of planar sections. Within a short time immediately
after the rupture of the neck, the planar sections
are smoothed, with the result that the shape of the
fragments becomes nearly pearlike. The relationship
between the fragment deformations and octupole and
quadrupole deformations is studied here and will also
be the subject of our future publications.

In Eq. (1),∆E has the meaning of the difference of
the potential energies of the system of two fragments
separated by a distance s (see Fig. 1) and the potential
energy of the prescission (continuous) nuclear shape
(s = 0). For both prescission and separated shapes,
the potential energy of a fissile nucleus was calcu-
lated here on the basis of the macroscopic nuclear
model [22, 26] with allowance for a finite range of nu-
clear forces and the diffuse distribution of the nuclear
density. Within this model, the generalized surface
energy (nuclear energy) En is represented in the form
of a double integral over the volume of the nucleus
being considered; that is,

En = − cs
8π2r20a

3

∫
V

∫
V

( r
a
− 2
) e− r

a

r
d3r1d

3r2. (11)
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In order to calculate the Coulomb energy EC with
allowance for the diffuse distribution of the charge
density, we use the expression

EC =
15E0

C

32π2R5
0

(12)

×
∫
V

∫
V

(
1−

(
1 +

r

2ad

)
e−r/ad

)
d3r1d

3r2
r

,

where cs = as(1− kI2); I = (N − Z)/A; r = |r1 −
r2|; E0

C = 3Z
2e2/(5R0); A is the mass number; and

Z and N are the numbers of, respectively, protons
and neutrons in the nucleus. The parameter values of
a = 0.68 fm, ad = 0.7 fm, r0 = 1.16 fm, as = 21.13,
and k = 2.3 were chosen in accordance with [26].
By applying Gauss’ theorem two times, expres-
sions (11) and (12) for, respectively, the nuclear and
the Coulomb component of the potential energy of a
continuous fissile-nucleus shape can each be reduced
to a double surface integral [22, 27]. For the axial-
symmetric case corresponding to the profile function
(recall that it specifies the nuclear surface) in the form
ρs(z), the resulting double surface integrals can be
expressed in terms of the triple integral

E =

c∫
−c

c∫
−c

2π∫
0

F (r)ρs(z1)
(
ρs(z1)− ρs(z2)cosφ

− ∂ρs(z1)
∂z1

(z1 − z2)
)
ρs(z2)

(
ρs(z2)− ρs(z1)cosφ

+
∂ρs(z2)
∂z2

(z1 − z2)
)
dz1dz2dφ, (13)

where

r = (ρ2
s(z1) + ρ

2
s(z2)− 2ρs(z1)ρs(z2)cosφ (14)

+ (z1 − z2)2)1/2,
F (r) =



− cs
4πr20r4

(
2−

(
2 + 2

r

a
+
(r
a

)2
)
e−r/a

)
for calculating En,

15E0
C

16πR5
0

(
1
ad

(ad

r

)4
[
2
r

ad
− 5 +

(
5 + 3

r

ad
+
1
2

(
r

ad

)2
)
e−r/ad

]
− 1
6r

)
for calculating EC.

(15)
In this study, triple integrals of the form (13) were cal-
culated according to the Gauss quadrature formulas
featuring 32 nodes.

Since the shape of the fragments does not change
as they are displaced apart at a distance s, the quan-
tity∆E can be represented as the differenceU(q, s)−
U(q, 0), where U(q, s) is the fragment-interaction
energy at the corresponding spacing between the
3
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Fig. 2. Energy of fragment interaction for the 244Cm
nucleus as a function of the distance s between the frag-
ments and the neck radius RN . The numbers on isolines
stand for energy values in MeV. The dashed straight
line at s = 0.13R0 corresponds to the case of touching
fragments (see explanations in the main body of the text).

fragments; that is, U(q, s) = UC(q, s) + Un(q, s),
with UC(q, s) and Un(q, s) being, respectively, the
Coulomb repulsion energy and the nuclear-attraction
energy of the fragments separated by the distance
s. By going over from the potential energy to the
fragment-interaction energy, we can improve the
accuracy of the calculations. Moreover, the interac-
tion energy U(q, 0) added to the prescission kinetic
energy of fragment motion (Eps) will yield the total
fragment kinetic energy (EK) observed in experi-
ments.

If fragments possess axial symmetry, as in the case
illustrated in Fig. 1, the energies of the Coulomb and
nuclear interaction can be represented as the sum

U(q, s) = UAD(q, s) + UAC(q, s) (16)

+ UBD(q, s) + UBC(q, s),

whereUAD(q, s),UAC(q, s),UBD(q, s), andUBC(q, s)
have the form of various surface integrals, explicit
expressions for them in the system of cylindrical co-
ordinates being given in the Appendix.

The values of ∆E that were calculated here for
the 244Cm nucleus are given in Fig. 2 versus the
distance s between the fragments for various val-
ues of the neck thickness. One can see from this
figure that, with increasing s, ∆E becomes posi-
tive for shapes having a rather thick neck (RN =
(0.5–0.7)R0). This means that the rupture of a thick
neck is energetically unfavorable, since the arising
additional sections of fairly large area make a siz-
able contribution to the nuclear-fragment-attraction
P

energy, which appears to be greater than the energy
of Coulomb repulsion at distances s < (0.3–0.4)R0.
Thus, the nuclear-attraction energy hinders the sep-
aration of fragments. At large distances, the energy
of nuclear attraction decreases fast, so that only the
energy of Coulomb repulsion is operative there. For
shapes having a rather thin neck (RN < 0.4R0), the
separation of a continuous shape into fragments be-
comes energetically favorable, since the energy of
nuclear attraction appears to be small in relation to
the energy of the Coulomb repulsion of fragments. In
this case, the energy of nuclear attraction is unable to
prevent the separation of the nucleus into fragments.
The result that we obtained here for the dependence of
∆E on s and RN is qualitatively similar to the result
quoted in [5]. The quantitative distinction stems from
the fact that, in [5], the quantity ∆E was calculated
as the difference of the energy of the system of frag-
ments and the energy of the continuous prescission
configuration, which, in [5], differed somewhat from
the configuration used here.

A specific distance s at which we calculated the
scission probability by formula (1) was selected in the
following way. In the statistical approximation, the
energy of a nucleus was represented in the form of a
functional of the nucleon density ρn and of its gradi-
ent [28]. The gradient term, which is responsible for
the finiteness of the nuclear-force range, was taken in
the form

Es = const ·
∫
∞

(∇ρn(r1))2d3r1. (17)

That integration in (17) is performed over the entire
space is indicated by an infinity sign in the limit of
integration. It was shown in [27] that the nuclear-
density distribution can be expressed in terms of a
convolution integral involving the Yukawa function
over the volume of a nucleus with a sharp boundary;
that is,

ρn(r1) =
ρn0

4πa3
Y

∫
V

e−r/aY

r/aY
d3r2, (18)

where aY = 0.75 fm is the parameter of the Yukawa
function; ρn0 is the value of the nucleon density at the
center of the nucleus, ρn0 = A/V ; and integration is
performed over entire volume V of the nucleus. The
parameter value of aY = 0.75 fm was chosen from the
condition requiring that the diffuseness of the nuclear
surface be 2.4 fm [27].

If we choose const = csaY /(πr20ρ
2
0) in (17) and

the nuclear-density distribution in the form (18), we
obtain formula (11). The integral in (17) can be cal-
culated by the method described in [27]. Thus, for-
mula (11) represents the surface (gradient) term in
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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the statistical functional of the nuclear energy for the
density distribution (18). In the particular case of a
semi-infinite medium (z < 0), the density distribu-
tion (18) takes the form

ρn(z) =



ρn0

2
(
2− ez/aY

)
, z ≤ 0,

ρn0

2
e−z/aY , z ≥ 0.

(19)

This interpretation (it was proposed in [5]) of the nu-
clear energy within the liquid-drop model taking into
account a finite range of nuclear forces and the diffuse
distribution of the nuclear density is of importance for
the present study in what is concerned with specifying
the concept of a scission nuclear configuration. On
the basis of formula (18), we can consider the distri-
bution of the nucleon density and, accordingly, intro-
duce the concept of the contact of fragments at the
instant of scission. If the nucleon-density distribution
is specified in the form (18), the sharp boundary of
a nucleus is an effective surface that lies within a
diffuse layer, where the nuclear density is one-half
as great as the density at the center of a nucleus,
ρn = ρn0/2. In this case, a continuous form will cor-
respond, at s = 0, to the fragments depicted in Fig. 1.
As the fragments move apart at a distance s > 0,
the density at the point zN gradually decreases. The
contact of fragments is realized when the value of the
density at the point zN is equal to ρn = ρn0/2. In
the case of half-spaces of nuclear matter, it follows
from formulas (19) that this value of the density will
be achieved for fragments separated by the distance
srup = 2aY ln2. The calculations performed in [5] re-
vealed that, at a finite neck radius (RN ≥ 0.2R0),
the density at the midpoint between two fragments
is ρn0/2 at approximately the same value of s. For
A > 200 heavy nuclei, which are considered in the
present study, we have srup � 0.13R0. It can be seen
from Fig. 2 that, if we choose srup = 0.13R0 for the
spacing between the fragments, the initial and final
states of the system are not separated by a barrier; in
calculating the scission probability by formula (1), we
therefore use the difference of the initial- and the final-
state energies,∆E = U(q, srup)− U(q, 0).

2.2. Wall-Plus-Window Formula for One-Body
Dissipation and Probabilistic Scission of a Nucleus

In connection with the probabilistic scission of a
fissile nucleus into fragments—and this is the subject
of the present study—it is worth noting that, within
macroscopic collective nuclear dynamics, a similar
approach has already been developed and successfully
used in calculating the friction properties of a fissile
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
nucleus within the mechanism of one-body dissi-
pation [29]. Upon introducing a number of simplifi-
cations concerning the mechanism of collisions be-
tween nucleons and the nuclear surface, the authors
of [30] were able to obtain simple formulas for the one-
body mechanism of dissipation (wall and wall-plus-
window formulas). A quantum analysis of one-body
dissipation revealed [31] that themagnitude of viscos-
ity in a nucleus is only about 10% of values computed
by the wall formula [32, 30] [bracketed expression on
the right-hand side of formula (20) below], but that
the functional dependence of viscosity on the nuclear
shape is reproduced correctly by this formula. In view
of this, Nix and Sierk [29, 33] proposed a modified
version of one-body dissipation. In this version, re-
ferred to as the surface-plus-window one, the con-
tribution of the wall formula to dissipation is reduced
with the aid of a coefficient ks. In the surface-plus-
window mechanism of dissipation, the expression for
the friction-tensor components has the form

γswij =
1
2
ρmv̄

{
∂R

∂qi

∂R

∂qj
Sw +

32
9
1
Sw

∂V1

∂qi

∂V1

∂qj
(20)

+ ks

[
π

zN∫
zmin

(
∂ρ2

s

∂qi
+
∂ρ2

s

∂z

∂D1

∂qi

)(
∂ρ2

s

∂qj
+
∂ρ2

s

∂z

∂D1

∂qj

)

×
(
ρ2

s +
(
1
2
∂ρ2

s

∂z

)2
)− 1

2

dz

+ π

zmax∫
zN

(
∂ρ2

s

∂qi
+
∂ρ2

s

∂z

∂D2

∂qi

)(
∂ρ2

s

∂qj
+
∂ρ2

s

∂z

∂D2

∂qj

)

×
(
ρ2

s +
(
1
2
∂ρ2

s

∂z

)2
)− 1

2

dz

]}
,

where ρm is the nuclear density; v̄ is the mean ve-
locity of intranuclear nucleons; Sw is the area of the
window—that is, the neck between the two would-
be fragments; R is the distance between the centers
of mass of the would-be fragments; D1 and D2 are
the positions of their centers of mass with respect to
the coordinates of the center of mass of the entire
system; zmin and zmax are, respectively, the left and
the right boundary of the nuclear surface; zN is the
neck coordinate chosen at the minimum of the func-
tion ρ2

s(z); V1 is the volume of one of the would-be
fission fragments; and ks is a factor that character-
izes the reduction of the wall-formula contribution.
The value of the reduction factor ks was determined
from an analysis of the experimental widths of giant
resonances; the result was ks = 0.27. From a com-
parison of the calculated mean values of the kinetic
energies of fission fragments with experimental data,
3
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it was found that the reduction factor ks lies in the
range 0.2 < ks < 0.5 [33]. The value of ks = 1 corre-
sponds to the total one-body viscosity; in this case,
formula (20) is referred to as the wall-plus-window
formula.

In the following, we denote by γw
ij the friction-

tensor components computed by the wall formula.
In the present calculations, formula (20) was sup-
plemented with an additional term (second term in
the braced expression) that takes into account dis-
sipation associated with the change in the volumes
of the would-be fragments that is caused by nucleon
exchange between them [34, 35]. The inclusion of
this term in dynamical calculations is necessary for
P

performing an adequate analysis of the formation of
the mass distribution.

For nuclear shapes featuring no neck, the friction
tensor was calculated by the wall formula with a
reduction factor ks. For the intermediate case where a
neck has already appeared, but where its radius is not
very small in relation to the radius of the maximum
section of the smaller fragment, the exact expression
for the rate of energy dissipation within the mecha-
nism of one-body dissipation is not known. For this
reason, use in made of a rather arbitrary interpolation
between the wall and surface-plus-window formulas.
It has the form [36]
γij =

{
ksγ

w
ij for nuclear shapes featuring no neck,

ksγ
w
ijf + γ

sw
ij (1− f) for nuclear shapes featuring a neck,

(21)
f = sin2(πRN/(2RL)),

where RN is the neck radius and RL is the maximum
value of the function ρs(z) for the smaller fragment.

In the probabilistic scission mechanism discussed
here, the emergence of a neck in the nuclear shape
corresponds to the appearance of the window term
[first term in the braced expression on the right-hand
side of (20)] in (21), the corresponding deformations
being initial ones in considering probabilistic scis-
sion. At zero neck radius in (21), only the surface-
plus-window formula contributes to the friction ten-
sor, γswij , these deformations being final ones in con-
sidering the probabilistic scission of a nucleus into
fragments. The space of collective deformations be-
tween the initial and final deformations is taken into
account through the corresponding factors both in
the one-body mechanism of dissipation and in our
mechanism of the probabilistic scission of a nucleus
into fragments.

2.3. Method for Calculating Observables of the
Fission Process in Probabilistic Scission

A simulation of the process through which a
nucleus disintegrates into fragments was performed
within the stochastic approach [37, 38] based on
Langevin equations. A detailed description of the
model used here is given in [14, 15]. For this reason,
we describe here only the method for calculating
observables in the probabilistic simulation of neck
rupture.

In a difference form, the Langevin equations can
be written as

p
(n+1)
i = p(n)

i −
(
1
2
p
(n)
j p

(n)
k

(
∂µjk(q)
∂qi

)(n)

(22)
+
(
∂V (q)
∂qi

)(n)

+ γ(n)
ij (q)µ

(n)
jk (q)p

(n)
k

)
τ

+ θ(n)
ij ξ

(n)
j

√
τ ,

q
(n+1)
i = q(n)

i +
1
2
µ

(n)
ij (q)(p

(n)
j + p(n+1)

j )τ,

where q = (c, h, α′) are collective coordinates; p =
(pc, ph, pα′) are the momenta conjugate to them;mij

(||µij || = ||mij ||−1) is the tensor of inertia; γij is the
friction tensor; V is the potential energy of the nucleus
being considered; θij is the amplitude of a random
force; τ is a time step in integrating the Langevin
equations; the superscripts (n) and (n+ 1) label, re-
spectively, the nth and the (n+ 1)th step in integra-
tion; and ξj is a random variable that possesses the
following statistical properties:

〈ξ(n)
i 〉 = 0, (23)

〈ξ(n1)
i ξ

(n2)
j 〉 = 2δijδn1n2 .

The angular brackets in Eq. (23) denote averag-
ing over the statistical ensemble. Summation over
dummy indices from 1 to 3 is implied in Eqs. (22)
and (23). By numerically solving the set of Eqs. (22),
we obtain, in the space of collective coordinates, a
stochastic trajectory that reflects nuclear shapes ap-
pearing in the fission process.

In this study, we assume that a nucleus inevitably
undergoes fission within the time interval between
the instant at which the nuclear shape develops a
neck and the instant of the geometric scission of
the nucleus. The sum of the probabilities over all
scission configurations that the nucleus assumes in
the process of evolution is equal to unity. This is the
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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normalization condition for the probability of scission.
In simulating the fission process, we began, for each
trajectory, from a spherical shape of a nucleus, q0 =
(c = 1, h = 0, α′ = 0), and terminated the simulation
when the the neck radius vanished. Upon the appear-
ance of a neck in the nuclear shape, we determined, at
each nth step of the integration of the Langevin equa-
tions, the relative probabilities of nuclear scission into
fragments, Wn, by formula (1). Simultaneously, we
found the masses of fragments and the kinetic energy
of their relative motion by using the values of the col-
lective coordinates and of the momenta conjugate to
them. In order to obtain the two-dimensional mass–
energy distribution, we added, in the corresponding
mass and energy bins, the relative probabilitiesWn of
the realization of these values of the mass and kinetic
energy of fragments. For each reaction, we simulated
about 104 trajectories. The resulting mass–energy
distribution was normalized to 200%.

For the 215Fr nucleus at T = 1.5MeV, the relative
scission probability W as a function of c and h is
displayed in Fig. 3a for α′ = 0. We can see from this
figure that the scission probability increases with in-
creasing h—that is, the scission probability is higher
for more compact shapes than for elongated ones.
This is explained by stronger Coulomb repulsion
forces in the former case. Figure 3b shows that the
scission probability begins to increase sharply only for
nuclear shapes having a neck of radius smaller than
0.4R0. For shapes featuring a neck of greater radius,
the scission probability is nearly vanishing. This is
because the sign of ∆E in negative in (1) for such
shapes.

In general, any observable Q (this may be the
masses and kinetic energies of fragments, prescission
multiplicities of light particles, fission times, and so
on) can depend on collective coordinates, the mo-
menta conjugate to them, and time. In order to find
the kth moments ofQ, we used the formula

〈Qk〉 =
J∑

i=1

Mi∑
n=1

Qk
inWn

/(
J

Mi∑
n=1

Wn

)
, (24)

where Mi is the number of steps from the instant of
neck formation in the nuclear shape to the instant
at which the thickness of the neck vanishes for the
ith trajectory and J is the total number of trajecto-
ries. Summation over n means averaging over the
scission configurations within the ith trajectory, while
summation over i is averaging over trajectories. The
notation Qk

in means that the observable Q is taken
at the nth step of the ith trajectory and is raised to a
power of k. By using formula (24), we found the mean
values and variances of the mass and energy distri-
butions, the mean fission times, and the multiplicities
of prescission neutrons, as well as the asymmetry
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Fig. 3. Probability of nuclear scission into fragments
versus the nuclear-shape parameters: (a) probability of
nuclear scission in the ch plane at α′ = 0 [numbers on
isolines represent the unnormalized probability of nuclear
scission into fragments according to the calculations by
formula (1)], where curves 1 and 2 correspond to the nu-
clear shapes developing a neck and having a neck of zero
radius, respectively, while the dashed curve corresponds
to nuclear shapes featuring a neck of radius RN = 0.3R0;
(b) unnormalized nuclear-scission probability calculated
by formula (1) as a function of the neck thickness for the
case of h = α′ = 0.

and kurtosis of the mass–energy distribution, which
are determined in terms of the third and the fourth
moment of the distribution.

3. RESULTS OF THE CALCULATIONS
AND DISCUSSION

In order to investigate the effect of the probabilis-
tic-scission mechanism on observables, we have per-
formed calculations for the reactions

12C + 194Pt → 206Po (Elab = 99MeV) [39],
18O + 197Au → 215Fr (Elab = 158.8MeV) [40],
12C + 232Th → 244Cm (Elab = 97MeV) [41],
20Ne + 240Pu → 260Rf (Elab = 142MeV) [39].

Indicated above for each reaction are the references
from which we borrowed experimental data. For these
reactions, there exists a rather vast body of experi-
mental data; moreover, we previously performed cal-
culations for them by using the scission condition
RN = 0.3R0 [14–16].
3
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Table 1. Parameters of the mass and energy distributions for the reactions 12C + 194Pt → 206Po (Elab =
99MeV) [39], 18O + 197Au → 215Fr (Elab = 158.8MeV) [40], 12C + 232Th → 244Cm (Elab = 97MeV) [41], and
20Ne + 240Pu → 260Rf (Elab = 142MeV) [39] according to the calculations for two scission conditions versus the
factor characterizing the reduction of the wall-formula contribution

C.N. ks σ2
M , (amu)2 (σ2

M )W , (amu)2 σ2
EK

, MeV2 (σ2
EK
)W , MeV2 〈EK〉, MeV 〈EK〉W , MeV

206Po 0.25 280± 26 307± 29 169± 15 175± 21 154.1 148.8

0.50 234± 24 261± 27 113± 11 171± 12 151.7 147.7

1.00 222± 25 273± 26 102± 12 198± 19 150.5 138.0

Expt. [39] 165± 4 106± 3 146.5± 0.8
215Fr 0.25 328± 15 354± 33 210± 9 195± 18 159.7 156.1

0.50 261± 5 295± 17 139± 2 189± 8 157.2 155.0

1.00 219± 13 270± 16 109± 6 207± 12 155.1 154.2

Expt. [40] 272 190 154
244Cm 0.25 315± 14 345± 17 143± 6 180± 11 188.1 180.6

0.50 271± 23 298± 15 110± 9 195± 12 187.8 179.3

1.00 233± 35 245± 16 106± 15 206± 12 187.6 177.8

Expt. [41] 366 259 178
260Rf 0.25 365± 12 346± 17 202± 7 263± 12 218.3 207

0.50 315± 14 327± 19 173± 7 274± 15 218.0 206

1.00 254± 25 279± 23 157± 15 310± 24 217.8 205

Expt. [39] 506± 12 372± 13 195± 2

Note: The followingnotation is used in the table: (C.N.) compoundnucleus, (ks) factor characterizing the reduction of the wall-formula
contribution, (σ2

M ) variance of the mass distribution, (σ2
EK

) variance of the energy distribution, and (〈EK〉) mean kinetic energy of
fragments. The subscript W on a quantity means that it was calculated by using the probabilistic scission condition. The quantities
carrying no subscript W were calculated under the scission conditionRN = 0.3R0 [14–16]. Some values presented in this table differ
from their counterparts in [14–16] since statistics were larger in our present calculations.
For each of the above reactions, we have calcu-
lated the two-dimensional mass–energy distribution
Y (EK ,M), the mean prescission-neutron multiplic-
ity 〈npre〉, and the mean fission time 〈tf 〉. The results
obtained by calculating the two-dimensional mass–
energy distribution will analyzed in terms of the one-
dimensional mass and energy distributions. The one-
dimensional mass distribution can be derived by in-
tegrating Y (EK ,M) with respect to EK , while the
one-dimensional energy distribution is obtained by
integrating Y (EK ,M) with respect toM .

The results of the calculations are presented in
Tables 1 and 2 and in Figs. 4–6. In a probabilistic
simulation of the scission of a nucleus into fragments,
the set of prescission configurations becomes much
wider than in the calculations where a specific value
of the neck radius is chosen as a scission criterion.
A transition from the scission condition RN = 0.3R0
to a probabilistic simulation of nuclear scission leads
P

to a moderate increase (of 5 to 10%) in the variance
of the mass distribution, irrespective of the mass of
a fissile nucleus and ks. We have also calculated the
asymmetry γ3 and the kurtosis γ4 of the mass and en-
ergy distributions. These quantities characterize the
deviation of the distributions under investigation from
a Gaussian distribution, for which one has γ3 = γ4 =
0. The results of the calculations show that the mass
distribution retains a Gaussian shape (the kurtosis
and asymmetry virtually vanish). Figure 4 shows the
mass distribution for the 244Cm nucleus according
to the calculations for the scission condition RN =
0.3R0 and according to the calculations with the
probabilistic scission condition at ks = 0.25.

As might have been expected on the basis of phys-
ical considerations, the change in the scission condi-
tion leads to a considerable variation in the parame-
ters of the energy distribution. As can be seen from
Fig. 5, the scission probability is maximal for nuclear
shapes having a neck radius less than 0.3R0. For such
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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Table 2. Asymmetry and kurtosis of the energy distribution, mean multiplicity of prescission neutrons, and mean fission
times for the reactions 12C + 194Pt → 206Po (Elab = 99MeV) [39], 18O + 197Au → 215Fr (Elab = 158.8MeV) [40],
12C + 232Th → 244Cm (Elab = 97MeV) [41], and 20Ne + 240Pu → 260Rf (Elab = 142MeV) [39] according to the
calculations for two scission conditions versus the factor characterizing the reduction of the wall-formula contribution

C.N. ks γ3 (γ3)W γ4 (γ4)W 〈npre〉 〈npre〉W 〈tf 〉, 10−21 s 〈tf 〉W , 10−21 s
206Po 0.25 −0.52 0.37 1.55 1.83 2.8 3.2 111 143

0.50 −0.19 0.61 0.97 1.3 3.6 3.7 213 252

1.00 −0.1 0.67 0.78 0.72 3.9 4.4 305 361

Expt. [39] 2.8
215Fr 0.25 −0.71 −0.4 1.6 1.17 3.0 3.3 33.6 42

0.50 −0.33 0.34 0.63 0.42 4.3 4.4 82 97

1.00 −0.15 0.2 0.35 0.15 5.2 5.2 152 179

Expt. [40] 4.1
244Cm 0.25 −0.6 0.22 1.74 1.52 2.0 2.4 24 34

0.50 −0.11 0.15 1.59 1.34 3.2 3.5 64 82

1.00 0.05 0.19 0.32 0.71 4.2 4.4 154 171

Expt. [41] 3.0
260Rf 0.25 −0.52 0.36 1.67 1.22 1.3 1.3 15 16

0.50 −0.26 0.27 0.91 0.65 2.0 2.1 30 34

1.00 −0.12 0.18 0.54 0.44 2.9 3.0 69 76

Expt. [39] 3.5

Note: The followingnotation is used in the table: (C.N.) compoundnucleus, (ks) factor characterizing the reduction of the wall-formula
contribution, (γ3) asymmetry of the energy distribution, (γ4) kurtosis of the energy distribution, (〈npre〉)meanmultiplicity of prescission
neutrons, and (〈tf 〉) mean fission time. The subscript W on a quantity means that it was calculated by using the probabilistic scission
condition. The quantities carrying no subscripts W were calculated under the scission conditionRN = 0.3R0 [14, 15].
prescission shapes, the kinetic energy of fragments
(EK) appears to be less than that for shapes char-
acterized by the neck radius of RN = 0.3R0. In view
of this, the values obtained for 〈EK〉 by using the
probabilistic scission condition proved to be less by
5–8MeV, on average, than those calculated under the
scission condition RN = 0.3R0, and this improves
the agreement between the calculated values and ex-
perimental data on 〈EK〉.

According to the experimental data reported in
[44], where the asymmetry γ3 and the kurtosis γ4 of
the energy distributions were investigated for com-
pound nuclei from Os to U at various excitation en-
ergies, the energy distributions are characterized by
invariability and a small magnitude of thesemoments:
γ3 � −0.1 and γ4 � 0. Table 2 gives γ3 and γ4 values
calculated for the two scission mechanisms at various
values of ks. It can be seen from Table 2 and from
Fig. 6 that a transition from the scission condition
RN = 0.3R0 to the probabilistic scission results in
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
that the shape of the energy distributions becomes
closer to a Gaussian shape.

The change in the scission condition also leads to
an increase in the variance of the energy distribution.
It appears, however, that the increase in the vari-
ance of the energy distribution depends on the factor
ks characterizing the reduction of the wall-formula
contribution. By way of example, we indicate that, at
ks = 1, the values of the variance increase approx-
imately by a factor of two for all nuclei considered
in this study, while, at ks = 0.25, the values of the
variance remained unchanged within the statistical
error. This behavior of the variance of the energy dis-
tributions versus ks is explained by the dependence of
the character of the motion of the nucleus descending
from the saddle to the scission point on viscosity. In
the case of low viscosity (ks = 0.25), the energy of
the collective motion of the nucleus is rather high, so
that the set of prescission shapes appears to be quite
wide even under the scission condition RN = 0.3R0,
the variance of the energy distributions accordingly
3



628 ADEEV, NADTOCHY

 

5

4

3

2

1

0
50 100 150 200

amu

 
Y
 
, %

Fig. 4. Mass distributions calculated for the reaction
12C + 232Th → 244Cm (Elab = 97 MeV) at ks =
0.25: (solid-line histogram) results obtained by using
the probabilistic condition of scission and (dashed-line
histogram) results obtained with the scission condition
RN = 0.3R0 [14].

proving to be quite large. In this case, a transition to
the probabilistic simulation of scission only leads to
a change in the shape of the energy distribution—it
becomes closer to a Gaussian shape—but there does
not occur a considerable increase in the variance. At
a high viscosity (ks = 1), in which case the nuclei are
superviscous, with the result that the system occurs
in the regime of overdamping, the energy of collective
motion is low. A major part of the excitation energy
will be converted into internal energy and will be
carried away by evaporating light prescission par-
ticles. Evolving in the overdamped mode, the sys-
tem will slowly creep to the scission surface along
the bottom of the fission valley, the nucleus slowly
changing its shape. In the case of the scission con-
dition RN = 0.3R0, this will lead to a rather meager
set of prescission shapes. Upon going over to the
probabilistic simulation of the scission of a nucleus
into fragments, the set of prescission shapes becomes
considerably richer owing to the inclusion of addi-
tional shapes that the nucleus had at the stage of
descent from the instant of neck formation in the nu-
clear shape to the instant at which the neck thickness
vanishes. In this case, not only does the shape of
the energy distribution change but also its variance
increases considerably.

Upon a transition from the scission condition
RN = 0.3R0 to the probabilistic simulation of scis-
sion, the fission time and, hence, the multiplicity of
prescission neutrons increase (see Table 2). This is
because the maximum fission probability corresponds
to nuclear shapes having a neck radius smaller than
0.3R0 (see Fig. 3).
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Fig. 5. Mean kinetic energy of fragments, 〈EK〉, as
a function of the parameter Z2/A1/3: (closed boxes)
experimental data; (open boxes and circles) results of
the calculations at ks = 0.5 and ks = 0.25, respec-
tively, under the scission condition RN = 0.3R0 [14–
16]; (open triangles) results of the calculations at ks =
0.5 under probabilistic scission conditions; (solid line)
systematics obtained by Rusanov and his collabora-
tors [42] (〈EK〉 = (0.104Z2/A1/3 + 24.3) MeV in the
range Z2/A1/3 = 900–1800); and (dashed line) sys-
tematics of Viola and his collaborators [43] (〈EK〉 =

(0.1189Z2/A1/3 + 7.3) MeV).

In [5], the parameters of the mass–energy distri-
bution of fission fragments were also computed by
using the probabilistic scission condition, and the
results obtained there for the mean kinetic energy
of fragments and for the variances of the mass and
energy distributions were found to be in good quanti-
tative agreement with available experimental data for
a large number of nuclear species. It should be noted,
however, that, in [5], no account was taken of the
evaporation of light prescission particles, which has
a pronounced effect on the parameters of the mass–
energy distribution [11], since evaporating particles
carry away a significant part of the excitation energy,
thereby reducing the variances of themass and energy
distributions. Also, the simulation of fission dynamics
in [5] completely disregarded dissipative and fluctua-
tion phenomena, which, in our opinion, play, a signif-
icant role in the formation of fragment distributions.

4. CONCLUSION

Our calculations have revealed that the Strutinsky
criterion according to which the scission of a nucleus
occurs at a finite thickness of the neck [1, 2] is a good
approximation to the probabilistic scission criterion
for ks < 0.5. The shape of the energy distribution
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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Fig. 6. Energy distributions calculated for the reaction
18O + 197Au → 215Fr (Elab = 158.8 MeV) at ks =
0.5: (thin-solid-line histogram) results of the calculations
with the probabilistic scission condition, (dashed-line
histogram) results of the calculations with the scission
condition RN = 0.3R0 [15], (thick-solid-line histogram)
experimental data borrowed from [40].

changes upon going over from the scission condi-
tion RN = 0.3R0 to a probabilistic simulation. It be-
comes closer to a Gaussian shape, and its variance
increases; this is in better agreement with experimen-
tal data. In the case of a probabilistic simulation of
scission, the calculated values of 〈EK〉 also become
closer to available experimental data and systemat-
ics [42, 43]. The variance of the mass distribution
increases by approximately 5 to 10%, irrespective of
ks values. A transition from the scission condition
RN = 0.3R0 to the probabilistic simulation also leads
to an increase in themeanmultiplicity of neutrons and
in the fission time. As in [14], we were unable, how-
ever, to reproduce simultaneously the mean multi-
plicity of prescission neutrons and the variances of the
mass and energy distributions for 260Rf, which was
the heaviest nucleus considered in the present study.
Therefore, the conclusion drawn previously in [14, 15]
remains in force: for reactions involving the forma-
tion of heavy nuclei (like Fm and heavier ones) and
occurring with high angular-momentum transfers, in
which case the fission barrier disappears, it would be
incorrect to begin calculations from the statistically
equilibrium ground state of a nucleus, but it is neces-
sary to consider fission dynamics with allowance for
the entrance channel of the fusion–fission reaction.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
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APPENDIX

In order to derive expressions for the Coulomb and
the nuclear energy of the interaction of the system of
two fragments shown in Fig. 1, we used a method
that is similar to that described in [18]. It should be
emphasized that the authors of [18] calculated the
forces (rather than the energies) of the Coulomb and
nuclear interactions of fragments in the limit s→ 0.
Also we calculated the energies of fragment interac-
tion by using the sumof the Yukawa and the exponen-
tial nuclear potential [22] and not the mere Yukawa
potential, as in [18]. The energies of the Coulomb
and nuclear interactions determined within the liquid-
drop model taking into account the diffuse boundary
of the nuclear surface and a finite range of nuclear
forces have the form

U =
∫
V1

∫
V2

f(|r1 − r2|)d3r1d
3r2, (A.1)

where f is is a scalar function of |r1 − r2|, its explicit
form being given by the integrands in (11) and (12) for
the nuclear and the Coulomb interaction, respectively.
In contrast to Eqs. (11) and (12), where integration
is performed over the entire volume of a nucleus,
the calculation of the interaction energies involves
integration over the volumes V1 and V2 of the left- and
the right-hand fragment, respectively.

Let us apply Gauss’ theorem to the integral in
(A.1). Since the surface of each fragment consists
of the surface formed by the rotation of the function
ρs(z) about the z axis (surfacesA andD in Fig. 1) and
the planar-cut surface formed upon the disintegration
of the continuous nuclear shape into fragments (sur-
faces B and C in Fig. 1), the integral in (A.1) can be
written in the form

U =
∮
S1

∮
S2

{
(dSA · r) (dSD · r) (A.2)

+ (dSA · r) (dSC · r) + (dSB · r) (dSD · r)

+ (dSB · r) (dSC · r)
}
F (r)

= UAD + UAC + UBD + UBC ,

where r = r2 − r1, the surface S1 is formed by the
surfaces SA and SB, and the surface S2 is formed by
the surfaces SC and SD.
3
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By explicitly expressing the elements dS and r in
terms of cylindrical coordinates, we obtain

UAD = 2

zN−s/2∫
−c−s/2

dz1

2π∫
0

dφ

c+s/2∫
zN+s/2

dz2 (A.3)

×
[
ρs(z1)ρs(z2)cosφ− ρ2

s(z1)− ρs(z1)

× ∂ρs(z1)
∂z1

(z2 − z1)
][
ρ2

s(z2)− ρs(z1)ρs(z2)cosφ

− ρs(z2)
∂ρs(z2)
∂z2

(z2 − z1)
]
F (r),

r = (ρ2
s(z1) + ρ

2
s(z2)− 2ρs(z1)ρs(z2)cosφ

+ (z1 − z2)2)1/2,

UAC = −2
zN+s/2∫

−c−s/2

dz1

2π∫
0

dφ

ρs(zN+s/2)∫
0

ρ2dρ2 (A.4)

× (zN + s/2− z1)
[
ρs(z1)ρ2cosφ− ρ2

s(z1)

− ρs(z1)
∂ρs(z1)
∂z1

(zN + s/2− z1)
]
F (r),

r =
(
ρ2

s(z1) + ρ
2
2 − 2ρs(z1)ρ2cos(φ)

+ (zN + s/2− z1)2
)1/2

,

UBD = 2

ρs(zN−s/2)∫
0

ρ1dρ1

2π∫
0

dφ

c+s/2∫
zN+s/2

dz2 (A.5)

×
(
z2 − zN +

s

2

)[
ρ2

s(z2)− ρ1ρs(z2)cosφ

− ρs(z2)
∂ρs(z2)
∂z2

(
z2 − zN +

s

2

)]
F (r),

r = (ρ2
1 + ρ

2
s(z2)− 2ρ1ρs(z2)cos(φ)

+ (z2 − zN + s/2)2)1/2,

UBC = −2s2
ρs(zN−s/2)∫

0

ρ1dρ1 (A.6)

×
2π∫
0

dφ

ρs(zN+s/2)∫
0

ρ2dρ2F (r),

r =
(
ρ2
1 + ρ

2
2 − 2ρ1ρ2cos(φ) + s2

)1/2
.

PH
Here, the function F (r) for the Coulomb (UC(q, s))
and the nuclear (Un(q, s)) interaction is given by
Eqs. (15), and s is the spacing between the fragments.
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Abstract—An algorithm for implementing the approximation of the leading irreducible representation of
the SU(3) group is expounded for a microscopic Hamiltonian involving the potential energy of nucleon–
nucleon interaction. An effective Hamiltonian is constructed that reproduces the results of calculations
with nucleon–nucleon potentials used in the theory of light nuclei. It is shown that, in many respects, the
structure of the effective Hamiltonian is similar to the structure of the Hamiltonian of a triaxial rotor and
that, for the wave functions in the Elliott scheme, one can go over to a space where linear combinations of
WignerD functions appear to be the transforms of these functions, but where their normalization requires
dedicated calculations. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In order to investigate the excitation spectrum
of valence nucleons in light and medium-mass nu-
clei, Elliott [1] proposed basis states that are as-
sociated with the (λ, µ) irreducible representations
of the SU (3) group and which satisfy the Pauli ex-
clusion principle. Special attention was given to the
most symmetric irreducible representations, which
were referred to as leading irreducible representa-
tions. These states feature the maximum number of
even nucleon pairs (having an even orbital angular
momentum of the relative motion of the nucleons
forming a pair, their interaction being represented by
the components V31 and V13 of the central exchange
nucleon–nucleon potential) and the minimum num-
ber of odd pairs (having an odd orbital angular mo-
mentum of the relative motion of the nucleons form-
ing a pair, their interaction being represented by the
components V33 and V11). While even components
correspond to a strong attraction between nucleons,
odd components correspond to repulsion, which is
necessary for ensuring saturation and consistency
with the observation that the nuclear volume is pro-
portional to the number of nucleons. However, the
character of nucleon–nucleon forces did not play a
major role in justifying the importance of the leading
representation in the Elliott scheme. The key argu-
ment here hinged upon the properties of the operator
of quadrupole–quadrupole interaction chosen to sim-

1)Bogolyubov Institute for Theoretical Physics, National
Academy of Sciences of Ukraine,Metrologicheskayaul. 14b,
Kiev, 252143 Ukraine.

2)Hokkaido University, Sapporo 060, Japan.
1063-7788/03/6604-0632$24.00 c©
ulate the potential energy of nucleon systems,

−ηQQ = −η
(
Ĝ2 −

1
2
L̂2

)
.

Here, Q is the tensor of the mass quadrupole mo-
ment, η is a positive phenomenological parameter, Ĝ2

is the second-order Casimir operator of the SU (3)
group, and L̂2 is the square of the orbital angular
momentum. The eigenvalue g2 of the operator Ĝ2 is
maximal for the leading representation. As a result,
we can see that, first, the operator -ηQQ has a mini-
mum eigenvalue in the leading-representation states
(this also follows from an analysis of the character of
nucleon–nucleon interaction) and, second, the model
reproduces the order of the first levels in the ground-
state rotational band.

The Elliott scheme was further developed upon the
appearance of the pseudo-SU (3) model [2–4] and es-
pecially in connection with the trimming-mode prob-
lem [5], in which case it is necessary to employ a more
complicated phenomenological Hamiltonian and to
refine the wave functions both for the ground states
of even–even nuclei and for states to which isovec-
tor M1 transitions occur [6–8]. Light neutron-rich
nuclei, such as 9,11Li and 10,11Be, for which (in just
the same way as for other light nuclei) calculations
can be performed, without recourse to approaches
involving a phenomenological Hamiltonian, by using
various versions of a microscopic nucleon–nucleon
potential, represent yet another possible domain of
the application of the SU (3) model. Here, it proved
to be possible to solve the problem of constructing
an effective Hamiltonian such that (i) it is expressed
in terms of the generators of the SU (3) group and
(ii) its spectrum coincides with the spectrum of the
2003 MAIK “Nauka/Interperiodica”
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microscopic Hamiltonian and to answer the ques-
tion of which of the known O(3) scalar constructions
composed of the SU (3) generators must be involved
in this effective Hamiltonian.

The objective of this study is to show that, in
many respects, the Elliott scheme is analogous to the
triaxial-rotor model. In particular, its basis states al-
lowed by the Pauli exclusion principle and the eigen-
functions of a triaxial rotor can both be represented
in the form of a superposition of Wigner D func-
tions, although their normalization is determined by
the fact that the density matrix in the Elliott scheme
corresponds to a mixed state rather than a pure state,
which is what we have in the case of a triaxial rotor.
This conclusion is also confirmed by the structure
of the effective Hamiltonian in the Elliott scheme. It
has the form of a linear superposition of scalar con-
structions that are composed of the generators of the
SU (3) group and reduces to the triaxial-rotor Hamil-
tonian and to integral powers of this Hamiltonian,
the maximal power here increasing as the number of
quanta in the valence shell grows.

We demonstrate our approach to implementing
the approximation of the leading irreducible represen-
tation of the SU (3) group by taking the example of
the 10Be nucleus. In just the same way as in other
microscopic calculations of the spectra of light nuclei,
the nucleon–nucleon interaction is simulated by the
well-known Volkov ([9]) and Minnesota ([10]) central
exchange potentials in order to find out whether it
is possible to reproduce, with these potentials, the
energies of the observed excitations in the 10Be nu-
cleus. As a rule, the Elliott scheme was employed for
rather simple phenomenological effective potentials.
For this reason, we present here the most important
details of an algorithm for a microscopic Hamiltonian
that retain significance in a general case. Further,
we give explicit expressions for basic scalar con-
structions that are composed of the generators of the
SU (3) group and show that their linear superposition
with arbitrary coefficients reduces to a Hamiltonian
for a triaxial rotor. Finally, we determine the param-
eters of a phenomenological effective potential that is
equivalent, in the leading-representation limit, to the
microscopic potential of the nucleon–nucleon inter-
action.

2. ELLIOTT SCHEME AND TRIAXIAL
ROTOR

In many respects, the Elliott scheme is similar to
the theory of a rigid triaxial rotor [11]. This becomes
obvious if we go over to a space where spherical
Wigner functions are, as in the case of a rigid ro-
tor, the transforms of the basis wave functions of
the leading irreducible representation of the SU (3)
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
group. A transition to this space is accomplished
by constructing, for a multinucleon system, a Slater
determinant that is a wave function asymmetric under
permutations of nucleons—this ensures fulfillment of
the requirements of the Pauli exclusion principle—
and which, simultaneously, appears to be an invariant
quantity generating a complete basis of the leading
irreducible representation. As a result, the procedure
for calculating matrix elements is considerably sim-
plified both for the operators L̂QL̂ and L̂QQL̂, which
were introduced in [12] as combinations of the gen-
erators of the SU (3) group and which have a direct
algebraic interpretation, and for the operators rep-
resenting the potential energies of central exchange
forces and of tensor and spin–orbit nucleon–nucleon
interaction and entering into the expression for the
microscopic Hamiltonians.

In order to demonstrate the method for construct-
ing the generating function in the form of a Slater
determinant and a subsequent transition to the basis
of the leading representation of the SU (3) group in
terms of linear combinations of Wigner D functions,
we consider the 10Be nucleus as a simple example.
The problem to be solved at this stage does not
reduce to determining the quantum numbers of the
basis states. They are known, and we only confirm
the fact that our approach reproduces them correctly.
Simultaneously, we determine an explicit form of ba-
sis functions, along with their normalization, which
is necessary for calculating the excitation spectrum
within a microscopic theory; we also derive explicit
expressions for the probabilities of electromagnetic
transitions between various states.

We begin by listing orbitals that we will actu-
ally use, distinguishing neutron and proton single-
particle states of the 10Be nucleus. In doing this, we
consider the minimal number of oscillatory quanta
that is allowed by the Pauli exclusion principle.

Omitting the spin–isospin factors, we write two
proton orbitals (s and p) in the form

φ0π(r) =
1
π3/4

exp
(
−r

2

2

)
, (1)

φ1π(r) =
√

2(u · r)
π3/4

exp
(
−r

2

2

)
,

where the unit vector u is the first independent vector
variable in the space where we will further construct
Wigner functions. In each of the two states, φ0(r)
and φ1(r), there are two protons of oppositely directed
spins.

We distribute six neutrons of the 10Be nucleus in
pairs over three states:

φ0ν(r) =
1
π3/4

exp
(
−r

2

2

)
, (2)
3
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φ1ν(r) =
√

2(u · r)
π3/4

exp
(
−r

2

2

)
,

φ2ν(r) =
√

2
π3/4

[w × ũ] · r
u · ũ exp

(
−r

2

2

)
. (3)

Here, there has appeared yet another vector vari-
able—the unit vector w, which is orthogonal to the
vector u. By ũ and w̃, we denote the vectors of the
conjugate orbitals. These two vectors are mutually
orthogonal, but their orientation differs from the ori-
entation of the vectors u and w.

It can easily be shown that∫
φ̃0π(r)φ0π(r)dr = 1,

∫
φ̃1π(r)φ1π(r)dr = u · ũ,

∫
φ̃0ν(r)φ0ν(r)dr = 1,

∫
φ̃1ν(r)φ1ν(r)dr = u · ũ,

∫
φ̃2ν(r)φ2ν(r)dr =

w · w̃
u · ũ .

We compose first the Slater determinant Ψ for
the 10Be nucleus from the orbitals in (1)–(3) and
the corresponding spin–isospin factors and then the
second determinant Ψ̃ from the conjugate orbitals.
The latter can be considered as that which is obtained
upon rotating the coordinate frame in such a way
that the vectors u and w become coincident with the
vectors ũ and w̃. As a matter of fact, the ensuing
manipulations implement the Peierls–Yoccoz algo-
rithm [13] for projecting the wave function onto states
characterized by a specific value of the orbital angular
momentum. This algorithm consists in evaluating the
overlap integral—that is, the integral of the product of
these determinants with respect to all single-particle
vectors ri, i = 1–10—and subsequently expanding
the overlap integral in spherical Wigner functions.

The overlap integral reduces to the simple expres-
sion ∫

Ψ̃Ψdr1dr2 · · · dr10 = 〈Ψ̃Ψ〉 (4)

= I(10Be) = (u · ũ)2(w · w̃)2.

This expression is the density matrix for a mixed
state [14] of a nucleon system. Although integration
in (4) is performed with respect to all single-particle
variables (and this is the reason why the situation here
is unusual), the subsystem of rotational degrees of
freedom remains amenable to investigation owing to
the generator parameters—that is, the Euler angles
that determine the orientation of the vectors u, w,
ũ, and w̃. Here, we denote by θ1, θ2, and θ3 the
angles specifying the orientation of the vectors u and
w and by θ̃1, θ̃2, and θ̃3 the angles specifying the
PH
orientation of the vectors ũ and w̃. The irreducible
representation of theSU (3) group yields amixed state
because the basis of this irreducible representation
reproduces the dynamics of only rotational degrees
of freedom against the background of the dynamics
of all the remaining (heat-bath) degrees of freedom
that is fixed for all excitations. As is well known (see,
for example, [14]), the wave functions in the energy
representation [15] are introduced for mixed states
inclusive in order to diagonalize the relevant density
matrix and to find states in which the system may
occur. These states are referred to as eigenstates of
the density matrix, the eigenvalues of the density
matrix often being associated with the norm of the
eigenfunctions. In the following, we will determine
both the eigenfunctions and the eigenvalues.

The overlap integral (4) (or, more precisely, an
expression of this type) is sometimes referred to as
the kernel of normalization. This expression is sym-
metric under the interchange of the pair formed by the
vectors u and ũ and the pair formed by the vectors
w and w̃. The spatial orientation of the vectors u and
w is determined by three Euler angles. The other two
vectors ũ and w̃ generate yet another trio of Euler
angles. Therefore, the overlap integral can be consid-
ered as the symmetric kernel of the integral equation;
upon determining its eigenfunctions and eigenvalues,
this kernel can be represented in the the form of
a Hilbert–Schmidt expansion—this corresponds to
reducing the density matrix to a diagonal form and
to calculating its eigenvalues. It will become clear
below that the SU (3) kernel is separable; therefore,
a determination of its eigenfunctions and eigenvalues
reduces to some simple algebraic operations. Fre-
quently, one includes the eigenvalues in the eigen-
functions, thereby renormalizing the latter. This is the
origin of the term “normalization kernel.”

Evaluation of the overlap integral (4) is an im-
portant step in the realization of the generator-
coordinate method in deriving the Hill–Wheeler
equation. The overlap integral specifies the space of
wave functions that are easy to use in the SU (3)
Elliott scheme, and the Euler angles θ1, θ2, and
θ3 play the role of generator coordinates. It was
shown in [16] that, within the SU (3) scheme, the
principal axes of the quadrupole-moment tensor can
be associated with valence nucleons; therefore, the
motion of valence nucleons can be considered as the
rotation of these principal axes. As matter of fact, a
transition to functions in the generator-coordinate
representation is performed via an integral trans-
formation of functions associated with the SU (3)
model. By way of example, we indicate that, if φ({ri})
is a coordinate-representation wave function in the
SU(3) scheme, the corresponding wave function
YSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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ψ({θi}) in the generator-coordinate representation
is given by

ψ(θ1, θ2, θ3)

=
∫

Ψ(θ1, θ2, θ3; {ri})φ({ri})dr1dr2 · · · dr10.

The inverse transformation, if necessary, can also be
performed via integration, and it returns the function
to the coordinate representation. In principle, this
transformation is analogous to a transition from the
coordinate representation to the momentum or some
other representation.

Yet another comment concerning the strategy of
further manipulations is in order. In performing all
the ensuing calculations and transformations, it is
convenient to employ, instead of wave functions, the
overlap integrals of the Slater determinants and the
identity operator, theHamiltonian, and operators cor-
responding to various transitions and to determine
the spectrum of the nuclear system in question by
diagonalizing these overlap integrals.

In the p shell, the 10Be nucleus has two parti-
cles (protons) and two neutron holes, the symmetry
indices λ and µ of the corresponding leading repre-
sentation being λ = 2 and µ = 2. This follows, for
example, from relation (4), which, in view of the fact
that the vectors u, w, ũ, and w̃ are of unit length, can
be recast into the more convenient form

I(10Be) = (u · ũ)2(w · w̃)2 = d2
11d

2
22, (5)

where d11 and d22 are elements of the matrix of ro-
tations of Cartesian vectors. As usual, all elements
of this matrix depend only on three Euler angles.
Of course, the relations u · ũ = d11 and w · w̃ = d22
hold. The Elliott basis appears upon expanding ex-
pression (5) in Wigner D functions, where the same
Euler angles appear as independent variables. From
the point of view of the Peierls–Yoccoz projection
method, this expansion is necessary for calculating
the weights of states characterized by different values
of the orbital angular momentum.

For the (λ, µ) irreducible representation, the over-
lap integral has the form

I(λ, µ) = dλ
11d

µ
22 (6)

and its analysis reduces to determining the coeffi-
cientsCL

KK̃
in the expansion of this integral inWigner

D functions. First, we write this expansion in the form

dλ
11d

µ
22 =

∑
L

∑
KK̃

CL
KK̃

DL
K,K̃

. (7)

It is obvious that CL
KK̃

= CL
K̃K

and that the matrix
formed by these expansion coefficients is Hermitian.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
General considerations as to which of the Wigner
D functions enter into the expansion in (7) can be
formulated on the basis of the properties of the D2

point group [17]. The transformations of this group
consist in the reversal of the sign of one of the vectors
u and w (ũ and w̃) or of the vector orthogonal to
the vectors u and w (ũ and w̃). If the indices λ
and µ are even, the expression (u · ũ)λ(w · w̃)µ is
invariant under these transformations; therefore, it in-
volves only D functions that belong to the symmetric
representation of theD2 group, that is,

D0
0,0, D

2
0,0, D

2
2+,0, D

2
0,2+, D

2
2+,2+, D

3
2−,2−,

and so on (see [17]).
Among the totality of these functions, there are

those that cannot appear in the expansion being con-
sidered, whose actual composition depends on the
choice of the directions for the axes of the original and
the rotated coordinate frame. The number of indepen-
dent states that are involved in the overlap integral
does not depend on this choice, but the structure of
the states depends on it. We will clarify this statement
by considering the example of the overlap integral (5).
Following Elliott, we take the z (z̃) and x (x̃) axes to
be aligned with the vectors u (ũ) and w (w̃), respec-
tively. The expansion of the overlap integral then takes
the form

d2
11d

2
22 =

2
15
D0

0,0 +
5
21

(8)

×
(

1
4
D2

0,0 +
√

3
4
D2

0,2+ +
√

3
4
D2

2+,0 +
3
4
D2

2+,2+

)

+
1
3

(
3
4
D2

0,0 −
√

3
4
D2

0,2+−
√

3
4
D2

2+,0 +
1
4
D2

2+,2+

)

+
1
6
D3

2−,2− +
9
70

(
4
9
D4

0,0 −
2
√

5
9
D4

0,2+

−2
√

5
9
D4

2+,0 +
5
9
D4

2+,2+

)
.

The five coefficients in front of the five terms on the
right-hans side of (8) are the weight factors of the
basis states, and their sum is

2
15

+
5
21

+
1
3

+
1
6

+
9
70

= 1,

as it must be.
Thus, we have reduced the density matrix (4) to

a diagonal form, actually listed the quantum num-
bers of the eigenfunctions of the density matrix, and
determined the corresponding eigenvalues.Moreover,
it follows from expansion (8) that the basis-state
wave functions ψα

Lm (where m is the projection of
the orbital angular momentum onto the external axis
3
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and the superscript α stands for an additional quan-
tum number that appears in the case of need) are
expressed in terms of Wigner D functions. This is
natural since we consider the dynamics of rotational
degrees of freedom. The last statement will become
obvious upon representing each of the DL

K,K̃
func-

tions in the form

DL
K,K̃

=
∑
m

DL
K,mD

L
m,K̃

.

For example, we then haveψ0 = 1 for the 10Be ground
state, whose weight is 2/15, and ψ3m = D3

2−,m for
the L = 3 state, whose weight is 1/6. For one of the
L = 2 states (its weight is 5/21), we obtain

ψ1
2m =

1
2
D2

0,m +
√

3
2
D2

2+,m,

while, for the other state, which has the weight of 1/3,
the corresponding result is

ψ2
2m =

√
3

2
D2

0,m − 1
2
D2

2+,m.

Finally, the result for the only L = 4 state, whose
weight is 9/70, has the form

ψ4m =
2
3
D4

0,m −
√

5
3
D4

2+,m.

Thus, we have obtained the wave functions that are
identical to the wave functions for the nonaxial-rotor
model [11] for the case where the nonaxiality parame-
ter is γ = π/6. In this way, we have established the re-
lationship between two models based on significantly
different assumptions.

Thus, the overlap integral [in general, of the
form (7) for arbitrary values of the symmetry in-
dices λ and µ and, in particular, of the form (5) for
λ = µ = 2] is simultaneously a density matrix that
was computed by integrating the product of two
Slater determinants with respect to all single-particle
variables. In contrast to the standard density matrix
(see [14]) for which integration is performed with
respect to only some of the single-particle vectors, the
other vectors playing the role of independent variables
of the density matrix, our independent variables of
the density matrix are expressed in terms of the
vector parameters u and w (ũ and w̃) of the Slater
determinants. In other words, a determination of the
density matrix is accompanied by going over from
the space of single-particle variables to the space
of Euler angles that appear as independent variables
in the simplest realization of the basis states of the
irreducible representations of the SU (3) group—that
is, in spherical Wigner functions.

We have obtained a density matrix that is diagonal
in the representation of the above basis functions. At
PH
the same time, the weight factors for different basis
functions differ from one another. This confirms once
again that our matrix is associated with a mixed state
of the nucleon system rather than with a pure state,
for which all weight factors would be identical, with
their sum being equal to unity, as in the above case.

Suppose that λ and µ are even. We can then
expand the density matrix as

I(λ, µ) =
∑
L

∑
α

wα
L(λ, µ)

∑
m

ψα
Lmψ̃

α
Lm, (9)

where wα
L(λ, µ) are weight factors that satisfy the

condition ∑
L

∑
α

wα
L(λ, µ) = 1. (10)

If λ ≥ µ and L is even, we have

ψα
Lm =

µ∑
K=0

Cα
LKD

L
K+,m. (11)

But if L is odd, we have

ψα
Lm =

µ∑
K=0

Cα
LKD

L
K−,m. (12)

In either case, the following relation holds:
µ∑

K=0

Cα
LKC

α′
LK = δα,α′ . (13)

In particular, we have

w0(λ, µ) =
(λ− 1)!!(µ − 1)!!(λ + µ)!!

λ!!µ!!(λ+ µ+ 1)!!
, (14)

w1
2(λ, µ) = w0(λ, µ)

5
2

λ(λ+ 2) + µ(µ+ 2)
(λ+ 2)(µ+ 2)(λ+ µ+ 3)

(15)

×
{

2√
3
λµ+ λ+ µ

λ− µ y −
√

1 + y2

}
,

C1
20 =

√√
1 + y2 + 1

2
√

1 + y2
, C1

22 =

√√
1 + y2 − 1

2
√

1 + y2
,

(16)

where

y =
√

3
(λ+ µ+ 2)(λ − µ)
λ(λ+ 2) + µ(µ+ 2)

;

w2
2(λ, µ) = w0(λ, µ)

5
2

λ(λ+ 2) + µ(µ+ 2)
(λ+ 2)(µ+ 2)(λ+ µ+ 3)

(17)

×
{

2√
3
λµ+ λ+ µ

λ− µ y +
√

1 + y2

}
,
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C2
20 =

√√
1 + y2 − 1

2
√

1 + y2
, C2

22 = −
√√

1 + y2 + 1

2
√

1 + y2
.

(18)

The actual number of the terms in the sum in (9) (the
ranges of the orbital angular momentum L and the
additional quantum number α) is determined by the
Elliott rules listing the basis states of an irreducible
representation of the SU (3) group.

The choice of axes that was proposed by Elliott
simplifies the classification of the basis states. It
seems, however, that the Elliott model is at odds
with experimental data in what is concerned with the
structure of the wave functions for the states involved:
in the case of the 10Be nucleus considered here, the
orbital-angular-momentum projection K onto the
intrinsic axis of the nucleus is not an integral of the
motion for either of the two D2-symmetric states
of orbital angular momentum L = 2—at the same
time, experimental data indicate that rotational states
combine intoK = 0, K = 2, etc, bands.

In order to remove this contradiction, it is sufficient
to direct the z (z̃) axis along the vector orthogonal to
the vectors u andw (ũ and w̃). In this case, we obtain
an expansion that has a different structure of the basis
functions, but where the values of the weight factors
remain unchanged; that is,

d2
11d

2
22 =

2
15
D0

0,0 +
5
21
D2

0,0 +
1
3
D2

2+,2+ (19)

+
1
6
D3

2−,2− +
9
70

(
35
36
D4

4+,4+ −
√

35
36

D4
4+,0

−
√

35
36

D4
0,4+ +

1
36
D4

0,0

)
.

It follows from (19) that, in contrast to the standard
Elliott choice, the new choice of the rotational axis
ensures the conservation ofK atL = 2, and this leads
to agreement between the Elliott scheme and the
classification used in interpreting experimental data,
which assumes thatK is a good quantum number. As
to the only L = 4 state, the weight of its main com-
ponent, which is characterized by K = 4, is 35/36;
there is no K = 2 component, and the weight of the
K = 0 component is as small as 1/36. So a drastic
change in the structure of states upon going over from
L = 2 to L = 4 can be associated with the observed
phenomenon of a significant change in the orbital-
angular-momentum projection K for states of the
lowest rotational band as soon as L reaches some
critical value.

As to themost general ideas concerning the choice
of axis about which rotation occurs, they can reduce
to the following statements depending on the symme-
try indices λ and µ of the the leading representation.
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(i) For the (λ, 0) representations, with the corre-
sponding overlap integral being given by

(u · ũ)λ,

the rotation axis must be aligned with the vector
u (ũ); for all allowed states, the orbital-angular-
momentum projection K can then take only zero
value. But if µ� λ, there appearK �= 0 components;
however, their amplitude in the wave functions for
the ground-state rotational band is small, whence it
follows that, as previously, the states of the ground-
state band can be interpreted as theK = 0 states.

(ii) For the (0, µ) representations, in which case
the overlap integral is

(w · w̃)µ,

the rotation axis must be directed along w (w̃). As
before, only K = 0 states are possible here; if λ�
µ, the situation prevalent in the preceding case is
reproduced.

(iii) Finally, let us consider the λ = µ represen-
tations, for which the rotation axis is chosen to be
aligned with u× w (ũ × w̃). At close values of λ
and µ, there appears a small admixture of K = 2
components in states of the ground-state rotational
band and a small admixture of K = 0 components in
states of theK = 2 rotational band.

3. OVERLAP INTEGRAL INVOLVING A
HAMILTONIAN

The next step in implementing the Elliott model
for the 10Be spectrum will be to calculate the overlap
integral involving the generating Slater determinants
and the Hamiltonian Ĥ = T̂ + Û , where T̂ is the
kinetic-energy operator and Û is the potential of a
central exchange interaction of the Gaussian type.
This integral,∫

Ψ̃ĤΨdr1dr2 · · · dr10 = 〈Ψ̃|Ĥ|Ψ〉, (20)

is a function of the Euler angles θi and θ̃i. Along
with the overlap integral 〈Ψ̃|Ψ〉, which, as we already
know, depends on the same angles, the overlap in-
tegral involving the Hamiltonian can be reasonably
interpreted in terms of the Hill–Wheeler equation∫ {

〈Ψ̃|Ĥ|Ψ〉 − E〈Ψ̃|Ψ〉
}
ψ(θi)dΩ = 0, (21)

where dΩ = dθ1 sin θ2dθ2dθ3. Our next step is to
prove that Eq. (21) can be solved bymeans of a simple
procedure.
3
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Spectrum of the 10Be nucleus in the approximation of the
leading representation of the SU(3) group for the Volkov
potential at the mixing-parameter value of m = 0.6 and
for the Minnesota potential at the mixing-parameter
value of u = 0.98 (the energy is given in MeV).

The explicit form of the overlap integral involv-
ing the potential-energy operator can be straightfor-
wardly found by using the fact that the Slater de-
terminants are constructed in terms of biorthogonal
orbitals

〈Ψ|Û |Ψ〉 = A(I1 + I2) + CI3 + (D − 2A)I, (22)

where

I1 = u2ũ2(w · w̃)2, I2 = w2w̃2(u · ũ)2,
I3 = ([u × ũ] · [w × w̃])(u · ũ)(w · w̃).

The coefficients A, C, and D can be expressed in
terms of the intensities of the even components V31

and V13 of the potential simulating the nucleon–
nucleon interaction and the parameter

z−1 = 1 +
2r20
b20
,

where r0 is the oscillator length and b0 is the radius of
the Gaussian potential. The result has the form

A = z3/2

(
1 − z

2

)2

V13, (23)

C = z3/2

(
1 − z

2

)2

(V13 + 3V31).

The coefficient D is not involved in the terms of the
Hamiltonian that split the spectrum; therefore, the
expression for this coefficient is not presented here.

In the integral in (22), we retain only those terms
that are responsible for the splitting of the spectrum.
All the remaining terms determine the energy from
which one reckons the positions of the excited states
of the nucleus; here, they are not presented below. If
here we direct the z (z̃) axis along u × w (ũ × w̃),
PH
then

I1 + I2 =
2
3
D0

0,0 +
1
3
D2

0,0 +D2
2+,2+,

I3 =
1
30
D0

0,0 +
2
21
D2

0,0 −
9
70

(
35
36
D4

4+,4+

−
√

35
36

D4
4+,0 −

√
35

36
D4

0,4+ +
1
36
D4

0,0

)
.

It is now straightforward to find the energies of five
states of the 10Be nucleus. For the energy of the 0+

state, we have

E0 = 5A+
1
4
C. (24)

In order to determine the excitation energies of the
remaining four states, we will reckon their positions
from the 0+ state. We have

E1
2 − E0 = −18

5

(
A− C

4

)
− 3

4
C, (25)

E2
2 − E0 = −2

(
A− C

4

)
− 3

4
C, (26)

E3 − E0 = −5
(
A− C

4

)
− 3

2
C, (27)

E4 − E0 = −5
(
A− C

4

)
− 5

2
C. (28)

It is noteworthy that, for the Volkov potential,
two L = 2 states of K = 0 and K = 2 have identical
energies since V31 = V13 for this potential. The 10Be
spectrum obtained with the Volkov potential at the
mixing-parameter value ofm = 0.6 and the oscillator
length of r0 = 1.64 fm is shown in the left part of the
figure. This value of r0 was obtained from a variational
calculation. It minimizes the energy of the ground
state and corresponds to the root-mean-square ra-
dius of 2.29 fm. The observed value of the 10Be root-
mean-squared radius is 2.3 ± 0.2 fm [18].

While the Volkov potential produces the observed
value of the 10Be radius, a variational calculation on
the basis of the Minnesota potential at the mixing
parameter of u = 0.98 (it is this value of u that ap-
pears to be optimal for nuclei from the first half of the
class of p-shell nuclei) yields r0 = 1.43 fm, which is a
value that leads to incorrect results both for the root-
mean-squared radius (it proves to be considerably
underestimated) and for the order of excited states.
No saturation arises either for the Minnesota or for
the Volkov potential, but this is manifested earlier (for
lighter nuclei) for theMinnesota potential at u = 0.98
than for the Volkov potential atm = 0.6. But if, for the
YSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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Minnesota potential, we set r0 = 1.64 fm, we arrive
at the spectrum shown in the right part of the figure.
Here, the two 2+ states have different energies since
V31 �= V13 in this potential. However, the difference
of the energies of these states is 1.29 MeV, which
is nearly one-half as great as the observed value of
2.59 MeV. The difference E2

2 −E1
2 is proportional to

V31 − V13. In trying to reach agreement with experi-
mental data within the approximation being consid-
ered, it is therefore necessary to increase the differ-
ence V31 − V13 appropriately. The introduction of a
similar correction is also motivated by the fact that
the result

1
2
(E2

2 + E1
2) − E0 = 1.125 MeV,

which was obtained on the basis of the Minnesota
potential, is one-fourth as great as the experimental
value and is nearly one-half as great as its counterpart
calculated with the Volkov potential, for which it is
2.07 MeV.

We note that both potentials were constructed
long ago on the basis of experimental data for nuclei
from the beginning of the p shell. It is clear that their
extension to nuclei from the second half of the p shell
must be accompanied by an appropriate correction of
these potentials.

The Elliott scheme predicts the existence of two
more excitations, those of spin–parity 3+ and 4+.
The energy of the former is close to the sum of the
energies of the 2+ excitations. The 4+ state is domi-
nated by the K = 4 components, and this affects the
probabilities of E2 transitions. The isoscalar electric
transition from the 4+ state to theL = 2,K = 0 state
is forbidden, and only the transition to the L = 2,
K = 2 state occurs.

It is important that, at an arbitrary choice of
version for the central exchange potential for the
nucleon–nucleon interaction, the matrix elements
of the potential between the L = 2,K = 0 and L =
2,K = 2 states vanish.

4. EFFECTIVE HAMILTONIAN
OF THE SU (3) MODEL

In calculating the overlap integral (22), the result
of applying the operator Ĥ to the generating Slater
determinant Ψ, whose SU (3) symmetry is (2, 2),
was projected onto a state that has the same (2, 2)
symmetry. Projecting was performed via integration.
Taking the overlap integral (22), we do not therefore
go beyond the basis of the (2, 2) irreducible represen-
tation. In order to understand how theHamiltonian Ĥ
acts in the space spanned by the basis states of this
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
irreducible representation, we define a new operator
Ĥ(u,w), setting

〈Ψ|Ĥ|Ψ〉 = Ĥ(u,w)〈Ψ|Ψ〉. (29)

Operators such that their application to basis states
of an irreducible representation of the SU (3) group
does not result in going beyond the SU (3) basis are
known. These are generators of the SU (3) group.
Needless to say, we are interested only in the scalar
O(3) constructions formed by generators. They are
also known [19, 20]. The operator QQ, which was
introduced by Elliott, and two more operators Ω̂ =
L̂QL̂ and Ω̂1 = L̂QQL̂ [12] are the simplest of these.
Each of the remaining operators can be represented
as a polynomial of these three basic operators.

In the approximation used here, the wave func-
tions reduce to superpositions of Wigner D func-
tions. Therefore, it is natural that all operators in
this representation can be expressed, in just the same
way as in the case of a triaxial-rotor Hamiltonian, in
terms of the SU (3)-symmetry indices λ and µ and in
terms of L̂1, L̂2, and L̂3, which are the projections of
the orbital-angular-momentum operator L̂ onto the
intrinsic axes of the system. It was shown in [16] that

−Ω̂ = aL̂2
1 + bL̂2

2 + cL̂2
3 + Ω̂2, (30)

−Ω̂1 = a2L̂2
1 + b2L̂2

2 + c2L̂2
3 −

2
3
L̂2 (31)

− L̂2
2 +

1
2
(L̂2

1L̂
2
3 + L̂2

3L̂
2
1) + 2bΩ̂2,

where

a =
2λ+ µ+ 3

3
, b =

−λ+ µ

3
, (32)

c =
−λ− 2µ− 3

3
;

Ω̂2 =
i

6

(
L̂1L̂2L̂3 + L̂2L̂3L̂1 + L̂3L̂1L̂2 (33)

+ L̂2L̂1L̂3 + L̂3L̂2L̂1 + L̂1L̂3L̂2

)
.

The structure of the operators Ω̂ and Ω̂1 is similar
to the structure of the triaxial-rotor Hamiltonian, the
only difference being that, instead of the principal
values of the inertia tensor, the principal values of
the tensor of the intrinsic quadrupole moment in the
case of Ω̂ and the squares of these principal values in
the case of Ω̂1 appear here for the inertia parameters
(coefficients of L̂2

1, L̂
2
2, and L̂

2
3). The additional terms

Ω̂2 and
1
2
(L̂2

1L̂
2
3 + L̂2

3L̂
2
1)
3
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affect only the details that ensure a finite number of
basis functions for each irreducible representation of
the SU (3) group, in contrast to an infinite number of
basis functions for a triaxial rotor.

The operators Ω̂ and Ω̂1 commute with the oper-
ator L̂2; therefore, the orbital angular momentum L
is an integral of the motion, as it must be. Moreover,
these operators are invariant under the transforma-
tions of the D2 group; hence, each of their eigen-
functions has a specific D2 symmetry. But among
the eigenfunctions of the operators Ω̂ and Ω̂1, only
those have a physical meaning whose D2 symmetry
is identical to the D2 symmetry of the basis states
involved in the overlap integral (7).

It is natural to construct the eigenfunctions φL,m

of the operator Ω̂ (or Ω̂1, or a linear combination of
the operators Ω̂ and Ω̂1 with arbitrary coefficients) in
the form of a linear superposition of the renormalized
functions √

wα
Lψ

α
Lm,

where
√
wα

L is the weighted norm—that is, in the
form

φLm =
∑
α

BL,α

√
wα

Lψ
α
Lm. (34)

Upon renormalizing the basis functions in this way,
we must also renormalize the matrix elements. As
usually occurs in such a situation, the new coeffi-
cients BLα in the expansion satisfy the set of linear
algebraic equations∑

α′

(〈L,α|Ω̂|L,α′〉 − δα,α′)BL,α′ = 0. (35)

In order to calculate the matrix elements
〈L,α|Ω̂|L,α′〉 explicitly, we can first evaluate the
overlap integral involving the generating determi-
nants and the operator Ω̂ and then represent it in the
form of the expansion

〈Ψ|Ω̂|Ψ〉 (36)

=
∑
L

∑
α,α′

√
wα

L(λ, µ)wα′
L (λ, µ)〈L,α|Ω̂|L,α′〉

×
∑
m

ψα
Lmψ̃

α′
Lm.

The simple explicit form (30) of Ω̂ makes it possible to
solve this problem by using the relation

Ω̂
√
wα

Lψ
α
Lm =

∑
α′

〈L,α|Ω̂|L,α′〉
√
wα′

L ψ
α
Lm. (37)

In order to derive relation (37), it is sufficient to
employ known formulas (see, for example, [14]) that
P

specify the result of applying the operators L̂1, L̂2, and
L̂3 to Wigner D functions. The two approaches lead
to the same Hermitian matrix

||〈L,α|Ω̂|L,α′〉||,
whose diagonalization yields the eigenvalues of the
operator Ω. At each fixed value of L, the dimension of
this matrix depends on the number of possible values
of α.

Finally, there is yet another possibility that con-
sists in constructing an expansion of φLm directly in
terms of WignerD functions; that is,

φLm = NL

∑
K

AL,KD
L
K±,m. (38)

This is the simplest method for solving the eigenvalue
problem in question, although we obtain, upon such
calculations, a non-Hermitian matrix,

||〈L,K ± |Ω̂|L,K ′±〉||, (39)

since the operator Ω̂2, which enters into the composi-
tion of both Ω̂ and Ω̂1, involves an imaginary unit as a
common factor and is therefore not self-conjugate. By
no means does this imply that the matrix in question
will have complex eigenvalues.3) The set of equations
for the coefficients AL,K has the form∑

K ′

(〈L,K ± |Ω̂|L,K ′±〉 − δK,K ′)AL,K′ = 0, (40)

where the matrix elements 〈L,K ± |Ω̂|L,K ′±〉 are
determined from the relation

Ω̂DL
K±,m =

∑
K ′

〈L,K ± |Ω̂|L,K ′±〉DL
K ′±,m. (41)

The norm NL of the eigenfunction in (38) is deter-
mined from the condition

NL

∑
α

1√
wα

L

∑
K

AL,KC
α
LK = 1. (42)

For states that are allowed by the Pauli exclusion
principle, the coefficientsCα

LK were defined previously
[see Eqs. (11), (12)]. In order to calculate them, we
must expand the overlap integral (7) in the basis
states of an irreducible representation of the SU (3)
group. Summation over K in (42) has the meaning
of projecting the eigenfunction of the operator Ω̂ onto
states that are allowed by the Pauli exclusion princi-
ple.

Among the eigenfunctions of the operator Ω̂, there
are, however, forbidden states. A forbidden state must

3)We recall that a Hermitian matrix has only real eigenval-
ues. If, however, a matrix is non-Hermitian, its eigenvalues
are not necessarily complex-valued—they also can be real-
valued.
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be orthogonal to all of the allowed states. Of the
eigenfunctions of the operator Ω̂ that were obtained
by diagonalizing the matrix in (39), those are there-
fore forbidden for which each of the sums∑

K

AL,KC
α
LK ,

which differ by possible values of the additional quan-
tum number α of allowed states, vanish. Such states
do not satisfy the Pauli exclusion principle and must
be discarded. Forbidden states will inevitably appear
as the orbital angular momentum L increases, and
this must be taken into account in explicitly calcu-
lating the excitation spectrum if these calculations
reduce to the diagonalization of the matrix in (39).

5. GENERAL CONSIDERATIONS
ON THE EFFECTIVE HAMILTONIAN

At the first stage, at least, it is reasonable to con-
struct the effective Hamiltonian in the form of a linear
combination of the operators QQ, Ω̂, and Ω̂1. It has
now become clear that, as a result, we actually arrive
at the triaxial-rotor Hamiltonian supplemented with
a few additional terms that can play an important role
in explicitly calculating the spectrum of the leading
representation. Coefficients of each of the three op-
erators can be phenomenological parameters in this
approach.

There arises the question of whether such a
Hamiltonian can explain the observed spectra of the
first excited states of even–even nuclei. It is reason-
able to assume that phenomenological parameters
take identical values for a rather wide range of nuclei
and that the SU(3)-symmetry indices change from
one nucleus to another, as is prescribed by general
rules.

This approach was used by Draayer and Weeks
in [19, 20], but, in addition, they attempted to extend
the model to states characterized by higher values
of L, not restricting themselves to the first excited
states. In this case, one must answer another ques-
tion, that of whether the theory can be restricted to the
first powers of the above three operators or whether it
is necessary to include higher powers of these opera-
tors in the model Hamiltonian.

For the example of the 20Ne and 44Ti nuclei, it was
shown in [21] that the effective Hamiltonian derived
for their (λ, 0) leading representations of the SU (3)
group [(8,0) for 20Ne and (12,0) for 44Ti] from the
overlap integrals involving the generating Slater de-
terminants and the potential energy of the central ex-
change nucleon–nucleon interaction of the Gaussian
type features the first and the second power of the
operator QQ in the case of 20Ne and its first, second,
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and third powers in the case of 44Ti. Simultaneously,
it became clear that, as we go over to the next oscilla-
tor shells, there appear higher terms in powers of the
operator QQ. The higher the orbital angular momen-
tum L, the more pronounced the effect of these terms.
For the (λ, 0) representations, the operators Ω̂ and
Ω̂1 degenerate, becoming equivalent to the operator
L̂2. In order to derive terms involving high powers of
Ω̂ and Ω̂1, it is therefore necessary to invoke leading
representations specified by nonvanishing values of
both λ and µ and to go beyond the p shell. Of course,
high powers of Ω̂ and Ω̂1 can also be included in the
Hamiltonian by applying phenomenological consid-
erations.

6. OPERATOR OF THE MASS
QUADRUPOLE MOMENT

We now explain why a, b, and c are the principal
values of the quadrupole moment. The starting point
in discussing the problem of the mass quadrupole
operator Q̂αβ and the explicit form of the operator rep-
resenting its components in the intrinsic coordinate
frame are presented in [16]. For our choice of axis, this
operator can be rewritten as

Q̂2m =
1
3
(−λ+ µ)D2

m,0 +
√

3
3

(λ+ µ)D2
m,2+ (43)

−
√

3
3

(
D2

m,1+L̂1 + iD2
m,1−L̂3 +D2

m,2−L̂2

)
,

where

1
3
(−λ+ µ) and

√
3

3
(λ+ µ)

are the principal values of the traceless quadrupole-
moment tensor.

From (43), it immediately follows that

QQ =
2
3
(λ2 + λµ+ µ2 + 3λ+ 3µ) − 1

2
L̂2. (44)

We also note that

−
√

3
3

(
D2

m,1+L̂1 + iD2
m,1−L̂3 (45)

+D2
m,2−L̂2

)
D2

m′,2+ = −
√

3
3
(
D2

m,1+D
2
m′,1+

− D2
m,1−D

2
m′,1− + 2D2

m,2−D
2
m′,2−

)
.

Thus, we have obtained the required expression,
which is invariant under the transformations of the
D2 group. This is obvious since the application of
the quadrupole-moment operator to a D2-symmetric
expression must lead to a symmetric expression as
well.
3
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For the choice of axes that was proposed by Elliott,
we have

Q̂2m =
2
3

{(
ā− b̄+ c̄

2

)
D2

m,0

+
√

3
2
(
b̄− c̄

)
D2

m,2+

}
+ . . . =

1
3
(2λ+ µ)D2

m,0

+
√

3
3
µD2

m,2+ + . . . .

By definition, the following relations hold:

ā =
1
3
(2λ+ µ) = a− 1, b̄ =

1
3
(−λ+ µ) = b,

c̄ =
1
3
(−λ− 2µ) = c+ 1.

According to this definition, the expression for the
quadrupole-moment operator for the (λ, 0) represen-
tation and the Elliott choice has the form

Q̂2m =
2λ
3
D2

m,0 + . . . . (46)

In this case, an axisymmetric nucleus is prolate;
therefore, the intrinsic quadrupole moment4) is di-
rected along the rotation axis and is positive.

Another choice,

Q̂2m =
2
3

{(
c̄− ā+ b̄

2

)
D2

m,0

+
√

3
2

(ā− b̄)D2
m,2+

}
+ . . . = −1

3
(2µ+ λ)D2

m,0

+
√

3
3
λD2

m,2+ + . . . ,

is convenient for the (0, µ) limiting transition, in
which case

Q̂2m = −2µ
3
D2

m,0 + . . . . (47)

Now, the nucleus is oblate and the intrinsic quadru-
pole moment directed along the rotation axis is nega-
tive.

Finally, we represent the matrix elements for the
isoscalar E2 transition from the ground state to the
ψα

2m states of the Elliott basis for arbitrary even values
of the symmetry indices λ and µ. We have

〈L = 2, α = 1,m|Q̂2m|L = 0〉 (48)

4)The quadrupole moment is a traceless tensor whose two
principal components are Q20 and Q22+. In the axisymmet-
ric case, the second component vanishes; therefore, it can be
stated that the quadrupole moment is oriented along one of
its three principal axes.
PH
=
√
w0

w1
2

{
1
3
(−λ+ µ)C1

20 +
√

3
3

(λ+ µ)C1
22

}
,

〈L = 2, α = 2,m|Q̂2m|L = 0〉 (49)

=
√
w0

w2
2

{
1
3
(−λ+ µ)C2

20 +
√

3
3

(λ+ µ)C2
22

}
.

7. EFFECTIVE HAMILTONIAN FOR 10Be

Our next task is to construct the effective Hamil-
tonian Ĥ(u,w) for the 10Be nucleus as a linear com-
bination of the operators L̂2, Ω̂, and Ω̂1. The only con-
dition unambiguously specifying this Hamiltonian is
that the spectrum of its eigenfunctions and eigen-
values must be identical to the spectrum previously
constructed in the approximation of the leading irre-
ducible representation of the SU (3) group.

We set

Ĥ(u,w) = C

(
3
2
− 1

8
L̂2

)
+
(
A− C

4

)
(50)

×
(
p+ qL̂2 + rΩ̂1 + sΩ̂

)
,

where p, q, r, and s are coefficients that must be
determined.

As was indicated above, the overlap integral in-
volving a unity vector and the overlap integral involv-
ing the Hamiltonian are diagonal in the representa-
tion of the basis functions ψ1

2m and ψ2
2m for the L = 2

states. At the same time, the eigenfunctions of the
operator Ω̂ are mixtures of these states. It follows that
s = 0, which means that the two L = 2 energy levels
can be split only owing to the operator Ω̂1. From (25)
and (26), it follows that

E2
2 − E1

2 =
8
5

(
A− C

4

)
. (51)

The eigenvalues of the operator Ω̂1 in the same states
can easily be calculated. The result are

Ω̂1ψ
1
2m = −44ψ1

2m, Ω̂1ψ
2
2m = −12ψ2

2m. (52)

Considering that

E0 = 5A+
1
4
C,

E1
2 − E0 = −18

5

(
A− C

4

)
− 3

4
C,

we determine the coefficients p, q, and r and obtain, in
this way, the explicit form of the effectiveHamiltonian:

Ĥ(u,w) = C

(
3
2
− 1

8
L̂2

)
+
(
A− C

4

)
(53)
YSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003



SPECTRUM OF 10Be IN THE APPROXIMATION 643
×
(

5 − 7
30

L̂2 +
1
20

Ω̂1

)
.

One can directly prove that, for the L = 3 and L = 4
states, this Hamiltonian leads to the values E3 and
E4, respectively, identical to those found above.

In the approach based on a phenomenological ef-
fective Hamiltonian, the coefficientsA andC are cho-
sen in such a way as to reproduce the 10Be spectrum
observed experimentally. However, it is sufficient for
this to use the known energies of the three first states,
E0, E1

2 , and E
2
2 . The energies E3 and E4 could then

be used as a test, but the values of these energies have
yet to be determined.

8. CONCLUSION

Thus, a realization of the approximation of the
leading irreducible representation of the SU(3) group
on the basis of a microscopic Hamiltonian with po-
tentials of the nucleon–nucleon interaction that are
adopted in the theory of light nuclei (specifically, the
Volkov and the Minnesota potential) can be reduced
to calculations involving an effective Hamiltonian,
which appears to be a linear combination of the op-
erator L̂2 and the operators Ω̂ and Ω̂1 introduced
by Bargmann and Moshinsky or of powers of these
operators. Inmany respects, it is similar to theHamil-
tonian of a triaxial rotor. However, the inertia param-
eters of such a rotor are not in inverse proportion
to the principal values of the tensor of inertia, but
but they are proportional to the principal values of
the quadrupole-moment tensor. It has been shown
that, in just the same way as basis functions for a
rotor, basis functions of the irreducible representation
of the SU (3) group are superpositions of Wigner D
functions, only their norm requiring a dedicated cal-
culation.

Problems have been indicated that arise in the case
of applying the Volkov or the Minnesota potential in
spectroscopic calculations for nuclei from the second
half of the p shell.

General arguments concerning the form of the
effective Hamiltonians for medium-mass and heavy
nuclei have been adduced.
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Abstract—By matching data on proton-stripping and proton-pickup reactions occurring on the same
nuclear species, new experimental results for single-particle energies, occupation numbers, and frag-
mentation widths of proton states in the vicinity of the Fermi energy are obtained for the even–even
isotopes 40,42,44,46,48Са. These results, along with the experimental values determined in the relevant
(p, 2p) reaction for the single-particle energies of deep hole states in 40Са, are analyzed on the basis
of the dispersive-optical-model version proposed in the present study. The results of this analysis are
compared with the predictions of various nuclear models, including the relativistic mean-field model.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A great number of experimental and theoretical
studies are devoted to exploring the properties of the
doubly magic nucleus 40Са. In view of the spherical
symmetry of the mean nuclear field, the structure
of single-particle states in 40Са is the simplest;
therefore, it is extensively used as a testing ground for
calculations performed within various nuclear models
that have been vigorously developed in recent years,
including the relativistic mean-field model (see [1]
and references therein) and the dispersive optical
model (see [2, 3] and references therein).

Much attention has also been given to studying
the properties of another doubly magic nucleus, 48Са,
and of even–even isotopes of Са that occur between
40Са and 48Са, since, in order to test a model of
nuclear structure, it is important to trace, within its
framework, changes in the isotope structure with in-
creasing number of neutrons.

Currently prevalent concepts of the single-particle
facets of nuclear structure are based on information
that is extracted from analyses of data on one-
nucleon-transfer and one-nucleon-knockout reac-
tions [that is, reactions of the (e, e′p), (p, 2p), and
(p, pn) types].

According to [4], the ground-state spin–parity
values for the 39,41,43,45К nuclei are 3/2+, while that
for 47К is 1/2+. This means that the sequence of
single-particle levels near the Fermi energy must be
1d3/2, 2s1/2, 1d5/2 in 40,42,44,46Са and 2s1/2, 1d3/2,
1d5/2 in 48Са. From data presented in [5–7], which
1063-7788/03/6604-0644$24.00 c©
were obtained from analyses of one-nucleon-transfer
reactions, it follows, however, that the sequence of
levels in 44,46Са is identical to that in 48Са.

Within the relativistic mean-field model, single-
particle spectra were studied in [1] for a large num-
ber of spherical nuclei over a wide range of mass
numbers A, including the 40−48Са nuclei. The re-
sults obtained by comparing the computed energies
of single-particle proton levels with their experimental
counterparts were presented in that article for 40,48Са.
According to [1], the sequence of single-particle lev-
els in 44,46Са is identical to that in 48Са, but this is
at odds with data on the spin values in the ground
states of 43,45,47К [4]. Thus, the problem of changes
in the order of proton levels in Ca isotopes as the
number of neutrons approaches N = 28 has not yet
been adequately described.

In [2, 8, 9], the parameters of the proton shell
structure of 40Са were calculated within various ver-
sions of the method relying on the dispersive optical
model, and it was shown there that the results comply
well with the experimental parameter values. For the
42,44,46,48Са nuclei, however, the parameters of the
shell structure have not yet been calculated within the
dispersive optical model.

The objective of the present study is to calculate,
on the basis of the dispersive optical model, the pa-
rameters of the shell structure of the nuclei of the
even–even isotopes 40,42,44,46,48Са and to compare
the results with the values obtained on the basis of the
relativistic mean-field model and those found from a
reanalysis of experimental data that is performed by
2003 MAIK “Nauka/Interperiodica”



PARAMETERS OF THE PROTON SHELL STRUCTURE 645
the method developed in [10] for matching data on
stripping and pickup reactions occurring on the same
nucleus.

The need for performing such a reanalysis of ex-
perimental data on stripping and pickup reactions
is motivated by a glaring discrepancy between the
values obtained in different studies for the parameters
of the shell structure in the 40,42,44,46,48Са nuclei by
using similar procedures. It turns out frequently that,
instead of clarifying the situation, experimental infor-
mation deduced from analyses of new studies leads
to contradictions with previously available informa-
tion or introduces an additional degree of uncertainty.
In [10], a method was developed that makes it possible
to match experimental data on nucleon-stripping and
nucleon-pickup reactions and to derive the most reli-
able information about the parameters of the single-
particle structure of nuclei. This method was not pre-
viously applied to the 40,42,44,46,48Са isotopes.

The ensuing exposition is organized as follows.
Section 2 is devoted to determining, by the method
proposed in [10], the experimental values of the
energies, occupation probabilities, and fragmen-
tation widths for the proton single-particle states
of the 40,42,44,46,48Са nuclei. In order to determine
the parameters of a dispersive optical potential, a
dispersive-optical-model version that is applicable
in the case where available experimental information
is insufficient for performing an analysis within the
traditional dispersive optical model (for example,
this is so for the 42,44,46,48Са nuclei) is developed
in Section 3. In Section 4, we present the results
obtained by calculating, within the proposed version
of the dispersive optical model, the parameters of the
single-particle levels in 40,42,44,46,48Са. The parame-
ter values found in this way are compared with their
experimental counterparts and with those computed
on the basis of other models of nuclear structure. The
basic conclusions of this study are formulated in the
last section of the article.

2. SINGLE-PARTICLE ENERGIES
AND FRAGMENTATION WIDTHS

OF LEVELS IN THE 40,42,44,46,48Ca NUCLEI
AND THEIR OCCUPATION NUMBERS
ACCORDING TO DATA ON STRIPPING

AND PICKUP REACTIONS

The parameters of the proton shell structure of
levels in the vicinity of the Fermi energy (EF) were
determined by the method that makes it possible to
match data on stripping and pickup reactions and
which relies on the sum-rule approximation. Such an
analysis involves determining, for subshells charac-
terized by the quantum numbers n, l, j, the nucleon
occupation numbers (Nnlj) and the single-particle
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
energies (Enlj) in terms of, respectively, the ordinary
and the energy-weighted sums of the spectroscopic
factors (Snlj). However, a direct determination of
single-particle energies of levels and their occupation
numbers on the basis of known formulas in terms
of the sums and centroids of spectroscopic factors is
hardly possible, as a rule, because of large systematic
errors in spectroscopic factors and because of uncer-
tainties in the angular-momentum transfer j.

In order to remove such uncertainties, the entire
body of available experimental data was analyzed here
within the method for matching data on stripping and
pickup reactions [10]. Specifically, the following was
done:

(i) For each nuclear species under investigation,
we took simultaneously into account both data
on proton-pickup reactions and data on proton-
stripping reactions.

(ii) For each type of experiments, we analyzed
experimental information and, from the ENSDF
database [4], selected the most comprehensive and
reliable data on the spectroscopic features of the levels
being considered.

(iii) In order to determine the total angular-
momentum transfer j, we employed all data on the
spins of final-state nuclei from the ENSDF interna-
tional file of estimated data [4].

(iv) The spectroscopic-factor values selected in
this way were rescaled on the basis of the model-
independent sum rules used.

Briefly, the most significant points of the analysis
are as follows. We denote by S−,+

nlj (Ex) the values that
are determined for the spectroscopic factors of the nlj
states of energy Ex from the analysis of (−) pickup
and (+) capture reactions and by S−,+

nlj the respective
values of the total spectroscopic factors; that is,

S−
nlj ≡

∑
x

S−
nlj(Ex), S+

nlj ≡
∑

x

S+
nlj(Ex). (1)

On the basis of data on the energies Ex of these
states and the corresponding spectroscopic factors
S−,+

nlj (Ex), we determine the energies of the centroids
for the single-particle states in final nuclei as

e−nlj =

∑
x
ExS

−
nlj(Ex)

S−
nlj

, e+nlj =

∑
x
ExS

+
nlj(Ex)

S+
nlj

.

(2)

The energies e−nlj and e+nlj are reckoned from, respec-
tively, the energies B(Z) and B(Z + 1) required for
nucleon separation from the nuclei of charge number
Z and Z + 1; that is,

E−
nlj(Z) = −B(Z) − e−nlj, (3)
3
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Fig. 1. Single-particle proton energies in the
40,42,44,46,48Са nuclei. The dash-dotted line represents
an estimated lower bound on the energy of the 2p3/2 level
in 46Са.

E+
nlj(Z) = −B(Z + 1) + e+nlj. (4)

The method of matching consists in choosing a
procedure for correcting the experimental values S+

nlj

and S−
nlj in such a way as to ensure fulfillment of the

condition

S+
nlj + S−

nlj = 2j + 1 (5)

for subshells such that data on them that are deduced
from the analysis of experimental cross sections are
the most comprehensive and fulfillment of the follow-
ing condition for all other subshells:

S+
nlj + S−

nlj ≤ 2j + 1. (6)

It is well known that, because of residual interac-
tions, intranuclear nucleons are redistributed among
subshells. If the number of nucleons in the valence
subshell (that is, in the last populated subshell) is
denoted by Zval, it follows from classical shell theory
that the above statement can be represented as∣∣∣∣∣∣

∑
nlj

S−
nlj −

∑
nlj

S+
nlj − Zval

∣∣∣∣∣∣→ 0. (7)

In (7), summation of S−
nlj is performed over all sub-

shells lying above the Fermi energy EF on the energy
scale and including the valence subshell, while sum-
mation of S+

nlj is performed over subshells lying below
the valence subshell.

For the relationships in (5)–(7) to be satisfied, we
introduce normalization factors n− and n+ for the
spectroscopic factors S−

nlj and S+
nlj , respectively, and

sample all combinations of the products S−
nljn

− and

S+
nljn

+, the latter procedure being necessary because
of the uncertainty in the total angular momentum j
for some states of the final nucleus.
P

Condition (5) makes it possible to find the mean
proton-subshell occupation number by the formula

Nnlj =

[
S−

nlj + (2j + 1 − S+
nlj)
]

2(2j + 1)
. (8)

By using the spectroscopic-factor values as de-
termined in pickup and stripping reactions, one can
evaluate the single-particle energy of the state being
considered by the formula

Enlj =
S−

nljE
−
nlj + S+

nljE
+
nlj

S−
nlj + S+

nlj

. (9)

With the aid of the definition of Nnlj in (8) and rela-
tions (3) and (4), it can straightforwardly be shown
that

−Enlj = (1 −Nnlj)
[
B(Z + 1) − e+nlj

]
(10)

+ Nnlj

[
B(Z) + e−nlj

]
.

In order to determine the energy positions of the
proton subshells in the even–even isotopes of Ca and
their occupation numbers, the relevant spectroscopic
factors and the orbital angular momenta of trans-
ferred nucleons were borrowed from studies devoted
to pickup and stripping reactions. The total angular
momenta of transferred nucleons were determined on
the basis of data on spin–parities for nuclei appear-
ing in the final states of relevant reactions. However,
the spin–parity values are not known for all states.
Therefore, only for some of the particle or hole states
could the quantum numbers l and j be established
unambiguously; for others, l is determined unam-
biguously, but j may take the value of l + 1/2 or
l − 1/2. In the present study, the problem is solved
for all possible values of j. This results in the scatter
of the occupation numbers and of the energies of the
subshells (that is, different solutions yield different
values of Nnlj and Enlj). The entire set of solutions
makes it possible to estimate, for these parameters,
the boundaries of the ranges beyond which experi-
mental data on pickup and stripping reactions cannot
be matched either with each other or with sum rules.
It should be noted that these uncertainties in deter-
mining the energies of the levels are due exclusively to
imperfect knowledge of the spin–parities of the states
being considered. In addition to those uncertainties,
one must also take into account errors in determin-
ing the relative values of the spectroscopic factors of
states in the studies from which the data in question
were borrowed. On the basis of an analysis of the data
from those studies, it was concluded that the error in
question is about 10–15%.
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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The distribution widths were computed by the for-
mula

Γ↓
nlj = 2.35

√
M2+

nlj + M2−nlj , (11)

where

M2+
nlj =

∑
x

(E+
x − e+nlj)

2S+
nlj(Ex)

S+
nlj

, (12)

M2−nlj =

∑
x

(E−
x − e−nlj)

2S−
nlj(Ex)

S−
nlj

and where summation is performed over excited
states characterized by the corresponding values of
n, l, and j. The quantity Γ↓

nlj characterizes the degree
of fragmentation of a particle or a hole state—that
is, the width of its distribution over nuclear states. It
should be borne in mind that this quantity depends
more sharply on the quality of experimental data than
the occupation numbers and single-particle energies
considered above. If the sensitivity of the experimental
procedure is insufficiently high for recording small
values of spectroscopic factors, the introduction of
rescaling factors makes it possible to estimate, to
a fairly high degree of precision, the occupation
numbers and the energy centroids on the basis of data
on the features of states characterized by large spec-
troscopic factors. The absence of states having low
values of S+,−

nlj would obviously lead to an erroneous
determination of the widths.

For 40Ca, data on proton pickup were borrowed
from the article of Doll et al. [11], who studied the
reaction 40Ca(d, 3He)39K, while data on stripping
were taken from [12] with a correction based on the
results presented by Bock et al. [13], who investi-
gated the reaction 40Ca(3He, d)41Sc. This correction
was necessary for matching the data given in those
studies with each other. For the ground state of the
41Sc nucleus and its excited state at 1.7 MeV, the
spectroscopic factors corresponding to the 1f7/2 and
2p3/2 single-particle states are, respectively, 8.96 and
3.4 in [12] and 7.36 and 3.64 in [13]. The ratio of these
values is 2.6 in the former and 2.0 in the latter case.
We use the arithmetic mean of these two, 2.3, and the
value of 7.92 for the absolute spectroscopic factor of
the ground state.

Data on the proton pickup on a 42Ca nucleus were
also taken from the article of Doll et al. [11], who
studied the reaction 42Ca(d, 3He)41K, while data on
proton stripping in the reaction 42Ca(3He, d)43Sc
were borrowed from [14].

Attempts at matching data on proton stripping
and pickup on a 44Ca nucleus run into considerable
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
difficulties. The results obtained by studying the strip-
ping reaction 44Ca(3He, d)45Sc yield the following
values of Snlj for the 1d3/2 state: 1.9 [15], 2.12 [16],
and 0.89 [17]. An analysis has revealed that a large
number of vacancies in the subshells of 44Ca below
the Fermi energy are not compensated by particles in
subshells above the Fermi energy. In [15], it is indi-
cated that, at such large values of the spectroscopic
factors for the stripping of protons into 1d3/2 states,
there arises a contradiction with data on pickup. In
order to reduce this contradiction, we used here, for
the spectroscopic factor Snlj of the 12.4-keV state
in 45Sc, the value of 0.89, which is the smallest of
all quoted in the literature. The spectroscopic param-
eters of 43K were taken from [11, 18], where they
were determined in the reaction 44Ca(d, 3He)43K, and
from [19], where they were determined in the reaction
44Ca(11B, 12C)43K. By sampling all possible values
of the spins in the final states of 43K and 45Sc, we
found a few solutions that match data on stripping
with data on pickup and which, at the same time, yield
a correct value for the total number of protons in the
44Ca nucleus.

The spectroscopic factors of the 45K nucleus were
determined in [20] from an analysis of the pickup
reaction 46Ca(t, α )45K, while the analogous data for
47Sc were found from an analysis of the stripping
reaction 46Ca(3He, d)47Sc [16].

The spectroscopic-factor values for the 47K and
the 49Sc nucleus were determined from the anal-
yses of, respectively, the reaction 48Ca(t, α)47K in
[21] and the reaction 48Ca(3He, d)49Sc in [22, 23].
It is worth noting that alternative two-step reac-
tion mechanisms were considered in those studies
for individual states; accordingly, alternative values of
the spectroscopic factors were given there. All such
versions were computed individually, and the single-
particle parameters obtained in this way were taken
into account in the eventual results.

With allowance for all possible values of j for indi-
vidual levels, the subshell occupation numbers Nnlj ,
the single-particle energies Enlj of the levels, and
their fragmentation widths Γnlj are given in Table 1.
To provide a visual illustration, the average values
(obtained on the basis of the Enlj values quoted in
Table 1) of the single-particle proton levels in the
40–48Са nuclei are displayed in Fig. 1.

An analysis of the values presented in Table 1
and in Fig. 1 makes it possible to draw the following
conclusions.

As can be seen from Table 1, the energy of the
1f7/2 level in 40Са lies in the range between −1.5
and −1.8 MeV. For the energy of this level, a value
3
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Table 1. Occupation numbers Nnlj of single-particle orbits, energies −Enlj (in MeV) of single-particle proton states,
and their fragmentation widths Гnlj (in MeV) for the 40,42,44,46,48Ca nuclei according to data on nucleon-stripping and
nucleon-pickup reactions

nlj 40Ca 42Ca 44Ca 46Ca 48Ca

1d5/2 Nnlj 0.96

−Enlj 14.32

Γnlj 2.9

2s1/2 Nnlj 1.00 0.90 0.77 0.93–0.94 0.77–0.96

−Enlj 10.94 > 11.3 11.39 13.88–13.95 13.76–15.92

Гnlj 0.9 2.7 1.7 3.6 5.1

1d3/2 Nnlj 1.00 0.73–0.79 0.72–0.73 0.90–0.97 0.90–0.99

−Enlj 8.33 8.90–11.15 10.79–10.83 13.23–13.84 15.36–16.56

Γnlj 0.0 0.8 0.8 0 6.3

1f7/2 Nnlj 0.04–0.07 0.05–0.10 0.10–0.16 0.00–0.03 0.00–0.03

−Enlj 1.52–1.82 3.90–4.28 7.51–7.85 7.29–8.49 8.11–9.42

Γnlj 0.6 4.7 0.0 3.1 5.1

2p3/2 Nnlj 0.07–0.11 0.01–0.02 0.03–0.06 ≈ 0 0.00–0.02

−Enlj 0.44–1.02 1.17–1.43 4.86–5.12 < 5.80 3.58–4.55

Γnlj 4.6 5.5 3.2 4.2 7.0

2p1/2 Nnlj 0.0 0.00 0.00–0.01

−Enlj –(2.35–2.41) < 0.129 1.71–3.12

Γnlj 0.3 0.0 7.2

1f5/2 Nnlj 0.00

−Enlj 3.68–4.67

Γnlj 6.5
of −1.09 MeV, which is equal to the proton binding
energy in 41Sc, is quoted in a large number of studies;
that is, it is assumed that a level characterized by the
largest value of the spectroscopic factor corresponds
to the ground state of 41Sc.

From our analysis, it follows that the 2p3/2 level
of the 40Са nucleus is bound. According to data
presented in [11], six states of the 39K nucleus that
are characterized by the orbital-angular-momentum
transfer of l = 1 have the total spectroscopic factor
of 0.35. This means that the population of the 2p3/2

shell is quite sizable (quantitative estimates of this
population are given in Table 1), which, according to
(10), leads to a reduction of its energy in relation to
the completely empty shell. All articles known to the
present authors give energy values corresponding to
a quasibound state. This is not so only in [1], where,
P

in Fig. 15, this level is shown as a bound one (Enlj
∼=

−0.6 MeV).

Figure 1 shows that, with increasing isotope mass
number, the distinction between the energies of the
1d3/2 and 2s1/2 levels decreases, but the order of these
levels remains unchanged. In 48Са, the order of the
levels changes; here, all solutions yield a stable result:
the 1d3/2 levels is below the 2s1/2 level on the energy
scale. The difference of the energies of the 2s1/2 and
1d3/2 levels changes from 0.7 to 2.5 MeV as one goes
over from one solution to another.

Our data comply with data on the ground-state
spins of the 39–47К nuclei (the spin–parity of the
47К ground state is 1/2+; for all other isotopes be-
ing studied, the ground-state spin–parity is 3/2+

[4]). It should be noted that this unambiguous result
was obtained by the method for matching data on
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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nucleon-stripping and nucleon-pickup reactions. In
the studies that were reported in [5–7] and which
were performed earlier, information that is at odds
with the results obtained in [4] was deduced either
from an analysis of data on stripping reactions or from
an analysis of data on pickup reactions.

As can be seen from Fig. 1, the positions of the
subshells on the energy scale become lower with in-
creasing number of neutrons in a nucleus; however,
this monotonic general lowering of the subshell posi-
tions has some special features. First of all, we note
that the decrease in the energy of the 1f7/2 subshell is
faster than the decrease in the energies of the other
subshells. In the 40Ca nucleus, the 1f7/2 subshell
appears to be nearly coincident with the higher ly-
ing 2p3/2 subshell. As the number of neutrons in
a nucleus increases, the spacing between the 1f7/2

and the 2p3/2 level also increases; as a result, the
arrangement of the shells in the 44Ca nucleus proves
to be such that the 1f7/2 level occurs approximately
in the middle of a large energy gap between the 1d3/2

and the 2p3/2 level. This pattern remains valid for the
heavier isotopes as well. Thus, Fig. 1 demonstrates
the formation of the N = 28 shell and the way in
which 28 becomes a magic number.

In connection with subshell populations (occu-
pation numbers)—see Table 1—the following com-
ments are in order. To some extent, configuration
splitting is inherent in all isotopes of Са; in 48Са,
this phenomenon is the least pronounced. The case
of 44Ca stands out in this respect. From the data
in Table 1, it follows that the best value of the total
number of nucleons according to the criterion in (7)
corresponds to the maximum populations of the 1f7/2

and 2p3/2 states. In the 1d3/2 and 2s1/2 subshells,
there are 1.5 to 2 vacancies in this case; accordingly,
1.5 to 2 protons occur above the Fermi energy in the
1f7/2 and 2p3/2 subshells (a nonintegral number of
nucleons reflects the probability of finding the system
in the corresponding state).

In the present study, we were unable to determine
the energy of the 1d5/2 state in 48Са by using the
method for matching data on stripping and pickup re-
actions. In Section 4, two values, Enlj = −21.5 MeV
[7] and Enlj = −20.5 MeV [24], are therefore used for
this level in deriving the required estimates.

In Section 4, the above special features in the
single-particle properties of proton states in the vicin-
ity of the Fermi energy in the 40–48Са nuclei are
analyzed in terms of the dispersive optical model.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
3. DETERMINATION OF THE PARAMETERS
OF A DISPERSIVE OPTICAL POTENTIAL

FOR THE p + 40,42,44,46,48Ca SYSTEMS

The method used within the dispersive optical
model to calculate the energies of single-particle
states in spherical nuclei is described in detail else-
where [2, 3]. Below, we therefore only present the
formulas required for the calculations and discuss
methods for determining the parameters of the dis-
persive optical potential employed.

In order to calculate the positions (energies) of lev-
els corresponding to single-particle states, we solve
the Schrödinger equation for bound states; that is,[

−∇2

2m
+ V (r,Enlj)

]
Φnlj(r) = EnljΦnlj(r), (13)

where m is the reduced nucleon mass; Enlj are
single-particle energies; Φnlj(r) are single-particle
wave functions; and V (r,Enlj) is the real part of the
dispersive optical potential,

V (r,Enlj) = VHF(r,Enlj) + ∆Vs(r,Enlj) (14)

+ ∆Vd(r,Enlj) − VC(r) + Uso(r,Enlj).

Here, VHF(r,Enlj) is the Hartree–Fock component
of the dispersive optical potential, ∆Vi(r,Enlj) stands
for (i = s) the volume and (i = d) the surface compo-
nent of the dispersive optical potential, VC(r) is the
Coulomb potential, and Uso(r,Enlj) is the spin–orbit
potential.

In terms of the Woods–Saxon parametrization,
the dispersive optical potential can be written as

−U(r,E) = VHF(E)f(r, rHF, aHF) (15)

+ ∆Vs(E)f(r, rs, as) − 4ad∆Vd(E)
d

dr
f(r, rd, ad)

+ iWs(E)f(r, rs, as) − i4adWd(E)
d

dr
f(r, rd, ad)

+ 2Vso(E)
1
r

d

dr
f(r, rso, aso)l · s− VC(r),

where f(r, ri, ai) = 1/(1 + exp
[
(r − riA

1/3)/ai

]
)

is the Woods–Saxon function (i = s, d, so), the
Coulomb potential VC(r) is taken in the form of the
potential of a uniformly charged sphere of radius
RC = rCA

1/3, and the components ∆Vi(r,E) are
calculated with the aid of the dispersion relation

∆Vs(d)(r,E) =
(EF − E)

π
(16)

× P

∞∫
−∞

Ws(d)(r,E′)
(E′ − EF)(E −E′)

dE′

[the symbol P here means that the principal-value
prescription is applied to the integral in (16)]. The
3
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Fig. 2. Total reaction cross sections σr(Ek) for (a) the
p + 40Ca and (b) the p + 48Ca system. In Fig. 2a, open
circles represent experimental data from [27], while the
solid and the dashed line correspond to the calculations
with, respectively, the СН89* [26] (a∗

d = a∗
s = 0.60 fm)

and the СН89 [25] (ad = as = 0.69 fm) parameters. The
notation in Fig. 2b is similar to that in Fig. 2a, the
only exception being that the solid line in the latter case
was computed with the parameter values of a∗

d = a∗
s =

0.54 fm.

analogous dispersion relations are valid for the vol-
ume integrals of the potentials (∆Js(d)(E), Js(d)(E)).

In order to determine the dependences
Ws(d)(r,E), we evaluated, within the traditional
optical model, the volume integrals of the imaginary
potential, Js(d)(Ek), for various specific values of the
energy Ek, whereupon we approximated Js(d)(Ek) by
a continuous function chosen in such a way that the
integral in (16) could be calculated analytically (for
details, the interested reader is referred to [2]).

In the present study, the volume integrals
JI(Ek) = Js(Ek) + Jd(Ek), Js(Ek), and Jd(Ek) were
approximated by using the Jeukenne–Mahaux ex-
pressions (see the corresponding reference in [2]);
that is,

JJM
i (E) = αi

(E − EF)4

(E − EF)4 + β4
i

, where i = I, s,

(17)

JJM
d (E) = JJM

I (E) − JJM
s (E). (18)

In the studies developing methods of a disper-
sive optical-model analysis, it was shown that all
parameters of the dispersive optical potential that
are used in calculating the features of single-particle
P

states can be determined from experimental scatter-
ing cross sections [9]. However, experimental infor-
mation about the cross sections and polarizations for
protons scattered by nuclei is still incomplete. By
way of example, we indicate that, for the p + 40Са
system, experimentalists performed a large number
of measurements that yielded data on σexpt(θ) and
P expt(θ) over the range from 20 to 80 MeV, but that,
for the p + 42−48Са systems, there are data only
for a few values of Ek. The values calculated for
JV (Ek), Js(Ek), and Jd(Ek) by using the individual
parameters of the traditional optical potential have a
wide scatter, and this adversely affects the accuracy
of determining the parameters of the dispersive opti-
cal potential. All these circumstances constrain the
potential of the dispersive optical model as means for
analyzing the single-particle structure of nuclei.

Usually, the energy dependence of the imaginary
part of the dispersive optical potential is determined
on the basis of the parameters of the traditional op-
tical potential that are chosen individually for a given
system, while the real part is specified on the basis of
a fit to available experimental data on scattering. In
the present article, we propose a dispersive-optical-
model version that is based on the СН89 systemat-
ics [25] of the average parameters of the traditional
optical potential for nucleons. On average, the scat-
tering cross sections and polarizations calculated as
functions of angles with the СН89 parameters comply
well with experimental data over rather wide ranges of
energy (20 ≤ E ≤ 65 MeV) and mass numbers (40 ≤
A ≤ 208). The use of the parameter values from the
СН89 systematics makes it possible to describe the
positions of the maxima and minima in the differential
cross sections for elastic scattering. However, it is
necessary to vary the parameters ad = as in order
to obtain the best agreement between the computed
elastic-scattering cross sections at the maxima and
minima and their experimental counterparts. In [26],
it is shown that this is achieved with such values of
a∗d = a∗s at which the cross section σTOM

r computed
within the traditional optical model (TOM) complies
with the experimental cross sections σexpt

r determined
to a precision of about 3%. (For the sake of brevity,
the parameters of the СН89 systematics where, in-
stead of the average value of аd = 0.69 fm, use is made
of a∗d = a∗s values chosen individually for each system
are denoted in [26] by СН89*.)

For 40,42,44,48Ca, the values measured for the total
reaction cross sections σr to a precision of about
3% over the energy range from approximately 30 to
50 MeV are quoted in [27]. By way of example, the
experimental total proton cross sections σ

expt
r (Ek)

for the p + 40,48Ca systems from [27] are displayed
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in Fig. 2 along with the computed dependences
σCH89

r (E) (ad = as = 0.69 fm) and σCH89∗
r (E) (a∗d =

a∗s = 0.60 fm for 40Сa and a∗d = a∗s = 0.54 fm for
48Ca). For 46Ca, there is no experimental information
about σr(Ek). In order to determine a∗d = a∗s for 46Са,
use was therefore made of σr(Ek) values interpolated
according to data from [27] on the p + 40,42,44,48Ca
systems.

The possibility of determining, for each system
individually, the values of a∗d = a∗s from a comparison

of σCH89∗
r with σ

expt
r is of importance for the following

reasons. First, these quantities can be estimated via
extrapolations and interpolations on the basis of data
on σ

expt
r (Ek) accumulated to date for various nuclei.

Second, such measurements are among the most
easily implementable in experiments with radioactive
nuclear beams, as was indicated in a large number of
studies.

We have calculated the angular dependences of
the ratios of the differential cross sections for elas-
tic proton scattering on Ca targets to the corre-
sponding Rutherford cross sections (σ/σR) by us-
ing the СН89* parameters. By way of example, the
results of these calculations at E = 45.5 MeV for
40Ca and at 45.0 MeV for 42,44,48Ca are contrasted in
Fig. 3 against the corresponding experimental values.
A comparison of these theoretical and experimental
results gives grounds to conclude that the use of
the parameters a∗d = a∗s from the СН89* systematics
leads to a good description of experimental differential
cross sections for elastic scattering. A similar conclu-
sion follows from a comparison at other energy values
in the range 20 ≤ Ek ≤ 65 MeV.

In the proposed version of the dispersive optical
model, the model scattering cross sections computed
with the СН89* parameters are used for a further
analysis instead of their experimental cross-section
values. This significantly simplifies the procedure for
determining the average values of the dispersive-
optical-potential parameters without impairing their
accuracy.

As follows from (17), the parameter αI corre-
sponds to the value of JI(E) for E → ∞. In order to
determine αI , it is sufficient to find the average value
of JI(Ek) for Ek ≈ 40–60 MeV. In the studies relying
on the dispersive optical model, the authors present
tables containing the traditional-optical-potential
parameters determined individually for each nucleus
and, on the basis of these data, calculate the values of
JI(Ek), which are then used to find JI(E).

In [3], a method was proposed according to which
the parameter αI is defined as that which corresponds
to the JСН89∗

I value averaged over the energy range
40–60 MeV. The parameters αI evaluated in this way
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
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Fig. 3. Angular dependences of the ratio of the dif-
ferential cross sections for elastic proton scattering on
40,42,44,48Са nuclei to the corresponding Rutherford
cross sections (σ/σR): (open circles) experimental data,
(dashed curves) results of the calculation with the СН89
parameters [25] (ad = as = 0.69 fm), and (solid curves)
results of the calculation with the СН89* parameters [26]
(a∗

d = a∗
s = 0.60 fm at E = 45.5 MeV for 40Са; a∗

d =
a∗

s = 0.605, 0.61, and 0.54 fm at E = 45.0 MeV for 42Са,
44 Са, and 48Са, respectively).

for 40–48Са are quoted in Table 2. Also given in this
table are the parameters a∗s = a∗d and the СН89 pa-
rameters rs = rd, rV , rso, and rС. We have performed
all the ensuing calculations with the parameters rs =
rd fixed according to the СН89 systematics and with
the individual values of the parameters a∗s = a∗d from
Table 2.

In СН89, the imaginary potential changes
smoothly with energy. Concurrently, there occurs
a continuous transition from a surface absorption
at low energies to a volume absorption at high
energies. It should be noted that attempts at directly
calculating the imaginary potential were made in
a number of studies, but these calculations were
rather complicated and cumbersome and were often
based on restrictive assumptions. The introduction
of a complex-valued renormalization in the folding-
potential model is one of the means for calculating
the imaginary potential (see, for example, [28]).

We determined the parameter βs by imposing the
condition requiring that the dependences JJM

s (E) and
JCH89∗

s (E) intersect at half the maximum value of the
latter. For 40–48Са, the parameter βs found in this
way ranges between 60 and 70 MeV (see Table 2).
The calculations reveal that the calculated values of
3
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the fragmentation widths Γnlj of deep hole states
depend on the choice of values for the parameter βs.
Therefore, the βs values estimated in the way outlined
above were then corrected on the basis of data on
Γexpt

nlj .

The parameter βI characterizes the energy depen-
dence JI(E) in the energy region around the barrier
and in the vicinity ofEF. Within traditional versions of
the dispersive optical model, this parameter is deter-
mined on the basis of data on JI(Ek) ∼= Jd(Ek) that
are extracted from an analysis of cross sections and
polarizations within the traditional optical model in
the energy region around the barrier. In Са isotopes,
large uncertainties in determining the parameter βI

arise because of the excitation of isobar-analog reso-
nances in this energy region. In the present study, the
values of the parameter βI were selected on the basis
of a comparison of the calculated and experimental
energies of levels in the vicinity ofEF. For the 40–48Са
isotopes, the values of βI proved to lie between 8 and
12.5 MeV. Problems associated with the choice of this
parameter will be discussed below.

The energy EF can be determined as

EF =
E+

nlj + E−
nlj

2
, (19)

where E+
nlj is the energy of the most strongly bound

particle level (1f7/2 for 40–48Са), while E−
nlj is the

energy of the least bound level (1d3/2 for 40−46Са
and 2s1/2 for 48Са). By analyzing solutions for
40,42,44,46,48Са (see Table 1), we obtained the fol-
lowing ranges for −Eexpt

F : 4.9–5.1 MeV for 40Са,
6.4–7.7 MeV for 42Са, 9.1–9.3 MeV for 44Са, 10.3–
11.1 MeV for 46Са, and 10.9–12.7 MeV for 48Са. If,
in (19), the energies of the levels are replaced by the
sign-reversed proton binding energies in the Z and
Z + 1 nuclei (see [4]), the mass-number dependence
of the Fermi energy (−4.7 MeV for 40Са, −7.6 MeV
for 42Са, −9.5 MeV for 44Са, −11.1 MeV for 46Са,
and −12.7 MeV for 48Са) will be close to a linear
dependence. We have estimated the mass-number
dependence of the Fermi energy (19) for Са isotopes,
assuming that it has a linear form. The result is

Eest
F = − [5.2 + 0.89 (A− 40)] MeV. (20)

The estimated values Eest
F (see Table 2) are close

to those that were calculated by using the proton
binding energies in the Z and Z + 1 nuclei.

Problems associated with determining the param-
eters rHF and aHF were discussed in a large number
of studies devoted to applications of the dispersive
optical model. In [9], Mahaux and Sartor proposed
equating the parameter aHF to the energy-averaged
P

diffuseness parameter of the real potential in the tra-
ditional optical model, aV . In that study, the average
value aV was found to be 0.70 fm. We set aHF =
aCH89

V = 0.69 fm for all Са isotopes.

Dispersive-optical-model versions where the en-
ergy independence of the parameter rHF was postu-
lated and where various means for determining the
optimum values of this parameter were considered
were substantiated in [2]. The range 1.18 ≤ rHF ≤
1.24 fm of its possible values at aHF = 0.70 fm was
established in [9] for the p + 40Са system, and it
was shown there that the optimum value is rHF =
1.20 ± 0.02 fm.

If the parameters rHF and aHF are fixed, then, for
E < 0, the values VHF(Eexpt

nlj ) are found by solving
Eq. (13). For the energy range E > 0, the values of
VHF(Ek) were determined in the present study by
using the expressions

VHF(Ek) = JHF(Ek)/g(rHF, aHF), (21)

where

JHF(Ek) = JCH89
V (Ek) − ∆JV (Ek), (22)

g(rHF, aHF) =
∫

f(r, rHF, aHF)dr. (23)

The resulting values of VHF(Enlj) and VHF(Ek) for
E < 0 and E > 0, respectively, were used to deter-
mine the parameters of two dependences proposed for
describing VHF(E) (see [2, 3]). These are

(i) the exponential dependence

VHF(E) = VHF(EF) exp
(
−γ(E − EF)
VHF(EF)

)
, (24)

where γ is a parameter, and
(ii) the dependence that combines an exponential

and a linear function in the form

VHF(E) = V 1
HF(EF) + V 2

HF(EF) exp
[
−λ(E − EF)
V 2

HF(EF)

]
(25)

for E > EF,

VHF(E) = VHF(EF) − λ(E − EF) for E < EF,
(26)

where λ is a parameter and

VHF(EF) = V 1
HF(EF) + V 2

HF(EF). (27)

In (24)–(27), the values of VHF(EF) were determined
by the formula

VHF(EF) =
VHF(E+

nlj) + VHF(E−
nlj)

2
. (28)
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Table 2. Parameters of the dispersive optical potential for the p + 40,42,44,46,48Ca systems (rd, rs, a∗d, a∗s , rV , rC , and
rHF are given in femtometers; αI is given in MeV fm3 units; and Eest

F and βs are given in MeV)

Isotope rd = rs a∗d = a∗s αI rV rso rC βs −Eest
F rHF

40Ca 1.207 0.600 103.49 1.184 0.989 1.272 57.0 5.2 1.207
42Ca 1.209 0.605 109.00 1.185 0.995 1.271 61.0 7.0 1.218
44Ca 1.211 0.610 113.90 1.186 1.000 1.271 63.7 8.8 1.221
46Ca 1.213 0.615 118.27 1.187 1.005 1.270 66.7 10.7 1.227
48Ca 1.214 0.540 109.32 1.187 1.010 1.270 73.0 12.5 1.227
We note that the values of VHF(EF) depend on the
choice of values for the parameters rHF, aHF, and Vso

at fixed values of rso and aso, but that they feature no
significant dependence on αI , βs, and βI .

If the parameter γ is determined on the basis of
scattering data, an error of about 3% in γ leads to an
error of about 5% in computing, according to (13),
the energy E1s1/2 of the deepest level (for the 1s1/2

state, we have (E − EF)/VHF(EF) ∼= 1). Since the
experimental value of the energy E1s1/2 for 40Са is
known to a fairly high precision (according to data
reported in [29],E1s1/2 = −53.6± 0.7 MeV), which is
sufficient for our purposes, we can specify conditions
under which the error in calculating E1s1/2 by using
the parameter γ found from data for E > 0 will be
minimal. With this aim in view, we compared the val-
ues of the parameter γ that were found in calculating
the values of VHF(EF) (28) and VHF(E1s1/2) and in
calculating VHF(Ek = 30, 40, 50, and 60 MeV) (21)–
(23) for three values of the parameter rHF (1.184,
1.207, and 1.24 fm). All of the parameters of the
dispersive optical potential, with the exception of βI ,
were fixed at the values quoted above. The parame-
ters γ determined on the basis of data for E < 0 are
virtually independent of βI,, while those that rely on
data for E > 0 do depend on this parameter. By way
of example, we indicate that, for the p + 40Са system,
the values of the parameter γ at βI

∼= 8–9 MeV prove
to be consistent for all three values of rHF. It follows
that, in order to predict the positions of the levels
on the energy scale, including the 1s1/2, level, which
is the deepest one, it is of paramount importance to
determine the parameter γ to the highest possible
degree of precision. If this parameter is found on the
basis of data for E > 0, it is necessary to evaluate the
parameter βI with minimum possible errors.

In [2, 3], it was shown that, in calculating the ener-
gies EDOM

nlj (the abbreviation DOM in the superscript
stands for the dispersive optical model) for E < EF,
the closest agreement with E

expt
nlj is achieved with the
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linear dependence VHF(E) in the form (26); for E >
EF, the best results are obtained with the exponential
form (25). The parameter λ can then be determined
by using the expression

λ =
VHF(E1s1/2) − VHF(EF)

E1s1/2 − EF
. (29)

In just the same way as the parameter γ, the parame-
ter λ varies with rHF, all of the remaining parameters
of the dispersive optical potential being fixed. We have
found that, for the p + 40Са system, the quantities λ
and rHF are related by the equation

λ = CrHF − 0.507, (30)

where C = 0.893 fm−1 and rHF is measured in fem-
tometers.

In order to investigate the dependence of the Enlj

values calculated according to (13) on the choice
of the parameter rHF (at fixed values of all of the
remaining parameters of the dispersive optical po-
tential), we have calculated the energies of single-
particle levels in 40Са for two values of rHF: rHF =
1.184 fm (λ = 0.55) and rHF = 1.24 fm (λ = 0.60).
The results of these calculations are quoted in Table 3
(columns 2 and 3, respectively). The same table also
presents the experimental energies of single-particle
levels (column 15) for the 1s1/2, 1p3/2, and 1p1/2

states—these are data from [29]; for the remaining
states, the corresponding data are given in Table 1.
From a comparison of the calculated and measured
energies of the levels, one can conclude that the
scatter of the calculated values of Enlj is insignif-
icant, whence it follows that the optimum value of
the parameter rHF can hardly be determined from a
comparison of the calculated and measured energies
of the levels.

In order to determine rHF from scattering data,
we went over, according to [9], from the real part of
the dispersive optical potential—this real part con-
sists of three terms involving different form factors—
to a real part featuring one term whose form fac-
tor f(r, rV , aV ) has the Woods–Saxon form. We set
3
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aV ≡ aHF and found the parameters rV and V from
the condition requiring that the volume integral of
the real potential and its value at r = 0 be fixed, the
parameter rV appearing to be energy-dependent in
this case.

We have calculated the dependences rV = rV (E)
for three fixed values of rHF in the range 1.18–1.24 fm.
It turned out that the rV values computed for 10 ≤
E ≤ 60 MeV were in the best agreement with data
available from the literature {in performing this com-
parison, we selected, from the tables given in [28],
only those values of the optical-potential parameters
that were obtained by independently varying all of
the parameters and which were such that the σOM

r
values calculated with them (on the basis of the op-
tical model) were consistent with σ

expt
r [27]} at rHF =

1.20 ± 0.02 fm.
We have determined rHF for a few values of Ek

(20 ≤ E ≤ 60 MeV) by comparing scattering cross
sections calculated on the basis of the dispersive op-
tical model with model-dependent cross sections. It
turned out that rHF = 1.207 fm for the p + 40Са sys-
tem at Ek = 30 MeV. At Ek = 30 MeV, the values of
the parameters rHF for the p + 42,44,46,48Са systems
were found in a similar way. All of the resulting values
are quoted in Table 2.

We assumed that the dependence that is specified
by Eq. (30) and which was found on the basis of data
for the p + 40Са system can be used to determine
the parameters λ for the 42–48Са isotopes. According
to (30), λ changes within the range 0.57–0.59 in
response to a variation of rHF from 1.207 to 1.227 fm.
In all of the subsequent calculations, the parameter λ
was therefore set to

λ = 0.58 ± 0.01, (31)

the remaining parameters, with the exception of the
parameters βI and Vso, being fixed at the values
quoted in Table 2.

4. COMPARISON OF THE CALCULATED
AND EXPERIMENTAL PARAMETERS

OF SINGLE-PARTICLE LEVELS
IN 40,42,44,46,48Са

For each nuclear species studied here, the energy
positions of single-particle bound states in the mean-
field potential were calculated in the following way.
The Schrödinger Eq. (13) was solved numerically
with the potential V (r,Ei) (15) by using the parame-
ter values quoted in Table 2 and some energy value Ei

that plays the role of an estimate of Enlj . In choosing
Ei, we tried to reduce, as the number i of iterations
was increased, the distinction between the calculated
eigenvalue Enlj(Ei) and Ei, ∆(i)

nlj = |E(i)
nlj(Ei) − Ei|.
PH
In the present study—in just the same way as in [3,

30]—Ei was treated as the eigenvalue Enlj if ∆(i)
nlj ≤

10 keV.
The energies of single-particle proton levels in

40Ca according to the calculations at various values
of the parameter βI for Vso = 5.9 MeV fm2 are given
in Table 3 (columns 4–7). From a comparison of
Enlj (columns 4–7) withEexpt

nlj (column 15), it follows
that, at βI = 17 MeV, the energies Enlj of the 1p and
1d levels differ from their experimental counterparts
E

expt
nlj . At βI = 12.5 MeV, the best agreement between

EDOM
nlj and E

expt
nlj is attained for all levels, with the

exception of 2p3/2.

According to the data in Table 1, the 2p3/2 state in
40Ca is bound. From Table 3, it can be seen that the
energy values calculated in the present study for the
2p3/2 level correspond to quasibound states if βI >
9 MeV. This table also shows that, for βI values cho-
sen in the range between 8 and 9 MeV, there is good
agreement between EDOM

nlj and E
expt
nlj for all levels in

the vicinity of the Fermi energy EF if one takes into
account a 10% error (in addition to the error because
of the uncertainty in the spin value) in determining
E

expt
nlj . We also note that, for 8 ≤ βI ≤ 12.5 MeV, the

computed energy of the 1f7/2 level is about −2 MeV.
This energy value complies with that which was cal-
culated on the basis of the nonrelativistic mean-field
model [31] (see Table 3, column 14).

Table 3 also presents the results obtained by cal-
culating the energies of the levels in the dispersive
optical potential [8, 9] (columns 8, 9). The values
computed in [8, 9] for the energies of the 1s1/2 levels
are below the experimental values by 3 to 4 MeV.
From Table 3, it is also obvious that, for the energies
of the 1s1/2, 1p3/2, and 1p1/2 levels, the calculations
performed in [1, 32–34] on the basis of the relativistic
mean-field model with various parameter sets (the
results are given in columns 10–13) usually exceed
their experimental counterparts.

The energies found for the levels in 42,44,46,48Са
from to our present calculations based on the disper-
sive optical model, the calculations of Koura and Ya-
mada [31] within the nonrelativistic mean-field model,
the calculations relying on its relativistic generaliza-
tion [1, 32, 33] are given in Table 4, along with the
experimental data from Table 1 and from [7, 24, 29].
Comparing the values of EDOM

nlj (Table 4) with E
expt
nlj

(Table 1) for 42,46Са, one can conclude that good
agreement is obtained at Vso = 5.9 MeV fm2, which
is identical to the choice of this parameter for 40Са.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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14 15

M
]

NRMFM
[31]

Experiment
[7,24,29]

–(2.35–2.41)

0.73–(–1.15) 0.44–1.02

1.71–2.13 1.52–1.82

9.5 8.13–8.60 8.33

9.43 8.59–9.09 10.94

15.9 14.32

6.35 29.1–30.5

30.66 34.4–35.0

5.43 52.9–54.3

e relativistic optical model, and the nonrelativistic
l that were set to the following values: (column
= 17.0 MeV, (column 5) rHF = 1.207 fm and

eV fm2, λ = 0.574.

13 14

M NRMFM
[31]

Experiment
[7, 24, 29]

.4 1.7–3.1

.6 5.84–6.06 3.6–4.5

0.4 10.47–10.91 8.1–9.4

7.0 15.63–16.54 15.4–16.6

6.4 15.61–15.75 13.8–15.9

20.5–21.5

28–42

28–42

46–64

following values: (columns 2, 6) βI = 9 MeV and
lumn 9) βI = 12.5 MeV and vso = 3.0 MeV fm2.
Table 3. Energies −Enlj (in MeV) of single-particle proton states in 40Са

1 2 3 4 5 6 7 8 9 10 11 12 13

nlj DOM DOM DOM DOM DOM DOM DOM
[8]

DOM
[9]

RMFM
[1]

RMFM
[32]

RMFM
[33]

RMF
[34

2p1/2 −1.75 −1.83 −2.18 −1.71 −1.30 −1.24 −2.02 −2.47
2p3/2 −0.50 −0.64 −0.94 −0.45 −0.03 0.04 −0.92 −1.34 −1.7 –(1.1–1.5)

1f7/2 1.86 2.06 1.66 2.02 2.38 2.38 1.15 0.94 1.7 1.5–2.1

1d3/2 8.63 8.40 8.88 8.41 8.24 7.95 8.88 8.91 9.08 10.0–15.3 7.7–8.5 8.87–
2s1/2 10.34 10.01 10.68 10.03 9.72 9.38 10.67 10.41 10.02 10.8–15.5 9.8–10.9 8.83–
1d5/2 14.30 14.15 15.11 14.30 13.67 13.50 14.95 14.73 16.65 14.1–21.5 14.4–15.0 15.18–
1p1/2 29.28 28.83 28.50 29.19 29.75 29.87 31.62 30.4 28.25 26.5–35.0 25.9–2

1p3/2 34.52 34.70 34.09 34.75 35.07 35.16 36.52 35.0 32.99 25.8–38.6 29.44–
1s1/2 53.60 53.60 53.60 53.60 53.60 53.60 57.38 58.2 49.94 43.5–55.7 43.5–4

Note: Here and in Table 4, the the abbreviations DOM, RMFM, and NRMFM stand for, respectively, the dispersive optical model, th
optical model. The energies Enlj, were calculated in the present study with the parameters of the dispersive optical potentia
2) rHF = 1.184 fm and βI = 12.5 MeV, (column 3) rHF = 1.24 fm and βI = 12.5 MeV, (column 4) rHF = 1.207 fm and βI

βI = 12.5 MeV, (column 6) rHF = 1.207 fm and βI = 9.0 MeV, and (column 7) rHF = 1.207 fm and βI = 8.0 MeV; Vso = 5.9 M

Table 4. Energies −Enlj (in MeV) of single-particle proton states in 42,44,46,48Са

1 2 3 4 5 6 7 8 9 10 11 12
42Са 44Сa 46Ca 48Ca

nlj DOM RMFM
[1] DOM RMFM

[1] DOM RMFM
[1] DOM DOM RMFM

[1]
RMFM

[32]
RMF

[33]

2p1/2 −0.07 1.37 2.87 3.65 4.16 1.3–2

2p3/2 1.29 3.38 4.41 4.75 4.95 3.0–3

1f7/2 4.11 7.23 7.82 8.11 7.92 9.3–1

1d3/2 9.88 11.28 11.26 13.49 13.55 15.64 16.62 17.75 17.97 15.9–21.7 16.0–1

2s1/2 11.15 11.63 13.30 13.23 14.47 14.74 16.55 16.95 16.20 17.2–24.4 15.3–1

1d5/2 15.16 18.71 18.57 20.31 18.61 22.83 20.54 20.56 25.07 21.3–29.9 22.5

1p1/2 31.39 30.37 32.70 32.51 34.89 33.61 37.99 39.53 36.97 32.9–43.7

1p3/2 36.60 34.84 39.42 36.77 39.77 38.64 41.51 42.04 40.75 34.5–46.7

1s1/2 54.29 51.28 56.08 52.67 56.52 54.06 59.85 60.76 55.66 47.8–62.2

Note: The energies Enlj were calculated in the present study with the parameters of the dispersive optical potential were set to the
Vso = 5.9 MeV fm2, (column 4) βI = 9 MeV and Vso = 7.9 MeV fm2, (column 8) βI = 12.5 MeV and Vso = 4.2 MeV fm2, and (co
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Table 5. Energies ∆ (in MeV) of spin–orbit splitting for the 1p and 1d states in 40Са and in 48Са

Nucleus Shells ∆expt ∆DOM ∆RMFM

[1] [32] [33] [34] [35] [36] [37]
40Са 1p 4.9 ± 1.0 5.3–5.6 4.7 2.0-3.8 3.5–4.4 4.1–5.1

1d 6.0 5.7 7.6 3.3–6.2 6.6 ± 0.7 5.7–6.9 6.0–7.7 8.01 6.6–6.9
48Ca 1p 2.5–3.5 3.8 1.6–3.0 3.2–3.8

1d 5.0 ± 1.1 2.8–3.9 7.1 4.1–5.5 5.5–6.5 1.3–7.4 4.06 6.1–6.6

Table 6.Occupation numbers Nnlj for single-particle proton orbits in 40,42,44,46,48Ca

nlj
40Ca 42Ca 44Ca 46Ca 48Ca

N expt
nlj NDOM

nlj Nnlj N expt
nlj NDOM

nlj Nnlj N expt
nlj NDOM

nlj Nnlj N expt
nlj NDOM

nlj Nnlj N expt
nlj NDOM

nlj Nnlj

2s1/2 1.00 0.84 0.565 0.90 0.83 0.480 0.77 0.85 0.486 0.94 0.84 0.462 0.86 0.84 0.450

1d3/2 1.00 0.81 0.565 0.76 0.80 0.592 0.72 0.83 0.625 0.93 0.82 0.636 0.94 0.84 0.631

1f7/2 0.05 0.18 0.424 0.07 0.19 0.479 0.13 0.16 0.486 0.01 0.17 0.462 0.01 0.16 0.449

Note: The N expt
nlj values were determined by means of averaging over the data in Table 1; the NDOM

nlj values were obtained as the result
of our present calculations; and the Nnlj values were borrowed from the data reported in [38].
At the same time, we were able to reach satisfactory
agreement between EDOM

nlj and E
expt
nlj only under the

assumption that Vso = 7.9 MeV fm2 for 44Са and
Vso = 3.0–4.2 MeV fm for 48Са.

From a comparison of EDOM
nlj and ERMFM

nlj for
40–48Са (Tables 3, 4) with E

expt
nlj (Table 1), one can

conclude that, within the dispersive optical model,
variations of Enlj in response to an increase in the
isotope mass number can be described by using, for
the parameters of the dispersive optical potential,
their average values, which, with the exception of the
parameter Vso(A), change smoothly with A. For the
order of the levels being considered, the predictions
based on the calculated energies ERMFM

nlj are in poorer
agreement with experimental results.

It is well known that, within the relativistic mean-
field model, the spin–orbit potential can be calculated
correctly in a form that involves no free parameters.
In this connection, it is of interest to compare the
energies of spin–orbit splitting, ∆nl = ∆nlj=l−1/2 −
∆nlj=l+1/2, that were calculated on the basis of the
dispersive optical model and on the basis of the rela-
tivistic mean-field model with experimental data. In
Table 5, the values of ∆nl are given for the 1p and
1d states in 40,48Са. The values calculated for ∆1p

in 40Са within the two models in question comply
well with ∆expt

1p ; for 48Са, it turns out that ∆DOM
1p

∼=
PH
∆RMFM
1p . We note that ∆DOM

1p for 48Са is approx-

imately one-half as great as ∆DOM
1p for 40Са. The

calculated values of ∆RMFM
1p for 48Са have a wide

scatter, but they exhibit a trend toward a reduction of
these values for 48Са in relation to those for 40Са.

For 40Са, the computed value ∆DOM
1d is in accord

with ∆RMFM
1d and ∆expt

1d . If, for 48Са, use is made of

the value of –20.5 MeV for E1d5/2 [24], then ∆expt
1d =

4.5 ± 0.6 MeV, this result being compatible with the
values obtained on the basis of the dispersive op-
tical model (2.8–3.9 MeV) and with those calcu-
lated within the relativistic mean-field model [36].
The energies ∆RMFM

1d from [1] and from [33, 37] are
approximately twice as great as ∆DOM

1d . The most
comprehensive analysis of problems concerning the
distinctions between ∆RMFM

1d for 40Са and its coun-
terpart for 48Са was given in [36], where it was shown
that ∆1d for 40Са is greater than that for 48Са by a
factor of about 2. This result complies with the results
of our calculations on the basis of the dispersive opti-
cal model. Taking into account data on the energies
∆1p and ∆1d for 40Са and 48Са, one can therefore
conclude that the change in the order of the levels in
48Са in relation to that in 40–46Са is due to a change
in the strength of the spin–orbit potential.

For a single-particle state, the occupation number
Nnlj as derived within the dispersive optical model
YSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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is determined by the formulas quoted in [2, 3]. The
occupation numbers Nnlj calculated in the present
study for single-particle proton states in 40Ca are in
good agreement with the results of the calculations
performed on the basis of the dispersive optical model
in [8, 9]. In those studies, the results obtained on this
basis for Nnlj in 40Ca were also compared with the
corresponding results of different theoretical calcula-
tions.

For single-particle proton orbits in the 40–48Ca
nuclei, the mass dependences of the occupation num-
bers were calculated in [38] on the basis of a phe-
nomenological model that allows for short-range cor-
relations. According to [38], the behavior of Nnlj

for the 1s1/2 states undergoes sharp changes with
increasing A (see Fig. 6 in [38]). The occupation
numbers Nnlj calculated in the present study for the
1s1/2 states are somewhat less than unity and change
smoothly with increasing isotope mass number. It
is difficult to verify the reliability of the predictions
made in [38] since the experimental values of Nnlj for
deep proton-hole states are available only for 40Ca.
In [38], sharp mass-number dependences of Nnlj are
predicted for the 2s1/2, 1d3/2, and 1f7/2 states as
well. The experimental values of Nnlj for these states
were obtained in the present study by the method for
matching data on stripping and pickup reactions. In
this connection, it is of interest to compare the Nnlj

values as computed on the basis of the dispersive
optical model and as obtained in [38] with experimen-
tal data. Such a comparison is illustrated in Table 6,
whence it can be seen that the Nnlj values computed
in the present study on the basis of the dispersive
optical model comply with experimental data within
errors of about 10% (on average) and change only
slightly with increasing A for the states being con-
sidered. For the 2s1/2 and 1d3/2 states, the values
of Nnlj that were obtained in [38] fall significantly
short of the experimental values evaluated within the
dispersive optical model and change irregularly with
increasing mass numberA; at the same time, theNnlj

values given in [38] for the 1f7/2 state are significantly

greater NDOM
nlj and N expt

nlj .

5. CONCLUSIONS

(i) In the present study, the method proposed in
[10] for performing a global analysis of data on strip-
ping and pickup reactions has been used to determine
refined data on the energies of single-particle pro-
ton states in the 40,42,44,46,48Ca nuclei and on their
occupation numbers. Regularities in the diagrams
of single-particles levels in the even–even isotopes
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
40,42,44,46,48Ca have been investigated on the basis of
these refined data.

(ii) The refined experimental data have been com-
pared with the results our calculations performed
within the dispersive optical model. In order to de-
termine the dispersive optical potential for protons
in the 40,42,44,46,48Ca nuclei, a dispersive-optical-
model version has been developed that is based on an
analysis of model-dependent cross sections for elastic
proton scattering by nuclei of these isotopes and
the use of some parameters of the dispersive optical
potential for the 40Ca nucleus, for which available
experimental information is the most comprehensive.
It has been shown that, for the energies of single-
particle proton states in 40,42,44,46,48Ca, the results
of the calculations relying on the dispersive optical
model are in good agreement with experimental data.

(iii) The energies calculated here for single-par-
ticle proton states in 40,42,44,46,48Ca on the basis of
the dispersive optical model and their experimental
counterparts have been compared with the predic-
tions of the relativistic mean-field model. As a rule,
the energies calculated within the relativistic mean-
field model are less in magnitude for deep levels than
the experimental energies and than those that were
computed with the dispersive optical potential con-
structed in the present study and are somewhat ex-
aggerated for hole states in the vicinity of the Fermi
energy. The best agreement with experimental data
was attained within the relativistic-mean-field-model
version realized in [33].

(iv) It has been shown that occupation numbers
calculated in the present study for the 2s1/2, 1d3/2,
and 1f7/2 states in 40,42,44,46,48Ca on the basis of the
dispersive optical model are in good agreement with
the refined experimental data.

(v) On the basis of an analysis performed for the
first time ever to test the consistency of the features
of proton states in 40,42,44,46,48Ca with the refined
experimental data, one can conclude that calculations
based on the dispersive optical model provide correct
predictions for variations in the properties of single-
particle proton states with increasing number of in-
tranuclear neutrons.
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Abstract—The effect of nuclear-surface diffuseness on the energy and width of the giant dipole resonance
is studied, and approximating formulas are obtained for these quantities. These formulas make it possible
to describe experimental data in the mass range 16 < A < 240. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

By a giant dipole resonance (GDR), one means
one or two to three collective states of a nucleus (in
the presence of a static deformation) in the continu-
ous spectrum that have a width of a few MeV. These
states are excited by an electric dipole field rY1µ(n)
and are known to saturate the sum rule for E1 tran-
sitions almost completely. In light nuclei (A < 40)
featuring unfilled shells, the pattern of a nuclear re-
sponse to the electric dipole field rY1µ(n) becomes
more complicated. There arise an intermediate GDR
structure that is associated with single shell effects
and, additionally, a configuration splitting of GDR,
the latter being due to the fact that the energy of
single-particleE1 transitions from an inner filled shell
to the outer, partially filled, shell is much greater
than the energy of single-particle transitions from the
outer shell to free unfilled levels (see the review arti-
cles quoted in [1–3] and the original study reported
in [4]). Even for light nuclei, one can nevertheless
state that there occurs the collectivization of theGDR
because, under the effect of residual forces, which
lead to coherent effects, the centroid ofE1 transitions
shifts by about 5 MeV toward higher energies.

The collective nature of the giant resonance as-
sumes the presence of specific general regularities
for its global characteristics such as the energy and
width. At the same time, the existing collective and
statistical models of the nucleus provide a satisfac-
tory description of these regularities only for heavy
nuclei (A � 100). For light and medium-mass nuclei,
the theory yields incorrect results. To some extent,
this can be attributed to the influence of single-
particle shell effects, which manifest themselves most
strongly precisely in light nuclei, and to the fact
that, in vibrational spherical nuclei (40 < A < 80),
the GDR broadens and develops a more complex
structure owing to the interaction of dipole and
low-energy quadrupole nuclear vibrations. This is,
1063-7788/03/6604-0659$24.00 c©
however, not the whole story in all probability, since
the theory disagrees with experimental data not only
for nuclei with unfilled shells but also for spherical
magic nuclei and for rigid deformed nuclei, in which
single-particle effects and surface vibration have but
a slight influence on the structure and width of the
GDR.

It is peculiar to the situation in question that
the deviation of experimental data from theoretical
predictions (for example, for the GDR energy) be-
comes more pronounced with decreasing nuclear
mass number. This gives grounds to assume that
the disregard of the nuclear-surface-layer effect in the
existing collective and statistical models is one of the
main reasons behind the disagreement between the
theory and experimental data (the contribution of this
effect to the whole nuclear size increases from 30 to
100% with decreasing nuclear mass number A).

2. SELECTION OF THE EXPERIMENTAL
DATA

In order to simplify the analysis of experimental
data and to avoid the need for taking into account
effects due to the energy scatter of doorway 1p1h
states and to quadrupole vibrations of the nuclear
surface, we will consider the GDR only for (spheri-
cal) magic and severely deformed nuclei in the mass
range 16 ≤ A < 240. This selection of nuclei makes
it possible to find the required characteristics of dipole
resonances—namely the energy (E), the width (Γ),
and the amplitude (Σ)—by approximating the total
photoabsorption cross section

σabs(γ) = σ(γ, sn) + σ(γ, p) + σ(γ, 2p) + . . .

by one or two Lorentzian lines [for heavy nuclei,
this cross section is approximately equal to the to-
tal photoneutron cross section σ(γ, sn) = σ(γ, n) +
σ(γ, np) + σ(γ, 2n) + · · · + σ(γ, fis)].
2003 MAIK “Nauka/Interperiodica”
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Parameters of the approximating Lorentzian lines and dipole-resonance widths estimated by means of the semiempirical
formula (19)

Nucleus E1, MeV Γ1, MeV Σ1, mb E2, MeV Γ2, MeV Σ2, mb E, MeV ∆E, MeV References
16O 23.7 6.3 (5.92) 26.9 – – – 23.7 17.0–29.5 [5]
24Mg 19.46 3.89 (4.65) 24.2 24.35 7.32 (7.29) 25.7 22.72 15.0–30.0 [6]
40Ca 20.1 5.46 (5.85) 87.1 – – – 20.1 10.0–32.0 [5]
90Zr 16.74 4.16 (4.96) 211 – – – 16.74 14.0–19.0 [7]
124Sn 15.35 4.72 (4.44) 278 – – – 15.35 10.0–22.0 [8]
142Nd 14.95 4.48 (4.32) 359 – – – 14.95 10.0–20.0 [9]
150Nd 12.25 3.00 (2.93) 167 15.96 5.55 (4.97) 229 14.91 10.0–20.0 [9]
154Sm 12.19 3.04 (2.91) 189 15.72 5.62 (4.84) 207 14.55 9.0–20.0 [10]
156Gd 12.39 2.65 (3.01) 224 15.69 4.88 (4.83) 233 14.56 9.0–20.0 [10]
165Ho 12.37 2.56 (3.03) 217 15.48 4.22 (4.75) 229 14.34 9.0–20.0 [10]
168Er 11.88 2.86 (2.80) 221 15.32 4.51 (4.66) 280 14.17 9.0–20.0 [10]
178Hf 11.99 2.81 (2.88) 289 15.12 4.75 (4.58) 342 14.07 9.0–20.0 [10]
184W 11.84 2.57 (2.82) 310 14.74 4.57 (4.38) 326 13.73 9.0–18.0 [10]
208Pb 13.45 3.77 (3.71) 652 – – – 13.45 7.5–27.5 [5]
238U 10.92 2.60 (2.49) 291 13.98 4.72 (4.09) 383 12.96 9.0–16.5 [11]
The parameters Ei, Γi, and Σi found in this way
for one (i = 1) or two (i = 1, 2) dipole resonances
are quoted in the table (columns from the second to
the seventh one). In addition, the width values calcu-
lated by means of formula (19) (see below) are given
parenthetically in the third and the sixth column. In
the eighth column, we present the experimental value
determined for the GDR energy by using Eq. (13)
given below. The energy interval of the approximation
and the source of experimental information are given
in the ninth and the tenth column, respectively.

3. GDR ENERGY

The collective models assuming a sharp nuclear
boundary predict that the giant-resonance energy E

varies with the mass numberA in proportion toA−1/3

or in proportion to A−1/6. The A−1/3 behavior im-
plies [12, 13] that dipole vibrations are coupled vibra-
tions of the independent compressible liquids of pro-
tons and neutrons within a nucleus bounded by a rigid
surface, these vibrations being maintained by forces
that are proportional to the deviation of the density
difference ρp − ρn from its equilibrium value. The
A−1/6 dependence is based on the assumption [12]
that the force restoring charge balance is proportional
to the nuclear-surface area, which can change during
vibrations.

Of these two models, only the hydrodynamic
model [12, 13] is widely used, because it provides
P

a proper description of the strength and the energy
position of the GDR for heavy nuclei (A � 100).
However, the dependence E ∝ A−1/3 leads to wrong
predictions for light nuclei. In this region of nuclei, the
energy E is therefore often approximated by a linear
combination of A−1/3 and A−1/6 terms; that is,

E ≈ 31.2A−1/3 + 20.6A−1/6 MeV, (1)

where the numerical coefficients are determined from
a fit to experimental data [14]. Although this approx-
imation improves the agreement between theoreti-
cal predictions and experimental data (predominantly,
owing to an increase in the number of adjustable
parameters), it does not contribute to advances in the
theory.

In this respect, analysis of the effect of nuclear-
surface diffuseness on the features of the GDR looks
more promising. According to the hydrodynamic
model, the energy of dipole vibrations of a homo-
geneous spherical nucleus with a sharp boundary is
inversely proportional to its radius R ∝ A1/3; that is,

E ≈ 2.08�

(
2Csym

M

)1/2

R−1, (2)

where Csym is a coefficient that characterizes the
symmetry energy of a nucleus, Esym = Csym(A−
2Z)2A−1, and M is the nucleon mass (in what fol-
lows, we will use the value of Csym = 23.7 MeV [15],
which follows from the semiempirical Weizsäcker
mass formula).
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In fact, the nuclear surface is not sharp, however:
the nuclear density ρ = ρp + ρn falls off gradually
from 90 to 10% of its maximal value within the sur-
face layer, whose width varies insignificantly from one
nucleus to another. As follows from data on electron
scattering the distribution of nuclear matter for all
nuclei, including extremely light ones, can be well
approximated by the formula

ρ(r) = ρ0f(r), (3)

where

f(r) =
[
1 + exp

(
r −R0

a

)]−1

(4)

is the radial Fermi form factor, R0 ≈ 1.07A1/3 fm is
the distance from the center of the nucleus to points
where the nuclear density ρ decreases by a factor of 2,
and a ≈ 0.55 fm is the parameter of nuclear-surface
diffuseness.

The constant ρ0 characterizing the density at the
center of the nucleus can be found from the normal-
ization condition

4πρ0

∞∫
0

f(r)r2dr = A. (5)

With allowance for the smallness of the parameter
a/R0, this approximately yields

ρ0
∼= 3A

4πR3
0

[
1 + π2(a/R0)2

] . (6)

(The relative error in this result is very small: δρ0 <
6(a/R0)3 × exp{−R0/a}.)

For actual nuclei having a diffuse surface, the pa-
rameter R in Eq. (2) must be treated as the radius
of the equivalent homogeneous sphere with the same
dispersion of matter; that is,

R =
[
5
3
〈r2〉

]1/2

, (7)
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where
√

〈r2〉 is the root-mean-square radius of the
nucleon distribution in the nucleus.

It is generally assumed that the radiusR is equal to
1.2A1/3 fm. For this case, the giant-resonance energy
E is given by the expression

E ≈ 77A−1/3 MeV, (8)

which describes satisfactorily the behavior of the en-
ergy E for heavy nuclei, but which gives strongly
exaggerated values for light nuclei (see Fig. 1).

It can be seen from (2) and (7) that, in order to take
into account the effect of surface diffuseness on the
giant-resonance energy, it is necessary to calculate
the mean square 〈r2〉 of the distance of nucleons from
the center of the nucleus for distribution (3). Ne-
glecting small terms (less than 0.002〈r2〉 for A ≥ 10
nuclei), we obtain

〈r2〉 =
4πρ0

A

∞∫
0

r2f(r)r2dr ∼= 3
5
R2

0θ
2(a/R0), (9)

where the function θ(x) is given by

θ(x) =


1 +

10
3
π2x2 +

7
3
π4x4

1 + π2x2




1/2

. (10)

As a result, we find that the radius of the equivalent
homogeneous sphere is

R = R0θ(a/R0) (11)

and that the giant-resonance energy (in MeV) is

E ≈ 86A−1/3θ−1(a/R0). (12)

[The parametersR0 and a appearing in these formulas
were specified above—see Eq. (4).]

In Fig. 1, experimental data on the giant-reso-
nance energies for selected nuclei,
E =




E1 for spherical nuclei
E1Σ1Γ1 + E2Σ2Γ2

Σ1Γ1 + Σ2Γ2
for deformed nuclei,

(13)
are contrasted against the results of the calculations
by formulas (1), (8), and (12) (see Section 2).

From the data in this figure, one can see that,
upon taking into account the effect of nuclear-
surface diffuseness on dipole vibrations of the proton–
neutron liquid, a satisfactory description of the giant-
resonance energy can be obtained not only for heavy
but also for light nuclei. It is worth noting that, in
contrast to what was done for Eq. (1), no special
adjustment of the parameters to experimental data
was performed in Eq. (12).

4. DIPOLE-RESONANCE WIDTH

Collective models describe the energy position and
the strength of a dipole resonance, but they are unable
to describe its width. This quantity can be found only
3
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Fig. 1. GDR energy as a function of the mass number
A. The points represent experimental data (see the eighth
column in the table). The solid, dashed, and dash-dotted
curves correspond to the calculations by formulas (12),
(8), and (1), respectively.

via microscopic calculations. The problem of micro-
scopically describing the damping of dipole vibra-
tions because of their interaction with other degrees
of freedom of nuclei was first considered in [16, 17]
and was then examined in greater detail in [18–20]
by using the random-phase approximation. However,
detailed microscopic calculations of giant resonances
are rather cumbersome [21–24]. In practice, one often
therefore applies semimicroscopic approaches where
the fragmentation of a collective giant resonance into
more complex nucleon configurations is performed in
a phenomenological way by using adjustable param-
eters (see, for example, [25–27]).

An approximate estimate of the dipole-resonance
width (Γ) can be obtained as follows. Let us assume
that a collective dipole state |Ψdip〉 falls, as usually oc-
curs, within that region of the energy spectrum where
the density of various excited nuclear configurations
|Ψi〉 is high and that the interaction of these config-
urations with the dipole state has approximately the
same strength over the energy range ∆E � Γ. The
GDR strength function then has the form of a Lorentz
line whose width is [28]

Γ = 2π〈Ψi|V |Ψdip〉2ωi(E), (14)

where 〈Ψi|V |Ψdip〉2 is themean square of dipole-state
interaction with the configurations |Ψi〉, while ωi(E)
is the density of these configurations at the dipole-
resonance energy E.

The collective dipole state |Ψdip〉 can be treated as
a coherent mixture of nuclear excitations formed by
one particle and one hole (1p1h) [29]. The most prob-
able process of energy transfer from dipole vibrations
to other degrees of freedom proceeds as follows: an
P
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Fig. 2. Systematics of dipole-resonance widths: (a) en-
ergy dependence [the experimental widths divided by the
theoretical factor I(A) (closed circles) are contrasted
against the function gE2 ≈ 0.0293E2 (curve)] and (b)
dependence on the mass number A [the experimental
widths divided by the function gE2 (closed circles) are
contrasted against the theoretical function I(A) (curve)].
The experimental data for the widths were taken from the
third and sixth columns of the table.

excited dipole particle or hole collides with a nucleon
occupying a level below the Fermi surface, producing
one more additional particle–hole pair. The dissipa-
tion of the energy of a collective dipole state into
noncollective 2p2h configurations interacting with it
leads to the emergence of the so-called spreading
width of the resonance (Γ↓).

The width Γ↓ plays a vital role in the statisti-
cal models of nuclear reaction [30–32], because this
quantity determines the rate of thermalization of the
primary-nuclear-excitation energy through its redis-
tribution over an ever greater number of nucleons. An
analysis of data on nucleon–nucleus reactions within
statistical models (see, for example, [33, 34]) reveals
that, at moderate excitation energies of a compound
system (E � 30 MeV), the probability that one more
particle–hole pair is produced, λ↓, can be approxi-
mated by the expression

λ↓ =
Γ↓

�
≈ const · E2. (15)

As can be seen from (15), the estimate of λ↓ (and,
hence, of Γ↓) does not depend on the mass number
A. This can be explained by the fact that the prob-
ability that an excited particle or hole undergoes a
collision with an unexcited nucleon is proportional
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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to the nuclear-matter density ρ, which is known to
have approximately the same value for all nuclei. The
appearance of the factor E2 in (15) is associated with
the assumption that the density of final states [these
are 2p2h states in (14)] populated in the production of
a particle–hole pair can be described in terms of the
equidistant model of single-particle levels [35].

As was indicated above, the dipole-resonance
width Γ has the width Γ↓ as a dominant component.
It is therefore not surprising that a few attempts were
made to describe available data on the GDR widths
by using expressions of the form

Γ ≈ gEδ , (16)

where g and δ are adjustable parameters (see, for
example, [36, 37]).

However, these attempts were futile. It turned out
that such a description of the GDR width is appro-
priate only for relatively narrow intervals of the mass
number A. The application of this equation beyond
such an interval (for example, the use of g and δ
parameters determined from data on deformed rare-
earth nuclei in the region of light and moderately
heavy nuclei) leads to serious deviations from exper-
imental data, Eq. (16) fitted to heavy nuclei yielding
greatly exaggerated values of the widths Γ for light
nuclei.

It is straightforward to understand this trend be-
cause, with decreasing mass number A, the number
of nucleons occurring in the dilute surface region of
a nucleus increases, which leads to a decrease in the
average nuclear density and, hence, in the probability
of excitation-energy transfer from one nucleon to an-
other. In order to evaluate this effect, we assume that
the distribution of particles and holes is similar to the
distribution of nuclear matter [see Eq. (3)]. We then
obtain

λ↓ ∝ 〈ρ〉 ≈ 4π

∞∫
0

ρ(r)
ρ(r)
A

r2dr ∼= 0.1949I(A),
(17)

where

I(A) =
1

1 + π2

(
a

R0

)2


1 − 3

a

R0

1 +
π2

3

(
a

R0

)2

1 + π2

(
a

R0

)2




(18)

is the required mass form factor featuring the pa-
rameters a and R0 defined in (4). [In order to derive
Eq. (17), we have used formulas (3)–(6) and the iden-
tity f2(r) = f(r) + af ′(r) for the Fermi form factor.]
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It follows from (15) and (17) that the dipole-
resonance width can be approximated by the expres-
sion

Γ ≈ gI(A)E2. (19)

For the constant g, a fit of this expression to the
experimental values of the dipole-resonances widths
Γ (see table) yields g = 0.0293 MeV−1. The theoret-
ical results for Γ that were calculated by formula (19)
with this value of g are quoted parenthetically in the
third and sixth columns of the table, along with ex-
perimental estimates of the widths.

From a comparison of the experimental and theo-
retical data, one can deduce that Eq. (19) adequately
describes both the energy and the mass dependence
of the dipole-resonance width. This can also be seen
from Fig. 2, where the theoretical functions gE2 and
I(A) are contrasted against the quantities Γexpt/I(A)
and Γexpt/(gE2) evaluated on the basis of experimen-
tal data.

5. CONCLUSION

Let us briefly summarize the basic results of our
analysis:

(i) The inclusion of the nuclear-surface-diffuse-
ness effect on dipole charge vibrations makes it possi-
ble to obtain a reasonable description of experimental
GDR energies within the hydrodynamic model both
for heavy and for light nuclei.

(ii) The basic features of the spreading GDRwidth
can be described within statistical models of nuclear
reactions upon considering that the probability of the
production of a new particle–hole pair decreases in
the surface region of a nucleus.
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et al., Fiz. Élem. Chastits At. Yadra 31, 1343 (2000)
[Phys. Part. Nucl. 31, 674 (2000)].

4. R. A. Eramzhyan, B. S. Ishkhanov, I. M. Kapitonov,
et al., Phys. Rep. 136, 230 (1986).

5. J. Ahrens, Nucl. Phys. A 446, 229 (1985).
6. B. S. Dolbilkin, V. I. Korin, L. E. Lazareva, et al.,

Nucl. Phys. 72, 137 (1965).
7. A. H. Leprêtre, H. Beil, R. Bergère, et al., Nucl. Phys.

A 175, 609 (1971).
8. A. H. Leprêtre, H. Beil, R. Bergère, et al., Nucl. Phys.

A 219, 39 (1974).
9. P. Carlos, H. Beil, R. Bergère, et al., Nucl. Phys. A

172, 437 (1971).
03



664 ISHKHANOV, ORLIN
10. G. M. Gurevich, L. E. Lazareva, V. M. Mazur, et al.,
Nucl. Phys. A 351, 257 (1981).

11. A. Veyssière, H. Beil, R. Bergère, et al., Nucl. Phys.
A 199, 45 (1973).

12. M. Goldhaber and E. Teller, Phys. Rev. 74, 1046
(1948).

13. H. Steinwedel and J. H. D. Jensen, Z. Naturforschteil
A 5, 413 (1950).

14. B. L. Berman and S. C. Fultz, Rev. Mod. Phys. 47,
713 (1975).

15. S. Moshkovsky, in Structure of Atomic Nuclei (West
Berlin, 1957; Inostr. Lit., Moscow, 1959), p. 471.

16. M. Danos and W. Greiner, Phys. Rev. 138, B876
(1965).

17. F. A. Zhivopistsev, V. M. Moskovkin, and N. P. Yudin,
Izv. Akad. Nauk SSSR, Ser. Fiz. 30, 306 (1966).

18. V. V. Voronov and V. G. Solov’ev, Fiz. Élem. Chastits
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Abstract—The equation for the nuclear deformational motion in an asymmetric potential with two minima
is solved quasi-classically in analogy with the familiar symmetric case. Taking into account the tunneling,
we obtained formulas for the energies and wave functions similar to those which were previously derived for
two-band mixing. This enabled us to interpret the mixing of close-lying levels of normal and superdeformed
rotational bands in 133Nd as a manifestation of tunneling. In addition, mixing of superdeformed levels
with normal configurations is analyzed in the framework of the theory of overlapping resonant levels.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Calculations by Strutinsky [1] have revealed that
the nuclear potential energy as a function of the de-
formation parameter β represents a two-well shape.
The first minimum of this potential corresponds to
normal (N) deformation of the nucleus with equilib-

rium value β(0)
N ∼ 0.2–0.3, and the second one, to a

superdeformed (SD) shape with large β(0)
S (β(0)

S ≈ 0.6
for the isotope 152Dy [2]). In the ground state of the
nucleus, the SD minimum of its potential V0(β) lies
much higher than the N one. At great spins I, the SD
minimum becomes lower than N, since the effective
potential energy of the nucleus VI(β) contains the
centrifugal barrier. Specifically, for axially symmetric
nuclei, the Bohr–Mottelson equation leads to

VI(β) = V0(β) +
�

2I(I + 1)
6Bβ2

, (1)

where B is the mass parameter [3, 4]. The cranked-
shell model corrections provide, certainly, a more
complicated dependence of V (β) on I.

The problem of tunneling through two-humped
potential barriers was discussed first in connection
with fissioning isomers (see the review [5]). Later,
a similar task arose in studies of interband electro-
magnetic transitions linking SD and N rotational
bands [6–15].

The main feature of most γ spectra of superde-
formed nuclei is that the intensity of their lines, weakly
depending on the value of spin, abruptly falls at some

∗This article was submitted by the author in English.
**e-mail: dzyublik@kinr.kiev.ua
1063-7788/03/6604-0665$24.00 c©
I ≈ I1/2 [10]. This fact has been explained by a sta-
tistical model [6–8]. Its main idea is that, at spin I1/2,
the level |s〉, which consists mainly of the SD compo-
nent, lies much higher than the yrast line. Therefore,
it is surrounded by a lot of excited configurations
|α〉, which are located inside the N well. The wave
function |s〉, having a tail in the N well, mixes with
|α〉 by a residual interaction V̂ ′. These configurations
are linked with lower states by strong E1 transitions.
As a result, the fraction of nuclei escaping from the
SD band into the normal well at spin I1/2 becomes
FN ∼ 0.5. This leads to weakening of E2 transitions
inside the SD band and their subsequent quenching.

One can estimate the matrix elements 〈α|V̂ ′|s〉
knowing the magnitude of the tail of the function |s〉,
i.e., the amplitude of the N wave function, which is
admixed to the SD state. In other words, we need the
solution of the Schrödinger equation with potential V ,
having two minima. There is such a quasi-classical
(WKB) solution for the case where V consists of two
symmetric potential wells separated by the barrier [16]
(more rigorous calculations for N symmetric wells
(one-dimensional crystal) are given in [17]). This so-
lution describes quite different objects, such as the
molecule NH3 [18] and nuclei having stable octupole
deformations [19].

An attempt to find the energies EI and wave func-
tions ψI in the case of an asymmetric potential was
undertaken by Lynn [5, 20]. He split the effective
potential with two minima into two parts:

VI(β) = V
(1)
I (β) + V

(2)
I (β). (2)
2003 MAIK “Nauka/Interperiodica”
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spins as a function of the deformation parameter β.

The first potential V (1)
I (β) = VI(β) within the first

(normal) well as −∞ < β ≤ β
(0)
B , while V

(1)
I (β) =

VI(β
(0)
B ) otherwise. Here, β(0)

B indicates the position

of the barrier top. The second potential V (2)
I (β) =

VI(β) when β(0)
B < β < ∞, while V (2)

I (β) = VI(β
(0)
B )

otherwise. The wave function was approximated by a
superposition

ψ = c1ψ
(1) + c2ψ

(2), (3)

where the functions ψ(n) were solutions of the Schrö-
dinger equations(

T̂ + V
(n)
I (β)

)
ψ(n)(β) = εnψ

(n)(β) (4)

with the kinetic energy operator T̂ . Substituting (3)
into the Schrödinger equation (T̂ + VI(β))ψ = EIψ
and transforming it to a system of two algebraic
equations, Lynn found cumbersome formulas for the
coefficients cn and nuclear energies EI . Unfortu-
nately, they do not agree with familiar expressions for
energies in the symmetric case [16, 17]. One pos-
sible reason for this discrepancy is that Lynn took

〈ψ(1)|ψ(2)〉 = 0 along with 〈ψ(1)|V (n)
I |ψ(2)〉 
= 0, i.e.,

overlapping of the functions ψ(1) and ψ(2) was ne-
glected in one place and taken into account in an-
other. Note that, in the symmetric case, strict quasi-
classical calculations [17] do not deal at all with os-
cillator overlapping functions.

TheWKB calculations were also performed for the
two-humped barriers [21]. Unfortunately, they did not
take into consideration the barrier confining VI(β) on
the left-hand side.

In previous papers [5–11, 15], it was assumed
that the tunneling through the barrier leads to the
exponential decay of the SD state into N one, and
PH
the following quasi-classical formula has been used
for the tunneling width:

Γtunn = �w, w = (ωS/2π)T, (5)

where ωS is the circular frequency of oscillations in
the SD well and T stands for the transmission coeffi-
cient of the wave through a barrier separating the SD
and N regions, which equals

T ≈ exp(−2A), (6)

with A determined by the integral

A =
1
�

a2∫
b1

dβ|p(β)| (7)

over the region between turning points, in which
EI = VI(β) (see figure). Here,

p(β) =
√

2B(EI − VI(β)). (8)

Let us recall that formulas (6) and (7) were derived
for the one-dimensional case, when at the infinity
there is a plane wave eikx incident on the barrier.
The corresponding WKB calculations (see, e.g., [16,
17, 22]) give us the transmitted wave Ceikx and,
respectively, the transmission coefficient T = |C|2.
These results of scattering theory cannot be applied
directly to bound states localized in the potential well.
Therefore, in (5), the probability of transition per unit
time w is determined by the product of T and the so-
called knocking rate ωS/2π. The only motivation for
the latter factor is that the classical particle, vibrat-
ing with frequency ωS/2π, knocks the barrier ωS/2π
times per second [23].

On the other hand, in the case of a symmetric po-
tential with twominima, the tunneling (see, e.g., [18])
gives rise to coherent Rabi oscillations between wells
if at the initial moment the wave function is concen-
trated in one of the wells. In other words, there is no
exponential tunneling decay in the symmetric case.
It would be strange to think that such an incoherent
process appears due to an asymmetry of the potential.

In standard textbooks (see, e.g., [16, 22]), the
tunneling of the particle through a barrier means its
penetration into the classically inaccessible region
due to its wave properties. Just such tunneling leads
to (6) for T . Nevertheless, in [5–15], the transitions
from superdeformed state |s〉 to configurations |α〉 in
normally deformed nuclei were also called tunneling,
although they are caused by a residual interaction V̂ ′.
Moreover, it was accepted in [5–11, 15] that Γtunn =
Γ, where Γ is the spreading width of the |s〉 state,
given by

Γ = 2π|〈α|V̂ ′|s〉|2/DN , (9)
YSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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andDN is the average spacing of levels |α〉.
All these inconsistencies forced us to perform

straightforward quasi-classical calculations for
bound states in an asymmetric potential with two
minima.

The most elaborate theory for mixing of the su-
perdeformed level with a single configuration was
built by Stafford and Barrett [14], who took into ac-
count simultaneously both their mixing and inter-
action with the electromagnetic field. Here, we shall
extend such an approach to the case of N configura-
tions. Special attention will be paid to mixing of levels
|s〉 with quasi-continuum spectra of configurations.

2. WKB SOLUTION

The Bohr–Mottelson equation after separation of
rotation reduces to an equation for the deformational
motion [3, 4]{

− �
2

2B
∂2

∂β2
+ VI(β)

}
ϕI(β) = EIϕI(β). (10)

More refined theory [9] deals with the deformational
motion in multidimensional configurational space,
which is reduced, nevertheless, to one-dimensional
motion with somemassM . TheWKB solution of (10)
in the region β < a1, which attenuates for β → −∞,
is

ϕI(β) =
cN√
|p|

exp


−1

�

a1∫
β

|p|dβ


 . (11)

According to standard rules [16, 17, 22], it is matched
with the function

ϕI(β) =
2cN√
p

cos


1

�

β∫
a1

pdβ − π

4


 (12)

in the region a1 < β < b1.
Let us introduce the notation

φ1 =
1
�

b1∫
a1

pdβ, φ2 =
1
�

b2∫
a2

pdβ. (13)

Approximating the potential between turning points
in N and SD wells (a1(2) < β < b1(2)) by parabolas

VI(β) ≈ Bω2
N(S)(β − β

(0)
N(S))

2/2, (14)

one has

φ1 =
πEI

�ωN
, φ2 =

π(EI − ∆V0)
�ωS

, (15)

where

∆V0 = VI(β
(0)
S ) − VI(β

(0)
N ). (16)
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Then, function (12) may be rewritten as

ϕI(β) =
2cN√
p


sinφ1 cos


1

�

b1∫
β

pdβ − π

4


 (17)

− cosφ1 sin


1

�

b1∫
β

pdβ − π

4




 .

Under the barrier, b1 < β < a2, the cosine is con-
nected with an exponentially attenuating wave and
the sine with a growing one [22], so that

ϕI(β) =
cN√
|p|


sinφ1 exp


−1

�

β∫
b1

|p|dβ


 (18)

+ 2cos φ1 exp


1

�

β∫
b1

|p|dβ




 .

In order to use the matching rules near the turning
point b2, we transform (18) to

ϕI(β) =
cN√
|p|


sinφ1e

−A exp


1

�

a2∫
β

|p|dβ



(19)

+ 2cos φ1e
A exp


−1

�

a2∫
β

|p|dβ




 ,

where A is defined by (7) and (8). Approximating the
barrier by the inverse parabola with frequency ωB , one
has the well-known expression

A = πWI/�ωB , (20)

where

WI = VI(β
(0)
B ) − EI (21)

determines the distance from the level to the top of the
barrier.

In the SD well, at a2 < β < b2, the wave function
takes the form

ϕI(β) =
cN√
p


− sinφ1e

−A sin


1

�

β∫
a2

pdβ − π

4



(22)

+ 4cos φ1e
A cos


1

�

β∫
a2

pdβ − π

4




 .
3
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It may be rewritten as

ϕI(β) =
2cN√
p


C1 cos


1

�

b2∫
β

pdβ − π

4


 (23)

+ C2 sin


1

�

b2∫
β

pdβ − π

4




 ,

where the coefficients are

C1 = (sinφ1 cosφ2e
−A + 4cosφ1 sinφ2e

A)/2,
(24)

C2 = (sinφ1 sinφ2e
−A − 4 cosφ1 cosφ2e

A)/2.

The first term in (23) generates under the barrier
the exponentially attenuating function, while the sec-
ond generates the growing one. Since the square-
integrable function ϕ → 0 as β → ∞, we must intro-
duce the constraint C2 = 0, which is equivalent to

4cotφ1cotφ2 = exp(−2A). (25)

As a consequence, the wave function (23) becomes

ϕI(β) =
2cS√
p

cos


1

�

b2∫
β

pdβ − π

4


 , (26)

where

cS/cN = (sin φ1/2 cos φ2)e−A. (27)

Under the barrier, β > b2, the wave function will
be

ϕI(β) =
cS
|p| exp


−

β∫
b2

|p|dβ


 . (28)

3. ENERGIES AND WAVE FUNCTIONS

Usually, the barrier has small transparency,
exp(−2A)  1. Then, constraint (25) is fulfilled if

φ1 ≈ (n1 + 1/2)π (29)

or/and

φ2 ≈ (n2 + 1/2)π, (30)

where ni = 0, 1, 2, . . .
Exact equalities (29) and (30) are the familiar

Bohr–Sommerfeld conditions for binding the particle
in one of the potential wells in the absence of tunnel-
ing (A = ∞). Combining them with definitions (15),
we obtain the energy levels of the harmonic oscillators
in N and SD wells:
ε1 = �ωN (n1 + 1/2), ε2 = ∆V0 + �ωS(n2 + 1/2).

(31)
P

Let both approximate conditions (29) and (30) be
fulfilled simultaneously; i.e., the level with n1 phonons
in the N well resonates with the n2 level in the SD
well. Such resonance occurs if the angles

αN(S) =
π(ε1 − ε2)

�ωN(S)
(32)

are small, i.e., |αN(S)|  1. It enables us to replace
cotφi in (25) by−∆φi = −(φi − (ni + 1/2)π).

Then, using the notation

n = {n1, n2}, ω2
0 = ωNωS , (33)

v = (�ω0/2π) exp(−A),

we arrive at the quadratic equation

E2 − (ε1 + ε2)E + ε1ε2 − v2 = 0, (34)

giving us the energies

E
(±)
I,n = ε̄± (1/2)

√
(∆ε)2 + 4v2, (35)

where

∆ε = ε1 − ε2, ε̄ = (ε1 + ε2)/2. (36)

The tunneling leads to repulsion of unperturbed lev-
els:

∆EI,n = E
(+)
I,n − E

(−)
I,n =

√
(∆ε)2 + 4v2. (37)

In the symmetric case, when ∆ε = 0, it reduces to the
well-known splitting ∆EI,n = 2v [16, 17].

Let us introduce the functions |N〉 and |S〉:

cN |N〉 =

{
ϕIn(β), 0 < β ≤ β

(0)
B ,

0, β > β
(0)
B ,

(38)

and

cS |S〉 =

{
0, 0 < β < β

(0)
B ,

ϕIn(β), β ≥ β
(0)
B .

(39)

Then, the wave function is rewritten as

ϕIn(β) = cN |N〉 + cS |S〉. (40)

The components cN |N〉 and cS |S〉 inside the cor-
responding wells are determined by (12) and (26),
respectively. In the resonance case, they are approxi-
mated by the oscillator functions

|N〉 ≈ ψn1(ξ1), |S〉 ≈ ψn2(ξ2), (41)

which depend on the dimensionless coordinates

ξ1(2) =
(
�/BωN(S)

)−1/2 (β − β
(0)
N(S)). (42)

From definitions (38) and (39), it follows that the
oscillator functions should be cut off at the point

β
(0)
B . This means that their overlapping is absent. As
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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π|∆ε|  �ω0, the ratio of the amplitudes (27) reduces
to

(cN/cS)± = f(E(±)
I,n − ε2)/v, (43)

f = (−1)n1+n2+1(ωN/ωS)1/2.

In the symmetric case, when ∆V0 = 0 and ωN = ωS ,
from (35) and (43), one gets the familiar result

ϕ(±)
n ≈ (1/

√
2)(ψn(ξ1) ∓ ψn(ξ2)). (44)

Thus, the lower level of the doublet E(−) is described
by the symmetric function ϕ(−) and the higher level
E(+) by the antisymmetric one ϕ(+) (see also [16]).

Far from the resonance, only one of the conditions
(29) and (30) can be realized. Then, the nucleus is
located mainly in one of the wells N or SD, and the
corresponding wave functions can be specified by the
indices n or s. Their amplitudes are

c
(s)
S ≈ 1, c

(s)
N ≈ (−1)n1+n2

1
2 sinαN

e−A  1 (45)

for the s state, and

c
(n)
N ≈ 1, c

(n)
S ≈ (−1)n1+n2+1 1

2 sinαS
e−A  1

(46)

for the n state. The corresponding energies are

E(s) ≡ E(−) = ε2 −
�ωS

4π
e−2AcotαN , (47)

E(n) ≡ E(+) = ε1 +
�ωN

4π
e−2AcotαS .

In the transition region

2v  |∆ε|  �ωN(S)/π, (48)

the solutions (35) and (47) coincide:

E(+) ≈ ε1 + v2/∆ε, E(−) ≈ ε2 − v2/∆ε. (49)

In this case, the amplitudes become

c
(s)
S ≈ 1, c

(s)
N ≈ (−1)n1+n2

√
ωN

ωS

v

∆ε
(50)

and

c
(n)
N ≈ 1, c

(n)
S ≈ (−1)n1+n2+1

√
ωS

ωN

v

∆ε
. (51)

4. BAND MIXING CAUSED BY TUNNELING

The nuclear wave function in the adiabatic approx-
imation reads

ψ = Φ(β; ξ)ϕIn(β)|IM〉, (52)

where the function Φ(β; ξ) describes internal mo-
tion of the nucleons, whose position is determined
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by the coordinates ξ, and |IM〉 denotes the rota-
tional function, which is represented by a superpo-
sition of the D functions, depending on the Euler
angles [2, 3]. The internal function Φ(β; ξ) depends
on the deformational variable β as on the param-
eter. It is therefore not surprising that normal and
superdeformed rotational bands, observed by Baz-
zacco [11] in 133Nd, are built on different orbitals.
The SD and other bands have close-lying levels for
spins I = 17/2+ and 29/2+. The experimental dif-
ferences of their energies are ∆E17/2 = 64 keV and
∆E29/2 = 39 keV. Bazzacco explained strong inter-
band transitions and repulsion of nearby levels, which
arise at these spins, using the band-mixing model of
Bengtsson and Frauendorf [24], who interpreted mix-
ing of two rotational bands with the aid of a standard
solution of the Schrödinger equation for two close-
lying (degenerate) levels, coupled by the interaction
v (see, e.g., [16]). Employing the equation derived by
Bengtsson and Frauendorf [24], Bazzacco extracted
the interaction matrix elements v = 22 keV at I =
17/2+ and v = 11 keV at I = 29/2+. Note, how-
ever, that this equation coincides formally with our
Eq. (35), in which v means a strength of tunneling
through the barrier separating N and SD wells, and
has nothing to do with any residual interaction. As
to the ratio of the amplitudes cN/cS , provided by the
tunneling, it differs from the corresponding ratio of
standard two-level theory [16] by an extra factor f .

It seems to be more natural to explain the observed
phenomena by the tunneling between N and SD
shapes rather than by the mixing caused by constant
interaction. Then, for the tunneling strength v, one
must use (20) and (33). AdoptingBazzacco’s estima-
tions for v and setting ω0 = ωB = 0.6 MeV, we found
the distances WI from the zero-phonon levels with
spin I to the top of the barrier:W17/2 = 0.28MeV and
W29/2 = 0.41 MeV. This correlates with the general
tendency of the barrier height to increase with spin
growth [10]. Such values of WI are so small that
no superdeformed bands built on β phonons can be
excited in this nucleus.

5. MIXING OF SD STATES
WITH CONFIGURATIONS

In the nuclei around 152Dy and 192Hg, another
(statistical) mechanism accounts for the interband
transitions. For these nuclei, the admixture of the
N state to SD one is too small, c2S ≈ 1 and c2N ≈
(fv/∆ε)2  1. But at low spins, these levels mix
with neighboring configurations |α〉 [5–15]. Since the
configuration α overlaps only with the N component
of the function |s〉, then

〈α|V̂ ′|s〉 = cN 〈α|V̂ ′|N〉. (53)
3
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This matrix element enters the spreading width (9).
Thus, the tunneling (in the traditional sense [16, 22])
manifests itself in the spreading width Γ only by
means of the factor (fv/∆ε)2. This tunneling ensures
mixing of the N and SD functions into the |s〉 state,
whereas the spreading width Γ determines the rate
for further decay of |s〉 into normal configurations |α〉.
Thus, the equality Γtunn = Γ, adopted in [5–11, 15],
makes no sense.

Below, we shall consider the mixing of the states
|s〉 and |α〉, taking into account simultaneously mix-
ing and interaction with the field. Such an approach
of overlapping (close-lying) resonances was used
previously in [25–27] for other purposes. We shall
write the Hamiltonian of the system (nucleus +
electromagnetic field) as

Ĥ = Ĥ0 + V̂ , Ĥ0 = Ĥn + Ĥrad, V̂ = V̂r + V̂ ′,
(54)

where Ĥn and Ĥrad denote the Hamiltonians of the
nucleus and electromagnetic field, respectively, and
V̂ is the perturbation operator, which includes the
interaction V̂r of the nucleus with the field and the
residual interaction V̂ ′ of nucleons.

The states of the system with near energies are
described by the functions |a〉 that are the products
of the nuclear wave functions |s〉 or |α〉 to the vac-
uum function |0〉 of the electromagnetic field. The
functions of the final states |b〉 are products of the
functions for the nucleus in a lower SD state and the
field with one E2 γ quantum or the nucleus in the N
state and the field with anE1 orE2 photon. The func-
tions |a〉 and |b〉 are the eigenfunctions of unperturbed
Hamiltonian Ĥ0 with corresponding eigenvalues Ea

and Eb.

Let, at the initial moment t = 0, the system be
described by the wave functionΨa(0) = |s〉|0〉. At any
subsequent moment t ≥ 0, it will be [27]

Ψ(t) = − 1
2πi

∞∫
−∞

dεe−iεt/�Ĝ+(ε)Ψa(0), (55)

where the Green’s operator is related to the complete
Hamiltonian by

Ĝ+(ε) = Ĝ(ε+ iη) = (ε+ iη − Ĥ)−1 (56)

with η → +0.

The probability of finding the system at moment t
in one of the states |b〉 or |a〉 is given by [28]

Pb(a′)(t) = |Gb(a′)(t)|2, (57)
PH
where the probability amplitude is

Gb(a′)(t) = − 1
2πi

∞∫
−∞

dεe−iεt/�〈b(a′)|Ĝ+(ε)|a〉.
(58)

The Green’s matrix Gba is related toGa′a by

Gba(ε) = (ε− Eb)−1
∑
a′

Vba′Ga′a(ε). (59)

The general system of algebraic equations for the
matrix G+

aa′ is [27]∑
a′′

{
(ε+ iη − Ea)δaa′′ −R+

aa′′(ε)
}
G+

a′′a′(ε) = δaa′ ,

(60)

where the Rmatrix reads

R+
aa′(ε) ≈ Vaa′ +

∑
b�=a

VabVba′

ε+ iη − Eb
. (61)

We denote the radiative widths of the states |S〉
and |s〉 by ΓS and Γs, respectively. Moreover, we take
into account that Γs ≈ ΓS since cN ≈ 0. In addition,
we assume that the radiative widths of all configura-
tions are equal to ΓN and that the matrix elements for
the residual interaction do not depend on the number
α. Then,

R+
ss = −iΓS/2, R+

αα = −iΓN/2, (62)

R+
sα = 〈s|V̂ ′|α〉 ≡ v′.

Here, |s〉 ≡ |a〉, |α〉 ≡ |a′ 
= a〉. Substituting (62)
into (60), one has the equations

(ε− Es + iΓS/2)G+
ss(ε) − v′

N∑
α=1

G+
αs(ε) = 1, (63)

−v′G+
ss(ε) + (ε−Eα + iΓN/2)G+

αs(ε) = 0.

Their solution is

G+
αs(ε) =

v′

ε−Eα + iΓN/2
G+

ss(ε), (64)

G+
ss(ε) =

{
ε− Es + i

ΓS

2

−
N∑

α=1

v′2

ε− Eα + iΓN/2

}−1

.

Let, at t → ∞, the final state |b〉 describe the nu-
cleus in the SD state and γ quantum with energy E.
Summing the corresponding probabilitiesPb(∞) over
all possible states of emitted photons, one gets the
probability of finding the nucleus in the SD pocket:

FS = (ΓS/2π)

∞∫
−∞

dE|G+
ss(E)|2. (65)
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Respectively, the probability that the nucleus at-
tributes normal shape after decay is FN = 1 − FS .

Following [29], we shall assume that the levels |α〉
form an infinite equidistant spectrum with energies
Eα = E0 + αDN , where α = 0,±1,±2, . . .. Then, at
small DN , we can pass in (64) from summation to
integration:

∞∑
α=−∞

DN

ε− Eα + iΓN/2
(66)

→ −
∞∫

−∞

dε′
1

ε′ − ε− iΓN/2
= πi.

As a result, the matrix element G+
ss takes the form

G+
ss(ε) =

1
ε− Es + i(ΓS + Γ)/2

(67)

with spreading width Γ given by (9). Only in such a
situation is the probability of finding the nucleus in the
initial state governed by the exponential law of decay
Ps(t) = exp(−(ΓS + Γ)t/�).

Inserting (67) into (65), for the quasi-continuum
spectrum of configurations, one has

FS = ΓS/(ΓS + Γ). (68)

In the two-level case, we get the results of [14].

6. CONCLUSION

Thus, we obtained a quasi-classical solution to
describe nuclear deformational motion in the potential
with two minima, which is similar to the solution for
a symmetric potential [16, 17]. It is interesting that
expression (35) for the energies E(±) coincides with
the well-known formula for two levels coupled by any
interaction [16, 24]. It enabled us to associate Bazza-
cco’s observations [11] with tunneling through a low
barrier, separating normal and superdeformed shapes.
In the symmetric case, Rabi transitions between wells
occur if we get at the initial moment a coherent
sum of states |+〉 and |−〉, i.e., at t = 0, the wave
function is ψ = (1/

√
2)(ψ(+) + ψ(−)). However, sep-

aration of the vibrational nuclear levels in different
potential wells |∆ε| ∼ 100 keV, whereas the radiative

widths ΓN(S) ∼ 1 meV. As a result, the levels ϕ(+)
I

and ϕ(−)
I can be populated only independently of each

other by the decay I + 2 → I. In reality, due to the
same inequality ΓN(S)  |∆ε|, only one state |s〉with
a predominant contribution of the SD component
(cS ≈ 1, |cN |  1) is populated. Moreover, for the

nucleus, described by ϕ
(s)
I , the tunneling does not

alter the amplitudes cN and cS . In other words, tradi-
tional tunneling [16, 22] does not lead to decay of the
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SD state into the N state; i.e., expression (5) for the
tunneling width cannot be applied here. Something
like this expression might be useful for treatment of
the tunneling through the exterior barrier.

On the other hand, mixing of the state |s〉 with
normally deformed configurations |α〉 ensures such
transitions between wells. For two levels, when the
state |s〉 mixes only with a single configuration, our
general formulas (64) and (65) lead to the results
of [14]. In this case, during decay of the nucleus,
there are oscillating transitions between two potential
wells. On the other hand, in the case of a quasi-
continuum spectrum of configurations, the decay
of the |s〉 state proceeds exponentially. Then, the
nucleus has two competing channels of decay—
radiative and spreading, characterized by the widths
ΓS and Γ, respectively. The total width of the level
|s〉 will be ΓS + Γ, and the probability of decay in
one of these channels is determined by the ratio of
the corresponding partial width to the total width
[see (68)]. If the spacing of levels greatly exceeds their
radiative widths, one can diagonalize the Green’s
matrix G+

aa′ by diagonalizing the Hamiltonian matrix
Haa′ . Doing so, we come to the same general result
for FN as in [7, 8]. Nevertheless, in the case of a
quasi-continuum spectrum of configurations, which
corresponds to the strong-coupling limit of Vigezzi
et al. [8], our result FN = Γ/(Γ + ΓS) deviates from
the corresponding Eq. (17) of [8]. The latter contains
a redundant dependence of FN onDN and ΓN , which
leads to such unreasonable consequences as negative
FN at small ΓN or FN ≈ 1 asDN ≈ 0 for finite Γ.

The quasi-classical solution obtained for asym-
metric potential wells, separated by the barrier, can
also be used for other applications such as tunneling
of hydrogen atoms between nonequivalent sites in a
crystal.
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Abstract—The differential cross sections for the elastic scattering of 12С and 16О nuclei by 12С nuclei
are calculated on the basis of the theory of multiple diffractive scattering and the dispersive alpha-cluster
model. The calculations were performed by using either an effective or a free αα amplitude. It is shown that
the results obtained in these two cases are noticeably different. c© 2003 MAIK “Nauka/Interperiodica”.
In many cases, investigation of the interaction of
light nuclei makes it possible to obtain important
information about the structure and properties of col-
liding nuclei. At rather high energies (E ≥ 100 MeV
per nucleon), in which case the time of projectile in-
teraction with a nucleus is short in relation to the time
of intranuclear motion, investigation of the features
of the elastic scattering of such nuclei also enables
us to get an idea of the strength and the character
of interaction between the structural components of
colliding nuclei in nuclear matter.

Light nuclei often exhibit a cluster structure. The
presence of this mode in the wave function for light
nuclei manifests itself both in calculating structural
features of nuclei and in calculating observables for
scattering and reactions. Inmany cases, anα particle,
which possesses high stability and symmetry, appears
as a cluster.

A model where it is assumed that the positions of
alpha particles in a nucleus are fixed and where no an-
tisymmetrization of the wave function is performed [1]
is the simplest version of the alpha-particle model.
This model makes it possible to explain qualitatively
the behavior of elastic form factors for some light
nuclei and other features of the elastic scattering of
high-energy particles by light nuclei (see, for exam-
ple, [2]).

In the more realistic alpha-particle model pro-
posed in [3], one takes into account the possibility
of nucleon exchange between the alpha particles in-
volved and performs antisymmetrization of the nu-
clear wave functions in all filled nucleon states. The
form factors for elastic electron scattering that were
calculated within thismodel proved to be sensitive not
only to the positions of the alpha particles but also

1)Institute for Nuclear Research, National Academy of Sci-
ences of Ukraine, pr. Nauki 47, Kiev, Ukraine.
1063-7788/03/6604-0673$24.00 c©
to the alpha-cluster structure, which differs consid-
erably from the structure of a free alpha particle.

A dispersive alpha-cluster model for 12С, 16О, and
20Ne was proposed in [4–6]. It was assumed in [4,
5] that the carbon and the oxygen nucleus consist
of, respectively, three and four alpha-particle clusters
occurring at the vertices of an equilateral triangle in
the former case and at the vertices of a tetrahedron in
the latter case. These alpha-particle clusters can be
displaced in a specific way from their most probable
equilibrium positions. In [6], the 20Ne nucleus was
considered as that which consists of a deformed core
(16О nucleus) and an additional alpha-particle clus-
ter. In [7], it was shown that this alpha-particle cluster
occurs most probably within the core.

On the basis of this model and the theory of
multiple diffractive scattering, the observables of
elastic and inelastic proton scattering on these nuclei
were computed in [5–7]. The results of those cal-
culations revealed that, since the time of projectile
interaction with a target nucleus is much shorter
than the characteristic time of intranuclear motion,
nucleon exchange between the alpha-particle clus-
ters involved and antisymmetrization of the nuclear
wave function have but a small effect on the cross
section. In other words, the target nucleus can-
not feel nucleon exchange between alpha-particle
clusters within the time of its interaction with the
projectile, since this exchange occurs rather rarely
and slowly; moreover, the projectile energy signif-
icantly exceeds the Fermi energy, whence it fol-
lows that the correlations of intranuclear nucleons
that are caused by the Pauli exclusion principle
cannot be operative in the case of elastic scatter-
ing. Even at high energies of scattered particles,
however, we cannot disregard vibrations of alpha-
particle clusters about their most probable posi-
tions since these vibrations lead to an increase
2003 MAIK “Nauka/Interperiodica”



674 BEREZHNOY, MIKHAILYUK
in the effective dimensions of alpha-particle clus-
ters.

We note that, for elastic p12С and p16О scattering,
the free pα amplitude was used in the calculations.
In other words, the parameters of the pα amplitude
were determined from a comparison of the calculated
and measured observables for p4He scattering. The
calculated and measured observables were matched
with available experimental data.

In [8, 9], the approach proposed in [4, 5] was
developed for the case of the elastic scattering of
composite particles (deuterons, alpha particles) by
12С and 16О nuclei. In the calculations, use was
made of effective dα and αα amplitudes whose pa-
rameters were determined from a comparison of the
calculated and measured differential cross sections
for elastic d12С and α12С scattering. The differen-
tial cross sections for d16О and α16О scattering
were calculated without adjustable parameters. The
results of those calculations were consistent with
available experimental data on particle scattering
both by 12C and by 16О nuclei. In [8], the differen-
tial cross sections for elastic d12С scattering were
also calculated by using the free amplitudes for the
elastic scattering of projectile-deuteron nucleons
by the 4He nuclei. The differential cross sections
calculated in this way were at odds with experimental
data.

It should be noted that, according to [10, 11],
the observables of the elastic scattering of light nu-
clei by nuclei at energies of E ∼ 100 MeV per nu-
cleon cannot be satisfactorily described on the basis
of the theory of multiple diffractive scattering with
elementary free nucleon–nucleon amplitudes, which
are commonly used in this case. In other words, the
properties of composite nuclei undergo changes in the
scattering process, so that the free amplitudes must
be replaced by effective ones.

An approach to investigating the elastic scattering
of deuterons and of 6He and 6Li nuclei by 12С nuclei
at intermediate energies was proposed in [12]. The
calculations there were performed on the basis of
the theory of multiple diffractive scattering and the
dispersive alpha-cluster model under the assumption
that the projectile particle has a two-cluster (for
deuterons and 6Li nuclei) or a three-cluster (for
6He nuclei) structure. The differential cross sections
calculated for elastic 6He12С and 6Li12С scattering
within this approximation differed from each other
considerably; at the same time, the resulting dif-
ferential cross section for d12С scattering was in
agreement with experimental data.

At present, there are no experimental data on
elastic 6He12С and 6Li12С scattering at intermediate
PH
energies. In view of this, it is of interest to employ
here the approach proposed in [12] for describing
experimentally measured properties of the elastic
scattering of light nuclei by 12С nuclei. In this study,
the elastic scattering of 12С and 16О nuclei by carbon
nuclei is considered within the dispersive alpha-
cluster model.

According to the theory of multiple diffractive
scattering, the amplitude for the elastic scattering of a
three-cluster system by a nucleus can be represented
in the form

F (q) = 3F1(q) + 3F2(q) − F3(q), (1)

F1(q) =
k

kα
f(q)S1(q), (2)

F2(q) =
ik

2πk2
α

∫
d2q′f(q′)f(q − q′)S2(q,q′), (3)

F3(q) =
k

(2π)2k3
α

∫
d2q′d2q′′f(q− q′ − q′′) (4)

× f(q′)f(q′′)S3(q,q′,q′′),

where F1(q), F2(q), and F3(q) are the amplitudes
for, respectively, the single, the double, and the triple
scattering of alpha-particle clusters of the projectile
by the target nucleus; f(q) = fC,O(q) stands for the
amplitudes characterizing the elastic scattering of
alpha-particle clusters of the projectile on the alpha-
particle clusters of the target nucleus; q is the mo-
mentum transfer from an alpha-particle cluster of the
projectile; k is the projectile wave vector; and kα is
the wave vector of an alpha-particle cluster of the
projectile.

In these formulas, the structure form factors
S1(q), S2(q,q′), and S3(q,q′,q′′) are given by

S1(q) =
∫
d3γ1d

3γ2ρ(γ1,γ2)e−(2i/3)q·w, (5)

S2(q,q′) =
∫
d3γ1d

3γ2ρ(γ1,γ2)e(i/3)q·w−iq1·s, (6)

S3(q,q′,q′′) =
∫
d3γ1d

3γ2ρ(γ1,γ2)e−iq2·w−iq3·s,

(7)

where ρ(γ1,γ2) is the projectile density; γ1 and γ2

are the Jacobi coordinates of the alpha-particle clus-
ters of the projectile; s and w are the projections of,
respectively, the vector γ1 and the vector γ2 onto
the plane orthogonal to the incident-beam axis; and
q1 = q/2 − q′, q2 = 2q/3 − q′ − q′′, and q3 = q′ −
q′′. Considering that, in the approach used here, the
amplitudes for the scattering of 16O nuclei by 12C
nuclei coincide with those for the scattering of 12C
nuclei by 16Onuclei, the projectile density ρ(γ1,γ2) in
YSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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Fig. 1. Ratios σ/σRuth of the differential cross sections
for the elastic scattering of the (a) 12C and (b) 16O
nuclei by 12C nuclei at energies of 2400 and 3200 MeV,
respectively, to the corresponding Rutherford cross sec-
tions. Experimental data borrowed from [13] were used for
elastic 12C12C scattering. The notation for the curves is
explained in the main body of the text.

Eqs. (5)–(7) is equivalent to the 12C density specified
below.

The amplitudes fC(q) and fO(q) for the elastic
α12C and α16О scattering have the form

fC(q) =
ikα

2π

∫
d2bd3ξd3ηeiq·bρ(C)

∆ (ξ,η)Ω(b, {sj}),
(8)

fO(q) =
ikα

2π

∫
d2bd3ξd3ηd3ζeiq·b (9)

× ρ
(O)
∆ (ξ,η, ζ)Ω(b, {sj}),
Ω(b, {sj}) = 1 (10)

−
N∏

j=1

[
1 − 1

2πikα

∫
d2qe−iq·(b−sj)f̃αα(q)

]
,

where b is the impact parameter; sj are the coor-
dinates of the alpha-particle clusters of the target
nucleus; f̃αα(q) is the amplitude of elastic αα scat-
tering; and N = 3 and 4 for 12С and 16О nuclei,
respectively.
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Fig. 2. As in Fig. 1, but at the energies of 1449 and
1932 MeV.

The amplitude f̃αα(q) was chosen in the form

f̃αα(q) = kα

3∑
i=1

Gci exp(−βciq
2). (11)

The parameters Gc1 and βc1 are adjustable, while
the remaining parameters in (11) are expressed in
terms ofGc1 and βc1 as

Gc2 =
3iG2

c1

32βc1
, βc2 =

1
2
βc1; (12)

Table 1. Parameters of the effective αα amplitude

Energy, MeV β1, fm2 G1, fm2

800 0.984 + i0.375 −0.536 + i2.455

483 1.134 + i0.993 −0.876 + i3.273

339 0.865 + i0.992 −0.909 + i3.342

Table 2. Parameters of the free αα amplitude

Energy, MeV β1, fm2 G1, fm2

620 0.700 + i0.123 −0.018 + i3.314

850 0.247 + i0.118 −0.443 + i1.336
3
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Fig. 3. As in Fig. 1, but at the energies of 1016 and
1503 MeV. The displayed experimental data were bor-
rowed from [14, 15].

Gc3 = − G3
c1

192β2
c1

, βc3 =
1
3
βc1. (13)

According to the dispersive alpha-cluster model,
the multiparticle densities of the 12C and 16O nuclei
are given by

ρ
(C)
∆ (ξ,η) =

∫
d3ξ′d3η′ρ(C)

0 (ξ′,η′) (14)

× Φ(C)
∆ (ξ − ξ′,η − η′),

ρ
(C)
0 (ξ,η) =

1
4
√

3π2d2
δ(ξ − d) (15)

× δ

(
η −

√
3

2
d

)
δ(ξ · η),

Φ(C)
∆ (ξ,η) =

1
(
√

3π∆2)3
exp

(
−
ξ2 + 4

3η
2

2∆2

)
, (16)

ρ
(O)
∆ (ξ,η, ζ) =

∫
d3ξ′d3η′d3ζ ′ρ(O)

0 (ξ′,η′, ζ ′) (17)

× Φ(O)
∆ (ξ − ξ′,η − η′, ζ − ζ ′),

ρ
(O)
0 (ξ,η, ζ) =

1
(4π)2

δ(ξ − d)δ

(
η −

√
3

2
d

)
(18)

× δ

(
ζ −

√
2
3
d

)
δ(ξ · η)δ(ξ · ζ)δ(η · ζ),
PH
Φ(O)
∆ (ξ,η, ζ) =

1
8(π∆2)9

(19)

× exp


−

ξ2 +
4
3
η2 +

3
2
ζ2

2∆2


 ,

where ξ, η, and ζ are the Jacobi coordinates of the
alpha-particle clusters forming the 12C and 16O nu-
clei. The parameters d and ∆ characterize the dis-
tance between the alpha-particle clusters and the
magnitude of their deviation from their most probable
equilibrium positions at the vertices of an equilateral
triangle and of a tetrahedron in the former and the
latter, respectively. The values obtained for the pa-
rameters d and ∆ in [4, 5] make it possible to describe
the measured form factors for the 12C and 16O nuclei
within the momentum-transfer region q ≤ 3 fm−1.

On the basis of the proposed approach, we have
calculated the differential-cross-section ratios
σ/σRuth (where σRuth is the corresponding Rutherford
cross section—that is, the differential cross section
for Coulomb scattering) for the elastic scattering of
12C and 16O nuclei by 12C nuclei. The results of these
calculations are displayed in Figs. 1–3.

Figures 1a and 2a show the calculated (solid
curves) and measured (see [13]) differential cross
sections for elastic 12C12C scattering at the energies
of 2400 and 1449 MeV, respectively. In the calcu-
lations, we have used the effective αα amplitude
f̃αα(q) (11) in the form of the sum of two Gaussian
functions (Gc3 = 0). The parameters of the effective
αα amplitude at the relevant energy values of 800 and
483 MeV are quoted in Table 1.

Similar agreement between the calculated and
the measured observables for 12C12C scattering at
2400 MeV was obtained in [16], where the differential
cross section for elastic carbon-nucleus scattering
at this energy value was calculated on the basis of
the optical limit of the theory of multiple diffractive
scattering and the effective amplitude for the scat-
tering of projectile nucleons on the target nucleus.
The density of the 12С nucleus was approximated by
the sum of Gaussian functions. However, the use of
the optical limit of the theory of multiple diffractive
scattering is hardly justifiable in this case; therefore,
the resulting effective nucleon–nucleus amplitude
may be insufficiently realistic.

The dashed and the dotted curve in Fig. 1a rep-
resent the results of the calculations performed with
the free αα amplitudes at the energies of 620 and
850 MeV, respectively. In the calculations, we have
used the amplitude f̃αα(q) in the form of the sum
of three Gaussian functions [see Eq. (11)], since the
differential cross sections for elastic αα scattering at
YSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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the energies of 620 and 850MeV were experimentally
measured [17, 18] in the region of rather highmomen-
tum transfers (the corresponding angular region is
θ ≥ 50◦), where the use of the model being considered
is not well justified and where the amplitude f̃αα(q)
parametrized as the sum of two Gaussian functions
does not lead to an adequate description of available
experimental data. The parameters of the free αα
amplitude are given in Table 2.

From Fig. 1a, it can be seen that the differential
cross sections for elastic 12C12C scattering at an
energy of 2400MeV that were calculated by using the
effective and free αα amplitude f̃αα(q) differ consid-
erably. In the case of elastic alpha-particle scattering
by 12C nuclei at an energy of 1.37 GeV [9], where the
parameters of the free αα amplitude were determined
quite reliably, the calculated differential cross sections
exhibit similar behavior. Therefore, it seems that the
ambiguity in choosing the parameters of the free αα
amplitude at the energies of 620 and 850 MeV is not
expected to have a pronounced effect on the behav-
ior of the differential cross sections computed in the
present study.

It should be noted that we have also calculated the
differential cross section for elastic 12C12C scattering
at the energy of 2400 MeV by using the effective αα
amplitude f̃αα(q) parametrized as the sum of three
Gaussian functions [see Eq. (11)]. The result is vir-
tually coincident with that displayed in Fig. 1a (solid
curve).

Figures 1b and 2b display the results obtained
by calculating the differential cross sections for the
elastic scattering of 16О nuclei by 12С nuclei. The
notation for the curves here is identical to that in
Figs. 1a and 2a.

Figure 3 shows the calculated and measured
(see [14, 15]) differential cross sections for elastic
12C12C and 16О12C scattering at energies of 1016
and 1503 MeV, respectively. The differential cross
section for elastic 12C12C scattering (Fig. 3a) was
calculated with the effective αα amplitude, whose
parameters were determined from a fit to available
experimental data (Table 1, the energy value of
339 MeV). The resulting set of parameters of the
effective αα amplitude was then used to describe the
differential cross section for elastic 16О12C scattering
(Fig. 3b)—that is, this differential cross section was
calculated without adjustable parameters.

The existing distinctions between the calcu-
lated and measured observables at scattering angles
around θ ≈ 3◦ can be explained by the disregard of
the interference between the nuclear and Coulomb
interactions, which, at the projectile energies being
considered, governs the behavior of the differential
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
cross sections in the region of the first diffraction
minimum.

Figures 1–3 show that, in the scattering-angle
region θ ≥ 8◦, there are distinctions between the cal-
culated and measured observables. In all probability,
the reason behind this behavior of the differential
cross sections is that the dispersive alpha-cluster
model used here makes it possible to describe the
measured form factors for the 12C nucleus only within
the momentum-transfer region q ≤ 3 fm−1—that is,
the use of this model at higher momentum-transfer
values is not quite legitimate.

We note that an attempt at employing the parame-
ters of the projectile density as adjustable parameters
did not lead to noticeable variations in the behavior of
the calculated differential cross sections since, in this
model, the deformation of projectiles is automatically
taken into account in the effective αα amplitude.

Our calculations have revealed that themodel pro-
posed in [12] for studying the elastic scattering of
loosely bound particles (deuterons, 6He nuclei) by
12С nuclei also makes it possible to obtain satis-
factory agreement between the calculated and mea-
sured observables for the elastic scattering of strongly
bound light alpha-cluster nuclei (12С, 16О) by carbon
nuclei. The agreement between the calculated and
measured differential cross sections for elastic 12C12C
scattering is improved with increasing projectile en-
ergy, since the conditions of applicability of the theory
of multiple diffractive scattering are better satisfied
at higher energies. Unfortunately, there are presently
no data on 16O12C scattering at these energies. The
results of the calculations performed in this and in
earlier studies show that the agreement between the
observables calculated within themodel proposed [12]
and the measured observables is attained with re-
alistic densities of alpha-cluster nuclei and realistic
effective elementary amplitudes, whereby one takes
automatically into account variations in the proper-
ties of projectiles due to their polarizability. Therefore,
experimental investigations into the elastic scatter-
ing of light alpha-cluster nuclei by similar nuclei at
higher energies wouldmake it possible to obtain more
comprehensive information both about the structure
of colliding nuclei and about the strength and the
character of interaction between the structural com-
ponents of these nuclei within nuclear matter.
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Abstract—A triple T -odd angular correlation is considered in the kinematically similar reactions
10B(n, αγ) and 233U(n, αf) induced by cold polarized neutrons. It is shown that, in the former reaction,
this correlation is suppressed by the double parity-conservation selection rule due to the two-step character
of the process; however, T invariance does not impose any specific constraints on this correlation. The
mechanism through which the T -odd correlation found in ternary-fission reactions is formed seems to be
closely related to a nearly simultaneous disintegration of the nucleus involved into two fission fragments
and an alpha particle. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The results obtained by measuring the T -odd
correlation σn · [pα × pγ ]) in the two-step reaction
10B(n, αγ) induced by cold polarized neutrons were
reported in [1]. Here, σn is neutron spin, while
pα and pγ are, respectively, the alpha-particle and
the photon momentum. The asymmetry of photons
emitted along and against the direction of the vector
σn × pα proved to be Dγ = −(0.09 ± 1.9) × 10−4

(that is, the effect was compatible with zero). Those
measurements were motivated by a nonzero T -odd
correlation σn · [pα × pf ] that was revealed recently
in the ternary-fission reaction 233U(n, αf) also in-
duced by cold polarized neutrons (see [2]). Here, the
vector pf is the momentum of the lightest fragment.
The corresponding asymmetry coefficient measured
in [2] is Df = (2.35 ± 0.05) × 10−3.

Previously, it was repeatedly indicated (see, for
example, [3, 4]) that, in contrast to the case of parity, it
is only in elastic-scattering processes that a nonzero
T -odd correlation is directly related to T violation. In
inelastic processes (including, among others, alpha
and gamma decays and fission), this relationship can
be established only if the process is treated in the first
Born approximation, and it is valid apart from Born
terms of higher orders. Corrections induced by those
terms (effects of initial- and final-states interaction)
can conceal, to a considerable extent, the aforemen-
tioned relationship even in electromagnetic processes

1)Russian Research Centre Kurchatov Institute, pl. Kurchato-
va 1, Moscow, 123182 Russia;
e-mail: barab@pretty.mbslab.kiae.ru

2)Petersburg Nuclear Physics Institute, Russian Academy of
Sciences, Gatchina, 188350 Russia.
1063-7788/03/6604-0679$24.00 c©
(see, for example, [3]). Fission and alpha-decay pro-
cesses featuring strong interaction can hardly be de-
scribed in the Born approximation. Hence, the exper-
imental result from [2] is more probably associated
with special features of the respective reaction mech-
anism rather than with T violation.

At the same time, the reactions 10B(n, αγ) and
233U(n, αf) appear to be kinematically similar. This
brings about the question of whether the absence of
the triple T -odd correlation in the former reaction is
merely accidental. If this is not so, then it is desirable
to reveal, in the reaction mechanisms, distinctions
that cause the absence of the triple T -odd correlation
in the reaction 10B(n, αγ).

In seeking solutions to these problems, we have
analyzed the reaction 10B(n, αγ) induced by cold po-
larized neutrons. This reaction proceeds in two steps
that are well separated in time. The first step of the
reaction 10B(n, α) results in the formation of a few
broad (Γ > 100 keV) overlapping resonances of the
compound nucleus 11B, which undergo alpha decay,
producing the daughter nucleus 7Li in an excited
1/2− state. The neutron polarization is partly trans-
ferred to the daughter nucleus. At the second step, its
duration being 10−14 s, the polarized 7Li nucleus de-
cays to the ground (3/2−) state by emitting a photon.

2. ANGULAR CORRELATIONS IN (n, αγ)
REACTIONS

Before pursuing our analysis further, we briefly re-
call basic elements of the spin-tensor technique with-
in the theory of nucleus orientation. The spin state
of a spin-I nucleus is determined by the amplitudes
aM (I) corresponding to the spin projections M onto
2003 MAIK “Nauka/Interperiodica”
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the z axis. The spin state of an ensemble of nuclei is
determined by the density matrix

ρMM ′(I) = 〈aM (I)a∗M ′(I)〉 (1)

or by a set of the orientation spin-tensors

τQq(I) =
∑
MM ′

CIM ′
IMQqρMM ′(I). (2)

If an ensemble of nuclei is oriented along a unit vector
nI , then

τQq(I) =
(

4π
2Q + 1

)1/2

YQq(nI)τ ′Q0(I), (3)

where τ ′Q0(I) are spin-tensors in the reference frame
where the z′ axis is directed along the orientation
axis. The ensemble is refered to as a polarized one
if its spin-tensor τ ′10(I) differs from zero. This spin-
tensor is related to the polarization p(I) = 〈M〉/I by
the equation

τ ′10(I) =

√
I

I + 1
p(I). (4)

The Q = 2 spin-tensors control the alignment of the
ensemble. By specifying all spin-tensors τ ′Q0(I) up to
the highest rank of Q = 2I, one presets the occupa-
tion numbers wM for all the spin substates M .

We now consider the first step of the reaction
10B(n, αγ). A 10Be target nucleus of spin I = 3 ab-
sorbs a cold polarized neutron of spin s = 1/2 pro-
ducing an alpha particle of spin zero and an excited
daughter nucleus 7Li∗ of spin I ′ = 1/2. The dynam-
ics of this reaction is completely determined by its
S matrix—that is, by the amplitudes SJ(lj → Lα)
describing the transition from the initial to the final
state. Here, l and j are the orbital angular and the
total angular momentum of the neutron (j = l + s),
J is the compound-nucleus spin (J = j + I), and Lα

is angular momentum of the alpha particle in the
output channel (Lα + I′ = J). The spin-tensors of the
ensemble of spin-I ′ nuclei in the output channel are
given by

τQq(I ′) =
∑
Aa

∑
JJ ′

∑
lj l′j′

ξAa(l′j′J ′, ljJ) (5)

×
∑

LαL′
α

S∗
J ′(l′j′ → L′

α)SJ(lj → Lα)

×
∑
Hh

(
(2H + 1)(2A + 1)

4π

)1/2

CAa
HhQq

× Y ∗
Hh(nα)

(
(2J + 1)(2I ′ + 1)(2Lα + 1)

)1/2
PH
× C
L′

α0
Lα0H0



J ′ L′

α I ′

J Lα I ′

A H Q




,

where

ξAa(l′j′J ′, ljJ) = gJ ′

(
2J + 1
2J ′ + 1

)1/2

(6)

×
(
(2j′ + 1)(2l + 1)(2s + 1)

)1/2

×
∑
KΛ

(
(2K + 1)(2Λ + 1)

2A + 1

)1/2

τ ′K0(s)C
l′0
l0Λ0

× U(Ij′JA, J ′j)



j′ l′ s

j l s

A Λ K




× 4π
∑
λκ

CAa
ΛλKκYΛλ(nk)YKκ(ns).

Here, U(abcd, ef) =
√

(2e + 1) (2f + 1) ×
W (abcd, ef) is a normalized Racah function. The
incident-neutron-polarization direction is determined
by the unit vector ns, and the spin-tensor τ ′10(s) =
p(s)/

√
3 is proportional to the polarization value.

The unit vectors nk and nα are directed along the
momenta of neutron and the alpha particle, respec-
tively. The polarization of spin-I ′ nuclei is specified
by the set of spin-tensors τ1q(I ′), which can always
be recast into the form (3)—that is, expressed in
terms of the polarization p(I ′) by means of Eq. (4).
The quantity gJ = (2J + 1)/ ((2I + 1)(2s + 1)) is
the ordinary spin factor.

We now consider the second step of the reac-
tion 10B(n, αγ)—that is, the gamma decay of the
polarized daughter nucleus, 7Li∗(1/2−) →
7Li(3/2−) + γ.

In our particular case, the angular distribution of
photons is described by the expression (see, for ex-
ample, [5])

dwγ

dΩ
∼ τ00(I ′)

∑
L=1,2

(
|A(ML)|2 + |A(EL)|2

)
(7)

+ 6
(

4π
3

)1/2∑
q

τ1q(I ′)Y ∗
1q(nγ)

×
(
C21

1110U

(
3
2

1
2
21, 1

1
2

)
Re(A(M1)A∗(M2)

+ A(E1)A∗(E2))
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+
∑

L=1,2

CL1
L110U

(
3
2

1
2
L1, L

1
2

)
Re(A(ML)A∗(EL))

)
,

where A(ML) [A(EL)] is the amplitude of the mag-
netic (electric) transition of multipole order L and
nγ is the unit vector directed along the photon mo-
mentum. The first term on the right-hand side in (7)
determines the total probability of the gamma tran-
sition. If parity is conserved, then only M1 and E2
amplitudes contribute to the total probability. In the
case of parity violation, there arise small E1 and M2
amplitudes. The experimentally measured asymmetry
is described by the second term on the right-hand side
of (7). It can be seen that this asymmetry is not zero
only if parity is violated in the 7Li nucleus, in which
case the E1 and M2 transitions admix to M1 and E2
ones. However, the magnitude of the parity-violation
effects in the 7Li nucleus hardly exceeds a level of
10−8–10−7.

It should be noted that, in the particular case of
I ′ = 1/2, there exist only spin-tensors of rank Q =
0 and of rank Q = 1 (polarization), which give rise
to two terms in (7). At higher values of the spin
I ′, the situation is more complicated, because spin-
tensors of higher ranks (up to Q = 2I ′) appear in (7).
However, all terms involving oddQ values will include
the products of radiation amplitudes corresponding
to the emission of opposite-parity photons, just as
in our case of Q = 1. Therefore, their contribution
to the measured asymmetry will be controlled by
the degree of parity violation. Terms involving even
values of Q are not constrained by parity selection
rules, and the correlation of the vectors ns, nk, nα
and nγ that is associated with them will generally be
nonzero. However, each of those terms will include
[see Eqs. (3), (7)] spherical harmonics YQq(nγ) fea-
turing even values of Q. These functions are invariant
under the inversion of the vector nγ ; therefore, they
do not contribute to the measured asymmetry under
consideration. Hence, the only distinction between
the case of I ′ = 1/2 and the cases of higher values
of I ′ is the isotropy of gamma radiation (if parity is
conserved).

3. ASYMMETRY OF PARTICLE EMISSION
IN TWO-STEP REACTIONS

Thus, we can conclude that, in a two-step re-
action, the T -odd asymmetry under consideration
can differ from zero only owing to effects of parity
violation. This conclusion can easily be generalized
to the case of any sequential process A + B → C +
D → C + (E +F ). Let us demonstrate this explicitly.
Following [1, 2], we take the y axis to be aligned
with the relative momentum of colliding particles A
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
and B. Suppose that relative motion of particles C
and D proceeds along the z axis and that particles
E and F move along or against the x axis. Particles
E and F originate from the decay of particle D. We
now consider the rest frame of particle D, where
the probabilities of the emission of particles F with
oppositely directed momenta pF and −pF can be
different only in the case where the isotropy of space
is violated—that is, in the case where there exists a
specific direction. However, the D-particle spin I′ is
the only vector specifying such a direction. Therefore,
the asymmetry of F emission in the D rest frame can
arise only owing to the Р-odd correlation pF · ID.

In the laboratory frame, there is also the D-
momentum vector. However, this vector leads only to
a trivial shift of the momentum pF along the direction
of motion of particle D. Under the conditions of the
experiments reported in [1, 2], particles F and D move
along the x and z axes, respectively, which are per-
pendicular to each other. Therefore, the asymmetry
of F emission along and against the x axis cannot
depend on the D-momentum direction. It follows
that, for the emergence of measurable asymmetry, it
is necessary that

(i) Particle D in the reaction A + B → C + D be
polarized, which generates a specific direction for the
spin I′ = ID;

(ii) parity in the decay D → E + F be violated,
which leads to a nonzero correlation pF ID.

One can easily prove that it is precisely these
conditions that ensure a nonzero value of the last term
on the right-hand side of (7).

4. TRIPLE T -ODD CORRELATION IN (n, αγ)
REACTION

In the angular distribution of gamma rays emitted
in the process 7Li∗(1/2−) → 7Li(3/2−) at the sec-
ond stage of the reaction 10B(n, αγ), the term that is
proportional to the T -odd correlation ns · [nα × nγ ]
is of particular interest. The angular distribution of
gamma rays is given by (7), information here about
the first step of the reaction being completely ab-
sorbed in the spin-tensors τ1q(I ′).

We substitute these spin-tensors, determined by
Eqs. (5) and (6), into (7). Since the T -odd triple
correlation in question does not involve the vector nk,
we retain only the Λ = 0 terms in (6). It can easily be
seen that, in this case, l = l′ in (5) and (6); that is,
there is no interference in the initial orbital angular
momenta of the neutron. Taking into account only s
waves for cold incident neutrons, we reduce the factor
appearing in (7) to the form∑

q

τ1q(I ′)Y ∗
1q(nγ) (8)
3
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=
9
√

2
(4π)3/2

τ ′10(s) (ns · [nα × nγ ])

×
∑
JJ ′

gJ ′

(
2J + 1
2J ′ + 1

)1/2

U

(
I
1
2
J1, J ′ 1

2

)

×
∑

L′
α>Lα

(
(2J + 1)(2I ′ + 1)(2Lα + 1)

)1/2

×C
L′

α0
Lα010



J ′ L′

α I ′

J Lα I ′

1 1 1




× Im
(
S∗

J ′

(
0
1
2
→ L′

α

)
SJ

(
0
1
2
→ Lα

))
+ . . . .

The ellipsis on the right-hand side indicates that we
have taken into account only one term that is propor-
tional to the triple T -odd correlation in question.

Our result is of interest in two respects.
First, we have shown that, for the correlation in

question to emerge, the output orbital angular mo-
menta of emitted alpha particles of opposite pari-
ties (L′

α = Lα ± 1) must interfere at the first step of
the reaction. Since parity is fixed in the input neu-
tron channel (s and p waves do not interfere), the
triple T -odd correlation can emerge in the reaction
10B(n, αγ) only if parity is violated both at the sec-
ond step (which is what has been shown earlier) and
at the first step of the reaction. It is obvious that
this is because of a P-even character of the corre-
lation in question. Hence, the same is true for any
two-step process A + B → C + D → C + (E + F ).
Clearly, the above finding leads to the conclusion
that the scale of the expected asymmetry of photon
emission is constrained to be 10−16–10−14.

Second, expression (8) is of interest because it
illustrates directly the statement formulated in the In-
troduction that there is no connection between the T -
odd correlation in an inelastic process and T violation.
We see that T invariance imposes no constraints on
the T -odd correlation in the reaction 10B(n, αγ).

5. CONCLUSION

For the example of the reaction 10B(n, αγ), we
have shown that, in a two-step process where two
sequential stages are well separated in time, a triple
T -odd correlation of the type that was studied exper-
imentally in [1, 2] is suppressed by the double parity-
induced selection rule. At the same time, T invariance
imposes no specific constraints on this correlation.

In a general two-step process of the A+B →
C + D → C + (E + F ) type, the separation of stages
in time means that the decay D → E + F proceeds
PH
when particle C has travelled so far that its nuclear
and electromagnetic fields do not affect the motion
of particles E and F . In the (n, αγ) reaction con-
sidered here, the lifetime of the decaying 7Li nucleus
is about 10−14 s, owing to which the alpha particle
moves away to a distance of about 103 units of the
atomic radius. Thus, two steps of this reaction are
well separated.

We can now return to a comparison of the reac-
tions 10B(n, αγ) and 233U(n, αf). The main distic-
tion between them is that ternary fission is not a two-
step process. The alpha particle is emitted either by a
strongly deformed nucleus at the final stage of the fis-
sion process from the neck connecting prefragments
or directly upon the rupture of the neck. Even if the
alpha particle is emitted in the process of the “double
rupture of the neck” by one of the prefragments, the
distance between the prefragments does not exceed
a few femtometers. It follows that, even at the stage
where short-range strong and weak interactions no
longer act between the prefragments, the Coulomb
forces at the instant of alpha-particle emission remain
so strong that all parts of the system are still involved
in energy-, momentum-, and angular-momentum-
exchange processes. Thus, fission and alpha-particle
emission cannot be treated as sequential stages well
separated in time. It is precisely this feature of ternary
fission that seems responsible for so large a value of
asymmetry measured in the ternary-fission process
(about 10−3) that it cannot be associated with parity-
violation effects not exceeding a level of 10−4 [6–8]
in the case of ternary fission involving alpha-particle
emission.

The problem of the mechanism behind the emer-
gence of a triple T -odd correlation in ternary fission is
beyond the scope of this study. The analysis presented
here is of value for two reasons: (i) By consider-
ing the example of the inelastic process 10B(n, αγ),
which is kinematically similar to the ternary-fission
233U(n, αf) reaction, we have directly demonstrated
that T invariance does not forbid the T -odd angular
correlations. This is an additional argument in favor of
the conjecture that the T -odd asymmetry measured
in [2] is not due to T violation. (ii) In the view of our
present analysis, the very fact of the emergence of
asymmetry in ternary fission suggests quite indepen-
dently that this reaction is the simultaneous three-
body decay of the primary nucleus into two fragments
and an alpha particle rather than a sequential process.
The hypotheses put forth in [9, 10] to explain the
results reported in [2] were based on precisely this
pattern of ternary process.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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Abstract—A simple method for calculating the amplitude and the cross section for the Coulomb breakup
of a light nucleus into two fragments in the field of a heavy ion at relativistic collision energies is proposed on
the basis of time-dependent perturbation theory. It is shown that the resulting amplitude for the process in
question has a correct nonrelativistic limit. The contribution of the longitudinal component of the Coulomb
field of a heavy ion tends to zero in the ultrarelativistic limit. A specific implementation of the method is
demonstrated by taking the example of the Coulomb breakup reaction 208Pb(8B, 7Be p)208Pb at various
collision energies. The results are found to be in agreement with experimental data. c© 2003 MAIK “Nau-
ka/Interperiodica”.
1. INTRODUCTION

Processes involving the excitation of nuclei by the
Coulomb field of a heavy ion have attracted the atten-
tion of researches for many years [1–3]. In connection
with the advent of accelerators of relativistic nuclei,
there have appeared new possibilities for studying
various nuclear reactions, including the Coulomb
breakup reactions, which are investigated with the
aim of extracting the astrophysical S factor. The
point is that it is next to impossible to extract the
astrophysical-factor value in the zero-energy region
from data on radiative-capture reactions since the
cross section for this process decreases exponentially
with decreasing energy of the relative motion of col-
liding nuclei. In order to determine the astrophysical-
factor value at zero energy, one therefore has to ex-
trapolate the cross section from energies of about 100
to 200 keV, but this can lead to errors in determining
the astrophysical-factor value at zero energy. In view
of this, it is always useful to have an independent
source of information about astrophysical S factors.
A method that relies on studying Coulomb breakup
reactions can be used as such a source. At low
collision energies, there arises, however, the problem
of taking into account three-body Coulomb effects
in the final state (so-called postacceleration-effect
problem) [4, 5]. It was shown in [4, 5] that the
contribution of such three-body effects becomes less
pronounced with increasing collision energy. Indeed,

1)Cyclotron Institute, Texas A&M University, TX 77843,
USA.

*e-mail: qcd@uzsci.net
**e-mail: akram@cyclotronmail.tamu.edu
1063-7788/03/6604-0684$24.00 c©
this is clear from the physical point of view: at high
collision energies, breakup fragments quickly leave
the region where the ion field is operative, having no
time to be accelerated. It follows that the best way
to extract the astrophysical factor in the zero-energy
region is to perform such experiments at relativistic
energies of a nucleus–ion collision.

The theory of Coulomb breakup at relativistic ve-
locities of a collision was developed by Winther and
Alder [6] and was briefly surveyed, for example, in the
review article of Bertulani and Baur [2]. From this
theory, it is not obvious, however, that, at velocities
close in magnitude to the speed of light, the contri-
bution of the longitudinal component of the Coulomb
field tends to zero. In fact, this must be so because, at
ultrarelativistic velocities of a charge, the properties
of its field become close to the properties of the field
generated by photons. Moreover, it is difficult, on the
basis of the results presented in [6], to accomplish
the limiting transition to the case of nonrelativistic
collision energies in order to obtain the known formu-
las for Coulomb excitation in the nonrelativistic case.
The authors of many studies devoted to Coulomb
breakup apply nonrelativistic theory even at high col-
lision energies, disregarding relativistic corrections,
which can nevertheless make a sizable contribution
to the breakup amplitude.

It is well known that, at charge velocities close
in magnitude to the speed of light, the electromag-
netic field of the charge being considered suffers a
Lorentz contraction in the the direction of charge
motion, and the potential of an ultrarelativistic ion can
be represented (see [7]) as the product of the delta
function δ(x− ct) (the coordinate x is chosen along
2003 MAIK “Nauka/Interperiodica”
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the direction of charge motion) and a solution to the
two-dimensional Laplace’s equation in the plane or-
thogonal to the charge velocity. By using this poten-
tial, Baltz [7] obtained an exact solution to the Dirac
equation and employed it to calculate the ionization of
the hydrogen atom and the production of an electron–
positron pair in the field of an ultrarelativistic ion [8].

In this study, Coulomb breakup in the field of a
heavy ion is examined on the basis of time-dependent
perturbation theory. A specific implementation of the
method is demonstrated by taking the example of the
Coulomb breakup reaction 208Pb(8B, 7Be p)208Pb at
various collision energies. All calculations are per-
formed in the system of units where � = c = 1.

2. EXCITATION AMPLITUDE AND CROSS
SECTION FOR COULOMB BREAKUP

It is well known that, in the semiclassical theory of
the dissociation of nucleus a into fragments b and c by
the Coulomb field of ionA, the triple-differential cross
section is given by

d3σ

dEbcdΩbcdΩa
=
dσR

dΩa

1
2Ji + 1

∑
mi,mj

|afi|2
µbckbc

(2π)3
,

(1)

where Ebc (kbc) is the energy (momentum) of the
relative motion of the fragments b and c of nucleus
a after breakup, dσR/dΩa is the Rutherford cross
section for the scattering of nucleus a in the field of
ion A, µbc is the reduced mass of particles b and c,
Ji is the initial-state spin of nucleus a, and afi is the
amplitude for the dissociation of the nucleus from the
initial state |i〉 to the final state |f〉. As usual, sum-
mation over the projections mj of the final-state total
angular momentum of the nucleus and averaging over
the projections mi of its initial-state total angular
momentum are performed in (1). In time-dependent
perturbation theory, the total excitation amplitude is
given by the expression

afi = δfi + a
(1)
fi + a

(2)
fi + . . . . (2)

We restrict our consideration to the first order of
perturbation theory—this corresponds to the one-
photon approximation—since we consider excita-
tions at low energies of the relative motion of particles
b and c. Taking into account the smallness of the
momentum transfer, we assume that the c.m. velocity
of nucleus a remains unchanged in the breakup
process. This makes it possible to go over to the
coordinate frame comoving with nucleus a, where
ion A will move at a high velocity along a straight-
line trajectory. In this reference frame, the breakup
fragments will have nonrelativistic velocities. For
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
the wave functions describing the relative motion in
the initial and the final state, we can therefore take
solutions to the Schrödinger equation.

In the first order of perturbation theory, the am-
plitude for the dissociation of the nucleus from the
state at energy Ei to the state at energy Ef can be
represented as

a
(1)
fi =

1
i
〈f |

+∞∫
−∞

V (t)eiωtdt|i〉, (3)

where ω = Ef − Ei and the interaction potential is
given by

V (t) =
∫
d3r [ρ(r)ϕ(r, t) − j(r) ·A(r, t)] . (4)

Here,

ρ(r) =
∑

i

Zieδ(r − ri) (5)

is the charge-density operator;

j(r) =
1
2

∑
i

Zie

mi
[δ(r − ri)pi + piδ(r − ri)] (6)

+
∑

i

rot [µiδ(r − ri)]

is the particle-current-density operator; Zie, mi, and
ri are, respectively, the charge, the mass and the ra-
dius vector of particle i; and pi and µi are its momen-
tum and magnetic-moment operators, respectively.
The scalar potential ϕ(r, t) and the potential vector
A(r, t) of the field generated by a fast ion at the point
specified by the radius vector r have the form of the
Liénard–Wiechert potentials

ϕ(r, t) =
ZAe√

[(ρ − b)/γ]2 + (x− vt)2
, (7)

A(r, t) = vϕ(r, t), (8)

where ZA is the charge of the ion, b is the impact pa-
rameter, ρ is the transverse component of the radius
vector r with respect to the direction of ion motion,
x is the projection of the radius vector r onto the
direction of ion motion, v is the velocity of ion A, and
γ = 1/

√
1 − v2. It is well known that the potentials

are determined apart from a gauge transformation.
Following [7], we chose the gauge function in the form

χ(r, t) =
ZAe

v
ln
[
γ(x− vt) +

√
b2 + γ2(x− vt)2

]
.

(9)

This function preserves the chosen gauge apart from
O(1/γ2) terms; for v → 1, the gauge transformation
3
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with this function does not change the gauge con-
ditions for the potentials (7) and (8). By using this
gauge function, we find the new potentials

ϕ′(r, t)ϕ(r, t) − ∂χ

∂t
(10)

=
ZAe√

[(ρ − b)/γ]2 + (x− vt)2

− ZAe√
b2/γ2 + (x− vt)2

,

A′(r, t)vϕ′(r, t). (11)

It can easily be shown that, for v → 1 and a finite
value of the impact parameter b, the potential (10)
takes the form

ϕ′(r, t) = −ZAeδ(x − t) ln
(ρ − b)2

b2
, (12)

whence we can see that the field of an ultrarelativistic
ion becomes similar to a superposition of the fields
generated by photons of different frequencies, the
amplitudes here being, however, dependent on the
point of the field. With the potential (12), we will now
calculate the amplitude for the excitation of a nucleus.
Since Coulomb breakup occurs at small scattering
angles—that is, at impact-parameter values exceed-
ing the dimensions of colliding particles—we have
ρ 	 b. On the other hand, the choice of this condi-
tion is justified by the fact the wave function for the
bound state of nucleus a decreases exponentially with
increasing distance, so that the significant region of ρ
can be bounded by a dimension of 1/

√
2µbcε, where

ε is the binding energy. Taking all the aforesaid into
account, we expand the function ln (ρ − b)2/b2 in
powers of the ratio (b · ρ)/b2. Retaining only the first
term, we then have

ϕ′(r, t) =
2ZAe(b · ρ)

b2
δ(x − t) +O

(
1
b2

)
. (13)

If, for δ(x − t), use is made of the integral repre-
sentation

δ(x − t) =
1
2π


 ∞∫

0

eiξ(x−t)dξ +

∞∫
0

e−iξ(x−t)dξ


 ,
(14)

the amplitude in (3) can be reduced to the form

a
(1)
fi =

2ZAe

i
(15)

× 〈f |
∫
d3reiωx [ρ(r) − n · j(r)] (b · ρ)

b2
|i〉,

where n is a unit vector parallel to the ion-velocity
vector. Since the condition ωr 	 1 holds at energies
PH
of the relative motion of breakup fragments that is of
interest for our analysis, we can approximately set

eiωx ≈ 1 + iωx. (16)

If we are interested only in electric transitions, the
current can be taken in the form

j(r) =
1
2

∑
i

Zieδ(r − ri)[H, ri] (17)

+
1
2

∑
i

Zie[H, ri]δ(r − ri),

where H is the Hamiltonian of nucleus a. As a result,
we obtain the following expression for the amplitude

a
(1)
fi :

a
(1)
fi =

2ZAe

i
〈f |
∑

i

Zi
(b · ρi)
b2

|i〉. (18)

Let us now consider the case of v 	 1. Winther
and Alder [6] first performed a Fourier transforma-
tion of the field and then constructed a multipole
expansion. In contrast to that, we first expand the

potential (7) in powers of
2(b · ρ) − ρ2

γ2[b2/γ2 + (x− vt)2]
and

retain only the first two terms of the expansion.2) This
yields

ϕ(r, t) =
ZAe

[b2/γ2 + (x− vt)2]1/2
(19)

+
ZAe(b · ρ)

γ2 [b2/γ2 + (x− vt)2]3/2
+O

(
1
b3

)
.

Substituting, into Eq. (3), the potentials ϕ(r, t) and
A(r, t) defined according to (19) and performing in-
tegration with respect to time, we obtain

a
(1)
fi =

2ZAe

iv
〈f |
∫
d3re

iωx
v [ρ(r) − v · j(r)] (20)

×
[
ω

γv
(b̂ · ρ)K1

(
ωb

γv

)
+K0

(
ωb

γv

)]
|i〉,

where b̂ = b
b and K0(x) and K1(x) are the Mac-

donald functions of the zeroth and the first order,
respectively. If we do not go beyond, as before, the
approximations specified by Eqs. (16) and (17) and
retain, in (20), only terms of order ωr, we obtain

a
(1)
fi =

2ZAe
2ω

iv2
〈f |
[

1
γ
K1

(
ωb

γv

)∑
i

Zi(b̂ · ρi)

(21)

2)Since we consider only an electric dipole transition, we dis-
card terms involving ρ2.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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+ i(1 − v)K0

(
ωb

γv

)∑
i

Zixi

]
|i〉,

where the first and the second term represent the
contributions of, respectively, the transverse and the
longitudinal component of the ion field. It can easily
be seen that, for v → 1, the contribution of the lon-
gitudinal component tends fast to zero. Taking into
account the properties of the Macdonald functions
Ki(x) in the limit x → 0, we can easily find that, in
the limit v → 1, the amplitude in question reduces to
the form (18) and that, at low velocities (v 	 1), we
have

a
(1)
fi =

2ZAe
2ω

iv2
〈f |
[
K1

(
ωb

v

)∑
i

Zi(b̂ · ρi) (22)

+ iK0

(
ωb

v

)∑
i

Zixi

]
|i〉.

This is the well-known expression for the transition
amplitude at large impact-parameter values for non-
relativistic collision velocities [9].

For the wave functions describing the initial and
final states, we take two-body wave functions, disre-
garding, in the final state, the nuclear interaction of
the breakup fragments since the energy of their rel-
ative motion is small. In experimentally studying the
Coulomb breakup of a nucleus, the double-differential
cross section d2σ/dEbc/dΩa is the quantity that is
measured most often. It can be obtained from (1) by
performing integration with respect to all directions of
the relative momentum kbc. In this case, a transition
to the relative coordinates of particles b and c yields
the double-differential cross section in the form

d2σ

dEbcdΩa
=

1
3

[
8πZAZeffe

2ω

γv2kbc

]2
dσR

dΩa
(23)

×
∑
lf

(〈lf |r|li〉C
lf0
li010

)2
[
K2

1

(
ωb

γv

)

+(1 − v)2γ2K2
0

(
ωb

γv

)]
µbckbc

(2π)3
,

where

〈lf |r|li〉 =

∞∫
0

drϕliji
(r)rFlf (kbcr); (24)

Zeff = µbc(Zb/mb − Zc/mc); C
lf 0
li010

is a Clebsch–
Gordan coefficient; ϕliji

(r) is the radial wave function
for nucleus a; li and ji are, respectively, the orbital
angular and the total momentum of nucleus cmoving
in the field of nucleus b; and Fl(x) is the regular
Coulomb function.
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For the relativistic and nonrelativistic cases, the
Rutherford cross sections for the Coulomb scattering
at small scattering angles are given by the same ex-
pression

dσR

dΩa
= 4

(
ηa

ka

)2 1
θ4
, (25)

where ηa =
ZAZae

2

v
is the Coulomb parameter, ka is

the momentum of nucleus awith respect to ionA, and
θ is the scattering angle.

Upon integrating the cross section (23) with re-
spect to angles within the limits that are determined
by a specific experiment, we obtain the cross section
as a function of the relative energy of diverging frag-
ments. The result is

dσ

dEbc
=
π

3

[
8πZAZeffe

2ω

γv2kbc

]2∑
lf

(〈lf |r|li〉C
lf 0
li010

)2

(26)

×
[
F1(b1, b2) − (1 − v)2γ2F0(b1, b2)

] µbckbc

(2π)3
,

where

F0(b1, b2) = b21

[
K2

1

(
ωb1
γv

)
−K2

0

(
ωb1
γv

)]
(27)

− b22

[
K2

1

(
ωb2
γv

)
−K2

0

(
ωb2
γv

)]
,

F1(b1, b2) = b21

[
K0

(
ωb1
γv

)
K2

(
ωb1
γv

)
(28)

−K2
1

(
ωb1
γv

)]

− b22

[
K0

(
ωb2
γv

)
K2

(
ωb2
γv

)
−K2

1

(
ωb2
γv

)]
.

The limiting values of the impact parameter can be
expressed in terms of the relevant angles, b1 (b2) cor-
responding to the maximum (minimum) value of the
scattering angle θ. For b→ ∞, which corresponds
to θ → 0, the contributions of the second terms in
(27) and (28) tend to zero, and this is the adiabatic
limit. We note that the minimum value of the impact
parameter cannot be less than the radius of colliding
nuclei—otherwise, it is necessary to take into account
nuclear interaction in addition to Coulomb interac-
tion.

3. BREAKUP OF A 8B NUCLEUS
ON A 208Pb ION

The radiative-capture reaction 7Be(p, γ)8B has a
direct bearing on the solar-neutrino problem. There-
fore, a determination of the astrophysical S factor is
3
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Fig. 1. Fraction (in percent) of the contribution of the
longitudinal component of the field of a 208Pb ion to
the cross section for the Coulomb breakup reaction
208Pb(8B, 7Be p)208Pb as a function of the collision ve-
locity.

a problem of paramount importance. Investigation of
the Coulomb breakup reaction 208Pb(8B, 7Be p)208Pb
provides one way to find it. Experiments studying
the Coulomb breakup of 8B nuclei on 208Pb were
performed at the collision energies of E(8B) = 46.5,
51.9, and 254 MeV per nucleon (see [10], [11], and
[12], respectively). As was indicated in the Introduc-
tion, the higher the collision energy, the more reliable
the extracted values of the astrophysical factor.

The 8B nucleus has one loosely bound state of
binding energy ε = −137 MeV and a few resonances.
Of these, one occurs in the vicinity of the breakup
threshold, having an energy of ε = 0.63 MeV and a
width of Γ = 37 keV [13]. Investigations of proton
scattering on a 7Be nucleus revealed that the phase
shifts for potential scattering are virtually equal to
zero up to an energy of 2 MeV. In calculating the
cross section for the Coulomb breakup at low en-
ergies of the relative motion of the proton and 7Be
nucleus involved, Coulomb functions were therefore
used for final-state wave functions. In the theoretical
studies reported in [14, 15], it was shown that electric
quadrupole transitions make a much smaller contri-
bution to the breakup cross section than the relevant
electric dipole transition. The experimental measure-
ments performed in [11, 16] yielded a nearly zero value
for the contribution of quadrupole transitions to the
cross section for the 8B breakup at energies of the
relative motion of the proton and the 7Be nucleus that
are less than 1.75 MeV. For this reason, we took into
account only the electric dipole transition.

For the nuclear potential simulating the p7Be in-
teraction, we took the Woods–Saxon potential sup-
plemented with a spin–orbit component; that is,

V (r) =
[
V0 − Vls(L · S)

1
m2

πr

d

dr

]
(29)
P
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Fig. 2. Cross section for the Coulomb breakup reaction
8B + 208Pb → 7Be + p + 208Pb as a function of the
relative energy of the fragments at the collision energy
46.5 MeV per nucleon (ε is the efficiency of an experi-
ment): (solid curve) results of the relativistic calculations
and (dashed curve) results of the nonrelativistic calcu-
lations. The displayed experimental data were borrowed
from [10].

×
[
1 + exp

(
r −R

a

)]−1

,

where mπ is the pion mass. The parameters were
determined in such a way as to reproduce the en-
ergy of the 8B ground state and the resonance at
ε = 0.63 MeV; this yielded the following values: V0 =
−45.693 MeV, Vls = −3.202 MeV,R = 2.391 fm, and
a = 0.65 fm. A similar potential, but with different
parameter values, was used in [14]. The radial wave
function found for the bound state by solving the
Schrödinger equation for the relative motion of the
proton and the 7Be nucleus asymptotically goes over
to the Whittaker function at a distance of r = 4 fm.
Since 8B is a loosely bound nucleus, the evaluation
of the overlap integral (24) amounted to performing
integration up to 300 fm in order to achieve conver-
gence. We also note that, since the 8B nucleus is
loosely bound, the main contribution to the overlap
integral comes from the asymptotic part of the radial
wave function for the bound state of the nucleus.

The cross sections were calculated both for rel-
ativistic and for nonrelativistic kinematics. Figure 1
gives the ratio

X = (1 − v)2γ2

K2
0

(
ωb

γv

)

K2
1

(
ωb

γv

) , (30)

which specifies the fraction of the contribution of the
longitudinal component of the field of a 208Pb ion to
the cross section as a function of the collision velocity.
One can see from Fig. 1 that this fraction decreases
fast with increasing collision velocity, becoming less
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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Fig. 3. As in Fig. 2, but at the collision energy of 254 MeV
per nucleon. The displayed experimental data were bor-
rowed from [12].

than 20% at collision velocities equal to and above
25% of the speed of light.

In [10], the astrophysical-factor value at zero en-
ergy was extracted from the cross section dσ/dErel
that was obtained by integrating the double differ-
ential cross section with respect to the angle over
the interval 2◦–6◦. We have also integrated the dou-
ble differential cross section d2σ/dEreldΩ8 (Erel =
E7Be p, dΩ8 = dΩ8B) over the same interval. The re-
sult is presented in Fig. 2. From this figure, we can see
that our results describe fairly well experimental data
everywhere, with the exception of the energy region
around 0.6 MeV, where there is a resonance; there-
fore, it is necessary to take additionally into account
there the relevant magnetic dipole transition. One
can also see from Fig. 2 that the calculations on the
basis of relativistic kinematics give cross-section val-
ues that exceed their counterparts obtained by using
nonrelativistic kinematics. It should be noted that a
moderate change in the lower limit of integration with
respect to the scattering angle leads to a significant
change in the impact parameter, and this enables us
to reproduce the experimental value of the cross sec-
tion even within nonrelativistic kinematics. At high
collision energies, however, no agreement with ex-
perimental data can be achieved by using nonrela-
tivistic kinematics. This is confirmed by the results
of our calculations performed at the collision energy
of E = 254 MeV per nucleon. Figure 3 demonstrates
that the electric dipole transition makes it possible to
reproduce, to a very high degree of precision, the en-
ergy dependence of the cross section for the Coulomb
breakup of a 8B nucleus everywhere, as before, with
the exception of the resonance region. The nonrela-
tivistic calculations underestimate the cross section
in question considerably, the distinction between the
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
results obtained on the basis of relativistic and nonrel-
ativistic kinematics becoming more pronounced with
increasing collision energy.

Summarizing the results of the present study, we
can draw the following conclusions:

(i) At high energies of a collision between a light
nucleus and a heavy ion, one can use semiclassical
theory.

(ii) Calculations within relativistic kinematics are
not more involved than calculations within the non-
relativistic approximation.

(iii) Allowances for a quadrupole and for a mag-
netic dipole transition do not present serious difficul-
ties, and we will take such transitions into account in
the future.
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Abstract—The invariant differential cross section, the tensor analyzing power Ayy, and the vector ana-
lyzing power Ay for the reaction 9Be(d, p)X are measured at an initial deuteron momentum of 4.5 GeV/c
and a proton detection angle of about 80 mrad. The data obtained for the differential cross section are
consistent with the results of measurements at 3.5 and 5.78 GeV/c and a proton emission angle of 2.5◦.
The values found for the tensor analyzing powerAyy are compared with similar data obtained previously for
the deuteron-fragmentation process occurring on a carbon target at various values of the initial deuteron
momentum and leading to proton emission at zero angle. The data on the differential cross section for the
reaction 9Be(d, p)X can be satisfactorily described within the relativistic impulse approximation by using
standard deuteron wave functions; however, the approach based on this conceptual framework proves to be
inadequate in dealing with data on the tensor analyzing power. These results indicate that it is necessary
either to change the method for describing the relativistic deuteron or to take into account additional
mechanisms. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, A(d, p)X reactions at relativistic
deuteron energies have been considered as an impor-
tant source of information about the structure of the
deuteron at short internucleon distances. Although
the deuteron is strictly speaking described by a large
number of form factors even in the impulse approxi-
mation (pole diagram in the t channel), the first ex-
periments were able to impose stringent constraints
on the search for ways to describe the structure of the
deuteron. It turned out that, at rather high momenta
of internal motion, invariant differential cross sections
for inclusive A(d, p)X reactions correlate well with
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1063-7788/03/6604-0690$24.00 c©
the deuteron wave function, where the momentum
k used as a kinematical variable of light-front dy-
namics [1] appears as an argument. This initiated a
series of studies devoted to exploring experimentally
the fragmentation of relativistic deuterons and to in-
terpreting data obtained in this way within light-front
dynamics.

Until recently, measurements of the invariant dif-
ferential cross sections for the process where deuteron
fragmentation on nuclei leads to the emission of a
proton detected at zero angle with respect to the
momentum of the deuteron incident on the target
were the main source of information about A(d, p)X
reactions [2–5]. As a further development of such
studies, the differential cross sections for deuteron
fragmentation on nuclei were measured for the case
where the emitted proton had high transverse mo-
menta [6]. It turned out that data obtained in such
experiments are satisfactorily described on the basis
of the relativistic hard-scattering model [7, 8] em-
ploying the deuteron wave function for the Paris po-
2003 MAIK “Nauka/Interperiodica”
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tential [9], provided that the momentum k, a kine-
matical variable for light-front dynamics (see above),
is taken for an argument. Within this model, the
main contribution to the yield of protons at nonzero
angles with respect to the incident-deuteron mo-
mentum comes from direct deuteron fragmentation
and from the scattering of a deuteron nucleon on
a target nucleon, the contribution of the rescatter-
ing and virtual-pion-production mechanisms being
insignificant. We note from the outset that the in-
clusive features of deuteron-fragmentation reactions
depend only slightly on the target-nucleus species,
especially at high momenta of secondary protons, and
are similar to corresponding data on deuteron–proton
interactions [6].

Measurement of the spin properties of A(d, p)X
reactions was an important advancement. Cross sec-
tions and momentum spectra are determined by the
squares of partial-wave amplitudes, while spin ob-
servables are controlled by the interference between
different amplitudes and are similar to optical interfer-
ence effects. It is therefore clear that an interpretation
of such experiments will specify a new and much
more detailed level of our understanding of reaction
dynamics and of the structure of the deuteron.

Experimental data on the tensor analyzing power
T20 for deuteron fragmentation occurring on nuclei
and involving proton emission at zero angle [4, 10–
12] have so far been obtained up to a value of k ∼
1 GeV/c. These data demonstrate that there is vir-
tually no dependence on the initial deuteron energy
or on the mass number of the target nucleus, as this
must be in the relativistic impulse approximation. In
contrast to what occurs in the impulse approximation,
however, the quantity T20 does not reach a value of
−
√

2 at k ∼ 300 MeV/c, retaining a negative value
of about −0.3 at high internal momentum of the
proton [11, 12]. The inclusion of mechanisms beyond
the impulse approximation that are associated with
the relativistic character of additional components in
the deuteron wave function [13–15] does not lead to a
substantial improvement in the description of experi-
mental data. Only in [16] could reasonable agreement
with experimental data be attained within the rela-
tivistic impulse approximation by taking into account
multiple scattering and the contribution of six-quark
configurations in the deuteron.

In [17], it was indicated that, in the case where
protons originating from relativistic-deuteron-frag-
mentation reactions are recorded at nonzero angles,
spin observables may prove to be more sensitive,
owing to sizable transverse momenta of emitted pro-
tons, to the short-distance structure of the deuteron
than the results of measurements at zero angle, and
this was the motivation for measuring the differen-
tial cross section, along with the tensor analyzing
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
power Ayy and the vector analyzing power Ay , for
12C(d, p)X reactions at a primary deuteron energy of
9 GeV/c that result in proton emission at an angle of
85 mrad [18, 19]. The conditions of those measure-
ments corresponded to the region where the contri-
bution of the direct-fragmentation process was much
greater than the contribution of the hard-scattering
process [8], so that the data obtained there were re-
lated most directly to the structure of the deuteron.

It turned out that, although the differential cross
section can be satisfactorily described on the basis
of the relativistic hard-collision model [8] employing
standard deuteron wave functions from [9, 20], the
behavior of the tensor analyzing power Ayy , which
remains positive up to the highest momentum of
recorded protons, is at odds with the predictions of
this model [17]. The sign of Ayy appeared to be iden-
tical to its sign in the data obtained at zero angle [11,
12], the absolute values being approximately one-half
as great as those in the zero-emission-angle case.
(We recall that, at zero angle, the relation Ayy =
−T20/

√
2 holds.)

The observed transverse-momentum dependence
of Ayy indicates that the usual impulse approxima-
tion is insufficient for describing the structure of the
deuteron at high values of internal momenta. It is
necessary either to consider new physical mecha-
nisms of the reaction or to change the method for
describing the relativistic deuteron in a radical way.

That a comparison of experimental results ob-
tained for deuteron fragmentation in the cases where
secondary protons were emitted at angles of 0◦ [11,
12] and 85mrad [18, 19] furnished evidence for the de-
pendence of the parameterAyy in this process on their
transverse momenta was a motivation for performing
experiments aimed at obtaining data for transverse-
momentum values not considered previously.

In this article, we describe the results of new mea-
surements of the invariant differential cross section,
the vector analyzing power Ay , and the tensor ana-
lyzing power Ayy for the fragmentation of 4.5-GeV/c
deuterons on a beryllium target via the inclusive reac-
tion 9Be(d, p)X leading to the emission of secondary
protons at an angle of about 80 mrad in the laboratory
frame, the range of proton transverse momenta under
study extending from 220 to 300 MeV/c.

2. DESCRIPTION OF THE EXPERIMENT

The present experiment, performed with the aid of
the SFERA facility [18, 19, 21], employed a polarized
deuteron beam extracted from the synchrophasotron
installed at the Joint Institute for Nuclear Research
(JINR, Dubna). For the details of the experimental
3
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Fig. 1. Time-of-flight spectra obtained at various current
settings in the magnetic elements of the experimental
equipment. The momenta of the secondaries are (a) 2.75,
(b) 3.0, (c) 3.3, and (d) 3.6 GeV/c.

procedure and for the results of measurements of
the tensor analyzing power Ayy for inelastic deuteron
scattering on beryllium at an angle of about 80 mrad,
the interested reader is referred to [21]. Here, we will
only give a brief account of the main features of our
experimental procedure.

Polarized deuterons were produced by the PO-
LARIS ion source [22]. The sign of beam polar-
ization was changed in a regular way from one
accelerator pulse to another in the following order:
0, −, +; here, 0 means the absence of polarization,
while + and − correspond to the sign of pzz, the
quantization axis being orthogonal to a plane that
contains the trajectory of the beam in the accelera-
tor. The tensor polarization of the beam was mea-
sured at regular time intervals during the experiment
by recording protons of momentum pp ∼ (2/3)pd

that were emitted at zero angle in the reaction
A(d, p)X [23]. The tensor-polarization values av-
eraged over the entire run of the experiment were
p+

zz = 0.798 ± 0.002(stat.) ± 0.040(syst.) and p−zz =
−0.803± 0.002(stat.)± 0.040(syst.) for, respectively,
the + and the− spin state of the beam.

The vector polarization of the beam was moni-
tored throughout the experiment by measuring the
asymmetry of elastic proton–proton scattering in a
thin polyethylene target placed in the beam upstream
of the beryllium target at a distance of about 20 m
from it [24]. The vector polarization was evaluated
PH
on the basis of the results obtained by measuring the
asymmetry in the scattering of 4.5-GeV/c protons at
an angle of 8◦. The effective analyzing powerA(CH2)
of the polarimeter was taken to be 0.146 ± 0.007 [25].
The values of the vector polarization of the beam
were p+

z = 0.231 ± 0.014(stat.) ± 0.012(syst.) and
p−z = 0.242 ± 0.014(stat.) ± 0.012(syst.).

A tensorially polarized deuteron beam of momen-
tum 4.5 GeV/c, duration 0.5 s, and intensity 5 ×
108 particles per accelerator spill was incident on a
20-cm-thick beryllium target. The intensity of the
beam was monitored by an ionization chamber po-
sitioned upstream of the target. In each accelerator
spill, the positions of the beam and its profiles in
specific sections of the ion guide were checked by
the profilemeters of the slow-extraction system. The
dimensions of the beam at the target location were
σx ∼ 0.4 cm and σy ∼ 0.9 cm in the horizontal and
the vertical direction, respectively.

Experimental data were obtained at five values
of the secondary-particle momentum in the range
between 2.5 and 3.6 GeV/c. Secondaries emitted
from the target at an angle of about 80 mrad were
transported to the recording equipment by means of
magnetic elements.

The recorded particles were identified via an off-
line analysis on the basis of information from two in-
dependent measurements of the time of flight over the
base of length about 34 m. The resolution in the time
of flight was better than 0.2 ns (1σ). The background
from inelastically scattered deuterons was negligible
at 2.5 GeV/c, but it increased with increasing mo-
mentum of secondaries. The time-of-flight spectra
obtained at 2.75, 3.0, 3.3, and 3.6 GeV/c are dis-
played in Fig. 1. These spectra demonstrate a good
separation of secondary protons and deuterons. In
data processing, only those events were selected for
which at least two of the measured time-of-flight
spectra were correlated. This made it possible to elim-
inate the background from deuterons completely.

In order to determine the invariant differential
cross section for proton emission at an angle of
80 mrad in the reaction 9Be(d, p)X induced by
4.5-GeV/c deuterons, a special measurement was
performed in our experiment in order to determine
the yield of 6-GeV/c protons at zero angle from the
fragmentation of 9-GeV/c deuterons on a carbon
target. For the reaction 9Be(d, p)X, the calibration
constant Ccal was found from a comparison of the
result of that measurement with data on the absolute
values of the differential cross section for the reaction
YSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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Invariant differential cross section σinv = Ed2σ/(p2dpdΩ), tensor analyzing power Ayy, and vector analyzing power Ay

for the reaction 9Be(d, p)X at a primary deuteron momentum of 4.465 GeV/c and a proton emission angle of 80 mrad

p,
GeV/c

∆p (FWHM),
GeV/c

x
pT ,

GeV/c
(σ ± dσ)inv,

GeV mb (GeV/c)−3 sr−1 Ayy ± dAyy Ay ± dAy

2.523 0.130 0.558 0.222 93.1 ± 2.6 0.069 ± 0.076 0.166± 0.086

2.775 0.135 0.611 0.239 14.7 ± 0.5 0.326 ± 0.093 0.232± 0.105

3.015 0.149 0.661 0.258 5.34 ± 0.13 0.379 ± 0.063 0.099± 0.070

3.312 0.168 0.723 0.283 2.80 ± 0.07 0.427 ± 0.059 0.083± 0.067

3.596 0.172 0.783 0.300 0.719 ± 0.021 0.389 ± 0.076 0.135± 0.085

Note: Here, p is the proton momentum in the laboratory frame, ∆p is the full width at half maximum (FWHM) of the momentum
distribution of recorded protons, x is the deuteron-longitudinal-momentum fraction carried away by the proton in the infinite-
momentum frame [1], and pT is the transverse momentum of the proton. The values of p, ∆p, x, and pT were obtained by means
of a Monte Carlo simulation. The quoted errors are purely statistical.
12C(d, p)X induced by 9.1-GeV/c deuterons that
involves the emission of protons at zero angle [2, 5]:

E
d2σ

p2dpdΩ
= CcalĒ

n0

p̄2∆p∆Ω
1

ρLNA
. (1)

Here, Ed2σ/(p2dpdΩ) is the invariant differential
cross section obtained in [2, 5]; n0 is a value that
is obtained, upon performing a normalization to
the number of monitor counts and introducing a
correction for the dead-time effect [26], for the number
of protons recorded in the calibration experiment;
∆p∆Ω is the acceptance of the facility used; p̄ and

Ē =
√
p̄2 +m2

p are the mean values of the proton

momentum and energy, respectively; ρ and L are the
target density and thickness, respectively; and NA
is Avogadro’s number. The thickness of the carbon
target in the calibration experiment was 27.2 g/cm2.

The angular and momentum acceptances of the
facility were determined on the basis of a Monte
Carlo simulation with allowance for the parameters
of the incident deuteron beam; nuclear interactions
and multiple scattering in the target, air, windows,
and the detectors used; the energy losses of primary
and secondary deuterons; and so on. As a result, the
polar-angle andmomentum acceptances proved to be
(FWHM) ±8 mrad and ∆p/p ∼ ±2%, respectively.

It should be noted that the data in [2] and [5] on the
differential cross section for the reaction 12C(d, p)X
at a proton momentum of about 6 GeV/c differ by
approximately 30%. This distinction is due to the
methodological reasons explained in [27]. In order to
determine the calibration constant Ccal, we used data
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
from [5]. The reference invariant differential cross sec-
tion was set to 38.2 ± 0.8 GeVmb (GeV/с)−3 sr−1,
with the result for Ccal being 14.0 ± 1.7.

For a beryllium target of thickness 20 cm, the
invariant differential cross section for the reaction
9Be(d, p)X was evaluated on the basis of relation (1)
with the aid of the value found for Ccal and other
input data, including the results of the Monte Carlo
simulation of the acceptance. Target-free measure-
ments were performed for secondaries of momentum
4.0 GeV/с. The ratio of the deuteron yield in the
target-free measurements to that in themeasurement
with a beryllium target was less than 1%.

The tensor analyzing power Ayy and the vector
analyzing power Ay were computed on the basis of
the numbers n+, n−, and n0 of deuterons recorded
for the different polarization states of the beam, these
numbers being rescaled to the same beam intensity
and corrected for the dead-time effect [26], by using
the expressions

Ayy = 2
p−z (n+/n0 − 1) − p+

z (n−/n0 − 1)
p−z p

+
zz − p+

z p
−
zz

, (2)

Ay = −2
3
p−zz(n

+/n0 − 1) − p+
zz(n

−/n0 − 1)
p−z p

+
zz − p+

z p
−
zz

.

These expressions take into account the different val-
ues of polarization for different spin states of the beam
and become much simpler in form at p+

z = p−z and
p+

zz = p−zz.
Our present data on the invariant differential cross

section, the tensor analyzing powerAyy , and the vec-
tor analyzing power Ay for inelastic deuteron scat-
tering on beryllium are compiled in the table. The
3
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Fig. 2. Invariant differential cross section for the reaction
9Be(d, p)X as a function of the internal nucleon momen-
tum k in the deuteron (experimental points and theoreti-
cal curves): (closed triangles) data of the present exper-
iment at the initial deuteron momentum of 4.5 GeV/c
and a proton emission angle of 80 mrad, [open boxes
(circles)] data from [28] at a primary momentum of 3.5
(5.78) GeV/c and a proton emission angle of 2.5◦, (solid
curve) results of the calculation within the hard-collision
model [8] with the deuteron wave function for the Paris
potential [9], (dash-dotted curve) contribution of hard
scattering, (dashed curve) contribution of direct fragmen-
tation, and (dotted curve) results of the calculation at an
initial deuteron momentum of 5.78 GeV/c and a proton
emission angle of 2.5◦.

quoted errors are purely statistical. The systematic
errors amount to 20, 5, and 8% for the differential
cross section, Ayy , and Ay, respectively.

The values presented in the table for the seconda-
ry-deuteron momentum p, the momentum accep-
tance ∆p, the transverse momentum pT , and the
deuteron-longitudinal-momentum fraction x car-
ried away by the recorded proton in the infinite-
momentum frame were obtained via a Monte Carlo
simulation. We note that, because of taking into
account effects associated with nuclear and multiple
scattering, the pT values quoted in the table differ
from those that would emerge from a calculation
by the formula pT = p sin θ (θ = 80 mrad). With
allowance for energy losses in the target, the mean
value of the primary momentum of the deuteron that
would hit themidpoint of the target was 4.465GeV/c.
P

3. RESULTS

The resulting values of the invariant differential
cross section for proton emission in the reaction
9Be(d, p)X at an angle of 80 mrad are displayed in
Fig. 2 (closed triangles), along with analogous data
obtained at 3.5 and 5.78 GeV/c for a proton emission
angle of 2.5◦ [28] (open boxes and circles, respec-
tively). These results are plotted versus the intrinsic
deuteron-nucleon momentum k defined within light-
front dynamics as [1]

k2 =
m2

p + p2
T

4x(1 − x)
−m2

p, (3)

where mp and pT are respectively, the mass and the
transverse momentum of the recorded proton. The
variable x is the deuteron-longitudinal-momentum
fraction carried away by the proton in the infinite-
momentum frame; that is,

x =
Ep + pL

Ed + Pd
, (4)

where Ep and pL are, respectively, the energy and the
momentum of the recorded proton, while Ed and Pd
are those of the incident deuteron.

The invariant differential cross section for proton
emission in the reaction 9Be(d, p)X was calculated
on the basis of the hard-collision model [8] with the
deuteron wave function for the Paris potential [9]. In
Fig. 2, the dash-dotted, the dashed, and the solid
curve represent, respectively, the contribution of hard
scattering, the contribution of direct fragmentation,
and the total contribution of the two mechanisms.
The computed values were normalized to the experi-
mental results [since the calculations were performed
for the reaction 1H(d, p)X], the normalization factor
being 2.22. The dotted curve shows the results of
the calculation for the initial deuteron momentum
of 5.78 GeV/c. From Fig. 2, it can be seen that
(i) all three sets of experimental data are in reasonable
agreement with one another and with the results of
the calculations; (ii) as one approaches the kinemati-
cal boundary of the spectrum for 4.5 GeV/c, the cal-
culated curves show an increase in the cross section,
this being due to final-state interaction; and (iii) un-
der the chosen kinematical conditions, the contribu-
tion of direct fragmentation exceeds ever more greatly
the contribution of hard scattering as one approaches
the upper boundary of the spectrum, the distinction
between the two contributions in question at the
boundary of the spectrum being as large as one order
of magnitude.

In Fig. 3, values obtained in the present experi-
ment for the tensor analyzing powerAyy (closed sym-
bols) are displayed versus the recorded-proton mo-
mentum. Also shown in this figure are the results of
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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Fig. 3. Tensor analyzing power Ayy for the reaction
9Be(d, p)X at 4.5 GeV/c and a proton emission angle of
80 mrad as a function of the recorded-proton momentum
p. Our experimental data are shown by closed triangles.
The dash-dotted and the dashed curve represent the re-
sults of the calculations for, respectively, the contribution
of direct fragmentation alone and the total contribution of
direct fragmentation and hard scattering. The solid curve
corresponds to the results obtained for the total contri-
bution of the two mechanisms with allowance for the
momentum resolution of the experimental facility used.

the calculations (curves) based on the hard-collision
model [17] that employ the deuteron wave function
for the Paris potential [9]. The dash-dotted and the
dashed curve represent, respectively, the contribution
of hard fragmentation alone and the total contribution
of direct fragmentation and hard scattering, while the
solid curve corresponds to the total contribution of the
two mechanisms in question that was computed with
allowance for the momentum resolution of the experi-
mental facility used. It can be seen that the computed
values of Ayy at the maximum become smaller upon
consistently taking into account the contribution of
hard scattering and the contribution of the experi-
mental resolution, that the growth of the proton mo-
mentum results in that the discrepancy between the
theoretical and experimental data becomes more pro-
nounced and that the direct-deuteron-fragmentation
process plays an ever increasing role in the formation
of the momentum dependence of Ayy .

In Fig. 4, the results obtained in the present ex-
periment by measuring the tensor analyzing power
Ayy (closed symbols) are plotted versus k (closed
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
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Fig. 4. Tensor analyzing power Ayy for deuteron frag-
mentation as a function of the internal nucleon momen-
tum k (closed triangles) according to our present data ob-
tained for the reaction 9Be(d, p)X and according to mea-
surements performed for deuteron fragmentation on car-
bon nuclei for zero proton emission angle at (open trian-
gles) 2.5 GeV/c in [4]; (open circles and boxes) 9 GeV/c
in [10] and [11], respectively; and (open diamonds) 4.5
and 5.5 GeV/c in [12]. The solid and the dashed curve
represent the results of the calculations where the frag-
mentation of 9-GeV/c deuterons that is accompanied by
proton emission at zero angle is treated in the relativistic
impulse approximation with the deuteron wave functions
for, respectively, the Paris ([9]) and the Bonn ([20]) poten-
tial.

symbols). Also shown in this figure are data on Ayy

that were obtained in [4, 10–12] with a carbon target
at various values of the primary deuteron momen-
tum between 2.5 and 9 GeV/c for the case where
secondary protons are emitted at zero angle (open
symbols). In the same figure, the results of the cal-
culations in the relativistic impulse approximation for
the direct fragmentation of 9-GeV/c deuterons that
is accompanied by proton emission at zero angle
are represented by the solid and the dashed curve
corresponding to the use of the deuteron wave func-
tions for, respectively, the Paris ([9]) and the Bonn B
([20]) potential in these calculations. For all of the
data sets, the values of Ayy remain positive over the
entire proton-momentum range investigated here; at
the same time, the relativistic impulse approximation
implemented with standard deuteron wave functions
predicts a change in the sign of Ayy in the region of k
values greater than∼550 MeV/c. It can be seen that,
over the region of the momentum k where its values
are determined primarily by the longitudinal momenta
3
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Fig. 5. Tensor analyzing power Ayy for deuteron frag-
mentation on nuclei as a function of the transverse
momentum pT of emitted protons at longitudinal-
momentum-fraction (x) values close to 0.61, 0.67, 0.72,
and 0.78. Closed triangles represent data of the present
experiment. Other data displayed in this figure were ob-
tained in experiments with a carbon target at 9 GeV/c
for proton emission angles of (open circles) 85 mrad [18,
19] and (open boxes) 0◦ [12]. The solid straight lines rep-
resent the dependences Ayy(pT ) calculated in the linear
approximation on the basis of the experimental points.

of secondary protons, the data obtained in the present
experiment for the tensor analyzing power are in good
agreement with data from [4, 10–12] for zero proton
emission angle.

The new data on the tensor analyzing power for
the inclusive fragmentation of relativistic deuterons
confirm the conclusion drawn previously in [18, 19]
thatAyy is approximately independent of the deuteron
energy; therefore, the internal momentum k proves to
be an approximate scaling variable at low pT . How-
ever, a comparison of these data with the results of
other measurements performed at various values of
pT and x makes it possible to reveal new interesting
regularities.

For four values of the longitudinal-momentum
fraction x that occur in the vicinities of 0.61, 0.67,
0.72, and 0.78, Fig. 5 displays the data on the tensor
analyzing power Ayy versus pT . In this figure, closed
triangles, open circles, and open boxes represent, re-
spectively, the data of the present experiment, data
obtained with a carbon target at a primary deuteron
momentum of 9 GeV/c and a proton detection angle
of 85 mrad [18, 19], and the results of measurements
(for carbon as well) reported in [12] for a primary
deuteron momentum of 9 GeV/c and zero proton
emission angle. The straight solid lines correspond to
P
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Fig. 6. Tensor analyzing power Ayy for deuteron frag-
mentation on nuclei as a function of the parameter
(n · k)/|k| at k values of about 0.58 and 0.78 GeV/c.
Closed triangles represent data of the present experiment.
Other data displayed in this figure were obtained in ex-
periments with a carbon target at 9 GeV/c for proton
emission angles of (open circles) 85 mrad [18, 19] and
(open boxes) 0◦ [12]. The solid straight lines represent
the dependences Ayy((n · k)/|k|) calculated in the linear
approximation on the basis of the experimental points.

the dependences Ayy(pT ) calculated in the linear ap-
proximation on the basis of the experimental points.

It can be seen that the values of the tensor an-
alyzing power Ayy that correspond to different val-
ues of the longitudinal-momentum fraction x depend
greatly on the proton transverse momentum pT . The
quantity Ayy has a large positive value at low pT ,
but it decreases with increasing transverse momen-
tum, irrespective of x values. At the current accuracy
of the measurements, the dependences Ayy(pT ) are
well approximated by straight lines, but this does not
comply with the results obtained in the relativistic
impulse approximation [17] with standard deuteron
wave functions. It should be noted, however, that,
in calculating Ayy in [17], some simplifications were
made (in particular, the spin-dependent component
of the amplitude for nucleon–nucleon scattering was
disregarded), which will be removed upon taking into
account new experimental data.

In the present study, we only discuss modifica-
tions on the impulse approximation without going
beyond it. Such modifications can be performed along
various lines. One of these consists in considering
that the deuteron vertex is specified by eight form
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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factors, and each of them can affect, to some degree,
the features of the reaction being studied. Another
line of development takes the origin in the studies
reported in [7, 8], and its conceptual framework is the
following. The usual impulse approximation employs
a deuteron wave function that is represented as a su-
perposition of S and D waves, the dependence on the
transverse momentum being determined there by a
spherical function describing S and D waves. Within
the concept proposed by Blankenbecler et al. [7], the
description of the deuteron within light-front dynam-
ics is constructed in terms of the structure function

G(x, kT ) =
N0

2(2π)3
(5)

× [x(1 − x)]g

[M2(x) + k2
T ]2[1 + k2

T /(δ2 +M2(x))](g−1)
,

where

M2(x) = (1 − x)m̃2
p + xm2

p − x(1 − x)m2
d,

with m̃p, mn, and md being the masses of, respec-
tively, the proton, the neutron, and the deuteron (one
of the nucleons is off the mass shell). In particular, a
functions of the form in (5) was used to describe the
spectrum of protons emitted at an angle of 139 mrad
in the interactions of 9-GeV/c deuterons with hydro-
gen nuclei [29]. A satisfactory description of those da-
ta was achieved at the parameter values of g = 3, δ =
0.6 (GeV/c)2, andN0 = 331.5 (GeV/c)2. The depen-
dences of the structure function on the longitudinal-
momentum fraction x and on the transverse momen-
tum kT may differ significantly from those in the usual
impulse approximation. This new mode of describ-
ing the structure of a fast deuteron may set in quite
early, even at momentum values slightly in excess of
1 GeV/c per nucleon.

A further development and specification of this
concept was due to Karmanov et al. [30]. In the ap-
proach of these authors, the structure of the deuteron
is described in terms of six functions that are depen-
dent on two variables, the momentum k defined with-
in light-front dynamics via Eq. (3) and the quantity
(n · k), the latter being given by

(n · k) =

√
m2

p + p2
T

x(1 − x)

(
1
2
− x

)
. (6)

The vector n is a unit normal to the light-front sur-
face. The variables x and kT are unambiguously ex-
pressed in terms of k and (n · k).

It is interesting to trace the dependence of our data
on the variable (n · k). The dependence of the tensor
analyzing power Ayy on this variable at k values of
about 0.58 and 0.78 GeV/c is shown in Fig. 6, where
closed triangles represent the data of our experiment,
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
while open circles and boxes stand for data obtained
at a primary deuteron momentum of 9 GeV/c for
proton emission angles of, respectively, 85 mrad [18,
19] and zero [12]. The solid straight lines correspond
to the dependences Ayy((n · k)/|k|) calculated in the
linear approximation on the basis of experimental
points.

Although the available data are incomplete, it can
be seen that, in the values of the tensor analyzing
power, there is a trend toward an increase with
increasing (n · k)/|k|. In the relativistic impulse
approximation implemented with standard deuteron
wave functions, there is no dependence of the param-
eter Ayy on the variable (n · k)/|k|. However, such
a dependence may appear upon going over to the
description of the structure of the deuteron on the
basis of concepts similar to those that were developed
in [7] or in [30].

The values that were obtained in our experiment
for the vector analyzing powerAy fall within the range
0.1–0.15. Being quite modest, they are nevertheless
nonvanishing. In view of this, a modification of the
impulse-approximation version used here may also
consist in taking into account the spin dependence of
the amplitude for nucleon–nucleon interaction.

4. CONCLUSIONS

The results of the present study can be summa-
rized as follows:

(i) The invariant differential cross section, the ten-
sor analyzing power Ayy , and the vector analyzing
powerAy for the reaction 9Be(d, p)X have been mea-
sured at a primary nucleon momentum of 4.5 GeV/c
and a proton emission angle of 80 mrad. The mea-
surements cover the range of proton transverse mo-
menta pT that extends from 220 to 300 MeV/c.

(ii) The measured values of the invariant differen-
tial cross section are in reasonably good agreement
with data obtained previously at 3.5 and 5.78 GeV/c
for a proton emission angle of 2.5◦ [28], provided that
these values are plotted versus the internal nucleon
momentum k defined in light-front dynamics. Calcu-
lations on the basis of the hard-scattering model with
the deuteron wave function for the Paris potential [9]
reproduce our experimental data satisfactorily.

(iii) The tensor analyzing power Ayy remains pos-
itive at all values of the momentum of recorded pro-
tons, but this is at odds with the results of the cal-
culations relying on the hard-scattering model and
employing standard deuteron wave functions [9, 20].
In the region of k greater than 400 MeV/c, the data
on the parameterAyy from the present experiment are
in qualitative agreement with similar data obtained in
3
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[4, 10–12] for the case where the emitted protons are
recorded at zero angle. Thus, it can be concluded that,
in the region where k is determined primarily by the
longitudinal momentum of the recorded proton, the
parameter Ayy depends only slightly on the primary
deuteron momentum and on the proton emission an-
gle.

(iv) Data on the tensor analyzing power Ayy from
the present experiment, along with data obtained at
a primary deuteron momentum of 9 GeV/c for zero
proton emission angle [10–12, 18] and a proton emis-
sion angle of 85 mrad [19], that are plotted versus
the proton transverse momentum pT at fixed values of
the variable x (the deuteron-longitudinal-momentum
fraction carried away by the proton in the infinite-
momentum frame) exhibit a pronounced dependence
on pT . This observation seems to suggest that, at
relativistic energies, the deuteron structure function
is characterized by a rather sharp dependence on kT .

(v) That the present experiment has yielded a
nonzero tensor analyzing power for the reaction
9Be(d, p)X is indicative of a significant contribution
to the reaction mechanism from the spin-dependent
amplitude of nucleon–nucleon interaction.

Thus, the results obtained in this study indicate
that there are presently no adequate ideas of what
occurs in the deuteron at short distances. In view of
the great importance of this issue, it would be highly
desirable (in what is concerned with experimental in-
vestigations) to perform more detailed measurements
of the angular dependence of the tensor analyzing
power for A(d, p)X reactions, on one hand, and (in
what is concerned with theoretical studies) to exam-
ine more closely a transition from a nonrelativistic to a
relativistic description—in particular, various depen-
dences of the deuteron wave function on kL and kT —
and to take into account the contributions of other
reaction mechanisms, on the other hand.
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Abstract—This article continues a series of publications devoted to previously unknown narrow reso-
nances in the KSKS system that are observed in experimental data coming from the 6-m spectrometer
of the Institute of Theoretical and Experimental Physics (ITEP, Moscow). The experimental data on the
production of KS pairs were obtained in π−p interactions at 40 GeV by using a neutral trigger. In the
KSKS system, a maximum of width not exceeding 15 MeV is observed at a mass of about 2000 MeV, the
statistical significance of this maximum being not less than five standard deviations. With a high degree of
reliability, the spin–parity of this structure is JP = 4+. The observed phenomenon may be interpreted as a
resonance whose parameters are equal to the above values. c© 2003 MAIK “Nauka/Interperiodica”.
The last two decades of the past century saw con-
siderable advances in the field of hadrons, which are
particles that are involved in strong interactions. Of
particular interest are so-called exotic mesons—that
is, particles whose structure can be inconsistent with
the concept of their qq̄ content or whose properties
differ from those of ordinary mesons. Such particles
are referred to as exotic states of the first kind if
they are characterized by manifestly exotic values of
quantum numbers such as charge Q, strangeness
S, and isospin I or exotic states of the second kind
if they are characterized by exotic combinations of
quantum numbers such as spin S, parity P , and
charge parityC. Exotic states of the third kind include
mesons whose quantum numbers are consistent with
the concept of their qq̄ content, but whose properties
differ from those of ordinary mesons—for example,
those that feature nonstandard branching fractions
of decay channels, anomalously small widths, or un-
usual production mechanisms (see [1, 2] for details).

The present article is devoted to a feature that
is observed in the mass spectrum of the KSKS

system revealed in the region around 2000 MeV. A
small width of this resonance feature (not greater
than 15 MeV) is a usual property suggesting its
affinity with exotic states of the third kind. For usual
resonances in this mass region, the expected width is
not less than 100 MeV [3].

The experimental data subjected to the present
analysis had been accumulated over the period be-

*e-mail: grigorvk@vitep1.itep.ru
1063-7788/03/6604-0700$24.00 c©
tween 1985 and 1990 by using the 6-m spectrom-
eter developed at the Institute of Theoretical and
Experimental Physics (ITEP, Moscow) and installed
in a 40-GeV π−-meson beam from the U-70 ac-
celerator at the Institute for High Energy Physics
(IHEP, Protvino). A liquid-hydrogen target was used
in the exposures that provided the data analyzed in
this study. The system of two KS mesons that was
recorded under the experimental conditions of the
6-m spectrometer is produced in the following two
reactions:

π−p→ KSKSn, (1)

π−p→ KSKS + (n+mπ0, p+ π−, . . .). (2)

Some of the narrow resonances revealed in this
system (those at masses of 1450 and 1768MeV [4, 5])
are produced only in reaction (1), while others (those
at masses of 1245, 1520, 1545, and 1786 MeV [5–
8]) are produced both in reaction (1) and in reaction
(2). The resonance feature studied in this article is
observed only in reaction (1).

A detailed description of the 6-m spectrometer is
presented in [9, 10]. The spectrometer records, with a
high efficiency, KS mesons going in the forward di-
rection and decaying into two charged π mesons. The
large magnetic-field volume filled with track detectors
permits a high-precision measurement of the effec-
tive mass of the KSKS system (within a few MeV).
Reaction (1) is separated with a trigger facility based
on veto counters surrounding the liquid-hydrogen
target. The counters form a double protective layer
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. Effective-mass spectrum of two KS mesons.
Events were selected according to the quality criterion
(see main body of the text) and according to the missing
mass squared (0.3 < MM2 < 1.5 GeV2). The latter cut
ensures a separation of the reaction involving the produc-
tion of two KS mesons accompanied by a neutron.

around the target. To suppress events where photons
are emitted from the target together with charged
particles, lead converters of thickness about two ra-
diation lengths each are arranged between the coun-
ters. Because of imperfect trigger operation, some
fraction of events of reaction (2) are recorded by the
setup.

Product KS mesons are identified by their decays
into a π+π− pair. The recording efficiency is about
40% for theKSKS system in the mass region around
2000 MeV and depends on theKS-meson momenta.
The efficiency is determined by the arrangement of
the veto counters, which reject, at the trigger level,
events where one KS meson or both of them decay
inside the volume surrounded by these counters. The
contribution of these events can easily be taken into
account. It is more difficult to take into account the
efficiency of recording KS mesons of momenta below
7 GeV in the tracking detector. In this case, the
efficiency is calculated by the Monte Carlo method,
the accuracy of these calculations being not higher
than 20%.However, the fraction of these events is not
very large.

The accuracy in measuring the direction of the π-
meson momenta is about 0.2 mrad in the spectrome-
ter. The resolution is not less than 10 MeV (FWHM)
for the effective mass of the π+π− pair from KS-
meson decay. We note that the estimate of the un-
certainty in the effective mass of theKSKS system on
the basis of the observedKS-mesonwidth agrees well
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
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Fig. 2. Distribution of events with respect to the missing
mass squared. The boundaries of the cuts imposed to
isolate events that are used to construct the distributions
are indicated by the dashed lines.

with the widths of the narrow features revealed earlier
at the 6-m spectrometer (see, for example, [5–7]).

In analyzing the KSKS system, we used the fol-
lowing kinematical variables: the effectivemassMKK

of the pair of KS mesons; the missing mass squared
MM2 defined as the squared mass of particles that
are produced together with the KSKS system and
which are not recorded in the spectrometer; the 4-
momentum transfer from the beam to the system be-
ing studied, −t; the cosine of the Gottfried–Jackson
angle, cos θGJ; and the Treiman–Yang angle, φTY.
The angles are calculated in the rest frame of the pair
ofKS mesons, the beam-axis direction in this system
being taken for the polar axis. The plane from which
the Treiman–Yang angle is reckoned is spanned by
the momenta of the beam and of the target proton in
this reference frame.

In order to refine particle parameters that affected
physically significant quantities (the effective mass
and the Gottfried–Jackson and Treiman–Yang an-
gles), the fitting procedure was applied individually to
each of the two vees. The following requirements were
imposed: the effective mass of the two pions forming
a vee had to be equal to the tabularKS-meson mass,
and their tracks had to intersect (at a single point).
The implementation of the fitting procedure resulted
in determining χ2

v and the kinematical parameters of
a vee. This procedure was considered in detail, for
example, in [8]; here, we note only that it improves
significantly the accuracy in calculating physical pa-
rameter.

Figure 1 shows the mass spectrum of the system
of two KS mesons from their production threshold
to 2400 MeV with a bin width being 20 MeV. The
feature considered in this article manifests itself as a
3
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Fig. 3. Distributions with respect to the effective mass
of two KS mesons (a) for events not subjected to a
selection according to the quality criterion and (b) events
selected according to this criterion. The curve represents
an MLM fit where the resonance and the background are
approximated by a Breit–Wigner function and a linear
function, respectively.

maximum in the vicinity of 2000 MeV. The signal-
to-background ratio (S : B) is 0.83 (S = 45, B =
53), and the parameters characterizing the statis-
tical significance are the following: S/

√
B > 6 and

S/
√
B + S ∼ 4.5. The events for which the effective-

mass spectrum is shown in Fig. 1 were selected
according to the criterion requiring that the miss-
ing mass squared lie in the range 0.3 < MM2 <
1.5GeV2 (the other cuts will be described below). The
cut on MM2 was used to suppress the contribution
of reaction (2); as a result, the number of events
was reduced by 51%. Figure 2 shows the distribution
events with respect to this variable.

Events recorded by the spectrometer have different
uncertainties in the measured kinematical variables.
The lower the uncertainties, the higher the quality of
an event and the higher the resolving power of the
analysis of theKSKS system. The level of the uncer-
tainties in the measured parameters of the events can
be identified with the concept of event quality. In our
P
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Fig. 4. Distribution of events with respect to track shifts
in the spark chambers. The dashed lines show the bound-
aries of the cuts.

analysis of the events, their quality will be taken into
account by applying a set of cuts.

In studying the feature corresponding to the mass
of 2000 MeV (as well as other narrow resonances
observed with the 6-m spectrometer of ITEP), event
selections according to the quality criterion are of
great importance. Figure 3 shows the section of the
spectrum between 1900 and 2100 MeV for (a) events
not subjected to a selection according to the quality
criterion and (b) events selected according to this
criterion. The use of this selection improves the sta-
tistical significance of the observed phenomenon from
4.8 to 6 standard deviations.

The quality selection of events involves the follow-
ing procedures. Sampling according to the time of
matching the track-detection instant with the trig-
ger signal is of greatest importance for isolating the
feature in question. The spark chambers of the spec-
trometer recorded tracks formed between −2.5 and
+0.7 µs. Ions produced by a charged particle pass-
ing through the spark-chamber gas are due to the
action of crossed electric and magnetic fields. This
displacement is directly measured in the experiment.
The directions of the electric fields in even chambers
are opposite to those in odd ones; therefore, ions drift
in different directions. It is the distance between the
tracks from the same charged particle in even and odd
chambers that is a measure of the time that elapsed
since the instant of particle passage to the instant of
feeding of a high-voltage pulse causing breakdown
in the spark chamber. Below, this distance will be
referred to as a track shift or the age of a track (T ).
Figure 4 shows the distribution with respect to this
parameter. Upon applying a cut whose boundaries
are indicated by the dashed lines in the figure, about
20% events are rejected, the S/B ratio increasing
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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concurrently by about 30%. The application of this
cut made it possible not only to eliminate events that
were erroneously taken for those associated with a
KSKS pair but also to remove events measured with
a large uncertainty for one reason or another (for
instance, because of an overlap of a track and the
beam area).

The remaining cuts—each of them separately—
improve the S/B ratio to a considerably smaller ex-
tent. The cut on the D distance between the trajec-
tories of the KS mesons at the point of their closest
approach is the most significant. Under the condition
D < 8 mm, the S/B ratio increases by 5%, 2% of
events being rejected in this case. The cuts on the
effective mass of particles forming a vee result in a
similar improvement of the S/B value. In this case,
we select events for which the deviation of the effective
mass of a vee from the tabular value of theKS-meson
mass is not greater than 40MeV. Cuts on the number
of points on each track (not less than 6) and on the
χ2

v values for a fit in testing pion-track intersection
at a single point and for a fit to the tabular value of
the KS-meson mass are also applied. The concerted
effect of all cuts, except for the age selection, results
in an increase of about 15% in the S/B ratio, the loss
of events being about 14% in this case.

That any of the cuts that favor separation of events
recorded with smaller uncertainties leads to an in-
crease in the S/B ratio indicates that the feature be-
ing studied is indeed an actually existing object rather
than a result of a random coincidence of several fac-
tors (statistical fluctuation, a spectrometer-operation
property, etc.). It is appropriate to note at this point
that the correlation between the cuts is insignificant.
The pair of T and D is an exception: their correlation
is close to the maximum. The application of all of the
cuts reduces the number of events by 25%, but the
S/B ratio increases by a factor of 1.5.

The fitting of vees also improves the S/B ratio.
Figure 5 illustrates the influence of fitting on the
effective-mass spectrum of the KSKS system. Fig-
ure 5a displays the spectrum obtained on the basis of
unfitted data. The distinction between the distribution
in Fig. 5b and that in Fig. 5a is that, in constructing
the former, the vee masses were set to the tabular
mass of the KS meson. In plotting the spectrum in
Fig. 5c, we used the momenta obtained by fitting the
vees to the tabular value of the kaon mass and by re-
quiring that the tracks of a vee intersect at one point.
It can be seen that the S/B ratio increases by about
15% upon the application of the above procedures.

In order to determine the parameters of the ob-
served resonance feature and its statistical signif-
icance, the experimental data were fitted by the
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
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is applied and the effectivemass of two π mesons taken to
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maximum-likelihood method (MLM). The main ad-
vantage of this method over histogramming is that
the mass and angles are not averaged over the bin
width in the fitting procedure, so that the result does
not depend on the choice of the reference point and
the number of bins into which the mass range under
study is divided. Describing the experimental data, we
used the probability-density function F (P ; Ω), where
P is the set of the parameters specified below, the
effective mass of two KS mesons, the cosine of the
Gottfried–Jackson angle θ, and the Treiman–Yang
angle φ being elements of the phase space Ω.

Fitting was performed for events falling within
the range 1850–2150 MeV of KSKS masses. There
were 828 events in this range. A first-degree polyno-
mial proved to be sufficient for describing the mass
dependence of the background. The resonance was
approximated by a relativistic Breit–Wigner function.
The angular dependences are linear combinations of
squared amplitudes of the S, D0, D+, D++, G0, and
G+ waves. For these, we have

S2 = 1/4π, (3)

D2
0 = 5(3 cos2 θ − 1)2/16π, (4)
3
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D2
+ = 15(sin 2θ sinφ)2/4π, (5)

D2
++ = 15(sin2 θ sin 2φ)2/4π, (6)

G2
0 = 9(35 cos4 θ − 30 cos2 θ + 3)2/256π, (7)

G2
+ = 45(sin θ cos θ(7 cos2 θ − 3) sin φ)2/32π. (8)

The angular distributions of the background and the
resonance are described by different sets of waves.

Thus, the coefficients in the polynomial describing
the mass dependence of the background (two param-
eters); the amplitude, the mass M , and the width Γ
appearing in the Breit–Wigner function (three pa-
rameters); and, additionally, the coefficients of the
squared amplitudes of the angular distributions are
the parameters P to be determined. The number of
these parameters depended on the result of fitting—
the amplitudes of the angular distributions were dis-
carded if their contributions did not affect χ2.

In order to obtain the most probable values of the
parameters, we minimized the functional∫

Ω

ε(Ω)F (P ; Ω)dΩ − lnL, (9)

where ε(Ω) is the event-detection recording and L =∏N
i=1 F (P ; Ωi), N being the number of events. To

compare the probabilities of experimental-data de-
scription with different parameter sets, we calculated
PH
χ2 by the formula (see [3], p. 197)

χ2 = −2 lnL+ const. (10)

The constant was chosen in such a way that χ2

obtained via minimization without allowing for the
Breit–Wigner function was equal to 100. The results
of various versions of fitting are given in the table,
where the number of events in each of the waves of
the background and the resonance is displayed, along
with the central values of the resonance mass and
width. The last column shows the χ2 values, with the
number of degrees of freedomNd.f being subtracted.

The result of fitting without allowing for the Breit–
Wigner function and without discarding events falling
within the resonance region is presented in the first
line. The table gives angular-distribution moments
that yield appreciable values of the amplitudes. Fig-
ure 6 shows the angular distributions themselves.
The character of the dependence on the Treiman–
Yang angle in the mass ranges adjacent to the res-
onance region indicates the presence of interference
terms. However, an attempt at incorporating these
terms into the description of the background angu-
lar distributions was not successful, since the num-
ber of adjustable parameters increased abruptly in
this description owing to the introduction of phases.
Moreover, it proved to be necessary to introduce an
individual mass dependence for each of the waves if
interference was taken into account. All that led to
instability of the resulting solutions, and we had to
restrict ourselves to a minimum set of waves. This did
not affect the basic conclusions of this study, because
the resonance parameters are virtually independent of
the method describing the background.

It also follows from Fig. 6 that the angular distri-
butions of events falling within the resonance region
differ noticeably from the distributions of background
events. This concerns primarily the distribution with
respect to the azimuthal angle. A maximum in the
vicinity of π/2 suggests the presence ofm = 1waves.
Fitting confirmed this qualitative conclusion. But first
of all, we tried to describe the resonance with the same
set of waves and the same relations between them
as those that were observed for the background. The
result of this fitting is quoted in the table (line 2).
As follows from the last column of the table, the
decrease in χ2 with respect to the value obtained in
fitting without a resonance is about 19 units, which
corresponds to four standard deviations.

At the same time, a description in terms of the
G+ wave alone yields a χ2 value less by 29 units
(line 4). This corresponds to more than five standard
deviations, and the probability of this description is
approximately 10 times as great as that of the de-
scription that uses the set of background waves. In
YSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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Table

Background waves,Nev Resonance waves,Nev
Resonance mass
and width, MeV χ2

S D0 D++ G0 S D0 D+ D++ G0 G+ M Γ

1 1235 425 346 70 – – – – – – – – 100

2 1085 435 346 53 88 32 – 27 4 – 1999 16 81.2

3 1171 394 335 106 – – 78 – – – 1995 12 79.2

4 1122 304 356 171 – – – – – 122 1998 14 70.9

5 1045 404 378 128 – – 24 – – 103 1999 12 71.3

6 1079 390 381 71 – – – – 44 109 1999 13 70.3
carefully studying the mass spectrum of the KSKS

system within the range 1900–2100 MeV outside the
resonance region (mass ranges 1900–1980 MeV and
2020–2100 MeV), we revealed no trace of the G+

wave. Among other waves, only the D+ wave had a
satisfactory value of χ2 (line 3). The result of fitting in
terms of the sum of G+ and D+ waves is quoted in
line 5. It is evident that the contribution of the D+

wave is five times less than the contribution of the
G+ wave, χ2 taking the same value as in the case of
description with theG+ wave alone.We tried to reveal
the possible presence of any other components of the
G wave. The results of fitting in terms of the G0 and
G+ waves are given in line 6. It can be seen that the
contribution of G0 can formally be disregarded (χ2

changed by 0.6). However, the G0 wave appears in
the description of the background, whence it follows
that, in principle, the actual contribution of this wave
can be concealed because of the interference between
the background and the resonance. From the otherG
wave components, theG++ wave was sought, but no
trace of it was observed. The distribution with respect
to Treiman–Yang angle has a sinusoidal character.
Hence, it can be concluded that the exchanged parti-
cle in the reaction of resonance production has a nat-
ural spin–parity relation; in particular, this can be a
ρ+ meson. This fact is confirmed by the momentum-
transfer distributions that are presented in Fig. 7 for
events from the left- and right-hand regions adjacent
to the resonance region (Fig. 7a) and from the res-
onance region (Fig. 7b). It is noteworthy that reso-
nance events are concentrated in the region between
0 and 0.5 GeV2 and that they do not feature a peak
that occurs in the vicinity of zero and which is typical
of π-meson exchange, but that there is such a peak in
the distribution of background events.

In order to determine the statistical uncertainties
in the resonance mass and width, we analyzed χ2

as a function of these quantities. At a 65% con-
fidence level, the uncertainty in the mass and the
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
width proved to be ±2.5 MeV and ±5 MeV, respec-
tively. The systematic uncertainty in the mass was
not more than±5 MeV. As was mentioned above, the
instrumental mass resolution was about 10 MeV for
the KSKS system in the region around 2000 MeV.
Therefore, the value ofΓ in the Breit–Wigner function
does not exceed 15 MeV according to our estimate.

It follows from the table that the statistical signif-
icance at which a resonance with these parameters
was observed is not less than five standard deviations.
The conclusion that the feature in question is not a
statistical fluctuation is also corroborated by its ob-
servation in all three runs of data accumulation. The
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production of this resonance was also studied in var-
ious sectors of the azimuthal angle in the laboratory
frame, the axis being aligned with the beam direction.
The distinction between the number of events in the
resonance region appeared to be compatible with ex-
pected statistical fluctuations. TheX(2000) structure
has a specific spin–parity of JP = 4+, and this is
yet another argument in favor of the fact that we are
dealing here with an actually existing phenomenon.

As a test, the data were fitted with additional cuts
on the coordinates of event production and without
cuts on the quality of events. The events were also
fitted without taking into account the detection effi-
ciency. All these test fits support the results quoted
above for the resonance mass, width, and quantum
numbers.

The product of the cross section for X(2000) for-
mation and the relevant branching ratio, σBr(KSKS),
is estimated at about 6 nb.

Let us summarize the results of this study. At the
significance of not less than five standard deviations,
we have obtained an indication of the existence of a
resonance feature having a mass of 1998 ± 3 MeV
and a width not greater than 15MeV. The spin–parity
of the resonance is JP = 4+; the angular-momentum
projection onto the quantization axis is |m| = 1, but
we were unable to rule out an admixture of the pro-
jection m = 0. We note that the resonance feature in
question cannot be described by using the same set of
waves as those providing a good fit in adjacent regions
of the mass spectrum.
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on the bound electrons of a germanium atom are considered. The results obtained by calculating the
spectra and cross sections are presented for the energy-transfer range between 10 eV and 18 keV.
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1. INTRODUCTION

This study was performed in connection with the
experiment planned by researchers from three in-
stitutions (Institute of Theoretical and Experimental
Physics, Joint Institute for Nuclear Research, and
the All-Russia Research Institute for Experimental
Physics) to seek the magnetic moment of the electron
neutrino [1]. This experiment is presumed to study
the spectra of energy deposited in a detector mate-
rial upon the inelastic scattering of tritium-source
antineutrinos on atomic electrons. The sensitivity to
the magnitude of the neutrino magnetic moment is
assumed to be µ ∼ 3 × 10−12µB (µB is the Bohr
magneton), which is nearly two orders of magnitude
better than the upper limit, µ ≤ 2 × 10−10µB, set in
experiments performed at the Savannah River nuclear
reactors, the Rovensk nuclear power plant, and Kras-
noyarsk neutrino laboratory [2].

The discovery of the neutrino magnetic moment
would suggest the existence of phenomena beyond
the fundamentals of electroweak-interaction theory
and would have far-reaching consequences for par-
ticles physics and astrophysics. (For a discussion on
the issues concerning the motivation of searches for
the neutrino magnetic moment in laboratory experi-
ments and the status and prospects of investigations
along these lines, see, for example, the original study
of Neganov et al. [1], the review articles quoted in [3],
and references therein.)

Themagnetic moment can be sought by analyzing
the measured spectrum of events of ν̄ee scattering.
In the case of scattering on a free electron, the cross
section for weak ν̄ee scattering tends to a finite limit,
while the cross section for magnetic scattering grows
indefinitely. Therefore, the experimental sensitivity to

*e-mail: e-mail:sinev@polyr.kiae.sv
1063-7788/03/6604-0707$24.00 c©
the magnitude of the neutrino magnetic moment in-
creases with decreasing energy of measured events.
As the energy of an event decreases, however, the
effects of electron binding in target atoms begin to
affect relevant cross sections and their energy depen-
dence.

A feature peculiar to the experiment proposed in [1]
is that, in the majority of cases, the energy q deposited
in the target upon the scattering of tritium neutrinos
ν̄e is below 1 keV. The experiment will employ germa-
nium and silicon detectors that, owing to the internal-
signal-amplificationmechanism, will make it possible
to perform measurements in the region of energies as
low as those indicated immediately above.

In this study, we consider the inelastic scatter-
ing of tritium-source antineutrinos on germanium-
atom electrons. The ensuing exposition is organized
as follows. First, we recall the expression for the
cross sections for elastic ν̄ee scattering, whereupon
we briefly dwell on features of inelastic scattering
and on the procedure for calculating relevant cross
sections. Further, we display the results obtained
by calculating the spectra of inelastic scattering on
electrons of germanium-atom subshells and, finally,
present the total spectra and integrated cross sections
in a form that is suitable for a direct comparison with
experimental data.

2. ELASTIC AND INELASTIC SCATTERING
OF ANTINEUTRINOS ON AN ELECTRON

1. The differential cross section for the magnetic
scattering of a neutrino on a free electron at rest is
proportional to the squared magnetic moment µ2 [4];
that is,

(dσM/dq)free = πr2
0(µ/µB)2(1/q − 1/E), (1)
2003 MAIK “Nauka/Interperiodica”
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Fig. 2. Spectra SM
i (q) of the inelastic magnetic (µ =

5 × 10−12µB) scattering of antineutrinos on electrons of
the LI, LIII, MI, MIII, MV germanium-atom shells in
the energy-transfer range q = 1–4 keV. The dashed curve
corresponds to scattering on a free electron.

where πr2
0 = 2.495 × 10−25 cm2; E is the incident-

neutrino energy; and q is the energy transfer, which
coincides, in this case, with the recoil-electron kinetic
energy.

The differential cross section for the electroweak
scattering of an antineutrino on a free electron at rest
has the form (see, for example, [5])

(dσW /dq)free = G2
F(m/2π)[4x4 (2)

+ (1 + 2x2)2(1 − q/E)2 − 2x2(1 + 2x2)mq/E2],

where m is the electron mass; G2
F(m/2π) = 4.31 ×

10−48 cm2/keV; and x2 = sin2 θW = 0.232, θW being
the Weinberg angle.

For a given value of primary neutrino energyE, the
energy transfer to the electron involved is restricted by
the kinematical condition

q ≤ qmax = 2E2/(2E + m). (3)

In the region q > qmax, free-scattering cross sec-
tions are zero. In the case of tritium-source antineu-
trinos ν̄e whose endpoint energy is 18.6 keV, qmax =
1.26 keV.
P

 

10

 

–1

 

10

 

–2

 

10

 

–3

 

10

 

–4

 

1 2 3 4

 

q

 

, keV

 
S

 
W
i

 
(

 
q

 
), 10

 
–47
 

 cm
 

2
 

/(keV electron)
 

M

 

I

 

L

 

III

 

L

 

I

 

M

 

III

 

M

 

V

Fig. 3. As in Fig. 2, but for the inelastic weak scattering
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Fig. 4. Spectra SM
i (q) of the inelastic magnetic (µ =

5 × 10−12µB) scattering of antineutrinos on electrons of
the LI, LIII, MI, MIII, MV germanium-atom shells in
the energy-transfer range q = 0.01–1.5 keV. The dashed
curve corresponds to scattering on a free electron.

With decreasing energy, the cross section for free
magnetic scattering increases in proportion to 1/q,
while the cross section (2) tends to a finite limit of
1.016 × 10−47 cm2/keV. At the magnetic-moment
value of µ = 3 × 10−12µB, the spectra of weak and
magnetic antineutrino (νe) scattering intersect at an
energy transfer of q ≈ 0.3 keV.

2. In calculating the differential cross sections
dσM

i /dq and dσW
i /dq for inelastic scattering on the

electrons of the ith shell, we use the approach devel-
oped in [6]. In the initial state, there are a germanium
atom (Z = 32) and incident antineutrinos of energy
E; in the final state, there are a knock-on electron, an
outgoing neutrino, and a vacancy in one of the atomic
shells. The wave functions for the target atom and the
electron binding energies are calculated in the self-
consistent relativistic Hartree–Fock–Dirac model.
The wave functions for the knock-on electron can be
found by numerically integrating the Dirac equation
in the same self-consistent potential. The energy-
transfer spectra SM

i (q) and SW
i (q) are obtained as

convolutions of the differential cross sections dσM
i /dq
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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Table 1. Calculated electron binding energies εi (in keV) in germanium atomic shells (ni is the number of electrons in a
shell)

K
(1s1/2)

LI

(2s1/2)
LII

(2p1/2)
LIII

(2p3/2)
MI

(3s1/2)
MII

(3p1/2)
MIII

(3p3/2)
MIV

(3d3/2)
MV

(3d5/2)
NI

(4s1/2)
NII

(4p1/2)

ni 2 2 2 4 2 2 4 4 6 2 2

εi 10.9 1.37 1.22 1.19 0.17 0.12 0.115 0.031 0.030 (0.013) (0.005 )
and dσW
i /dq with the spectrum ρ(E) of the tritium-

source antineutrinos (Fig. 1) that was calculated by
using the Coulomb function [7]. The resulting spectra
SM,W (q) for scattering on a germanium atom can be
derived by taking a sum over the shells of the spectra
SM,W

i with allowance for the number ni of electrons
in each shell:

SM,W (q) =
∑

(ni/Z)SM,W
i (q). (4)

All the spectra SM,W
i and the resulting spectra

SM,W (q) are normalized to one electron and are
calculated in units of 10−47 cm2/(keV electron). In
all the calculations of cross sections and magnetic-
scattering spectra, the neutrino magnetic moment is
taken to be 5 × 10−12µB.

The energy transfer q to the atom involved in an
inelastic-scattering event is the sum of the kinetic
energy T of the knock-on electron and the electron
binding energy εi in the ith atomic shell:

q = T + εi. (5)

The radiation generated upon the filling of the
vacancy and the knock-on electron are absorbed in
a detector material. As a result, the value determined
experimentally for the energy of an event coincides
with the energy transfer q in this collision event.
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The cross sections for weak and magnetic inelas-
tic scattering on an electron of the ith shell vanish
for q ≤ εi. (We disregard transitions of the knock-
on electron to discrete excited optical levels of the
target atom.) In contrast to what is known for free
scattering, these cross sections do not vanish at q =
qmax [see (3)]; in the “forbidden” region q > qmax,
the inelastic-scattering cross sections decrease and
vanish only at the q value equal to the incident-
antineutrino energy E.

The calculated electron binding energies in the
shells of a free germanium atom (Table 1) agree with
experimental data to within 5%. This is not true only
for four valence electrons, but their binding energy is
so low that, in calculating cross sections and spectra,
we use, for them, the formulas for scattering on free
electrons.
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3. DISCUSSION OF THE RESULTS
FOR SPECTRA AND CROSS SECTIONS

The scattering-event spectra SM,W
i (q) depends

substantially on the binding energy εi in a shell, their
shapes being different in the regions q > qmax and
q < qmax, where qmax = 1.26 keV is the kinematical
limit given by (3).

Table 2. Integrated cross sections IM (q) and IW (q) (in
units of 10−47 cm2/electron) for the inelastic magnetic
(µ = 5 × 10−12µB) and weak scattering of tritium neu-
trinos on germanium-atom electrons (νee) in the energy
range 0.01–q keV

q, keV IM (q) IW (q)

0.02 0.0540 0.0012

0.03 0.0855 0.0025

0.05 0.1372 0.0061

0.10 0.2386 0.0173

0.20 0.4046 0.0455

0.35 0.5733 0.0892

0.50 0.6771 0.1254

0.75 0.7225 0.1671

1.00 0.8184 0.1907

1.26 0.8420 0.2031

2.03 0.8771 0.2186

3.00 0.8870 0.2228

5.00 0.8903 0.2241

10.94 0.8908 0.2243

18.60 0.8909 0.2243
P

Figures 2 and 3 display the results obtained by
calculating the spectra of inelastic scattering on elec-
trons of theL andM germanium shells in the energy-
transfer range q = 1–4 keV, whose larger part lies
in the region q > qmax, which is forbidden for free
scattering. With the exception of a small local en-
hancement near the threshold for the scattering of
antineutrinos νe on electrons of the L shells, we ob-
serve a decrease in spectra with increasing energy q.
A general trend is that the lower the electron binding
energy in a shell, the steeper this decrease.

In the energy region q < qmax (Figs. 4, 5), L-shell
electrons make virtually no contribution. This region
is dominated by the scattering on electrons of M
atomic shells and on valence electrons. The spectra
of magnetic scattering on M shells in the immediate
vicinity of the threshold lie much lower than the spec-
trum of scattering on a free electron. With increas-
ing energy, the distinction between these spectra de-
creases fast; in a certain energy interval, they vir-
tually coincide, while, for q > 0.8 keV, the inelastic-
scattering spectra lie above the free-scattering spec-
trum. A similar behavior is also observed for weak
scattering, but the spectra of elastic and inelastic
scattering approach each other more slowly in this
case.

The spectra SM (q) and SW (q) of magnetic and
weak inelastic scattering that include the contribu-
tions from all germanium atomic shells are repre-
sented by the solid curves in Figs. 6 and 7. They can
be used to perform a comparison with experimental
data. The numbers of scattering events occurring
within a given energy interval are determined by the
integrals IM (q) and IW (q) of the spectra SM (q) and
SW (q). Figure 8 and Table 2 display the integrals
from the lower detection threshold of 0.01 keV to a
variable upper boundary q.

From the data given in Figs. 7 and 8 and in Ta-
ble 2, it can be seen that, for the chosen value of the
neutrino magnetic moment, the magnetic scattering
is more intense than weak scattering over the entire
energy region. It should be noted that nearly 80% of
all magnetic-scattering events fall within the energy-
transfer range from 0.05 to 1.26 keV; the energy
region of q > qmax involves only about 6% of such
scattering events; and their fraction in the interval
from 0.01 to 0.05 keV amounts to about 15%.

It is interesting to compare the “exact” spectra
SM,W (q) and integrated cross sections IM,W (q) with
the values obtained in the step-function approxima-
tion. In this approximation, it is assumed that the
spectrum of inelastic scattering on an electron of the
ith shell is coincident with the spectrum of scattering
on a free electron for energies of q > εi and that it
vanishes for q < εi. In this approximation, the “exact”
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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expression (4) for the resulting inelastic-scattering
spectra reduces to the form

SM,W
SF (q) = SM,W

free (q)
∑

(ni/Z)θ(q − εi), (6)

where summation is performed over all atomic shells
and θ(q − εi) is the Heaviside step function equal to
unity for q > εi and to zero for q < εi. It was shown
in [8] that, in the case where antineutrinos generated
by a reactor and by a 90Sr–90Y source are scattered
on electrons of iodine and germanium atoms, the
approximate spectra (6) agree with the spectra in (4)
to within 2% for the energy transfer q ranging from
1–1.5 to 200–300 keV.

From the data shown in Fig. 6, it can be seen that
the approximation specified by Eq. (6) is inadequate
for both magnetic and weak scattering in the case of a
soft spectrum of tritium antineutrinos. The integrated
cross sections found in the step-function approxi-
mation exceed the corresponding “exact” values by
about 25% (Fig. 8).
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Abstract—The possibility of using ultrapure liquid organic scintillator as a low-energy solar neutrino
detector is discussed. The detector with an active volume of 10 t and 4π coverage will count 1.8 pp neutrinos
and 5.4 7Be neutrinos per day with an energy threshold of 170 keV for the recoil electrons. The evaluation of
the detector sensitivity and backgrounds is based on the results obtained by the Borexino collaborationwith
the Counting Test Facility (CTF). The detector can be build at the LNGSunderground laboratory as an up-
grade of the CTF detector using already developed technologies. c© 2003MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Present information on the solar neutrino spec-
trum is based on the very tail of the total neutrino
flux (about 0.2%). Meanwhile, the spectrometry of
the solar neutrino spectrum is the main source of in-
formation on new neutrino physics. The pp-neutrino
measurement is a critical test of stellar evolution the-
ory and of neutrino oscillation solutions. A discussion
of the physics potential of the solar pp-neutrino flux
can be found in [1, 2]. The low-energy part of the
spectrum (and, in particular, the pp-neutrino flux)
has not been measured directly until now. A number
of projects aiming to build pp-neutrino spectrom-
eters are at the initial stages of development. The
principal characteristics of the existing proposals are
shown in Table 1. The existing radiochemical experi-
ments sensitive to solar pp neutrinos (SAGE [12] and
GALLEX [13]) are not cited in the table.

2. BOREXINO AND ITS COUNTING TEST
FACILITY

Borexino, a real-time detector for low-energy neu-
trino spectroscopy, is near completion in the under-
ground laboratory at Gran Sasso (see [14] and refer-
ences therein). The main goal of the detector is the
direct measurement of the flux of solar 7Be neutrinos
of all flavors via neutrino–electron scattering in an
ultrapure liquid scintillator. Borexino will also address
several other frontier questions in particle physics,
astrophysics, and geophysics.

∗This article was submitted by the authors in English.
1)Petersburg Nuclear Physics Institute, Russian Academy of
Sciences, Gatchina, 188350 Russia.

**e-mail: osmirnov@jinr.ru
1063-7788/03/6604-0712$24.00 c©
The Counting Test Facility (CTF) was con-
structed and installed in Hall C of the Gran Sasso
Laboratory. The main goal of the CTF was a demon-
stration of the possibility of liquid scintillator pu-
rification on the scale of several tons. Although the
CTF is a large-scale detector (4 t of liquid scintil-
lator), its size is nonetheless modest in comparison
to Borexino (300 t). A mass in the 4-t range was
set by the need to make the prevailing scintillator
radioimpurities measurable via delayed coincidence
of tagged events,2) while a water shield thickness of
approximately 4.5 m was needed in order to suppress
the external radiation. The primary goal of the CTF
was to develop a solution directly applicable to opera-
tional issues for Borexino; in the future there will also
be the long-range goal of performing quality control
during Borexino operations. Detailed reports on the
CTF have been published [15–17]. As a simplified
scaled version of the Borexino detector, a volume
of liquid scintillator is contained in a 2-m-diameter
transparent inner nylon vessel mounted at the center
of an open structure that supports 100 phototubes
(PMT) [18] which detect the scintillation signals.
The whole system is placed within a cylindrical
tank (11 m in diameter and 10 m in height) that
contains 1000 t of ultrapure water, which provides
shielding against neutrons originating from the rock
and against external γ rays from PMTs and other
construction materials. The scintillator used for the
major part of tests in the CTF was a binary mixture
consisting of pseudocumene3) (PC) as a solvent and
1.5 g/l of PPO (2,5-diphenyloxazole) as a fluor.
The upgrade of the CTF-I detector (CTF-II) was

2)Key components in the decay chains of U–Th and in the
β decay of 85Kr are emitted as time-correlated coincidence
pairs which can be tagged with high specificity.

3)1,2,4-trimethylbenzene C9H12.
2003 MAIK “Nauka/Interperiodica”
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Table 1. Key characteristics of the solar-neutrino projects sensitive to the pp neutrino

Project
(reference) Method Threshold,

keV
Resolution Mass, t Reaction

pp
events/d

LENS 176Yb, 301(ν) 7% 20 176Yb+ νe → 0.5

[3] LS (1 MeV) (8% nat 176Yb) 176Lu+ e−

INDIUM 115In, 118(ν) 5–10% 4 115In+ νe → 1.0

[4] LS (1 MeV) 115Sn∗(613) + e−

GENIUS 76Ge, 11(e−) 0.3% 1 ν + e− → ν + e− 1.8

[5] Scattering 59(ν) (300 keV) 10 18

HERON Superfluid 4He, 50(e−) 8.3% 10 ν + e− → ν + e− 14

[6] rotons/phonons+UV 141(ν) (364 keV)

XMASS Xe, 50(e−) 17.5% 10 ν + e− → ν + e− 14

[7] LS 141(ν) (100 keV)

HELLAZ He (5 atm), 100(e−) 6% 2000 m3 ν + e− → ν + e− 7

[8] TPC 217(ν) (800 keV)

MOON Drift 168(ν) 12.4% FWHH 3.3 νe + 100Mo → 1.1

[9] chambers (1 MeV) 100Tc+ e−

MUNU TPC, CF4, 100(e−) 16% FWHH 0.74 ν + e− → ν + e− 0.5

[10] direction 217(ν) (1 MeV) (200 m3)

NEON He, Ne, 20(e−) 16% FWHH 10 ν + e− → ν + e− 18

[11] scintillator 82(ν) (100 keV)

Present
LS

170(e−) 10.5% 10 ν + e− → ν + e− 1.8

work 310(ν) (200 keV)
operating with an alternate liquid-scintillator (LS)

solvent, phenylxylylethane (PXE, C16H18).4) The

scintillator is carefully purified to ensure that the 238U

and 232Th in it are less than some units of 10−16 g/g.
The PMTs are 8-in. Electron Tubes Limited (ETL)
model 9351 tubes made of low-radioactivity glass
and characterized by high quantum efficiency (26%
at 420 nm), limited transit time spread (1 ns), and
good pulse-height resolution for single photoelectron

pulses (peak/valley = 2.5). The number of photo-
electrons recorded by one PMT for a 1-MeV energy
deposit at the detector’s center is about 3.5 for both
scintillators.

4)With p-diphenylbenzene (para-terphenyl) as a primary
wavelength shifter at a concentration of 3 g/l along with a
secondary wavelength shifter 1,4-bis (2-methylstyrol) ben-
zene (bis-MSB) at 50 mg/l.
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3. UPGRADE OF THE CTF DETECTOR

The geometry of the proposed upgrade is pre-
sented in Fig. 1 in comparison with Borexino and
CTF. The inner vessel is a transparent spherical nylon
bag with a radius of 240 cm, containing 50 t of ultra-
pure pseudocumene with 1.5 g/g of PPO. The active
shielding is provided by 100 cm of the outer layer of
scintillator. The 800 PMTs are mounted on the open
structure at a distance of 440 cm from the detector’s
center (distance is counted from the PMT photocath-
ode). The comparison of the geometrical parameters
of Borexino, CTF, and its upgrade is presented in
Table 2.
The choice of the geometry is motivated by the

following reasons:
The detector should fit in the existing CTF exter-

nal tank, which is 10 m high and 11 m in diameter.
The light registration system should provide the

maximum possible geometric coverage with a mini-
mum number of PMTs required.
3
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Borexino

CTF upgrade CTF

10 m

Fig. 1. Comparison of the geometry of the Borexino, CTF, and proposed upgrade of the CTF detector. The inner vessel with
scintillator is shown with a gray color. The dashed circumference inside the inner vessel defines the fiducial volume; the outer
layer protects the fiducial volume from the external gammas. PMTs are uniformly distributed by the surface shown with a solid
line on the Borexino drawing and with a dashed line on the other two.
The active shielding of the fiducial volume is pro-
vided by at least 100 cm of PC.

The passive shielding from the gammas originated
from PMT impurities is provided by 200 cm of ultra-
pure water.

The fiducial volume of the detector should be on
the order of 10 t.
The inner-vessel size should be as small as possi-

ble in order to avoid the loss of light in the scintillator
and to provide better detector uniformity.

To lower the detector’s threshold (<35 keV) in
order to acquire the 14C-spectrum shape without de-
formations caused by the threshold effects.
The Borexino-sized detector is an unfavorable so-

lution because of the huge number of PMTs nec-
essary to provide 4π coverage. The big inner-vessel
volume in turn decreases the amount of light es-
caping from the interior part of the detector. The
spatial reconstruction of the lower energy events is
complicated because of the multiple absorption and
reemission of light on the way to the PMT with a
characteristic length of 1 m [17].

The beta decays of 14C in the liquid organic scintil-
lator set a lower threshold on the detector sensitivity.
The content of the 14C in pseudocumene used in
the CTF detector was at the level of 2 × 10−18 g/g
with respect to the 12C content. Although the end
point of the 14C β decay is only 156 keV, the energy
resolution of the CTF (and Borexino) is not good
enough at this energy to set the threshold lower than
250 keV.We suggest using additional PMTs supplied
with hexagonal light concentrators in order to provide
4π coverage, in comparison to 21% for CTF and 30%
for Borexino. Additional energy resolution improve-
ment (about 15%) in the low-energy region can be
P

achieved by using an energy reconstruction technique
discussed in [19].
We considered the contamination of the pseudoc-

umene with the radionuclides of the U–Th chain
and with 40K on the level envisaged for the Borexino
scintillator. These levels were achieved on the CTF.
In such a way, we expect about 2 events/d due to
the internal background in 10 t of scintillator. Due
to the better energy resolution, there is a possibility
of recognizing the signals of the unidentified alpha
particles in the region between 350 and 500 keV
that give about 30% of the total background in the
Borexino “neutrino window” (250–700 keV). The
better energy and spatial resolutions will permit us
to improve the α/β discrimination capability of the
CTF upgrade in comparison to CTF. The decrease
in the threshold energy will also allow us to improve
the delayed coincidence (DC) discrimination of the
events from the radioactive chains.
The outer layer of active volume (100 cm) is used

as an active shield against the gammas (mainly from
the 40K contained in the PMT glass bulbs). Ad-
ditional passive shielding with 200 cm of ultrapure
water is considered in the present design.
The detector should be supplied with an external

muon veto system. The muon veto system consisting
of about 50 additional PMTs can be mounted on the
top and on the bottom of the cylindrical external tank.
The muon recognition efficiency should be at the level
of 99.99% in order to guarantee a missed muon count
of <0.1 per day.

4. DETECTOR’S ENERGY RESOLUTION

A detailed analysis of the energy resolution of the
large-volume liquid-scintillator detector can be found
in [19, 20]. We give here a brief overview of the main
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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Table 2. Comparison of the main features of the CTF, Borexino, and proposed upgrade of the CTF detector

Parameter CTF Borexino CTF upgrade

Geometric coverage,% 21 30 ∼= 100

Light yield, p.e./MeV 360 400 1800

Light yield per PMT for the event 3.6 0.25 2.25

at the detector’s center µ0, p.e./PMT/1MeV

Energy resolution at 200 keV, keV 27 26 10.5

(∼1/
√
Light yield)

Threshold, keV 250 250 170

Muon veto PMTs 16 200 50

Number of PMTs 100 2200 800

Total natural K content in the PMTs, g 8 176 64

Distance between the PMTs 330 675 440

and detector’s center, cm

Spatial resolution at 200 keV, cm 20 45 8

(∼〈1/
√
Nhit〉 ∼= 1/

√
NPM(1 − e−0.2µ0))
results because of their importance for further dis-
cussion. Taking into account the dependence of the
recorded charge on energy, one can write for the CTF
charge resolution:5)

σQ

Q
=

√
1 + v1

AEf(kB , E)vf
+ v(p). (1)

Here, v1 = (1/NPM)
∑NPM

i=1 siv1i is the relative vari-
ance of the PMT single-photoelectron-charge spec-
trum (v1i) averaged over all CTF PMTs (NPM), tak-
ing into account the ith PMT relative sensitivity si;
A is the scintillator light yield measured in photoelec-
trons (p.e.) per MeV; f(kB , E) is a function taking
into account suppression of the light yield at low en-
ergies, so-called ionization quenching; this function
has been studied in [21]; v(p) is a parameter that takes
into account the variance of the signal for the source
uniformly distributed over the detector’s volume. Be-
cause of the detector’s spherical symmetry, one can
describe the dependence of the recorded charge on
the distance from the event to the detector’s center r
with a function Q(r) of a single parameter r, Q(r) =
Q0fR(r), where Q0 is the charge collected for an
event of the same energy occurring at the detector’s
center. The v(p) parameter is the relative variance of

5)This is the case when no energy reconstruction is performed
and the energy is defined by dividing the total recorded charge
by the p.e. yieldA: E = Q/A.
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the fR(r) function over the detector volume:

v(p) ≡ 〈f2
R(r)〉V

〈fR(r)〉2V
− 1; (2)

vf is the volume factor, coming from the averaging of
the signals over the CTF volume, vf ≡ 〈Q(r)〉V /Q0.
For the details of the meaning of the parameters,

see [19, 20]. For the signal calculation, we used the
following parameters: A = 1800 p.e./MeV, v1 = 0,
vf = 1, v(p) = 2.3 × 10−3, kB = 0.0167.
The signal S(Q) recorded by the detector is the

convolution of the “pure” signal spectrum S0(Q)with
the detector’s resolution:

S(Q) = N0

∫
S0(E(Q′))

dE

dQ
Res(Q,Q′)dQ′, (3)

where

Res(Q,Q′) =
1√

2πσQ

exp

[
−1

2

(
Q−Q′

σQ

)2
]

is the detector response function and σQ is defined
by (1).

5. DETECTOR’S SPATIAL RESOLUTION
The spatial resolution of the detector is propor-

tional to the mean of the inverse number of PMTs hit
in the event:

σx,y,z = σ0

〈
1√
Nhit

〉
(4)
3
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Fig. 2. Spatial resolution of three detectors as a function
of event energy.

∼=
σ0√

NPM(1 − exp(−µ0EF (Tcut, µ)))
,

where µ0 is the mean p.e. number recorded for an
event of 1 MeV at the detector’s center, NPM is
the number of PMTs of the detector, F (T, µ) =∫ T
Tmin

ρ(t, µ)dt is the part of the p.d.f. of the first p.e.
recorded, that has been taken into account in the
reconstruction algorithm.
The results of the estimation of the spatial res-

olution for three-detector geometries (CTF, Borex-
ino, and CTF upgrade) are shown in Fig. 2. The σ0

value for the CTF detector is σ0(1MeV) = 10 cm
(measured value, [15]); for the Borexino, we used
the results of MC simulations giving σ0(1MeV) =
10 cm ([14]); and σ0 = 3.5 cm for the CTF upgrade
was obtained by scaling the CTF result by the factor√
NPM(Upgrade)/NPM(CTF) =

√
8.

6. BACKGROUNDS

The sensitivity of the detector depends on the pres-
ence of the background in the 170–250 keV energy
window. As in Borexino and CTF (see [14, 15]), the
main sources of background are:
internal background, including 14C beta-decay

counts in the neutrino window;
background from the radon dissolved in the buffer;
external gamma background;
PH
cosmic ray background.
In the following subsections, we give an estimate

of the background contribution from each source.

6.1. Internal Background from the Metallic Ions

The contamination of the scintillator with natural
radioactive isotopes gives a total rate of 2400 event/yr
with the following assumptions:
secular equilibrium of the radioactive elements in

the decay chains;

the 238U, 232Th, and Knat (natural potassium) con-
tent in the scintillator equal to 10−16 g/g;

90% capability to reject alphas (α/β-discrimina-
tion technique based on the different shape of the
detector response to α and β);

95% rejection efficiency of the delayed coincidence
method based on the tagging of the 214Bi–214Po de-
cay chain;

95% efficiency of the statistical subtractionmethod
based on deducing the isotopes in the chain preceding
the Bi–Po coincidence.
A more complete discussion of the background

reduction techniques can be found in [22]. The detec-
tor’s excellent resolution can improve the efficiency of
all the techniques.
Only 140 events of the total amount fall into the

170–250 keV energy window.

6.2. 14C Background

6.2.1. 14C spectrum. The major part of the CTF
background in the energy region up to 200 keV is
induced by β activity of 14C. The β decay of 14C
is an allowed ground-state-to-ground-state (0+ →
1+) Gamow–Teller transition with an endpoint en-
ergy of E0 = 156 keV and half-life of 5730 yr. The
β-energy spectrum with a massless neutrino can be
written in the form [23]

dN(E) ∼ F (Z,E)C(E)pE(Q − E)2dE, (5)

where E and P are the total electron energy and
momentum, F (E,Z) is the Fermi function with cor-
rection of screening by atomic electrons, and C(E)
contains departures from the allowed shape.
For F (E,Z), we used the function from [24] that

agrees with the tabulated values of the relativistic cal-
culation [25]. A screening correction has been made
using Rose’s method [26] with screening potential
V0 = 495 eV. The 14C spectrum shape factor can be
parametrized as C(E) = 1 + αE. In our calculation,
we used the value α = −0.72 [27].
YSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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The total amount in the 170–250 keV energy
window with the energy resolution corresponding to
1800 p.e./MeV is 3485 event/yr if the 14C-content is
2 × 10−18 g/g. This is the content achieved with the
CTF-I setup [27]. The yearly 14C event counts for a
10-t fiducial volume of the proposed detector are tab-
ulated in Table 3. The counts from other background
sources are presented in the same table.
6.2.2. 14C spectrum and the detector’s

threshold. In order to separate events from the
background on the 14C spectrum tail, it is necessary
to acquire the part of the spectrum under the physical
threshold of the detector (170 keV). We propose to
use the following technique for the detector trig-
gering. First, the lower level trigger is produced as
a coincidence of the signals from 20 PMTs in the
50-ns gate. This will give a random coincidence rate
at the level of <10−10 event/yr if all the PMTs have
a dark rate less than 5 kHz. The high-level trigger is
produced if the total collected charge is greater than
the preset threshold Qth. The choice of this threshold
will be defined by the resolution of the detector. Let
us estimate the last quantity. The mean number of
channels fired for the event with an energy E at the
detector’s center is

〈N〉 = NPM(1 − e−µ0), (6)

where µ0 is themean number of photoelectrons regis-
tered by one PMT in an event of energyE andNPM =
800 is the number of the PMTs in the detector. The
solution to (6) for 〈N〉 = 20 will yield µ0 
 0.025,
i.e., a total collected charge of 20 p.e. This value is
the detector threshold in the sense that only 50%
of the events with an energy corresponding to this
charge are recorded. Of course, this causes a sig-
nificant spectrum deformation near the threshold. In
order to avoid these deformations, one should set the
threshold at a level that will cut the events with ener-
gies not providing 100% detection, i.e.,Qth + 3σQth =
20 + 3

√
20 = 33.4 p.e. This charge corresponds to

approximately 35 keV if the ionization quenching at
this energy is 50%. Although the calculation was
performed for an event at the detector’s center and
the real situation is complicated by the electronics
threshold, it gives a value very close to the one ob-
tained with Monte Carlo simulation.
6.2.3. 14C pileup events. A potential danger are

the 14C pileup events, i.e., events occurring sequen-
tially within a coincidence window. Such an event can
in principle influence the 14C spectrum tail, as one
can see in Fig. 3. The fraction of 14C pileup events
with energies above 170 keV is about 5%. The total
amount of pileup events depends on the 14C relative
abundance and on the coincidence window:

Np.u. = τgate × f2
14C

× T, (7)
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Table 3. 14C event counts and other internal background
sources’ events in the 10-t fiducial volume of the proposed
upgrade of the CTF detector (for 1 yr of data taking). (The
expected effect for the pp, 7Be, and total neutrino count in
the SSM is presented for comparison.)

E, keV 14C Int. bkg.
√
bkg pp 7Be Total ν’s

148.4 73 291.8 6.8 270.7 74.6 13.7 93.3

151.6 49 755.8 6.7 223.1 71.7 13.7 90.4

154.8 32 443.6 6.7 180.1 68.9 13.7 87.5

158.1 20 254.8 6.6 142.3 66.0 13.7 84.6

161.3 12 070.3 6.5 109.9 63.2 13.6 81.8

164.5 6846.4 6.4 82.8 60.4 13.6 78.9

167.7 3686.5 6.4 60.8 57.6 13.6 76.1

170.9 1879.8 6.3 43.4 54.7 13.6 73.2

174.1 905.8 6.2 30.2 52.0 13.6 70.4

177.3 411.6 6.2 20.4 49.2 13.6 67.6

180.6 176.1 6.1 13.5 46.4 13.5 64.8

183.8 70.8 6.0 8.8 43.7 13.5 62.1

187.0 26.7 6.0 5.7 41.1 13.5 59.4

190.2 9.4 5.9 3.9 38.5 13.5 56.8

193.4 3.1 5.9 3.0 35.9 13.5 54.2

196.6 1.0 5.8 2.6 33.4 13.5 51.7

199.8 0.3 5.7 2.5 31.0 13.5 49.2

203.0 0.1 5.7 2.4 28.7 13.4 46.9

206.2 0.0 5.6 2.4 26.4 13.4 44.5

209.4 0.0 5.6 2.4 24.2 13.4 42.2

212.7 0.0 5.5 2.3 22.0 13.4 40.0

215.9 0.0 5.5 2.3 19.9 13.4 37.7

219.1 0.0 5.4 2.3 17.8 13.4 35.6

222.3 0.0 5.3 2.3 15.8 13.4 33.4

225.5 0.0 5.3 2.3 13.9 13.3 31.3

228.7 0.0 5.2 2.3 12.1 13.3 29.3

231.9 0.0 5.2 2.3 10.4 13.3 27.5

235.1 0.0 5.1 2.3 8.8 13.3 25.7

238.3 0.0 5.1 2.3 7.3 13.3 24.1

241.5 0.0 5.0 2.2 5.9 13.3 22.6

244.7 0.0 5.0 2.2 4.7 13.3 21.4

247.9 0.0 4.9 2.2 3.6 13.3 20.3
3
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Fig. 3. Spectrum of pileup events in comparison to the
14C spectrum.

where T is the total time of data taking, τgate = 60 ns
is the coincidence gate width, and f14C is the fre-
quency of 14C events. For a 14C abundance of 2 ×
10−18 g/g, the mean rate of events caused by 14C
β decay is 2.2 Hz. With these values the number of
pileup events is 2.5/d, and the number of events with
energy greater than 170 keV is only about 0.13/d.

The excellent spatial resolution of the detec-
tor provides a further possibility of suppressing
the number of these events by a factor of at least(

4
3π(3σR)3/VFV

)2 = (3σR/RFV)6 
 10−5, where σR

is the spatial resolution at 170 keV and RFV =
140 cm is the radius of the fiducial volume. Thus,
one can conclude that pileup events do not influence

Table 4.The sensitivity of the detector to the SSM pp neu-
trinos as a function of the content of 14C in the scintillator
(energy in keV)

14C, g/g 2 × 10−18 10−19 10−20 10−21

Threshold
(
√
bkg = eff)

174 (40) 145 0 0

Threshold
(2
√
bkg = eff)

182 156 125 0

Energy interval 170–250 160–250 150–250 150–250
14C events 3485 1304 643 64

Int. bkg
(Borexino)

140 159 180 180

pp 647 829 1035 1035

Total ν 1092 1329 1591 1591

Fitted region 40–330 40–330 40–330 40–330

Uncertainty
(1σ C.L.), fit

0.056 0.05 0.04 0.034
P
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Fig. 4. External gamma background simulation in the
energy window up to 450 keV (1 d). One can see that an
R < 150 cm spatial cut will eliminate all the events in the
pp-neutrino window (170–250 keV).

the shape of the 14C spectrum within the considered
energy interval.

6.3. Background from the Radon in the Water Buffer

This background is expected to be efficiently re-
jected by the radial cut. The special nylon shroud
tested with theCTF-II setup should prevent the diffu-
sion of the external radon into the scintillator volume,
reducing the background observed in the CTF by a
factor of 10 to 1000.
The raw count observed in CTF-I was

0.3 event/(kg keV yr) in the 250–800 keV energy
window; in CTF-II, it was about
0.1 event/(kg keV yr). But in the latter case, this
background was dominated by the 40K contained in
the strings supporting the inner vessel [28].

6.4. External-Gamma Background

The background count, caused mainly by the ra-
dioactive contamination of the PMT glass with 40K
and the elements of the U–Th chain, has been eval-
uated with an EGS4 code. We include in the MC
simulation the ionization quenching effect [21] and
the limited spatial reconstruction ability at lower en-
ergies. The assumed content of 238U, 232Th, and Knat
in the PMTs is 112.4 µg/PMT, 47.3 µg/PMT, and
62.3mg/PMT, respectively, which corresponds to the
measured radioactive contamination of the photo-
tubes produced with high-purity glass. We add 30%
to these values to account for the radioactive contam-
ination of the concentrator and PMT divider, sealing,
and support structure.
The results of the simulation are presented in

Fig. 4. One can see that an R < 150 cm spatial cut
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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Table 5. The pp-neutrino count rate (counts/yr) in different solar-neutrino-oscillation scenarios for an energy window of
170–250 keV

SSM SMA LMA LOW LOW (day) LOW (night)

pp 647 434 424 414 342 488

Total ν 1092 535 676 673 570 776
14C (2 × 10−18 g/g) 3485

Int. bkg (Borexino) 140

Uncertainty (1σ C.L.),
fit in 40–330 keV region

0.056 0.077 0.074 0.07 0.085 0.068

Int. bkg (10 × Borexino) 1400

Uncertainty (1σ C.L.),
fit in 40–330 keV region

0.09 0.13 0.13 0.13 0.15 0.11

Table 6. The discrimination between different neutrino-oscillation scenarios

SSM SMA LMA LOW

Nφ σ χ2 Nφ σ χ2 Nφ σ χ2 Nφ σ χ2

SSM 1.02 0.06 72.8 0.53 0.04 85.3 0.66 0.08 72.9 0.64 0.05 72.4

SMA 1.96 0.08 115.1 1.01 0.08 71.0 1.05 0.13 76.3 1.10 0.08 85.2

LMA 1.62 0.09 74.7 0.85 0.07 81.4 1.03 0.13 73.3 1.00 0.08 72.9

LOW 1.64 0.09 74.0 0.85 0.07 82.4 1.05 0.13 73.2 1.02 0.08 72.7
will eliminate all the events in the neutrino window
(170–250 keV).

In order to reduce the background from the pen-
etrating gammas, we suggest reducing the amount
of construction materials contributing to the back-
ground. A significant amount of the material in
Borexino is contained in the mu-metal shield of the
PMTs, which provides the screening of the PMTs
against the terrestrial magnetic field. An alternative
solution based on the orientation of PMTs has been
studied in [29]. The effect of PMT orientation is
comparable to the one achieved with PMT screening
with a metal having a high magnetic permeability.
Use of this technique could eliminate about 1 kg
of material for each PMT in proximity to the inner
vessel.

Another possibility of reducing the gamma back-
ground is assuming the use of a different topology
of the events produced by electrons and gammas.
The excellent spatial resolution of the CTF upgrade
will permit distinguishing pointlike energy deposits
for electrons from the distributed gamma events
(β/γ discrimination). The study of the possibility of
such discrimination for the Borexino detector is now
in progress.
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6.5. Cosmic-Ray-Induced Background

The cosmic-ray-induced background can be sub-
divided into three categories:
(i) muons crossing the water buffer of the detector,

producing the Cherenkov light;
(ii) neutrons produced by muon interactions and

sequentially stopped in the water or scintillator and
emitting 2.2-MeV annihilation gamma;
(iii) secondary radioactive nuclei produced in the

muon interactions inside the detector.
Most of the background counts associated with

muons can be effectively removed by the muon iden-
tifying system (muon veto). One can use the time and
spatial structure of the muon-induced events in order
to recognize them. The muon identification proce-
dure was able to recognize 95% of the muon-induced
events in the CTF-I detector [15]. We also assume the
use of a set of PMTs situated on the top and bottom
of the cylindrical external tank that will increase the
muon identification to a value approaching 100%.
Some of the radioactive products of the muon

interactions with the scintillator have a significant
lifetime, which makes impossible the use of a muon
tag. These isotopes are 11Be (β−, 11.5 MeV, 13.8 s),
10C (β+, 1.9 MeV+ γ, 0.72 MeV, 19.3 s), 11C (β+,
3
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Fig. 5. Signal and background shape for the SSM neutrino fluxes. 14C content is 2 × 10−18 g/g. Other background
components are considered to be the same as the Borexino background. Detector mass is 10 t. The resolution is calculated
under the assumption of 100% geometric coverage using CTF-I light output (i.e., 1800 p.e./MeV) and is assumed to be
1/
√

Np.e. The signals shown correspond to 1 yr of data taking.
0.99 MeV, 20.38 min), and 7Be (γ, 0.478 MeV,
53.3 d). The considered neutrino window is too
narrow to pick up a significant amount of events
from these isotopes. The precise evaluations are now
in progress for the Borexino detector [30], but this
background will certainly be negligible in comparison
to the other sources considered.

6.6. 14C Content: Is It Critical?

It is commonly assumed that the 14C content
sets the limit on sensitivity in the low-energy region
in the liquid organic scintillator. A ratio as low as
2 × 10−18 g/g was achieved with the CTF detector.
There are indications that content of 14C can be even
smaller, on the order of 10−21 g/g [31].6) In this case,
the 14C contribution in the background can be re-
duced by a factor of 2000. It is interesting to study the
sensitivity of the detector to pp neutrinos as a function

6)A new petrogeological model allows such a low value; con-
tamination with modern 14C in this case has to be excluded
during petroleum refinement [31]. The existing CTF setup
is a suitable device for the search for an organic LS with
minimal 14C contamination.
P

of the content of 14C in the scintillator. The results
of the study are summarized in Table 4. One can see
that the detector sensitivity varies rather slowly with
a decrease in the 14C content in the scintillator. There
are several reasons for this behavior. First of all, the
rate of pp neutrinos is quite low, and with minimal
background contribution, the statistical fluctuations
of the pp rate are the major source of the uncertainty.
Another source of uncertainty is the irreducible inter-
nal background, which becomes comparable to the
contribution of 14C events at a lower 14C content.
The last reason is the lower threshold of the detector
of about 25 keV, which cannot be decreased without
picking up random electronic noise. In order to avoid
the influence of the threshold effect on the signal
shape, it is necessary to set the software threshold
even higher, about 40 keV. Another reason to set
a higher software threshold is the presence of low-
energy external gammas, which can be reconstructed
inside the fiducial volume due to the poor spatial
resolution at low energies.

We can conclude that lower 14Cwould be desirable
but is not critical for the detector sensitivity to pp
neutrinos.
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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Fig. 6. CTF upgrade. Signal and background shape for the SSM neutrino fluxes. 14C content is 2 × 10−18 g/g. Other
background components are considered to be the same as the Borexino background. Detector mass is 10 t. The resolution is
calculated under the assumption of 100% geometric coverage using CTF-I light output (i.e., 1800 p.e./MeV) and is assumed
to be 1/

√
Np.e. The signals shown correspond to 1 yr of data taking.
7. NEUTRINO SIGNALS

In the calculations, we used SSM fluxes given by
the standard solar model [32], neutrino energy spectra
from [33–35], and survival probabilities for the differ-
ent solar neutrino scenarios from [36]. Signal shapes
were convolved with the detector response function
using (3).

7.1. Sensitivity to pp Neutrinos

The pp-neutrino counts in different solar neutrino
oscillation scenarios are listed in Table 5. The sen-
sitivity was estimated with the MC method. First,
the total signal was calculated with allowance for the
detector’s resolution. At the next step, a normally
distributed random signal was generated at each bin.
A fitting function consists of the function describ-

ing the internal background (without 14C), the spec-
trum of the 14C decay, and the neutrino signal:

f(q) = Nbkgbkg(q) +N14CC(q) +Nνφν(q). (8)

The shape of the internal background bkg(q) was
fixed, but its normalization (Nbkg) was free. Another
free parameter is normalization of the 14C spectrum,
N14C.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
The rates listed in Table 5 are calculated in the
energy window of 170–250 keV taking into account
the detector’s resolution. The neutral current channel
for the neutrinos of nonelectron flavors is taken into
account in the calculations. Other neutrino sources
also have nonnegligible contributions to the total sig-
nal in this energy window. The main source besides
pp is 7Be neutrinos with a flat spectrum (see Fig. 5).

The uncertainties of the total-neutrino-flux mea-
surement are given in Table 5 for the case of the
internal background at the level envisaged for the
Borexino and for a background 10 times larger. For
convenience, the uncertainties are measured in units
of the corresponding model flux. The possible system-
atic errors due to the unknown shape of the back-
ground are not included in the estimation.We assume
that MC simulation can reproduce the form of the
background and that only the total normalization of
this shape is unknown. This assumption is reasonable
because of the quite narrow signal window, where
the background is dominated by the slowly varying
continuous spectrum of the soft part of the gamma
spectra of radioactive impurities.
3
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7.2. Discrimination Ability in Respect to the Various
Solar Neutrino Scenarios

In order to investigate the sensitivity of the setup
to the different neutrino oscillation scenarios [36],
we performed a fit of the MC-simulated data with
the neutrino fluxes in all scenarios. The results are
summarized in Table 6. The columns represent the
model used for the MC simulation, while in the rows
the results of the fit applied using different scenarios
are presented. For each fit, we give the total normal-
ization of the flux Nφ (in units of the corresponding
scenario flux), the flux uncertainty at 1σ C.L. (mea-
sured in units of the model used for the fitted flux),
and the χ2 value (80 d.o.f.)
One can see that the small mixing angle (SMA)

solution is well discriminated from the others both by
the count and by the shape. The low-mixing-angle
(LMA) solution and the low-mass/low-probability
(LOW) solution are indistinguishable, but the LOW
solution has a significant day/night variation.

7.3. Sensitivity to 7BeNeutrinos

The detector will count 1840 7Be SSM neutrinos
per year in the 200–700 keV energy window with the
internal background of 736 events. For comparison,
the Borexino detector will count 16 152 events in the
250–750 keV energy window with the background of
P

6468 events. We do not present here the evaluation of
the sensitivity of the detector to 7Be neutrinos. It is
clear that the lower mass (factor of 10) in compari-
son to the Borexino detector will limit the sensitivity.
Some gain in the sensitivity can be achieved owing to
the better energy resolution of the detector (factor of
2.1). The sensitivity relative to Borexino for equal time
of data taking and equal specific background can be
estimated as

√
(MDet/MBorex)(σBorex/σDet) 
 0.45.

In Figs. 6 and 7, the signal shape for both detectors
is presented.

8. IMPROVEMENT OF THE DETECTOR
PERFORMANCE

The performance of the detector can be improved
by using any of the following ideas:
(i) Use of specially designed photomultipliers, pro-

viding better quantum efficiency.
The basic idea is the “recycling” of the incom-

ing photons. Various optical arrangements have been
used to improve light absorption by letting incoming
light interact with the photocathode material more
than once (see, i.e., [37]). This idea is revived in recent
works [38, 39], where the authors reported a signifi-
cant increase in the quantum efficiency, up to a factor
of 2.
(ii) Use of beta/gamma discrimination techniques.
The usage of the different topology of the point-

like beta events and the spatially distributed gamma
events can provide the opportunity to discriminate
between beta- and gamma-induced signals with high
efficiency. This method exploits the superior resolu-
tion of the detector.
(iii) Choice of organic scintillator with lower con-

tent of 14C.
There are indications that the content of 14C can

be much smaller than that measured with the CTF-
I detector, namely, on the order of 10−21 g/g [31]. In
this case, the 14C contribution in the background can
be significantly reduced, which will lead to improve-
ment of the detector’s characteristics.

9. CONCLUSIONS

The following upgrade of the CTF detector is con-
sidered:
geometric coverage of 100%, providing a light yield

of 1800 p.e./1 MeV;
inner vessel radius of 240 cm (50 t of PC);
active shielding of the active volume with 1 m of

pseudocumene;
distance of 4.3 m from the photocathode of the

PMTs to the center of the detectors.
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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The project can compete with other existing pro-
posals (see Table 1). At the same time, the proposed
detector, being based on technologies already devel-
oped for the Borexino project, is more realistic.
Further improvement of the detector performance

can be achieved using the techniques mentioned in
Section 8.
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Abstract—The analytic structure in the strong coupling constant that emerges for some observables in
QCD after duality averaging of renormalization-group-improved amplitudes is discussed, and the validity
of the infrared renormalon hypothesis for the determination of this structure is critically reexamined. A
consistent description of peculiar features of perturbation theory series related to hypothetical infrared
renormalons and corresponding power corrections is considered. It is shown that perturbation theory
series for the spectral moments of two-point correlators of hadronic currents in QCD can explicitly be
summed in all orders using the definition of the moments that avoids integration through the infrared
region in momentum space. Such a definition of the moments relies on the analytic properties of two-point
correlators in the momentum variable that allows for shifting the integration contour into the complex plane
of the momentum. For definiteness, an explicit case of gluonic current correlators is discussed in detail.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

General properties of quantum field theory impose
strong constraints on model building for elemen-
tary particle phenomenology. Symmetry properties
of interactions lie in the foundation of the Standard
Model [1], causality leads to restrictions on the ana-
lytic structure of scattering amplitudes as functions
of energy, and the freedom of redefinition of ultravio-
let subtraction procedures in renormalizable theories
leads to the renormalization group invariance which is
a basic property of theoretical quantities correspond-
ing to physical observables [2]. While such general
properties are supposed to be valid in a full theory,
there is little known about the very existence of realis-
tic nontrivial quantum field models—only some sim-
plified examples (mainly in two-dimensional space-
time) have explicitly been constructed (e.g., [3]). The
realistic four-dimensional models suitable for particle
phenomenology are mainly analyzed within perturba-
tion theory in the coupling constant and only the first
few terms of perturbative expansions for physical ob-
servables are usually available. Some general results
on the asymptotic behavior of high orders of pertur-
bation theory have been obtained in simple models

∗This article was submitted by the author in English.
**e-mail: aapiv@ms2.inr.ac.ru
1063-7788/03/6604-0724$24.00 c©
by using the steepest descent method for comput-
ing the functional integral determining the generat-
ing functional of Green’s functions. In some models
of quantum field theory, where the explicit solutions
of the relevant classical equations of motion were
found, the particular results on the asymptotic be-
havior of the coefficients of perturbation theory series
are also known [4]. For example, the solutions of the
classical field equations are known in the important
case of non-Abelian gauge theories [5] that provides
the appropriate saddle-point configurations for the
steepest-descent method of evaluating the functional
integrals [6] and allows for deeper understanding of
the ground state structure in these models [7]. Be-
sides the steepest-descent methods for evaluating the
functional integrals, the all-order perturbation theory
results are also discussed using a particular way of
resumming some special subsets of perturbation the-
ory diagrams [8, 9]. The contributions related to the
renormalization group running of the coupling con-
stant and/or masses under the integration sign are
generally referred to as renormalon contributions [10].

At present, the problem of evaluating the high-
order perturbation theory contributions to physical
observables becomes a practical issue for high-
precision tests of the Standard Model and search
for new physics as the accuracy of experimental
data continues to improve [11]. It is most important
in perturbative QCD because the strong coupling
2003 MAIK “Nauka/Interperiodica”
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constant αs is numerically large at low energies.
Since the perturbation theory expansion in αs is
believed to be only asymptotic in general, a resum-
mation of all-order terms gives a possible way to
improve the accuracy of theoretical predictions. An
example of the infinite resummation of perturbation
theory diagrams is an exact account of the Coulomb
interaction in the processes of heavy quark production
near the threshold [12] that allows for a significant
improvement in the high-precision description of the
top–antitop production [13]. Note that this resum-
mation is reliable because it does not really include the
strong coupling regime of QCD. For light quarks and
massless gluons with a genuine strong interaction
in the infrared domain, there is no successful recipe
of resumming the subsets of perturbation theory
diagrams that could lead to the description of ob-
servables in terms of physical hadrons [10]. To deal
with the regime of strong coupling in the low-energy
hadron phenomenology, one exploits an idea of aver-
aging over some energy interval. It is assumed that
the theoretical predictions for averaged quantities
obtained with the use of perturbation theory in the
strong coupling constant in terms of quark–gluon
degrees of freedom can reliably be confronted with
experimental data measured in terms of the observed
hadrons. This assumption is known as the duality
concept (see, e.g., [14]). While the duality assumption
is a real basis for using perturbation theory in the
low-energy hadron phenomenology, it is, however,
difficult to control the accuracy of this assumption
quantitatively in concrete applications. The most
advanced quantitative study of the validity of the
duality concept has been done for the observables
related to the two-point correlators of hadronic cur-
rents because of their simple analytic properties in
the momentum. The accuracy of the perturbation
theory series for the two-point correlators can be
improved substantially by the renormalization group
resummation that is an efficient tool of calculating
various asymptotics of the Green’s functions. The
appearance of the renormalization group invariance
is a consequence of the freedom of performing ul-
traviolet subtractions and fixing the normalization of
the theory that leads to a possibility of redefinition
of the coupling constant as an expansion parameter
of perturbation theory. Technically, a simple way to
implement the renormalization group improvement
of perturbation theory series is to use a running
coupling constant normalized in the vicinity of a
physical scale of the process of interest. Such a
choice of normalization for the coupling constant
allows one to resum large logarithms related to the
difference of scales in all orders of perturbation theory.
Because of the final average of the strong interaction
amplitudes over the energy interval, as the duality
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
concept requires for comparison with the experimen-
tal data, one can choose whether the renormalization
group improvement should be done before or after
averaging. In general, these two operations—duality
averaging and renormalization group improvement—
do not commute. Performing the renormalization
group improvement of theoretical amplitudes com-
puted in the perturbation theory framework before the
final averaging allows one to resum a lot of regular
corrections relevant to the running of the coupling
constant and/or masses only; one can interpret this
procedure as a determination of a proper scale for
the averaged observables. The technique of renormal-
ization group improvement for the moments of two-
point correlators before the final averaging necessary
for physical observables is known as the contour-
improved perturbation theory [15] and is especially
important at low energies where the QCD coupling
constant αs is large and higher order perturbation
theory terms can be numerically important: they
can change the results of finite-order perturbation
theory by an amount comparable with the present
experimental precision. The precision of present
experimental data on τ-lepton decays, for instance,
suffices for distinguishing the results obtained in
the contour-improved and finite-order perturbation
theory frameworks [16].

Accounting for the running of the coupling con-
stant in perturbation theory by using the renormal-
ization group improvement under the integration
sign is close in spirit to the formulation of a cal-
culational scheme for the Green’s functions within
Schwinger–Dyson equations (a skeleton expansion).
Within the Schwinger–Dyson formulation of per-
turbation theory, one can use either finite-order per-
turbation theory or renormalization-group-improved
theory for the irreducible vertices that constitute
the building blocks of the integral equations. The
Schwinger–Dyson technique has extensively been
used for investigating the behavior of the fermion
propagator beyond the QCD perturbation theory ap-
proximation in relation to the problem of mass gener-
ation inmassless theories and spontaneous symmetry
breaking [17]. It is known that the reiteration of the
running coupling constant into loops can be infrared
dangerous (just to see how it happens, one can
think of perturbation theory expansions in terms of a
bare coupling constant in dimensional regularization
and compare the results of such reiteration with the
situation in superrenormalizable theories where the
coupling constant is dimensional). The reason for
the singularities is that the renormalization group
summation inQCD is applicable to Green’s functions
at large values of momenta, while the asymptotic
behavior is determined by performing an analytic
3
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continuation of the functions obtained after the renor-
malization group improvement. Therefore, analytic
properties of amplitudes in the whole complex plane
of momenta in finite-order perturbation theory can
differ from those after the renormalization group
improvement. This difference in analytic properties
can lead to some singularities (usually referred to as
infrared renormalons in QCD) when the perturbative
renormalization group running is extrapolated to the
region where perturbation theory is not valid [18, 19].
For asymptotically free QCD in the leading order
of the running, the structure of singularities related
to the infrared renormalon dominance hypothesis
in connection with power corrections in massless
theories was discussed in [20].
In the present paper, the resummation of the

effects of running is discussed by way of the example
of the moments of two-point correlators of hadronic
currents. The two-point correlators are the simplest
Green’s functions with well-established analytic
properties in momenta. Two-point correlators are
important for phenomenology; they are relevant for
describing the processes of e+e− annihilation into
hadrons and/or τ-lepton hadron decays [21]. Note
that the correlators of gauge-invariant currents built
from gluonic operators describe a spectrum of glue-
balls, the experimental observation of which would
give strong additional support for QCD as a theory
of hadrons. Gluonic current correlators are an actual
choice for the analysis in the present paper.

2. BASIC ANALYTIC PROPERTIES
OF TWO-POINT CORRELATORS AND
DEFINITION OF THE SPECTRAL

MOMENTS

In this section, general definitions and notation are
given. The correlator of a hadronic current j(x) has
the form

i

∫
〈Tj(x)j†(0)〉eiqxdx = Π(q2), (1)

whereΠ(q2) is an invariant function. Analytic proper-
ties of the functionΠ(q2) in the variable q2 are fixed by
a dispersion relation (Källen–Lehmann, or spectral,
representation)

Π(q2) =
∫

ρ(s)ds
s− q2

+ subtractions, (2)

where the spectral density ρ(s) is determined by a
sum over the states of the theory (e.g., see [22]) and
ultraviolet subtractions are a polynomial in q2. The
spectrum of the correlator in Eq. (1), or the support
of the function ρ(s) from Eq. (2), is determined by
the singularities of the function Π(q2) in the complex
P

q2 plane. The spectral density ρ(s) is then given by
the discontinuity of the function Π(q2) across the
spectrum

ρ(s) =
1

2πi
(Π(s + i0) − Π(s− i0)), (3)

s ∈ [spectrum].

In QCD with massless quarks and gluons, a general
assumption about the spectrum (spectrality condi-
tion) is s ≥ 0 or [spectrum] = [0,∞]. This assump-
tion is based on the Fock representation for the
states in terms of massless quarks and gluons (see,
e.g., [22]). Note that this is an assumption, and,
in fact, analytic properties of Π(q2) and, therefore,
the support of the spectral density ρ(s) depend on
the interaction. The dependence of the spectrum on
interaction can readily be seen in the example of
heavy charged particles with Coulomb interaction.
For a pair of heavy particles with massesm1 andm2,
one would expect the spectrum start at the threshold
sthr = (m1 +m2)2, which is the case of a perturbation
theory consideration in the Fock space. However,
if Coulomb interaction is present, it is true only for
the repulsive interaction, while attractive interaction
leads to the appearance of Coulombic poles below
the threshold. In QCD, the shape of the spectrum
near the heavy quark threshold also depends on the
definition of the masses used for describing heavy
quarks and on other details of the interaction (e.g.,
the theoretical spectrum can be different at different
orders of perturbation theory [23]). Such a situation
is well known also from the analysis of simplified
models [24]. Thus, the theoretical spectrum of a
hadronic correlator is a dynamical quantity, while
the constraints on the support of the spectral density
stemming from the kinematical considerations based
on the values of masses of the asymptotic states in
perturbation theory are not always valid in the full
theory.

In asymptotically free QCD, the function Π(q2) is
reliably computable theoretically within perturbation
theory in the Euclidean domain or in the complex q2

plane sufficiently far from the positive semiaxis q2 >
0, what allows one, in principle, to find theoretical pre-
dictions for the physical observables. Still, to extract
a theoretical prediction for the spectral density ρ(s)
from the function Π(q2) is not straightforward. The
point is that Π(q2) is only known as a perturbation
theory expansion in the coupling constant at large
Euclidean q2, while ρ(s) is given by a discontinuity
across singularities of Π(q2) in the complex q2 plane.
However, the perturbation theory calculation of the
function Π(q2) is not justified near its singularities.
Therefore, the analytic continuation in the complex
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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q2 plane to the vicinity of the positive semiaxis and
into the infrared region is necessary. The analytic
continuation is an incorrectly set operation; i.e., small
errors of the initial functionΠ(q2) at Euclidean points
can produce large errors in ρ(s). This instability is
especially important for a theoretical evaluation of
ρ(s) at low energies. The problem of performing an
analytic continuation can also be reformulated in the
language of integral equations since the dispersion
relation in Eq. (2) gives the correlation functionΠ(q2)
as an integral transformation of the spectral density
ρ(s). Relation (2) is a Fredholm integral equation of
the first kind which is known to lead to an incorrectly
set problem. Thus, the errors of ρ(s) [as a solution
to Eq. (2)] are not continuously related to the er-
rors of Π(q2) [as initial data of Eq. (2)] and can be
large even if errors of Π(q2) in the Euclidean domain
are sufficiently small. The general procedure of con-
structing the approximate solutions to incorrectly set
problems was suggested by Tikhonov and is known
as regularization. Averaging the spectral density over
a finite energy interval (sum rules) can be considered
as a particular realization of Tikhonov’s regulariza-
tion procedure. One wants to theoretically study the
function ρ(s) at low energy because its experimental
counterpart—the hadronic spectral density ρhad(s)—
can directly be measured at low energy with high
precision. Thus, while a pointwise description of the
spectral density ρ(s) at low energy is beyond the reach
of perturbation theory, the appropriate quantities for
the theoretical analysis in perturbative QCD are the
spectral moments or integrals of ρ(s) with a set of
weight functions. This is a manifestation of the fact
that the theoretical spectral density behaves, in gen-
eral, more like a distribution rather than a continuous
function of energy.
The moments of the spectral density ρ(s) over a

finite energy interval are defined by the relation

Mn = (n + 1)

s0∫
ρ(s)

snds

(s0)n+1
. (4)

The factor (n + 1) in the definition of the moments is
chosen to have all contributions of the leading order
of perturbation theory uniformly normalized to unity.
Equivalently, one can say that all measures defined on
the interval [0, s0]

(n + 1)
sn

sn+1
0

ds = d

(
s

s0

)n+1

(5)

are normalized to unity. Note that the accuracy of
the perturbation theory evaluation of a given moment
depends on a particular weight function.
With the dispersion relation given in Eq. (2), one

can rewrite the moments in Eq. (4) as some integrals
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along a contour in the complex q2 plane [25]. For
practical calculations of the moments, a convenient
contour is a circle with the radius s0, although the
results are independent of the shape of the contour
when it is deformed in the analyticity domain of the
correlator. The contour representation of the mo-
ments reads

Mn = (n + 1)
(−1)n

2πi

∮
|z|=s0

Π(z)(z/s0)ndz/s0 (6)

= (n + 1)
(−1)n

2πi

∮
|z|=1

Π(s0z)zndz

= (n + 1)
(−1)n

2π

π∫
−π

Π(s0e
iϕ)ei(n+1)ϕdϕ.

Note that the moments on the circle as given in
Eq. (6) are just Fourier coefficients of correlation
functions, which allows one to use a well-developed
mathematical technique of Fourier analysis to study
them.

Theoretical calculations of the moments are usu-
ally performed within the operator product expansion
(OPE) for the correlation function Π(q2) [26–28].
The OPE expression for the correlator contains a per-
turbation theory part and power corrections. The per-
turbation theory part can further be improved by using
the renormalization group summation. In this paper,
we consider only the perturbation theory part of the
theoretical correlator Π(q2). If the renormalization-
group-improved Π(q2) is used under the integration
sign for the moments, it implies a resummation of the
effects of running [15]. This technique was used for
τ-decay analysis [15, 29]. Power corrections within
OPE—nonperturbative terms—appear by prescrib-
ing the nonvanishing vacuum expectation values to
the local operators of higher dimensionality [27, 28].
The contributions of these terms to the moments can
be found with the Cauchy theorem (e.g., see [30]). At
present, the qualitative change in the phenomenol-
ogy of sum rules is that the high-order perturbation
theory terms for hadronic correlators are known in
various hadronic channels and the numerical value
of the strong coupling constant is larger than that of
the original papers; therefore, the perturbation theory
corrections are important numerically. It was already
noted that, in some channels, the perturbation the-
ory corrections can numerically dominate over the
power corrections, which makes the study of pertur-
bation theory corrections necessary for the present
phenomenology [31].
3
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3. PROPERTIES OF THE CORRELATOR
OF GLUONIC CURRENTS

As a concrete example, we take a correlator of
the gluonic current G2 = Ga

µνG
a
µν , where Ga

µν is a
strength tensor of the gluon field. To the leading order
of perturbation theory, the renormalization-group-
invariant expression for the current can be chosen in
the form

jG = αsG
2, (7)

where αs is the strong coupling constant of QCD.
This current is related to the trace of the QCD
energy–momentum tensor θµ

µ in the approximation
of massless quarks and can serve as an interpolat-
ing operator for glueballs. The full renormalization-
group-invariant expression for θµ

µ in QCD with
massless quarks is (β(αs)/2αs)G2, where β(αs) is
the QCD β function; this is not important for us in
the following. The correlator of the currents jG reads

π2

2
i

∫
〈TjG(x)j†G(0)〉eiqxdx = q4ΠG(q2). (8)

Note that a kinematical factor q4 is removed from the
definition of the function ΠG(q2), which is justified
within perturbation theory. The Adler function

DG(Q2) = −Q2 d

dQ2
ΠG(Q2), Q2 = −q2, (9)

has a simple form in the leading order of perturbation
theory:

DG(Q2) = αs(Q2)2(1 + O(αs)). (10)

This form of the correlator (the factor αs(Q2)2 for the
Adler function) is the real reason for the choice of
the gluonic channel, since it makes further consid-
erations technically simpler. A theoretical prediction
for the function DG(Q2) has been calculated up to
the third order of perturbation theory [32, 33]. Our
main aim is to take into account the effects of run-
ning of the coupling for evaluating the moments of
the spectral density; therefore, the introduction of an
effective charge is convenient [34]. Indeed, high-order
corrections can be accounted for by introducing the
effective charge αG(Q2) in all orders of perturbation
theory by the relation [32]

DG(Q2) = −Q2 d

dQ2
ΠG(Q2) ≡ αG(Q2)2. (11)

The effective strong coupling constant αG(Q2) obeys
the renormalization group equation

Q2 d

dQ2

αG(Q2)
π

= β

(
αG(Q2)

π

)
(12)
PH
with

β(a) = −a2
(
β0 + β1a + βG

2 a
2 + βG

3 a
3
)

+ O(a6).
(13)

The first two coefficients of the β function are scheme-
independent, the higher order coefficients βG

2 and
βG

3 depending on the effective charge definition in
Eq. (11). The normalization is chosen such that, in
QCD with nf light quark flavors, one has

β0 =
1
4

(
11 − 2

3
nf

)
. (14)

It suffices to use only the leading-order running of
the coupling constant since it contains all essential
features of the whole phenomenon that we want to
discuss. Effects due to higher order corrections of
the β function are small and do not change the basic
picture, slightly affecting the values of the moments
numerically [35]. Thus, we consider the leading-
order renormalization group equation for the effective
charge

Q2 d

dQ2

αG(Q2)
π

= −β0

(
αG(Q2)

π

)2

. (15)

The renormalization-group-resummed correlation
function reads

ΠG(Q2) =
π

β0
αG(Q2) + subtractions, (16)

where

αG(Q2) =
α0

1 + (β0α0/π) ln(Q2/s0)
(17)

with α0 = αG(s0). Note that, for the process of
e+e− annihilation into hadrons, the corresponding
renormalization-group-resummed correlation func-
tion reads

Πe+e−(Q2) = ln
(
µ2Q2

)
(18)

+
1
β0

ln
(
αe+e−(Q2)

π

)
+ subtractions

with the first term being a parton contribution inde-
pendent ofαs. SettingQ2 = s0e

iϕ on the contour, one
obtains an explicit expression for the correlator as a
function of the angle ϕ:

ΠG(s0e
iϕ) =

π

β0

α0

1 + iβ0α0ϕ/π
+ subtractions.

(19)

With an explicit expression for the function ΠG(z)
from Eqs. (16) and (19), the analysis of the moments
Mn is straightforward. The explicit expression for the
YSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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moments written through the contour representation
reads

Mn = (n + 1)
(−1)n

2π

π∫
−π

π

β0
(20)

× α0

1 + iβ0α0ϕ/π
ei(n+1)ϕdϕ.

Equation (20) is a basic relation for further study.
Note that the form of the representation in Eq. (20) is
rather general and gives a basis for other applications:
higher powers of the running coupling αs can easily
be generated.

4. COUPLING CONSTANT ANALYTICITY
FOR THE MOMENTS

Let us discuss the above expressions for the mo-
ments in some detail, especially in relation to their
analyticity structure as functions of the coupling con-
stant α0. The main feature of the contour represen-
tation for the moments is that all formulas contain
explicit concise functions of the coupling constant
α0. This is similar to the situation in finite-order
perturbation theory where all expressions are simple
polynomials in the coupling constant α0. After for-
mulating the particular way of resummation for the
spectral moments, i.e., by defining them on the con-
tour, there is no ambiguity in these quantities (they
are not given by series in αs as in the approaches
based on infrared renormalon hypothesis but by close
formulas). Therefore, in contrast to the renormalon
approach where the expressions for the moments are
not well defined from the outset and require additional
assumptions to be made for obtaining meaningful
mathematical representations, the moments defined
on the contour are explicit functions of α0 that can be
studied rigorously. One should, however, remember
that a particular definition of the moments on the
contour has been used.
Expanding Eq. (20) in α0, one reproduces all

results of finite-order perturbation theory (e.g., see
[36]). Indeed, expanding the function ΠG(Q2) from
Eq. (16), one finds

ΠG(Q2) =
π

β0
α0

{
1 + β0

α0

π
ln
(
s0

Q2

)
(21)

+β2
0

(α0

π

)2
ln2

(
s0

Q2

)
+ O(α3

0)
}

+ subtractions.

The first term (Q2-independent) can be added to sub-
tractions. Then, finally, one has

ΠG(Q2) = α2
0 ln

(
s0

Q2

)
(22)
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+ β0
α3

0

π
ln2

(
s0

Q2

)
+ O(α4

0) + subtractions.

While the expansion of the integrand in Eq. (20) in α0

with further integration gives nothing new in compar-
isonwith the finite-order perturbation theory analysis,
new features appear if one retains a resummed ex-
pression under the integration sign. The integration of
renormalization-group-improved quantities over the
finite energy interval is the starting point of the renor-
malon approach and the grounds for the conclusions
about the analyticity structure of the amplitudes in the
coupling constant.

The moments in Eq. (20) are expandable in a
convergent series in α0 for β0α0 < 1. The existence
of a finite radius of convergence in the complex α0

plane within the contour technique of resummation
for the moments is a general feature that persists for
the running with the high-order perturbative β func-
tion. However, in QCD, the convergence radius in
α0 decreases when higher orders of the β function
are included [35]. Thus, the explicit result, Eq. (20),
allows for an analytic continuation in the complex
α0 plane leading to the functions Mn(α0) that are
analytic in α0 at the origin, i.e., near the point α0 = 0.
This sounds a bit unusual as one implicitly assumes
that perturbation theory objects should have an es-
sential singularity in α0 at the origin, usually a cut
along the negative semiaxis (see, e.g., [37]). Note
that the moments of the heavy quark production with
the infinite resummation of the Coulomb interaction
effects are also given by convergent series in αs (the
explicit result in the leading order of perturbation the-
ory is presented in [38]). The exact expression given in
Eq. (20) without expansion inα0 provides one with an
analytic continuation beyond the convergence radius
even when α0 lies outside the convergence circle.

Looking at Eqs. (2), (3), (16), (17), and (19), one
notices that the analytic properties in the variable q2

declared for a general function Π(q2) built from the
massless fields in Eqs. (2) and (3) differ from that of
the explicit result given in Eqs. (16), (17), and (19):
the explicit renormalization-group-improved expres-
sion ΠG(q2) has a pole in the Euclidean region of
q2 that is supposed to be the analyticity region from
the general assumptions about the spectrum. This
is an important feature to note: a concrete approx-
imation ΠG(q2) in Eq. (16) has different analytic
properties in the whole complex q2 plane than is de-
clared by the general requirements of quantum field
theory, i.e., by the axiom of spectrality in this par-
ticular case. Contrary to the resummed expression
given in Eq. (16), at any finite order of perturbation
theory, one has only powers of logarithms given in
Eq. (21) that have the correct analytic properties in
3
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the variable q2—a cut along the positive semiaxis—
that comply with the spectrality axiom. It is just
a consistency feature—the finite-order perturbation
theory is an explicit example of the model of quantum
field theory where all general requirements are valid.
Thus, the renormalization group resummation for the
hadronic correlator in asymptotically free QCD can
change its analytic structure in the infrared region
as compared to the finite-order perturbation theory
approximation. In the leading order of the running
in QCD a (Landau) pole is usually generated. This
pole is included in the definition of the moments in
Eqs. (6) and (20) because one encircles the origin
with a large contour. There is no other possibility of
working consistently in perturbation theory because
the infrared region is completely nonperturbative and
one is not allowed to move the integration contour
to that region. The requirement of integrating only
along the positive axis is an external constraint on the
theory rather than its attribute. It cannot be realized in
perturbation theory—the integration contour should
go sufficiently far from the infrared region, which is a
requirement of the applicability of perturbation theory
approximations. Note that, if s0 is not large enough
so that the circular contour can include all infrared
singularities, the contour should be deformed to do so.
To give the results for themoments that are justified in
perturbation theory (at least formally), the integration
contour should be chosen such that no singularity in-
compatible with the general requirements lies outside
it in the complex q2 plane.
The analytic structure in the coupling constant α0

of the moments defined on the contour is different
from the analytic structure of the moments obtained
in the renormalon approach because the integration
region is different. Within the renormalon approach,
the moments (and other quantities in general) are de-
fined through the integration along the cut including
the infrared region, which makes them nonanalytic in
the coupling constant since the perturbation theory
expressions for the amplitudes are not valid in this
region. The moments on the contour are given by
the integration through the region where perturba-
tion theory is valid; therefore, they are analytic in
the coupling constant for sufficiently small values of
α0. This constitutes the main difference between the
definitions on the contour and within the renormalon
hypothesis: the former is perturbative and reliably
computable in perturbation theory with strict control
over the accuracy, while the latter is nonperturbative
and requires some additional assumptions for quanti-
tative phenomenological applications.
After the moments are properly defined (written as

Eq. (20), for instance), the practical calculation of ex-
plicit functionsMn(α0) can be done in different ways.
Technically, one can shrink the integration contour
PH
back to singularities of ΠG(q2), which is a uniquely
defined mathematical operation for the explicit func-
tion ΠG(q2) in the complex q2 plane. Then, one dis-
covers a pole which is a purely computational fact
without any meaning for the structure of the pertur-
bation theory at high orders. The perturbation theory
moments are constructed at high energies and cannot
decipher the point-by-point structure of the spectrum
in the infrared region (or singularities of ΠG(q2) at
small q2)—they just give a contribution from this re-
gion as it is seen from large energies (on the contour).
If a high-order β function is used for the renormal-
ization group improvement of the correlator, then the
structure of singularities in the infrared region can
drastically change [39]. However, this has little effect
on the moments—they develop some small pertur-
bation theory corrections independent of a particular
structure of the correlation function in the infrared re-
gion obtained as a perturbation theory approximation.
Of course, the parameter s0 should be sufficiently
large so that the perturbation theory expansion in the
coupling α0 would be justified. A discussion of the
pointwise behavior of Π(q2) in the infrared region is
beyond the scope of perturbation theory. Note that the
possibility of restoring moments as exact functions
of the coupling from their (asymptotic) perturbation
theory series depends on the behavior of Π(q2) in the
infrared region.

5. RENORMALON-BASED MOMENTS
AND THE EXPLICIT FORM
OF THE RESIDUAL TERM

OF THE PERTURBATION THEORY SERIES

In this section, I discuss some other representa-
tions that can be obtained from Eq. (20). In partic-
ular, the relation of the moments obtained within the
renormalon hypothesis to the moments on the con-
tour is clarified. The nonanalytic terms in the coupling
constant that constitute the main qualitative feature
of the renormalon techniques are shown to originate
from the form of the residual term of the perturbative
series for the moments defined on the contour. The
explicit expressions for the residual term in different
representations with and without nonanalytic terms
are given. Let me first consider the leading order
momentM0(α0) that reads

M0 =
1
2π

π∫
−π

π

β0

α0

1 + iβ0α0ϕ/π
eiϕdϕ (23)

=
α0

2β0

π∫
−π

eiϕdϕ

1 + iβ0α0ϕ/π
.
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With expression (23) given, one can easily study its
general structure, which is rather simple. In partic-
ular, one can work out different computation tech-
niques for it based on asymptotic expansions. In this
way, one can also see the connection of renormalon-
based moments with the moments on the contour. In
applications, the moments on the contour are usu-
ally computed numerically [15, 29, 35]. For a general
analysis and clarification of the relation to other tech-
niques and definitions of the moments, one can also
consider the analytical evaluation of the moments in
various limits. Integrals of the type (23) are related
to the well-known exponential integral function [40].
Formally, one can use a convergent series in α0 for
evaluating themoments, but if a numerical value ofα0

is larger than the convergence radius, then the expan-
sion in α0 is of no use and an analytic continuation of
the function given by the series in α0 beyond the con-
vergence radius is necessary. The convergence radius
of the functionM0(α0) in the complex α0 plane for the
leading-order β function is given by |α0| < 1/β0. For
a full perturbative β function up to the fourth order in
theMS scheme, it is smaller [35]. In a realistic case of
τ decays, for instance, s0 = M2

τ = (1.777 GeV)2 and
β0 = 9/4, which leads to

α0 ≡ α0(s0 = M2
τ = (1.777 GeV)2) <

4
9

= 0.44 . . . ;

(24)

i.e., the experimental value of the coupling α0 ≈ 0.3
[41] lies rather close to the boundary of the conver-
gence circle. Taking the scale s0 for the moments
smaller than the squared τ-lepton massM2

τ , one can
get the value of α0 lying outside the convergence cir-
cle. The convergent power series may not be the best
way of computing the moments for such numerical
values of the coupling constant. The more efficient
approximation can be obtained by constructing an
asymptotic expansion for the zero moment. Integrat-
ing by parts, one finds

M0 =
α2

0

1 + β2
0α

2
0

+
α2

0

2π

π∫
−π

eiϕdϕ

(1 + iβ0α0ϕ/π)2
. (25)

Here, the first term gives a perturbation theory ex-
pression for the spectral density at s0 with all cor-
rections due to analytic continuation resummed (so-
called π2 corrections) [42]. This contribution can be
obtained from the leading-order running by retaining
the highest power of π at every order of perturbation
theory. It also corresponds to the calculation of the
moments on the cut through the boundary value of
the perturbation theory spectrum [36]. Further inte-
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gration by parts gives

M0 =
α2

0

1 + β2
0α

2
0

+
α2

0

π

n∑
j=2

(j − 1)!
(
β0α0

π

)j−2

(26)

× sin{j arctan(β0α0)}
(1 + β2

0α
2
0)j/2

+ n!
α2

0

2π

(
β0α0

π

)n−1

×
π∫

−π

eiϕdϕ

(1 + iβ0α0ϕ/π)n+1
.

This result can be obtained using the recurrence rela-
tion

1
2

π∫
−π

eiϕdϕ

(1 + iβ0α0ϕ/π)k
=

sin(kχ)
rk

(27)

+ k

(
β0α0

π

)
1
2

π∫
−π

eiϕdϕ

(1 + iβ0α0ϕ/π)k+1

with quantities r and χ defined by

1 + iβ0α0 = reiχ, r =
√

1 + β2
0α

2
0, (28)

χ = arctan(β0α0).

Retaining only leading powers of α0 at every order
of expansion (26), one recovers an asymptotic series
that appears within the renormalon technique and has
intensively been discussed in the literature. Indeed,
taking only the leading asymptotics of every term in
Eq. (26), one finds

M
leading asym

0 = α2
0

(
1 + 2β0

α0

π
+ . . . (29)

+(n + 1)!βn
0

(α0

π

)n)
+O(αn+3

0 ).

The main point of interest in the series (29) is that it
shows a nonalternating factorial growth of the coeffi-
cients that leads to a Borel nonsummable asymptotic
series [43]. The reason for such a behavior is that
approximation (29) for expansion (26) is not accu-
rate. This means that the renormalon approximation
does not take into account some important high-
order terms and that the renormalon hypothesis is
not correct in identifying the dominant terms of the
perturbation theory expansion for the moments on
the contour. Note that Borel summation (with some
recipe for treating nonsummable singularities) of the
leading asymptotics (29) cannot restore exact func-
tion (23) from some general principles.
While representation (26) with the leading asymp-

totics only leads to series (29) that fails to detect the
correct analytic structure of the moment in the cou-
pling constant, it still can be useful in some practical
3
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applications, as it gives a way to compute result (23)
numerically. Equation (26) represents an asymptotic
expansion of the function M0(α0) that is analytic at
the origin, α0 = 0. It is known that an asymptotic
expansion of a function can be more efficient for its
numerical evaluation than a convergent series even
inside the convergence circle; it also gives an efficient
way for the calculation outside the convergence circle
(not too far though). One can see that result (26)
is an efficient asymptotic expansion which can give
better accuracy than a direct power series expansion
in α0 for some α0 and n. This observation is in fact
grounds for using the renormalon hypothesis. Indeed,
when the analytic structure of the function is known,
or a concise expression for the function is given as
in Eq. (23), the asymptotic expansions that converge
fast for the first few terms are more useful for practical
calculations than formal convergent series that re-
quire many terms for achieving a reasonable numer-
ical accuracy [44]. Still, for estimating the accuracy
of the asymptotic series, one has to deal with the
residual term, which is represented in our particular
case by the integral in Eq. (26). In calculations with
the moments on the contour, the residual term is
explicitly given and can easily be estimated. However,
in some practical phenomenological applications, the
residual term can remain unknown. In fact, the renor-
malon hypothesis suggests a guess about the form of
such term based on expansion (29). Because of Borel
nonsummability of expansion (29), the renormalon
approach claims the existence of a term that is non-
analytic in the coupling constant. For the moments
on the contour, this assumption is not valid. However,
such a term can be generated in some approximation
for the series from Eq. (26). Indeed, by extension of
the integration range in the variable ϕ from −∞ to
+∞, the integral over ϕ can be readily computed:

n!
(
β0α0

π

)n−1
∞∫

−∞

eiϕdϕ

(1 + iβ0α0ϕ/π)n+1
(30)

= 2π
(

π

β0α0

)2

e
− π

β0α0 .

Using the decomposition
π∫

−π

dϕ =

∞∫
−∞

dϕ−


 −π∫
−∞

dϕ +

∞∫
π

dϕ


 , (31)

one can write

n!
(
β0α0

π

)n−1
π∫

−π

eiϕdϕ

(1 + iβ0α0ϕ/π)n+1
(32)

= 2π
(

π

β0α0

)2

e
− π

β0α0 − n!
(
β0α0

π

)n−1
PH
×


 −π∫
−∞

+

∞∫
π


 eiϕdϕ

(1 + iβ0α0ϕ/π)n+1

for any n. Therefore, the residual term in Eq. (26) is
transformed into a sum of an explicit nonperturbative
term proportional to e−π/β0α0 and a term that can be
smaller than the original residual term for some values
of α0 and n. One has

M0 =
(

π

β0

)2

e
− π

β0α0 +
α2

0

1 + β2
0α

2
0

(33)

+
α2

0

π

n∑
j=2

(j − 1)!
(
β0α0

π

)j−2

× sin{j arctan(β0α0)}
(1 + β2

0α
2
0)j/2

− n!
α2

0

2π

(
β0α0

π

)n−1

×


 −π∫
−∞

+

∞∫
π


 eiϕdϕ

(1 + iβ0α0ϕ/π)n+1
.

The explicit nonperturbative term e−π/β0α0 that is
claimed in the renormalon approach has appeared in
the asymptotic expansion of moment (23) written in
the form of Eq. (33). This term can be rewritten as a
power correction. Introducing the QCD scale for the
effective charge in the gluonic channel in the form

Λ2
G = s0 exp

(
− π

β0α0

)
, (34)

one finds the relation between the nonanalytic term in
the asymptotic expansion and the power correction(

π

β0

)2

e
− π

β0α0 =
(

π

β0

)2(Λ2
G

s0

)
. (35)

The difference between the expansions in Eq. (26)
and Eq. (33) is not very noticeable. In fact, these
two expansions are almost identical up to the residual
terms. What happened is the change in the residual
term. Therefore, the choice of the representation for
moment (23) [Eq. (26) or Eq. (33)], i.e., with or with-
out the explicit nonperturbative term e−π/β0α0 , is a
question of the choice of a particular form of the resid-
ual term. It can happen that, after the residual term is
dropped (which is a common practice in asymptotic
series calculations), the representation in the form of
Eq. (33) is more accurate numerically than that in
the form of Eq. (26) for some particular values of α0

and n. It is just the claim of the renormalon technique
about the necessity of adding the nonanalytic terms
that represent power corrections to the perturbation
theory expressions. However, a quantitative conclu-
sion about the accuracy of the asymptotic series rep-
resentation for a function can only be drawn if one
YSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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has a concise expression for the function as Eq. (23)
in our case when the explicit form of the residual
term is also known (see also [45], where a simplified
model in quantum mechanics was considered). Any
conclusions based on the terms of the series itself (for
instance, based on representation (29), which is the
basis for the infrared renormalon technique) can be
inaccurate numerically; they can also be unjustified in
a general sense of analytic behavior, as one can see
from Eq. (32).
The above results are valid for any moment Ml.

Namely, the recurrence relation can be generalized to
read

(l + 1)
1
2

π∫
−π

ei(l+1)ϕdϕ

(1 + iβ0α0ϕ/π)k
(36)

=
sin{k(l + 1)χ}

rk
+ k

(
β0α0

π

)

× 1
2

π∫
−π

ei(l+1)ϕdϕ

(1 + iβ0α0ϕ/π)k+1
.

The representation with integration by parts anal-
ogous to the one given in Eq. (26) shows an im-
provement in the convergence for large l moments
equivalent to the replacement α0 → α0/l. This agrees
with conclusions drawn from the analysis of finite-
order perturbation theory [36]. In general, one can
also modify the residual term for any momentMn. In
the literature, there are also somemoments defined on
the finite energy interval with different weight func-
tions [46]; our conclusion can be generalized to those
moments as well.
Now, we discuss the spectrum of the explicit re-

summed function ΠG(q2) in order to see how its ana-
lytic properties in the momentum q2 are transformed
into the analyticity of the moments in the coupling
constant α0. The structure of the spectrum in the
infrared domain is most interesting for clarification
of such a relation. Note that the infrared part of the
spectrum is obtained by the analytic continuation
from the Euclidean region whereΠG(q2) is calculated
as a perturbation theory expansion to a region where
perturbation theory is not valid, which means that
the structure of the spectrum has no general physical
meaning at small s pointwise. The spectrum of the
explicit function ΠG(q2) given in Eq. (16) is a well-
defined quantity in a pure mathematical sense. It is
straightforward to calculate it. Using the expression
for the leading-order coupling constant in the form

αG(Q2) =
α0

1 + (β0α0/π) ln(Q2/s0)
(37)

=
π

β0 ln(Q2/Λ2
G)

,
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where

Λ2
G = s0 exp

(
− π

β0α0

)
, (38)

one finds

ΠG(Q2) =
π

β0
αG(Q2) + subtractions (39)

=
π2

β2
0 ln(Q2/Λ2

G)
+ subtractions.

Therefore, the spectrum (a discontinuity across sin-
gularities) reads

ρG(s) =
1

2πi
(ΠG(s + i0) − ΠG(s− i0)) (40)

=
π2

β2
0

(
Λ2

Gδ(Λ
2
G + s) + θ(s)

1
π2 + ln2(s/Λ2

G)

)
,

where δ(s) is a Dirac δ distribution and θ(s) is a
step distribution. Explicit functions given in Eqs. (39)
and (40) satisfy the integral Eq. (2). Note that the
explicit spectrum in Eq. (40) contains a contribution
δ(Λ2

G + s) corresponding to a pole 1/(q2 + Λ2
G) of

the function ΠG(q2) in the region q2 < 0, which is
supposed to be the analyticity domain of the two-
point correlators from general requirements (spec-
trality condition). The position of the pole Λ2

G is spe-
cific for a given channel if an effective charge is used.
The expression for the theoretical spectrum given in
Eq. (40) can be used in a mathematical sense for
calculating integrals (moments) in Eq. (20) [an anal-
ogous approach may be used for the general case in
Eq. (4)], but a physical interpretation of the spectrum
at small s is rather meaningless because perturbation
theory is not applicable at small momenta.
The part of the spectrum on the positive real axis

is a discontinuity of the function ΠG(q2) across the
cut [42]. It can conveniently be written in the form

ρcontG (s) =
π2

β2
0

1
π2 + ln2(s/Λ2)

=
α(s)2

1 + β2
0α(s)2

(41)

with a function

α(s) =
π

β0 ln(s/Λ2
G)

. (42)

Note that the function α(s) has a pole on the physical
cut at s = Λ2

G. It is this pole that leads to problems
of Borel nonsummability in the resummation of the
effects of running directly on the cut, when one inte-
grates through the infrared region within the renor-
malon approach for taking into account high-order
contributions of perturbation theory [cf. Eq. (29)].
However, the pole of the auxiliary function α(s) from
Eq. (42) has no physical meaning within perturbation
theory. For instance, spectral density (41) is a smooth
3
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function at this point. While the spectral density ex-
plicitly given in Eq. (40) allows one to compute the
moments by direct integration in a pure mathematical
sense, it is not productive to ask whether this spec-
trum is physical or not because there is no possibility
of answering this question within perturbation theory.
The interpretations of this spectrum at low energies in
the form of specific recipes of resummation for Borel
nonsummable series as in Eq. (29) are additional
assumptions beyond perturbation theory.
The continuous part of the spectral density in

Eq. (41) can uniquely be obtained from the finite-
order perturbation theory expansion by summing it
in all orders. However, the pole remains hidden and
cannot be restored from the summation on the cut
if only the discontinuity across the cut along the
positive semiaxis is considered. Note that this is also
the situation in heavy quark physics—no Coulombic
poles can be restored from the summation on the
cut (see discussion in [47] in relation to the precision
determination of heavy quark masses).

6. DISCUSSION

It is worth stressing again that the moments in
Eq. (20) are analytic functions of the coupling con-
stant α0 at the origin. It means that the nonanalytic
piece in Eq. (32) cancels the corresponding part in
the residual term. Depending on the particular form of
the residual term, the formal analytic structure of the
expansion for the moments in the coupling constant
α0 drastically changes. This demonstrates the dan-
ger of making general conclusions about the infrared
power corrections emerging from the extrapolation
of the running to the infrared region based on the
renormalon hypothesis. Because the infrared region
is not the perturbation theory domain, the formal per-
turbative expansions originating from the integration
over the infrared region can be strongly modified by
making small changes in perturbation theory quanti-
ties like effective β functions [39]. In practice, or from
a phenomenological point of view, the use of the power
corrections stemming from the infrared modification
of perturbation theory is difficult to appreciate if the
high-order terms in the perturbative α0 expansion
are taken into account. For such observables as the
moments of the spectral density, one cannot distin-
guish numerically the high-order perturbation theory
corrections from the power corrections (nonpertur-
bative part of the expansion): the power corrections
are numerically hidden by the high-order perturbation
theory corrections.
Thus, for the observables related to the two-point

correlators, the problem of resumming the running
effects in perturbation theory is solved by contour
integration. We stress that the pole (or any singularity
P

that may occur upon the formal analytic continua-
tion of the perturbation theory expressions into the
infrared region) is inside the integration circle (cf. the
discussion in [48]). One is not allowed to use inte-
gration contours that go close to the origin because
this region is completely nonperturbative and should
be avoided: perturbation theory cannot decipher the
structure of amplitudes in this region pointwise; only
contributions to the integrals are perturbative and can
be computed. This situation is to some extent analo-
gous to the situation with Coulombic poles, especially
for not very heavy quarks. For perturbation theory
applications, any type of infrared singularities should
be avoided by moving the integration contour far from
the origin and keeping the infrared nonperturbative
region inside, thereby including also the contribu-
tion of this region to the integral. The possibility of
accurately applying perturbation theory for averaged
quantities is a specific feature of the observables re-
lated to two-point correlators with simple analytic
properties in the momentum variable. In the cases
when the physical observables are obtained by the av-
eraging of more complicated Green’s functions where
the analytic structure is not transparent, the effects of
running are accounted for by considering a model field
theory with a one-loop gluon propagator reiterated
in all orders of perturbation theory (renormalon tech-
nique). To respect gauge invariance of QCD in such
a model, the technique of naive non-Abelianization
is used [49]. Note that, in pure gluodynamics, which
is a proper theoretical model for studying glueballs,
this trick is not straightforward. If analytic properties
of the amplitude are unknown, one has no clear way
to avoid going through infrared singularities of the
running coupling constant and one is trying to per-
form the integration across the infrared region directly
(as in the phenomenological applications based on
infrared renormalons [50]). In this case, the infrared
structure of the running is important for the analysis;
however, it is completely nonperturbative. Therefore,
the obtained qualitative results depend crucially on
the additional assumptions about the infrared behav-
ior of the running coupling constant.
For the sake of completeness, I give an expression

for the resummed functionΠG(q2) in the second order
of the β function. Taking the approximation for the β
function in the form

β(a) ≡ β2(a) = −a2 (β0 + β1a) , (43)

one finds the expression for the resummed function
ΠG(q2):

ΠG(Q2) =
π2

β1
ln

(
β0 + β1

α
(2)
G (Q2)
π

)
(44)

+ subtractions,
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where the function α
(2)
G (Q2) is a solution to the

renormalization group equation with the second-
order β function

Q2 d

dQ2

(
α

(2)
G (Q2)
π

)
(45)

= −β0

(
α

(2)
G (Q2)
π

)2

− β1

(
α

(2)
G (Q2)
π

)3

.

The generalization of the analysis to this case is
straightforward.

7. CONCLUSION

To conclude, it has been shown that, for the ob-
servables related to the two-point current correla-
tors, the summation of the effects of running can
consistently be done in perturbation theory. In more
complicated cases without a simple analytic structure
of the respective Green’s functions, the interpretation
of the running in the infrared region is not unique
and lies outside the scope of perturbation theory. The
asymptotic structure of the perturbation theory series
in the coupling constant α0 depends on the actual
treatment of the observables (there is no true asymp-
totic structure unless explicit assumptions are formu-
lated). The perturbation theory series can be analytic
in the expansion parameter α0 at the origin for some
definitions of the observables, as is the case for the
widely used approximation with resummation on the
contour. The possible power corrections stemming
from such a resummation procedure have a rather
computational origin and simply reflect a particu-
lar way of approximating the relevant integrals; no
general conclusions on the analytic structure of the
correlators in the exact theory can be drawn. The-
oretically, there is no invariant meaning in splitting
the results into the nonperturbative infrared power
corrections and perturbation theory part (as opposed
to OPE, where the power corrections are related to
high-dimensional operators and determined by the
projections onto other perturbation theory states than
vacuum). Phenomenologically, the high-order per-
turbation theory terms (with high powers of inverse
logarithms) can numerically mimic the renormalon-
type power corrections well. In this situation, the way
to go beyond the perturbation theory framework for
improving the accuracy of theoretical formulas would
be just a convention to use for the observables an
effective scheme where all perturbative corrections
are explicitly resummed into the redefinition of the
coupling constant.
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Abstract—Weak radiative decay Λ → ne+e− depends in general on four independent electromagnetic
transition form factors. These form factors can be fixed in an extendedmodel of dominance of vectormesons,
where the asymptotic behavior of form factors is in agreement with quark counting rules. The dependence
of the branching ratio of the Λ → ne+e− decay on the relative weight of four electromagnetic form factors
is investigated. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

For a long time, weak radiative decays of hyperons
have been under both experimental and theoretical in-
vestigations. A detailed overview on both experimen-
tal and theoretical aspects of weak radiative decays
of hyperons is given in [1–3]. None of the theoretical
models could explain the experimental widths of these
decays, especially in the case of neutral hyperon weak
radiative decays. In this respect, the case of Λ → nγ
decay is the most dramatic one, where the theoretical
underestimation of the width goes up to a factor of
250 [4]. In such a situation, any additional information
on Λ → nγ∗ radiative transition (on electromagnetic
form factors, for example) is of prime importance.

The future HADES experiment at GSI [5] will
study the dilepton spectra in the energy range appro-
priate for the Λ → ne+e− reaction.

The amplitude of the Λ → ne+e− transition can
be parametrized in terms of the magnetic, electric,
and two Coulomb transition form factors. The stan-
dard vector meson dominance (VMD)model with the
ground-state vector mesons predicts monopole form
factors with 1/q2 asymptotic behavior at q2 → ∞.
Such asymptotic behavior is in disagreement with
quark counting rules that require 1/q6 asymptotic
behavior [6]. Therefore, radially excited vector mesons
should be added to the VMDmodel in order to provide
the required asymptotic behavior [7].

We use the extended VMD model [8] for the de-
scription of the form factors that are finally used for
the calculation of the dilepton decay Λ → ne+e−.

∗This article was submitted by the author in English.
1063-7788/03/6604-0737$24.00 c©
2. THE Λ → nγ∗ HELICITY AMPLITUDES

The electromagnetic transition current between
the neutron and Λ hyperon has the form

Jµ(p∗, λ∗, p, λ) = euΛ(p∗, λ∗)(Γ(−)
µ + Γ(+)

µ )u(p, λ),
(1)

where m∗ and m are masses, p∗ and p are momenta,
λ∗ and λ are helicities of the Λ hyperon and the
neutron, e = −

√
4πα is the electron charge, and α =

1/137. In theΛ-hyperon rest frame, p∗ = (m∗, 0, 0, 0)
and p = (E, 0, 0,−k).

The matrices Γ(∓)
µ stand for the parity-conserving

and parity-violating parts of the current.
The photon polarization vectors have the form

ε(±1)
µ (q) =

1√
2
(0,∓1,−i, 0), (2)

ε(0)µ (q) =
1
M

(k, 0, 0, ω),

where q = p∗ − p = (ω, 0, 0, k), q2 = M2. These vec-

tors are transversal, qµε
(λ)
µ (q) = 0, and normalized by

ε(λ)
µ (q)∗ε(λ

′)
µ (q) = −δλλ′ . (3)

In the limitM → 0, ε(0)µ (q) = qµ/M +O(M). Due
to the current conservation qµJµ = 0, the longitudinal
component of the vector current equals ε

(0)
µ (q)Jµ =

O(M), so it vanishes for physical photons atM = 0.
The Λ → nγ∗ decay has four independent helicity

amplitudes. It means that there are four independent

scalar functions (F (±)
1,2 ) to fix the vertex [8]

Γ(+)
µ = Γ(+)1

µ F
(+)
1 + Γ(+)2

µ F
(+)
2 , (4)
2003 MAIK “Nauka/Interperiodica”
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(±)
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factors.

Γ(−)
µ = Γ(−)1

µ F
(−)
1 + Γ(−)2)

µ F
(−)
2 ,

where

Γ(+)1
µ = (q2γµ − q̂qµ)γ5, (5)

Γ(+)2
µ = (P · qγµ − Pµq)γ5, (6)

and

Γ(−)1,2
µ = Γ(+)1,2

µ γ5. (7)

Here, P = (p∗ + p)/2.
T -matrix elements (S = 1 + iT with S being the

S matrix),

〈1/2Jz |T |λλγn〉, (8)

depend on the Λ-hyperon helicity Jz (because the Λ
hyperon is at rest, the direction of its momentum is
not defined, and Jz is the helicity of the Λ hyperon
for the direction of its momentum taken along the z
axis), on the neutron and photon helicities λ and λγ ,
and on the unit vector n in the direction of the photon
momentum. The Λ → nγ∗ width has the form

Γ(Λ → nγ∗) =
k

32π2m∗2

∫
dΩn (9)

×
∑
λλγ

|〈λλγn|T |1/2Jz〉|2.

The angular dependence of the matrix element
〈1/2Jz |T |λλγn〉 is a universal function:

〈1/2Jz |T |λλγn〉 = D
1/2
λ∗Jz

(n)∗〈1/2λ∗n|T |λλγn〉,
(10)

where λ∗ = −λ+ λγ is the Λ-hyperon helicity for the
direction of its momentum taken along the unit vector
n. The rotation matrices

D
1/2
λ∗Jz

(n) = 〈1/2λ∗n|1/2Jz〉 (11)

are the amplitudes of probability of finding the Λ hy-
peron with the spin projection λ∗ on the unit vector n
P

in a state with the spin projection Jz on the z axis. The
helicity amplitudes 〈1/2λ∗n|T |λλγn〉 do not depend
on the vector n, so the symbol n can be suppressed.
In the absence of P symmetry, there exist four helicity
amplitudes, two with positive λ∗ and two with nega-
tive λ∗.

The functions DJ
λ∗Jz

(n) are unitary matrices with
respect to the indices λ∗ and Jz . The normalization
condition reads∫

dΩnD
J
λ∗Jz

(n)∗DJ ′
λ′∗J ′

z
(n) (12)

=
4π

2J + 1
δJJ ′

δλ∗λ′
∗δJzJ ′

z .

Using the properties of DJ
λ∗Jz

(n) matrices, one ob-
tains the Λ → Nγ∗ decay width in terms of four he-
licity amplitudes:

Γ(Λ → Nγ∗) =
k

32π2m2
∗

4π
2

∑
λλγ

|〈λλγ |T |1/2λ∗〉|2.
(13)

Since the amplitudes 〈λλγ |T |1/2λ∗〉 do not de-
pend on the vector n, it is convenient to choose it
in the direction of the z axis. The helicity amplitudes
can then be calculated in terms of the covariant form
factors F (±)

k from the equations

〈1/2λ∗|T |λλγ〉 = 〈1/2λ∗|T (−)|λλγ〉 (14)

+ 〈1/2λ∗|T (+)|λλγ〉,
〈1/2λ∗|T (−)|λλγ〉

= −euΛ(p∗, λ∗)Γ(−)
µ u(p, λ)ε(λγ )

µ (q),

〈1/2λ∗|T (+)|λλγ〉
= −euΛ(p∗, λ∗)Γ(+)

µ u(p, λ)ε(λγ )
µ (q),

〈1/2 − λ∗|T | − λ− λγ〉 (15)

= 〈1/2 − λ∗|T (−)| − λ− λγ〉
+ 〈1/2 − λ∗|T (+)| − λ− λγ〉,
〈1/2 − λ∗|T (−)| − λ− λγ〉

= −euΛ(p∗, λ∗)Γ(−)
µ u(p, λ)ε(λγ )

µ (q),

〈1/2 − λ∗|T (+)| − λ− λγ〉
= +euΛ(p∗, λ∗)Γ(+)

µ u(p, λ)ε(λγ )
µ (q).

We use the following notation for these ampli-
tudes:

F (±)
1
2

=
〈

1/2
1
2

∣∣∣T (±)
∣∣∣+ 1

2
1
〉
, (16)

M

m∗
C(±)

1
2

=
〈

1/2
1
2

∣∣∣T (±)
∣∣∣− 1

2
0
〉
.
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The direct calculation gives the following expres-
sion for the helicity amplitudes [8]:

 F (±)
1
2

±
√

2C(±)
1
2


 =

λ
(±)
0

m∗
(17)

×


 2M2 m+m−

−2m∗m∓ −m∗m±




F

(±)
1

F
(±)
2


 .

Here, m± = m∗ ±m. The parameters λ
(±)
0 are de-

fined by

λ
(±)
0 = e

m∗√
2

√
m2

± −M2. (18)

The helicity amplitudes are simply connected to
the electric (magnetic) and Coulomb amplitudes

G
(±)
E/M and G(±)

C [8]:

λ
(±)
0


√

2G(±)
E/M

G
(±)
C


 =


−1 0

0 1




F (±)

1
2

C(±)
1
2


 . (19)

Equations (17) and (19) can be combined to give
the relations between the magnetic, electric, and
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
Coulomb form factors and the form factors F
(±)
k .

These relations have the form
G

(±)
E/M

±G(±)
C


 = − 1√

2m∗
(20)

×


 2M2 m+m−

2m∗m∓ m∗m±




F

(±)
1

F
(±)
2


 .

3. THE Λ → nγ∗ DECAY WIDTH

The Λ-hyperon decay width can be found to be

Γ(Λ → nγ∗) = Γ(−)(Λ → nγ∗) + Γ(+)(Λ → nγ∗),
(21)

Γ(±)(Λ → nγ∗) =
α

8m∗
(m2

± −M2)3/2

× (m2
∓ −M2)1/2

(
2
∣∣∣G(±)

E/M

∣∣∣2 +
M2

m2
∗

∣∣∣G(±)
C

∣∣∣2) .

The angular asymmetry in the decay of a polarized Λ
hyperon is equal to

dΓ(Λ → nγ∗)
dΩ

=
Γ(Λ → nγ∗)

4π
(1 + a · nq), (22)
a =
λ

(+)
0 λ

(−)
0 2Re

(
2G(−)

M G
(+)
E + (M2/m2

∗)G
(−)
C G

(+)
C

)
λ

(−)2
0

(
2
∣∣∣G(−)

M

∣∣∣2 + (M2/m2
∗)
∣∣∣G(−)

C

∣∣∣2)+ λ
(+)2
0

(
2
∣∣∣G(+)

E

∣∣∣2 + (M2/m2
∗)
∣∣∣G(+)

C

∣∣∣2)ζ,
where ζ is the polarization vector of the Λ hyperon.
The simplest representation for the covariant form

factors consistent with quark counting rules has the
form [8]

F
(±)
k (M2) =

F
(±)
k (0)

3∏
i=1

(1 −M2/m2
i )
, (23)

wheremi are the masses of vector mesons (ρ, ρ′, ρ′′).

If the width Γ(Λ → nγ∗) is known, the dilepton
decay rate can be represented in the form

dΓ(Λ → ne+e−) (24)

= Γ(Λ → nγ∗)MΓ(γ∗ → e+e−)
dM2

πM4
,

where

Γ(γ∗ → e+e−) =
α

3M
(M2 + 2m2

e)

√
1 − 4m2

e

M2

(25)
is the decay width of a virtual photon γ∗ into the
dilepton pair with invariant mass M , and me is the
electron mass.

In ourmodel, four constants F (±)
k (0) are necessary

to fix theM2 dependence of the differential decay rate

dΓ(Λ → ne+e−)/dM2. Two of them, F (±)
2 (0), enter

the amplitudes of Λ → nγ decay and can be fixed
by the total width of this decay and by the angular
asymmetry in the decay of a polarized Λ hyperon.

The other two constants, F (±)
1 (0), do not enter the

amplitudes for M2 = 0 and are, hence, arbitrary
parameters. Both the differential decay rate dΓ(Λ →
ne+e−)/dM2 and total width Γ(Λ → ne+e−) are
sensitive to these parameters. For example, if one

takes the constant F (+)
2 (0) = (m−/m+)F (−)

2 (0) to
obtain the maximal angular asymmetry in the decay
of a polarized Λ hyperon and varies the constants
3
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F
(±)
1 (0) in the range

F
(+)
1 (0)

F
(+)
2 (0)

= 0–10,
F

(−)
1 (0)

F
(−)
2 (0)

= 0–10,

the differential branching ratio Br = Γ(Λ →
ne+e−)/Γ(Λ → nγ) varies in the range (see figure)

Br = Γ(Λ → ne+e−)/Γ(Λ → nγ) = 0.0038–0.039.

4. CONCLUSION

We conclude that weak radiative decays of hyper-
ons and especially the decay Λ → ne+e− can be an
important source for weak radiative form factors. In
the situation where there is large theoretical underes-
timation of the amplitude ofΛ → nγ decay, these form
factors are of prime importance for future theoretical
investigations of weak radiative decays of hyperons.
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Abstract—On the basis of the decay couplings f0 → ππ, KK̄, ηη, ηη′ found earlier in the study of
analytical (IJPC = 00++) amplitude in the mass range 450–1900 MeV, we analyze the quark–gluonium
content of the resonances f0(980), f0(1300), f0(1500), and f0(1750) and the broad state f0(1420+150

−70 ). The
K-matrix technique used in the analysis makes it possible to evaluate the quark–gluonium content both
for the states with switched-off decay channels (bare states, f bare

0 ) and for the real resonances.We observe a
significant change in the quark–gluonium composition in the evolution from bare states to real resonances,
which is due to the mixing of states in the transitions f0(m1) → real mesons → f0(m2) responsible for the
decay processes as well. For f0(980), the analysis confirmed the dominance of qq̄ component, thus proving
the nn̄/ss̄ composition found in the study of the radiative decays. For the mesons f0(1300), f0(1500),
and f0(1750), the hadronic decays do not allow one to determine uniquely the nn̄, ss̄, and gluonium
components, providing relative percentage only. The analysis shows that the broad state f0(1420+150

−70 )
can mix with the flavor singlet qq̄ component only, which is consistent with gluonium origin of the broad
resonance. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
The present paper continues the investigation of

(IJPC = 00++) resonances started in [1, 2]: we ana-
lyze the K-matrix solution in which a scalar glueball
located near 1600 MeV appears, before mixing with
neighboring qq̄ states due to decay processes.

In [1], on the basis of experimental data of the
GAMS group [3], Crystal Barrel Collaboration [4],
and BNL group [5], theK-matrix solution was found
for the waves 00++, 10++, 02++, and 12++ cover-
ing the mass range 450–1900 MeV. Also, masses
and total widths of resonances were determined for
these waves. The following states were seen in the
scalar–isoscalar sector:

00++: f0(980), f0(1300), f0(1500), (1)

f0(1420+150
−70 ), f0(1750).

In [6], the resonances f0(1300) and f0(1750) are re-
ferred to as f0(1370) and f0(1710). The broad state
f0(1420+150

−70 ) is not included in the compilation [6];
the broad state is denoted in [1] as f0(1530+90

−250),
which represents the mean value for three solutions
found in the K-matrix analysis; here, we discuss the
solution only where a primary glueball is located near
1600 MeV; in this way, we use the mass of the broad
state found in this solution.

∗This article was submitted by the authors in English.
1063-7788/03/6604-0741$24.00 c©
For the scalar–isovector sector, the analysis [1]
points to the presence of the following resonances in
the spectra:

10++: a0(980), a0(1520). (2)

In the compilation [6], the state a0(1520) is denoted
as a0(1450).

As to tensor mesons, the following states are seen:

12++: a2(1320), a2(1660), (3)

02++: f2(1270), f2(1525).

Although in the analysis [1] the CERN–Münich
group data [7] were not included in the fitting pro-
cedure directly, these data had been fitted in previous
papers [8, 9], and it was due to special control that
solutions found in [1] and [8, 9] for the ππ channel are
in a good agreement with each other.

For the states shown in (1), (2), and (3), the
K-matrix poles and K-matrix couplings to channels
ππ, KK̄, ηη, ηη′, and ππππ were found in [1]. The
K-matrix poles are not the amplitude poles, these lat-
ter corresponding to physical resonances, but when
the decays are switched off, the resonance poles turn
into the K-matrix ones. In the states related to the
K-matrix poles, there is no cloud of real mesons due
to the decay processes, which was the reason for
naming them “bare states.” TheK-matrix couplings
for transitions bare state → ππ, KK̄, ηη, ηη′ found
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. Complex M plane (in MeV) for the (IJPC = 00++) mesons. The dashed curve encircles the part of the plane where
the K-matrix analysis [1] reconstructs the analyticalK-matrix amplitude: the poles corresponding to the resonances f0(980),
f0(1300), f0(1500), and f0(1750) and the broad state f0(1420

+150
−70 ) are located in this area. In the low-mass region, the pole of

the light σ meson is located beyond this area (shown by a point, the position of the pole,M = (430 − i320) MeV, corresponds
to the result of N/D analysis [13]). In the high-mass region, one has resonances f0(2030), f0(2100), and f0(2340) [15, 16].
Solid lines stand for the cuts related to the thresholds ππ, ππππ, KK̄ , ηη, and ηη′.
in [1] confirm the qq̄ nonet classification of bare states
suggested in [10, 11].

Still, the K-matrix analysis [1] does not supply
us with partial widths of the resonances directly. To
determine couplings for the transitions resonance →
mesons, auxiliary calculations should be performed
to find the residues of the amplitude poles. Cal-
culations of the residues were carried out in [2]
for the scalar–isoscalar sector, which gives us the
values of partial widths for the resonances f0(980),
f0(1300), f0(1500), and f0(1750) and the broad state
f0(1420+150

−70 ) decaying into the channels ππ, ππππ,
KK̄, ηη, and ηη′.

In the present paper, we use the decay couplings
for the reactions f0 → ππ, KK̄, ηη, ηη′ as a basis
for the analysis of the quark–gluonium content
of scalar–isoscalar resonances f0(980), f0(1300),
f0(1500), f0(1750), and f0(1420+150

−70 ), assuming
for these states a three-component structure: nn̄ =
(uū + dd̄)/

√
2, ss̄, gluonium. We demonstrate that

hadronic decays do not determine the weight of all
components, but only provide the correlation between
them.

The knowledge of coupling constants of bare
states fbare

0 → ππ, KK̄, ηη, ηη′ makes it possible to
trace the evolution of the qq̄ and gluonium compo-
nents in f0 mesons by switching on/off the decay
channels, thus establishing constraints for these
components in a resonance.

The paper is organized as follows. Section 2, being
introductory, gives a general picture of resonances in
the scalar–isoscalar sector in the mass range up to
2300 MeV and presents the qq̄ classification of the
00++ states. On the basis of this classification, we
analyze theK-matrix solutionwith a primary glueball
located near 1600 MeV. Correspondingly, we explore
PH
parameters found for the broad state in this solution,
f0(1420+150

−70 ).
In Section 3, we analyze the quark–gluonium

content of the resonances f0(980), f0(1300),
f0(1500), and f0(1750) and the broad state
f0(1420+150

−70 ) based on the rules of quark combina-
torics for the f0 states [12].

In Section 4, using the K-matrix representation
for the 00++ amplitude, we study the evolution of
the quark–gluonium content of resonances f0(980),
f0(1300), f0(1500), f0(1750), and f0(1420+150

−70 ) by
gradually varying the strength of the decay channels.

Concluding, we state that our analysis based only
on the study of hadronic decays is not able to fix the
qq̄/gluonium content of f0 mesons unambiguously.
For a qualitative estimate of qq̄ and gluonium compo-
nents, one needs to incorporate additional information
into the analysis, such as partial widths of the f0

mesons produced in γγ collisions, rates of radiative
decays with the f0-meson production, or the f0 pro-
duction ratios in the decays of heavy mesons.

2. RESONANCES IN SCALAR–ISOSCALAR
SECTOR

The K-matrix analysis [1] performed for the
scalar–isoscalar sector at 450–1900 MeV allows us
to reconstruct the analytical form of the amplitude in
the region shown in Fig. 1 by the dashed curve, since
the threshold singularities of the 00++ amplitude
related to the ππ, ππππ, KK̄, ηη, and ηη′ channels
are correctly taken into account. The amplitude
poles that correspond to resonances (1), broad state
f0(1420+150

−70 ) included, are located just in the area
where the analytical structure of the amplitude 00++

is restored.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003



QUARK–GLUONIUM CONTENT 743
Below the mass scale of theK-matrix analysis [1],
there is a pole related to the light σ meson: in Fig. 1,
its position, M = (430 − i320) MeV, is shown in ac-
cordance with the results of the dispersion relation
N/D analysis [13] (the mass region allowed by this
analysis is also shown in Fig. 1).

The pole related to the light σ meson, with the
mass M � 450 MeV, was obtained in a number
of papers (see [6] for details). In the decay D+ →
π+π+π−, the σ-meson mass was found to be M =
480 ± 40 MeV [14].

Above the mass region of the K-matrix anal-
ysis, there are resonances f0(2030), f0(2100), and
f0(2340) [15, 16].

2.1. Classification of Scalar Bare States

In [10, 11], in terms of bare states, the quark–
gluonium classification of scalar particles has been
suggested. The results of the K-matrix analysis [1]
support this classification.

The bare state, being a member of a qq̄ nonet,
imposes rigid restrictions on the K-matrix parame-
ters. The qq̄ nonet of scalars consists of two scalar–
isoscalar states fbare

0 (1) and fbare
0 (2), scalar–isovec-

tor meson abare0 , and scalar kaon Kbare
0 . In the lead-

ing terms of the 1/N expansion [17], the decays of
these four states into two pseudoscalar mesons are
determined by three parameters only, which are the
common coupling constant g, suppression parameter
λ for strange quark production (in the limit of precise
SU(3)flavor symmetry λ = 1), and mixing angle ϕ for
nn̄ = (uū + dd̄)/

√
2 and ss̄ components in fbare

0 :

ψflavor(fbare
0 ) = nn̄ cosϕ + ss̄ sinϕ. (4)

The mixing angle defines the scalar–isoscalar
nonet partners fbare

0 (1) and fbare
0 (2):

ϕ(1) − ϕ(2) = 90◦. (5)

The restrictions imposed on coupling constants allow
one to fix unambiguously the basic scalar nonet,

13P0qq̄ : fbare
0 (720 ± 100), abare0 (960 ± 30), (6)

Kbare
0 (1220+50

−150), f
bare
0 (1260 ± 30),

as well as the mixing angle for fbare
0 (720) and

fbare
0 (1260),

ϕ[fbare
0 (720)] = −70◦+5◦

−10◦ . (7)

The nonet 13P0qq̄ in the form of (6) was suggested
in [10], where the K-matrix reanalysis of the Kπ da-
ta [18] was carried out (bare states and their couplings
for the 00++ and 10++ waves were found earlier in
[8, 9]).
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
Establishing the nonet of the first radial excita-
tions, 23P0qq̄, appeared to be a more difficult problem.
TheK-matrix analysis [1] gives two scalar–isoscalar
states in the region 1200–1650 MeV, their decay
couplings satisfying the requirements imposed for a
glueball; these states are as follows: fbare

0 (1230+150
−30 )

and fbare
0 (1600 ± 50). To resolve this dilemma, one

needs the systematization of qq̄ states on the (n,M2)
plot (n being radial quantum number of the me-
son and M its mass): the systematization suggested
in [16] definitely proves fbare

0 (1600 ± 50) to be a su-
perfluous state on the qq̄ trajectory. Correspondingly,
fbare
0 (1230+150

−30 ) and fbare
0 (1810± 30) should be the qq̄

states.
Below, we present arguments based on a detailed

consideration of the (n,M2) plot, while now let us
discuss the variant that satisfies the constraints given
by the qq̄ trajectories.

The nonet 23P0qq̄ looks as follows:

23P0qq̄ : fbare
0 (1230+150

−30 ), fbare
0 (1810 ± 30), (8)

abare0 (1650 ± 50), Kbare
0 (1885+50

−100),

ϕ[fbare
0 (1230)] = 40◦ ± 8◦.

The K-matrix analysis [1], together with previous
ones [8, 9], enables one to reveal in the scalar–isoscalar
sector the bare state fbare

0 (1600), which is an extra
one for the nonet classification 13P0qq̄ and 23P0qq̄.
At the same time, the couplings of fbare

0 (1600) to
the decay channels ππ, KK̄, ηη, and ηη′ obey the
requirements imposed on the glueball decay. This
gives a reason to consider this state as the lightest
scalar glueball,

0++ glueball : fbare
0 (1600 ± 50). (9)

The lattice calculations are in reasonable agreement
with such a value of the lightest glueball mass [19].

After the onset of the decay channels, the bare
states are transformed into real resonances. For the
scalar–isoscalar sector, we observe the following
transitions by switching on the decay channels:

fbare
0 (720 ± 100) → f0(980), (10)

fbare
0 (1230+150

−30 ) → f0(1300),

fbare
0 (1260 ± 30) → f0(1500),

fbare
0 (1600 ± 50) → f0(1420+150

−70 ),

fbare
0 (1810 ± 30) → f0(1750).

The evolution of bare states into real resonances is
illustrated by Fig. 2: the shifts of amplitude poles in
the complexM plane correspond to a gradual onset of
3
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the decay channels. Technically, it is done by replac-
ing the phase spaces ρa for a = ππ, ππππ, KK̄, ηη,
ηη′ in the K-matrix amplitude as follows: ρa → ξρa,
where the parameter ξ runs in the interval 0 ≤ ξ ≤ 1.
At ξ → 0, one has bare states, while the limit ξ → 1
gives us the positions of real resonances.

2.2. Overlapping of f0 Resonances in the Mass
Region 1200–1700 MeV: Accumulation of

Widths
of the qq̄ States by the Glueball

The occurrence of the broad resonance is not at
all an accidental phenomenon. It originated due to
a mixing of states in the decay processes, namely,
transitions f0(m1) → real mesons → f0(m2). These
transitions result in a specific phenomenon; that is,
when several resonances overlap, one of them accu-
mulates the widths of neighboring resonances and
transforms into the broad state.

This phenomenon was observed in [8, 9] for
scalar–isoscalar states, and the following scheme
was suggested in [20, 21]: the broad state
f0(1420+150

−70 ) is the descendant of the pure glueball,
which, being in the neighborhood of qq̄ states, accu-
mulated their widths and transformed into themixture
of gluonium and qq̄ states. In [21], this idea was
modelled for four resonances, f0(1300), f0(1500),
f0(1420+150

−70 ), and f0(1750), by using the language
of the quark–antiquark and two-gluon states, qq̄
and gg: the decay processes were considered to be
transitions f0 → qq̄, gg; correspondingly, the same
processes realized the mixing of the resonances. In
P

this model, the gluonium component was dispersed
mainly over three resonances, f0(1300), f0(1500),
and f0(1420+150

−70 ), so every state is a mixture of qq̄
and gg components, with a roughly equal percentage
of gluonium (about 30–40%).

Accumulation of widths of overlapping resonances
by one of them is a well-known effect in nuclear
physics [22–24]. In meson physics, this phenomenon
can play a rather important role, in particular, for ex-
otic states that are beyond the qq̄ systematics. Indeed,
being among qq̄ resonances, the exotic state creates
a group of overlapping resonances. The exotic state,
which is not orthogonal to its neighbors, after accu-
mulating the “excess” of widths, turns into the broad
one. This broad resonance should be accompanied
by narrow states that are the descendants of states
from which the widths have been taken off. In this
way, the existence of a broad resonance accompanied
by narrow ones may be a signature of the exotics.
This possibility, in the context of searching for exotic
states, was discussed in [25, 26].

The broad state may be one of the components
that form the confinement barrier: the broad states
after accumulating the widths of neighboring reso-
nances play for these latter ones the role of locking
states. Evaluation of the mean radii squared of the
broad state f0(1420+150

−70 ) and its neighboring reso-
nances argues in favor of this idea, for the radius
of f0(1420+150

−70 ) is significantly larger than that for
f0(980) and f0(1300) [26, 27], thusmaking it possible
for f0(1420+150

−70 ) to be the locking state.

2.3. Systematics of the Scalar–Isoscalar qq̄ States
on the (n,M2) Plot

As is stressed above, the systematics of qq̄ states
on the (n,M2) plot argues that the broad state,
f0(1420+150

−70 ), and its predecessor, fbare
0 (1600 ± 50),

are states beyond qq̄ classification. Following [16], we
plot in Fig. 3a the (n,M2) trajectories for f0, a0, and
K0 states (the doubling of f0 trajectories is due to
two flavor components, nn̄ and ss̄). All trajectories
are roughly linear, and they clearly represent the
states with a dominant qq̄ component. It is seen that
one of the states, either f0(1420+150

−70 ) or f0(1500),
is superfluous for qq̄ systematics. Looking at the
(n,M2) trajectories for bare states (Fig. 3b), one can
see that just fbare

0 (1600) does not fall on any linear qq̄
trajectory. Thus, it would be natural to conclude that
fbare
0 (1600) is an exotic state, i.e., the glueball.
Relying on the arguments given by the system-

atics of qq̄ states on the (n,M2) plot, we can state
that the classification represented by (8) and (9) is a
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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basis for further analysis. Lattice calculations support
the solution (8), (9): calculations give values for the
mass of the lightest glueball in the interval of 1550–
1750 MeV [19].

3. HADRONIC DECAYS, RULES OF QUARK
COMBINATORICS FOR COUPLINGS,

AND ESTIMATION
OF THE QUARK–GLUONIUM CONTENT

OF RESONANCES

In this section, on the basis of the quark combi-
natorics for the decay coupling constants, we analyze
the quark–gluonium content of resonances f0(980),
f0(1300), f0(1500), f0(1750), and f0(1420+150

−70 ). We
would like to bring to the attention of the reader the
ambiguities that are inherent in analyses studying
only hadronic decays of resonances.

3.1. Quark Combinatorial Relations for the Decay
Couplings

Within 1/N leading-order terms [17], hadronic
decays of meson resonances are determined by planar
diagrams. An example of the process is shown in
Fig. 4a: the quarks flying away from the initial qq̄
state produce in a soft way (i.e., at relatively large
distances, r ∼ Rconfinement) a new pair of light quarks
(uū, dd̄, or ss̄) and turn into white hadrons, thusmak-
ing it possible for initial quarks to leave the confine-
ment domain. In the limit of flavor SU(3) symmetry,
the production of all quarks is equivalent; still, a heav-
ier weight of strange quark results in a suppression
of the production probability of an ss̄ pair. Thus, the
following ratio of production probabilities takes place:

uū : dd̄ : ss̄ = 1 : 1 : λ, (11)

with λ =0.4–0.8 for meson decays [12, 28]. For simi-
lar decays, the coupling constants (see Fig. 4) differ
by a coefficient that depends on the mixing angle
of the nn̄ and ss̄ components of the initial meson
and parameter λ [12]. These coefficients are shown in
Table 1 for the decays f0 → ππ,KK̄, ηη, ηη′, η′η′.

The planar diagram for the transition glueball →
two mesons is shown in Fig. 4b. Below, to illustrate
the estimations, we consider gluonium as a two-
gluon composite system: the large value of the soft-
gluon mass, mgluon ∼ 700–1000 MeV [29], supports
the model, although, we should stress, the results
have a more general meaning.

The planar diagram of Fig. 4b represents a two-
stage transition gluonium → qq̄ → two mesons, and
the second stage is similar to the decay of a qq̄ me-
son. Because of that, the relations between couplings
in the transition gluonium → two pseudoscalars are
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
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governed by the magnitudes given in Table 1, with
fixed values of mixing angle for the nn̄ and ss̄ compo-
nents, qq̄ = nn̄ cosϕG + ss̄ sinϕG, which are formed
in the process gluonium→ qq̄. The angle ϕG is deter-
mined by the parameter λG entering the first stage of
the process gluonium → qq̄ with relative probability
uū : dd̄ : ss̄ = 1 : 1 : λG. Then,

cosϕG =
√

2
2 + λG

. (12)

The relations between coupling constants for the de-
cays gluonium → ππ, KK̄, ηη, ηη′, η′η′ are given in
Table 1 as well. In principle, λG may differ from the
suppression parameter inherent to transitions qq̄ →
two mesons. However, it looks reasonable to use, as
the first approximation, the same value of λ for both
stages of the gluonium decay, because the coefficients
for the transitions qq̄ → two mesons change rather
weakly with λ belonging to the interval 0.4–0.8.

The sums of couplings squared for the decay tran-
sitions of the qq̄ meson and gluonium are of the same
order, as follows from the rules of the 1/N expan-
sion [17] (N = Nc = Nf , where Nc and Nf are the
numbers of colors and flavors). Let us denote the sum
of couplings squared for transitions of Fig. 4a type,
qq̄ state →

∑
mesons, as g2

qq̄ and the corresponding
3
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∑
g2

a (for quarkonium) and
∑

G2
a (for

gluonium); the cutting is shown by a dashed line. (e, f) Self-energy diagrams that determine the order of value of couplings for
the transitions quarkonium→ qq̄ and gluonium→ gg.
value for the gluoniumdecay, gluonium→
∑

mesons,
as g2

gluonium. The values g
2
qq̄ and g2

gluonium can be repre-
sented as discontinuities of the self-energy diagrams
of Figs. 4c and 4d, with cuttings shown by dashed
lines: the cut blocks stand for the couplings shown in
Figs. 4a and 4b. In terms of the 1/N expansion, the
diagram of Fig. 4c (and g2

qq̄) is of the order of

g2
qq̄ ∼ G2

qq̄-meson→qq̄Nf ∼ Nf

Nc
, (13)

because G2
qq̄-meson→qq̄ ∼ 1/Nc. Likewise, for g2

gluonium
determined by diagrams of Fig. 4d type, one has

g2
gluonium ∼ G2

gluonium→ggN
2
f ∼

N2
f

N2
c

. (14)

The coupling for the transition gluonium → two-
gluon state, Ggluonium→gg, is of the order of
Ggluonium→gg ∼ 1/Nc. The estimates of couplings
Gqq̄-meson→qq̄ and Ggluonium→gg are done by using
basic self-energy diagrams for composite systems,
which are of the order of unity: in the cases under
consideration, such are the diagrams of Figs. 4e
and 4f.

The two-stage nature of the decay gluonium →
two pseudoscalars is a source of ambiguities in the
determination of the quark–gluon content of mesons,
if we restrict ourselves to hadronic decays only. The
point is that the qq̄ meson with the quark content
nn̄ cosϕ + ss̄ sinϕ at ϕ � ϕG has the same ratios
between coupling constants for the transitions f0 →
PH
ππ, KK̄, ηη, ηη′ as those for the glueball. At 0.4 ≤
λG � 0.8, we have 24◦ � ϕG � 32◦: it means that
the analysis of hadronic decays cannot distinguish
between the qq̄ state with ϕ � ϕG and true gluonium.

3.2. Decay Couplings for the Resonances f0(980),
f0(1300), f0(1500), f0(1750), and f0(1420+150

−70 )
into Channels ππ,KK̄, ηη, ηη′, and ππππ

The K-matrix fit to the data directly gives us the
characteristics of the bare states only. To extract res-
onance parameters, one needs additional calculations
to be carried out with the obtained amplitude. The
couplings for resonance decay are extracted by cal-
culating residues of the amplitude poles related to the
resonances [2]. In more detail, the amplitude Aa→b,
where a and b mark the channels ππ, KK̄, ηη, ηη′,
and ππππ, can be written near the pole as

Aab �
g
(n)
a g

(n)
b

µ2
n − s

ei(θ
(n)
a +θ

(n)
b ) + Bab. (15)

The first term in (15) represents the pole singularity,
and the second one, Bab, is a smooth background.
The pole position s = µ2

n determines the mass of the
resonance, with total width µn = Mn − iΓn/2, and
the real factors g

(n)
a and g

(n)
b are the decay coupling

constants of the resonance to channels a and b. The
couplings g

(n)
a given in Table 2 stand for the solution

with the glueball in the vicinity of 1600 MeV; also the
couplings for the predecessor bare states are shown.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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Table 1.Coupling constants given by quark combinatorics for the f0 meson and glueball decaying into two pseudoscalar
mesons in the leading terms of 1/N expansion (ϕ is the mixing angle for nn̄ and ss̄ states, f0 = nn̄ cosϕ + ss̄ sinϕ, and
Θ is the mixing angle for η–η′ mesons: η = nn̄ cosΘ − ss̄ sin Θ and η′ = nn̄ sin Θ + ss̄ cosΘ, where cosΘ � 0.8 and
sin Θ � 0.6)

Channel
The qq̄-meson decay

couplings in the leading
terms of 1/N expansion

The glueball decay
couplings in the leading
terms of 1/N expansion

Identity factor in phase space

π0π0 g cosϕ/
√

2 G/
√

2 + λ 1/2

π+π− g cosϕ/
√

2 G/
√

2 + λ 1

K+K− g(
√

2 sinϕ +
√
λ cosϕ)/

√
8 G

√
λ/(2 + λ) 1

K0K̄0 g(
√

2 sinϕ +
√
λ cosϕ)/

√
8 G

√
λ/(2 + λ) 1

ηη g(cos2 θ cosϕ/
√

2 +
√
λ sinϕ sin2 θ) G(cos2 θ + λ sin2 θ)/

√
2 + λ 1/2

ηη′ g sin θ cos θ(cosϕ/
√

2 −
√
λ sinϕ) G cos θ sin θ(1 − λ)/

√
2 + λ 1

η′η′ g(sin2 θ cosϕ/
√

2 +
√
λ sinϕ cos2 θ) G(sin2 θ + λ cos2 θ)/

√
2 + λ 1/2

Table 2. Couplings squared, g2
a (in GeV2 units), for bare states and their resonance descendants

State g2
ππ g2

KK̄
g2

ηη g2
ηη′ g2

ππππ

∑
g2

a

f bare
0 (650+12

−30) 0.167 0.528 0.06 – 0 0.755

f0(980) 0.076 0.186 0.072 – 0.004 0.338

f bare
0 (1220+15

−30) 0.083 0.099 0.025 – 0.517 0.724

f0(1300) 0.026 0.002 0.003 – 0.132 0.163

f bare
0 (1265+15

−45) 0.679 0.292 0.137 0.046 0 1.154

f0(1500) 0.038 0.009 0.007 0.006 0.074 0.134

f bare
0 (1820 ± 40) 0.059 0.019 0.001 0.043 0.262 0.384

f0(1750) 0.086 0.003 0.009 0.028 0.117 0.243

f bare
0 (1585+10

−45) 0.106 0.062 0.028 0.009 0.924 1.129

f0(1420+150
−70 ) 0.304 0.271 0.062 0.016 0.382 1.035
The couplings of Table 2 demonstrate a strong
change of couplings during the evolution from bare
states to real resonances. Note that the change
occurs not only in absolute values of couplings but
also in relative magnitudes. The resonances f0(1300),
f0(1500), and f0(1750) demonstrate a reduction of
relative weight of the coupling constant squared,
g2
KK̄

, while the same coupling in the broad state

f0(1420+150
−70 ) increases.

The growth of the relative weight of g2
KK̄

in

f0(1420+150
−70 ), that is, the glueball descendant, can

be unambiguously interpreted: by accumulating the
widths of neighboring resonances, this one acquires
a noticeable qq̄ component, with a large amount of ss̄
state.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
Let us look at what the quark combinatorics rules
given in Table 1 tell us about the proportion of ss̄, nn̄,
and gluonium components in the studied resonances.
The coupling constants squared for f0 → ππ, KK̄,
ηη, ηη′ can be written as follows:

g2
ππ =

3
2

(
g√
2

cosϕ +
G√

2 + λ

)2

,

g2
KK̄ = 2

(
g

2

(
sinϕ +

√
λ

2
cosϕ

)
+ G

√
λ

2 + λ

)2

,

(16)

g2
ηη =

1
2

(
g

(
cos2 θ√

2
cosϕ +

√
λ sinϕ sin2 θ

)

3
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+
G√

2 + λ
(cos2 θ + λ sin2 θ)

)2

,

g2
ηη′ = sin2 θ cos2 θ

(
g

(
1√
2

cosϕ−
√
λ sinϕ

)

+ G
1 − λ√
2 + λ

)2

.

The term proportional to g is responsible for the
transition qq̄ → two mesons, while the term propor-
tional to G stands for the transition gluonium→ two
mesons. Correspondingly, the magnitudes g2 and G2

are proportional to the probabilities of finding the qq̄
and gluonium components in the considered meson.

First of all, let us determine the mean value of the
mixing angle for nn̄/ss̄ components in the intermedi-
ate state, 〈ϕ〉:

f0 → gluonium+ qq̄ → nn̄ cos〈ϕ〉 (17)

+ ss̄ sin〈ϕ〉 → two mesons.

We define 〈ϕ〉 as the angle for the coupling constants
squared (16) at G = 0. Then, we have for the studied
resonances

f0(980) : 〈ϕ〉 � −67◦, (18)

f0(1300) : 〈ϕ〉 � −5◦,
f0(1500) : 〈ϕ〉 � 8◦,

f0(1420+150
−70 ) : 〈ϕ〉 � 37◦,

f0(1750) : 〈ϕ〉 � −27◦.

The value 〈ϕ[f0(1420+150
−70 )]〉 � 37◦ is very close to

the mixing angle of the flavor singlet state, ϕsinglet =
35.3◦. We see that f0(1420+150

−70 ) is a mixture of the
gluonium and (qq̄)singlet.
PH
Generally, by fitting formulas (16) to the coupling
constants squared from Table 2, one can determine
the mixing angle ϕ as a function of G/g. The curves
in Fig. 5 illustrate the dynamics of ϕ with respect to
the ratio G/g for the resonances f0(980), f0(1300),
f0(1500), and f0(1750).

The magnitudes of g2 and G2 are proportional,
correspondingly, to the probabilities for quark/gluo-
nium components, Wqq̄ and Wgluonium, to be in the
considered resonance:

g2 = g2
qq̄Wqq̄, G2 = g2

gluoniumWgluonium. (19)

According to the rules of 1/N expansion [17], the
coupling constants g2

qq̄ and g2
gluonium are of the same

order (see Section 3.1); therefore, we take as a rough
estimate

G2/g2 = Wgluonium/Wqq̄. (20)

In Fig. 5, we vary G/g in the interval −0.8 ≤ G/g ≤
0.8; that, in accordance with (20), is related to a
possible admixture of the gluonium component up to
40%: Wgluonium ≤ 0.40.

The qq̄ components in the resonances f0(1300)
and f0(1500) reveal a rather moderate change in ϕ
versus the percentage of gluonium component:

Wgluonium[f0(1300)] ≤ 40% : −25◦ (21)

≤ ϕ[f0(1300)] ≤ 13◦,

and

Wgluonium[f0(1500)] ≤ 40% : −3◦ (22)

≤ ϕ[f0(1500)] ≤ 17◦.

More sensitive to the glueball admixture is the qq̄
components in f0(1750):

Wgluonium[f0(1750)] ≤ 40% : −55◦ (23)

≤ ϕ[f0(1750)] ≤ −2◦.

The nn̄/ss̄ ratio in f0(980) is also rather sensitive
to the presence of the gluonium component. How-
ever, for this case, it is hardly possible to assume
the glueball admixture to be more than 20% [30].
Correspondingly, we have

Wgluonium[f0(980)] ≤ 20% : −95◦ (24)

≤ ϕ[f0(980)] ≤ −40◦.

The analysis clearly demonstrates the impossibility
of fixing unambiguously the nn̄, ss̄, and gluonium
components in the resonances f0(980), f0(1300),
f0(1500), and f0(1750) by using their couplings to
hadronic channels only. For better understanding of
the structure of these mesons, one needs additional
data.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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Still, the K-matrix analysis [1] provides us with
considerable information on meson states, which
makes it possible to trace the evolution of coupling
constants from bare state, fbare

0 , to real resonances.

4. EVOLUTION OF COUPLING CONSTANTS
FOR f0 → ππ, KK̄, ηη, ηη′ AT THE ONSET

OF THE DECAY CHANNELS
In this section, based on the K-matrix-analysis

results [1], we study the dynamics of parameters for
the resonances f0(980), f0(1300), f0(1500),
f0(1750), and f0(1420+150

−70 ) by gradually switching
on/off the decay channels.

4.1. The Onset of Decay Channels in theK-Matrix
Amplitude

When the decay channels are switched off, the
coupling constants to two-meson channels are deter-
mined by the residues of the K-matrix poles, while,
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
after switching them on, the coupling constants are
determined by the residues of amplitude poles. Let us
clarify this point in more detail.

The scattering amplitude of the two pseudoscalar
mesons was fitted in [1] in the form

Â = K̂
I

I − iρ̂K̂
, (25)

where K̂ is the 5 × 5 matrix for five channels under
investigation (ππ,KK̄, ηη, ηη′, ππππ). The K̂ matrix
is real and symmetrical, Kab(s) = Kba(s); I is the
unit matrix, I = diag(1, 1, 1, 1); and ρ̂ is the diagonal
matrix for the phase space, ρ̂ = diag(ρππ, ρKK̄ , ρηη ,
ρηη′ , ρππππ).

The K-matrix element was represented in [1] as a
sum of pole terms and smooth background fab(s):

Kab(s) =
∑

n

g
(n)
a g

(n)
b

µ2
n − s

+ fab(s), (26)
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µn being the mass of bare state and g
(n)
a being the

coupling of fbare
0 (µn) to the channel a.

Fitting to data performed in [1] fixes the parame-
ters of the K-matrix amplitude (coupling constants
gab(s), masses of the K-matrix poles µn, and regular
terms fab). With the completely determined parame-
ters, we can investigate the dynamics of the onset of
decaying processes.

Such an investigation of the resonance evolution
was suggested in [31], where a rather simple variant
was considered: in amplitude (25), the substitution
ρ̂ → xρ was made, with x varying in the interval 0 ≤
x ≤ 1. The amplitude Â(x) thus constructed gives
us the real amplitude at x = 1, and at x → 0, the
amplitude Â(x) turns into the K-matrix one, Â(x →
0) → K̂, which is the amplitude for bare states. Gen-
erally, the onset of the decay channels in theK-matrix
amplitude can be investigated by substituting param-
eters as follows:

g(n)
a ⇒ ξn(x)g(n)

a , fab ⇒ ξf (x)fab. (27)

Here, the parametric functions ξn(x) and ξf (x) obey
the requirements ξn(0) = ξf (0) = 0 and ξn(1) =
ξf (1) = 1. A simple variant studied in [31] corre-
sponds to ξn(x) =

√
x and ξf (x) = x.

The parameters ξn(x) and ξf (x) control the dy-
namics of the onset of the decay channels for reso-
nances. This dynamics may be different for different
states, say, the qq̄ state and gluonium. Below, we use
ξn(x) =

√
x for the states connected with f0(980),

f0(1300), f0(1500), and f0(1750), while for the broad
state the dependence ξn(x) = x1/4 is taken. For the
background term, we use ξn(x) = x.
PH
4.2. Evolution of the Decay Couplings

Below, the evolution of states related to the res-
onances f0(980), f0(1300), f0(1500), f0(1750), and
f0(1420+150

−70 ) will be considered one by one. The pro-
cedure is as follows: the substitution (27) is made and
x takes the values x = 0.1, 0.2, . . . , 0.8, 0.9. The value
x = 0 corresponds to bare states, and the couplings
and masses were found as fitting parameters in [1];
for x = 1, calculations were performed in [2] and the
couplings are presented in Table 2. Furthermore, for
different but fixed x, we find the position of poles and
calculate the residues of the amplitudes thus deter-

mining g
(n)
a (x).

4.2.1. Resonance fff0(980)(980)(980). For f0(980), the nor-

malized couplings γa = ga/
√

g2
ππ + g2

KK̄
, where a =

ππ,KK̄, are shown in Fig. 6a. Correspondent poles
at different x are placed on the trajectory fbare

0 (720) →
f0(980) (see Fig. 2). Looking at Fig. 6a, one can see
that, at small x, g2

ππ < g2
KK̄

, which is natural, for the

state fbare
0 (720) is close to the flavor octet. With the

increase in x, the coupling constants become equal
to each other, and in the interval 0.6 ≤ x ≤ 0.8, the
coupling to the pion channel is greater than to kaon
channel, g2

ππ(x ∼ 0.7) > g2
KK̄

(x ∼ 0.7), thus reveal-
ing a relative reduction of the ss̄ component. How-
ever, at x ∼ 0.8, when the amplitude pole approaches
the KK̄ threshold (see Fig. 2), the relative weight of
theKK̄ channel is strengthened to certain extent.

For every fixed x, formula (16) has been fitted to
the values of g2

ππ(x) and g2
KK̄

(x) in order to find ϕ as a
function ofG/g: a set of curves is shown in Fig. 6b. At
x = 0, the curve ϕ(G/g) corresponds to the maximal
possible value of the mixing angle; with the increase
in x, the absolute value of mixing angle |ϕ| decreases
smoothly, while, at x > 0.8, |ϕ| increases sharply. The
curve for x = 1 is also shown in Fig. 5; it coincides
with good accuracy with that at x = 0.

In Fig. 6b, there are also two curves for ϕ with
gradual accumulation of the gluonium component,
which results inWgluonium = 20% at x = 1: recall, we
suggest Wgluonium ≤ 20%. These are dashed curves
that originate from the point G/g = 0 at x = 0 (in
the K-matrix analysis [1], the bare state fbare

0 (720)
is the pure qq̄) but further they drift to G/g > 0
and G/g < 0 and end at x = 1 with G/g = 0.45 and
G/g = −0.45, respectively. These final points stand
forWgluonium = 20%. Respectively, the variations of ϕ
are shown separately by Fig. 6c; the area in between
the curves is just the region of reasonable values of
ϕ with the evolution of the decay widths. The lower
curve tells us that the reduction of g2

KK̄
with the
YSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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increase in x to the region x < 0.8 is plausible due
to the growth of the gluonium component leaving the
ratio nn̄/ss̄ approximately constant. The upper curve
related to G/g < 0 attests to the possible evolution
when, in parallel with the increase in the gluonium
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
component, the weight of the ss̄ component becomes
smaller. But at x > 0.8, both curves show a sharp
increase in the ss̄ component.

At x = 1, when mixing angle ϕ defines the quark
content of f0(980) (nn̄ cosϕ+ ss̄ sinϕ), its valuemay
3
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vary in the intervals −90◦ ≤ ϕ ≤ −48◦ and 85◦ ≤
ϕ ≤ 90◦ (Fig. 6c). It would be instructive to compare
these values with mixing angles obtained for radiative
decays φ(1020) → γf0(980) and f0(980) → γγ. The
combined analysis [30] for these decays provided us
with two possible solutions: ϕ = −48◦ ± 6◦ and ϕ =
86◦ ± 3◦.

The areas for ϕ[f0(980)] allowed by radiative and
hadronic decays are shown in Fig. 7. One can see that
the constraints for the mixing angle obtained from
the study of hadronic decays of f0(980) are in nice
agreement with the values obtained from the study of
radiative decays [30]. However, we should stress that
we cannot expect from hadronic processes more rigid
limitations for the mixing angle of f0(980) than those
known from radiative decays.

4.2.2. Resonances fff0(1300)(1300)(1300), fff0(1500)(1500)(1500), and
fff0(1750)(1750)(1750). For the resonances f0(1300), f0(1500),
and f0(1750), the fractions of the ss̄ component
decrease, and they flow away from these resonances
and enter the broad state f0(1420+150

−70 ). Figure 8
demonstrates normalized coupling constants squared

γa = ga/
√∑

b g
2
b as a function of x. One can see that,

for f0(1300) and f0(1500), the values γKK̄ decrease,
while γππ grows. At the same time, the normalized
coupling γKK̄ grows for the broad state.

The description of ratios γa by Eq. (16) is shown
in Fig. 8 for f0(1300), f0(1500), f0(1750), and
f0(1420+150

−70 ): one can see that quark combinatorial
PH
rules reasonably describe a number of data on the de-
cay coupling constants. But, as was stressed above,
Eq. (16) does not define the content of a resonance,
providing a correlation only between mixing angle ϕ
and ratio G/g. These correlations are presented in
Figs. 9a–9c for f0(1300), f0(1500), and f0(1750)
at various x. Implying the predecessors of these
resonances to be pure qq̄ states, we display the
correlations (ϕ,G/g) atG2/g2 ≤ 0.4 that correspond
to (21)–(23). Dashed curves in Figs. 9a–9c stand for
(ϕ,G/g) related to amaximal capture of the gluonium
component by these resonances.

4.2.3. Broad state fff0(1420+150
−70 )(1420+150
−70 )(1420+150
−70 ). The evolution

from fbare
0 (1600) to f0(1420+150

−70 ) is accompanied by
the accumulation of the qq̄ component and the growth
of ratio g/G. In this way, Fig. 9d illustrates the cor-
relation (ϕ, g/G): for small x, when parameters of the

corresponding state are close to those of fbare)
0 (1600),

the ratio g/G is small. We see that, for the broad
state, the mixing angle ϕ hardly depends on g/G at
g2/G2 ≤ 0.50.

The value of the mixing angle at x = 1, ϕ = 37◦,
proves that f0(1420+150

−70 ) can accumulate the flavor
singlet component of qq̄ only, which perfectly agrees
with its gluonium origin.

Figure 10 demonstrates the change in ϕ with in-
creasing x: this curve does not depend on the rate of
accumulation of the (qq̄)singlet component.

5. CONCLUSION

We have performed an analysis of coupling con-
stants for the resonances f0(980), f0(1300),
f0(1500), and f0(1750) and the broad state
f0(1420+150

−70 ) to channels ππ, KK̄, ηη, and ηη′, as
well as observed the evolution of bare states into these
resonances by switching on/off the decay channels
[see (10) and Fig. 2]. Our analysis has been based
on Solution II-2 of [1]; in this solution, the bare state
fbare
0 (1600 ± 50) is the candidate for the glueball.
During the evolution of states, the coupling con-

stants f0 → hadrons change considerably not only in
magnitude but also in relative weight, which is due
to a strong mixing of states, because of the decay
processes f0(m1) → real mesons → f0(m2). Using
the language of bare states, fbare

0 , a rigid classification
can be established for qq̄ states; however, for real
resonances, the presence of the gluonium component
results in certain uncertainties.

For the resonances discussed, the results are as
follows.

(i) f0(980): This resonance is dominantly the
qq̄ state; the admixture of the glueball component
YSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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is not more than 20%, Wgluonium ≤ 0.20. A rather
large ss̄ component is also present. Taking account
of the representation qq̄ = nn̄ cosϕ + ss̄ sinϕ, the
hadronic decays give us the following constraints:
−90◦ ≤ ϕ ≤ −40◦ or 85◦ ≤ ϕ ≤ 90◦, which are in
agreement with data on radiative decays f0(980) →
γγ and φ(1020) → γf0(980) [30] (see Fig. 7). Rather
large uncertainties in the determination of the mixing
angle are due to the sensitivity of coupling constants
to plausible small admixtures of the gluonium com-
ponent. When the gluonium component is absent,
hadronic decays provide ϕ = 〈ϕ〉 = −67◦.

(ii) f0(1300) and f0(1500): These resonances are
the descendants of bare qq̄ states fbare

0 (1230+150
−30 )

and fbare
0 (1260 ± 30), which (both of them) are flavor

singlets. The resonances f0(1300) and f0(1500)
are formed due to a strong mixing with gluonium
state fbare

0 (1600) as well as with one another.
The qq̄ content, qq̄ = nn̄ cosϕ + ss̄ sinϕ, in both
resonances strongly depends on the admixture of
the gluonium component. At Wgluonium ≤ 0.40, the
mixing angles change, depending on Wgluonium, in
the intervals −25◦ ≤ ϕ[f0(1300)] ≤ 13◦ and −3◦ ≤
ϕ[f0(1500)] ≤ 17◦.

(iii) f0(1750): This resonance is the descendant
of bare state 23P1qq̄, fbare

0 (1810 ± 30), and this bare
state has a flavor wave function close to the octet one.
During evolution and mixing (presumably with the
gluonium), the quark component, qq̄ = nn̄ cosϕ +
ss̄ sinϕ, can change significantly: with Wgluonium ≤
0.2, we have −45◦ ≤ ϕ[f0(1750)] ≤ −10◦. Therefore,
f0(1750) keeps its large ss̄ component, and rather
small coupling constant f0(1750) → KK̄ should not
mislead us, for the production ofKK̄ is suppressed at
ϕ ∼ −30◦ [see Table 1 and Eq. (16)].

(iv) f0(1420+150
−70 ): This broad state is the descen-

dant of the fbare
0 (1600 ± 50), which we believe to be

the glueball. The analysis of hadronic decays of this
resonance confirms the glueball nature of this reso-
nance: the qq̄ component is allowed to be in the fla-
vor singlet only, ϕ[f0(1420+150

−70 )] � 37◦, although the
value of the possible admixture of (qq̄)singlet cannot be
fixed by hadronic decays. In this way, f0(1420+150

−70 )
is a mixture gluonium +(qq̄)singlet; the impossibility
of finding the quark–antiquark component is due to
the fact that correlations between the decay coupling
constants are the same for the gluonium and qq̄ sin-
glet.
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ELEMENTARY PARTICLES AND FIELDS
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Abstract—The inclusive production of heavy (c and b) quarks in high-energy pp̄ collisions are con-
sidered within the semihard approach in QCD. The dependence of the cross section for heavy-quark
production, σ(pT > pmin

T ), on unintegrated gluon distributions is studied. The results of this consider-
ation are compared with experimental data obtained by the D0 and CDF Collaborations at Tevatron.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Processes leading to the production of heavy

quarks (c and b) and quarkonia on protons are one
of the most promising sources of information about
the gluon structure function for the proton within
QCD [1–4], because, at high energies, heavy quarks
are predominantly produced through the subprocess
of gluon–gluon fusion. Particular interest in gluon
distributions is motivated by the fact that they play
a key role in determining cross sections for many
processes that will be investigated at next-generation
colliders like LHC.

In the energy region of present-day colliders,
heavy-quark production on protons proceeds through
so-called semihard processes [5], which are defined
as those where the characteristic scale µ of the hard
subprocess of parton scattering is much less than the
total c.m. energy

√
s of colliding hadrons, but where

it is much greater than the parameter ΛQCD; that
is, ΛQCD � µ �

√
s. As a result, the running QCD

coupling constant remains small: αQCD(µ2) � 1.
The condition µ �

√
s means that cross sections

for such processes are determined by the behavior of
gluon structure functions for the proton in the region
of x � mQ/

√
s � 1, where mQ is the heavy-quark

mass. Because of a high density of gluon distributions
at such values ofx, the parton-model assumption that
the subprocess cross sections and hadron structure
functions factorize is violated. Therefore, it is neces-
sary to take into account the dependence of the hard-
process amplitude on the gluon virtuality, transverse

1)Moscow State University, Vorob’evy gory, Moscow, 119992
Russia; e-mail: artem_lipatov@mail.ru

2)Samara State University, ul. Akademika Pavlova 1, Samara,
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1063-7788/03/6604-0755$24.00 c©
momentum, and longitudinal polarization. It is worth
noting that the last factor makes a dominant contri-
bution to the cross section [6–8].

The gluon distribution in the proton xG(x, µ2) can
be obtained from the Dokshitzer–Gribov–Lipatov–
Altarelli–Parisi (DGLAP) evolution equation [9]
in the leading-logarithm or in the doubly loga-
rithmic approximation [that is, with allowance for
αn

s lnn(µ2/Λ2
QCD) orαn

s lnn(1/x) lnn(µ2/Λ2
QCD) con-

tributions, respectively]. With increasing c.m. energy
of colliding particles,

√
s, however, terms of order

αn
s lnn(s/Λ2

QCD) ∼ αn
s lnn(1/x), which are disre-

garded in the DGLAP equations, become significant.
Summation of diagrams leading to terms of orders
αn

s lnn(µ2/Λ2
QCD), αn

s lnn(1/x) lnn(µ2/Λ2
QCD), and

αn
s lnn(1/x) yields nonintegrated gluon distribu-

tions Φ(x,q2
T , µ

2) (that is, those that depend on
the transverse momentum qT ), which satisfy the
Balitsky–Fadin–Kuraev–Lipatov (BFKL) evolution
equations [10] and which are related to the usual
(collinear) gluon distribution xG(x, µ2) by the equa-
tion

xG(x, µ2) = xG(x,Q2
0) +

µ2∫
Q2

0

Φ(x,q2
T , µ

2)dq2
T . (1)

Cross sections for physical processes are deter-
mined by the convolution of unintegrated gluon dis-
tributions with the off-shell matrix element of the hard
subprocess [6–8]. In addition, the polarization tensor
Lµν for virtual gluons in the matrix element for the
subprocess of gluon–gluon fusion is taken, according
to the prescriptions of the semihard approach [5], in
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. Heavy quark production process pp̄ → QQ̄X.

the form

Lµν(q) =
qµ
T q

ν
T

q2
T

. (2)

The semihard approach was previously used to
describe a number of processes [6, 11–22]—in partic-
ular, processes leading to the production and photo-
production of heavy quarks [6, 11, 14, 16, 19–21] and
quarkonia [13, 15, 18, 22]. Calculations within the
semihard approach result in some observable effects
that could not be obtained on the basis of the standard
parton model. These include a faster growth of cross
sections than in the ordinary parton model [13, 15]
and the broadening of pT spectra in relation to the
results produced by the parton model, the latter effect
becoming more significant at higher energies [6, 11,
13–20].

Here, we employ the semihard approach in QCD
to study heavy-quark production in pp̄ interactions.
Similar calculations were performed in [6, 11, 20,
21], where the authors used various nonintegrated
gluon distribution functions and matrix elements for
the corresponding hard scattering subprocesses (it
is difficult to compare them with one another). The
matrix elements used in [6] are similar to those in [7],
but the expressions given in [6] contain insignificant
misprints. Baranov and Smizanska [20] did not cal-
culate matrix elements explicitly; therefore, it is hardly
possible to perform a comparison with the matrix
elements from [7]. Hägler et al. [21] did not present
explicit expressions for the matrix elements either.

We are going to obtain the matrix elements for
the hard process of gluon–gluon fusion independently
of the previous studies and compare our results with
those that are based on the use of the matrix elements
from [7]. In addition, we apply here the semihard
approach in QCD to study the sensitivity of the cross
sections for heavy-quark production to variations in
the sets of unintegrated gluon distributions and pa-
rameters of the semihard approach in order to find a
“universal” gluon distribution. We pay special atten-
tion to unintegrated gluon distributions obtained by
P

solving the BFKL evolution equations, which were
used in [12, 15, 16, 19].

The preliminary results of this study were reported
at the International Workshop DIS 2001 [23].

2. CROSS SECTION OF HEAVY QUARK
PRODUCTION IN pp̄ INTERACTIONS

In this section, we calculate, on the basis of the
semihard approach in QCD, the total and differential
cross sections for the production of heavy quarks
in the process pp̄ → QQ̄X proceeding through the
subprocess of gluon–gluon fusion (Fig. 1). In our
calculations, we use expression (2) for the effective
polarization tensor Lµν of virtual gluons.

The Sudakov decomposition for the process pp̄ →
QQ̄X (Fig. 1) assumes the form

p1 = α1P1 + β1P2 + p1T , (3)

p2 = α2P1 + β2P2 + p2T ,

q1 = x1P1 + q1T , q2 = x2P2 + q2T ,

where

p2
1 = p2

2 = m2, q2
1 = q2

1T , q2
2 = q2

2T . (4)

Here, p1 and p2 stand for the 4-momenta of the heavy
quarks; q1 and q2 are the 4-momenta of the initial
virtual gluons; and p1T , p2T , q1T , and q2T are the
transverse 4-momenta of the corresponding particles.
In the c.m. frame of colliding particles, we have

P1 = (E, 0, 0, E), P2 = (E, 0, 0,−E), (5)

where

E =
√
s

2
, P 2

1 = P 2
2 = 0, (P1 · P2) =

s

2
. (6)

The Sudakov variables are given by

α1 =
m1T√

s
exp(y∗1), α2 =

m2T√
s

exp(y∗2), (7)

β1 =
m1T√

s
exp(−y∗1), β2 =

m2T√
s

exp(−y∗2),

where m2
1,2T = m2 + p2

1,2T , m and y∗1,2 standing for
the heavy-quark mass and the rapidities, respectively,
in the c.m. frame. The differential cross section for the
process pp̄ → QQ̄X can be represented in the form

dσ(pp̄ → QQ̄X) =
dx1

x1
Φ(x1,q2

1T , µ
2)
dφ1

2π
dq2

1T (8)

× dx2

x2
Φ(x2,q2

2T , µ
2)
dφ2

2π
dq2

2T dσ̂(g∗g∗ → QQ̄),

where Φ(x1,q2
1T , µ

2) and Φ(x2,q2
2T , µ

2) are un-
integrated gluon distributions, φ1 and φ2 are the
azimuthal angles of the initial virtual gluons, and
dσ̂(g∗g∗ → QQ̄) is the differential cross section for
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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the hard subprocess of gluon–gluon fusion. We
represent it in the form

dσ̂(g∗g∗ → QQ̄) =
(2π)4

2ŝ

∑
|M |2SHA(g∗g∗ → QQ̄)

(9)

× d3p1

(2π)3 · 2p0
1

d3p2

(2π)3 · 2p0
2

δ(4)(q1 + q2 − p1 − p2),

where
∑

|M |2SHA(g∗g∗ → QQ̄) is the matrix element
calculated for the subprocess of gluon–gluon fusion,
g∗g∗ → QQ̄, within the semihard approach in QCD.
The summation sign in (9) implies averaging over the
polarizations of initial-state and summation over the
polarizations of final-state particles. The phase-space
element can be written in the form

d3p1

(2π)3 · 2p0
1

d3p2

(2π)3 · 2p0
2

=
d2p1T

2(2π)3
dy∗1

d2p2T

2(2π)3
dy∗2.

(10)

We represent the four-dimensional delta function
δ(4)(q1 + q2 − p1 − p2) in the form

δ(4)(q1 + q2 − p1 − p2) = δ(q0
1 + q0

2 − p0
1 − p0

2)
(11)

× δ(q1T + q2T − p1T − p2T )δ(q3
1 + q3

2 − p3
1 − p3

2)

and, in this way, remove integration with respect to
p2

2T , x1, and x2 in (8) and (9). With the aid of (10), we
then find that the final expression for the differential
cross section for the process pp̄ → QQ̄X within the
semihard approach in QCD is

dσ(pp̄ → QQ̄X) =
1

16π(x1x2s)2
(12)

× Φ(x1,q2
1T , µ

2)Φ(x2,q2
2T , µ

2)

×
∑

|M |2SHA(g∗g∗ → QQ̄)dy∗1dy
∗
2dp

2
1T dq

2
1T dq

2
2T

× dφ1

2π
dφ2

2π
dφQ

2π
,

where

x1 = α1 + α2, x2 = β1 + β2, (13)

q1T + q2T = p1T + p2T ,

and φQ is the azimuthal angle of the final heavy quark.
For q2

1T → 0 and q2
2T → 0, averaging of (12) over

the transverse directions specified by the vectors q1T

and q2T yields the expression for the differential cross
section for the process pp̄ → QQ̄X in the ordinary
parton model; that is,

dσ(pp̄ → QQ̄X) (14)

=
1

16π(x1x2s)2
x1G(x1, µ

2)x2G(x2, µ
2)
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
×
∑

|M |2PM(gg → QQ̄)dy∗1dy
∗
2dp

2
1T

dφ3

2π
,

where
∑

|M |2PM(gg → QQ̄) is the matrix element
calculated for the gluon–gluon fusion gg → QQ̄ in
the ordinary parton model. As above, the summation
sign implies averaging over initial-quark polariza-
tions and summation over final-quark polarizations.
In order to perform integration with respect to q2

1T

and q2
2T and averaging over azimuthal angles, we

have used the relation∫
dq2

1T

∫
dφ1

2π
Φ(x1,q2

1T , µ
2)
∫

dq2
2T (15)

×
∫

dφ2

2π
Φ(x2,q2

2T , µ
2)
∑

|M |2SHA

= x1G(x1, µ
2)x2G(x2, µ

2)
∑

|M |2PM,

where
2π∫
0

dφ1,2

2π

qµ
1,2T q

ν
1,2T

q2
1,2T

=
1
2
gµν . (16)

3. UNINTEGRATED GLUON
DISTRIBUTIONS

In our calculations, we use various parametriza-
tions of unintegrated gluon distributions. In this
section, we consider some special features of these
parametrizations.

For the gluon distribution in the proton, the au-
thors of [13–17] took the phenomenological ansatz
proposed by Levin, Ryskin, Shuvaev, and Shabelski
in [6] in the form

Φ(x,q2
T ) = Φ0

0.05
0.05 + x

(1 − x)3f(x,q2
T ), (17)

where

f(x,q2
T ) =




1 for q2
T ≤ q2

0(x),(
q2
0(x)
q2

T

)2

for q2
T > q2

0(x)
(18)

with q2
0(x) = Q2

0 + Λ2 exp 3.56
√

ln(x0/x), the pa-
rameter values being Q2

0 = 2 GeV2, Λ = 56 MeV,
and x0 = 1/3. The normalization-factor value of
Φ0 = 0.97 mb was obtained from a fit to data on
b-quark production in pp̄ interactions at the Spp̄S
collider energy of

√
s = 0.63 TeV [24]. It was indi-

cated in [8] that this choice of Φ0 value corresponds to
a possible upper limit on the cross section for b-quark
production in hadron collisions.3) The value of the

3)We note that the experimental data reported in [24] are ob-
tained at an energy that is comparatively low for the semihard
approach in QCD to be applicable.
3
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parameter q2
0(x) can be considered as that typical

scale of gluon transverse momenta in the parton
cascade in a hadron which provides a natural infrared
cutoff in semihard processes. The parameter q2

0(x)
grows with increasing ln(1/x) and takes values in the
range 2–4 GeV2 for x = 0.01–0.001.

For not very small x (0.01 < x < 0.15), the ef-
fective gluon distribution xG(x, µ2) obtained from
(17) through integration according to expression (1)
grows in proportion to x−∆, where ∆ � 0.5 cor-
responds to summation of the leading logarithms
αn

s lnn(1/x) in Feynman diagrams [6]. This growth
persists up to the value x = xc, where xc is a solu-
tion to the equation q2

0(xc) = Q2. In the region x <
xc, the parametrization specified by Eqs. (17) and
(18) reproduces the gluon-density-saturation effect
at xG(x, µ2) � Φ0µ

2. Hereafter, this parametrization
will be referred to as the LRSS parametrization of
unintegrated gluon distributions.

A different parametrization of unintegrated gluon
distributions was proposed by Ryskin and Shabel-
ski [12]. This parametrization, which we refer to as
the RS one, corresponds to the result obtained by
numerically solving the BFKL evolution equations
with the Morfin–Tung structure functions [25] as ini-
tial conditions and with allowance for the shadowing
corrections (saturation effects) in the low-x region.
The expression for Φ(x,q2

T ) has the form

Φ(x,q2
T ) =

1
4
√

2π3

a1

a2 + a3 + a4
(19)
PH
×
(
a2 + a3

Q2
0

q2
T

+ a4

(
Q2

0

q2
T

)2

+ αx +
β

ε + ln(1/x)

)

× f(x,q2
T )
(

a5

a5 + x

)1/2(
1 − a6x

a7 ln
(

q2
T

a8

))

× (1 + a11x)(1 − x)a9+a10 ln(q2
T /a8),

where the function f(x,q2
T ) is determined by relation

(18). All parameters (a1–a11, α, β, ε) were found
in [12] by minimizing the difference of the right- and
the left-hand side of the BFKL equation.

The so-called BFKL parametrization obtained by
solving the BFKL equations according to the method
proposed in [26] is the third parametrization used here
for unintegrated gluon distributions. The method is
based on directly solving the BFKL equations in the
leading approximation with the collinear gluon den-
sity xG(x, µ2) from the Glück–Reya–Vogt set [27]
used as the initial condition. Technically, the uninte-
grated gluon distributions are calculated, in this case,
as the convolution of the collinear gluon distribution
xG(x, µ2) with the universal weight factor [26]; that
is,

Φ(x,q2
T , µ

2) =

1∫
x

ϕ(η,q2
T , µ

2)
x

η
G

(
x

η
, µ2

)
dη,

(20)

where
ϕ(η,q2
T , Q

2) =




ᾱs

ηq2
T

J0

(
2
√
ᾱs ln(1/η) ln(µ2/q2

T )
)

if q2
T ≤ µ2,

ᾱs

ηq2
T

I0

(
2
√
ᾱs ln(1/η) ln(q2

T /µ
2)
)

if q2
T > µ2,

(21)
with J0 and I0 being Bessel functions of a real and
an imaginary argument, respectively. The parame-
ter ᾱs = 3αs/π appearing in expressions (20) and
(21) is related to the Pomeron intercept ∆: specif-
ically, we have ∆ = 4ᾱs ln 2 � 0.53 in the leading
order of perturbation theory and ∆ = 4ᾱs ln 2−Nᾱ2

s ,
where N ∼ 18, in the next-to-leading order [28, 29].
However, various summation procedures proposed
recently [29, 30] yield a positive value (∆ ∼ 0.2–0.3).

The presence of two different parameters µ2 and
q2

T in expression (20) for the nonintegrated gluon
distribution Φ(x,q2

T , µ
2) is due to the following way

of evolution. First, use is made of the evolution of
the gluon structure function from Q2

0 to µ2 in the
collinear approximation according to the DGLAP
equations [9]; then, Eqs. (20) and (21) are employed
as the result of evolution in q2
T according to the BFKL

equations.

The last of the parametrizations used here for the
unintegrated gluon distributions is that which is ob-
tained by differentiating the collinear gluon density
xG(x, µ2) [5, 6, 10, 31] from the standard Glück–
Reya–Vogt set:

Φ(x,q2
T ) =

dxG(x, µ2)
dlnµ2

∣∣∣∣
µ2=q2

T

. (22)

The effective gluon distribution xG(x, µ2) is re-
lated to the nonintegrated distributions Φ(x,q2

T , µ
2)

by Eq. (1), where the contribution from the region of
low q2

T (0 < q2
T < Q2

0) is taken into account with the
YSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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Fig. 2. Effective distributions xG(x,µ2) versus the variable x for various values of µ2. Curve 1 corresponds to the GRV
parametrization of the collinear gluon density. Curves 2, 3, 4, and 5 were calculated with the effective gluon distributions
obtained from the nonintegrated structure functionsΦ(x,q2

T , µ2) according to expression (1) by using the RS parametrization
(at Q2

0 = 4 GeV2), the LRSS parametrization (at Q2
0 = 2 GeV2), the BFKL parametrization (at Q2

0 = 1 GeV2), and the
parametrization in the form (22) (at Q2

0 = 1 GeV2), respectively.
aid of the collinear gluon density xG(x,Q2
0), where

Q2
0 = 1–4 GeV2 for the different parametrizations.

Figure 2 displays the effective distributions
xG(x, µ2) versus the variable x for various values of
µ2. Curve 1 corresponds to the known parametriza-
tion of the collinear gluon distributions that was pro-
posed by Glück, Reya, and Vogt (GRV parametriza-
tion). Curves 2, 3, 4, and 5 were calculated for the
effective gluon distributions obtained from the nonin-
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
tegrated structure functions Φ(x,q2
T , µ

2) according
to expression (1) with the RS, LRSS, BFKL, and
(22) parametrizations, respectively, for various values
of the parameter Q2

0.

The effective gluon distributions xG(x, µ2) ob-
tained with the LRSS parametrization of uninte-
grated gluon distributions are significantly different
from other distributions “normalized” to GRV. The
reason is that they are normalized to experimental
3
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Fig. 3. Diagrams describing the subprocess g∗g∗ → QQ̄
in the leading order of perturbation theory.

data on bb̄-pair production in hadron collisions at the
Spp̄S-collider energy.

4. MATRIX ELEMENTS FOR THE
SUBPROCESS OF GLUON–GLUON

FUSION

In this section, we calculate the squared matrix
element

∑
|M |2SHA(g∗g∗ → QQ̄) for the subpro-

cess of gluon–gluon fusion within the theory of
semihard processes and obtain an expression for∑

|M |2PM(gg → QQ̄) in the leading order of pertur-
bative QCD. We will use this expression in calcula-
tions within the ordinary parton model.

As was mentioned above, expression (12) describ-
ing the differential cross section for heavy-quark pro-
duction assumes the dependence of the matrix ele-
ment for the subprocess of gluon–gluon fusion within
the semihard approach in QCD on the virtualities
q2
1 = −q2

1T �= 0 and q2
2 = −q2

2T �= 0 of the initial glu-
ons. The amplitude of the subprocess g∗g∗ → QQ̄ in
the leading order of perturbation theory is described
by three diagrams in Fig. 3. The standard Feynman
rules for QCD yield

MA = ū(p1)(−igγµ)εµ(q1)i (23)

× p̂1 − q̂1 + m

(p1 − q1)2 −m2
(−igγν)εν(q2)v(p2),

MB = ū(p1)(−igγν)εν(q2)i

× p̂1 − q̂2 + m

(p1 − q2)2 −m2
(−igγµ)εµ(q1)v(p2),

MC = ū(p1)Cµνλ(−q1,−q2, q1 + q2)

× g2εµ(q1)εν(q2)
(q1 + q2)2

γλv(p2),

where the subscripts A, B, and C correspond to
the three diagrams in Fig. 3; εµ(q1) and εν(q2) are
the polarization vectors of the initial gluons; and
Cµνλ(q1, q2, q3) is the ordinary three-gluon vertex,

Cµνλ(q1, q2, q3) = i((q2 − q1)λgµν (24)

+ (q3 − q2)µgνλ + (q1 − q3)νgλµ).
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Fig. 4. Cross section for b-quark production versus pmin
1T

at mb = 4.75 GeV, ΛQCD = 150 MeV, and |y∗
1 | < 1. The

notation for the curves is identical to that in Fig. 2. The
displayed experimental data were obtained by the (�) D0
and (•) CDF Collaborations.

The Mandelstam variables for the process gg → QQ̄
have the form

ŝ = (q1 + q2)2 = (p1 + p2)2, (25)

t̂ = (q2 − p2)2 = (p1 − q1)2,

û = (q1 − p2)2 = (p1 − q2)2

and satisfy the relation

ŝ + t̂ + û = 2m2 + q2
1T + q2

2T . (26)

If we represent the expressions for MA, MB , and
MC in the form

MA,B,C = εµ(q1)εν(q2)M
µν
A,B,C , (27)

the expression obtained for the squared matrix ele-
ment upon summation over gluon polarizations and
averaging over the spins of final-state particles as-
sumes the form∑

|M |2 = CA

∑
|M |2A + CB

∑
|M |2B (28)

+ CC

∑
|M |2C + 2CAB

∑
|M |2AB

+ 2CAC

∑
|M |2AC + 2CBC

∑
|M |2BC ,

where∑
|M |2i =

1
4
Lµα(q1)Lνβ(q2)M

µν
i M∗αβ

i (29)

with i = A,B,C,AB,AC,BC, the color factors
being CA = CB = 1/12, CC = 3/16, CAB = −1/96,
andCAC = CBC = 3/32. We have already mentioned
that the gluon polarization tensor Lµν(q) is chosen in
the form (2).
YSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003



HEAVY-QUARK PRODUCTION 761
                                                           
105

104

103

102

101

σ(pp → bbX), nb
––

6 8 10 12 14
p1T

min
, GeV

3

5
4
2
1

Fig. 5. Cross section for b-quark production versus pmin
1T

at mb = 4.75 GeV, ΛQCD = 150 MeV, |y∗
1 | < 1, |y∗

2 | <
1, and p2T > 6.5 GeV. The notation for the curves is
identical to that in Fig. 2. The displayed experimental data
(points) were obtained by the CDF Collaboration.

We calculated the quantity
∑

|M |2SHA(g∗g∗ →
QQ̄) analytically by using the REDUCE com-
puter package for analytic calculations. The re-
sults are rather cumbersome, but, numerically, they
agree with those presented in [7]. In calculating∑

|M |2PM(gg → QQ̄) within the parton model, we
took the gluon polarization tensor in the axial gauge;
that is,

Lµν(q1, q2) = −gµν +
qµ
1 q

ν
2 + qν

1q
µ
2

(q1 · q2)
− q2

2

qµ
1 q

ν
1

(q1 · q2)2
.

(30)

We emphasize that the explicit expression obtained
here for

∑
|M |2PM(gg → QQ̄) coincides with the re-

sult of Babcock et al. [32].

5. RESULTS OF THE CALCULATIONS

In this section, we discuss the results obtained
by calculating the cross section for heavy-quark pro-
duction on protons at the Tevatron energies within
the theory of semihard processes and compare these
results with recent experimental data of the D0 and
CDF Collaborations (see [33] and [34], respectively).

As was mentioned above, the total cross sections
in the theory of semihard processes and in the or-
dinary parton model were calculated according to
expressions (12) and (14), respectively. In the calcu-
lations, we set µ2 = m2 + p2

1T . The limits of integra-
tion with respect to p2

1T were chosen to be 1 GeV2 ≤
p2

1T ≤ s/4 −m2. We note that the calculated cross
section is virtually independent of the value of pmin

1T in
the range 1 ≤ pmin

1T ≤ 5 GeV. As in [1], the region of
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
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Fig. 6. Cross section for b-quark production versus
pmin

1T at |y∗
1 | < 1. Curves 3 and 3∗ were obtained with

the LRSS nonintegrated gluon distribution at mb =
4.75 GeV, ΛQCD = 150 MeV, and Q2

0 = 2 GeV2 and
mb = 5.0 GeV, ΛQCD = 100 MeV, and Q2

0 = 4 GeV2, re-
spectively. The displayed experimental data were obtained
by the (�) D0 and (•) CDF Collaborations.

integration with respect to q2
1T and q2

2T was broken
down into four parts. For q2

1T ≥ Q2
0 and q2

2T ≥ Q2
0,

we performed calculations according to (12), while,
for q2

1T ≤ Q2
0 and q2

2T ≤ Q2
0, we set q2

1T = 0 and
q2

2T = 0 in the scattering amplitude and replaced∑
|M |2SHA(g∗g∗ → QQ̄) by

∑
|M |2PM(gg → QQ̄).

The contribution of the region where q2
1T ≤ Q2

0 and
q2

2T ≥ Q2
0 and the region where q2

1T ≥ Q2
0 and q2

2T ≤
Q2

0 was taken into account in a similar way, one
of the gluons being described by the nonintegrated
distribution function Φ(x,q2

T , µ
2) and the other being

described by the collinear density xG(x, µ2). The
choice of the critical value of Q2

0 is dictated by the
requirement that the coupling constant αs(q2

1,2T ) be
small in the region q2

1,2T ≥ Q2
0. In our calculations,

we used values in the range Q2
0 = 1–4 GeV2, so that

αs(q2
1,2T ) ≤ 0.26.

Figures 4–8 display the results of our calculations.
Figures 4 and 5 show the cross section of b-quark
production as a function of pmin

1T at mb = 4.75 GeV
and ΛQCD = 150 MeV for |y∗1| < 1 (Fig. 4) and
for |y∗1| < 1, |y∗2| < 1, and p2T > 6.5 GeV (Fig. 5).
Curve 1 corresponds to the calculations within the
ordinary parton model that employ the gluon dis-
tribution xG(x,Q2) from the Glück–Reya–Vogt
set [27], while curves 2, 3, 4, and 5 correspond to the
calculations within the theory of semihard processes
using the RS nonintegrated gluon distribution (Q2

0 =
4 GeV2), the LRSS nonintegrated gluon distribution
3
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Fig. 7. Cross section for b-quark production versus pmin
1T

at mb = 4.75 GeV, ΛQCD = 150 MeV, |y∗
1 | < 1, |y∗

2 | < 1,
and p2T > 6.5 GeV. The notation for the curves is iden-
tical to that in Fig. 6. The points represent experimental
data obtained by the CDF Collaboration.

(Q2
0 = 2 GeV2), the BFKL nonintegrated gluon dis-

tribution (Q2
0 = 1 GeV2), and that in the form (22)

(Q2
0 = 1 GeV2), respectively.
It is clear from Figs. 4 and 5 that the results of

calculations within the parton model (curves 1) do
not agree with recent experimental data obtained
by the D0 and CDF Collaborations, but that the
results of the theory of semihard processes are in
good agreement with the data. The use of the LRSS
phenomenological gluon distribution function re-
sults in overestimating the cross section for b-quark
production, but, by varying the parameters Q2

0, mb,
and ΛQCD within the limits 1 GeV2 ≤ Q2

0 ≤ 4 GeV2,
4.5 GeV ≤ mb ≤ 5.0 GeV, and 100 MeV ≤ ΛQCD ≤
250 MeV (we used the following set of parameter
values: Q2

0 = 4 GeV2, mb = 5.0 GeV, and ΛQCD =
100 MeV), one can reach satisfactory agreement with
the data (curves 3∗ in Figs. 6, 7). However, ZEUS
and H1 data on the photoproduction of bb̄ quark pairs
(see [35] and [36], respectively) were described only
with the LRSS gluon distribution at Q2

0 = 2 GeV2

(mb = 4.75 GeV and ΛQCD = 200 MeV) [16].
The curves in Fig. 8 were obtained with the ma-

trix elements (27) for the subprocess of gluon–gluon
fusion (curve 2) and the matrix elements from [7]
(curve 2∗); here, we have used the RS nonintegrated
gluon distribution. The results are in good agreement
with each other.

As was noted above, the problem of seeking a
“universal” nonintegrated gluon distribution is of
great importance. With this aim in view, a number
of processes leading to the production and pho-
toproduction of heavy quarks and quarkonia were
P
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Fig. 8. Cross section for b-quark production versus pmin
1T

at |y∗
1 | < 1. Curves 2 and 2∗ were calculated with the RS

nonintegrated gluon distribution and the matrix elements
for the subprocess of gluon–gluon fusion in the form (27)
(2) and in the form taken from [7] (2∗). The displayed
experimental data were obtained by the (�) D0 and (•)
CDF Collaborations.

considered in [13–17]. In our opinion, the results
obtained here and in [13–17] suggest that the RS
and BFKL nonintegrated distributions, which are
parametrizations of solutions to the BFKL evolution
equations, may be candidates for universal gluon
distributions.

6. CONCLUSION

We have considered the inclusive high-energy
production of heavy (c, b) quarks within the semihard
approach in QCD. We studied the dependence of
the total cross sections for heavy quarks and the
dependence of σ(pT > pmin

T ) on unintegrated gluon
distributions. We have paid special attention to gluon
distributions derived from solutions to the BFKL
evolution equations. We have shown that the theoret-
ical results obtained with the RS gluon distribution,
the BFKL gluon distribution, and that in the form
(22) (at mb = 4.75 GeV and ΛQCD = 150 MeV) and
with the LRSS phenomenological distribution (at
mb = 5.0 GeV and ΛQCD = 100 MeV) are in good
agreement with experimental data obtained by the D0
and CDF Collaborations.4)
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Abstract—A general solution of RG equations in the framework of background perturbation theory is
written in the large-Nc limit. A simplified (model) approximation to the general solution is suggested that
allows β(α) andα(s) to be written to any loop order. The resultingαB(Q2) coincides asymptotically at large
|Q2| with standard (free) αs, saturates at small Q2 ≥ 0, and has poles at timelike Q2 in agreement with
analytic properties of physical amplitudes in the large-Nc limit. c© 2003 MAIK “Nauka/Interperiodica”.
1. The running αs of standard perturbation theory
(SPT) has unphysical singularities (Landau ghost
pole and cuts) in the Euclidean region, which con-
tradict analyticity of physical amplitudes and are not
observed in lattice calculations of αs(Q2) [1].

As was shown in [2, 3], background perturbation
theory (BPT) is free of these defects and the coupling
constant αB of BPT displays an important property
of IR freezing (saturation) with αB(Q2 = 0) ≈ 0.5 [2,
3]. This behavior of αB is well confirmed by experi-
mental data on spin splitting of quarkonia levels [4, 5]
and by lattice data [6].

Analytic properties of αB(Q2) in the Q2 plane
have not been studied heretofore and are the topic of
the present paper. To this end, the large-Nc limit is
exploited, which ensures that any physical amplitude
has only simple poles [7]. This requires that αB(Q2)
should be a meromorphic function ofQ2.

To find it explicitly, we study below the general
solution of RG equations and suggest a simple model
approximation to it, yielding β(α) to all orders and an
explicit form of αB(Q2).

The resulting αB(Q2) can be compared with
αs(Q2) of SPT and coincides with the latter asymp-
totically at largeQ2.

2. Separating background field Bµ in the to-
tal gluonic field Aµ = Bµ + aµ, and expanding in
gaµ one gets the BPT series, where coefficients
depend both on the external momenta and on the
combination gBµ, which turns out to be RG in-
variant, if background gauge is chosen [8]. Cor-
respondingly, αB ≡ g2/4π satisfies the standard

∗This article was submitted by the author in English.
1063-7788/03/6604-0764$24.00 c©
RG equations, where momenta and the correlator
tr〈Fµ1ν1(B)Fµ2ν2(B) . . . Fµnνn(B)〉 averaged over
vacuum background enter together and will be de-
noted {P2

i }.
One starts with the standard definition

dαB(µ)
d lnµ

= β(αB) (1)

and represents β(αB) in the form

β(α) = −β0

2π
α2[

1 − β1

2πβ0
ϕ′
(

1
α

)] , (2)

where ϕ(z) is an arbitrary function with some condi-
tions to be imposed below, and prime means deriva-
tive.

Solving (1) with the help of (2), one has

αB =
4π

β

[
lnµ2 + χ+

2β1

β2
0

ϕ

(
1
αB

)] . (3)

Here, χ is an arbitrary dimensionless function of
{P2

i }, while ϕ is partly fixed by a few coefficients of
expansion of β(α),

β(α) = −β0

2π
α2 − β1

4π2
α3 − β2

64π3
α4 − β3

(4π)4
α5.

(4)

(Note that βi are defined as in [9], for nf = 0, Nc = 3,
and MS scheme β0 = 11, β1 = 51, β2 = 2857, β3 =
58486.)

At this point, we shall use the large-Nc limit and
require that αB(Q2) be a meromorphic function of
Q2. Consider, e.g., the process e+e− → hadrons and
2003 MAIK “Nauka/Interperiodica”
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the photon self-energy part Π(Q2), which has a pole
expansion [3]

Π(Q2, αB) =
∞∑

n=0

Cn(αB)
Q2 +M2

n(αB)
+ subtractions,

(5)

where pole positionsM2
n(αB) and residuesCn depend

on the coupling constant αB and are different in each
order αn

B.
Expanding in αB and doing a partial summa-

tion (equivalent to the summation of leading log-
arithms), one obtains a running αB(Q2) that has
poles at some, generally speaking, shifted positions
as compared to the poles of the lowest order—M2

n(0).
The latter are proportional to n;M2

n(0) = m2
0n+M2

0 ;
n = 0, 1, 2, ..., m2

0 = 4πσ; Cn(0) = m2
0 [3]. The low-

est (partonic) approximation thus reduces to

Π(Q2, 0) ∼ ψ

(
Q2 +M2

0

m2
0

)
,

where ψ(z) = Γ′(z)/Γ(z).
To specify the form of the function ϕ(1/αB) and

χ(Q2), we shall use two requirements:
(i) The correspondence principle with SPT, which

states that, forQ2 � κ2, where κ2 is the scale of non-
perturbative vacuum fields, our solution (3) should
coincide with that of SPT.

(ii) αB(Q2) should be a meromorphic function of
Q2, and hence both χ and ϕ should be meromorphic
functions of their arguments (Q2 and 1/αB , respec-
tively).

The first requirement means that coefficients Cn

in the sum over poles should have finite limit C∞, i.e.,
one can represent this sum as the Euler function ψ(z)
plus a sumwith fast decreasing coefficients, which we
write symbolically as a finite sum. Thus, the general
solution satisfying (i) and (ii) can be written as

lnµ2 + χ = ln
m2

Λ2
+ ψ

(
Q2 +M2

0

m2

)
(6)

+
N1∑
n=1

bn
Q2 +m2

n

,

ϕ

(
1
αB

)
= ψ

(
λ

αB
+ ∆

)
+ P

(
1
αB

)
, (7)

where Λ is the SPT parameter, e.g., ΛQCD in the
MS scheme; ∆ is some constant; and λ = 4π/β0.
Here P (x) is some meromorphic function. Note that
our solution (6), (7) satisfies (1) and reproduces the
first two coefficients in expansion (4) when all bn = 0
and P ≡ 0, while our β2 and β3 appear to be smaller;
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
however, the latter are scheme-dependent. It is easy
to reproduce β2 and β3 by choosing in (7) P �= 0. This
choice of ϕ(1/αB) leads to a small numerical (around
2%) change in αB as compared to the minimal choice
[see (8) below] for allQ2 ≤ 0.

3. In what follows, we confine ourselves to the
minimal model of (6), (7) with all bn and P identically
zero, which yields

αB =
4π
β0

[
ln
m2

Λ2
+ ψ

(
Q2 +M2

0

m2

)
(8)

+
2β1

β2
0

ψ

(
λ

αB
+ ∆

)]−1

.

Equation (8) defines αB as a meromorphic function of
Q2 in the wholeQ2 complex plane.

Moreover, Eq. (8) defines αB to all orders in the
“loop expansion” obtained by iteration of the last term
in the square brackets in (8) and will be compared be-
low to the SPT loop expansion. Consider, e.g., large
Q2, Q2 +M2

0 /m
2 � 1. Then, using the asymptotic

expansion for z → ∞

ψ(z) = ln z − 1
2z

−
∞∑

k=1

B2k

2kz2k
, (9)

where Bn are Bernoulli numbers, one obtains to the
lowest order

α
(0)
B =

4π

β0 ln
(
Q2 +M2

0

Λ2

) , (10)

which explicitly shows the asymptotically free (AF)
behavior for large Q2 and the absence of a Landau
pole (forM2

0 > Λ2) (see Fig. 1).
Forms (2) and (8) in general admit poles of

αB(Q2) for Q2 ≥ 0 and poles of β(αB) for αB ≥ 0,
which would be unphysical. The latter poles are
defined by the equation

1 =
β1λ

2πβ0
ψ′
(
λ

α
+ ∆

)

and are excluded from the region α ≥ 0 when ∆ >
∆0 = 1.255. This latter condition also excludes sin-
gularities of αB(Q2) (8) atQ2 > 0. At the same time,
β(α) has a point of condensing zeros on the negative
side of α = 0, and β(α) is monotonically decreasing
when α→ ∞, as is shown in Fig. 2 and Table 1.
Note that a pole of β(α) at α = α∗ > 0 leads to a
situation when real solutions α(q) exist only for α ≤
α∗,Q > Q∗.

4. Although αB(Q2) does not have poles for
∆ > ∆0 in the Euclidean region, Q2 > 0, it has an
infinite number of poles forQ2 < 0.
3
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Fig. 1.Exact solution of Eq. (8) forαB(Q2)with∆ = 1.5

as a function of s ≡ Q2 (solid curve) and exact solution
for αB from the extended model, Eq. (3), with ϕ′ from
(21) and η = 3, ∆ = 1.5 which reproduces all known βn

coefficients (dashed curve).

These poles are given by zeros of the denominator
in (8), which can be written as

−Q2 ≡ sn = s(0)n − δn, (11)

s(0)n ≡M2
n = M2

0 + nm2,

and δn is then found from (8) to be [10]

δ−1
n

∼= ln(M2
n/Λ

2). (12)

Hence, poles of αB are shifted in comparison with

poles of ψ
(
Q2 +M2

0

m2

)
, the latter describing the

physical states of (double) hybrids—the background
analog of gluon loops renormalizing αs in SPT. In the
vicinity of the pole, αB has the form [10]

αB(s ≈ s(0)n − δn) =
4π/β0 − ψ′(∆)
ψ′(zn)(z − zn)

, (13)

z =
M2

0 − s

m2
.

Hence, the perturbative series of BPT is a sum
over poles of αB and nonperturbative poles of
Π(Q2, 0) in (5) (dual to partonic contribution), all
poles being in the region s > M2

0 − δ0 > 0, and this
situation is in accord with the large-Nc analytic
properties. Now, one has to show that the “physically
averaged value” of αB(s) corresponds to the AF
behavior, as is seen, e.g., in e+e− annihilation. To
this end, one can choose two equivalent procedures:
(i) introduce the width of the pole in αB(s), or (ii)
equivalently consider the BPT series at the shifted
value of s, s = s̄(1 + iγ) (see, e.g., [11]).

In what follows, we shall exploit the second path.
Considering ImαB above the real axis, at s̄(1 + iγ)
with s̄ large and γ fixed, γ � π, allows one to use
asymptotic expression (10) (in one-loop order) with
the result

ImαB(s̄(1 + iγ)) (14)
PH
 

. . .

0.5 1.0 1.5 2.0

–5

–10

–15

 
α

 

.. . . .. . . . . . . . . . . . . .

Fig. 2. βmin(α) in the minimal model Eqs. (2), (7)
as a function of α with P ≡ 0, ∆ = 1.5, reproducing
scheme-independent coefficients β0, β1 (dashed curve),
and βext(α) in the extended model Eqs. (2), (21) with η =
3 and ∆ = 1.5 (solid curve) and ∆ = 3 (dotted curve).

≈ 4π(π − γ)

b0

[
ln2

∣∣∣∣M2
0 − s̄

Λ2

∣∣∣∣+ (π − γ)2
] .

Another form of discontinuity results from the ex-
pansion of the Adler function D(Q2) =
Q2dΠ(Q2)/d lnQ2, from which the hadronic ratio
R(s) can be obtained as [12]

R(s) =
1

2πi

−s+iε∫
−s−iε

D(σ)
dσ

σ
=

1
2πi

∫
C(s)

D(σ)
dσ

σ
.

(15)

Here, C(s) is the circle of radius s around the origin,
comprising all singularities of D(σ) in the Euclidean
region.

Similarly to [12], one can define the operation

Φ
{αB

π

}
transforming the known perturbative series

forR(s):

R(s) = Nc

∑
q

e2q

[
1 + Φ̄

{αB

π

}
+ d2Φ̄

{(αB

π

)2
}]

,

(16)

where

Φ̄
{(αB

π

)k
}

=
1

2πi

∫
C(s)

(
αB(σ)
π

)k dσ

σ
. (17)

We shall consider the situation where one can
use logarithmic asymptotic expression (10) for αB in
the Minkowskian region. This occurs in the physical
situation described above: when poles have imaginary
parts (widths of resonances), or equivalently when
one considers effective

R̄(s) =
1
2i

(Π(s(1 + iγ)) − Π(s(1 − iγ)))

with fixed γ (so that the requirement |arg(z)| < π is
fulfilled).
YSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003



NOVEL SOLUTIONS OF RG EQUATIONS 767
Table 1. The QCD β function β(α) for nf = 0, Nc = 3
obtained numerically to all orders in α for the minimal
model βmin(α), Eq. (2), with ϕ = λ/α+ ∆, and ∆ = 1.5,
λ = 1.14, and for the extendedmodel βext withϕ′ from (21);
the last column refers to β(α) inMS as given in Eq. (4)

α βmin(α) βext(α) β
(3 loop)

MS
(α)

0 0 0 0

0.1 −0.0187 −0.019 −0.01895

0.2 −0.08 −0.082 −0.0833

0.5 −0.587 −0.65 −0.767

1.0 −2.85 −3.36 −6.82

1.2 −4.36 −5.23 −13.56

1.5 −7.38 −9.04 −33.35

2.0 −14.59 −18.43 −115.24

In this case, one obtains, after inserting in inte-
gral (17) the asymptotic form (10) (see [10] for de-
tails),

Φ
{ ᾱB

π

}
∼=

4
b0

{
1
π
arctan

π

ln(s/Λ2)
(18)

+
2M2

0

s ln3(s/Λ2)
+O

(
M2

0

s ln4(s/Λ2)

)}
.

5. One can now compare the expansion (“loop
expansion”) of αB in (8) in powers of α(0)

B (10) with
the SPT expression forαs [9, 13]. To this end, we shall
write αB [Eq. (8)] as follows:

αB = α
(0)
B

{
1 − 2β1 lnL

β2
0L

+
4β2

1

β4
0L

2
(19)

×
[(

lnL− 1
2

)2

+ b

]}
,

where L ≡ ln[(Q2 +M2
0 )/Λ2] and, for nf = 0, ∆ =

1.5,

b = − β2
0

2β1

(
∆ − 1

2

)
− 1

4
= −1.436. (20)

This should be compared with the MS value of
SPT, bMS = 0.26 (nf = 0).

To bring our theoretical expressions for β2 and β3

in agreement with the computed MS values (see [9]
for the corresponding references), one should gener-
alize the minimal model considered above by adding a
term to ϕ(1/α):

ϕ′
(

1
α

)
= λψ′

(
λ

α
+ ∆

)
+

C̃α2

1 + α2η2
. (21)
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Table 2.αB(Q2) computed numerically to all orders within
the minimal model, Eq. (8), with Λ = 0.37 GeV, ∆ = 1.5,
m = M0 = 1 GeV and in the extended model, Eqs. (3),
(21), with η = 3, C̃ = 1.253 reproducing all known coeffi-
cients βn, n = 0, . . . , 3, in theMS scheme for nf = 0; the
last two columns refer to the two-loop approximation of
αB and αs (in SPT) with the same parameters

Q2,
(GeV2)

α
(min)
B (Q2) α(ext)

B (Q2) α(2 loop)
B (Q2) α(2 loop)

s (Q2)

0 0.546 0.754 0.64

0.5 0.394 0.462 0.359 0.73

1 0.337 0.379 0.328 0.404

1.5 0.306 0.337 0.293 0.33

2 0.286 0.311 0.27 0.293

3 0.26 0.278 0.244 0.256

5 0.232 0.245 0.217 0.229

10 0.201 0.210 0.188 0.19

40 0.159 0.163 0.15 0.149

100 0.139 0.142 0.131 0.131

Choosing C̃ = 1.253 and arbitrary real η, one ob-
tains both β2 and β3 in close agreement (within 1%)
with MS values. In this case also, b in (20) gets
a contribution from the new term and becomes b̃ =
b+ (2πβ0/β1)C̃ = 0.263, which agrees with SPT [9].
We study numerically both the minimal model and
the corrected one as explained above and present the
results for β(α) in Table 1 and Fig. 2 and for αB(Q2)
in Table 2 and Fig. 1.

From Table 1 and Fig. 2, it is clear that nonper-
turbative β(α), namely, βmin(α), calculated as in (2),
(7) with P ≡ 0, and βext(α), calculated as in (2), (21),
both decrease more moderately (as (−|const| · α2)) at
α > 1 as compared to the purely perturbative three-
loop expression (4). This might indicate that the se-
ries (4) is asymptotic and should be cut off after the
first few terms (note that β3 is larger than the previous
three coefficients).

For Q2 = 100 GeV2 and M0 = 1 GeV, the cor-
rection in αB(Q2) introduced by replacements (21) is
around 2% and it decreases asQ2 grows.

Defining Λ ≡ ΛB = ΛMS (since αB and αs prac-
tically coincide for Q2 > 40 GeV2), one can compare
exact αB(Q2) obtained by solving (8) with αs(Q2)
(two-loop) of SPT and observe a significant difference
only at small Q2,Q2 ≤ 10 GeV2.

One can see in Fig. 1 and Table 2 that the dif-

ference of α(min)
B and α(2 loop)

s is 20% at 1 GeV2 and
3
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drops to 1.3% at 5 GeV2, which implies that the use

of α(min)
B instead of αs in the Euclidean region would

not producemuch change in the regionQ2 > 1GeV2,
while it improves the situation for Q2 ≤ 1 GeV2,

where α(min)
B saturates in agreement with experiment

and lattice data (see [1–6] and [14] for the discussion
of this point).

6. We have used the large-Nc limit to simplify
analysis of analytic properties of background cou-
pling constant αB . This has also enabled us to study
αB(Q2) for timelike Q2 and to suggest a simplified
model solution of exact RG equations, which yields
αB to all orders and prescribes the nonperturbative
expression for β(α).

The resulting solution for αB coincides with the
standard αs at large |Q2| and displays familiar AF
properties. At the same time, αB(Q2) stays finite
everywhere in the Euclidean region, demonstrating
phenomenon of IR saturation. For timelike Q2, the
model αB(Q2) in the large-Nc limit acquires pole
singularities, which have been treated above in the
averaging procedure. It is worth noting that our
minimal model correctly reproduces both scheme-
independent coefficients β0 and β1. At the same
time, scheme-dependent coefficients β2, β3, etc.,
are defined by additional pole terms with arbitrary
constants in them. Several improvements are pos-
sible with the suggested model solution. First, one
can consider nf �= 0, Nc finite, in which case poles
would acquire width. This will not change much the
averaged values of αB(s) calculated above, but will
enable one to make local predictions of resonance
behavior. Secondly, our model is too simplified, since

ψ

(
Q2 +M2

0

m2

)
appearing in (8) represents only the

equidistant spectrum of hybrids (equivalent of gluon
loops), but this spectrum should not be equidistant
for the lowest states, which yields power corrections,
considered in [10].
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ELEMENTARY PARTICLES AND FIELDS
Theory
Charm Contribution to the Proton Structure Function in Deep-Inelastic
epepep Scattering at the HERA Collider
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Abstract—The structure function F c
2 is evaluated within the charm-production model based on pertur-

bative QCD. The results are compared with H1 and ZEUS data obtained at the HERA collider. It is
shown that, forD∗-meson production, the spectator mechanism, which is independent of the flavors of the
hadronic-remnant quarks, comes into play for pT > 10 GeV and that, in calculating charm production in
the kinematical domain studied at the HERA collider, it is not necessary to take into account the evolution
of the c-quark distribution in the initial-state hadron. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
It is well known that, over a wide region of kine-

matic variables, experimental data on deep-inelastic
scattering are adequately described by using univer-
sal quark and gluon distributions satisfying equations
that describe evolution with increasing photon virtu-
alityQ2. However, attempts at including heavy (c and
b) quarks in the evolution equations for light quarks
run into difficulties stemming from the need for con-
sidering the kinematical domain around Q2 ∼ 4m2

q ,
where virtualities are quite high, and from the fact
that heavy quarks cannot be treated in the mass-
less approximation. An attempt at taking into ac-
count the heavy-quark contribution in the threshold
region, where the effect of the phase-space factor is
significant, and at matching this contribution with a
solution to the usual Dokshitzer–Gribov–Lipatov–
Altarelli–Parisi evolution equations at asymptotically
high momenta of Q2 � 4m2

q was made in [1, 2]. In
what follows, we will restrict our consideration to
c-quark production and use the notation introduced
in [1], because it is convenient for matching various
approximations at high Q2 with the corresponding
solutions at Q2 ∼ 4m2

c .
The charm contribution to the deep-inelastic-

scattering structure function is determined by the
convolution of the parton distributions and the co-
efficient functions; that is,

1
x
F c

2 (x,Q2) = Cg(Q2, µ2) ⊗ fg(µ2)[x] (1)

1)Institute of Nuclear Physics, Moscow State University,
Vorob’evy gory, Moscow, 119899 Russia.
*e-mail: aber@ttk.ru
**e-mail: kiselev@mx.ihep.su
***e-mail: likhoded@mx.ihep.su
1063-7788/03/6604-0769$24.00 c©
+ Cc(Q2, µ2) ⊗ fc(µ2)[x] +Cq(Q2, µ2) ⊗ fq(µ2)[x],

where fi are the parton distributions in the proton
and the symbol⊗ denotes a convolution integral with
respect to x:

a⊗ b[x] =

1∫
x

dz

z
a(z)b

(x
z

)
.

For µ2 < µ2
c , the distribution function vanishes,

fc(x, µ2) = 0, so that the structure function F c
2 is

determined completely by the photon–gluon fu-
sion γ∗g → cc̄—that is, by the convolution integral
Cg(Q2, µ2) ⊗ fg(µ2). The second term on the right-
hand side of Eq. (1) describes the scattering of a
virtual photon on a sea c quark from the initial hadron.
The γ∗c→ c contribution increases with Q2, so that,
at sufficiently high Q2, it becomes dominant. The
γ∗q → cc̄q contribution is usually neglected because
it is suppressed by an additional power of αs, but we
will show, in what follows, that this contribution can
be significant at moderately high pT and Q2.
In addition to the problem of matching the do-

mains Q2 ∼ 4m2
c and Q

2 � 4m2
c , there is another

important problem, that of contrasting theoretical
predictions against experimental data.
The spectral function F c

2 was determined by
the ZEUS and H1 Collaborations [3] from da-
ta on D∗±-meson production by taking into ac-
count only two decay modes, D∗ → K2π and D∗ →
K4π, the kinematical domains explored by these
collaborations being specified by the following in-
equalities: 1 < Q2 < 600GeV2, |η(D∗)| < 1.5, 1.5 <
pT (D∗) < 15 GeV, and 0.02 < y < 0.7 (ZEUS) and
1 < Q2 < 100GeV2, |η(D∗)| < 1.5, 1.5 < pT (D∗) <
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. Diagrams describing cq̄ production in γ∗g colli-
sions in the leading order of perturbative QCD.

10 GeV, and 0.05 < y < 0.7 (H1). Further, the cross
section for charm production over the entire kinemat-
ical domain was determined from suchmeasurements
on the basis of some charm-production model.
Thus, it was the spectra of charmed hadrons de-

tected over a kinematical domain characteristic of a
specific experiment rather than spectra of c quarks
that were actually measured in those experiments.
Therefore, a comparison of the calculated functions
F c

2 (Q2, x) with experimental data requires specifying
a c-quark hadronization mechanism.
The existing procedure of hadronization is based

on the application of the factorization theorem for the
momentum distributions of theD∗ mesons; that is,

dσD∗

dpT
=
dσc

dkT
⊗D(z), (2)

where D(z) is the c→ D∗ fragmentation function
and z = pT/kT . This function is usually taken in the
phenomenological form proposed in [4].
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Fig. 2. Transverse-momentum distribution of the cross
section for D∗-meson production in γg collisions at
200 GeV according to the calculation that takes into
account all diagrams in Fig. 1 (upper curves) and accord-
ing to the prediction of the fragmentation model (lower
curves) for the singlet and octet contributions shown
individually (solid and dashed curves, respectively).

Since the factorization theorem is no more than
an approximation, formula (2) adequately describes
the distributions in question only at high pT and
kT . The application of the factorization theorem over
the entire kinematical domain may lead to errors in
rescaling the c-quark spectrum into the D∗-meson
spectrum. This limitation of the proposed model is
clearly seen in the analysis of the H1 and ZEUS data.
In the pseudorapidity distributions, there is consid-
erable excess in the proton-fragmentation region. A
similar feature is observed in the distribution with
respect to the variable z(D∗) = (Pp(D∗))/(Pq), where
P , p(D∗), and q are the 4-momenta of the proton, the
D∗ meson, and the virtual photon, respectively. The
discrepancy between the experimental data and the
predictions relying on next-to-leading-order (NLO)
calculations in perturbative QCD and on formula (2)
for hadronization is substantial at high η(D∗) and
low z(D∗). To remedy this drawback, additional model
assumptions are introduced in the Monte Carlo algo-
rithms for generating events [3].

2. MODEL OF CHARM PRODUCTION

Here, we formulate a model where an attempt is
made to introduce hadronization from the outset. For
this purpose, we consider all O(αα3

s) diagrams of
perturbation theory that describe the production of a
cq̄ pair having the quantum numbers of the respective
charmed meson.
The complete set of such diagrams is shown in

Fig. 1. According to the notation introduced in (1), we
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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Fig. 3. Calculated differential cross sections for D∗-meson production in deep inelastic e+p scattering with respect to (a)
the photon virtuality (in GeV2), (b) the Bjorken variable x, (c) the invariant mass of final-state hadrons, (d) the transverse
momentum, (e) the pseudorapidity, and (f) the Feynman variable x(D∗), along with ZEUS data. The notation for the curves is
explained in the main body of the text.
restrict our consideration to the production process
induced by a photon–gluon collision, γ∗g → D∗ +
c̄+ q. That the production of a c quark is taken into
account simultaneously with the production of its
light partner q̄ in the cq̄ system requires introduc-
ing an additional nonperturbative parameter 〈O〉 that
describes the fusion of the cq̄ pair. This parameter
is proportional to the D∗-meson wave function and
is derived from the normalization condition involv-
ing the experimentally determined probability of c→
D∗ fragmentation at high transverse momenta,W =
0.23 [5].
The cq̄ system can be either in a color-singlet or

in a color-octet state. In our previous analysis of the
charm photo- and electroproduction [6], these con-
tributions were taken to be independent, each contri-
bution having its own normalization factor, 〈O(1)〉 or
〈O(8)〉. That these factors have nearly identical values
indicates that these contributions are approximately
equal at low pT , where the spectrum behaves as 1/p6T ,
and that the color-singlet contribution is dominant
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
in the fragmentation domain, where the spectrum
decreases in proportion to 1/p4T . The latter stems
from the ratio of the color factors. At high pT , both
contributions go over to the fragmentation regime,
behaving identically. Hadronization there is charac-
terized by the single parameter

〈Oeff〉 = 〈O(1)〉 +
1
8
〈O(8)〉.

It is remarkable property of the proposed model
that the factorization theorem holds at highmomenta;
that is, formula (2) provides a good approximation for
high pT , and the hadronization process is adequately
described in terms of fragmentation. With decreasing
momentum, relation (2) is badly violated: there arise
additional contributions depending on pT as 1/p6T ,
whereas this relation implies a conventional pT de-
pendence of the 1/p4T form.
The applicability of the factorization theorem at

high pT within our model is illustrated in Fig. 2 for
the singlet and the octet contribution individually.
3
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Specifically, Fig. 2 shows the contribution of the com-
plete set of diagrams in Fig. 1 and the contribution of
fragmentation-type diagrams, which was taken in the
form (2) with the fragmentation functionD(z) evalu-
ated in the same approximation with the same values
of the parameters 〈O〉 andmq. The calculations were
performed at the high value of sγg = (pγ + pg)2 =
(200 GeV)2, which is sufficient for the validity of the
factorization condition (2).

As can be seen from Fig. 2, there exists a range
of pT values where the perturbative-recombination
contribution not reducible to the form (2) is dominant.
This contribution is a mere consequence of gauge in-
variance rather than an artifact of model assumptions.
Since the pT dependence of this contribution involves
an additional factor of 1/p2T , it can be neglected at
high pT , whereupon the result takes the factorized
form (2).

A more detailed account of the model is given in
the Appendices.
P

3. ELECTROPRODUCTION OF D∗ MESONS

As was mentioned above, the proposed model was
previously used to describe ZEUS data on charm
photoproduction [7]. The fragmentation probability
W (c→ D∗) was determined from data onD∗-meson
production in e+e− annihilation [5]. The parameter
defining the factorization scale for the matrix ele-
ments of the quark operators 〈O(1,8)〉 was set to µF =
mD∗ ; the light-quark and the charmed-quark mass
were taken to be mq = 0.3 GeV and mc = 1.5 GeV,
respectively.

In this case, W (c→ D∗) = 0.23, 〈Oeff〉 =
0.25 GeV3, and the octet-to-singlet contribution
ratio is 〈O(8)〉/〈O(1)〉 = 1.3. It should be noted that
the introduction of the octet contribution substan-
tially improves the description of data, especially the
description of pseudorapidity distributions, where
this leads to an enhancement within the forward
hemisphere (with respect to the incident proton),
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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2 , along with the predictions of

the proposed model.

whereupon a fit to data proves to be better than that
which is based on NLO calculations [6].

The calculations for D∗-meson electroproduction
are similar to those for photoproduction, the only
difference being that the electroproductionmatrix ele-
ment averaged over photon and electron polarizations
has the form

|A|2 =
∑
ij

ki
1k

j
2 + kj

1k
i
2 −Q2gij/2
Q4

MiM
∗
j , (3)

where |A|2 is the square of theD∗-meson-electropro-
duction amplitude; Mi is the D∗-meson-photopro-
duction amplitude (the subscript i is the Lorentz
index associated with photon polarization); k1 and
k2 are, respectively, the initial and the final positron
momentum; and Q2 = −(k1 − k2)2. The results of
the calculations are presented in Figs. 3 and 4, where
the ZEUS and H1 data, respectively, are also shown
for the sake of comparison. The calculations were
performed with allowance for the experimental con-
straints on the kinematical variables. The dashed and
dotted curves represent, respectively the singlet and
the octet contribution in our model, while the solid
curves represent the sum of these contributions.

To fix the QCD running coupling constant in the
calculations of the matrix elements, we set the renor-

malization scale to the value of µR =
√
m2

D∗ +Q2 for

the upper curve, to the value of µR =
√

4m2
D∗ +Q2

for the lower curve, and to the value of µF =
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
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Fig. 7. Diagrams describing cq̄ production in γ∗q colli-
sions in the leading order of QCD.

√
m2

D∗ +Q2 for the CTEQ4 parametrization of

structure functions. As can be seen from the figures,
the results of the calculations agree well with exper-
imental data owing primarily to the inclusion of the
octet contribution. As in the case of photoproduction,
this makes it possible to improve the description of
the pseudorapidity [η(D∗)] distribution, the z(D∗)
distribution (measured by the H1 Collaboration), and
the x(D∗) = |p∗(D∗)|/W distribution [measured by
the ZEUS Collaboration; here, p∗(D∗) is the 3-
momentum of the D∗ meson in the reference frame
comoving with the center of mass of the colliding
virtual photon and proton]. Another feature peculiar
to the octet contribution is that, at 〈O(8)〉/〈O(1)〉 ∼ 1,
it is dominated by the perturbative-recombination
contribution. But in the fragmentation region, this
contribution is suppressed by the color factor of
3
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Fig. 8. Octet contribution (dashed curves) and contribution of scattering on a quark (solid curves) to D∗-meson production
in deep-inelastic scattering in the H1 kinematical domain. Shown in this figure are differential distributions with respect to the
same variables as in Fig. 4.
1/8, so that the color-singlet contribution becomes
dominant at high transverse momenta.
Thus, we conclude that, within the proposed

model, both the ZEUS data on photoproduction [7]
and the H1 and ZEUS data on charm production
in deep-inelastic scattering [3] can be adequately
described over a wide region of kinematical vari-
ables. This provides every reason to hope that the
extrapolation of experimental data to the entire region
of kinematical variables is reliable. Therefore, we
can compute the total rate of charm production and
determine F c

2 .

4. STRUCTURE FUNCTION F c
2

We recall that the charm contribution F c
2 to

the structure function F2 can be determined from
double-differential distribution of scattered electrons
for events involving charm production:

d2σc(Q2, x)
dxdQ2

=
2πα2

s

xQ4

{[
1 + (1 − y)2

]
F c

2 (4)

− y2F c
L(Q2, x)

}
.

Here, the longitudinal component FL is neglected
because of its smallness. As was indicated in the
Introduction, the function F c

2 is determined from the
PH
data on D∗-meson production. In the kinematical
domain not explored in current experiments, the cross
section is evaluated by using an extrapolation within
some model. Obviously, the cross section determined
in this way is a model-dependent value. In the pro-
posed model, one can perform such extrapolation and
compare the results with what was obtained in the
ZEUS and H1 experiments.
For various values of Q2, the points in Fig. 5

represent F c
2 values obtained from experimental data

and plotted versus x. These results were derived via
an extrapolation of the experimental cross-section
values to the entire region of kinematical variables by
using the results of NLO computations and Monte
Carlo codes for simulating hadronization. The curves
in Fig. 5 correspond to the predictions of the proposed
model, F c

2 being calculated by formula (4). The van-
ishing of the distributions at their ends is associated
with the phase-space boundaries for the given value
of the ep-interaction energy and the chosen quark
masses.
The H1 data on F c

2 and the respective predictions
of the model under consideration are shown in Fig. 6.

5. PERTURBATIVE RECOMBINATION
As was noted in the Introduction, the operator-

product expansion (1) involves, in addition to a term
YSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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that corresponds to charm production in gluon–
photon interaction, a term that describes charm
production in photon–quark interactions. The latter
is usually neglected because it is suppressed by an
additional factor of αs.
In the proposed approach, this contribution is de-

scribed by the diagrams in Fig. 7.

For this set of diagrams, the cross section for the
production of a color-octet state differs from the cross
section for the production of a color-singlet state only
by the color factor of 1/8. Therefore, we will consider
only singlet production.

A recent analysis of these contributions revealed
that, at high transverse momenta pT , they are sup-
pressed by an additional factor of 1/p2T . There is
no such suppression at low pT , and the differential
cross section for (c̄q) production at the q-quark-
production angle θ = 0 involves a large numerical
coefficient in relation to conventional photon–gluon
production [8]:

dσ̂(γ + q → (c̄q) + c)
dσ̂(γ + g → c̄c) 
 256π

81
αs. (5)
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Thus, the large numerical factor compensates for
the smallness of αs. At the same time, the cross
section at the production angle of θ = π is suppressed
by an additional factor inversely proportional to en-
ergy. It is also important that the contribution under
consideration depends only weakly on the light-quark
mass and does not vanish formq → 0.
The contribution from production on valence

quarks in the primary proton was used [6] to evaluate
the possible asymmetry in the photoproduction of
D+/D− and D0/D̄0. In both the ZEUS and the H1
kinematical domain, the experimental value of the
asymmetry was about 2 to 3%, which is on the order
of the experimental errors. However, the asymmetry
increases as the rapidity interval over which the
measurements are performed is extended. The con-
tribution under consideration becomes significant at
low energies of γp collisions, yielding an asymmetry
in the production rates that is commensurate with the
experimental asymmetries both for particles involving
valence quarks of initial-state hadrons and for par-
ticles involving no such quarks [8]. If one assumes
that the production asymmetry is due to perturbative
recombination, which involves an extra factor of 1/p2T
3
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in relation to the leading contributions, the asymme-
try must therefore decrease with increasing pT . If, on
the other hand, this asymmetry is associated with
the interaction of c quarks with the valence-quark
remnant of the initial-state hadron, then there must
be a contribution from the respective interaction with
sea quarks. Such a contribution does indeed exist;
surprisingly, it is similar to the octet contribution in
the present model both in form and in absolute value.
In contrast to the octet contribution, however, this
quark contribution does not contain an additional
normalization factor. The two contributions in ques-
tion to deep-inelasticD∗-meson production are com-
pared in Fig. 8 over the H1 kinematical domain. It can
be seen that, apart from a coefficient close to unity, the
log x and pT distributions of these two contributions
coincide over the entire region under consideration.
The Q2 distributions also behave almost identically
up to Q2 = 10GeV2. The distinctions between the
W , η(D∗), and z(D∗) distributions are greater, but
these distributions for the different contributions are
qualitatively similar. The sum of the contributions
from the γg and γd̄ production mechanisms to the
cd̄ production in a singlet state throughout the H1
kinematical domain is shown in Fig. 9. It is seen
that the description of the data is not poorer, at least
at moderate Q2, than in the case where the octet
contribution is taken into account.
Thus, the singlet contribution to the production of

cd̄ pairs will suffice for an adequate description of data
on charm photo- and electroproduction at the HERA
energies. Significant contributions to the production
of singlet states at these energies come from both
photon–gluon and photon–quark scattering subpro-
cesses as classified in Section 1, the contribution of
the latter subprocess becoming less important with
decreasing energy. Serious arguments in favor of the
importance of the sea-quark contribution to charm
production were adduced by Braaten et al. [8], who
were able to describe the asymmetry of charmed-
meson production in the E687 and E691 experiments
successfully.

6. CONCLUSION

The proposed model of charm production is based
both on perturbation theory, which adequately de-
scribes heavy-quark production, and on a nonpertur-
bative approach to the formation of a hadron from
quarks. This model provides a good fit to existing
data on the photo- and electroproduction of charmed
particles throughout the entire range of kinematical
variables.
The results of the present study can be summa-

rized as follows:
P

(i) At high transverse momenta of the cd̄ system,
the results coincide with the prediction of the model
based on the factorization theorem (2). To put it dif-
ferently, the momentum distribution of the pair cd̄ can
be represented as a convolution of the heavy-quark
spectrum with the fragmentation function evaluated
to the same order of perturbation theory.
(ii) The main contribution to the inclusive spec-

trum at low transverse momenta and low values ofQ2

comes from diagrams that decrease in proportion to
1/p6T with pT (rather than from those that decrease
in proportion to 1/p4T , which is what occurs in the
fragmentation region). Here, gγ and qγ collisions
make commensurate contributions to the production
processes under consideration.
(iii) The inclusion of the second term in expan-

sion (1) (Cc ⊗ fc) is not yet needed in describing
the main contributions to the structure function F c

2 .
According the results presented in [1], its role is ex-
pected to be significant at high Q2; in terms of the
present model under study, this term takes into ac-
count higher corrections to the Born terms discussed
above.
Thus, our main conclusion is as follows: in D∗-

meson production, the spectator mechanism, which
is independent of the flavors of the quarks in the
remnant of the initial-state hadron, is dominant for
pT > 10 GeV. At lower transverse momenta, the
main contribution comes from the interaction with
the hadron remnant. Its valence part determines the
observed flavor dependence of the asymmetry in the
charm yield.
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APPENDIX 1

Hard Production of Four Quarks
in the Gluon–Photon Subprocess

In the present model, it is assumed that, in the case
of a hard process, a heavy and a light valence quark
are produced simultaneously.
In the tree approximation, the subprocess g(pg) +

γ(pγ) → c(qc) + c̄(qc̄) + d(qd) + d̄(qd̄) can be de-
scribed by 24 Feynman diagrams in Fig. 1, where
it is necessary to remove the vertices corresponding
to (cd̄)-quarkonium production. (In this figure, thick
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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and thin fermion lines denote c and d quarks, respec-
tively.) In this study, the amplitudes are computed by
means of a straightforward numerical evaluation of
the products of γ matrices, spinors, and polarization
vectors.
Let us introduce the notation

q2c = q2c̄ = m2
c , q2d = q2d̄ = m2

d, (A.1)

qcc̄ = −qc − qc̄, qdd̄ = −qd − qd̄, pgγ = pg + pγ ,
kg,cc̄ = pg + qcc̄, kg,dd̄ = pg + qdd̄.

The three-gluon vertex can be represented in the
form

Γµ(pa, pb, εa, εb) = −((2pa + pb)εb)εµa (A.2)

+ (pa − pb)µ(εaεb) + ((2pb + pa)εa)ε
µ
b ,

Γ′µ(pa, pb, εa, εb) = Γµ(pa, pb, εa, εb)/(pa + pb)2.

The two-quark currents are defined as

Jµ
cc̄ =

ū(qc)γµv(qc̄)
q2cc̄

, Jµ
dd̄

=
ū(qd)γµv(qd̄)

q2
dd̄

. (A.3)

For the case of photoproduction, we also introduce
the auxiliary spinors

ūc(d)g(γ) = ū(qc(d))ε̂g(γ)

(q̂c(d) − p̂g(γ) +mc(d))
(qc(d) − pg(γ))2 −m2

c(d)

,

(A.4)

vc̄(d̄)g(γ) =
(p̂g(γ) − q̂c̄(d̄) +mc̄(d̄))

(pg(γ) − qc̄(d̄))2 −m2
c̄(d̄)

ε̂g(γ),

ūc,dd̄ =
ū(qc)Ĵdd̄(q̂c − q̂dd̄ +mc)

(qc − qdd̄)2 −m2
c

,

ūd,cc̄ =
ū(qd)Ĵcc̄(q̂d − q̂cc̄ +md)

(qd − qcc̄)2 −m2
d

,

vc̄,dd̄ =
(q̂dd̄ − q̂c̄ +mc)Ĵdd̄v(qc̄)

(qdd̄ − qc̄)2 −m2
c

,

vd̄,cc̄ =
(q̂cc̄ − q̂d̄ +md)Ĵcc̄v(qd̄)

(qcc̄ − qd̄)2 −m2
d

.

The gluon and photon polarization vectors are de-
noted by εg and εγ , respectively.
The summation of the matrix element squared is

performed over the orthonormalized gluon polariza-
tion states

ε′ = (0, 1, 0, 0), ε′′ = (0, 0, 1, 0).

It should be noted that ε′2 = ε′′2 = −1 and that
p · ε = 0, where p is the gluon 4-momentum.
In the case of deep-inelastic production, the pho-

ton is off the mass shell; therefore, the matrix ε̂γ
in (A.4) must be replaced by γi. Hence, the resulting
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matrix element has one free Lorentz index; the prod-
uct of the matrix element and the photon density must
be contracted over this index by formula (3).
The notation for the color indices is as follows: the

superscripts jg denote the color states of the gluon,
while the subscripts ic, ic̄, id, and id̄ denote the color
states of the c, c̄, d, and d̄ quarks.
By ec and eq, we denote the charges of the c and q

quarks, respectively.
In the Feynman gauge, the contributions of the

respective diagrams to the amplitude are given by (the
coefficients in braces are color factors)

T1 = ec · ū(qd)Γ̂′(pg, qcc̄, εg, Jcc̄)vd̄γ (A.5)

× {ifn1n2jgtn1
icic̄
tn2
idid̄

},

T2 = ec · ūdγ Γ̂′(pg, qcc̄, εg, Jcc̄)v(qd̄) (A.6)

× {ifn1n2jgtn1
icic̄
tn2
idid̄

},

T3 = eq · ū(qc)Γ̂′(pg, qdd̄, εg, Jdd̄)vc̄γ (A.7)

× {ifn1n2jgtn1
idid̄
tn2
icic̄

},

T4 = eq · ūcγΓ̂′(pg, qdd̄, εg, Jdd̄)v(qc̄) (A.8)

× {ifn1n2jgtn1
idid̄
tn2
icic̄

},

T5 = ec · ūcgγ
αv(qc̄)ū(qd)γαvd̄γ/k

2
g,cc̄ (A.9)

× {tjg

iclt
n
lic̄t

n
idid̄

},
T6 = ec · ū(qc)γαvc̄gū(qd)γαvd̄γ/k

2
g,cc̄ (A.10)

× {tniclt
jg

lic̄
tnidid̄

},
T7 = ec · ūcgγ

αv(qc̄)ūdγγαv(qd̄)/k
2
g,cc̄ (A.11)

× {tjg

iclt
n
lic̄t

n
idid̄

},
T8 = ec · ū(qc)γαvc̄gūdγγαv(qd̄)/k

2
g,cc̄ (A.12)

× {tniclt
jg

lic̄
tnidid̄

},
T9 = eq · ūdgγ

αv(qd̄)ū(qc)γαvc̄γ/k
2
g,dd̄ (A.13)

× {tnicic̄t
jg

idlt
n
lid̄
},

T10 = eq · ū(qd)γαvd̄gū(qc)γαvc̄γ/k
2
g,dd̄ (A.14)

× {tnicic̄t
n
idlt

jg

lid̄
},

T11 = eq · ūdgγ
αv(qd̄)ūcγγαv(qc̄)/k2g,dd̄ (A.15)

× {tnicic̄t
jg

idlt
n
lid̄
},

T12 = eq · ū(qd)γαvd̄gūcγγαv(qc̄)/k2g,dd̄ (A.16)

× {tnicic̄t
n
idlt

jg

lid̄
},

T13 = eq · ūc,dd̄ε̂gvc̄γ · {tniclt
jg

lic̄
tnidid̄

}, (A.17)

T14 = eq · ūcgĴdd̄vc̄γ · {tjg

iclt
n
lic̄t

n
idid̄

}, (A.18)
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T15 = eq · ūcg ε̂γvc̄,dd̄ · {t
jg

iclt
n
lic̄t

n
idid̄

}, (A.19)

T16 = ec · ūc,dd̄ε̂γvc̄g · {tniclt
jg

lic̄
tnidid̄

}, (A.20)

T17 = eq · ūcγ Ĵdd̄vc̄g · {tniclt
jg

lic̄
tnidid̄

}, (A.21)

T18 = eq · ūcγ ε̂gvc̄,dd̄ · {t
jg

iclt
n
lic̄t

n
idid̄

}, (A.22)

T19 = ec · ūd,cc̄ε̂gvd̄γ · {tnidlt
jg

lid̄
tnicic̄}, (A.23)

T20 = ec · ūdgĴcc̄vd̄γ · {tjg

idlt
n
lid̄
tnicic̄}, (A.24)

T21 = ec · ūdg ε̂γvd̄,cc̄ · {t
jg

idlt
n
lid̄
tnicic̄}, (A.25)

T22 = eq · ūd,cc̄ε̂γvd̄g · {tnidlt
jg

lid̄
tnicic̄}, (A.26)

T23 = ec · ūdγ Ĵcc̄vd̄g · {tnidlt
jg

lid̄
tnicic̄}, (A.27)

T24 = ec · ūdγ ε̂gvd̄,cc̄ · {t
jg

idlt
n
lid̄
tnicic̄}. (A.28)

The spinor basis is chosen to be formed by two
independent states characterized by specific spin pro-
jections onto the z axis in the quark rest frame. In the
computations, we have used the Dirac representation
of the γ matrices and taken the spinors involved in the
explicit form

u(p,+) =
1√
E +m




E +m

0

pz

px + ipy



, (A.29)

u(p,−) =
1√
E +m




0

E +m

px − ipy
−pz



,

v(p,+) = − 1√
E +m




pz

px + ipy

0

E +m



,

v(p,−) =
1√
E +m




px − ipy
pz

0

E +m



.

The γ matrices in the Dirac representation have
PH
the form

γ0 =


1 0

0 −1


 , γ =


 0 σ

−σ 0


 ,

σ = {σx, σy, σz}

=




0 1

1 0


 ,


0 −i

i 0


 ,


1 0

0 −1




 .

The Gell-Mann matrices are given by

λ1 =




0 1 0

1 0 0

0 0 0


 , λ2 =




0 −i 0

i 0 0

0 0 0


 ,

λ3 =




1 0 0

0 −1 0

0 0 0


 , λ4 =




0 0 1

0 0 0

1 0 0


 ,

λ5 =




0 0 −i

0 0 0

i 0 0


 , λ6 =




0 0 0

0 0 1

0 1 0


 ,

λ7 =




0 0 0

0 0 −i

0 i 0


 , λ8 =

1√
3




1 0 0

0 1 0

0 0 −2


 .

The tmatrices are defined by the equation ti = λi/2.
The values of the antisymmetric structure con-

stants fabc used in the computations are

f123 = 1,
f147 = −f156 = f246 = f257 = f345 = −f367 = 1/2,

f458 = f678 =
√

3/2.

APPENDIX 2

Soft Process of (cd̄)-Quarkonium Formation
through the Fusion of c and d̄Quarks

In describing (cd̄)-quarkonium formation from c
and d̄ quarks, we assume that the parton distributions
in the D∗ meson involve terms associated with va-
lence quarks and that the c and d̄ quarks produced in
a hard process go over to valence quarks in themeson.
In the infinite-momentum frame, the distributions of
valence quarks can be represented as

f v
c (x, p⊥) = fc(x, p⊥) − fc̄(x, p⊥),
YSICS OF ATOMIC NUCLEI Vol. 66 No. 4 2003
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f v
d̄ (x, p⊥) = fd̄(x, p⊥) − fd(x, p⊥).

The momentum fractions carried away by valence
quarks have the form

〈xv
c〉 =

∫
d2p⊥dxx · f v

c (x, p⊥) ≈ mc

mD∗
, (A.30)

〈xv
d̄〉 =

∫
d2p⊥dxx · f v

d̄ (x, p⊥) ≈ Λ̄
mD∗

, (A.31)

where Λ̄ is the quark-binding energy in the meson,
and satisfy the approximate relation

〈xv
c〉 + 〈xv

d̄〉 ≈ 1. (A.32)

In our calculations, we disregard the spread of the
momentum fraction carried away by quarks; that is,
we assume that Eqs. (A.30)–(A.32) are exact. We
also assume that the effective light-quark mass is
about Λ̄.
In the doubly heavy quarkonium, the singlet com-

ponent of the state of the valence-quark pair is dom-
inant, because the octet component is suppressed in
proportion to the third power of the relative velocity
of the quarks [9]. This is not so for the (cd̄) quarko-
nium; therefore, both components must be taken into
account in that case.
The quantities 〈O(1)〉 and 〈O(8)〉, which, in our

model, describe the hadronization of the singlet and
the octet quark-pair state, cannot be evaluated within
perturbation theory since they involve interactions at
the scaleΛQCD. In the nonrelativistic potential model,
they would correspond to the square of the wave
function at the origin: 〈O(1,8)〉|NR = |Ψ(0)|2. In the
model under study, we have

〈O(1)〉 =
1

12MD∗

(
−gµν +

pµpν

M2
D∗

)
(A.33)

× 〈D∗(p)|(c̄γµd)(d̄γνc)|D∗(p)〉,

〈O(8)〉 =
1

8MD∗

(
−gµν +

pµpν

M2
D∗

)
(A.34)

× 〈D∗(p)|(c̄γµλad)(d̄γνλbc)|D∗(p)〉δ
ab

8
.

Within the proposed model, the probability that
theD∗ meson is produced through the fragmentation
of a c quark in e+e− annihilation,W (c→ D∗), is ex-
pressed in terms of the parameters 〈O(1)〉 and 〈O(8)〉
as

W (c→ D∗) =

1∫
0

Dc→D∗(z)dz (A.35)
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 4 200
=
α2

s(µR)〈Oeff(µR)〉
m3

d

I

(
md

md +mc

)
,

where 〈Oeff(µR)〉 = 〈O(1)〉 + 〈O(8)〉/8 and

I(r) =
8
27

[
24 + 109r − 126r2 − 174r3 − 89r4

15(1 − r)5
(A.36)

+
r(7 − 4r − 3r2 + 10r3 + 2r4)

(1 − r)6 ln r
]
.
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